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Abstract 

The idea that emotions and physical actions are strongly intertwined has been 

widely accepted for quite some time. Yet surprisingly, in both the affective 

neuroscience and movement neuroscience literature, relatively little empirical attention 

has been paid to the (psycho)neurophysiological processes underpinning emotion-motor 

interactions. Therefore, the primary aim of this doctoral work was to further our 

understanding of emotion-motor interactions by investigating this relationship at 

different stages of brain development and in a clinical population characterized by 

episodic manifestations of altered motor and sensory function often associated with 

emotion regulation deficits, namely patients experiencing psychogenic non-epileptic 

seizures (PNES). To do this, I adopted a multidisciplinary approach encompassing both 

electroencephalography (EEG) and structural magnetic resonance imaging (sMRI).  

The first Study (Chapter 2) investigated the relationship between emotion and 

motor function by measuring an electrophysiological index of anticipation, the 

contingent negative variation (CNV), to examine how anticipation of angry, happy and 

neutral faces influence motor preparation and subsequent action in early adolescents, 

late adolescents and young adults. In addition to which I also investigated whether 

automated attentional capture, as indexed by the visual P1 and N170 ERP components, 

differed at different stages of brain maturation. The results of this EEG study found no 

significant effects of emotion on the CNV during the anticipatory period, either within 

or between age groups. Both the visual P1 and N170 ERP components were found to be 

larger in response to angry faces relative to neutral faces but not happy faces, suggesting 

that early non-conscious automated attentional capture was facilitated by negative facial 

expressions. 
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Study 2, presented in Chapter 3, used a systematic meta-analytical approach to 

critically appraise the evidence for, and examine the convergence of, the 

neurobiological correlates of abnormal neurological functioning in PNES. Findings 

based on this systematic meta-review suggest that PNES may be associated with 

changes in brain morphology and/or persistent or recurrent functional changes in the 

brain. These neurobiological correlates may act as predisposing, precipitating and/or 

perpetuating factors in PNES. Study 3, presented in Chapter 4, used sMRI to measure 

cortical thickness and gyrification patterns in individuals experiencing PNES and age- 

and gender matched healthy controls. This was done to investigate whether cortical 

thickness differences between groups would be found in motor, frontal and occipital 

regions in addition to brain regions involved in emotion processing. In addition to 

cortical thickness measures, additional analyses were conducted to investigate whether 

patients with PNES would show evidence of abnormalities on a measure thought to 

reflect prenatal and early childhood cortical development and organization, namely 

local Gyrification Index. In this study I observed differences in cortical thickness 

between patients with PNES and healthy controls in (pre)frontal, temporal and occipital 

cortical regions which may suggest that atypical neuroplasticity may be implicated in 

precipitating and/or perpetuating PNES symptomatology. 

This body of work provides new insights into emotion-motor interactions by 

furthering our understanding of the temporal relationship between emotion and motor 

preparation and motor output during different stages of brain maturation as well as the 

neurobiological correlates of abnormal motor output in the form of non-epileptic 

seizures. 
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1.1. Introduction 

The idea that emotions and actions are strongly intertwined has been widely 

accepted for quite some time (Sander, 2013). Yet, to date, the majority of empirical 

investigations of affect-behaviour interactions in humans have primarily focused on 

how emotions influence attention, working memory, learning, cognitive control and/or 

emotion regulation strategies (Okon-Singer, Hendler, Pessoa, & Shackman, 2015). In 

the realm of movement neuroscience, researchers have largely overlooked emotion and 

have primarily focused on motor learning and motor control and the cortical and 

subcortical generators of movement and inhibition of movement (Alexander, DeLong, 

& Strick, 1986; Alexander & Crutcher, 1990; Frith, Blakemore, & Wolpert, 2000; 

Schmidt, Lee, Winstein, Wulf, & Zelaznik, 2018; Wolpert & Flanagan, 2001). As a 

result, in both the affective neuroscience and movement neuroscience literature, 

relatively little empirical attention has been paid to the neural correlates of emotion-

motor interactions. This is in spite of the fact that many studies involving humans in the 

cognitive and affective neurosciences have employed experimental paradigms using 

affective stimuli while measuring reaction times (RTs), yet have overlooked the neural 

correlates of emotion-motor interactions (Blakemore & Vuilleumier, 2017).  

The relative lack of empirical work into how human emotion influences 

preparatory motor processes and overt physical action (or vice versa) has hindered 

progress in understanding neurotypical and non-neurotypical brain development, 

psychiatric disorders and disorders involving aberrant motor function resulting from 

organic or non-organic causation. This oversight may be an important one, given that 

the degree to which emotion and motor processes are successfully integrated may well 

depend on the functional integrity of neural circuitry involving numerous cortical and 

subcortical regions of the brain – the prefrontal and frontal cortex (including inferior 
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frontal gyri and supplementary motor area), amygdala, basal-ganglia, periaqueductal 

gray, cerebellum and anterior cingulate being some of the prominent examples 

(Blakemore & Vuilleumier, 2017).  

However, the convergence of affective and movement neuroscience over the last 

decade or so, has led to empirical research in some areas, afforded valuable insights and 

pointed to promising new avenues of investigation. For example, in the main stream 

affective sciences a great deal of attention has been paid to approach-avoidance 

behaviours (Coombes, Cauraugh, & Janelle, 2006; Lang & Bradley, 2010; LeDoux, 

2000; Sege, Bradley, Weymar, & Lang, 2017). In movement neuroscience the role of 

emotion in movement disorders such as Parkinson’s disease has received some attention 

(Metz, 2007). In the realm of psychiatry, aberrant emotion-motor interactions have been 

associated with functional neurological disorders (Aybek et al., 2014; Aybek et al., 

2015; Blakemore, Sinanaj, Galli, Aybek, & Vuilleumier., 2016; Pick, Goldstein, Perez, 

& Nicholson, 2019; Voon, Brezing, Gallea, & Hallett., 2011; Voon et al., 2016; 

Vuilleumier, 2014) and depression (Buyukdura, McClintock, & Croarkin, 2011) while 

abnormalities in the perception of action have been associated with schizophrenia 

(Frith, Blakemore, & Wolpert, 2000).  

Yet, questions still remain as to how human emotions influence action at the 

neural level in real time, and how interactions between emotion and action develop at 

different stages of brain development. This is particularly the case in adolescence, a 

time in which emotional experiences may be more potent and/or consequential due to 

the maturational mismatch between relatively immature (pre)frontal structure/circuitry 

and relatively more mature limbic regions of the brain (Casey & Jones, 2010; Giedd, 

2004; Giedd & Rapoport, 2010; Gogtay et al., 2004; Gogtay & Thompson, 2010; Hare 

et al., 2008; Shaw et al., 2008; Somerville, Jones, & Casey, 2010). Indeed, 
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phylogenetically older lower-order limbic regions of the brain have been shown to 

mature earlier than phylogenetically newer higher-order regions of the brain (parietal, 

frontal and association areas, Gogtay et al., 2004) and this is likely to have a significant 

bearing on how emotion-motor interactions may change at different stages of brain 

development. Therefore, the period of adolescence may be an ideal time to pose such a 

question, to better elucidate how different affect states influence motor function, which 

I examined in this thesis in Chapter 2. 

The regulation of emotional experiences is critical to maintaining coherent and 

successful cognitive and behavioural patterns in response to internal and/or external 

experiences. Psychopathology during adulthood may often appear earlier with the 

manifestation of symptoms occurring during adolescence or even childhood 

(Kozlowska et al., 2018; Kessler et al., 2005; Reuber, 2008). Gaining an insight into 

how anticipatory and motor related activity in the brain may be attenuated or enhanced 

under different emotional conditions is of importance to getting a better understanding 

of how emotion and its regulation may be involved in conditions in which altered 

sensory and/or motor function is believed to result from psychological and/or emotional 

distress (psychogenic non-epileptic seizures; PNES). Moreover, the manifestation of 

symptoms associated with functional neurological disorders like PNES during 

adulthood often appear earlier in adolescence or even childhood (Kozlowska et al., 

2018; Reuber, 2008). Study 1 presented in Chapter 2 may represent a first step in the 

development of future experimental paradigms which could involve clinical populations 

during different stages of brain development or possibly different stages of their 

condition, including patients experiencing PNES. 

PNES is a highly heterogeneous condition, clearly disabling and often 

misunderstood by both patients and non-expert healthcare professionals (Green, Payne, 
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& Barnitt, 2004). In the absence of easily identifiable physiological change, PNES 

patients may be accused of “faking” their seizures (Benbadis, 2005), which increases 

patients’ sense of helplessness, confusion and isolation (Thompson, Isaac, Rowse, 

Tooth, & Reuber, 2009). Therefore, in PNES research, there is a need to bring the 

psychosocial and biological together if we are to gain a better understanding of 

predisposition to, and consequence of this condition. At the very least, this may help to 

address the issue of stigmatization which often surrounds this condition.  

Multiple predisposing, precipitating and perpetuating factors have been 

implicated in PNES, including childhood sexual abuse, other trauma or neglect in early 

life, subsequent adverse life events, a dysfunctional social environment, learning 

disabilities and other psychiatric comorbidities or comorbid brain disorders (Reuber, 

Howlett, Khan, & Grünewald , 2007). While biopsychosocial models conceptualize 

PNES as resulting from of a complex interplay of these risk factors (Reuber, Howlett, 

Khan, & Grünewald , 2007; Reuber, 2009), to date no single necessary and sufficient 

aetiological cause of the disorder has been identified (Reuber, 2009). However, it has 

been suggested that non-epileptic seizure-like episodes may be the result of emotional 

regulation deficits (Bakvis et al., 2009; Reuber, 2009). For example, evidence suggests 

that patients with non-epileptic seizure-like episodes may have reduced accuracy in 

recognising emotional facial expressions (Pick, Mellers, & Goldstein, 2016) and show 

attentional bias to threatening or negative information (e.g., Bakvis et al., 2009; Bakvis 

et al., 2010; Bakvis, Spinhoven, Zitman, & Roelofs, 2011). If this is indeed the case, 

then one might see structural and/or functional correlates of such deficits in patients 

with PNES. In fact, some studies have shown increased amygdala activity in patients 

with conversion disorder during the processing of emotional facial expression (Aybeck 

et al., 2015; Hassa et al., 2017; Voon et al., 2010a). Therefore, I further investigated the 
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evidence for the possible neurobiological underpinnings of PNES in Chapter 3. Further, 

I did this in an attempt to assess whether the available empirical evidence was 

convergent on brain regions involved in emotion processing and motor function. 

Additionally, very little is known about the structure of the cerebral cortex in PNES and 

I examined this further in Chapter 4. The intention was to investigate whether cortical 

thickness in regions associated with emotion processing, sensorimotor functions and 

motor control were affected in PNES in addition to characteristics of early cortical 

development and organisation, namely gyrification patterns. 

In summary, the purpose of this doctoral thesis was to first, investigate whether 

emotion-motor interactions were valence dependent and whether they differed 

significantly between adolescents and adults, and to second, examine the available 

neuroimaging evidence for the existence of neurobiological substrates of aberrant 

emotion-motor interactions in patients with PNES. Lastly, the purpose of this doctoral 

thesis was to investigate whether group level analyses of structural magnetic resonance 

imaging (sMRI) scans would be able to differentiate patients with PNES and age- and 

gender-matched healthy controls and whether this differentiation would be localised to 

brain regions associated with emotion processing, sensorimotor functions and motor 

control. 

The following literature review primarily focuses on research investigating 

emotion and motor function, their physical substrates in the brain and how these may 

change in concert with brain maturational processes/mechanisms. Instances in which 

aberrant motor function occurs free of neurological causation will also be covered. This 

review will begin by giving an overview of the structural brain changes that occur 

primarily during adolescence into adulthood and why they are important. This will be 

followed by an overview of emotion as a concept and how emotional experiences and 
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the regulation of emotion may be influenced by brain maturation. I will then give an 

overview of emotion-motor interactions and how these interactions precipitate and/or 

regulate internal states and adaptation to external cues/stimuli. This will be followed by 

an overview of anticipatory behaviour and the event-related potential (ERP) known as 

the contingent negative variation (CNV), an index of anticipation and preparatory brain 

activity. I will then describe some the studies that have investigated modulation of the 

CNV with the use emotional stimuli and studies that have investigated the 

developmental trajectory of this ERP component. The available neuro-scientific 

evidence describing the relationship between emotion and motor function, and the 

neurobiological correlates underpinning emotion-motor interactions will also be 

provided. 

The final part of this review will cover studies examining how structural and/or 

functional changes in the brain may facilitate or indeed hinder the regulation of motor 

activity and emotional experiences and why this might be of importance in functional 

neurological disorders (FND) more generally. Additional literature specifically related 

to psychogenic non-epileptic seizures (PNES) will be covered in Chapter 3 and in 

Chapter 4. For purposes of clarity, the use of the term action tendency or action 

readiness is intended to describe preparation or readiness to enact movement while the 

term action describes the overt movement itself. 

 

1.2. Brain development  

Differences in cognitive ability, behaviour, emotion expression and emotion 

regulation between children, adolescents and adults is fairly evident. While there is still 

no clear and definitive explanatory model linking behaviour to neurocognitive 

development during this transition period, neuro- and developmental psychologists have 
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known for some time that the ability to regulate emotion and behaviour is relatively late 

to mature and that these regulatory functions are likely linked to the maturation of 

prefrontal regions of the brain (Steinberg, 2005). Indeed, while early studies in human 

brain development were greatly limited by the availability and number of post-mortem 

human brains at different ages (particularly at younger ages), these studies suggested 

that parts of the human brain, particularly the prefrontal cortex, continue to develop 

beyond early childhood (Huttenlocher, 1979; Huttenlocher, de Courten, Garey, & Van 

der Loos, 1982). More recently, the advent of nuclear magnetic resonance imaging 

(NMR), and advances in neuroimaging techniques over the last 20 years, have made it 

possible to investigate human brain development with large samples in a non-invasive 

way (in vivo).  These technological advances have greatly added to a better 

understanding of human brain development.  

It is now generally accepted that brain maturation continues from early 

childhood through adolescence into adulthood. Although the overall size of the human 

brain does not appear to change dramatically from the age of 6 (95% of the adult size 

brain) to age 20 (Giedd., 2004; Giedd & Rapoport, 2010), subdivisions of the brain 

undergo subtle yet substantial dynamic structural change during childhood and from 

adolescence into young adulthood (Blakemore, 2012; Blakemore & Choudhury, 2006; 

Casey, Giedd, & Thomas, 2000; Cao et al., 2017; Dosenbach et al., 2010; Goddings et 

al., 2014; Mills et al., 2016; Paus, 2005; Segalowitz, Santesso, & Jetha, 2010). Evidence 

for this will be examined next. 

1.2.1. Developmental trajectories in white matter 

White matter is primarily made up of myelinated axons or fibres and supporting 

glia. Myelin are lipid-rich (fatty) sheaths produced by oligodendrocytes that wrap 

around the axons of neurons dramatically increasing the speed of neural transmission 
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(Morell, Quarles, & Norton, 1999). The organisation of densely packed myelinated 

axons, fibre bundles or white matter tracts, beneath the surface of the cerebral cortex 

enables communication between the hemispheres (commissural), different cortical 

regions (associational) and between the cerebral cortex and other regions of the central 

nervous system (projectional). Findings from cross-sectional and longitudinal sMRI 

studies examining the developmental trajectories in the structure of the brain 

consistently point to linear increases in white matter volume throughout the entire brain 

during childhood and early to late adolescence (Giedd, 2004; Giedd et al., 1999; 

Lenroot et al., 2007; Paus, 2005; Sowell, Thompson, Holmes, Jernigan, & Toga, 1999).  

Developmental change in a number of important white matter tracts, particularly 

the corpus callosum and left arcuate fasciculus have been reported (Giedd et al., 1996; 

Giedd, 2004; Lenroot et al., 2007; Paus et al., 1999). Connections in the corpus 

callosum generally take the shortest route so anterior sections connect frontal regions of 

the brain, middle sections connect middle cortical areas, and posterior sections connect 

posterior regions. The corpus callosum integrates information coming from both 

cerebral hemispheres. This integration is important for motor output, integration of 

sensory input, attention and language. Anterior sections of the corpus callosum appear 

to mature relatively early compared to mid regions and posterior sections which show 

greater age-related change during adolescence (Giedd et al., 1996; Giedd, 2004). It is 

plausible that functions relating to the structural integrity of the corpus callosum 

continue to improve during childhood and adolescence (Geidd, 2004). However, it is 

still unclear as to why anterior portions of the corpus callosum appear to mature before 

middle and posterior regions, especially given that prefrontal regions of the brain show 

comparatively protracted development (Giedd, 2004). Increases in white matter density 

during childhood and adolescence have also been reported in the internal capsule and 
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the left arcuate fasciculus, a white matter tract connecting anterior (Broca) and posterior 

(Wernicke) regions of the brain associated with language comprehension and speech 

(Paus et al., 1999). This may be one plausible explanation for improvements in 

language comprehension during childhood and adolescence.  

1.2.2. Developmental trajectories in grey matter 

Grey matter primarily consists of neuronal cell bodies and dendrites, as well as 

myelinated and unmyelinated axons, glial cells and capillaries. The vast majority of 

neuronal cell bodies in the central nervous system are located in the cerebellum 

(approximately 101 billion) and the cerebral cortex (approximately 21-26 billion), the 

convoluted sheath of grey matter (approximately 1.6mm to 4mm in thickness) located 

on the outer surface of the brain. Different regions of the cerebral cortex are subservient 

to a variety of functions underpinning behaviour, from primary functions (sensory 

experiences and innervation of movement) to higher-order functions (the organization 

of behaviour and intellect). Pre-pubescent increases followed by regionally dependent 

post-pubescent decreases in cortical grey matter volume, cortical thickness (surface of 

the brain) and some subcortical grey matter nuclei (structures inside the cortex) occur at 

different times during the transition from childhood to adulthood (Giedd et al., 1996; 

Giedd et al., 1999; Geidd & Rapoport, 2010; Mills, Goddings, Clasen, Giedd, & 

Blakemore, 2014; Mills et al., 2016; Shaw et al., 2008). Total cerebral grey matter 

volume appears to decline from its maximal level roughly between 7 -12 years of age 

(Giedd et al., 1999; Mills et al., 2016; Sowell, Thompson, Tessner, & Toga, 2001) and 

continues to decrease post-puberty into late adolescence and young adulthood, most 

notably in the prefrontal and parietal lobes relative to the temporal (middle and inferior) 

and occipital lobes (Giedd et al., 1999; Giedd, 2004; Gogtay et al., 2004; Lenroot et al., 

2007; Paus, 2005). Further regional differences have been found in terms of grey matter 
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density, with sensorimotor areas of the brain maturing first (in terms of grey matter 

loss), followed by higher-order association areas such as the prefrontal, inferior parietal 

and superior temporal regions of the brain (Giedd, 2004; Giedd & Rapoport, 2010; 

Gogtay et al., 2004; Shaw et al., 2008). This suggests that phylogenetically older 

regions of the brain associated with the more basic functions appear to mature first, 

followed by brain regions involved in the organisation, integration and execution of 

these basic functions (Gogtay et al., 2004). Indeed, the most consistent findings from 

developmental structural imaging studies in humans’ point to protracted development of 

the dorsolateral prefrontal cortex relative to other cortical and subcortical regions of the 

brain (Mills, Goddings, Clasen, Giedd, & Blakemore, 2014). These findings are in 

accordance with post-mortem histological studies of the human brain at different ages 

(Huttenlocher, 1979; Huttenlocher, de Courten, Garey, & Van der Loos, 1982; Webb, 

Monk, & Nelson, 2001) suggesting that the human brain undergoes protracted and 

heterogeneous development with prefrontal regions of the brain being amongst the last 

regions to fully mature. 

1.2.3. Developmental trajectories in subcortical grey matter 

The developmental trajectories of subcortical grey matter nuclei are less 

understood. However, recent imaging studies again point to regional differences in the 

developmental trajectories of subcortical grey matter structures (Dennison et al., 2013; 

Giedd et al., 1996; Goddings et al., 2014; Østby et al., 2009). Increases or decreases in 

subcortical grey matter volume appear to be less dramatic than those observed in terms 

of white matter volume increases with age (proportional to total brain volume) (Sowell, 

Trauner, Gamst, & Jernigan, 2002). Between 6 and 30 years of age the majority of 

subcortical grey matter structures appear to show age-related decreases in volume, i.e., 

the caudate, thalamus, accumbens, putamen, and pallidum (Goddings et al., 2014; Mills, 
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Goddings, Clasen, Giedd, & Blakemore, 2014; Østby et al., 2009; Sowell, Trauner, 

Gamst, & Jernigan, 2002) while other regions of subcortical grey matter structures in 

medial temporal regions of the brain such as the amygdala and hippocampus show age-

related increases in volume (Giedd et al., 1996; Goddings et al., 2014; Mills, Goddings, 

Clasen, Giedd, & Blakemore, 2014; Østby et al., 2009). Interestingly, a sMRI study 

examining the timing of maturation of the amygdala (associated with the processing 

emotional stimuli, especially threat related), nucleus accumbens (associated with reward 

processing), and prefrontal cortex (associated with cognitive control) found that in a 

longitudinal sample of thirty-three neurotypical participants, aged 7–30 years, 

maturation of the amygdala and nucleus accumbens occurred earlier than that of the 

prefrontal cortex. The authors suggest that this maturational mismatch may be one 

possible explanation for why children, and in particular adolescents, may find it more 

difficult than adults to regulate their emotions and behaviours (Mills, Goddings, Clasen, 

Giedd, & Blakemore, 2014). 

In summary, the neuroimaging evidence outlined above makes it clear that the 

brain undergoes substantive change from early childhood to adulthood. Both the 

cerebral cortex and subcortical grey matter is subject to temporally distinct maturational 

change. This is coupled with increases in white matter volume which facilitates 

communication between brain regions. It is therefore likely that if emotion has an 

influential effect on motor preparation and action, that this might be most evident in 

neurotypical individuals during the adolescent period, which again I examine in Chapter 

2.  

1.3. What is an emotion? 

I am interested in how emotion can affect motor function at different stages of 

brain development and how emotion can affect motor function in PNES. To be able to 
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do this it is first important to understand what an emotion is. The question, what is an 

emotion, is a contentious one not only historically but also in contemporary theories of 

emotion. This is because emotions are difficult to pin down conceptually and as such 

are not amenable to definition or quantification. As pointed out by Frijda (2016), 

Kleinginna and Kleinginna (1981), Izard (2010), Scherer (2005), Sander (2013) and 

Oatley and Laird (2014), the major obstacle to the scientific investigation of emotion is 

the numerous definitions that have been proposed. For example, based on a list of 

almost 100 definitions derived from psychology dictionaries and texts on emotion, 

motivation, physiological psychology, and introductory psychology, Kleinginna and 

Kleinginna (1981) describe 11 categorical definitions of emotion: (1) affective 

definitions (emphasising excitement/depression or pleasure/displeasure); (2) cognitive 

definitions (emphasising appraisals and/or labelling processes); (3) external emotional 

stimuli definitions (emphasising external emotion-eliciting stimuli); (4) physiological 

definitions (emphasising internal physical mechanisms of emotion); (5) 

emotional/expressive definitions (emphasising observable emotional responses); (6) 

disruptive definitions (emphasising the disruptive/maladaptive nature of emotion); (7) 

adaptive definitions (emphasising goal-directed behaviours/the function of emotion in 

meeting an organism’s needs); (8) multiaspect definitions (emphasising the different 

facets of emotion); (9) restrictive definitions (emphasising the differentiation of 

emotion from other aspects of cognition); (10) motivational definition (emphasising 

overlap of emotion and motivation). The eleventh category (skeptical statements) has 

been left out as this is not a category of emotion per se. 

A second and related difficulty may in part be due to the fact that historically, 

many theories of emotion view emotion and action as two separate phenomena and 

disagreements still exist as to how these concepts interact and the direction of causality. 
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That is, do emotions cause physiological changes or changes in action tendencies and 

overt behaviour (Frijda, 2016; Scherer, 2009), or do actions cause emotions, or at the 

very least form part of the cause of emotions – physiological arousal leads to the post-

hoc labelling of said arousal as an emotion based on the situational context (Hommell, 

Moors, Sander, & Deonna, 2017; Russell, 2003, 2009; Schachter & Singer, 1962). 

These two views of emotion-action interactions, which are largely based on older 

assumptions (James/Cannon debate), appear to be diametrically opposed – one viewing 

emotion as instigator of action with foci in the central nervous system (primarily 

influenced by Cannon, 1927) and the other viewing action as instigator of emotion with 

foci in the peripheral nervous system (primarily influenced by James, 1884; Lange, 

1885). The common sense notion that emotion often results in action supports the 

former while the observation that emotion does not necessarily result in action supports 

the latter (Scarantino, 2017). However, this contentious debate over causality may be 

misleading and may have led to the confusion surrounding the concept of what an 

emotion actually is (Scherer, 2005). 

Notwithstanding this variety in the definition of emotion and the seemingly 

diametrically opposed views on emotion-action interactions, in the current cognitive and 

affective neuroscience literature there does appear to be some consensus among the 

dominant theoretical frameworks of emotion on at least four fronts. Namely: (1) 

emotions are multicomponent phenomena – an emotion involves a subjective 

component (feelings or affect), a cognitive component (information processing), a 

motivational component often described as changes in action tendencies, a somatic 

component (changes in physiological responses), and a motor component (overt 

behaviour); (2) emotions are two-step processes involving emotion elicitation (internal 

elicitation – appraisals, memory associations, reflexes, and affect, and external 
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elicitation – direct sensory triggering) that provoke emotional responses (overt 

behaviours, action tendencies, feelings, autonomic responses, and changes to 

perception, attention, memory, decision making, and moral judgements); (3) emotions 

have relevant objects (only objects/events that are perceived as relevant elicit emotions, 

i.e. increased probability of satisfaction or dissatisfaction for an organism); (4) emotions 

are brief occurrences (quick onset and limited duration as opposed to affect states, 

moods or dispositions) (Sander, 2013).  

Additionally, most emotion theories agree that emotions are not functionally 

irrational, i.e., emotions have relevant objects. Emotions serve the function of providing 

salient information about an event or object of import to the perceiver’s past, present or 

futures goals (Hommell, Moors, Sander & Deonna, 2017). For this reason, many 

cognitive and affective neuroscience theories of emotion emphasise the significance of 

emotion as a tool of adaptation and change. In other words, an emotional episode is 

likely to include appraisals and concerns (Frijda, 2016; Izard, 2010; Scherer, 2005) that 

occur in an environmental or cultural context (Izard, 2010; Lang & Bradley, 2010; 

Russell, 2003) that are driven by motivational factors (pleasure/displeasure, 

approach/avoidance, appetitive/defensive) (Frijda, 2016; Izard, 2010; Lang & Bradley, 

2010; Russell, 2003; Scherer, 2005). Emotion affords relevance or significance to 

objects or events that promote readiness for action or action itself in an attempt to 

change the relationship between an organism and its internal or external environment. 

Indeed, appetitive and aversive conditions are particularly likely to elicit emotions 

(Bradley, Cuthbert, & Lang, 1993; Bradley, 2009; Frijda, 2016; Lazarus, 1991; Sander, 

2013; Scherer, 2009). 

According to Jaak Panksepp, emotions originate in subcortical neural circuitry, 

interpreted later as emotions (subjective feelings). The subcortical emotional network is 
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highly conserved across mammals, including humans (Panksepp, 2004, 2016). This 

emotional network is built around the amygdala, which when activated, for example by 

threat, generates the subjective feeling of fear and also instigates defensive behaviours 

supported by physiological arousal to help the organism defend against attack 

(tenseness of muscles, solid stance and clenched fist – all preparatory activity for a swift 

defence). Moreover, the ability of an observer to recognize and classify “expressive 

movements” and to infer the corresponding emotional state is well documented 

(Witkower & Tracy, 2019). For example, feelings of joy/happiness are expressed 

through body posture as upward body movements, upward head tilt, and illustrative 

gestures, while feelings of fear are expressed in the body as backward movement or 

backward leaning, collapsed body, arms in front of body and shielding of the face 

(Witkower & Tracy, 2019). Just based on these examples, one can see that emotions can 

have a direct impact on physical behaviours/overt action, whether the action is in 

response to perceived threat or sense of elation. 

In summary, given the diversity of views of how emotion-action interactions 

occur, a helpful approach to better understand how emotion-action interactions occur is 

to take action to in part cause emotion and emotion to in part cause action. This is 

because an emotion is not a single phenomenon but rather an emotion reflects the 

interaction between the subsystems, functions and components of emotion which 

include, as mentioned above, cognitive components (appraisals), neurophysiological 

components (bodily sensations), motivational components (action tendencies), motor 

components (overt behaviour), and subjective components (emotional experience). For 

example, emotionally relevant stimuli (appetitive or aversive) may influence action on 

the one hand (to approach or to avoid), while facial and/or bodily movement may 

influence emotional experiences on the other (Hommell, Moors, Sander & Deonna, 
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2017). To understand how emotion and action may be related during adolescence, again 

it is first important to understand how brain maturation may affect how emotions are 

experienced and expressed during adolescence and how this differs compared to adults 

or even children. This will be examined next. 

 

1.3.1. Emotion in development 

 Adolescence is a critical transition period from childhood to adulthood involving 

multiple changes in almost all domains of an individual’s life. Indeed, adolescence is 

often described as a period of heightened stress (Spear, 2000). In fact, adolescence is the 

most common developmental period for psychiatric illness onset with half of all lifetime 

cases starting at fourteen years of age and three quarters by twenty-four years of age 

(Kessler et al., 2005). Within this context, it is also a time in which cognitive and 

emotional change occurs in concert with brain maturational processes (Paus, Keshavan, 

& Giedd, 2008). For a detailed description of brain development see Section 1.2.  

Significant changes in brain morphology and function during adolescence have 

been interpreted as having a number of consequential outcomes on adolescent 

behaviour, such as increased risk-taking and reward seeking (Casey & Jones, 2010; 

Doremus-Fitzwater & Spear, 2016; Ernst, Pine, & Hardin, 2006; Luna & Wright, 2016; 

Nelson, Leibenluft, McClure, & Pine, 2005; Steinberg, 2008, 2010) as well as increased 

emotionality (Casey & Jones, 2010). According to Casey’s “imbalance” model (Casey 

& Jones, 2010; Somerville, Jones, & Casey, 2010), relative to adults and children, 

adolescents often display enhanced responsivity to salient environmental cues while at 

the same time lacking the appropriate behavioural inhibitory skills needed for making 

optimal decisions. This partly occurs due to the mismatch between relatively mature 

subcortical limbic regions (amygdala and nucleus accumbens) associated with affect 

and motive states (approach/avoidance) coupled with relatively immature prefrontal 
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cortical regions associated with emotion regulation, impulse control and decision 

making (ventral, medial, orbital, dorsal prefrontal cortex). This hypothesis is supported 

by a number of neuroimaging studies which have found greater activation of the nucleus 

accumbens in response to rewards in adolescents compared to children and adults 

(Galvan, Hare, Voss, Glover, & Casey, 2007) as well as greater activation of the 

amygdala coupled with under-recruitment of the ventral prefrontal cortex during 

anticipation of fearful, happy and calm facial expressions in adolescents compared to 

children and adults (Hare et al., 2008). Additionally, white matter tract integrity (size, 

density and organization) appears to increase throughout adolescence well into 

adulthood (Schmithorst, Wilke, Dardzinski, & Holland, 2002; Snook, Paulson, Roy, 

Phillips, & Beaulieu, 2005). White matter tracts facilitate more efficient and effective 

cross-communication between different regions of the brain. Presumably immature 

white matter tract integrity between prefrontal regions involved in regulatory functions, 

and subcortical regions involved in emotion- and motive-driven behaviours, results in 

increased emotionality and less top-down or regulatory control (Somerville, Jones, & 

Casey, 2010). Lastly, this increased emotional reactivity or emotionality seen during 

adolescence is not so evident in younger children and adults because in children both 

the limbic system and prefrontal regions are both relatively immature while in adults 

both have reached maturity.  

As has been suggested in the introduction (Section 1.1), investigating 

preparatory neural activity during the anticipation of emotional stimuli when maturation 

of the prefrontal cortex is not yet complete may be an ideal time (developmentally) to 

investigate how brain maturation may modulate motor function and also how 

(pre)frontal-limbic interactions modulate action. In instances where emotionally-laden 

stimuli act as instigators of action and are perceived as such, it follows that motor 
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preparation may be closely aligned with the concurrent motive state (Lang & Bradley, 

2010). However, little is known about how emotional contexts interact with the process 

of motor preparation and action, particularly during developmental stages when 

maturation of the prefrontal cortex is not yet complete. This is particularly the case 

during the anticipatory state when preparation or readiness for action is involved, and 

when future events are known to be pleasant or unpleasant. This is directly relevant to 

Chapter 2. Indeed, the primary aim of Study 1 presented in Chapter 2 was to examine 

this process using EEG during the anticipation of angry, happy, and neutral facial 

expressions during three different developmental periods, namely early adolescence 

(13-14-year olds), late adolescence (18-20 year olds) and young adults (18-20). I did 

this to investigate how brain maturation may modulate motor function and also how 

(pre)frontal-limbic interactions modulate action. To the best of my knowledge, study 1 

presented in Chapter 2 is the first developmental study of emotion-motor interactions. 

Therefore, it is not possible to present the findings of previous developmental studies 

using similar paradigms in this chapter. However, empirical evidence does exist for 

emotion-motor interactions and this evidence will be examined next. 

 

1.3.2. Emotion in action 

Emotions are powerful determinants of subjective experiences, physiological 

arousal, motivation and behaviour. Indeed, the presence of emotional stimuli has been 

shown to both disrupt and enhance the orienting and capture of attention during 

experimental tasks (Dolcos & McCarthy, 2006; Hart, Lucena, Cleary, Belger, & 

Donkers, 2012; Schupp et al., 2007). In terms of peripheral physiology, at a basic level, 

the influence of emotion is probably most evident during fear conditioning paradigms, 

in which the presentation of aversive stimuli typically elicits defensive behaviours 

(flight, fight or freezing response), autonomic arousal (increases in blood pressure, heart 
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rate, sweating etc.) and endocrine responses (hormone release) (LeDoux, 2000). 

Presumably, such robust changes to central and peripheral neurophysiology reflect the 

engagement of motivational systems. Indeed, a number of studies point to the 

modulation of voluntary movement execution by motive states triggered by affective 

stimuli. 

Coombes, Cauraugh & Janelle (2006) found that in a sample of forty-five 

healthy undergraduate students’ (age range 18-29), exposure to unpleasant images 

(attack scene, disfigured child) resulted in greater mean force production, as measured 

by sustained voluntary muscle contractions of the wrist and finger extensors, relative to 

pleasant (erotic couples), neutral (face, wicker basket) and blank images. However, 

variability of mean force production did not vary as a function of affect. They conclude 

that when presented with threatening situations organisms have evolved to execute 

sustained voluntary movements with greater force without the loss of movement 

stability. They posit the possible involvement of two motor control loops (open and 

closed loops) to account for these findings, one involving the amygdala and cortico-

basal ganglia connections which was subject to modulation by affect (open loop) and 

the other involving the basal ganglia only (closed loop). 

A number of transcranial magnetic stimulation (TMS) studies have also reported 

modulation of movement generation and production by emotion. Schutter, Hofman, & 

Van Honk (2008) found that, in a sample of twelve healthy right-handed volunteers (age 

range 19-29), applying focal TMS over the left primary motor cortex 300ms after 

viewing fearful, happy and neutral facial expressions led to changes in corticospinal 

motor tract (CST) excitability with selective increases in motor evoked potentials 

(MEPs) recorded with the electromyogram (EMG) to fearful facial expressions 

compared to happy and neutral facial expressions. Using a similar approach Coombes et 
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al. (2009) applied TMS delivered to the motor cortex of twenty-three healthy male 

volunteers (age range 18-36) while they viewed pleasant, unpleasant and neutral 

images. They found reduced reaction times (RTs) during exposure to unpleasant images 

relative to pleasant and neutral images, increased force amplitude in the unpleasant 

condition relative to the pleasant and neutral condition, and larger MEPs in the 

unpleasant condition relative to the neutral condition. A non-significant marginal 

difference was found between MEPs elicited by pleasant and unpleasant images with a 

trend toward larger MEPs in the pleasant condition. As the authors point out, the 

modulation of the motor system by emotion may vary on differing levels and thus 

measurements may vary across behavioural and neurophysiological measures. A more 

recent study by Nogueira-Campos et al. (2014) also observed a valence effect on CST 

excitability in fourteen healthy undergraduate and postgraduate male participants (age 

range 21-36), where CST excitability was higher during preparation to grasp transparent 

cylinders containing emotionally-laden unpleasant objects compared to transparent 

cylinders containing emotionally-laden pleasant objects. However, no significant effect 

of valence on reaction times was found.  

The evidence outlined above suggests that action is dependent upon the context 

in which the action occurs (Coombes et al., 2009; Schutter, Hofman, & Van Honk, 

2008) and implies that the selection of motor programs during motor preparation may 

depend on the goal of an action (Nogueira-Campos et al., 2014; Phaf, Mohr, Rotteveel, 

& Wicherts, 2014). This is consistent with the view of emotion as instigator of a 

survival network, which facilitates adaptation to environmental concerns and has 

evolved to avoid threat and to enhance survival probabilities (Lang & Bradley, 2010), 

and that human emotions prime the human body for action (Frijda, 1986, 2009; Frijda, 

Kuipers, & Ter Schure, 1989; Izard, 1994). If human emotions prime the body for 
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action, then one might expect that anticipation of a positive outcome might be different 

than anticipation of a negative outcome, which again I investigate in Chapter 2. To 

understand better how this might occur, it is first important to understand what 

anticipation is and how it can be measured in the lab using electroencephalography 

(EEG). 

1.4. The anticipatory brain – the CNV 

Anticipation is integral to efficient and effective preparation, navigation, and 

interaction with an environment (Leuthold, Sommer, & Ulrich, 2004; van Boxtel & 

Böcker, 2004). If an individual perceives that at some point in the future, they will be 

presented with a certain stimulus, event, or likely to experience a particular state 

(affective or situational), they can adaptively prepare for that experience. Movement 

execution on the other hand is a more readily observable physical event resulting from 

the innervation of efferent signals emanating from the motor cortex to the skeletal 

muscle fibres and reafferent signals (sensory feedback) to the central nervous system 

(Frith, Blakemore, & Wolpert, 2000; Miall & Wolpert, 1996). Although movement 

execution is in part more readily observable than anticipatory processes linked to motor 

preparation and instigation of action, in many instances the execution of movement is 

reliant on conscious intent (volition) and unconscious preparatory neural activity which 

together, within a given context, facilitate execution or inhibition of motor related 

activity (Frith, Blakemore, & Wolpert, 2000).  

Anticipatory states are physiologically active states which involve the pre-

activation of sensory brain regions during the anticipation of forthcoming stimuli or 

events, and in most instances the pre-activation of motor regions of the brain when the 

execution of an action is required (Walter, Cooper, Aldridge, McCallum, & Winter, 

1964; McCallum, 1988; Birbaumer, Elbert, Canavan, & Rockstroh, 1990). Given that 
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the sequential change in state from perception to action and thus termination of the 

anticipatory state is in essence a temporal process, it is therefore logical to assert that 

anticipation and action sit on a perception-action continuum with perception 

(information processing of a cue or trigger) at one end and action at the other (van 

Boxtel & Böcker, 2004). Motor preparation occurs between perception and action, and 

involves response selection and motor response initiation beginning after the perceptual 

processing stage, prior to movement execution (Blakemore & Vuilleumier, 2017; 

Schmidt & Lee, 2014).  

Given that anticipation, motor preparation and action appear to unfold in a 

sequential manner on a perception-action continuum, EEG is ideally suited to capture 

the temporal characteristics of emotion-motor interactions. This is why I adopted this 

approach to investigate how emotion-motor interactions may or may not be age-

dependent (Chapter 2). Anticipatory behaviour and motor preparation are most often 

studied in ERP research using slow cortical potentials like the contingent negative 

variation (CNV; Walter, Cooper, Aldridge, McCallum, & Winter, 1964), stimulus 

preceding negativity (SPN; Brunia, 1988) and Bereitschaftspotential (BP; Kornhuber & 

Deecke, 1965). The CNV is typically elicited during a reaction time task involving a 

cue/warning stimulus (S1) and a target/imperative stimulus (S2). If the inter-stimulus 

interval between S1 and S2 is long enough, two subcomponents can be identified, an 

early/initial CNV (iCNV) associated with an orienting response to S1 (peaking about 0.7 

to 1 s after S1 onset with a fronto-central scalp topography) and a late/terminal CNV 

(tCNV) associated with anticipation of and response preparation to S2 (peaking 500ms 

to 200ms prior to S2 onset with a central scalp topography) (Jonkman, Lansbergen, & 

Strauder, 2003; Loveless & Sanford, 1974; McCallum, 1988; Rohrbaugh & Gaillard, 

1983). The SPN is similar to the CNV but can be elicited when no motor response is 
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required (van Boxtel & Brunia, 1994; Böcker & Van Boxtel, 1997). The BP is most 

often elicited prior to movement execution during a self-paced task (Kornhuber & 

Deecke, 1965). 

 Centrally distributed CNV amplitudes have been found to increase depending on 

the motor parameters as set out by the experimental paradigm, for example, forceful 

responses, responses requiring rapid increases in force or fast compared to slow 

responses (Low & McSherry, 1968; Rohrbaugh, Syndulko, & Lindsley, 1976; Van 

Boxtel, Van den Boogaart, & Brunia, 1993). CNV amplitudes are reduced or not present 

during NoGo trials in which no motor response is required versus Go trials in which a 

motor response is required (Funderud et al., 2012; Segalowitz & Davies, 2004; Taylor, 

Gavin, & Davies, 2016). In paradigms that require a motor response, the tCNV 

component is comprised of motor preparedness to, and pre-evaluation of S2, particularly 

in instances where the S1 indicates the nature of the forthcoming S2. In paradigms that 

are more perceptual then motor, it is likely that the tCNV represents a continuation of 

the iCNV component as amplitudes are reduced and scalp distributions are shifted to 

more posterior topographies for perceptual stimuli (Gaillard & Perdock, 1980) or more 

frontal topographies when mental effort is required (Van Boxtel & Brunia, 1994). 

Therefore, it is likely that the CNV, to a large extent is subject to manipulation 

depending on the type of experimental paradigm used and that both the iCNV and the 

tCNV components reflect aspects of cognition and action which include perception, 

expectancy, motor preparation, decision making, and when mental effort is required as 

well as somatosensory feedback (Donchin, Gerbrandt, Leifer, & Tucker, 1972; Hamano 

et al., 1997).  

In general, the CNV, as described in the majority of the literature, appears to 

represent the expectancy of forthcoming stimuli/events when shorter ISI’s are used, and 



 42 

two distinct associative processes when ISI’s longer than 3 seconds are used, namely 

attentive orientation to the cue/warning stimulus and anticipatory attention and motor 

preparation leading up to the presentation of the imperative stimulus (see Figure 1.1). In 

essence, the CNV encompasses perceptual and motor preparation (paradigm dependent) 

and reflects the summation of excitatory postsynaptic potentials (EPSPs) in the cerebral 

cortex evoked during the anticipatory state. The use of the CNV in the measurement of 

voluntary movement is well established. 

 

 

Figure 1.1. The CNV recorded at Cz with different ISIs. The CNV was recorded 

during a choice reaction time task involving visual cues as the warning stimulus 

and tones as the imperative stimulus. The long vertical line that spans each of 

the CNVs depicted represents the onset of the warning stimulus while the short 

vertical lines marked on each of the CNVs individually represent the onset of the 

imperative stimulus. Figure reprinted with the permission from MÜller‐

Gethmann, Ulrich, & Rinkenauer, 2003. 

 

Studies investigating the cortical generators of the CNV using intracranial 

recordings in animals and intracranial and scalp recordings in humans have localized 

the CNV to prefrontal, premotor and motor cortices (Hablitz, 1973; Rebert, 1972; 

Walter, 1967), while a study using subdural electrode implants in patients with 
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intractable epilepsy, noted a patchy distribution in prefrontal and supplementary 

sensorimotor areas for the iCNV component and again in the prefrontal and 

supplementary sensorimotor areas as well as the primary motor, primary sensory, 

temporal and occipital cortices for the tCNV component (Hamano et al., 1997). Studies 

using magnetic field encephalography (MEG) during Go/NoGo tasks point to multi-

focal generators of the contingent magnetic variation (CMV), the CNVs magnetic 

counterpart, including frontal, temporal, parietal and occipital areas as well as motor, 

sensory and association cortices (Elbert, Rockstroh, Hampson, Pantev, & Hoke, 1994; 

Fenwick et al., 1993). Studies using low-resolution electromagnetic tomography 

(LORETA) have observed cortical activation in prefrontal, primary and supplementary 

motor area, anterior cingulate cortex and superior and middle frontal areas for the CNV 

(Gómez, Marco, & Grau, 2003; Gómez, Flores, & Ledesma, 2007). In addition, recent 

functional magnetic resonance imaging (fMRI) studies investigating the neurobiological 

substrates of the CNV have noted the involvement of basal ganglia-thalamo-cortical 

circuitry in the generation of CNV amplitudes (Nagai et al., 2004) and it has been 

suggested that thalamic activation during CNV generation might reflect GABAergic 

regulation by the thalamic reticular nucleus during anticipatory attention resulting in an 

increase in CNV amplitudes (Brunia, 1999; Brunia & Van Boxtel, 2001).  

1.4.1. Anticipation and emotion  

A limited number of EEG studies have been conducted to examine how 

anticipation of emotionally-laden stimuli modulate anticipation, motor preparation and 

action. Casement and colleagues (2008) reported that in a group of fifteen healthy 

controls (age range 18-65), anticipation of positive, negative, and neutral adjectives 

resulted in larger CNV amplitudes prior to positive compared to neutral or negative 

adjectives. In contrast, in twelve dysthymia patients (age range 18-65) they observed a 
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non-significant trend for larger CNV amplitudes prior to negative compared to neutral 

adjectives. Using an emotional variant of the S1-S2 CNV paradigm in thirty participants 

(age range 20-32), grouped according to state and trait anxiety scores, Carretié, 

Mercado, Hinojosa, Martın-Loeches, & Sotillo. (2004) observed greater initial CNV 

(iCNV) amplitude in the high anxiety group (those that showed high levels of state 

anxiety and combined state and trait scores) during anticipation of negative images 

(insect) relative to positive images (opposite sex nude) and neutral images (telephone). 

This negativity bias was not present in the non-anxious group. The authors suggest that 

this implies a greater use of attentional resources towards negative/threatening stimuli 

compared to positive/pleasant and neutral stimuli in highly anxious individuals and 

points to a valence effect rather than general emotionality/arousal.  

Moser, Krompinger, Dietz, & Simons. (2009) examined ERP modulation during 

anticipation of unpleasant (human and animal mutilation and threat) and neutral images 

(household items and neutral faces) under different emotion regulation instructions in 

sixteen undergraduate students (age range not reported). They noted that preparation to 

increase or decrease emotional intensity to unpleasant and neutral pictures resulted in 

modulation of the SPN, a slow cortical potential associated with anticipation of 

emotional stimuli when no motor response is required (Hajcak, Weinberg, MacNamara, 

& Foti, 2012; van Boxtel & Böcker, 2004). Anticipation of down regulation but not up 

regulation to unpleasant images resulted in an increase in both early SPN (associated 

with orienting and processing of the cue stimulus) and late SPN (associated with 

anticipation of stimuli) amplitude relative to passively viewing the unpleasant images. 

These findings point to enhanced preparatory activity during instructions to down 

regulate rather than up regulate emotions and suggest that increased mental preparation 
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for forthcoming affective stimuli facilitates emotion regulation through increased 

prefrontal cortical activity.  

Using aversive and neutral picture presentations during a delayed Stroop task, 

Hart, Lucena, Cleary, Belger, & Donkers (2012) observed a relative decrease in CNV 

amplitude for both initial (iCNV) and terminal (tCNV) phases during aversive trials 

compared to neutral trials in twelve healthy participants (age range 19-34). However, 

iCNV amplitude attenuation in the aversive condition only occurred during incongruent 

trials in which increased cognitive control was needed, for example, the word RED 

printed in green ink. In contrast, reductions in tCNV amplitude during aversive trials 

relative to neutral trials were evident regardless of the difficulty of the task. 

Additionally, longer RTs were reported for incongruent trials compared to congruent 

trials and for trials involving aversive pictures compared to neutral pictures. The authors 

suggest that greater executive control during early stages of processing may exacerbate 

the effect of emotion while the later phase of motor preparation may be affected by 

emotional interference regardless. 

Finally, using a novel self-paced task in which fifteen healthy participants (mean 

age = 23.6, SD = 4) viewed positive, negative, neutral and neutral scrambled pictures 

initiated with a key press, Perri et al. (2014) reported bilateral positive activity over 

prefrontal and occipital electrode sites during expectancy of highly arousing pictures 

relative to neutral and neutral scrambled pictures. However, a direct link to more 

established movement related potentials as recorded by scalp electrodes was somewhat 

inconclusive given that BP amplitudes did not differ significantly between conditions. 

However, this may have resulted from insufficient power given the small sample size 

and/or some overlap of ERP components with the positive activity over prefrontal and 

occipital electrodes obscuring the BP. Also, because participants instigated picture onset 
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by pressing a key, motor preparation and anticipatory processes may have overlapped 

due to the methodological design employed (self-paced rather than cued design). 

 In summary, and again, while some of the results outlined above paint a 

somewhat inconsistent picture and questions remain in relation to whether positive and 

negative stimuli differentially modulate motor related activity beyond the level of 

arousal (Coombes et al., 2009), the evidence does again suggest that neural activity 

associated with anticipation, motor preparation and action is dependent to some degree 

upon the context within which it occurs. However, something that has not been 

examined by any of the studies described above is how does anticipation of positive, 

negative or neutral stimuli differentially modulate motor preparation and action during 

different stages of brain development. This is important, especially given that different 

stages of brain development often coincide with periods of heightened emotional 

experience and expression. In fact, to date, no studies have investigated emotion-motor 

interactions at different stages of brain development but there are a handful of studies 

that have used the CNV to investigate maturation of the (pre)frontal cortex. These will 

be examined next. 

 

1.4.2. Anticipation in development – the CNV 

Preparatory neural activity as indexed by the CNV reflects different cognitive 

and neurophysiological processes that occur in parallel and are facilitated by 

functionally related yet segregated cortical and subcortical pathways. Indeed, the CNV 

is believed to represent the integration of sensory input and the preparation for action, 

driven by the (pre)frontal cortex and connected structures (Segalowitz, Santesso, & 

Jetha, 2010). While there is a plethora of studies examining CNV amplitudes in animals 

and adult humans, less is known about anticipatory behaviour as indexed by the CNV 

during different stages of human brain development. Indeed, only a handful of 
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comparative neurodevelopmental studies currently exist which have sought to measure 

the CNV at different stages of brain maturation in neurotypical humans (Bender, 

Weisbrod, Bornfleth, Resch, & Oelkers-Ax, 2005; Flores, Digiacomo, Meneres, Trigo, 

& Gómez, 2009; Killikelly & Szűcs, 2013; Klein & Feige, 2005; Jonkman, 2006; 

Klorman, 1975; Perchet & Garcia-Larrea, 2005; Segalowitz, Unsal, & Dywan, 1992a; 

Segalowitz & Davies, 2004; Taylor, Gavin, & Davies, 2016; Timsit-Berthier & 

Hausman, 1972). While small in number, most studies point to linear increases in iCNV 

and tCNV amplitude with increasing age. This is true for most developmental CNV 

studies with the exception of the Timsit-Berthier & Hausman (1972) study which found 

adult-like CNV levels by eleven years of age in healthy children.  

Nonetheless, consensus points to a linear relationship between increases in CNV 

amplitude with increasing age. This has been interpreted as reflecting the protracted 

development of the prefrontal cortex. In fact, the CNV has been found to be either 

completely absent during the first decade of life (Perchet & Garcia-Larrea, 2005; 

Timsit-Berthier & Hausman, 1972) or significantly reduced in children compared to 

young adults (Jonkman, 2006; Segalowitz, Unsal, & Dywan, 1992a). Furthermore, 

patients with severe head injury show no CNV negativity or CNV negativity occurring 

on both Go and Nogo trials (Segalowitz & Davies, 2004). Moreover, greater CNV 

amplitude has been associated with greater attentional capacity (Bender, Weisbrod, 

Bornfleth, Resch, & Oelkers-Ax, 2005; Segalowitz & Davies, 2004) and higher IQ 

(Segalowitz, Unsal, & Dywan, 1992a; Segalowitz & Davies, 2004) suggesting that 

individual differences in CNV may be due to other factors apart from chronological age. 

However, to the best of my knowledge, no study has explored how emotional factors 

differentially modulate motor related activity during neurotypical adolescence. 
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Many of the neurodevelopmental studies outlined above have a number of 

limitations. First, from a developmental perspective, age categorization can be a 

significant limitation. For example, when comparing group means Segalowitz & Davies 

(2004) included seven to seventeen-year olds in the child group versus nineteen to 

twenty-five-year olds in the young adult group. Bender, Weisbrod, Bornfleth, Resch, & 

Oelkers-Ax. (2005) included six to eleven-year olds in the child group versus twelve to 

eighteen-year olds in the adolescent group. Flores, Digiacomo, Meneres, Trigo, & 

Gómez. (2009) included eight to thirteen-year olds in the child group versus eighteen to 

twenty-three year olds in the late adolescent group, and Taylor, Gavin, & Davies (2016) 

included seven to thirteen year olds in the child group versus nineteen to twenty-eight 

year olds in the late adolescent/young adult group. Given the numerous changes that 

occur in brain morphology and circuitry during the transition from middle/late 

childhood to young adulthood, it would seem wise to restrict age ranges to a minimum 

when comparing EEG measures between age groups, and not include different 

developmental stages (e.g. child and adolescent) in the same age group. The large 

degrees of variance in age between participants within each age group may obscure any 

significant differences that would be found if the age ranges were more tightly 

controlled.  

Second, with respect to measuring motor preparation, and this may be true for 

other measures as well, given that children, adolescents and adults appear to show 

different brain activation patterns due to differential recruitment of brain regions, it is 

likely that when completing the same task, possibly involving taxing cognitive 

demands, children, adolescents and adults may employ different strategies and engage 

different cortical and subcortical regions of the brain in order to accomplish the same 

goal (Flores, Digiacomo, Meneres, Trigo, & Gómez, 2009; Killikelly & Szűcs, 2013; 
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Segalowitz & Davies, 2004). If this is true, then it would be important to ensure, as 

much as possible, that the experimental paradigm employed would tap into the same 

strategies if we want to compare and contrast any real differences between the age 

groups. One way to do this is to ensure that the experimental task is as simple as 

possible with as few cognitive demands as is reasonable (Segalowitz & Davies, 2004) 

and I attempted to do this in Study 1 presented in chapter 2. 

In this doctoral work I am interested in how emotion is expressed through the 

preparatory or anticipatory state and through physical action or movement. Further, I 

am interested in how emotion-motor interactions change over time and how brain 

regions associated with emotion-motor interactions may be implicated in PNES. To be 

able to study this it is first important to have a general understanding of how altered 

sensory and/or motor function may result from psychological and/or emotional distress. 

   

1.5. Functional neurological disorders – FND 

This section is primarily included in this thesis to give the reader an introduction 

to functional neurological disorders, of which PNES is only one of many differing 

presentations. Again, additional literature specifically related to PNES will be covered 

in Chapter 3 and in Chapter 4. 

FND is a common condition found in neurology clinics (Stone et al., 2010) and 

sits at the intersection between neurology and psychiatry (Carson et al., 2012). FND 

symptoms show varying presentations which manifest as alterations in motor, sensory 

and/or cognitive function which occur beyond conscious control, are not easily 

explained by a general medical condition and/or brain disease, and are not accounted for 

by the direct effects of substance use. The most common symptoms include paroxysmal 

seizure-like episodes or non-epileptic seizures, functional sensory and movement 

disorders (hemisensory, visual, tremors), muscle weakness, and gait abnormalities 
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(Stone et al., 2010). Functional symptoms can occur in isolation but can also occur 

alongside other neurological or psychiatric conditions (Stone et al., 2010). Functional 

symptoms are now believed to be multifactorial. That is, many different risk factors 

may be involved in the development of this disorder.  

While the exact prevalence of FND is unknown, as stated above, FNDs are 

common, presenting in approximately 16% of patients in neurology out-patient clinics, 

beating epilepsy (14%) and second only to headache (Stone et al., 2010). Functional 

symptoms are more often diagnosed in women than in men (3:1) (Matin et al., 2017), 

although this may be an overrepresentation given that women tend to be 1.5 times more 

likely to seek healthcare assistance compared to men (Carson & Lehn, 2016). 

Importantly, functional symptoms are real and patients with functional symptoms report 

similar levels of disability to both epilepsy and multiple sclerosis patients (Stone, 

Warlow, & Sharpe, 2010). However, despite the prevalence of FND in neurology 

clinics, the underlying mechanisms that cause FND remain poorly understood.  

While aetiology remains elusive, the most prominent psychosocial etiological 

factors often include (but not always) a history of sexual or non-sexual trauma, 

subsequent adverse life events, familial discord/conflict, and bereavement of a 

significant other (Reuber, Howlett, Khan, & Grünewald, 2007). Additional factors often 

include psychiatric comorbidity or comorbid brain disorders, health anxiety or ongoing 

health issues (Reuber, Howlett, Khan, & Grünewald, 2007) as well as physical 

precipitators such as physical illness or injury (Pareés et al., 2014; Stone et al., 2009). 

Nomenclature is both controversial and problematic in clinical and research 

settings. Historically, labels such as “hysteria”, “psychosomatic” or “conversion” have 

been used, implying that symptom formation and expression is solely due to the 

conversion of emotional distress/conflict to “somatic” or bodily sensations and actions 
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(Perez et al., 2015). Other labels such as “psychogenic” or “pseudoseizures” are 

common, again implying that symptoms are to some extent “in the mind” rather than 

being “organic” i.e., in the body. In clinical reality, the presence of a triggering factor 

such as a traumatic event, is not a necessary precondition to the diagnosis of a 

functional disorder nor should the presence of co-existing psychopathology be used as 

the sole precursor to an FND diagnosis, as psychopathology occurs without functional 

symptoms and co-existing psychopathology can often occur in other neurological or 

movement related disorders (Edwards & Bhatia, 2012). Therefore, a diagnosis that is 

solely based on psychological causation due to the exclusion of alternative “physical” 

explanations for the existence of functional symptoms is problematic. Instead, where 

possible, a diagnosis of FND or a functional movement disorder should be a transparent 

process that is in part based on identifying positive signs which may be indicative of 

causation. For example, in addition to a detailed patient history, Hoover’s sign can be 

used to help identify functional weakness (Factor, Podskalny, & Molho, 1995) while the 

use of distractibility and entrainment can be used to distinguish functional tremors form 

organic tremor (McAuley & Rothwell, 2004). In addition to a detailed patient history 

and video-EEG, the presence of pre-movement-related potentials and spectral power 

changes in EEG may in the future aid in the differential diagnosis of non-epileptic 

seizures (Edwards & Bhatia, 2012; Blakemore, Hyland, Hammond-Tooke, & Anson, 

2015; Meppelink et al., 2017), although this last point represents a recent development, 

one which requires further replication and validation. 

More recently, the use of the term “functional” has emerged as a possible 

compromise that is arguably more accurate in its descriptive sense on the one hand and 

more acceptable to patients on the other because it is perceived as less offensive by 

patients than a psychiatric or negative diagnosis (Edwards & Bhatia, 2012; Stone et al., 
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2003). At a basic level, the term functional is used in this context to describe the 

hypothesised alterations in the functioning of the nervous system rather than the 

underlying structures per se. While it is clearly reasonable to suggest that brain structure 

and function is correlated (brain disease or injury studies, lesion studies, developmental 

studies etc.), the use of the term functional in FND is analogous to a “software” versus 

“hardware” problem (Bègue, Adams, Stone, & Perez, 2019). That is, while visual 

inspection of brain MRI (hardware) may result in clinically non-significant findings 

beyond clinically irrelevant incidental observations, the way in which different regions 

of the brain communicate (software) may be the key to symptom formation and 

expression. That is, functional symptoms may result from problems in how the brain 

and body send and receive signals.   

However, the use of functional as a prefix to this condition also has its 

limitations, especially given the recent emergence of comparative imaging studies 

showing structural differences between patients with PNES and matched controls 

(Bolen, Koontz, & Pritchard, 2016; Devinsky, Mesad, & Alper, 2001; Hernando, 

Szaflarski, Ver Hoef, Lee, & Allendorfer, 2015; Labate et al., 2012; Lee et al., 2015; 

Reuber, Fernandez, Helmstaedter, Qurishi, & Elger, 2002; Ristić et al., 2015), in 

addition to known morphological changes resulting from trauma exposure for example 

(Kelly et al., 2013). What is more, we also know that the structure and functioning of 

the brain is dynamic rather than static. That is to say, the structure and functioning of 

the brain is not set in stone after a certain period of development after which time the 

brain goes into monotonic decline as we progress into old age. In fact, we know that 

learning new skills can lead to experience-dependent subtle yet demonstrable changes to 

grey and white matter in the brain (Zatorre, Fields, & Johansen-Berg, 2012). Therefore, 

it may be more advantageous and clinically relevant to consider a more nuanced 
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approach (Bègue, Adams, Stone, & Perez., 2019), one which considers the interplay 

between psychosocial stressors and neurobiological substrates (structural and functional 

brain changes) as predisposing factors and/or precipitators and perpetuators of FND. An 

understanding of such an interplay is key to getting a better understanding of the 

development of functional symptoms and their treatment.  

In addition to models of FND that emphasise the role of dissociation (Nijenhuis, 

Spinhoven, Van Dyck, van der Hart, & Vanderlinden, 1998; van der Kruijs et al., 2014), 

attentional mechanisms and expectancy, illness beliefs and sense of agency (Edwards, 

Fotopoulou, & Pareés, 2013), given that functional symptoms are associated with 

significant disability and often occur alongside other neurological or psychiatric 

disorders, it is not surprising to find that previous studies have shown impairments in 

emotion processing in patients with non-epileptic seizures (Novakova, Howlett, Baker, 

& Reuber, 2015; Williams, Levita, & Reuber, 2018). For the purposes of this literature 

review, I will focus on the role of emotion processing and its interaction with motor 

function, as this is the central area of interest of this thesis. This will be examined next. 

 

1.5.1. Neurobiological correlates of emotion-motor interactions in FND 

As discussed above, for some patients’ early life stress and trauma may play a 

key role in the development of FND and psychogenic non-epileptic seizures in 

particular (Holman, Kirkby, Duncan, & Brown, 2008). Notably early life stress has 

persistent negative effects on cortical and subcortical brain regions involved in 

emotional regulation (Cohen et al., 2013). It has been proposed that aberrant prefrontal 

and amygdalar neuroplastic changes resulting from chronic exposure to stressors may 

facilitate the development and subsequent expression of functional symptoms (Perez et 

al., 2015). Further, relative to controls, several recent neuroimaging studies have 

observed increased connectivity between the amygdala and the supplementary motor 



 54 

area (SMA) in FND in response to emotional stimuli (Aybeck et al., 2014, 2015; Hassa 

et al., 2017; Voon et al., 2010a, 2010b). Compared to epilepsy patients, in conversion 

disorder patients Szaflarski et al. (2018) observed abnormal motor (putamen) and limbic 

(parahippocampal) activations during a facial emotion processing task. Blakemore et al. 

(2016) found that compared to controls, patients with FND were able to maintain a 

higher force hand grip in response to negative (but not positive) emotional stimuli and 

this was associated with activation in the cerebellar vermis, hippocampus, and posterior 

cingulate. Conversely, during the task, the healthy controls engaged medial prefrontal 

cortices and regions of the inferior frontal gyri (IFG), two areas of the brain associated 

with motor control and motor inhibition. Similarly, in a MEG study Fiess, Rockstroh, 

Schmidt and Steffen. (2015) observed that during an emotion regulation task, FND 

patients activated the sensorimotor cortex during emotion regulation but unlike the 

healthy controls they were lacking in frontal cortical activity.  

In agreement with event related studies (task based studies), van der Kruijs et al. 

(2012) noted increased resting state functional connectivity between brain regions 

associated with emotion regulation and self-awareness (insula) and brain regions 

involved in motor preparation (precentral sulcus) in PNES relative to controls and that 

these functional connectivity values correlated with self-reported dissociation scores. 

During an action selection task, Voon, Brezing, Gallea and Hallet (2011) observed that 

patients with conversion disorder showed lower left SMA activity but higher right 

SMA, right amygdala, left anterior insula, and bilateral posterior cingulate activity 

relative to healthy controls. In addition, during internally versus externally generated 

action, they also observed that the left SMA showed lower connectivity values with 

bilateral prefrontal cortices compared to controls.  
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All of the above suggests that functional symptoms may result from aberrant 

neural circuitry, whereby stronger functional connectivity between brain regions 

associated with emotion processing and brain regions associated with motor function 

are not subject to, or at the very least are less hindered by, regulatory functions 

emanating from prefrontal cortical regions associated with response inhibition, down 

regulation of emotional responses and other executive functions. However, the question 

still remains, how and why are functional movements experienced as involuntary when 

in effect, the same voluntary pathways may be employed. 

A fMRI study conducted by Voon et al. (2010b) involving eight patients with 

conversion disorder noted that, when comparing functional tremors to voluntary 

mimicked tremors, patients showed right temporoparietal junction (TPJ) hypoactivity 

with lower right TPJ connectivity to sensorimotor regions (sensorimotor cortices and 

cerebellar vermis), and limbic regions (ventral anterior cingulate and right ventral 

striatum) of the brain. Conversely, another study conducted by Aybeck et al. (2014) 

found that relative to healthy controls, patients with conversion disorder showed 

increased activity in right TPJ and right amygdala during the recall of relevant life 

events. While these findings appear contradictory, the inconsistencies may result from 

the fact the Voon et al. study did not involve controls and used a very different 

experimental paradigm. However, notwithstanding these differences, while activity in 

this region of the brain (TPJ) may not be sufficient to explain the existence of functional 

symptoms in these patients, it may represent an important node in the process and may 

partly help to explain why patients with FND experience their symptoms as involuntary, 

i.e., beyond their conscious control. The right TPJ has been implicated as a controller 

involved in the integration of sensory feedback and motor commands, i.e., prediction 

and outcome (Voon et al., 2016). This suggests that while the same voluntary pathways 
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may be employed, functional movements are experienced as involuntary (Voon et al., 

2016). Justification for this underlying assumption is the phenomenon of entrainment. 

For patients with functional tremors, the “entrainment test” often provides a clear 

positive indication that the tremor is indeed functional, whereby the affected limb 

becomes entrained to the voluntary paced movement of the unaffected limb (tremor 

frequency changes or tremor frequency changes to match frequency of tapping). This 

again points to a “fault” in the circuitry (software) rather than an issue relating to the 

structures of the brain (hardware).  

In summary, notable brain regions implicated in the alterations of brain circuitry 

in FND and in non-epileptic seizures in particular include the anterior cingulate, the 

amygdala, the dorsolateral and ventromedial prefrontal cortices as well as the insula, the 

pre- and post-central gyri and central sulcus in addition to the inferior frontal gyri, 

SMA, the cerebellum and TPJ. Differences found in the structure and function of these 

regions have been used to explain why impairments in emotion processing and motor 

control are evident in patients with FND compared to controls. This is not an exhaustive 

list but has been included in this chapter to introduce the reader to the neurobiology 

underpinnings of FND. However, given the high levels of psychiatric comorbidity in 

these patients and the small sample sizes involved (a characteristic of the majority of 

imaging studies in this patient population), the results presented here need to be 

considered with these caveats in mind. These issues will be addressed in more detail in 

Chapter 3. 

1.6. Thesis outline 

The primary aim of this PhD thesis was to examine this relationship between 

emotion and motor function. This was done by adopting a multidisciplinary approach 

encompassing both electroencephalography (EEG) and structural magnetic resonance 
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imaging (sMRI). Study 1, presented in Chapter 2, investigated the relationship between 

emotion and motor function by recording electrophysiological changes in the brain 

during the anticipation of emotion eliciting stimuli in early adolescents, late adolescents 

and young adults. More specifically, this study used an electrophysiological index of 

anticipation, the contingent negative variation (CNV), to investigate how anticipation of 

angry, happy and neutral faces influence orienting responses, motor preparation and 

subsequent action. Well established CNV paradigms are available and have 

demonstrated robust and replicable findings (Brunia, van Boxtel, & Böcker, 2012). 

However, many of these have failed to acknowledge the role that emotion plays in 

motivational behaviours (Mercado, Hinojosa, Peñacoba, & Carretié, 2008).  

Study 2, presented in Chapter 3, used a systematic meta-analytical approach to 

critically appraise the evidence for, and examine the convergence of, the 

neurobiological correlates of abnormal neurological functioning in PNES. This was 

important due to the limited number of reviews available, most of which were not 

systematic. Therefore, these reviews may have missed important studies in this area. 

Additionally, no previous review sought to uncover convergent neuroimaging findings 

in patients with PNES to better determine the neurobiological correlates of this 

condition.  

Study 3, presented in Chapter 4, used sMRI to measure cortical thickness and 

gyrification patterns in individuals experiencing PNES and age- and gender-matched 

healthy controls. This was done to investigate whether cortical thickness differences 

between groups would be found in motor, frontal and occipital regions in addition to 

brain regions involved in emotion processing. In addition to cortical thickness 

measures, additional analyses were conducted to investigate whether patients with 

PNES would show evidence of abnormalities on a measure thought to reflect prenatal 
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and early childhood cortical development and organization, namely local Gyrification 

Index (Schaer et al., 2012).  

 Chapter 5 summarises and discusses the findings from this doctoral thesis, 

highlights the strengths and weaknesses, and considers future directions. 
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Chapter 2. Neural correlates of emotion-motor interactions 

and automated attentional capture from early adolescence to 

young adulthood 
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Abstract 

Anticipation is integral to efficient and effective preparation, navigation, and interaction 

with an environment while emotions are powerful determinants of subjective 

experiences, physiological arousal, motivation and behaviour. The successful 

integration of emotional experiences and motor function may be critical to an 

individual’s functional well-being. Yet little is known about how emotions modulate 

preparation for action, particularly at different stages of brain development. Therefore, 

in this study I examined the relationship between emotion and motor function by 

recording electrophysiological changes in the brain during the anticipation of angry, 

happy and neutral faces in 18 early adolescents, 18 late adolescents and 18 young 

adults. I also investigated whether viewing angry, happy and neutral facial expressions 

would differentially modulate visual P1 and N170 amplitudes. However, there were no 

significant effects of emotion on the CNV during the anticipatory period, either within 

or between age groups. Both the visual P1 and N170 ERP components were found to be 

larger in response to angry faces relative to neutral faces but not happy faces, suggesting 

that early non-conscious automated attentional capture was facilitated by negative facial 

expressions over and above neutral facial expressions. For the early adolescent group 

only, mean RTs were found to be significantly faster to happy faces relative to neutral 

faces, suggesting that for early adolescents a relatively faster and more accurate 

identification of happy faces may have occurred resulting in faster reaction times in 

happy trials compared to neutral trials. This may suggest that, for the early adolescent 

group only, we observed heightened emotional responses to happy faces which may 

reflect increased reward seeking behaviours in this age group compared to the two older 

age groups. However, further work is needed to better delineate valence dependent 

changes in motor preparation and action. 
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2.1. Introduction 

EEG is well suited to chart both the structural and functional characteristics of 

the brain as it goes through different stages of brain development. Indeed, continuous 

EEG scalp recordings of the electrical activity of the brain are often associated with 

structural maturation, while ERPs (averaging EEG recordings time-locked to stimulus 

onset) are often associated with functional properties such as attention, working 

memory, visual processing of stimuli, motor preparation etc. (Segalowitz & Davies, 

2004; Segalowitz, Santesso, & Jetha, 2010). Given that the generators of CNV 

amplitudes are largely associated with the frontal lobes, examining anticipatory 

behaviour during different stages of brain development may be key to gaining a better 

understanding of not only how brain maturation may modulate motor function but also 

how (pre)frontal-limbic interactions modulate action. 

The CNV was selected for the current study over other measures of motor 

preparation such as the BP, partly due to the way in which the CNV is elicited in EEG 

experiments (S1- S2 CNV paradigm). For example, in the S1- S2 CNV paradigm there is 

the need to use a pre-cue stimulus/warning stimulus (S1) which is open to manipulation 

and an imperative/target stimulus (S2) which requires a motor response. This allows for 

the manipulation of the type of information processed by the brain during the 

anticipatory state (between S1 and S2). This allows for the testing of the main hypothesis 

of this study, that is, does the emotional context as defined by the information provided 

in S1 modulate motor preparation and action. It would be difficult to address this 

hypothesises by using a self-paced finger tapping task such as that used by Kornhuber 

& Deecke. (1965) or even the Libet, Gleason, Wright, & Pearl. (1993) clock task, both 

experimental tasks associated with self-initiated movement and often used to elicit the 

BP. Furthermore, while the CNV is unlikely to reflect all aspects involved in motor 
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function (conscious versus unconscious/automated reflex versus cognitively controlled), 

as described in Section 1.4. it has been taken to be a robust and replicable measure of 

anticipatory attention/expectancy and to incorporate aspects of motor preparation. In 

contrast, doubt has been cast on the validity of the BP as a measure of motor preparation 

(Schurger, Sitt, & Dehaene, 2012). 

Therefore, I employed high density EEG recordings during a simple emotional 

variant of the S1- S2 CNV paradigm in which the type of cue stimulus (S1 shape) was 

always predictive of the forthcoming imperative stimulus (S2 facial expression), at 

which point participants were required to press a button as fast as they could as soon as 

the face appeared on screen. Again, because the cue (S1) in effect signalled the need to 

prepare for the upcoming response, it was possible to examine how discrete affect states 

elicited during anticipation of angry, happy and neutral faces influenced not only motor 

preparation as indexed by the CNV, but also how these anticipatory processes influence 

motor output, as assessed by the speed of participant’s responses. In addition, I also 

investigated how discrete affect states elicited by S1 and S2 influenced attentional 

processes as indexed by early visually evoked potentials, namely the visual P1 and 

N170. In addition, I took measures of state and trait anxiety (as measured by the STAI), 

depression, anxiety and stress (as measured by the DASS-21), autistic traits (as 

measured by the AQ-10), as well as cognitive reappraisal and emotion suppression 

strategies (as measured by the ERQ). To address some of the concerns raised about 

previous ERP developmental studies (see Section 1.4.2), the experimental paradigm was 

kept as simple as possible with as few cognitive demands as was reasonable and 

restricted the age range in each age group to two years.  

Previous ERP studies have shown modulation of anticipatory behaviour by 

emotional stimuli (Carretié, Mercado, Hinojosa, Martın-Loeches, & Sotillo, 2004; 
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Casement et al., 2008; Hart, Lucena, Cleary, Belger, & Donkers, 2012; Moser, 

Krompinger, Dietz, & Simons, 2009; Perri et al., 2014) and given that adolescents often 

show increased levels of emotionality, I hypothesised the following: First, reaction 

times to angry, happy and neutral faces would differ significantly within and between 

age groups; second, that iCNV, tCNV and total CNV amplitudes during the anticipatory 

period between S1 and S2 would differ significantly between conditions (angry, happy, 

neutral) and between age groups (early adolescents, late adolescents and young adults), 

that is, CNV amplitudes would be condition dependent and a greater degree of 

modulation of the iCNV, tCNV and total CNV by emotional stimuli would occur in 

early adolescents compared to late adolescents and young adults. However, given that 

this is essentially an exploratory study and to the best of my knowledge the first of its 

kind, I did not hypothesize the direction of the results; third, because previous studies 

have shown a weak yet consistent relationship between larger CNV amplitudes and 

faster reaction times, suggesting that roughly 13% of the variability in reaction time 

data could be accounted for by tCNV amplitude (Rebert & Tecce, 1973; Smith, 

Johnstone, & Barry, 2006), I carried out additional post-hoc analyses in which I 

hypothesised that iCNV and tCNV as well as state anxiety scores would be predictive of 

mean reaction times in each of the three conditions. However, it should be noted again 

that to the best of my knowledge no previous study has examined this relationship in 

response to emotional stimuli in the transition from adolescence to adulthood. As these 

analyses were not part of my main hypotheses, they can be found in the Appendices.  

Additionally, given that the cue (S1) was always predictive of the forthcoming 

imperative stimulus (S2), I hypothesised that visual P1 peak amplitude in response to S1 

would be condition dependent and that I would again see differences between age 

groups. I also hypothesised that visual P1 peak amplitudes and N170 amplitudes in 
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response to S2 would differ significantly between conditions and between age groups. 

Both the P1 and N170 are early visually evoked potentials associated with automatic 

attentional mechanisms and the neural processing of face stimuli, respectively (Kuefner, 

De Heering, Jacques, Palmero-Soler, & Rossion, 2010; Itier & Taylor, 2004b; Luck, 

2005). The visual P1 (or P100) is an early positive bilateral occipital component that 

peaks around 80-130ms following stimulus onset (Mangun, 1995) and decreases in 

amplitude and latency with increasing age (Kuefner, De Heering, Jacques, Palmero-

Soler, & Rossion, 2010). The P1 is believed to originate from striate and extrastriate 

visual areas in the occipital lobe (Clark, Fan, & Hillyard, 1994; Di Russo, Martínez, 

Sereno, Pitzalis, & Hillyard, 2002). It has been proposed that decreases in P1 latency 

between early childhood and adulthood may be a result of increases in speed and 

efficiency in visual cortical areas due to increases in myelination with increasing age 

(Kuefner, De Heering, Jacques, Palmero-Soler, & Rossion, 2010). Decreases in P1 

amplitude may result from structural brain changes during adolescence associated with 

grey matter volume and synaptic density and/or alternatively changes in underlying 

tissue conductivity (bone, skin etc.) and cortical folding patterns (Kuefner, De Heering, 

Jacques, Palmero-Soler, & Rossion, 2010).  

The functional relevance of the visual P1 in the current study is that potentiation 

of visual P1 peak amplitudes have been shown to occur in response to negative stimuli 

compared to positive and neutral stimuli (Carretié, Hinojosa, Martín‐Loeches, Mercado, 

& Tapia, 2004). This has been interpreted as the prioritizing of biologically salient 

danger signals over and above other percepts (Carretié, Hinojosa, Martín‐Loeches, 

Mercado, & Tapia, 2004). More specifically, enhancement or attenuation of visual P1 

peak amplitudes in response to cues (S1) predicting emotional stimuli may prove 

informative with regards to approach/avoidant behaviours which may be reflected by 
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anticipatory processes and motor preparedness indexed by the CNV. In terms of visual 

P1 responses to the faces themselves, based on the findings of Carretié, Hinojosa, 

Martín‐Loeches, Mercado, & Tapia. (2004), I hypothesised that I would see larger 

visual P1 peak amplitudes in response to angry faces compared to happy and neutral 

faces. 

The N170 is a face sensitive negative component that peaks roughly around 

170ms and is maximal over occipital-temporal electrodes with a right hemisphere 

advantage (Duchaine & Yovel, 2015; Rossion, 2014). The N170 also appears to be 

sensitive to emotional facial expression with studies showing greater N170 amplitudes 

evoked by happy and sad faces compared to neutral faces (Batty & Taylor, 2003; Blau, 

Maurer, Tottenham, & McCandliss, 2007). Generators of the N170 have been localised 

to the fusiform and inferior and superior temporal gyri (Gauthier et al., 2000; Itier & 

Taylor, 2004b). N170 latency appears to reach adult-like levels by around nine to eleven 

years of age (Kuefner, De Heering, Jacques, Palmero-Soler, & Rossion, 2010) while 

N170 amplitude appears to be large and stable up to nine years of age and then 

decreases steadily until adulthood (Kuefner, De Heering, Jacques, Palmero-Soler, & 

Rossion, 2010). Changes in N170 latency and amplitude may be the result of the same 

brain maturational processes and/or tissue conductivity considerations as the visual P1. 

Again, similar to my hypotheses regarding the visual P1 in response to S2 (faces), if the 

prioritizing of biologically salient danger signals does indeed occur at such a relatively 

early stage in emotional face processing, I hypothesised that I would see larger N170 

amplitudes in response to angry faces compared to happy and neutral faces. 
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2.2. Method 

2.2.1. Participants 

 In total, sixty participants completed the study. However, one participant was 

excluded due to being left-handed and five participants were excluded due to excessive 

artefacts, which for some participants resulted in an excessive number of trials being 

rejected (> 30%). The final sample included in the analyses comprised of eighteen 

young adolescents aged 13-15 (9 male), eighteen late adolescents aged 18-20 (9 male), 

and eighteen young adults aged 25-27 (9 male) (see Table 2.1). All participants reported 

a medical history free of epilepsy, fits, blackouts, fainting turns or unexplained loss of 

consciousness, recurrent headaches or migraines. All participants were free of any 

developmental or psychiatric conditions (ADHD, Autism spectrum disorder, depression 

or anxiety) and were not taking any form of medication which may have affected the 

CNV results (benzodiazepines, anticonvulsants; Brunia, van Boxtel & Böcker, 2012). 

No participant reported having any problems with their sight (e.g. scotoma, colour 

blindness, blindness in one eye, night blindness, reduced visual field, blurred vision, or 

detached retina) and had normal or corrected-to-normal vision.  

 

Table 2.1. Group characteristics (N = 54). 

          
    Age     

Age group  Gender n Mean (SD) Range  Handedness (%)*   

Early Adolescents Male 9 13.44 (0.72) 13 – 15  Right-handed (100%)   

  Female 9 13.88 (0.92) 13 – 15  Right-handed (100%)   
  Total 18 13.67 (0.84)      

          

Late Adolescents Male 9 18.88 (0.78) 18 – 20  Right-handed (100%)   

  Female 9 19.11 (0.78) 18 – 20  Right-handed (100%)   
  Total 18 19.00 (0.76)      

          

Young Adults Male 9 26.33 (0.70) 25 – 27  Right-handed (100%)   
  Female 9 26.11 (0.92) 25 – 27  Right-handed (100%)   

  Total 18 26.11 (0.92)      

Note. Handedness was reported by the participant on the screening form. 

 

Participants were recruited via adverts on online social media platforms, flyers 

distributed to local schools, cafes, and businesses, and via email invitation to online 
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staff and student volunteer lists maintained by the UoS Psychology Department. To 

determine inclusion/exclusion of potential participants, individuals who indicated their 

willingness to take part were sent a participant screening form, along with a participant 

information sheet as well as a leaflet about EEG and how to prepare for an EEG 

experiment. Prior to participation, written consent was obtained from each participant, 

or where applicable from their parent/guardian (participants below 18 years of age). All 

participants received £10 compensation for taking part. This study was approved by the 

Department of Psychology Ethics Committee, University of Sheffield (see Appendices 

for copy of ethical approval). 

 

2.2.2. Self-report measures 

Each participant completed a set of self-report questionnaires prior to taking part 

in the EEG experiment. These questionnaires were used to assess their emotional and 

functional well-being (copies of the measures used are provided in the Appendices). 

The following questionnaires were used. 

Adolescent questionnaires (13 – 15 years of age) 

 The Autism Spectrum Quotient (AQ -10, Adolescent Version; Allison, Auyeung, 

& Baron-Cohen, 2012) is a short version of the Autism Quotient and consists of 10 

descriptive items designed to measure ‘autistic traits’ in children and adolescents aged 

12 – 15 years. With the assistance of their parent/guardian participants indicated 

whether they definitely agree, slightly agree, slightly disagree or definitely disagree to 

each item. Item 1 for example asks whether ‘S/he notices patterns in things all the time’, 

item 2 asks whether ‘S/he usually concentrates more on the whole picture, rather than 

the small details’. Items 1, 5, 8 and 10 are scored 1 point each if participants respond 

with definitely or slightly agree and items 2, 3, 4, 6, 7 and 9 are scored 1 point each if 

participants respond with definitely or slightly disagree. In a sample of 162 adolescents 
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aged 12 – 15 with an autism spectrum condition (ASC) using a cut-off point of 6, 

Allison, Auyeung, & Baron-Cohen (2012) reported a sensitivity of 0.93, specificity of 

0.95, and positive predictive value (PPV) of 0.86. 

  The Self-Administered Rating Scale for Pubertal Development (Carskadon & 

Acebo, 1993) was used to assess pubertal development.  Items ask about the 

adolescent’s stage of development. For example, “Have you noticed any skin changes, 

especially pimples?”, “Have you begun to menstruate?” for girls, “Have you begun to 

grow hair on your face?” for boys etc. Items 1 to 5 for boys are scored 1 – 4 points or 

are marked as missing if the response is unknown. Items 1 to 4 for girls are scored 1 – 4 

points or are marked as missing if the response is unknown and item 5a is scored 4 

points if menstruation has occurred or 1 point if menstruation has not yet occurred. 

These point values are averaged to give a pubertal development scale. 

 The State-Trait Anxiety Inventory for Children (STAI – C; Spielberger, 1973) 

was used to assess anxiety levels in the early adolescent group. The STAI – C is a 40-

item measure of anxiety and consists of two scales, a state scale which measures current 

levels of anxiety (20-items) and a trait scale which measures a general disposition to 

anxiety traits (20-items). Participants are asked to read a number of statements and 

indicate how they feel to each one. For example, on the state scale participants are asked 

to indicate whether they feel ‘very calm’, ‘calm’ or ‘not calm’. On the trait scale 

participants are asked to indicate whether anxious feelings occur ‘hardly ever’, 

‘sometimes’ or ‘often’. Each item is scored on a 3-point Likert scale (1 – 3-point 

values) with some items on the state scale reversed scored. The minimum possible score 

for each scale is 20 and the maximum possible score is 60. 

 Emotion Regulation Questionnaire for Children & Adolescents (ERQ – CA; 

Gullone & Taffe, 2012) is a revised version of the Emotion Regulation Questionnaire 
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(ERQ; Gross & John, 2003) and consists of 10 items used to asses two emotion 

regulation strategies, namely cognitive reappraisal (CR) and emotion suppression (ES). 

Revisions include simplification of item wording (e.g., “I control my emotions by not 

expressing them” reworded to “I control my feelings by not showing them”). In 

addition, the original 7-point Likert scale is reduced to 5 responses ranging from 1 

(strongly disagree) to 5 (strongly agree). Items 1, 3, 5, 7, 8, and 10 assess cognitive 

reappraisal and items 2, 4, 6 and 9 assess emotion suppression. Higher scores indicate 

the greater use of the respective emotion regulation (ER) strategy. For the 6-item CR 

scale, the alpha reliability coefficients were reported as 0.83 and for the 4-item ES scale 

the alpha coefficient was reported 0.75 (Gullone & Taffe, 2012). 

The Depression Anxiety Stress Scale (DASS-21; Lovibond & Lovibond, 1995) 

is a shortened version of the DASS which consists of 21 items designed to measure 

three facets of psychopathology; depressive symptoms (7 items, e.g. “I felt that life was 

meaningless”), anxious symptoms (7 items, e.g. “I felt scared without any good 

reason”), and stress (7 items, “I found it difficult to relax”). The items are scored on a 4-

point Likert scale ranging from 0 (‘Did not apply to me at all’) to 4 (‘Applied to me 

very much or most of the time’). The DASS-21 demonstrates acceptable psychometric 

properties with alpha coefficients ranging from 0.88 for the depression subscale, 0.82 

for the anxiety subscale, and 0.90 for the stress subscale (Henry & Crawford, 2005).  

Late adolescent and young adults’ questionnaires (18 – 20 & 25 – 27 years of age) 

The Autism Spectrum Quotient (AQ -10, Adult Version; Allison, Auyeung, & 

Baron-Cohen, 2012) is again a short version of the Autism Quotient and consists of 10 

descriptive items designed to measure ‘autistic traits’ in adults. As with the adolescent 

version participants indicated whether they definitely agree, slightly agree, slightly 

disagree or definitely disagree to each item. Item 1 for example asks whether ‘I often 
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notice small sounds when others do not’, item 2 asks whether ‘I usually concentrate 

more on the whole picture, rather than the small details’. Items 1, 7, 8 and 10 are scored 

1 point each if participants respond with definitely or slightly agree and items 2, 3, 4, 5, 

6 and 9 are scored 1 point each if participants respond with definitely or slightly 

disagree. In a sample of 449 adults with ASC using a cut-off point of 6, Allison, 

Auyeung & Baron-Cohen (2012) reported a sensitivity of 0.88, specificity of 0.91, and 

positive predictive value (PPV) of 0.85. 

 The State-Trait Anxiety Inventory (STAI; Spielberger, Gorsuch, & Lushene, 

1970) was used to assess anxiety levels in the late adolescent and young adult group. 

Similar to the STAI-C described above, the STAI consists of 40 items with a state scale 

which measures current levels of anxiety (STAI-S, 20-items) and a trait scale which 

measures a general disposition to anxiety traits (STAI-T, 20-items). Again, similar to 

STAI-C, participants are asked to read a series of statements and respond. Unlike the 

STAI-C, for both state and trait scales, participants respond using a 4-point Likert scale 

and both scales have reverse scoring to some of the items. For example, on the STAI-S 

participants are asked to rate statements such as ‘I feel calm’, ‘I feel secure’, ‘I feel 

tense’ by responding ‘not at all’, ‘somewhat’, ‘moderately so’ or ‘very much so’.  

Examples on the STAI-T include ‘I feel pleasant’, ‘I feel nervous and restless’, ‘I feel 

rested’. Participants indicate how they generally feel by selecting either ‘almost never’, 

‘sometimes’, ‘often’, or ‘almost always’.  The minimum possible score for each scale is 

20 and the maximum possible score is 80. 

 The Emotion Regulation Questionnaire (ERQ, Gross & John, 2003). Like the 

ERQ-CA (described above), the ERQ comprises 10 items assessing cognitive 

reappraisal (CR, 6 items) and emotion suppression (ES, 4 items). Unlike the ERQ-CA, 

ERQ items are rated on a 7-point Likert scale. Again, higher scores indicate the greater 
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use of the respective ER strategy. The ERQ has been reported to have good internal 

consistency (0.73 for CR, 0.69 for ES). 

 The Depression, Anxiety and Stress Scale – 21 (DASS-21; Lovibond & 

Lovibond, 1995). Exactly the same scale as used in the early adolescent group. See 

above description. 

 

2.2.3. Comparing child/adolescent questionnaire responses to adult questionnaire 

responses.  

 Given that the STAI child and STAI adult versions as well as the ERQ 

child/adolescent version and ERQ adult version use different rating scales (3-point vs 4-

point and 5-point vs 7-point respectively), it was necessary to compute a percentage 

score in order to compare early adolescent group responses to late adolescent and young 

adult group responses. For each scale, each participants score was divided by the 

maximum possible score of that scale and multiplied by 100. For example, if a young 

adult participant scored 25 for the STAI state scale, the percentage score was calculated 

by dividing 25 by 80 (max possible score) multiplied by 100. If an early adolescent 

scored 30 on the STAI-C state scale, the percentage score was calculated by dividing 30 

by 60 (max possible score) multiplied by 100. This was repeated for the ERQ and the 

ERQ-CA with the appropriate maximum score used in the calculation. The same DASS-

21 questionnaire was used in all groups and the AQ-10 used the same scoring system so 

there was no need to compute a new score. Results are shown in Supplementary Table 

2.1. Cronbach’s alpha for each self-report measure are shown in Supplementary Table 

2.2. For group differences on self-report measures see Supplementary Table 2.3.  
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2.2.4. EEG Procedure 

 Following electrode-cap placement, participants were seated approximately 1 

meter distance from the monitor. All stimuli were presented on a grey background using 

Psychtoolbox 3 (Brainard, 1997; Pelli & Vision, 1997; Kleiner, Brainard, & Pelli, 

2007). Before beginning the behavioural experiment, participants were informed that 

they would see three different shapes (cue stimuli) followed shortly after by a facial 

expression (imperative stimuli) at which point they needed to press the space bar with 

their dominant hand as quickly as possible. For all participants, this was their right 

hand. Participants were informed that they would see three different facial expressions 

and that their reaction times would be recorded and displayed on the screen at the end of 

each block. Participants were informed that the experiment initially involved a practice 

session consisting of 30 trials and that at the end of the practice session they would be 

asked to answer 3 questions. Participants were informed about the number of 

blocks/sessions involved and how long it would take to complete the experiment.  

Participants were informed about the causes of EEG artefacts that can occur 

during EEG recordings and were asked to avoid excessive movements of the body 

and/or face during the trials and to avoid touching the electrode-cap during the 

experiment as a whole. Participants were also asked to turn off their mobile phones for 

the duration of the experiment. Participants were asked to keep looking at the fixation 

cross in the centre of the screen for the duration of each block/session. Participants were 

informed that they would have breaks between blocks/sessions and that they could take 

as long as they needed before starting the next block/session. Informed verbal consent 

was again sought and participants were again informed that they were free to stop at any 

time if they felt at all uncomfortable. Experimental instructions were repeated again on 

instructional slides at the beginning of the experiment and additional instructions were 
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presented throughout. During the experiment ceiling lights were turned off and the door 

to the room was kept closed. A baby cam was used to allow the experimenter to monitor 

the participant and to facilitate 2-way communication during the EEG recordings. To 

avoid possible eye irritation due to glare from the monitor, a rechargeable LED table 

lamp was used to provide some background lighting. 

 

2.2.5. Stimuli and experimental paradigm 

 The use of faces in attentional studies has been well documented (Mack, Pappas, 

Silverman, & Gay, 2002; Vuilleumier, 2000), suggesting that facial stimuli are 

advantageous over other stimuli categories in early visual sensory perception (Calvo & 

Beltrán, 2013; Bindemann, Burton, Hooge, Jenkins, & De Haan, 2005; Hare et al., 

2008). This may result from there relevance due to their salient nature as they 

encompass both biological and socially important information (Bindemann, Burton, 

Hooge, Jenkins, & De Haan, 2005). Given that attention is often oriented toward salient 

stimuli regardless of an individual’s behavioural goals and that the presence of such 

stimuli may impair performance when used as distractors (Sato & Kawahara, 2015), 

face stimuli appear to be uniquely placed as stimulus-response activators provoking 

both affect and instigating motivationally driven behaviours. Moreover, enhanced 

capture of attention by threat-related stimuli such as human faces depicting anger, has 

been associated with increased anxiety levels in adults (Fox, Russo, Bowles, & Dutton, 

2001) and children (Roy et al., 2008; Waters, Henry, Mogg, Bradley, & Pine, 2010). 

In total, 192 naturalistic colour photographs of models depicting angry mouth 

closed, happy mouth open and neutral mouth closed facial expressions were used in the 

experiment. These images were obtained from the NimStim set of Facial Expressions 

(30 images; Tottenham et al., 2009, http://www.macbrain.org/resources.htm) and the 

‘FACES’ database (162 images; Ebner, Riediger, & Lindenberger, 2010). Given the age 

http://www.macbrain.org/resources.htm)
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range in the present study, only images of the youngest faces were used (FACES 

database, age range 19-31). In an attempt to avoid replication during the experiment as a 

whole, images obtained from the NimStim set were used during practice trials only (N = 

30; 5 male X 3 facial expressions, 5 female X 3 facial expressions). Images form the 

FACES database were used during the experimental trials (N = 162; 27 male models X 

3 facial expressions, 27 female models X 3 facial expressions, age range 19-31). Due to 

the insufficient number of different model images available, it was necessary to use the 

same model in the 3 different conditions, i.e. depicting either an angry, happy or neutral 

facial expression. However, the same model was never shown twice during the same 

block.  

 The practice session consisted of 30 presentations of a warning stimulus (S1; 

500ms duration) followed 250ms later by the imperative stimulus (S2; 500ms duration). 

Geometric shapes (triangle, circle, square) were used for S1 while facial expressions 

(angry, happy, neutral) were used for S2. On presentation of S2, participants had to press 

the spacebar with their dominant hand as quickly as possible. The inter-trial interval 

was 2s. A fixation cross remained on screen throughout except during the presentation 

of the S2. S1 was always indicative of whether the facial expression that followed was 

either angry, happy or neutral. Three versions of the experiment were used. In version 1 

of the experimental paradigm a triangle always predicted the onset of an angry face, a 

circle always predicted the onset of a happy face, while a square always predicted the 

onset of a neutral face. In version 2 a circle predicted the onset of an angry face, a 

square predicted on the onset of a happy face and a triangle predicted the onset of a 

neutral face. For version 3 a square was used in the angry condition, a triangle was used 

in the happy condition and a circle was used in the neutral condition. At the end of the 

practice session participants were presented with three slides asking which geometric 
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shape predicted which type of facial expression. Participants responded by pressing 1, 2 

or 3 on the number pad. If a participant responded correctly to all three slides, they were 

free to start the experiment proper by pressing the space bar at a time of their choosing. 

If a participant gave one incorrect response, they were required to repeat the practice 

session until they gave three correct responses. 

During the experiment proper, the presentation of images was 

pseudorandomized so that an angry, happy or neutral facial expression was never 

followed by another angry, happy or neutral facial expression. In addition, in each block 

for each participant the same ratio of male to female angry, happy and neutral facial 

expressions were presented (9 different male models X 3 conditions, 9 different female 

models X 3 conditions). Each image was 500 X 584 pixels in size and presented 

centrally on a grey background on a 24-inch Iiyama 1080p LED monitor with a refresh 

rate of 144 Hz.  

In total, 162 experimental trials divided into 9 blocks (18 trials per block) were 

recorded for each participant. Each participant completed 54 trials for the angry 

condition, 54 trials for the happy condition, and 54 trials for the neutral condition. Each 

block lasted approximately 3mins and 30s. Each block began with the presentation of a 

black fixation cross in the centre of the screen. At the start of each trial the warning 

stimulus S1 (triangle, circle or square) was presented for 500ms duration followed later 

by the imperative stimulus S2 (angry, happy or neutral facial expression) for 500ms 

duration. The inter-stimulus interval (ISI) between S1 offset and S2 onset was 3 s and 

the inter-trial interval (ITI) was pseudorandomized to vary between 6, 7, and 8 s. Each 

ITI occurred an equal number of times in each block and an equal number of times 

before each condition (male face or female face). The fixation cross remained on screen 

throughout the trial except during the S2 presentation. As in the practice sessions, three 
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versions of the paradigm were used. Version 2 and version 3 of the paradigm were 

counterbalanced with respect to version 1 (as noted above in the description of the 

practice sessions). (Figure 2.1). 

For each age group, six participants took part in version 1 (3 male), six 

participants took part in version 2 (3 male), and six participants took part in version 3 (3 

male). Again, participants were always required to press the space with their dominant 

hand as quickly as possible when the imperative S2 facial expression appeared on the 

screen. Reaction times were recorded only if the button press occurred within a 1 s time 

window following S2 onset. In an attempt to increase engagement and to motivate 

participants, mean reaction times were presented at the end of each block. If participants 

recorded a faster time than in the previous block, they were shown a congratulations 

slide. If participants recorded the fastest mean time in block 3 – 9 they were shown a 

congratulations best score slide. At the end of each block participants were also 

informed as to how many blocks they had completed/how many blocks left to go. At the 

end of block 3, block 6 and block 9 participants were again presented with three slides 

asking them which shape predicted which facial expression. Again, participants 

responded by pressing 1, 2, or 3 on the number pad. If they responded incorrectly the 

slides were shown again until correct responses to all 3 slides were given.  

 

Figure 2.1. Experimental design of the emotional variant of the S1-S2 CNV paradigm.  
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2.2.6. EEG recording 

 The EEG signal was recorded using a Biosemi ActiveTwo system (Amsterdam, 

the Netherlands) from 64 ‘Pin-Type’ Ag-AgCl active electrodes placed on the scalp and 

held in place by an appropriately sized cap according to the 10–20 system (Figure 2.2). 

Two additional sensors, a common mode sense (CMS) and driven right leg (DRL), were 

used as reference and ground respectively. After fitting the cap, measurements for head 

circumference, nasion to inion and from left pre-auricular to right pre-auricular were 

used to locate the position of the vertex (Cz). Before fitting the electrodes to the cap, a 

highly conductive saline based electrode gel (Signa Gel, produced by Parker 

Laboratories Inc; http://www.parkerlabs.com/signagel.asp) was applied to the scalp 

after slight abrasion of the skin. Electrode impedance levels were within the ± 25μV 

range for all participants. EEG signals were recorded continuously at a sampling rate of 

2048 Hz using Biosemi ActiView software, and later down sampled to 512 Hz offline 

using Biosemi Decimator software. EEG signal preprocessing, averaging and 

measurement were conducted offline using EEGLAB 13.5.b (Delorme & Makeig, 2004) 

and ERPLAB 7.0.0 Matlab toolboxes (Lopez-Calderon & Luck, 2014). An important 

point to note here is that prior to artefact rejection and correction, each participant was 

randomly assigned a new participant ID. In so doing each of the preprocessing steps 

outlined in the following sections were performed blind without knowledge of group 

membership. Once the ERPs had been computed the original participants’ IDs were 

then re-assigned. 
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Figure 2.2. Illustration of channel locations according to the 10-20 system. Image 

shown from https://www.biosemi.com/headcap.htm 

 

2.2.7. Importing data, DC offset and high-pass filter 

 The EEG BioSemi.bdf data files were imported and referenced to Cz. This 

initial referencing step was necessary as BioSemi ActiveTwo amplifiers allow for 

reference free recordings by way of the CMS-DRL loop 

(www.biosemi.com/faq/cms&drl.htm). When no electrode is chosen post hoc as 

reference during import, the signals are displayed with respect to CMS which results in 

a lower common-mode rejection ratio (CMMR) leading to 40db of unnecessary noise in 

the signal (www.biosemi/faq/cms&drl.htm). To deal with DC trends in the data, a 

subtraction of the average voltage of the whole EEG data waveform from each point in 

the waveform was applied before applying a high-pass filter 

(https://github.com/lucklab/erplab/wiki/Filtering). Continuous EEG data was filtered 

offline in ERPLAB with an IIR Butterworth high-pass noncausal filter of 0.05 Hz (order 

2, 12dB/octave -6 d/B half-amplitude roll-off). In ERPLAB IIR filters are applied in 

https://www.biosemi.com/headcap.htm
http://www.biosemi/faq/cms&drl.htm)
https://github.com/lucklab/erplab/wiki/Filtering)


 81 

both directions to produce a zero phase-shift 

(https://github.com/lucklab/erplab/wiki/Filtering).   

 

2.2.8. Artefact rejection and correction 

Although EEG is designed to record neural signals generated in the cerebral 

cortex, it also records electrical activity arising from other physiological and non-

physiological sources. Typical artefacts in the EEG signal include eye blinks, lateral eye 

movements, muscle contractions such as clenching of the jaw and frowning or 

swallowing and chewing, as well as cardiac/pulse artefacts and sweating across the 

scalp. Non-physiological artefacts can result from poor electrode impedances or 

changes in electrode impedances during recordings in addition to sources of 

environmental electrical noise. For example, 50 Hz line noise oscillations in the EEG 

signal results from AC power line fluctuations, electrical equipment and fluorescent 

lights etc. In the present study, 50 Hz line noise was removed using the Cleanline 

toolbox (EEGLAB plugin). Cleanline is advantageous over the use of notch filters 

because notch filters often employ a notch width of 10 Hz or larger which can lead to 

band-holes in the signal and distortions, in this case in the 40Hz – 60Hz range (Bigdely- 

Shamlo, Mullen, Kothe, Su, & Robbins, 2015). Cleanline uses an alternative approach 

to reduce line noise by applying a sliding window to the EEG data which adaptively 

estimates and removes the 50 Hz line noise sinusoidal artefact without creating 

distortions in the signal. However, the default settings did not work well for all 

participants. In these cases, a sliding window of 2s rather than the 1s default sliding 

window worked well in most instances. However, this step was not essential as a low-

pass filter of 30 Hz was applied at a later stage of preprocessing but this step left open 

the possibility of analysing the data in different ways. 

https://github.com/lucklab/erplab/wiki/Filtering)
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After applying Cleanline to remove 50 Hz line noise, the continuous EEG data 

was visually inspected for bad sections of data. That is, sections of continuous data that 

included ECG artefacts, EMG artefacts, slow drifts due to sweating on the scalp and/or 

non-physiological sources of noise. These bad sections of data were removed. In 

addition, bad channels were identified by way of visual inspection of the continuous 

data in conjunction with the plotting of channel spectra and maps. Channels that showed 

clear deviations or noise throughout the recording were removed before applying the 

average reference. This was done to avoid including bad channels and therefore bad 

data in the average reference. The data was then re-referenced to the average prior to the 

use of independent component analysis (ICA). 

ICA is a data driven blind source separation technique which has been shown to 

effectively identify artefacts in a signal – eye blinks, eye movements, muscle 

contractions (EMG), and line noise (Jung et al., 1998a, 1998b; Jung et al., 2000). While 

ICA can and has been used for other purposes such as source localisation (Makeig, 

Debener, Onton, & Delorme, 2004), in the present study, an extended ICA 

decomposition algorithm (Delorme & Makeig, 2004) was used to facilitate the removal 

of eye blinks and lateral eye movement contaminants from the EEG signal. In essence, 

ICA reduces the overall signal data into independent and distinct components which 

make up that signal. This allows for separating out and the removal of ocular artefacts. 

The use of artefact correction – in conjunction with rather than the exclusive use of 

artefact rejection – allows for the inclusion of additional data which would have 

otherwise been removed if only artefact rejection had been used. This increases the 

signal-to-noise ratio of the data because the removal of artefactual data inevitably 

removes underlying neural activity as well. The exclusive use of artefact rejection is 
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particularly problematic in clinical or developmental studies in which patients or young 

participants often have much noisier data.  

Following decomposition, the ADJUST toolbox (Mognon, Jovicich, Bruzzone, 

& Buiatti, 2011) was used to help identify and correct ocular artefacts in the signal. 

Additionally, the independent components were plotted in the continuous data through 

the Plot > Components activation scroll function in the EEGLAB menu. Following ICA 

and ocular artefact correction, previously removed channels were interpolated using the 

spherical spline interpolation option (Perrin, Pernier, Bertrand, & Echallier, 1989). 

Following interpolation, a 30 Hz low-pass IIR Butterworth filter (order 2, 12dB/octave -

6 d/B half-amplitude roll-off) was applied to the data. For CNV analyses, data was then 

epoched -500ms to 5000ms locked to S1 onset with a -500ms to 0ms baseline 

correction. For P1 analyses to S1, data was epoched -200ms to 1000ms, locked to S1 

onset, with a -200ms to 0ms baseline correction. For P1/N170 analyses to S2, data was 

epoched -200ms to 1000ms, locked to S2 onset, with a -200ms to 0ms baseline 

correction. Epochs with amplitude fluctuations of ± 150 μV were detected and excluded 

from the grand averaged ERPs by using the ERPLAB moving window peak-to-peak 

threshold function (channels 1:64, Moving Window Full Width 200ms, Window Step 

100ms). For each epoch this function uses a moving window length in ms to calculate 

the peak-to-peak amplitude (difference between the most positive and negative peak) 

and compares these to the threshold set by the user. When the threshold is met or 

exceeded the epoch is marked for rejection 

(https://github.com/lucklab/erplab/wiki/Artifact-Detection-in-Epoched-Data). In 

addition, epochs which contained incorrect button presses were removed (button press 

to S1, button press during ISI, no button press at all). Finally, ERPs for each condition 

were computed in ERPLAB by averaging across the remaining epochs. For the number 
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of channels removed, head size and room temperatures at the time of the recordings and 

button press errors see Supplementary Table 2.4. For the number of trials included in 

the analyses see Supplementary Table 2.5. A flow chart depicting each step in the 

preprocessing pipeline is presented in Appendix 35 (Figure. 35.1). 

 

2.2.9. Selecting electrodes for analyses 

 To determine the location of maximal activity, grand-grand averaged ERP 

waveforms (waveforms containing all participants and all conditions) were created for 

the CNV and P1 stimulus-locked to S1 onset, and the P1 and N170 stimulus-locked to 

S2 onset. Descriptive statistics and visual inspection of the grand-grand averaged ERP 

waveforms were used to make a final determination of which electrodes to use for the 

ERP analyses. This was done in an attempt to avoid bias in the selection of the 

electrodes of interest thereby protecting against only choosing electrodes that showed 

the maximum difference between age groups. The use of collapsed localizers to 

determine electrodes of interest has become increasingly common in ERP research 

(Luck & Gaspelin, 2017). 

The iCNV was measured as the mean amplitude in a time window of 750ms-

950ms following S1 onset at midline electrode sites FPz, Afz, FZ, FCz, Cz, CPz, PZ, 

Poz, Oz and lz. Mean amplitudes and visual inspection of CNV topographical maps 

indicated a frontal distribution with the maximum negativity observed at FCz (M=-2.21 

μV) followed by Fz (M=-2.00 μV) and Afz (M=-1.71 μV). The tCNV was measured as 

the mean amplitude in the last 200ms prior to S2 onset. Mean amplitudes at midline 

electrode sites FPz, Afz, FZ, FCz, Cz, CPz, PZ, Poz, Oz and lz and visual inspection of 

CNV topographical maps indicated a central distribution with the maximum negativity 

observed at the vertex Cz (M=-2.71 μV) followed by FCz (M=-2.66 μV) and CPz (M=-

2.30 μV). Mean amplitudes for the total CNV (750ms – 3500ms) were maximal at 
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electrode sites FCz (M=-1.99 μV), followed by Cz (M=-1.73 μV) and FPz (M=-1.43). 

Based on the grand-grand averaged waveforms, a single electrode site was chosen for 

the iCNV (FCz), for the tCNV (Cz), and for the total CNV (FCz) (see Figure 2.3). 

 

A 

 

B 

 

Figure 2.3. (A). Grand-grand averaged ERP waveforms at midline electrodes for the 

iCNV, tCNV and total CNV. (B). ERP scalp topographies showing mean amplitude for 

the iCNV between 750-950ms, tCNV between 3300-3500ms and total CNV between 

750-3500ms after S1 onset (N=54). 

 

Based on the grand-grand averaged P1 and N170 ERP waveforms, P1 local peak 

amplitudes were defined as the maximum positive voltage measured between 80-120ms 

after stimulus onset (S1 and S2) and N170 local peak amplitudes were defined as the 
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maximum negative going voltage measured between 120-180ms after stimulus onset 

(S2). In respect to P1, in response to S1 I observed the largest P1 local peak amplitudes 

at occipital electrodes O1 (M=4.78 μV) and O2 (M=5.02 μV) followed by PO7 (M=3.51 

μV) and PO8 (M=4.57 μV) at approximately 110ms following S1 onset with a right 

hemisphere advantage (see Figure 2.4). In response to S2 I again observed the largest P1 

local peak amplitudes at O1 (M=5.72 μV) and O2 (M=5.98 μV) and PO7 (M=4.55 μV) 

and PO8 (M=8.19 μV) at approximately 95ms following S2 onset and again showing a 

clear right hemisphere advantage (see Figure 2.5). Due to the larger P1 peak amplitude 

response to faces in the right hemisphere at PO8 compared to O2 (with the reverse 

occurring in the left hemisphere), a new waveform was created in ERPLAB collapsing 

across electrodes O1/PO7 for the left hemisphere and O2/PO8 for the right. Based on 

the grand-grand averaged waveforms, two electrode sites were chosen for the P1 in 

response to S1 (O1/O2) and two electrode clusters were chosen for the P1 in response to 

S2 (O1/PO7 and O2/PO8). 

Given that N170 amplitudes in early adolescents often occur in the positive 

range, it was necessary to use a subtraction method (P1 local peak amplitude – N170 

local peak amplitude) to better isolate the N170. This was done to allow for more exact 

comparisons between age groups (Kuefner, De Heering, Jacques, Palmero-Soler, & 

Rossion, 2010). The N170 was identified as the first negative going peak immediately 

following the P1 and the maximum amplitude of N170 ERP waveforms were arrived at 

by using the subtraction method outlined above at each of the following electrode sties, 

P5/P6, P7/P8, P9/P10, PO3/PO4, PO7/PO8, and O1/O2. I observed N170 maximum 

peak to peak amplitude in response to face stimuli at bilateral electrodes P9 (M=6.49 

μV) and P10 (M=8.58 μV) at approximately 145ms following S2 onset (see Figure 2.5). 
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Based on these findings, these two electrode sites were chosen for the N170 in response 

to S2 (P9/P10). 

 

Figure 2.4. Grand-grand averaged ERP waveforms at posterior electrodes for the P1 in 

response to S1 (shape) with accompanying ERP scalp topography showing mean 

amplitude between 80-120ms after S1 onset (N=54).  
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A 

 

B 

 

Figure 2.5. (A). Grand-grand averaged ERP waveforms at posterior electrodes for the 

P1 and N170 in response to S2 (face). (B). P1 scalp topography showing mean 

amplitude between 80-120ms after S2 onset and the N170 scalp topography showing 

mean amplitude between 120-180ms after S2 onset (N=54). 

 

2.2.10. Selecting time windows for analyses of individual ERP waveforms 

 Upon closer inspection of the data, it became clear that at an individual level, the 

time windows chosen for the visually evoked grand-grand averaged ERP waveforms 

(P1, N170) were inappropriate given the variance in component latency across subjects, 

in particular between the early adolescent group and the two older groups. Therefore, 

the P1 local peak amplitude in response to S1 and S2 was measured separately for each 
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participant and each condition in a 70ms-150ms time window for S1 at electrodes 

O1/O2 and a 50ms-135ms time window for S2 at electrode clusters O1/PO7 and 

O2/PO8. To determine the N170 local peak amplitude at electrodes P9/P10 for each 

participant in each condition, a time window of 50-135ms for P1 and a time window of 

120ms-190ms for N170 was sufficient to accurately capture both. It was not necessary 

to tweak the time windows already used to measure iCNV, tCNV and total CNV of the 

grand-rand averages and therefore these time windows were retained for the analyses of 

CNV mean amplitude. An example of how measurements were taken using the 

ERPLAB measurement tool is presented in Appendix 36. 

 

2.2.11. Statistical analyses 

Reaction time data was analysed using a two-way mixed design analysis of 

variance (ANOVA) with trial type (condition) as the within-subjects factor and age 

group as the between-subjects factor. For iCNV, tCNV and total CNV analyses, three 

separate two-way mixed design ANOVAs were conducted, with trial type (condition) as 

the within-subjects factor and age group as the between-subjects factor. For the analyses 

of early visually evoked potentials (P1, N170) a series of three-way mixed design 

ANOVAs were conducted, with trial type (condition) and electrode location (left and 

right hemisphere) as the within-subjects factors and age group as the between-subjects 

factor. For the ERP and behavioural data analyses, if extreme outliers were found in the 

data, as assessed by studentized residual values being ± 3 standard deviations away 

from the mean, these extreme outliers were removed prior to running the ANOVA. If 

any cells of the design were found to be non-normally distributed after the removal of 

said outliers, as assessed by Shapiro-Wilk’s test of normality (p < .05), but the skew 

was moderate and in the same direction it was decided to continue with this analysis. 

This is because ANOVAs are fairly “robust” to deviations from normality and there is 
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no non-parametric equivalent of a two-way or three-way mixed ANOVA. In instances 

were homogeneity of variance was violated, as assessed by Levene’s test of 

homogeneity of variance (p < .05), but sample sizes in each group where the same, it 

was decided to continue with this analysis. This is because ANOVAs are considered to 

be somewhat robust to violations of homogeneity of variance if group samples are of 

equal size (Field, 2018; Tabachnick, Fidell, & Ullman, 2007). Greenhouse Geisser 

correction was used in situations where Sphericity was violated (Mauchley’s test, p < 

.05). In addition to ANOVAs, standard multiple regression was used to investigate the 

relationship between early/initial and late/terminal CNV mean amplitudes (iCNV and 

tCNV respectively), state anxiety and mean reaction times (see Appendix 32). All 

statistical analyses were performed using an alpha level of p < 0.05 in the IBM SPSS 

Statistics for Mac software package, Version 24.0. Assumption testing for each 

ANOVA can be found in Appendix 31. 

2.3. Results 

2.3.1. Task performance summary 

 In this task, participants were asked to respond as quickly as possible when they 

saw a face (S2) on the screen by pressing the space bar with their dominant hand. 

Participant reaction times were recorded in each condition (angry, happy, neutral) to 

determine whether the presentation of angry, happy, and neutral faces differentially 

modulated the speed of participants’ responses. The analyses of reaction times resulted 

in two significant findings. First, and consistent with previous comparative 

developmental studies of reaction times in early adolescents (Bender, Weisbrod, 

Bornfleth, Resch, & Oelkers-Ax, 2005; Klein & Feige, 2005; Perchet & Garcia-Larrea, 

2005), regardless of trial type, early adolescents had slower responses to the face stimuli 

compared to both the late adolescents and young adults. Second, for this younger age 
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group only, responses were found to be modulated by facial expression with faster 

reaction times to happy faces compared to faces showing neutral expressions . The 

statistical analyses used to make this determination is described below. 

 

2.3.2. Mean reaction time ANOVA analyses 

The results of the two-way mixed design ANOVA indicated that there was a 

statistically significant interaction effect of condition and age group on mean reaction 

time F(2, 102) = 4.122, p = .004, partial η2 = .139. To investigate where these group 

difference where with respect to each measure of reaction times (angry, happy, neutral), 

a total of three between-subjects ANOVAs using the univariate function in SPSS were 

conducted. When examining the simple main effects of group on mean reaction times in 

response to the face stimuli, the results indicated that there was a statistically significant 

difference in mean reaction times between age groups in the angry condition F(2, 51) = 

10.079, p < .001, partial η2 = .283, happy condition F(2, 51) = 8.997, p < .001, partial η2 

= .261, and in the neutral condition F(2, 51) = 13.040, p < .001, partial η2 = .338. In 

each case, Tukey HSD adjusted post-hoc tests showed that the early adolescent group 

had significantly slower RTs compared to both the late adolescent and young adult 

group (all p values < .01) (Table 2.2). There were no significant differences between the 

late adolescent group and the young adult group (all p values > .05). 

 

Table 2.2. Mean reaction times in each condition and standard deviations (SD).  

 Early adolescent 

(n = 18) 

Late adolescent 

(n = 18) 

Young adult 

(n = 18) 

1* 2* 

Condition  Mean RT (SD)  p p 

Angry 352.500 (41.812) 286.967 (44.658) 297.819 (53.546) < .001 .003 

Happy 345.823 (37.138) 293.209 (50.122) 290.559 (44.041)    .002 .001 

Neutral 358.126 (44.402) 289.285 (43.015) 292.125 (49.609) < .001           < .001 

Note. 1 = early adolescents > late adolescents, 2 = early adolescents > young adults 
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 To examine the simple main effects of condition on mean reaction time at each 

level of the group factor, the data was split by age group. For the early adolescent group 

there was a statistically significant effect of condition on mean reaction time, F(2, 34) = 

3.947, p = .029, partial η2 = .188. This was not the case for late adolescents F(2, 34) = 

2.803, p = .075, partial η2 = .142 or young adults F(2, 34) = 2.325, p = .113, partial η2 = 

.120. In addition to MD (mean difference) and CI (confidence interval), the data 

presented are marginal mean and ± standard error. Within the early adolescent group, 

Bonferroni corrected pairwise comparisons revealed that mean reaction times in 

response to the happy face stimuli were significantly faster (M=345.823, ± 8.754) 

compared to the neutral face stimuli (M=358.126, ± 10.466, MD = -12.304, SE = 4.300, 

p = .032, 95% CI = -23.72 to -.88). There was no statistically significant difference 

between mean reaction times in response to angry faces (M=352.500, ± 9.855) 

compared to the happy faces (MD = 6.677, SE = 5.058, p = .613, 95% CI = -6.75 to 

20.10) or happy faces compared to neutral faces (MD = -5.627, SE = 3.687, p = .436, 

95% CI = -15.41 to 4.16) (see Figure 2.6). 

 

Figure 2.6. Mean reaction times in response to angry, happy and neutral faces for each 

age group. Error bars represent the standard error of the mean (SEM). Mean reaction 

times are in milliseconds (ms). *p < .05 (N=54). 
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2.3.3. No modulation of the CNV during anticipation of emotional and neutral faces 

summary 

The main aim of this study was to investigate whether anticipation of different 

facial expressions would differentially modulate early/initial (iCNV) and late/terminal 

(tCNV) phases of the CNV as well as total CNV in the transition from adolescence to 

adulthood. To determine whether this was or was not the case, I conducted three 

separate two-way mixed design ANOVAs, one for iCNV mean amplitude at electrode 

FCz, one for tCNV mean amplitude at electrode Cz and one for total CNV mean 

amplitude at electrode FCz as the dependent variables. Condition (angry, happy, 

neutral) was entered as the within-subjects factor and age group as the between-subjects 

factor. These analyses were all non-significant suggesting that the anticipation of faces 

showing emotional or neutral expressions did not differentially modulate neural activity 

previously associated with preparation for action. There was however a trend in the data 

suggesting that early adolescents had attenuated tCNV amplitudes compared to late 

adolescents and young adults. Mean amplitudes for each CNV measure are provided in 

Table 2.3. 

 

Table 2.3. Mean potential for iCNV, tCNV and total CNV in each condition for each age group (N = 54). 

 Early adolescent Late adolescent Young adult   

Condition iCNV FCz (μV) iCNV FCz (μV)  iCNV FCz (μV)   

Angry -1.852 -2.300 -1.721   

Happy -2.405 -2.800 -1.607      

Neutral -2.478 -2.713 -2.080             

 Early adolescent Late adolescent Young adult   

Condition tCNV Cz (μV) tCNV Cz (μV)  tCNV Cz (μV)   

Angry -.904 -3.409 -3.015   

Happy -1.771 -4.172 -3.563   

Neutral -.991 -3.810 -2.654   

 Early adolescent Late adolescent Young adult   

Condition Total CNV FCz (μV) Total CNV FCz (μV) Total CNV FCz (μV)   

Angry -1.630 -1.909 -2.070   

Happy -1.111 -2.769 -2.321   

Neutral -1.552 -2.300 -2.298   

Note. iCNV = initial contingent negative variation; tCNV = terminal contingent negative variation 
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2.3.4. iCNV ANOVA analysis 

First, I investigated the effect of the predictive cue stimuli on iCNV mean 

amplitude. That is, how was the information provided by the cue processed differently 

depending on the condition and between age groups. The results indicated that there 

was no statistically significant interaction effect of condition and age group on iCNV 

mean amplitude F(4, 100) = .514, p = .726, partial η2 = .020. The main effect of 

condition was statistically non-significant F(2, 100) = 1.459, p = .237, partial η2 = .028, 

as too was the main effect of group F(2, 50) = .421, p = .659, partial η2 = .017. These 

results show that in our sample iCNV mean amplitude did not differ significantly 

between conditions depending on age group, nor was there significant differences in 

iCNV mean amplitude between conditions when ignoring group membership, nor was 

there significant differences in iCNV mean amplitude as a whole regardless of condition 

between early adolescents, late adolescents and young adults (see Figure 2.7). 

 

Figure 2.7. Grand averaged iCNV ERPs for each age group for each condition (N=53).  

 

2.3.5. tCNV ANOVA analysis 

Second, I investigated whether tCNV mean amplitude differed depending on the 

type of facial expression the participants were expecting to see and whether tCNV mean 
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amplitude differed between age groups. The results of the ANOVA showed that there 

was no statistically significant interaction effect of condition and age group on tCNV 

mean amplitude F(3.566, 89.1154) = .171, p = .939, partial η2 = .007. The main effect 

of condition was statistically non-significant F(1.783, 89.154) = 2.173, p = .125, partial 

η2 = .042, as too was the main effect of group F(2, 50) = 3.100, p = .054, partial η2 = 

.110. These results show that in this sample tCNV mean amplitude did not differ 

significantly between conditions depending on age group, and that tCNV mean 

amplitude did not differ significantly between conditions when ignoring group 

membership. However, while there was no statistically significant difference in tCNV 

mean amplitude as a whole regardless of condition between early adolescents, late 

adolescents and young adults, there was a trend in the data suggesting that early 

adolescents did have attenuated tCNV amplitudes compared to late adolescents and 

young adults (see Figure 2.8). 

 

Figure 2.8. Grand averaged tCNV ERPs for each age group for each condition (N=53).  

 

2.3.6. Total CNV ANOVA analysis 

Lastly, I investigated whether anticipation of angry, happy or neutral faces 

differentially modulated the anticipatory period as a whole in an attempt to assess 
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whether a more general measure of anticipation/expectancy as indexed by the total 

CNV differed between conditions and age groups. The results of the ANOVA showed 

that there was no statistically significant interaction effect of condition and age group on 

total CNV mean amplitude at electrode site FCz F(4, 102) = 1.080, p = .370, partial η2 = 

.041. Additionally, the main effect of condition was statistically non-significant F(2, 

102) = .315, p = .731, partial η2 = .006, as too was the main effect of age group F(2, 51) 

= 0.945, p = 0.395, partial η2 = .036. As was the case for iCNV and tCNV, these results 

again show that in this sample total CNV mean amplitude did not differ significantly 

between conditions depending on age group. Total CNV mean amplitude did not differ 

significantly between conditions when ignoring group membership and total CNV mean 

amplitude across all condition did not differ significantly between early adolescents, 

late adolescents and young adults (see Figure 2.9). 

 

Figure 2.9. Grand averaged total CNV ERPs for each age group for each condition 

(N=54).  
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2.3.7. Modulation of early visually evoked potentials to S1 and S2 summary 

A further aim of this study was to investigate whether the different cues (S1) 

predicting angry, happy and neutral facial expressions (S2) would result in differential 

modulation of the visual P1 in response to these cues, and whether the degree of 

modulation would differ significantly between early adolescents, late adolescents and 

young adults. I also investigated whether viewing angry, happy and neutral facial 

expressions (S2) would result in differential modulation of the visual P1 and N170 to 

these faces. In other words, I was interested to find out whether the information 

portrayed by the type of predictive cue (S1) and the type of facial expression (S2) was 

processed differently depending on the condition and depending on age group. Again, 

as stated in the introduction (Section 2.1), these measures were taken in an attempt to 

make interpretations of the CNV findings more intelligible. More specifically, age-

dependent modulation of the visual P1 and N170 by affect laden stimuli may prove to 

be informative with regard to how these stimuli are processed differently in the brain. 

Furthermore, because I didn’t find any significant differences between conditions and 

between age groups in CNV mean amplitudes (CNV amplitudes were not condition 

dependent), if significant differences existed in these early visually evoked potentials if 

not in the CNV, this would at least suggest a degree of segregation or partitioning of the 

functions in the brain associated with the processing of emotional information.  

 To determine whether this was or was not the case, I conducted three separate 

three-way mixed design ANOVAs, one for the visual P1 to S1, one for the visual P1 to 

S2, and one for the N170 to S2. The results of these analyses showed that while early 

adolescents had significantly larger visual P1 peak amplitudes in each condition for 

both the left and right hemisphere compared to late adolescents and young adults, across 

all age groups, visual P1 peak amplitudes were not modulated by the type of predictive 
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cue the participants saw. However, for the early adolescent group only, visual P1 peak 

amplitudes were found to be larger over the right hemisphere compared to the left 

hemisphere of the brain. For the visual P1 to the faces (S2), across age groups, 

significant differences were found between viewing angry faces compared to neutral 

faces with greater peak amplitudes in the angry condition compared to the neutral 

condition. Additionally, greater visual P1 peak amplitudes were found over the right 

compared to the left hemisphere, and across all conditions, visual P1 peak amplitudes 

were greater in the early adolescent group compared to the late adolescent and the 

young adult group.  For the N170 the results were slightly different. Across all age 

groups, while the N170 amplitudes were found to be significantly greater to angry faces 

compared to neutral faces and while N170 amplitudes were found to be significantly 

greater over the right compared to the left hemisphere of the brain, unlike the visual P1 

to S1 and S2, age group differences in N170 amplitude were non-significant. The 

statistical analyses used to investigate the modulation these early visually evoked 

potentials are described below. 

 

2.3.8. Visual P1 to S1 ANOVA analyses 

To determine whether there was an interaction effect of age group, condition, 

and electrode location (left vs right hemisphere) on visual P1 peak amplitude to the 

predictive cue stimuli (S1), a three-way mixed design ANOVA was conducted with 

group as the between-subjects factor with three levels (early adolescent, late adolescent, 

young adult) and condition (angry, happy, neutral) and electrode location (O1/O2) as 

the two within-subjects factors. The three-way interaction between age group, 

condition, and electrode location was not statistically significant F(4, 96) = 1.121, p = 

0.500, partial η2 = .034, suggesting that visual P1 peak amplitudes in response to the 
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predictive cue stimuli (S1) did not differ significantly between conditions and electrode 

location as a function of group membership. The ANOVA also did not find a 

statistically significant two-way interaction between condition and age group on visual 

P1 peak amplitudes in response to the predictive cue stimuli F(4, 96) = .756, p = 0.556, 

partial η2 = .031 showing that when electrode location is ignored visual P1 peak 

amplitudes did not differ significantly between conditions depending on the age group. 

Nor was there a significant two-way interaction between condition and electrode 

location on visual P1 peak amplitudes in response to the predictive cue stimuli F(2, 96) 

= .252, p = 0.778, partial η2 = .005 showing that when group membership is ignored 

visual P1 peak amplitudes did not significantly differ between conditions depending on 

the electrode location i.e. left hemisphere (O1) vs right hemisphere (O2).  

There was however a statistically significant two-way interaction between 

electrode location and age group on visual P1 peak amplitudes in response to the 

predictive cue stimuli F(2, 48) = 3.438, p = 0.040, partial η2 = .125. To investigate 

where these group difference where with respect to each measure of the visual P1 peak 

amplitude (angry, happy, neutral) at electrodes O1 and O2, a total of six between-

subjects ANOVAs using the univariate function in SPSS were conducted. When 

examining the simple main effects of age group on visual P1 peak amplitude in 

response to the cue stimuli, the results indicated that there was a statistically significant 

difference in visual P1 peak amplitude between age groups at electrode O1 in the angry 

condition F(2, 48) = 18.266, p < .001, partial η2 = .432, happy condition F(2, 48) = 

15.085, p < .001, partial η2 = .386, and in the neutral condition F(2, 48) = 12.139, p < 

.001, partial η2 = .336. This was also the case for electrode site O2 which showed 

statistically significant differences in visual P1 peak amplitude between age groups in 

the angry condition F(2, 48) = 26.026, p < .001, partial η2 = .520, happy condition F(2, 
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48) = 22.684, p < .001, partial η2 = .486, and in the neutral condition F(2, 48) = 13.390, 

p < .001, partial η2 = .358. In each case, Games-Howell adjusted post-hoc tests showed 

that the early adolescent group had significantly greater visual P1 peak amplitude 

compared to both the late adolescent and young adult group (all p values < .01) but 

there were no significant differences between the late adolescent group and the young 

adult group (all p values > .05) (see Figure 2.10, Supplementary Table 2.6).  

 

Figure 2.10. Visual P1 ERPs in response to cue stimuli in each age group for the left 

hemisphere (O1) and the right hemisphere (O2) (N=51). Note. S1 shape was 

counterbalanced across participants. Shapes shown in figure are for illustrative purposes 

only. 

 

 

 To examine the simple main effects of electrode location on visual P1 peak 

amplitude, the data was split on the age group factor. For the early adolescent group 

there was a statistically significant difference in visual P1 peak amplitude between O1 

and O2 F(1, 16) = 14.161, p = .002, partial η2 = .470. This was not the case for late 

adolescents F(1, 16) = .034, p = .857, partial η2 = .002, nor young adults F(1, 16) = 

1.568, p = .229, partial η2 = .089. In addition to MD (mean difference) and CI 
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(confidence interval), the data presented are marginal mean and ± standard error. Within 

the early adolescent group, Bonferroni corrected pairwise comparisons revealed that 

visual P1 peak amplitudes in response to the predictive cue stimuli were significantly 

greater in the right hemisphere (O2) with a mean of 10.320 ± 1.123 compared to the left 

hemisphere (O1) with a mean of 9.179 ± 1.049 (MD = 1.208, SE = .321, p = .002, 95% 

CI = .52 to 1.88) (see Figure 2.11).  

 

 
Figure 2.11. Visual P1 peak amplitudes in response to cue stimuli in each age group for 

the left hemisphere (O1) and the right hemisphere (O2). Greater P1 peak amplitudes 

were observed in the right hemisphere compared to the left hemisphere in early 

adolescents to each of the three cues. Error bars represent the standard error of the mean 

(SEM). **p < .001. 

 

2.3.9. Visual P1 to S2 ANOVA analyses 

 I also investigated whether viewing positive, negative and neutral emotional 

facial expressions (S2) would result in differential modulation of the visual P1 and 

N170. For the visual P1, a three-way mixed design ANOVA with age group (early 

adolescent, late adolescent, young adult) as the between-subjects factor and condition 

(angry, happy, neutral) and electrode location (O1/PO7 and O2/PO8) as the two within-

subjects factors. The results of the ANOVA indicated that the three-way interaction 

between age group, condition, and electrode location was not statistically significant 

F(3.487, 88.916) = 1.710, p = 0.163, partial η2 = .063. The ANOVA also did not find a 

statistically significant two-way interaction between condition and age group on visual 
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P1 peak amplitudes in response to the face stimuli F(3.832, 97.72) = .470, p = 0.750, 

partial η2 = .018, nor was there a significant two-way interaction between electrode 

location and age group on visual P1 peak amplitudes in response to the face stimuli F(2, 

51) = .976, p = 0.384, partial η2 = .037. Nor was there a significant two-way interaction 

between condition and electrode location on visual P1 peak amplitudes in response to 

the face stimuli F(1.743, 88.917) = 1.701, p = 0.192, partial η2 = .032 showing that 

when group membership is ignored visual P1 peak amplitudes did not significantly 

differ between conditions depending on the electrode location i.e. left hemisphere 

(O1/PO7) vs right hemisphere (O2/PO8).  

However, the results of the ANOVA did indicate that there was a significant 

main effect of condition F(2, 102) = 5.689, p = 0.005, partial η2 = .100, a significant 

main effect of electrode location F(1, 51) = 26.609, p < .001, partial η2 = .343 and a 

significant main effect of age group F(2, 51) = 19.941, p < .001, partial η2 = .439.  

In addition to MD (mean difference) and CI (confidence interval), the data presented are 

marginal mean and ± standard error. Bonferroni corrected pairwise comparisons 

revealed that visual P1 peak amplitudes in response to the angry face stimuli (M=9.353, 

± .730) were significantly greater (MD = .724, SE = .213, p = .004, 95% CI = .20 to 

1.25) than those found in response to the neutral face stimuli (M=8.630, ± .687) but not 

the happy face stimuli (MD = .471, SE = .238, p = .161, 95% CI = -.20 to 1.06) which 

had a mean of 8.882 ± .657. In addition, Bonferroni corrected pairwise comparisons 

revealed that visual P1 peak amplitudes were significantly greater in the right 

hemisphere (M=10.126, ± .789) compared to the left hemisphere (M=7.784, ± .637) 

(MD = 2.342, SE = .454, p < .001, 95% CI = 1.43 to 3.25). Finally, Bonferroni corrected 

pairwise comparisons revealed that across conditions and electrode locations visual P1 

peak amplitudes were significantly greater in the early adolescent group (M=15.000, ± 
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1.178) compared to the late adolescent group (M=6.468, ± 1.178) (MD = 8.532, SE = 

1.667, p < .001, 95% CI = 4.40 to 12.65) and young adult group (M=5.398, ± 1.178) 

(MD = 9.602, SE = 1.667, p < .001, 95% CI = 5.47 to 13.72). There was no significant 

difference between late adolescents and young adults (p > .05) (see Figure 2.12). 

 
A 

 
B 

 
C 

 
D 

 
Figure 2.12. (A). Visual P1 ERPs in response to face stimuli in the early adolescent group for 

the left hemisphere (P1/PO7) and the right hemisphere (O2/PO8). (B). Visual P1 ERPs in 

response to face stimuli in the late adolescent group for the left hemisphere (P1/PO7) and the 

right hemisphere (O2/PO8). (C). Visual P1 ERPs in response to face stimuli in the young adult 

group for the left hemisphere (P1/PO7) and the right hemisphere (O2/PO8). (D). Visual P1 peak 

amplitudes in response to the face stimuli in each age group for the left hemisphere (O1/PO7) 

and the right hemisphere (O2/PO8). Error bars represent the standard error of the mean (SEM). 

(N=54). 
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2.3.10. N170 to S2 ANOVA analyses 

For the N170, a three-way mixed design ANOVA was conducted with age 

group (early adolescent, late adolescent, young adult) as the between-subjects factor and 

condition (angry, happy, neutral) and electrode location (P9/P10) as the two within-

subjects factors. The results of the ANOVA indicated that the three-way interaction 

between age group, condition, and electrode location on N170 amplitude was not 

statistically significant F(4, 96) = .229, p = .922, partial η2 = .009. The results of the 

ANOVA also indicated that there were no statistically significant two-way interactions 

between condition and age group F(4, 96) = .592, p = .669, partial η2 = .024, electrode 

location and age group F(2, 48) = 1.485, p = .237, partial η2 = .058, and between 

condition and electrode location F(2, 96) = .469, p = .627, partial η2 = .010. There was 

however a significant main effect of condition F(1.761, 84.510) = 5.246, p = .007, 

partial η2 = .099 and a significant main effect of electrode location F(1, 48) = 4.874, p = 

.032, partial η2 = .092, but unlike visual P1 responses to the face stimuli, there was no 

significant main effect of age group F(2, 48) = .970, p = .386, partial η2 = .039. In 

addition to MD (mean difference) and CI (confidence interval), the data presented are 

marginal mean and ± standard error. Bonferroni corrected pairwise comparisons 

revealed that N170 amplitudes in response to the angry face stimuli (M=9.881, ± .523) 

were significantly greater (MD = .697, SE = .258, p = .028, 95% CI = .05 to 1.33) than 

those found in response to the neutral face stimuli (M=9.184, ± .497) but not the happy 

face stimuli (MD = .219, SE = .200, p = .839, 95% CI = -.27 to .716) which had a mean 

of 9.662 ± .531. There was no significant difference in N170 amplitude between the 

happy and neutral conditions (p > .05). Additionally, Bonferroni corrected pairwise 

comparisons revealed that N170 amplitudes were greater in the right hemisphere 

(M=10.254, ± .631) compared to the left hemisphere (M=8.897, ± .541) (MD = 1.357, 
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SE = .614, p = .032, 95% CI = .12 to 2.60) (Figure 2.13). 

 

A 

 

B 

 
Figure 2.13. (A). N170 ERPs in response to cue stimuli collapsed across age groups for 

the left hemisphere (P9) and the right hemisphere (P10). (B). N170 scalp topographies 

collapsed across age groups depicting mean amplitudes between 110-140ms for the 

angry and neutral condition following S2 onset (N=51). 

 

2.4. Discussion 

2.4.1. Summary of main findings  

The primary aim of this study was to investigate whether anticipation of 

different emotional facial expressions differentially modulated motor preparation and 

action and whether this modulation differed significantly at different stages of brain 

development. The rationale behind this approach was based upon two main assumptions 

derived from the literature. First, previous research in this area has shown that 

preparation to act and action itself is often modulated by the emotional context in which 

it occurs (Carretié, Mercado, Hinojosa, Martın-Loeches, & Sotillo, 2004; Casement et 

al., 2008; Coombes, Cauraugh, & Janelle., 2006; Coombes et al., 2009; Hart, Lucena, 
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Cleary, Belger, & Donkers, 2012; Nogueira-Campos et al., 2014; Perri et al., 2014; 

Schutter, Hofman, & Honk., 2008). Second, as discussed above, relative to childhood 

and adulthood evidence suggests that adolescence is a period of heightened emotional 

reactivity (Casey & Jones, 2010; Doremus-Fitzwater & Spear, 2016; Ernst, Pine, & 

Hardin, 2006; Kessler et al., 2005; Luna & Wright, 2016; Nelson, Leibenluft, McClure, 

& Pine, 2005; Somerville, Jones, & Casey, 2010; Spear, 2000; Steinberg, 2008, 2010). 

Therefore, I hypothesised that I would see a greater degree of affect-related modulation 

of anticipatory behaviour as indexed by the CNV during early adolescence relative to 

late adolescence and young adulthood. However, contrary to my hypotheses that CNV 

amplitudes would be differentially modulated by emotionally salient versus non-

emotionally salient stimuli (angry, happy and neutral faces) and that this modulation 

would be more prominent during early adolescence due to the hypothesised 

maturational mismatch between (pre)frontal and limbic regions of the brain, I found no 

statistically significant interaction effect of emotion on CNV amplitudes at the within 

subjects’ or between subjects’ level. 

However, the results of the tCNV analyses were consistent with previous 

developmental studies investigating anticipatory behaviour in humans (Bender, 

Weisbrod, Bornfleth, Resch, & Oelkers-Ax, 2005; Flores, Digiacomo, Meneres, Trigo, 

& Gómez, 2009; Killikelly & Szűcs, 2013; Klein & Feige, 2005; Jonkman, 2006; 

Klorman, 1975; Perchet & Garcia-Larrea, 2005; Segalowitz, Unsal, & Dywan, 1992a 

Segalowitz & Davies, 2004; Taylor, Gavin, & Davies, 2016), showing that although 

non-significant, there was a trend in the data toward attenuation of motor preparedness 

(tCNV) in early adolescents compared to late adolescents and young adults (p = .054). 

This again suggests the possibility of poorer regulation of motor control or possibly 

attentional resources during early adolescence, which is in line with previous research 
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showing increases in CNV negativity with increasing age (Bender, Weisbrod, Bornfleth, 

Resch, & Oelkers-Ax, 2005; Segalowitz & Davies, 2004). However, this was clearly 

not the case for iCNV (p = .65) suggesting that at the group level early adolescents, late 

adolescents and young adults showed a similar orienting response to the cues predicting 

S2, and therefore presumably similar levels of prefrontal cortical activity and therefore 

prefrontal attentional capacity during this earlier part of the CNV wave. However, it 

must be noted that these effects in tCNV are minimal (p = .054), and may therefore 

represent a serendipitous trend and so my interpretations relating to age-related changes 

in tCNV should be viewed with some degree of caution. 

In addition, I also investigated how anticipation of, and response to, emotional 

facial expressions influenced motor output as assessed by the speed of participants’ 

responses to S2. Based on the initial mean reaction time ANOVA analyses (Section 

2.3.2) and consistent with previous developmental studies (Bender, Weisbrod, 

Bornfleth, Resch, & Oelkers-Ax, 2005; Klein & Feige, 2005; Perchet & Garcia-Larrea, 

2005), RTs in early adolescents, regardless of trial type, were significantly slower in 

comparison to late adolescents and young adults. However, for the early adolescent 

group responses were significantly faster to happy faces compared to neutral faces. 

Interestingly, this was not the case for late adolescents and young adults. While slower 

responses in the early adolescent group relative to the two older age groups across all 

conditions may suggest that the trend observed in attenuated tCNV amplitudes in the 

early adolescent group was related to the RT data in our study, supplementary post-hoc 

analyses showed only tCNV amplitude in the neutral condition proved to be a 

significant predictor of mean RT (p = .01) (see Appendix 32). In fact, based on this 

supplementary post-hoc analyses, semipartial correlations indicated that tCNV in the 

neutral condition uniquely accounting for just 8.2% of the variance in mean RT. This is 
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consistent with previous studies showing a weak relationship between tCNV amplitudes 

and RTs (Rebert & Tecce, 1973; Smith, Johnstone, & Barry, 2006). Taken together, 

these results suggest that factors other than CNV amplitude were responsible for the 

significant age group differences found in RTs and further suggests that motor 

preparation as indexed by the CNV is not a good predictor of the speed of participants 

motor responses. 

I also investigated whether viewing different facial expressions led to 

differential modulation of the visual P1 and N170, and whether this differed between 

age groups. First, I found that visual P1 peak amplitudes were larger in responses to 

both S1 and S2 in the early adolescent group compared to late adolescents and young 

adults. These findings are in agreement with previous studies showing decreases in P1 

amplitude with increasing age (Kuefner, De Heering, Jacques, Palmero-Soler, & 

Rossion, 2010; Peters & Kemner, 2017). Second and contrary to my hypothesized 

association between the information provided by the cues (S1) and visual P1 peak 

amplitudes, I found that visual P1 peak amplitudes were not modulated by the type of 

predictive cue the participants saw (S1). However, my hypothesis regarding visual P1 

responses to faces (S2) was confirmed , showing that the visual P1 was modulated by 

the type of facial expression the participants saw. I found a significant main effect of 

condition, with larger visual P1 peak amplitudes to angry faces compared to neutral 

faces but not happy faces. These findings are again in agreement with previous research 

showing potentiation of early visually evoked potentials to negative stimuli (Carretié, 

Hinojosa, Martín‐Loeches, Mercado, & Tapia, 2004). I also found a significant main 

effect of electrode location, with larger visual P1 peak amplitudes to faces over the right 

hemisphere compared to the left hemisphere of the brain. However, it is again important 

to note that I did not find any significant condition by age group interaction for the 
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visual P1 in response to the emotional face stimuli showing that, at the level of ERP 

measurement, there was no significant difference between age groups in the way they 

processed the emotional face stimuli. 

For the N170, the results were mostly the same as the results for the visual P1 to 

faces. Again, consistent with my hypothesized association between N170 amplitudes 

and the type of faces the participants saw, I found a main effect of condition, with N170 

amplitudes found to be significantly larger to angry faces compared to neutral faces. 

However, like the visual P1 to faces, no significant condition by age group interaction 

for the N170 was found. Again, like the visual P1 to faces, N170 amplitudes were found 

to be significantly larger over the right compared to the left hemisphere of the brain. 

However, unlike the visual P1 to S1 (cues) and S2 (faces), age group differences in N170 

amplitude were non-significant. This is again in agreement with a recent study showing 

that age-related changes in N170 amplitudes are minimal, even between four and 

twenty-nine years of age (Kuefner, De Heering, Jacques, Palmero-Soler, & Rossion, 

2010). 

  

2.4.2. Contingent negative variation 

The fact that I did not observe any significant condition dependent changes in 

the early or late phases of the CNV in addition to any meaningful changes in CNV 

during the anticipatory period as a whole was at first, somewhat surprising. This 

suggests that in our sample of neurotypical participants, at the level of ERP 

measurement from scalp electrodes, there was little or no significant cross-over between 

limbic and motor circuitry, at least at the level of motor preparation if not motor output. 

This suggests that a degree of segregation was maintained between parallel circuits in 

the brain associated with the processing of emotional information on the one hand 

(possibly via the anterior cingulate → medial orbitofrontal pathway), and circuits 
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responsible for motor preparation on the other (via supplementary motor area (SMA), 

premotor cortex, motor cortex and somatosensory cortex → subcortical pathway) 

(Tekin & Cummings, 2002). Or alternatively, there was no emotion-motor interaction 

via amygdala-SMA (Voon et al., 2016). This may have been the case, especially given 

that all other electrophysiological and behavioural measures showed the expected 

developmental trajectories. 

Furthermore, visual inspection of CNV topographical maps indicated a clear 

fronto-central maximum negativity for iCNV and a clear maximum negativity for tCNV 

at the vertex, and with group level CNV amplitudes that are within normal limits. This 

suggests that the experimental paradigm was effectual in capturing both early/initial and 

late/terminal phases of the CNV. Moreover, the supplementary post-hoc analyses found 

that tCNV amplitude at electrode Cz in the neutral condition correlated more strongly 

with mean RT in response to neutral faces than in any other condition (r = .439, p < 

.001). This is comparable to a previous study using non-emotional stimuli that reported 

correlations between tCNV and RTs at electrode Cz of r = .367 (Smith, Johnstone, & 

Barry, 2006). Consistencies between the present study and previous studies 

investigating visually evoked ERPs and the CNV lends support to the interpretation that 

the processing of emotional information did not, in any significant way, modulate brain 

processes responsible for motor preparation as indexed by the CNV in the current study.  

Given the available evidence in the literature showing the existence of emotion-

motor interactions and that goal-directed behaviour is often aligned to the motive state 

(see Section 1.3.2), a number of important considerations should be taken into account 

when interpreting the CNV results. First, motor preparation is a multi-factorial process 

on many levels, not a unitary preparatory state, in which different components may have 

only a weak to moderate relationship with one another (Jennings, van der Molen, & 
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Steinhauer, 1998; MÜller‐Gethmann, Ulrich, & Rinkenauer, 2003). This may help to 

explain why I did not observe any significant effects of emotion on the CNV, that is to 

say, the preparatory state observed in the present study was possibly only a reflection of 

a readiness to act (gradual increase or ramping up of neuronal activity preceding 

imperative stimulus onset) devoid of any significant input from other brain processes 

related to emotion processing or action selection. As suggested by MÜller‐Gethmann, 

Ulrich, & Rinkenauer. (2003), while ERPs like the CNV may reflect neuronal activity 

involved in the readiness of the motor system, it remains debatable whether this neural 

correlate of preparation is predictive of the actual motor output (accuracy or speed of 

motor responses). For example, Jennings, van der Molen, & Steinhauer. (1998) found 

that in a simple RT task, correlations between psychophysiological variables such as 

heart rate, pupillary diameter and brain potentials and RTs was in fact low. 

Therefore, it may be that the effects of emotion on motor function actually 

occurred later during the movement instigation stage, between the onset of the face and 

the button press response. This would concur with why I observed a significant main 

effect of condition for early visually evoked potentials but not motor preparation as 

indexed by the CNV. Further, if the effects of emotion on motor function actually 

occurred after the onset of the emotional facial expressions, this may in part explain 

why for early adolescents, RTs in the happy condition were significantly faster than 

those found in the neutral condition, which was not reflected in CNV amplitudes. In 

hindsight, an alternative or rather a complimentary approach to investigating the effects 

of emotion on the temporal characteristics of motor function (motor preparation, 

movement instigation and motor output) would be to use multiple indices spanning the 

time period between perception and action by using measures of motor preparedness 

stimulus locked to S1 as well as S2 and indices of movement instigation stimulus locked 
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to the participants response (button press) alongside measures of the accuracy (button 

press errors) and the speed of motor responses (RTs).    

 

2.4.3. Early visually evoked potentials 

 This study found, that when group membership was ignored, visual P1 peak 

amplitudes were not modulated by the type of predictive cue (S1) the participants saw 

but they were modulated by the type of facial expression the participants saw (S2), with 

larger visual P1 peak amplitudes found in response to angry faces compared to neutral 

faces. This pattern was repeated for the N170, with N170 potentiation occurring in 

response to angry faces compared to neutral faces. These findings are in agreement with 

previous studies showing that negative stimuli representing threat or danger mobilize 

attentional resources more than positive, neutral or non-emotional stimuli (Carretié, 

Hinojosa, Martín‐Loeches, Mercado, & Tapia, 2004). Further, the fact that visual P1 

peak amplitudes (across conditions) were larger in response to faces (S2) compared to 

the predictive cues (S1) and that visual P1 peaks were larger to angry faces compared to 

neutral faces further suggests that the visual processing of salient stimuli can be 

differentiated from that of non-salient stimuli as early as 95 ms following stimulus 

onset. This finding is consistent with a previous ERP study showing a global effect of 

emotional facial expressions on visual processing occurring as early as 90 ms post 

stimulus onset (P1) in addition to larger N170 amplitudes evoked by angry facial 

expressions compared to neutral facial expressions (Batty & Taylor, 2003). From a 

biological point of view, this aspect of the attentional capture by environmental salient 

stimuli supports evolutionary theories which emphasize the prioritization of threat-

related stimuli for protection and survival. 

 Both the visual P1 and the N170 occur very early on in the processing of visual 

information in the brain. Indeed, across all participants on average, visual P1 peak 
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latency in response to the faces (S2) occurred as early as 95 ms and the N170 peak 

latency in response to the faces (S2) occurred at approximately 145 msec. It is unlikely 

that conscious recognition of facial expressions occurs so early, particularly for the P1 

ERP component (Calvo & Beltrán, 2013; Carretié, Hinojosa, Martín‐Loeches, Mercado, 

& Tapia, 2004; Vuilleumier, 2005) if not so much for the N170 ERP component (Blau, 

Maurer, Tottenham, & McCandliss., 2007). Indeed, it has been suggested that the effect 

of emotional stimuli on perception may occur at different stages of visual processing 

(Bocanegra & Zeelenberg, 2009; Vuilleumier, 2005), so attentional capture and 

conscious awareness of the meaning of emotional stimuli may have distinct temporal 

qualities with the former occurring much more quickly than the latter.  

It has been proposed that the amygdala may facilitate or boost sensory 

processing of emotional and configural aspects of faces via connections to the visual 

cortex (Vuilleumier, 2005). These configural or coarser grained aspects of emotional 

stimuli (for example position of facial features and coarse emotional cues such as eyes 

wide open in fearful faces) are relayed mostly through low spatial frequencies (LSF) via 

the magnocellular pathway, which facilitates the rapid transfer of information to the 

visual cortex, amygdala, and prefrontal cortex, thereby speeding up threat detection and 

initiating rapid threat-responses (Peters & Kemner, 2017). More detailed or fine grained 

information (for example identity, facial age) is reliant on high spatial frequencies 

(HSF) being relayed via the parvocellular pathway, which projects solely to the visual 

cortex and takes more processing time than does coarse grained information (Goffaux et 

al., 2010; Merigan & Maunsell, 1993; Peters & Kemner, 2017). Studies investigating 

the recruitment of these two distinct visual pathways often use filtered images that have 

either a high spatial frequency (HSF) or low spatial frequency (LSF) (Vuilleumier, 

Armony, Driver, & Dolan, 2003). With regard to the rapid transfer of information via 
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the magnocellular pathway, neuroimaging studies have shown that there is a 

relationship between amygdala activity and enhanced responses to emotional stimuli in 

visual cortex, particularly threat-related stimuli (Vuilleumier, 2005), with some fMRI 

studies showing increased coupling of the fusiform gyrus (Morris et al., 1998) and 

primary visual cortex (Pessoa, McKenna, Gutierrez, & Ungerleider, 2002) when 

viewing fearful faces versus neutral faces. The fusiform gyrus is important for facial 

recognition. Of particular interest here, is that neuroimaging studies have shown that 

these structures in the brain are not fully matured till adulthood with children showing 

more HSF-driven processing of facial expressions while adults show more advanced 

configural processing driven by LSF content (Peters & Kemner, 2017).  

Yet, contrary to my hypotheses that I would see condition dependent age group 

differences in the visual P1 and N170, I failed to find any significant condition by age 

group effects for either. Moreover, previous fMRI studies have observed greater 

amygdala activity in adolescents compared to children and adults when viewing 

emotional compared to neutral facial expressions (Hare et al., 2008; Monk et al., 2003). 

With this in mind, the lack of any significant condition by age group effects for the 

visual P1 and N170 in the current study may be unexpected, although there was a clear 

change in the morphology of visual P1 across age groups, which would be expected (P1 

peak amplitudes were significantly larger in the early adolescent group compared to the 

two older age groups). Therefore, future developmental studies using EEG and 

simultaneous fMRI could better examine the developmental trajectory of threat-

detection and related visual pathways in response to different emotional facial 

expressions by using filtered images that contain either LSF or HSF information. This 

could be further investigated in relation to prefrontal cortical activity. This may have 

implications for our understanding of why we see increases in sensation seeking or risk-
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taking behaviours during early adolescence (Arnett, 1992; Steinberg & Morris, 2001). 

That is, if early adolescents have levels of sensitivity to threat approaching those of late 

adolescents and young adults (Peters & Kemner, 2017), increases in risk-taking 

behaviours may be due more to functions associated with the prefrontal cortex (due in 

part to protracted development of prefrontal cortical areas) rather than any ability to 

detect threat in the environment. This may mean that in addition to peer pressure 

(Gardner & Steinberg, 2005), early adolescents may be more prone to less effective 

regulation resulting in an increases in risk-taking or sensation seeking behaviours when 

compared to adults due to the relative immaturity of the prefrontal lobe (Casey & Jones, 

2010; Hare et al., 2008; Somerville, Jones, & Casey, 2010). Future studies using the 

approach suggested may help to uncover the psychophysiological substrates of threat-

detection and top-down regulation of adolescent behaviour. Another possible reason for 

non-significant age group effects could be that in this study these facial expressions 

were predicted by S1, which is effectively a conditioned stimulus. Subjects would have 

expected the facial expression they saw, which could have attenuated/modulated their 

P1/N170 responses. 

 

2.4.4. Reaction times to emotional facial expressions 

Faster RTs to happy faces relative to neutral faces in the early adolescent group 

is consistent with previous studies showing faster RTs to happy faces relative to fearful, 

calm, and neutral faces (Calvo & Beltrán, 2013; Hare et al., 2008). This was not the 

case for late adolescents or young adults. One possible explanation for this finding in 

early adolescents comes from previous research highlighting a happy face recognition 

advantage over and above other facial expressions (neutral, angry, sad, disgusted, 

surprised and fearful), suggesting that happy facial expressions are identified faster and 

more accurately than others (Calvo & Lundqvist, 2008; Calvo & Beltrán, 2013). For the 
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early adolescent group only, a relatively faster and more accurate identification of 

happy faces may have occurred resulting in faster reaction times in happy trials 

compared to neutral trials or alternatively for early adolescents’ happy faces may have 

preferentially instigated action/approach more than angry and/or neutral faces. 

At first glance, this may seem somewhat at odds with the notion that we 

prioritize threat-related stimuli over and above other types of environmental cues as 

suggested above. However, while attentional capture by threat-related stimuli may 

occur more quickly than the attentional capture by positive or neutral stimuli (happy 

faces or neutral faces), this does not mean that we might predict faster RTs to angry 

faces. This is because it is likely that angry faces may in fact result in slower RTs due to 

a desire to avoid rather than approach such threatening stimuli. Also, it is likely that 

more elaborate and discriminative top-down conscious mechanisms are engaged at later 

stages of visual processing (P2, N2) and that it is at these later stages of visual 

processing that response selection and decision making is more likely to occur (Calvo & 

Beltrán, 2013). This is consistent with research showing that signals of potential reward 

are only attended to after the degree of threat has been evaluated and safety has been 

assured (Calvo & Beltrán, 2013). In other words, approach behaviours are initiated 

when it is safe to do so, and in our experiment, for the early adolescent group only, this 

may have occurred after the conscious recognition and categorization of the facial 

expressions had happened. One possible explanation for why this was significant in the 

early adolescent group but not the two older age groups may be partly explained by 

changes in the structure and function of the adolescent brain that have been linked to 

increased reward seeking behaviours as well as increased emotionality (see Section 

1.3.1). It is possible that early adolescents were more responsive to happy faces relative 

to neutral faces compared to the two older age groups due to greater input from 
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subcortical regions of the brain associated with increased reward seeking behaviours 

and this occurred at later stages of visual processing (Ernst et al., 2005; Galvan, Hare, 

Voss, Glover, & Casey, 2007).  

A related point of interest is that early adolescents made significantly more 

errors during trials than both late adolescents and young adults. The most common 

errors were the inability to suppress responses to S1 (cues) and/or responses made 

immediately prior to S2 onset (faces). This was the case for all of the participants, just 

significantly more so for early adolescents. It is possible that incorrect responses during 

trials may have reflected relatively immature prefrontal connectivity and therefore 

poorer regulation of motor control during early adolescence, as reflected also by the 

trend in attenuated tCNV amplitudes. So, while early adolescents found it more difficult 

to inhibit or suppress incorrect responses during trials, they also responded relatively 

more quickly to happy faces relative to angry and neutral faces compared to late 

adolescents and young adults. This tentatively lends support to the interpretation that in 

this study, early adolescents showed increased reward seeking behaviours as indexed by 

faster RTs to happy faces, possibly reflecting greater input form the ventral striatum, 

coupled with significantly more incorrect responses during trials. Thereby showing 

relative immaturity in prefrontal cortical regions associated with response inhibition and 

impulse control (Casey & Jones, 2010; Hare et al., 2008; Somerville, Jones, & Casey, 

2010) and/or relative immaturity in the motor circuit. So again, relative to late 

adolescents and young adults, the early adolescents may have displayed enhanced 

responsivity to positive salient environmental cues while at the same time lacking the 

appropriate behavioural inhibitory skills needed for making optimal decisions.  
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2.4.5. Study limitations and future directions 

 Several limitations should be considered when interpreting the study findings 

presented here. First, this study lacked sufficient power to allow for the examination of 

sex differences in CNV amplitudes and early visually evoked potentials in the transition 

from early adolescence to young adulthood. Age-related brain changes in structure and 

organization are likely influenced by puberty and sex-specific hormone levels, with 

some brain changes occurring around 1-2 years earlier in females compared to males 

(Lenroot et al., 2007). It is possible that the inclusion of both male and female 

adolescent participants in the same age group (13-15 years of age) may have obscured 

brain developmental differences which may have been present if I had examined gender 

differences, but again sample sizes were relatively small in this study. Although I 

restricted age ranges in each group to two years, this limitation holds true even though I 

recruited the same number male and female participants in each age group. This is 

because the developmental gap between early adolescents and late adolescents may 

have narrowed due to earlier brain maturation in females compared to males in the early 

adolescent group. Replication with a larger sample size would allow for an estimation 

of the influence of pubertal development and gender on motor preparation and action in 

addition to pubertal stages and gender on early visually evoked potentials.  

A further limitation relates to the arousal and/or valence effects of the images 

and the chosen presentation timings of the faces during the experimental paradigm. 

First, due to the large number of images used during the EEG experiment in addition to 

task duration, it was not feasible to ask participants to rate the images for arousal and/or 

valence. Furthermore, because this study involved adolescents aged between thirteen 

and fifteen, I intentionally used relatively mild images. It is of course possible that using 

stronger imagery (thereby eliciting stronger emotional responses) in an adult only group 
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would have resulted in significant condition dependent changes in CNV. Second, the 

presentation of emotional cues during the interval between the predictive cue (S1) and 

the target stimulus (S2) may have been a more effectual approach when investigating the 

effects of emotional stimuli on motor preparation and action. This would avoid the 

necessity and reliance on the strength of association between S1 and S2. Although it was 

originally my intention to conduct such a follow up study, time limitations did not allow 

for this. Additionally, in this study I did not include a no-go condition. Inclusion of a 

no-go condition in future developmental EEG studies using a similar paradigm would 

allow for a better understanding of the developmental trajectories of response inhibition 

to emotionally salient stimuli, particularly during early adolescence.  

In addition, the inclusion of an additional and complimentary alternative analytic 

approach to the analyses of the EEG data may have proved more informative (see 

Section 2.4.2). Time frequency analyses would have allowed for a more in-depth 

investigation of motor preparation, more closely aligned to the underlying 

neurophysiology. For example, a recent study by Li et al. (2018) found that in a pre-cue 

reaction time task, the time coarse of EEG changes in the time domain (CNV) and time-

frequency domain (mu event-related-desynchronization/ERD) were closely aligned but 

showed different topographical features, with the CNV again showing the largest 

voltage change at Cz while the mu ERD presenting mostly in the contralateral sensory 

motor cortex area with respect to left versus right wrist movements during motor 

preparation (C3 and C4 respectively). The authors suggest that these findings show that 

brain activity during motor preparation (mu ERD) has a contralateral feature which may 

be more sensitive indicator of movement intentions. Again, this highlights the fact that 

motor preparation may be multifaceted and suggests that future studies investigating 
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motor preparation and action would benefit by incorporating a more comprehensive 

approach. 

Finally, an important consideration relates to the sample itself. All participants 

were neurotypical and free of any neurodevelopmental or psychological disorder. 

Therefore, it is of course not possible to generalize these findings to groups of 

individuals who may be or have experienced trauma/emotional distress, anhedonia or 

forms of psychopathology or indeed functional movement disorders for example. It may 

be the case that the use of similar paradigms in the future investigating movement 

related potentials in the brain in response to emotional stimuli in such groups of 

individuals may prove to be of interest. For example, Blakemore, Hyland, Hammond-

Tooke, & Anson. (2015) found that in patients with conversion paresis, CNV 

amplitudes were significantly attenuated compared to controls but only when the pre-

cue stimulus indicated the need to use the symptomatic limb. This suggests that 

abnormalities of motor preparation may be involved in conversion disorders. The use of 

EEG paradigms with emotionally salient stimuli to investigate pre-movement-related 

potentials in the brain could be applied to PNES and other functional movement 

disorders before and after psychotherapy or physiotherapy to investigate whether the 

alleviation of motor-related symptoms correlate in any way with preparatory motor 

related activity in the brain as indexed by the CNV or other movement related 

potentials.  

 

2.4.6. Conclusion 

 In conclusion, while the results of the current study are largely consistent with 

previous studies showing developmental differences in task performance (RTs) and 

electrophysiology (ERPs), there were no significant effects of emotion on CNV 

amplitudes during the anticipatory period. In addition, a weak relationship was found 
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between tCNV amplitudes and mean RTs, but only in the neutral condition, suggesting 

that the CNV may not be the best predictor of RT. These findings suggest that while the 

experimental paradigm successfully captured both early and late phase of the CNV, it is 

likely that segregation was maintained between emotional circuits and circuits involved 

in motor preparation and that electrophysiological changes due to emotional influences 

may have occurred during movement instigation after S2 onset not before. Both the 

visual P1 and N170 ERP components were found to be larger in response to angry faces 

relative to neutral faces, suggesting that early non-conscious automated attentional 

capture was facilitated by angry facial expressions over and above neutral facial 

expressions. However, I did not observe any significant age group differences in the 

early visual processing of different emotional facial expression. For the early adolescent 

group only, mean RTs were found to be significantly faster to happy faces relative to 

neutral faces, suggesting that for early adolescents a relatively faster and more accurate 

identification of happy faces may have occurred resulting in faster reaction times in 

happy trials compared to neutral trials. This may have reflected greater input from 

subcortical regions of the brain associated with increased reward-seeking behaviours in 

the early adolescent group. In addition, given that early adolescents made significantly 

more errors during trials than both late adolescents and young adults, it is possible that 

this reflects relatively immature (pre)frontal connectivity and therefore poorer 

regulation of motor control and decision making during early adolescence. 
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Chapter 3. Neuroimaging studies in patients with psychogenic 

non-epileptic seizures: A systematic meta-review 
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Abstract 

Psychogenic Non-epileptic Seizures (PNES) are ‘medically unexplained’ seizure-like 

episodes which superficially resemble epileptic seizures but which are not caused by 

epileptiform discharges in the brain. While many experts see PNES disorder as a 

multifactorial biopsychosocial condition, little is known about the neurobiological 

processes which may predispose, precipitate and/or perpetuate PNES symptomology. 

This systematic meta-review advances our knowledge and understanding of the 

neurobiological correlates of PNES by providing an up-to-date assessment of 

neuroimaging studies performed on individuals with PNES. Although the results 

presented appear inconclusive, they are consistent with an association between 

structural and functional brain abnormalities and PNES. These findings have 

implications for the way in which we think about this “medically unexplained” disorder 

and how we communicate the diagnosis to patients. However, it is also evident that 

neuroimaging studies in this area suffer from a number of significant limitations and 

future larger studies will need to better address these if we are to improve our 

understanding of the neurobiological correlates of predisposition to and/or manifestation 

of PNES. 
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3.1. Introduction 

Psychogenic Non-epileptic Seizures (PNES)1 are episodic functional 

neurological symptoms which superficially resemble epileptic seizures but which are 

not caused by epileptic discharges in the brain (LaFrance, Reuber, & Goldstein, 2013). 

Current medical nosologies class most PNES episodes as a manifestation of 

conversion/somatoform (DSM 5) or dissociative disorder (ICD-10) without providing 

any additional insights into the likely neurobiological underpinnings of the disorder 

(American Psychiatric Association, 2013; World Health Organization, 1992). In fact, 

the traditional dualistic approach to the understanding of functional disorders such as 

PNES has only provided psychoanalytic/psychodynamic perspectives, characterizing 

these disorders as “medically unexplained”, and while a host of studies have provided 

insights into the psychosocial characteristics of PNES (Brown & Reuber, 2016a; 

Reuber, Howlett, Khan, & Grünewald, 2007; Wiseman & Reuber, 2015), the biological 

underpinnings of this disorder have received much less attention.  

This is in spite of the fact that many experts see PNES as a biopsychosocial 

condition (Reuber, Howlett, Khan, & Grünewald, 2007; Reuber, 2009) and that patients 

find it difficult to understand how a physical problem such as a seizure could be caused 

by “purely” psychological processes or emotional problems. As a result, patients often 

feel misunderstood, dismissed and stigmatized when they are presented with a 

psychological model of their disorder (Thompson, Isaac, Rowse, Tooth, & Reuber, 

2009). In fact, patients may reject their PNES diagnosis altogether due to their 

subjectively physical seizure experiences on the one hand and their dualistic concept of 

their condition on the other (Rawlings & Reuber, 2016). One could argue that the 

relative lack of understanding of PNES from a biological perspective does not only 

hinder our understanding but also has significant implications for the way in which 



 128 

diagnosis is communicated to patients (Green, Payne, & Barnitt, 2004). However, over 

the last two decades, researchers have begun to employ novel neuroimaging techniques 

to investigate the neurobiological correlates of PNES. Like other mental health 

conditions which are not categorised as “medically unexplained”, we may now be 

getting closer to providing a neurobiological perspective which may help to improve 

our understanding of how neurobiological changes could play a part in the aetiology and 

maintenance of this disorder.  

Although neuroimaging studies focusing on PNES have been summarised 

previously (Allendorfer & Szaflarski, 2014; Asadi-pooya, 2015; Baslet, 2011; Perez et 

al., 2015; Sundararajan, Tesar, & Jimenez, 2016), most previous reviews were not 

systematic and may have missed important studies in this area. In addition, no previous 

review has sought to uncover convergent neuroimaging findings in patients with PNES 

to better determine the neurobiological correlates of this condition. To that end, this 

systematic meta-review provides an up-to-date synthesis and quantification of both 

structural and functional neuroimaging studies performed on individuals with PNES. 

Having summarised the research in this area, we provide a critical appraisal of each 

methodological approach from which the conclusions where derived. This may better 

inform future research and current theoretical models.  

 

3.2. Method 

3.2.1. Literature search 

 The literature search for this review was closed on the 2nd of May 2017. The 

search terms used to identify relevant publications were 'dissociative seizure*' OR 'non-

epileptic attack disorder' OR 'non-epileptic seizure*' OR 'psychogenic non-epileptic 

seizure*' OR 'conversion seizure*' OR 'pseudoseizure*', AND ‘MRI’ OR ‘fMRI’ OR 



 129 

‘imaging’ OR ‘neuroimaging’ in the Web of Science core collection (1960 – May 2017; 

189), ovid Medline (1960 to May 2017; 209), and Psychinfo (1960 to May Week 1 

2017; 392). Our initial literature search identified a total of 790 publications. After a 

multistage selection process 17 empirical publications were retained and form the basis 

of this review (see Figure 3.1). 

 

 

Figure 3.1. PRISMA flow diagram showing results of the multistage search process 
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3.2.2. Quality assessment of studies 

Due to the absence of a suitable rating system specific to studies in this area, a 

bespoke rating system was employed. This rating system is similar to one used recently 

by Brown and Reuber (2016a) and was adapted with neuroimaging of patients with 

PNES specifically in mind. The ratings are based on the proportion of “yes” responses 

to the following criteria; 1) video-EEG confirmed PNES diagnosis; 2) comparison 

groups matched for age and gender; 3) patients with mixed diagnosis (PNES plus 

epilepsy) excluded from the PNES group. If not, was this group compared to a PNES 

group free of a mixed diagnosis (PNES with no epilepsy); 4) co-existing psychiatric 

conditions excluded from the PNES group; 5) other central nervous system pathologies 

excluded from the PNES group; 6) other functional neurological disorders excluded 

from the PNES group; 7) effects of medication controlled for; 8) image acquisition and 

analysis discussed in sufficient detail to allow for study replication. The final item 

relates to sample size. Studies with group sizes ≥ 50 were rated as good, studies with 

group sizes between16 and 49 were rated as moderate, and studies with group sizes ≤ 15 

received a poor rating.  

The overall rating was based on the summation of “yes” responses to items 1 – 8 

in addition to weighted scores for sample size. Each item was assigned a score of 0.1 for 

yes and 0.0 for no, with the exception of sample size (item 9) which was given the score 

of 0.0 for poor, 0.1 for moderate and 0.2 for good. Therefore, the highest possible rating 

was 1.0. In addition, studies that reported on the prevalence of brain abnormalities in 

PNES groups relating to lesions, tumours, evidence of stroke, cysts etcetera were given 

a score of 0.1 for item 5 (other central nervous system pathologies excluded from the 

PNES group). It was not deemed appropriate to mark these down when the presence of 

neurological/CNS pathologies was the primary focus of these studies. In cases in which 
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it was unclear whether or not a study met any of the items described above or where 

only some of the participants but not all met these criteria, a score of 0.0 was allocated. 

These ratings were then used to assess the overall quality of the respective research 

methodology from which the conclusions were derived. Studies with ratings ≥ 0.8 

(based on yes item response, score of 0.8 out of 1.0) were rated as high quality. Studies 

with ratings between 0.5 – 0.7 were rated as moderate and those with ratings between 

0.2 – 0.4 were rated as poor. 

 

3.2.3. Meta-analyses 

Nine of the seventeen studies included in this review were eligible for inclusion 

in our meta-analysis (Table 3.1). Given that a number of different neuroimaging 

approaches were used and in order to identify which brain regions were most 

consistently implicated in PNES across these studies, we conducted a coordinate-based 

Activation Likelihood Estimation (ALE) meta-analysis using GingerAle 2.3.6 (Eickhoff 

et al., 2009; Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012; Turkeltaub et al., 2012).   

This method is capable of integrating findings from multiple imaging modalities 

and to identify converging brain areas across different experiments/different contrasts 

and statistically determines whether the convergent brain areas or clusters reported are 

greater than expected by chance. It is important to note here that this method does not 

ask any questions about effect sizes but rather is primarily concerned with the spatial 

location of results. This procedure uses the follwing steps. First, a text file is created in 

which groups of coordinates or foci are listed under the heading of the respective study 

which also needs to include the number of subjects in the study. Based on this list of 

coordinates, GingerALE creates Modelled Activation (MA) maps by entering the 

reported cooridinates (x, y and z maxima) into a 3D image for each group of foci 

(coordinates), i.e., creates MA maps for each study individually. These foci are assigned 
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a value of 1 and everything else is assigned a value of 0. Because the maxima often 

reported in studies (coordinates with maximumn statistic value from voxel or vertex) 

have spatial uncertainty, in the ALE procedure, the reported coordinates (those assigned 

a value of 1) are modeled using a three-dimensional Gaussian probability distribution, 

the width of which is determined from the number of subjects in the respective study. 

Foci derived from studies with smaller samples are subjected to a greater degree of 

spatial blurring to lessen their impact on localisation in the meta-analysis (Eickhoff et 

al., 2009). Second, each study MA map is then combined (pooled) into a single 

common ALE-map by taking the union of probabilities (the ALE value for each voxel 

in the ALE-map is the result of taking the MA-values over the number of studies 

entered into the meta-analysis). The resulting ALE-map can then be thresholded under 

the null distribution, i.e. that foci are randomly spread throughout the brain. This is done 

by calculating all possible ALE values that can be obtained by making all possible 

combinations of voxels in the MA maps. The resulting ALE values can then be used to 

create histograms  which can then be devided by the total number of voxels in a MA 

map to create a table of probablilities of finding each voxel in the MA map. Combining 

the probabilities results in a table of p values for ALE scores. The ALE image and the 

table of p values are then used to create a 3D p value image. In the final step of this 

procedure, the 3D p value image can then be subjected to multiple comparison 

correction by using either voxelwise (uncorrected values, False Discovery Rate FDR or 

Family Wise Error FWE), or alternatively by conducting multiple comparison 

correction on the cluster-level. The cluster-level inference corrected threshold sets the 

minimum cluster-level volume so that only a certain precentage (5% for example) of the 

simulated data’s clusters exceed the specified size (brainmap.org). Anatomical labels of 

the resulting clusters are provided by Talairch Daemon (Talairach.org).  
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For the current meta-analyses, all available coordinates were transformed from 

MNI space to Talairach space using icbm2tal transform (Laird et al., 2010; Lancaster et 

al., 2007) provided by brainmap.org (Eickhoff, 2014). Given that this was an 

exploratory analysis, and as noted by Eickhoff, Bzdok, Laird, Kurth, & Fox (2012), 

both uncorrected p values and FDR corrected thresholds are not always optimal, we 

opted for a less conservative correction by implementing cluster-level inference. This 

threshold algorithm uses a “cluster-forming threshold” with an uncorrected p value of 

0.001 as the cluster-forming threshold with a cluster-level inference of 0.05 with 1000 

permutations, as recommended by brainmap.org. Mango (v 4.0) (rii.uthscsa.edu/mango) 

was used to view the threshold maps and the ALE results were superimposed on the 

high-resolution standard anatomical brain image provided by brainmap.org 

(Colin_tlrc.nii).  

 Given that all of the imaging studies entered into our meta-analysis involved 

group comparisons, we summed the number of PNES patients and the number of 

participants in the comparison groups to quantify the number of participants in each 

study. Where studies came from the same research group and used the same participants 

(Ding et al., 2014; Li et al., 2014, 2015) we subsumed these participants into a single 

group of coordinate results in order to avoid any overestimation of these participants in 

the results. Three different meta-analyses were conducted. The first analysis combined 

both structural and functional findings from all nine studies. The second analyses 

focused solely on studies reporting functional connectivity patterns in PNES patients 

compared to healthy controls. The third and final analysis focused solely on imaging 

studies reporting structural brain differences between PNES patients and controls. All 

reported foci (MNI or Talairach coordinates) from these publications entered the ALE 

analysis. In the results, brain areas within +/- 5mm3 of any significant cluster above the 
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corrected p value threshold are also reported. See Appendix 37 for a description of the 

procedure used for this ALE meta-analyses.  

 

3.3. Results/Discussion 

The results of this review have been divided into three sections. The first section 

describes the results of the quality assessment. The second section is sub-divided into 

the different neuroimaging modalities used in which limitations are discussed and future 

directions proposed. The third section outlines the results of the meta-analyses. 

 

3.3.1. Quality assessment results and imaging methods 

Of the seventeen studies assessed, none were rated as high quality, fourteen 

were of moderate quality, and three were rated as poor. Eleven (65%) were case control 

studies and six (35%) adopted a retrospective methodology. Sample sizes were 

considered good in three (17.6%), moderate in nine (53%) and poor in five studies 

(29.4%). All studies included both male and female participants, all over the age of 16. 

Across all seventeen studies the median total sample size was 38 (range 13 - 256, mean 

66). The total number of participants was 1004. In total, the studies included 402 

patients with PNES (range 8 - 79, mean 29, median 17). Sample sizes and groups 

characteristics for each of the seventeen studies are shown in Table 3.1. Results of the 

rating system are presented in Table 3.2.  Table 3.3 summarizes findings and limitations 

separately for each imaging modality.   
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Table 3.1. Sample size and group characteristics. 

Study PNES ES Healthy 

controls 

PNES + 

ES 

ES + 

Psych 

Non-

diagnostic 

IED Total 

sample 

Semiology features (PNES) 

Arthuis et al. (2015)* 16 - 16 - - - - 32 

dystonic attacks with primary gestural activity, paucikinetic attacks with preserved 

responsiveness, pseudosyncope 

Bolen et al. (2016) 68 111 - 19 - 32 26 256 major convulsions, tremors, unresponsiveness, subjective. 

Devinsky et al. (2001) 79 51 - - 71 - - 201 motor events (seizures), weakness 

Ding et al. (2013) 17 - 20 - - - - 37 hypermotor movements of extremities, trembling, trembling of the extremities 

Ding et al. (2014)* 18 - 20 - - - - 38 hypermotor movements of extremities, trembling, trembling of the extremities 

Ettinger et al. (1998) 11 11 - - - - - 22 Impaired consciousness 

Hernando et al. 2015) 8 - 8 - - - - 16 
major motor events, minor motor events (waxy flexibility), electric feeling back of 
head followed by inability to talk or move (subjective event) 

Labate et al. (2012)* 20 - 40 - - - - 60 

convulsive components (tonic-like, clonic-like or bizarre motor manifestations), no 

non-motor events such as paralysis, sensory feelings or unresponsiveness 

Lee et al. (2015)* 16 - 16 - - - - 32 major motor, minor motor, waxy flexibility, subjective events 

Li, R et al. (2014)* 18 - 20 - - - - 38 hypermotor movements of extremities, trembling, trembling of the extremities 

Li, R et al. (2015)* 18 - 20 - - - - 38 hypermotor movements of extremities, trembling, trembling of the extremities 

Neiman et al. (2009) 13 - - - - - - 13 

major motor events, minor motor events, unresponsiveness, dystonic posturing, 

subjective experiences, pelvic trusting, back arching, weakness, head turning 

Reuber et al. (2002) 74 - - 95 - - - 169 convulsive components (tonic-clonic-like, tonic-like), flaccid, sensory 

Ristić et al. (2015)* 37 - 37 - - - - 74 

dialeptic-like-loss  of consciousness without motor symptoms, astatic-like-loss of 

consciousness and muscle tone with fall, motor-different phenomenon, and multiple 

van der Kruijs et al. (2012)* 11 - 12 - - - - 23 major motor events, unresponsiveness 

van der Kruijs et al. (2014)* 21 - 27 - - - - 48 major motor events, unresponsiveness without motor events 

Varma et al. (1996) 10 10 - - - - - 20 alterations in consciousness, bilateral motor phenomena 

PNES = psychogenic non-epileptic seizures; ES = epilepsy; Psych = psychiatric disorder; IED = interictal epileptiform discharges; * = indicates studies included in meta-analysis 
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Table 3.2. Results of the rating system. 
Study Video- 

EEG 

confirmed 

Matched 

controls 

Epilepsy 

excluded 

Psych 

excluded 

Other 

CNS 

excluded 

Other 

FND 

excluded 

Medication 

accounted 

for 

Imaging  

acquisition 

& analysis 

Sample 

size 

Score  

out of 

1 

Overall rating 

 

Arthuis et al. (2015) Yes Yes Yes Yes Yes No No Yes Moderate 0.7 Moderate 

Bolen et al. (2016) Yes No Yes No 

 

N/A No No Yes Good 0.6 Moderate 
 

Devinsky et al. (2001) Yes No Yes No 

 

N/A No No No Good 0.5 Moderate 

Ding et al. (2013) Yes No Yes Yes Yes No 
 
Yes Yes Moderate 0.7 Moderate 

Ding et al. (2014) Yes No Yes Yes Yes No Yes Yes Moderate 0.7 Moderate 

Ettinger et al. (1998) Yes No Yes No No No Yes Yes Poor 0.4 Poor 

Hernando et al. 2015) Yes Yes Yes No No No No Yes Poor 0.4 Poor 

Labate et al. (2012) Yes Yes Yes No Yes No 

 

Yes Yes Moderate 0.7 Moderate 

Lee et al. (2015) Yes Yes Yes No Yes No 

 

No Yes Moderate 0.6 Moderate 

Li, R et al. (2014) Yes No Yes Yes Yes No 

 
Yes Yes Moderate 0.7 Moderate 

Li, R et al. (2015) Yes No Yes Yes Yes No 

 

Yes Yes Moderate 0.7 Moderate 

Neiman et al. (2009) Yes No Yes No No No 
 
No Yes Poor 0.3 Poor 

Reuber et al. (2002) Yes No Yes No 

 

N/A No Yes Yes Good 0.7 Moderate 

Ristić et al. (2015) Yes No Yes No Yes No Yes Yes Moderate 0.6 Moderate 

van der Kruijs et al. (2012) Not all No Yes Yes Yes No Yes Yes Poor 0.5 Moderate 

van der Kruijs et al. (2014) Not all No Yes Yes Yes No Yes Yes Moderate 0.6 Moderate 

Varma et al. (1996) Yes Yes Yes No Yes No No Yes Poor 0.5 Moderate 

            

Psych = psychiatric conditions; CNS = central nervous system; FND = functional neurological disorders 
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Table 3.3. Neuroimaging studies of PNES and summary of results. 

 

 

 

 

Study Design Imaging 

 

Results/brain regions Limitations 

Arthuis et al. (2015) Retrospective FDG-PET 

 

PNES hypometabolism 

in RT IFG/central and 

bilateral ACC > HCs ( p 

< 0.001 ) 

Retrospective, small sample 

size, PTSD/anxiety not 

controlled for, did not measure 

dissociative traits, no 

psychiatric group  

 

Bolen et al. (2016) 

 

Retrospective 

 

sMRI 

 

PNES increased MF 

abnormalities > ES ( p < 

0.018; ); PNES 

decreased TL 

abnormalities > ES ( p < 

0.003 ) 

 

Retrospective, no HCs, no 

psychiatric controls 

Devinsky et al. (2001) Retrospective sMRI, CT, EEG PNES predominance of 

RT hemisphere 

abnormalities (85%) > 

combined epilepsy 

groups (78%;  p < 0.02) 

Retrospective, no HCs , no 

account for the effects of 

anticonvulsants and/or 

psychiatric medications 

 

Ding et al. (2013) 

 

Case control 

 

rsfMRI, DTI 

 

PNES decreased of 

coupling strength 

between FC – SC > HCs 

( p < 0.0006 ) 

 

Small sample size, no 

psychiatric group 

Ding et al. (2014) Case control fMRI PNES increased SRFC in 

LT MFG, SFG, ACC, 

SMA, and bilateral 

MCC; SRFC decreased 

in RT MOG > HCs (p < 

0.05 ); PNES increased 

LRFC in bilateral CF, 

LG, SMA, and RT STG, 

insula, pre- and post- 

CG, left PL; PNES 

decreased LRFC in RT 

MPFC, MFG, IFG , 

SFG, SMG, and IPG > 

HCs ( p < 0.05 ) 

Small sample size, weak 

correction for multiple 

comparisons (AlphaSim 

program), correlations between 

illness duration and altered 

FCD were not corrected for 

multiple comparisons, no 

psychiatric group 

Ettinger et al. (1998) Case control SPECT, interictal, 

postictal 

PNES abnormal SPECT 

interictal (27%), postictal 

(27%) all hypoperfusion 

> ES abnormal SPECT 

interictal (36%), postictal 

(64%), 6 hypoperfusion, 

1 hyperperfusion; 

postictal vs interictal 

SPECT PNES vs ES (p < 

0.12) 

Small sample size, no HCs, 

psychiatric conditions not 

controlled for, abnormal sMRI 

in 2 PNES cases 

Hernando et al. (2015) Case control DTI PNES greater No. UF 

streamlines in RT 

hemisphere > HCs ( p < 

0.021 ); UF asymmetry 

significantly correlated 

with age at illness onset ( 

p < 0.0045 ) 

Small sample size, may have 

incorporated other fibers 

associated with other pathways 

other than UF, did not include 

all of the UF due to the 

technical limitations, mostly 

female sample (87%), 2 

different scanners used 

Labate et al. (2012) Case control sMRI, CTH, VBM  PNES VBM GM 

reductions in bilateral 

cerebellum, RT 

precentral gyrus, MFG, 

ACC and SMA > HCs ( 

p < 0.05 ); PNES CTH 

reductions in RT 

precentral gyrus, SFG, 

precuneus, PL > HCs ( p 

< 0.05 ) 

Small sample size, no 

psychiatric group 
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Table 3.3. (continued) 

 

 

 

 

 
 

 

 

 

 

Study 

 

Design 

 

Imaging 

 

Results/brain regions 

 

Limitations 

Lee et al. (2015) Retrospective DTI PNES increased 

connectivity LT 

hemisphere, internal and 

external capsules, carona 

radiata, UF and STG > 

HCs ( p < 0.05 ) 

Small sample size, 

retrospective, 2 different 

scanners used, no psychiatric 

group 

Li et al. (2014) Case control rsfMRI PNES increased FC 

between insular 

subregions and LT SPG, 

putamen, postcentral 

gyrus, RT LG and 

bilateral SMA > HCs ( p 

< 0.05 ) 

Small sample size, no 

psychiatric group 

Li et al. (2015) Case control rsfMRI PNES increased fALFF 

in LT SFG, precuneus, 

PL, SMA and RT 

postcentral gyrus and 

decreased fALFF in LT 

IFG > HCs ( p < 0.05 ); 

PNES increased FC in 

precuneus, ACC, MCC, 

postcentral gyrus, frontal 

and parietal cortices, and 

decreased FC in MFG > 

HCs ( p < 0.05 ) 

Small sample size, weak 

correction for multiple 

comparisons (AlphaSIm 

program). No sig, correlations 

between fALFF and FC, no 

psychiatric group 

Neiman et al. (2009) Retrospective SPECT, SISOM PNES abnormal 

SISCOM (15%) in LT 

insula, RT insula, RT 

frontal regions, all 

hyperperfusion 

Small sample size, no HCs, 

retrospective, high levels of 

psychiatric comorbidity in 

PNES sample, semiology 

consistent with partial seizures 

in 9/13 PNES patients, 

abnormal sMRI in 5/13 PNES 

patients, abnormal interictal 

EEG in 5/13 PNES patients 

Reuber et al. (2002) Retrospective sMRI, EEG PNES brain 

abnormalities  (27%) > 

PNES plus ES (77.9%) ( 

p < 0.001 ); PNES No 

sig. diff. in lateralization 

> HCs 

Retrospective, no HCs, no 

psychiatric group 

Ristić et al. (2015) Case control sMRI, CTH PNES CTH increases in 

LT insula, MOF, LOF, 

and RT MOF > HCs ( p 

< 0.001 ); PNES CTH 

decreased in RT 

precentral, enthorinal, 

LOC and LT precentral 

gyrus > HCs ( p < 0.001 

) 

No psychiatric group  

van der Kruijs et al. 

(2012) 

Case control 

 

rsfMRI, event-related 

fMRI 
PNES increased FC in 

insular subregions, CS, 

PCC and ACC, POF > 

HCs; No sig. diff. for 

activation patterns to 

fMRI tasks; PNES 

increased dissociation 

scores > HCs ( p < 0.05 ) 

Small sample size, no 

psychiatric group 
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Table 3.3. (continued) 

ACC = anterior cingulate cortex; CF = calcarine fissure; CG = central gyrus; CS = central sulcus; CT = computational tomography; CTH = 
cortical thickness; DMN = default mode network; DTI = diffusion tensor imaging; EC = executive control; EEG = electroencephalography; 

ES = epilepsy; fALFF = fractional amplitude low-frequency fluctuations; FC = functional connectivity; FDG-PET = fluorodeoxyglucose – 

positron emission tomography; fMRI = functional magnetic resonance imaging; F-P = fronto-parietal; GM = gray matter; HCs = healthy 

controls; HMPAO = hexamethyl propylene amine oxime; IFG = inferior frontal gyrus; IPG = inferior parietal gyrus; LG = lingual gyrus; 

LOC  = lateral occipital cortex; LOF = lateral orbitofrontal; LRFC = long range functional connectivity; LT = left; MCC = middle cingulate 

cortex; MF = multifocal; MFG = middle frontal gyrus; MOF = medial orbitofrontal; MOG = middle occipital gyrus; MPFC = medial 

prefrontal cortex; OFC = orbitofrontal cortex; PCC = posterior cingulate cortex; PL = paracentral lobule; PNES = psychogenic nonepileptic 

seizures; POF = parietal occipital fissure; PTSD = post-traumatic stress disorder; rsfMRI = resting state functional magnetic resonance 
imaging; RSN = resting state network; RT = right; SC = structural connectivity; SFG = superior frontal gyrus; SISCOM = subtraction ictal 

SPECT coregistered to MRI; SMA = supplementary motor area; SMG = superior marginal gyrus; sMRI = structural magnetic resonance 

imaging; SPECT = single photon emission computed tomography; SPL = superior parietal lobe; SRFC = short range functional connectivity; 

STG = superior temporal gyrus; SPG = superior parietal gyrus; TL = temporal lobe; UF = uncinate fasciculus; VBM = voxel based 

morphology 

 

3.3.2. Structural magnetic resonance imaging  

3.3.2.1 Pathological brain changes in patients with PNES 

Initial information about possible brain changes associated with PNES can be 

extracted from studies in which visual inspection of structural MRI was used to look for 

potentially pathological brain abnormalities. Indeed, several researchers have identified 

brain abnormalities such as tumours, cysts, aneurysms, evidence of stroke, white matter 

lesions, hippocampal sclerosis, venous angioma, and general atrophy in PNES patients 

with or without epilepsy. The studies described below noted such findings in 

considerably more patients with PNES than expected in healthy volunteers in whom 

such findings are identified in 4.8% to 13.6% of cases (Katzman, Dagher, & Patronas, 

1999; Vernooij et al., 2007). 

 

Study 

 

Design 

 

Imaging 

 

Results/brain regions 

 

Limitations 

van der Kruijs et al. 

(2014) 

Case control rsfMRI PNES increased 

coactivation of OFC, 

insular and subcallosal 

cortex in F-P RSN; 

cingulate and insular 

cortex in EC RSN; 

cingulate gyrus, SPL, 

pre- and post CG and 

SMA in sensorimotor 

RSN; precuneus, (para-) 

cingulate gyri in DMN 

RSN ( p < 0.05 ); PNES 

decreased coactivation 

OFC in EC RSN; 

precuneus in 

sensorimotor RSN > 

HCs ( p < 0.05 ) 

Small sample size, no 

psychiatric group 

Varma et al. (1996) Case control SPECT, HMPAO PNES abnormal SPECT 

(30%) hypoperfusion in 

bifrontal, LT F-P, RT 

middle temporal region > 

ES abnormal SPECT 

hypoperfusion (80%) 

Small sample size,  no HCs, 

high levels of psychiatric 

comorbidity in PNES sample 
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  Based on an initial sample of 311 patients with a diagnosis of PNES with or 

without epilepsy, Devinsky, Mesad, & Alper (2001) documented cerebral structural or 

electroencephalographic abnormalities in roughly 25.4% of these patients (n = 79). Of 

these, 76% demonstrated unilateral abnormalities (n = 60) of which 85% were structural 

(MRI, CT). When comparing this group of PNES patients to a comparison group with 

epilepsy without PNES (n = 102), Devinsky, Mesad, & Alper (2001) found significantly 

more right-sided abnormalities in the PNES group (71%) compared to the epilepsy 

group without PNES (46.5%). While Reuber, Fernandez, Helmstaedter, Qurishi, & 

Elger (2002) also found evidence of brain disease in PNES only patients (27%) 

compared to patients with PNES plus epilepsy (78%), in contrast to Devinsky, Mesad, 

& Alper (2001), Reuber, Fernandez, Helmstaedter, Qurishi, & Elger (2002) observed no 

significant difference in lateralization between PNES only patients and patients with 

PNES plus epilepsy and both groups showed abnormalities in frontal (PNES only = 5%; 

PNES plus epilepsy = 18.9%) as well as temporal brain regions (PNES only = 40%; 

PNES plus epilepsy = 54.1%).  A more recent study by Bolen, Koontz, & Pritchard 

(2016) reported similar prevalence rates, with 33.8% of patients with PNES only 

compared to 57.7% of patients with epilepsy showing structural brain abnormalities. 

They also noted significantly more multifocal abnormalities in frontal, temporal, 

parietal, occipital, cerebellar and brainstem brain regions in the PNES only patients 

(47.8%) compared to the epilepsy group (21.9%), in which significantly more temporal 

abnormalities were detected for those with epilepsy only (57.8% vs 21.7%).  

While all of the authors of these studies suggest that these findings point to a 

plausible mechanism through which non-epileptic seizures might occur due to 

pathological brain changes, all three studies have a number of significant limitations. 

Firstly, these studies were retrospective, and therefore it is unclear whether the observed 
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brain abnormalities occurred before or after PNES onset and therefore predisposition or 

consequence cannot be determined. Furthermore, because all three studies lacked 

healthy control subjects, the authors have to draw on other studies demonstrating that 

the prevalence of brain abnormalities in the general population is lower than that found 

in their respective PNES groups and therefore the frequency of markers of physical 

brain disease for these studies remains unclear. Additionally, all of these studies were 

undertaken in well characterised but also particularly disabled patient populations at 

specialist centres. This may have introduced a certain degree of selection bias which 

may have resulted in a higher prevalence rate of brain abnormalities as measured by 

MRI or CT than might be expected in the wider PNES patient population.  

Secondly, given the high levels of psychiatric comorbidity in patients with 

PNES (Diprose, Sundram, & Menkes, 2016), it is impossible to infer that these brain 

abnormalities are specifically associated with this seizure disorder and not other co-

existing psychopathologies. While Bolen, Koontz, & Pritchard (2016) suggest that the 

significant trend towards multifocal abnormalities in their PNES sample may be directly 

related to the underlying co-existing psychopathology, this is not clear because 

instances of concurrent psychopathology was not reported in their sample. In addition, 

there may also be other psychological reasons why an individual with structural brain 

abnormalities may develop PNES and this again is unclear. Thirdly, the hypothesis put 

forward by Devinsky, Mesad, & Alper (2001) that the prevalence of right-sided 

abnormalities might facilitate conversion due to non-dominant hemispheric injury or 

damage is not supported by either Reuber, Fernandez, Helmstaedter, Qurishi, & Elger 

(2002) nor Bolen, Koontz, & Pritchard (2016). In addition, it is unclear how the 

emotion dysregulation hypothesis that they put forward for PNES is directly associated 

with seizure like episodes because emotional processing was not directly measured in 
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their study. Rather, the lack of clear hemispheric dominance or lobar preponderance 

emanating from these studies supports the notion of a heterogeneous aetiology and 

phenomenology of PNES. 

While the three studies described above observed pathological brain 

abnormalities in a proportion of patients with PNES, the majority of patients with 

PNES, on visual inspection, do not appear to show any evidence of brain disease or 

injury. One way to look for differences at the morphological level not apparent on 

visual inspection of individual scans, is to use computer-aided analysis of structural 

brain imaging using T1-weighted volumetric MRI scans of the brain. This method 

allows for the non-invasive quantification of different anatomical features of the brain 

in terms of shape, volume and density. In contrast to individual or even group level 

visual inspection of MRI scans or manual measurement of structures of interest, 

morphometric brain measurements are largely automated and allow for larger scale un-

biased group comparisons.   

Two common brain morphometry techniques are voxel based morphometry 

(VBM) and surface-based morphometry. VBM essentially performs statistical tests on 

all of the voxels in the T1-weighted MRI image and can be used to measures overall 

gray matter and white matter volume as well as increases/decreases in cerebral spinal 

fluid (Ashburner & Friston, 2000; Whitwell, 2009). Surface-based morphometry is a 

technique in which, once the brain is segmented, the boundary between different classes 

of tissue can be reconstructed as a surface on which morphometric analysis can proceed, 

for example cortical thickness, cortical surface area and cortical folding patterns (Fischl 

& Dale, 2000). 
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3.3.2.2 Morphological brain changes in patients with PNES 

To date only two morphological studies have examined structural brain changes 

in individuals with PNES compared to healthy controls. Labate and colleagues (2012) 

combined two approaches, VBM and surface-based morphometry. VBM analysis 

revealed significant gray matter volume reductions in the cerebellum (bilateral), the 

right precentral gyrus, right middle frontal gyrus, right anterior cingulate cortex, and 

right supplementary motor area in PNES patients (n = 20) compared to age and gender 

matched healthy controls (n = 40). Cortical thickness analysis results revealed cortical 

thinning in the right precentral gyrus, right superior frontal gyrus, right precuneus and 

right paracentral gyrus in PNES patients compared to the matched healthy controls. 

Additional analyses revealed negative correlations between depression scores and 

atrophy involving the right dorsal premotor cortex, the right paracentral gyrus, the right 

superior frontal gyrus and right orbitofrontal sulcus thickness, as well as negative 

correlations between dissociation scores and atrophy in the left inferior frontal gyrus 

(pars opercularis) and the left central sulcus in patients with PNES. 

The findings from a second surface-based morphometric study by Ristić et al 

(2015) differ somewhat from those reported by Labate et al (2012). In this study Ristić 

et al (2015) found that compared to healthy controls (n = 37), patients with PNES (n = 

37) showed increases in cortical thickness in the left insula, left and right medial 

orbitofrontal and left orbitofrontal regions, as well as decreases in cortical thickness in 

the right precentral gyrus, right entorhinal, right lateral occipital and left precentral 

areas. In addition, they also noted increased sulcal depth in the left and right insular 

sulci, right rostral anterior cingulate, right posterior cingulate, and left cuneus, and 

reduced sulcal depth in the right and left medial orbito-frontal sulci in patients with 

PNES compared to controls. Correlational analysis between cortical thickness results 
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and clinical features revealed weak to moderate negative correlations between the left 

insula thickness and disease onset (r = -0.37), the left precentral thickness and illness 

duration (r =  -0.34), and a weak to moderate positive correlation between the right 

enthorinal thickness and disease onset (r =  0.37). However, no other significant 

correlations were found for history of abuse, a stressful event identified as a trigger, 

seizure frequency, semiology, or number of antiepileptic drugs (AEDs) taken. 

While both studies report cortical thickness decreases in patients with PNES, the 

results of these two studies also differ, with one reporting cortical thickness decreases 

only in the right hemisphere (Labate et al., 2012) and the other reporting bilateral 

cortical thickness decreases as well as cortical thickness increases in limbic and 

orbitofrontal regions (Ristić et al., 2015). While this may reflect differences in patient 

selection and sample size, differences between the two sets of results may be best 

interpreted as again reflecting the heterogeneous nature of this condition. Moreover, 

while both studies suggest that there is an association between emotion dysregulation 

linked to dissociative experiences (Ristić et al., 2015), or “psychogenic causation” due 

to trauma (Labate et al., 2012), this is not scientifically valid as neither study used other 

physiological or self-report measures to assess emotion regulatory abilities. Moreover, 

changes in brain morphometry may also occur for reasons other than pathology 

(Draganski et al., 2006; Zatorre, Fields, & Johansen-Berg, 2012). 

 

3.3.2.3. Structural connectivity in patients with PNES – Diffusion tensor imaging 

Another way to look at structural brain changes more closely associated with 

brain function is by looking at the strength and integrity of connections between 

different parts of the brain (how the brain is wired). One technique that has 

revolutionized our ability to examine structural connectivity between different brain 

regions is diffusion tensor imaging (DTI). DTI is an in vivo non-invasive technique 
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used to examine cerebral white matter fibre bundles or tracts that facilitate inter-

regional neural communication.  

Hernando, Szaflarski, Ver Hoef, Lee, & Allendorfer (2015) used DTI indices 

including fractional anisotropy and diffusion tensor tractography to examine the white 

matter structural connectivity of the uncinate fasciculus in PNES patients (n = 8) and 

age and gender matched healthy controls (n = 8). The uncinate fasciculus is a prominent 

tract for connecting medial prefrontal regions with limbic areas which include the 

amygdala and hippocampus (Ebeling & von Cramon, 1992; Seminowicz et al., 2004), 

which play key roles in emotion and memory processes (Schmahmann, Smith, Eichler, 

& Filley, 2008). They found a significantly greater number of uncinate fasciculus 

streamlines (visual and statistical representation of white matter tracts) in the right 

hemisphere when compared to the left hemisphere in patients with PNES and these 

differences were not evident in the healthy controls. This pattern of connectivity 

suggests that individuals with PNES may have a stronger connection between prefrontal 

regions and limbic regions in the right hemisphere compared to the left hemisphere, and 

like Devisky et al (2001), Hernando, Szaflarski, Ver Hoef, Lee, & Allendorfer (2015) 

suggest that this rightward asymmetry may have detrimental effects on emotion 

regulation. However, another DTI study by Lee et al (2015) using fractional anisotropy 

(FA) and mean diffusivity to measure differences in white matter tracts in the whole-

brain between PNES patients (n = 16) and age and gender matched healthy controls (n = 

16) found increased connectivity in the uncinate fasciculus and superior temporal gyrus 

in the left hemispheric areas, not the right, in addition to the corona radiata and internal 

and external capsule associated with motor function. Notably, the authors found no 

significant differences between average FA in regions with increased FA and clinical 

measures including event frequency and duration of illness.  
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Taken together, these findings are again somewhat contradictory with one study 

reporting right hemisphere differences (Hernando, Szaflarski, Ver Hoef, Lee, & 

Allendorfer, 2015) and the other left hemisphere differences between PNES patients 

and healthy controls (Lee et al., 2015). While both DTI studies propose that non-

epileptic seizures may be associated with changes or abnormalities in white matter 

tracts such as the uncinate fasciculus, and that greater structural connectivity between 

prefrontal regions and limbic regions may predispose individuals to PNES through 

emotion dysregulation, this conclusion is highly overstated as neither study empirically 

tested this hypothesis. Additionally, it is not clear from either study how such a 

hypothesis easily translates to brain function in so far as it could be argued that greater 

connectivity of the uncinate fasciculus may in fact strengthen the ability to 

downregulate emotional responses rather than cause emotion dysregulation. 

Furthermore, given the complexity of structural connectivity of white matter and the 

vast number of subcortical brain connections, it is very possible that other fibre tracts 

involved in other pathways and therefore function were also included, an important 

limitation recognised by both study reports. 

In summary, while all of the structural MRI studies reviewed in this section lend 

support for the view that structural brain changes may be present in patients with PNES, 

a number of limitations are also evident in addition to the heterogeneity of the results. 

Therefore, these results may be incidental and related to a third factor independently 

associated with PNES, such as a history of trauma, neglect in early life or concurrent 

psychopathology. Future studies should better attempt to account for these confounds 

by describing psychopathology in greater detail alongside personal history and 

personality characteristics so that the effects of different manifestations of 

psychopathology can be better aligned to the imaging results. It would also be helpful if 
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future studies recruited control groups with certain types of psychopathology or 

different levels of trauma exposure. This necessarily implies that future studies will 

need to be much larger so that clinically different subpopulations do not have to be 

analysed together which may cancel out significant findings. 

 

3.3.3. Brain activation patterns and resting state networks in patients with PNES 

In the previous section it was hypothesised that structural brain changes may 

have adverse effects on brain function, potentially contributing to phenomena such as 

seizure like episodes. One way to investigate links between brain function and PNES is 

to use imaging modalities which assess real time functional brain activity in individuals 

with non-epileptic seizures. 

 

3.3.3.1. Positron emission tomography 

Arthuis, Micoulaud-Franchi, Bartolomei, McGonigal, & Guedj (2015) used 

interictal 18FDG - PET to examine resting state brain metabolic alterations in PNES 

patients. 18FDG or fludeoxyglucose F18 is a radiopharmaceutical used in PET to assess 

tissue uptake of glucose, and can provide an indirect measure of brain metabolic 

function/ activation. Compared to healthy controls (n = 16), PNES patients (n = 16) 

showed significant hypometabolism (lower glucose uptake) in two specific brain areas, 

namely the right inferior parietal/central brain region and bilateral anterior cingulate. No 

significant differences in hypermetabolism was observed in patients with PNES 

compared to healthy controls. The authors further examined how metabolic activity in 

these two clusters was associated with metabolic activity across the whole brain in both 

PNES patients and healthy controls.  Compared to healthy controls, PNES patients 

showed significant correlations in metabolic activity between the right inferior 

parietal/central brain region and bilateral cerebellum and between bilateral anterior 
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cingulate and the left hippocampal gyrus. However, the authors did not find any 

significant correlations between the metabolic activity of the clusters reported and 

clinical features in the PNES group (age, age at onset, frequency, duration or 

semiology).  

From their results Arthuis, Micoulaud-Franchi, Bartolomei, McGonigal, & 

Guedj (2015) concluded that interictal resting state metabolic brain changes in PNES 

may reflect disturbances in brain function. The authors suggest that these disturbances 

may relate to two distinct pathophysiological mechanisms involved in PNES, namely 

emotion dysregulation (bilateral anterior cingulate hypometabolism) and dysfunctional 

processes associated with self-awareness/consciousness of one self and the environment 

(right inferior parietal hypometabolism). However, as the authors point out, these 

findings need to be interpreted with a certain degree of caution. This is because 

parameters relating to dissociative traits, emotion processing and certain psychiatric 

comorbidities such as anxiety, depression and PTSD were not formally assessed. Thus, 

co-existing psychopathology may have had a significant effect on the results, especially 

given that the anterior cingulate cortex has been implicated in both anxiety and PTSD 

(Bishop, Duncan, Brett, & Lawrence, 2004; Shin et al., 2001). Additionally, it is 

difficult to interpret the association between metabolic activity in the right inferior 

parietal/central brain region and bilateral cerebellum, and between bilateral anterior 

cingulate and the left hippocampal gyrus. The significance of these findings is unclear. 

Moreover, the lack of any significant findings relating to metabolic activity in the brain 

and clinical features of PNES could suggest that these brain changes observed are not 

related to PNES.  However, there is also a strong possibility that the imaging method 

employed in this study, and this generalizes to other neuroimaging methodologies, may 
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not be sensitive enough to correctly identify associations between brain activity and 

symptomology.  

 

3.3.3.2. Single photon emission computed tomography 

 Another unique and potentially informative approach to examining potential 

brain abnormalities in PNES is single photon emission computed tomography (SPECT). 

This imaging modality integrates two technologies, computed tomography (CT), and 

the use a radioactive tracer injected into the patient before the scan. SPECT differs from 

a PET scan in that the tracer stays in the blood stream rather than being absorbed by 

surrounding tissues, thereby limiting the images to areas where blood flows in the brain. 

During seizures, regional cerebral flow may increase at the brain site of epileptic origin 

(hyperperfusion) while interictally, the epileptic focus may demonstrate decreases in 

regional cerebral blood flow (hypoperfusion) (Devous Sr, Thisted, Morgan, Leroy, & 

Rowe, 1998). This procedure facilitates the localization of the epileptic focus of the 

seizures themselves when seizure brain activity is present but remains undetectable by 

scalp-recorded EEG. 

To date SPECT has been solely used in difficult cases involving complex 

medical histories suggestive of both PNES and epilepsy in which differential diagnosis 

remains questionable. In such cases, SPECT has proven useful in differentiating 

epileptic from non-epileptic episodes by using computer-aided quantification of ictal, 

inter-ictal and postictal changes in regional cerebral blood flow (Ettinger et al., 1998; 

Neiman, Noe, Drazkowski, Sirven, & Roarke, 2009; Varma et al., 1996). The use of 

SPECT in PNES is important because it supports the proposition that PNES is indeed 

different from epilepsy in the majority of PNES cases. However, like structural MRI 

studies which have observed instances of brain disease or injury in a sub-population of 
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PNES patients ranging from 25% to 34% (Bolen, Koontz, & Pritchard, 2016; Devinsky, 

Mesad, & Alper, 2001; Reuber, Fernandez, Helmstaedter, Qurishi, & Elger, 2002), the 

SPECT studies outlined below have observed similar prevalence rates of abnormal 

regional cerebral blood flow in a subset of patients with confirmed PNES diagnosis 

(range 15% - 30%).  

An early study to utilize SPECT in patients with PNES was conducted by 

Varma et al (1996). In this study they observed abnormal SPECT results in 30% of 

patients with PNES only (n = 3/10; bifrontal, left frontoparietal, right medial temporal 

hypoperfusion) compared to 80% of age and gender matched epilepsy patients, who 

demonstrated clear focal hypoperfusion suggestive of epileptogenic origin (n = 8/10). In 

line with these findings, Ettinger et al (1998) observed abnormal postictal SPECT scan 

results in 27% of patients who experienced non-epileptic seizures (n = 3/11; all 

hypoperfusion) compared to 64% of patients with epileptic episodes (n = 7/11; 

hypoperfusion in six, hyperperfusion in one). Consistent with Varma et al (1996) and 

Ettinger et al (1998), a more recent SPECT study by Neiman, Noe, Drazkowski, Sirven, 

& Roarke (2009), this time using subtraction ictal SPECT coregistered to MRI 

(SISCOM), observed abnormal SISCOM results in 15% of patients with non-epileptic 

seizures (n = 2/13; posterior lateral right frontal and right insular hyperperfusion).  

In the majority of cases, SPECT studies support the differential diagnosis of 

PNES based on the absence of a clear epileptogenic origin in the brain. Nonetheless, 

observed brain abnormalities in regional cerebral blood flow appear to be present in a 

minority of PNES cases. This suggests that, to date, our understanding of this disorder 

as purely psychogenic may need to be reconsidered and the use of PNES as an umbrella 

term/diagnosis fails to appropriately classify PNES sub-populations.  However, these 

findings are difficult to interpret given the small sample size, the use of a highly 
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selective PNES sub-population, and the absence of age and gender matched healthy 

controls. Additionally, abnormal SPECT scans reported for a certain percentage of 

PNES patients may also result from having other nonpsychogenic conditions such as 

brain disease or injury, cardiovascular disease and/or other psychiatric comorbid 

conditions (Camargo, 2001). All of the above again emphasises the importance of the 

clinical context in which diagnosis, treatment, and studies involving individuals with 

PNES are conducted. 

 

3.3.3.3. Functional magnetic resonance imaging 

Another way to look at brain activity is to use functional magnetic resonance 

imaging (fMRI). fMRI can be used to measure fluctuations in the blood oxygenation 

level-dependent signal or BOLD, which is an indirect correlate of neural activity. In 

addition, resting state functional magnetic resonance imaging (rsfMRI) can be used to 

measure the same BOLD signal during rest. During rest, co-activation patterns in 

different brain regions can be used to assess functional connectivity patterns in resting 

state networks (van den Heuvel & Pol, 2010). An important point to note here is that 

four of the six fMRI studies reviewed in this section come from the same research group 

and have used the same participants in their analysis (Ding et al., 2013; Ding et al., 

2014; Li et al., 2014; Li et al., 2015). 

To date, there is only one study that simultaneously investigated structural and 

functional connectivity in patients with PNES using rsfMRI and DTI. In this study Ding 

et al (2013) found that PNES patients (n = 17) compared to healthy controls (n = 20) 

demonstrated significant decreases in the strength of both structural connections and 

functional connectivity in brain regions associated with attention, sensorimotor, and the 

default mode network. Moreover, the coupling strength of structural-functional 

connectivity was decreased in patients with PNES and this showed high sensitivity 
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(75%) and specificity (77%) in differentiating PNES patients from healthy controls. 

Building on this work, Ding et al (2014) used functional connectivity density mapping 

based on the same rsfMRI data to assess whether a more detailed examination of both 

long-range and short-range functional connectivity would differentiate PNES patients (n 

= 18) from healthy controls (n = 20). Compared to healthy controls, Ding et al. (2014) 

found that PNES patients demonstrated bilateral differences in both long-range and 

short-range functional connectivity mainly in frontal, sensorimotor, cingulate, insular 

and occipital brain regions. Interestingly, three regions with increased long-range 

functional connectivity values correlated positively with illness duration, namely the 

right calcarine fissure (r = 0.64), the left lingual gyrus (r = 0.63) and the right lingual 

gyrus (r = 0.66).  

Again, using the same rsfMRI data as Ding et al. (2013, 2014) but this time 

focusing on the distinct functional connectivity patterns of insular subregions (Cauda et 

al., 2011; Craig, 2009; Deen, Pitskel, & Pelphrey, 2011; Kurth, Zilles, Fox, Laird, & 

Eickhoff, 2010b), Li et al. (2014) found that functional connectivity maps based on the 

left ventral anterior insula (vAI), the right dorsal anterior insula (dAI) and the right 

posterior insula (PI) showed significant group differences in connectivity values 

between PNES patients and healthy controls. Both right dAI and PI showed stronger 

functional connectivity values with the left superior parietal gyrus and left putamen in 

patients with PNES compared to healthy controls. In addition, the left vAI showed 

stronger functional connectivity with the right lingual gyrus, left postcentral gyrus and 

bilateral supplementary motor area (SMA). Also, based on the left vAI seed, functional 

connectivity values of the left and right SMA were positively correlated with frequency 

of PNES (SMA_left, r = 0.59, SMA_right, r = 0.60).  
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A second follow up study by Li and colleagues (2015) using the same rsfMRI 

data, this time using a combination of fractional amplitude low-frequency fluctuations 

(fALFF; the measurement of spontaneous fluctuations in the BOLD-fMRI regional 

signal intensity) and functional connectivity values, found that PNES patients compared 

to healthy controls showed increased synchronous regional activity mainly in the 

dorsolateral prefrontal cortex (DLPFC), parietal, and motor regions, and decreased 

regional activity in the right triangular inferior frontal gyrus which is part of the 

ventrolateral prefrontal cortex linked, amongst other things, to response inhibition 

(Aron & Poldrack, 2006). Moreover, PNES patients also showed increased functional 

connectivity between the DLPFC, sensorimotor and limbic regions and decreased 

functional connectivity in the ventrolateral prefrontal cortex. Correlational analysis 

revealed that functional connectivity values between the SMA and the anterior cingulate 

cortex positively correlated with the frequency of PNES episodes (r = 0.58). 

The findings from these four studies suggest that alterations in functional 

connectivity in brain regions associated with attention and regulatory processes, 

memory, emotion processing and sensory and motor function may be compromised in 

patients with PNES. These alterations imply less effective communication between 

different parts of the brain and therefore disruption in information processing, possibly 

resulting from life experiences, leading to aberrant sensori-motor interactions beyond 

the conscious control of the individual. Moreover, the inability to down regulate 

behavioural responses to emotional stimuli (Li et al., 2015) may result from hyper-

connectivity between insular subregions and sensori-motor, parietal and occipital brain 

regions (Li et al., 2014), which may result in a form of maladaptive long-term 

hypervigilance to external stimuli (Ding et al., 2014). This suggests that alterations in 

cognitive-emotional-behavioural brain mechanisms may result from adverse life 
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experiences and/or experiential learning leading to PNES (Devinsky, Mesad, & Alper, 

2001; Li et al., 2015; Brown & Reuber, 2016b). 

Partially supporting the findings by Ding et al. (2013) and Li et al. (2015), a 

study by van der Kruijs et al. (2014) found that, compared to healthy controls (n = 27), 

PNES patients (n = 21) showed increased functional connectivity in resting state 

networks associated with fronto-parietal activation, executive control, sensorimotor 

functions, and the default mode. The default mode network is of particular interest as it 

has been associated with self-awareness/sense of agency and consciousness (Gusnard, 

Akbudak, Shulman, & Raichle, 2001; Schneider et al., 2008) which may be directly 

linked to the tendency to dissociate and the expression of motor symptoms occurring as 

involuntary movements observed in PNES. Moreover, the connectivity strength in 

resting state networks that showed differences in activation between PNES patients and 

healthy controls (fronto-parietal, default mode, executive control, and sensorimotor 

network) were positively correlated with dissociation scores, further implicating the role 

of these networks in PNES, and lending support to the view that PNES are a 

manifestation of dissociation (Nijenhuis & van der Hart, 2011). However, the 

extrapolation of resting state results to hypothesized activation patterns in response to 

external stimuli or events is questionable. That is, do individuals with PNES respond 

differently to external stimuli compared to healthy individuals and can this be measured 

inside the scanner. To date only one fMRI study has examined brain activation patterns 

to external stimuli in patients with PNES. 

In this study, van der Kruijs et al (2012) conducted four fMRI scans during one 

scanning session (two resting state scans, one event-related picture-encoding task scan, 

and one event-related stroop paradigm scan) in patients with PNES (n = 11) and healthy 

controls (n = 12). While whole-brain analysis revealed no differences in either task-
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related fMRI paradigm between PNES patients and healthy controls, functional 

connectivity maps based on the rsfMRI scans showed significantly stronger functional 

connectivity patterns in PNES patients compared to controls in areas involved in 

emotion (insula), executive control and sensory information processing (inferior frontal 

gyrus and parietal cortex) and movement (precentral sulcus). In addition, functional 

connectivity values based on the average of both rsfMRI scans showed a significant 

positive correlation between the precentral sulcus-posterior insula and reported 

dissociation scores (Spearman’s rs = 0.56).  Moreover, linear regression analysis with 

functional connectivity values of the precentral sulcus-posterior insula connection as the 

dependent variable and dissociation scores as the independent variable, showed that 

dissociation scores was a significant predictor of the functional connectivity of these 

two brain regions ( = 0.066, p = 0.04). The authors suggest that a higher tendency to 

dissociate in PNES, may reflect a vulnerability or predisposition to PNES, whereby the 

hyper-connectivity between brain regions involved in emotion processing (insula) and 

motor function (precentral sulcus) goes unchecked by frontal brain regions involved in 

inhibitory control, resulting in non-epileptic seizure like episodes. These findings are 

important because they tentatively propose an underlying physical PNES substrate in 

the brain for dissociation, which has significant implications for how we view PNES 

(van der Kruijs et al., 2012). 

All of the fMRI studies reviewed in this section provide plausible explanations 

for associations between fMRI findings and non-epileptic seizures, but there are a 

significant number of limitations.  First and foremost, again these fMRI studies cannot 

infer any causal relationship between the brain imaging results and PNES. This again 

leaves open the possibility that these findings may also be incidental, or that they may 

be related to other factors not under investigation. Furthermore, given that a single brain 
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region may be involved in many different mental processes, it is not clear from the 

functional studies presented here, that activation patterns involving specific brain 

regions are solely associated with specific mental processes such as emotion regulation 

or dissociation, hypothesised to precipitate and perpetuate PNES symptomatology. 

Moreover, these behaviours have been characterized as paroxysmal rather than chronic 

and therefore, alterations in the interictal resting state networks may not necessarily be 

indicative of changes in brain activation patterns during an actual seizure like episode.  

Another possible confound of these studies relates to whether patients with PNES are 

engaging the same mental processes as healthy controls while in the scanner. This is 

arguably unlikely given that PNES patients often have other conditions such as PTSD, 

depression and anxiety. 

Therefore, a certain degree of reverse inference (Aguirre, Feinberg, & Farah, 

2003; Poldrack, 2006, 2008) may have led to premature conclusions. One could further 

speculate that because these studies are not longitudinal, a single scan at a single time 

point cannot tell us if the observed activation patterns reflect state or trait properties. A 

recent longitudinal study investigating brain function and a broad range of 

psychological and biological variables in a single human, has in fact demonstrated that 

brain function has temporal qualities related to both psychological and biological 

variability and that sensory, motor, and attentional networks actually showed the 

greatest variability across multiple fMRI sessions (Poldrack et al., 2015). Therefore, 

future studies in this area should attempt to control for this by scanning individuals with 

PNES at multiple stages of their disorder.  

Moreover, if brain changes are responsible for the aetiology and maintenance of 

PNES, it is important to know how they relate to clinical features associated with the 

non-epileptic patients. Again, it is difficult to see clear agreement on the relationship 
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between the imaging results and clinical features. More importantly, self-report 

measures (including seizure frequency and symptoms) may not be that reliable, 

especially if they are applied cross-sectionally. It may be more meaningful if the patient 

reports on the frequency of events or the types of symptoms experienced at several 

different time points. Furthermore, the relationship between objective measures and 

self-report measures is poor in many areas of psychopathology. Therefore, it may be 

advisable to look for correlations between the imaging data and other objective 

measures such as neuroendocrine measures, heart rate variability changes, EEG, and/or 

epigenetic data. This may allow us to better understand the relationship between fMRI 

results and functional connectivity patterns in patients with PNES. 

 

3.3.4. Meta-analysis 

 Given the heterogeneity of results summarised in the preceding sections, we 

were keen to explore whether any convergent findings could be extracted from the 

imaging studies carried out in patients with PNES. To that end, we carried out three 

different ALE meta-analyses using GingerAle (version 2.3.6). 

The first meta-analysis included all nine functional and structural studies for 

which MNI or Talairach coordinates were available and included 307 subjects (Arthuis, 

Micoulaud-Franchi, Bartolomei, McGonigal, & Guedj, 2015; Ding et al., 2014; Labate 

et al., 2012; Lee et al., 2015; Li et al., 2014, 2015; Ristić et al., 2015; van der Kruijs et 

al., 2012, 2014). This analysis resulted in no significant clusters. The second meta-

analysis which focused on all of the functional connectivity studies in PNES patients 

included six studies with a total of 141 subjects (Arthuis, Micoulaud-Franchi, 

Bartolomei, McGonigal, & Guedj, 2015; Ding et al., 2014; Li et al., 2014, 2015; van der 

Kruijs et al., 2012, 2014). Again, this analysis resulted in no significant clusters. 

However, the third and final meta-analysis which focused on three imaging studies 
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reporting structural brain differences between PNES patients and controls (Labate et al., 

2012; Lee et al., 2015; Ristić et al., 2015) yielded significant findings. This meta-

analysis included 166 subjects and resulted in 26 foci. This cluster-level analysis 

resulted in one significant cluster above the chosen minimum cluster size of 424 mm3 

in the left temporal lobe region (Brodmann area 21). Table 3.4 outlines the results of 

this ALE meta-analysis showing brain areas within +/- 5mm3 of this significant cluster 

above the corrected p value threshold. Figure 3.2 depicts the results of the ALE meta-

analysis conducted on the sMRI studies only, showing an overlay of this significant 

cluster, at the left temporal lobe, superimposed on the high-resolution standard 

anatomical brain image provided by brainmap.org (Colin_tlrc.nii).  

 

Table 3.4. ALE cluster-analysis results for structural studies (N = 3). 
 

Cluster 

 

Size / Volume 

mm3 

 

Weighted 

Centre 

 

Brain areas within 

+/- 5mm3 

 

Max. ALE 

value  
x, y, z of 

max. ALE 

 

Contributors 

to cluster 1 
Studies 

included 

 

1 

 

424 

 

X = -35.3 

Y = -4.6 

Z = -9.3 

 

BA 21: Left cerebrum 

/ Temporal lobe 

 

0.0143 -36, -4, -10 

 

Lee et al 

(2015), Ristić 

et al., 2015). 

Labate et al 

(2012), Lee et 
al (2015), 

Ristić et al 

(2015). 

      

  

 

200 
 

 

168 

 

 

48 

 

 
 

8 

 

 

 Nearest gray within +/- 5mm3 

 

Left cerebrum / sub-lobar / claustrum 
gray matter 

 

Left cerebrum / temporal lobe / sub-

gyral gray matter: BA21 

 

Left cerebrum / limbic lobe / 

parahippocampal gyrus and amygdala 

gray matter 
 

Left cerebrum / sub-lobar / insula 

gray matter: BA 13 

 

 

Brodmann Area (BA), X, Y, Z coordinates in Talairach space. 

 



 159 

Figure 3.2. Activation likelihood estimation (ALE) significance maps based on sMRI studies comparing PNES patients to 

healthy controls. The only area showing a significant cluster to survive the cluster forming threshold with an uncorrected p-value 

of 0.001 was found in the left temporal lobe only. Numbers represent the sagittal (x), coronal (y), and axial (z) coordinates of each 
slice in Talairach space. Scale bar shows z-scores of ALE statistics with increasing significance from left to right. PNES = 

Psychogenic non-epileptic seizures; HCs = Healthy controls. 

 

A link between a common abnormality in the temporal lobe and patients with 

PNES would be in keeping with the results of the studies by Bolen, Koontz, & Pritchard 

(2016) and Reuber, Fernandez, Helmstaedter, Qurishi, & Elger (2012) which identified 

higher prevalence rates of pathological brain abnormalities in this part of the brain (22% 

and 40% respectively). However, it is notable that this analysis was only based on three 

studies, and it is important to take account of the fact that no other convergent brain 

areas where found when we examined all of the nine studies together or when we 

examined six studies reporting functional connectivity patterns in PNES patients 

compared to controls. Considering the small sizes of the studies, the lack of high quality 

methodological approaches and the dearth of convergent findings, this may indicate that 

at least some of the studies report chance findings which may not be replicable in larger 

studies. However, the varied results may also reflect the true aetiological and 

phenomenological heterogeneity of patients with PNES, pointing to individualized 

phenotypes and patterns of abnormal brain activation, possibly resulting from individual 

differences and thus group differences in genetic makeup, anatomical variation, medical 

history, life experiences, semiology and state and trait characteristics. 
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3.3.5. Limitations 

This review has a number of limitations. The first relates to the small number of 

neuroimaging studies in patients with PNES. Although an extensive literature search 

was conducted only seventeen empirical studies were included in this review. Secondly, 

it is difficult to draw direct comparisons between the results due to the different imaging 

methods used and differences in group characteristics which may have influenced the 

results. Thirdly, the lack of convergence across nine of the studies included in the 

combined meta-analysis may reflect the heterogeneity of this patient population 

compounded by the limitations highlighted above in relation to the lack of serial MRI 

scans taken at different stages of the disorder. 

 

3.3.6. Conclusion 

The purpose of this systematic meta-review was to provide an up-to-date 

synthesis and quantification of both structural and functional neuroimaging studies 

performed on individuals with PNES. The overarching aim was to present the available 

evidence in an attempt to assess the strength and limitations of these studies to improve 

our neurobiological understanding of this condition. Although the results presented here 

appear inconclusive, they nonetheless provide some evidence for an association 

between structural and functional brain abnormalities in patients with PNES, which may 

contribute toward a biopsychosocial account of a condition often described as 

“medically unexplained”. The identification of such neurobiological correlates does not 

sit well with the understanding of PNES as a purely “psychological” or “psychogenic” 

disorder without any discernible “physical” correlates. In addition, given the 

heterogeneity of patients with this condition, characterising individuals in a narrowly 

defined manner based singularly on the expression of seizure like episodes does little to 

advance our knowledge base and fails to sufficiently account for sub-populations which 



 161 

will need to be considered separately in future neuroimaging studies. Furthermore, clear 

international consensus about PNES diagnosis and semiology is required if we are to 

standardise measures that can be used in future neuroimaging studies of PNES. Given 

that psychiatric comorbidities appear overrepresented in PNES, future studies will need 

to better address this issue by the use of consecutive recruitment of patients with PNES 

with or without concurrent psychopathologies and comparing their neuroimaging data 

to patients with psychiatric conditions free of PNES and age and gender matched 

healthy controls from similar demographic backgrounds. Future studies will also need 

to address other limitations highlighted by this review by adopting multimodal 

approaches in conjunction with a detailed medical history when dealing with individuals 

who have PNES. Advances in these areas will allow for a better and more detailed 

understanding of the neurobiological correlates of this disorder, which may have 

implications for both diagnosis and better treatment options. 

 

Footnote 1. While the authors have concerns with adopting the term 

psychogenic non-epileptic seizures (PNES), this was done because this was the most 

commonly used term in the scientific literature presented in this review. However, 

defining this condition as ‘psychogenic’ necessarily implies a purely psychological 

mechanism underlying non-epileptic seizures. While the psychological aspects of 

conversion are very helpful to our understanding and treatment of functional 

neurological disorders such as PNES, it is not clear if they are always necessary or 

indeed sufficient for the development or maintenance of this condition. Alternative 

biological explanations of PNES may provide important additional information, which 

when presented, should be given due consideration.  
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Chapter 4. Cortical thickness and gyrification patterns in 

patients with psychogenic non-epileptic seizures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 164 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 165 

Abstract 

Psychogenic non-epileptic seizures (PNES) are often viewed as manifestations of 

altered motor and sensory function resulting from psychological responses to adverse 

experiences. Yet many patients and non-expert healthcare professionals find it difficult 

to understand how severe disturbances in normal neurological functioning can solely 

result from underlying psychological mechanisms to the exclusion of other physical 

causes. Perhaps importantly, recent advances using neuroimaging techniques point to 

possible structural and functional correlates in PNES. In an attempt to further our 

understanding of the neurobiological correlates of this condition, we compared the brain 

scans of 20 patients with PNES (14 females, mean age 41.05, range 19 – 62) and 20 

age- and gender-matched healthy controls (14 females, mean age 40.65, range 21 - 61) 

to investigate group differences for cortical thickness and gyrification patterns using 

FreeSurfer. Compared to controls, patients with PNES showed cortical thickness 

increases in motor, sensory and occipital brain regions as well as cortical thickness 

decreases in temporal and frontal brain regions. In addition, we observed age-related 

changes in cortical thickness in the right lateral occipital area. However, contrary to our 

prediction that atypical gyrification may be present, we did not find any evidence of 

abnormalities on a measure thought to reflect prenatal and early childhood cortical 

development and organization. Nor did we find significant correlations between cortical 

thickness results and clinical features. These findings partly corroborate, but also differ 

from previous morphometry-based MRI findings in PNES. These inconsistencies likely 

reflect the aetiology and phenomenological heterogeneity of PNES. 
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4.1. Introduction 

Psychogenic non-epileptic seizures (PNES) are characterized by seizures which 

superficially resemble epileptic seizures but in which seizure-like episodes are thought 

to result from underlying psychological mechanisms rather than being caused by 

epileptic discharges in the brain (LaFrance, Reuber, & Goldstein, 2013). In the absence 

of a clear and easily discernible “organic” cause, current medical nosologies class PNES 

as a conversion/somatoform (DSM 5, American Psychiatric Association, 2013) or 

dissociative disorder (ICD-10, World Health Organization, 1992).  In light of this, 

explanations of this diagnosis have largely been rooted in psychoanalytic or 

psychological accounts (Monzoni, Duncan, Grünewald, & Reuber, 2011), often 

characterizing these disorders as medically unexplained (Brown, 2004). While the latter 

categorization is a diagnosis of convenience based on a highly reductionist view of what 

is considered medically explained, the former accounts reflect a contested, dualistic 

approach to the understanding of functional neurological disorders like PNES (Brown 

& Reuber, 2016b). However, there is now a growing body of evidence from structural 

and functional studies in PNES which suggests that PNES is best understood as a 

biopsychosocial disorder, a disorder in which structural and persistent or recurrent 

functional changes in the brain may act as predisposing or precipitating factors for 

PNES (Brown & Reuber, 2016b; Mcsweeney, Reuber, & Levita, 2017).  

The present study was intended to add to this evidence by employing whole-

brain cortical surface morphometric analyses of T1-weighted structural magnetic 

resonance imaging (sMRI) brain scans of individuals with PNES and age- and gender-

matched healthy controls. First, we examined whether age-related changes in cortical 

thickness (controlling for gender) would differ between patients with PNES and 

controls. This is important because age-related changes in cortical thickness are well 
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documented (Salat et al., 2004), and disparity between groups in this regard would have 

significant implications for how subsequent group comparisons of cortical thickness are 

conducted. Secondly, the present study examined whether group differences in cortical 

thickness (controlling for age and gender) would differ between PNES patients and 

controls. Based on the two published morphometric studies in patients with PNES 

(Labate et al., 2012; Ristić et al., 2015), we hypothesised that we would see group 

differences in motor, frontal and occipital regions in addition to brain regions involved 

in emotion processing. 

In addition to cortical thickness measures, we utilized a local Gyrification Index 

(lGI) measure based on that of Schaer et al. (2012). Because the degree of gyrification 

(gyral and sulcal formations) is largely determined early in life (primarily during the 

third trimester with additional changes during early childhood) and remains relatively 

stable from adolescence to adulthood (Armstrong, Schleicher, Omran, Curtis, & Zilles, 

1995), this sensitive measure is thought to be particularly useful for investigating 

aberrant early neurodevelopmental changes, traces of which may be identifiable at any 

age (Schaer et al., 2012). While a later age at onset is more common, PNES 

manifestations have also been observed during early childhood (Reuber, 2008), and 

given the link between trauma and PNES (Brown & Reuber, 2016a) and atypical 

gyrification patterns previously described in children exposed to maltreatment (Kelly et 

al., 2013) and in individuals with panic disorder (Yoon et al., 2013), we hypothesised 

that individuals with PNES compared to controls would show atypical levels of 

gyrification. Finally, we conducted correlational analyses to explore the relationship 

between cortical thickness and PNES clinical features in cortical regions that showed 

increases or decreases in cortical thickness in PNES patients compared to controls.  
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4.2. Method 

4.2.1. Participants  

Fifty-three 3T T1-weighted MRI brain scans of patients with PNES acquired 

between 2009 and 2016 were retrieved retrospectively from the Radiology Department, 

Royal Hallamshire Hospital, United Kingdom. Inclusion of MRI brain scans was based 

upon (a) confirmed PNES clinical diagnosis by a Consultant Neurologist at the Royal 

Hallamshire Hospital (b) video-EEG recordings of typical attacks with semiological 

features of non-epileptic attacks and no associated electro-encephalographic (EEG) or 

electrocardiographic (ECG) changes suggestive of epilepsy (c) minimum age of 16 at 

the time of the scan. MRI brain scans were excluded if the patient was (a) likely to have 

had a mixed seizure disorder (epilepsy and PNES) or (b) had an MRI brain scan 

showing clinically significant abnormalities. From this initial PNES sample, twelve 

scans were excluded due to possible or definite co-existing epilepsy. Eight scans were 

excluded due to lack of video-EEG recordings showing habitual seizure-like episodes. 

Based upon visual inspection of the MRI scans, three scans were excluded due to MRI 

results showing clinically significant brain abnormalities (two for hippocampal 

reductions suggestive of mesial temporal sclerosis, and one 76-year-old with T2 

hyperintensities which may have reflected a mini stroke), four scans were excluded due 

to blurring of the image, and six scans were excluded due to portions of the brain not 

being captured in the field of view. No cases were excluded due to age. In addition, 

fifty-six 3T T1-weighted MRI brain scans of age- and gender-matched healthy controls 

were retrieved retrospectively from an existing database of individuals who had 

previously volunteered for brain imaging studies (Radiology Department, Royal 

Hallamshire Hospital). In total, twenty patients with a “gold standard” PNES diagnosis 

and twenty age- and gender-matched healthy controls were included in the analyses. All 



 170 

of the patients with PNES were right-handed. Age- and gender-matched healthy 

controls were free from neurological disease or psychiatric disorders. The retrospective 

retrieval of archival data was conducted in accordance with the guidelines set out by the 

NHS ethical approval granted by the South West – Exeter Research ethics committee 

and carried out in accordance with The Code of Ethics of the World Medical 

Association (Declaration of Helsinki) for experiments involving humans. 

 

4.2.2. PNES clinical features 

Semiology features were categorized as 1) generalized motor seizures: seizures 

mainly characterized by tonic, clonic, or dystonic-like generalized movements, 2) 

akinetic seizures: seizures mainly characterized by unresponsiveness and the absence of 

movement with the exception of minor limb tremors, 3) seizures with subjective 

symptoms: seizures were mainly characterized by experiential phenomena reported by 

the patients during video-EEG recordings, and 4) focal motor seizures: seizures with 

focal motor movements (Magaudda et al., 2016). Symptom severity was assessed using 

a symptom severity scale, in which symptom severity was based upon the summation of 

previously described clinical features relevant to PNES: 1) ictal loss of consciousness 2) 

ictal incontinence 3) ictal tongue-biting 4) ictal injury 5) accident and emergency 

attendance for seizures 6) seizure episodes more than thirty minutes in duration 7) the 

continuation of symptoms without periods of remission up to the time of the MRI brain 

scan (Reuber, House, Pukrop, Bauer, & Elger, 2003). Age at onset, symptom duration, 

number of anti-epileptic and anti-depressant drugs taken at time of MRI, clinical 

psychiatric diagnosis and reports of trauma exposure were extracted retrospectively 

from patients’ medical records. Types of trauma exposure were documented as 1) 

sexual abuse 2) physical abuse 3) psychological abuse 4) loss of child 5) other noted but 

unspecified traumatic experience 6) suicide attempt.  
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4.2.3 Image acquisition and FreeSurfer analyses 

All brain MRI T1-weighted volumetric scans were acquired using the same 

Phillips 3 Tesla scanner at The Royal Hallamshire Hospital, Sheffield, U.K. For all 

participants, brain MRI was performed using matrix size 256 x 256, field of view 256, 

slice thickness 1mm, voxel size 1x1x1, flip angle 8º, coronal plane. Due to the 

retrospective nature of this study, it was not possible to limit the MRI pulse sequence 

parameters used to exactly the same timings across all of the subjects. Slight differences 

in echo time (TE) and repetition time (TR) were present in our PNES group (TE 3.75 – 

4.86 ms, TR 8.16 – 10.42 ms) compared to controls (TE 4.80 ms and TR 10.50 ms). 

However, it is important to note that cortical thickness measurements remain relatively 

robust even when different MRI protocols or scanners are used (Fischl & Dale, 2000). 

MRI-based measurements for each participant were obtained using FreeSurfer 

version 5.30 (http:// www.surfer.nmr.mgh.harvard.edu). In brief, FreeSurfer consists of 

two processing streams, a surface-based stream and a volume-based stream. The 

surface-based stream constructs models of the white matter/gray matter boundary and 

the boundary between the gray matter and cerebralspinal fluid (pial surface) from which 

cortical thickness measures are taken as the shortest distance between the two. The 

volume-based stream preprocesses MRI volumes and labels subcortical tissue classes 

allowing for the representation and measurement of subcortical structures (putamen, 

hippocampus, amygdala, ventricles etc.). Both cortical and subcortical labelling is based 

on a subject-independent atlas and the subject-specific values. These labels are then 

morphed onto a common space (average subject) to achieve a common point of 

reference for each subject. This coordinate system can be subsequently used to examine 

group differences by creating group maps. A more detailed description of FreeSurfer, 

the local Gyrification Index (lGI) and the procedure used to derive cortical thickness 

http://www.surfer.nmr.mgh.harvard.edu)/
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values and lGI values is provided in Appendix 38. A full description of this procedure 

has been published elsewhere (Fischl & Dale, 2000; Fischl, 2012).  

Following surface reconstruction and segmentation, the resulting output was 

visually inspected for quality and accuracy. If needed, edits were made to adjust for 

skull strip errors, intensity normalization failures (requiring addition of white matter 

control points), incorrect white matter segmentation, automated topological fixer errors, 

and pial surface inaccuracies. In the PNES group one skull strip error was adjusted. 

Edits to the pial surface were required in seven scans, topological defects (holes or 

handles) adjusted in eleven scans, and control points added in nine scans (263 in total). 

In the healthy control group, no skull strip errors occurred, edits to the pial surface were 

made in twelve scans, topological defects adjusted in thirteen scans, and control points 

added in eleven scans (277 in total).  The recon-all processing stream was re-run from 

the appropriate stage to recreate the final surfaces in brains which required corrections 

to the initial segmentation. To achieve a common point of reference for each subject the 

recon-all –qcache flag was used to smooth and resample the data onto the FreeSurfer 

fsaverage (average subject made in MNI305 space). Prior to general linear model 

analyses (GLM), cortical thickness maps were smoothed with a 10-mm full-width at 

half-maximum (FWHM) Gaussian Kernel. No additional smoothing was applied in 

relation to lGI. This is because the final FWHM is a composite of the applied FWHM 

and the smoothness inherent in the data and lGI has a lot of inherent smoothness. In 

effect, this resulted in the degree of smoothness in our lGI data corresponding to a 

smoothing kernel of 10-mm. Analysis was run on the University of Sheffield high 

performance computing cluster (Iceberg; OS 64-bit Scientific Linux (Redhat); 2 X Intel 

Ivy bridge E5 2650V2 8-core processors based nodes).  
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GLM analyses to assess group differences in age-cortical thickness interactions 

and lGI-age interactions was run by implementing the mri_glmfit script, with DODS 

(different offset, different slope) as design matrix, diagnosis and gender as discrete 

factors, and age as covariate. DODS assumes a different offset but predicts a different 

effect of ageing in both groups (different slope). To examine group differences in 

cortical thickness and lGI (controlling for age), mri_glmfit was used with DOSS 

(different offset, same slope) as design matrix, diagnosis and gender as discrete factors, 

and age as nuisance factor. DOSS also allows for group differences to start at different 

points (different offset) but constrains the group data to change in a similar way, that is, 

a similar impact of ageing in both groups (same slope). DODS/DOSS are specific to 

FreeSurfer (for a detailed description see 

https://surfer.nmr.mgh.harvard.edu/fswiki/DodsDoss). 

 All of the vertex-wise group analyses were corrected for multiple comparisons 

using mri_glmfit-sim in FreeSurfer, with a cluster forming threshold of 3 (p < 0.001) 

and cluster-wise probability set to p <0.05. P values were adjusted for both hemispheres 

using --s 2spaces flag in order to correct for the full search space. This was repeated for 

10,000 iterations to derive the location of cluster sizes under the null hypothesis. 

Clusters surviving cluster-wise correction were then superimposed on fsaverage inflated 

surfaces using tksurfer, a GUI application available in FreeSurfer. 

 

4.2.4 Correlation analyses with clinical features 

We conducted correlational analyses to investigate the relationship between 

brain regions that showed increases or decreases in cortical thickness in patients with 

PNES compared to controls with clinical features in patients with PNES (age at onset; 

duration of symptoms; symptom severity; number of antiepileptic drugs taken). Regions 

of interest (ROIs) based on significant cluster-wise corrected cortical thickness results 
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were manually drawn on the fsaverage inflated surfaces in tksurfer and subsequently 

mapped back to each hemisphere for each subject using the mri_label2label command. 

The average cortical thickness for each cluster for each subject was then extracted using 

the mris_anatomical_stats command. Correlations were conducted using a bivariate 

nonparametric correlation procedure (Spearman’s coefficient) with an alpha of 0.05 and 

subsequently corrected for multiple comparisons using Bonferroni correction. 

Kolmogorov-Smirnov and Shapiro-Wilk were used to test for normality. All statistical 

analyses were two-tailed and conducted using the Statistical Package for Social 

Sciences (IBM SPSS Statistics for Macintosh, Version 24. Armonk, NY: IBM Corp.). 

 

4.3. Results 

4.3.1. Demographics  

In total twenty patients with PNES (14 females, mean age at time of scan 41.05, 

standard deviation, SD 12.50, age range 19 - 62) and twenty age- and gender-matched 

healthy controls (14 females, mean age at time of scan 40.65, SD 12.40, age range 21 - 

61) were included. The mean age at onset of PNES was 27.80 (SD 11.84, range 9 - 51) 

with a mean duration of symptoms in years prior to MRI of 10.18 (SD 13.73, range 0.25 

– 50). Nine patients were taking anti-depressants (Table 4.1) and one patient was taking 

antipsychotic medication (Quetiapine). Telemetry data capturing typical attacks was 

available for all twenty PNES patients. The mean number of PNES habitual attacks 

recorded was 2.5 (range 1 – 8, Table 4.1). Based on the video-EEG recordings, 45% of 

patients (n = 9) were characterized as having predominantly generalized motor 

seizures/positive motor phenomena, 35% of patients as having predominantly akinetic 

seizures characterized mainly by blank spells with reduced responsiveness (n = 7), and 

20% were characterized as having predominantly seizures with subjective symptoms 
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only but not loss of awareness (n = 4). None were characterized as having focal motor 

seizures. In all patients, brain MRI was visually inspected by an experienced 

neuroradiologist for signs of pathological brain abnormalities or brain injury. Three 

patients showed some abnormality. However, these abnormalities were not deemed 

clinically significant to the extent that these changes could explain their symptoms. 

Given that they affected the white matter and cerebellum they are unlikely to have 

affected our cortical thickness analyses. The same morphological analyses were run 

with these three missing in addition to their matched healthy controls.  Exclusion or 

inclusion of these patients resulted in the same clusters and their order for both the left 

and right hemisphere. All other patients had unremarkable brain MRI results. PNES 

group characteristics are presented in Table 4.2. The results of PNES symptom severity 

scale are presented in Table 4.3.   
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Table 4.1. Details of non-epileptic seizures captured by Video-EEG and medications taken at the time of MRI in patients with PNES. 

ID Gender Age Video-EEG hours 

/ attacks recorded 

Semiology as captured during Video-EEG Medications* 

 

     Anti- 

epileptics                            

Anti- 

depressants 

       

1 Male 47 120hrs / 2 attacks Fall, kicking of legs, whole-body rigidity, arching of 

back, dystonic generalized movements with some 

groaning, unresponsive 

 

Lamotrigine _ 

2 Female 24 72hrs / 1 attack Eyes flickering, side to side head movements, violent 

shaking of whole body with pelvic trusts and clenching 

jaw, unresponsive. 

 

Clonazepam                                 

Epilim chrono  

Levetiracetam 

_ 

3 Male 25 48hrs / 4 attacks Loss of consciousness, violent kicking of legs, 

jerks/jumps of whole-body, memory loss. unresponsive. 

 

Epilim chrono                               _ 

 

4 Female 37 48hrs / 1 attack Unresponsive episode. 

 

 

Lamotrigine Sertraline 

5 Male 49 24hrs / 2 attacks  Dizzy spells, blank spells, fully responsive and aware 

of surroundings. 

 

Phenytoin                                       

Epilim chrono 

_ 

6 Female 58 48hrs / 1 attack Twitching of face, shaking of hands moved to shaking 

of four limbs. 

 

Phenytoin  

Epilim chrono 

Dosulepin 

7 Female 36 24hrs / 1 attack 

 

Generalised shaking, unresponsive. _ Trazodone 

8 Female 52 24hrs / 2 attacks Electric shock sensation and twitching in both arms 

(not visible on camera), a sensation of dizziness in 

right-side of head.  

 

_ Mirtazapine 

9 Female 33 24hrs / 8 attacks Unresponsive with left side of mouth dropping with left 

hand and arm jerking, eye blinks with right arm and 

hand jerking repetitively with legs jerking (fully aware 

throughout attack), bilateral asynchronous jerks both 

legs followed by contraction of right leg and foot (fully 

aware throughout attack). 

 

Levetiracetam _ 

10 Female 25 24hrs / 1 attack Synchronous jerks of upper limbs, and jerking of legs 

(particularly right leg) and abdomen.  

 

_ Fluoxetine 

11 Female 34 72hrs / 1 attack 

 

Unresponsive episode. _ _ 

12 Female 19 48hrs / 1 attack Twitching all over, eyes rolling into back of head 

(patient unaware of this), feeling faint at times. 

  

Lamotrigine 

Pregablin 

_ 

13 Male 62 72hrs / 3 attacks Reported shouting but no evidence of this on camera, 

felt dizzy, headaches, intermittent jaw movements with 

mumbling and grimacing, shaking. 

 

Gabapentin _ 

14 Female 50 48hrs / 1 attack Fuzzy headache followed by black out. 

  

_ Fluoxetine 

15 Male 35 48hrs / 3 attacks Shaking of right arm, tenses up and head leads body to 

the right with arms shaking, rapid blinking before 

cessation of attacks, slight jerking of head and mouth. 

 

_ _ 

16 Female 49 48hrs / 4 attacks Dizzy spells, felt confused followed by collapse flaccid 

on floor with eyes open and staring with no significant 

jerking, unresponsive. 

 

Gabapentin 

Clobazam 

Amitriptiline 

17 Female 48 48hrs / 6 attacks Blank spell, memory problems, bad taste in mouth and 

funny feeling in head, twitching of arms and right leg 

jerk around time of entering sleep and waking. 

 

_ Sertraline 

Amitriptyline 

18 Male 36 48hrs / 4 attacks Déjà vu, muscle twitches with burning smell, pins and 

needles, tingling in face, arms and legs. 

 

_ _ 

19 Female 59 48hrs / 3 attacks Vacant episode, shrugs of shoulder and upper body, 

tremoring of right arm and a bit of the left arm also, 

began unresponsive but became intermittently 

responsive throughout event. 

Epilim 

Levetiracetam 

_ 

 

20 

 

Female 

 

43 

 

48hrs / 2 attacks  

 

Dizzy spells, unresponsive. 

 

Topiramate 

 

Fluoxetine 

  

MRI = Magnetic resonance imaging; PNES = Psychogenic non-epileptic seizures; EEG = electroencephalography; * Dosages unavailable 

 



 177 

 

Table 4.2. PNES group characteristics (n = 20). 

      

Comorbid conditions (n = 16)      

   Number Percentage Range* 

Depression   13 81.3% 1 - 4 

Anxiety   9 56.3%  
Migraine   5 31.3%  
PTSD   2 12.5%  
Panic disorder   2 12.5%  
Agoraphobia   2 12.5%  

OCD   1 6.3%  
Fibromyalgia   1 6.3%  
      
Number of AEDs taken at time of MRI (n = 12)   
   Number Percentage  

One   6 50%  
Two   5 42%  
Three   1 8%  
    
Types of traumatic experiences (n = 10)      

   Number Percentage Range* 

Sexual abuse   4 40% 1 - 5 

Physical abuse   3 30%  
Psychological abuse   2 20%  
Loss of child (miscarriage, cot death, other)   5 50%  
Suicide attempt   3 30%  

Other trauma unspecified   3 30%  

      

Other features (n = 20)      

   Number Percentage  

History of head injury   1 5%  

Positive family history of epilepsy   0 0%  

      

PNES = psychogenic non-epileptic seizures; PTSD = post traumatic stress disorder; OCD = obsessive compulsive disorder; AEDs = 

anti-epileptic drugs; MRI = magnetic resonance imaging; *Range refers to the minimum and maximum number of instances i.e. some 
patients had more than one psychiatric comorbid condition and some patients had been exposed to more than one traumatic event.  

 

 

Table 4.3. Results of symptom severity scale in PNES patients (n = 20). 

     

Item   Number Percentage 

Ictal loss of consciousness   17 85% 
Ictal incontinence   5 25% 

Ictal tongue-biting   3 15% 
Ictal injury   6 30% 
A&E attendance for seizure episodes   7 35% 
Seizure duration > 30 minutes   6 30% 
Recurrent symptoms without periods of remission   17 85% 

     
Group scores for symptom severity scale     
   Mean Standard deviation               Range 

   3.05 1.50                                         1 - 7 
     

PNES = Psychogenic non-epileptic seizures; A&E = accident and emergency  

4.3.2. Morphological analyses  

 Age-related changes in cortical thickness were first examined after we had 

controlled for gender. This analysis identified a single significant cluster surviving 

cluster-wise correction in the right lateral occipital area, where patients with non-

epileptic seizures showed greater decreases in cortical thickness with increasing age 
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compared to controls (Figure 4.1A & B, Table 4.4). Group differences in cortical 

thickness, controlling for age and gender, were examined next (Figure 4.1C, Table 4.4). 

Cluster-wise corrected results showed bilateral structural changes in PNES patients 

compared to controls, with cortical thickness increases in the cuneus bilaterally, the left 

paracentral, and left lingual regions. Decreases in cortical thickness were observed in 

PNES patients compared to controls in the inferior frontal gyrus (pars opercularis) 

bilaterally, right superior temporal region, and the right medial orbitofrontal cortex. 

Analysis of gyrification patterns revealed no significant group differences surviving 

cluster-wise correction for age-related lGI while controlling for gender or lGI group 

comparisons controlling for gender and age. Due to the number of PNES patients who 

had reported trauma exposure (see Table 4.2), additional supplementary post-hoc 

cortical thickness sub-analyses were conducted in the PNES group only (N = 20), 

between those had reported traumatic experiences and those who had not. The exact 

same statistical analyses (described above) was conducted for age-cortical thickness 

interactions (controlling for gender) and cortical thickness controlling for age and 

gender. The results of these analyses were all non-significant. 
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Figure 4.1. Whole-brain group-level analysis of cortical thickness differences between PNES patients 

and age- and gender-matched healthy controls. Results depict significant clusters surviving cluster 

forming threshold of p<0.001 and cluster-wise correction for multiple comparisons at alpha 0.05. Cortical 

thickness maps were smoothed using a 10mm full-width at half-maximum (FWHM) Gaussian kernel. 

Blue and pale blue indicate decreases in cortical thickness. Orange and red indicate increases in cortical 

thickness. A = anterior, P = posterior. (A) Group differences in age-cortical thickness interactions 

controlling for gender. (B) Scatter plot showing age-related changes in average cortical thickness in mm 

in PNES (blue triangle) and in age- and gender-matched healthy controls (HC, red circle) for the right 

lateral occipital cluster. (C) Group differences in cortical thickness controlling for age and gender. 
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Table 4.4. Significant clusters of cortical thickness difference between PNES patients and age- and gender-

matched healthy controls for each hemisphere. 
 

     

Group differences in age-cortical thickness interactions controlling for gender (DODS)   

        

Cluster 

No. 

Right hemisphere  Max    Vtx Max  Size 

(mm^2)   

MNIX MNIY MNIZ P cluster    

 Annotation         

         

1 Lateral occipital -5.425  41725  238.03       43.2 -75.4 -7.2   0.01236 

         

Group differences in cortical thickness controlling for age and gender (DOSS)    

         

Cluster 

No.   
Left Hemisphere  Max    Vtx Max  Size 

(mm^2)   
MNIX MNIY MNIZ P cluster    

 Annotation         

         

1 Pars opercularis -5.217     47493    530.08     -45.6  16.8    21.2   0.00020 

2 Paracentral 4.542    116966 174.58 -8.2 -24.6    62.7   0.04996 

3 Cuneus 3.938   112494     268.99 -4.4   -84.2 17.8   0.00699 

4 Lingual 3.717 114676 193.57 -10.5    -77.7    -4.9   0.03233   

         

Cluster 

No.   

Right 

Hemisphere  

Max    Vtx Max  Size 

(mm^2)   

MNIX MNIY MNIZ P cluster    

 Annotation        

         

1 Superior temporal -7.052  17325  271.41       44.8 4.4  -23.5   0.00539 

2 Superior temporal -6.300  149014  335.88      64.3  -17.9  0.3  0.00160 

3 Pars opercularis -5.754   24955     208.01 37.8  19.2   11.3   0.02484 

4 Cuneus 5.013     125855     619.63 5.7     -86.9  11.5 0.00020 
5 Medial 

orbitofrontal 

-3.788 12607 207.47 9.8 43.7 -7.4 0.02544 

         

Results of significant clusters surviving cluster forming threshold (p < 0.001) and cluster-wise correction for multiple 

comparisons (alpha = 0.05). DODS = different offset different slope; DOSS = different offset same slope; Max = maximum –

log10 (p-value) in the cluster with positive and negative values indicating increases or decreases in cortical thickness in patients 

with PNES compared to controls; Vtx Max = vertex number of the maximum; MNI = Montreal Neurological Institute; MNIX, 
MNIY, MNIZ = MNI305 coordinates of maximum; P cluster  = cluster-wise probability 

 

4.3.3. Clinical features 

Symptom severity positively correlated with cortical thickness in both the left 

cuneus (rs = 0.497, p = 0.02) and right cuneus (rs = 0.451, p = 0.04). However, these 

correlations were not significant following Bonferroni correction for multiple 

comparisons. No other uncorrected significant correlations were found between cortical 

thickness results and age at onset, duration of symptoms, or number of antiepileptic 

drugs taken (see Supplementary Table 4.5). Due to the small number of patients 

comprising each PNES subtype, it was not feasible to conduct additional analyses based 

on semiology. 
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4.4. Discussion 

The first finding of this study concerns age-related changes in cortical thickness. 

We observed cortical thickness differences between groups in the right lateral occipital 

area where, compared to controls, patients with PNES showed greater cortical thickness 

decreases with increasing age. This is in keeping with a previous cortical thickness 

study which found that, compared to healthy controls, PNES patients showed decreased 

cortical thickness in this area of the brain (Ristić et al., 2015).   

In the second group-level analysis controlling for age and gender, we found that 

patients with PNES showed decreased cortical thickness compared to controls in the 

right superior temporal gyrus associated with multisensory integration (Karnath, 2001) 

and the right medial orbitofrontal cortex associated with emotion processing (Northoff, 

2000), although the direction of the differences with regard to the right medial 

orbitofrontal cortex was the opposite of the findings in a previous study (Ristić et al., 

2015). However, PNES is highly heterogeneous and therefore, it is possible that this 

heterogeneity may be the reason for consistent or inconsistent findings across studies 

that use similar methodological approaches. Additionally, the lack of well-defined and 

established categorical or dimensional characterizations of specific sub-types of PNES 

makes it difficult to interpret differing results across studies. We also observed 

decreased cortical thickness in regions associated with response inhibition (Aron, 

Robbins, & Poldrack, 2014; Swick, Ashley, & Turken, 2008), namely the left and right 

pars opercularis. Interestingly, Labate et al. (2012) found that cortical thickness in the 

left pars opercularis in PNES patients negatively correlated with dissociation scores, 

suggesting that higher dissociation scores were associated with decreases in cortical 

thickness in this region of the brain. However, it is difficult to make an equivalent 
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inference between dissociation and our results, as we were unable to directly measure 

the tendency to dissociate in our study.   

Increased cortical thickness in PNES patients compared to controls was 

observed in the left paracentral lobule, with the significant cluster spanning both the 

primary motor cortex and primary somatosensory cortex. The paracentral lobule has 

been associated with, amongst other things, the planning, control and execution of 

motor function (Borich, Brodie, Gray, Ionta, & Boyd, 2015). However, this finding 

differs in terms of both direction and laterality to the findings of Labate et al. (2012), 

who observed cortical thickness decreases in the right paracentral lobule in patients with 

PNES. Again, differences in group characteristic and PNES heterogeneity may be a 

plausible explanation for these inconsistencies. Yet, the role of cortical thickness 

changes in brain regions involved in motor function is of significant interest in PNES 

(Labate et al., 2012; Ristić et al., 2015). Cortical thickness increases in PNES were also 

observed in occipital regions involved in visual processing (Macaluso, Frith, & Driver 

2000; Vanni, Tanskanen, Seppa, Uutela, & Hari, 2001), namely the cuneus bilaterally 

and the left lingual gyrus. A recent imaging study (Ding et al., 2014) found that 

increased long-range functional connectivity density of occipital regions (right calcarine 

fissure and bilateral lingual gyri) correlated with disease duration in patients with 

PNES. The authors proposed that changes in functional connectivity in this region may 

reflect long-term hypervigilance and increased sensitivity to external stimuli. While the 

present study does provide some support for their findings, we did not find a significant 

correlation between cortical thickness results in occipital regions and duration of PNES.  

Furthermore, no significant correlations surviving correction for multiple 

comparisons were found between clinical features in PNES and cortical thickness 

results, nor did we find cortical thickness differences between patients who had reported 
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traumatic experiences and those who had not. However, the lack of significant 

correlations is not altogether surprising. A number of previous neuroimaging studies 

have failed to find any significant relationship between imaging results and clinical 

features in this disorder, and those that did reported inconsistent findings (Mcsweeney, 

Reuber, & Levita, 2017). Perhaps more importantly, clinical features derived from 

medical records or indeed self-report measures may not be that reliable, especially if 

they are applied cross-sectionally in small studies. We must also consider the possibility 

that changes in cortical thickness may reflect other factors not accounted for in the 

present study (Draganski et al., 2006; Zatorre, Fields, & Johansen-Berg, 2012), 

especially comorbidities often associated with PNES such as anxiety, depression, 

posttraumatic stress or personality disorders (Diprose, Sundram, & Menkes, 2016). 

Disorders such as these could play an aetiological role in PNES on the one hand and be 

related to changes in cortical thickness on the other. Therefore, it is not clear whether 

cortical thickness changes associated with PNES in our study are indeed responsible for 

PNES or whether changes in cortical thickness reflect other factors not necessarily 

associated with this disorder. This is a critical consideration which has not been 

sufficiently addressed by our study, nor indeed most other studies which implicate 

structural and/or functional brain changes in PNES (Mcsweeney, Reuber, & Levita, 

2017). This is due to the high levels of co-existing psychiatric disorders, small sample 

sizes and lack of psychiatric controls free of PNES. However, the high level of 

psychiatric comorbidity observed in our patient group is in keeping with that observed 

in most other studies of this disorder and suggests that we have studied a typical patient 

sample (Diprose, Sundram, & Menkes, 2016).  

 In addition to looking at cortical thickness, we also conducted a group analysis 

of gyrification patterns using lGI. However, contrary to our prediction that gyrification 
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may differentiate PNES patients from controls, the results suggest that atypical 

gyrification patterns may not be a contributor to PNES, at least in our sample. Whereas 

our study therefore provides some support for the idea that PNES may represent an 

adaptive (or maladaptive) process reflected by plastic structural brain changes in frontal, 

sensorimotor, temporal and occipital brain regions, we did not find any evidence of 

abnormalities on a measure thought to reflect prenatal and early childhood cortical 

development and organization (Armstrong, Schleicher, Omran, Curtis, & Zilles, 1995). 

This finding may be surprising. A range of observations provide indirect evidence for 

the relevance of neglect and trauma in early life to the development of PNES (Bewley, 

Murphy, Mallows, & Baker, 2005; Holman, Kirkby, Duncan, & Brown, 2008; Kooiman 

et al., 2004; Novakova, Howlett, Baker & Reuber, 2015). Additionally, atypical 

gyrification patterns have been observed in major depressive disorder, bipolar disorder, 

and schizophrenia (Cao et al., 2017). Animal studies provide evidence of life-long 

structural changes in the brain, neuro-endocrine and behavioural abnormalities after 

neglect / trauma in early life, which could underpin these findings in humans (Cirulli & 

Alleva, 2009; Lupien, McEwen, Gunnar, & Heim, 2009). It is possible that the neglect 

or trauma which may be relevant to PNES affects individuals after the developmental 

phase in which gyrification patterns are determined. In addition, neglect or trauma in 

early life are not considered an obligatory precondition to the subsequent development 

of PNES, but only an important risk factor (Brown & Reuber, 2016b). Alternatively, 

our sample may have been too small or too heterogeneous to pick up relevant structural 

abnormalities of early brain development. 

In conclusion, our findings of cortical thickness differences between patients 

with PNES and healthy controls partly corroborate, but also differ from, morphometry-

based MRI findings in PNES previously described (Labate et al., 2012; Ristić et al., 
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2015). Possible reasons for these variable findings may include sample size, anatomical 

variation, and likely differences in group characteristics in terms of genetic makeup, 

medical history, life experiences, semiology, duration of the disorder, personality 

characteristics, and co-existing psychopathology. Nonetheless, the key take home 

message is that these findings support the growing body of evidence suggesting that 

PNES, rather than being a condition that is medically unexplained, may indeed have 

physical substrates in the brain. The results of the current study and previous 

neuroimaging studies of PNES have important implications for the way we think about 

and treat individuals with PNES and how diagnosis may be better communicated to 

patients. However, longitudinal morphometric studies prospectively capturing a wide 

range of demographic, developmental and clinical data are needed to better address the 

role of ageing and whether changes in cortical thickness represent a predisposition to, or 

consequence of PNES. Furthermore, PNES are paroxysmal events, which are difficult 

to investigate through the use of sMRI data alone. As such, interictal data provides only 

part of the picture and future studies should attempt to map electroencephalography 

(EEG) ictal data acquired during non-epileptic events to the underlying structure, 

connectivity and folding patterns of the cerebral cortex. This may shed more light on the 

pathophysiological mechanisms of PNES. Future studies also need to be large enough 

and involve relevant control groups to allow a better distinction between the likely 

associations of PNES itself and of concurrent psychopathology and or trauma exposure.  

The interpretation of such datasets would be greatly aided by a better categorical or 

dimensional characterization of PNES, a highly heterogeneous disorder in terms of 

phenomenology, outcome, and presumably aetiology.  
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Chapter 5. General discussion 
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5.1. Introduction 

The idea that emotions can find expression through bodily sensations, actions or 

bodily symptoms is not new. In fact, the association between emotion and physical 

symptoms has been hypothesised since the early 19th Century (Breuer & Freud, 1955). 

The psychodynamic or psychoanalytical approach to emotion-motor interactions posits 

that emotional distress, resulting from unconscious conflict, finds expression in bodily 

symptoms. While this approach has proved to be immensely influential, it has also been 

immensely difficult to test empirically. However, over the last two decades or so, 

empirical research into the neurobiological basis of PNES and other FNDs, represents 

somewhat of a shift away from the psychodynamic perspective and has afforded 

valuable insights into the link between emotion and motor function in functional 

neurological symptomology (Voon, Brezing, Gallea, & Hallett, 2011). Notwithstanding 

the advances made in this area, there is still a considerable need to investigate further 

the association between psychosocial and biological factors underpinning conditions 

like PNES, with more of a focus on how emotion-motor interactions may be altered, or 

indeed not altered, in PNES.  

Therefore, the primary aim of this PhD was to further our understanding of 

emotion-motor interactions. The first aim of this PhD was to investigate emotion-motor 

interactions in a typically developing healthy population (Chapter 2). Apart from this 

being, to the best of my knowledge the first study to attempt this with three different age 

groups at different stages of brain development, I also wanted to conduct this study as a 

first step to developing an experimental paradigm that may be suitable for use with 

patients experiencing non-epileptic seizures. I was particularly interested in including an 

early adolescent group in this EEG experiment given that adolescence is a 

developmental period in which emotional experiences and expression may be at their 
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most prominent (Casey & Jones, 2010, Steinberg, 2005), due in part to a maturational 

mismatch between lower-order limbic regions and higher-order prefrontal regions of the 

brain (Casey & Jones, 2010; Gogtay et al., 2004; Somerville, Jones, & Casey, 2010). 

The argument being, that if emotional experiences and expressions are indeed 

heightened in adolescence, and motor function is modulated by emotional stimuli, be 

they positive or negative/threat-related, then I would expect to see a greater degree of 

modulation of preparatory motor activity and subsequent action by emotional stimuli at 

this stage of brain development. This would tell us whether anticipation of positive or 

negative outcomes, relative to neutral outcomes, would differentially modulate motor 

preparation and action not only in an adult neurotypical sample but also in an adolescent 

neurotypical sample more prone to heightened emotional experiences and expression. If 

so, this might be a useful approach to adopt when investigating, for example, emotion-

motor interactions in PNES given that individuals experiencing PNES may have deficits 

in emotion processing (Bakvis et al., 2009; Bakvis et al., 2010; Bakvis, Spinhoven, 

Zitman, & Roelofs, 2011; Pick, Mellers, & Goldstein, 2016; Reuber, 2009).  

The second aim of this PhD was to investigate how brain structures and related 

functions associated with emotion-motor interactions may be affected in a clinical 

population for which impairments in emotion processing and motor control are notable 

characteristics, namely PNES. To do this, I first adopting a systematic meta-analytical 

approach to the imaging literature in PNES (Chapter 3), and second employed whole-

brain cortical surface morphometric analyses of T1-weighted sMRI brain scans in a 

patient population with PNES and age- and gender-matched healthy controls (Chapter 

4).  

This chapter summarises the key findings from each study (Section 5.2), then 

draws conclusions from these key findings (Section 5.3). A discussion of the limitations 
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and strengths of this doctoral work is provided in Section 5.4 and Section 5.5 

respectively. This is followed by recommendations for future directions (Section 5.6). 

Lastly, I will draw some final conclusions form this body of work (Section 5.7). 

 

5.2. Summary of key findings 

  Study 1 presented in Chapter 2 examined the relationship between emotion and 

motor function by recording electrophysiological changes in the brain during the 

anticipation of angry, happy and neutral faces in 18 early adolescents (9 males aged 13-

15), 18 late adolescents (9 males aged 18-20) and 18 young adults (9 males aged 25-27). 

This study used an electrophysiological index of anticipation and motor preparedness, 

the contingent negative variation (CNV), as well as behavioural measures in the form of 

reaction time data to investigate motor output. In addition, I also investigated whether 

viewing angry, happy and neutral facial expressions would differentially modulate 

visual P1 peak amplitude and N170 amplitudes (as measured by peak to peak 

amplitude) within and between age groups. The main aim of this study was to gain an 

insight into how emotion-motor interactions may change at different stages of brain 

development, particularly during adolescence, a period of proposed heightened 

emotional reactivity. Again, to the best of my knowledge, this is the first EEG study that 

has attempted to do this in a neurotypical population involving 13-15 year olds. 

The results of this EEG study are largely consistent with previous studies 

showing developmental differences in electrophysiology (ERPs) and task performance 

(RTs) between early adolescents and the two older age groups (Bender, Weisbrod, 

Bornfleth, Resch, & Oelkers-Ax, 2005; Itier & Taylor, 2004a; Klein & Feige, 2005; 

Kuefner, De Heering, Jacques, Palmero-Soler, & Rossion, 2010; Perchet & Garcia-

Larrea, 2005; Segalowitz & Davies, 2004). However, contrary to my hypothesis that 

CNV amplitudes would be condition dependent, there were no significant effects of 



 192 

emotion on early/initial phases, late/terminal phases or total CNV during the 

anticipatory period, either within or between age groups. As noted in Section 2.4.2, it is 

unlikely that the CNV represent a unitary preparatory state encompassing all of the 

processes involved in action selection and movement preparation, and this may help 

explain why CNV amplitudes did not differ significantly between conditions.   

Notably, for the early adolescent group only, mean RTs were found to be 

significantly faster to happy faces relative to neutral faces, suggesting that for early 

adolescents a relatively faster and more accurate identification of happy faces may have 

occurred resulting in faster reaction times in happy trials compared to neutral trials. 

There were no significant differences in mean RTs in response to angry faces relative to 

neutral faces in any of the three age groups. This may suggest that, for the early 

adolescent group only, the observed heightened emotional responses to happy faces, in 

terms of faster mean RTs, may reflect increased reward seeking behaviours in this age 

group compared to the two older age groups. Supplementary post-hoc analyses revealed 

a weak relationship between tCNV amplitudes and mean RTs, but only in the neutral 

condition while controlling for other variables in the model. This again is consistent 

with previous studies showing a weak relationship between CNV amplitude and 

reaction time data (Rebert & Tecce, 1973; Smith, Johnstone, & Barry, 2006), which 

suggests the CNV may be a poor predictor of the speed of motor responses.  

Consistent with my hypothesis that viewing angry faces would lead to 

potentiation of early visually evoked potentials, both the visual P1 and N170 ERP 

components were found to be larger in response to angry faces relative to neutral faces 

but not happy faces, suggesting that early non-conscious automated attentional capture 

was facilitated by negative facial expressions over and above neutral facial expressions 

but not happy facial expressions (Batty & Taylor, 2003; Carretié, Hinojosa, Martín‐
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Loeches, Mercado, & Tapia, 2004). However, no significant condition by age group 

effect was found. 

 Study 2 presented in Chapter 3 used a systematic meta-analytical approach to 

critically appraise the evidence for the neurobiological correlates in PNES. The reasons 

for conducting this systematic meta-review were two-fold. First, at the time of this 

review, most of the available literature focusing on neuroimaging in PNES was not 

systematic and may have therefore not included important studies in this area. 

Additionally, no previous review into the neurobiological correlates in PNES had 

sought to examine, in any statistical way, convergence across the available studies to get 

a clearer understanding of the organic (rather than non-organic) correlates of this 

condition. I felt this was a useful and important approach which may have aided in the 

resolving of conflict between the studies reviewed, in addition to more clearly defining 

brain regions of interest for future studies. Second, traditional accounts of PNES have 

largely focused on psychosocial risk factors that might drive “psychosomatic” or 

“psychogenic” causation, largely ignoring the structural and/or functional substrates of 

PNES in the brain. This has accentuated psychological aspects over the physical 

correlates, and given that not all patients presenting with PNES have co-existing 

psychological issues or psychiatric disorders in addition to the fact that many patients 

with psychiatric disorders do not experience non-epileptic seizures, this suggests that 

psychological issues and/or psychiatric comorbidity is neither necessary nor sufficient 

for PNES (Edwards, Fotopoulou, & Pareés, 2013). While neuroimaging studies in 

PNES and other FNDs are still at a relatively early stage, these investigations are 

important to help reduce the stigma associated with these conditions and in clinical 

settings to better facilitate the communication of the relevant diagnosis. 
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In summary, the results of this systematic meta-review suggest that PNES may 

be associated with pathological brain abnormalities (in a relatively small percentage of 

patients) and/or changes in brain morphology and/or persistent or recurrent functional 

changes in the brain. These neurobiological correlates may act as predisposing, 

precipitating and/or perpetuating factors in PNES. For example, studies investigating 

brain pathology in PNES only patients (free of co-existing epilepsy) observed signs of 

brain disease or injury in roughly 25% to 34% of patients (Bolen, Koontz, & Pritchard, 

2016; Devinsky, Mesad, & Alper, 2001; Reuber, Fernandez, Helmstaedter, Qurishi, & 

Elger, 2002). Brain morphometry studies identified significant differences in cortical 

thickness and cortical volume between PNES patients and healthy controls in motor and 

premotor regions, the cerebellum, insula, orbitofrontal, enthorinal, and lateral-occipital 

regions (Labate et al., 2012; Ristić et al., 2015). Structural connectivity studies observed 

significant differences in the uncinate fasciculus which connects prefrontal and limbic 

regions, as well as the corona radiata and internal and external capsules associated with 

motor function (Hernando, Szaflarski, Ver Hoef, Lee, & Allendorfer, 2015; Lee et al., 

2015). PET studies investigating brain activation patterns in PNES patients compared to 

controls reported significant hypometabolism (lower glucose uptake) in the right 

inferior parietal/central brain region as well as bilateral anterior cingulate (Arthuis, 

Micoulaud-Franchi, Bartolomei, McGonigal, & Guedj, 2015) while SPECT studies 

investigating regional cerebral blood flow in PNES patients observed significant 

abnormalities in roughly 15%-30% of patients (Ettinger et al., 1998; Neiman, Noe, 

Drazkowski, Sirven, & Roarke, 2009; Varma et al., 1996). Brain activation and 

functional connectivity studies using PET and fMRI reported significant differences 

between PNES patients and healthy controls in brain regions associated with attention 

and regulatory processes, memory, emotion processing and sensory and motor function 
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(Arthuis, Micoulaud-Franchi, Bartolomei, McGonigal, & Guedj, 2015; Ding et al., 

2013, 2014; Li et al., 2014, 2015) while other resting state fMRI studies observed 

significant increases in functional connectivity in resting state networks associated with 

fronto-parietal activation, executive control, sensorimotor functions, emotion processing 

as well as the default mode network associated with self-awareness/sense of agency and 

consciousness (van der Kruijs et al., 2012, 2014). 

This systematic meta-review puts forward the evidence for an association 

between structural and functional brain abnormalities in patients with PNES which may 

contribute toward a biopsychosocial account of this condition. Indeed, the identification 

of such neurobiological correlates does not sit well with the understanding of PNES as 

being a purely “psychogenic” condition without any discernible “physical” correlates. A 

number of plausible psychophysiological hypotheses were put forward for the aetiology 

and maintenance of non-epileptic seizures, the most prominent involving emotion 

dysregulation (Arthuis, Micoulaud-Franchi, Bartolomei, McGonigal, & Guedj, 2015; 

Devinsky, Mesad, & Alper, 2001; Hernando, Szaflarski, Ver Hoef, Lee, & Allendorfer, 

2015; Labate et al., 2012; Lee et al., 2015; Ristić et al., 2015), the role of 

attention/hyper-vigilance (Ding et al., 2014; Li et al., 2014, 2015), self-

awareness/consciousness (Arthuis, Micoulaud-Franchi, Bartolomei, McGonigal, & 

Guedj, 2015) and dissociative traits (Ristić et al., 2015; van der Kruijs et al., 2012, 

2014).   

 Study 3 presented in Chapter 4, employed whole-brain cortical surface 

morphometric analyses of T1-weighted sMRI brain scans of 20 individuals with PNES 

free of co-existing epilepsy (14 females, mean age 41.05, range 19 – 62) and 20 age- 

and gender-matched healthy controls (14 females, mean age 40.65, range 21 - 61). First, 

I examined whether age-related changes in cortical thickness (controlling for gender) 
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differed between PNES and controls. Second, I examined whether group level cortical 

thickness results (controlling for age and gender) differed between PNES and controls. 

Third, I utilized a local Gyrification Index (lGI) to measures the degree of gyrification 

(gyral and sulcal formations) of the cerebral cortex in both PNES and controls. Finally, 

I conducted correlational analyses to explore the relationship between PNES clinical 

features and cortical thickness results. Again, the main reason for conducting this study 

partly mirrors the reasons given for conducting the systematic meta-review into the 

neurobiological correlates in PNES with regard to addressing the “dualistic” framework 

in which this condition is often framed and the stigma that is too often attached to 

PNES, both for patients and clinicians alike. Additionally, given the sparseness of 

replication in neuroimaging studies in PNES, I was interested to see whether I would 

observe similar results to those previously reported by Labate et al. (2012) and Ristić et 

al. (2015), reviewed in Chapter 3.  

In agreement with my hypothesis that I would find significant differences in 

cortical thickness in motor, frontal, occipital brain regions and brain regions associated 

with emotion processing in PNES compared to controls, the results of this study showed 

that, PNES patients showed increased cortical thickness in the left paracentral lobule, 

with the significant cluster spanning the primary motor and somatosensory cortex. 

These brain regions are involved in the planning, control and execution of movement. 

Cortical thickness increases were also found in occipital regions including the cuneus 

bilaterally and the left lingual gyrus. Cortical thickness decreases in PNES compared to 

controls were found in the right superior temporal gyrus, a brain region associated with 

multisensory integration (Karnath, 2001), the right medial orbitofrontal cortex, a brain 

region associated with emotion processing (Northoff, 2000), as well as the left and right 

pars opercularis (parts of the inferior fontal gyri). The inferior frontal gyri have been 
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associated with response inhibition and down-regulation of emotional responses (Aron, 

Robbins, & Poldrack, 2014; Morawetz, Bode, Baudewig, & Heekeren, 2017; Swick, 

Ashley, & Turken, 2008). These findings support the growing body of evidence 

suggesting that neurophysiological substrates are observable in PNES and that these 

neurophysiological substrates are localized to, amongst other regions, brain regions 

associated with sensory processing and sensory integration, emotion processing and the 

planning, control and execution of movement. This again implies the involvement of 

aberrant emotion-motor interactions in PNES. However, there was no evidence of 

atypical local gyrification patterns in PNES compared to controls, showing that in our 

sample, this additional facet of cortical structure was not associated with PNES. This 

will be discussed in more detail in Section 5.3.  

 

5.3. Conclusions from key findings 

The doctoral work presented in this thesis found plausible evidence for the 

neurophysiological underpinnings of aberrant emotion-motor interactions in patients 

with PNES (Chapter 3 and Chapter 4) but failed to find any significant developmental 

differences in motor preparation as indexed by the CNV during the anticipation of 

negative, positive and neutral outcomes (emotional facial expressions) (Chapter 2). 

Although no significant differences were found for the CNV in Chapter 2, the ERP 

results were mostly in agreement with previous ERP studies investigating the 

developmental trajectories of the visual P1 and the N170 ERP components. In addition 

to which both the visual P1 and the N170 were found to be larger in amplitude in 

response to the angry faces compared to the neutral faces. This suggests that threat 

detection can occur as early as 95 ms post stimulus onset, but again no significant age-

group differences were found.  
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Because the CNV results are not in agreement with previous studies showing the 

modulation of motor preparation and action by emotion (Carretié, Mercado, Hinojosa, 

Martın-Loeches, & Sotillo, 2004; Casement et al., 2008; Coombes, Cauraugh & 

Janelle., 2006; Coombes et al., 2009; Hart, Lucena, Cleary, Belger, & Donkers, 2012; 

Nogueira-Campos et al., 2014; Perri et al., 2014; Schutter, Hofman, & Honk., 2008), it 

is possible that this study may have failed to tap into affective biases during the 

anticipatory period/preparatory state resulting in little to no modulation of anticipatory 

behaviour as indexed by the CNV. This may have occurred principally for the following 

reason and this may be the most plausible explanation. Again, as noted in Section 2.4.2., 

the CNV may not represent all aspects of motor preparation. It is possible that while the 

CNV is generally believed to be an index of motor preparation when an action is 

required, that the CNV as measured in this study (stimulus locked to S1), may have 

failed to capture other aspects of motor preparedness, namely action selection and other 

processes involved in emotion processing for example. This might help to explain why I 

did not find significant differences between conditions in addition to the weak 

relationship between mean CNV amplitudes and mean RTs. As suggested in Section 

2.4.2, incorporating a complementary approach to try and answer these hypotheses 

regarding emotion-motor interactions would be useful. This could be done by using 

multiple indices of motor preparation and action, one stimulus-locked to S1, a second 

stimulus-locked to S2 and the third stimulus-locked to the participants response (button 

press) in addition to measures of the accuracy (button press errors) and the speed of 

motor responses (RTs).    

There are however two other plausible explanations for these findings. First, the 

timing of the stimuli presentations may not have been effectual in modulating motor 

preparation. For example, displaying the affective pictures during the anticipatory 
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period between the cue/warning stimulus (S1) and the target/imperative stimulus (S2) 

may have had more of an effect on motor preparation. In addition, this would remove 

the need for robust associative learning between S1 and S2 which may not have been 

sufficiently strong in this study to incite changes in the CNV. The second alternative 

reason for these non-significant findings could be due to the emotional face stimuli used 

in this experiment and the nature of the experiment itself. While one cited study 

observed significant differences in motor function with the use of emotional faces 

compared to neutral faces (Schutter, Hofman, & Honk, 2008), in my experiment no 

such effect was found either within or between age groups. Furthermore, previous fMRI 

studies have observed greater amygdala activity in adolescents compared to children 

and adults when viewing emotional facial expressions compared to neutral facial 

expressions (Hare et al., 2008; Monk et al., 2003). However, and again, this may not 

have occurred in this study resulting in similar amygdala activation patterns across the 

three age groups. This was further confirmed by non-significant age group differences 

for the visual P1 and N170 in response to angry, happy or neutral facial expressions. 

Therefore, it is possible that the use of faces in this experiment did not garner the 

sufficient arousal needed to alter, in any significant way, brain circuitry involved in 

motor preparation as indexed by the CNV (possibly via amygdala-SMA connectivity), 

and therefore CNV amplitude at the within- or between-subjects level did not differ 

significantly between conditions.  

In addition, it is also possible that the use of predictive cues forewarning the 

nature of the upcoming stimuli, in this case angry, happy, and neutral facial expressions, 

may have actually reduced responses of the emotional network, especially given the 

three seconds delay between the predictive cue offset and the onset of the faces. 

Responses of the emotional network may have been further reduced through habituation 
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effects over the course of experiment. Therefore, future work is needed to better 

delineating valance dependent changes in motor preparation and action by either using 

images that elicit greater arousal in participants or by presenting the emotional facial 

expression during the anticipatory period rather than at the end of said period. In 

summary, future studies investigating the effects of emotion on motor function may 

want to consider designing a series of experiments using different emotional stimuli 

onsets (S1 onset, S2 onset, and between S1 and S2) in addition to multiple indices of 

motor preparation and action spanning the time period from perception (S1 onset) to 

action (button press response), as has been suggested above.  

However, the findings presented in Chapter 3 and Chapter 4 did find evidence of 

atypical neurophysiology in PNES. This may help to explain how altered emotion-

motor interactions in PNES facilitate and perpetuate symptoms. A number of key 

themes emerged from the findings presented in Chapter 3. The key themes pointed to 

the possible involvement of psychopathology and psychophysiological factors in the 

aetiology and maintenance of PNES. The psychophysiological factors implicated 

represent the neurobiological underpinnings of emotion dysregulation, maladaptive 

attention allocation and hyper-vigilance, impairments in self-awareness/self-

consciousness, and/or dissociative states in PNES. How these relate to emotion-motor 

interactions will be discussed next with the emphasis being on emotion processing and 

limbic-motor interactions. 

In terms of altered emotion processing in PNES, a number of studies observed 

greater structural and functional connectivity between limbic (insula/amygdala) and 

prefrontal regions (dorsolateral, orbitofrontal, anterior cingulate cortex) in PNES 

compared to controls (Hernando, Szaflarski, Ver Hoef, Lee, & Allendorfer, 2015; Lee et 

al., 2015; van der Kruijs et al., 2012, 2014). This may represent an underlying 
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vulnerability to emotion dysregulation in this group whereby altered prefrontal-limbic 

connectivity results in less effective top-down control of sensorimotor and affective 

responses. Additionally, a number of studies observed atypical activation patterns in 

PNES patients in cingulate, insular and/or amygdalar regions which may further disrupt 

the regulatory functions of the prefrontal cortex (Arthuis, Micoulaud-Franchi, 

Bartolomei, McGonigal, & Guedj, 2015; Neiman, Noe, Drazkowski, Sirven, & Roarke, 

2009), thereby making it more difficult to either down-regulate or in other instances up-

regulate behavioural responses in PNES. Interestingly, a recent task-based fMRI study 

in which participants were required to either up-regulate or down-regulate their 

emotional responses to aversive and neutral pictures noted that successful down-

regulation of emotions was predictive of increased coupling between left inferior frontal 

gyrus and dorsal prefrontal regions while successful up-regulation of emotions was 

associated with increased coupling of the left amygdala, orbitofrontal cortex, anterior 

cingulate and other prefrontal regions (Morawetz, Bode, Baudewig, & Heekeren, 2017). 

It is possible that in PNES, alterations in these networks represent a vulnerability to 

disruption of the regulatory functions of the prefrontal lobe thereby perpetuating 

emotion dysregulation.  

Moreover, atypical activation patterns in cingulate, insular and/or amygdalar 

regions may reflect greater attention allocation to external threat (via amygdala) and/or 

an altered recognition of internal bodily states (via insula). This may help to explain 

why studies have observed greater attentional bias to negative stimuli in PNES (Bakvis 

et al., 2009), while other studies have observed reduced awareness of internal bodily 

signals in functional movement disorders (Ricciardi et al., 2016). Further, atypical 

cortical thickness and cortical volume in prefrontal, motor, occipital and limbic regions 

of the brain observed in PNES may represent, again, a vulnerability to less effective 
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control by higher-order prefrontal brain regions over lower-order limbic activation 

patterns and motor functions of the brain (Labate et al., 2012; Ristić et al., 2015). For 

example, Labate et al. (2012) reported negative correlations between depression scores 

and atrophy of the right superior frontal gyrus and orbitofrontal sulcus and negative 

correlations between dissociation scores and atrophy in the left inferior frontal gyrus. 

Ristić et al. (2015) reported negative correlations between disease onset and cortical 

thickness in the left insula. Again, these findings further implicate alterations in 

prefrontal and limbic structures in PNES which may lead to depressive episodes and/or 

represent a vulnerability to PNES onset. 

Interestingly, the findings presented in Chapter 4 partly corroborate but also 

differ from the morphometry-based MRI findings in PNES previously described by 

Labate et al., 2012 and Ristić et al., 2015.  Results are partly similar in terms of the 

affected brain areas but differ somewhat in terms of the direction of the results. In this 

study I found that patients with PNES showed decreased cortical thickness compared to 

controls in the right superior temporal gyrus associated with multisensory integration 

(Karnath, 2001) and the right medial orbitofrontal cortex associated with emotion 

processing (Northoff, 2000). This study also found that compared to healthy controls, 

patients with PNES showed decreased cortical thickness in regions associated with 

response inhibition and emotion regulation (Aron, Robbins, & Poldrack, 2014; 

Morawetz, Bode, Baudewig, & Heekeren, 2017; Swick, Ashley, & Turken, 2008), 

namely the left and right pars opercularis (inferior frontal gyri). Again, Labate et al. 

(2012) found that cortical thickness in the left pars opercularis in PNES patients 

negatively correlated with dissociation scores, suggesting that higher dissociation scores 

were associated with decreases in cortical thickness in this region of the brain. 

However, it is difficult to make an equivalent inference between dissociation and the 
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results presented in Chapter 4, as I was unable to directly measure the tendency to 

dissociate in this study.  I also observed increased cortical thickness in PNES patients 

compared to controls in the left paracentral lobule, with the significant cluster spanning 

both the primary motor cortex and primary somatosensory cortex. Again, these areas are 

associated with, amongst other things, the planning, control and execution of movement 

(Borich, Brodie, Gray, Ionta, & Boyd, 2015).  

The study presented in Chapter 4 also found cortical thickness increases in 

PNES in occipital regions involved in visual processing (Macaluso, Frith, & Driver 

2000; Vanni, Tanskanen, Seppa, Uutela, & Hari, 2001), namely the cuneus bilaterally 

and the left lingual gyrus. A recent fMRI study conducted by Ding and colleagues 

(2014) found that increased long-range functional connectivity density of occipital 

regions (right calcarine fissure and bilateral lingual gyri) correlated with disease 

duration in patients with PNES. The authors proposed that changes in functional 

connectivity in this region may reflect long-term hypervigilance and increased 

sensitivity to external stimuli. While the study presented in Chapter 4 does provide 

some support for their findings, I found a positive trend towards increases in cortical 

thickness in the cuneus bilaterally and symptom severity in PNES, no significant 

correlation was found between cortical thickness results in occipital regions and 

duration of PNES. Taken together, the observed differences in cortical thickness and 

cortical volume between patients with PNES and healthy controls in the three 

morphometric studies described above suggests that atypical neuroplasticity in 

(pre)frontal and limbic cortical regions may be implicated in precipitating and/or 

perpetuating PNES symptomatology. These changes in brain morphology may be the 

result of prolonged periods of stress or historical trauma exposure (Cohen et al., 2013; 

Kelly et al., 2013; Labate et al., 2012; Perez et al., 2015).  
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It must be noted here that I failed to find any significant differences in the 

degree of gyrification in PNES compared to controls in addition to finding no 

significant differences in cortical thickness between PNES patients with reported 

trauma exposure and PNES trauma naïve patients. As stated in Section 4.4, this finding 

may be surprising given the relevance of neglect and trauma in early life to the 

development of PNES (Bewley, Murphy, Mallows, & Baker, 2005; Holman, Kirkby, 

Duncan, & Brown, 2008; Kooiman et al., 2004; Novakova, Howlett, Baker, & Reuber, 

2015) and that atypical gyrification patterns have been observed in children exposed to 

maltreatment (Kelly et al., 2013). Again, as stated in Section 4.4, it is possible that the 

neglect or trauma which may be relevant to PNES affects individuals after the 

developmental phase in which gyrification patterns are largely determined. And again, 

neglect or trauma in early life is not a necessary precondition to the development of 

PNES (Brown & Reuber, 2016b). 

In addition, from a purely neurodevelopmental perspective, one might have 

expected to see a greater degree of gyrification in regions/clusters of the cortex 

neighbouring the gyri that showed decreases in cortical thickness in PNES compared to 

controls. This is also the case for regions of the cortex that showed increases in cortical 

thickness in PNES compared to controls but this time in the opposite direction, i.e., 

greater cortical thickness equals lower lGI indices. Studies have shown that decreases in 

cortical thickness are generally associated with increases in cortical folding patterns, 

which in turn show a positive relationship with surface area and brain volume 

(Hogstrom, Westyle, Walhovd, & Fjell, 2013; Gautam, Anstey, Wen, Sachdev, & 

Cherbuin, 2015). This suggests that the processes involved in changes to brain 

morphology during early developmental stages are geared toward increasing 

computational power by maximizing surface area and cortical folding patterns rather 
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than increasing cortical thickness (Hogstrom, Westyle, Walhovd, & Fjell, 2013). In fact, 

it has been noted elsewhere that thicker cortices are often found in gyral crowns 

compared to sulcal walls and fundi (Welker, 1990; Dubois et al., 2019).  

The folding patterns observed in both human and animal brains are the result of 

a complex process driven by forces that directly affect the structure and connectedness 

of the cerebral cortex (Hogstrom, Westyle, Walhovd, & Fjell, 2013; Zilles, Palomero-

Gallagher, & Amunts, 2013). This involves changes to microstructural properties such 

as neuronal migration and orientation, axonal proliferation, synaptogenesis, glial growth 

and synaptic pruning during different stages of early cortical development and 

organization (Dubois et al., 2019). Mechanical models of cortical folding patterns have 

proposed that gyrification patterns may represent the differential growth trajectories of 

the gyri versus the sulci (Lefèvre & Mangin, 2010) or the outer cortical layers (I-III) 

versus inner cortical layers (V-VI)(Armstrong et al., 1991) or the tension applied by 

glial and axonal fibers on the cortical surface during development resulting in 

functionally similar regions coming together to facilitate cortico-cortical connections 

(Van Essen, 1997). With this in mind and because I observed significant differences in 

cortical thickness but not gyrification patterns between PNES and controls, these 

findings again suggest that early stages of cortical development may not be important in 

PNES, but that plastic changes in the cortical mantle may be of significant importance 

to this condition.  

 Further, in relation to emotion-motor interactions in PNES, a number of studies 

presented in Chapter 3 observed greater functional connectivity between limbic 

(insula/amygdala), anterior cingulate, motor and somatosensory regions (SMA, pre- and 

postcentral gyri, paracentral lobule) in PNES compared to controls (Ding et al., 2014; Li 

et al., 2014, 2015; van der Kruijs et al., 2012, 2014). This coupling between limbic and 
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motor regions, particularly the insula, amygdala, precentral and SMA, may mediate the 

effects of emotion on motor function, whereby actions are performed or inhibited in an 

automated bottom-up way. For example, the SMA is associated with the sequential 

selection of motor programs in response to internally generated cues or triggers, the 

urge to move (Passingham, 1993) while the precentral gyrus is involved in the control 

of voluntary movements in response to external stimuli (Debaere, Wenderoth, Sunaert, 

Van Hecke, & Swinnen, 2003). The insula is associated with interoceptive signals, 

emotional experiences and self-awareness (Craig, 1996, 2009, 2010) while the 

amygdala is associated with the processing of emotionally salient external stimuli 

(Anderson & Phelps, 2001). Therefore, increased activity in amygdalar and insular 

regions due to either hyper-arousal or hyper-vigilance combined with hyper-

connectivity between these regions and motor cortical areas, coupled with less effective 

top-down control from prefrontal regions, may represent both predisposition to, and 

perpetuation of, aberrant emotion-motor interactions in PNES. 

However, conclusions derived from Chapters 3 and Chapter 4 should be 

tempered by a number of limitations. First, none of the studies reviewed in Chapter 3 

were rated as being of high quality. Second and a related point, only 17.6% of the 

studies reviewed in Chapter 3 had sample sizes that were considered good (comparative 

group sizes ≥ 50). This issue was replicated in Chapter 4 and although significant 

attempts were made to increase sample size, these attempts were not successful in the 

end. I will discuss this further in the limitations section below (Section 5.4). 

Additionally, many of the studies presented in Chapter 3, and this includes, although 

less so, Chapter 4 as well, hypothesised that emotion dysregulation may be a key 

component of PNES. However, no study attempted to directly measure emotion 

processing in PNES, either through psychometrics, physiological recordings (skin 
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conductance response (SCR) or heart rate variability (HRV)) or in the majority of 

studies by using task-based methods. Therefore, a certain degree of reverse inference 

was often used when interpreting the results. An attempt was made to incorporate 

questionnaire based measures of emotional and functional well-being in Chapter 4, but 

again this was unsuccessful. Again, I will discuss this further in the limitations section 

below (Section 5.4). Furthermore, there was no clear agreement across the studies 

presented in Chapter 3 and in Chapter 4 in terms of laterality effects (left versus right 

hemisphere). Further, based on the results presented in Chapter 3 and Chapter 4, it is 

unclear whether the imaging results represent pathophysiology in PNES alone or 

whether the imaging results are more closely related to comorbid psychopathology. 

Indeed, more than half of the studies presented in Chapter 3 failed to exclude PNES 

patients with co-existing psychopathologies and/or didn’t control for this in their 

analyses nor did they include a control group with psychiatric conditions free of co-

existing PNES. This was also the case for Chapter 4.  

A final point relates to the participants involved in the imaging studies discussed 

above. It is likely that many if not most of the participants recruited or whose data was 

retrieved retrospectively, came from highly specialised centres and may have therefore 

represented the most severely affected PNES patients, so the prevalence of atypical 

patterns observed in brain structure and/or function may not be truly representative of 

the wider PNES population. Furthermore, these patients may have been taking 

anticonvulsants and/or other psychopharmaceuticals for longer periods and at higher 

dosages than other PNES patients not attending these specialist centres and many of the 

studies reviewed in Chapter 3 in addition to the study presented in Chapter 4 did not 

attempt to control for this in their analyses. Lastly, the observed lack of convergence 

found across the studies presented in Chapter 3 points to weak associations between 
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brain structure and function and PNES symptomatology. However, atypical structural 

and functional correlates were observed in PNES and while differences between studies 

are evident, these inconsistencies are likely to reflect divergent aetiological factors and 

heterogeneity in patients with PNES.  

 

5.4. Limitations 

There are several limitations which need to be considered when interpreting the 

conclusions presented in this thesis. Some of these are methodological and others are 

theoretical. These will be discussed next. 

The first methodological limitation relates to underpowered sample sizes, both 

for Chapter 2 and for Chapter 4. In relation to Chapter 2, every attempt was made to 

increase the sample size by using a diverse range of recruitment methods including 

online social media platforms, flyers distributed to local schools, cafes, and businesses, 

and via email invitation to online staff and student volunteer lists maintained by the 

UoS Psychology Department. However, recruiting additional participants was 

challenging, particularly with regards to those aged between thirteen and fifteen. This 

meant that the final sample (n = 18 per group) was likely underpowered. Further, this 

made it difficult to have any degree of confidence if I conducted additional analyses by 

entering additional variables into the regression models, where sample sizes larger than 

30 are generally required, or in the mixed analyses of variance where it is generally 

recommended that the sample size should be several times the magnitude of the number 

of variables entered. However, it should be noted that the sample in this EEG study is 

comparable to other similar studies in this area.  

A related point, and a further limitation of the EEG study presented in Chapter 2 

relates to the potential impact of pubertal development on anticipatory processes linked 
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to motor preparation and the potential impact of pubertal development on early visually 

evoked potentials. This is because in addition to age-related changes in total brain 

volume and age-related changes in the underlying tissue types, sex-specific 

developmental changes in the brain have also been reported (Dennison et al., 2013; 

Giedd et al., 1996; Giedd, 2004; Lenroot et al., 2007; Neufang et al., 2008; Sowell, 

Trauner, Gamst, & Jernigan, 2002). These findings suggest that puberty and sex-

specific hormone levels may result in significant sex-related changes to cortical and 

subcortical brain development and organization. Therefore, when comparing the early 

adolescent group to the two older age groups, the potential mismatch between male and 

female brain maturation in the early adolescent group, with females generally shown to 

mature earlier than males (Giedd, 2004; Geidd et al., 1996; Lenroot., 2007; Sowell, 

Trauner, Gamst, & Jernigan, 2002), may have resulted in an obscuration of significant 

differences which may have been found if I restricted analyses to one sex only or if I 

entered sex as a covariate. However, this limitation was to some degree tempered by 

having gender-matched groups in this study. 

In relation to the sMRI study in PNES presented in Chapter 4, again every 

attempt was made to increase the sample size by setting up of an additional NHS data 

collection site in Wolverhampton. This prolonged data collection by roughly four to six 

months and although everything had been agreed and ethical approval had been granted, 

unfortunately final compliance was not given due to the lack of sufficient funds to cover 

the costs. During this time many attempts were made to identify additional potential 

participants from the Royal Hallamshire Hospital through contacts in the 

electrophysiology Department and meetings with consultant neurologists to whom I 

provided information about the study. While fifty-three 3T T1-weighted MRI brain 

scans of patients with PNES were retrieved from the Royal Hallamshire Picture 
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Archiving and Communications System (PACS) office, many had to be excluded due to 

parts of the brain not being captured in the field of view (FOV), others excluded due to 

lack of video-EEG recordings and others had to be excluded due to subsequent 

identification of co-existing epilepsy in these patients. The original sample size for this 

study was one hundred, fifty PNES and fifty age- and gender-matched healthy controls. 

In addition to the attempts made to increase sample size, attempts were also 

made to include additional demographics and measures pertaining to clinical outcome 

and emotional well-being. For each participant whose PNES diagnosis was confirmed 

and for whom I had a suitable MRI brain scan, a questionnaire pack was posted to that 

participant. If there was no response, a follow up reminder letter with a second copy of 

the questionnaire pack was posted one month later. Participants who responded received 

a £10 shopping voucher. The demographic questionnaire enquired about age, gender, 

employment status and level of education, the onset and duration of their disorder. 

Additional measures included - The Work and Social Adjustment Scale (WSAS), a self-

report scale of functional impairment attributable to an identified problem, in this study 

PNES (Mundt, Marks, Shear, & Greist, 2002), The Difficulties in Emotion Regulation 

Scale (DERS), a brief 36-item self-report questionnaire designed to assess multiple 

aspects of emotion dysregulation (Gratz & Roemer, 2008), The State-Trait Anxiety 

Inventory (STAI, Spielberger, Gorsuch, & Lushene, 1970), The PHQ-9, a 9-item 

depression module from the full PHQ, a reliable and valid measure of depression 

severity (Arroll et al., 2010; Kroenke, Spitzer, & Williams, 2001), The Reuter and 

Montag's revised Reinforcement Sensitivity Theory Questionnaire (rRST-Q), a self-

report inventory measuring individual differences in the revised behavioral inhibition 

system (BIS), behavioral activation system (BAS) and the fight, flight, freezing system 

(FFFS) (Reuter, Cooper, Smillie, Markett, & Montag, 2015), and lastly The Lifespan 
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Inventory of Affect and Trauma, a measure of subjective experiences of trauma, 

attachment, and affect across the entire lifespan, dividing experiences into the 

developmental stages of childhood, adolescence, and adulthood. Unfortunately, of the 

twenty posted, only two completed questionnaires were returned and therefore the 

planned multiple regression analysis (PNES group only) including these measures and 

the significant cortical thickness differences found between PNES and healthy controls 

was not conducted. 

In relation to the systematic meta-review in Chapter 3, a very small number of 

imaging studies were entered into the coordinate-based ALE meta-analyses. The 

number of studies entered into the coordinate-based ALE meta-analyses would of 

course been larger if I had included imaging studies of other FNDs. However, for the 

systematic meta-review I wanted to focus solely on PNES rather than including 

additional imaging studies of other FND sub-groups, particularly conditions in which 

symptoms were either of a negative nature (functional limb weakness or paralysis, 

hearing or visual impairments) or predominantly characterised by somatic symptoms 

(fibromyalgia, irritable bowel syndrome). Including additional sub-types would have 

made interpretations more difficult. Also, imaging studies in FND often do not report 

the full range of symptoms included in the sample and so additional stratified subgroup 

analysis based on semiology may not have been possible in any case. 

The theoretical limitation relates to the inferences made about emotion 

dysregulation in PNES. While the psychophysiological evidence underpinning altered 

emotion processing in PNES was found, both in the systematic meta-review and the 

sMRI study, suggestions that changes in brain structure and/or function represents a 

vulnerability to emotion dysregulation in PNES is not yet conclusive. This is because 

conclusions drawn about emotion dysregulation are not completely justified given that 
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most studies supporting this view did not use any additional measures of emotion 

processing, i.e., task-based methods with simultaneous physiological recordings such as 

SCR, HRV, and/or collected psychometric data on the use of emotion regulation 

strategies. Therefore, future studies will need to address these limitations by adopting 

multimodal approaches in conjunction with a detailed medical history when dealing 

with individuals who have PNES. Advances in these areas will allow for a better and 

more detailed understanding of the neurobiological correlates of this disorder, which 

may have implications for both diagnosis and better treatment options. 

A final limitation relates to structural imaging techniques used in research, in 

this case PNES and brain development, from which conclusions are derived. In brief, 

structural MR images of the brain are based on signal intensity values and tissue 

contrasts derived from proton density (number of hydrogen protons in a given imaged 

voxel of tissue) and T1 and T2 relaxation, two independent processes that describe the 

time constant of recovery (T1 relaxation) and decay (T2 relaxation) of the MR signal 

following the application of multiple radio-frequency pulses and the selected slice 

encoding and frequency encoding gradients. White matter tissue has a short T1 which 

results in a high MR signal and appears bright on a T1-weighted image and dark on a 

T2-weighted image. Grey matter tissue has a long T2 and appears dark on a T1-

weighted image and bright on a T2-weighted image. It is these differences in the 

electromagnetic properties of tissue in the brain (particularly water and fat content) 

which allow for the segmentation of different tissue types. Therefore, changes in signal 

intensity values and contrasts undoubtedly effect the measurement of grey matter. The 

possibility for misclassification of tissue in the brain and subsequent erroneous 

measurement and interpretation remains an important consideration (Mills et al., 2016). 

In addition, the use of different automated brain segmentation algorithms may also lead 
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to heterogeneity of results across studies (Walhovd, Fjell, Giedd, Dale, & Brown, 

2016). Perhaps more importantly, MR images of the brain are only a representation of 

the underlying anatomy, representations which require interpretation. That is to say, 

anatomical measurements derived from the MR signal are at best an approximation 

based on signal intensity values and contrast properties which are prone to influence 

during the MR scan itself (magnetic field inhomogeneities and subject motion – 

particularly relevant in young children or toddlers, or patients) and subsequent 

segmentation of tissue types (Lerch et al., 2017; Walhovd, Fjell, Giedd, Dale, & Brown, 

2016).  

5.5. Strengths 

One of the main strengths of this doctoral work is that it examines emotion-

motor interactions in two populations which, until very recently, have been largely 

overlooked, namely during neurotypical adolescence and in patients experiencing non-

epileptic seizures. This is true of both the affective neuroscience community and also in 

the realm of movement neuroscience. A further strength of this doctoral work is it’s use 

of distinct brain imaging techniques and behavioural measures (EEG, RTs, sMRI) and 

the use of a valuable tool to investigate the strengths and limitations of the existing 

literature into the structural and functional correlates in PNES, namely the coordinate-

based activation likelihood estimation method or ALE that I used in the systematic 

meta-review presented in Chapter 3.  

While the results presented in Chapter 2 are somewhat inconclusive, the 

methodological approach adopted for this study does have its strengths. As noted in 

Section 1.4.2, many neurodevelopmental studies have a number of limitations. First, 

from a developmental perspective, age categorization has certainly been a significant 

limitation in previous EEG developmental studies. Given the numerous brain changes 
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that occur in the transition from adolescence to adulthood, in this study I restricted the 

age ranges to a minimum of two years between participants in each age group thereby 

avoiding the confound of having different developmental stages (e.g. child and 

adolescent) in the same age group. Further, with respect to measuring ERP components 

from a developmental perspective, given that children, adolescents and adults appear to 

show different brain activation patterns due to differential recruitment of brain regions 

(Segalowitz & Davies, 2004), it is likely that when completing the same task, possibly 

involving taxing cognitive demands, children, adolescents and adults may employ 

different strategies and engage different cortical and subcortical regions of the brain in 

order to accomplish the same goal (Flores, Digiacomo, Meneres, Trigo, & Gómez, 

2009; Killikelly & Szűcs, 2013; Segalowitz & Davies, 2004). Therefore, the 

experimental paradigm used in this EEG experiment was both simple in terms of low 

cognitive demands and effective in capturing the components under investigation and 

therefore this improved the likelihood of capturing any real electrophysiological 

differences between the age groups. In addition to which, each age group was matched 

for gender, so although I did not enter gender as an additional between subjects’ factor 

in the analyses, having the same ratio of females to males helped to alleviate further 

confounds in this study. Further, because in this study the ERP components were found 

to be mostly consistent with previous studies in this area, the findings of this study can 

be considered to be fairly robust and therefore inferences drawn can be viewed with a 

certain degree of confidence.  

Again, while the systematic meta-review into the neuroimaging studies in PNES 

presented in Chapter 3 was inconclusive, this study has added to our knowledge and 

understanding of the existing neuroimaging literature in PNES and in turn has added to 

our understanding of the neurobiological substrates of emotion-motor interactions in 
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this patient population and contributed toward a biopsychosocial account of this 

condition. In addition, Chapter 3 put forward a number of key considerations and 

possible future directions that may prove useful for other researchers investigating the 

neurobiological basis of PNES in the future. In fact, the sMRI study presented in 

Chapter 4 attempted to address some of the limitations highlighted in Chapter 3. These 

included making sure that the groups were matched for age and gender, excluding MRI 

scans of patients who presented with other FNDs, making sure that each MRI scan 

included in the analysis had come from a patient with a PNES diagnosis confirmed by 

video-EEG recordings of typical attacks, a confirmed PNES diagnosis by a Consultant 

Neurologist at the Royal Hallamshire Hospital, and the exclusion of any MRI scans that 

had come from patients with a mixed seizure disorder (PNES and co-existing epilepsy) 

or MRI scans that showed signs of clinically significant brain abnormalities, for 

example hippocampal reductions suggestive of mesial temporal sclerosis or T2 

hyperintensities which may have reflected mini strokes. A further concern I became 

aware of when reviewing the literature for the systematic meta-review presented in 

Chapter 3, and this has been raised by others also when it comes to FND and somatic 

symptoms research more generally (Bègue, Adams, Stone, & Perez., 2019), was the 

lack of additional analyses involving the imaging results and clinically relevant 

characteristics of the patient population involved, for example symptom severity, 

duration of illness, age at onset etc. Therefore, in the study presented in Chapter 4, I 

conducted correlational analyses to investigate the relationship between brain regions 

that showed increases or decreases in cortical thickness in patients with PNES 

compared to controls with clinical features in patients with PNES (age at onset, duration 

of symptoms, symptom severity, and number of antiepileptic drugs taken). An 

additional strength of this study is that I also conducted additional within-subjects 
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analysis of both cortical thickness and gyrification patterns between PNES patients who 

had reported traumatic experiences and PNES patients who had not. This was important 

as trauma exposure, historical neglect, and abuse is often cited as a significant risk 

factor in PNES (Bakvis et al., 2009; Brown & Reuber, 2016a; Kaplan et al., 2013; 

Labate et al., 2012; Perez et al., 2015). 

 

5.6. Future directions 

 In both Chapter 3 and Chapter 4 I highlight the heterogeneous nature of PNES, a 

multifactorial biopsychosocial condition for which we still have no clear and easily 

demonstrable cause. In fact, to date no single psychosocial variable has proved either 

necessary nor sufficient to the aetiology and maintenance of PNES (Edwards, 

Fotopoulou, & Pareés, 2013) and inconsistencies in the literature regarding the 

neurobiological substrates is evident. Furthermore, while much progress has been made 

in the last decade or so, we still lack a clear understanding of whether structural and/or 

functional changes found in the brain in PNES represent a predisposition to, or are a 

consequence of the disorder (Mcsweeney, Reuber, & Levita., 2017; Mcsweeney, 

Reuber, Hoggard, & Levita., 2018). In an attempt to address these limitations, in 

particular the question regarding predisposition to or consequence of, future 

neuroimaging studies investigating the neurobiological basis of PNES should adopt 

longitudinal methods capturing a wide range of demographic, neurodevelopmental, and 

clinical data and be of sufficient size and scope to involve relevant control groups, 

primarily psychopathology controls free of PNES and groups of individuals with trauma 

exposure who are not also experiencing PNES. In addition, larger sample sizes would 

allow for both between-subjects analyses (patients > controls) and within-subjects 

analysis (FND sub-types or PNES sub-types). This would allow for a better 

understanding of the relationship between any significant neuroimaging findings and 
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clinical features. There is however one caveat related to how we measure clinical 

features and I will highlight this in the next paragraph. 

 One criticism of the studies reviewed in Chapter 3, and this is true of Chapter 4 

also, relates to how inferences are made about hypothesised emotion regulation deficits 

and maladaptive emotion-motor interactions and/or disturbances in information 

processing and dissociative states in PNES. These inferences are often made primarily 

based on group-level analyses which show alterations in the structure and/or function of 

the brain in PNES, yet these studies often fail to empirically test the theories proposed. 

Rather, these studies often rely on correlates between the imaging results and self-report 

measures of symptom severity and occurrence, emotion processing and/or levels of 

dissociative symptoms. However, we know that self-report measures may not be that 

reliable because prior beliefs and expectations about illness can, in some instances, lead 

to the overreporting of symptoms and symptom severity (functional tremor versus 

organic tremor for example; Pareés et al., 2012). This may be especially true when 

applied cross-sectionally in small sample sizes. Due to the inherent anatomical variation 

across participants and questions surrounding the validity of clinical measures based on 

self-reports, it is of course possible that some of the findings presented in this thesis 

may be incidental to PNES and therefore serendipitous, i.e. false positives. 

 Therefore, I propose that future work in PNES, and indeed other functional 

movement disorders, should focus on using experimental paradigms that directly test 

the theories put forward in this thesis. This is not to negate the relevance of 

psychosocial factors as they are of course of great importance in formulating both future 

testable hypotheses and clinical diagnosis (Bodde et al., 2009), but rather this can 

represent a shift in emphasis from the psychological to a more integrative approach 

while still allowing for the inclusion of psychosocial risk factors.  
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A number of neuroimaging studies cited in this thesis have taken such an 

approach, i.e., employed experimental paradigms to investigate emotion-motor 

interactions using emotional stimuli in patients with FNDs (Aybeck et al., 2015; 

Blakemore, Sinanaj, Galli, Aybek, & Vuilleumier., 2016; Fiess, Rockstroh, Schmidt, & 

Steffen, 2015; Hassa et al., 2017; Szaflarski et al., 2018; Voon et al., 2010a). While 

these studies are limited in number, they have been informative and further our 

understanding of emotion-motor interactions in FNDs. However, they all suffer from 

small sample sizes (20 or less patients per group), in most cases are of low temporal 

resolution (fMRI studies), and are not so easily comparable given the diverse FND sub-

types included in the different studies, and only one study specifically included patients 

with PNES with generalized motor (tonic–clonic-like) symptoms (Szaflarski et al., 

2018). Therefore, further work is needed in this area in an attempt to add to our 

knowledge base, particularly in patients with PNES. 

I suggest that although I failed to find significant condition dependent changes 

in the CNV in Chapter 2 (possibly due to the neurotypical sample and the way in which 

I analysed the CNV data), EEG measures of emotion-motor interactions in PNES and 

other functional movement disorders may provide an important direction for future 

studies. One possible way forward would be to use experimental paradigms similar to 

the one I used in Chapter 2, i.e., an emotional variant of the S1 – S2 CNV paradigm 

which takes into account multiple complementary indices of motor preparation and 

action, as suggested in Section 2.4.5. Such future studies could adopt a multimodal 

approach encompassing both electrophysiological recordings and behavioural measures 

with concurrent fMRI in addition to questionnaire based measures. The advantage of 

using such an approach would allow for the investigation of pre-movement-related 

neural activity in addition to movement instigation and subsequent action with better 



 219 

temporal resolution and source localisation during the anticipation of, or in response to, 

emotionally salient stimuli.  

As stated in Section 1.4, the intention to produce a movement and the 

subsequent action is likely to unfold in a sequential manner on a perception-action 

continuum. EEG is ideally suited to capture the temporal characteristics of emotion-

motor interactions. fMRI on the other hand is ideally suited to localising the generators 

of motor preparation and action (Nagai et al., 2004). Using EEG and fMRI 

simultaneously during voluntary movements in patients with PNES or other functional 

movement disorders with emotionally salient stimuli as instigators of action may allow 

researchers to pinpoint where on the perception-action continuum abnormalities may 

occur (during perception, motor preparation, movement instigation or movement 

execution) and localise these abnormalities to the specific brain regions involved, with 

the SMA, primary motor cortex, insula and amygdala being just four of the possible 

regions of interest. Such an approach could be equally applicable to studies involving 

patients with PNES symptoms and patients experiencing functional weakness or 

functional tremors in addition to clinical or non-clinical controls with similar risk 

factors to PNES, be they psychiatric controls free of co-existing PNES or controls who 

have experienced traumatic events with a diagnosis of PNES or without. There is some 

evidence that such an approach may be useful. For example, attenuation in pre-

movement-related potentials like the CNV have been found in functional weakness 

compared to controls (Blakemore, Hyland, Hammond-Tooke, & Anson, 2015) while 

spectral power changes in EEG (event-related desynchronization in the beta band - 13-

30 Hz) have been observed in PNES prior to the onset of non-epileptic events 

(Meppelink et al., 2017). These studies suggest that pre-movement-related neural 

activity in PNES or other functional movement disorders may be used in the future as a 
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positive auxiliary marker of the disorder and aid in the differential diagnosis of non-

epileptic seizures or other functional movement disorders. 

Additional use of existing experimental paradigms (Edwards, 2011; Kranick et 

al., 2013) that incorporate theories of motor control and motor learning (Kawato, 

Furukawa & Suzuki, 1987; Miall & Wolpert, 1996) would also prove to be very 

informative. For example, Edwards. (2011), Edwards, Fotopoulou, & Pareés. (2013), 

Kranick et al. (2013) and Voon et al. (2011, 2016) have implicated the involvement of 

motor predictions and sensory consequences of action in precipitating events in FNDs. 

Indeed, the ability to correct orientation or posture at a moment’s notice, either 

consciously or unconsciously, is largely dependent on motor predictions. Motor 

predictions are an important aspect of sensorimotor control and are facilitated by 

internal “forward models” that predict the causal relationship between action and 

consequence (Jordan & Rumelheart, 1992; Frith, Blakemore, & Wolpert, 2000; Wolpert 

& Flanagan, 2001). This has already been eluded to in Section 1.5.1 with respect to the 

TPJ as a controller or comparator that compensates for motor predictions and sensory 

feedback. Alterations to this controller or comparator may partly help to explain why 

patients with FND experience their symptoms as involuntary, beyond their conscious 

control. With this in mind, future experimental studies designed to investigate how 

anticipatory representations of the effects of an action differ in PNES or other FNDs 

compared to controls is a plausible way forward. Therefore, future studies investigating 

feed-forward models of motor control in FNDs and in PNES specifically may allow us 

to better understand how the causal relationship between action and consequence gives 

rise to a sense of agency or lack of in PNES or other FNDs. 

A final suggestion for future studies concerns change. As noted in Section 1.5, 

the structure and functioning of the brain is not static. We know for example that 
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learning new skills can lead to experience-dependent subtle yet demonstrable changes to 

grey and white matter in the brain (Zatorre, Fields, & Johansen-Berg, 2012). I proposed 

in Chapter 3 and Chapter 4 that neuroplasticity in brain regions associated with emotion 

processing and motor function may either represent a predisposition to, or result from 

PNES. Therefore, it is plausible to suggest that future studies should attempt to track 

changes in the functioning of these brain regions at different stages of a functional 

disorder, in addition to, and this is an important point, before, during, and after 

treatment. For example, if symptom occurrence and/or severity is associated with 

underlying pathophysiology in PNES or other functional movement disorders and if this 

underlying pathophysiology can be shown to manifest as alterations in pre-movement-

related potentials for example, one might expect to see that the alleviation of symptoms 

should be accompanied by a normalization of the function in circuits in the brain 

associated with movement. This would be an important finding, one that would may 

have significant implications not only for treatment options and the management of 

symptoms, but also for how both patients and clinicians view functional disorders. This 

may have the further advantage of supporting the hypothesis that patients with PNES 

and other FNDs are not feigning or malingering (Edwards et al., 2011). In terms of 

causality and prognosis such findings may offer a sense of hope, a sense that things can 

change. 

In summary, based on the work presenting in this thesis, future studies 

investigating the neurobiological correlates in PNES and FNDs more generally should 

consider the following: 

1. Future neuroimaging studies investigating structural and/or functional 

characteristics of the brain should adopt longitudinal approaches employing multi-

modal methods and be of sufficient size and scope to involve relevant control groups, in 
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addition to investigating concurrence or disagreement between FND or PNES sub-types 

based on semiology.  

  2. Future studies should focus on using experimental paradigms that directly test 

the theoretical models which have been proposed. For example, in this thesis, it has 

been hypothesized that aberrant emotion-motor interactions may be a key characteristic 

of PNES and other functional movement disorders. Studies have shown that preparatory 

functions or pre-movement-related neural activity (CNV and ERD) may be a useful 

indicator of PNES and other functional movement disorders. The use of an emotional 

variant of the S1 – S2 CNV paradigm which takes into account multiple complementary 

indices of motor preparation and action may be a useful and informative experimental 

approach to take when investigating emotion-motor interactions in PNES and other 

functional movement disorders. Again, using multi-modal methods may allow 

researchers to pinpoint the temporal and spatial characteristics of emotion-motor 

interactions in this patient population. 

3. Future studies investigating feed-forward models of motor control in PNES 

may allow us to better understand how disruptions in the causal relationship between 

action and consequence gives rise to a sense of agency or lack of in PNES. 

4. Future studies should attempt to track changes in the structural and/or 

functional characteristics of the brain at different stages of a functional disorder, 

primarily before, during, and after treatment. 

 

5.7. Final conclusions 

This doctoral work furthers our understanding of emotion-motor interactions by 

investigating the involvement of brain regions associated with motor function and 

emotion processing in a clinical population in which aberrant motor function has been 

linked to emotion processing difficulties and by charting the maturational trajectory of 
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emotion-motor interactions in neurotypical brain development. This contribution is an 

important one given the paucity of studies investigating brain maturation, motor 

preparation and action at different stages of development and while PNES has certainly 

gained much attention from the neuroscientific community over the past two decades 

much work is still needed if we are to better understand the association between risk 

factors, psychological state and trait characteristics, semiology and the neurobiological 

substrates of symptom formation and symptom expression. 
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Appendix 3 

 

 

Participant Information Sheet 

 

Project title. Emotion and motor function. 

 

You are being invited to take part in a research study. Before you decide whether you 

want to take part in this study, you need to understand why we are doing this research and 

what it will involve. Please read the information below carefully and feel free to ask 

questions if there is anything you don’t understand or if you would like more information.  

 

What is this study about? 

We would like to learn more about the brain’s electrical activity in response to emotional 

stimuli. Previous research has indicated that our attention is easily drawn to external 

emotional stimuli and that this can impact on our motor responses. The findings derived 

from this study may be helpful for understanding how we self-regulate our emotions 

during goal-directed behaviours. Your participation is completely voluntary and if you 

decide to take part you can leave at any time.  

 

Who is being invited to take part? 

We are asking adolescents aged between 13 and 14 and young adults aged between 18 

and 26 to take part in this study. To take part you need to be right handed. If you have a 

current diagnosis of any developmental, neurological or psychiatric condition you are 

unable to take part in this study. Before taking part, you will need to complete the brief 

screening form accompanying this information sheet to make sure you are able to 

participate. 

 

What will you be asked to do? 

If you decide to take part in this study, we will ask you to come to the Psychology 

department at the University of Sheffield located in Cathedral Court at a convenient time 

to complete a computer task and some questionnaires. Your visit to the Psychology 

department will take about two hours. You will be given £10 to compensate you for your 

time with us. 

 

What does the study involve? 

1. Questionnaires: You will also be asked to complete a number of questionnaires 

which ask about your emotional and functional well-being. Examples of questions  



 258 

 

include “S/he finds social situations easy”, “I found myself getting agitated”, “I 

control my feelings by not showing them”, “I worry about making mistakes” etc. 

2. Computer task: The computer task will ask you to make a response (button press) 

to a positive, angry and neutral facial expression presented on the computer 

screen.  

3. Brain activity: We will use a technique called electroencephalography (EEG). 

EEG is a non-invasive and is a very safe technique with no direct known health 

risk. Throughout the computer task you will wear a cap of electrodes, which will 

record the electrical activity from your brain. The electrodes will be filled with a 

salt-based gel, which can be easily washed out with shampoo. The electrode cap 

will take approximately 20 minutes to set up and the computer task will last 

around 1 hour. There will be opportunities to take breaks every 10 minutes. 

Overall, the study will last approximately 2 hours. You are free to withdraw from 

this experiment at any time and do not need to give a reason for doing so. For 

more information about EEG, please see the accompanying EEG information 

sheet. 

 

Remember that you can withdraw from the study at any time and you can skip 

any questions you do not wish to answer. Also if you are unhappy or 

uncomfortable you don't need to answer any of the questions at all. If you have 

any questions or concerns about the experiment, please do not hesitate to ask. 

  

What are the benefits of taking part? 

You will receive £10 for your participation in this research.  

 

What are the risks of taking part? 

There are no known risks to taking part in this experiment. However, if, at any point 

during the experiment, you decide that you do not want to carry on, we will stop the 

experiment and you are free to withdraw from the study without giving a reason. You 

will also be asked to complete a number of questionnaires. If completion of these 

questionnaires raises any issues or concerns for you, please let the research team know 

and we will also provide you with details of services and organizations you can contact 

for further support. Contact details for a member of the research team is listed at the 

bottom of this document.  

 

What will the information be used for? 

Before taking part in this study, you will be asked to sign a Consent Form and provide 

your name, gender, date of birth and contact details. Your personal details will be stored 

in a locked filing cabinet and on a password-protected computer. All the information  
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that is collected about you during this study will be kept strictly confidential. We will 

make sure that your information is kept confidential by using identification numbers in 

place of your name. This will make sure that your name will not be associated with, or 

traceable to, any of the collected data. The results from this study may be used 

anonymously at conferences and written up in scientific journals. The anonymised data 

may be made available for secondary analysis in a public data repository. 

 

 

Thank you for taking the time to read this information sheet.  

 

 

If you have any questions, please do ask! 

 

 

If you would like to take part in this study or if you would like to speak to someone before 

deciding whether or not to take part, please contact Marco Mcsweeney 

(mmcsweeney1@sheffield.ac.uk) or Dr Liat Levita. (l.levita@sheffield.ac.uk / 0114 222 

6651). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:mmcsweeney1@sheffield.ac.uk)
mailto:l.levita@sheffield.ac.uk
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Appendix 4 

 

Participant Information Sheet 

 

Project title. Emotion and motor function. 

 

We would like to invite your child to take part in a research study. Before you decide 

whether you want your child to take part in this study, you need to understand why we 

are doing this research and what it will involve. Please read the information below 

carefully and feel free to ask questions if there is anything you don’t understand or if you 

would like more information. Contact details are below. 

 

What is this study about? 

We would like to learn more about the brain’s electrical activity in response to emotional 

stimuli at different stages of brain development. Previous research has indicated that our 

attention is easily drawn to external emotional stimuli and that this can impact on our 

motor responses. The findings derived from this study may be helpful for understanding 

how we self-regulate our emotions during goal-directed behaviours. 

 

Who is being invited to take part? 

We are asking adolescents aged between 13 and 14 and young adults aged between 18 

and 26 to take part in this study. To take part your child needs to be right handed. If your 

child has a current diagnosis of any developmental, neurological or psychiatric condition 

they are unable to take part in this study. Before allowing your child to take part, you will 

need to complete the brief screening form accompanying this information sheet to make 

sure they are able to participate. 

 

What will you be asked to do? 

If you decide to let your child take part in this study, we will ask you and your child to 

come to the Psychology department at the University of Sheffield located in Cathedral 

Court at a convenient time to complete a computer task and some questionnaires. Your 

visit to the Psychology department will take about two hours. Your child will be given 

£10 to compensate them for their time with us. 

 

What does the study involve? 

1. Questionnaires: Your child will be asked to complete a number of questionnaires 

which ask about their emotional and functional well-being. Examples of questions 

include “S/he finds social situations easy”, “I found myself getting agitated”, “I  



 261 

 

control my feelings by not showing them”, “I worry about making mistakes” etc. 

Other questions will ask about your child’s stage of development, such as “Have 

you noticed any skin changes, especially pimples?”, “Have you begun to 

menstruate?” for girls, “Have you begun to grow hair on your face?” for boys etc. 

We are asking these questions because whilst the teenagers in this study might be 

the same age, they may be at different stages of puberty. Because these different 

stages of puberty can interact with the results of this study, we would like to try 

to keep a record of which stage they are at.  

2. Computer task: The computer task will ask your child to make a response (button 

press) to a positive, angry and neutral facial expression presented on the computer 

screen.  

3. Brain activity: We will use a technique called electroencephalography (EEG). 

EEG is a non-invasive and is a very safe technique with no direct known health 

risk. Throughout the computer task your child will wear a cap of electrodes, which 

will record the electrical activity from their brain. The electrodes will be filled 

with a salt-based gel, which can be easily washed out with shampoo. The electrode 

cap will take approximately 20 minutes to set up and the computer task will last 

around 1 hour. There will be opportunities to take breaks every 10 minutes. 

Overall, the study will last approximately 2 hours. Of course, your child is free to 

withdraw from the experiment at any time and do not need to give a reason for 

doing so. For more information about EEG, please see the accompanying EEG 

information sheet. 

 

Remember that your child can withdraw from the study at any time and can skip 

any questions they do not wish to answer. Also if they are unhappy or 

uncomfortable, they don't need to answer any of the questions at all. If you have 

any questions or concerns about the experiment, please do not hesitate to ask. 

  

What are the benefits of taking part? 

Your child will receive £10 for their participation in this research.  

 

What are the risks of taking part? 

There are no known risks to taking part in this experiment. However, if, at any point 

during the experiment, your child decides that they do not want to carry on, we will stop 

the experiment immediately. Your child is free to withdraw from the study without giving 

a reason. Your child will also be asked to complete a number of questionnaires. If 

completion of these questionnaires raises any issues or concerns for you, please let the 

research team know and we will also provide you with details of services and  
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organizations you can contact for further support. Contact details for a member of the 

research team is listed at the bottom of this document. 

 

What will the information be used for? 

Before taking part in this study, you will be asked to sign a Consent Form and your child 

will be asked to provide their name, gender, date of birth and a contact detail 

(Parent/Guardian). All personal details will be stored in a locked filing cabinet and on a 

password-protected computer. All the information that is collected during this study will 

be kept strictly confidential. We will make sure that any information provided is kept 

confidential by using identification numbers in place of your child’s name. This will make 

sure that their name will not be associated with, or traceable to, any of the collected data. 

The results from this study may be used anonymously at conferences and written up in 

scientific journals. The anonymised data may be made available for secondary analysis 

in a public data repository. 

 

 

Thank you for taking the time to read this information sheet.  

 

 

If you have any questions, please do ask! 

 

If you would like to take part in this study or if you would like to speak to someone before 

deciding whether or not to take part, please contact Marco Mcsweeney 

(mmcsweeney1@sheffield.ac.uk) or Dr Liat Levita. (l.levita@sheffield.ac.uk / 0114 222 

6651). 

 

 

 

 

 

 

 

 

 

 

mailto:mmcsweeney1@sheffield.ac.uk)
mailto:l.levita@sheffield.ac.uk
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Appendix 5 

 

Consent Form 
 

Study: Emotion and motor function 

 

The individual taking part in this study should complete this consent form. 

 

Please read the following statements and circle the appropriate answer. 

 

I confirm that I have read and understood the information sheet explaining the 

above research project and I have had the opportunity to ask questions about 

the project. 

Yes No 

I understand that any personal details that I provide on the screening form 

(E.g. phone number, email address) will be treated confidentially and stored in 

a locked filing cabinet and on a password-protected computer. 

Yes No 

I understand that my brain activity, physiological and behavioural responses 

will be recorded during the experiment. 
Yes No 

I understand that my brain activity, physiological and behavioural responses 

will be anonymous. I give permission for members of the research team to 

have access to my anonymised data. I understand that my name will not be 

linked with the research materials, and I will not be identified or identifiable 

in the report or reports that result from the research. 

Yes No 

I understand that my anonymised data may be used for future studies and that 

my anonymised data may be made available for secondary analysis in a public 

data repository. 

Yes No 

I understand that I am free to withdraw from the study at any time and without 

having to give a reason for withdrawing. 
Yes No 

I agree to take part in this study  Yes No 
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Signed: ......................................   Date …………………………………. (Participant) 

 

Print name: ....................................................................................................      (Participant) 

 

_______________________           ______________         ____________________ 

Lead Researcher   Date    Signature 

 

To be signed and dated in presence of the participant 

I would like to be informed of other studies that you are running  Yes No 

If Yes, how would you like to be contacted (E.g. Email/Phone)? 

 

___________________________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 265 

Appendix 6 

 

Consent Form 
 

Study: Emotion and motor function 

 

The parent/guardian of participants under the age of 18 should complete this consent 

form. 

Please read the following statements and circle the appropriate answer. 

 

I confirm that I have read and understood the information sheet explaining the 

above research project and I have had the opportunity to ask questions about 

the project. 

Yes No 

I understand that any personal details that I provide on the screening form 

(E.g. phone number, email address) will be treated confidentially and stored in 

a locked filing cabinet and on a password-protected computer. 

Yes No 

I understand what my child will be asked to do during this study, and that my 

child’s brain activity, physiological and behavioural responses will be 

recorded during the experiment. 

Yes No 

I understand that my child’s brain activity, physiological and behavioural 

responses will be anonymous. I give permission for members of the research 

team to have access to my child’s anonymised responses. I understand that my 

child’s name will not be linked with these research materials, and that my 

child will not be identified or identifiable in the report or reports that result 

from the research. 

Yes No 

I understand that my child’s anonymised data may be used for future studies 

and I understand that my child’s anonymised data may be made available for 

secondary analysis in a public data repository. 

Yes No 

I understand that I am free to withdraw my child from the study at any time 

and without having to give a reason for withdrawing. Likewise that my child 

is free to withdraw at any time. 

Yes No 

I agree to let my child participate in this study  Yes No 
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Signed: ......................................   Date …………………………………. (Parent/Guardian) 

 

Print name: ....................................................................................................      (Parent/Guardian) 

 

_______________________           ______________         ____________________ 

Lead Researcher   Date    Signature 

 

To be signed and dated in presence of the participant 

I would like to be informed of other studies that you are running  Yes No 

If Yes, how would you like to be contacted (E.g. Email/Phone)? 

 

___________________________________ 
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Appendix 7 

 

 

 

PARTICIPANT SCREENING FORM 
 

If you are over 18 years old, please complete this information yourself. If you are 
under 18 years old, a parent/guardian needs to complete this form on behalf of 

you. 
 

CONFIDENTIALITY - This form and the information contained within it will be treated as 
a confidential document. 

Please answer ALL of the following questions. 
If you are a parent/guardian, please answer these questions with respect to 

YOUR CHILD. 
 

Medical History 

Do you suffer from epilepsy, fits, blackouts, fainting turns or unexplained 
loss of consciousness, recurrent headaches or migraines? 

Yes No 

Have you suffered a head injury leading to loss of consciousness requiring 
a hospital admission? 

Yes No 

Do you suffer from any other medical condition, including heart problems? Yes No 

Details: 

Personal Details 

First name  

Last name  

Parent/Guardian name  
(if participant is under 18) 

 

Phone number  

Email address  

Date of birth  

Gender (Male, Female)   

Handedness (Right, Left, Ambidextrous)  



 268 

Appendix 8 

 

Debriefing Sheet 
 

 
Project title. Emotion and motor function. 
 
Thank you so much for taking part in this study! 
 
The general purpose of the study was to help explain how emotional stimuli can 
impact on attentional and physical responses. More specifically our aim was to 
examine the neural correlates of orienting activities and response preparation, how 
this is modulated by emotion and gender at different stages of brain development. 
We invited people who were right-handed, between 13 and 26 years of age free of 
neurological or psychiatric disorders. 
 
We were interested in measuring early and late phases of the contingent negative 
variation (CNV), an event-related potential (ERP) associated with orienting activities 
and motor response preparation to external stimuli.  Previous studies have indicated 
that the CNV can differ substantially in different populations, particularly during 
development. However most of these studies have not examined how early and late 
phases of this ERP component is modulated by emotion, and how this may differ in 
males and females. 
 
You were also asked to complete a number of questionnaires. We asked you to this 
because we wanted to compare the electrical brain activity recorded with emotional 
and functional well-being scores. Previous studies have shown that emotional 
difficulties can result in a number of psychopathological and psychophysiological 
symptoms. 
 
We hope that you enjoyed taking part in this study. However, we understand that 
some of the questions asked might have been upsetting. If you have any concerns 
resulting from your participation in this study please feel free to contact a member of 
the research team listed below, or alternatively we have provided contact details for 
two relevant organizations below. If you require more urgent support, please contact 
your GP or the emergency services. 
 
 

If you have any questions do not hesitate to contact Marco Mcsweeney, who is a 
member of the research team (Email: mmcsweeney1@sheffield.ac.uk). 

 
If participation in this study has sparked your interest in the topic, we have provided 

some references below. 
 

Samaritans 
Helpline: 08457 90 90 90 

www.samaritans.org 
 

Mind 
Helpline: 0300 123 3393 (9am-6pm, Monday to Friday) 

www.mind.org.uk 
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Appendix 11 

HOW-I-FEEL QUESTIONNAIRE 

 DIRECTIONS: A number of statements which boys and girls use to describe 

themselves are given below. Read each statement carefully and decide how you feel 

right now. Then put a circle around the word or phrase that best describes how you feel. 

There are no right or wrong answers. Don’t spend too much time on any one statement. 

Remember, find the word or phrase which best describes how you feel right now, at this 

very moment. 

 

1.   I feel…………………………1) very calm   2) calm   3) not calm 

2.   I feel…………………………1) very upset   2) upset           3) not upset 

3.   I feel…………………………1) very pleasant   2) pleasant      3) not pleasant 

4.   I feel…………………………1) very nervous       2) nervous      3) not nervous 

5.   I feel…………………………1) very jittery          2) jittery         3) not jittery 

6.   I feel…………………………1) very rested          2) rested         3) not rested 

7.   I feel…………………………1) very scared         2) scared         3) not scared 

8.   I feel…………………………1) very relaxed        2) relaxed       3) not relaxed 

9.   I feel…………………………1) very worried       2) worried       3) not worried 

10. I feel…………………………1) very satisfied      2) satisfied      3) not satisfied 

11. I feel…………………………1) very frightened   2) frightened   3) not frightened 

12. I feel…………………………1) very happy          2) happy         3) not happy 

13. I feel…………………………1) very sure             2) sure            3) not sure 

14. I feel…………………………1) very good            2) good          3) not good 

15. I feel…………………………1) very troubled       2) troubled    3) not troubled 

16. I feel…………………………1) very bothered      2) bothered    3) not bothered 
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17. I feel…………………………1) very nice             2) nice            3) not nice 

18. I feel…………………………1) very terrified       2) terrified     3) not terrified 

19. I feel…………………………1) very mixed-up     2) mixed-up  3) not mixed-up 

20. I feel…………………………1) very cheerful       2) cheerful     3) not cheerful 

 

HOW-I-FEEL QUESTIONNAIRE 

 DIRECTIONS: A number of statements which boys and girls use to describe 

themselves are given below. Read each statement carefully and decide if it is hardly 

ever, or sometimes, or often true for you.  Then for each statement, put a circle around 

the answer that seems to describe you best. There are no right or wrong answers. Don’t 

spend too much time on any one statement. Remember, choose the word which seems 

to describe how you usually feel. 

 

1. I worry about making mistake hardly ever sometimes often 

2. I feel like crying hardly ever sometimes often 

3. I feel unhappy hardly ever sometimes often 

4. I have trouble making up my mind hardly ever sometimes often 

5. It is difficult for me to face my  

problems 

hardly ever sometimes often 

6. I worry too much hardly ever sometimes often 

7. I get upset at home hardly ever sometimes often 

8. I am shy hardly ever sometimes often 

9. I feel troubled hardly ever sometimes often 

10. Unimportant thoughts run through    
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my mind and bother me hardly ever sometimes often 

11. I worry about school hardly ever sometimes often 

12. I have trouble deciding what to do hardly ever sometimes often 

13. I notice my heart beats fast hardly ever sometimes often 

14. I am secretly afraid hardly ever sometimes often 

15. I worry about my parents hardly ever sometimes often 

16. My hands get sweaty hardly ever sometimes often 

17. I worry about things that may happen hardly ever sometimes often 

18. It is hard for me to fall asleep at night hardly ever sometimes often 

19. I get a funny feeling in my stomach hardly ever sometimes often 

20. I worry about what others think of me hardly ever sometimes often 
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Appendix 15 

SELF-EVALUATION QUESTIONNAIRE 

STAI FORM Y-1 

S ____ 

T ____ 

Directions 

A number of statements which people have used to describe themselves are given below. Please 

read each statement and then circle the appropriate value to the right of the statement to 

indicate how you feel right now, that is, at this moment. There are no right or wrong answers. 

Do not spend too much time on any one statement but give the answer which seems to describe 

your present feeling best 

 

 

1. I feel calm 1 2 3 4 

2. I feel secure 1 2 3 4 

3. I feel tense 1 2 3 4 

4. I feel strained 1 2 3 4 

5. I feel at ease 1 2 3 4 

6. I feel upset 1 2 3 4 

7. I am presently worrying over possible misfortunes 1 2 3 4 

8. I feel satisfied 1 2 3 4 

9. I feel frightened 1 2 3 4 

10. I feel comfortable 1 2 3 4 

11. I feel self-confident 1 2 3 4 

12. I feel nervous 1 2 3 4 

13. I feel jittery 1 2 3 4 

14. I feel indecisive 1 2 3 4 

15. I am relaxed 1 2 3 4 

16. I feel content 1 2 3 4 

17. I am worried 1 2 3 4 

18. I feel confused 1 2 3 4 

19. I feel steady 1 2 3 4 

20. I feel pleasant 1 2 3 4 
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SELF-EVALUATION QUESTIONNAIRE 

STAI Form Y-2 

S ____ 

T ____ 

Directions 

A number of statements which people have used to describe themselves are given below. Please 

read each statement and then circle the appropriate value to the right of the statement to 

indicate how you generally feel. There are no right or wrong answers. Do not spend too much 

time on any one statement but give the answer which seems to describe how you generally feel. 

 

 

21.  I feel pleasant  1 2 3 4 

22. I feel nervous and restless 1 2 3 4 

23. I feel satisfied with myself 1 2 3 4 

24. I wish I could be as happy as others seem to be 1 2 3 4 

25. I feel like a failure 1 2 3 4 

26. I feel rested 1 2 3 4 

27. I am "calm, cool and collected" 1 2 3 4 

28. I feel that difficulties are piling up so that I cannot overcome them 1 2 3 4 

29. I worry too much over something that really doesn't matter 1 2 3 4 

30. I am happy 1 2 3 4 

31. I have disturbing thoughts 1 2 3 4 

32. I lack self-confidence 1 2 3 4 

33. I feel secure 1 2 3 4 

34. I make decisions easily 1 2 3 4 

35. I feel inadequate 1 2 3 4 

36. I am content 1 2 3 4 

37. Some unimportant thought runs through my mind and bothers me 1 2 3 4 

38. I take disappointments so keenly that I can't put them out of my mind 1 2 3 4 

39. I am a steady person 1 2 3 4 

40. I get in a state of tension or turmoil as I think over my recent concerns and 

interests 

1 2 3 4 
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Appendix 17 

 

 

 

 

Date: 

Dear Sir/Madam,  

 

Re: Destigmatizing Nonepileptic Attack Disorder 

We are currently conducting a research study at the Royal Hallamshire Hospital 

examining the emotional and physical well being of people that suffer from seizures. 

The study will involve filling in questionnaires about the way you feel. 

You have been identified as someone who could take part in this study because you 

have previously seen a neurologist for help with seizures at the Royal Hallamshire 

Hospital.  

A participant information sheet is enclosed with this letter. Please read the information 

sheet to help you to understand what the study will involve and to think about whether 

you would like to take part. 

If you wish to take part please fill in the reply slip below, consent form and the 

questionnaires attached, and once done post all using the prepaid enveloped enclosed. 

Once we receive your responses we will post you £5 voucher as thank you for helping 

with this research and as a compensation of the time you have spent on this.  

If you have any questions do not hesitate to contact Marco Mcsweeney who is a 

member of the research team (Email: mmcsweeney1@sheffield.ac.uk). Also feel free to 

also contact the research supervisors (Dr Liat Levita, 0114 222 6651; Dr Markus 

Reuber, 0114 226 8763) if you have any further questions. 

If you do decide to take part in the study you will be free to withdraw at any time. 

Kind Regards 

 

 

 

 

 

Professor Markus Reuber, 

Honorary Consultant Neurologist 

 

 

 

 

 

 

 

 

 

 

 

http://www.sth.nhs.uk/index.php


 282 

 

    

 

 

 

Reply Slip 

 

 
Full Name: __________________________________ 

 

Address:_______________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

_ 

 

Contact Telephone No: _____________________________________ 

 

Email Address (if available):__________________________________ 

 

I am willing to part in this study (please initial box if appropriate):  

  

I am unwilling to part in this study (please initial box if appropriate):  
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STH18940 

 
PARTICIPANT INFORMATION SHEET 

 

Title of Project: Seeking a better understanding of Nonepileptic Attack Disorder 

Name of Researchers: Dr Liat Levita, Prof Markus Reuber  

 
We would like to invite you to take part in a research study. Before you decide whether to 

take part, you should understand why the research is being done and what it would involve 

for you. Please take time to read the following information carefully. Talk to others about 

the study if you wish. Please contact us if there is anything that is not clear or if you would 

like more information. Take time to decide whether or not you wish to take part. Thank you 

for reading this. 

 

Background 

Nonepileptic attack disorder (NEAD) can be a disabling condition. The lives of people with 

this disorder can therefore be more stressful than the lives of people who do not experience 

seizures. We would like to study this and see how people who either still experience seizures 

or have had them in the past feel. In order to do this, we need to recruit 50 participants 

diagnosed with NEAD and 50 healthy participants. Both groups will be used for brain scan 

analysis. Only the NEAD group will be asked to provide information about their social, 

emotional, and physical well-being.   

This study is being carried out as part of a research project based at the University of 

Sheffield and has been reviewed by the South West – Exeter Research ethics Committee.   

What is the purpose of the study? 

This is a part of a larger study where we are examining the physical basis of having seizures 

by analyzing brain scans of people who have or have had seizures. In this part of the study 

we are asking people who have had brain scans in the Royal Hallamshire hospital in the past 

to let us know how they feel.  

Why have I been asked to take part? 

We are approaching people who have been diagnosed with NEAD by a neurologist at the 

Royal Hallamshire Hospital in Sheffield. We are specifically approaching people with this 

seizure disorder who have had an MRI scan of the head. The reason for this is that we want 

to examine if there is a relationship between the size of certain areas of the brain that process 

emotions and certain emotions that people with seizures sometimes feel. We hope that this 

study will allow us to better understand how a physical problem such as a seizure could have 

http://www.sth.nhs.uk/index.php
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anything to do with emotions. Hence, the aim of this work is to explain NEAD by exploring its 

physical basis in the brain. 

Do I have to take part? 

It is up to you to decide whether or not to take part. If you have any questions about this 

study at any time, you can contact us. If you do decide to take part you are free to withdraw 

at any time, without giving a reason. This would not affect the standard of care you receive 

in any way. If you do decide to take part you will be required to sign a consent form. You 

will be provided with your own copy of the signed consent form along with a copy of the 

participant information sheet, and your GP will be informed of your participation. 

What will happen to me if I take part? 

With this letter you will have a pack of questionnaires to fill in. Filling in these questionnaires 

should take about 30 min. Once you are done, please place post these to us using the 

prepaid envelope provided in this package. We will then send you £5 voucher for taking part. 

What are the possible benefits of this study? 

This study will help understand the way people suffering or having suffered from seizures in 
the past feel both emotionally and physically, which will help provide better support for people 
who suffer from these conditions in the future. However, there will be no direct benefit to 
participants for taking part in this study. 
  
What are the possible risks of taking part in this study? 
There are no significant risks associated with taking part in the study. However, please note 
that we will ask you to complete some self-report scales that include measures of anxiety 
and depression and some of the questions ask about sensitive topics. Also, some of the 
questions ask about what you felt or experienced in the past, which you might find difficult to 
remember, but we would be grateful if you could answer each question to the best of your 
ability. If completion of these questionnaires raises any issues or concerns for you, please 
let the research team know and we will also provide you with details of services and 
organisations you can contact for further support. Contact details for a member of the 
research team is listed at the bottom of this document. If you have additional unresolved 
concerns regarding your well-being, available services and organisations are provided at the 
beginning of the questionnaire pack.     
 
 
Will my taking part in this study be kept confidential? 
The research team will only have access to study ID and not your names or any identifying 
information.  All the information that is collected about you during this study will be kept strictly 
confidential. Your medical notes and medical data will be accessed. We will keep your 
personal details, such as name, address and telephone number, separately and locked in a 
secure location. This means that your identity will be kept private. Any personal details held 
by us will be destroyed once the study has finished. However, confidentiality might need to 
be broken if concerns arise about a participants’ or any other’s safety, in which case their GP 
will be contacted, and any necessary assistance will then be provided.   

What will happen to the results of the study? 
The results of this study will contribute to a research study. We will also publish the results 
of the study in a scientific journal. You will not be identified individually in the write-up. If you 
would like a summary of the results of the study once it is complete, please let us know. 

What if I change my mind? 
You do not have to take part in this study. If you have agreed to take part, you can stop at 
any time without giving your reasons.  
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Who should I contact if I have a question or need more information? 
Marco Mcsweeney, Research Assistant, contact details (Email: 

mmcsweeney1@sheffield.ac.uk)             

What if something goes wrong? 
If you have a concern about any aspect of this study, you should ask to speak to the  
researchers who will do their best to answer your questions. If they are unable to  
resolve your concern or you wish to make a complaint regarding the study, please contact 
Sheffield Patient Services Team (previously known as PALS) on 0114 2712400 or Dr Philip 
Harvey (Registrar and Secretary, University of Sheffield) on registrar@sheffield.ac.uk or 
0114 222 1101. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:registrar@sheffield.ac.uk
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                               Consent Form  
 

Seeking a better understanding of Nonepileptic Attack Disorder 
 
 
Name of Researchers: Dr Liat Levita, Professor Markus Reuber 
 

                               Please initial box 
 

1. I confirm that I have read and understand the information sheet for 

the above study and have had the opportunity to ask questions.   

 

 

 

 
 

 

2. I understand that my participation is voluntary and that I am free to 

withdraw at any time without giving any reason, without my 

medical care or legal rights being affected.  

3. I agree to give consent for my medical data to be accessed. 

 

 

 

4. I agree to give my consent to inform my GP of my 

participation. 

 

5. I understand that relevant sections of my medical notes and 

data collected during the study may be looked at by 

individuals from The University of Sheffield, from regulatory 

authorities or from the NHS Trust, where it is relevant to my 

taking part in this research. I give permission for these 

individuals to have access to my records. 

 

6. I agree to take part in the above study and understand that 

the data will be used as part of a research study.   

 
_______________________________     ____________________________    
Name         Signature 
 
________________________________  _____________________________ 
Today’s date        Your date of birth 
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Thank you so much for taking part!  
 

 
Once you have completed this questionnaire package could you please place this 
along with the consent form and reply slip in the paid for envelope enclosed and 

post it to us.  
 

Thank you once again for taking part! 
 
 

If you have any questions do not hesitate to contact Marco Mcsweeney, who is a member of the 

research team (Email: mmcsweeney1@sheffield.ac.uk). 

Also feel free to contact the research supervisors (Dr Liat Levita, 0114 222 6651; Markus Reuber, 

0114 226 8763) if you have any further questions. 

For more information about Non-Epileptic Attacks please visit our website: 

www.nonepilepticattacks.info. 

We hope that you have not found completing this survey upsetting. However, we understand that 

some of the questions might be upsetting for some people. Hence, case you are feeling distressed 

and would like support, we have listed the contact details for two relevant organisations below. If 

you need more urgent support, please contact your GP or the emergency services. 

Samaritans 

Helpline: 08457 90 90 90 

www.samaritans.org 

 

Mind 

Helpline: 0300 123 3393 (9am-6pm, Monday to Friday) 

www.mind.org.uk 
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Demographic Questionnaire 
 

Personal Information 

Please answer the following questions about yourself. The information you are giving us will be 

treated as confidential and will be anonymised. Do not put your name on the questionnaire. 

1. Date of birth: …………………………………………... 

2. Gender:  (please tick the correct option)    

 
Male   Female                                              Other please specify  ________ 

 
4. How would you describe your ethnic background?  

(Please tick the box that applies to you, or write an answer in the space provided) 

 
White – English/Welsh/Scottish/Northern Irish/British    □ 

White – Irish         □ 
White – Gypsy or Irish Traveller        □ 
White - Any Other White background       □ 
Mixed/Multiple ethnic group - White and Black Caribbean    □ 
Mixed/Multiple ethnic group - White and Black African     □ 
Mixed/Multiple ethnic group - White and Asian     □ 
 
Mixed/Multiple ethnic group -  
Any Other Mixed/multiple ethnic background     □ 
Asian/Asian British – Indian       □ 
Asian/Asian British – Pakistani       □ 
Asian/Asian British – Bangladeshi      □ 
Asian/Asian British – Chinese       □ 
Asian/Asian British - Any other Asian background    □ 
Black/African/Caribbean/Black British – African     □ 
Black /African/Caribbean/Black British – Caribbean    □ 
 
Black/African/Caribbean/Black British –  
Any other Black / African / Caribbean background    □ 

Other ethnic group – Arab       □ 
 
Any other ethnic group; Please specify:  
 
___________________________ 

 
 

5. How would you describe your current employment status? (Please tick the box/(es) that 

applies/(apply) to you or write an answer in the space provided) 

In full-time paid work      □ 

In part-time paid work       □ 

In full-time education      □ 

In part-time education      □ 

Full-time carer/homemaker     □ 

C 
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On leave/out of work due to illness or disability   □ 

Retired        □ 

 

Other; Please specify:____________________________________________ 

 

6. What is your highest educational qualification? (Please tick the box/(es) that 

applies/(apply) to you or write an answer in the space provided) 

No educational qualifications     □ 

Standard grades, O grades, O levels, GCE/GCSEs  □ 

Highers, advanced highers, A levels    □ 

Vocational qualification (e.g. SVQ, NVQ, SCOTVEC)  □ 

HNC/HND       □ 

Degree (e.g., BA, BSc)      □ 

Postgraduate qualification (e.g. MSc, PhD)   □ 

Professional qualification (e.g. CAEW, CIIA)    □ 

 

Other; Please specify:____________________________________________ 

 

 

7. When did you first have a seizure?  

(For example, 6 months ago or 3 years ago)   
         

               ………………………… months ago 

               .………………………… years ago 

 

8. When did you have your last seizure?  (e.g., 1 day ago or 3 months ago)  

……………………………………………………………… 
9. Are you currently on any medication? (please tick as appropriate)  

 

 

 If yes, please list your medication below: 

……………………………………………………………………………………………

…………………………………………………………………………………………… 

……………………………………………………………………………………………

…………………………………………………………………………………………… 

……………………………………………………………………………………………

…………………………………………………………………………………………… 

……………………………………………………………………………………………

…………………………………………………………………………………………… 

10.  Have you received or are receiving any form of psychological therapy 

 

 

YES 

 

NO 
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Work and Social Adjustment Scale 

 

Rate each of the following questions on a 0 to 8 scale in the box alongside each 
item - 0 indicates no impairment at all and 8 indicates very severe impairment  
 
 
1. Because of my nonepileptic attack disorder, my ability to work is impaired.                       

☐ 

 
If you are retired or choose not to have a job for reasons unrelated to your problem, 
please write  N/A - not applicable                                                                                                            
_____ 
 

2. Because of my Nonepileptic Attack Disorder, my home management (cleaning, tidying, 

shopping, cooking, looking after home or children, paying bills) is impaired.            

☐ 

 
3. Because of my nonepileptic attack disorder, my social leisure activities (with other 

people, such as parties, bars, clubs, outings, visits, dating, home entertainment) are 
impaired. 0 means not at all impaired and 8 means very severely impaired.                                

☐ 

 
4. Because of my nonepileptic attack disorder, my private leisure activities (done alone, 

such as reading, gardening, collecting, sewing, walking alone) are impaired.                                       

☐ 

 
5. Because of my nonepileptic attack disorder, my ability to form and maintain close 

relationships with others, including those I live with, is impaired.                                      

☐ 
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1 

Almost never 
 

(0-10%) 

2 

Sometimes 
 

(11-35%) 

3 

About half the me 
 

(36-65%) 

4 

Most of the me 
 

(66-90%) 

5 

Almost a ways 
 

(91-100%) 

Appendix 23 

Difficulties in Emotion Regulation Scale (DERS) 

 

 

Please indicate how often the following 36 statements apply to you by ticking the appropriate number from the scale 

above (1 – 5) in the boxes alongside each item 

 1 2 3 4 5 

1. I am clear about my feelings       

2. I pay attention to how I feel      

3. I experience my emotions as overwhelming and out of control      

4. I have no idea how I am feeling        

5. I have difficulty making sense out of my feelings      

6. I am attentive to my feelings      

7. I know exactly how I am feeling      

8. I care about what I am feeling      

9. I am confused about how I feel      

10. When  I’m  upset,  I  acknowledge  my  emotions      

11. When  I’m  upset,  I  become  angry  with myself for feeling that way      

12. When  I’m  upset,  I  become  embarrassed  for  feeling  that  way           

13. When  I’m  upset,  I  have  difficulty  getting  work  done        

14. When  I’m  upset,  I  become  out  of  control                         

15. When  I’m  upset,  I  believe  that  I  will  remain  that  way  for  a  long  time      

16. When  I’m  upset,  I  believe  that  I’ll  end  up  feeling  very  depressed              

17. When  I’m  upset,  I  believe  that  my  feelings  are  valid  and  important      

18. When  I’m  upset,  I  have  difficulty  focusing  on  other  things           

19. When  I’m  upset,  I  feel  out  of  control      

20. When  I’m  upset,  I  can  still  get  things  done      

21. When  I’m  upset,  I  feel  ashamed  with  myself  for  feeling  that  way       

22. When  I’m  upset,  I  know  that  I  can  find  a  way  to  eventually  feel  better      

23. When  I’m  upset,  I  feel  like  I  am  weak       

24. When  I’m  upset,  I  feel  like  I  can  remain  in  control  of  my  behaviours        

25. When  I’m  upset,  I  feel  guilty  for  feeling  that  way        

26. When  I’m  upset,  I  have  difficulty  concentrating       

27. When  I’m  upset,  I  have  difficulty  controlling  my  behaviours        

28. When  I’m  upset,  I  believe  that  there  is  nothing  I  can  do  to  make   

myelf  feel  better    

     

29. When  I’m  upset,  I  become  irritated  with  myself  for  feeling  that  way        

30. When  I’m  upset,  I  start  to  feel  very  bad  about  myself               

31. When  I’m  upset,  I  believe  that  wallowing  in  it  is  all  I  can  do        

32. When  I’m  upset,  I  lose  control  over  my  behaviours          

33. When  I’m  upset,  I  have  difficulty  thinking  about  anything  else       

34. When  I’m  upset,  I  take  time  to  figure  out  what  I’m  really  feeling       

35. When  I’m  upset,  it  takes  me  a  long  time  to  feel  better           

36. When  I’m  upset,  my  emotions  feel  overwhelming      
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SELF-EVALUATION QUESTIONNAIRE 

STAI FORM Y-1 

S ____ 

T ____ 

Directions 

A number of statements which people have used to describe themselves are given below. Please 

read each statement and then circle the appropriate value to the right of the statement to 

indicate how you feel right now, that is, at this moment. There are no right or wrong answers. 

Do not spend too much time on any one statement but give the answer which seems to describe 

your present feeling best 

 

 

21. I feel calm 1 2 3 4 

22. I feel secure 1 2 3 4 

23. I feel tense 1 2 3 4 

24. I feel strained 1 2 3 4 

25. I feel at ease 1 2 3 4 

26. I feel upset 1 2 3 4 

27. I am presently worrying over possible misfortunes 1 2 3 4 

28. I feel satisfied 1 2 3 4 

29. I feel frightened 1 2 3 4 

30. I feel comfortable 1 2 3 4 

31. I feel self-confident 1 2 3 4 

32. I feel nervous 1 2 3 4 

33. I feel jittery 1 2 3 4 

34. I feel indecisive 1 2 3 4 

35. I am relaxed 1 2 3 4 

36. I feel content 1 2 3 4 

37. I am worried 1 2 3 4 

38. I feel confused 1 2 3 4 

39. I feel steady 1 2 3 4 

40. I feel pleasant 1 2 3 4 
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SELF-EVALUATION QUESTIONNAIRE 

STAI Form Y-2 

S ____ 

T ____ 

Directions 

A number of statements which people have used to describe themselves are given below. Please 

read each statement and then circle the appropriate value to the right of the statement to 

indicate how you generally feel. There are no right or wrong answers. Do not spend too much 

time on any one statement but give the answer which seems to describe how you generally feel. 

 

 

41.  I feel pleasant  1 2 3 4 

42. I feel nervous and restless 1 2 3 4 

43. I feel satisfied with myself 1 2 3 4 

44. I wish I could be as happy as others seem to be 1 2 3 4 

45. I feel like a failure 1 2 3 4 

46. I feel rested 1 2 3 4 

47. I am "calm, cool and collected" 1 2 3 4 

48. I feel that difficulties are piling up so that I cannot overcome them 1 2 3 4 

49. I worry too much over something that really doesn't matter 1 2 3 4 

50. I am happy 1 2 3 4 

51. I have disturbing thoughts 1 2 3 4 

52. I lack self-confidence 1 2 3 4 

53. I feel secure 1 2 3 4 

54. I make decisions easily 1 2 3 4 

55. I feel inadequate 1 2 3 4 

56. I am content 1 2 3 4 

57. Some unimportant thought runs through my mind and bothers me 1 2 3 4 

58. I take disappointments so keenly that I can't put them out of my mind 1 2 3 4 

59. I am a steady person 1 2 3 4 

60. I get in a state of tension or turmoil as I think over my recent concerns and 

interests 

1 2 3 4 
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Life Span Inventory of Affect and Trauma  
Instructions: In each of the following sections, you will be asked to rate how often 
you had some particular experiences and had certain feelings. You will be asked to rate 
the same items several times, in order to find out about your experiences during three 
different stages of your life (childhood, adolescence, and adulthood). 

SECTION 1 

PART A: In your childhood to what degree did you experience…?  

 Not at all   Some   A lot 

 0 1 2 3 4 5 6 

Physical illness(es)         

Stressful experiences        

Poverty        

Traumatic events        

Physical neglect        

Physical abuse        

Emotional neglect        

Emotional abuse        

Sexual abuse        

Mental health difficulties        

PART B: During your childhood to what extent did you feel…? 

 Not at all   Some   A lot 

 0 1 2 3 4 5 6 

Sad        

Happy        

Angry        

Afraid        

Carefree        

Stressed        

Content        

Guilty        

Depressed        

Worried        

Anxious        

Untroubled        

 
PART C: During your childhood to what extent did you feel…? 

 Not at all   Some   A lot 

 0 1 2 3 4 5 6 

Secure        

Lonely        

Loved         

Confident         

Ignored         

Supported        

Disliked        

Bullied        

Used        

Smothered        
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SECTION 2 

PART A: In your adolescence to what degree did you experience…?  

 Not at all   Some   A lot 

 0 1 2 3 4 5 6 

Physical illness(es)         

Stressful experiences        

Poverty        

Traumatic events        

Physical neglect        

Physical abuse        

Emotional neglect        

Emotional abuse        

Sexual abuse        

Mental health difficulties        

PART B: During your adolescence to what extent did you feel…? 

 Not at all   Some   A lot 

 0 1 2 3 4 5 6 

Sad        

Happy        

Angry        

Afraid        

Carefree        

Stressed        

Content        

Guilty        

Depressed        

Worried        

Anxious        

Untroubled        

 
PART C: During your adolescence to what extent did you feel…? 

 Not at all   Some   A lot 

 0 1 2 3 4 5 6 

Secure        

Lonely        

Loved         

Confident         

Ignored         

Supported        

Disliked        

Bullied        

Used        

Smothered        
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SECTION 3 

PART A: In your adulthood to what degree did you experience…?  

 Not at all   Some   A lot 

 0 1 2 3 4 5 6 

Physical illness(es)         

Stressful experiences        

Poverty        

Traumatic events        

Physical neglect        

Physical abuse        

Emotional neglect        

Emotional abuse        

Sexual abuse        

Mental health difficulties        

PART B: During your adulthood to what extent did you feel…? 

 Not at all   Some   A lot 

 0 1 2 3 4 5 6 

Sad        

Happy        

Angry        

Afraid        

Carefree        

Stressed        

Content        

Guilty        

Depressed        

Worried        

Anxious        

Untroubled        

 
PART C: During your adulthood to what extent did you feel…? 

 Not at all   Some   A lot 

 0 1 2 3 4 5 6 

Secure        

Lonely        

Loved         

Confident         

Ignored         

Supported        

Disliked        

Bullied        

Used        

Smothered        
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Reuter and Montag's rRST-Q 
 

A number of statements which people have used to describe themselves are given below. Please read 

each statement and then circle the appropriate value to the right of the statement to indicate how this 

statement applies to you. There are no right or wrong answers. Do not spend too much time on any 

one statement but give the answer that seems to describe you best 

 

 Strongly 
disagree 

Disagree Agree Strongly 
agree 

1. I'm a spontaneous person     

2. I'm often glad if someone makes decisions for me     

3. I often feel paralyzed when in a dangerous situation     

4. I often doubt if my efforts will pay off     

5. Most of the time I have a thirst for action.     

6. When faced with danger, I tend to flee     

7. If I have the choice between two appealing options, I 
have difficulty deciding on one 

    

8. My friends think of me as an indecisive person     

9. I usually approach unpleasant tasks without 
hesitation 

    

10. I will gladly let unpleasant tasks slip by     

11. I find it hard to bear uncertainty     

12. I often take risks     

13. I'm easily inspired by new things     

14. I like sitting unpleasant things out     

15. Most of the time, I cannot defend myself if I am 
criticized 

    

16. To avoid worse things happening, I would rather give 
in 

    

17. Attack is the best form of defense     

18. Whoever dares wins     

19. I usually avoid confrontations     

20. When an unpleasant event is inevitable, I'm thrown 
into a state of panic 

    

21. I don't have problems deciding on a dish in a 
restaurant 

    

22. I am a rather quick-witted person     

23. I often don't know what I want     

24. I get fired up when I see the chance to achieve 
something 

    

25. I am an outgoing person     

26. When faced with two unpleasant alternatives, it is 
difficult for me to decide on the lesser of two evils 
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Group differences on self-report measures for Study 1 (Chapter 2) 

To determine whether responses on self-report measures differed significantly 

between age groups, first, a Shapiro-Wilk test was used to test the assumption of 

normality. The results indicated that STAI-S (percentage scores) and the three DASS-21 

sub-scales (depression, anxiety, stress) had non-normal distributions. For these 

measures a Kruskall-Wallis H-test was conducted. For the AQ-10 child and adult 

versions, the STAI-T (percentage scores), CR (percentage scores) and ES (percentage 

scores), a one-way MANOVA was used. Secondly, scores for each age-group were 

inspected for extreme outliers. Three extreme outliers were present in the young adult 

group on the DASS-21 anxiety sub-scale only.  

The results of the Kruskall-Wallis H-test revealed significant group differences 

for STAI-S scores (χ2 (2) = 34.14, p < 0.001) but not for depression (χ2 (2) = 1.11, p = 

0.57), anxiety (χ2 (2) = 4.40, p = 0.11) nor stress (χ2 (2) = 0.42, p = 0.80) DASS-21 

subscales. A series of Mann-Whitney U tests were then conducted. To ameliorate 

inflated Type-I error rates a Bonferroni correction was applied (alpha = 0.016). The 

Mann-Whitney U tests revealed that the early adolescent group had significantly higher 

STAI-S scores compared to the late adolescent group (p < 0.001) and the young adult 

group (p < 0.001). No significant differences were found between the late adolescent 

group and the young adult group (p = 0.84).   

The results of the one-way MANOVA revealed a significant main effect of 

group for STAI-T scores F(2, 51) = 5.58, p < 0.01, ηp
2= 0.180 and CR percentage 

scores F(2, 51) = 8.36, p < 0.01, ηp
2= 0.247. Post-hoc tests revealed that early 

adolescents had significantly higher STAI-T scores compared to late adolescents (p < 

0.05) and young adults (p < 0.01) and significantly lower CR scores compared to late 

adolescents (p < 0.01) and young adults (p < 0.001). No significant differences were 

found between late adolescents and young adults for STAI-T scores nor CR scores. No 

significant differences were found between groups for ES scores F(2, 51) = 0.850, p = 

0.43, ηp
2= 0.032 nor AQ-10 scores F(2, 51) = 1.74, p = 0.18, ηp

2= 0.064. Levene’s test 

of homogeneity of variances was non-significant (p > 0.05) and the Box’s M test for 

equality of covariance matrices was non-significant (p = 0.724). The results are 

presented in Supplementary Table 2.3. 
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Number of channels removed, head size, room temperature and button press 

errors for Study 1 (Chapter 2) 

Across all age groups, on average 6 channels were removed prior to re-

referencing to the average (median = 6, mode = 5, min = 1, max = 16). In the early 

adolescent group, the mean number of channels removed was 7.05 (SD = 4.07, median 

= 5, mode = 5, min = 1, max = 16). In the late adolescent group, the mean number of 

channels removed was 6.88 (SD = 3.44, median = 6.5, mode = 8, min = 2, max = 14). In 

the young adult group, the mean number of channels removed was 5.27 (SD = 3.04, 

median = 4.5, mode = 2, min = 1, max = 12). A Kruskall-Wallis H-test was conducted 

to examine age group differences in the number of channels removed. This resulted in a 

non-significant finding (χ2 (2) = 2.56, p = 0.277) demonstrating that there were no 

significant group differences in the number of channels removed. A one-way ANOVA 

revealed a non-significant main group effect for head size circumference F(2, 51) = 

1.08, p = 0.34, ηp
2= .081. Exploration of the room temperature reported at the time of 

recording the EEG revealed that across age groups room temperatures ranged from 21 

to 26 degrees Celsius. Mann-Whitney U tests revealed a significant difference in room 

temperatures (Bonferroni correction alpha = 0.016) during EEG recordings between late 

adolescents and young adults (p < 0.001). The group means and standard deviations for 

head size and room temperature as well as the total number of trials averaged to 

compute the ERPs (CNV, N170, P1) are presented in Supplementary Table 2.4. 

Across all age groups, on average 8 trials were removed due to button press 

errors (median = 6, mode = 3, min = 0, max = 36). A one-way ANOVA using the 

univariate function is SPSS was conducted to examine group differences in the number 

of button press errors that occurred during trials. A Shapiro-Wilk test revealed normal 

distributions of scores for each age group (p > 0.05) and no extreme outliers were 

present in the data. However, the Levene’s test of equality of error variances was 

significant (p < 0.01), violating the assumption of homogeneity of variance. A 

significant main effect for group was found F(2, 51) = 7.66, p = .001, ηp
2= .231. 

Bonferroni corrected pairwise comparisons revealed that the early adolescent group 

performed significantly worse, making more button press errors compared to the late 

adolescent group (p = .009) and the young adult group (p = .002), this being the primary 

reason for the exclusion of more trials in this age group compared to the other two age 
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groups. There were no significant differences in the number of button press errors 

between the late adolescent group and the young adult group (p > .05). Button press 

errors means and standard deviations for each age-group are presented in 

Supplementary Table 2.4. 
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Appendix 30 

Trials included in analyses for Study 1 (Chapter 2) 

Across all age groups, on average 48 CNV/P1 angry condition trials locked to S1 

onset were retained (median = 48, mode = 48, min = 39, max = 54), 47/P1 CNV happy 

condition trials locked to S1 onset were retained (median = 48, mode = 47, min = 37, 

max = 54), and 47 CNV/P1 neutral condition trials locked to S1 onset were retained 

(median = 48, mode = 48, min = 38, max = 53). The total number of trials in each age-

group per condition included in the analyses are presented in Supplementary Table 2.5. 

A Shapiro-Wilk test revealed non-normal distributions in the young adult group for 

happy and neutral conditions (negative skew) while the distribution of scores for 

CNV/P1 trials in the other two age groups were normally distributed in all conditions. 

No extreme outliers were present. To examine group differences in the number of trials 

included in the analyses for each group for each condition, a one-way ANOVA was 

conducted for the angry condition and a Kruskall-Wallis H-test was used to examine 

group differences for happy and neutral conditions. The one-way ANOVA for trial 

numbers included in the angry CNV/P1 condition locked to S1 onset revealed a 

significant main effect of group F(2, 51) = 8.10, p < 0.01, ηp
2= .241. Levene’s test of 

equality of error variances was non-significant. Bonferroni corrected pairwise 

comparisons revealed that the early adolescent group contained a significantly lower 

number of CNV/P1 trials in the angry condition compared to the late adolescent group 

(p = .009) and the young adult group (p = .001) only. There was no statistically 

significant difference in the number of CNV/P1 trials in the angry condition between 

the late adolescent group and the young adult group (p > .05). The Kruskall-Wallis H-

test resulted in a significant finding for the number of CNV/P1 trials in the happy 

condition (χ2 (2) = 12.89, p < 0.01) and the number of CNV/P1 trials in the neutral 

condition (χ2 (2) = 15.46, p < 0.001). A series of Mann-Whitney U tests were then 

conducted. To ameliorate inflated Type-I error rates a Bonferroni correction was 

applied (alpha = 0.016). The Mann-Whitney U tests revealed a significantly lower 

number of CNV/P1 happy condition trials in the early adolescent group compared to the 

young adult group (p < 0.01).  Significantly fewer CNV/P1 happy condition trials were 

also present in the late adolescent group compared to the young adult group (p < 0.01). 

Again, a significantly lower number of neutral CNV/P1 condition trials were present in 

the early adolescent group compared to the young adult group (p < 0.01) and a 



 303 

significantly lower number of CNV/P1 neutral condition trials were present in the late 

adolescent group compared to the young adult group (p < 0.01). 

 Group differences in the number of N170/P1 trials locked to S2 onset for each 

condition were also examined. Across all age groups, on average 48 N170/P1 angry 

condition trials locked to S2 onset were retained (median = 48, mode = 48, min = 41, 

max = 54), 47 N170/P1 happy condition trials locked to S2 onset were retained (median 

= 48, mode = 47, min = 37, max = 54), and 48 N170/P1 neutral condition trials locked 

to S2 onset were retained (median = 48, mode = 48, min = 40, max = 53). A Shapiro-

Wilk test revealed non-normal distributions in the late adolescent group for the neutral 

condition (positive skew) and non-normal distributions in the young adult group for the 

happy and neutral conditions (both negative skew). One extreme outlier was present in 

the late adolescent group for the neutral condition. A one-way ANOVA for the number 

of N170/P1 trials in the angry condition revealed a significant main effect of group F(2, 

51) = 7.38, p < 0.01, ηp
2= .225. Levene’s test of equality of error variances was non-

significant. Post-hoc tests revealed that the early adolescent group contained a 

significantly lower number of N170/P1 trials in the angry condition compared to the late 

adolescent group (p < 0.01) and the young adult group (p < 0.01) only. The Kruskall-

Wallis H-test resulted in a significant finding for the number of N170/P1 trials in the 

happy condition (χ2 (2) = 10.64, p < 0.01) and the number of N170/P1 trials in the 

neutral condition (χ2 (2) = 15.57, p < 0.001) across the three groups. Again, a series of 

Mann-Whitney U tests were then conducted, and again to ameliorate inflated Type-I 

error rates a Bonferroni correction was applied (alpha = 0.016). The Mann-Whitney U 

tests revealed a significantly lower number of N170/P1 happy condition trials in the 

early adolescent group compared to the young adult group (p < 0.01). Again, a 

significantly lower number of N170/P1 neutral condition trials were present in the early 

adolescent group compared to the young adult group (p < 0.01) and a significantly 

lower number of N170/P1 neutral condition trials were present in the late adolescent 

group compared to the young adult group (p < 0.01). 
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Appendix 31 

Assumption testing for ANOVAs conducted on RT and ERP data for Study 1 

(Chapter 2) 

 

Assumption testing for mean reaction time ANOVA analyses 

There were no extreme outliers in the data. Two of the nine cells of the design 

(angry condition) were not normally distributed, one for the early adolescent group and 

one for the young adult group, as assessed by Shapiro-Wilk’s test of normality (p < .05), 

both showing moderate positive skew. The assumption of homogeneity of variances 

was met, as assessed by Levene’s test of homogeneity of variance (p > .05). There was 

homogeneity of covariances, as assessed by Box’s test of equality of covariance 

matrices (p > .001). Mauchly’s test of sphericity indicated that the assumption of 

sphericity was met for the two-way interaction, χ2(2) = 1.701, p = .427. 

 

Assumption testing for iCNV ANOVA analysis 

One extreme outlier was identified in the late adolescent group (participant 11). 

This participant was removed from the analysis. Two of the nine cells of the design 

(happy condition) were not normal distributed for the late adolescent and young adult 

group, as assessed by Shapiro-Wilk’s test of normality (p < .05), both showing 

moderate negative skew. The assumption of homogeneity of variances was met, as 

assessed by Levene’s test of homogeneity of variance (p > .05). There was homogeneity 

of covariances, as assessed by Box’s test of equality of covariance matrices (p = .176). 

Mauchly’s test of sphericity indicated that the assumption of sphericity was met for the 

two-way interaction, χ2(2) = 3.156, p = .206.  

 

Assumption testing for tCNV ANOVA analysis 

Participant 11 was identified as a significant outlier with a studentized residual 

value of -3.83 for the neutral condition. This participant was removed from the analysis. 

One of the nine cells of the design was not normally distributed for the late adolescent 

group (angry condition), as assessed by Shapiro-Wilk’s test of normality (p < .05), 

showing moderate negative skew. The assumption of homogeneity of variances was 

met, as assessed by Levene’s test of homogeneity of variance (p > .05). There was 

homogeneity of covariances, as assessed by Box’s test of equality of covariance 
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matrices (p = .255). Mauchly’s test of sphericity indicated that the assumption of 

sphericity was not met for the two-way interaction, χ2(2) = 6.356, p = .042. 

 

Assumption testing for Total CNV ANOVA analysis 

There were no extreme outliers in the data. Three of the nine cells of the design 

(angry, happy, and neutral) were not normal distributed for the late adolescent group 

only, as assessed by Shapiro-Wilk’s test of normality (p < .05), all showing moderate 

negative skew. The assumption of homogeneity of variances was not met for the angry 

condition (p = .008), as assessed by Levene’s test of homogeneity of variance (p < .05). 

There was homogeneity of covariances, as assessed by Box’s test of equality of 

covariance matrices (p = .268). Mauchly’s test of sphericity indicated that the 

assumption of sphericity was met for the two-way interaction, χ2(2) = 5.652, p = .059.  

 

Assumption testing for the Visual P1 to S1 ANOVA analyses 

Three extreme outliers were identified, one in each age group. These outliers 

were removed prior to running the analysis. For each group, all conditions measured at 

O1/O2 were normally distributed as assessed by Shapiro-Wilk's test (p > .05). The 

assumption of homogeneity of variances was not met for all repeated measures of the 

design, as assessed by Levene's test of homogeneity of variance (p < .05). There was 

homogeneity of covariances, as assessed by Box's test of equality of covariance 

matrices (p = .129). Mauchly's test of sphericity indicated that the assumption of 

sphericity was met, χ2(2) = .009, p = .996. 

 

Assumption testing for the Visual P1 to S2 ANOVA analyses 

No extreme outlier was present in the data. One of the eighteen cells of the 

design was not normally distributed, as assessed by Shapiro-Wilk's test of normality (p 

= .030), showing a moderate positive skew. The assumption of homogeneity of 

variances was not met for four of the repeated measures, as assessed by Levene's test of 

homogeneity of variance (p < .05), with the exception of the O2/PO8 electrode cluster 

in the angry condition and the O2/PO8 electrode cluster in the happy condition (p > 

.05). The assumption of homogeneity of covariances was met, as assessed by Box's test 

of equality of covariance matrices (p > .001). Mauchly's test of sphericity indicated that 

the assumption of sphericity was violated for the three-way interaction, χ2(2) = 16.232, 

p = .019. 
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Assumption testing for the N170 to S2 ANOVA analyses 

Three extreme outliers were identified, one in each age group. These outliers 

were removed prior to running the analysis. All eighteen cells of the design were 

normally distributed, as assessed by Shapiro-Wilk's test of normality (p > .05). The 

assumption of homogeneity of variances was not met for two of the six repeated 

measures (P10 in the angry condition and in the happy condition), as assessed by 

Levene's test of homogeneity of variance (p < .05). The assumption of homogeneity of 

covariances was met, as assessed by Box's test of equality of covariance matrices (p = 

.420). Mauchly's test of sphericity indicated that the assumption of sphericity was met 

for the three-way interaction, χ2(2) = .503, p = .778. 
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Appendix 32 

The relationship between the contingent negative variation, state anxiety, and 

reaction time data post-hoc analyses for Study 1 (Chapter 2). 

Given that significant group differences were found in mean reaction time but 

not in CNV amplitudes in addition to the findings that mean reaction times were faster 

to happy faces compared to neutral faces for early adolescents, the lack of significant 

within and between subjects’ findings with regards to CNV mean amplitude was 

somewhat surprising. Therefore, in addition to the mixed methods analyses described 

above I conducted a series of post-hoc standard multiple regressions to assess the 

relationship between a number of predictors and mean reaction times. The following 

predictors were entered into the regression model -  iCNV at FCz, tCNV at Cz, state 

anxiety levels, and dummy coded age groups with mean reaction times as the outcome 

variable. This was repeated three times, once for each condition. State anxiety was 

chosen to be entered into the model as previous work has shown a relationship between 

state anxiety and iCNV amplitudes (Carretié, Mercado, Hinojosa, Martın-Loeches, & 

Sotillo, 2004) whereby participants with high state anxiety scores showed significantly 

greater iCNV amplitudes during the anticipation of negative stimuli. This suggests that 

individuals with higher levels of state anxiety demonstrate valence-related bias towards 

negative stimuli. However, and somewhat counterintuitively, there is evidence to 

suggest that high-anxious individuals demonstrate delayed reaction times to emotional 

and non-emotional facial expressions compared to low-anxious individuals (Bar-Haim, 

Lamy & Glickman, 2005). Moreover, in this study I found that early adolescents 

showed significantly higher levels of state anxiety which may help to account for 

differences found in the reaction time data. Table 32.1 shows the zero order correlations 

between the predictor variables used for each regression model. 
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Table 32.1. Pearson correlation coefficients of predictor and outcome variables. 

Angry condition Mean RT iCNV FCz tCNV Cz Total 

CNV 

STAI - S    

iCNV at FCz  .208 -       

tCNV at Cz  .265*  .276* -      

STAI – S%  .554*** -.048  .203 -.037 -    

Happy condition Mean RT iCNV FCz tCNV Cz Total 

CNV 

STAI - S    

iCNV at FCz   .081 -       

tCNV at Cz   .253*  .336** -      

STAI – S%  .546*** -.092  .174  .173 -    

Neutral condition Mean RT iCNV FCz tCNV Cz Total 
CNV 

STAI - S    

iCNV at FCz   .290* -       

tCNV at Cz   .439***  .698*** -      

STAI – S%  .584***  .008  .244*  .172 -    

Note. STAI – S% = state anxiety percentage scores; * Significance at p < .05; ** Significance at p < .01; *** Significance 
at p < .001 

 

Total CNV was highly correlated with both iCNV and tCNV and was therefore 

not entered into the model over concerns of multicollinearity. In addition, total CNV 

was a poor predictor of mean reaction times. Two separate sets of standard multiple 

regressions were conducted, one with iCNV and the other with tCNV included as 

predictors. Prior to running the final standard multiple regression analyses the data was 

checked for outliers, as assessed by inspection of the casewise diagnostic output in 

SPSS and studentized deleted residual values being +/- 3 standard deviations, high 

leverage points as assessed by leverage values being above .2 (Huber, 1981), and 

influential points as assessed by Cook’s Distance values being above 1 (Cook & 

Weisberg, 1982). No outliers or influential points were found. However, a number of 

participants were found to have leverage values above .2 but below .35. The multiple 

regression analyses were run again with and without these participants. For the multiple 

regressions with iCNV included as a predictor of RTs in response to angry and neutral 

faces, the results changed materially and therefore participants with high leverage 

values (2 late adolescents) were removed from all analyses which included iCNV as a 

predictor variable. For the multiple regressions with tCNV included as a predictor of 

RTs in response to angry, happy and neutral faces, five participants had leverage values 

above .2 (1 early adolescent, 3 late adolescents, 1 young adult). However, the results did 

not materially change as a consequence of inclusion or exclusion of these participants 

from the regression models and therefore these participants were not removed from 

these analyses.    

 For each multiple regression model, visual inspection of partial regression plots 
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and plots of studentized residuals against the predicted values indicated that the 

assumption of linearity was met. There was independence of residuals, as assessed by 

Durbin-Watson statistics. For each multiple regression model there was 

homoscedasticity, as assessed by visual inspection of plots of the standardized residuals 

versus standardized predicted values. For each multiple regression model residuals were 

normally distributed as assessed by visual inspection of histograms and normal 

probability plots. All tolerance values were greater than 0.1. The “Enter” method was 

selected, a forced entry method which enters all of the specified predictors into the 

regression equation regardless of their level of significance, all weighted equally. 

  

Multiple regression analyses 

The regression model for mean RT in the angry condition with iCNV, STAI-S 

scores and dummy coded age groups as predictors was significant F(4, 51) = 7.233, p < 

.001 with an R2 of 38.1%. This accounted for roughly 38% of the proportion of variance 

in mean RT predicted by the linear combination of the predictor variables. However, 

only iCNV amplitude approached significance and uniquely explained 4.3% of the 

variability in mean RT, while STAI-S accounted for only .6%. These percentages and 

those listed below are based on semipartial correlations for each predictor once the 

model was finalized. The regression model for mean RT in the happy condition with 

iCNV, STAI-S scores and dummy coded age groups as predictors was also significant 

F(4, 51) = 5.653, p = .001 with an R2 of 32.5%. Again, none of the predictor variables 

in the model were significant. iCNV amplitude only explained .11% of the variability in 

mean RT, while STAI-S only accounted for .21%. The regression model for mean RT in 

the neutral condition with iCNV, STAI-S scores and dummy coded age groups as 

predictors was the most significant of the three regression models F(4, 51) = 9.126, p = 

< .001 with an R2 of 43.7%. In this instance iCNV amplitude explained 4.4% of the 

variability in mean RT, while STAI-S only accounted for .07%. Taken together, while 

the overall model was statistically significant, these results show that while controlling 

for other variables in the model, none of the predictor variables on their own were 

significant predictors of mean RT in each of the three conditions. Moreover, the results 

of the regression analyses show that when iCNV and STAI-S are entered into the model 

age group is not a significant factor in determining mean RT. Table 32.2 shows the 

regression coefficients and tests of significance. Again, the zero order correlations are 
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presented in Table 32.1. 

 

Table 32.2. Results of regression analyses with iCNV, STAI-S and dummy coded age groups as predictors (N = 52). 

Regression Significance R Adjusted 

R2 

Variable B S.E. B β t Significant 

p 

Angry RT < .001 .617 .328 iCNV FCz   5.367  2.959  .211  1.814  .076 

    STAI - S  .543 .793  .172    .685  .497 

    Early adolescents  39.217  27.455  .364   1.428  .160 

    Late adolescents -11.834  14.613 -.107   -.810  .422 

    Constant  286.034  31.978    8.945 <.001 

Happy RT .001 .570 .267 iCNV FCz   .825  2.944  .035   .280  .780 

    STAI - S  .286 .751  .100   .381  .705 

    Early adolescents  47.418  25.771  .488   1.840  .072 

    Late adolescents  1.073  13.953  .011   .077  .939 

    Constant  280.826  30.142  9.317 <.001 

Neutral RT <.001 .649 .360 iCNV FCz  7.464 4.417 .279  1.690  .098 

    STAI - S 1.165 .718 .355  1.623  .111 

    Early adolescents 31.965 26.394 .285  1.211  .232 

    Late adolescents 6.413 14.536 .056    .441  .661 

    Constant 259.729 30.262   8.583 <.001 

Note. The young adult group was used as the reference group for each regression; B = unstandardized coefficient; S.E. B = standardized 

error of unstandardized coefficient; β  = standardized coefficient 

 

 

The regression model for mean RT in the angry condition with tCNV, STAI-S 

scores and dummy coded age groups as predictors was significant F(4, 53) = 6.326, p < 

.001 with an R2 of 34.1%. However, only STAI-S scores approached significance and 

uniquely explained 4.6% of the variability in mean RT, while tCNV amplitude 

accounted for only 1.7%. The regression model for mean RT in the happy condition 

with tCNV, STAI-S scores and dummy coded age groups as predictors was also 

significant F(4, 53) = 5.931, p < .001 with an R2 of 32.6%. Again, only STAI-S scores 

approached significance and uniquely explained 5.1% of the variability in mean RT, 

while tCNV amplitude accounted for only 2.1%. The regression model for mean RT in 

the neutral condition with tCNV, STAI-S scores and dummy coded age groups as 

predictors was again the most significant of the three regressions F(4, 53) = 9.914, p = < 

.001 with an R2 of 44.7%. In this instance tCNV amplitude was a statistically significant 

predictor of mean RT and explained 8.2% of the variability in mean RT, while STAI-S 

only accounted for 2.7%. Table 32.3 shows the regression coefficients and tests of 

significance. Again, the zero order correlations are presented in Table 32.1. 
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Table 32.3. Results of regression analyses with tCNV, STAI-S and dummy coded age groups as predictors (N = 54). 

Regression Significance R Adjusted 

R2 

Variable B S.E. B β t Significant 

p 

Angry RT < .001 .584 .287 tCNV Cz   2.125  1.884  .139  1.128  .265 

    STAI - S  1.425 .766  .428   1.859  .069 

    Early adolescents  7.810  28.170  .068   .277  .783 

    Late adolescents -10.609  15.331 -.093   -.692  .492 

    Constant  249.112  31.378    7.939 <.001 

Happy RT .001 .571 .271 tCNV Cz   2.162  1.724  .155   1.254  .216 

    STAI - S  1.385 .717  .499   1.933  .059 

    Early adolescents  10.194  26.190  .096   .389  .699 

    Late adolescents  3.391  14.353  .032   .236  .814 

    Constant  244.695  29.393  8.325 <.001 

Neutral RT <.001 .669 .402 tCNV Cz  4.399 1.634 .301  2.692  .010 

    STAI - S 1.089 .706 .322  1.543  .129 

    Early adolescents 26.295 25.499 .227  1.031  .307 

    Late adolescents 1.790 14.352 .015    .125  .901 

    Constant 261.680 29.437   8.890 <.001 

Note. The young adult group was used as the reference group for each regression; B = unstandardized coefficient; S.E. B = 

standardized error of unstandardized coefficient; β  = standardized coefficient 
 

 

In conclusion, while the overall models for mean RT were all statistically 

significant, these results show that while controlling for other variables in the model, 

only tCNV amplitude in the neutral condition was a statistically significant predictor of 

mean RT accounting for roughly 8.2% of the variability in mean RT. The key finding 

from the results of the regression analyses show that when iCNV, tCNV and STAI-S 

are entered into the model their respective models, age group is not a significant factor 

in determining mean RT. 
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Appendix 33 

Supplementary Tables for Chapter 2 

Supplementary Table 2.1. Descriptive statistics (Mean, SD in brackets) for AQ-10, STAI (state & trait children & adult versions), ERQ (adult & child versions) and DASS-21 questionnaire. 

            

    Mean (SD)    

    AQ – 10 STAI-S % STAI-T % ERQ – CR % ERQ – ES % DASS-21 Dep DASS-21 Anxiety DASS-21 Stress 

Age group Gender n         

Early Adolescents Male 9 3.44 (1.50) 70.92 (6.29) 58.70 (13.30) 59.25 (14.31) 56.66 (17.67) 4.11 (4.31) 2.66 (2.34) 4.11 (2.84) 

  Female 9 2.55 (2.29) 65.92 (4.25) 61.48 (11.62) 57.40 (10.51) 52.77 (22.79) 3.66 (3.46) 4.00 (2.73) 7.00 (3.84) 

  Total 18 3.00 (1.94) 68.42 (5.81) 60.09 (12.20) 58.33 (12.22) 54.72 (19.88) 3.88 (3.80) 3.33 (2.56) 5.55 ( 1.81) 

            
Late Adolescents Male 9 1.88 (1.53) 37.50 (10.21) 49.72 (13.37) 71.42 (12.31) 53.96 (20.39) 3.55 (4.41) 3.77 (1.30) 5.44 ( 1.81) 

  Female 9 2.22 (1.48) 40.60 (12.24) 51.94 (12.08) 69.04 (14.91) 53.96 (16.88) 2.88 (2.52) 4.22 (4.81) 5.22 (3.49) 

  Total 18 2.05 (1.47) 39.09 (11.06) 50.83 (12.41) 70.23 (13.32) 53.96 (18.16) 3.22 (3.50) 4.00 ( 3.42) 5.33 (2.70) 

            

Young Adults Male 9 2.77 (1.20) 38.61 (8.03) 42.50 (9.58) 76.45 (8.78) 57.14 (18.47) 1.77 (1.48) 1.11 ( 0.78) 4.22 (1.71) 

  Female 9 1.66 (1.41) 38.75 (7.75) 51.25 (12.91) 73.54 (15.31) 36.90 (17.85) 2.33 (2.64) 3.00 ( 3.16) 6.11 (4.59) 
  Total 18 2.22 (1.39) 38.68 (7.66) 46.87 (11.91) 75.00 (12.20) 47.02 (20.47) 2.05 (2.09) 2.05 ( 2.43) 5.16 (3.50 

            

Note. AQ = Autism Spectrum Quotient; STAI = State Trait Anxiety Inventory; S = State; T = Trait; ERQ = Emotion Regulation Questionnaire; CR = Cognitive Reappraisal; ES 
= Emotion Suppression; DASS = Depression Anxiety Stress Scale. 
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Supplementary Table 2.2. Descriptive statistics (Mean, SD in brackets) and Cronbach’s Alpha for summed scores of STAI, STAI-C, ERQ, ERQ-CA, DASS-21 sub-scales. 

        

Age Groups  Questionnaire Sub-scale Mean (SD) Min Max α 

Early Adolescents (n = 18) AQ-10-C Child version 3.00 (1.94) 0 8 0.58 

 STAI-S-C  State 41.05 (3.48) 38 50 0.76 
  STAI-T-C Trait 36.05 (7.32) 24 50 0.85 

  ERQ-CA CR 17.50 (3.66) 11 23 0.78 

  ERQ-CA ES 10.94 (3.97) 5 18 0.89 
  DASS-21 Depression 3.88 (3.80) 0 12 0.82 

  DASS-21 Anxiety 3.33 (2.56) 0 8 0.49 
  DASS-21 Stress 5.55 (3.60) 0 16 0.70 

        

Late Adolescents (n = 18) AQ-10-A Adult version 2.05 (1.47) 0 5 0.35 

 STAI-S State 31.27 (8.85) 20 52 0.91 
  STAI-T Trait 40.66 (9.93) 21 60 0.91 

  ERQ CR 29.50 (5.59) 18 38 0.77 

  ERQ ES 15.11 (5.08) 7 25 0.81 
  DASS-21 Depression 3.22 (3.50) 0 13 0.81 

  DASS-21 Anxiety 4.00 (3.42) 0 14 0.67 

  DASS-21 Stress 5.33 (2.70) 2 11 0.41 
        

Young Adults (n = 18) AQ-10-A Adult version 2.22 (1.39) 0 5 0.27 

 STAI-S State 30.94 (6.13) 21 41 0.86 
  STAI-T Trait 37.50 (9.53) 24 60 0.93 

  ERQ CR 31.50 (5.12) 23 42 0.71 

  ERQ ES 13.16 (5.73) 4 23 0.89 
  DASS-21 Depression 2.05 (2.09) 0 9 0.61 

  DASS-21 Anxiety 2.05 (2.43) 0 9 0.75 

  DASS-21 Stress 5.16 (3.50) 1 15 0.84 
        

Note. AQ = Autism Spectrum Quotient; STAI = State Trait Anxiety Inventory; S = State; T = Trait; ERQ = Emotion Regulation Questionnaire; CR = Cognitive Reappraisal; 

ES = Emotion Suppression; DASS = Depression Anxiety Stress Scale. 
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Supplementary Table 2.3. Self-report questionnaire scores by group (N=54). 

 Early 

adolescent 

Late adolescent Young adult χ2/F P 

  Mean (SD)    

AQ-10 3.00 (1.94) 2.05 (1.47) 2.22 (1.39) F(2, 51) = 1.74 > 0.10 

STAI-S % 68.42 (5.81) 39.09 (11.06) 38.68 (7.66) χ2 (2) = 34.14 < 0.001 

STAI-T % 60.09 (12.20) 50.83 (12.41) 46.87 (11.91) F(2, 51) = 5.58 < 0.01 

ERQ-CR % 58.33 (12.22) 70.23 (13.32) 75.00 (12.20) F(2, 51) = 8.36 < 0.01 

ERQ-ES % 54.72 (19.88) 53.96 (18.16) 47.02 (20.47) F(2, 51) = 0.85 > 0.10 

DASS-21-depression 3.88 (3.80) 3.22 (3.50) 2.05 (2.09) χ2 (2) = 1.11 > 0.10 

DASS-21-anxiety 3.33 (2.56) 4.00 (3.42) 2.05 (2.43) χ2 (2) = 4.40 > 0.10 

DASS-21-stress 5.55 (3.60) 5.33 (2.70) 5.16 (3.50) χ2 (2) = 0.42 > 0.10 

Note. AQ = Autism Spectrum Quotient; STAI = State Trait Anxiety Inventory; S = State; T = Trait; ERQ = Emotion 

Regulation Scale; CR = Cognitive Reappraisal; ES = Emotion Suppression; DASS = Depression Anxiety Stress Scale. 
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Supplementary Table 2.4. Group means and standard deviations (SD) for head size, room temperature and errors during trials as 
well as the total number of trials averaged to compute the ERPs. 

         

    Mean (SD)  

    Head size Room 
temp* 

# Trials 
(CNV/P1) 

# Trials 
(N170/P1) 

Button press 
errors 

Age group Gender n      

Early Adolescents Male 9 56.66 (2.64) 23.11 (1.45) 135.11 (10.16) 136.33 (9.56) 15.22 (9.95) 
  Female 9 55.88 (1.90) 23.11 (1.53) 136.11 (10.97) 139.00 (10.39) 8.77 (5.33) 

  Total 18 56.27(2.27) 23.11 (1.45) 135.61 (10.27) 137.66 (9.78) 12.00 (8.42) 

         
Late Adolescents Male 9 58.38 (1.24) 23.88 (0.60) 137.88 (7.65) 140.66 (8.90) 7.00 (4.15) 

  Female 9 55.66 (1.58) 24.11 (0.92) 145.88 (7.11) 147.77 (5.33) 5.22 (3.19) 

  Total 18 57.02 (1.96) 24.00 (0.76) 141.88 (8.26) 144.22 (8.00) 6.11 (3.70) 
         

Young Adults Male 9 59.50 (2.09) 22.77 (1.09) 146.55 (9.86) 147.11 (9.66) 5.33 (2.91) 

  Female 9 55.33 (1.41) 22.66 (1.00) 150.11 (4.88) 150.77 (4.52) 5.11 (3.78) 

  Total 18 57.41 (2.75) 22.72 (1.01) 148.33 (7.76) 148.94 (7.55) 5.22 (3.28) 

Note. Room temp = room temperature in degrees celsius 
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Supplementary Table 2.5. Means and standard deviations (SD) for the number trials for each condition for each age group (N = 54). 

         

   Mean (SD) 

   CNV/P1 N170/P1 

   Angry Happy Neutral Angry Happy Neutral 

Age Groups  Gender       

Early Adolescents (n = 18) Male 44.88 (4.04) 44.44 (4.03) 45.77 (3.07) 45.33 (3.80) 45.00 (3.87) 46.00 (2.69) 

  Female 45.33 (2.82) 45.11 (4.64) 46.77 (3.86) 46.00 (3.27) 45.77 (4.81) 47.22 (3.86) 

  Total 45.11 (3.39) 44.77 (4.23) 46.27 (3.42) 45.66 (3.46) 45.38 (4.25) 46.11 (3.29) 
         

Late Adolescents (n = 18) Male 47.00 (3.74) 44.77 (3.59) 46.11 (1.96) 48.11 (4.13) 45.33 (3.96) 47.22 (1.64) 

  Female 49.77 (2.33) 48.66 (2.50) 47.44 (3.46) 50.22 (2.16) 49.11 (2.42) 48.44 (1.87) 
  Total 48.38 (3.34) 46.72 (3.61) 46.77 (2.81) 49.16 (3.38) 47.22 (3.73) 47.83 (1.82) 

         

Young Adults (n = 18) Male 48.66 (3.04) 48.88 (4.16) 49.00 (3.70) 48.66 (3.04) 49.00 (3.87) 49.44 (3.77) 
  Female 49.44 (2.29) 50.11 (2.52) 50.55 (1.81) 49.77 (2.16) 50.22 (2.27) 50.77 (1.92) 

  Total 49.05 (2.64) 49.50 (3.39) 49.77 (2.94) 49.22 (2.62) 49.61 (3.14) 50.11 (2.98) 
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Supplementary Table 2.6. Means and standard errors (SE) for visual P1 peak amplitude in response to the predictive cue stimuli at O1 
and O2 (N=51). 

 Early adolescent Late adolescent Young adult 1* 2* 

Electrode/condition  Mean (SE)  p p 

Left hemisphere      

O1/angry 9.179 (.730) 3.953 (.730) 3.620 (.730) < .001 < .001 

O1/happy 8.880 (.741) 4.756 (.741) 3.336 (.741)   .004 < .001 

O1/neutral 8.979 (.859) 4.316 (.859) 3.396 (.859)   .007    .001 

Right hemisphere      

O2/angry 10.387 (.787) 3.858 (.787) 3.072 (.787) < .001 < .001 

O2/happy 10.477 (.823) 4.633 (.823) 3.032 (.823) < .001 < .001 

O2/neutral 10.097 (.983) 3.983 (.983) 3.757 (.983)   .002   .001 

Note. 1 = early adolescents > late adolescents, 2 = early adolescents > young adults 
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Appendix 34  

Supplementary Tables for Chapter 4 

Supplementary Table 4.5. Uncorrected correlations between clinical features in PNES and clusters surviving cluster-wise correction in patients with PNES (n = 20). 

   Age at  

onset 

Duration of 

symptoms 

Symptom 

severity 

Number AEDs 

taken 

 Cluster  

Annotation 
     

       

Spearman’s rho Left pars opercularis Correlation Coefficient -0.17 -0.18 0.16 -0.08 

 Sig. (2-tailed) 0.47 0.43 0.47 0.71 
       

 Left paracentral Correlation Coefficient -0.10 0.14 0.03 0.15 

  Sig. (2-tailed) 0.66 0.55 0.90 0.51 
       

 Left cuneus Correlation Coefficient -0.17 0.11 0.49* 0.19 

  Sig. (2-tailed) 0.47 0.63 0.02 0.41 
       

 Left lingual Correlation Coefficient -0.13 -0.02 0.21 -0.03 

  Sig. (2-tailed) 0.59 0.92 0.37 0.90 
       

 Right lateral occipital Correlation Coefficient -0.21 -0.02 0.18 0.05 
  Sig. (2-tailed) 0.35 0.91 0.44 0.81 

       

 Right superior temporal 1 Correlation Coefficient -0.29 0.22 0.25 0.39 
  Sig. (2-tailed) 0.20 0.33 0.28 0.08 

       

 Right superior temporal 2 Correlation Coefficient -0.43 0.09 0.17 0.01 

  Sig. (2-tailed) 0.05 0.68 0.46 0.94 

       

 Right pars opercularis Correlation Coefficient -0.12 -0.18 -0.01 -0.18 
  Sig. (2-tailed) 0.61 0.43 0.94 0.42 

       

 Right cuneus Correlation Coefficient -0.11 0.06 0.45* 0.13 
  Sig. (2-tailed) 0.63 0.77 0.04 0.57 

       

 Right medial orbitofrontal Correlation Coefficient 0.00 -0.14 -0.17 -0.03 
  Sig. (2-tailed) 0.98 0.54 0.45 0.87 

       

PNES = Psychogenic non-epileptic seizures; AEDs = anti-epileptic drugs; *. Correlation is significant at the 0.05 level (2-tailed). Results are uncorrected for multiple 

comparisons. 
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Appendix 35 

Flow chart for EEG preprocessing (Chapter 2) 

 

Figure 35.1. Flow chart showing steps taken to preprocess the raw EEG data. Note. 

Step 13. Epoched data*. For CNV analyses, data was epoched -500ms to 5000ms 

locked to S1 onset with a -500ms to 0ms baseline correction. For P1 analyses to S1, data 

was epoched -200ms to 1000ms, locked to S1 onset, with a -200ms to 0ms baseline 

correction. For P1/N170 analyses to S2, data was epoched -200ms to 1000ms, locked to 

S2 onset, with a -200ms to 0ms baseline correction. 
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Appendix 36 

Measuring ERP amplitudes (Chapter 2) 

 

Step 1. Once each ERP was computed for each participant for each condition (CNV 

locked to S1, visual P1 locked to S1, Visual P1 locked to S2, and N170 locked to S2), 

each participants ERP was loaded into the ERPLAB measurement tool (Figure 36.1). 

 

 

Figure 36.1. Example of taking a measurement of the average mean amplitude in a 

latency window of 200ms prior to S2 onset (tCNV) for one participant for one condition 

(bin 3: neutral condition) at channel Cz.  

 

Step 2. Each measurement for each participant for each condition was saved as a text 

file and imported into SPSS for further analyses. 
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Appendix 37 

Procedure used for ALE meta-analyses Study 2 (Chapter 3) 

Step 1. Create text file containing all of the reported coordinates in Talairach or MNI 

space in addition to information about the study Authors, year and the number of 

subjects in each study (Figure 35.1 a). 

 

a)     b) 

   

Figure 37.1.(a) Example of text file used in ALE meta-analysis. (b). GingerAle 

interface. 

 

Step 2. Load foci into GingerAle using File > Load foci (Figure 35.1 b). 

 

Step 3. Select Single Study, Coordinates System > Talairach 

 

Step 4. Under Settings, select multiple comparison correction by using either voxelwise 

(uncorrected values, False Discovery Rate FDR or Family Wise Error FWE), or 

alternatively by conducting multiple comparison correction on the cluster-level. Select 

the number of Threshold Permutations to run. 
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Step 5. Select Compute to implement the coordinate based ALE algorithm. GingerAle 

will then compute cluster statistics on the brain regions above the selected thresholds. 

These include volume, bounds, weighted centre and the locations and values of the 

peaks within the brain regions. The GingerAle output files include an unthresholded 

ALE score image, an unthresholded P value image, a thresholded ALE image, and 

statistic text files. All images are in NIfTI format (http://nifti.nimh.nih.gov) and can be 

viewed in any compatible medical imaging/neuroimaging software packages. 

 

Step 6. To view the results, open Mango (rii.uthscsa.edu/mango) and select Open > 

Open image > select a template (colin1.1.nii). Click on File > Add Overlay and select 

the thresholded image (E.g. *_p001.nii, *_C05.nii, *_FWE05.nii. etc.). Then choose 

Edit > Update Image Range (Figure 35.2). 

 

 

Figure 37.2. Example of thresholded image as viewed in Mango. 

 

 

 

 

 

 

http://nifti.nimh.nih.gov/
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Appendix 38 

Procedure used for MRI and lGI Study 3 (Chapter 4) 

FreeSurfer 

FreeSurfer is an open-source software package comprised of automated tools 

used for the visualisation and analyses of both cortical and subcortical anatomy and 

functional neuroimaging data. Again, as described in Chapter 4 (Section 4.2.3), the 

implementation of FreeSurfer algorithms results in two preprocessing streams. The 

surface-based stream constructs models of the white matter (WM) / gray matter (GM) 

boundary and the boundary between the GM and cerebralspinal fluid (pial surface) from 

which cortical thickness, cortical surface area, and cortical folding patterns at each point 

on the cortical surface can be measured (Dale, Fischl, & Sereno, 1999). The volume-

based stream preprocesses MRI volumes and labels subcortical tissue classes allowing 

for the representation and measurement of subcortical structures (putamen, 

hippocampus, amygdala, ventricles etc; Fischl et al., 2002, 2004b). Both cortical and 

subcortical labelling is based on a subject-independent atlas and the subject-specific 

values. The fully automated FreeSurfer pipeline consists of several stages (Table 38.1). 

For a visual representation of each step and at which points edits are made (if required) 

see Figure 38.2 (downloaded from  

http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingDataV6.0). Steps 

taken are the same as those used in FreeSurfer Version 5.3.0.  

 

Table 38.1. Recon-all processing pipeline 

 

http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingDataV6.0
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Figure 38.1. Visual depiction of FreeSurfer processing pipeline. 

 

Running automated reconstructions using High Performance Computing cluster 

(HPC, Iceberg) 

 

Accessing iceberg from an Apple Workstation 

 

1. Access Icberg using Terminal Access - Unix Style "X11-terminal" access. 

 

2. Open a new terminal window and type: ssh -X <username>@iceberg.sheffield.ac.uk 

If -X parameter in step(2) above does not work try -Y instead. 

 

3. Then login with your iceberg password.  

 

Note. When using FreeSurfer, it is advisable to use the /data directory rather than the 

/home directory to save data, as /data allocates 100G and /home allocates only 10G. To 

see allocated memory simply type: quota. To view the directory, you are working in 

type: pwd. To view contents of that directory type: ls 

 

4. Transfers data between MAC workstations and Iceberg using Filezilla 

(https://filezilla-project.org/). Simply drag and drop files to/from iceberg as required. 

 

https://filezilla-project.org/
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Host = sftp://iceberg.shef.ac.uk 

Enter username 

Enter password 

Select port 22 
 

5. To run the entire reconstruction with one command for one subject type: recon-all –

autorecon-all -subjid <subject name> 

 

Alternatively, you can run the reconstruction in 3 stages with the following commands: 

 

1. recon-all –autorecon1  -subjid <subject name> (Stages 1-5)  ~45 min 

• Check talairach transform, skull strip, normalization 

 

2. recon-all –autorecon2  -subjid <subject name> (Stages 6-22) ~20 hours 

• Check surfaces 

• 1.Add control points: recon-all –autorecon2-cp (Stages 10-22) 

• 2.Edit wm.mgz: recon-all –autorecon2-wm (Stages 13-22) 

• 3.Edit brain.mgz: recon-all –autorecon2-pial (Stage 19-22) 

 

3. recon-all –autorecon3 –subjid <subject name> (Stages 23-29) ~6 hours 

 

6. To run recon-all on all subjects in the study, create a text file containing all the 

commands, save it as .sh file extension and call it my_job.sh (say), and then submit that 

with qsub: qsub my_job.sh. For example, the text file might contain the following 

commands: 

 

#!/bin/bash 

#$ -l h_rt=40:00:00 -l mem=4G -l rmem=4G   

#$ -M ...@sheffield.ac.uk 

#$ -m a 

#$ -t 1-5 

module load apps/binapps/freesurfer/5.3.0 

export SUBJECTS_DIR=/data/<username>/job1/s_MRI_PNES_data 

cd $SUBJECTS_DIR 

recon-all -autorecon-all -subjid MRI_$SGE_TASK_ID 

mailto:...@sheffield.ac.uk
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Note: -l h_rt determines run time; -l mem determines virtual memory; -l rmem 

determines real memory; The -t means run job-tasks numbered 1 to 5. The number of an 

individual task is stored in the variable $SGE_TASK_ID.  

 

To check on job progress log onto Iceberg and enter the following: qstat –u 

<username> 

 

Note. If you enter qstat on its own it will report all jobs currently running on Iceberg. If 

you enter this command and no jobs appear to be running, this might mean that Iceberg 

has finished the job or that errors occurred during batch processing. 

 

Once Iceberg has finished the job (this could take anything between 10 and 20 hours) 

you can check to see if everything worked o.k by entering tail my_job.sh.o118789.1 for 

example. Use the tail command as this will only display the last job sequence rather 

than showing you the whole thing.  

 

If you get the message that recon-all –s s_1 finished without errors, then you can move 

on to checking the reconstruction for errors.  

 

If you get the message that recon-all exited with errors you will need to check when and 

where the error occurred. This will be indicated below the exited with errors message 

when you checked the tail of that job with the command used above (tail 

my_job.sh.o118789.1 for example). 

 

 

Quality control workflow (soft failures) 

Soft failures can occur during the FreeSurfer recon-all pipeline. It is very important to 

check to see if this has occurred, and if so, manual interventions will be required. The 

most common soft failures are listed below. Each of these was checked for in every T1-

weighted brain MRI scan used in Study 3 (Chapter 4). The commands used to check for 

these errors are presented below. Hard failures occur when FreeSurfer fails to complete 

all of the processing steps (exits with an error). 

 

Note: Any manual interventions needed can be done all at once (with the exception of 
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the talairach and the skullstrip). It is important to check how the surfaces appear before 

and after manual intervention. It is also advisable to check for errors by inspecting the 

coronal, sagittal and axial planes.  

 

1. Talairach registration – check the transform by loading it visually into freeview or 

tkregister2. Check for any changes in orientation (the coronal view of the subject should 

be the coronal view of the talairach transform). Severe changes in positioning and large  

rotations or twisting will need to be addressed. 

 

2. Skullstrip – In some cases the skullstrip may have failed to remove parts of the skull 

and/or some of the dura, i.e. extended pial to include parts of dura. To check use the 

following command: 

 

freeview –v mri/T1.mgz \ 

mri/brainmask.mgz \ 

-f surf/lh.white:edgecolor=blue \ 

surf/lh.pial:edgecolor=red \ 

surf/rh.white:edgecolor=blue \ 

surf/rh.pial:edgecolor=red 
 

Note. When checking skullstrip errors, load the brainmask.mgz, T1.mgz, (aseg.mgz if 

you wish) and also lh.pial and rh.pial for each participant and move through the slices 

(coronal view) from the front of the brain to the back and check for errors (is too much 

taken away – parts of cerebellum missing etc. – is too little removed i.e. parts of skull 

still clearly visible). Switch between T1 and brainmask volumes to check for errors and 

check coronal, sagittal and axial views. The following command is useful when not 

enough is removed. This reduces the watershed level to make the cuts more aggressive 

– the default is 25: recon-all -skullstrip -wsthresh 15 -clean-bm -no-wsgcaatlas –subjid 

<subject name> 

 

Once all of the skullstrip errors have been fixed, re-run the recon-all from this point by 

using the following command: recon-all -autorecon2 -autorecon3 -subjid <subject 

name> 

 

3. White matter segmentation errors – These can occur due to intensity normalization 

failures or partial voluming. White matter segmentation errors can result in grey matter 
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(GM) being classified as white matter (WM), WM being classified as GM and 

topological defects (holes or handles).  

 

1. To check for intensity normalization failures and add control points to fix intensity 

normalization, use this command: 

 

freeview –v mri/aparc+aseg.mgz:colormap=lut:opacity=0.75 \ 

mri/T1.mgz \ 

mri/brainmask.mgz \ 

mri/brain.finalsurfs.mgz \ 

mri/wm.mgz:colormap=heat:opacity=0.4 \ 

-f surf/lh.white:edgecolor=blue:edgethickness=1 \ 

surf/lh.pial:edgecolor=red:edgethickness=1 \ 

surf/rh.white:edgecolor=blue:edgethickness=1 \ 

surf/rh.pial:edgecolor=red:edgethickness=1 

 

Note: Control points should be used sparingly and added in WM with values that are 

close to but not 110. Also, it is important to view each slice in each orientation, with the 

coronal and sagittal being the most useful. Also, control points should be used sparingly 

and not be added on every single slice. 

 

Re-run recon-all from this point by using the following command:  

recon-all -autorecon2-cp -autorecon3 -subjid <subject name> 

 

2. To check if white matter (WM) is classified as non-WM or grey matter (GM) is 

classified as WM use the following commands: 

 

freeview –v mri/brainmask.mgz \ 

mri/wm.mgz:colormap=heat:opacity=0.4 \ 

-f surf/lh.white:edgecolor=blue \ 

surf/lh.pial:edgecolor=red \ 

surf/rh.white:edgecolor=blue \ 

surf/rh.pial:edgecolor=red \ 

surf/rh.inflated:visible=0 \ 

surf/lh.inflated:visible=0 
 

Click on the Recon Edit option and enter a brush size of either 1 or 2. Make sure edits 

are made to the voxels in the wm.mgz and not the brainmask.mgz. Edits to the 

brainmask.mgz are made for pial errors and not WM segmentation errors.  
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Note: Again, it is important to view each slice in each direction. What at first might 

appear to be an error (coronal view), when viewed from a different angle may in fact 

not be an error. 

 

Re-run recon-all from this point by using the following command:  

recon-all -autorecon2-wm -autorecon3 -subjid <subject name> 

 

3. To check for topological defects use the following command: 

 

freeview –v mri/brainmask.mgz \ 

mri/wm.mgz:colormap=heat:opacity=0.4 \ 

mri/T1.mgz:visible=0  \ 

mri/aseg.mgz:colormap=lut:opacity=0:visible=0 \ 

-f surf/lh.smoothwm.nofix:visible=0 \ 

surf/rh.smoothwm.nofix:visible=0 

 

Note: Holes refer to segmentation errors where real WM has been excluded from the 

wm.mgz. Handles refer to segmentation errors in WM reconstruction which results in 

bridging between sulci (inclusion of non-WM in WM mask). If there are a lot of holes 

and handles run topological fixer again: recon-all –fix –s <subject name>. Once this 

has finished fix any remaining defects followed by recon-all –autorecon-wm –

autorecon3 –s <subject name>. If required, edit the wm.mgz using the to Recon 

Edit option to add voxels in the wm.mgz where they are missing (holes) and remove 

voxels where they are not WM (handles).  

 

4. Editing brainmask.mgz / correcting pial surfaces – in FreeSurfer pial surfaces are 

generated form the white surfaces and inaccuracies can occur where the pial surface 

extends beyond its boundaries to include dura, blood vessels etc. 

 

To check to see if the pial surfaces are accurate use following command: 

 

freeview -v mri/T1.mgz \ 

mri/brainmask.mgz \ 

-f surf/lh.white:edgecolor=yellow \ 

surf/lh.pial:edgecolor=red \ 

surf/rh.white:edgecolor=yellow \ 

surf/rh.pial:edgecolor=red 
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Once edits to the pial surfaces have been made, use the following command to re-run 

recon-all: recon-all -autorecon-pial -subjid <subject name> 

 

On final recon-all use -qcache flag to 1) resample the data onto the average subject, 

and 2) smooth the data with a range of FWHM values, 0, 5, 10, 15, 20 and 25mm! 

 

GLM analyses and correction for multiple comparisons (command line) 

 

Step 1. Create FreeSurfer Group Descriptor text file (fsgd) containing your Discrete 

Factors (Group, Gender) and continuous variables such as age, weight, IQ etc… and 

save it in your $SUBJECTS_DIR directory with an appropriate name: pnes__hc_ct.txt 

GroupDescriptorFile 1 

Class PNES_Male 

Class PNES_Female 

Class HC _Male 

Class HC_Female 

Variables Age 

Input <subject ID 1>  PNES_Male 25 

Input <subject ID 2>  HC_Female 47 

Input <subject ID 3>  HC_Male 25 

Input <subject ID 4>  PNES_Female 25 

 

Step 2. Create a text file to be used as your Contrast (Vector that defines your 

hypothesis). For example, in the text file input  “+1 +1 -1 -1 0” to calculate the 

difference between PNES and HC groups while controlling for gender and age 

(different offset, same slope; DOSS) and save it as Conrast.txt. If using different offset, 

different slope (DODS), the Contrast text file will be different as you will be modelling 

both the intercept and slope for each group. When modelling the interaction between 

group and age while controlling for gender i.e., slope and not intercept, input the 

following into the Contrast text file “0 0 0 0 +1 +1 -1 -1” 

 

Step 3. For cached data (-qcache flag used during recon-all) type in the following in 

terminal to run the GLM:  

 

mri_glmfit --y lh.thickness.sm10.mgh --fsgd pnes__hc_ct.txt doss --C Contrast.txt --surf 

fsaverage lh --cortex --glmdir lh_pnes_hc_ct.glmdir 
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Note: This runs the GLM for the left hemisphere only (lh) with a FWHM smoothing 

kernel of 10mm. Repeat for right hemisphere (rh). Output files are saved to the glmdir 

lh_pnes_hc_ct.glmdir. These are uncorrected results! 

 

Step 4.  Use cluster-wise correction for multiple comparisons (other options include 

FDR and a more recent version for permutation). This simulation will 1) synthesise a z 

map 2), smooth z map (using residual FWHM), 3) threshold z map, 4) find clusters in 

thresholded map, 5) record area of maximum cluster, 6) repeat over the specified 

number of iterations (10,000), 7) apply these thresholds to the original data to determine 

under the null-hypothesis, the probability of finding clusters in the simulated data that 

size or larger. To run the simulation, use the following commands: 

 

mri_glmfit-sim --glmdir lh_pnes_hc_ct.glmdir --cache 3.0 abs --cwp 0.05 --2spaces 

 

Note: --cache 3.0 is the cluster-forming threshold (p < 0.001). --cwp 0.05 is the cluster-

wise p value (p < 0.05). To see all cluster this can be set to 0.999. --2spaces adjusts the 

p value for the 2 hemispheres (Bonferroni correction). 

 

Step 5. The glmdir will contain numerous files, two of which will be a cluster-wise 

corrected map (overlay – cache.th30.abs.sig.mgh) and a summary table of the results in 

text format (clusters – cache.th30.abs.sig.cluster.summary). The summary table can be 

viewed in the Terminal using the less command followed by the path to the file. To 

view the results in freeview enter the following command: 

 

freeview -f  \ 

$SUBJECTS_DIR/fsaverage/surf/lh.inflated:overlay= lh_pnes_hc_ct.glmdir 

/lh.cache.th30.abs.sig.mgh/annot=lh_pnes_hc_ct.glmdir/cache.th30.abs.sig.ocn.annot \ 

Viewport 3d -layout 1 
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Additional information on the local Gyrification Index (lGI) and its measurement 

 

The lGI is inspired by the Gyrification Index (GI; Zilles, Armstrong, & Schleicher, & 

Kretschmann, 1988), a method previously used to compare cortical folding patterns 

across species. The GI is the ratio of the total folded surface across the perimeter of the 

cortex as delineated on 2-D coronal slices (Zilles, Armstrong, & Schleicher, & 

Kretschmann, 1988). However, this approach to the measurement of gyrification is 

problematic. For example, surfaces are delineated on 2-D coronal slices which do not 

account for the fact that the cortical surface is in reality a 3-D surface. Perimeter 

measurements may be affected by slice orientation and may not take into account buried 

sulci. Manual delineation is often used. This raises concerns about subjectivity and 

reproducibility, particularly in larger studies which involve the use of many brains 

(Schaer et al., 2008). The lGI attempts to address these issues by quantifying and 

comparing the local gyrification patterns at thousands of points over the cortical 

surfaces generated in FreeSurfer for each hemisphere. First an outer surface is created 

using a morphologically closing algorithm. Then, roughly 800 overlapping 3-D circular 

regions of interest (ROIs) are created on the outer surfaces. For each of these ROIs, a 

corresponding ROI is defined for the pial surfaces. In essence, the lGI is a ratio of the 

amount of cortical surface invaginated in the sulci to the amount of cortical surface of 

corresponding ROI on the pial surfaces. The lGI results in an individual map containing 

one lGI value at each point on the cortical surfaces (~150,000 per hemisphere) (Schaer 

et al., 2012). To following steps were used to compute lGI values used in Study 3 

(Chapter 4): 

 

Step 1. Following reconstruction and inspection of the brain surfaces output by 

FreeSurfer, use the following command to compute the lGI: recon-all -s <subject 

name> -localGI 

 

Note: lGI values for each subject were calculated in Matlab. To do this you need to have 

the Image Processing Toolbox installed to Matlab and the ?h.pial surface files for each 

subject to already exist in the subject's <subj>/surf directory. You will also need 

$FREESURFER_HOME/matlab in your matlab path set up in your ~/matlab/starup.m 

script. 
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Step 2. Check the results of the lGI computation for each subject in your study. Change 

your current working directory to your subjects directory and load the lGI overlay in 

tksurfer: tksurfer lh pial -overlay /surf/lh.pial_lgi -fthresh 1 

 

Note: This checks the lGI values at each of the vertices for the left hemisphere (lh). To 

check the right hemisphere use rh pial instead. Typical lGI values are between 1 and 5, 

so setting the minimum threshold to 1 (-fthresh 1) allows you to quickly check the 

results of the lGI computation for each subject in the study. lGI maps should not show 

any gray cortical areas. To check your current working directory, use the pwd 

command. To change directory to a subjects directory, use the cd command followed by 

<subjects directory name>. 

 

Step 3. Create the FSGD text file and Contrast text file to be used for the GLM model. 

These steps are the same as those used for the cortical thickness analyses outlined 

above. 

 

Step 4. Resample the lGI data in the common space (fsaverage): mris_preproc --fsgd 

FSGD.txt --target fsaverage --hemi lh --meas pial_lgi --out lh.lgi.mgh. 

 

Step 5. Smooth the data on the cortical surface with the desired smoothing kernel (0, 5, 

10, 15, 20, 25mm): mri_surf2surf --hemi lh --s fsaverage --sval lh.lgi.mgh  --fwhm 0 –

tval lh.0.lgi.mgh         

 

Step 6. Run the GLM analyses: mri_glmfit --y lh.0.lgi.mgh --fsgd PNES__HC_LGI.txt 

doss --glmdir lh_pnes_hc_lgi.glmdir --surf fsaverage lh --C Contrast.txt 

 

Step 7. Correct for multiple comparisons: mri_glmfit-sim --glmdir 

lh_pnes_hc_lgi.glmdir --cache 3.0 abs --cwp 0.05 --2spaces 
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