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Abstract 
The genetic and physiological stability of an organism is essential to ensure its well-being and 

survival. This project investigates the effect of epigenetic changes on genetic stability, and 

the association between different stressors that threaten the physiological stability of C. 

elegans. 

Part 1: 

Gene expression is controlled by epigenetic effects such as DNA methylation and histone 

modification. The histone modification H3K4me3 is associated with actively transcribed 

genes and co-localizes with a DNA:RNA hybrid structure known as R-loops which are 

associated with DNA instability. To investigate the link between H3K4me3 and R-loops, I 

use Caenorhabditis elegans COMPASS mutants set-2(bn129) and cfp-1(tm6369), that have 

drastically reduced global H3K4me3 marks. I found that set-2(bn129) has a consistent 

reduction of R-loop levels compared to wild-type worms, suggesting that SET-2 (or 

H3K4me3) is vital in sustaining the R-loop levels observed in wild-type worms. Furthermore, 

seven helicases have been identified to rescue the R-loop levels in set-2(bn129) mutants, four 

of which are chromatin remodelers, suggesting a link between chromatin remodelling and R-

loop aggregation. 

Part 2: 

Environmental stress is a common influence that threatens the health of an organism. While 

different stressors elicit different responses, how these different responses are 

interconnected is not well understood. To investigate this, I use a bioinformatic approach to 

compare the response of C. elegans under heat stress and biotic stress inflicted by pathogen 

infection. Comparison of transcriptomic data from C. elegans infected by different pathogens 

indicates an overall dissimilar gene expression response. However, a small set of “general 

pathogen responsive genes” are consistently differentially expressed at a low level under most 

pathogen infections. Comparing these general pathogen responsive genes with heat shock 

responsive genes identified a significant overlap of 50 genes. This suggests that the heat 

shock response and innate immune response partially overlap. 
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MPK-1 MAP Kinase 1 

NEB New England Biolabs 

NGM Nematode Growth Media 

NLP Neuropeptide-Like Protein 

Nrf2 Nuclear Factor Erythroid 2 – related factor 2 

NS3 Nonstructural Protein 3 

NSY-1 Neural Symmetry 

NURF Nucleosome Remodelling Factor 

PCA Principal Component Analysis 

PCR Polymerase Chain Reaction 

PERK Protein Kinase RNA-Like Endoplasmic Reticulum Kinase 

PHD Plant Homeodomain 

PK Proteinase K 
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PMK-1 P38 MAP Kinase 1 

PolyQ Polyglutamine 

PQM-1 Paraquat (Methylviologen) Responsive 1 

PTM Post-Translational Modification 

rad-54 Radiation sensitivity abnormal 54 

rcq-5 RecQ DNA Helicase family 5 

rha-1 RNA helicase A 

RNP Ribonucleoprotein 

ROS Reactive Oxygen Species 

RPA Replication Protein A 

SEK-1 SAP/ERK Kinase 

SET Su(var)3–9, Enhancer of zeste (E(z)), and trx 

SETX Senataxin 

SF (Helicase) Superfamily 

SKN-1 Skinhead 1 

SL1 Spliced Leader 1 

SPP Saposin-like protein 

SSB Single-Stranded Break 

SWI/SNF Switch/Sucrose Non-Fermentable 

TAF3 TATA-box binding protein associated Factor 3 

TBE Tris-Borate EDTA 

TBS (TBST) Tris-Buffered Saline (+ Tween) 

TCS Transcellular Chaperone Signalling 

TDRD3 Tudor Domain Containing 3 

TET1 Ten-Eleven Translocase 1 

TF Transcription Factor 

TFIID Transcription Factor II D 

TGF-β Transforming Growth Factor β-like pathway 

TIR-1 Toll-Interleukin-1 Receptor 

TLR Toll-Like Receptor 

TOP3B Topoisomerase III β 

topA Topoisomerase 1 

TREX Transcription Export 

TSS Transcription Start Site 

TTF2 Transcription Termination factor 2 

TTS Transcription Termination Site 

unc uncoordinated 

UPR (UPRER) Unfolded Protein Response (Endoplasmic Reticulum) 

UTR Untranslated Region 

vbh-1 Vasa- and Belle-like helicase 1 

WRN-1 Werner Syndrome ATP-dependent Helicase 1 

XBP-1 X-box Protein 1 



1 
 

 

 

 

 

 

 

 

 

 

Part 1 

Investigating the functional 

relationship between R-loops and the 

evolutionarily conserved COMPASS 

complex  



2 
  

Chapter 1 Introduction of epigenetics 

Efforts in genetic and genomic research have revealed the genome of many organisms. 

However, knowing the genome does not automatically translate to knowing the phenotype 

of a cell. A prime example is that cells in a multicellular organism have the same genome, but 

can be different types of cells. Conrad Waddington put forward this thought that “between 

genotype and phenotype, and connecting them to each other, there lies a whole complex of 

developmental processes” and termed the study of these processes epigenetics in 1942 

(Waddington, 1942). As science has progressed, molecular pathways have been found that 

link specific genotypes with phenotypes and as such, the definition of epigenetics has been 

gradually narrowed (Dupont, et al., 2009). Currently, the definition of epigenetics is widely 

accepted as “the study of changes in gene function that are mitotically and/or meiotically 

heritable and that do not entail a change in the DNA sequence” (Wu & Morris, 2001; 

Dupont, et al., 2009). Epigenetic effects are controlled through various mechanisms such as 

the methylation of DNA residues, thereby preventing transcription, and modification of the 

amino acids near the amino-terminal of histones (histone tail), which is associated with 

altering the chromatin landscape and DNA accessibility (Handy, et al., 2011). Non-coding 

RNAs have been considered epigenetic regulators for their ability to control gene expression 

and their effect on DNA methylation and histone modification (Wei, et al., 2016). A new 

candidate has recently gained interest in the epigenetics community as an epigenetic 

regulator. This candidate is the DNA:RNA hybrid called the “R-loop” and is implicated in 

transcriptional regulation of active genes (Al-Hadid & Yang, 2016). Each type of epigenetic 

regulator uses different mechanisms to regulate gene expression, and their interaction adds 

another layer of complexity in gene expression regulation. 

This chapter provides a summary of epigenetics with regards to chromatin and histone 

modification, focusing specifically on the trimethylation of the Histone 3 Lysine 4 (H3K4) 

residue. Furthermore, the new epigenetic regulator candidate “R-loop” is introduced and its 

crosstalk with other epigenetic modifiers is described. Finally, helicases are discussed for their 

ability to resolve R-loops. 

1.1. Mechanisms of epigenetics 

Epigenetic regulation by DNA methylation and histone modification controls gene 

expression at the transcriptional level by controlling the binding of proteins such as 

transcription factors and RNA Polymerase II to DNA. For example, dosage compensation 
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(equalizing gene expression between members of different sexes) by X-inactivation in female 

mammals is attributed to the tight packaging of the inactive X chromosome 

(heterochromatin) through histone modifications, thereby preventing proteins from 

accessing the relevant DNA region (Dupont, et al., 2009). Another example is genomic 

imprinting in diploid organisms, where only one parental copy of a gene is expressed, while 

the other copy is inactive. This parent-of-origin specific expression of certain genes is mainly 

attributed to DNA methylation, but also non-canonically controlled by histone modification 

(Ferguson-Smith & Bourc'his, 2018). 

1.1.1. DNA methylation 

Mammalian DNA methylation, in the context of epigenetics, is the addition of methyl groups 

to the carbon at the fifth (m5C) position of nucleotides, which acts as a transcriptional 

repressor. Methylation marks at other positions are associated with different functions. The 

methylation on the first (m1A) and third (m3C) position are considered markers for DNA 

damage. In prokaryotes, methylation at the fourth (m4C) and sixth position (m6A) are used 

to differentiate between own-DNA and foreign-DNA (Greer, et al., 2015). DNA 

methylation (m5C) mainly occurs at cytosine bases, especially at CpG dinucleotides (cytosine 

followed by guanine base) (Jin, et al., 2011). In mammals, 60-90% of CpG dinucleotides in 

CpG poor regions are methylated. CpG rich regions, known as CpG Islands (CGI) on the 

other hand often acts as regulatory regions such as promoters, and are often hypomethylated 

(Siegfried & Cedar, 1997; Cross & Birds, 1995). Roughly 70% of actively transcribed gene 

promoters are found at CGIs (Saxonov, et al., 2006). However, methylated CpG rich areas 

do exist and are found at silenced genes and inactivated X chromosome (Riggs & Pfeifer, 

1992; Neumann & Barlow, 1996). The methylation-dependent silencing can occur by either 

interfering with the binding of transcription factors, the recruitment of repressor complexes 

that specifically bind to methylated DNA and/or the modification of the chromatin 

landscape and other epigenetic modifications (Curradi, et al., 2002). 

Inheritance of methylated DNA occurs alongside replication. During DNA replication, the 

parent strand with the methylated nucleotides is split to become the template for the newly 

synthesized daughter strand. The newly synthesized daughter strand is unmethylated and 

with the methylated parent strand form hemimethylated DNA. This dilution of methylation 

is reversed when the daughter strand becomes methylated according to the methylation 

pattern at the parent strand (Figure 1.1) (Sharif & Koseki, 2018). The main protein 

responsible for this is DNA-methyltransferase 1 (DNMT1) (Yu, et al., 2011). However, not 
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all organisms have m5C. The model organism Caenorhabditis elegans, for example, has neither 

detectable levels of m5C nor has homologs for DNMT1. Nevertheless, methylation has been 

found on the nematodes DNA, but at the sixth position (m6A) (Greer, et al., 2015). In C. 

elegans, m6A is distributed broadly across the genome and is inherited across generations, 

making this modification a potential epigenetic information carrier. m6A has been shown to 

crosstalk with methylated H3K4, but whether it has transcription regulatory functions in C. 

elegans remains to be determined (Greer, et al., 2015). 

 

Figure 1.1 Process of DNA methylation pattern inheritance. DNA replication results in two hemimethylated double-

stranded DNAs consisting of one parent strand and one daughter strand each. Methylation is subsequently performed 

on the daughter strands by a specific methyltransferase (DNMT1). The human UHRF1 mediates the binding of DNMT1 

to hemimethylated DNA. Image taken from Yu, et al. (2011). 

1.1.2. Chromatin 

In eukaryotes, the genome is packaged in a highly ordered structure comprising of DNA, 

RNA and proteins called chromatin (Black & Whetstine, 2011). The varying extent of this 
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packaging across the genome is called the chromatin landscape and changes depending on 

many factors such as developmental stage, type of cell and environmental effects. Apart from 

DNA compaction, chromatin is implicated in transcription regulation through many aspects, 

from being a steric hindrance for DNA accessibility (Orphanides & Reinberg, 2000) to the 

regulation of transcription factors (Li, et al., 2007). 

Chromatin is made of smaller units called nucleosomes, which comprise less than two turns 

(146 base pairs) of DNA wrapped around a histone protein complex. The histone protein 

complex itself is an octamer made of two of each H2A, H2B, H3 and H4 protein, also known 

as core histone proteins (Kornberg, 1974; Kornberg & Lorch, 1999). The histone H1 protein 

is known as a linker protein that binds to the core histone “bead” at the DNA entry and exit 

sites and stabilizes more condensed chromatin architecture (Hergeth & Schneider, 2015). 

Chromatin exists in two forms: heterochromatin and euchromatin. These forms are 

distinguished by distinct chromosomal proteins and histone posttranslational modifications, 

which separates them into densely packed gene-poor (heterochromatin), and loosely packed 

gene-rich (euchromatin) regions (Huisinga, et al., 2006; Handy, et al., 2011).  

1.1.2.1. Euchromatin 

Euchromatin is the loose chromatin structure identified as 11 nm fibre (11 nm diameter of 

the chromatin strand). This loose structure allows for different proteins such as RNA 

Polymerase II to bind and transcribe genes. Owing to the presence of active transcription of 

genes, this type of chromatin is also referred to as active chromatin (Trojer & Reinberg, 

2007).  

Histone modifications in euchromatin are variable with modification-rich “islands” at or near 

genes and transcription regulation sites. Modifications include H3K4 mono- and 

trimethylation at the transcription start sites (TSS) of a gene and H3K36 trimethylation in 

the gene body. Hyperacetylated histones are also frequently found in euchromatin (Trojer & 

Reinberg, 2007; Bannister & Kouzarides, 2011). 

1.1.2.2. Heterochromatin 

Heterochromatin is the densely packaged form of chromatin that hinders transcription by 

reducing DNA accessibility. As such it is also called inactive chromatin. Heterochromatin is 

categorized into constitutive and facultative heterochromatin. Both are densely packed, but 

the latter retains the ability to convert between heterochromatin and euchromatin. This 

ability to change between transcriptionally active and inactive chromatin states is important 
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to control cell type or developmental stage-specific genes as well as dosage compensation. 

Constitutive heterochromatin, on the other hand, is mainly found at regions important for 

gene stability (e.g. centromeres and telomeres) as well as repetitive and non-coding regions 

(Trojer & Reinberg, 2007; Huisinga, et al., 2006).  

Constitutive heterochromatin is organized into 30 nm fibres (30 nm diameter) while 

facultative heterochromatin is compacted into a mixture of both 11 nm fibres and 30 nm 

fibres, consistent with the idea that it can convert between heterochromatin and euchromatin 

(Trojer & Reinberg, 2007). These two types of heterochromatin need to be differentiable by 

cellular mechanisms to determine which regions of heterochromatin to expand. It is currently 

unknown how these two are distinguished, but it could be likely that the two 

heterochromatins adopt different chromatin compaction architectures or various histone 

modifications to differentiate between them. 

Histone modifications found on constitutive heterochromatin are mainly hypoacetylation 

with H3K9 and H4K20 trimethylations (Trojer & Reinberg, 2007). Facultative 

heterochromatin shares many of the same modifications with the addition of some unique 

modifications such as H3K27 trimethylation found on the inactivated X-chromosome in 

females (Bannister & Kouzarides, 2011). 

1.1.3. Histone modification 

Histone modification is the addition of functional groups (e.g. methyl, acetyl and phosphate 

groups) to the histone tail towards the amino-terminal. Proteins with the ability to add 

modifications are termed “writers”. Modifications can be subsequently removed by proteins 

called “erasers”. Since the histone tail has many residues where various functional groups 

can be added, and the same functional groups can be added more than once to the residue 

effectively stacking on top of each other. This allows for numerous modification patterns 

that are identified and interpreted by proteins known as “readers” (Biswas & Rao, 2018). 

Each modification can affect the chromatin state and transcription. The large number of 

possible combinations of histone modifications is termed the histone code (Jenuwein & Allis, 

2001). The effect of each modification depends on which residue this modification is found 

and how often this modification is found. For instance, acetylation of histone residues is 

often associated with active chromatin regions, but can also indicate DNA damage 

(H3K56ac) (Masumoto, et al., 2005) similarly to phosphorylation of H2A histone (yH2AX) 

(Rogakou, et al., 1998). Mono-methylation on H3K9 is mainly associated with gene 
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activation, but di- and tri-methylation is associated with transcriptional repression (Barski, et 

al., 2007).  

Similar to DNA methylation, histone modifications can also be inherited. During replication, 

modified histones from the parent DNA double helix are randomly distributed to the two 

daughter helices through an unknown mechanism. New and unmodified histones are then 

added to fill in unoccupied regions, effectively diluting the concentration of the histone 

modification. Afterwards, another mechanism then copies the histone modification from the 

inherited parent histone to neighbouring newly incorporated nascent histones (Figure 1.2) 

(Moazed, 2011; Whitehouse & Smith, 2013). 

 

Figure 1.2 Inheritance of histone modification across DNA replication. During DNA replication, histones from the 

parent helix are split between the daughter helices. New unmodified histones are then added to fill the empty gaps. 

Histone modification is then re-established based on the neighbouring parental histones. Image based on Moazed 

(2011). 

There are many post-translational modifications (PTMs) of histone proteins. Methylation 

and acetylation are the two main modifications with regards to transcriptional regulation (An, 

2007). Methylation occurs mainly on lysine and arginine residues and has various effects on 

transcription, which are summarized in Table 1.1. Acetylation is only found on lysine 

residues and is associated with a less packed chromatin structure as it neutralizes the positive 

charge from lysine and reduces the electrostatic attraction to the negatively charged DNA 

that condenses chromatin (Bannister & Kouzarides, 2011). As such, they are mainly found 

associated with transcriptional activation. Ubiquitination, SUMOylation (Small Ubiquitin-

like Modifier) and phosphorylation are PTMs suggested to affect gene expression through 

the change in chromatin condensation state or recruitment of DNA-binding proteins 

(Bannister & Kouzarides, 2011). 
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 mono-methylation di-methylation tri-methylation 

H2BK5 Activation   

H3R2  Activation  

H3K4 Activation & Repression Activation Activation 

H3R8 Repression Repression  

H3K9 Activation & Repression Repression Repression 

H3R17 Activation Activation  

H3R26 Activation   

H3K27 Activation & Repression Repression Repression 

H3K36 Activation Depends on species Activation 

H3R43 Activation   

H3K79 Activation Activation Activation & Repression 

H4R3 Activation   

H4K20 Activation & Repression Repression Repression 
Table 1.1 Summary of methylation modification found to affect transcription. The figure is based on published 

information (Zhao & Garcia, 2015; Barski, et al., 2007; Li, et al., 2007; Rosenfeld, et al., 2009).  

As mentioned above, histone modifications effect on transcription is either through 

changing the chromatin landscape (electrostatic attraction) or by promoting the recruitment 

of non-histone proteins. One type of non-histone protein recruited is chromatin remodelers 

that reshape the chromatin landscape by moving nucleosomes. This can create areas of dense 

nucleosomes for expressional inactivation or nucleosome-sparse regions, thereby making the 

DNA accessible for gene expression. For example, the human chromodomain (CHD1), a 

chromatin remodeler likely functioning in dissembling nucleosomes, specifically recognizes 

H3K4me3 (Petty & Pillus, 2013). Other recognition domains include the bromodomain that 

recognizes acetylated lysine residues and plant homeodomain (PHD) domain that recognizes 

H3K4me3 (Petty & Pillus, 2013). Other non-histone proteins that are recruited by PTMs are 

transcription factors. The basal transcription factor TFIID for example directly binds to 

H3K4me3 through the PHD finger domain of its subunit TAF3 and directs the formation 

of the preinitiation complex (Lauberth, et al., 2014; van Ingen, et al., 2008). 

The location where the histone modification is found relative to the gene position is 

dependent on the type of modification (Figure 1.3). H3K4me3 is mainly seen as a sharp 

peak at the TSS, whereas its mono- and di-methylated counterparts are broadly distributed 

peaking towards the end of the gene and the middle of the gene body, respectively. The 

specific location of H3K9me on the gene determines if it acts as a transcriptional suppressor 

(before the TSS) or transcriptional activator (gene body) (Li, et al., 2007). Proteins 

associated/recruited by specific histone PTMs will show a similar trend in occupancy as 

them. For example, TFIID/TAF3, which is recruited by H3K4me3, also has an occupancy 

pattern with a peak at the TSS (Lauberth, et al., 2014). 
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Figure 1.3 Pattern of histone modifications found around the gene. The dashed line encompasses the gene body. On 

the right denotes the effect of the histone modification on transcriptional activity. Image based on Li, et al. (2007).  
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1.2. COMPASS complex and H3K4me3 

Methylation of histone residues is achieved by the writer enzymes classified as histone 

methyltransferase (HMT) (Torres & Fujimori, 2015; Falkenberg & Johnstone, 2014). 

H3K4me3 is one of the more well-known histone PTMs which has been extensively 

researched (EpiGenie, n.d.; Kusch, 2012). It is an epigenetic marker associated with active 

transcription, more specifically of active promoters, because they peak at the TSS (Figure 

1.3), which is located within the core promoter region (Heintzman, et al., 2007). This marker 

is conserved in eukaryotes, from yeast to mammals (Zhang, et al., 2015) and is deposited 

mainly by the evolutionary conserved COMPASS (Complex Protein Associated with Set1) 

(Miller, et al., 2001). 

1.2.1. The COMPASS complex 

The SET1 methyltransferase was first identified in Saccharomyces cerevisiae (Stasser, et al., 1995; 

Shilatifard, 2012), with all six other subunits that form the Set1/COMPASS complex being 

found six years later (Miller, et al., 2001). SET1 is the main catalytic subunit that facilitates 

the trimethylation of lysine residues (Ardehali, et al., 2011). This methylation function is 

conserved in the SET domain, which is found in most histone lysine methyltransferases 

(Dillon, et al., 2005). The other subunits are also essential for the proper function of the 

COMPASS complex. Cps50 and Cps30 are required for the assembly and stability of the 

complex. Cps25, Cps35 and Cps60 are essential for di- and trimethylation, while Cps40 is 

only needed for trimethylation of H3K4 (Shilatifard, 2012; Dehe, et al., 2006).  

While S. cerevisiae only has one COMPASS complex that facilitates all trimethylation, C. 

elegans, Drosophila melanogaster and humans have multiple COMPASS or distantly related 

COMPASS-like complexes (Figure 1.4). In humans, the COMPASS-like complexes Mixed 

lineage leukemia protein (MLL) trimethylate H3K4 at a subset of genes (MLL1 and MLL2) 

or are responsible for monomethylating H3K4 (MLL3 and MLL4) whereas the “main” 

COMPASS complexes (SET1A and SET1B) are responsible for the majority of H3K4me3 

in the genome (Shilatifard, 2012).  
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Figure 1.4 Evolutionary conserved COMPASS and COMPASS-like complex. The COMPASS complex for each organism 

is found in the first column. The other columns show COMPASS-like complexes. The catalytic subunit is shown in red, 

and the same colours indicate conserved subunits. Image taken from Pokhrel (2019). 

1.2.1.1. set-2, the C. elegans ortholog of Set1 

In C. elegans, set-2 is the ortholog of the yeast Set1 COMPASS complex that facilitates the 

majority of trimethylation of H3K4, while the COMPASS-like, set-16, is the ortholog of 

mammalian MLL3/4 which are responsible for monomethylation of H3K4 (Pokhrel, et al., 

2019). Mutation of set-2 in the C-terminal domain, where the SET domain is located, reduces 

the global H3K4me3 levels in C. elegans (Xiao, et al., 2011; Pokhrel, et al., 2019). Other 

phenotypes associated with this include slow growth with increased lifespan (Han, et al., 

2017) and transgenerational progressive sterility (Xiao, et al., 2011). In yeast, null mutants of 

Set1 or any other subunit result in a slow-growth phenotype (Miller, et al., 2001). A similar 

phenotype has been shown in human cancer cell lines depleted with SETD1A (Tajima, et al., 

2015). 
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1.2.1.2. cfp-1, C. elegans ortholog of Cps40 

cfp-1 (CXXC finger protein 1), one of the core subunits of SET-2/COMPASS and ortholog 

of yeast Cps40, contains a DNA binding domain that has the ability to bind to unmethylated 

DNA at CGIs (Lee & Skalnik, 2005; Long, et al., 2013). Similar to set-2, mutation in cfp-1 

causes reduction in global H3K4me3 levels (Pokhrel, et al., 2019; Beurton, et al., 2019). It 

has been implicated to be essential for targeting of the COMPASS complex to the correct 

sites (Brown, et al., 2017). In mouse embryonic stem cells, Cfp1 (ortholog of C. elegans Cfp-

1) null mutants cause aberrant accumulation of H3K4me3 at many non-promoter regions. 

These aberrant accumulations of H3K4me3 peaked at sites correlating with transcriptional 

enhancers (Clouaire, et al., 2012; Clouaire, et al., 2014). 

1.2.2. The H3K4me3 epigenetic mark and its function 

1.2.2.1. H3K4me3 and transcription activation 

The presence of H3K4me3 at active gene promoters is observed universally from yeast to 

human, and the amount of this modification reflects the transcriptional levels of the gene 

(Howe, et al., 2017). This correlation between H3K4me3 levels and transcription led to the 

hypothesis that H3K4me3 could be instructive for active transcription. For example, 

H3K4me3 could act as a binding site for chromatin remodelers and chromatin modifiers 

such as the NURF (Nucleosome Remodelling Factor) complex, which has a PHD finger that 

directly associates with H3K4me3 (Wysocka, et al., 2006). NURF has been shown to be 

required for active transcription by remodelling the chromatin landscape in a way that 

promotes the recruitment of transcriptional machinery and the loss of H3K4me3 results in 

the partial release of NURF subunit from chromatin (Badenhorst, et al., 2002; Wysocka, et 

al., 2006). Genome-wide studies, however, did not find significant transcriptional changes 

upon removal of most H3K4me3 marks, thereby implying that transcriptional activity is 

instructive for H3K4me3 deposition, rather than the other way round, perhaps to act as a 

marker of actively transcribed genes  (Clouaire, et al., 2012). 

Other chromatin modifiers that contain a PHD finger are the human Inhibitor of Growth 

ING4 and ING5, which are subunits of the histone acetyltransferase (HAT) complex HBO1 

(Hung, et al., 2010; Lee, et al., 2018) and yeast Yng1 and Yng2 which are part of NuA3 and 

NuaA4 HAT complexes respectively (Taverna, et al., 2015; Shi, et al., 2009; Lee, et al., 2018). 

HATs acetylate histones, and as mentioned in a section 1.1.3, acetylation of histones opens 

up chromatin to allow the binding of transcription machinery to facilitate active 
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transcription. The histone demethylase Jumonji Domain 2C (JMJD2C) has also been shown 

to bind to H3K4me3, but through the double Tudor domain, and reduces the 

transcriptionally repressive H3K9me3 and H3K36me3 modifications (Huang, et al., 2006; 

Pedersen, et al., 2014). A non-chromatin modifier protein that can recognize H3K4me3 is 

the TFIID basal transcription factor complex through its PHD finger on the TAF3 subunit, 

that regulates the transcription of specific genes in response to DNA damage (Lauberth, et 

al., 2014; van Ingen, et al., 2008). CHD1 has been demonstrated to interact with H3K4me3 

to function in mRNA maturation via transcription elongation and pre-mRNA processing 

(Sims III, et al., 2007). 

1.2.2.2. H3K4me3 in transcriptional repression 

Emerging evidence indicates that H3K4me3 could also act to repress transcription. Proteins 

related to transcriptional repression can also have H3K4me3 binding domains (e.g. PHD 

finger) that are recruited by H3K4me3. One example is the yeast histone deacetylase 

(HDAC) Rpd3L whose subunits, Pho23 and Cti6, have a PHD finger (Lee, et al., 2018; Shi, 

et al., 2009). Similarly, the human ortholog of Pho23, ING2, which is a subunit of mSin3a-

HDAC1 can also directly bind to H3K4me3 and repress transcription of proliferation genes 

in response to DNA damage (Shi, et al., 2011).  

In yeast, H3K4ac was shown to be limited by COMPASS complex, implying that H3K4me3 

and H3K4ac levels are oppositely controlled. This suggests that the transcription promoting 

effect of H3K4ac are hindered by H3K4me3 deposition (Guillemette, et al., 2011). 

Furthermore, comparison of mRNA levels identified H3K4me2 as a repressive marker of 

transcription that relies on H3K4me3-dependent antisense transcription (Margaritis, et al., 

2012). Set1-dependent H3K4 methylation acts as a transcriptional repressor during stress, 

specifically of genes required for ribosome biosynthesis (Weiner, et al., 2012). 

1.2.2.3. H3K4me3 in DNA damage 

H3K4me3 could play a role in the DNA damage response. It has been observed that 

H3K4me3 accumulates at the DNA damage-induced genes Growth Arrest and DNA 

Damage Protein Inducible 45 Alpha (GADD45A) and p21 during DNA damage (Lauberth, 

et al., 2014; Kim, et al., 2010). Since H3K4me3 can act as a binding site for TAF3/TFIID, 

that also binds with the tumour suppressor protein p53 (Coleman, et al., 2017), this could 

potentially mean that H3K4me3 responds to DNA damage through a p53 mediated 

response. 
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1.3. R-loops 

The traditional paradigm dictates that DNA exists as double-stranded helix while RNA is 

single-stranded. However, “non-traditional” moieties like the DNA:RNA hybrid structures 

exist and occur naturally, such as Okazaki fragments that are formed during replication. 

Another such structure exists naturally, called the R-loop, which is a longer-lasting hybrid 

that is mainly produced as a product of transcription (Aguilera & Garcia-Muse, 2012). The 

structure is formed by the incorporation of single-stranded RNA (ssRNA) into unwound 

double-stranded DNA (dsDNA), producing a DNA:RNA hybrid and a displaced ssDNA 

(Aguilera & Garcia-Muse, 2012; Santos-Pereira & Aguilera, 2015). It was first described in 

1976 (Thomas, et al., 1976), but only started to gain more attention in the past few decades. 

While they are naturally occurring in many different organisms, from yeast to humans, 

occupying as much as 5% of the mammalian genome (Zeller, et al., 2016; Sanz, et al., 2016), 

high aggregation of them has often been associated with reduced DNA stability through 

single and double-stranded breaks (Skourti-Stathaki & Proudfoot, 2014). However, they have 

also been linked to crucial biological roles, such as transcriptional regulation (Aguilera & 

Garcia-Muse, 2012). It is debatable if R-loops can be classified as epigenetic since their 

heritability is unknown, but they do have an effect on transcriptional regulation without 

changing the DNA sequence (see Section 1.4), thereby fitting at least one of the two criteria 

defining epigenetics. 

 

Figure 1.5 Formation of R-loop during transcription. DNA strands are coloured black, and the RNA strand is coloured 

red. GC rich clusters are coloured green. DNA-RNA formation is enriched at regions with high GC content, where the 

RNA strand has a higher affinity to bind to its complementary C-rich DNA strand. Image taken from Allison & Wang 

(2019). 

Methods of mapping R-loops throughout the genome have identified properties that 

correlate with R-loop occupancy. R-loops are found disproportionally at the promoter and 

terminal regions with a 2-3 fold overrepresentation relative to the respective region size 

(Sanz, et al., 2016). In humans, terminal R-loops show a broader signal covering the 

transcription termination site (TTS) and peaking just before the polyadenylation site, while 

promoter-proximal R-loops are mostly observed as sharp peaks rising immediately after the 

TSS and peaking at around 1.5kb downstream of the TSS (Sanz, et al., 2016). Not all gene 
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promoters have R-loops. The presence of R-loops has been observed to increase at 

unmethylated CGIs, as well as high GC skew (asymmetric distribution of guanine and 

cytosine between strands). Furthermore, H3K4me2/me3, as well as H3K9ac and H3K27ac, 

are also found enriched at these sites, suggesting that R-loop formation is associated with 

highly active genes and open chromatin regions (Ginno, et al., 2012; Sanz, et al., 2016). 

1.3.1. Formation of R-loops 

R-loop formation has been found to be enhanced by high GC skew, negative supercoiling, 

and DNA nicks (Roy, et al., 2010). Although the mechanism behind R-loop formation is still 

being investigated, current research indicates that the majority of R-loops are produced 

during transcription (Frederic, 2016). R-loops are found at CGIs, where the majority of active 

genes are also located at (Ginno, et al., 2012). CGIs with high GC skews are especially 

enriched in R-loops (Ginno, et al., 2013) as these promoters are highly active (Illingworth & 

Bird, 2009). Around 97% of GC-skewed promoters are located at CGIs, and 67% of R-loop 

enriched sites are found in these GC-skewed CGI promoters (Ginno, et al., 2012). Likewise, 

GC-skew at the terminal region of the gene was also found to associate with increased R-

loops (Ginno, et al., 2013). Since the most active genes are constitutively active 

“housekeeping” genes, R-loops are also associated with these “housekeeping” genes such as 

genes with functions in cellular metabolic processes and translation elongation (Ginno, et al., 

2013).  

In mammals, the CGIs are scarce in DNA methylation (m5C), which acts as a heritable 

transcriptional silencer, and are predominantly found at the 5’ ends of genes where they act 

as promoters. The more skewed the GC skew is, the less DNA methylation is observed at 

the transcriptional start site (TSS) (Ginno, et al., 2012). Furthermore, the transcriptional 

activity of the CGI promoters itself protects DNA from methylation (Bird, 2002), as DNA 

methylation follows the transcriptional inactivity of a gene (Bachman, et al., 2003). These 

findings indicate that R-loops and DNA methylation are anti-correlated. 

The “thread back” model (Aguilera & Garcia-Muse, 2012) provides the most accepted 

explanation for how R-loops are formed. It suggests that G-rich nascent RNA produced 

during transcription anneals to the single-stranded C-rich template DNA. Since the nascent 

RNA leaves the RNA polymerase II at a site far away from the DNA strands, it would 

typically be outcompeted by the non-template DNA strand (coding strand) for binding to 

the template DNA strand due to its closer proximity. However, G-rich clusters of the nascent 

RNA have a higher affinity for binding to the template DNA strand and can outcompete the 
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much closer coding strand (Roy & Lieber, 2009). While both the nascent RNA and the non-

template strand will have G-rich clusters, Hung, et al. (1994) showed that ribose-

purine:deoxyribose-pyrimidine paired molecules display higher levels of thermal stability 

than deoxyribose-purine:deoxyribose-pyrimidine base pair, thus explaining why G-rich RNA 

can outcompete G-rich DNA. R-loops are unlikely to form when the template strand is G-

rich, as ribose-pyrimidine:deoxyribose-purine base pairing is thermally least stable out of all 

possible combinations (Hung, et al., 1994), highlighting the importance of GC skews in the 

formation of R-loops. 

The formation of R-loops during transcription results in cis R-loops (Figure 1.6), where the 

guanine rich RNA strand anneals to the cytosine rich template DNA strand, and are the most 

commonly observed type of R-loops (Frederic, 2016). Little is known about trans R-loops, 

where the RNA binds to the non-template G-rich strand (Figure 1.6). They were first 

artificially generated and confirmed by Wahba et al. (2013) in yeast. trans R-loops are believed 

to form non-co-transcriptionally, and recent studies show that they do occur naturally 

(Nadel, et al., 2015). 

 

Figure 1.6 Theoretical structure of R-loop in cis and in trans. Rad51-dependent trans R-loops were observed by 

Wahba, et al. (2005). CRISPR-cas9 functions by hybridizing its guide RNA onto matching DNA to cause DNA strand 

breaks. Image taken from Skourti-Stathaki & Proudfoot (2014).  

Specific instances of DNA:RNA hybrids have been identified that are formed non-co-

transcriptionally. DNA negative supercoiled stress can promote R-loop formation. Similar 

to the unwinding of DNA during transcription, negative supercoiling can unwind the DNA 

to produce ssDNA that allows RNA to bind and form R-loops. This is supported by the fact 

that topA (topoisomerase enzyme that helps to remove negative supercoiling of the DNA) 

E. coli mutants have increased R-loops, which are suppressed by RNase H (DNA:RNA 

specific nuclease) overexpression (Drolet, et al., 1995). 
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There are a few cases where R-loops could be formed in the absence of active transcription, 

for example, as part of the DNA damage response. Kasahara, et al. (2000) artificially formed 

R-loops in vitro in the absence of transcription by utilizing the nucleic acid binding function 

of RecA, a protein related to DNA repair and maintenance (Kasahara, et al., 2000). In 

addition, Ohle, et al. (2016) found that R-loops form as part of the homologous-

recombination mediated double-stranded repair and are essential for DNA repair. 

1.3.2. Preventing R-loop formation 

R-loop formation needs to be carefully controlled in order to avoid R-loop accumulation. 

Various mechanisms have been proposed that play a role in preventing R-loop formation. 

The binding of proteins (eukaryotes) and ribosomes (prokaryotes) to the nascent RNA can 

reduce the formation of R-loops. They act as a physical hindrance preventing the nascent 

RNA and ssDNA strand from hybridizing (Figure 1.7) (Hamperl & Cimprich, 2014; Garcia-

Benitez, et al., 2017). The transport complex THO/TREX (Transcription export complex) 

for example immediately binds to nascent RNA. Since its function is to move the RNA 

outside the nucleus, it could have an additional effect in preventing nuclear RNA 

accumulation, which can further reduce R-loop formation (Dominguez-Sanchez, et al., 

2011). It is unclear whether the prevention of RNA accumulation through transport or the 

direct binding of THO/TREX to the nascent RNA is the main factor preventing R-loop 

formation. Even if ssRNA accumulates in the nucleus, many RNA binding molecules can 

bind to the RNA, forming ribonucleoproteins (RNPs), and modify the RNA (Glisovic, et al., 

2008), which disfavors reannealing of the RNA to the DNA (Santos-Pereira & Aguilera, 

2015; Garcia-Benitez, et al., 2017). Similarly, the RNA (or RNP) will fold into an energetically 

favourable structure, making reannealing to DNA more difficult. Likewise, accessibility to 

open DNA is also vital for R-loop formation. Negative supercoiled DNA is susceptible to 

unwinding, which provides the accessibility for RNA binding.  

Overexpression of DNA gyrase, which functions to alleviate positive supercoiling, can 

induce negative supercoiling and enhance R-loop formation (Drolet, et al., 1995; Drolet, et 

al., 2003). Enzymes like DNA topoisomerase 1 (TOP1) exist that relax negative DNA 

supercoiling, thus reducing open DNA double helix structures and diminishes accessibility 

of open annealing sites for ssRNA (Drolet, et al., 1994). Absence of DNA topoisomerase I 

in human cells and E. coli results in DNA instability and reduced growth, respectively, which 

can be rescued by overexpression of RNase H (Masse & Drolet, 1999; Tuduri, et al., 2009), 

or compensated by mutating DNA gyrase (Drolet, et al., 1995). 
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1.3.3. Structure and stability 

Once formed, R-loops are thermodynamically more stable than their DNA:DNA double 

helix counterpart (Ratmeyer, et al., 1994). They are proposed to form a more stable 

conformation that is intermediate between the A and B form of the double helix (Shaw & 

Arya, 2008). The formation of a stable G-quadruplex structure by the non-template ssDNA 

strand, called a G-loop (Duquette, et al., 2004), could also enhance the stability of R-loops. 

As previously noted, a large GC skew would both enhance the thermodynamic stability of 

DNA:RNA hybrids (Ginno, et al., 2012) and also help G-loop formation on the displaced 

ssDNA. 

Despite the fact that R-loops are more stable than their dsDNA counterpart, they are 

resolved relatively quickly. They exist as a transient structure whose quantity is kept at 

equilibrium through constant R-loop formation and removal events. It has been shown that 

blocking transcription by 5,6-dichloro-1-β-D-ribofuranosyl-Benzimidazole (DRB) resolves 

most R-loops within 30 minutes with an average half-life of 10 minutes. DRB inhibits cyclin-

dependent kinase 9 (CDK9), which phosphorylates the C-terminal domain of RNA 

polymerase II required for elongation initiation. Upon removal of DRB, the reappearance of 

R-loops was observed within 10 minutes, showing the short turnover rate of this hybrid 

structure (Sanz, et al., 2016). 

1.3.4. Resolution of R-loops 

Currently, two types of proteins have been identified that can resolve R-loops once they have 

formed: nucleases and helicases. Nucleases are enzymes that degrade the phosphodiester 

bonds binding nucleotides together. The endonuclease RNase H enzyme, which is found in 

nearly all organisms, specifically targets and resolves DNA:RNA hybrids. It only degrades 

the RNA part of the DNA:RNA hybrid leaving the DNA portion intact (Cerritelli & Crouch, 

2009; Ohle, et al., 2016). Another enzyme is the Mung Bean Nuclease. While it strongly 

prefers single-stranded nucleic acids, it is able to cleave double-stranded nucleic acid, 

including the DNA:RNA hybrid (Takara, n.d.). Similarly, the Exonuclease III from E. coli 

can degrade both strands in the hybrid (Keller & Crouch, 1972; Valsala & Sugathan, 2017). 

The nuclease from the bacteria Serratia marcescens (also known as Benzonase) is a non-specific 

endonuclease that can degrade both DNA and RNA in double and single-stranded form. Its 

potency suggests its use as a scavenging enzyme released outside the bacteria rather than 

being used inside the nucleus (Benedik & Styrch, 1998). The unwinding of the DNA:RNA 
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helix by a group of DNA:RNA helicases is another way to resolve R-loops. A number of 

such helicases have been found across many organisms. These including RecG (Hong, et al., 

1995), DHX9 (Chakraborty & Grosse, 2011) and Senataxin (SETX) (see Figure 1.7a) (Kim, 

et al., 1999; Becherel, et al., 2013). Senataxin has been identified to act on terminal R-loops 

in human cell lines (Skourti-Stathaki, et al., 2011) (for more detail on helicases refer to 

Section 1.5). In C. elegans, WRN-1, a RecQ helicase, has been shown to have the ability to 

resolve R-loops (Hyun, et al., 2008) (see Section 1.5.2 for more details).  

Although a number of proteins have been identified to reduce R-loop levels, the exact 

mechanisms and the choice of the protein remains to be determined. Resolving by RNase H 

and helicase result in different outcomes. With RNase H, the RNA part of the helix is cleaved 

into ribonucleotides, leaving the DNA strand intact (New England Biolabs, no date). 

Helicase unwinding could rescue the “stuck” ssRNA and allow it to continue with post-

transcriptional processing. 

 

Figure 1.7 Management of R-loop formation. R-loop levels are maintained by (a) the removal of existing R-loops 

through RNase H digestion or helicase unwinding, and (b) the prevention of formation of R-loops by RNA binding 

proteins and topoisomerase rewinding. Image based on Santos-Pereira & Aguilera (2015). 

a) 

b) 
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1.4. Function and effect of R-loops 

R-loops are naturally found in a variety of organisms, making up as much as 5% of the 

mammalian genome (Sanz, et al., 2016). DNA:RNA hybrids are generated as intermediates 

during replication, genome rearrangement and gene expression (Aguilera & Garcia-Muse, 

2012; Santos-Pereira & Aguilera, 2015). Whether R-loops have an intended function or are 

unplanned consequences of chemical and physical laws is unknown. Regardless of either 

possibility, they have a considerable effect on the organism at the genetic level, with far-

reaching health implications. 

1.4.1. Transcription regulation of R-loops 

The most well-documented aspect of R-loops is their association with transcription 

regulation. Multiple studies identified that R-loops impair transcription. The defects in 

transcription of E. coli topA mutant and yeast hpr1 (subunit of the THO complex) mutant are 

attributed to the accumulation of R-loops, where overexpression of RNase H was able to 

overcome the defect (Aguilera & Huertas, 2003; Baaklini, et al., 2004). The mechanism by 

which R-loops impair transcription is that they stop or slow the transcriptional elongation 

by acting as a roadblock for incoming RNA polymerases II. Since multiple RNA polymerase 

II can transcribe a gene concurrently, R-loops formed as a result of the nascent RNA 

produced by one RNA polymerase II would inhibit the elongating RNA polymerase II 

behind it (Aguilera & Huertas, 2003). Another non-exclusive hypothesis proposed by Tous 

& Aguilera (2007), suggests that RNA overhangs of the R-loop could establish undesired 

contact with the C-terminal domain of the RNA polymerase II, thereby triggering a 

checkpoint mechanism to inhibit elongation (Tous & Aguilera, 2007).  

R-loops have also been proposed to have transcription supporting features. R-loops formed 

at transcription termination pause sites can recruit the helicase Senataxin, which helps the 

separation of the nascent RNA from the RNA polymerase II and promote efficient Xrn2-

dependent transcription termination (Skourti-Stathaki, et al., 2011). This transcription 

termination may be highly crucial since terminal R-loops are found at gene-rich sites, and 

immediate termination prevents transcriptional read-through that could unintendedly 

express downstream genes (Santos-Pereira & Aguilera, 2015). Another line of evidence 

supporting the transcription termination role of terminal R-loops is that they induce 

antisense-transcription leading to dsRNA formation, which reinforces RNA Polymerase II 

pausing and transcription termination (Skourti-Stathaki, et al., 2014). This is further 
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supported by the observation that G-quadruplexes are found enriched at 3’-UTR of genes 

in gene-rich regions (Huppert, et al., 2008), which could be formed from the displaced 

ssDNA as a result of R-loop formation. 

1.4.2. R-loop dependent DNA methylation state 

CGIs function as promoters for the majority of constitutively active genes and are devoid of 

DNA methylation (Bachman, et al., 2003; Illingworth & Bird, 2009), but enriched with R-

loops (Ginno, et al., 2012). This correlation incited the search for a link between DNA 

hypomethylation and R-loop formation. Ginno et al. (2012) found that the GC skew of CGIs 

plays a role in predicting DNA methylation and subsequently observed that R-loop 

formation protected DNA from methylation by the primary de novo DNA methyltransferases 

3B1 (DNMT3B1) and the DNMT3A stimulating factor DNMT3L. The mechanism behind 

this is hypothesized to be due to R-loop induced transcriptional pausing (Ginno, et al., 2012). 

RNA polymerase II occupancy on the DNA (regardless of being active or stalled) has been 

shown to be sufficient to prevent DNA methylation, likely by hindering DNA methylation 

machinery binding (Takeshima, et al., 2009).  

R-loops have not only been associated with preventing DNA methylation but also with DNA 

demethylation. GADD45A is a stress response protein that is linked with DNA 

demethylation, as overexpression of this protein promotes global DNA demethylation 

(Barreto, et al., 2007). GADD45A recruits the methylcytosine dioxygenase (an enzyme that 

oxidates the methyl groups on cytosine) Ten-Eleven Translocation 1 (TET1) that 

demethylates the DNA at specific CGI promoters. GADD45A is able to bind R-loops and 

removal of R-loops by RNase H reduces GADD45A binding and DNA methylation at a 

subset of TET1-targeted gene promoters (Arab, et al., 2019). 

1.4.3. Histone modifications and chromatin compaction 

R-loops are linked with various histone modifications and are implicated in affecting 

chromatin compaction and transcriptional activity. Below is a summary of histone 

modifications that are associated with R-loops. 

1.4.3.1. H3K4me3 

H3K4me3 is found at the TSS (Heintzman, et al., 2007) while R-loops are found to peak 

downstream of the TSS, as much as 1.5kb downstream in humans (Sanz, et al., 2016). Both 
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of them also have a direct correlation with transcriptional activity, with highly transcribed 

genes showing higher enrichment of H3K4me3 and R-loops, while weakly transcribed or 

silenced genes have low occupancy of both (Barski, et al., 2007; Kuznetsov, et al., 2018; L. 

Chen, et al., 2017; Ginno, et al., 2012). Several members of methyltransferases (trithorax and 

polycomb family) contain SET domains which function in methylating specifically the lysine 

residue of histones associated with active transcription (Dillon, et al., 2005). These SET 

domains can bind to ssDNA and ssRNA (Krajewski, et al., 2005). The displaced ssDNA and 

the ssRNA overhang of the R-loop can be potential targets for these methyltransferases, 

thereby increasing histone lysine methylation. 

Ginno et al. (2012) proposed a model in which the displaced ssDNA portion of the R-loops 

recruit H3K4 methyltransferases, based on the findings that the SET-domain of H3K4 

methyltransferases can bind ssDNA, which then deposits the H3K4me3 mark. Since R-loop 

exists transiently, with a half-life of 10 minutes (Sanz, et al., 2016), the deposition of 

H3K4me3 induced by R-loops could act as a long-lasting marker of active genes, that does 

not directly hinder transcription by RNA polymerase unlike R-loop does. In addition, the 

H3K4me3 mark has the added advantage of being heritable, (Moazed, 2011; Whitehouse & 

Smith, 2013), indirectly preserving the information of R-loop prone sites.  

1.4.3.2. H3K9 methylation 

The C. elegans double mutants lacking the H3K9 methyltransferases met-2 and set-25 show no 

detectable levels of H3K9 methylation marks (H3K9me1/2/3). These worms also have 

enhanced R-loop accumulation, comparable to mutants defective for the THO/TREX 

complex (thoc-2). Specifically, tandem repeats that are derepressed in the absence of H3K9 

methylation show particularly high R-loop enrichments (Zeller, et al., 2016).  

The repressive H3K9me2 modification is deposited by the G9a histone methyltransferase in 

humans. H3K9me2 is found to be recruited by dsRNA generated as a result of terminal R-

loop formation to help transcription termination (Skourti-Stathaki, et al., 2014). 

Consequently, H3K9me2 recruits heterochromatin protein 1γ (HP1γ) that plays a role in 

heterochromatin formation (Skourti-Stathaki, et al., 2014). H3K9me2, however, has no 

influence on R-loop formation (Groh, et al., 2014). 

1.4.3.3. H4R3me2 and H3R17me2 

Dimethylation marks on H4R3 and H3R17 are found to inhibit R-loops at the c-MYC locus 

in human cell lines. These marks, especially H4R3me2, are recognized by the Tudor domain 

of Tudor Domain Containing 3 (TDRD3) which in turn recruits topoisomerase IIIβ 
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(TOP3B). TOP3B relaxes negative supercoiling during transcription of the c-MYC gene, 

thereby discouraging the formation of R-loops (Yang, et al., 2014). 

1.4.3.4. H3K79me2, H4K20me1 and H3K27me3 

Both H3K79me2 and H4K20me1 are linked with R-loops due to the occupancy of them at 

the R-loop prone CGIs (Ginno, et al., 2013). Similar to H3K4me3, these two histone 

modifications are also linked to active transcription (Santos-Pereira & Aguilera, 2015). Apart 

from their co-occupancy with R-loops, there is limited research regarding their relationship. 

H3K27me3, on the other hand, is enriched at CGIs with a reverse GC skew, suggesting that 

H3K27me3 is found at CGI sites unlikely to form R-loops, thus implying an inverse 

relationship. Ginno et al. (2013) hypothesise that since H3K27me3 and DNA methylation 

are mutually exclusive, that H3K27me3 acts as a substitute for R-loops to protect these CGIs 

with reverse GC skew from DNA methylation by recruiting polycomb complexes (Ginno, 

et al., 2013).  

1.4.3.5. H3 acetylation and open chromatin 

The characteristics associated with active transcription, such as CGI, H3K4me3 and DNA 

hypomethylation, are found in open chromatin regions. Therefore it suggests that R-loops 

are also linked with open chromatin. Indeed, acetylated H3K9 and H3K27 are enriched at 

promoter R-loops, which promotes an open chromatin state (Sanz, et al., 2016). 

R-loops may prevent chromatin compaction, as unresolved R-loops might hinder the DNA 

wrapping around the histones (Dunn & Griffith, 1980), especially if the displaced ssDNA 

forms G-quadruplex structures. Indeed, an increase in overall chromatin accessibility has 

been observed through increased DNase accessibility, reduced MNase accessibility and 

FAIR-seq (Formaldehyde-Assisted Isolation of Regulatory Elements) signal overlapping 

with R-loop signals (Tsompana & Buck, 2014; Sanz, et al., 2016). Reduced nucleosome 

density is observed with increased R-loop formation by ncRNA invasion, while reduced 

ncRNA invasion enhances chromatin compaction (Boque-Sastre, et al., 2015). 

1.4.3.6. H3S10P 

Phosphorylation of H3S10 (H3S10P), which is associated with chromatin condensation and 

compaction, has also been linked with R-loops as both are found elevated at the centromere, 

pericentromeres and a large number of open reading frames. RNase H overexpression found 
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decreased levels of H3S10P, suggesting that R-loops trigger this histone phosphorylation 

modification (Castellano-Pozo, et al., 2013). 

The observation that R-loop triggers H3S10P and chromatin condensation oppose the idea 

that R-loops are associated with active transcription and open chromatin state. It could be 

possible that R-loop can promote both active and inactive chromatin states in a context-

dependent manner. 

1.4.4. DNA instability 

Aberrant R-loops per se do not cause damage directly to the DNA but instead by subsequent 

mechanisms that result in various genetic implications such as mutagenesis, 

hyperrecombination, rearrangements and transcription/replication collisions (Hamperl & 

Cimprich, 2014; Sanz, et al., 2016; Garcia-Picardo, et al., 2017). For example, the R-loop 

dependent DNA breaks observed in THO-depleted human cells are linked to replication 

failure due to R-loop formation, rather than R-loops themselves (Dominguez-Sanchez, et al., 

2011). 

The displaced ssDNA in the R-loop is chemically unstable and more susceptible to DNA 

damage (Lindahl, 1993; Beletskii & Bhagwat, 1996), but can be more stable if it forms G-

quadruplexes (Lane, et al., 2008) as the non-template strand is already G-rich. Indeed, 

Huppert, et al. (2008) observed overrepresentation of G-quadruplexes near the 5’-UTR and 

3’-UTR (Huppert, et al., 2008), corresponding to regions of elevated R-loops. Single-

stranded breaks (SSB) are the most prominent problems associated with the displaced 

ssDNA. One proposed mechanism is the recruitment of Activation-Induced Cytidine 

Deaminase (AID), an enzyme that can deaminate cytosine to uracil on ssDNA (Muramatsu, 

et al., 2000), which can then be processed by base excision repair and abasic endonuclease 

to create a SSB or abasic site (a site where the nucleotide lost its base) (Di Noia & Neuberg, 

2002). This mechanism, however, is unlikely to happen at R-loops formed at GC skewed 

sites because the displaced ssDNA is G-rich and C-poor. Furthermore, Garcia-Picardo et al., 

(2017) were unable to measure increased AID dependent ssDNA damage in R-loop-

accumulating mutants (Garcia-Picardo, et al., 2017). The argument that AID is recruited by 

R-loops has been discussed by Pacri (2017), who concluded that current scientific evidence 

does not support that R-loops per se recruit AID (Pacri, 2017). A G-quadruplex can also 

lead to SSB despite its stability, as there are human nucleases that specifically cleaves DNA 

G-quadruplexes regardless of its sequence (Sun, et al., 2001). 
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Double-stranded breaks (DSB) have seen an increase in R-loop accumulating mutants. The 

mechanism by which R-loops contribute to DSB is proposed by the transcription or 

replication machinery colliding with the R-loop structure during elongation, as these 

DNA:RNA hybrids present a physical hindrance to the elongation mechanisms (Gan, et al., 

2011; Hamperl & Cimprich, 2014; Sollier & Cimprich, 2015).  

1.4.5. DNA repair 

DSB repair by homologous recombination (HR) includes a step of generating single-stranded 

DNA overhang that is later used for strand invasion into the sister chromatid. This unstable 

ssDNA overhang is stabilized through the binding of replication protein A (RPA) until it is 

replaced by Rad51, which is essential for homology search (Ohle, et al., 2016). Ohle et al. 

(2016) suggest that RNA polymerase II transcribes the ssDNA overhang before being 

occupied by RPA, generating nascent RNA that then competes with RPA for binding onto 

the ssDNA overhang. Both overexpression and deletion of RNase H1 in S. pombe inhibit 

HR, while the wild-type showed complete DSB recovery. The absence of RNase H stabilizes 

R-loops, thus impairing RPA binding and preventing Rad51 recruitment. This results in 

stalling of the HR repair process. On the other hand, when R-loop accumulation is reduced 

by the overexpression of RNase H, repeat regions around the DSB become destabilized. In 

addition, there is excessive recruitment of RPA that result in long ssDNA that will be prone 

to excessive strand resection. As such, it suggests that R-loops are required transiently to 

manage HR repair (Ohle, et al., 2016). 

1.4.6. Health implications 

The formation of R-loops at the 5’-UTR of the Fragile X mental Retardation 1 (FMR1) gene 

causes reduced expression, ultimately leading to the two neurodegenerative diseases fragile 

X syndrome and fragile X-associated tremor/ataxia syndrome (Loomis, et al., 2014; Groh, 

et al., 2014). Many genetic disorders have GC-rich trinucleotide repeat expansions that have 

the potential to form R-loops. For example, the trinucleotide repeats CAG (associated with 

spinocerebellar ataxia) and CGG (associated with fragile X syndrome type A) are observed 

to form R-loops during in vitro transcription (Reddy, et al., 2011). Aicardi-Goutières 

Syndrome has been linked with R-loops, as primary cells isolated from patients with this 

syndrome contain elevated levels of R-loops (Lim, et al., 2015).  
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Cancer has been suggested as a possible result of R-loop accumulation, due to the effect of 

R-loops on genome stability and replication stress. Cells infected with cancer-causing viruses 

such as the Kaposi's-sarcoma associated herpesvirus have increased R-loop levels (Santos-

Pereira & Aguilera, 2015). Genes mutated in cancer have also been associated with R-loops. 

For example, the tumour-suppressor genes BRCA1 and BRCA2 in humans also prevent R-

loop accumulation (Bhati, et al., 2014; Sollier & Cimprich, 2015). BRCA1 and BRCA2 are 

part of the Fanconi Anemia mediated DSB repair pathway and many of the DNA breaks 

found in Fanconi Anemia disrupted cells are R-loop dependent, providing a link to the 

disease of the same name (Garcia-Rubio, et al., 2015). In mice, R-loop accumulation at the 

proto-oncogene c-MYC, as a result of TDRD3 mutation, results in DNA damage that leads 

to c-Myc/Igh translocation. TDRD3 forms a complex with topoisomerase IIIB (TOP3B) to 

relax negative supercoiling and reduce R-loop formation. The c-Myc/Igh translocation is 

associated with c-MYC misregulation and is commonly observed in lymphomas (Yang, et al., 

2014). 

1.5. Helicases 

Helicases are found and classified by sequence homology, specifically by the Walker A and 

B motif. These two motifs allow for ATP binding and ATP hydrolysis and are required to 

move the enzyme forward on the nucleic acid strand (Caruthers & McKay, 2002). Helicases 

can form oligomeric structures that enhance their activity (Patel & Donmez, 2006). A 

relatively large part of the eukaryotic genome (approximately 1% of the protein-coding 

genes) encodes helicases (Wu, 2012) and are thus among the largest class of proteins 

(Jankowsky & Fairman-Williams, 2010). The human genome, for example, encodes 95 non-

redundant (based on sequence similarity) helicases with 64 classified as RNA helicases and 

31 classified as DNA helicases (Umate, et al., 2011). Although their classification is based on 

their substrate, some of them are not limited to only one type of nucleic acid and can function 

on both DNA and RNA, as well as DNA:RNA hybrids (Singleton, et al., 2007; Wu, 2012).  

The mechanism by which helicases unwind is still unknown. Two models hypothesise a 

possible mechanism. The passive model takes the context of the enzyme as a catalyst that 

reduces the activation energy, the energy required to separate the two strands of nucleic acid. 

The reduced activation energy threshold allows smaller fluctuation of thermal/kinetic energy 

to be sufficient to overcome the bond energy and breaking the hydrogen bond holding the 

two strands together. After the helix separates, the helicase traps the nucleic acid in their 

single-stranded state, thereby preventing them from reannealing. The other model, known 
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as the active model, hypothesizes that the energy from the enzyme moving along the DNA 

is sufficient enough to destabilise and force apart the double-stranded nucleic acid, i.e. the 

helicase has a “blade” that cuts the hydrogen bonds holding the strands together as it moves 

forward (Manosas, et al., 2010). This mechanism fits well to the observations and 

measurements of several helicases (Singleton & Wigley, 2002; Raney, et al., 2013). 

The below section provides more detail about the types of helicases and gives an overview 

of known helicases that are able to resolve R-loops in a variety of mechanisms, not limited 

to unwinding.  

1.5.1. Types of helicases 

Currently, all helicases are assigned to one of six superfamilies (SF1-6) based on their 

sequence and structure similarity (Gorbalenya & Koonin, 1993; Singleton, et al., 2007). SF1 

and SF2 are characterized by a helicase core that is formed from two nearly identical recA 

folds and are active as either monomer or dimer (Tanner & Linder, 2001). They also share a 

large number of motifs at the same location within the gene (Singleton & Wigley, 2002; 

Singleton, et al., 2007; Fairman-Williams, et al., 2010). These two superfamilies contain most 

of the known helicases, with SF2 being the largest superfamily by far. Helicases from SF3 to 

SF6, on the other hand, have only one recA fold and form hexameric rings with five others 

(Singleton, et al., 2007). The superfamilies are further divided into families, that are classified 

by the enzyme’s functional characteristics and motifs (Jankowsky & Fairman-Williams, 

2010). This classification, however, does not differentiate between RNA and DNA helicases, 

as both these classes exist in all superfamilies except for SF6, which only contains DNA 

helicases.  

1.5.1.1. SF1 helicases 

SF1 and SF2 share many motifs, only some of which are used to distinguish between these 

two superfamilies such as the motif III, which is diagnostic of SF1 helicase. Three families 

are associated with SF1: Rep/UvrD, Pif1/RecD, and Upf1-like (Figure 1.8) (Fairman-

Williams, et al., 2010; Raney, et al., 2013). The Rep/UvrD family is mostly associated with 

DNA repair and maintenance (Gilhooly, et al., 2013). Pif1/RecD family helicases have roles 

maintaining nuclear and mitochondrial DNA by resolving G-quadruplexes and help in 

directing and maintaining Okazaki fragments during DNA replication (Bochman, et al., 

2010). Upf1-like helicases are associated with various roles within transcription-associated 
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events, such as mRNA quality control (nonsense-mediated decay) (Chang, et al., 2007) and 

R-loop removal (Mischo, et al., 2011). 

 

Figure 1.8 Families of the SF1 and SF2 superfamily. Their evolutionary relationship is represented by an unrooted 

cladogram based on sequence homology from human and S. cerevisiae. Highlighted families marked with “R” contain 

RNA-helicases. Other families contain DNA helicases. Image taken from Jankowsky, et al. (2011). (Jankowsky, et al., 2011) 

1.5.1.2. SF2 helicases 

SF2 helicases are subdivided into many families, five of which are RNA specific helicase 

(DEAD-box, RIG-I like, DEAH/RHA, Ski2-like and NS3/NPH-II), collectively called 

DExD/H helicases. DExD/H helicases share the conserved motif DEAD/DEAH and 

other closely related DExD/H variants (where “x” can be any amino acid) (Jankowsky & 

Fairman-Williams, 2010; Bryd & Raney, 2012). They are found to be active in all RNA related 

interactions, including DNA:RNA hybrids (Tanner & Linder, 2001). The other families of 

SF2 encompass single and double-stranded DNA translocases and helicases (Figure 1.8 and 

Table 1.2) (Beyer, et al., 2013). 
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Family Function Examples 

DEAD-box dsRNA unwinding eIF4a 
Mss116p 
Ded1p 
DbpA 

DEAH/RHA ssRNA translocase 
dsRNA unwinding 

Prp16p 
Prp22p 
Prp43p 

RecQ-like ssDNA translocase 
dsDNA unwinding 

BLM 
WRN 
RecQ1 
RecQ4 

Rad3/XPD ssDNA translocase 
dsDNA unwinding 

XPD 

Swi/Snf dsDNA translocase 
 

CSB 
ATRX  
INO80 
ISWI  
Rad54 
SWI2/SNF2 

RIG-I like dsRNA translocase 
 

DICER 
RIG-I 

Ski-2 like ssRNA translocase 
dsRNA unwinding 

Ski2p 
Mtr4 

RecG-like dsDNA translocase 
branched DNA unwinding 

RecG 
PriA 

NS3/NPH-II ssRNA translocase 
dsRNA unwinding 

NS3 
NPH-II 

Table 1.2 Function of the families of the SF2 helicase superfamily. The right-most column includes examples for each 

family. Table based on Bryd & Raney (2012). 

SF2 helicases also have a diverse set of functions other than unwinding nucleic acid, mainly 

owing to the wide range of accessory domains. These functions include chromatin 

remodelling and peptide export (Beyer, et al., 2013). The RecG and RIG-I family functions 

in resolving a variety of branched nucleic acid structures which include Holliday junctions, 

D-loops and R-loops (Rudolph, et al., 2010; Beyer, et al., 2013). The RecQ family can also 

resolve triple helices and G-quadruplexes. This family is of particular interest for their 

association to a variety of diseases such as cancer and Bloom syndrome (Beyer, et al., 2013). 

The Swi/Snf family are also classified as chromatin remodelers owing to their ability to alter 

the chromatin landscape when they form an 8-14 subunit multiprotein complex (Zhang, et 

al., 2006). Family members include ISWI, CHD and INO80 (Table 1.2). 
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1.5.1.3. Hexameric helicases (superfamily 3-6) 

Hexameric helicases have been mainly found in viruses and bacteria (Jankowsky & Fairman-

Williams, 2010). Little is known about these helicases. SF3 helicases are found in small DNA 

and RNA viruses (e.g. Similan virus, Human Papillomavirus and Adeno-associated virus). 

They have four conserved motifs A, B, B', and C, of which the former two are the Walker A 

and B equivalent and the last motif is SF3 specific, which is suggested to act as a sensor of 

ATP binding and hydrolysis. The crystal structure of only a few SF3 helicases have been 

solved, showing that they form hexamers and double hexamers. Their function has so far 

only been associated with viral replication (Hickman & Dyad, 2005; Singleton, et al., 2007; 

Jankowsky & Fairman-Williams, 2010; Tuma, 2010).  

SF4 helicases are structurally very similar to SF3 and are found in bacteria and bacteriophages 

(Jankowsky & Fairman-Williams, 2010). They have five motifs (H1, H1a, H2, H3, and H4) 

of which two are the Walker A (H1) and B (H2) equivalent, while the rest are specific to SF4 

(Singleton, et al., 2007). The H3 motif is thought to be the functional equivalent of motif C 

from helicases of SF3. All the currently identified SF4 helicases have primary roles in DNA 

replication (Tuma, 2010). The primase from bacteriophage T7 is one of the most extensively 

studied SF4 helicase. It unwinds the DNA for replication fork progression and is vital for 

inducing Okazaki fragment synthesis (Frick & Richardson, 2001). The closely related P4 

helicase from dsRNA bacteriophages plays a role in RNA packaging into viral capsids and 

dsRNA unwinding. RNA helicases belonging to SF3 and SF4 have only been found in 

viruses (Jankowsky & Fairman-Williams, 2010).  

SF5 is closely related to SF4 and contains the Rho proteins that were initially identified in E. 

coli. This superfamily of helicases is responsible for transcription termination by binding to 

the nascent RNA and dissociate the RNA polymerase II. It prevents the aggregation of R-

loops by either blocking the formation or unwinding already formed hybrids (Gogol, et al., 

1991; Singleton, et al., 2007; Jankowsky & Fairman-Williams, 2010). 

SF6 helicases are all DNA helicases (Jankowsky & Fairman-Williams, 2010). They have a 

core AAA+ (ATPases associated with diverse cellular activities) fold, which is used for 

energy conversion from chemical (ATP) to forward motion along the nucleic acid strand. 

The eukaryotic MCM helicase is an example of an SF6 helicase and is essential for DNA 

replication initiation and elongation. The three prokaryotic RuvA/B/C helicases are 

responsible for resolving Holliday junctions during homologous recombination (Erzberger 

& Berger, 2006; Singleton, et al., 2007). 
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1.5.2. Known helicases that resolve R-loops 

A number of helicases have been found to resolve DNA:RNA structures either in vivo or in 

vitro. Within the SF1, human and mouse Senataxin (SETX) and its ortholog SEN1 (a member 

of the Upf-1 like family) in S. cerevisiae and Schizosaccharomyces pombe have been shown to 

unwind DNA:RNA hybrids in vivo (Kim, et al., 1999; Mischo, et al., 2011; Skourti-Stathaki, 

et al., 2011; Becherel, et al., 2013). S. cerevisiae Pif1 has shown the ability to unwind 

DNA:RNA hybrids in vitro and has a stronger preference and higher unwinding rate for the 

hybrids compared to dsDNA (Boule & Zakian, 2007). The human Aquarius (AQR) helicase, 

belonging to the same subfamily as SETX, is essential for preventing R-loop mediated DSB 

(Sollier, et al., 2014). 

SF2 RNA helicases (DExD/H helicases) are hypothesized to have extensive DNA:RNA 

binding capability. Human DEAH-box DHX9, also known as RNA helicase A (RHA), has 

the ability to unwind R-loops in vitro (Chakraborty & Grosse, 2011). However, the same lab 

also found that DHX9 can help the formation of some R-loops in the absence of splicing 

factors (Chakraborty, et al., 2018). The DEAD-box helicase DDX21 can reduce R-loops 

both in vitro and in vivo (Song, et al., 2017). DDX19, normally functioning in the export of 

mRNA, can unwind R-loops in vitro and plays a role in R-loop resolution in vivo, potentially 

as part of the DNA damage response during DNA replication (Hodroj, et al., 2017). The 

DEAH-box helicase FANCM, associated with genome stability, can unwind R-loops in vitro 

(Schwab, et al., 2015). Within the SF2 DNA helicases, RecG from E. coli has been shown to 

be required for maintaining low R-loop levels (Hong, et al., 1995). The Human RecQ helicase 

WRN-1 and the C. elegans orthologue WRN-1 have the ability to unwind R-loops in vitro 

(Hyun, et al., 2008; Chakraborty & Grosse, 2011). Another RecQ helicase, BLM, has 

DNA:RNA helicase activity in vitro (Grierson, et al., 2013), while the S. cerevisiae orthologue 

SGS1 is required to avoid R-loop accumulation in vivo (Chang, et al., 2017). Cas3, an ssDNA 

nuclease, has been shown to dissemble R-loops in the presence of ATP but promotes their 

formation in the absence of ATP in vitro (Howard, et al., 2011). 

Viral SF2 helicases with the ability to unwind DNA:RNA hybrids have also been identified. 

The nonstructural protein 3 (NS3) from the Hepatitis C virus has been shown to have the 

capability to unwind the hybrids in vitro (Gwack, et al., 1997; Pang, et al., 2002). UvsW 

helicase, one of the three helicases found in Bacteriophage T4, unwinds R-loops both in vitro 

and in vivo (Mosig, et al., 1995; Dudas & Kreuzer, 2001). UvsW has been suggested to be 

functionally analogous to E. coli recG as ectopic expression of UvsW in recG E. coli mutants 

can rescue the bacteria (Carles-Kinch, et al., 1997).  
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Within the superfamily 5, the well studied Rho helicase has the ability to unwind R-loops. Its 

role in transcription termination by dissociating the nascent RNA is crucial for the survival 

of E. coli (Gogol, et al., 1991; Singleton, et al., 2007; Jankowsky & Fairman-Williams, 2010). 

Interestingly, an otherwise lethal mutant lacking the Rho helicase can be rescued through the 

ectopic expression of UvsW from Bacteriophage T4 (Leela, et al., 2013). 

1.5.3. Other functions of helicases that can affect R-loops 

Although helicases are known for their nucleic acid unwinding characteristics, not all proteins 

classified as helicases are able to unwind nucleic acids and are better understood as 

translocases, that mainly function as motors to drive a unidirectional movement (Singleton, 

et al., 2007). This discrepancy stems from the method of classifying helicases based on their 

conserved amino acid sequence, especially the Walker A and Walker B motif (Jankowsky & 

Fairman-Williams, 2010). For example, some of these “helicase-classified translocases” lack 

a wedge domain (“blade”) used to break the hydrogen bonds and force open the double helix 

(Saha, et al., 2006). Furthermore, as previously noted, helicases (and translocases) have a wide 

variety of accessory domains that give specific helicases unique functions (Beyer, et al., 2013). 

Here, other possible functions of helicases are discussed that can affect R-loop accumulation 

independent of the unwinding mechanism summarized in the previous section. 

1.5.3.1. Chromatin remodelers 

There are at least four families of ATP dependent chromatin remodelers: SWI/SNF, ISWI, 

NURD/Mi-2/CHD and INO80. They all belong to the helicase SF2 and contain the Swi2/Snf2 

motor core to drive the translocation movement (Saha, et al., 2006; Liu, et al., 2011; Beyer, 

et al., 2013). Chromatin remodelers have the ability to move histones along the DNA, 

thereby changing the chromatin landscape and dictating the accessibility of parts of the DNA 

for protein binding such as transcription factors (Längst & Manelyte, 2015). While some 

chromatin remodelers move histones away from the gene to be transcribed, others 

“reorganize” the spacing of the histones and promote transcriptional repression (Längst & 

Manelyte, 2015). Since chromatin remodelling has a direct impact on transcriptional activity, 

it should also affect R-loop formation. 

R-loops themselves could affect the recruitment of chromatin remodelers. Some of the 

chromatin remodelers binding targets are formed as a consequence of R-loop formations. 

For example, acetylated H3 and G-quadruplexes are recognized by the chromatin remodeler 

of the ISWI family, which are histone “reorganizers” repressing transcription (Längst & 
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Manelyte, 2015). This could potentially create a self-regulatory system in which 

transcriptional activity is moderated. 

1.5.3.2. Helicase rewinding ability 

Helicases are extensively researched and used for their unwinding ability. However, emerging 

evidence suggests that helicases can have rewinding capabilities (Wu, 2012). Examples of 

RNA helicases with rewinding ability include human DDX42p, S. cerevisiae DED1 and 

Mss16p, and Dengue virus NS3. Reported DNA helicases are human RECQ5β, BLM, WRN, 

RECQ1, DNA2, PIF1, HARP, AH2 (Wu, 2012) and UvsW (Nelson & Benkovic, 2006). 

DNA:RNA annealing helicases that have been reported are DHX9 and Cas3 (Howard, et al., 

2011; Chakraborty, et al., 2018). The purpose of this rewinding activity is currently unknown, 

but Wu (2012) suggests multiple functions. The helicases could help in stabilizing stalled 

replication fork by reannealing long stretches of parental ssDNA until replication restarts. In 

homologous recombination, the helicases (particularly BLM and WRN) could coordinate 

both the unwinding of the intact dsDNA for the invasion of the ssDNA and the annealing 

of the invading ssDNA to the complementary template (Wu, 2012). Along with the same 

reasoning, some of the functions of R-loops described in section 1.4 could profit from 

DNA:RNA rewinding capabilities, such as DNA repair, control of transcription and histone 

modification/chromatin compaction. Information regarding helicase rewinding is scarce, 

and more research is required to begin understanding the impact of rewinding nucleic acids. 

1.5.3.3. Steric hindrance and export 

DDX19 is able to unwind R-loops in vitro, but its effects on reducing R-loop accumulation 

could also be related to its function as an mRNA export protein that binds to the nascent 

RNA. Although export defective DDX19 protein has been shown to resolve R-loop 

accumulation as effective as wild-type (Hodroj, Serhal & Maiorano, 2017), it cannot be 

excluded that the binding of DDX19 (or any other protein-related to RNP biogenesis) to the 

nascent RNA itself is enough of a hindrance to prevent reannealing of the nascent RNA to 

the ssDNA. It has indeed been shown that pre-mRNA processing proteins that are co-

transcriptionally loaded to the nascent RNA can reduce R-loop formation (Skourti-Stathaki 

& Proudfoot, 2014). The THO/TREX export contains the DEAD-box RNA helicase Sub2, 

which is required for mRNA splicing and export. Depletion of the THO subunit results in 

transcription elongation impairment linked with increased R-loop formation (Dominguez-

Sanchez, et al., 2011). Overexpression of other RNA binding factors, including the Sub2 
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subunit, suppresses the hyperrecombination of THO depleted mutants, supporting the idea 

that covering the nascent RNA with RNPs prevents R-loop formation (Garcia-Benitez, et 

al., 2017). 

1.5.3.4. Recruiting other proteins 

Helicases could act as binding targets for other proteins after binding to R-loops and recruit 

proteins that then function in removing R-loops. The eukaryotic initiation factor 4A-III 

(eIF4A-III) DEAD-box helicase, for example, acts as a stationary ATP-dependent clamp 

around RNA on which other proteins assemble (Jankowsky & Fairman-Williams, 2010). This 

could affect R-loop levels in a manner similar to the non-helicase example, FANCI-

FANCD2 (ID2). This DNA binding protein binds R-loops via the recognition of ssRNA or 

G-rich ssDNA, but not the DNA:RNA hybrid itself, which activates the Fanconi Anemia 

pathway (including the FANCM helicase) that then resolves R-loops (Liang, et al., 2019).  
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1.6. Aim and objectives 

Transcriptional activity depends on epigenetic regulation and can be correlated with the 

formation of R-loops and the deposition of the histone mark H3K4me3. What makes these 

two in particular interesting is that they show high aggregation at the promoter location of 

the gene. Whether this correlation has a causal effect is unknown and is the central question 

that initiated this study. I hypothesize that: 

Reducing the global level of H3K4me3 has an impact on R-loop aggregation. 

To test this hypothesis, I use the model organism C. elegans, which only has one COMPASS 

complex responsible for the majority of H3K4me3 marks. The C. elegans loss-of-function 

mutants cfp-1(tm6369) and set-2(bn129) produce viable progenies and have a drastic reduction 

in global H3K4me3 levels (Pokhrel, et al., 2019). First, I analyse the changes in H3K4me3 

levels in both mutants. Then, by comparing the R-loop levels in the COMPASS mutants 

with wild-type controls, changes in R-loop aggregation as a result of H3K4me3 depletion 

can be identified. The results of this investigation could enhance our understanding of 

epigenetic regulation and potentially uncover the purpose of the H3K4me3 active 

transcription marker. 

In addition, this project aims to identify helicases that can resolve R-loops, independent or 

dependent on the H3K4me3 marker by performing RNA interference (RNAi) screening on 

the C. elegans COMPASS mutants. Results from this screen provide a comprehensive list of 

DNA:RNA helicase candidates that play a role in regulating R-loop aggregation. 
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Chapter 2: Methods for the epigenetic analysis 

2.1. Basic maintenance 

2.1.1. List of strains 

The following strains were used in this thesis:  

Strain 
Name 

Genotype Nature of Mutation 

N2 Bristol wild-type wild-type 

 set-2(bn129) 748 bp deletion; frameshift and nonsense mutation (Xiao, et al., 
2011) 

 cfp-1(tm6369) 254 bp deletion (Pokhrel, et al., 2019); frameshift mutation 

RB835 rcq-5(ok660) 1299 bp deletion (The C. elegans Deletion Mutant Consortium, 
2012); frameshift and nonsense mutation 

KMW1 rha-1(tm329) 1059 bp deletion; nonsense mutation and genetic null mutation 
(Walstrom, et al., 2005) 

Table 2.1 List of strains used in the epigenetic study. All genotypes are listed with their mutant name and strain name 

when available. As of writing, set-2(bn129) and cfp-1(tm6369) did not have a designated strain name. 

2.1.2. Nematode Growth Medium (NGM) plate preparation 

For 1 L of NGM, 17 g of Agar (ash 2.0-4.5%) (Sigma-Aldrich®), 2.5 g of peptone (from 

meat) (Sigma-Aldrich®) and 3 g NaCl (Acros Organics®) were mixed in a 1 L bottle and 

made up to 1 L with deionized water and left for autoclaving. 

Before usage, if the mixture has solidified, it was heated up in a microwave until completely 

liquified and let to cool to ~60°C. Afterwards the following were added: 1 mL 1 M CaCl2 

(Sigma-Aldrich®), 25 mL 1 M KPO4 (Honeywell Fluka), 1 mL 1 M MgSO4 (Sigma-

Aldrich®) and 1 mL of 5 mg/mL cholesterol in ethanol (Sigma-Aldrich®). KPO4 was 

prepared by mixing 108.3 g of KH2PO4 with 35.6 g of K2HPO4 in 1 L water. The mixture 

was then poured into the Petri dishes using sterile serological pipettes under a laminar flow 

hood. For small plates (diameter: 55 mm), 10 mL of NGM was used. For large plates 

(diameter: 135 mm) 75 mL of NGM was used. 

After the NGM has solidified, the plates were turned upside down and dried for one (small 

plates) or two weeks (large plates) at room temperature. OP50 bacteria liquid culture was 

then spotted on the plates (150 μL for small plates and 2 mL for large plates) and air-dried 

at room temperature. OP50 was allowed to grow for three to seven days to produce a large 

lawn of bacteria. 
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2.1.3. OP50 maintenance 

OP50 was maintained in Luria-Broth (LB) and kept at 4°C. 1 L of LB was made by mixing 

10 g of Tryptone (vegetable) (Sigma-Aldrich®), 5 g yeast extract (Fluka Analytica®) and 5 g 

of NaCl (Acros Organics®) and made up to 1 L with deionized water. The pH was adjusted 

to 7 with 1M NaOH (AnalaR NORMAPUR®) and autoclaved. 

2.1.4. Worm maintenance 

Worm stocks were maintained on NGM (Nematode Growth Medium) Petri plates with 

seeded OP50 (Escherichia coli) and kept at 15°C. For experiments, worms were shifted to 20°C 

(standard growth condition) (Stiernagle, 2006) and maintained for four generations before 

use (except rha-1, which has reduced brood size at 20°C and thus experiments were done at 

15°C). 5-10 Worms were transferred to new NGM plates before the old NGM plate runs 

out of OP50 food. 

Male stock worms were maintained at 15°C. Hermaphrodites were paired with males in a 1:3 

ratio to improve the chance of sexual reproduction and male progenies. 

2.1.5. M9 buffer preparation 

1 L of M9 buffer was prepared by mixing 3 g of KH2PO4 (Honeywell Fluka) with 6 g of 

Na2HPO4 (Acros Organics®) and 5 g of NaCl (Acros Organics®) and made up to 1 L with 

deionised water. The mixture was then autoclaved. Before usage, 1 mL of 1 M MgSO4 

(Sigma-Aldrich®) was added to the mixture. 

2.1.6. Liquid culture bleach preparation 

50 mL of liquid culture bleach was prepared by mixing 5 mL of 10 M NaOH (AnalaR 

NORMAPUR®) with 15 mL 4% NaClO and 30 mL water. 

2.1.7. Worm bleaching and synchronization 

Bleaching worms from NGM plates were done by washing off all the worms by adding 1 

mL of water to the 55 mm plates (5 mL of water for 135 mm plates). The water with 

suspended worms was transferred to a centrifugal tube. An equal amount of liquid culture 
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bleach was added to the suspension and placed on a shaker or vortex at 600 rpm for 4-6 min. 

The mixture was then centrifuged at 2000 rpm for 2 min, and the liquid was decanted to 0.1-

0.5 mL (depending on the number of embryos). Water was added to fill up the centrifugal 

tube to the limit, shaken for 10 seconds, centrifuged at 2000 rpm for 2 min and decanted. 

This cycle was repeated once more and then again with M9 buffer instead of water. After the 

last decanting step, the embryos were transferred to a plate directly or left to hatch inside the 

centrifugal tube to become synchronized larvae stage 1 (L1) animal. For the latter option, 

M9 buffer was added to fill up 2/3 of the centrifugal tube and left on the shaker overnight 

at 20°C. 

2.1.8. Tris-buffered Saline (TBS) and TBS + Tween (TBST) 

preparation 

For 1 L of 10x TBS, 24 g of Tris base (AppliChem Panreac) was mixed with 88 g of NaCl 

(Acros Organics®) and dissolved in 900 mL deionised water. The pH was adjusted to 7.6 

with 12 M HCl, and deionized water was added to make up 1 L. 

For 1 L of 1x TBST, 100 mL 10x TBS was mixed with 900 mL distilled water and 1 mL 

Tween 20. 

2.2. Genotyping and outcrossing 

2.2.1. List of primers 

Genotype Primer Wild-type Mutant 

cfp-1(tm6369) F: 5’-ACA CGG GGC AGT TTG TGC GA-3’ 
R: 5’-AGG AGT GCA CGA GCC ACG TA-3’ 

1.1 kb 846 bp 

set-2(bn129) F: 5’-TGGAAGAGTTAGTGGAGAATTTGG-3’ 
R: 5’-TGTGCGAAAAATTGCAGTGC-3’ 

1.3 Kb 572 bp 

rcq-5(ok660) F: 5’-TTTCAGCTTTCTCCCCCTCT-3’ 
R: 5’-TGAAAACCCTAATTGCCAGA-3’ 

1782 bp 483 bp 

rha-1(tm329) F: 5’-TAATCCGTTCTCCATCATTCG-3’ 
R: 5’-GATTTGGCTACACTGCTTTCG-3’ 

1565 bp 506 bp 

Table 2.2 Table displaying the sequence of primers used for genotyping the mutant C. elegans strains. The expected 

size of PCR products in wild-type and mutants using the respective primers are shown on the right side of the table. 
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2.2.2. Genotyping and single worm PCR 

The genotype of samples was confirmed using PCR. A single hermaphrodite (mother) or 

multiple offsprings were transferred to the PCR tubes containing the Proteinase K (PK) 

solution with as little bacteria as possible. The PK solution was made up of 7.5 μL nuclease-

free water, 0.5 μL of 20 mg/mL Proteinase K (ThermoFisher Scientific™) and 2 μL 5x HF 

Phusion PCR buffer (ThermoFisher Scientific™). The PCR tube was kept in a thermocycler 

(PCR machine) for 75 minutes at 55°C, then 20 minutes at 98°C and were kept at 4°C. 

After the worm was completely digested in the PK solution, the PCR master mix is prepared 

by mixing various chemicals, as shown below: 

The number of reaction: 1x 8.5x 

5x HF Phusion PCR buffer 2.5 μL 21.3 μL 

10 mM dNTP 0.25 μL 2.1 μL 

10 μM Forward primer 0.625 μL 5.3 μL 

10 μM Reverse primer 0.625 μL 5.3 μL 

Phusion Polymerase (2 U/μL) 0.125 μL 1.06 μL 

Water 8.38 μL 71.23 μL 

Total 12.5 μL 106.25 μL 
Table 2.3 Composition of the PCR master mix for either one reaction or eight (8.5) reactions. 

For single worm PCR, 2 μL of the PK digest was mixed with 12.5 μL of the PCR master 

mix (For genotyping from purified DNA, 0.1 μL of the template was sufficient). The mixture 

was then kept in the thermocycler (PCR machine), with a PCR program depending on the 

primers used. 

 Temperature cfp-1/set-2 rcq-5/rha-1 

Initial denaturation 98.0°C 5 min 5 min 

Denaturation 98.0°C 10 sec 10 sec 

Annealing 58.0°C 20 sec 15 sec 

Extension 72.0°C 1:30 min 2:15 min 

Final extension 72.0°C 20 min 5 min 

Storing 4.0°C ∞ ∞ 
Table 2.4 PCR program of the thermocycler for different gene/strain. 

Gel electrophoresis on a 1.2% agarose gel was done for PCR samples. The gel was prepared 

by mixing 1.2 g of agarose (SERVA) with 100 mL of 0.5x TBE (Tris Borate EDTA) and 

heated up until homogenous. Next, 5 μL of 10 mg/mL Ethidium Bromide was added to the 

solution and mixed. The gel was then poured into a casting tray to settle. The PCR samples 

were prepared by adding 2 μL of 6x orange loading dye to them. The agarose gel was placed 

in the electrophoretic tank with 0.5x TBE. 10-15 μL of the sample was loaded onto the wells 

of the gel. 2 μL of DNA hyperladder was used (100 bp or 1 kbp) as a molecular marker. 

35 cycle 
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Electrophoresis was run at 100 V for 30 min or 50 V for 1 hour. The Gel was then visualized 

under a gel documentation system (FAS-Digi PRO).  

2.2.3. Outcrossing 

C. elegans strains were outcrossed at least four times with the N2 males before being used in 

experiments to ensure that enough recombination event has occurred to limit the mutation 

sites to the area around the gene of interest (Zuryn & Jarriault, 2013). Worms were kept 

under standard experimental condition during the outcrossing process. Two to three L3-L4 

hermaphrodites of the strain to be outcrossed were placed on a seeded NGM plate with male 

N2 worms in a 1:3 ratio. After two to three days, 6 hermaphrodite offsprings were transferred 

to new seeded NGM plate each. After the 6 worms have reached the adult stage and have 

laid a few eggs, the adult worm was genotyped using the single worm PCR protocol. One 

plate where the adult worm was confirmed to be heterozygous for the gene of interest is 

chosen for the next process. 8 offspring from the chosen plate were separated onto a new 

seeded NGM plate each. After those 8 offspring have started laying eggs, each of them was 

genotyped to find a homozygous mutant for the gene of interest. The plate from which a 

homozygous mutant was identified was kept and grown. For re-confirmation of the 

homozygosity, 4 worms from the homozygous plate were genotyped. This concluded one 

round of outcrossing and the process was repeated at least 3 more times. 

2.3. RNA interference 

2.3.1. RNAi LB culture plate preparation 

LB agar plates were used to grow the RNAi bacteria from frozen stock. 1 L of LB agar was 

made by mixing 10 g of Tryptone (vegetable) (Sigma-Aldrich®), 5 g yeast extract (Fluka 

Analytica®), 5 g of NaCl (Acros Organics®) and 15 g of agar (ash 2.0-4.5%) (Sigma-

Aldrich®) together and made up with deionized water to 1 L. The pH was adjusted to 7.5 

with 10 M NaOH (AnalaR NORMAPUR®), followed by autoclaving. The solidified LB agar 

was heated up in a microwave until it was completely liquified and left to cool to ~60°C. 1 

mL of 10 mg/mL Tetramycin and 1 mL of 50 mg/mL Ampicillin was added to the 1 L 

liquified LB Agar. Plates were poured the same way as NGM plates are made (see Section 

2.1.2). 
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2.3.2. Liquid RNAi LB preparation 

RNAi bacteria liquid culture was prepared by mixing 1 L of LB with 1 mL of 50 mg/mL 

Ampicillin. For overnight inoculation, another 1 mL of 1 mg/mL Tetramycin was added. 

2.3.3. RNAi bacteria feeding plates preparation 

RNAi bacteria of interest were streaked from the glycerol stock (from Julie Ahringer library) 

to RNAi LB culture plates under sterile condition. The streaked plates were left to incubate 

overnight at 37°C. A small sample from the grown bacteria was then transferred to liquid 

RNAi LB and incubated for 6-8 hours (or overnight) at 37°C in a shaking incubator. The 

liquid bacteria culture was then seeded onto dried NGM plates containing 1 mM Isopropyl 

β-d-1-thiogalactopyranoside (IPTG) and 50 μg/mL ampicillin (the same method as OP50, 

see Section 2.1.2). The plates were then left to dry and grow for 3-7 days. 

2.4. Developmental assay 

Determining the time at which worms reach L4, young adult or adult stage was done using 

the developmental assay. Worms were bleached and synchronized to L1. 100-200 L1 worms 

were transferred to an NGM plate seeded with OP50. The worms were left to grow at 20°C 

or 25°C. Worms were observed every day starting on the 3rd day until they reach the adult 

stage and the development stage at each time point of observation was noted down. 

2.5. RNAi sensitivity assay 

RNAi plates were set-up as described above. RNAi bacteria used were: dpy-10, unc-15, hmr-1, 

dpy-8, lin-1, dpy-13 and unc-73. 

For each strain (wild-type(N2), set-2(bn129) and cfp-1(tm6369)), three L3-L4 worms were 

spotted on the NGM plate containing the RNAi bacteria of interest. After 24-48 hours 

(depending on the growth rate), the three worms were transferred to a new plate to feed for 

another 24 hours before being transferred once more to a new plate. The number of 

eggs/progeny worms were counted and added together to find the total brood size of the 

three worms. The plates were kept until the progenies of the three worms have grown to 
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L4/adult stage in order to score for the relevant RNAi phenotype (see the relevant section 

for each phenotype). Biological replicates were done in parallel. 

2.5.1. Dumpy phenotype 

For scoring “dumpy” phenotype (dpy-10, dpy-8 and dpy-13), the shape of the worm was 

compared to control worms (worms treated with Empty vector (HT115) E. coli bacteria). 

The number of worms with the dumpy phenotype (shorter and fatter than the control 

worms) were counted in each plate and added together. The total number of dumpy worms 

were then compared to the total brood size to find the percentage of dumpy worms. A few 

dumpy worms were picked, and their body length was compared to the control worm. Both 

criteria were used to determine RNAi strength. 

2.5.2. Uncoordinated phenotype 

The “uncoordinated” phenotype (unc-15 and unc-73) was scored based on the worms body 

paralysis. In this assay, a worm is considered to be paralysed when it cannot move its body 

(but may still have some limited head movement) even when gently touching them or tapping 

the NGM plate on the table. The pharynx activity was not considered. 

The number of worms that were paralyzed were counted and added together and compared 

to the total brood size to determine the strength of the RNAi phenotype. 

2.5.3. lin-1 phenotype 

Worms treated with lin-1 RNAi display multi-vulva phenotype (worms with one or more 

than one vulva-like protrusion). The number of worms with multiple vulvae were counted 

and compared to the total brood size to determine the strength of RNAi. 

2.5.4. hmr-1 phenotype 

hmr-1 RNAi phenotype was scored based on the number of dead embryos. The number of 

dead embryos was counted and compared to the total brood size. 
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2.6. Sample collection for staging and genomic DNA 

(gDNA) extraction 

2.6.1. Young adult collection 

Synchronized worms were left to grow into very early young adults (around 60 hours for 

wild-type and 65 hours for COMPASS mutants). Worm collection was done by washing the 

worms off the plates using water and transferring to a centrifuge tube. The collection was 

centrifuged at 2000 rpm for 2 min, followed by decanting the liquid and filling the tube with 

M9 buffer. This was repeated at least one more time until the mixture was clear (without the 

cloudy bacteria) and left for 5 min at room temperature. The worms were centrifuged one 

more time and M9 buffer was removed as much as possible. A small sample of the collection 

was preserved in 100% methanol at -20°C for scoring the developmental stage while the rest 

was frozen in dry ice and stored in -80°C. 

2.6.2. Late embryo collection 

The worms were left to grow into adults that just started laying embryos and carry large 

amounts of embryos. The time between transferring the synchronized L1 worms to NGM 

plates and collecting them was: wild-type(N2) = 60h, cfp-1(tm6369) = 68h and set-2(bn129) = 

68h. After collection, the worms were bleached, and the embryos were left to develop in M9 

buffer at 20°C for 5.5 h and 6 h for wild-type(N2) and mutants, respectively. Before 

proceeding to the sucrose floating step, a small sample is scored to determine whether the 

embryos were at the desired developmental stage (2-fold and 3-fold stage). The embryos 

were centrifuged, and M9 buffer was decanted to 3 mL. The mixture was transferred to 

15mL centrifugal tube if applicable. An equal amount of 60% sucrose was added, mixed and 

centrifuged at 1000 rpm for 5 minutes. 1 mL of M9 buffer + 0.1% triton was carefully added 

to the surface creating a partition of immiscible liquid. Live embryos will float at the 

boundary of the 2 liquids. The embryos were collected by carefully draining the M9 buffer 

+ 0.1% triton at the partition boundary. The embryos were then washed twice in M9 buffer 

+0.1% triton and once more in M9 buffer only before being frozen in dry ice and stored in 

-80°C. 
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2.6.3. Staging 

Young adult samples preserved in methanol were staged by 4′,6-diamidino-2-phenylindole 

(DAPI) staining. Methanol was removed from the sample as much as possible by 

centrifuging and decanting. The samples were then washed twice in M9 buffer +1% triton. 

50 μL of 1 μg/mL DAPI was added to the sample and left on the shaker for 5 minutes and 

then visualized under a Nomarski Microscope. The worms are categorized in either as young 

adults by the presence of embryos and vulva or as L4 by the absence of these features. 

Late embryos were staged without any staining under the Nomarski Microscope. They were 

classified as either younger than comma stage, comma stage, 2-fold, 3-fold or hatched (see 

Figure 2.1). 

 

Figure 2.1 The developmental stages of the embryo from fertilization to hatching. Image taken from Altun & Hall 

(2009). 

2.6.4. L1 Worm Collection 

The worms were left to grow into adults that just started laying embryos and carry large 

amounts of embryos. The time between transferring the synchronized L1 worms to NGM 

plates and collecting them was: wild-type(N2) = 60h, cfp-1(tm6369) = 68h and set-2(bn129) = 
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68h. After collection, the worms were bleached. A small sample was transferred to a small 

NGM plate for the hatching assay. The rest were left to grow and hatch in M9 buffer 

overnight at 20°C on a shaker. On the next day, the worm sample was estimated by spotting 

0.1% of the mixture on an empty petri dish and counting the number of worms. The rest of 

the mixture was centrifuged, decanted and frozen in dry ice and stored at -80°C. 

For the hatching assay, the number of eggs was counted immediately after spotting. After 

leaving for 24 hours, the number of hatched worms were counted to determine the fraction 

of hatched eggs. 

2.7. DNA extraction 

The DNA extraction process was done using the Invitrogen™ PureLink™ Genomic DNA 

mini kit. Collected worm and embryo samples were thawed on ice and centrifuged to remove 

as much M9 buffer as possible. Removal was repeated if necessary since M9 buffer 

contamination reduces gDNA extraction efficiency. 20 μL of 20 mg/mL Proteinase K and 

180 μL of Digestion Buffer was added to the centrifuge tube. After short vortexing, the tubes 

were left in a 55°C water bath for 1 h (L1 worms), 4 h (embryos) or 5 h (adult worms) with 

occasional shaking. The lysate was centrifuged at 17,000 g, and the supernatant was 

transferred to an Eppendorf tube. The Eppendorf tube was then centrifuged at 17,000 g for 

3 min to remove any more residues, and the supernatant containing the DNA was transferred 

to a new Eppendorf tube. Centrifugation was repeated if necessary to remove further 

residues (only applicable to adult worm gDNA extraction). 20 μL of 20 mg/mL RNase A 

was added to the supernatant and left at room temperature for 2-3 minutes. An equal volume 

to the supernatant (~200-300 μL) of Lysis/Binding Buffer was added and vortexed until the 

mixture became homogenous. The same volume of 100% ethanol was added and vortexed 

until homogenous. 

The mixture was then added to the spin column in a collection tube (max capacity is 640 μL) 

and centrifuged at 10,000 g for 1 minute at room temperature. The eluate inside the collection 

tube was discarded. The collection tube was reused if there was more DNA mixture to be 

eluted; otherwise, a new collection tube was used. 500 μL of Wash Buffer 1 was added to 

the spin column and centrifuged at 10,000 g for 1 minute, and the eluate and collection tube 

was discarded. This was repeated for Wash Buffer 2 but centrifuged at 17,000g for 3 minutes. 
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The spin column was then placed into an Eppendorf tube to collect the DNA. 50 μL of 

nuclease-free water was added to the spin column and left at room temperature for 5 minutes. 

The tube was then centrifuged at 17,000 g for 2 minutes.  

The DNA concentration was measured on a Nanodrop by blanking with nuclease-free water 

and adding 1 μL of the elution onto the sensor or by using Qubit 4 (Invitrogen™) with the 

dsDNA BR assay kit. 

2.8. R-loop slot blot 

2.8.1. Membrane blotting 

gDNA samples were prepared by diluting the stock gDNA to a standard concentration 

(typically 100 ng/μL). Three samples of varying amount of DNA were prepared (see 

individual blots) by adding the respective amount of DNA to 1x RNase H buffer for a total 

volume of 100 μL. An additional RNase H negative control was prepared by adding 2 μL of 

5 U/ μL RNase H to an identical sample with the highest amount of gDNA. All samples 

were left at 37°C for 20 minutes. This allows RNase H to degrade R-loops while exposing 

all other samples to the same condition. 

Amersham Hybond-N+ Nylon membrane and filter paper were cut to the required size. The 

filter paper must cover all wells of the machine, while the nylon membrane only needs to 

accommodate all samples. Both the membrane and the filter paper were pre-wetted in 

autoclaved water. The slot blot machine was then set up as shown in Figure 2.2: 
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Figure 2.2 Set-up of the slot blot machine. The filter paper needs to be cut to cover all the wells in the slot blot 

machine. The nylon membrane only needs to be cut to accommodate all samples. Both the membrane and filter 

paper were pre-wetted in autoclaved water. 

The vacuum is turned on and left running for 1 minute to produce a negative pressure before 

continuing. 

For each well that was being used, 100 μL of autoclaved water was added to rehydrate the 

membrane. Then the DNA samples were added, and afterwards another 100 μL of 

autoclaved water was added to wash down any DNA residues that might be stuck at the 

walls. Before each addition, the previous liquid must be completely pulled through. The 

apparatus was dismantled, and the nylon membrane was air-dried for 5 minutes and then 

placed between dry filter paper and wrapped with aluminium foil before baking it at 80°C 

for 2 hours. 

The nylon membrane was then blocked in blocking solution (2 g milk powder in 40 mL 1x 

TBST) at room temperature for 1 hour. The membrane was then transferred to a 50 mL 

centrifugal tube. 1 μL of S9.6 antibody (1 mg/mL) (EMD Millipore) in 5 mL of blocking 

solution was transferred to the centrifugal tube and left on a roller at room temperature for 

2-4 hours. The antibody/blocking solution mixture was then replaced by 1x TBST and left 

on the roller for 5 minutes to wash. Washing was repeated 2 times for a total of 3 washes. 1 

μL of anti-mouse IgG antibody was added to 5 mL of blocking solution and replaced the 1x 

TBST. The centrifuge tube was left on the roller for 2 hours. The membrane was then 

washed once more in 1x TBST for 10 minutes followed by developing. 
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2.8.2. Membrane development 

The nylon membrane signal was visualized either using the traditional X-ray film 

development or the G:BOX (Syngene) imaging system. The nylon membrane was placed 

onto a clear plastic sheet. 1.5 mL of ECL solution A and B (SuperSignal™ West Pico PLUS) 

were mixed and poured onto the membrane and covered by another clear plastic sheet before 

being placed in an X-ray film cassette. In a dark room, an X-ray film was placed on top of 

the clear plastic sheet with the membrane (and spotted DNA) facing upward. The length at 

which the film needed to be kept on top depends on the strength of the signal and can require 

multiple trials. Finally, the x-ray film was sent through the X-ray Film Processing machine to 

fix the film. Visualization using the G:BOX imaging system was performed by placing the 

membrane onto the target area and pouring the ECL mixture onto the membrane. The type 

of blotting was chosen as “chemiblot”, and the type of ECL was set as “superluminescent 

EZ-ECL”. 

2.8.3. DNA loading control 

2.8.3.1. Methylene blue Staining 

The membrane was soaked in 5% acetic acid at room temperature on a shaker for 15 minutes. 

The acetic acid was then replaced by 0.5M sodium acetate (pH 5.2) and 0.04% methylene 

blue and left for 5-10 minutes. The membrane was then washed with water for 5-10 minutes 

or until the desired colour saturation was reached. 

2.8.3.2. Anti-dsDNA reprobing 

After the membrane has been developed and results captured on the X-ray film, the 

membrane was stripped by submerging it in mild stripping buffer (5 g glycerin, 10 g SDS 

(1%), 10 mL Tween 20 in 1 L of deionized water and adjusted to pH 2.2) at room 

temperature for 10 minutes and again for 30 minutes, followed by two 10 minutes TBS wash 

and two 5 minutes TBST wash. The membrane was blocked for 30 minutes with blocking 

solution and incubated directly with secondary antibody for 2 hours. A 10 minutes wash with 

TBST followed by developing the film with ECL can then indicate whether the stripping was 

successful or not. After a successful stripping, the membrane was directly incubated with 

anti-dsDNA primary antibody (1:180 dilution in blocking solution), which only targets 

double-stranded DNA, for 4 hours. Afterwards, the membrane was washed three times with 
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TBST for 5 minutes each and then incubated with the secondary antibody (anti-mouse IgG 

antibody in blocking solution) for 1 hour. Washing and developing was done the same as 

previously. 

2.9. Computational analysis of H3K4me3 ChIP-seq 

2.9.1. Identifying differential H3K4me3 signal in COMPASS 

mutants 

The H3K4me3 ChIP-seq data (provided by Dr Ron Chen) for C. elegans mixed embryo, from 

wild-type(N2), set-2(bn129) and cfp-1(tm6369) mutants, were given in a bigwig file format 

(linear normalized to input and aligned to the ce10 reference genome with 1bp bin size). set-

2(bn129) and cfp-1(tm6369) bigwig tracks were subtracted from wild-type(N2) track, to obtain 

tracks showing the differential H3K4me3 level. Each of the resulting track was then 

separated into two tracks according to the sign of the numbers. The track consisting of 

negative numbers denote an increase in H3K4me3 levels, while the track consisting of 

positive numbers denote a decrease in H3K4me3 levels. For further analysis, the negative 

values of the track denoting increased H3K4me3 were converted to positive values. Next, 

MACS2 (Zhang, et al., 2008) peak calling with the p-value cutoff of 0.0001 was done on each 

of the tracks to identify regions of significant H3K4me3 changes. In order to identify which 

genes show significant H3K4me3 changes, the region of significant H3K4me3 changes 

found through MACS2 peak calling were intersected with the promoter region of all protein-

coding genes. The promoter region was defined as the transcript start site (taken from 

Ensembl BioMart (Ensembl, 2019) for WBcel215)  500 bp. Any number of bp overlap was 

deemed sufficient to assign a peak-call region with a gene. 

2.9.2. Hypergeometric testing 

For comparison between two gene lists, the hypergeometric distribution test was done in R 

using the phyper() 1  function from the stats 2  package (R Core Team, 2014), with 

lower.tail set to FALSE. For comparison and visualization of multiple gene lists and 

 
1 Code text are written in the monospaced font Courier New 
2 Software packages for R are italicized 
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their overlaps, the supertest() function from the SuperExactTest package (version 1.0.7) 

(Wang, et al., 2015) was used. 

2.9.3. Average H3K4me3 signal change around TSS 

(SeqPlot) 

The visualization of the average H3K4me3 level change was visualized using SeqPlot 

(Stempor & Ahringer, 2016). The tracks used were the H3K4me3 enriched and depleted for 

set-2(bn129) and cfp-1(tm6369). The features dataset was set to .bed file of all C. elegans 

(WBcel215) protein-coding TSS extracted from Ensembl BioMart (Ensembl, 2019). The type 

of plot was set to “point feature”, and the plotting distance was set to 1000 bp up- and 

downstream. 

2.9.4. Gene list analysis 

List of genes that see an enrichment or depletion in H3K4me3 in the COMPASS mutants 

were analysed using various web-based software. Protein-protein interaction network was 

generated using StringDB (Szklarczyk, et al., 2019) and gene set enrichment analysis was 

done using ShinyGO (Ge & Jung, 2018) and g:Profiler (Raimand, et al., 2007). 

2.9.5. Motif discovery 

The de novo motif discovery software DREME from the MEME suite (Bailey, 2011) and 

BAMM motif (Siebert & Söding, 2016) were used to identify potential enriched motifs. In 

both cases, the input sequences were the promoter regions (500 bp upstream and 

downstream of the TSS) of the genes with changes (enriched or depleted) in H3K4me3 levels 

in the COMPASS mutants. The sequences were extracted from the ce10 reference genome 

using the BEDTools getfasta command (Quinlan & Hall, 2010) and providing the .bed 

file containing the target promoter regions. Default options were used, except for 

BAMMmotif, where the JASPAR2018 Motif Database was chosen.  
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Chapter 3: Bioinformatic analysis of H3K4me3 

levels in COMPASS mutants 

3.1. Introduction 

Histone methylation is a highly conserved PTM of histone proteins that is implicated in 

chromatin packaging and transcription regulation. H3K4me3 is associated with both 

transcriptional activation and repression in a context-dependent manner (Howe, et al., 2017; 

Pokhrel, et al., 2019). Research on H3K4me3 has proven to be difficult because mutations 

in the core subunits of the COMPASS complex are often lethal in mammals (Bledau, et al., 

2014). On the other hand, C. elegans COMPASS loss-of-function mutants are still viable in 

the absence of some of its core subunits (Xiao, et al., 2011; Pokhrel, 2019), which makes it 

one of the few organisms suitable for studying H3K4me3 and COMPASS. C. elegans has two 

histone methyltransferases that methylate H3K4: SET-2 and SET-16. SET-2 is the main 

methyltransferase of the COMPASS complex, while SET-16 is the enzyme of the 

COMPASS-like complex that only affects a small subset of genes (Xiao, et al., 2011). In C. 

elegans, mutation in set-2 and cfp-1 (an important subunit) causes global reduction in H3K4me3 

levels (Pokhrel, et al., 2019). 

Here I used a bioinformatics approach to investigate the pattern of H3K4me3 signal change 

in set-2(bn129) and cfp-1(tm6369) mutants around gene promoters, to identify potential 

characteristics that determine if a gene is a target for COMPASS-dependent H3K4 

trimethylation. The data used in this chapter was contributed by Dr Ron Chen. 

3.2. set-2(bn129) and cfp-1(tm6369) mutants have 

reduced H3K4me3 levels 

The H3K4me3 ChIP-seq data analysed here were provided by Dr Ron Chen. In total, three 

ChIP-seq datasets for C. elegans mixed embryo, one each from wild-type(N2), set-2(bn129) and 

cfp-1(tm6369) mutants (using ab8580 anti.histone H3K4me3 antibody (abcam)), were given 

in a bigwig file format (linear normalized to input and aligned to the ce10 reference genome 

with 1bp bin size). The files were processed by subtracting the control track (wild-type) from 

the treatment tracks (set-2(bn129) and cfp-1(tm6369) mutants), to generate a track of H3K4me3 
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increase and decrease. The file was then separated by positive and negative values to generate 

H3K4me3 enriched and H3K4me3 depleted files, respectively, for each mutant (Figure 3.1). 

MACS2 peak calling (Zhang, et al., 2008) was done on the depleted and enriched H3K4me3 

files with a p-value cutoff of 1E-04 to identify regions of significant H3K4me3 changes. By 

intersecting the peaks identified with MACS2 and the gene TSS/promoter region (which was 

defined as 500bp upstream and downstream of the transcript start site), the genes affected 

significantly by dysfunctional COMPASS complex were found. The number of genes with 

increased and decreased H3K4me3 levels is shown below (Figure 3.2a). 

 

Figure 3.1 Section of COMPASS mutants H3K4me3 ChIP-seq. IGV viewer image displaying a 5kb section in 

chromosome III, showing the ChIP-seq track of wild-type(N2), cfp-1(tm6369) and set-2(bn129) in blue. Red tracks 

show the H3K4me3 depletion and green tracks represent H3K4me3 enrichment for the mutants relative to wild-type. 

Both red and green tracks have a bin size of 50. The y-axis scale is shown on the top left corner of each track. 

Both set-2(bn129) and cfp-1(tm6369) mutants show a significant level of H3K4me3 depletion 

at the promoter region of nearly 1/4 of all protein-coding genes relative to wild-type. The 

number is nearly identical in both COMPASS mutants (4614 in cfp-1(tm6369) and 4612 set-

2(bn129)) with 95.75% of the genes overlapping between the two sets (4499 genes out of 

4614 and 4612 genes) (Figure 3.2b & c and Figure 3.4b). This result indicates that SET-2 

and CFP-1 target the same subset of genes. 

Enrichment of H3K4me3 in a small set of genes was also identified in both set-2(bn129) and 

cfp-1(tm6369) mutants. For set-2(bn129), 374 genes show an enrichment, while in cfp-1(tm6369) 

the number is 233. Within these two subsets, a very significant number of genes (179) is 

shared among them (Figure 3.2c). To investigate how the signal of the enriched and 
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depleted genes changes, a plot was generated using SeqPlot (Stempor & Ahringer, 2016), that 

shows the average H3K4me3 signal change for each set at each position relative to the TSS 

(Figure 3.3). (Chen, et al., 2014) 

 

 

 

Figure 3.2 ChIP-seq results comparing the H3K4me3 enriched and depleted genes in the COMPASS mutants. a) Table 

showing the number of protein-coding genes with either enrichment or depletion of H3K4me3 in set-2(bn129) or cfp-

1(tm6369) mutants. Numbers in brackets show the percentage of the total number of protein-coding genes. b) Venn 

Diagram visualizing the shared genes among each of the groups from a). c) Bar Graph showing the hypergeometric 

test for each combination of groups (indicated by the green circles). The numbers on the bottom right side show the 

number of genes in each group. The number above each column shows the number of shared genes between the 

compared groups. The bar fill colours indicate the p-value according to the legend on the top right. The higher the 

number (more red) the lower the p-value (limited to 1x10-320). 

The extent to which the H3K4 trimethylation modification is lost is much greater compared 

to how much the H3K4me3 enriched genes gain this modification (Figure 3.3). The “shape” 

of the lost modification correlates with the “double-peak shape” previously observed by 

Chen et al. (2014). This double-peak shape is not exclusive to C. elegans ChIP-seq and is also 

found in other organisms such as humans and S. cerevisiae. The smaller upstream peak is 

thought to be due to closely spaced divergent transcription of both coding and non-coding 

DNA. A nucleosome-depleted region separates the two peaks (Howe, et al., 2017). Similarly, 

 cfp-1(tm6369) set-2(bn129) 

H3K4me3 enriched genes 233 (1.1%) 374 (1.9%) 

H3K4me3 depleted genes 4614 (23%) 4612 (23%) 

b) 

c) 

a) 
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other histone modifications of active transcription such as H3K9ac (Mosesson, et al., 2014) 

and H3K27ac (Han, et al., 2019) also show this shape. The H3K4me3 enrichment is relatively 

low and has a relatively large confidence interval. Due to the large number of genes enriched 

with H3K4me3 overlapping between set-2(bn129) and cfp-1(tm6369) mutants (Figure 3.2c), 

it is unlikely that the hits are random (but could be due to systematic effects).  

 

Figure 3.3 Average change in H3K4me3 around the TSS in the COMPASS mutants. SeqPlot diagram showing a 2kb 

window around the TSS of the respective gene sets. The red and blue lines show how much H3K4me3 signal is lost 

around the TSS region, while the yellow and green lines show how much H3K4me3 signal is gained in the cfp-

1(tm6369) and set-2(bn129) mutants respectively compared to wild-type(N2). The dashed line denotes the mean, the 

dark area is the standard error, and the light area indicates a 95% confidence interval. 

3.3. Loss of H3K4me3 signal is associated with 

housekeeping genes 

With the Loss-of-function of SET-2 and CFP-1, a global loss of H3K4me3 is expected as 

these two genes are key subunits of the COMPASS complex. This is reflected in the ChIP-

seq data presented above as well as the published western blot (Pokhrel, et al., 2019). 4499 

genes were found to lose the H3K4me3 modification around their TSS region in both set-

2(bn129) and cfp-1(tm6369) mutants (Figure 3.2b & c and Figure 3.4b). A gene ontology 

(GO) term analysis on all the shared genes reveals that these are predominantly genes 

required for maintenance of basic cellular functions (housekeeping genes) (Figure 3.4a), 

such as the actin genes (act-1, -2, -3, -4), the RHO GTPase cdc-42, the RNA polymerase II 

subunit ama-1 and the Acyl-CoA transporter pmp-3. 
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Enrichment FDR Genes in list Total genes Functional Category 

7.30E-223 1884 4707 Cellular metabolic process 

1.20E-200 1218 2575 Cellular nitrogen compound metabolic process 

1.60E-197 1775 4495 Nitrogen compound metabolic process 

1.00E-193 1855 4819 Primary metabolic process 

2.60E-182 1003 2008 Cellular component organization or biogenesis 

5.70E-174 1635 4165 Macromolecule metabolic process 

8.40E-158 970 2032 Gene expression 

3.40E-150 903 1867 Cellular component organization 

1.20E-149 1033 2276 Heterocycle metabolic process 

4.40E-149 1014 2219 Nucleobase-containing compound metabolic process 

1.80E-148 1031 2277 Cellular aromatic compound metabolic process 

2.70E-145 1039 2322 Organic cyclic compound metabolic process 

5.30E-137 660 1220 Organelle organization 

1.60E-136 1322 3339 Cellular macromolecule metabolic process 

3.40E-130 874 1888 Nucleic acid metabolic process 

3.10E-104 434 738 Cellular localization 

3.40E-104 725 1575 Multicellular organism development 

1.90E-103 498 912 Cellular component biogenesis 

 

  

Figure 3.4 Gene set enrichment analysis H3K4me3 enriched genes. Analysis of the shared genes in the H3K4me3 

enriched set between set-2(bn129) and cfp-1(tm6369) mutants and the sets of genes exclusively found in each 

mutant. a) ShinyGO (Ge & Jung, 2018) GO term analysis of the 4499 shared genes. b) Venn Diagram showing the 

overlap between H3K4me3 depleted genes in set-2(bn129) and cfp-1(tm6369) mutants. c & d) Protein-Protein 

interaction analysis using STRING (Szklarczyk, et al., 2019) on c) cfp-1(tm6369) exclusive and d) set-2(bn129) exclusive 

genes. Only connected nodes are shown. 

a) 

d) 

b) 

c) 
  

H3K4me3 depleted genes exclusive 
in cfp-1(tm6369) 

H3K4me3 depleted genes exclusive 
in set-2(bn129) 
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GO term analysis on the 113 and 115 protein-coding genes with significant H3K4me3 

depletion found exclusively in set-2(bn129) and cfp-1(tm6369) mutants respectively (Figure 

3.4b), found limited number enriched GO terms. For the 113 genes exclusive to set-2(bn129), 

ShinyGO identified enrichment in the terms ‘lipopolysaccharide metabolic process’ and 

’lipopolysaccharide biosynthetic process’. The 115 cfp-1(tm6369) exclusive genes only showed 

enrichment in the ‘Sex determination’ GO term identified by g:Profiler. Protein-Protein 

interaction analysis revealed limited interaction in both of these sets (Figure 3.4c & d). 

3.4. Gain of H3K4me3 signal is associated with 

developmental and chromatin genes 

A small number of genes had an increased level of H3K4me3 in the set-2(bn129) or cfp-

1(tm6369) mutants compared to wild-type (Figure 3.2). set-2(bn129) had 374 genes with 

enriched H3K4me3 while cfp-1(tm6369) had 233 genes. Out of these two sets, 179 were 

shared between the two mutants (Figure 3.2 and Figure 3.5a). GO term analysis identified 

that these 179 genes were enriched in chromatin activity and DNA binding processes 

(Figure 3.5b). Protein-protein interaction analysis further identified a large cluster of histone 

proteins that interact with each other (Figure 3.5c). 

The 195 H3K4me3 enriched genes unique to set-2(bn129) mutants show mainly 

developmental related GO terms (Appendix 1a). The 54 H3K4me3 enriched genes specific 

to cfp-1(tm6369) on the other hand, only identified three significant GO terms using 

Wormbase Gene Ontology Enrichment Analysis. These terms are: ‘development of primary 

sexual characteristics’, ‘reproductive development’ and ‘protein heterodimerization’ 

(Appendix 1b). 
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Figure 3.5 Gene Ontology analysis and protein-protein network. a) Venn diagram of genes with H3K4me3 enrichment 

in set-2(bn129) and cfp-1(tm6369) mutants. b) Results from the g:Profiler GO term enrichment analysis on the 179 

shared genes between set-2(bn129) and cfp-1(tm6369) genes that have H3K4me3 enrichment. Only the GO:Biological 

Processes Terms are shown. ShinyGO did not found significant term enrichment. c) STRING protein-protein 

interaction network of the 179 shared genes. 

c) 

a) 

b) 
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3.5. Motif discovery and nucleotide frequency 

analysis 

Following the identification that changes in H3K4me3 levels were associated with certain 

groups of genes, I wondered if there were specific DNA sequence motifs on which the 

COMPASS complex orientates itself to determine which H3K4 to methylate. The de novo 

motif discovery software DREME (Bailey, 2011) and BAMM motif (Siebert & Söding, 2016) 

were used to identify potential enriched motifs. The results for the 4499 genes depleted with 

H3K4me3 in both set-2(bn129) and cfp-1(tm6369) are shown in Figure 3.6. 

 

 

Figure 3.6 de novo motif discovery of the 4499 genes depleted with H3K4me3 in both COMPASS mutants. a) Results 

from DREME showing the top 10 motifs with the lowest E-value. b) Results from BAMM motif. 

a) 

b) 
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The results from both software identified similar motifs. The motif with the lowest E-value 

and highest occurrence is CTGAAA and its reverse complement TTTCAG. The TTTCAG 

motif is the splicing motif for Spliced Leader 1 (SL1) of C. elegans that is responsible for trans-

splicing of more than half of the pre-mRNAs (Blumenthal, 2012; Saito, et al., 2013). Next, I 

asked how much this splicing motif was enriched in those 4499 genes compared to all C. 

elegans genes and the set of genes containing all but the 4499 genes (complement set). The 

SeqPlot plot showed that the motif occurrence in the H3K4me3 depleted genes peaked at 

around 0.53 times per gene per 200bp window, while for the complement set this number 

was at around 0.39. For all protein-coding genes, the motif occurred 0.42 times at the TSS 

(Figure 3.7a). This means that the splicing motif is 1.36-fold enriched in the 4499 H3K4me3 

depleted genes compared to its complement set. 

An interesting core promoter motif called T-block, discovered by the Yanai lab, is 

characterized by three to five consecutive thymine nucleotides. The frequency of this motif 

is correlated with expression levels. Genes with six or more T-blocks are up to five times 

higher expressed than genes with three or fewer T-blocks (Grishkevich, et al., 2011). Such 

T-blocks were identified by both motif discovery software (last entry in both results table in 

Figure 3.6). Grishkevich, et al. (2011) further observed that T-blocks frequently occur with 

SL1 as a supra-motif, but are strongly depleted of the TATA-box motif (Grishkevich, et al., 

2011). My data supports their observation as both SL1 and T-blocks were identified by both 

software, but not the TATA-box. Additionally, the link between T-blocks and active gene 

expression also correlates with this set of 4499 H3K4me3 depleted genes being constitutively 

active genes. 

Apart from de novo motif discovery, there could be a general over or underrepresentation of 

specific nucleotides at particular regions of the promoter, which makes the H3K4me3 

depleted genes stand out. The average nucleotide percentage at each base upstream and 

downstream of the TSS were plotted and compared (Figure 3.7b-j). The difference in the 

average nucleotide composition between the H3K4me3 depleted genes and its complement 

set is subtle. The notably different characteristic is that the 4499 H3K4me3 depleted genes 

have a larger difference between adenine and thymine density (stronger AT skew) just 

upstream of the TSS and there was a strong drop in thymine density just after the TSS (even 

lower than adenine). At the same time, the guanine and cytosine percentage are a little 

elevated compared to the complement set and all protein-coding genes (Figure 3.7b 

compared to c & d). The TTTCAG motif is more pronounced in the 4499 H3K4me3 

depleted set (Figure 3.7e & h) compared to the other two sets (Figure 3.7f, g, i & j). 
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Figure 3.7 Plots of sequence motif occurrence and nucleotide frequency upstream and downstream of TSS. a) SeqPlot 

graph showing the average number of occurrences of the splicing motif TTTCAG in a 200bp sliding window 1.5kb 

upstream and downstream of the TSS. The red line represents the 4499 H3K4me3 depleted genes. The green line 

represents all C. elegans protein-coding genes and the blue line is the complement set of genes that includes all 

protein-coding genes, except the 4499 H3K4me3 depleted genes. b) - g) Graphs showing the nucleotide frequency at 

each position around the TSS. The TSS is located at the centre (position 500). b) & e) 4499 H3K4me3 depleted genes. 

c) & f) complement set. d) & g) All C. elegans protein-coding genes. h) – j) Sequence logo of 10bp upstream and 

downstream of TSS. h) 4499 H3K4me3 depleted genes. i) complement set. j) All C. elegans protein-coding genes.  

a) 

b) c) d) 

e) f) g) 

h) i) j) 
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The same analysis was conducted on the 179 H3K4me3 enriched genes in set-2(bn129) and 

cfp-1(tm6369). The motifs found by DREME and BAMM motif have a much lower E-value 

and occurrence compared to the motifs found with the H3K4me3 depleted genes. The main 

finding is the inverse repeat TACNGTA (Figure 3.8a & b 2nd from the top). This motif is 

also enriched in the H3K4me3 depleted set (Figure 3.6a 6th place). A motif search using 

Tomtom (Gupta, et al., 2007) was not able to find a known motif. Since SeqPlot does not 

accept ambiguous nucleotide code, I used FIMO (Grant, et al., 2011) and CentriMO (Bailey 

& Machanick, 2012) to identify the location at which the motif could be enriched relative to 

the TSS. However, none of the software were able to identify a location with enrichment. A 

nucleotide frequency plot was also generated for these sets of genes. However, no obvious 

pattern or motif was identified (Figure 3.8c-e). 

  



62 
  

 

    

Figure 3.8 Sequence analysis around the TSS of the 179 H3K4me3 enriched genes in set-2(bn129) and cfp-1(tm6369). 

a) DREME output of the 179 sequences. b) BAMM motif output. c) nucleotide frequency plot showing the average 

nucleotide at each position 500bp upstream and downstream of the TSS. d) A zoomed-in view of the nucleotide 

frequency plot of a 20bp window (10bp upstream and downstream of TSS). e) Sequence motif 10bp up and 

downstream of the TSS (TSS is at position 11).  

a) 

b) 

c) d) e) 
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3.6. Discussion 

This chapter analysed the change in H3K4me3 levels around the TSS in set-2(bn129) and cfp-

1(tm6369) mutants. The mutants showed a reduction of H3K4me3 in nearly 1/4 of all the 

protein-coding genes, while only a small set of genes have increased H3K4me3 levels (379 

genes and 233 genes respectively). The extent of the H3K4me3 loss is much stronger than 

the H3K4me3 gain (Figure 3.3), supporting previous studies indicating a net loss of global 

H3K4me3 (Pokhrel, et al., 2019). The genes corresponding to loss of H3K4me3 are 

housekeeping genes, while the genes that saw a gain in H3K4me3 were associated with 

chromatin activities and development. 

It is not surprising that genes with loss of H3K4me3 are housekeeping genes since 

housekeeping genes are constitutively active and are thus constantly transcribing, supporting 

the idea that H3K4me3 are markers of constitutively active genes (Barski, et al., 2007). 

Surprisingly, some genes have an increase in H3K4me3 levels in the COMPASS mutants. 

These genes are associated with developmental functions which are facultative genes (only 

transcribed when needed) and represent the “opposite” type to constitutive genes. On the 

other hand, the enrichment of many histone genes is very interesting. An explanation for this 

observation might be that due to the lack of H3K4 trimethylation post-translational 

modification, histone crosstalk is disrupted, which signals the cell that there is a problem 

with histone homeostasis, thus increasing the production of new histones. This increased 

histone transcription is then marked by H3K4me3 marks. The question is then, which 

protein is doing the methylation after the COMPASS-complex is non-functional. It could be 

SET-16/COMPASS, which has been observed to methylate a small subgroup of genes (Xiao, 

et al., 2011) or there could be another yet undiscovered methyltransferase in C. elegans. 

The de novo motif discovery and sequence analysis aimed to identify characteristics in the 

DNA sequence that allowed them to be specifically targeted by the COMPASS complex. 

The most enriched motif for the 4499 H3K4me3 depleted genes is the SL1 splicing motif 

TTTCAG (Figure 3.6). Considering that more than half (~55%) of the genes in C. elegans 

are trans-spliced by SL1 (Saito, et al., 2013), this motif is expected to be found. However, 

when comparing the occurrence of this motif with the complement set (negative control) 

and all C. elegans genes (background control), it becomes apparent that the H3K4me3 

depleted genes are enriched in this motif (Figure 3.6). If we consider that the H3K4me3 

genes are constitutively active genes, this result indicates that constitutively active genes are 

enriched in SL1 trans-splicing. Currently, the function of trans-splicing is unknown, but it is 

hypothesized that it may play a role in translation initiation, as the motif is very close or 
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immediately adjacent to the start codon (Blumenthal, 2012) (Figure 3.6j). Proteins other 

than SL1 could use this motif as a binding target. Since the H3K4me3 levels of the 4499 

genes are COMPASS dependent genes, the COMPASS complex could be recruited by this 

motif directly or indirectly. Further support for this observation and hypothesis comes from 

the reduced occurrence of this motif at the complement set (Figure 3.7f & i) and the absence 

of it in the 179 H3K4me3 enriched genes, which are suggested to be facultative genes. 

Another characteristic identified in the H3K4me3 depleted gene set compared to the 

complement set (and the set of all protein-coding genes) is a larger AT skew just before the 

TSS and a drop in thymine frequency immediately after it (Figure 3.7b-d). While GC skew 

is believed to enhance R-loop formation (Section 1.3.1), not much is known about AT skew. 

Could this AT skew be an important feature for the H3K4me3 depleted gene set? More 

research would be required to answer this question. The reduction in thymine after the TSS 

is very interesting since the region is translated by the ribosome. How much this reduction 

in thymine frequency contribute to an amino acid preference/bias at the N-terminal and how 

this affects the protein is also a question that remains to be answered. I would hypothesize 

that in the case an amino acid preference/bias exists, it would function as an N-terminal 

signal peptide sequence or determining the half-life of the protein (N-end rule) (Varshavsky, 

1997). A decreasing thymine frequency could see an increase in amino acids with codons low 

in uracils, such as lysine and arginine, while amino acids with uracil rich codons such as 

phenylalanine would decrease (Figure 3.9). Research on N-degrons (N-terminal residues 

that signal protein for degradation) identified three N-degron pathways: Pro/N-degron 

pathway, Arg/N-degron pathway and Ac/N-degron pathway. The Pro/N-pathways require 

proline to be the 2nd or 3rd amino acid to be recognized for degradation. The other two 

pathways recognize a large number of amino acids. However, Ac/N-degron pathway mainly 

acts on alanine, threonine, serine and methionine (Varshavsky, 2019). All pathways except 

the primary Arg/N-degron pathway, tend to require amino acids with low thymine frequency 

in their codons (except methionine and serine). This suggests that the 4499 H3K4me3 

depleted genes, which are constitutively active genes, tend to be targeted by all but the 

Arg/N-degron pathway, resulting in shorter protein half-life. This may perhaps counteract 

the high transcription/translation rate of the constitutively active gene, to correctly balance 

the concentration of the protein quickly according to the needs of the cells. 
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Figure 3.9 Average thymine frequency for each amino acid codon and the degradation pathway the amino acid is part 

of. The number of uracil in all codons of the same amino acid are added together and divided by the number of codons 

to obtain the average. The symbol colour above each bar indicates the N-degron pathway the amino acid is involved 

in. Black: primary Arg/N-degron pathway. Red: secondary Arg/N-degron pathway. Purple: tertiary Arg/N-degron 

pathway. Green: Pro/N-degron pathway. Blue: Ac/N-degron pathway. Circle shapes indicate that the amino acid is 

rarely used in the pathway. Certain amino acids are used by multiple pathways. 
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Chapter 4: R-loop levels in COMPASS 

mutants 

4.1. Introduction 

This section investigates the relationship between the epigenetic marker H3K4me3, which 

was the focus in the previous chapter, and R-loops. The reason why R-loop is a suitable 

subject to associate with H3K4me3 is that at the genomic level, the location where H3K4me3 

is found (at the TSS of active genes) coincide with the location of R-loop signal enrichment 

(Ginno, et al., 2012). This correlation prompted the investigation to identify the relationship 

between R-loops and H3K4me3. 

Here I am optimizing a method to quantify the level of R-loops in C. elegans. Using this 

optimised method, I then compare the R-loop levels between wild-type C. elegans and 

COMPASS mutants to identify how the deficiency in the epigenetic marker H3K4me3 (or 

the absence of the COMPASS subunit) affect R-loop levels. Finally, I screen for helicases 

that affect R-loop levels in a COMPASS dependent or independent manner. 

4.2. Characterisation of R-loops in the COMPASS 

mutants 

Research on R-loop has mainly focused on yeast and human cells, but not so much on the 

model organism C. elegans. Hence, to use C. elegans, methodologies need to be adjusted and 

optimised to reliably measure R-loop levels that correctly reflect the underlying biology. Since 

this project aims to identify factors that affect the accumulation of R-loops, a quantitative 

method was required to quantify R-loop levels and compare between different samples. A 

straightforward method for this is the use of dot or slot blots (Vanoosthuyse, 2018). While 

this technique is relatively basic, its use with R-loops and especially with C. elegans nucleic 

acid has not been described in much detail. The standard dot blot method used for single-

stranded DNA or RNA is not optimal for use in detecting R-loops since the main feature of 

R-loop is the association of DNA with RNA and thus cannot be denatured. In this section, 

the optimisation of the R-loop dot blot is described, and the reasoning behind various 
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changes is explained. Furthermore, the R-loop levels of C. elegans wild-type and COMPASS 

mutants are compared.  

4.2.1. Dot/Slot blot method optimisation 

The dot blot can be considered as a reduced version of other widely used blotting methods 

such as the western or southern blot. The sample of interest (protein or nucleic acid) is 

directly spotted on a membrane (e.g. nitrocellulose or nylon), instead of separating the sample 

first based on size and weight via electrophoresis and then transferred to a membrane. The 

subsequent steps of the dot blot are the same as other blotting methods. The samples are 

visualised via various stains (e.g. silver stain) or labels (e.g. antibodies) to identify the presence 

or the quantity of the target of interest. The dot blot does not require any specialised 

equipment, and the samples can be applied directly to the membrane by hand (creating 

circular blots). The slot blot uses an apparatus to make the sample loading more consistent 

and shaping the loading area into a rectangular slot. For R-loop dot blot, the conventional 

procedure starts with the extraction and purification of the gDNA sample of interest, 

followed by quantification of the sample. Then a known amount of the gDNA is directly 

spotted onto a membrane (and fixed). Afterwards, the membrane is blocked with a blocking 

solution and washed with a solution containing the primary antibody. Here the primary 

antibody is S9.6 as it is the only currently available antibody that specifically targets and binds 

to DNA:RNA hybrids. The antibodies that are unable to attach to the sample on the 

membrane are washed away, and the secondary antibody is applied that binds to the primary 

antibody to amplify the signal during visualisation. 

Initially, the dot blot setup was done by spotting a known amount of genetic material onto a 

nitrocellulose membrane, leaving it to air dry, followed by blocking with 5% milk in tris-

buffered saline (TBS) (blocking solution) overnight at 4°C. The membrane was then 

incubated with the S9.6 antibody for 4 hours at room temperature and washed three times 

with tris-buffered saline + Tween 20 (TBST) for 5 minutes each. Incubation with secondary 

antibody (2 μL of anti-mouse IgG antibody in 10 mL of blocking solution) was done for 2 

hours at room temperature followed by a final 10 minute TBST wash. The membrane was 

then developed on an X-ray film using electrochemical luminescence (ECL). The resulting 

film of the pilot experiment is shown below (Figure 4.1). 
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Figure 4.1 Dot blot of the R-loop pilot experiment. Genetic samples used in this blot were collected from adult wild-

type(N2), cfp-1(tm6369) and set-2(bn129) worms fed on the standard laboratory E. coli strain OP50. The quantity of 

gDNA spotted is shown on the left. The R-loop signal is not evenly distributed within the “dot” but concentrated as 

rings for the samples with 100 ng and 40 ng of gDNA. This effect is due to the coffee ring effect where the surface 

flow concentrates most of the nucleic acid at the edge of the sample droplet.  

The pilot dot blot shows that wild-type (N2) has a strong R-loop signal and set-2(bn129) 

shows a very weak R-loop signal, while cfp-1(tm6369) has a medium signal strength in between 

wild-type and set-2(bn129) at the 400 ng level (Figure 4.1). This indicates that R-loop levels 

are reduced in worms with a reduced H3K4me3 level. A coffee ring effect can be seen in 

this blot, where most of the signal is concentrated on a small area in the shape of a ring, 

instead of being evenly distributed. Such an effect happens when the suspended particles 

(e.g. nucleic acids) at the surface flows from an area of high surface tension (top of the drop) 

to an area of low surface tension (edge of the drop), known as the Marangoni effect. This 

effect happens in any non-equilibrium system with a surface tension gradient (Yunker, et al., 

2011; Seo, et al., 2017). 

In order to avoid the coffee ring effect, a slot blot machine was used. This machine pulls the 

liquid samples in the wells through the membrane by force using a vacuum pump, reducing 

the surface tension gradient and thus minimising the Marangoni effect. The setup and use of 

the machine are described in section 2.8. The resulting dot blot of the pilot experiment using 

a slot blot apparatus is shown in Figure 4.2a. 

Although the concentration (and hence the quantity) of the sample gDNA was carefully 

measured and pipetted, it was not a guarantee that the intended quantity of gDNA pipetted 

reflects the actual quantity of gDNA loaded onto the membrane. To account for loading 

uncertainties, an additional loading control was included, which visualises the actual quantity 

of gDNA on the membrane. After the membrane has been developed and results captured 

on the X-ray film, the membrane was stripped by submerging it in mild stripping buffer (5 g 

400 ng 

100 ng 

40 ng 
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glycerin, 10 g SDS (1%), 10 mL Tween 20 in 1 L of deionized water and adjusted to pH 2.2) 

at room temperature for 10 minutes and again for 30 minutes, followed by two 10 minutes 

TBS wash and two 5 minutes TBST wash. The membrane was then blocked for 30 minutes 

with blocking solution and incubated directly with secondary antibody for 2 hours. A 10 

minute wash with TBST followed by developing the film with ECL was then able to indicate 

whether the stripping was successful or not. Successfully stripped membranes have very 

weak or no signal when developed with no or only secondary antibody. After a successful 

stripping, the membrane was incubated with anti-dsDNA primary antibody (1:180 dilution 

in blocking solution) for 4 hours, which only targets double-stranded DNA. Afterwards, the 

membrane was washed three times with TBST for 5 minutes each and then incubated with 

the secondary antibody (anti-mouse antibody) for 1 hour. Washing and developing was done 

the same as previously. The resulting loading control (Figure 4.2b) revealed further 

problems with the current method design. Comparison of the two images in Figure 4.2 

shows that some of the nucleic acids on the membrane were lost (probably as the result of 

the numerous washing steps). This was because a uniform rectangular slot-shaped pattern 

was expected as the gDNA is evenly distributed along with the slot. However, Figure 4.2b 

shows that “chunks” of signals were lost especially in the 200 ng and 400 ng samples only 

leaving parts of the original rectangular slot-shaped signal (Figure 4.2a). 

This loss of signal might be due to the nucleic acid not being adequately fixed on the 

membrane. The DNA in such a small spot might be too concentrated and could stack on 

top of each other, making them susceptible to be washed away. According to the 

manufacturer of the nitrocellulose membrane (Amersham Protran), fixation of nucleic 

acids can be done by UV-crosslinking or baking the membrane in a vacuum oven. However, 

UV-crosslinking could damage double-stranded nucleic acids (Pall, et al., 2007), and in the 

Leeds laboratory, there is no access to a vacuum oven to bake the membrane (a regular oven 

cannot be used as nitrocellulose membrane is highly flammable). 
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Figure 4.2 R-loop pilot experiment using the slot blot apparatus and anti-dsDNA loading control procedure. a) slot 

blot using the S9.6 primary antibody. b) loading control using the anti-dsDNA primary antibody, after stripping the 

S9.6 antibody from the membrane a). The sample nucleic acid was extracted from young adult wild-type(N2), cfp-

1(tm6369) and set-2(bn129) worms fed on OP50. RNase H treated samples were used as a control to show that the 

signals indeed represent R-loops, as RNase H digests the RNA portion of the DNA:RNA hybrid. Mouse secondary 

antibody was used for both blots. 

Consequently, the nitrocellulose membrane was replaced with a nylon membrane, which can 

be baked in a regular oven. Although the nylon membrane manufacturer suggests the use of 

0.4M NaOH for nucleic acid dot blot, this was replaced by deionized water, as NaOH 

denatures double-stranded nucleic acids (Wang, et al., 2014), which is standard procedure for 

normal DNA blots, but not viable for R-loop blots. A slot blot using nylon membrane can 

be seen in Figure 4.3a. The result shows a similar trend of a weak R-loop in set-2(bn129) 

mutants. cfp-1(tm6369) mutants, on the other hand, has a signal strength comparable to wild-

type. 

The nucleic acid loading control method was also changed due to the time-consuming 

methodology of stripping the S9.6 primary antibody and reprobing with the anti-dsDNA 

antibody. The DNA loading control was visualized using methylene blue staining (as 

described in Section 2.8.3.1). Methylene blue is positively charged and binds to the 

negatively charged phosphate backbone of the nucleic acid (Vardevanyan, et al., 2013). It is 

a blue dye that attaches to DNA, and a higher concentration of DNA is visualized as darker 

blue hue under visible light (Figure 4.3b). However, once stained with methylene blue, the 

membrane cannot be reused. 

Finally, owing to the difficulty of obtaining a suitable X-ray image, the imaging system 

G:BOX (Syngene) was used. This system has the advantage to automatically determine the 

800 ng 

400 ng 

200 ng 

RNase H RNase H 
S9.6 Anti-dsDNA a) b) 
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time required to capture the signal and displays an optimum image based on the strongest 

signal, reducing the amount of time and film needed (Figure 4.4). 

 

Figure 4.3 Representative image of the optimized slot blot method and methylene blue loading control. a) slot blot 

using the S9.6 primary antibody. b) loading control of a) using methylene blue staining. The amount of gDNA used is 

shown at the top. RNase H treated samples serve as a negative control. The sample nucleic acid was extracted from 

wild-type(N2), cfp-1(tm6369) and set-2(bn129) late embryo. The mothers were fed on OP50. The details on late 

embryo sample collection can be found in Section 4.2.3, and the staging of the late embryo can be found in Figure 

4.6 replicate 1. The methylene blue staining has a larger linear range of detection, making a comparison between 

larger differences easier. The ECL used in the slot blot has a smaller range, allowing for better differentiation of target 

abundance within a narrow range.  

 

Figure 4.4 Representative images showing the output of the G:BOX. The slot blot results shown here are part of the 

helicase screen experiment covered in Section 4.4.3. a) image shows a classical view of the R-loop slot blot generated 

by G:BOX. b) image shows the “quantification” of the slot blot by G:BOX, with the height of peak correlating with the 

signal intensity. The gDNA samples were collected from L1 worms hatched in M9 buffer. The mothers were fed with 

various RNAi bacteria. N2 and set-2(bn129) worms were fed RNAi control bacteria (EV). 400ng of DNA was loaded in 

each well. Stars indicate biological replicates. A more detailed version can be found in Appendix 21. 
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4.2.2. The R-loop signal from adult worms show large 

variation 

Using the optimized R-loop slot blot method (from the previous section), I wanted to 

measure the R-loop levels in young adult C. elegans worms. Specifically, I wanted to target co-

transcriptional R-loops and avoid non-co-transcriptional R-loops. For this, young adult C. 

elegans were chosen, since they have a fixed number of somatic cells, which do not undergo 

replication. Due to the natural variation in developmental speed of individual worms, the 

developmental stage of a population consists of worms between the L4 and adult stage. In 

order to assess the stage of the collected worms, a small sample was stained with DAPI to 

identify the presence or absence of embryos. The target stage was between L4 and adult, 

where divisions are completed, and self-fertilization has just started. Optimally, animals 

would only carry a couple of embryos at most inside them. It is important to collect C. elegans 

in their early adulthood, as older adult animals can carry up to 15 embryos (Schafer, 2005), 

which would contaminate the sample with cells undergoing replication and thus potentially 

include R-loops formed as a result of DNA replication (transcription-independent R-loops). 

The timing for collecting the worms after spotting L1 onto NGM plate was around 60 hours 

for wild-type and 65 hours for COMPASS mutant worms. DAPI staining showed that the 

majority of worms started carrying embryos (Figure 4.5), but not nearly as much as the 

maximum of 15, indicating that the samples did not contain significant amount of replicating 

cells. 

 

Figure 4.5 Scoring of adult C. elegans developmental stage. DAPI staining of worms shows the proportion of 

nematodes carrying embryos, indicating that reproduction has started. a) Proportion and the number of worms with 

and without embryos in N2, and cfp-1(tm6369) and set-2(bn129) mutants. b) representative image showing the DAPI 

staining of a young adult worm with embryos. 

a) b) Scoring of worms with and without embryos 
using DAPI staining 



73 
  

The R-loop dot blot with young adults gave varying results, making it difficult to reproduce 

robust data (see Appendix 2 for an example of inconsistent wild-type and set-2(bn129) result). 

One reason for this discrepancy could be attributed to bacterial accumulation in the gut and 

pharynx (Portal-Celhay, et al., 2012), that could contaminate the C. elegans nucleic acid 

sample. It has been shown that R-loops are also present in E. coli (Kogoma, 1997). 

Furthermore, it is well observed that bacterial gut accumulation can have a harmful effect on 

C. elegans, including OP50 bacteria accumulation (Garigan, et al., 2002), which in turn could 

result in excessive stress or increased transcription and thus elevated R-loop formation. 

While one possibility to account for this is to UV- or heat-kill bacteria, to prevent colony 

formation in the gut, arrested and dead OP50 will affect worms differently. For example, it 

has been shown that heat-killed OP50 has reduced nutrients, which would explain the 

favouritism of the nematode towards live OP50 (Qi, et al., 2017). Rather than experimenting 

with different food sources, I chose to extract the genetic sample from a different 

developmental stage, where the effect of the bacterial food source is minimized. The only 

developmental stage that fit the criteria is the time point when the nematode finishes 

embryonic development and before it requires bacterial food. The approach to collecting 

this stage is described in the following section (Section 4.2.3). 

4.2.3. Late embryo and L1 show reduced R-loop signal in 

set-2(bn129) mutants compared to wild-type worms 

In order to collect samples free of genetic material contamination originating from bacteria, 

I shifted focus to using progenies from bleach-synchronised animals. The bleaching protocol 

includes many washing steps that should remove any remaining bacterial contaminants, 

leaving embryos to develop in a “sterile” environment. The embryos were allowed to develop 

in M9 buffer, to either reach a developmental stage close enough to hatching (late embryo) 

or left to hatch overnight (L1). Embryos are collected 5.5-6 hours after bleaching, depending 

on the nematode strain. The developmental stage of the late embryo collection is 

summarized in Figure 4.6, and a representative slot blot is shown in Figure 4.3. Worms 

freshly hatched in M9 buffer find themselves in an environment devoid of food, which could 

lead to the L1 arrested (diapause) state. Worms in this state show various adaptations such 

as stress resistance, that allows L1 to survive in the absence of food for around 10 days in 

M9 buffer (Baugh, 2013). Alternatively, worms can develop into the Dauer stage at the end 

of L1 (and L2d) molting. This developmental program is mainly dependent on the 

population density of the worm but requires the presence of some scarcely available food 



74 
  

(Hu, 2007; Baugh, 2013). In this experimental setup, dauer formation was unlikely to occur 

because food sources were completely absent owing to the multiple washing steps, and the 

relatively short overnight hatching window (~16 hours) is not enough time for the worms 

to enter their first molting stage (~21 hours from embryo to L2d). 

The idea of using overnight hatched L1 worms instead of late embryos was considered as it 

is less labour-intensive and would be advantageous for large scale experiments (such as the 

helicase screening in Section 4.4.3). Furthermore, the stage of the worm will be more 

synchronized, as the worms are unable to develop past L1 stage overnight. However, the 

effect of overnight hatching on R-loop formation is unknown and need to be tested first. 

The R-loop slot blot using genetic samples from overnight hatched L1 worms (Figure 4.7) 

showed a similar result as observed with the late embryos (Figure 4.3): The wild-type(N2) 

samples have strong R-loop signal, while set-2(bn129) samples show a relatively weak R-loop 

signal. The R-loop signal from cfp-1(tm6369) is comparable in strength to that of wild-type. 

This indicates that overnight hatched L1 can be used as an alternative to late embryos for 

comparing the R-loop levels between wild-type(N2) worms and COMPASS mutants. 

 

Figure 4.6 Embryo developmental stage scoring. The developmental stages were scored 5.5 hours (for wild-type) and 

6 hours (COMPASS mutant) after bleach-synchronizing C. elegans. The numbers on the column are the number of 

animals scored. 2 biological replicates were done. The slot blot of Replicate 1 can be seen in Figure 4.3. 
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4.2.4. OP50 and EV diet results in the same R-loop pattern 

between wild-type and set-2(bn129) mutants 

In order to use the powerful RNAi tool (which is used for the helicase suppressor screen in 

Section 4.4.3), the effect of the RNAi bacteria on R-loop levels needs to be investigated 

first. Specifically, the effect of empty vector bacteria (HT115) food needs to be compared to 

OP50. While OP50 is the standard laboratory food strain, the empty vector bacteria is a more 

suitable control food in RNAi experiments, as it is a closer resemblance to the RNAi bacteria. 

The empty vector bacteria is a modified E. coli strain that carries an “empty” L4440 plasmid. 

This plasmid is modified and used to express the dsRNA of target genes and is the main 

feature of the RNAi bacteria.  

As R-loop levels naturally vary and dot/slot blot is not a highly sensitive method of 

quantification (for comparing small differences) (Vanoosthuyse, 2018), I focused on 

comparing the difference of R-loop signal strength between wild-type (control) and set-

2(bn129) mutants, as this difference was sufficiently large to be reliable (Figure 4.3). The cfp-

1(tm6369) mutants, on the other hand, were difficult to obtain consistent results. In addition, 

experimental difficulties (smaller brood size) and considerable variation in phenotypes (e.g. 

developmental speed) further argue against the use of the cfp-1(tm6369) mutant. Therefore, 

cfp-1(tm6369) mutants were not used in the helicase screen in sections 4.4.3. 

Figure 4.7 shows the R-loop levels of L1 worms whose mothers were fed on the empty 

vector bacteria (HT115) and OP50. For both bacterial food diet, a strong signal was observed 

in wild-type(N2) and a weak signal was found in the set-2(bn129) mutants, showing that the 

difference in R-loop accumulation between wild-type and set-2(bn129) mutant is conserved  

under empty vector bacteria (HT115) diet. This indicates that the empty vector bacteria 

(HT115) can be used for RNAi work on R-loop.  
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Figure 4.7 G:BOX image comparing the effect of different diets on the R-loop signal using hatched L1 worms. a) 

mothers were fed on OP50. b) mothers were fed on empty vector (HT115). In both cases, set-2(bn129) mutant has a 

much weaker R-loop signal compared to wild-type(N2). Yellow numbers show the signal quantification based on 

ImageJ. 

4.2.5. Discussion 

Initially, the plan is to use young adults, as these worms have finished development. The 

advantage of this is due to the unique feature of C. elegans to have a fixed number of somatic 

cells, which means that these cells do not undergo any more replication. R-loops found 

would be the result of transcription rather than replication (except the embryo and germ 

cells, which could be removed by using mutants that fail to develop germline such as glp 

mutants). However, the inconsistent result from using samples extracted from young adult 

worms, possibly due to bacterial accumulation inside the worm (Portal-Celhay, et al., 2012), 

prompted me to dismiss this developmental stage for further experiments. The DNA 

extraction from the adult worm would also extract DNA from residual bacteria inside the 

intestine, that could also contain R-loops. This would lead to the final DNA extract being a 

mix of C. elegans and E. coli DNA, which the S9.6 antibody cannot distinguish. The degree to 

which this affects the outcome depends on the extent of bacterial accumulation inside the 

worm during DNA extraction. Secondly, the formation of R-loop has been suggested to be 
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affected by stress (Lang, et al., 2017). Although OP50 is the standard laboratory food for the 

worms, it has been shown that OP50 might not be as optimal as initially thought. 

Accumulation of OP50 in C. elegans has a negative effect on nematode health (Garigan, et al., 

2002). One way to reduce the bacterial impact is to use dead bacteria that are unable to form 

colonies inside the worm. However, a diet of dead bacteria affects the worm's health 

differently, such as vitamin B2 deficiency (Qi, et al., 2017). Furthermore, dead bacteria still 

contains nucleic acid and how long this nucleic acid persists inside the intestine/worm before 

it is broken down is also unknown. The effect of a dead bacterial diet on R-loop formation 

would have required extensive investigation and did not fit into the scope of this PhD 

project.  

This limits the suitable sample collection from worms to developmental stages just before 

the worms come in contact with bacteria food. Embryos of worms that underwent the 

bleaching protocol (Section 2.1.7) can be kept in sterile M9 buffer while they undergo 

embryonic development until they hatch. Keeping these hatched worms for an extended 

period in the sterile and food-starved M9 buffer can arrest the worm's development (L1 

diapause), which leads to specific physiological and transcriptional adaptation, such as lower 

activity and increased stress resistance (Baugh, 2013). Therefore, the genetic material needs 

to be extracted from freshly hatched worms. Practically, the bleached embryos are left to 

develop for 5.5-6 hours or left overnight (16 hours). While starvation under the overnight 

hatching method was a concern, as L1 might have entered diapause, the R-loop signal pattern 

was similar to the samples from the late embryo where feeding has not even started (Figure 

4.7 and Figure 4.3), indicating that the overnight hatching method is viable. 

In this chapter, I have described an optimized method for the detection and comparison of 

R-loop levels in C. elegans using the slot blot method. This method is relatively straight 

forward and inexpensive; however, it does require a relatively large amount of DNA, 

requiring thousands of worms. Due to the natural variation in R-loop accumulation, this 

method is not suitable to distinguish small differences in R-loop levels. 

Since both H3K4me3 and R-loop accumulate at actively transcribed genes, I wanted to 

identify if this correlation has a causational link. In order to do this, I measured the R-loop 

level in two COMPASS mutants set-2(tm6369) and cfp-1(tm6369), which have drastically 

reduced H3K4me3 levels (Pokhrel, et al., 2019), using the optimized method described in 

this chapter. The results show that in the set-2(tm6369) mutants, there is a drastic reduction 

in R-loop level, supporting the idea that R-loop could be H3K4me3 dependent or at least 

dependent on SET-2. Results from cfp-1(tm6369) mutants are not yet conclusive (due to 

difficulty of reproducibility), which could be attributed to the large varying phenotype 
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observed in this mutant. They sometimes develop slower than set-2(tm6369) even though 

they were grown under the same condition. Other times they produced fewer progenies even 

though they are at a similar developmental stage to set-2(tm6369). This variation of cfp-

1(tm6369) mutants paired with the sensitivity of R-loop accumulation could be the reason 

that made the results unreliable. 

It is difficult to ascertain whether SET-2 or H3K4me3 affect R-loop levels. Unfortunately, 

the results using cfp-1(tm6369) mutants is inconclusive; otherwise, it would be very useful in 

determining if H3K4me3 is the main player the phenotype is SET-2 specific. Apart from cfp-

1(tm6369), other COMPASS complex mutants could be used, where a strong H3K4me3 

reduction has been observed in L1. 

SET-2 has an RNA recognition motif domain (Wormbase, 2019), which is absent in CFP-1. 

Potentially, SET-2 could bind to the nascent RNA via the RNA recognition motif domain 

and recruit other proteins that help to form or stabilize R-loops. Helicases could be potential 

targets proteins that affect R-loop formation or resolution. Recent research suggests that 

apart from the standard unwinding function of helicases, they can also have an 

annealing/rewinding function thereby forming double-stranded nucleic acids from two 

single strands (Wu, 2012; Manosas, et al., 2013). SET-2 binding to R-loop could prevent 

helicases from unwinding R-loops or could recruit helicases that help re-winding/forming 

R-loops. If SET-2 does not directly bind to R-loops, it might still influence R-loop levels by 

targeting proteins that are responsible for R-loop formation/resolution. SET-2 could 

methylate proteins directly responsible for R-loop formation or removal. Proteins that 

negatively affect R-loop levels may be deactivated by methylation from SET-2, while proteins 

that positively affect R-loops could be activated. Although SET-2 has only been identified 

as part of the COMPASS complex, it does not exclude SET-2 from forming different 

complexes or have independent function altogether. CFP-1, for example, is inferred to have 

COMPASS independent functions (Pokhrel, et al., 2019). In S. pombe, the homolog Set2 has 

been shown to associate with RNA Polymerase II by directly binding to its C-terminal 

domain and plays an essential role in transcription elongation (Li, et al., 2002; Kizer, et al., 

2005).  

If we suppose that H3K4me3 itself is directly responsible for R-loop levels, then we can 

hypothesize that H3K4me3 could recruit relevant proteins such as helicases to support R-

loop formation and accumulation. Another hypothesis could be that H3K4me3 promotes 

transcription, which then increases R-loop formation. However, current data suggest that 

H3K4me3 does not affect transcriptional activity much (Clouaire, et al., 2012). 
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4.3. Development of antibody-independent R-loop 

purification 

The R-loop detection method optimized in the previous section (Section 4.2) relies on the 

specificity of the S9.6 primary antibody to target R-loops. This antibody specifically binds to 

DNA:RNA hybrid and not double-stranded DNA and RNA and ribosomal RNA 

(Boguslawski, et al., 1986). It is currently the standard tool for R-loop research. Recent 

concerns have been put forward regarding the reliability of the S9.6 antibody for binding to 

DNA:RNA hybrids. It has been suggested that S9.6 affinity towards the hybrid varies with 

sequence (König, et al., 2017). Furthermore, S9.6 can recognize RNase III-sensitive dsRNA 

and bind to similar structures (e.g. hairpin RNA); however, this is only impactful in organisms 

producing significant dsRNA loads (Hartono, et al., 2018). A relatively new affinity reagent 

has been developed to act as an alternative to S9.6 antibody. The mutated human RNASEH1 

protein that lost its DNA:RNA specific endonuclease activity, but retains its binding 

competence. The advantage of RNase H compared to S9.6 is that it would reflect the biology 

more accurately, by binding to biological relevant DNA:RNA hybrids (Since RNase H is 

naturally produced in organisms). However, comparison of DRIP-seq (DNA:RNA 

immunoprecipitation) which uses the S9.6 antibody, with the technically equivalent DRIVE-

seq (DNA:RNA in vitro Enrichment) that utilizes this mutated RNASEH1, shows that the 

latter produces a weaker signal and was only able to identify a fraction of the genes compared 

to the former method (Ginno, et al., 2012; L. Chen, et al., 2017). 

Currently, R-loop research has a strong need for an alternative method of targeting (and 

purifying) R-loops. To this end, I propose a new method that does not rely on S9.6 antibody 

to ‘pull out’ R-loops. This chapter discusses the theoretical workings of the novel method 

and provides foundational work for practical implementation using commercially available 

reagents. 

4.3.1. R-loop purification by nuclease digestion and mass 

separation 

The theory behind an antibody-independent R-loop purification method follows the idea 

that, if it is not possible to pull out the R-loop, then removing everything that is not R-loops 

will yield the same result. The method to achieve this is by digesting the purified DNA using 

various endo- and exonucleases that only affect ssDNA, dsDNA and ssRNA. This would 
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hypothetically result in a solution of comparatively long strands of DNA:RNA hybrids and 

ideally mono- and dinucleotides of ssDNA, dsDNA and ssRNA (dsRNA is generally broken 

down in eukaryotes through RNAi pathways). By using mass or size separation techniques, 

such as gel electrophoresis and size exclusion chromatography, the long and heavy hybrid 

strands can then be separated from the short and light mono- and dinucleotides (Figure 

4.8). 

 

Figure 4.8 The theoretical mechanism of the antibody-independent R-loop purification protocol. The nucleic acid in 

its native state containing an R-loop will be purified from cell samples. During the purification step, RNase A removes 

the ssRNA overhang of the R-loop. Following the left path down, the addition of dsDNAse or RE (restriction enzyme) 

will cut dsDNA into smaller pieces, leaving R-loops intact. Next Exonucleases VIII will attach at the end of the dsDNA 

and cut the 5’ strand into mononucleotides and leaving behind a 3’-ssDNA. Finally, the Mung Bean Nuclease will 

degrade any ssDNA and ssRNA overhangs into mononucleotides, leaving only the DNA:RNA hybrid portion. The right 

path shows the binding of S9.6 onto R-loops in gDNA. 

Pilot Experimental Procedure 

The experimental procedure is a series of nuclease digestion reactions that cleave the gDNA 

into smaller units with each digestion step, ultimately digesting all nucleic acids except 

DNA:RNA hybrids into mono- and dinucleotides. 

For 1 g of purified gDNA, 1 l of dsDNAse (Thermos Fisher) and 1 l of 10x NEB (New 

England Biolabs) CutSmart® buffer were mixed. The volume was then made up to 10 l 
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with nuclease-free water and left in an incubator at 37°C for 15-30 minutes. For the 

alternative method utilizing restriction enzymes instead of dsDNAse, the 1 l dsDNAse was 

replaced with 1 l of the restriction enzyme “cocktail” (0.2 l of each restriction enzyme: 

BsrGI-HF, XbaI, SspI-HF, HindIII-HF and EcoRI-HF) and 1-2mM of spermidine was 

added (spermidine increases the accuracy of restriction enzymes (Pingoud, 1985)). After the 

incubation, 2 l of Exonuclease VIII truncated (NEB) was added to the mixture, followed 

by another 0.5 - 1 hour (dsDNAse) or 2 hours (restriction enzyme) incubation at 37°C. 

Finally, 1-2 units of Mung Bean nuclease was added to the mixture. Mung Bean Nuclease 

requires zinc to function. The Mung Bean Nuclease (Promega) used here did not contain 

zinc donor in its storage buffer, thus 1 l of 1mM ZnCl2 was manually added to the reaction. 

The mixture was then incubated for 10-15 minutes at 37°C. 

4.3.2. dsDNAse endonuclease digestion 

dsDNAse from Thermo Scientific is an engineered DNase that has high specificity for 

dsDNA, leaving RNA and ssDNA intact. Thermo scientific stated that tests with 

fluorescently labelled oligonucleotides showed no activity on DNA:RNA hybrids under the 

recommended protocol and extremely low specificity for the hybrids even at 10x higher than 

the recommended concentration (personal communication). Since the supplied dsDNAse 

buffer from Thermo scientific is proprietary, it is unknown whether the downstream 

enzymes would work with the buffer provided. Therefore, the activity of dsDNAse was 

tested with the CutSmart® buffer from NEB, which is used for the enzymes downstream in 

the protocol and the composition of the buffer is publicly available (New England Biolabs, 

2019). The testing for dsDNAse activity in the NEB CutSmart® buffer showed that the 

activity of dsDNase is similar in both the NEB CutSmart® and dsDNAse buffer (Figure 

4.9). 

Following the success of dsDNAse digestion in NEB CutSmart® buffer, the DNA was 

restricted with Exonuclease VIII truncated. This exonuclease is functionally equivalent to 

Lambda Exonuclease, with the only difference being that Exonuclease VIII does not require 

phosphorylation at the 5’-end. Both degrade the 5’-strand of the dsDNA to mononucleotides 

(leaving the 3’-strand as an ssDNA) at a relatively slow pace of 19 nucleotides/second 

(Joseph & Kolodner, 1983; Lovett, 2011). Exonuclease VIII truncated (NEB) is RNAse-free 

(personal communication).  
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Figure 4.9 Comparison of the efficiency of dsDNAse in dsDNAse buffer and NEB CutSmart® buffer. The gDNA used 

here was extracted from HEK293T cells3, and the digestion reactions were done for 30 minutes at 37°C. The agarose 

gel did not contain any ethidium bromide and was stained with SYBR gold (Invitrogen) after electrophoresis for 40 

minutes. 

Finally, the nucleic acid was digested with Mung Bean Nuclease, which degrades both 

ssDNA and ssRNA in both directions, but does not digest double-stranded nucleic acid 

unless at a very high concentration (Promega, 2016; Valsala & Sugathan, 2017; Epicentre, 

n.d.). This digestion removes the single-stranded DNA left behind from the Exonuclease 

VIII digestion as well as any RNA overhangs from the R-loops and potentially the displaced 

single-stranded DNA. Furthermore, any remaining ssRNA that was not digested by RNase 

A during DNA purification would be degraded in this step. Figure 4.10 shows the size 

composition of digested gDNA after each digestion step. The smear pattern on the gel 

electrophoresis images coincides with the expected shape. It can be seen that after dsDNAse 

digestion, most of the gDNA were cut to below 100 bp (Figure 4.10 left). The exonuclease 

VIII further reduced the mass of the nucleic acid marginally through the digestion of the 5’-

strand (Figure 4.10 middle). Finally, the Mung bean digestion removed all the remaining 

single-stranded nucleic acid (Figure 4.10 right). 

 
3gDNA samples are harvested from human embryonic kindney cells (HEK293T), due to the less labour 

intensive gDNA sample acquisition compared to C. elegans. 

1     2     3     4     5     6 

   Lane 

1. 100bp ladder 
2. 1kbp ladder 
3. gDNA 
4. NEB cutsmart buffer 
5. Empty 
6. dsDNAse buffer 
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Figure 4.10 Nucleic acid mass composition after each nuclease digestion reaction using dsDNAse. The dsDNAse 

digestion was done at 37°C for 15 minutes (left), followed by an exonuclease VIII digestion at 37°C for 30 minutes 

(middle) and finally a Mung Bean nuclease digestion at 37°C for 10 minutes. The sample was then incubated for 

another 1 hour at 37°C with or without RNAse H (right). The ladder is 100 bp ladder in all three gel images. All agarose 

gels were stained with SYBR gold for 40 minutes after electrophoresis. Each well should have around 900 ng DNA. 

Theoretically, under complete digestion, the remaining large nucleic acid strands should be 

enriched in DNA:RNA hybrids. A slot blot of the final digest with the S9.6 antibody, 

however, did not show any R-loop signal and the methylene blue staining did not even 

measure any nucleic acid in the digest (Figure 4.11).  

 

Figure 4.11 R-loop slot blot of nucleic acid samples after various digestion steps. a) Only the undigested gDNA shows 

R-loop signals. b) The DNA loading control shows the absence of any digested nucleic acid. c) The schema represents 

a section of the slot blot machine wells and shows the position where the nucleic acid was loaded onto the membrane. 

1 µg of DNA was loaded onto each well. 

The nylon membrane (Amersham Hybond-N+) used in Figure 4.11 has a pore size of 0.45 

µm and should retain nucleic acids larger than 50 bp (GE Healthcare Life Sciences, 2019). 

While the majority of nucleic acid was cut to below 100 bp and completely digested after 

Mung Bean nuclease digestion, there was still visible fluorescence of nucleic acids above 100 

a) c) b) 

a) c) b) 
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bp size (Figure 4.10 right) and was expected to be retained on the membrane. Multiple 

factors could have played a role leading to the result seen in Figure 4.11. The digested 

mixture could contain too many enzymes that obstruct the DNA from attaching to the 

membrane and/or the remaining DNA could be too little to be detected by the methylene 

blue staining.  

Another concern was that the dsDNAse from Thermo Fisher Scientific might digest the 

DNA:RNA hybrids, because this enzyme is an engineered shrimp DNase (Thermo Fisher 

Scientific, 2019) and DNases such as DNase I do have activity against DNA:RNA hybrids 

(Valsala & Sugathan, 2017). Since this experiment used the NEB CutSmart® buffer during 

the dsDNAse digestion instead of the provided dsDNAse buffer, Thermo Scientific was not 

able to guarantee that the DNA:RNA hybrids will remain intact (personal communication). 

Therefore, an alternative option using restriction enzymes was tested in the following section. 

4.3.3. Restriction enzyme cutting 

The ability of restriction enzymes to cut DNA:RNA hybrids is mostly unknown. Two studies 

have looked into specific type II restriction enzymes and found that only some restriction 

enzymes are able to cut DNA:RNA hybrids (Molly & Symons, 1980; Murray, et al., 2010). 

Out of the 223 enzymes in the Murray, et al. (2010) study, 5 restriction enzymes were chosen 

(that do not have any restrictive activity on DNA:RNA) that are available from NEB and 

work with the same buffer (CutSmart®) at the same temperature. These enzymes are BsrGI-

HF, XbaI, SspI-HF, HindIII-HF and EcoRI-HF. 

The restriction enzyme digestion follows the same protocol as dsDNAse digestion, but the 

dsDNAse was replaced with the restriction enzyme “cocktail” (0.2 l of each restriction 

enzyme). The resulting digestion by the restriction enzyme “cocktail” can be seen in Figure 

4.12. 
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Figure 4.12 Nucleic acid mass composition after each nuclease digestion reaction using restriction enzymes. All 

digestion reactions were performed at 37°C for 2 hours, except Mung Bean digestion, which was incubated at 37°C 

for 15 minutes. RE = restriction enzyme cocktail. Exo VIII = Exonuclease VIII. Wells 2-5 contain 500 ng DNA, and wells 

6 and 7 contain 1250 ng DNA. 

The digestion with the restriction enzymes resulted in larger fragments compared to the 

digestion with dsDNAse, as the signal is stronger towards the top of the gel electrophoresis 

image (Figure 4.12 lane 2 compared with Figure 4.10 left). After the Exonuclease VIII and 

Mung Bean nuclease digestion steps, the final nucleic acids mixture was not digested as 

completely compared with the dsDNAse method. This can be seen due to the much stronger 

signal in lane 6 and 7 of Figure 4.12 compared to Figure 4.10c (using the 100 bp ladder as 

reference). 

4.3.4. Buffer exchange 

A potential problem with using many nucleases is the aggregation of chemicals and proteins 

in the reaction mixture. For example, all the nucleases used here are stored in a 50% glycerol 

solution. The addition of each nuclease increases the concentration of glycerol in the 

digestion mixture. High glycerol concentration affects enzyme activity, such as reduced 

sequence specificity of restriction endonucleases (New England Biolabs, 2019) and reduced 

enzyme activity due to higher viscosity (Uribe & Sampedro, 2003). As such, digestion 

reaction mixtures are suggested to not exceed more than 5% glycerol concentration (New 

England Biolabs, 2019). In this experimental setup, however, the final glycerol concentration 

1. 100bp ladder 
2. RE 
3. RE + Exo VIII 
4. RE + Exo VIII + Rnase H 
5. gDNA 

1        2         3         4        5 1      6       7 
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RNaseH 
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nearly reaches 10%, which could negatively impact the digestion reaction. Therefore, in order 

to remove excess glycerol (and enzymes), a buffer exchange step (using the Monarch® PCR 

& DNA Cleanup Kit) that purifies the nucleic acid was incorporated after the Exonuclease 

VIII digestion step. The disadvantage of using an additional buffer exchange step is the loss 

of nucleic acid, with a typical recovery of between 50%-90% depending on the size of the 

nucleotide, ranging from 50 bp up to 25 kb (New England Biolabs, 2019). For more accurate 

quantification, gel electrophoresis was done on precast polyacrylamide gels (Novex™ TBE 

Gels, 4-20%) (Figure 4.13). 

 

Figure 4.13 The effect of Buffer exchange after restriction enzyme digestion. The nuclease incubation conditions are 

the same as those in Figure 4.12. 500 ng of DNA was loaded into each lane. 

Comparison of lane 8 with lane 4 in Figure 4.13 shows a noticeable loss of nucleic acids, 

especially at the top end, where beyond a specific size, the nucleic acid was not able to be 

recovered. It is difficult to judge whether this step improved the downstream digestion 

activity of Mung Bean nuclease (and RNAse H). 

It was previously mentioned that dsDNAse might degrade R-loops in buffers not optimized 

for it, such as the NEBs CutSmart® buffer (Section 4.3.2). By implementing the buffer 

exchange step into the dsDNAse protocol, it allows the switching between the dsDNAse 

buffer and the NEB CutSmart® buffer between different steps of the protocol. Therefore, 

the dsDNAse digestion was performed with the dsDNAse buffer followed by a buffer 

exchange step and continued the downstream digestion with the NEB CutSmart® buffer 

(Figure 4.14). The Buffer exchange step did not affect the size composition of the sample 

(comparing lane 4 to lane 3 in Figure 4.14).  
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Figure 4.14 The effect of Buffer exchange after dsDNAse digestion. The dsDNAse digestion was performed in the 

supplied dsDNAse buffer. The subsequent digestions after buffer exchange were performed in the NEB buffer. 

dsDNAse and Mung Bean Nuclease digestion were performed at 37°C for 15 minutes while Exonuclease VIII and 

RNAse H digestion were incubated for 2 hours. 500 ng of DNA was loaded into each lane. 

4.3.5. Discussion and future work 

In this chapter, I have proposed a novel approach in purifying R-loops without the need of 

any antibodies or affinity reagents to “pull” these hybrids out. Currently, R-loop recognition 

is mainly dependent on S9.6. It is challenging to assess the accuracy of S9.6 without 

comparison to suitable alternative methodologies. Furthermore, it is unknown how S9.6 

recognizes DNA:RNA hybrids. Multiple studies have emerged in recent years showing that 

S9.6 affinity is influenced by the DNA sequence and that it also recognizes dsRNAs, 

questioning the accuracy of DNA:RNA immunoprecipitation methods (Hartono, et al., 

2018). As more studies on R-loops emerge, it becomes unavoidable to assess the accuracy of 

the current method. In this regard, a sample of purified R-loops rather than artificial 

DNA:RNA hybrids could help in the assessment of the accuracy of S9.6 and potentially help 

in the discovery of improved antibodies/affinity reagents. This also makes it possible to 

characterize the R-loop structure in more detail and identify the size of these hybrid 

structures. 

The theoretical framework has been finalized; however, practical implementation requires 

more optimization. The Exonuclease VIII could be the main bottleneck due to its slow rate 

of digestion. In order to accelerate this, the DNA was cut into smaller pieces to provide more 

open ends for the Exonuclease VIII to work on. For this, dsDNAse seems to do a better 

job compared to the restriction enzyme “cocktail”, as the DNA is cut into smaller and more 
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uniform pieces (Figure 4.12 lane 2 compared with Figure 4.10 left). However, due to the 

proprietary composition of the optimized dsDNAse buffer, the NEB CutSmart® buffer was 

used, which might affect the specificity of Thermofisher’s dsDNAse. This problem was 

partially resolved using a buffer exchange step, in exchange for losing some of the digestion 

samples. Finally, this protocol requires a way to measure R-loops after digestion reaction to 

assess the extent the nucleases would resolve R-loops. For this, the S9.6 slot blot method 

could be used but requires some optimization of the sample to avoid a result seen in Figure 

4.11. A “DNA immunoblotting” approach could be done after the nucleic acid has been 

separated by gel electrophoresis. The DNA on the agarose or polyacrylamide gel could be 

transferred to a membrane (dry-transfer) and then immunostained with S9.6 to identify the 

natural size (range) of R-loops.  

An alternative method for quantifying R-loops could be to digest the DNA portion of the 

hybrid with, for example, DNase I and measure only the quantity of remaining RNA. One 

system that can distinguish and quantify specifically RNA is the Qubit system with the 

Qubit™ RNA HS Assay Kit. 

4.4. Effect of various helicases on R-loops formation 

Following the optimization of the R-loop slot blot method and the finding that set-2(bn129) 

mutants show a reduction in R-loop levels in section 4.2, I wondered how the absence of a 

functional SET-2 protein is able to reduce the level of R-loops. Two non-exclusive 

possibilities could explain the role of SET-2 in R-loop formation: SET-2 could activate or 

recruit proteins that increase the formation of R-loops or/and SET-2 could deactivate or 

prevent the binding of proteins that resolve R-loops. With the current knowledge regarding 

R-loop formation and resolution, investigating the latter possibility is a more viable approach, 

since the formation of R-loops is still not fully understood, much less the proteins involved 

in it. Proteins involved in the resolution of R-loops, however, have been identified to be 

nucleases (i.e. RNase H) and helicases. I focused the investigation on helicases, rather than 

nucleases as comparatively little is known about the role of helicases in the maintenance of 

R-loop levels in living organisms. Since helicases are among the largest class of proteins in 

eukaryotes (Jankowsky & Fairman-Williams, 2010), I used the RNAi by feeding method to 

screen a large set of helicase candidates for potential helicases that could affect R-loop 

aggregation dependent or independent of SET-2. 

RNAi is a powerful tool for genetic analysis used in C. elegans. A comprehensive RNAi library 

was constructed by the Ahringer group that contains around 87% of all C. elegans genes 
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(Kamath & Ahringer, 2003). The “RNAi by feeding” method is inexpensive and relative fast. 

It allows for quick knockdown of genes at flexible developmental stages. However, as with 

many methods, this tool has its limitations. RNAi does not result in a complete knockout of 

the gene, only a knockdown. It does not deactivate the gene at the genome level but tries to 

prevent translation of the mRNA. The extent of the knockdown depends on many factors, 

including the C. elegans strain, preparation of the RNAi bacteria and the efficiency of the 

target sequence design. For example, hypersensitive mutant strains containing mutations in 

the RNA interference pathway can be more susceptible to RNAi. The preparation of the 

bacteria will affect the efficiency of the knockdown. For example, mixing two different RNAi 

bacteria or introducing IPTG to the bacterial culture solution diminishes the efficiency of 

RNAi (Kamath, et al., 2000). Seeding the bacteria on NGM plates that are too wet will also 

result in weaker phenotypes (Ahringer, 2005). Finally, the design of the cDNA template to 

be inserted into the L4440 vector also affects knockdown efficiency. For example, designing 

a sequence targeting the intronic region of the gene of interest will likely be inefficient (Conte, 

et al., 2015). 

This chapter investigates the importance of various helicases in the maintenance of R-loop 

levels. First, orthologs of known R-loop resolving helicases were tested to verify their 

involvement in controlling R-loop levels are conserved in C. elegans. For this, the mutants 

rha-1(tm329) (Chakraborty & Grosse, 2011) and rcq-5(ok660) (Kanagaraj, et al., 2010) were 

tested. Next, the sensitivity of COMPASS mutants towards RNAi was measured. Finally, 

RNAi helicase suppressor screen in set-2(bn129) background mutants was carried out to 

identify helicases that when knocked down suppresses the reduced R-loop level phenotype 

(i.e. recovers the R-loop signal strength). 

4.4.1. C. elegans helicase mutants rha-1(tm329) and rcq-

5(ok660) both have increased R-loop accumulation 

The two mutant strains rha-1(tm329) and rcq-5(ok660) are mutants of orthologous helicases 

known to resolve R-loops in humans. rha-1 is the C. elegans ortholog of the human RHA gene 

(RNA helicase A), also known as DHX9, which has been shown to be able to unwind R-

loops in vitro (Chakraborty & Grosse, 2011). rcq-5 is the ortholog of the human RECQ5 gene 

which has been shown to reduce R-loop levels in human cell lines, but cannot by itself resolve 

R-loops in vitro (Kanagaraj, et al., 2010). 

Both C. elegans strains rha-1(tm329) and rcq-5(ok660) have been generated via UV/TMP 

(Trimethylpsoralen) mutagenesis, which produces around 1-3kb deletions at a rate of 1 
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mutation every 1000 genes (Kutscher & Shaham, 2014). The mutants were outcrossed four 

times with our own wild-type strain to reduce the number of off-site mutations (Zuryn & 

Jarriault, 2013). 

The R-loop level of both mutants was measured using the slot blot method optimized in 

section 4.2.1. The results show that both mutant strains have higher R-loop levels compared 

to wild-type (Figure 4.15a), suggesting that the R-loop resolving function of these two 

helicases is conserved in C. elegans. 

 

Figure 4.15 R-loop levels of the helicase mutants rha-1(tm329) and rcq-5(ok660). a) Left: R-loop dot blot of L1 wild-

type(N2) worms, rha-1(tm329) and rcq-5(ok660) mutants. Right: gDNA loading control using methylene blue. Yellow 

numbers show the signal quantification based on ImageJ. Stars (*) represents different samples. b) Hatching assay 

for the samples shown in a) (wild-type(N2), rha-1(tm329) and rcq-5(ok660) mutants). The error bar indicates Standard 

Error of the Mean. 
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4.4.2. set-2(bn129) and cfp-1(tm6369) are mildly resistant 

to specific RNAi bacteria 

In the previous section, I confirmed that the two C. elegans helicases rha-1 and rcq-5 have a 

conserved role in R-loop maintenance. Following on, I aim to utilize RNAi in a suppressor 

screen to identify helicases that may similarly function in maintaining R-loop levels and revert 

back the low R-loop levels in set-2(bn129) mutant when knocked down. However, before 

proceeding, the COMPASS mutants need to be analysed whether they have a different 

sensitivity against RNAi bacteria relative to the wild-type control. This is important since 

when the mutants are more resistant to RNAi, it becomes difficult to distinguish whether a 

negative result is due to inefficient knockdown of the target gene (false negative) or actually 

does not contribute to the phenotype in question (true negative). Therefore I used various 

RNAi bacteria, that are used to test C. elegans strains sensitivity or resistance towards RNAi 

bacteria (Simonet, et al., 2007; Fischer, et al., 2013). 

The RNAi bacteria to test for resistance target the genes dpy-10, dpy-8, unc-15. Both dpy-10 

and dpy-8 show a strong ‘dumpy’ phenotype, where the worm is smaller and fatter than the 

wild-type phenotype (Figure 4.16). unc-15 RNAi shows a strong paralysis phenotype 

(Simonet, et al., 2007). Both of these phenotypes become more apparent as C. elegans ages. 

Therefore, worms are scored after they develop into adults. Genes to be targeted by RNAi 

bacteria to test for sensitivity are: dpy-13, lin-1, unc-73 and hmr-1. These show mild or no 

phenotypes in wild-type worms but are enhanced in RNAi sensitive worms such as eri-1 

(Enhanced RNA interference 1) mutants (Fischer, et al., 2013). dpy-13 shows a weak dumpy 

phenotype in wild-type worms. lin-1 does not show any phenotype in wild-type worms. 

However, in RNAi sensitive worms, this would manifest as a multi-vulva phenotype (Figure 

4.16). Similarly, unc-73 does not show any phenotype in wild-type worms but would result in 

limited-motility in RNAi sensitive mutants. hmr-1 manifests itself as an increased number of 

dead eggs (embryonic lethal) as well as body morphology defects (Wormbase, 2019). 

 

Figure 4.16 Common body morphology phenotypes in C. elegans research. Image depicting the phenotype of a wild-

type worm (left), dumpy that can be observed in various dumpy RNAi (middle) and multi-vulva in lin-1 RNAi (right). 

Image adjusted from Corsi, et al. (2015). (Corsi, et al., 2015) 
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For the sensitivity assay using dpy-13, lin-1 and unc-73, no phenotype was observed in both 

wild-type, and set-2(bn129) and cfp-1(tm6369) mutant worms. Published dpy-13 RNAi result 

found mild dumpy phenotype in wild-type worms (Fischer, et al., 2013), however, here both 

mutant and wild-type fed on dpy-13 RNAi did not show any difference compared to animals 

fed on empty vector (EV) control. The results for lin-1 and unc-73, however, agree with 

Fischer et al. (2013), who also observed no phenotype when wild-type worms were fed on 

either bacteria. hmr-1 RNAi also doesn’t show significant phenotypic differences between 

wild-type and mutant worms (Figure 4.17). This suggests that the set-2(bn129) and cfp-

1(tm6369) mutants have a comparable RNAi sensitivity to wild-type animals. 

 

Figure 4.17 hmr-1 RNAi effect on dead embryos in N2, set-2(bn129) and cfp-1(tm6369). Each replicate consists of 3 

worms, and the experiment is done with 2 replicates. The experiment has been done at least twice. Error bar 

represents standard deviation. Results are not significant. 

Next, the COMPASS mutants are tested for resistance against RNAi. All three tested RNAi 

bacteria (dpy-10, dpy-8, unc-15) show phenotypes in both mutants and wild-type worms. 

However, the dumpy phenotype in dpy-8 is very mild (i.e. the worms are only marginally 

shorter than control), making them difficult to distinguish. As such, counting the number of 

dumpy animals can be unreliable, and the results for dpy-8 phenotype was not included here. 

This observation differs from the publicized result, where the dpy-8 mutation is given a 3 out 

of 5 scoring for phenotypic strength (Simonet, et al., 2007). dpy-10 shows a strong dumpy 

phenotype (30-50% shorter), making the adult animals easily distinguishable from normal-

sized worms. Similarly, unc-15 also shows strong phenotypes, where the whole body becomes 

paralyzed, as the worm ages. Even under external influences, such as touching the worm or 

hitting the Petri plates on the table which would typically stimulate them to move, no body 

movement would occur. Only the head can be observed to move occasionally, while the 
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pharynx is still relatively active. Mutant animals are found to be mildly resistant to dpy-10 and 

unc-15 RNAi compared to wild-type worms (Figure 4.18). set-2(bn129) mutant animals are 

weakly resistant compared to wild-type for dpy-10 RNAi: on average the set-2(bn129) sample 

consisted of more normal-sized animals and the body length of the dumpy worms are less 

compromised compared to wild-type worms (Figure 4.18a and b). cfp-1(tm6369) mutants, 

on the other hand, are more resistant against unc-15 RNAi, as there are fewer paralyzed 

worms (Figure 4.18c). 

 

Figure 4.18 RNAi sensitivity of wild-type worms and COMPASS mutants on dpy-10 and unc-15 RNAi. a) percentage of 

worms that show dumpy body morphology when fed on dpy-10 RNAi. b) severity of dumpy phenotype in affected 

worms based on body length relative to wild-type control. c) severity of paralysis of worms fed on unc-15 RNAi. Each 

replicate consists of 3 mother worms, and the experiment is done with 2 replicates. Error bar represents standard 

deviation. Single asterisk (*) denotes p-value < 0.1. 

In summary, the results show that the COMPASS mutants are not more sensitive to RNAi 

compared to wild-type worms. However, the individual mutants show mild resistance against 

specific RNAi bacteria. The results are not statistically significant, but more replicates would 

be needed, given the small effect size (difference in phenotype strength), to be sure. Since 

this observed RNAi resistance phenotypes between wild-type and mutant are minimal and 

only specific to certain RNAi bacteria, the resistance of the mutants towards RNAi is 

negligible. Therefore, the set-2(bn219) mutant is suitable for use in RNAi experiments, like 

the planned set-2(bn219) helicase suppressor screen described in the next section. 
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4.4.3. set-2(bn129) R-loop suppressor screen with helicase 

genes 

All C. elegans helicase candidate genes were found using the Wormbase database (Wormbase, 

2019), including genes that have a listed helicase protein domain but are not strictly classified 

as helicases in Wormbase. The 110 “helicases” were then filtered to only include observable 

non-lethal phenotypes upon RNAi. Furthermore, only the genes for which the Ahringer 

RNAi library contains an RNAi bacterial clone were considered. Finally, genes that have 

been observed to affect RNA interference, as well as redundant genes, were excluded. The 

final number of candidate helicases were 66 genes (see Appendix 3 for the complete list), 

out of which 30 were screened. The suppressor screen was only performed in set-2(bn129) 

mutants (refer back to Section 4.2.4). The results of the set-2(bn129) suppressor screen are 

summarized in Table 4.1. 3 strong suppression (mog-5, isw-1, vbh-1) and 4 partial suppression 

hits (rad-54, Y116A8C.13b, F54E12.2, F33H12.6) were found. These helicases play a role in 

reducing R-loop accumulation in C. elegans in a set-2 dependent or independent manner. 

Strong Suppression Partial Suppression No Suppression  Inconclusive 

mog-5 rad-54 mus-81 dog-1 F59H6.5 

isw-1 Y116A8C.13b eri-7 chd-3 him-6 

vbh-1 F54E12.2 rcq-5 xpf-1 rha-1 

 F33H12.6 Y54E2A4.c polq-1 ZK250.9 

  C46F11.4 ssl-1 ddx-15 

  mtr-4 C24H12.4d T05A12.4 

  xpb-1 glh-2 glh-1 

   F52B5.3 wrn-1 
Table 4.1 R-loop RNAi helicase suppressor screen on set-2(bn129). RNAi suppression is assessed by the strength of R-

loop signal in all replicates/duplicates relative to wild-type(N2) and set-2(bn129) fed on empty vector control bacteria. 

Strong suppression candidates are defined as samples whose R-loop signals recover to a level similar to or higher than 

wild-type(N2). Partial suppression candidates are defined as samples whose R-loop signal is stronger than set-2(bn129) 

(at least ~25% higher) but weaker than wild-type(N2). No suppression is defined as samples who have a comparable 

or weaker R-loop signal intensity than set-2(bn129). Inconclusive candidates are those that could not be confidently 

classified. These include candidates whose R-loop signal intensity varies a lot between replicates or are at the 

borderline between two classifications and difficult to put into either. n  2 

Five of the candidate genes RNAi-mediated knockdown resulted in phenotypes that made 

an R-loop slot blot not possible, which are for nath-10, B0511.6, mcm-5, mog-4 and F57B9.3. 

RNAi-mediated knockdown of these five genes resulted in C. elegans to become sterile, and 

in three out of the five cases (nath-10, B0511.6 and mcm-5) the adult hermaphrodites have a 

protruded vulva phenotype. Four of the candidate genes RNAi’s (for mog-5, mtr-4, isw-1 and 

xpb-1) resulted in adults having very few progenies. For two of the RNAi bacteria (let-418 

and mcm-2), I was unable to grow them on RNAi LB culture plates. The hatching assay 
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control of the seven suppressor hits is shown in Figure 4.19. The complete hatching assay 

for all tested genes can be found in Appendix 4. 

 
Figure 4.19 Hatching assay of the seven RNAi genes resulting in suppression of the R-loop phenotype. Both strong 

and partial suppression in set-2(bn129) mutants (Table 4.1) are considered. At least two samples have been counted 

for each RNAi except for mog-5 and isw-1 (as they have very few eggs and samples were pooled together). Error bars 

represent the standard deviation. 

Four of the seven hits (strong and partial suppression in Table 4.1) are related to chromatin 

remodelling complexes SWI/SNF (rad-54, Y116A8C.13b and F54E12.2) and NURF (isw-1), 

which is part of the ISWI family (McAndrew & McManus, 2017; Jiang, et al., 2004; Andersen, 

et al., 2006). Chromatin remodelling is the movement of nucleosomes by sliding or 

disassembling in order to control the access of DNA for transcription, DNA repair and other 

activities that require a change in the packaging of the DNA (Lorch, et al., 2010). The ISWI 

complexes are involved in the equally spaced assembly of nucleosomes following replication, 

while SWI/SNF complexes alter the nucleosome positioning to promote transcription 

(Owen-Hughes, et al., 1996; Varga-Weisz, et al., 1997). Although these chromatin 

remodelling complexes have helicase domains, the helicase function is used as a motor to 

move the protein forward along the DNA strand, and they lack the ability to separate the 

two DNA strands (Saha, et al., 2006). 

4.4.4. Discussion 

4.4.4.1. The R-loop maintenance function of rha-1 might be 

dependent on SET-2 (or H3K4me3) 

The human ortholog of rha-1 and rcq5, RHA and RECQ5, have been shown to resolve R-

loop in vitro and in vivo respectively (Chakraborty & Grosse, 2011; Kanagaraj, et al., 2010). 
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Here I have shown that the C. elegans mutants rha-1(tm329) and rcq-5(ok660) have increased 

R-loop accumulation compared to wild-type worms, indicating that the R-loop resolution 

function of the orthologue is conserved in C. elegans. On the contrary, rcq-5 RNAi in set-

2(bn129) mutants did not show increased R-loop level, suggesting that its R-loop 

maintenance function may be dependent on SET-2 (or H3K4me3). Further experiments 

with an rcq-5 and set-2 double mutant would be required to validate this result. The rha-1 

RNAi experiment on set-2(bn129) background is inconclusive and would require more 

replicates. It must be considered, however, that either or both of these RNAi bacteria could 

have a low knockdown efficiency in set-2(bn129) mutants resulting in false-negative results. 

One way to circumvent this problem is to use double mutants. 

4.4.4.2. COMPASS complex mutants are mildly resistant to specific 

RNAi bacteria 

Both set-2(bn129) and cfp-1(tm6369) mutants show a minor resistance to dpy-10 and unc-15 

RNAi respectively. This result indicates that the resistance of the COMPASS mutants 

towards RNAi is not uniform and depends on the specific RNAi bacteria or gene. However, 

although the phenotype strength deviates from the wild-type control, the difference is very 

marginal and mostly not be significant. Care must be taken to evaluate such statistical output, 

as phenotype strength is a continuous spectrum and cannot be precisely characterized using 

a binary “yes or no” rating. Statistical hypothesis testing does not return any information 

regarding the extent of the phenotypic difference. For example, a small effect size (difference 

in phenotypic strength) with a large enough sample size can have a similar significant p-value 

as a large effect size with low sample size. Therefore, statistical hypothesis testing cannot be 

considered alone for judging RNAi sensitivity. Overall, the relative RNAi resistance of set-

2(bn129) and cfp-1(tm6369) mutants is very small, making them suitable for the helicase screen. 

However, this small resistance should still be taken into account when comparing RNAi 

phenotypes between COMPASS mutants and wild-type worms. 

4.4.4.3. Seven helicases affect R-loop formation 

Out of the seven helicases found by the suppressor screen, four are chromatin remodelers 

belonging to the SWI/SNF (rad-54, Y116A8C.13b and F54E12.2) and NURF (isw-1) families 

(McAndrew & McManus, 2017; Jiang, et al., 2004; Andersen, et al., 2006). They are negative 

regulators of R-loops and are required to maintain low R-loop levels. This indicates that 
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chromatin architecture is an important factor that determines the formation or resolution of 

R-loops, perhaps through the control of transcriptional activity and the chromatin landscape. 

rad-54 and Y116A8C.13b 

Human RAD54L and RAD54B (orthologs of rad-54 and Y116A8C.13b, respectively) have 

both been identified to play a role in the DNA damage response and disrupting protein-

DNA interactions (i.e. histone-DNA interaction) to make the chromatin more accessible 

(McAndrew & McManus, 2017). As chromatin accessibility is directly linked with 

transcriptional activity, it could imply that RAD54L and RAD54B enhance R-loop 

formation via increased transcription and vice versa their deactivation would reduce R-loop 

formation, which is the opposite of what the RNAi results show. However, they could have 

other functions that enhance the accumulation of R-loops. For example, through their 

involvement in the DNA damage response. 

In C. elegans, rad-54 (RADiation sensitivity abnormal) is required for strand invasion in HR. 

Deficiency in RAD-54 protein makes the nematode more sensitive to DSB generated after 

-radiation (Ryu, et al., 2013). Ohle, et al. (2016) suggest that DSB repair by HR includes a 

step where RNA polymerase II binds to the ssDNA generated by the MRN (Mre11, Rad50 

and Nbs1) complex and starts transcription. The resulting RNA transcript then competes 

with RPA, an essential protein that binds the ssDNA and protects it from degrading during 

HR, for binding to ssDNA and forms R-loops. Before the strand invasion step can occur, 

R-loops need to be degraded and replaced by RPA. rad-54 mutations have been observed to 

result in inaccurate DSB repair (Lemmens & Tijsterman, 2011), which might be related to 

R-loops not being replaced by RPA in a rad-54 dependent mechanism.  

Y116A8C.13b is classified as a RAD-54 related protein and animals exposed to 

Y116A8C.13b RNAi show sensitivity to radiation phenotype (Boulton, et al., 2004). Both 

Y116A8C.13b and RAD-54 interact with RAD-51 (Boulton, et al., 2002). In HR, RAD-51 

replaces RPA proteins on the ssDNA, then seeks and bind to the homologous DNA. While 

not much is known about Y116A8C.13b, its similarity to rad-54 (radiation sensitivity 

phenotype, R-loop accumulation, RAD-51 binding) imply that it works in the same pathway 

or complex. 

The current knowledge of the function of rad-54 and Y116A8C.13b infer that they indirectly 

increase R-loop formation via increased transcription. However, results from the RNAi 

suppressor screen shows that they negatively affect R-loops. The slot blot is not able to 

distinguish between transcriptional R-loop and the HR-dependent R-loops. Thus it might 

well be that they enhance transcriptional R-loop formation while reducing HR-dependent R-
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loop accumulation. The recruitment of specific methyltransferases and demethyltransferase 

has been suggested to determine whether HR or Non-Homologous End Joining is activated 

to repair DSBs. However, studies do not agree on how H3K4 methylation influences this 

choice (Wei, et al., 2018). In this regard, SET-2 might influence which DSB repair pathway 

is utilized, thereby also determining if rad-54 and Y116A8C.13b are needed to prevent HR-

dependent R-loop accumulation. 

F54E12.2 

F54E12.2 is an ortholog of human transcription termination factor 2 (TTF2) and Helicase 

Like Transcription Factor (HLTF) (Kim, et al., 2018). TTF2 is part of the SWI2/SNF2 family 

of proteins and acts to dissociate RNA polymerase II and the nascent RNA from the DNA 

template. It is also suggested that TTF2 is a negative regulator of transcription by terminating 

the early elongation complex (Jiang, et al., 2004). Hypothetically, without TTF2, the nascent 

RNA and RNA polymerase II might stick with the template ssDNA long enough for the 

RNA to anneal with the ssDNA to form R-loops. This could also prolong the unwound state 

of the DNA, making it more prone to trans R-loops. 

HLTF belongs to the SWI/SNF family involved in chromatin remodelling and is implicated 

in DNA repair. Its function as a transcription factor is involved in many pathways, mainly 

related to genetic stability (Dhont, et al., 2016). As such, its transcription factor function 

might be indirectly involved in R-loop maintenance by regulating the transcription of genes 

that maintain genetic stability, including the resolution of R-loops. As a chromatin remodeler, 

HLTF uses its translocase activity to facilitate fork regression at DNA lesion sites (a 

mechanism to circumvent damaged nucleotides and continue replication) (Dhont, et al., 

2016). DNA lesions can also be bypassed with a strand invasion mechanism similar to HR. 

Instead of using a homologous chromosome as a template, HLTF uses the reverse 

complement daughter strand as a template (Dhont, et al., 2016). Since HLTF plays a crucial 

role in circumventing DNA lesions during replication, mutations in HLTF could destabilize 

the DNA strand at the site of the lesion, promoting DNA damage and R-loop formation. 

Both HLTF and TTF2 are suggested to be homologs of F54E12.2. Due to the very different 

function of both homologs, it is unclear what role F54E12.2 has in C. elegans. The increased 

R-loop signal in the RNAi experiment could be a result of failed transcriptional termination 

in case of a TTF2-like function, or R-loop formed during replication at DNA lesions as a 

result of reduced HLTF-like function. There has been no research on this gene so far, making 

it an exciting target to investigate. 
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isw-1 

ISWI, the Drosophila melanogaster ortholog of isw-1, is the ATPase component of the NURF 

complex and has been shown to be crucial to remodel the chromatin landscape in a way that 

promotes the recruitment of the transcriptional machinery (Badenhorst, et al., 2002). 

Furthermore, NURF activity is dependent on histone tails. The NURF complex can directly 

associate with H3K4me3 through its PHD finger in the largest subunit (NURF301) and 

depletion of H3K4me3 results in the partial release of the NURF subunit from chromatin 

(Wysocka, et al., 2006). Since set-2(bn129) mutants are depleted of H3K4me3, the NURF 

complex might have difficulty maintaining a strong bond to the chromatin and thus unable 

to open up the chromatin to make it accessible for the transcriptional machinery. This could 

explain the reduced R-loop levels in set-2(bn129) mutants. However, the strong R-loop signal 

in the isw-1 RNAi suppressor screen would suggest that ISW-1 has a function, that may be 

NURF independent and prevents R-loop accumulation. 

isw-1 in C. elegans has been shown to be active during a wide range of stresses, including 

mitochondrial and histone stress, and is required to regulate normal lifespan during 

development and in adulthood (Matilainen, et al., 2017). The importance of isw-1 in stress 

regulation might reflect the accumulation of R-loops in isw-1 RNAi worms, as stress can have 

a positive effect on R-loop accumulation (Allison & Wang, 2019). The reduction of isw-1 

function weakens the nematode ability to defend against stressors, resulting in the 

accumulation of various damages, including R-loop accumulation. Outside of stress-induced 

isw-1 expression, constitutively active isw-1 is associated with longevity. Matilainen and co-

workers hypothesize that isw-1 controls longevity through the regulation of the epigenetic 

landscape and the promotion of protein homeostasis (proteostasis) via the mediation of heat 

shock proteins (Matilainen, et al., 2017). This suggests that isw-1 is required to maintain 

cellular integrity and the knockdown of this gene reduces the ability to regulate the 

accumulation of toxic agents such as misfolded proteins and R-loops. 

mog-5 

mog-5 encodes an essential RNA helicase for C. elegans that is required for worm and germline 

development (Wormbase, 2019). Mutation in this gene changes the sex of the worms from 

hermaphrodite to males, losing the ability to produce oocytes, thus unable to self-fertilize 

and produce offspring (Puoti & Kimble, 2000) (which could be the reason why worms fed 

on mog-5 RNAi bacteria produced very few progenies).  
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The ortholog of mog-5 in Saccharomyces cerevisiae is PRP22. PRP22 is a component of the 

spliceosome machinery that removes introns from the pre-mRNA (Puoti & Kimble, 2000). 

Spliceosome assembly and splicing occur during and alongside transcription (Pandya-Jones, 

2011). The assembly of the spliceosome machinery occurs stepwise with the binding of U1, 

U2, U4/U7 and U5 building blocks. Prp22 acts towards the later stages of the spliceosome 

in RNA-RNA rearrangement and ribonucleoprotein remodelling events and also proofreads 

mRNA before releasing it from the spliceosome machinery (Wahl, et al., 2009). It is unknown 

how PRP22 could affect R-loop formation. Since it functions towards the end of the splicing 

event, it is unlikely that it acts as a steric hindrance by occupying the nascent RNA. PRP22 

mutants accumulate pre-mRNA and intron in the spliceosome (Company, et al., 1991), both 

of which are single-stranded. The inability to dissociate the spliceosome and intron from the 

mRNA could allow both the exon and introns to associate with the DNA. Furthermore, it 

is unknown how this affects splicing events of other introns downstream. Will each splicing 

event need to be completed before the next one downstream can initiate? If so, then R-loops 

can be formed downstream, of the stalled splicing event. Finally, there is always the 

possibility that mog-5 could have different or additional functions compared to the PRP22 

ortholog. 

vbh-1 

vbh-1 encodes a Vasa and Belle like RNA helicase, that is mainly associated with germline 

and embryonic development (Wormbase, 2019). Its closest orthologs are the Vasa helicase 

(DDX4) and Belle Helicase (DDX3) that have been found in many organisms such as 

humans and Drosophila melanogaster (Paz-Gomez, et al., 2014).  

Somatic expression (and potentially germline expression) of vbh-1 is essential for stress 

survival against heat shock and oxidative stress. Similar to isw-1, heat shock proteins are 

positively regulated by vbh-1 (Paz-Gomez, et al., 2014). Not much is known about the 

function and biochemical mechanism of vbh-1 outside the germline. Apart from its role in 

stress resistance, vbh-1 could have other functions yet to be determined that affect R-loop 

accumulation. 

DDX3 has been shown to regulate different steps of RNA metabolism and in various 

biological processes. These include mRNA export, mRNA splicing and stress response and 

transcription (He, et al., 2018). Due to the vast array of involvement of DDX3, its effect in 

R-loop accumulation could be the result of multiple mechanisms. In mRNA export, DDX3 

acts in the late stage of cytoplasmic export (Yekdavalli, et al., 2004), indicating that it doesn’t 

act as a steric hindrance for the nascent RNA to anneal to ssDNA during transcription. The 
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export function could contribute to reducing trans R-loop formation through the prevention 

of mRNA accumulation in the nucleus that could otherwise spontaneously anneal to 

unwound DNA. DDX3 has been found associated with the exon junction complex (Merz, 

et al., 2007). The exon junction complex is a complex of proteins that binds to the exon-

exon junction post splicing and stays on the mRNA up until the mRNA is being translated 

by the ribosomes. The attachment of proteins to the mature mRNA increases the stability 

and could also prevent it from reannealing to unwound DNA, specifically in the case when 

the mRNA is not transported out of the nucleus immediately. DDX3 is associated with 

transcription and stress response. It acts as both an enhancer as well as a repressor of specific 

promoters (Ariumi, 2014) and contributes to the formation of stress granules to halt 

translation under stress (Oh, et al., 2016). In these regards, the contribution to R-loop 

formation would depend on the extent to which DDX3 promotes transcription and how 

important DDX3 is in stress response. 

F33H12.6 

The C. elegans gene F33H12.6 encodes a PIF-like ATP-dependent DNA helicase (The 

Uniprot Consortium, 2019) which has not yet been researched. A protein BLAST search 

found a 29% query cover and 27% identity with the human PIF1 protein (Altschul, et al., 

1990). PIF1 has been associated with telomeres and chromosome maintenance during DNA 

replication. In vitro studies elaborated its function in inhibiting telomerase, unwinding and 

rewinding DNA. The PIF1 homologs in Saccharomyces cerevisiae and Schizosaccharomyces pombe 

are required for genome maintenance after stress (George, et al., 2009). Human PIF1 shares 

significant homology with E. coli RecD helicase, which is required to process the DNA:RNA 

hybrid Okazaki fragment and to rescue stalled replication forks (George, et al., 2009). 

Not much is known about PIF1. Its association with genomic maintenance during various 

stresses could indicate a relationship towards R-loop maintenance. Although RecD in E. coli 

could have a more direct role in R-loop resolution due to its ability to process Okazaki 

fragments, it is not similar to F33H12.6 at all, with only a protein BLAST query cover of 5% 

(Altschul, et al., 1990). Due to the low similarity to well-researched homologs, it is difficult 

to assess how similar the function is. Ultimately, the function of F33H12.6 needs to be 

determined, before further hypothesis about its mechanism on R-loop accumulation 

prevention can be postulated.  
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4.5. Conclusion and future work of the epigenetic 

study 

A central question being worked on by the study of epigenetics is how the expression of 

genes is controlled without changing the DNA sequence. Multiple epigenetic modifications 

have been described. Two modifications that are directly associated with active transcription 

are the histone modification H3K4me3 and the DNA:RNA hybrid R-loops, both of which 

accumulate at the promoter region of a gene. This study aimed to identify how H3K4me3 

levels affect R-loop levels and screen for helicases that can control R-loop aggregation.  

The set-2(bn129) and cfp-1(tm6369)  mutants that were used throughout the study show an 

overall drastic reduction of H3K4me3 levels, mainly at constitutively active genes, supporting 

the observations that SET-2 and CFP-1 are required to maintain H3K4me3 levels and that 

this histone modification is associated with active genes. Additionally, the de novo motif 

discovery found the T-block motif enriched, which has also been associated with active 

genes. Furthermore, the SL1 motif was also identified by the motif discovery software, 

suggesting that SL1 may also be associated with active genes. A small number of 

developmental genes and chromatin genes have slightly elevated levels of H3K4me3 in the 

two COMPASS mutants, inferring the existence of another H3K4 trimethyltransferase. The 

H3K4me3 depleted set-2(bn129) mutant had reduced R-loop levels compared to wild-type C. 

elegans worms. This result suggests that H3K4me3 or SET-2 (or both) is required for 

maintaining wild-type R-loop levels. The helicase suppressor screen identified seven helicases 

(four of which are related to chromatin remodelling complexes) that rescues the R-loop 

signal in set-2(bn129) mutants, indicating their role in reducing R-loop aggregation. 

Furthermore, the findings imply a link between chromatin remodeler and R-loop 

aggregation.  

The novel antibody-independent method proposed here offers a unique approach to purify 

R-loops but requires further optimization for practical application. Purified R-loops from 

this method, could be used to analyze their structure and test the specificity of S9.6. 

Furthermore, purified R-loops may act as a better control compared to synthesized 

DNA:RNA hybrids, as they may have a physically distinct structure that is biologically more 

accurate. 

To improve the reliability of the results presented here, additional experiments could be 

included. To test the specificity of the S9.6 antibody, a positive control using synthetic 

DNA:RNA hybrids, as well as, negative controls of dsDNA and dsRNA could be 
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incorporated. The positive control is not only useful in slot blots as a marker of absolute R-

loop quantity, making comparisons between different blots more reliable, but also to test the 

ability of nucleases to degrade hybrids during the R-loop purification method development. 

To confirm the effect of COMPASS mutants on R-loop levels, a rescue experiment could 

be performed. A positive control for the RNAi sensitivity assay by using RNAi sensitive 

strains could be added to verify that the RNAi bacteria are working as intended and confirm 

that the COMPASS mutants are indeed not sensitive against RNAi. For the bioinformatics 

work, a biological replicate of the COMPASS mutant H3K4me3 ChiP-seq would be 

important to validate the results. 

The next step in this research is to test the seven candidate helicase hits from the RNAi 

suppressor screen on wild-type (N2) worms to distinguish whether the increase (rescue) of 

the R-loop signal is set-2 dependent or independent. Helicase candidates that were 

inconclusive could be repeated to potentially find further hits. Afterwards, R-loop levels in 

the helicase candidate of interest could be measured in loss-of-function mutants, as RNAi is 

not guaranteed to completely silence the gene. This could be paired with a rescue experiment 

as an extra layer of verification. Further research could compare the absolute R-loop signal 

between OP50 and EV (HT115) food to identify whether the R-loop accumulation between 

the two standard food diets are similar or not. 
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Chapter 5: Introduction of stress response and 

innate immunity in C. elegans 

Cellular stress responses are essential biological reactions in response to unfavourable 

internal and external environmental conditions that disturb cellular homeostasis (cellular 

steady-state condition) and proteostasis (protein homeostasis) (Welch, 1993). This response 

is universally preserved as an essential defence mechanism that plays a significant role in the 

cell’s health. The health implications that the cellular stress response is involved with have 

been extensively studied, which includes proteopathic diseases, such as Alzheimer's and 

Parkinson's Diseases, as well as, pathogenic infections (Soto & Estrada, 2008; Huang, et al., 

2011; Kourtis & Tavernarakis, 2011). The cues that activate the cellular stress response are 

regarded as stressors, which come in various forms and can be classified according to their 

properties. Abiotic stressors make up the physical (e.g. heat) and chemical (e.g. reactive 

oxygen species) stressor. Biological stressors originate from viral, bacterial and eukaryotic 

pathogens (e.g. fungi). The response against pathogenic microbial invaders, including viruses 

and bacteria, is known as the immune response (Chaplin, 2010). 

Like the various stressors, there are multiple stress responses. Classically the cellular stress 

responses are classified into cytosolic heat shock response (HSR), the unfolded protein 

response (UPR) of the endoplasmic reticulum (ER) and mitochondria, the oxidative stress 

response and the DNA damage response (DDR) (Fulda, et al., 2010). Depending on the 

stressor, one or multiple stress responses are activated to maintain cellular homeostasis. 

Indeed, the different stress responses are interconnected and share common elements to 

solve related macromolecular damages (Kültz, 2005). Proteins that work as part of the stress 

response are classified as “stress proteins”, which are universally conserved and include 

molecular chaperones and DNA repair enzymes (Kültz, 2005). Their function is to sense and 

resolve macromolecular damages but can also include the control of the cell cycle and 

metabolism (Kültz, 2005). 

The immune response, although not classically considered as a cellular stress response, shares 

many overlapping features and functions with the various cellular stress responses. The HSR, 

DDR and endoplasmic reticulum UPR (UPRER) interact and work with the immune response 

to tackle various stressors (Muralidharan & Mandrekar, 2019). This relationship makes the 

immune response a relevant inclusion in research regarding cellular stress response. 

In the following sections, I provide an overview of various stress responses and their 

signalling pathways with a focus on the model organism C. elegans, specifically emphasizing 
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the innate immune response and HSR. Furthermore, as part of the immune response, I 

summarize the effect of various pathogen infections on C. elegans. 

5.1. Oxidative stress response 

The oxidative stress response manages the accumulation of reactive oxygen species (ROS) 

and free radicals and neutralizes these highly reactive molecules. ROS are oxygen-containing 

chemicals with high oxidizing strength, such as peroxides and superoxides (Fulda, et al., 

2010). Both ROS and free radicals are naturally found in organisms as they are byproducts 

of various chemical reactions such as metabolism and auto-oxidation of various molecules, 

such as ascorbic acid and thiols. Owing to their strong chemical reactivity, they can react 

with and damage all major classes of macromolecules including nucleic acids, proteins and 

carbohydrates (Fulda, et al., 2010; Rodriguez, et al., 2013). Due to their inevitable production, 

an organism needs to be able to equilibrate the generation and elimination of these ROS and 

free radicals. The imbalance between pro-oxidants (ROS and free radicals) and anti-oxidizing 

agents (e.g. glutathione and superoxide dismutases) in favour of the pro-oxidants triggers the 

oxidative stress response (Scandalios, 2002; Fulda, et al., 2010).  

Over the years, a large variety of pro-oxidants and anti-oxidants have been identified 

generating a redox proteome, consisting of proteins that undergo oxidation-reduction 

(redox) reactions. Currently, a central issue is the identification of mechanisms governing the 

expression of the redox proteome. Transcription factors have been identified to be master 

regulators of the oxidative stress response, including Nrf2 and NF-κB (Sies, et al., 2017). 

Nrf2 and the C. elegans homolog SKN-1 have been identified to activate the expression of 

phase II detoxification genes (mainly defence genes against oxidative stress) required for 

oxidative stress resistance (An & Blackwell, 2003), such as Cytochrome-P450 and 

glutathione S-transferases (Ma, 2013). The C. elegans ortholog of the human forkhead box 

protein O (FOXO), DAF-16, which upregulates SKN-1, has also been shown to be activated 

during oxidative stress and is vital in maintaining normal stress resistance (Senchuk, et al., 

2018). The transcription factor PQM-1 initially identified to be responsive to paraquat-

induced oxidative stress (Tawe, et al., 1998), has been implied to complement DAF-16 in 

stress regulation (Tepper, et al., 2013). Heat shock transcription factor 1 (HSF-1), which is 

the master regulator of the cytosolic heat shock response, has been shown to induce the 

expression of antioxidants in yeast (Yamamoto, et al., 2007).  

Oxidative stress also plays an important role in the innate immune response. The production 

of ROS is an important defence mechanism that has been proposed to contribute to 
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pathogen killing by, for example, Pseudomonas aeruginosa and Enterococcus faecalis. The amount 

of ROS production requires a careful balance between the necessary function in pathogen 

defence and destructive effect of oxidative stress (Kim & Ewbank, 2018; King, et al., 2018; 

Liu, et al., 2019). As such, it is reasonable to suggest that both the innate immune response 

and oxidative stress response are active during pathogen infection. Indeed, one of the 

primary innate immune pathways, the p38 MAPK pathway (refer Section 5.4.2.1), also 

regulates the oxidative stress response pathway through the transcription factor SKN-1 

(Inoue, et al., 2005), which is required for survival against various pathogens such as  

Streptococcus gordonii (Naji, et al., 2018). 

The relationship between the oxidative stress response and the HSR is described in section 

5.3.1.1. 

5.2. Unfolded protein response 

The UPR defends against the accumulation of unfolded or misfolded protein when it exceeds 

the folding capacity of the ER or mitochondria. This response adjusts the protein folding 

capacity to maintain proteostasis. The UPR is separated into two types, depending on the 

location of the response. The endoplasmic reticulum unfolded protein response (UPRER) and 

mitochondrial unfolded protein response (UPRmt). While in both cases, the response is 

activated due to the accumulation of misfolded proteins, the pathway and regulation of each 

of these responses are different (Pellegrino, et al., 2013). 

The UPRER is triggered by three signalling branches that sense unfolded protein 

accumulation within the ER lumen: the inositol-requiring protein 1α (IRE1α), the Protein 

kinase RNA-like Endoplasmic Reticulum Kinase (PERK) pathway and the Activating 

Transcription Factor 6 (ATF6) (Ron & Walter, 2007) (See Figure 5.1). The IRE1α pathway 

splices and activates the transcription factor (TF) X box-binding protein 1 (XBP-1), which 

transcribes genes related to ER proteostasis maintenance. PERK activates the eukaryotic 

translation initiation factor 2α (eIF2α) through phosphorylation, thereby contributing to 

activation of UPRER proteins. ATF6 exists as an inactive form tethered to the ER membrane 

and moves to the Golgi apparatus upon sensing ER stress where it is cleaved before moving 

into the nucleus. It then binds to DNA and activates gene expression of UPR target genes 

(Ron & Walter, 2007). 
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Figure 5.1 Signalling pathway of all three branches of the UPRER. Binding immunoglobulin protein (BiP) dissociates 

from the sensory proteins IRE1α, PERK and ATF6 and binds to misfolded proteins upon activation of the UPR. This 

dissociation activates IRE1α and PERK oligomerization and their phosphorylation. IRE1 signalling uses the TF XBP-1, 

while PERK utilizes ATF4 to transcribe stress response genes. ATF6, on the other hand, acts as an information carrier, 

and itself moves away from the ER into the nucleus to act as a TF. Image taken from Storm, et al. (2016). 

The UPRmt is initiated through the sensing of unfolded protein by the quality control protease 

ClpP (Pellegrino, et al., 2013). This protease degrades the proteins into peptides, which 

activates the Activating Transcription Factor associated with Stress (ATFS-1). ATFS-1 and 

another transcription factor downstream of ClpP, DVE-1, are both required for the up-

regulation of mitochondrial molecular chaperone genes, including HSP-60 and HSP-10 

(Pellegrino, et al., 2013). 

The UPR has been associated with the innate immune response. This is because misfolded 

proteins are increased as a side effect of pathogen infection, as the cell responds by increasing 

the production of innate immune peptides (Ermolaeva & Schumacher, 2014). Like the 

oxidative stress, the UPR will need to be active to counteract the detrimental effects of 

misfolded protein aggregation. XBP-1 is a key TF of the UPRER, and xbp-1 loss-of-function 

C. elegans mutants show reduced survivability against P. aeruginosa (Richardson, et al., 2010). 

The UPRmt also helps in maintaining proteostasis following the innate immune response and 

improves survival against pathogens. The bZIP TF ATFS-1, which mediates the UPRmt, is 

essential for resistance against P. aeruginosa (Pellegrino, et al., 2014). At the same time, the 

knockdown of the bZIP TF ZIP-3, which is a negative regulator of the UPRmt, confers 

resistance against P. aeruginosa infection (Deng, et al., 2019). 
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The crosstalk between the unfolded protein response and the HSR is described in section 

5.3.1.3. 

5.3. Heat shock response 

The HSR is one of the most ancient transcriptional programs in eukaryotes that is highly 

conserved from yeast to plants and mammals. This response is activated upon heat stress 

that facilitates the expression of heat shock proteins (HSPs), which are molecular chaperones 

(Mathew & Morimoto, 2006). Molecular chaperones target damaged or misfolded proteins 

as a direct consequence of increased temperature and refold them or target them to cellular 

degradation (Mathew & Morimoto, 2006). Different to what the name suggests, the HSR is 

not limited to heat stress but is involved in a large variety of cellular stresses that would lead 

to protein misfolding in the cytosol (Verghese, et al., 2012; Brunquell, et al., 2016). 

The heat shock factor 1 (HSF-1) is widely conserved in eukaryotes and plays a central role 

in the HSR (Vihervaara & Sistonen, 2014). While this protein is called heat shock factor, 

owing to its initial identification, it also functions beyond the HSR. HSF-1 is crucial in other 

stress response pathways and is involved in development, metabolism, gametogenesis and 

ageing (Vihervaara & Sistonen, 2014). It has also been found essential in cancer cells 

(Mendillo, et al., 2012). In the inactive form, the HSF-1 monomer is bound by certain HSPs, 

including HSP-70 and HSP-90, in the cytoplasm. During heat stress, HSF-1 dissociates from 

the HSPs, becomes trimerized, and moves into the nucleus where it binds to specific DNA 

sequences known as heat-shock elements (HSE) to transcribe heat shock genes including 

HSPs and to minimize misfolded and damaged proteins (Figure 5.2) (Brunquell, et al., 2016; 

Anckar & Sistonen, 2007; O'Brien & van Oosten-Hawle, 2016; Prahlad & Morimoto, 2009). 

The HSE consists of three adjacent and inverted nGAAn pentamers, to accommodate the 

three HSF-1 proteins that make up the trimer. Heat shock genes have clusters of HSEs, 

while developmental genes typically have only one HSE (Li, et al., 2016). Certain HSPs 

inhibit HSF-1 activity, thereby creating an autoregulatory cycle that adjusts the intensity of 

response according to the extent of the stress (Shi, et al., 1998; Zou, et al., 1998). In addition, 

HSF-1 activity is also controlled by various post-translational modifications such as 

phosphorylation, acetylation and sumoylation. Apart from phosphorylation at S230 and S326 

that enhance the activity of HSF-1, all other known modifications negatively affect its activity 

(Anckar & Sistonen, 2007; Vihervaara & Sistonen, 2014). 
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Figure 5.2 Heat shock response pathway. Monomeric HSF-1 is inactive and bound by specific HSPs, including HSP-70 

and HSP-90. Upon heat stress (or other signals), HSF-1 dissociates from the HSPs, trimerizes and becomes 

phosphorylated at specific residues. The HSF-1 trimer moves into the nucleus where it binds to HSE and transcribes 

HSR target genes. Dissociated and newly produced HSPs refold misfolded protein or target these for degradation. 

HSF-1 is also regulated by other pathways such as the insulin-like signalling (ILS) pathway 

that is involved in lifespan extension and the cyclic guanosine monophosphate (cGMP) 

signalling associated with development (Barna, et al., 2012).  

In C. elegans, the two thermosensory AFD neurons that sense temperature changes can also 

stimulate HSF-1 activity cell-non-autonomously by a guanylate cyclase 8 (gcy-8) and serotonin 

dependent mechanism (Prahlad, et al., 2008; Tatum, et al., 2015). Further experiments using 

C. elegans showed that overexpression of HSF-1 increases DAF-16-dependent longevity and 

stress resistance (Hsu, et al., 2003; Vihervaara & Sistonen, 2014; Brunquell, et al., 2016; 

Kumsta, et al., 2017). 

5.3.1. Crosstalk between the HSR and other stress 

response pathways 

5.3.1.1. Oxidative stress response and the HSR 

The response to oxidative stress results in the upregulation of a large set of genes in C. elegans, 

which includes six heat shock proteins, such as the small heat shock proteins hsp-16.1 and 

hsp-16.2 that are also controlled by DAF-16 (Park, et al., 2009). In human cell lines, ROS 

induces the expression of hsp72 and hsp27, while antioxidants reduce their expression 
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(Gorman, et al., 1999). The human NRF2 transcription factor, which regulates the defence 

against oxidative stress (Ma, 2013), is found to activate HSF1 under oxidative stress (Paul, et 

al., 2018) but also shares many target genes with HSF1 (Naidu, et al., 2015), indicating that 

the HSR and oxidative stress responses are connected. However, SKN-1 was shown not to 

overlap with the heat shock response pathway, as knockdown of skn-1 via RNAi did not 

affect the expression of oxidative stress-induced heat-shock proteins (Park, et al., 2009), 

pointing out distinctive features exclusive to the oxidative stress response. 

5.3.1.2. Insulin-like signalling pathway and the HSR 

The ILS pathway shares some key regulators with the heat shock response. In C. elegans, the 

ILS pathway is associated with many fundamental properties, including longevity and stress 

resistance (Murphy & Hu, 2013). FOXO/ DAF-16, a TF negatively regulated by ILS, is 

required for longevity and the proper upregulation of HSPs during the HSR (Hsu, et al., 

2003). Incidentally, like HSF-1, DAF-16 has been observed to move into the nucleus during 

heat shock. The upstream insulin-like receptor DAF-2 of the ILS pathway controls the 

phosphorylation state of both DAF-16 and HSF-1. Under normal conditions, 

hyperphosphorylation keeps the two transcription factors in the cytoplasm. Upon stress, this 

pathway facilitates the dephosphorylation and allows them to enter the nucleus (Rodriguez, 

et al., 2013). As previously mentioned, HSF-1 plays a role in the ILS-dependent lifespan 

extension. The lifespan extension observed in daf-2 mutants is dependent on both DAF-16 

and HSF-1 (Hsu, et al., 2003). Hsu et al, (2003) hypothesized that this lifespan extension is 

the result of increased expression of small HSPs, as the mutation in daf-2 allows for higher 

DAF-16 and HSF-1 activity (Hsu, et al., 2003). 

5.3.1.3. Unfolded protein response of the endoplasmic reticulum and 

the HSR 

The UPRER is a response against misfolded proteins in the endoplasmic reticulum (see 

section 5.1 for more detail). While the HSR and UPRER might work in different locations of 

the cell, they have some shared characteristics. Overexpression of Hsf1 in Saccharomyces 

cerevisiae can relieve ER stress of UPR-deficient ire1 mutants (including growth and protein 

transport defects) (Liu & Chang, 2008). Furthermore, the ER specific oxidoreductin ERO1, 

required for the formation of disulphide bonds in protein folding, is activated by Hsf1 under 

heat, ethanol and oxidative stress (Takemori, et al., 2006). In humans, Hsp72 and Hsp90 
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have been shown to increase IRE1 activity by binding to its cytosolic domain to promote 

the UPRER (Gupta, et al., 2010). 

5.3.1.4. Innate immune response and the HSR 

Multiple pieces of evidence show the involvement of heat shock proteins in the innate 

immune response in vertebrates and invertebrates (Barna, et al., 2018). For example, 

hyperthermia (also known as fever) in mammals is observed during pathogen infection and 

increases HSF1 activity, which in turn negatively regulates the production of cytokines 

(Barna, et al., 2018). Furthermore, the heat-induced ion channel Transient Receptor Potential 

Vanilloid 1 (TRPV1), responsible for controlling body temperature, is itself regulated by 

HSF1 (Barna, et al., 2018). In humans, Hsp60 has been shown to activate the MAPK pathway 

of the innate immune response through the Toll-like receptor TLR2 and TLR4 (Vabulas, et 

al., 2001). Experiments using C. elegans have identified HSF-1 to be essential for normal 

resistance against various pathogens (see Section 5.4.2.5) and have found that hsp-90 

knockdown by RNAi, which activates the HSF-1 mediated HSR, also induces the expression 

of specific innate immune response genes (Eckl, et al., 2017). 

5.3.2. Transcellular chaperone signalling  

Transcellular signalling is a necessary function whereby the different cell-types and tissues 

within a multicellular organism can communicate with one another to regulate the expression 

of genes at an organismal level. The transcellular chaperone signalling (TCS) is a more 

specific case to describe the upregulation of molecular chaperones of the heat shock protein 

family through cross-tissue communication in a neuronal as well as non-neuronal cell non-

autonomous manner (van Oosten-Hawle & Morimoto, 2014; O'Brien & van Oosten-Hawle, 

2016). In C. elegans, hsp-90 and hsp-70 have been observed to be regulated via TCS cell non-

autonomously. It has been shown that tissue-specific knockdown or overexpression of hsp-

90 affects the expression of molecular chaperones in distal tissues (the receiver tissue) in a 

FOXA/PHA-4 (transcription factor involved many processes) dependent manner (van 

Oosten-Hawle, et al., 2013). The expression of hsp-90 and hsp-70 is carefully balanced so that 

expressional changes in one will be compensated by the opposite change in the other. For 

example, knockdown of hsp-90 in neurons or intestine causes upregulation of hsp-70 in distal 

tissues (van Oosten-Hawle, et al., 2013). A recent discovery by the van Oosten-Hawle group 

identified PQM-1 as a mediator of TCS of hsp-90 via the innate immunity-associated 
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transmembrane protein CLEC-41, reinforcing the relationship between HSR and the innate 

immune response (O'Brien, et al., 2018). 

5.4. Innate immunity in C. elegans 

The innate immune response is highly conserved in all animals and plants, while the adaptive 

immune system is specific to vertebrates (Reece, et al., 2011). Unlike the adaptive immune 

response that has been designed to recognize previously encountered pathogen, the innate 

immune response depends on recognizing conserved features of pathogens. Therefore, it is 

the first line of defence against infections from novel pathogen and the only one in non-

vertebrates (Alberts, et al., 2002; Reece, et al., 2011). 

The innate immune response involves the recognition of infection or/and pathogen via a 

wide array of receptors, followed by a change in gene expression through the 

activation/deactivation of transcription factors and finally the production of antimicrobial 

peptides and proteins to serve as the defence response against the pathogenic infection. 

Furthermore, cells can also secrete signalling peptides (cytokines in vertebrates) that 

coordinates the immune response across different cells and tissues, so that the production 

of the proteins/peptides are at the correct location (Kim & Ewbank, 2018). 

The bacterivore C. elegans is affected by a wide range of pathogens that activates the 

nematodes innate immune response. Even before a pathogen infects C. elegans, it has various 

adaptations such as avoidance behaviour that actively reduce exposure to the pathogens 

(Anderson & McMullan, 2018). Unavoidable pathogens often aggregate in “hot spots”, 

which are the intestine/rectum and cuticle/epidermis (Kim & Ewbank, 2018). Since C. elegans 

main diet is bacteria, they are susceptible to bacterial infection that can establish inside the 

intestine. However, this requires the bacteria to survive through the pharyngeal grinder, 

which is very effective in breaking up microbial cells (Gravato-Nobre & Hodgkin, 2005) or 

penetrate through the cuticle, which acts as a physical barrier that separates the C. elegans 

tissues/organs from the pathogen filled external environment. When pathogens are detected 

or overcome these barriers and successfully infect the nematode, they trigger the innate 

immune response.  
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5.4.1. Physical defence against pathogens 

5.4.1.1. Physical avoidance behaviour of pathogenic bacteria 

The avoidance behaviour and innate immune response have overlapping pathways, which 

suggests that the immune response can, to some extent, influence the bacterial avoidance 

behaviour. The Toll-Interleukin-1 Receptor (TIR-1), Neural Symmetry (NSY-1) and 

SAPK/ERK kinase (SEK-1) signalling cascade are part of the p38 MAPK pathway (more 

detail in Section 5.4.2.1). This pathway is a major part of the innate immune response and 

also regulates serotonin-dependent avoidance behaviour against P. aeruginosa (Shivers, et al., 

2009). Similarly, the tol-1 gene associated with the innate immune response against Salmonella 

enterica (Tenor & Aballay, 2008) is required for the avoidance behaviour of Serratia marcescens 

(Pujol, et al., 2001). 

It is unknown how C. elegans distinguishes between harmless and harmful bacteria, but the 

chemosensory ability has been shown to play a role in identifying chemicals released by 

bacteria. For example, the presence of Serrawettin W2 secreted by S. marcescens is sensed by 

the AWB neuron that elicits an avoidance behaviour (Pradel, et al., 2007). Dodecanoic acid 

from Streptomyces is perceived through the chemosensory neurons ASH, ADL, ADF or 

AWA (Tran, et al., 2017). The Cry6A toxin produced by Bacillus thuringiensis evokes an 

aversion behaviour dependent on neuropeptides and the ILS pathway (Luo, et al., 2013). 

5.4.1.2. Cuticle and Pharynx: primary protection against pathogen 

infection 

The cuticle and pharynx play a vital role in the defence against pathogens. The cuticle of C. 

elegans, analogous to the external layer of the skin of vertebrates, is an exoskeleton secreted 

by the epidermis, which is the interface between the nematode's organs and its environment. 

The cuticle is composed of multiple layers of tough collagen that act as a physical barrier 

against pathogen invasion (Taffoni & Pujol, 2015). It is covered by a surface coat of 

negatively charged glycoproteins that prevent the adhesion of bacteria and fungi (Blaxter & 

Bird, 1997; Page & Johnstone, 2007). However, some pathogens are able to adhere to the 

surface, mainly targeting regions with natural openings (e.g. mouth/vulva and anal opening), 

such as the fungus Drechmeria coniospora and the bacteria Yersinia pestis and Microbacterium 

nematophilum, (Gravato-Nobre & Hodgkin, 2005; Page & Johnstone, 2007). Mutations of the 

cuticle can affect the efficiency of pathogen adhesion. The mutations of the Bacterially Un-

Swollen (bus) genes bus-2, bus-4, bus-12 and bus-17 reduce the attachment of M. nematophilum 
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and Yersinia pseudotuberculosis but increase the attachment and susceptibility to D. coniospora 

(Gravato-Nobre, et al., 2011; Höflich, et al., 2004; Drace, et al., 2009; Rouger, et al., 2014). 

Reduced attachment for the bus mutants is due to the reduced recognition of surface 

moieties, while increased susceptibility to D. coniospora is explained by increased attachment 

efficiency (Kim & Ewbank, 2018). Differential expression analysis of infected C. elegans often 

identifies the enrichment of genes associated with the cuticle (Yang, et al., 2015). Likewise, 

physical damage to the cuticle can lead to the expression of innate immune genes such as the 

antimicrobial peptide nlp-29 (Taffoni & Pujol, 2015). 

The pharynx has similar defensive importance as the cuticle but acts more like a gate to 

control outside sources to be transported into the nematode. Therefore, it is essential for the 

pharyngeal grinder to break down potentially harmful bacteria and neutralize them before 

allowing these to arrive at the intestine. While the grinding mechanism is highly effective, 

some bacteria can still survive this process and start to form colonies in the gut (Kim & 

Ewbank, 2018). This becomes more apparent as the worm ages and the pharynx efficiency 

decreases, due to structural changes that make the pharynx more swollen and disorganized 

(Wolkow, et al., 2017). Mutations that lead to defects in the pharynx increase the nematodes 

susceptibility to pathogens, as more pathogens are able to survive and accumulate in the 

pharynx and intestine. Mutants of the Pharyngeal Muscle 2 (phm-2) gene have a defective 

pharyngeal grinder, making them less resistant against P. aeruginosa and S. enterica (Gravato-

Nobre & Hodgkin, 2005). The hpx-22 gene is a peroxidase associated with the production of 

cuticle material in the hypodermis and pharynx. Mutation in this gene results in a more 

penetrable cuticle of the epidermis and the pharyngeal lumen, as well as a higher susceptibility 

to some pathogens such as E. faecalis (Liu, et al., 2019). 

5.4.2. Innate immune response 

When the pathogen successfully infects C. elegans, the nematode's innate immune response is 

activated. This response counteracts pathogenic infections through a wide array of signalling 

pathways. The known innate immune signalling pathways are the MAP kinase pathways, the 

Insulin-like receptor signalling pathway, the Transforming Growth Factor -like pathway 

(TGF-) and the Toll-like receptor pathway. The MAP kinase pathway is further divided 

into three sub-pathways: p38 MAP kinase, ERK MAP kinase and C-Jun amino-terminal 

kinase pathways (Gravato-Nobre & Hodgkin, 2005). The pathways are pathogen-specific, 

and multiple pathways can work together against common infections. 
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5.4.2.1. Mitogen-activated Protein Kinases (MAPK) pathway 

p38 MAPK pathway 

The p38 MAP kinase pathway is a central player in the innate immune response and is 

important against many pathogens. The p38 MAP kinase 1 (PMK-1) (ortholog of human 

MAPK12, MAPK13 and MAPK14) is the central kinase of this pathway and is essential for 

resistance against various pathogens, such as Candida spp. (Pukkila-Worley, et al., 2011; Souza, 

et al., 2018), Y. pestis (Bolz, et al., 2010), D. coniospora (Pujol, et al., 2008a), P. aeruginosa 

(Cheesman, et al., 2016), E. faecium, E. faecalis (Yuen & Ausubel, 2018), S. enterica (Tenor & 

Aballay, 2008), Proteus spp. (JebaMercy, et al., 2013), M. marinum (Galbadage, et al., 2016) and 

Coxiella burnetti (Battisti, et al., 2017). This pathway is ineffective against the intracellular 

pathogen Nematocida parisii (Bakowski, et al., 2014). The activation of the TF ATF-7 by PMK-

1 is one aspect that gives resistance against P. aeruginosa and S. marcescens but does not affect 

resistance against E. faecalis (Shivers, et al., 2010; Fletcher, et al., 2019), indicating that PMK-

1 confers pathogenic resistance through multiple mechanisms. 

The upstream proteins in this pathway are the receptor TIR-1, which activates the kinase 

NSY-1, that in turn phosphorylates SEK-1, which then phosphorylates PMK-1 (Figure 5.3). 

Mutations of any of the upstream kinases show similar resistance changes to the pathogens 

as loss of PMK-1 (Shivers, et al., 2009; Shivers, et al., 2010; JebaMercy, et al., 2013; 

Cheesman, et al., 2016; Pujol, et al., 2008b). PMK-1 is also involved in the response to 

oxidative stress via the phosphorylation of the TF SKN-1, which then accumulates in the 

intestinal nuclei and transcribes phase II detoxification enzymes such as gcs-1 (Inoue, et al., 

2005). Since SKN-1 requires PMK-1 kinase activity, its effect also depends on the upstream 

SEK-1, NSY-1 and TIR-1 proteins (van der Hoeven, et al., 2011). PMK-1 also mediates 

resistance to osmotic stress and depends on the same three upstream proteins (Solomon, et 

al., 2004). 

Hyperactivation of the p38 MAPK pathway is like a double-edged sword. The nsy-1 gain-of-

function mutant, although conferring higher resistance against P. aeruginosa infection, also 

results in developmental delay (Cheesman, et al., 2016), which suggests that there is a trade-

off between enhancing defence function and maintaining developmental functions. 

Interestingly, the nsy-1 loss-of-function mutant did not reduce the survivability against P. 

aeruginosa significantly (Cheesman, et al., 2016). 

PMK-1 is required for normal life span (Pujol, et al., 2008a), and partially required (same as 

SKN-1) for the extended life span of daf-2 mutants, indicating that the p38 MAPK pathway 

plays a role during reduced insulin signalling. This is further supported by the observation 
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that PMK-1 and DAF-16 essentially do not upregulate the same group of genes (Troemel, 

et al., 2006). SKN-1, which is downstream of PMK-1, also affects lifespan (Tang & Choe, 

2015). Since SKN-1 and PMK-1 are involved in both longevity and immune response, it is 

not surprising that these two proteins are also associated with immunosenescence (gradual 

deterioration of the immune response due to age). Mutants of either of the two genes show 

an earlier decline in immune response gene expression or higher susceptibility to pathogen 

compared to wild-type animals with age (Youngman, et al., 2011; Papp, et al., 2012), and 

declining PMK-1 activity with age (Pukkila-Worley & Ausubel, 2012). However, it is 

arguable, how much of this observed decline in immunosenescence is due to the naturally 

shorter lifespan of the mutants in the first place.  

Finally, PMK-1 has temperature-dependent activities, whereby it localizes to the nucleus 

beyond 33°C and helps in the expression of constitutive Hsp70 (hsp-1) but not heat-inducible 

hsp-70 and hsp-16.2 chaperones. It is hypothesized that PMK-1 could activate HSF-1 by 

phosphorylating its serine residue and therefore play an essential part in the HSR 

(Mertenskötter, et al., 2013). Furthermore, PMK-1 expression can also be cell non-

autonomous. While intestinal PMK-1 is expressed cell-autonomously as a response to 

intestinal infection, other tissues can also regulate the p38 MAPK intestinal response through 

the nervous system (Bolz, et al., 2010; Cao & Aballay, 2016). This mechanism may be 

beneficial for activating the intestinal innate immune response before an infection can be 

established or enhance the immune response due to infection in other parts of the worm. 

Extracellular-signal-regulated Kinase (ERK) MAPK pathway 

Another well-studied MAPK pathway is the ERK MAPK pathway, with MPK-1 being the 

central kinase. The signalling cascade consists of LET-60, LIN-45, MEK-2 and MPK-1 

(Figure 5.3). Mutation in any of the components of this signalling cascade results in 

decreased survivability against various pathogens. The severity of the anal bus phenotype 

and constipation as a result of M. nematophilum infection is increased following the RNAi-

mediated knockdown of lin-45, mek-2 and mpk-1 (Nicholas & Hodgkin, 2004). Similarly, the 

extent of anal swelling observed during S. aureus infection is dependent on mpk-1. The 

transcriptional response in the intestine, however, is not affected by mpk-1 mutation (Irazoqui, 

et al., 2010). This pathway also controls a specific type of autophagy, that is an important 

defence mechanism against P. aeruginosa infection by neutralizing pathogen-imposed necrosis 

(Zou, et al., 2014). 

The ERK MAPK pathway also affects longevity similar to PMK-1, and mutation in any of 

the signalling cascade kinases results in a reduced life span of the worm (Okuyama, et al., 
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2010). SKN-1 is a vital component of this longevity phenotype and is phosphorylated by 

MPK-1, as well as, mediated through the ILS pathway. DAF-16 can increase expression of 

skn-1, and conversely, DAF-2 negatively regulates skn-1 (Okuyama, et al., 2010; Tullet, et al., 

2017). skn-1 mutants have a shorter lifespan and are hypersensitive to oxidative stress. Over-

expression of DAF-16 can rescue the short-lived skn-1 mutants. However, it cannot rescue 

the hypersensitivity to oxidative stress. This indicates that SKN-1 promotes life span and 

oxidative stress resistance via different mechanisms/pathways (Tullet, et al., 2017). 

MPK-1 is also associated with other stress responses such as UV induced developmental 

arrest (Bianco & Schumacher, 2018). While knockdown of mpk-1 on its own does not affect 

UV resistance; in combination with csb-1 mutants, this enhances the UV resistance, while 

overactivation of the ERK MAPK pathway results in the opposite effect. Interestingly, this 

effect is dependent on DAF-16 (Bianco & Schumacher, 2018). 

The ERK MAPK pathway can also be induced cell non-autonomously. For example, the 

downstream lysozyme ilys-3 is required in the pharynx to enable pharyngeal grinder function 

and for pathogen defence in the intestine. The pharyngeal mpk-1 expression is required to 

induce expression of ilys-3 in the intestine, while intestinal mpk-1 expression does not affect 

ilys-3 expression (Gravato-Nobre, et al., 2016).  

C-Jun Amino-terminal Kinase (JNK) MAPK pathway 

The JNK pathway is perhaps the least researched signalling cascades among the three MAPK 

pathways with regards to innate immune response. The mitogen activated protein kinase 

analogous to MPK-1 and PMK-1 in the other two MAPK pathways is KGB-1. Similar to 

the other MAPKs, KGB-1 phosphorylates and activates TFs such as the bZIP TF FOS-1 

and JUN-1 (Gerke, et al., 2014; Zhang, et al., 2017). Upstream of KGB-1 is MIG-2, MAX-

2, MLK-1 and MEK-1 as well as the negative regulator VHP-1, a MAPK phosphatase 

(Figure 5.3) (Mizuno, et al., 2004; Fujiki, et al., 2010). KGB-1 knockdown reduces pathogen 

resistance of C. elegans fed on P. aeruginosa. However, this reduction is less compared to the 

knockdown of its upstream kinase MEK-1. It was subsequently found that MEK-1 further 

confers pathogen resistance by activating PMK-1 and thus also plays a role in the p38 MAPK 

pathway (Kim, et al., 2004). KGB-1 is a key component for defence against the pore-forming 

toxin Cry5B secreted by the pathogen B. thuringiensis. Around ∼50% of the Cry5B-responsive 

genes are dependent on kgb-1 including jun-1. Interestingly, fos-1 is not dependent on kgb-1, 

and neither of the two bZIP TFs is dependent on sek-1. The JNK MAPK pathway works in 

parallel with the p38 MAPK pathway against Cry5B, but controls more of the response, 

including the expression of p38-dependent genes (Kao, et al., 2011). 
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KGB-1 is also associated with other stress responses. While it is essential for the activation 

of the ROS-dependent UPRmt (Runkel, et al., 2013) and resistance to heavy metals (Mizuno, 

et al., 2004), it reduces the resistance to osmotic stress (Gerke, et al., 2014). Similar to the 

other two MAPK pathways, kgb-1 is also required for the daf-16-dependent lifespan 

extension. KGB-1 helps DAF-16 to localize to the nucleus in larvae, but it reduces the 

nuclear localization in adults, indicating an age-dependent role for KGB-1. The overall net 

benefit is still positive, i.e. The beneficial contribution at the larval stage more than 

compensates for the detrimental effects in the adult stage (Twumasi-Boateng, et al., 2012). 

 

Figure 5.3 Diagram depicting the three MAPK pathways associated with the innate immune response. Dashed arrow 

indicates a partial requirement or redundant role in the signalling cascade. Figure based on published information 

(Fujiki, et al., 2010; Mizuno, et al., 2004; Nicholas & Hodgkin, 2004; Shivers, et al., 2009; Shivers, et al., 2010; Zhang, 

et al., 2017; van der Hoeven, et al., 2011; Okuyama, et al., 2010).  

5.4.2.2. Insulin-like Signalling (ILS) pathway  

The insulin-like signalling pathway affects C. elegans lifespan but is also associated with stress 

responses pathways and innate immunity. The most studied proteins in this pathway are the 

DAF-2 insulin-like receptor and the downstream transcription factor DAF-16, which DAF-

2 negatively regulates (Shapira, et al., 2006; Nag, et al., 2017; Kim & Ewbank, 2018). daf-16 

mutants have been shown to reduce survivability against Proteus spp. (JebaMercy, et al., 2013) 

but do not affect Mycobacterium marinum resistance (Galbadage, et al., 2016). Since daf-16 is 

negatively regulated by daf-2, either the loss of daf-2 or increased daf-16 expression confers 

enhanced resistance against E. faecalis, S. aureus, P. aeruginosa, S. enterica, Y. pestis, Cryptococcus 
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neoformans, B. thuringiensis (Wang, et al., 2012) and Coxiella burnetii (Battisti, et al., 2017). The 

JCMS strain of S. maltophilia, on the other hand, shows normal pathogenicity in daf-2 mutants 

(White, et al., 2016). The functionally unknown pud genes (pud‐1.2, pud‐2.1, and pud‐3) that 

are among the highest up-regulated genes following Ochrobactrum spp. infection are also up-

regulated in daf-2 mutants (Cassidy, et al., 2018), further supporting the involvement of the 

ILS pathway in the innate immune response. 

5.4.2.3. Transforming Growth Factor -like (TGF-) pathway  

The TGF- pathway is another pathway associated with innate immune response. The TGF-

 ligand DBL-1 has been found to control the defence response against infection by D. 

coniospora and S. marcescens (Kim & Ewbank, 2018), and is vital for survival against S. enterica 

and E. faecalis (Tenor & Aballay, 2008). Responses to pro-biotic lifespan-enhancing bacteria 

such as Butyricicoccus pullicaecorum and Megasphaera elsdenii also depended on this pathway 

(Kwon, et al., 2018). This pathway is also connected with other pathways described above. 

Infection with P. luminescens enhances the expression of many p38 MAPK and TGF- target 

genes (Wong, et al., 2007) and DAF-16 has been shown to mediate the TGF-β pathway 

during infection (Nag, et al., 2017). 

5.4.2.4. Toll-like receptor (TLR) signalling pathway 

The Toll-like receptor (TLR) plays a surveilling role in the innate immune response. It senses 

the invasion of microbial pathogens. In mammals, the 12 TLR as well as the downstream 

signalling pathway, have been extensively studied with regards to their role in the innate 

immune response. C. elegans only has a single such receptor, tol-1, and lacks many of the other 

components of the TLR signalling pathway (Pukkila-Worley & Ausubel, 2012; Battisti, et al., 

2017). Involvement of the tol-1 receptor in C. elegans immune response is weak, as it did not 

show any effect on D. coniospora spore attachment, P. aeruginosa resistance and M. nematophilum 

tail swelling, and was only involved in the avoidance behaviour against S. marcescens (Pujol, et 

al., 2001). Furthermore, the bacteria C. burnetii normally identified by the TLR in vertebrates 

is not affected by mutation of tol-1 in C. elegans (Battisti, et al., 2017). tol-1 is also dispensable 

for activating the p38 MAPK pathway (Pukkila-Worley & Ausubel, 2012). To date, only S. 

enterica resistance is affected by tol-1 (Tenor & Aballay, 2008). The involvement of tol-1 in 

pathogenic avoidance behaviour is likely at the developmental level, where it promotes the 

development and function of the chemosensory BAG neuron (Brandt & Ringstad, 2015). 
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5.4.2.5. Other transcription factors and transcriptional co-regulators 

involved in the innate immune response 

HSF-1 in pathogen resistance 

Inactivation of hsf-1 results in increased sensitivity of C. elegans to P. aeruginosa and prior heat-

shock treatment improves the survival against P. aeruginosa infection (Singh & Aballay, 2006). 

The heat-shock induced pathogenic resistance has also been observed vice versa, where C. 

elegans grown on the pathogenic E. coli strain 536 conferred higher heat-shock resistance, 

which was correlated with higher chaperone gene expression (Leroy, et al., 2012), indicating 

a hormetic effect. The gene pals-22, associated with reduced heat shock survival and increased 

polyQ aggregation, has been associated as a repressor of the intracellular pathogen (N. parisii 

and Orsay virus) response. The heat shock protein hsp-60, which is induced by HSF-1 is 

important for P. aeruginosa resistance through its role in the upregulation of the p38 MAPK 

signalling (Jeong, et al., 2017). 

MDT-15 

The mediator complex subunit MDT-15 works with various transcription factors to regulate 

gene expression, including DAF-16, PMK-1 and SKN-1. Upregulation of cell non-

autonomous DAF-16 target genes (e.g. dod-11) requires MDT-15 (Zhang, et al., 2014). MDT-

15 itself can act from a distance, as the dod-11 expression can be seen in tissues that lack mdt-

15 expression, which could indicate signalling by other molecules such as lipids (Zhang, et 

al., 2014). Owing to this dependence, the ILS-dependent lifespan extension phenotype also 

requires MDT-15. However, the extent to which the ILS pathway plays a major role is 

difficult to assess as mdt-15 itself is already required for normal lifespan of wild-type worms 

and enhanced lifespan of other long-lived mutants (Grants, et al., 2015). Furthermore, like 

daf-16 mutants, mdt-15 mutants are also sterile to some degree and sensitive to pathogen 

infection (Pukkila-Worley, et al., 2014). While sterility can directly enhance pathogen 

resistance through a DAF-16 dependent induction of stress response gene (Miyata, et al., 

2008), this is not the case for the mdt-15 mutants against P. aeruginosa (Pukkila-Worley, et al., 

2014). This indicates that the gene mdt-15 itself and not the sterility of mdt-15 mutants is 

involved with the innate immune response. MDT-15 is required for the induction of PMK-

1 dependent gene expression to confer resistance against the Phenazine toxins produced by 

P. aeruginosa (Pukkila-Worley, et al., 2014), perhaps via the transcription factor SKN-1, since 

MDT-15 physically associates with SKN-1 and is required to induce SKN-1 target genes 

(Goh, et al., 2014).  
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Since MDT-15 induces expression of SKN-1 target genes, it also suggests some link to 

oxidative stress. Indeed, mdt-15 mutants are more susceptible to oxidation agents arsenite 

and t-BOOH (tert-butyl hydroperoxide). Resistance against t-BOOH, however, is SKN-1 

independent, indicating that mdt-15 is also involved with SKN-1 independent oxidative stress 

response pathways (Goh, et al., 2014).  

ELT-2 

The GATA transcription factor ELT-2 works close together with p38 MAPK pathway to 

induce pathogenic resistance. It is a major transcriptional regulator in the intestine (Yang, et 

al., 2016). ELT-2 is required for resistance against P. aeruginosa (Shapira, et al., 2006; Head, et 

al., 2017), S. typhimurium, E. faecalis and C. neoformans (Yang, et al., 2016). Apart from 

functioning in the innate immune response, p38 MAPK signalling and ELT-2 have also been 

shown to mediate osmotic stress (Gravato-Nobre & Hodgkin, 2005; Yang, et al., 2016). On 

the other side, ELT-2 does not affect resistance to cadmium, heat and oxidative stress 

(Shapira, et al., 2006). 

PQM-1 

The transcription factor PQM-1 is up-regulated in C. elegans under S. marcescens and 

Xenorhabdus nematophila infection (Sinha, et al., 2012). Mutation in PQM-1 results in reduced 

survivability against P. aeruginosa (Shapira, et al., 2006). A close but inverse relationship has 

been observed between PQM-1 and DAF-16, where they do not localize at the nucleus 

simultaneously and appear to be oppositely regulated by insulin signalling (Tepper, et al., 

2013). The observation that DAF-16 does not localize to the nucleus following C. albicans 

infection but genes negatively regulated by DAF-16 are still down-regulated (Pukkila-Worley, 

et al., 2011), could potentially point towards PQM-1 taking over the role of suppressing the 

DAF-16 dependent genes. Furthermore, PQM-1 could play a role in the signalling of the 

immune response across tissues, as it is important for transcellular chaperone signalling of 

the heat shock protein HSP-90, which has been associated with the innate immune response 

(O'Brien, et al., 2018). 

5.5. C. elegans pathogens investigated in this study 

Like many organisms, C. elegans can be infected by a wide range of pathogens from fungi and 

bacteria to viruses and lead to the activation of the innate immune response and associated 

cellular stress responses. Due to the complexity of multicellular organisms, of which C. elegans 
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is no exception, pathogens can exploit various mechanical and biological mechanisms to 

work in their advantage. This allows for a diverse range of niches to which pathogens have 

evolved to occupy. With regards to the metaphor of the “arms race” between host and 

pathogen, each pathogen only needs to successfully overcome the defence at one exploitable 

niche/mechanism, while the host needs to defend each and every aspect of its complex 

working. Here, various C. elegans pathogens are described, that are directly relevant to the 

datasets used in this study. 

5.5.1. Gram-positive bacteria 

5.5.1.1. Bacillus thuringiensis 

B. thuringiensis is a spore-forming bacterium that produces the commercially important Crystal 

toxins (Cry) used as an insecticide. The Cry toxins are classified as pore-forming toxins that 

function by lysing epithelial cells through osmotic shock, thereby disrupting the intestine 

epithelium and killing the insect (Wan, et al., 2019). While B. thuringiensis is a soil-dwelling 

bacterium, it can complete its full lifecycle within various invertebrates, including C. elegans. 

The bacterium produces a diverse range of related crystal toxins, but only a limited number 

of these affect nematodes. Wei, et al. (2003) found that only Cry5B was toxic to all their 

tested nematodes (C. elegans, Pristionchus pacificus, Panagrellus redivivus, Acrobeloides sp., 

Distolabrellus veechi and Nippostrongylus brasiliensis). Cry14A is the most potent toxin against C. 

elegans but does not affect other nematodes including Pristionchus pacificus and Acrobeloides sp. 

(Wei, et al., 2003). The B. thuringiensis strain DB27 is very lethal to C. elegans, killing the worm 

within 16 hours, while not affecting P. pacificus (Sinha, et al., 2012). The chemical Cry5B itself 

is lethal for C. elegans starting from a concentration of 8 μg/mL. Cry5B requires specific 

glycolipid receptors and mutants deficient in these (bre-4, bre-5) show no infection and 

lethality (Hu, et al., 2010; Kho, et al., 2011).  

B. thuringiensis infects C. elegans through the oral route, accumulating in the intestine where it 

releases toxins that form pores at the intestinal epithelial junction. The pores act as a groove 

for the bacterial spores to stick in and germinate. The nematode dies from the toxins, and 

the germinated spores use the body to survive necrotrophically and sporulate (Wan, et al., 

2019), giving rise to the bag of bacteria phenotype (Bob) (See Figure 5.4) (Kho, et al., 2011). 
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Figure 5.4 C. elegans infected with Bacillus thuringiensis. a) Infection with B. thuringiensis strain that does not produce 

Cry5B. C. elegans does not show any health-compromising symptoms. b) & c) B. thuringiensis infection with Cry5B 

toxin. Animals show Bob phenotype and are nearly completely digested with sporulating bacterial spore. Image taken 

from Kho, et al. (2011). 

5.5.1.2. Bacillus subtilis 

B. subtilis also belongs to the same genus as B. thuringiensis, but its effect on C. elegans is 

drastically different. Under normal conditions, infection by B. subtilis induces a longevity 

phenotype partly dependent on reduced insulin signalling, as daf-2 mutant longevity is not 

significantly enhanced by B. subtilis (Donato, et al., 2017). However, when Cry5B is available, 

B. subtilis becomes infectious to C. elegans and shows the same phenotype, but at reduced 

levels, as B. thuringiensis (similar to Figure 5.4b & c). Tests with other Bacillus species, Bacillus 

sphaericus and Bacillus megaterium, showed a barely detectable level of infection (Kho, et al., 

2011), indicating that specifically B. subtilis, and not the other two Bacillus species, could be 

an opportunistic pathogen in the context of C. elegans. 

Compared to the standard E. coli (OP50) diet, C. elegans fed on B. subtilis produce fewer 

offspring under standard conditions. However, under heat shock stress, a B. subtilis diet 

results in more offspring compared to the heat-shocked worms fed with OP50 (Hoang, et 

al., 2019). This effect may be related to B. subtilis conferring higher heat shock lifespan as a 

result of nitric oxide production and biofilm formation in the nematode gut (Donato, et al., 

2017). These two observations may be due to the hormetic effect discussed in section 5.4.2.5, 

where a diet of pathogenic E. coli strain conferred higher heat shock resistance survival 

(Leroy, et al., 2012). 

a b c 
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5.5.1.3. Enterococcus faecalis 

Enterococcus spp. are spherical (cocci) bacteria found in the intestine (enteric) of many 

organisms, including mammals, reptiles and insects. They are also found in the soil and water 

bodies, as well as in dairy products and fermented food products. E. faecalis is the most 

prevalent species in the Enterococcus genus and accounts for 80-90% of Enterococcus-

associated infections in humans (H. M. S. Goh, et al., 2017). In C. elegans, live E. faecalis can 

kill the nematode adults, as well as, eggs and hatchlings in a mechanistically distinct manner. 

In the adult worms, the ingested bacteria that survived the pharyngeal grinder can form 

colonies in the intestine and accumulate to high titres thereby grossly distending the intestinal 

lumen (Figure 5.5B) (Garsin, et al., 2001; Yuen & Ausubel, 2018). 

The immune response against E. faecalis depends partly on the p38 MAPK pathway (PMK-

1) as well as FSHR-1 and BAR-1 dependent pathways (Yuen & Ausubel, 2018). Although 

heat-killed E. faecalis does not kill C. elegans, it still activates the innate immune response, 

indicating that recognition of this pathogen is through certain heat-stable microbe-associated 

molecular patterns (MAMPs) (Yuen & Ausubel, 2018). The ILS pathway plays a significant 

role in E. faecalis resistance, as mutations in daf-2 drastically increase the survival rate (four to 

fivefold increase compared to wild-type) of the worm (Garsin, et al., 2003). Furthermore, 

oxidative stress plays a vital role during E. faecalis infection as the oxidative stress response 

transcription factor SKN-1 (Papp, et al., 2012) and DAF-16-regulated antioxidant enzymes 

SOD-3 and CTL-2 contribute to E. faecalis resistance (Chavez, et al., 2007). 

 

Figure 5.5 Cross-section of C. elegans fed on Enterococcus bacteria after 8 hours. A) Healthy intestine of wild-type 

worms fed on E. coli. B) E. faecalis and C) E. faecium fed worms show significant distending of the intestine and 

accumulation of the bacteria compared to standard E. coli bacterial diet (A). mv = microvilli. iec = intestinal epithelial 

cell. Red stars marks site of dehiscence (separation) between the terminal web and the luminal membrane. Image 

taken from Yuen & Ausubel (2018). 
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5.5.1.4. Enterococcus faecium 

E. faecium is the second most common Enterococcus-species infecting humans, accounting for 

10-15% of Enterococcus-associated infections (H. M. S. Goh, et al., 2017). While it shares 

many aspects of infection with E. faecalis, such as high titre accumulation in the intestine 

(Figure 5.5C) and the ability to kill C. elegans eggs and hatchlings, there are some differences 

as well. For example, E. faecium is unable to kill C. elegans adult worms. As such, the distention 

of the intestine due to Enterococcus bacteria accumulation is unlikely the cause of death in 

infected C. elegans (Garsin, et al., 2001). 

Although E. faecium does not kill wild-type adult worms, immunocompromised C. elegans with 

mutations in the p38 MAPK pathway (pmk-1) and fshr-1 and bar-1 genes show reduced 

survival rate against E. faecium in the same manner as observed in E. faecalis, indicating that 

E. faecium acts as an opportunistic pathogen whose pathogenicity depends on the host innate 

immune system (Yuen & Ausubel, 2018). In addition, the transcriptomic analysis revealed 

that there is a significant overlap in differentially expressed gene signature of C. elegans 

infected with E. faecalis and E. faecium. Mutant worms of pmk-1, fshr-1 and bar-1 fed on live or 

dead Enterococcus species also show a high degree of similarity in gene expression signatures 

(Yuen & Ausubel, 2018). These indicate that the C. elegans immune system recognizes E. 

faecium and E. faecalis using similar cues. 

5.5.1.5. Microbacterium nematophilum 

M. nematophilum is a rod-shaped bacteria that attaches itself tightly to the anal opening of the 

worm which results in the dar (deformed anal region) phenotype. This phenotype is 

characterized by the worms having a swollen tail (Figure 5.6). The bacteria do not penetrate 

the cuticle, and their invasion does not become any more severe, making its pathogenicity 

different from other pathogens (Hodgkin, et al., 2000). Hodgkin, et al., 2000 hypothesized 

that the bacterial attachment to the anal region has survival benefits for the bacteria. Firstly, 

the location is the safest place to avoid being eaten. Secondly, defecation and leakage of gut 

contents are nutritious for the bacteria. Thirdly, the bacteria can use the nematode as a 

vehicle to disperse itself to new sites behind the worm's tail. No benefit was identified for C. 

elegans, which led the authors to classify M. nematophilum as pathogenic rather than symbiotic 

(Hodgkin, et al., 2000). Upon further investigation, the dar phenotype has been identified as 

a defensive response by the nematode through the ERK MAPK pathway. Mutation of the 

ERK MAPK pathway that abrogates the dar phenotype resulting in the bus phenotype. 
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Although this phenotype has less anal swelling, it shows much stronger constipation that 

would result in developmental arrest and cause sterility (Nicholas & Hodgkin, 2004). 

M. nematophilum has difficulties attaching to C. elegans whose cuticle surface has been altered 

via mutations (srf-3 and bus-2, bus-3, bus-12 and bus-17), leading to the hypothesis that M. 

nematophilum depends on surface composition to identify and attach to C. elegans (Gravato-

Nobre, et al., 2011; Höflich, et al., 2004). 

 

Figure 5.6 C. elegans infected by M. nematophilum. Arrow indicates the deformed anal region (dar) phenotype. 

Bacteria are stained with Syto 13 dye. Photo taken by Hannah Nicholas, Delia O'Rourke and Jonathan Hodgkin (Darby, 

2005). 

5.5.1.6. Staphylococcus aureus 

S. aureus is an opportunistic pathogen that is clinically important as it infects humans, causing 

diseases from mild skin infections to severe life-threatening conditions. It is also 

economically relevant as it affects cattle, resulting in mastitis. In C. elegans, most of the S. 

aureus strains can kill the nematode within 5 days post-infection, provided there is a 

prolonged accumulation of the bacteria in the intestine (Figure 5.7). C. elegans exposed to 

the bacteria shorter than 8 hours can recover back to normal lifespan, as the bacterium is 

unable to colonize and persist in the worm's intestine. After 8 hours, the length of exposure 

is inversely related to lifespan, with more prolonged exposure leading to a shorter lifespan, 

indicating that accumulation of the bacteria beyond a certain threshold becomes lethal (Sifri, 

et al., 2003). S. aureus damages the intestinal cells by lysing the epithelial cells, after which 

they invade and degrade the rest of the body. Furthermore, infected worms show a variety 

of phenotypes including slower movement, fewer egg production and deformed anal region 

(Irazoqui, et al., 2010). 

Transcriptomic analysis of S. aureus infected C. elegans shows upregulation of epithelial 

detoxifying and antimicrobial peptides. Furthermore, a small subset of the differentially 
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expressed genes correlates with those enriched through B. thuringiensis and Cry5B toxin, 

indicating a potential commonality towards intestinal cell membrane rupture (Irazoqui, et al., 

2010). 

 

Figure 5.7 S. aureus accumulation inside C. elegans gut. a) & c) C. elegans fed with non-pathogenic E. coli bacteria 

after 12 hours. b) & d) C. elegans fed on pathogenic S. aureus bacteria after 12 hours. mv = microvilli. iec = intestinal 

epithelial cell. aj = apical junction. Image adjusted from Irazoqui, et al. (2010). 

5.5.2. Gram-negative bacteria 

5.5.2.1. Salmonella enterica (serovar Typhimurium) 

S. enterica is an opportunistic enteric bacterium infecting a wide range of species. Once it has 

infected the host, the bacterium acts as an intracellular pathogen, infecting macrophages 

where they can proliferate and replicate. S. enterica has many variants (serovar) that occupy 

a b 

c d 
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different ranges of hosts and cause various diseases. In humans, S. enterica infection is 

frequently encountered as a food-borne illness, causing salmonellosis with a wide range of 

symptoms (Jantsch, et al., 2011). In C. elegans, many serovars are infectious, the most 

commonly researched one being S. enterica serovar Typhimurium (henceforth S. enterica). 

Larval stage 4 (L4) and adult C. elegans show distended intestine and die much quicker when 

fed on S. enterica compared to OP50 fed worms (Figure 5.8). Even short exposure of 5 hours 

and very diluted bacterial concentration is sufficient for the bacteria to infect and persist in 

the nematode intestine, accumulating to high titre for the rest of its life. The killing of the 

worm requires live bacteria, as feeding on heat-killed S. enterica, show normal lifespan 

(Aballay, et al., 2000; Labrousse, et al., 2000).  

The programmed cell death pathway is necessary for the innate immune response against S. 

enterica and has been shown to be dependent on the p38 MAPK pathway (Aballay & Ausubel, 

2001; Aballay, et al., 2003). Furthermore, functional bacterial lipopolysaccharides are 

required to elicit intestinal persistence and programmed cell death (Aballay, et al., 2003). 

 

Figure 5.8 S. enterica (Typhimurium) accumulation inside C. elegans gut. a) & b) C. elegans fed on pathogenic S. 

enterica bacteria after 48 hours. c) & d) C. elegans fed with non-pathogenic E. coli bacteria after 48 hours. Green 

fluorescence shows GFP-tagged bacteria. Blue fluorescence is the intestinal autofluorescence (from intestinal 

lysosome-related gut granules). Image taken from Sem & Rhen (2012). 

a b 

c d 
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5.5.2.2. Stenotrophomonas maltophilia 

S. maltophilia is a nosocomial (originating from a hospital) opportunistic pathogen that has 

been associated with many diseases in humans such as pneumonia and meningitis. In the 

wild, S. maltophilia is found ubiquitously from soil to water (White & Herman, 2018). The S. 

maltophilia strain JCMS is pathogenic in C. elegans, able to kill the nematode in 5 days on 

average. It is suggested that the accumulation of live bacteria in the intestine (Figure 5.9) is 

the cause of C. elegans mortality rather than secreted toxins (White, et al., 2016). Some S. 

maltophilia strains can be avirulent (e.g. K279a) or less potent than JCMS (e.g. R551-3) (White, 

et al., 2016). 

Multiple stress response pathways play a role in S. maltophilia resistance, including the UPR 

and the innate immune response pathways p38 MAPK and TGF -β. The ILS pathway, on 

the other hand, does not have any observable effects on the susceptibility to S. maltophilia 

(White, et al., 2016).  

 

Figure 5.9 S. maltophilia accumulation inside C. elegans gut. A) - C) C. elegans fed with non-pathogenic E. coli bacteria. 

D) - F) C. elegans fed on pathogenic S. maltophilia bacteria. A) & D) fluorescence images on day 6 after the worms 

were exposed to the bacteria. B) & E) images taken on day 4. C) & F) fluorescence images of panel B) and E) 

respectively. Image taken from White, et al. (2016). 

5.5.2.3. Photorhabdus luminescens 

P. luminescens is an enteric bacterium that lives within the nematode Heterorhabditis bacteriophora 

symbiotically but acts as an insecticide and nematicide in other organisms including C. elegans. 

H. bacteriophora invades insects, where it then regurgitates P. luminescens that kills the host. H. 
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bacteriophora then uses the cadaver to survive. Various strains of P. luminescence kills most C. 

elegans within 5 days post-infection (Sato, et al., 2016) while causing reduced developmental 

and reproductive rate (Sicard, et al., 2007). Although the bacterium does not proliferate in 

the intestine of C. elegans, the nematode pharynx is relatively inefficient in grinding up this 

bacterium, allowing it to arrive in the intestine mostly alive. Infection after exposure starts 

rapidly after 2 hours of feeding, where crystal-like structures begin forming within the 

intestinal lumen (Figure 5.10). Removing C. elegans from P. luminescence exposure after as 

much as 12 hours allows the worms to survive with a healthy morphology and reproduction, 

but does not remove or reduce the crystals in the intestine. (Sato, et al., 2014). The p38 

MAPK pathway is required for host defence, while the ILS pathway is deactivated by P. 

luminescence (Sato, et al., 2014). 

 

Figure 5.10 Crystal structure formation inside C. elegans intestine following P. luminescence infection. a) C. elegans 

fed on non-pathogenic E. coli bacteria for 44 hours. Arrowhead points to the healthy intestine. b) C. elegans fed on 

pathogenic P. luminescence bacteria after 44 hours. Arrows indicate crystal-like structures in the intestinal lumen. 

Image taken from Sato, et al. (2014). 

5.5.2.4. Yersinia pestis 

Y. pestis is a well-known pathogen for its devastating role as the black death in Eurasia (Perry 

& Fetherston, 1997). In C. elegans, Y. pestis and its relative Yersinia pseudotuberculosis attaches to 

the head of the nematode and forms a biofilm around the mouth, thereby preventing the 

worms from feeding and starving them to death (Figure 5.11) (Darby, et al., 2002). However, 

biofilm formation only happens in adult worms as eggs hatched on Y. pestis lawns can still 

reach adulthood (Styler, et al., 2005). The binding doesn’t seem to be affected by the cuticle 

structure, as C. elegans with mutations in the collagen genes dpy-5, dpy-9, dpy-17 and rol-6 as 

well as the blistered bli-6 mutant show normal Y. pestis binding. Mutation of the surface coat 

on the other hand such as the bus mutants bus-2, bus-3, bus-12 and bus-17, as well as srf-2 and 

srf-5 mutants reduce the biofilm formation, causing the bah (Biofilm absent on head) 

phenotype (Drace, et al., 2009). 

a b 
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Y. pestis mutants that lack the biofilm-forming gene hmsHFRS can also kill C. elegans in a 

biofilm-independent manner through the accumulation and colony formation in the intestine 

(Styler, et al., 2005). 

 

Figure 5.11 Y. tuberculosis accumulation on C. elegans head. Accumulation of bacteria on C. elegans head after a) 1 

hour exposure and b) overnight incubation on a bacterial lawn. Green fluorescence shows GFP tagged Y. tuberculosis. 

Image taken from Darby (2005). 

5.5.2.5. Pseudomonas aeruginosa 

P. aeruginosa is a common soil and water bacterium that is also an opportunistic human 

pathogen, causing diseases in immunocompromised hosts. It is one of the most studied C. 

elegans pathogens (Tan, et al., 1999; Ermolaeva & Schumacher, 2014). The PA14 strain can 

kill C. elegans in a “slow killing” mechanism or “fast killing” mechanism, depending on the 

condition in which the bacteria grow. “Slow killing” requires live bacteria, while “fast killing” 

can be achieved even in heat-killed bacteria (Tan, et al., 1999). The slow-killing mechanism 

resembles a bona fide infection process which involves the accumulation of live bacteria in the 

intestine of the worm (Figure 5.12), leading to the death of the worm within 3 days. One 

toxin believed to be responsible for slow killing is pyoverdine, which extracts iron from the 

mitochondria, damaging it, for use by the bacteria for growth and biofilm formation (Kang 

& Kirienko, 2017; Kang, et al., 2018). The fast-killing mechanism, on the other hand, relies 

on other toxins such as phenazine, which rapidly kills most worms within hours after 

exposure (Tan, et al., 1999). The main attribute of phenazines is their ability to generate 

reactive oxygen species (ROS) in tissues of the host and damage them via oxidative stress 

(Pierson III & Pierson, 2010; King, et al., 2018). Fast killing is not counteracted by the 

intestinal innate defence mechanism and depends on the Ethanol and Stress Response 

Element (ESRE) which is mediated by the bZIP protein family (Tjahjono & Kirienko, 2017). 

Phenazine and other toxins disrupt the oxidative phosphorylation in C. elegans which would 

result in the activation of the UPRmt. However, P. aeruginosa exploits the negative regulator 

a b 
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of UPRmt, the bZIP protein ZIP-3, to repress the UPRmt (Deng, et al., 2019). The p38 MAPK 

pathway plays a role in defence against P. aeruginosa intestinal colonization (slow killing). Loss-

of-function or knockdown of any of the kinases in this pathway (PMK-1, SEK-1 and NSY-

1) reduces survivability against P.aeruginosa (Kim, et al., 2002). Furthermore, the p38 MAPK 

pathway receptor TIR-1 is necessary to activate SKN-1 under PA14 infection, which is 

necessary for resistance against this pathogen (Papp, et al., 2012). The ILS pathway, on the 

other hand, doesn't affect resistance as daf-16 RNAi knockdown did not affect survivability 

significantly (Sun, et al., 2011). The oxidative stress associated transcription factor PQM-1 

does not affect C. elegans survival against P. aeruginosa when knocked-out but is required for 

TCS-dependent resistance (O'Brien, et al., 2018). 

 

Figure 5.12 P. aeruginosa accumulation inside C. elegans. a) C. elegans fed on non-pathogenic E. coli bacteria for 48 

hours. b) C. elegans fed on pathogenic P. aeruginosa bacteria after 48 hours. Bacteria are tagged with GFP. P. 

aeruginosa accumulates in the lumen at a much higher level compared to E. coli. Arrows point towards the intestinal 

lumen. Image taken and adapted from Tan, et al. (1999). 

5.5.2.6. Vibrio cholerae 

V. cholerae is a clinically relevant bacteria that causes the diarrheal disease cholera, prevalent 

in many parts of Africa and Asia. This bacterium is found in aquatic reservoirs, adapted to 

different environmental conditions (e.g. temperature variation and osmotic stress). The 

microbivore C. elegans represents a natural predator to V. cholerae, to which the bacterium has 

developed protective responses (List, et al., 2018). V. cholerae can accumulate in the pharynx 

and intestine (Figure 5.13). The killing of C. elegans by V. cholerae takes up to 5 days after 

exposure and requires continuous exposure to life V. cholerae (Vaitkevicius, et al., 2006). The 

exact mechanism of killing is not known; interestingly, biofilm formation or secretion of 

Cholera toxin, which is important for pathogenesis in other organisms, is not required for 

killing in C. elegans (Vaitkevicius, et al., 2006). Vacuolization of the C. elegans intestine could 

play a role in the pathogenesis as V. cholerae hlyA mutants which do not produce vacuoles in 

the nematode are less lethal (Cinar, et al., 2010). Furthermore, transcriptome analysis found 

a b 
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that hlyA is important to induce the differential expression of DAF-16 target genes in C. 

elegans, indicating a connection with the ILS pathway (Sahu, et al., 2012). 

 
Figure 5.13 V. cholerae accumulation inside C. elegans pharynx and intestine. A) - D) C. elegans fed with V. cholerae 

for 12 hours. White arrows point to V. cholerae bacilli and black arrows show the apical membrane. E) - H) C. elegans 

fed on non-pathogenic E. coli bacteria. Green fluorescence indicates GFP-tagged bacteria. Image taken from 

Vaitkevicius, et al. (2006). 

5.5.2.7. Serratia marcescens 

S. marcescens is a soil-dwelling human opportunistic pathogen that causes various diseases 

such as meningitis and endocarditis. Over the past decade, nosocomial infection and 

antibiotic resistance have been increasing, making it a clinically more significant bacterium 

(Kurz & Ewbank, 2000). In C. elegans, S. marcescens infection requires live bacteria reaching 

the intestine, after which it is able to kill the host within 6 days (Kurz, et al., 2003). Infection 

of larval stage 4 (L4) worms starts within 6 hours of exposure to S. marcescens followed by 

rapid proliferation, leading to intestinal distention and progressive vacuolation of intestinal 

cells. After 48 hours, damage to the intestinal epithelium and germline is observed 

accompanied by a reduction in egg-laying. After 72 hours, worms start to die. Worms hatched 

directly on S. marcescens bacterial environment (lawn) however are more resistant to the 

pathogen (Mallo, et al., 2002; Kurz, et al., 2003). 

Many genes have been implicated to play a role in the C. elegans – S. marcescens relationship. 

C. elegans recognition and avoidance of S. marcescens depend on the worms AWB olfactory 
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sensory neuron to identify the bacterial cyclic pentapeptide surfactant Serrawettin W2 

(Pradel, et al., 2007). The TGF- pathway has been found to be important for resistance 

against this pathogen (Mallo, et al., 2002). 

5.5.3. Fungi  

5.5.3.1. Drechmeria coniospora 

D. coniospora is an endoparasitic nematophagous fungus that infects various nematodes and 

uses them for its own reproduction. Infection by D. coniospora starts when the conidia (non-

motile spore) attaches itself to the nematode cuticle at the head (sensory amphid) and vulva 

(inner labial papillae) via adhesive knobs. The penetration tube of the fungus then pierces 

the cuticle of the nematode, using the combination of enzymatic action and mechanical 

force. Trophic hyphae then grow into the nematode and spread throughout the epidermis 

until the whole worm has been taken over (Figure 5.14). New spores grow from the bulbs 

that develop from the trophic hyphae while the fungi absorb the remaining nutrients from 

the nematode corpse (Jansson, 1994; Pujol, et al., 2008a; Zhang, et al., 2016). Similar to the 

other cuticle-dependent pathogens M. nematophilum and Y. pestis, the tested bus genes (bus-2, 

bus-3, bus-12 and bus-17) also affected D. coniospora attachment, however with opposite effects. 

Mutations of these genes enhance fungal attachment to the nematode body, which the 

authors hypothesize might be related to the increased level of α-linked L-fucose-specific 

lectin on the surface (Rouger, et al., 2014). 
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Figure 5.14 D. coniospora infection cycle in C. elegans. a) D. coniospora spores grow from the bulbs. b) Spores mature 

by developing adhesive knobs (red arrow). c) Spores attached to the head of C. elegans. d) Trophic hyphae penetrate 

and grow inside C. elegans. e) Trophic hyphae develop bulbs that are pressed against the insides of the cuticle. f) 

Conidiophores sprout out of the C. elegans cadaver. Image taken from Zhang, et al. (2016). 

5.5.3.2. Nematocida parisii 

N. parisii belongs to the Microsporidia phylum that contains many species of obligate 

intracellular pathogens (which depend on host cells to replicate) with a wide variety of animal 

hosts, including humans. Microsporidia exist as spores outside the host and inject their nuclei 

and sporoplasm into the host via a “syringe” called polar tube. In C. elegans, N. parisii infects 

the nematode from its intestine, likely by an oral route. After infecting intestinal cells, the 

fungi replicates in a cell-wall deficient form called a meront, which then differentiates into 

spores (Figure 5.15). The spores are then believed to escape the worm through rupturing 

the terminal web (a cytoskeletal structure beneath the base of the villi lining the intestinal 

wall) (Troemel, et al., 2008). The size and number of the spores affect horizontal infection, 

as C. elegans with only few small-sized spores were able to infect other worms. N. parisii is 

one of two intracellular pathogens, the other being the Orsay virus, that has been found to 

naturally infect C. elegans (Bakowski, et al., 2014). Although it is a fungus, the gene expression 

response is distinct from other fungal (and bacterial) pathogens and most closely resemble 

the Orsay virus (Troemel, et al., 2008; Bakowski, et al., 2014), indicating that intracellular 

pathogens trigger a similar response. The p38 MAPK and ILS pathway do not play a 

significant role in resistance against N. parisii (Troemel, et al., 2008). 
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Figure 5.15 C. elegans infected by N. parisii. a) & b) FISH staining using N.parisii rRNA specific probes visualized in red 

and DAPI staining in blue of a) infected and b) uninfected C. elegans. Arrowheads point to host nucleus and arrows 

indicate meronts. c) & d) Rod-shaped N.parisii spores inside C. elegans host visualized using c) FISH with N.parisii 

rRNA specific probes and d) Normaski microscopy. Small arrows indicate small spores and large arrows indicate large 

spores. Image adjusted from Troemel, et al. (2008). 

5.5.3.3. Harposporium sp. 

Species belonging to Harposporium are endoparasitic and, for the majority, nematophagous 

fungi that infect a broad range of nematodes. They are characterized by sickle-shaped conidia 

that infect through ingestion (except Harposporium subuliforme) and germinate and colonize 

within the host's body (Wang, et al., 2007). The Harposporium species whose infection 

transcriptomic data is used in this study (JUf27) was isolated relatively recently (October 

2008) from C. elegans collected in France and never properly classified. This nematophagous 

fungus has been observed to infect the worm through the intestine after ingestion of the 

conidia, where it produces hyphae that then invade the whole body and penetrates the 

epidermis to form spores on the surface of the dead worm (Figure 5.16). C. elegans infected 

by this fungus die within six to eight days (Engelmann, et al., 2011; Felix & Duveau, 2012). 

Harposporium infection results in a differentially expressed gene signature overlapping with 

that of D. coniospora infection and various bacterial infections (E. faecalis, P. luminescens and S. 

marcescens) (Engelmann, et al., 2011). 

a b 

c d 
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Figure 5.16 C. elegans infected with Harposporium sp (JUf27). a) Infected C. elegans corpse with fungal hyphae 

protruding out of the host. b) Hyphae are invading the body of the worm. c) Harposporium sp. sickle-shaped conidia 

spore. Image taken from Felix & Duveau (2012). 

5.5.3.4. Candida albicans 

C. albicans is an opportunistic fungus that can grow vegetatively as yeast or hyphae, both of 

which play different roles in pathogenesis. The yeast form colonizes mucosal surfaces and 

spreads through the host bloodstream, while the hyphae form invades the host and destroys 

tissues (Pukkila-Worley, et al., 2011). It is the most common human fungal pathogen 

accounting for 70-90% of all invasive mycoses (Pukkila-Worley, et al., 2009). In C. elegans, 

the yeast form of C. albicans can be grown on solid agar media and ingested by the worms. 

The yeast form seems to easily survive the pharyngeal grinding since as little as 5 minutes of 

exposure to the yeast is enough to lead to infection. Transferring infected worms to 

(pathogen-free) liquid medium quickly leads to the death of the worms as fungal hyphae can 

be seen piercing through the worm’s cuticle (Figure 5.17). The solid-liquid interface is crucial 

for the yeast form to develop filaments (filamentation) that then differentiate into hyphae. 

Filamentation is not observed on solid media alone and submerging the yeast itself into liquid 

media also does not lead to filamentation (Breger, et al., 2007; Pukkila-Worley, et al., 2009; 

Pukkila-Worley, et al., 2011). 

The p38 MAPK pathway seems to play an important role in C. albicans resistance as sek-1 

mutants are more susceptible to the fungi (Breger, et al., 2007). Genetic expression analysis 

following C. elegans infection by C. albicans found many immune response genes down-

regulated, that are commonly up-regulated by bacterial pathogen P. aeruginosa and S. aureus. 

Furthermore, both live and dead C. albicans elicit similar gene expression response, indicating 

that C. elegans immune response involves the recognition of heat-stable chemicals (Pukkila-

Worley, et al., 2011). 

a c b 
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Figure 5.17 C. albicans emerging from dead C. elegans hosts. glp-4;sek-1 double mutant worms were left on C. 

albicans populated solid media for 2 hours and then moved to pathogen-free liquid media. Images showing the 

growth progression of C. albicans after 6 days A) & B) and 8 days C) and D). B) & D) are fluorescent images with the 

fungal filaments stained with Concanavalin A-Alexafluor. Image taken from Breger, et al. (2007). 

5.5.4. Orsay Virus 

The Orsay virus is the first and only virus found that naturally infects C. elegans and has been 

isolated from C. elegans samples collected in 2011 in Orsay (France). The Orsay virus is a 

small positive-stranded RNA virus, most closely resembling Nodaviruses, that is specific to 

C. elegans and does not infect Caenorhabditis briggsae. The Virus is transmitted horizontally, 

probably via feeding and defecation. Viral RNA is mainly located in intestinal tissues, but has 

also been observed in the somatic gonad (Felix, et al., 2011; Franz, et al., 2014).  

The innate immune response against the Orsay Virus includes antiviral defences such as the 

rde argonaute gene family responsible for RNA interference and breaking down viral RNA 

(Felix, et al., 2011). Transcriptomic analysis has further shown that the transcriptional 

response to Orsay virus is most similar to N. parisii (Yang, et al., 2016) and both pathogens 

are affected by the ubiquitin-proteasome response (Bakowski, et al., 2014). STA-1, the C. 
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elegans homolog of mammalian STAT (which is part of the JAK/STAT-pathway associated 

with immunity) has been inferred to repress resistance against Orsay virus, as infected sta-1 

mutants contain less viral RNA (Tanguy, et al., 2017). 

5.6. Aim and objective 

The aim of this study is to investigate the transcriptional relationship between the HSR and 

the innate immune response to identify potential overlapping or unique gene expression 

profiles and transcriptional regulators between these two responses. For this, I chose to 

perform a systematic analysis of publicly available high throughput gene expression datasets 

from the model organism C. elegans exposed to 22 different pathogens and heat stress. This 

organism shares conserved stress response pathways and organs (cuticle and intestine) with 

humans (Rodriguez, et al., 2013). The fact that C. elegans only possesses the more ancient and 

conserved innate immune system has the advantage that the results are only due to the innate 

immune response and not a combination of the innate and adaptive immune systems 

(Ermolaeva & Schumacher, 2014), thus allowing a direct comparison between the heat shock 

response and the innate immune response. 
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Chapter 6: Methods for the bioinformatic 

analysis of high-throughput datasets 

6.1. Data selection 

Datasets used in this part of the thesis were found through searching the NCBI database for 

publications regarding C. elegans pathogen or heat stress response that have publicly available 

raw data from transcriptome profiling technologies (RNA-seq and single-channel 

microarrays). In addition, the Gene Expression Omnibus database (Edgar, et al., 2002) and 

modENCODE database (Celniker, et al., 2009) were searched for deposited data not found 

through NCBI. Data with no adequate control or no replicates were not used. The complete 

list of datasets used can be found in Appendix 5. 

6.2. Data processing 

6.2.1. Affymetrix Microarray 

The microarray data were analysed using the R package limma (Linear Models for Microarray 

and RNA-seq Data) (version 3.38.3) according to chapter 17 of the limma user guide (Ritchie, 

et al., 2015). The raw data was read into R using rma() and ReadAffy() from the affy 

package (version 1.60.0) (Gautier, et al., 2004), which simultaneously corrects for background 

intensity and normalizes the expression. The quality of the data was assessed using qc() 

from the simpleaffy package(version 2.58.0) (Miller, 2018). Data uniformity was checked with 

histograms and box plots in the R base package. Affymetrix IDs were converted to gene 

symbols using the getSYMBOL() function from the annotate package (version 1.50.1) 

(Gentleman, 2019). Affymetrix IDs that do not have a corresponding gene symbol were 

removed. 

In cases where the publication did not mention whether the samples were collected in series 

or in parallel, a PCA plot was drawn using limma function plotMDS()to check how similar 

the samples were and help determine whether a paired analysis was required. A design matrix 

was constructed using model.matrix() from the stats package (version 3.5.2) (R Core 

Team, 2014) with treatment as a factor. In the case of a paired analysis, both the treatment 

and the experiment/replicate number were given as factors. For the differential expression 
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analysis using limma, the data were fit to a linear model with lmFit(), and statistical 

significance was computed using eBayes(). An MA plot using plotMD() was produced 

to visualize the fold change and average expression of significant genes. 

6.2.2. Agilent Microarray 

For Agilent microarray data, the data was read into R using read.maimages() from the 

limma package. The data uniformity was checked with a density plot and boxplot. The Agilent 

IDs were converted to gene symbols using a conversion list provided by the platform 

(Agilent Technologies, 2016). The data was then corrected for background intensity using 

backgroundCorrect( ,method="minimum") and were normalized between the 

different arrays using normalizeBetweenArrays( ,method="quantile"). A 

PCA plot was drawn using limma function plotMDS() to assess whether a paired analysis 

was required. Probes were filtered out if they did not have a gene symbol, Entrez ID, or if 

the signal intensity was below the background intensity. 

The differential expression analysis was then done the same way as for Affymetrix data. 

6.2.3. Nimblegen Microarray 

Nimblegen format (.calls and .pair) is not supported by limma. The .pair data was converted 

to .xys datafile using a custom script (Carvalho, 2013). An annotation package was created 

using the makepdInfoPackage() function from the pdInfoBuilder package (version 

1.46.0) (Falon, et al., 2018) by providing the .xys and .ndf data (the .ndf data is available from 

NCBI under the accession GPL16196), that was then installed using 

install.package(). The .xys files were read into R using read.xysfiles() 

from the oligo package (version 3.10) (Carvalho & Irizarry, 2010) and the newly installed 

annotation package. The data were then normalized using rma().  

The resulting expression set was then analysed the same way as for Affymetrix data. 

6.2.4. RNA-seq Data 

Raw RNA-seq data was downloaded in .sra format using getSRAfile() from the SRAdb 

package (version 1.44.0) (Zhu, et al., 2013). These .sra data files were then converted to .fastq 

format using NCBI’s fastq-dump (version 2.8.0). For paired-end RNA-seq data, the option 

--split-files was used. The raw data was checked for quality and adapter content 
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using FastQC (version 0.11.8) (Andrews, 2010) and adapter trimming was done, if necessary, 

using TrimGalore, a wrapper of Cutadapt (version 0.5.0) (Krueger, 2012). Reads (sequenced 

strands of nucleic acids) were aligned using STAR (version 2.6) (Dobin, et al., 2013), which 

required a pre-generated genome index. The index was generated using C. elegans genome 

and annotated transcripts from Ensembl release 95 (WBcel235) (Ensembl, 2019) with default 

sjdbOverhang of 100 (for read length 100bp or more). For read length below 100bp, a 

new genome index was generated corresponding to sjdbOverhang of 1 - read length. 

After Alignment, the sorted .bam files were filtered using SAMtools (Li, et al., 2009), flagging 

unmapped reads and reads that failed the quality control. A quality check using BamQC was 

also performed to check for uniform alignment of the reads (Andrews, 2013). A count matrix 

for the reads was then generated using featureCounts (Liao, et al., 2014). MultiQC (Ewels, 

et al., 2016) was used to summarize the results from various tools used in order to compare 

the quality of alignment within and between samples. 

Differential expression analysis on the count matrix was done using the R package DEseq2 

(version 1.22.2) (Love, et al., 2014). The design formula for the function 

DESeqDataSetFromMatrix() included all factors initially. The resulting 

DEseqDataSet was then analysed using a PCA plot (plotPCA()) after transforming using 

vst(). Similarly to the microarray analysis, this plot is used to help determine whether a 

paired analysis was required. If it was not required, the DESeqDataSetFromMatrix() 

function was rerun, without including the samples/replicates as a factor. The wormbase ID 

of the DESeqDataSet was converted to Gene symbols using a conversion table generated 

from Ensembl Biomart (Ensembl, 2019). Wormbase ID without a gene symbol and very low 

count number (less than the number of samples) were removed. The datasets were then 

analysed using the DESeq() function. The results for the comparison of interest was 

extracted and subsequently transformed using lfcShrink() function with the “apeglm” 

method (Zhu, et al., 2018). An MA plot was generated using plotMD() to visualize the 

expression pattern of significant genes. 

6.2.5. ChIP-seq Data 

ChIP-seq data were downloaded from the GEO (Edgar, et al., 2002) and modENCODE 

databases (Celniker, et al., 2009) in bedgraph or bigwig form. These were visualized using 

IGV (Integrative Genomics Viewer) (Robinson, et al., 2011). If the input control track was 

relatively clean compared to the treatment track, then the treatment track was normalized 

against the control track using MACS2 bdgcmp function with the log-likelihood method 
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(Zhang, et al., 2008). On the other hand, if the input signal was stronger than the treatment 

track, then the input signal was not considered in the downstream analysis. MACS2 (Zhang, 

et al., 2008) peak call was then done on the tracks to find enriched binding sites. Min-length 

was set to 200, and the max-gap was set to 30. The cut-off was set to a threshold that 

produces an adequate number of hits, which was determined by manually sampling sections 

at various thresholds. The cut-off for each ChIP-seq dataset is given in the caption of 

Appendix 14. 

In order to find the genes associated with the enriched binding site, the transcript start sites 

of all genes were acquired from Biomart (Ensembl, 2019) and 500 bp were added upstream 

and downstream of it, to generate a 1 kb window. The peak-called regions were intersected 

with the 1 kb transcript start site regions using BEDtools intersect function (Quinlan 

& Hall, 2010), to assign genes to the enriched binding site. 

6.3. Meta-analysis/systematic review 

6.3.1. Identifying common differentially expressed genes 

The gene expression data from all pathogen response studies and HSR studies were 

compared separately to find commonly differentiated genes before finding the genes that 

respond to both pathogen infection and heat shock. 

6.3.1.1. Venn diagrams 

Venn diagrams were generated to intersect differentially expressed genes from different 

datasets, which were defined as having a p-value smaller than 0.05 and a │log2│ fold change 

greater than 0.6 (≈ 1.5 fold change). A maximum of 5 samples could be compared in a Venn 

diagram from the VennDiagram package. Since there were many more datasets than could fit 

in a single Venn diagram, datasets were compared to each other based on the evolutionary 

distance of the pathogens used to infect C. elegans (heat shock datasets were compared 

independent of the pathogen response datasets). The common tree from NCBI (NCBI, n.d.) 

was used to determine the evolutionary distance between pathogens. 

6.3.1.2. Heatmap 

The gene expression datasets from the pathogen studies were combined into a large matrix. 

Genes with an incomplete set of values (i.e. some datasets do not have a value for the gene) 
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were removed if they had 14 or more values missing. The reason why 14 was chosen was 

that out of all the datasets used, 14 came from the same microarray platform (Affymetrix). 

Since microarrays depend on the design of probes from known genes, older microarray chip 

designs may not have probes for genes identified recently, which were identified in the RNA-

seq data. The remaining missing values where imputated. Imputation was done for each gene, 

by replacing the missing values with the average of the known values of the gene. Next, genes 

were filtered to retain only those that can be considered generally responsive (i.e. the gene is 

not just responsive to few specific datasets). Firstly, genes with overall low differential 

expression across all datasets were filtered out. For each gene, the log2 fold change from 

each dataset was added together, and if the sum was below a certain threshold, the gene was 

removed (see the relevant section for the specific threshold). Secondly, only genes that were 

found to be significantly differentially expressed (│log2│ fold change larger than 0.6) in at 

least two datasets were kept. The requirement of at least two datasets would avoid false 

positives, where otherwise only one “outlier” would have been enough to consider a gene to 

be “commonly differentiated”. The last filtering criterion retained only the genes where the 

majority of datasets (see the relevant section for what is defined as “majority”) had a 

minimum log2 fold change of 0.1 (or 0.3 for the heat shock dataset). This retained genes that 

were consistently differentially expressed, albeit to a low degree, while being robust against 

outlier data that would otherwise dismiss potentially interesting genes. Due to the large 

number of datasets used, the effect size can be small (i.e. log2 fold change of 0.1) to still 

obtain a significant p-value (see Appendix 8). After all the filtering criterion to reduce the 

number of genes to a computationally feasible size, a heatmap was generated using 

heatmap.2() from the gplot package (version 3.0.1.1) (Warnes, et al., 2019). The same 

method with different filtering threshold was used for the heat shock datasets. 

6.3.2. K-means clustering 

Datasets were grouped 4  based on expression similarity, using the K-means clustering 

function Kmeans() from the amap package (version 0.8-16) (Lucas, 2018). The number of 

groups to separate the datasets into was determined by calculating the within-groups sum-

of-square for all possible number of groups and choosing the optimal number of groups 

using the elbow method (Ketchen & Shook, 1996). This method determines the best number 

based on: lowering the number of groups starts to see a comparatively larger loss in raw 

 
4 Here the word group is used to refer to clusters, since the word cluster is used to refer to a different list 

of genes in the results and discussion section. 
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information (larger within-groups sum-of-square), indicating that dissimilar datasets have 

been merged while increasing the number of groups does not model the data much better as 

the marginal gain in precision decreases (within-groups sum-of-square decreases less). 

6.3.3. Determining p-value of filtering Criteria  

The matrix of all differential expression values of all datasets was converted to a list, which 

was then used to find the median value (μ), mean deviation from the median (τ), mean and 

standard deviation. A histogram was drawn using all the values in the list, and the Laplace 

and normal density distribution were superimposed on the histogram to identify which 

probability distribution fits better to the actual data. The Laplace density curve was drawn 

using dlaplace()from the jmuOutlier package (version 2.2) (Garren, 2019) with the 

variables μ and τ. The normal distribution was drawn using dnorm() from the stats package 

(version 3.5.2) (R Core Team, 2014) with the mean and standard deviation. 

The p-value (for the filtering criteria) was calculated based on finding the probability of 

picking at least X number of differential expression values above the threshold log2 fold 

change value Y using Z number of trials. The probability of successfully picking a value at 

random above the threshold log2 fold change value was calculated using 

plaplace()from the jmuOutlier package (version 2.2) (Garren, 2019) with the variables μ 

and τ.  

For example, the probability of picking a log2 fold change value greater than 0.1 from the 

Laplace distribution with μ and τ is 0.56. The probability of this occurring at least 23 times 

out of 25 trials follows the binomial distribution with the formula: 

∑ (
25
𝑘

) × 0.56𝑘 × (1 − 0.56)25−𝑘 = 0.0001

25

𝑘=23

 

In this example, the probability of genes passing the filtering criteria would be 0.0001 or 

smaller. 

6.3.4. Gene Enrichment Analysis 

GO term analysis was done initially on the whole list of differentially expressed genes as well 

as smaller cluster of genes within the list. The analysis incorporates a number of tools. 

Significant GOterms, pathways, protein domains and other commonalities were identified 

using Wormbase GSEA (Angeles-Albores, et al., 2016), g:profiler (Raimand, et al., 2007) and 
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StringDB (Szklarczyk, et al., 2019). Protein-protein interaction networks were generated 

using StringDB. Enriched GOterm networks were generated using BiNGO (Maere, et al., 

2005) and ClueGO (Bindea, et al., 2009).  

The smaller clusters of genes were generated by using the dendrogram generated as part of 

the heatmap.2() function using the default method of complete linkage using the 

Euclidean distance measure. The dendrogram was cut-off at the point that would result in at 

least three large clusters representing up-regulated, down-regulated and mixed-regulated 

genes. These clusters were also individually analysed. 

6.3.5. TF binding around the transcript Start Site (SeqPlot) 

The average ChIP-seq signal around transcript start sites was visualized using SeqPlot 

(Stempor & Ahringer, 2016). The tracks used were the ChIP-seq data of PQM-1 (Niu, et al., 

2011) and DAF-16 (modENCODE ID: 591). The features dataset used were the .bed file of 

all C. elegans protein-coding transcript start site from the annotation version WBcel215 and 

WBcel235 for ce10 and ce11, respectively. The type of plot was set to “point feature”, and 

the plotting distance was set to 1000 bp up- and downstream. 

6.3.6. Hypergeometric test 

For comparison between two gene lists, the hypergeometric distribution test was done in R 

using the phyper() function from the stats package (R Core Team, 2014), with 

lower.tail set to FALSE: 

𝑝ℎ𝑦𝑝𝑒𝑟(𝑠𝑖𝑧𝑒 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 − 1, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑙𝑖𝑠𝑡 1, 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑠

− 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑙𝑖𝑠𝑡 1, 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑙𝑖𝑠𝑡 2, 𝑙𝑜𝑤𝑒𝑟. 𝑡𝑎𝑖𝑙 = 𝐹𝐴𝐿𝑆𝐸, 𝑙𝑜𝑔. 𝑝 = 𝐹𝐴𝐿𝑆𝐸) 

The total number of genes is the number of unique protein-coding genes among all datasets 

used (union of genes in all datasets). 

For comparison and visualization of multiple gene lists and their overlaps, the 

supertest() function from the SuperExactTest package (version 1.0.7) (Wang, et al., 

2015) was used. 
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6.4. Motif enrichment 

Motif and TF enrichment analysis was done using HOMER (Heinz, et al., 2010) with the 

worm promoter data v5.5 and C. elegans genome version ce11. 

de novo motif discovery was done using BAMM (Siebert & Söding, 2016), DREME (Bailey, 

2011) and Trawler (Ettwiller, et al., 2007). The input sequences were the promoter regions, 

defined as 500bp upstream and downstream of the transcript start site. The list of transcript 

start site was downloaded from Ensembl BioMart, (Ensembl, 2019), filtered for the genes of 

interest and 500bp were subtracted or added to the start and end position respectively. The 

file was converted to bed format and sequences were extracted using BEDTools getfasta 

(Quinlan & Hall, 2010) and the ce11 reference genome fasta file. For DREME, the sequences 

were submitted under default settings. For BAMM, the MMcompare Motif Database was set 

to JASPAR2018. For Trawler, the organism was changed to Caenorhabditis elegans (ce10), 

Motif database set to nematodes and analysis was done for both the single and double-strand 

option.  
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Chapter 7: The association of the heat shock 

and innate immune response 

Stress responses have been classically separated and studied by the nature of the stressor 

such as temperature (physical), reactive oxygen species (chemical) and pathogens (biological). 

Rather than viewing the response against different stressors as separate mechanisms, they 

might be interconnected to an extent previously unknown. To this end, the work presented 

here aims to analyse the relationship between the two distinct stress responses, the 

temperature-dependent stress response (HSR) and response to pathogen infection (innate 

immune response) in C. elegans. The approach concentrates on the change in the 

transcriptional landscape following the exposure to the stressor to identify key differentially 

expressed genes. For this, many high-throughput screening data are analysed to identify 

genes responsive to pathogen infection and genes responsive to heat shock. Finally, the genes 

responsive to each of the stressor are analysed and compared to determine the connection 

between the response to heat shock and pathogen infection. 

A systematic review of the available high-throughput screening data is an important step in 

validating and answering various scientific questions. The large number of available C. elegans 

datasets, especially with regards to pathogen infection, can provide strong statistical power 

and a better overview of the question at hand. A comparison of the differentially expressed 

genes between various published pathogen datasets has previously been carried out by Yang 

et al. (2016). However, here for the first time, the published datasets are reanalysed with the 

same software and same conditions, creating a unified and consistent database of 

differentially expressed genes, which makes direct comparisons between different datasets 

more reliable. 

7.1. Data used and quality control 

The data used in this study came from 23 publications with 32 datasets as well as one dataset 

generated internally by Dr Laura Jones. Pathogen infection response data is comprised of 29 

datasets, 19 of which are microarray data and ten are RNA-seq data. For the HSR, three 

publicly available RNA-seq datasets were used in addition to the dataset generated by Dr 

Laura Jones. The full list of datasets used here, with experimental details and platform can 

be found in Appendix 5. 
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7.1.1. Microarray data 

Quality control was performed for each of the 19 microarray datasets. An example is shown 

in Figure 7.1 and includes density estimates (Figure 7.1a & b), principal component analysis 

(PCA) plot (Figure 7.1d), mean difference plot (MD plot) (Figure 7.1e). For Affymetrix 

data, an additional QC stats plot from the simpleaffy package was done (Figure 7.1c). 

Many publications do not state whether the samples were collected from the same or 

different experiments. This is important in order to determine whether the data should be 

analysed in pairs or not. In some cases, a PCA plot was helpful in determining the statistical 

model, when samples with the same naming scheme are separated along one of the principal 

components axis. In the example, this is seen where the replicates are separated along the y-

axis, while the control (OP50) and treatment (PA14) groups are separated along the x-axis 

(Figure 7.1d). Separation of replicates could indicate a batch effect, inferring inconsistencies 

in the execution of the experiment (E.g. experiments done by different people or on different 

days). Cases where a PCA plot was insufficient to determine the statistical model were 

analysed by comparing the number of significantly differentially expressed genes between a 

paired and unpaired analysis. The p-value of a differentially expressed gene is dependent on 

both the fold change and the statistical variation. When analysing in pairs, the samples within 

each pair are compared among each other before the results from all pairs are pooled 

together (W. W. B. Goh, et al., 2017; Smyth, et al., 2019)5. As such, when a large variation 

between replicates exists, a paired analysis tends to result in stronger statistical power, as the 

absolute variation between samples in different pairs is avoided and only the relative gene 

expression change (fold change) between each pair is compared. In cases where replicates 

do not vary much, the statistical power does not differ much between a paired and unpaired 

analysis, as the inter-pair variability does not differ much. Thus, when the MA plot shows a 

much larger number significantly differentially expressed genes in a paired analysis compared 

to an unpaired analysis, the result of the paired analysis is used. 

 
5 Here the word “pair” is used instead of “batch” or “block”, as each batch/block is comprised of a pair of 

samples: one treatment sample and one control sample. 
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Figure 7.1 Representative quality control using the dataset from Estes et al. 2010. a) & b) Plot of signal intensity 

distribution and average intensity as a density plot and a boxplot, respectively. c) QC stat plot from the simpleaffy 

package. Good arrays are represented in blue, while bad arrays would be coloured red. The line emerging from the 

0-fold line should end up in the light blue area to indicate compatible scale-factors. Actin control (triangle) should be 

within 1-fold-change, and GAPDH (open circle) should be within 3-fold-change (Miller, 2018). d) PCA plot of the 

dataset. e) MD plot of the differential expression analysis, using a paired statistical model. Red dots are significantly 

up-regulated genes (denoted “1” in the legend), and blue dots are significantly down-regulated genes (denoted “-1” 

in the legend). Black dots are not significantly differentially expressed (denoted “0” in the legend). 
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7.1.2. RNA-seq data 

The quality control for the 14 RNA-seq datasets includes the featureCounts summary, STAR 

alignment score, Cutadapt report and FastQC report (an example of such a quality control can 

be found in Appendix 6). A PCA plot was often enough to determine whether a paired 

analysis was required. The paired analysis result for Osman, et al. (2018), K. Chen, et al. 

(2017) and ModENCODE H. sphaerosporum datasets were used for further analysis due to 

the stronger statistical power and a higher number of differentially expressed genes.  

Due to the extremely low differential expression of some of the datasets (Table 7.1 and 

Figure 7.2), further quality controls were conducted. Histogram plots of the differential 

expression of all genes showed that the global distribution of log2 fold changes in some 

datasets did not show a continuous probability distribution, but rather concentrate at one 

point (Figure 7.2a). I was able to identify the cause to be the function lfcshrink() in 

the DEseq2 package, which shrinks the log2 fold change based on the statistical power (such 

as the standard error) so that the final log2 fold change value is adjusted to the consistency 

of the data. The datasets most strongly affected by this shrinkage were Osman, et al. (2018), 

K. Chen, et al. (2017) and ModENCODE H. sphaerosporum, mainly due to their relatively 

large log fold change standard error (lfcSE), indicating that the replicates have large variations 

(see Figure 7.2b-d for an example). These datasets were not omitted at this stage, as they 

still contain a small number of differentially expressed genes that may be important. 
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Figure 7.2 Histogram plot of the log2 Fold Change distribution for all genes in each dataset. a) log2 Fold Change 

distribution for all genes in each of the 29 pathogen datasets. b) - d) Chen (N. parisii) dataset b) log2 Fold Change 

distribution before applying lfcshrink(), c) log fold change standard error (lfcSE), and d) log2 Fold Change 

distribution after lfcshrink(). 
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7.2. Change of the gene expression landscape as a 

result of pathogen infection 

The resulting number of significantly differentially expressed genes for each of the pathogen 

response datasets are summarized in the table below. For microarray data, the results were 

generated using limma, and RNA-seq data were analysed using DEseq2 (Table 7.1).  

Pathogen Reference Up-regulated 
genes 

Down-
regulated genes 

Pseudomonas aeruginosa Troemel, et al. (2006) 421 192 

Bond, et al. (2014) 483 371 

Estes, et al. (2010) 526 354 

Miller, et al. (2015) 491 189 

Staphylococcus aureus Irazoqui, et al. (2010) 89 156 

Bond, et al. (2014) 877 457 

Enterococcus faecalis Engelmann, et al. (2011) 15 12 

Yuen & Ausubel (2018) 435 220 

Microbacterium 
nematophilum 

O'Rourke, et al. (2006) 199 200 

Yersinia pestis Bolz, et al. (2010) 408 88 

Salmonella 
enterica 

Head & Aballay (2014) 1249 1467 

Bacillus subtilis Yuen & Ausubel (2018) 258 180 

Enterococcus faecium Yuen & Ausubel (2018) 355 208 

Stenotrophomonas 
maltophilia 

White & Herman (2018) 61 66 

Vibrio cholerae Sahu, et al. (2012) 324 462 

Photorhabdus luminescens Engelmann, et al. (2011) 125 136 

Serratia marcescens Engelmann, et al. (2011) 84 13 

Orsay Virus Sarkies, et al. (2013) 29 4 

Candida albicans Pukkila-Worley, et al. 
(2011) 

1551 239 

Nematocida parisii Bakowski, et al. (2014) 475 784 

K. Chen, et al. (2017) 24 0 

Orsay virus Tanguy, et al. (2017) 159 227 

K. Chen, et al. (2017) 32 0 

Bacillus thuringiensis Yang, et al. (2015) 4036 1941 

Myzocytiopsis humicola Osman, et al. (2018) 356 5 

Drechmeria coniospora ModENCODE 1061 556 

Harposporium sp. ModENCODE 1069 697 

Serratia marcescens ModENCODE 2135 2180 

Haptocillium 
sphaerosporum 

ModENCODE 7 3 

Table 7.1 Summary of the number of significantly differentially expressed genes of all 29 pathogen infection datasets. 

Significantly differentially expressed genes are defined as genes having a | log2FC | > 0.6 and an adjusted p-value < 

0.05. The non-shaded area is microarray data. Grey shaded area indicates RNA-seq data. 
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From the 29 datasets analysed here, the microarray data show a relatively consistent number 

of differentially expressed genes, especially with the same platform, mainly in the range of 

hundreds. RNA-seq data, on the other hand, vary significantly from single digits to thousands 

of differentially expressed genes (Table 7.1). While microarrays show higher consistency, 

their disadvantage lies in the dependence of probes. Many of the microarray chips are 

relatively old and do not encompass all the currently known genes to date. Furthermore, the 

probes depend on specific sequences of the gene and might not be able to detect the 

expression of transcripts with alternative splicing or different transcriptional start sites. This 

becomes biologically significant when different transcripts of the same gene are expressed 

under different conditions. RNA-seq, on the other hand, sequences each transcript of a given 

size and through alignment software, tries to identify each of the transcripts. Therefore, 

RNA-seq can capture a larger range of different transcripts and generally paints a more 

accurate picture of the gene expression landscape, but at the cost of larger variations. Such 

large variation was significant in four datasets (the ModENCODE H. sphaerosporum, Osman 

et al. (2018) and the two Chen et al. (2017) datasets) were the log fold change standard error 

(lfcSE) was larger than the log fold change itself, resulting in the shrinkage of most of the 

signal to zero after using the lfcshrink() function (Figure 7.2). 

7.2.1. Pathogen infection datasets show low overlapping 

up- and down-regulated genes 

Concentrating on the microarray datasets first we can see that there is a relatively large 

variation in the number of significantly differentially expressed genes between different 

pathogens as well as within the same pathogen (but conducted by different research groups). 

For example, Staphylococcus aureus only has 89 up-regulated genes in the dataset from Irazoqui 

et al. (2010), while Bond et al. (2014) has 877 up-regulated genes. This difference in results 

could be due to differences in experimental design such as C. elegans strains used, temperature 

and infection efficiency. Irazoqui et al. (2010) used a temperature-sensitive sterile strain and 

conducted the experiment at 25℃ on young adult worms, while Bond et al. (2014) used L4 

stage wild-type worms at 18℃. It is difficult to determine which experimental design is more 

precise, as both have their advantages and disadvantages and were designed to look at 

specific aspects of the pathogen infection response.  

Comparison of the up- and down-regulated genes within the same pathogen shows some 

variation. The four P. aeruginosa datasets, for example, have a relatively consistent number of 

up- and down-regulated genes, but only 87 up-regulated (Figure 7.3a & b) and 31 down-
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regulated genes are in common between the four datasets (Figure 7.3c & d). S. aureus has 

59 and 42 commonly up- and down-regulated genes, respectively (Figure 7.3e & f). While 

these numbers may appear small, hypergeometric testing shows that the overlap is very 

significant. 

When comparing between different pathogens, the overlap between up- and down-regulated 

genes becomes drastically reduced. Starting with the comparison of most closely related 

pathogens (based on the Entrez Taxonomy Database) in the Terrabacteria phylum (S. aureus, 

M. nematophilum, E. subtilis, E. faecalis and E. faecium) only two up-regulated (Figure 7.4a) and 

one down-regulated gene are shared (Figure 7.4b). For the pathogens of the 

Enterobacteriales order (Y. pestis, S. enterica, S. marcescens and P. luminescens), six up-regulated 

Figure 7.4c) and no down-regulated genes are shared (Figure 7.4d). The remaining three 

pathogens: S. maltophilia, P. aeruginosa and V. cholerae are very distantly related and share eight 

up-regulated (Figure 7.4e) and no down-regulated genes (Figure 7.4f). Hypergeometric 

testing for each of the comparisons (Appendix 7) shows that the observed overlap is higher 

than the expected overlap for all instances (except for comparisons with zero overlapping 

genes). This indicates that a small group of genes are enriched under various pathogenic 

infection. 
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Figure 7.3 Comparison of significantly differentially expressed genes from microarray datasets using the same 

pathogens. a) - d) Venn diagram and hypergeometric test of P. aeruginosa dataset of up- and down-regulated genes 

respectively. The legend in b) & d) indicate the p-value (larger number means more significant). The number above 

each column shows the number of shared genes. The redder the colour of the column, the more significant the 

overlap of the genes are. e) & f) S. aureus infection datasets up- and down-regulated genes, respectively.  

  

a) b) 

c) d) 

e) f) 
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Figure 7.4 Venn diagram of significantly differentially expressed genes of closely related pathogens from the 

microarray datasets. a) & b) Venn diagram of pathogens from the Terrabacteria phylum: S. aureus, M. nematophilum, 

E. subtilis, E. faecalis and E. faecium up-regulated and down-regulated genes respectively. c) & d) Venn diagram of 

pathogens from the Enterobacteriales order: Y. pestis, S. enterica, S. marcescens and P. luminescens up-regulated and 

down-regulated genes, respectively. e) & f) Venn diagram of remaining pathogens S. maltophilia, P. aeruginosa and 

V. cholerae up-regulated and down-regulated genes respectively. Hypergeometric test for each of the comparisons 

can be found in Appendix 7. 

RNA-seq datasets (except K. Chen, et al. (2017) due to the low number of differentially 

expressed genes) were also compared in the same manner as the microarray datasets by 

generating Venn diagrams comparing bacterial pathogens (Figure 7.5a & b) and fungal 

pathogens (Figure 7.5c & d). Like the microarray datasets, not many of the up-regulated 

and down-regulated genes are shared between different pathogens.  

a) b) 

c) d) 

e) f) 
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Figure 7.5 Venn diagram of significantly differentially expressed genes of pathogens in the same domain from the 

RNA-seq datasets. a) & b) Venn diagram of bacterial pathogens up-regulated and down-regulated genes, respectively. 

c) & d) Venn diagram of fungal pathogens up-regulated and down-regulated genes, respectively. 

The method of finding common differentially expressed gene lists is very stringent, as it 

requires the gene of all intersecting groups to have a minimum fold change and p-value in 

order to count as a pathogen response gene, which due to the inherent variability of 

biological experiments is difficult to keep consistent (i.e. this method is not robust against 

outlier). Especially the RNA-seq datasets suffer from this due to the much larger variation 

in the number of differentially expressed genes compared to the microarray datasets. To 

overcome this weakness, a different method of finding commonly expressed genes needs to 

be used that can make use of the many datasets to preserve high statistical power while 

reducing the stringency of the cut-off threshold. Such a method is described in more detail 

in the next section (Section 7.2.2). 

7.2.2. A small set of genes is consistently differentially 

expressed under various pathogens 

The Venn diagram intersection method of finding shared genes was not able to return a list 

of genes that would be considered “general” pathogen response genes. Furthermore, Venn 

diagrams are not able to visualize all 29 datasets at once and become highly complex beyond 

a) b) 

c) d) 
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five datasets. Therefore, a new way of visualizing the results and a more dynamic filtering 

approach is required that makes use of the large sample size (29 datasets) and is more robust 

against outliers, i.e. it does not miss a gene due to only one or a few “outlier datasets”. 

Heatmaps are a suitable way to visualize the differential gene expression landscape for a 

relatively large number of genes and datasets. However, heatmap generation is 

computationally intensive for a large number of data points and cannot feasibly visualize the 

whole C. elegans genome. Therefore, the number of genes to be included in the heatmap had 

to be reduced by filtering out genes whose expression did not change much overall. To 

achieve this, multiple filtering criteria were used to reduce the number of genes. 

The first filtering criteria removed genes for which more than half (15 or more) of the 

datasets do not have a measurement. This number was chosen because 14 of the experiments 

were done on the same Affymetrix microarray chip, which at the time it was designed (2002), 

did not have all the currently annotated genes (WBcel235). As such, if a gene were to be 

missing on these Affymetrix chips, it would automatically result in 14 missing measurements 

for that gene, which was still measured by RNA-seq and other microarray platforms. The 

remaining missing values for each gene were imputed by using the average of values from 

existing measurements. 

The second filtering criterion removed genes that on average show a │log(2)│ fold change 

less than 0.1. In this case, genes were removed when the 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑙𝑜𝑔2𝐹𝐶 < 2.9 

across all datasets (since there are 29 datasets, the absolute sum needs to be greater than 2.9 

to reach the average 0.1 fold change threshold). Genes that were filtered out by this method 

showed very little differential expression in response to pathogen infection in general. 

The third filtering criterion required the gene to be strongly differentially expressed in at least 

two samples. The threshold for strongly differentially expressed was defined as |𝑙𝑜𝑔2𝐹𝐶| >

0.6. This criterion filtered out genes that would only be strongly differentially expressed in 

none or only one of the 29 datasets, which could indicate an outlier. Having a gene 

significantly differentially expressed in multiple datasets would indicate more of a general 

pathogen response gene.  

The fourth filtering criterion kept only the genes that had |𝑙𝑜𝑔2𝐹𝐶| > 0.1 in at least 24 

datasets. The value for this criterion was determined by the number of genes left after the 

previous three filtering steps, as this criterion is very stringent. This criterion makes use of 

pooling the 29 experiments together to act as a large sample size, which can return significant 

genes even if the effect size is small. While the threshold of 0.1 may seem small, reaching 
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this threshold in 24 out of the 29 has a low probability of 0.002, based on hypergeometric 

testing using Laplace distribution (Appendix 8). 

After these filtering criteria, the number of genes was reduced from 25952 to 331 (see 

Appendix 20 for the gene list). A heatmap was drawn that clusters the genes and 

experiments based on complete linkage using Euclidean distance measure (Figure 7.6).  

The heatmap shows a mixture of signals with no clear clustering of genes. However, the left 

side of the heatmap seems to contain genes that are generally stronger differential expressed 

(both up-regulated (red) and down-regulated (blue)) compared to the rest. The RNA-seq 

samples that previously showed a very low number of differentially expressed genes (Osman 

et al. (2018), Chen et al. (2017) and ModENCODE H. sphaerosporum) (Table 7.1), also show 

low differential expression in here, represented as a mostly continuous yellow horizontal bar 

in the middle of the heatmap.
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Figure 7.6 Heatmap of the 331 filtered genes from all 29 datasets. The genes are placed along the x-axis while the datasets are on the y-axis. The datasets are named based on their first author 

publication and the pathogen name, or in case of modENCODE data, only the pathogen name. The data is grouped based on hierarchical clustering using complete linkage and Euclidean distance 

measure. Red cells are up-regulated genes in the dataset, while blue cells are down-regulated genes. The colour coding is capped at 2 and -2 log2 Fold Change. The Colour key also shows a density plot. 
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Due to the mixture of signals and absence of clear clustering, datasets were grouped together 

based on their gene expression response towards pathogen infection, with the aim of 

reducing the number of datasets (rows) to make the heatmap clearer and better to analyse. 

The grouping was done using K-means clustering on the 331 filtered genes, where the 29 

datasets were reduced to 7 groups. This number of groups was chosen because further 

reducing the number of groups starts to see a steeper loss in raw information (increased 

within groups sum of squares) (Figure 7.7), indicating that dissimilar datasets have been 

merged. On the other side, increasing the number of clusters does not model the data much 

better as the marginal gain in precision (loss of within groups sum of squares) decreases. This 

method of interpretation is known as the elbow method (Ketchen & Shook, 1996). 

 

Figure 7.7 Within-groups sum of squares of the datasets by k-means clustering. The k-means clustering was run on 

the 29 datasets for a range of k (number of groups) from k = 2 to k = 18. The within-group sum of square was calculated 

for each value of k. The blue lines intersect at k = 7 and are guidelines to compare the steepness of the line before 

and after this point. 

The groupings by k-means clustering can be seen in Table 7.2. Most of the time, the same 

pathogens are grouped together, except N. parisii and Orsay virus, which are both found in 

group 5 but also group 1 and 6, respectively. This can be explained by the fact that group 5 

contains datasets with low differential expression (Table 7.1), in part due to the 

lfcshrink() function (refer back to Section 7.1.2), thus grouping them together. The 

six fungal pathogen datasets do not cluster together and are spread into five different groups 

indicating that, although classified into the same domain, they infect C. elegans through a wide 

array of mechanisms eliciting different gene expression response.  

The clustering of group 5 indicates that the presence of datasets with very low differential 

expression may negatively affect the clustering algorithm as the clustering may not reflect 

biological similarity due to the absence of distinct signal patterns. One way to resolve this 

5 10 15

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

Number of Groups (k)

W
it
h

in
 g

ro
u

p
s
 s

u
m

 o
f 

s
q

u
a
re

s



164 
  
issue is to avoid using the lfcshrink() function from DEseq2; however, this would 

make the analysis less accurate as the data would contain more false-positive gene hits. A 

more conservative solution is to omit the dataset with very low differential expressed genes 

compared to the other datasets as observed from the histograms in Figure 7.2.  

1 Bakowski Pukkila-Worley Yang     
Nematocida 
parisii 

Candida albicans Bacillus 
thuringiensis 

   

2 Engelman Yuen Head Yuen   
Enterococcus 
faecalis 

Enterococcus 
faecalis 

Salmonella 
enterica 

Enterococcus 
faecium 

 

3 Troemel Bond Miller Estes Bolz  
Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa 

Yersinia pestis 

 Irazoqui Bond Rourke Sahu modENCODE 

 Staphylococcus 
aureus 

Staphylococcus 
aureus 

Microbacterium 
nematophilum 

Vibrio cholerae Drechmeria 
coniospora 

4 Engelman modENCODE modENCODE Engelman   
Serratia 
marcescens 

Serratia marcescens Harposporium sp. Photorhabdus 
luminescens 

 

5 Chen Chen Tanguy Osman   
Nematocida 
parisii 

Orsay virus Orsay virus Myzocytiopsis 
humicola 

 

6 Sarkies White       
Orsay virus Stenotrophomonas 

maltophilia 

  
 

7 modENCODE Yuen       
Haptocillium 
sphaerosporum 

Bacillus subtilis      

Table 7.2 Grouping of the 29 datasets into 7 groups via k-means clustering. Fungal pathogens are underlined, and 

viral pathogens are written in bold. The dataset name (first author of publication or modENCODE) is written in red. 

Pathogens are colour coded when it exists more than once. 

The data were reanalysed the same way as previously, but excluding the Osman et al. (2018), 

modENCODE Haptocillium sphaerosporum and the two Chen et al. (2017) datasets. This leaves 

25 datasets with a large distribution of differentially expressed genes. The fourth filtering 

criterion was altered to accommodate this change (23 samples must have |𝑙𝑜𝑔2𝐹𝐶| > 0.1). 

This criterion is more stringent with an equivalent p-value cut-off of 0.0001 (Appendix 8). 

A final filtering criterion was included which removes genes for which the adjusted p-value 

is larger than 0.05. As each differentially expressed gene in each dataset has its own adjusted 

p-value, Fisher’s method was used to combine the adjusted p-values to calculate a combined 

adjusted p-value for each gene. If the combined adjusted p-value for the gene is larger than 

0.05, this gene is removed. This criterion removed genes for which there is weak statistical 

support, which could be due to a low base expression where small variations result in large 

log2 fold changes or the variation between replicates/duplicates is relatively large compared 



165 
  
to the log2 fold change. This reduces the list of genes to 585 (see Appendix 20 for the gene 

list) which is then used for k-means clustering the datasets into 6 groups (instead of 7) (Table 

7.3). 

1 Sarkies White        

 
Orsay virus Stenotrophomonas 

maltophilia 
     

2 Irazoqui Bond modENCODE Rourke Pukkila-Worley 

 
Staphylococcus 
aureus 

Staphylococcus 
aureus 

Drechmeria 
coniospora 

Microbacterium 
nematophilum 

Candida 
albicans 

3 Engelman Yuen Yuen Yuen   

 
Enterococcus 
faecalis 

Enterococcus 
faecalis 

Enterococcus 
faecium 

Bacillus subtilis   

4 Engelman modENCODE modENCODE    

 
Serratia 
marcescens 

Serratia marcescens Harposporium 
sp. 

   

5 Tanguy        

 Orsay virus        

6 Bond Troemel Estes Miller Sahu 

 

Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa 

Vibrio cholerae 

 Bolz Bakowski Engelman Head  Yang 

 
Yersinia pestis Nematocida parisii Photorhabdus 

luminescens 
Salmonella 
enterica 

Bacillus 
thuringiensis 

Table 7.3 Grouping of the 585 differentially expressed genes from the 25 datasets into 6 groups via k-means 

clustering. Fungal pathogens are underlined, and viral pathogens are written in bold. The dataset name (first author 

of publication or modENCODE) is written in red. Pathogens are colour coded when it exists more than once. 

This K-means clustering (Table 7.3) is relatively consistent with the previous clustering of 

all 29 datasets. All pathogens, except the Orsay virus, were grouped in the same groups. The 

heatmap for the 585 genes from the six K-mean clustered group can be seen in Figure 7.8.
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Figure 7.8 Heatmap of the 585 filtered genes from the 25 datasets. The genes are placed along the x-axis while the grouped datasets are on the y-axis. The numbers on the left side of the y-axis denote 

the K-mean clustering group (Table 7.3). The data is grouped based on hierarchical clustering using complete linkage and Euclidean distance measure. Red cells are up-regulated genes in the particular 

group, while blue cells are down-regulated genes. The colour coding is capped at 2 and -2 log2 Fold Change. The horizontal blue line at the dendrogram indicates the cut-off level used to group genes 

into clusters.
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The heatmap shows a more distinct patterning on both the left side and the right side. The 

left-most genes show strong differential expression in all groups except for group number 5, 

while many genes on the right show up-regulation in group 6 and 4, which makes up more 

than half of the datasets. The middle section of the heatmap shows weakly differentially 

expressed genes, represented by lighter shades of blue and yellow. Compared to the initial 

heatmap that included all 29 datasets, the result of clustering reduced the log2 fold change 

of the genes, due to averaging these across each group, making the heatmap look more 

“faded” (Figure 7.8).  

Some patterning on the heatmap started to appear. However, the larger number of genes left 

after filtering in addition to the clustering that reduces the signal intensity of the heatmap 

makes this result less ideal than preferred. As such, I chose to increase the stringency of the 

filtering criteria further to reduce the number of genes to a similar level as the initial heatmap 

containing all 29 datasets (Figure 7.6). 

The new method used the same initial 3 filtering steps, albeit with more stringent cut-offs 

(the 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑙𝑜𝑔2𝐹𝐶 > 7.5  across all 25 datasets for the gene. At least six 

datasets must have a |𝑙𝑜𝑔2𝐹𝐶| > 0.6. At least 13 datasets must have a |𝑙𝑜𝑔2𝐹𝐶| > 0.1 and 

𝑝 < 0.05). 1671 genes remained, which were then used by the k-means clustering function 

to reduce the 25 datasets into 7 groups (Table 7.4). Two more filtering steps were then done 

to reduce the number of genes further. At least 3 groups must have a |𝑙𝑜𝑔2𝐹𝐶| > 0.6 and 

at least 5 groups must have a |𝑙𝑜𝑔2𝐹𝐶| > 0.3. By clustering the k-means at an earlier stage, 

it provides the function with more data points (1671 genes), thus allowing a more 

comprehensive comparison between datasets, while also avoiding noisy background data 

(genes that are not differentially expressed, but show technical/biological variation) that 

would negatively impact the accuracy. The addition of filtering after clustering has the benefit 

that pathogens with more datasets do not account for more. For example, the four P. 

aeruginosa datasets would favour P. aeruginosa specific genes, while pathogens where only one 

dataset exists, such as V. cholerae would see their weighting reduced. Clustering would put 

similar pathogens together, and the groups will have the same weightings. 



168 
  

1 Tanguy Head     

 Orsay virus Salmonella enterica     

2 Sarkies White     

 
Orsay virus Stenotrophomonas 

maltophilia    

3 Irazoqui Bond Rourke modENCODE 

 
Staphylococcus 
aureus 

Staphylococcus aureus Microbacterium 
nematophilum 

Drechmeria 
coniospora 

 Engelman Yang Bakowski  

 
Photorhabdus 
luminescens 

Bacillus thuringiensis Nematocida parisii  

4 Troemel Bond Estes Miller 

 
Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa 

Pseudomonas 
aeruginosa 

 Bolz Sahu   

 Yersinia pestis Vibrio cholerae   

5 Engelman modENCODE modENCODE  

 Serratia marcescens Serratia marcescens Harposporium sp.  

6 Engelman Yuen Yuen Pukkila-Worley 

 
Enterococcus faecalis Enterococcus faecalis Enterococcus 

faecium 
Candida albicans 

7 Yuen       

 Bacillus subtilis       

Table 7.4 Grouping of the 1671 genes from the 25 datasets into seven groups via k-means clustering. Fungal 

pathogens are underlined, and viral pathogens are written in bold. The dataset name (first author of publication or 

modENCODE) is written in red. Pathogens are colour coded when it exists more than once. 

The new list of differentially expressed genes consists of 383 genes (see Appendix 20 for 

the gene list) and shows more distinct heatmap pattern and stronger colouring indicative of 

larger log2 Fold Change (Figure 7.9). The left side of the heatmap is a region of 

predominantly down-regulated genes (except group 5), while the right side consists of mainly 

up-regulated genes. The middle region shows genes that are both up-regulated and down-

regulated in a group-specific manner. 
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Figure 7.9 Heatmap of the 383 genes from the 25 datasets using the more stringent filtering criteria. The genes are placed along the x-axis while the datasets are on the y-axis. The numbers on the left 

side of the y-axis denote the K-mean clustering group (see Table 7.4). The data is grouped based on hierarchical clustering using complete linkage and Euclidean distance measure. Red cells are up-

regulated genes in the particular group, while blue cells are down-regulated genes. The colour coding is capped at 2 and -2 log2 Fold Change. The horizontal blue line at the dendrogram indicates the 

cut-off level used to group genes into clusters.
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Comparing the list of genes which were used to generate the three heatmaps (Figure 7.6, 

Figure 7.8 & Figure 7.9), it shows that the different filtering methodology and criteria do 

affect the final composition of genes to a larger degree than anticipated (Figure 7.10a). 

However, the hypergeometric distribution test shows that the similarities are still very 

significant (Figure 7.10b), indicating that the important biological signal from the datasets 

is robust. 

 

Figure 7.10 Comparison of the three filtered gene lists. a) Venn diagram of the three lists containing 331, 585 and 383 

genes as a result of the different filtering methodology. b) Hypergeometric distribution test of the intersecting genes. 

The green dots below the bar chart indicate the intersecting lists. The legend indicates the p-value (larger number 

means more significant). The number above each column shows the number of shared genes. The redder the colour 

of the column, the more significant the overlap of the genes are. list331 = the initial list of genes (Figure 7.6). list585 

= the second list of genes omitting the four outlier datasets (Figure 7.8). list383 = the final list of genes (Figure 7.9). 

Both list585 (the second list of genes, omitting the four outlier datasets) and list383 (the final 

list of genes) were analysed for gene set enrichment using Wormbase Enrichment Analysis 

software (Figure 7.11) and g:Profiler (Appendix 9) web-based software. The analysis on 

list331 (initial list of genes) was not included here, as the majority of its genes are shared with 

list585. 
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Figure 7.11 Wormbase Enrichment Analysis on list585 and list383. a) & b) List585 results for Tissue Enrichment 

Analysis and Gene Ontology (GO) Enrichment Analysis, respectively. c) & d) List383 results for Tissue Enrichment 

Analysis and Gene Ontology (GO) Enrichment Analysis, respectively. All terms have a q-value lower than 0.05. 

The results from the Wormbase Enrichment Analysis of the two gene lists do not differ 

much, especially at the high confidence terms, which includes immune system processes, 

response to biotic stimuli, intestine, defence response and membrane raft. list585 has more 

GO terms toward the lower end of the significance cut-off that are not found in list383, 

mainly related to metabolic and synthetic processes. The next step was to determine which 

gene set enrichment terms corresponds to which cluster (section) of the heatmap, i.e. which 

terms are correlated with up-regulated genes and which terms are associated with down-

regulated genes. The method of clustering the genes of the heatmap together is by using a 

line of cut-off on the dendrogram which then groups all the genes below the line together 

(Figure 7.8 and Figure 7.9 blue line).
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list585 

Wormbase Enrichment Analysis 
Term Q value 

 

STRING # of 
genes 

pm7 WBbt:0003721 0.074 

pm3 WBbt:0003740 0.074 

pm5 WBbt:0003737 0.074 

excretory gland cell WBbt:0005776 0.074 

response to biotic stimulus GO:0009607 7.30E-06 

lytic vacuole GO:0000323 0.054 

iron ion binding GO:0005506 0.054 

tetrapyrrole binding GO:0046906 0.056 
 

 

10 

No enrichment 

 

13 

intestine WBbt:0005772 4.90E-26 

organic acid metabolic process GO:0006082 2.80E-07 

transmembrane transport GO:0055085 0.0002 

structural constituent of cuticle GO:0042302 0.0002 

lipid catabolic process GO:0016042 0.00021 

response to biotic stimulus GO:0009607 0.0023 

immune system process GO:0002376 0.0026 

collagen trimer GO:0005581 0.0026 

extracellular region GO:0005576 0.0049 

purine nucleoside monophosphate metabolic 
process GO:0009126 0.0081 

extracellular space GO:0005615 0.0084 

purine nucleotide metabolic process GO:0006163 0.0086 

lytic vacuole GO:0000323 0.011 

nucleoside phosphate metabolic process GO:0006753 0.019 

transferase activity transferring one-carbon 
groups GO:0016741 0.03 

ribose phosphate metabolic process GO:0019693 0.042 
  

284 

intestine WBbt:0005772 2.90E-11 

outer labial sensillum WBbt:0005501 3.10E-07 

PVD WBbt:0006831 3.10E-07 

immune system process GO:0002376 5.80E-15 

response to biotic stimulus GO:0009607 7.40E-06 

extracellular region GO:0005576 8.30E-05 

lipid catabolic process GO:0016042 0.00041 

extracellular space GO:0005615 0.001 

tetrapyrrole binding GO:0046906 0.0017 

organic acid metabolic process GO:0006082 0.0042 

neuropeptide signalling pathway GO:0007218 0.0042 

iron ion binding GO:0005506 0.018 

response to topologically incorrect protein GO:0035966 0.027 
 

 

201 

intestine WBbt:0005772 0.0033 

cephalic sheath cell WBbt:0008406 0.0057 

PVD WBbt:0006831 0.024 

outer labial sensillum WBbt:0005501 0.024 

immune system process GO:0002376 1.80E-13 

lipid catabolic process GO:0016042 0.0011 

response to biotic stimulus GO:0009607 0.0038 

lytic vacuole GO:0000323 0.029 

identical protein binding GO:0042802 0.035 
 

 

22 

intestine WBbt:0005772 1.40E-12 

PVD WBbt:0006831 2.30E-09 

outer labial sensillum WBbt:0005501 2.30E-09 

immune system process GO:0002376 2.00E-43 

response to biotic stimulus GO:0009607 3.70E-06 

membrane GO:0016020 0.015 
 

 

55 

Figure 7.12 Wormbase Enrichment Analysis and STRING analysis for each cluster of genes based on the heatmap of 

Figure 7.8. The order of cluster from top to bottom corresponds to the cluster on the heatmap from left to right. The 

number of genes in each cluster are shown in the right-most column, and the colour corresponds to the colouring in 

Appendix 20. Wormbase Enrichment Analysis results include tissue and GO term enrichment analysis. Tissue 

enrichment terms have the ID prefix “WBbt” and GO terms have the prefix “GO”. STRING excludes disconnected 

nodes.  
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list383 

Wormbase Enrichment Analysis 
Term Q value 

 

STRING # of 
genes 

intestine WBbt:0005772 1.00E-12 

cephalic sheath cell WBbt:0008406 5.10E-06 

PVD WBbt:0006831 0.016 

outer labial sensillum WBbt:0005501 0.016 

immune system process GO:0002376 2.40E-11 

response to biotic stimulus GO:0009607 4.50E-06 

lipid catabolic process GO:0016042 0.00064 

iron ion binding GO:0005506 0.00064 

organic acid metabolic process GO:0006082 0.00072 

tetrapyrrole binding GO:0046906 0.0012 

lytic vacuole GO:0000323 0.0029 

structural constituent of cuticle GO:0042302 0.017 

collagen trimer GO:0005581 0.017 
 

 

82 

primary active transmembrane transporter 
activity GO:0015399 0.043 

 

 

4 

response to biotic stimulus GO:0009607 1.80E-07 
 

 

13 

cephalic sheath cell WBbt:0008406 0.041 
 

 
10 

No enrichment No interaction 3 
intestine WBbt:0005772 7.60E-14 

outer labial sensillum WBbt:0005501 3.60E-05 

PVD WBbt:0006831 3.60E-05 

coelomic system WBbt:0005749 0.039 

response to biotic stimulus GO:0009607 1.40E-14 

immune system process GO:0002376 4.10E-13 

tetrapyrrole binding GO:0046906 3.30E-06 

iron ion binding GO:0005506 3.30E-06 

extracellular region GO:0005576 8.20E-06 

lytic vacuole GO:0000323 0.00011 

extracellular space GO:0005615 0.00011 

lipid catabolic process GO:0016042 0.00018 

organic acid metabolic process GO:0006082 0.00064 

transferase activity transferring one-carbon 
groups GO:0016741 0.02 

 

 

195 

intestine WBbt:0005772 6.40E-16 

PVD WBbt:0006831 5.10E-11 

outer labial sensillum WBbt:0005501 5.30E-11 

immune system process GO:0002376 5.90E-38 

response to biotic stimulus GO:0009607 2.10E-09 

membrane GO:0016020 5.30E-05 

intrinsic component of 
membrane GO:0031224 0.0039 

 

 

76 

Figure 7.13 Wormbase Enrichment Analysis and STRING analysis for each cluster of genes based on the heatmap of 

Figure 7.9. The order of cluster from top to bottom corresponds to the cluster on the heatmap from left to right. The 

number of genes in each cluster are shown in the right-most column, and the colour corresponds to the colouring in 

Appendix 20. Wormbase Enrichment Analysis results include tissue and GO term enrichment analysis. Tissue 

enrichment terms have the ID prefix “WBbt” and GO terms have the prefix “GO”. STRING excludes disconnected 

nodes. 
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Analysis of gene clusters from list585 and list383 show similar trends (Figure 7.12 and 

Figure 7.13). “Immune system process” is found at the clusters further down in the table 

(corresponding to the right side of the heatmaps), indicating that this process sees an 

upregulation of its corresponding genes during pathogen infection. The “Intestine” term 

comes up in most clusters which imply that most of the pathogen response is located at the 

intestine. Terms corresponding to metabolic processes are found mainly at the top of the 

table, indicating that genes controlling these are down-regulated. STRING protein-protein 

interaction analysis illustrates a large protein interaction web, suggesting that C. elegans 

pathogen response is not controlled by a few relatively isolated pathways, but a large network 

of proteins. 

In order to proceed further, I concentrated the next analysis on list383. I chose this list over 

list585 because list585 has a very large difference in cluster size, as most of the genes are 

contained in only 2 clusters (284 and 201 genes making up 82.9% of all the differentially 

expressed genes). Coincidentally, these two clusters contain genes with relatively low log2 

Fold Change and mixture of up- and down-regulated genes. This makes it difficult to 

determine whether the clusters correspond to up-regulated or down-regulated genes as a 

result of pathogen infection. Furthermore, the q-values for the list383 Wormbase 

Enrichment Analysis results are on average statistically stronger and are thus less likely to be 

false positive. 

A GO-term network analysis was done for list383 using ClueGO (Bindea, et al., 2009) and 

BiNGO (Maere, et al., 2005) apps on the Cytoscape platform. Both the ClueGO (Figure 

7.14) and BiNGO (Appendix 10) results show that the significant GO-terms all belong to a 

few large groups of distinct biological processes. The first very distinct group is related to 

defence responses and include significant parent and child terms related to more general 

‘response to stimulus’ as well as more specific terms like ‘response to fungus’. Next, there is 

a diverse group of metabolic processes that are related to ‘lipid/fatty acid metabolic process’, 

‘oxidation/reduction’ and ‘carbohydrate catabolic/metabolic process’. Finally, there are two 

small groups related to lifespan and transport (of molecules) (Figure 7.14). 
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Figure 7.14 ClueGO network analysis for ‘GO:biological processes’ on all genes from list383. GO terms are indicated 

by nodes. The pie-chart indicates the proportion of genes from the query list relative to the whole set of genes 

associated with the term (See Appendix 11 for more details). Terms written in bold are the most significant terms 

within the group. Edges indicate parent/child term relationship. Minimum of five genes per node and GO hierarchy 

level range from 3-6. GO Term Fusion was enabled. 

By concentrating on only the three largest clusters of genes from list383, that make up 92% 

of the genes in the list, we can better determine their function within the network. The three 

clusters correspond to genes that are mainly down-regulated (Figure 7.13 blue), genes that 

are both up- and down-regulated in a group-specific manner (Figure 7.13 yellow), and genes 

that are mainly up-regulated (Figure 7.13 red). In the heatmap (Figure 7.9) this corresponds 

to the left, middle and right clusters with 82, 195 and 76 genes (Figure 7.13) respectively. 

The ClueGO analysis was repeated, this time by specifying three lists of genes corresponding 

to three clusters (Figure 7.15a). 
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Figure 7.15 ClueGO analysis for GO:biological processes for the three largest groups of list383. The groups are 

determined based on hierarchical clustering and dendrogram cut-off. a) network analysis with a minimum of five 

genes per node per cluster and GO hierarchy level range from 3-8 (see Appendix 12 for more detailed list). b) Cerebral 

View of the network showing all genes that are part of any of the GO terms and are colour coded respectively. Each 

shape corresponds to one gene and depending on the shape, it belongs to the cluster of mainly down-regulated genes 

(triangle), group-specific up- and down-regulated genes (square) and mainly up-regulated genes (circles). The genes 

are also ordered according to where their protein locates in the organism.  

a) 

b) 
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From the ClueGO Cerebral View (Figure 7.15b), there is a clear distinction between the 

three gene clusters. Proteins located extracellularly are nearly exclusively squares, which are 

group dependent up- and down-regulation genes. The cluster of genes that are mainly up-

regulated (circles) are found to be mostly associated with defence response (dark purple) and 

found mostly at the plasma membrane. The genes corresponding to the down-regulated 

cluster (triangle) are predominantly found intracellularly and are associated with metabolic 

processes. 

7.2.3. Expression of immune effector protein after pathogen 

infection 

Many proteins have been classified as immune effectors. Families of immune effector 

proteins are ABF (antibacterial factor related), CNC (caenacin), LEC (lectin) & CLEC (c-

type lectin), LYS (lysozyme) & ILYS (invertebrate lysozyme), NLP (neuropeptide-like 

protein) and SPP (saposin-like protein) (Kim & Ewbank, 2018). I was interested to see how 

the genetic expression of these protein families changes upon infection. As such, I generated 

heatmaps for each protein family (Figure 7.16 and Appendix 13a for LEC & CLEC). 

Based on the gene expression changes, not all protein families mentioned above are 

responsive to all types of pathogens. The five ABFs are only differentially expressed in a 

small number of pathogen infections (Figure 7.16a). The CNC genes seem to be specific to 

certain pathogens. D. coniospora leads to upregulation of a large number of CNC genes, while 

S. marcescens infection reduces their expression (Figure 7.16b). The ILYS and LYS genes 

(except ilys-1 & ilys-6) are overall differentially expressed in most pathogens (except Orsay 

Virus). Some of these genes tend towards down-regulation (lys-4,5,6,7 & ilys-5,10), while 

others are predominantly up-regulated (lys-1,2,3,8,9 &ilys-4). ilys-2 and ilys-3 show a strong but 

pathogen-dependent direction of regulation (Figure 7.16c). Around half of the SPP genes 

are consistently differentially expressed in all datasets, and the direction of expressional 

change varies depending on the pathogen (Figure 7.16d). The NLP genes are mostly weakly 

differential expression, but there seems to be a consistent but weak pathogen-specific down-

regulation (S. marcescens) or up-regulation (B. thuringiensis) (Figure 7.16e). The CLEC & LEC 

genes are for the most part not differentially expressed (Appendix 13a).  
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Figure 7.16 Heatmaps of gene expression of protein families considered to be immune effectors in each pathogen 

dataset: a) ABF, b) CNC, c) LYS & ILYS, d) SPP and e) NLP. The genes are placed along the x-axis while the datasets are 

on the y-axis. The data is grouped based on hierarchical clustering using complete linkage and Euclidean distance 

measure. Red cells are up-regulated genes in the particular dataset, while blue cells are down-regulated genes. The 

colour coding is capped at 2 and -2 log2 Fold Change. The Colour key also shows a density plot. 

a) b) 

c) d) 

e) 
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7.2.4. Discussion 

From the results presented in section 7.2.1 - 7.2.3, we can see that during pathogen infection, 

C. elegans responds by changing the expression landscape. The extent to which the gene 

expression landscape changes varies between different pathogens. The genes that see a 

significant change in expression differ across the different pathogens, and no gene 

consistently pass the differential expression significance threshold in all pathogen datasets 

(Figure 7.4 and Figure 7.5). Visualizing the data as a heatmap then showed more clearly 

that the gene differential expression across all pathogen datasets varies significantly with no 

clear clustering (Figure 7.6). Furthermore, heatmaps of known immune effector protein 

families, that were identified to be important for certain pathogens, show that their 

expressions differ across all the pathogen datasets. Some of these families, such as ABF and 

NLP generally show low differential expression in most datasets, while other families such 

as LYS & ILYS are relatively strongly differentially expressed (Figure 7.16 and Appendix 

13a). Using an optimized multi-layer filtering criterion, I was able to identify high confidence 

genes, with consistent expressional changes, that can be labelled as ‘general pathogen 

responsive genes’, with a more distinct clustering of genes (Figure 7.9). These results 

demonstrate that responses to pathogen infections vary widely and reflect the various 

mechanisms that different pathogens use to infect the host. However, a relatively small set 

of genes are consistently differentially expressed in most if not all datasets and may be up-

regulated under some pathogen infection and down-regulated in other infections.  

Enrichment Analysis on all the genes in list383 showed that a significant portion of the genes 

is active in the intestine, which is known to be a hot spot for infections (Kim & Ewbank, 

2018). Enrichment in the ‘PVD’ and ‘outer labial sensillum’ sensory neurons (Altun & Hall, 

2010) implies that neurological sensory activity is involved (Figure 7.11a & c), perhaps as a 

defence/avoidance mechanism by moving away from stressful environments. ‘Immune 

system process’ and ‘response to biotic stimuli’ is also found strongly enriched (Figure 7.11b 

& d), which is not unexpected, since pathogens are biotic stimuli and induce the activity of 

the immune system. All the aforementioned enrichment terms become more significant 

towards the up-regulated gene cluster (Figure 7.12 and Figure 7.13), indicating that up-

regulated genes drive more of the response against pathogen infections. Down-regulated 

gene cluster, on the other hand, show enrichment for terms associated with various 

metabolic processes (Figure 7.12 and Figure 7.13), which implies a reduction in metabolic 

activity. 
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Analysis of the cellular location of the genes in list383 shows that the up-regulated genes 

tend to be located at the plasma membrane, while down-regulated genes are predominantly 

found intracellularly. The clusters containing genes with a pathogen-specific up- and down-

regulation are found in all locations, including extracellularly (Figure 7.15). The up-regulated 

genes that are exclusively located at the plasma membrane could be membrane-bound 

proteins such as transport proteins and membrane receptors (Figure 7.15b circle). I would 

hypothesize that these are membrane receptors that received important extracellular cues 

and signals corresponding to the presence of pathogen infection. Increasing the expression 

of receptors in general improves the ability to sense a wide variety of different cues. These 

genes could also act as membrane transport proteins that increase transmembrane transport 

of chemicals and proteins related to more general stress response function, such as control 

of metabolism and signalling.  

Genes that are up- or down-regulated in a pathogen dependent manner could be pathogen-

specific genes (Figure 7.15b square). The ones located extracellularly could be pathogen-

specific immune response proteins or transcellular signalling proteins that are secreted into 

the extracellular matrix after the pathogen has been identified, to fight the infection or alert 

neighbouring cells. Intracellular genes, on the other hand, might have a defensive mechanism 

to protect the intracellular environment from pathogen-induced stressor or toxins, such as 

neutralizing or maintaining stable concentrations of chemicals/proteins. At the plasma 

membrane, their functions could be to act as transport proteins to facilitate the movement 

of immune response and signalling proteins out of the cell, potentially as part of transcellular 

signalling, or increase the influx and outflow of chemicals related to cellular maintenance. As 

membrane receptors, they could help increasing signalling cascades to elevate the immune 

response signal intensity. 

The down-regulated genes are mainly located intracellularly and are associated with metabolic 

processes (Figure 7.15b triangle). This down-regulation may result in reduced metabolic 

activity and may be necessary to allocate more resources towards the expression of crucial 

life-preserving genes that are immediately required. A sleep-like (quiescence) response has 

been reported during heat stress when the nematode show reduced activity (locomotion and 

feeding) during and after heat-shock (Hill, et al., 2014), arguing in favour of a stress-

dependent reduction in metabolic activity. This suggests that during pathogen infection (or 

other stress), the cell switches from a passive cell maintenance orientated transcriptional 

instruction towards an active defence focused one to increase survivability (analogously to 

the sympathetic and parasympathetic nervous system). 
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From the points above I hypothesize that C. elegans increases sensing activity in the presence 

of pathogens, both at the organismal level through increased neuron activity as well as at the 

cellular level with the expression of increased membrane receptors. These are pathogen 

unspecific as the nature of the pathogen will be initially unknown. After identification of the 

pathogen, the pathogen-specific genes see a change in their expression levels, and at the same 

time, metabolic genes see a reduction in expression to free more resources to fight the 

immediate life-endangering threat. 

7.3. Transcription factors related to general 

pathogen response 

Similar to the analysis of the immune effector protein family (Section 7.2.3), I wondered 

how the expression of transcription factors (TFs) associated with the cellular stress response 

and the innate immune response is affected by pathogen infection. Most of the analysed TFs 

(taken from Kim & Ewbank (2018)) do not show a change in expression under any of the 

pathogen infections (Figure 7.17). This is not unusual as TF activity is often not dependent 

on transcription, but rather on post-translational modifications (such as phosphorylation), 

which activates the TF and promote movement from the cytoplasm into the nucleus 

(Whiteside & Goodbourn, 1993). Transcription for pqm-1 (and to a lesser degree zip-2) 

however shows a strong up-regulation in around half of the datasets (Figure 7.17). 
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Figure 7.17 Heatmap of transcription factor and co-factor expression changes in each pathogen dataset. The genes 

are placed along the x-axis while the datasets are on the y-axis. The data is grouped based on hierarchical clustering 

using complete linkage and Euclidean distance measure. Red cells are up-regulated genes in the particular dataset, 

while blue cells are down-regulated genes. The colour coding is capped at 2 and -2 log2 Fold Change. The Colour key 

also shows a density plot. 

While the heatmap shows strong support that pqm-1 could be related to the immune 

response, I wanted to validate this finding further and potentially identify further 

transcription factors that do not see a change in expression but might play an important role 

in the immune response. Therefore, I used de novo motif discovery method to find immune 

response-related TFs and analyse published TF ChIP-seq data, to identify the TF binding 

sites to then compare them with the genes in list383.  

In order to identify TF binding targets, it is important to identify the region where such TF 

binding would be associated with the respective gene. In general, the promoter region is the 

main area where TFs are expected to bind and can be identified by a transcription start site 

(TSS). However, C. elegans transcription is affected by trans-splicing events and operons, 

making it difficult to pinpoint the exact TSS location and promoter region. Trans-splicing is 

the event where the pre-mRNA has part of its 5’-end (including the TSS) replaced by a splice-

leader. Thus conventional methods of assessing the TSS based on mRNA sequencing is not 

able to pinpoint the exact TSS location. Around 70% of all C. elegans genes are trans-spliced 
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(Blumenthal, 2012). Operons are a cluster of genes located downstream of each other that 

are transcribed at the same time and controlled by a single promoter. Hence, if the gene in 

the operon is not the first immediate downstream of the promoter, it is difficult to find the 

TSS. Around 15% of all C. elegans genes are within operons (Blumenthal, 2012). Current 

public databases such as Ensembl BioMart (Ensembl, 2019) only contain the “transcript start 

site” (not to be confused with “transcription start site”) of mature mRNA, i.e. for which the 

5’-end has already been replaced by the splice leader. 

By identifying where the transcription factors bind relative to the transcript start site, the 

rough position of the transcription start site and promoter can be identified. For this, I used 

published ChIP-seq data of PQM-1 (Niu, et al., 2011) and DAF-16 (modENCODE ID: 591) 

from modENCODE. Both of these transcription factors are related to the immune response 

(Tepper, et al., 2013; O'Brien, et al., 2018; Kim & Ewbank, 2018). MACS2 peak calling 

(Zhang, et al., 2008) (for threshold cut-off, refer to Appendix 14) was performed, and the 

resulting peaks were assigned to the genes if they are located within 500bp upstream or 

downstream (total of 1 kb window) of the transcript start site. Seqplot was then utilized to 

visualize the average ChIP-seq signal around all the TF target gene transcript start site 

(Figure 7.18). Both DAF-16 and PQM-1 ChIP-seq peak starts at around 500 bp upstream 

and end at around 200 bp downstream, peaking at roughly 150 bp upstream, showing that 

the 1 kb window is a suitable choice. This is similar to the estimations inferred from 

H3K4me3 peaks (Kolasinska-Zwierz, et al., 2009). Although the modENCODE ChIP-seq 

data have been aligned to the ce10 reference assembly, using the most recent gene annotation 

version based on ce11, more defined peaks were obtained compared to using the older gene 

annotation version based on ce10 (Figure 7.18). 
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Figure 7.18 Seqplot of the ChIP-seq signal around the transcript start site. The blue (PQM-1) and green (DAF-16) track 

use the older gene annotation based on ce10. The red (PQM-1) and purple (DAF-16) tracks use the newest gene 

annotation version based on ce11. ce11 is on average 55bp larger than ce10 per chromosome. The dashed line 

denotes the mean, the dark area is the standard error, and the light area indicates a 95% confidence interval. 

After having identified the area (500bp upstream and downstream of the transcript start site) 

where TF binding is expected, I was then able to use de novo motif discovery software to 

identify enriched motifs in the area of all genes in list383. For this, HOMER has been used 

to find motifs and their associated TFs (Figure 7.19a). The top hit from HOMER is PQM-

1, with a p-value much smaller than any other hit. Interestingly, the PQM-1 motif has the 

same sequence as that of ELT-3 (Figure 7.19b). ELT-3 but not PQM-1 was also identified 

using other de novo motif discovery software: Trawler, BAMM motif and DREME 

(Appendix 15). The reason for this is that the motif data for PQM-1 is only included in the 

database exclusive to HOMER. The other software programs refer to existing databases, 

mostly JASPAR, which does not have an entry for PQM-1 (at the time when the analysis was 

conducted). 
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Figure 7.19 de novo Motif discovery result using HOMER on list383. a) Top 10 most enriched motifs and the best 

fitting known TF motif. A red asterisk denotes possible false positives. b) Known TF motifs that match the top enriched 

motif hit. 

Using the published ChIP-seq data for PQM-1, DAF-16 and ELT-3, as well as HSF-1 (since 

it is associated with a wide variety of stress responses), I compared the TF binding targets 

with one another to see how similar the TFs set of target genes are. PQM-1, DAF-16 and 

ELT-3 ChIP-seq datasets are taken from modENCODE, while the HSF-1 dataset is from 

Li, et al. (2016).  

From Figure 7.20, the HSF-1 ChIP-seq did not find many target genes compared to the 

other datasets, which is due to the low signal of the ChIP-seq datasets. Proportionally, all 

TFs share a significant portion of target genes. Between PQM-1 and ELT-3, 1911 genes are 

shared which makes up 27% and 82% of their total number of target genes, respectively. 

a) 

b) 
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This high overlap is not unreasonable, given the similarity of their motif. When comparing 

the genes in list383 to the PQM-1 ChIP-seq data, 249 genes are in common (p = 1.1x10-36). 

    

Figure 7.20 Comparison of the target genes of different TFs associated with immune response. a) Venn diagram 

showing the overlap of different TF target genes. b) Hypergeometric distribution of each overlap combination. Green 

dots below the graph denotes which groups were overlapped. The legend indicates the p-value (larger number means 

more significant). The number above each column shows the number of shared genes. The redder the colour of the 

column, the more significant the overlap of the genes are. 

Due to the extremely low P-value, I tested the program that calculates the hypergeometric 

distribution (superexacttest (Wang, et al., 2015)) on unrelated TF ChIP-seq data. The tested 

ChIP-seq data all have many binding targets with a significant number of overlapping genes 

(Appendix 14). The results further show a positive correlation between the number of 

binding targets and the significance of overlaps, i.e. ChIP-seq data with a larger number of 

binding targets also show more significant overlap. However, when choosing genes at 

random, the program returns high p-values (low −𝑙𝑜𝑔10(𝑃)), which would be expected 

under completely random distribution. This shows that ChIP-seq data or TF binding might 

have a bias associated to them that prefers binding to the same target genes, but not 

necessarily affecting their expression (e.g. High-occupancy target (HOT) regions). Some 

genes might also never be bound by TFs in proximity, such as downstream operon genes. In 

this case, the number of “background” genes (used for hypergeometric testing) is smaller 

than conventionally assumed, and the p-value becomes inflated. Ways to account for this 

would be to create a reference background gene list of all the currently known genes that 

have been found bound by TFs. HOT regions are difficult to assess as the threshold for 

“high occupancy” is difficult to define. However, various groups such as Wreczycka, et al. 

(2019) have compiled lists for what they define as HOT regions for various organisms, 

including C. elegans with 422 regions. Such lists could be used to blacklist regions during the 

ChIP-seq analysis (Wreczycka, et al., 2019). 
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With the number of TF binding targets in the thousands, it became important to distinguish 

between functional and non-functional TF binding, to reduce false-positive hits. For this, I 

combine the ChIP-seq data that identifies TF binding targets with RNA-seq data (of samples 

where the TF activity is inhibited) which helps in filtering for the genes that also see a change 

in transcriptional activity. There are no published RNA-seq data for ELT-3. For the DAF-

16 and PQM-1, I used the RNA-seq data generated by Dr Laura Jones using the loss of 

function mutant C. elegans mutants daf-16(mu86) and pqm-1(ok485). In addition to the standard 

temperature of 20°C, another set of RNA-seq data from experiments conducted at 35°C 

(heat shock) was also analysed. This heat shock dataset was included here because both TFs 

are responsive to environmental stress and might be more active during stress such as heat 

shock, potentially identifying a more complete set of downstream genes (Tepper, et al., 2013; 

Laura Jones et al., unpublished). The data was processed and analysed the same way as the 

pathogen response RNA-seq datasets. Table 7.5 summarizes the number of genes that are 

up- and down-regulated as a result of the mutation in 20°C and 35°C (heat shock). The 

temperature seems to affect the up- and down-regulation in both mutants differently. In daf-

16(mu86), the heat-shocked dataset has more significantly down-regulated genes than the 

dataset at 20°C. On the other hand, the pqm-1(ok485) 35°C dataset has more significantly up-

regulated genes than its 20°C dataset. 

 daf-16(mu86) pqm-1(ok485) 

 20°C 35°C 20°C 35°C 

Up-regulation 66 41 33 84 

Down-Regulation 63 75 25 20 
Table 7.5 Number of up and down-regulated genes in the daf-16(mu86) and pqm-1(ok485) mutants at different 

temperatures. Significance is |log2FC| > 0.6 and p-value < 0.05. 

Comparisons of the up- and down-regulated genes between the two mutants at both 

temperatures show that there is a small but significant overlap of genes (Figure 7.21b & d: 

3rd and 4th column from the left), indicating that PQM-1 and DAF-16 share a number of 

downstream genes. 
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Figure 7.21 Comparison of the differentially expressed genes between daf-16(mu86) and pqm-1(ok485) at different 

temperatures. a) & b) Comparison of the up-regulated genes in daf-16(mu86) and pqm-1(ok485) mutants. c) & d) 

Comparison of the down-regulated genes in daf-16(mu86) and pqm-1(ok485) mutants.  

Next, I compared the TF ChIP-seq target gene with their respective RNA-seq differentially 

expressed genes at both temperatures (Figure 7.22).  

 

Figure 7.22 Overlap between TF ChIP-seq binding data and the RNA-seq differential expression data of DAF-16 and 

PQM-1. a) DAF-16: ChIP-seq samples were extracted from L4-Young Adult stages at 20°C b) PQM-1: ChIP-seq samples 

were extracted from L3 stage worms at 20°C. RNA-seq samples were extracted from the L4 stage at 20°C with and 

without 35°C heat shock. Green dots below the graph denotes which groups were overlapped. 

Since TFs can act as transcriptional activators or repressors, inhibition of a TF should result 

in a decreased or increased transcription of their direct target genes, respectively. DAF-16 is 

suggested to be a transcriptional activator as the number of down-regulated genes (at 35°C) 

a) b) 

a) b) 

c) d) 
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are shared more significantly with the ChIP-seq data compared to the up-regulated genes 

(Figure 7.22a 1st column is more significant than 3rd and 5th column). PQM-1, on the other 

hand, shows the opposite, where the significant overlap is with the up-regulated genes 

(Figure 7.22b 1st column is more significant than 3rd and 5th column), indicating that PQM-

1 could be a transcriptional repressor. Interestingly, the strong significance is only observed 

for the samples at 35°C (heat shock), which would infer that the TFs bind, but may not be 

active under normal condition and only activate under stress conditions such as heat shock.  

Results from three different analysis (RNA-seq, de novo motif discovery and ChIP-seq) all 

identified pqm-1 to be a key TF responsive to pathogen infection. These results support the 

idea that PQM-1 is associated with the innate immune response (Shapira, et al., 2006; 

O'Brien, et al., 2018). ChIP-seq data for PQM-1 and RNA-seq data using the pqm-1(ok485) 

mutant were only able to identify few direct targets of PQM-1, due to the significantly lower 

number of differential expressed genes in the RNA-seq dataset (Figure 7.22b). This may 

not be the complete set of genes regulated by PQM-1. Within the 383 pathogen response 

genes, a significant number of 249 genes were identified as PQM-1 binding targets in the 

ChIP-seq data. Furthermore, around half of the significantly differentially expressed genes 

in the pqm-1(ok485) RNA-seq data at 35°C are also relatively differentially expressed in a 

number of the pathogen datasets (Error! Reference source not found.). Both comparisons 

support the idea that PQM-1 dependent genes may play key roles in pathogen response. It 

must be noted that the genes identified here may not be the full list of PQM-1 target genes 

which may be due to PQM-1 not being fully active under the experimental conditions. 

One explanation why pqm-1 expression is up-regulated and not the other TFs (Figure 7.17) 

could be that this gene might have roles as a co-factor for other TFs during general stress 

conditions. Its role may be in the negative regulation (transcriptional suppressor) of 

metabolism. However, Gene Enrichment analysis on the 52 PQM-1 target genes (Figure 

7.22b 1st column) does not return an enrichment in metabolism-related terms (Appendix 

17). This may be due to the timing of sample collection, as the worms were left to recover 

for two hours after heat shock, rather than collected immediately, potentially missing the 

timepoint where metabolism is reduced and allowing it to return to normal levels. For 

example, the quiescence (a reduced activity which may be related to metabolism) observed 

during heat-shock is short-lived, with most wild-type worms (N2) showing normal 

locomotion and feeding behaviour 1-hour after heat shock (Hill, et al., 2014) 
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7.4. Change of the gene expression landscape as a 

result of heat shock 

After obtaining the list of general pathogen responsive genes (list383 and list585), only the 

list of heat shock responsive genes is missing in order to be able to compare the genes 

responsive to the two different types of stressors (innate immunity and heat stress) and 

getting a step closer in answering the question of how biologically interconnected the 

response to these different types of stressors is. 

Contrary to the popularity of research into heat stress, there are surprisingly few publicly 

available high-throughput heat shock datasets from C. elegans. In order to obtain the list of 

heat shock responsive genes, RNA-seq data from three publications: Brunquell, et al. (2016), 

Li, et al. (2016) and Haas, et al. (2018), as well as a dataset generated internally by Dr Laura 

Jones were used. Data processing and analysis were done the same way as the pathogen 

response (Section 7.1.2). 

7.4.1. Differentially expressed genes are consistent across 

the heat shock datasets 

The resulting number of differentially expressed genes for each of the heat shock datasets 

are summarized in the table below (Table 7.6). The differentially expressed genes from all 4 

datasets were compared to identify how similar the datasets are (Figure 7.23). 

Condition Reference Up-regulated 
Genes 

Down-regulated 
Genes 

L4, EV food, 33°C (30 min) Brunquell, et al. 
(2016)  

1366 868 

L2, OP50 food, 34°C (30 min) Li, et al. (2016) 1109 1853 

L4, OP50 food, 34°C (75 min) + 
Recovery period 

Haas, et al. (2018) 5203 2586 

L4, OP50 food, 35°C (60 min) + 
Recovery period 

Laura Jones 810 969 

Table 7.6 Number of significantly differentially expressed genes for each of the 4 heat shock datasets. The conditions 

correspond to the developmental stage of the animal, bacterial diet and heat shock experimental setup (temperature 

and time). Haas, et al. (2018) included a recovery period of 20 minutes at room temperature followed by 2 hours at 

20°C. Laura Jones heat shock experiment included a recovery period of 2 hours at 20°C post-heat-shock. Significantly 

differentially expressed genes are defined as genes having a |log2FC| > 0.6 and an adjusted p-value < 0.05. 
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Figure 7.23 Comparison of up and down-regulated genes in the heat shock datasets. Venn diagram a) & c) and 

hypergeometric distribution testing b) & d) of all four heat shock RNA-seq datasets. a) & b) Up-regulated genes. c) & 

d) Down-regulated genes. Significance cut-off threshold is p-value < 0.05 and |log2FC| > 0.6. The grey shading 

overlaying each column represents the expected overlap. 

There is some overlap between the up- and down-regulated genes, much higher than for the 

pathogen datasets (compared to Figure 7.4 and Figure 7.5). Considering the similarity of 

the heat-shock regimes, they ought to deliver better correspondence in gene sets compared 

to the pathogen comparisons. Interestingly, the observed overlap of down-regulated genes 

in two comparisons (Li/Laura and Li/Haas) are lower than the expected overlap (Figure 

7.23d), which might be due to Li, et al. (2016) using L2 stage worms.  

The multi-filtering method and heatmap generation was also done for these heat shock 

datasets, to identify a potentially larger set of heat shock responsive genes (Figure 7.24). 

Different filtering cut-offs have been chosen to accommodate the smaller number but more 

consistent datasets. The first filtering criteria removes all genes where two or more datasets 

do not have a measurement for it. The second filtering criterion removed genes that on 

average shows a log(2) fold change less than 0.5. In this case, genes were removed when the 

𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑙𝑜𝑔2𝐹𝐶 < 2 across all experiments. At least 3 experiments must have a 

|𝑙𝑜𝑔2𝐹𝐶| > 0.6 for the gene and all experiments need to have |𝑙𝑜𝑔2𝐹𝐶| > 0.3 for the 

gene. The remaining genes were filtered by the p-value generated using Fisher's method. The 

final number of remaining genes was reduced from 21392 to 255. 

a) b) 

c) d) 



192 
  

 

Figure 7.24 Heatmap of the 255 genes from the 4 heat shock datasets after filtering. The genes are placed along the x-axis while the datasets are on the y-axis. Datasets are named based on the first 

author or the person generating the dataset. The data is grouped based on hierarchical clustering using complete linkage and Euclidean distance measure. Red cells are up-regulated genes, and blue 

cells are down-regulated genes. The colour coding is capped at 2 and -2 log2 Fold Change. The horizontal blue line at the dendrogram indicates the cut-off level used to group genes into clusters. 

20 -> 34°C 

23 -> 33°C 

20 -> 35°C 

20 -> 34°C 
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The heatmap shows a clear clustering of up- and down-regulated genes. A small number of 

genes in certain datasets show differential expression patterns that do not agree with the 

other datasets, mainly in the middle region of the heatmap (Figure 7.24). This difference 

could be due to different conditions (e.g. temperature, developmental stage and food) 

(Appendix 5) or biological and technical variations. The 255 heat shock responding genes 

were analysed for gene set enrichment. The only significant tissue enrichment is the ‘epithelial 

system’. Enriched GO terms include terms related to cuticle structure and responses, such 

as ‘collagen trimer’ and ‘response to biotic stimuli’(Figure 7.25). Interestingly, the immune 

system process GO term is also found in the result for HSR gene, indicating that perhaps 

some of the genes are general stress response genes or that heat shock and pathogen response 

have a relatively close relationship.  

 

Figure 7.25 Wormbase Enrichment Analysis of the 255 HSR genes. Results only show Gene Ontology (GO) Enrichment 

Analysis. All terms have a q-value of lower than 0.05. 

I next separated genes into clusters (Figure 7.24 blue line), in the same way as for the 

pathogen response data and analysed for gene set enrichment and protein-protein interaction 

for each cluster of genes (Figure 7.26). Analysis with g:Profiler was also done; however, it 

showed fewer unique terms, but more levels of child terms. This was informative only for 

the cluster with the highly up-regulated genes, as it shows heat stress-related terms only 

present at higher GO levels, which Wormbase Enrichment Analysis did not include (Figure 

7.26 red).  
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Heatshock255 

Wormbase Enrichment Analysis  
Term Q value 

 

STRING # of 
genes 

intestine WBbt:0005772 0.0026 

cephalic sheath cell WBbt:0008406 0.034 

epithelial system WBbt:0005730 0.045 

AB WBbt:0004015 0.088 

peptidase activity GO:0008233 0.0095 

endoplasmic reticulum 
subcompartment GO:0098827 0.0095 

serine hydrolase activity GO:0017171 0.012 

ion homeostasis GO:0050801 0.017 

protein catabolic process GO:0030163 0.017 

immune system process GO:0002376 0.018 

collagen trimer GO:0005581 0.03 

organic acid metabolic process GO:0006082 0.033 

transmembrane transport GO:0055085 0.036 

response to biotic stimulus GO:0009607 0.036 

lytic vacuole GO:0000323 0.039 

multicellular organism growth GO:0035264 0.046 
 

 

85 

outer labial sensillum WBbt:0005501 0.0069 

PVD WBbt:0006831 0.0069 
 

 

90 

No enrichment 

 

18 

structural constituent of cuticle GO:0042302 1.70E-08 

collagen trimer GO:0005581 1.70E-08 

protein heterodimerization 
activity GO:0046982 0.0044 

extracellular region GO:0005576 0.0044 

extracellular space GO:0005615 0.0044 

neuropeptide signalling 
pathway GO:0007218 0.0044 

 

 

32 

response to topologically incorrect 
protein GO:0035966 0.0027 

IRE1-mediated unfolded protein 
response GO:0036498 0.0083 

response to biotic stimulus GO:0009607 0.025 

immune system process GO:0002376 0.035 

ATPase activity GO:0016887 0.038 

hydrolase activity acting on acid 
anhydrides GO:0016817 0.038 

 

 

30 

Figure 7.26 Wormbase Enrichment Analysis and STRING analysis for each cluster of genes based on the heatmap of 

the heat shock datasets (Figure 7.24). The order of cluster from top to bottom corresponds to the cluster on the 

heatmap from left to right. The number of genes in each cluster are shown in the right-most column, and the colour 

corresponds to the colouring in Appendix 20. Wormbase Enrichment Analysis results include tissue and GO term 

enrichment analysis. Tissue enrichment terms have the ID prefix “WBbt” and GO terms have the prefix “GO”. STRING 

excludes disconnected nodes. g:Profiler results for GO: Biological Processes were included only for the last gene 

cluster. 
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The enrichment analysis on separate clusters returned more significant GO terms compared 

to the analysis on the whole set of 255 heat shock responsive genes. Of surprising interest 

are the GO terms that were also found enriched in pathogen response such as ‘Intestine‘, 

‘Immune system process‘ and ‘response to biotic stimulus‘. In the up-regulated cluster, 

‘response to heat‘ and ‘response to topologically incorrect protein‘ is found, which correlates 

with the expected response to heat shock in C. elegans. The STRING analysis returned 

relatively low protein-protein interaction when compared to the pathogen response data 

(Figure 7.12 & Figure 7.13). 

7.4.2. Heat shock responsive genes are related to the 

immune system 

The analysis on the four heat-shock datasets shows a relative consistent expression of the 

same set of genes. In total, 255 genes were identified to be consistently differentially 

expressed under heat shock (Figure 7.24). Enrichment analysis identified high enrichment 

in the immune system process (Figure 7.25). This could indicate that some genes classified 

as immune system process are in fact general stress response genes rather than specific to 

the immune system, or it could mean that both the HSR and the immune response share 

overlapping pathways and mechanisms. Terms related to the cuticle structure (‘collagen 

timer’ and ‘structural constituent of cuticle’) were also among the highest-ranking terms. 

However, their function with regards to heat-shock is unknown. Brunquell, et al. (2016) also 

found such terms in their heat-shock study and commented on these genes having signal 

transduction function and may relay signals to stress-specific TFs. 

Detailed analysis of the up- and down-regulated clusters of the heatmap identified tissue 

enrichment of ‘PVD’ and ‘outer labial sensillum’ (Figure 7.26), that was also enriched in the 

pathogen datasets, implying increased sensory activity to defend or avoid dangerous 

environments. Within the down-regulated set of genes, we find metabolic processes that may 

function the same way as explained for the pathogen response: to change from a passive 

metabolic orientated transcriptional instruction to an active life-preserving one. The cluster 

of up-regulated genes sees an increase in both the ‘immune system process’ as well as heat 

shock-related terms, demonstrating that both the immune and HSR pathways work 

simultaneously against heat stress. 

STRING analysis returned relatively low protein-protein interaction compared to the 

pathogen response genes, which suggests that the HSR might be relatively small and 
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concentrated, compared to pathogen response. It seems logical when considering that 

temperature can only either increase or decrease and does not act through a large variety of 

mechanism, which is the case for pathogen infections. There is a concentrated network of 

co-expressed proteins in the down-regulated gene cluster (Figure 7.26 blue). Unfortunately, 

many of those genes have not been researched, and it remains to be determined what their 

role is. 

Generating heatmaps for the Immune Effectors proteins show in general very little 

differential expression in the immune effector proteins (Appendix 18), except for caenacins, 

especially cnc-4 which is strongly up-regulated in all heat shock datasets (Figure 7.27). While 

caenacins were found up-regulated in various C. elegans pathogen studies, especially 

D.coniospora, little is known about their functions. This family of protein is closely related to 

NLPs with signal peptides at their N-terminus and confers resistance against D. coniospora 

(Couillault, et al., 2004; Dierking, et al., 2016). There has been no emphasis on caenacins in 

other stress-related studies, making cnc-4 an interesting gene to do further research on. Other 

individual genes strongly up-regulated in all heat shock datasets are nlp-25, nlp-30, nlp-34 and 

clec-196 (Appendix 18), all of which are not well researched as well. 

 

Figure 7.27 Heatmap of the heat shock datasets for caenacin (CNC). The genes are placed along the x-axis while the 

datasets are on the y-axis. Datasets are named based on the first author or the person generating the dataset. The 

data is grouped based on hierarchical clustering using complete linkage and Euclidean distance measure. Red cells 

are up-regulated genes, and blue cells are down-regulated genes. The colour coding is capped at 2 and -2 log2 Fold 

Change.   
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7.5. Comparison of pathogen response genes and 

heat shock response genes 

After identifying the general pathogen responsive genes (list331, list585, list383) and heat 

shock responsive genes (heatshock255) from section 7.2.2 and 7.4.2, respectively, all the 

required information is in place to answer the question as to how related the HSR and the 

pathogen response is. In the following section, I compare the pathogen responsive genes 

with the heat shock responsive genes to find shared genes and analyse potential links. 

I started with comparing all the three pathogen responsive gene lists with the heat shock 

responsive gene list (Figure 7.28). 

 

Figure 7.28 Comparison of pathogen responsive gene lists with the heat shock gene list. a) – c) Venn diagram showing 

the number of overlapping genes between pathogen and heat shock responsive gene list. d) Hypergeometric test of 

the intersecting gene lists. Green dots below the graph denotes which groups were overlapped. 

In each of the pathogen responsive gene lists 6.2-8.6% of the genes are also heat shock 

responsive (list331 = 6.3%, list585 = 6.2%, list383 = 8.6%). While these numbers might be 

similar, the actual genes in each of the intersects could be different, similar to how each 

pathogen responsive gene list is different to some extent (Figure 7.10). The total number of 

unique genes in all three intersects are 50 genes (Figure 7.29a and Appendix 19 for the gene 

list), which can be considered genes that are responsive to both pathogens and heat stress. 

Comparing each of the intersects, it can be seen that the 21 heat shock responsive genes in 

list331 (heat331) are a subset of the 36 heat shock responsive genes in list585 (heat585). 

Comparison of the heat shock responsive genes between list585 (heat585) and list383 
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(heat383) shows that around 1/2 of the genes are in common, with 14 genes being exclusive 

to list383, while 17 are missing from it (Figure 7.29a).  

 

 

 

Figure 7.29 Comparison of the genes in each pathogen responsive gene list that are also in the heat shock responsive 

gene list. a) Venn diagram showing the similarity of the heat shock responsive genes in each of the pathogen 

responsive list. b) Hypergeometric test of the intersecting gene lists from a). Green dots below the graph denotes 

which groups were overlapped. c) Heatmap visualization of the genes that are both pathogen and heat shock 

responsive corresponding to each list and intersections (blue arrow) for each dataset. Datasets are named based on 

the first author or the person generating the dataset and if applicable, the pathogen used. Heat331 = intersection of 

list331 and heatshock255. Heat585 = intersection of list585 and heatshock255. Heat383 = intersection of list383 and 

heatshock255. 

The 16 “high confidence” genes are common in all three lists (heat331, heat585 and heat383) 

show overall stronger differential expression (darker red and blue shades) compared to the 

other sets (Figure 7.29c). However, the other sets cannot be disregarded as there is still a 

relative consistent degree of differential expression. 

Enrichment analysis on all 50 genes resulted in the immune response related terms such as 

‘immune system process’, ‘response to biotic stimulus’ and ‘collagen trimer’ (Figure 7.30a). 

It must be noted however that the GO-term database is not complete and is updated very 
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frequently, as such, some genes may be placed in specific GO-terms due to the lack of 

information. I propose that the genes found here could be more accurately defined as heat 

& pathogen stress (or general stress) genes rather than specific to the immune response. The 

only significant tissue enrichment was the ‘intestine’.  

Interestingly, STRINGs functional enrichment tool identified enrichment in the ‘von 

Willebrand factor type A domain’. This domain is found in various plasma proteins and is 

associated with haemostasis and various disease (InterPro, n.d.). This domain was also 

reported by Wong, et al., (2007). However, its function in C. elegans is unknown. 

 

Figure 7.30 Wormbase Enrichment Analysis and STRING analysis for the 50 genes that are responsive to both 

pathogen infection and heat shock. a) Wormbase Enrichment Analysis including only the GO term enrichment results. 

b) STRING analysis. Disconnected nodes are excluded.  

The STRING analysis found some protein-protein interaction in the form of two networks 

that look like a signalling cascade or a chain reaction due to their linear shape (Figure 7.30b). 

Each stressor may trigger multiple different signalling cascades, and some of these may be 

shared between different stressors, which may be the case for these two. It would be 

interesting to see how each of these proteins affect different stress responses and whether 

these networks are indeed signalling cascade pathways. 

Within the 50 heat and pathogen responsive genes, the top 3 up-regulated genes are 

C25F9.11, zip-10, F19B2.5 and the top 3 down-regulated genes are nhr-114, clec-218, ugt-63 

(based on the absolute mean expression and standard deviation (Appendix 19)). 

C25F9.11 is enriched in multiple neurons including PVD and OLL and is affected by 

multiple TFs, including the two stress-related TFs daf-16 and hsf-1. This gene is also affected 
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by various chemicals such as ethanol (Peltonen, et al., 2013). Considering that this gene is 

expressed in sensory neurons, I would hypothesize that its function is related to sensing 

environmental stressors. Its consistent upregulation in all the pathogen and heat stress 

implies that the nematodes sensory function is enhanced to avoid further stressors or find 

safer environments. This sensory role is further supported as C25F9.11 expression is 

enhanced upon contact with various chemicals.  

F19B2.5 is similarly enriched in multiple neurons, including PVD and OLL. It also shows 

changes in expression under osmotic stress and cadmium treatment (oxidative stress). A 

decreased expression is observed under various antibiotic treatments (Admasu, et al., 2018; 

Koh, et al., 2018). These expressional changes imply that F19B2.5 could have a similar role 

as C25F9.11 in sensing environmental stressors.  

zip-10 is a bZIP-transcription factor whose expression depends on temperature changes and 

is controlled by mir-60 and isy-1. It is observed to enhance phenoptosis (programmed 

organismal death) under cold shock (Jiang, et al., 2018). My results support a temperature-

dependent expression, but also extends the expressional response further to include 

pathogen infection. Whether the phenoptosis function also extends towards pathogenic 

stress remains to be determined. 

nhr-114 is part of the nuclear hormone receptor family and is predicted to have transcription 

factor activity (MacNeil, et al., 2015). It has a role in fertility that is dependent on the bacterial 

diet with respect to the availability of the amino acid tryptophan. This suggests that nhr-114 

has a role in buffering against dietary metabolites (Gracida & Eckmann, 2013). Based on its 

role related to metabolism, its down-regulation might be associated with a reduction in 

metabolism, which correlates with the hypothesis that under stress conditions, C. elegans 

reduces metabolism to allocate more resources towards the production of stress proteins.  

clec-218 is a relatively unknown c-type lectin with limited research. Expression profiling shows 

that clec-218 is expressed in many, if not all, neurons in the early stages of development. 

Furthermore, it is also expressed in the intestine and various muscles such as the pharyngeal 

muscle (Spencer, et al., 2011). Lectins (and c-type lectins) are carbohydrate-binding proteins 

and have been observed to function in a wide variety of biological processes (Drickamer, 

1993). Specifically, clec-218 may play a similar role as the other consistently down-regulated 

genes in reducing metabolism. The expression in the muscles and neurons could imply a 

behavioural response against stress, such as the sleep-like quiescence program observed 

following various stress conditions (Hill, et al., 2014).  
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ugt-63 is part of the family of UDP-Glucuronosyl transferases and plays a role in phase II 

detoxification (Ladage, et al., 2016). It has been shown that RNAi targeting ugt-63 increases 

anoxia survivability (Ladage, et al., 2016). This observation combined with the down-

regulation of it in most of the datasets in this study indicates that ugt-63 has a negative impact 

on stress resistance. While this may be contradictory as ugt-63 plays a role in phase II 

detoxification, its transferase role might be limited to endobiotic (chemicals originating from 

the organism) toxins rather than xenobiotic (chemicals found in the organism that is not 

naturally produced by it) ones, returning back to the argument of reduced metabolism under 

stress. 

Another interesting finding is that heat shock protein, normally associated with the HSR, are 

also differentially expressed during pathogen infections. Specifically, the small heat shock 

proteins (hsp-12.3, hsp-16.2, hsp-16.41 and hsp-17) show strong up-regulation in around a 

quarter to half of the pathogen datasets (Appendix 13b). The response to pathogen 

infections increases the number of misfolded proteins due to the large surge of stress protein 

production (Zügel & Kaufmann, 1999). As different pathogens induce the expression of 

different genes, the variety of proteins become relatively large. Since small heat shock 

proteins bind a wide range of proteins (Haslbeck, et al., 2005), it is not surprising that these 

proteins are up-regulated to manage the large variety of proteins that are produced as a result 

of different pathogen infections.  
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7.6. Conclusion and future work of the stress 
resistance study 

The cellular stress response and the immune response play a vital part in providing protection 

and preserving well-being for organisms against external and internal stressors. 

Understanding these response pathways can open up the potential to utilize and enhance 

these natural defence mechanisms for medical purposes. The aim of this study is to 

investigate the association between the innate immune response and the HSR in C. elegans. 

By systematically reviewing published data and literature using a bioinformatics approach, 

this study enhances our knowledge about the innate immune response and the HSR.  

In summary, the findings of this study suggest that highly differentially expressed genes as a 

result of pathogen infection is largely pathogen-specific. Genes that were differentially 

expressed in most of the pathogen datasets were less strongly differentially expressed. For 

these general pathogen responsive genes, the up-regulated genes tended to be associated with 

defence response, while down-regulated genes were often associated with metabolic 

processes. This suggests that under pathogenic influences, C. elegans responds by changing 

their transcriptional instruction from a passive cell maintenance orientated one to an active 

defence focused one. The cellular defence mechanisms include the upregulation of 

membrane proteins likely to function as receptors to sense pathogenic or signalling 

molecules, or as transport proteins to transport signalling and immune response proteins out 

of the cell and supplies into the cell. For the heat shock data, the analysis found 255 

differentially expressed genes across the four datasets, which show enrichment for both the 

heat shock and immune response GO terms. Overall, 50 genes are shared among the heat 

shock and pathogen infection datasets, indicating that these two responses overlap 

significantly. Additionally, an interesting observation was made, that showed that PQM-1 is 

the only pathogen response related TF that is significantly up-regulated in multiple pathogen 

datasets. 

The degree to which the conclusion from this bioinformatic investigation reflects the “real” 

biology is difficult to assess. Statistical testing, for example, assumes complete randomness, 

which may not be an accurate reflection of the reality. Possible improvements would be to 

increase the p-value threshold but at the expense of missing true positive hits, or cross-

validating the results from one software by other software (e.g. use EdgeR and limma to 

validate the DEseq2 results). Another point to consider is that the data used here comes 

from high throughput screening experiments done by different research groups and were 

designed differently, which likely negatively impacted the signal-to-noise ratio. However, it 
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can be argued that any signal that comes through the noise would be very robust as it is not 

affected by differences in experimental design and conduct. Future research would combine 

systematically designed and consistent high throughput screening experiments with 

computational analysis and emphasize other variables such as treatment time (e.g. length of 

exposure to pathogen or heat). This would allow the differentiation of genes into fast and 

slow response genes and improve the confidence of the gene hits. The next steps would then 

be to validated the gene hits identified by the computational analysis through biological “wet-

lab” experiments. Here, the top differentially expressed genes (Appendix 19) provide a good 

starting point, to take forward for experimental laboratory testing.  
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Appendix 1   

  

Term Expected Observed Enrichment 
Fold Change 

P-
value 

Q 
value 

development of primary 
sexual 
characteristics GO:0045137 

0.34 4 12 2.6e-
05 

0.0032 

reproductive system 
development GO:0061458 

0.41 4 9.8 6.1e-
05 

0.0037 

protein heterodimerization 
activity GO:0046982 

0.34 3 8.8 0.0004 0.016 

Appendix 1 Gene set enrichment analysis for H3K4me3 enriched genes in cfp-1(tm6369) and set-2(bn129) mutants. 

a) g:Profiler analysis of the 195 H3K4me3 enriched genes unique to set-2(bn129). The p-value threshold was kept at 

0.005, and only biological processes are shown to reduce the size of the list. Analysis using ShinyGO software only 

returned 4 terms all of which were related to chromatin and nucleosome. b) Wormbase GSEA software result for 

biological processes of the 53 H3K4me3 enriched genes unique to cfp-1(tm6369). Both g:Profiler and ShinyGO were 

unable to find any enriched GO term. 

a) 

b) 
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Appendix 2 Dot blot result showing inconsistent when compared to Figure 4.1. Genetic samples used in this blot were 

collected from young adult wild-type(N2), cfp-1(tm6369) and set-2(bn129) worms fed on the standard laboratory E. 

coli strain OP50. The quantity of gDNA spotted is shown on the left. Here, wild-type shows the lowest R-loop signal, 

while set-2(bn129) signal is relatively strong, which is the opposite result of Figure 4.1. 

  

800 ng 

400 ng 

200 ng 
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Sequence 
Name 

Gene 
Symbol 

 Sequence 
Name 

Gene 
Symbol 

T12F5.3.2 glh-4 
 

C07H6.5 cgh-1 

C41D11.7 eri-7 
 

C06E1.10 rha-2 

C43E11.2b mus-81 
 

T26G10.1 
 

F55A12.8 nath-10 
 

K03H1.2 mog-1 

F33D11.10 
  

M03C11.2 chl-1 

F55F8.2b 
  

M03C11.8 
 

T05E8.3 let-355 
 

Y111B2A.22d ssl-1 

T23H2.3 
  

F53H1.1e 
 

C55B7.1 glh-2 
 

T05A12.4 
 

T21G5.3 glh-1 
 

C27B7.4 rad-26 

F52B5.3 
  

W08D2.7 mtr-4 

W06D4.6 rad-54 
 

C04H5.6b mog-4 

B0511.6 
  

F01G4.1 swsn-4 

F33H2.1.2 dog-1 
 

C08F8.2c.2 
 

C24H12.4d 
  

F54E12.2 
 

F59H6.5 
  

T04A11.6 him-6 

ZK250.9 
  

Y116A8C.13b 
 

F33H12.6 
  

T06A10.1c mel-46 

EEED8.5 mog-5 
 

ZC317.1 
 

F18C5.2 wrn-1 
 

F26F12.7 let-418 

T07D4.3 rha-1 
 

T14G8.1 chd-3 

C47D12.8 xpf-1 
 

Y65B4A.6b 
 

Y17G7B.5b mcm-2 
 

T04D1.4 chd-7 

F43G6.1b dna-2 
 

H27M09.1 sacy-1 

Y54E2A.4c 
  

Y23H5B.6c 
 

C46F11.4 
  

Y54E10A.9c.2 vbh-1 

E03A3.2 rcq-5 
 

Y71H2AM.19b.2 laf-1 

R10E4.4.2 mcm-5 
 

ZK512.2b 
 

F56D2.6b ddx-15 
 

Y55B1AL.3b helq-1 

W03A3.2 polq-1 
 

Y66D12A.15 xpb-1 

F01F1.7 ddx-23 
 

Y50D7A.2 xpd-1 

F57B9.3 
  

Y50D7A.11 
 

ZK686.2 
  

F37A4.8 isw-1 
Appendix 3 Table showing all candidate helicases after filtering to be used for the helicase suppressor screen. Genes 

in bold have been attempted in the study. 
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Appendix 4 Hatching assay of all genes in Table 4.1 (except mtr-4 and xpb-1). Genes are in presented in 

alphanumerical order. At least two samples have been counted for each RNAi except for mog-5 and isw-1 (as they 

have very few eggs). Error bars represent the standard deviation. 

  

0

20

40

60

80

100

EV
 (

N
2

)

EV
 (

se
t-

2
 (

b
n

1
2

9
))

C
2

4
H

1
2

.4
d

C
4

6
F1

1
.2

ch
d

-3

d
d

x-
1

5

d
o

g
-1

er
i-

7

F3
3

H
1

2
.6

F5
2

B
5

.3

F5
4

E1
2

.2

F5
9

H
6

.5

g
lh

-1

g
lh

-2

h
im

-6

is
w

-1

m
o

g
-5

m
u

s-
8

1

p
o

lq
-1

ra
d

-5
4

rc
q

-5

rh
a

-1

ss
l-

1

T0
5

A
1

2
.4

vb
h

-1

w
rn

-1

xp
f-

1

Y1
1

6
A

8
C

.1
3

b

Y5
4

E2
A

.4
c

ZK
2

5
0

.9

%
 o

f 
eg

gs
 t

h
at

 h
at

ch
ed

Hatching Assay of the whole Suppressor Screen



235 
  

Appendix 5   

Source Pathogen Conditions Type/Platform Deposit 

(Engelmann, 
et al., 2011) 

Serratia 
marcescens 

YA (25°C) Microarray 
(Affymetrix) 

GSE23275 & 
GSE23277 

Enterococcus 
faecalis 

YA (25°C) Microarray 
(Affymetrix) 

GSE23273 & 
GSE23277 

Photorhabdus 
luminescens 

YA (25°C) Microarray 
(Affymetrix) 

GSE23272 & 
GSE23277 

ModENCODE Drechmeria 
coniospora 

fer-15 L4 
(25°C) 

RNA-seq 
(Genome 
Analyzer II) 

SRS150472 
&  
SRS150966 

Harposporium sp. fer-15 L4 
(25°C) 

RNA-seq 
(Genome 
Analyzer II) 

SRS008265 
&  
SRS008266 

Serratia 
marcescens 

YA (25°C) RNA-seq 
(Genome 
Analyzer II) 

SRS008267 
&  
SRS008268 

Haptocillium 
sphaerosporum 

fer-15 L4 
(25°C) 

RNA-seq 
(Illumina 
HiSeq 2000) 

SRS266743 
&  
SRS266741 

(Yang, et al., 
2015) 

Bacillus 
thuringiensis 

L4 (20°C) RNA-seq 
(Illumina 
HiSeq 2000) 

GSE64401 

(Pukkila-
Worley, et 
al., 2011) 

Candida albicans YA (20°C) Microarray 
(Affymetrix) 

GSE27401 

(Bakowski, 
et al., 2014) 

Nematocida parisii fer-
15(b26);fem-
1(hc17) L1 
(25°C) 

RNA-seq 
(Illumina 
HiSeq 2000) 

SRP013019 

(Head & 
Aballay, 
2014) 

Salmonella 
enterica 

fer-1(b232ts) 
L1 (25°C) 

Microarray 
(Agilent) 

GSE54212 

(Yuen & 
Ausubel, 
2018) 

Enterococcus 
faecalis 

YA (20°C) Microarray 
(Affymetrix) 

GSE95636 

Enterococcus 
faecium 

YA (20°C) Microarray 
(Affymetrix) 

GSE95636 

Bacillus subtilis YA (20°C) Microarray 
(Affymetrix) 

GSE95636 

(Bond, et al., 
2014) 

Staphylococcus 
aureus 

L4 (18°C) 
 

Microarray 
(Affymetrix) 

GSE53732 

Pseudomonas 
aeruginosa 

L4 (18°C) 
 

Microarray 
(Affymetrix) 

GSE53732 

(Bolz, et al., 
2010) 

Yersinia pestis L4 (25°C) Microarray 
(Affymetrix) 

GSE20053 
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(Estes, et al., 
2010) 

Pseudomonas 
aeruginosa 

YA (25°C) Microarray 
(Affymetrix) 

GSE50513 

(Irazoqui, et 
al., 2010) 

Staphylococcus 
aureus 

fer-
15(b26)ts;fem-
1(hc17) YA 
(25°C) 

Microarray 
(Affymetrix) 

GSE21819 

(Miller, et 
al., 2015) 

Pseudomonas 
aeruginosa 

L4 (25°C) Microarray 
(Affymetrix) 

GSE72029 

(O'Rourke, 
et al., 2006) 

Microbacterium 
nematophilum 

L2/L3 (25°C) in 
liquid 

Microarray 
(Affymetrix) 

E-MEXP-696 

(Sahu, et al., 
2012) 

Vibrio cholerae L2/L3 (22°C) Microarray 
(Affymetrix) 

GSE34026 

(Troemel, et 
al., 2006) 

Pseudomonas 
aeruginosa 

YA (25°C) Microarray 
(Affymetrix) 

GSE5793 

(K. Chen, et 
al., 2017) 

Orsay Virus L3 (20°C) RNA-seq 
(Illumina 
HiSeq 2500) 

SRP100798 

Nematocida parisii L3 (20°C) RNA-seq 
(Illumina 
HiSeq 2500) 

SRP100798 

(Osman, et 
al., 2018) 

Myzocytiopsis 
humicola 

L4 (25°C) RNA-seq 
(Illumina 
HiSeq 2500) 

GSE101647 

(Tanguy, et 
al., 2017) 

Orsay Virus L4 (20°C) RNA-seq 
(Illumina 
HiSeq 1500) 

GSE95230 

(Sarkies, et 
al., 2013) 

Orsay Virus Mixed-stage 
(23°C) 

Microarray 
(Affymetrix) 

GSE41056 

(White & 
Herman, 
2018) 

Stenotrophomonas 
maltophilia 

L4 (20°C) microarray 
(NimbleGem) 

GSE107272 

 
 

Source Condition Type/Platform Deposit 

(Brunquell, 
et al., 2016)  

L4, EV food, 33°C (30 min) RNA-seq 
(Illumina HiSeq 2000) 

PRJNA311958 

(Li, et al., 
2016) 

L2, OP50 food, 34°C (30 min) RNA-seq 
(Illumina HiSeq 2000) 

GSE81520 

(Haas, et 
al., 2018) 

L4, OP50 food, 34°C (75 min) + 
Recovery period 

RNA-seq 
(Illumina HiSeq 2500) 

GSE122015 

Laura Jones L4, OP50 food, 35°C (60 min) + 
Recovery period 

RNA-seq 
(NextSeq 500) 

 

Appendix 5 Summary of the datasets used in this study, with details about the condition (pathogen), type and 

platform, source and the deposit. 
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Appendix 6 Example of RNA-seq quality control. Here the data from Yang et al. (2015) is used. a) - f) FastQC reports. 

g) featureCounts Summary. h) STAR alignment score. i) Cutadapt report. MultiQC was used to summarize these 

reports. 

a) 

c) 

b) 

d) 

e) f) 

g) h) 

i) 
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Appendix 7 Hypergeometric distribution test for each of the Venn diagrams in Figure 7.4. a) & b) Pathogens from the 

Terrabacteria phylum: S. aureus, M. nematophilum, E. subtilis, E. faecalis and E. faecium up-regulated and down-

regulated genes respectively. c) & d) Pathogens from the Enterobacteriales order: Y. pestis, S. enterica, S. marcescens 

and P. luminescens up-regulated and down-regulated genes, respectively. e) & f) Remaining pathogens S. maltophilia, 

P. aeruginosa and V. cholerae up-regulated and down-regulated genes respectively. The grey shading overlaying each 

column represents the expected overlap. 

  

a) b) 

c) d) 

e) f) 
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The multi-layer filtering methods p-value was determined using hypergeometric testing. 

The probability distribution was modelled after Laplace distribution as this distribution fits 

better to the actual data compared to the normal distribution. This may be due to the 

lfcshrink() function. 

 

Appendix 8 Graph showing the distribution of log2 Fold Change for each gene in each of the 25 pathogen response 

datasets that show a continuous distribution. The blue line shows the normal distribution with the data average 

(0.004) and standard deviation (0.51). The red line shows the Laplace distribution with  (median) = -0.016 and b 

(mean deviation from the median) = 0.28 

Taking the most stringent criterion, the fourth filtering criteria for list331, where the genes 

are filtered out when they do not have at least 0.1 log2 Fold change in at least 24 of the 29 

datasets. From the Laplace distribution, the probability of drawing a measurement at random 

that is greater than |0.1| is 0.56. Thus, the probability of drawing it 24 times out of 29 trials 

is: 

∑ (
29
𝑘

) × 0.56𝑘 × (1 − 0.56)29−𝑘 = 0.0023

29

𝑘=24

 

For list585 (Figure 7.8), the filtering criterion was changed to: at least 0.1 log2 Fold change 

in at least 23 of the 25 datasets. This changes the probability to: 

∑ (
25
𝑘

) × 0.56𝑘 × (1 − 0.56)25−𝑘 = 0.0001

25

𝑘=23
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Appendix 9   

List585 List383 

  
Appendix 9 g:Profiler analysis results for the genes in list585 and list383 
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Appendix 10   

 

Appendix 10 BinGO network of the genes in list383. This network shows connections between various Biological 

Process GO terms. The colouring in each node corresponds to the p-value (legend). 
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Appendix 11   

 

 

Appendix 11 ClueGO detailed report for Figure 7.14 showing the exact number of genes (and % from the input) in 

each term and the proportion of these terms relative to each other. Single asterisk (*) denotes p-value < 0.05 and 

double asterisk (**) denotes p-value < 0.01 
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Appendix 12   

 

 

Appendix 12 ClueGO detailed report for Figure 7.15 showing the exact number of genes (and % from the input) in 

each term and the proportion of the terms associated to the analysis of the 3 main clusters from list383. Single asterisk 

(*) denotes p-value < 0.05 and double asterisk (**) denotes p-value < 0.01 
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Appendix 13   

 

 

Appendix 13 Heatmap of the pathogen dataset for various protein families. a) heatmap of lectins (LEC and CLEC) 

proteins. b) heatmap of heat shock proteins. 

  

a) 

b) 
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Appendix 14   

 

Appendix 14 Comparison of the various TFs ChIP-seq datasets, to assess the reliability of the superexacttest software 

package used for hypergeometric testing of multiple overlapping datasets. a) Comparison of the binding target of 

PQM-1, HSF-1 and DAF-16 with unrelated TFs HLH-1, MAB-5 and EGL-27 (blue dot before the name). b) Comparison 

of various transcription factors with a set of 1000 random genes (blue circle). The -q threshold cutoff for MACS2 peak 

calling for each of the TFs is as follows: HSF-1 = 5, DAF-16 = 5, ELT-3 = 5, EGL-27 = 5, HLH-1 = 5, UNC-62 = 7, PQM-1 = 

10, MAB-5 = 20, SKN-1 = 30. ELT-3 was normalized to the input. 
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Appendix 15   

 

 

a) 

b) 
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Appendix 15 de novo motif discovery on the 383 pathogen responsive genes (list383) using various software. a) 

Trawler. b) BaMM motif and identification of the best matching transcription factor to the top enriched motif. c) 

DREME & Tomtom. Tomtom was used to find known transcription factors that best matches the enriched motif from 

DREME. 

 

 

 

c) 
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Appendix 16   

 

 

Appendix 16 Heatmap of the pathogen datasets showing the list of genes that are differentially expressed in the pqm-

1(ok485) mutant at 35℃. a) heatmap of genes that are up-regulated in the pqm-1(ok485) mutant at 35℃. b) heatmap 

of genes that are down-regulated in the pqm-1(ok485) mutant at 35℃. 

a) 

b) 
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Appendix 17   

 

 

Appendix 17 Gene Enrichment analysis on the 52 PQM-1 target genes that are up-regulated at 35°C in pqm-1(mu86) 

mutants (Figure 7.22b 1st column). a) Wormbase Enrichment Analysis showing only the Gene Ontology Enrichment 

Analysis Results. b) g:Profiler analysis showing the GO:Biological Processes results. 

  

a) 

b) 
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Appendix 18   

 

 

Appendix 18 Heatmap of the heat shock datasets for specific protein families. a) antibacterial factors (ABF). b) 

lysozyme (LYS and ILYS). c) saposin-like protein (SPP). d) neuropeptide-like protein (NPL). e) lectins (LEC and CLEC). 
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Appendix 19  

 Sum of log2FC Mean absSum  absMean sds SE 

C25F9.11 45.784424 1.57877324 46.227197 1.5940413 1.3257362 0.24618304 

T24C4.4 40.616012 1.40055212 48.498806 1.6723726 1.9807224 0.36781091 

tts-1 34.353489 1.18460307 43.566285 1.5022857 1.6498256 0.30636492 

zip-10 29.584740 1.02016344 33.001995 1.1379998 1.2794279 0.23758379 

F19B2.5 28.846898 0.99472063 39.080043 1.3475877 1.3958376 0.25920053 

T19D12.4 27.806680 0.95885102 37.234019 1.2839317 1.4963004 0.27785600 

F08G2.5 27.733223 0.95631803 32.849293 1.1327343 1.6242647 0.30161837 

oac-14 26.174176 0.90255779 30.840440 1.0634635 0.9763452 0.18130275 

Y94H6A.10 26.005087 0.89672714 27.894680 0.9618855 0.6899931 0.12812851 

cup-16 25.671244 0.88521531 31.633950 1.0908259 1.0260872 0.19053962 

F53B2.8 24.174010 0.83358655 27.028293 0.9320101 0.8672203 0.16103877 

cnc-4 22.310150 0.76931553 40.447952 1.3947570 1.9760644 0.36694594 

nlp-34 21.153848 0.72944305 30.608272 1.0554577 1.6390874 0.30437088 

T01D3.6 20.341170 0.70141966 32.257049 1.1123120 1.3342464 0.24776334 

Y75B8A.28 20.286745 0.69954292 31.497336 1.0861150 1.2757003 0.23689160 

C25H3.10 19.584898 0.67534132 30.707265 1.0588712 1.0990706 0.20409229 

clec-265 18.747998 0.64648270 36.966130 1.2746941 1.6873013 0.31332398 

C47E8.11 17.956605 0.61919326 20.472491 0.7059480 1.5014432 0.27881099 

ugt-44 17.444407 0.60153127 26.325105 0.9077623 1.1614556 0.21567689 

lys-2 13.427486 0.46301677 29.864739 1.0298186 1.4614586 0.27138604 

nlp-29 12.633170 0.43562657 25.555243 0.8812153 1.1646560 0.21627120 

F15E6.3 9.844870 0.33947827 26.898748 0.9275430 1.3036619 0.24208393 

col-135 8.758611 0.30202106 16.342817 0.5635454 0.6125446 0.11374667 

T28F4.5 7.208626 0.24857332 17.945815 0.6188212 0.7365321 0.13677058 

cpt-4 7.107400 0.24508275 24.776997 0.8543792 1.1635343 0.21606289 

comt-3 7.080165 0.24414362 14.838867 0.5116851 0.5855541 0.10873467 

Y54G2A.11 7.044682 0.24292008 16.941277 0.5841820 0.7435549 0.13807469 

col-156 2.878239 0.09924962 21.363250 0.7366638 1.1383455 0.21138545 

cpi-1 1.902796 0.06561365 16.576936 0.5716185 0.7200633 0.13371240 

K10C2.1 -1.199657 -0.04136749 21.185556 0.7305364 0.9993286 0.18557066 

col-8 -1.215938 -0.04192891 20.977422 0.7233594 0.9941819 0.18461495 

C53A3.2 -1.540499 -0.05312065 11.990901 0.4134793 0.6355838 0.11802494 

gpdh-1 -2.655315 -0.09156257 27.337682 0.9426787 1.3291574 0.24681833 

gly-8 -3.524475 -0.12153361 19.186813 0.6616142 0.8164611 0.15161302 

hmit-1.1 -3.543449 -0.12218791 22.795013 0.7860349 0.9772416 0.18146921 

F40G12.11 -4.498811 -0.15513141 17.333019 0.5976903 0.8591688 0.15954363 

R193.2 -5.590966 -0.19279192 32.597381 1.1240476 1.5977620 0.29669696 

H17B01.2 -5.732420 -0.19766966 13.105948 0.4519293 0.6625890 0.12303969 

T22F3.3 -6.609824 -0.22792495 8.100469 0.2793265 0.3183935 0.05912418 

F58G6.3 -7.367309 -0.25404513 19.799331 0.6827356 1.1518617 0.21389535 

F13H8.3 -9.614563 -0.33153664 18.925419 0.6526007 0.7786028 0.14458291 

cpr-1 -9.723780 -0.33530275 18.974107 0.6542796 0.7627858 0.14164577 

elo-2 -10.485013 -0.36155218 25.244008 0.8704830 1.0156735 0.18860584 

T22B7.7 -11.015784 -0.37985461 27.123148 0.9352810 1.1638954 0.21612994 

ugt-63 -18.304823 -0.63120081 32.783943 1.1304808 1.2974712 0.24093435 

Y48E1B.8 -18.377662 -0.63371247 42.103165 1.4518333 1.9100507 0.35468751 

clec-227 -18.448116 -0.63614192 22.269012 0.7678970 1.0075274 0.18709314 

clec-218 -24.083416 -0.83046261 26.663764 0.9194401 0.7109114 0.13201293 

nhr-114 -28.384504 -0.97877601 38.050936 1.3121012 1.2045933 0.22368736 

asp-13 -31.970063 -1.10241597 38.837148 1.3392120 1.4577935 0.27070546 

Appendix 19 Table showing all 50 genes that are consistently differentially expressed in both the pathogen and heat 

shock datasets. Statistical analysis was performed to show the expression pattern of the gene across all datasets. 
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Appendix 20   

List331 
lys-4 
clec-56 
ilys-5 
pud-4 
spp-4 
pud-3 
vit-3 
papl-1 
C46F2.1 
fkb-3 
DH11.2 
metr-1 
Y51H7C.1 
clec-170 
math-45 
F10F2.2 
lipl-5 
alh-12 
E04F6.15 
Y49E10.18 
ugt-5 
best-7 
D1086.3 
T15B7.1 
C23H5.8 
gba-4 
pho-1 
F38B6.4 
ugt-62 
F46F2.3 
msra-1 
acs-1 
clec-49 
nhr-114 
fbxa-72 
sams-1 
T13F3.6 
Y48E1B.8 
ugt-63 
sur-5 
ugt-26 
ZK180.6 
clec-187 
sqt-1 
rol-1 
col-175 
lipl-1 
F55G11.2 

asp-12 
ugt-18 
irg-4 
ech-9 
srh-237 
T05E12.6 
C05D12.3 
folt-2 
clec-172 
vit-1 
nspa-9 
srh-216 
clec-257 
C47F8.6 
R02F2.8 
Y69E1A.5 
C34E11.4 
F46G11.6 
ZK622.4 
T06D8.3 
T01C3.11 
C04E6.13 
H32K21.1 
F48D6.4 
F25B4.8 
C30F2.5 
H36L18.2 
ZK287.3 
F30A10.13 
elc-1 
fbxa-21 
F30A10.14 
skr-12 
C02F12.5 
ttr-42 
D1086.19 
F49E8.2 
Y49E10.29 
col-178 
ifb-1 
pyc-1 
Y47G6A.33 
H17B01.2 
scl-20 
C39D10.8 
tag-147 
ttr-49 
btb-16 

mrp-3 
Y38H6C.19 
K01C8.1 
Y32F6B.1 
C02B4.4 
T23E7.6 
fipr-22 
gln-3 
cpr-1 
asah-1 
T12B5.15 
Y43C5A.7 
C40A11.4 
W08F4.11 
Y38H6A.1 
Y20C6A.4 
gst-24 
T13F3.8 
scl-21 
C29G2.2 
clec-5 
srh-214 
scl-15 
F42H10.6 
mtl-2 
clec-218 
thn-2 
dod-3 
ZC395.5 
aqp-1 
far-7 
F53A9.8 
C25H3.10 
tts-1 
ilys-2 
F15E6.3 
C06G3.3 
F43C11.7 
F21C10.10 
cyp-37B1 
hsp-12.3 
F11A5.9 
C46H11.2 
F22B7.9 
T28B8.1 
C49F5.7 
C27B7.9 
ZC204.12 

W07G4.5 
K02D7.1 
F45D3.3 
egl-15 
ptr-23 
C10C5.5 
ZK550.6 
tyr-1 
nlp-29 
cnc-4 
ugt-54 
C06B3.6 
C32F10.4 
F45D3.4 
ZK970.7 
sdz-24 
E01G6.3 
tag-10 
pcp-3 
gsto-1 
mct-4 
mel-32 
ZK899.2 
ZK512.7 
hpo-34 
F49H12.5 
T24D3.2 
lon-3 
col-145 
aqp-11 
Y62H9A.4 
srv-1 
Y51H4A.24 
math-4 
C01H6.4 
cdr-2 
ppat-1 
aat-4 
C17E7.12 
cyp-36A1 
W02B12.4 
col-179 
far-3 
acox-1.5 
gba-1 
endu-2 
M28.10 
K06G5.1 

F40F8.5 
abt-4 
col-162 
Y54G2A.49 
asp-6 
gpx-1 
Y51A2D.13 
H34I24.2 
lact-1 
R07C12.2 
C02F5.14 
C05C12.4 
Y73B6BL.31 
F48C5.2 
nspe-3 
T11F8.2 
F10A3.17 
clec-84 
F57B1.9 
W02G9.4 
K10C2.1 
Y54G2A.45 
spp-2 
ctsa-2 
cyp-33C1 
F54E2.1 
T16G1.6 
R08F11.4 
sodh-1 
acs-2 
ilys-3 
C23G10.11 
fmo-2 
pals-6 
B0507.10 
clec-174 
dod-19 
H43E16.1 
Y94H6A.10 
drd-50 
clec-265 
F19B2.5 
K08D8.4 
T24B8.5 
ZK6.11 
C17H12.8 
clec-67 
ZK896.5 

F53A9.1 
oac-31 
H02F09.3 
F22H10.2 
K11H12.4 
C25F9.11 
B0024.4 
T27C5.8 
sri-36 
F49H6.13 
C54C8.12 
ins-11 
F53A9.6 
C50F4.9 
ZC196.1 
F39G3.4 
Y46G5A.20 
C04G6.5 
zip-10 
kreg-1 
W02A2.9 
srw-86 
Y58A7A.5 
F16H6.10 
ifd-2 
B0348.1 
cul-6 
Y41D4B.15 
C18H7.11 
Y69A2AL.2 
F53B2.8 
T28H10.3 
acs-7 
clec-86 
hrg-3 
best-5 
col-135 
dhrs-4 
F59C6.16 
C50F4.1 
nlp-34 
Y22D7AL.15 
gem-4 
sqst-1 
F46A8.7 
fbxa-164 
F08B12.4 
Y95B8A.6 

droe-4 
Y46H3A.5 
skr-5 
F09F9.3 
C54D10.13 
Y102A11A.9 
Y47D3B.1 
C18E9.9 
F46B3.1 
F21C10.11 
ZK1290.14 
lec-11 
K01F9.2 
cyp-33C8 
C49A9.9 
C38H2.3 
C47E8.11 
Y60A3A.24 
slc-17.9 
Y46H3A.4 
nhr-6 
C41G7.8 
F10E9.12 
clec-179 
pgp-6 
C36B1.14 
ZK1320.13 
F47B7.3 
C39H7.4 
nlp-41 
B0252.8 
flp-26 
fbxa-58 
F13E9.15 
F14F9.8 
H32K16.2 
srap-1 
F10E7.11 
C30G7.4 
H29C22.1 
hpo-15 
F27D4.8 
F36A2.12 
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List585 
acs-2 
sodh-1 
fmo-2 
F09F7.6 
cyp-37B1 
far-7 
C23G10.11 
F53A9.8 
ilys-3 
ilys-2 
nhr-114 
fbxa-72 
pmp-5 
msra-1 
srh-237 
T13F3.6 
C23H5.8 
spp-23 
Y48E1B.8 
pho-1 
C05D12.3 
T05E12.6 
folt-2 
H17B01.2 
ram-2 
aldo-1 
T28D9.3 
haf-4 
T22F3.3 
Y49E10.29 
gpx-5 
mct-3 
nstp-2 
C49G7.3 
dim-1 
mct-4 
ahcy-1 
mel-32 
col-145 
col-180 
F10F2.2 
K11G9.2 
lipl-5 
F26C11.1 
F28A12.3 
alh-12 
fkb-3 
C39D10.8 
tag-147 
hprt-1 
slc-17.4 
C53A3.2 
acl-4 
Y54E10A.17 
F49E8.2 
T12B5.14 
best-7 

tsp-10 
clec-170 
gpx-7 
math-45 
F13H8.3 
ugt-23 
ZK185.5 
nhr-144 
F48D6.4 
srv-1 
C14C11.4 
Y51H4A.24 
Y62H9A.4 
ugt-5 
cpg-9 
ent-7 
ZK899.2 
zip-3 
Y43F8C.13 
D1086.3 
C44B7.7 
Y47G6A.33 
ZK512.7 
dhs-26 
pud-4 
cth-1 
F10A3.4 
atic-1 
ech-7 
C46F2.1 
papl-1 
D1054.8 
gst-26 
F46F2.3 
ilys-5 
gst-27 
grd-14 
C26B9.5 
T19C3.2 
F49C12.14 
gba-4 
clec-56 
T15B7.1 
ech-6 
C35A11.4 
F53F1.4 
ugt-26 
lon-3 
ZK180.6 
pgp-9 
hpo-34 
ent-4 
mth-1 
ugt-62 
F09B12.3 
sur-5 
K10C2.1 

T16G12.1 
E04F6.15 
Y49E10.18 
F32H5.1 
acbp-3 
hpd-1 
W02G9.4 
cdr-2 
F13B6.2 
acox-1.2 
elo-2 
F38B6.4 
ppat-1 
C01H6.4 
F58G6.3 
F58G6.7 
ugt-47 
aat-4 
amt-4 
drd-1 
vit-3 
nhr-68 
drd-5 
F44A6.5 
DH11.2 
lys-6 
spp-4 
metr-1 
mthf-1 
Y51H7C.1 
R08E5.3 
sams-1 
acs-1 
C30G12.2 
ugt-63 
T22B7.7 
pud-3 
clec-172 
ugt-17 
sdz-24 
lips-14 
lys-4 
mtl-2 
thn-2 
F15E6.4 
clec-218 
clec-5 
fipr-22 
C02B4.4 
T23E7.6 
cav-1 
C29F7.2 
gst-20 
F22F4.5 
T11B7.2 
T12B5.15 
gst-24 

T19B4.3 
col-178 
Y48A5A.3 
F15B10.3 
skr-12 
Y22D7AR.10 
C02F12.5 
F30A10.14 
tni-3 
Y69E1A.5 
F14B8.4 
ttr-42 
F30A10.13 
F09E10.1 
T01C3.11 
C04E6.13 
R02F2.8 
vap-1 
H36L18.2 
ZK287.3 
F25B4.8 
H32K21.1 
elc-1 
B0250.4 
T26C12.3 
C53H9.3 
BE0003N10.
3 
fipr-29 
H01G02.1 
clec-227 
cpr-1 
ZK673.1 
C53C9.2 
gln-3 
Y38H6C.19 
T06D8.3 
ifb-1 
T03D8.6 
mrp-3 
aco-1 
K01C8.1 
E01G4.3 
pyc-1 
C03B1.13 
hmit-1.1 
tag-10 
epi-1 
cyp-35A2 
gst-4 
pho-11 
pcp-3 
E01G6.3 
dhs-2 
Y32F6B.1 
F41C3.2 
W07G4.5 

ZK550.2 
hum-6 
col-10 
haf-9 
math-4 
F55H12.3 
aman-1 
comt-3 
ech-8 
rol-1 
col-175 
odc-1 
C29G2.2 
Y69A2AR.25 
D2045.2 
2RSSE.1 
C38H2.3 
Y105E8A.28 
Y102A5C.36 
nhr-6 
slc-17.9 
Y46H3A.4 
Y37D8A.6 
C42D8.1 
C54D10.13 
T08A9.13 
F20G2.2 
aqp-11 
fbxc-32 
F40G12.11 
ugt-31 
gpx-1 
asp-14 
cpt-5 
fbxa-51 
glb-1 
ZK669.2 
spp-22 
F59A6.12 
col-104 
T21H3.1 
col-77 
T24D3.2 
F49H12.5 
grd-4 
ttr-41 
ttr-49 
btb-16 
cdr-6 
nas-20 
ZK1320.13 
C36B1.14 
C17E7.12 
Y60A3A.24 
D1007.19 
fbxa-37 
F27D4.8 

F21C10.11 
C41G7.8 
K04C2.8 
C47E8.11 
C54C6.7 
fat-7 
gsto-1 
W03D2.6 
ttr-44 
aqp-1 
hsp-12.3 
asm-3 
dod-3 
scl-2 
clec-82 
nnt-1 
ZC204.12 
ZC395.5 
F21C10.10 
F11A5.9 
C32F10.4 
C06B3.6 
F18G5.6 
skr-5 
Y46G5A.20 
ZC196.1 
K04F1.9 
ins-11 
F53A9.6 
F53A9.1 
endu-2 
C50F4.9 
F10D7.3 
T28B8.1 
C35C5.9 
aqp-2 
dct-1 
asah-1 
F08B12.4 
ttr-17 
droe-4 
M03A1.8 
C06G3.3 
hil-1 
F15E6.3 
F43C11.7 
cnc-4 
nlp-34 
Y43C5A.3 
F45D3.4 
nlp-29 
ZK970.7 
nhr-19 
spp-8 
nhr-21 
ZK669.3 
C33A12.4 

nlp-28 
coel-1 
T12D8.5 
M7.8 
F13D11.3 
Y95B8A.6 
F43G6.8 
D1086.5 
T28F4.5 
ZK550.6 
T04A6.1 
Y39B6A.5 
F10E9.12 
E04F6.8 
C49F5.7 
C27B7.9 
ttr-8 
F46C3.6 
F45E10.2 
fbxa-157 
Y53F4B.45 
C25H3.10 
Y65B4BR.1 
cup-16 
tts-1 
T23F11.6 
C23H4.6 
Y102A11A.9 
Y22D7AL.15 
C33H5.13 
gem-4 
Y37D8A.16 
sqst-1 
ptr-23 
srap-1 
tep-1 
icmt-1 
fbxa-140 
K07E3.4 
F07C3.9 
F56D5.6 
F13E9.15 
C46H11.2 
Y54G2A.36 
best-5 
del-5 
F54C9.3 
C49G9.2 
glct-6 
H29C22.1 
flp-26 
C30G7.4 
tyr-1 
H32K16.2 
F14F9.8 
hpo-15 
F21A3.11 
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K09E9.4 
igeg-1 
Y58A7A.5 
T26H5.9 
W02A2.9 
srw-86 
C25F9.12 
irg-3 
C04G6.5 
T28H10.3 
C08E8.4 
hrg-3 
acs-7 
gba-1 
M28.10 
gale-1 
F55B11.4 
clec-62 
acox-1.5 
H34I24.2 
C18E9.9 
asp-5 
Y47D3B.1 
clec-187 
sqt-1 
abt-4 
clec-186 
ttr-23 

F53F4.13 
Y51A2D.13 
cyp-33C7 
C05C12.4 
cyp-13B1 
srr-6 
F45D3.3 
ugt-25 
C08F11.13 
C10C5.5 
ctl-2 
asp-6 
egl-15 
M01A8.1 
K02D7.1 
C07H4.1 
R07C12.4 
M04D5.3 
nhr-231 
cysl-2 
dhs-9 
acds-10 
cyp-36A1 
pmp-2 
acox-3 
R07C12.2 
B0252.8 
C27D6.12 

C39H7.4 
F14H3.12 
cbp-2 
pgp-6 
math-24 
nlp-41 
dhrs-4 
col-135 
F59C6.16 
C50F4.1 
Y34F4.4 
K10G4.3 
Y67A10A.10 
F22D6.15 
C33G8.2 
C49A9.9 
cul-6 
Y113G7B.14 
F35E12.4 
Y41D4B.15 
F53B2.8 
C18H7.11 
Y69A2AL.2 
W02B12.4 
H03A11.2 
Y73B6BL.31 
clec-84 
ZK287.9 

Y38C1AA.6 
C33A12.19 
C55B7.3 
F10A3.17 
F57B1.9 
col-162 
tag-38 
ZK1290.14 
B0403.5 
B0457.6 
F40F12.7 
clec-25 
cyp-33C8 
ifo-1 
ZK418.7 
F16H6.10 
ifd-2 
F10D2.10 
fbxa-59 
K01F9.2 
clec-86 
Y94H6A.10 
swt-6 
Y17G7B.8 
tag-234 
gst-22 
ZK6.11 
C17H12.8 

clec-67 
T24B8.5 
clec-49 
F31D4.8 
C45B2.1 
F28H7.3 
F42H10.6 
clec-72 
far-3 
lipl-1 
F55G11.2 
K08D8.6 
asp-12 
irg-4 
ugt-18 
ech-9 
irg-5 
C50F7.5 
C49C8.5 
oac-31 
B0024.4 
H02F09.3 
C25F9.11 
ZK228.4 
T16G1.6 
R08F11.4 
ZK228.3 
Y54G2A.45 

spp-2 
col-179 
Y54G2A.49 
F40F8.5 
Y34B4A.6 
C32H11.4 
dod-17 
F01D5.1 
M02H5.8 
F01D5.5 
ctsa-2 
K06G5.1 
tag-244 
H20E11.1 
F54D5.4 
F54E2.1 
K08D8.5 
ZK896.5 
C34H4.1 
oac-6 
dod-19 
F55G11.8 
K11H12.4 
Y75B8A.28 
F19B2.5 
lys-2 
clec-265 
K08D8.4 

hsp-17 
drd-50 
F22H10.2 
sri-36 
B0205.13 
H43E16.1 
clec-66 
hpo-6 
T19D12.4 
gst-38 
cpr-3 
tsp-1 
zip-10 
kreg-1 
lec-11 
F35E12.9 
mul-1 
M28.8 
Y41D4B.17 
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List383 
cyp-35A5 
cyp-35D1 
cyp-35A3 
lys-6 
F54B11.11 
cyp-35C1 
F21C10.9 
Y34F4.2 
ZK593.3 
hphd-1 
nhr-68 
asp-13 
C30G12.2 
fbxa-72 
sams-1 
nhr-114 
msra-1 
acs-1 
srh-237 
spp-23 
clec-48 
clec-49 
cln-3.1 
C18A11.3 
cdr-1 
Y39B6A.1 
spp-12 
F42A10.7 
C18H9.6 
lipl-1 
ugt-18 
clec-51 
clec-56 
ZK512.7 
nhx-2 
spp-4 
clec-53 
ugt-46 
T15B7.1 
ilys-5 
ech-6 
F53F1.4 
gba-4 
ugt-26 
gst-28 
C45B2.1 
col-101 
F09C8.1 
fpn-1.2 
col-143 
col-8 
drd-5 
pud-3 
vit-3 
T13F3.6 
pho-13 
C23H5.8 

ugt-22 
lbp-8 
vit-1 
Y48E1B.8 
F46F2.3 
ugt-63 
R07E5.4 
gpdh-1 
smd-1 
sdz-6 
C43D7.7 
F55G11.2 
irg-5 
C32H11.4 
dod-17 
irg-3 
C17H12.8 
irg-4 
ech-9 
dod-24 
ZK896.5 
F55G11.4 
K08D8.5 
clec-67 
dod-22 
pmp-5 
acdh-1 
T05E12.6 
folt-2 
sodh-1 
clec-60 
thn-1 
ilys-3 
acs-2 
T22F3.11 
F46C5.1 
C23G10.11 
F53A9.8 
F09F7.6 
C35C5.8 
far-7 
fmo-2 
pals-11 
B0507.10 
pals-6 
pals-32 
pals-37 
C43D7.4 
pals-2 
T05A8.2 
pals-29 
pals-28 
fat-7 
ilys-2 
W03F9.4 
grl-15 
C26B9.3 

F09F9.2 
F18C5.5 
K08B12.1 
Y47D7A.13 
col-54 
D1014.5 
dpy-5 
ZK154.1 
wrt-1 
lys-5 
lys-4 
lys-7 
F49C12.14 
cpr-4 
alh-12 
F26C11.1 
F28A12.3 
papl-1 
dhs-26 
F25D1.5 
Y119D3B.1
3 
sdz-24 
ugt-17 
cyp-35A2 
metr-1 
mthf-1 
srr-4 
F44A6.5 
DH11.2 
F15E6.4 
argk-1 
Y38H6C.21 
Y51H7C.1 
R08E5.3 
pmt-2 
gly-8 
Y46G5A.29 
K08D8.3 
col-156 
T05H10.3 
F41E7.7 
Y77E11A.1
4 
asah-1 
Y54G2A.11 
K01A2.10 
F15E6.3 
hil-1 
T28A11.19 
C06G3.3 
F36F2.2 
Y43F8B.9 
C33A12.4 
clec-264 
F41C3.1 
T05E12.3 

F53F1.6 
dod-3 
aqp-1 
scl-2 
F21C10.10 
comt-4 
cyp-34A9 
clec-61 
C29F7.2 
cpt-4 
W07B8.4 
mtl-2 
thn-2 
clec-218 
fipr-22 
R07C12.1 
W09G12.7 
C54C8.12 
fipr-26 
cnc-2 
skr-7 
skr-15 
Y69A2AR.2
5 
Y51B9A.8 
fbxa-163 
F08G2.5 
clec-3 
C49G7.12 
C06B3.7 
F54B8.4 
irg-2 
ZK896.4 
C04G6.5 
F53A9.6 
lys-3 
Y22D7AL.1
5 
valv-1 
F42H10.6 
F49F1.5 
gba-1 
fil-1 
Y47D7A.7 
ins-7 
ugt-25 
W02G9.4 
T02B11.4 
srr-6 
clec-72 
far-3 
K08D8.6 
Y46D2A.2 
gale-1 
ugt-16 
acox-1.5 
parg-2 

H02F09.2 
F13B6.1 
ifd-2 
K11H12.3 
Y41D4B.15 
F35E12.6 
clec-86 
oac-31 
zip-10 
kreg-1 
tag-10 
Y32F6B.1 
E01G6.3 
cpi-1 
asm-3 
hrg-1 
ttr-44 
ugt-6 
lips-14 
clec-57 
F38B6.4 
elo-2 
ugt-62 
M03B6.1 
F09B12.3 
sur-5 
C35A5.3 
hacd-1 
ugt-21 
pho-11 
amt-4 
dhs-25 
cyp-25A1 
R08F11.4 
F29C6.1 
T05E7.1 
gsto-1 
hrg-4 
R193.2 
acs-7 
ttr-23 
T28H10.3 
ftn-1 
T21C9.6 
hpd-1 
cdr-2 
ugt-43 
aman-3 
F55H12.3 
gtl-1 
F54C9.3 
hex-2 
ech-8 
cyp-37B1 
nnt-1 
C25H3.10 
ZC395.5 

cnc-4 
nlp-29 
nlp-31 
C06B3.6 
gem-4 
abf-2 
cyp-32B1 
F47B8.2 
tag-196 
cnc-7 
glb-1 
F59C6.16 
C05D9.9 
F47B8.4 
gbh-2 
F10E9.12 
C34F11.8 
nlp-34 
F45D3.4 
ZC443.3 
F18G5.6 
C32F10.4 
Y43C5A.3 
tts-1 
best-1 
Y65B4BR.1 
F44G3.10 
T24C4.4 
B0024.4 
pcp-2 
ZK228.4 
F01D5.3 
T24B8.5 
K08D8.4 
dct-17 
clec-66 
cld-9 
K11H12.4 
clec-4 
ugt-44 
clc-1 
F49F1.7 
Y75B8A.28 
F19B2.5 
F01D5.2 
clec-85 
F53C11.1 
clec-265 
oac-20 
drd-50 
C50F7.5 
H02F09.3 
F22H10.2 
clec-45 
Y37H2A.14 
C49C3.9 
F25A2.1 

H43E16.1 
F20G2.5 
irg-1 
hpo-6 
C25F9.11 
Y47H9C.1 
F15B9.6 
Y58A7A.5 
Y47H10A.5 
F43C1.7 
C25F9.12 
W02A2.9 
srw-86 
sri-36 
Y94H6A.2 
T24E12.5 
Y46G5A.20 
B0348.2 
ZC196.1 
dod-23 
fbxa-182 
gpa-17 
C50F4.1 
tag-234 
C08E8.4 
oac-14 
M28.8 
Y41D4B.17 
Y51H4A.25 
tba-7 
cul-6 
Y94H6A.10 
C18H7.11 
F53B2.8 
tsp-1 
K04F1.9 
tsp-2 
T19D12.4 
cpr-3 
mul-1 
F35E12.9 
T01D3.6 
K09D9.1 
Y17G7B.8 
swt-6 



256 
 

 

Heatshock255  

F02H6.2 
R04D3.4 
T02G6.5 
F02H6.3 
imp-1 
F35C11.5 
ZK822.5 
Y32F6A.5 
clec-218 
T01D3.6 
col-135 
K10C2.1 
F56F10.1 
prg-2 
clec-222 
nrf-6 
R09H10.5 
T06D4.1 
clec-227 
cpr-1 
clec-7 
F13H8.3 
rhr-1 
F35C12.3 
W02B3.4 
asp-8 
Y37D8A.4 
elo-5 
elo-2 
clec-265 
lys-2 
cth-2 
T22F3.3 
twk-16 
C40H1.7 
F11E6.3 
mxl-3 

F18E3.12 
F22E5.1 
ZK177.1 
R04D3.3 
T01G5.7 
F23D12.2 
K04C1.5 
F14H3.4 
W06D11.3 
F14H3.3 
F40G12.11 
Y47D7A.6 
R193.2 
asp-13 
K06A4.7 
oac-54 
F55H12.2 
F49C12.7 
pept-1 
fbxa-215 
T01C3.3 
inx-14 
T05F1.2 
clec-47 
ZK829.9 
F58G6.9 
fat-6 
nhr-114 
ugt-44 
R04B5.5 
Y53C10A.5 
ZK185.3 
K09H9.5 
F58G6.3 
T22B7.7 
F23D12.11 
T28C12.4 

F42A8.1 
nlp-26 
col-181 
col-8 
T28D6.3 
W07A12.8 
elo-6 
ugt-63 
K08D12.6 
Y48E1B.8 
F18E3.11 
sox-2 
cutl-24 
R09B5.11 
svh-2 
eat-16 
rcan-1 
bcl-11 
olrn-1 
ztf-2 
aex-3 
peb-1 
F43G6.4 
K03A11.5 
sup-26 
pmk-3 
F34H10.3 
gei-1 
svh-1 
K10B4.3 
F21G4.1 
nhr-213 
T19D12.4 
pho-9 
fkh-7 
T24C4.4 
wht-1 

F53B2.8 
ZK1307.7 
ipla-2 
nhr-63 
lin-12 
B0507.3 
R09E12.9 
K10D3.6 
C25H3.10 
tos-1 
Y75B8A.32 
cup-16 
T28F4.5 
Y54G2A.11 
Y75B8A.28 
C53A3.2 
oac-14 
zig-3 
F35D2.1 
C08H9.15 
pgp-1 
K12B6.11 
cnc-8 
msp-42 
ins-33 
H17B01.2 
R11H6.7 
glf-1 
H23N18.5 
dgat-2 
T13H5.6 
glb-11 
F21A3.3 
src-2 
hmit-1.1 
F46G11.2 
cdh-7 

ttr-7 
fbxa-54 
T20D4.10 
gst-1 
Y53H1B.2 
gly-8 
his-41 
cls-2 
cdd-1 
ttr-6 
C03G6.5 
fmo-3 
comt-3 
tni-1 
dao-2 
cpg-7 
cpt-4 
linc-7 
Y39B6A.25 
F32A5.4 
gpdh-1 
Y53F4B.11 
F37C4.5 
F13H10.6 
cpi-1 
T09F5.12 
D2063.1 
K06H6.2 
F15E6.3 
tts-1 
gln-4 
msd-4 
C31H2.14 
M05D6.3 
linc-84 
pqn-44 
Y50E8A.12 

C30E1.9 
scp-1 
Y43F8B.2 
hsp-110 
aip-1 
F29B9.5 
Y56A3A.33 
zip-10 
srx-76 
ttll-12 
Y94H6A.10 
col-40 
col-84 
col-44 
linc-6 
F19B2.5 
hsp-4 
F09E10.15 
F59C12.4 
clec-196 
nlp-25 
his-1 
K02E2.8 
K01D12.9 
col-137 
col-156 
grl-27 
C04G6.2 
Y47D7A.15 
T01B7.13 
Y47D3B.6 
T27F6.8 
his-5 
col-14 
Y41C4A.32 
F26G1.5 
C25F9.11 

ZK909.3 
nlp-29 
C05B5.8 
hsp-16.2 
hsp-16.41 
dct-10 
C47E8.11 
F01D5.7 
R10D12.19 
R09E10.13 
linc-122 
fbxb-72 
R02E4.3 
C45B2.8 
nlp-34 
F08G2.5 
cnc-4 
Y17D7C.2 
col-36 
Y38H6C.8 
Y38H6C.25 
srt-42 
mir-239.1 
nhr-241 
hsp-70 
F44E5.4 
F44E5.5 
R11A5.3 
ZC21.10 
M03F4.12 
F33H12.6 
Y53F4B.8 
F26D10.23 

 

 

 

  

Appendix 20 Table showing all the genes in each of the lists: list331, list585, list383 and Heatmap255. The colour 

coding shows individual clusters as determined by the dendrogram cut-off. The order of the genes from top to 

bottom and left to right corresponds to the heatmap from left to right.  
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Appendix 21   
All the images shown here are the data corresponding to the RNAi helicase screen on 

the set-2(bn129) mutant background (Table 4.1). Results of a few additional helicase 

candidates are shown here but were not included in Table 4.1 as these lack a replicate. 

All slot blots were visualized as explained in section 2.8.2, except for the first slot blot, 

which was visualized using the LI-COR Odyssey® FC imaging system. One slot blot 

experiment is presented per page. The amount of DNA loaded is dependent on the 

sample with the least amount of available sample. When comparing the signal intensity 

between samples, the “quantification” from G:BOX is always preferred over ImageJ 

quantification, because G:BOX uses the raw data, while ImageJ uses the compressed and 

processed image. 

 

Appendix 21.1 Slot Blot 1 of the RNAi helicase screen. a) The LI-COR Odyssey® FC Imaging System was used to visualize 

the first slot blot. Similar to the G:BOX machine, the membrane was placed into the chamber of the LI-COR Odyssey® 

FC Imaging System while submerged under ECL. Unlike the G:BOX machine, this system has a build-in quantification 

function that quantifies the signal strength (blue number with 3 decimal places). The RNAi bacteria used are labelled 

next to each blot. 400ng of DNA was loaded onto each slot. 

 
 
  

chd-1 

mog-5 

isw-1 

chd-3 

mog-1 

let-355 

EV (set-2 
(bn129)) 

rha-1 

RNase H control 

EV (set-2(bn129)) 

a) 
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Appendix 21.2 Slot Blot 2 of the RNAi helicase screen. a) Schema showing the position where the samples were loaded 

onto. Stars indicate biological replicates. The mog-5 and isw-1 is the combination of two biological replicates, due to 

the low recovery of samples. b) R-loop signal as captured by the G:BOX machine. Yellow numbers show the signal 

intensity as determined by ImageJ. c) Signal intensity “quantification” by the G:BOX system. 400ng of DNA was loaded 

onto each slot. 

  

EV (N2) chd-3 mus-81 mus-81* rad-54 rad-54* 

EV (set-2(bn129)) isw-1 eri-7 eri-7* F59H6.5 F59H6.5* 

mog-5 rha-1 him-6 him-6* dog-1 dog-1* 

8.53 5.79 2.39 0.00 7.06 8.65 

5.10 8.39 3.62 5.47 8.59 5.82 

6.98 0.18 7.95 1.36 6.46 7.64 

a) 

b) 

c) 
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EV 
(N2) 

EV (set-2 
(bn129)) 

ZK250.9 ZK250.9* xpf-1 xpf-1* C46F11.4 C46F11.04* xpb-1 xpb-1* 

  rcq-5 rcq-5* ddx-15 ddx-15* mtr-4 mtr-4* Y116A8C. 
13b 

Y116A8C. 
13b* 

  Y54E2A 
4.c 

Y54E2A 
4.c* 

polq-1 polq-1* ssl-1 ssl-1* F54E12.2 F54E12.2* 

 

 

Appendix 21.3 Slot Blot 3 of the RNAi helicase screen. a) Schema showing the position where the samples were loaded 

onto. Stars indicate biological replicates. The two EV control samples came from the same sample as appendix 21.2. 

b) R-loop signal as captured by the G:BOX machine. Yellow numbers show the signal intensity as determined by 

ImageJ. d) Signal intensity “quantification” by the G:BOX system. 300ng of DNA was loaded onto each slot. 

  

11.45 3.52 8.53 13.19 0.49 5.84 3.45 0.65 0.60 0.08 

0.56 0.70 3.10 7.75 0.00 0.24 4.69 3.63 

0.35 6.60 1.02 0.90 7.29 7.77 7.51 0.00 

a) 

b) 

c) 
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  T23H2.3  rha-2  T05A12.4  helq-1 

EV 
(N2) 

EV(set-2 
(bn129)) 

glh-1  wrn-1  F33H12.6 F33H12.6* vbh-1 

  glh-2  dna-2  C24H12.4d C24H12.4d* F52B5.3 

 

 

Appendix 21.4 Slot Blot 4 of the RNAi helicase screen. a) Schema showing the position where the samples were loaded 

onto. Stars indicate biological replicates. The two EV control samples came from the same sample as appendix 21.2. 

b) R-loop signal as captured by the G:BOX machine. Yellow numbers show the signal intensity as determined by 

ImageJ. c) Signal intensity “quantification” by the G:BOX system. 400ng of DNA was loaded onto each slot. 

  

0.77 2.94 2.85 2.27 

10.38 4.17

 
8.48 13.17 6.15

 
5.10 7.86 

8.09 1.66 3.44 6.25 7.34 

a) 

b) 

c) 
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Appendix 21.5 Slot Blot 5 of the RNAi helicase screen. a) Schema showing the position where the samples were loaded 

onto. Stars indicate biological replicates. New EV controls were made as the previous samples were insufficient for 

the experiment. RNaseH treated samples are highlighted in grey. b) R-loop signal as captured by the G:BOX machine. 

Yellow numbers show the signal intensity as determined by ImageJ. c) Signal intensity “quantification” by the G:BOX 

system. 300ng of DNA was loaded onto each slot unless otherwise stated. 

  

EV (set-
2(bn129)) 
(600ng) 

EV (set-
2(bn129)) 
600ng 

EV (set-
2(bn129)) 
300ng 

EV (set-
2(bn129)) 
150ng 

T05A12.4* T05A12.4* glh-2 glh-2* 

EV (cfp-1 
(tm6369)) 
(600ng) 

EV (cfp-1 
(tm6369)) 
600ng 

EV (cfp-1 
(tm6369)) 
300ng 

EV (cfp-1 
(tm6369)) 
150ng 

F52B5.3 F52B5.3* wrn-1  

EV (N2) 
 (600ng) 

EV (N2) 
600ng 

EV (N2) 
300ng 

EV (N2) 
150ng 

glh-1 glh-1* vbh-1  

0.37 6.94 2.03 0.52 8.57 5.70 5.14 

0.14 3.25 1.01 0.42 6.14 11.97 3.47 7.88 

0.97 10.77 6.04 1.35 3.09 5.00 9.24 

a) 

b) 

c) 
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Appendix 21.6 Slot Blot 6 of the RNAi helicase screen. a) Schema showing the position where the samples were loaded 

onto. Stars indicate biological replicates. New EV controls were made as the previous samples were insufficient for 

the experiment. RNaseH treated samples are shaded grey. b) R-loop signal as captured by the G:BOX machine. Yellow 

numbers show the signal intensity as determined by ImageJ. c) Signal intensity “quantification” by the G:BOX system. 

300ng of DNA was loaded onto each slot. 

EV (N2) 
300ng  
 

EV (N2)* 
300ng 

EV (cfp-1 
(tm6369)) 
300ng  

EV (set-
2(bn129)) 
300ng 

EV (set-2 
(bn129))* 
150ng 

vbh-1 wrn-1 F52B5.3 T05A12. 
4 

glh-2 

EV (N2) 
600ng 

EV (N2)* 
600ng 

EV (cfp-1 
(tm6369)) 
600ng 

EV (set-
2(bn129)) 
600ng 

EV (set-2 
(bn129))* 
600ng 

vbh-1* wrn-1* F52B5.3* T05A12. 
4* 

 

EV (N2) 
(600ng) 

EV (N2)* 
(150ng) 

EV (cfp-1 
(tm6369)) 
(600ng) 

EV (set-
2(bn129)) 
(600ng) 

EV (set-2 
(bn129))* 
 (600ng) 

vbh-1**   T05A12. 
4** 

 

20.91 14.88 1.00 8.48 3.21 10.04 2.51 

12.46 5.12 0.48 1.71 0.42 1.07 1.09 1.73 

10.06 2.14 0.16 

0.42 0.12 0.55 

0.26 0.954 0.174 

a) 

b) 

c) 


