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Abstract

Histopathologists typically collect biopsies which leads to image data. They examine

the images to obtain various diagnostic summaries, e.g. proportion of tumor. They do

this by overlaying a regular grid of points which are then classified. This classifica-

tion allows them to estimate the proportion of tumor and other statistics. In this thesis,

we focus on investigating heterogeneity. We do this by considering measures of clus-

tering in the classified points spatially. We consider the use of cluster statistics in the

diagnosis of patient cancer (stomach and rectum cancers). We further consider tests of

anisotropy/direction of heterogeneity/clustering. Binary Markov random field parame-

ter estimation is also investigated as an alternative approach for detecting heterogeneity

of the image both overall and in a specific direction. Furthermore, we consider spa-

tial prediction and consistency of spot classifications for overlapping regions sampled at

different resolutions.

In the first part of this thesis, we aim to identify an appropriate spatial autocorrelation

statistic measure, under a normal approximation of the statistical test. We investigate

the power of Moran’s I statistic which has power in the large sample setting. More

importantly, the I statistic is then modified to measure the heterogeneity/clustering in

different directions. In particular in the cancer studies, associating the cluster direction

with that of the lumen surface, which is an important pathological feature, is investigated.

Following this, a new simulation-based iterative method for estimating binary Markov

random field parameters is explained. Estimated parameters give similar information

to the spatial measurements, and this method leads to a statistical test which does not

depend on normal approximations. Based on simulation, the accuracy of the itera-

tive method is checked and compared favourably with an existing parameter estimation

method.

We address the sampling issue by investigating the spatial consistency for pairs of

images sampled from the same area but with different resolutions. Finally, we address

several clinical questions. For instance, explaining the differences in survival of patients

is investigated and it was found that heterogeneity is related to expected survival times.
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Chapter 1

Introduction and Background

1.1 Introduction

This project is the result of co-operative work between statisticians and pathologists and

is based on the digital slides of human pathology cancer tissue. Pathology is the study

and understanding of disease, knowledge that is essential in evaluating human tissue

samples and identifying diseases and treatments. The pathologist is a bridge between

medical doctors and scientists and is an expert in illness and disease.

Data for this project are derived from digital photographs of human tissue slides

using 2D microscopy at 20X magnification. From these photographs, a web-based soft-

ware tool, called RandomSpot (Treanor et al., 2008; Wright et al., 2015), generates a

systematic grid of spot/cell locations within a target area. This software, which is based

on systematic random sampling (SRS), provides a framework upon which to quickly

build an accurate estimate of the distribution of classes within a tissue sample. The first

spot of the grid created by RandomSpot is placed randomly, with the subsequent spots

placed systematically following a hexagonal regular grid of spots. Each spot can then

be quantitatively evaluated by an expert pathologist to determine the feature present at

that spot; e.g. a tumor, or a stroma cell (the cells that surround tumor cells) to generate a

sample of tissue-type classifications.

In this thesis, the spatial arrangement of spots on a hexagonal grid with their classes

will be referred to as a “biomedical image”. These images contain a tissue-type classifi-

cation at 50-300 spots from the region of interest. The image data contains positions of

1
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the sites given by the coordinates (ui, vi), where i = 1, . . . , n are the indexes of n spots,

together with the classification of the spots given by xi, i = 1, . . . , n. The ordering of

spots in each row is from left to right, and the rows are ordered from bottom to top.

Pathological assessments of the tissue on the slides is a key part of the diagnosis of

cancer. An example of analysis is the use of overall summary images which can be

derived from the classification of the spots, such as the ratio of tumor to stroma cells.

Stereological methods, which include spot-counting tasks, provide quantification of tu-

mor characteristics that can then be used to compare tumor structure and composition

objectively to diagnose and understand diseases like cancer. The pathological analy-

sis of biomedical images follows a standard approach to characterise cancer. However,

traditional pathological diagnoses are subjective and descriptive, making comparison of

quantitative features difficult.

This project is the first numerical characterisation of stereologically derived biomed-

ical images from pathological samples collected from multiple patients. Examining pat-

terns or spatial features of appearance by numerical quantification is one of the primary

tasks in this project. Examination of tissue appearance helps in assessing tumor hetero-

geneity. Pathologists use a standard subjective process to assess the heterogeneity of

spatial features and to classify images. This is a very time-consuming process and its

success depends heavily on the expertise and experience of the pathologist.

Various medical questions arose during the project, such as how the new spatial fea-

ture measurements of assessing heterogeneous tumors is related to patient survival. Spa-

tial measurements are also adjusted to examine the heterogeneity of tumors in various

directions. We also sought to compare different resolution levels to see if the images

are spatially consistent by prediction. More questions are addressed within each chap-

ter. Ethical approval for the study was obtained by Dr. D. Treanor from the NHS ethical

approval committee to use and analyse the biomedical image data (Leeds West LREC

reference 05/Q1205/220).

In this chapter, our motivation and a review of related previous work is described.

Background information into biomedical images is presented in Section 1.3, and the

spot classification is determined by pathologists in Section 1.4. More detail about the

contribution of each chapter is given within their introductory sections. An overview of

the research covered in this thesis is given in Section 1.5.
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1.2 Why spatial analysis?

Spatial analysis can be applied in various fields, such as epidemiology (Graham et al.,

2004), geography (Ebdon, 1985; Lee and Wong, 2001), sociology (Logan, 2012) and

geostatistics (Cressie, 1993). However, in biomedical images, work on investigating the

spatial heterogeneity is very limited and subjectively evaluated.

Dworak et al. (1997) initially described a standardised 5-point grading system for

what is called “tumor regression” (TRG), which is based on the spatial presence or ab-

sence of macroscopic disease. The TRG is the amount of macroscopic disease after

chemotherapy but recorded before removing the tumor surgically. The TRG describes

the varying degree of replacing tumor with fibrosis, and it ranges from 4, when there

is no viable tumor cells detected, to 0 when there is no tumor regression. TRG= 3 is

defined as more than 50% with fibrosis outgrowing the tumor mass, TRG= 2 is with

less than 50%, and TRG= 1 is defined as a morphologically unaltered tumor mass.

Figure 1.1 shows the varying stages of TRG due to radiation treatment from A to F. The

chemotherapy type before surgery called, “neoadjuvant treatment”, is where one or more

chemotherapy medicine is involved in helping to reduce the risk of the cancer coming

back after operation.

Figure 1.1: An example of TRG, (A) shows TRG equal to zero when there is no tumor regres-
sion, (B) dominant tumor with fibrosis, (C) significant fibrosis with clustering of tumor cells
(D-E) fibrosis with very few tumor cells and (F) no viable tumor cells, taken from Cserni, Gabor
(2011).
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Wheeler et al. (2002) and Rdel et al. (2005) have also emphasised that the modified

3-point rectal cancer regression grade staging system, which has considered the com-

bination of TRG 4 and 2 as well as TRG 3 and 0 but kept TRG 1, has led to stronger

results than would have been obtained through other grouping. All these methods are,

however, subjective assessments of tumor spatial behaviour. Rdel et al. (2005) suggested

that the accuracy, reliability, and validity of modified staging systems still needs to be

investigated further.

High spatial heterogeneity is a feature of especially gastric and rectal cancer which

are the most leading causes of cancer mortality worldwide. This feature may influence

the characterisation of tumor biology. Understanding cancer heterogeneity is substantial

for a more accurate diagnosis, for selecting appropriate therapy regimens, and for mon-

itoring remaining disease. Recent studies based on a histopathological subjective evalu-

ation to understand heterogeneous tumor, for example, Gullo et al. (2017) and Aoyama

et al. (2018), but they suggested that further investigations are still needed.

Pathologists have also analysed biomedical images of colorectal cancer in very sim-

ple numerical ways by comparing the overall proportion of tumor (POT ) in the image

(West et al., 2010a). They classified POT as either POT -high or POT -low which were

defined using the mode. They found that POT -low in colorectal cancer is related to poor

survival, but there was no significant correlation between POT and any of the clinical

variables. Likewise, the gastric cancer dataset showed that a low proportion of tumor is

related to poor survival (Aurello et al., 2017; Lee et al., 2017; Peng et al., 2018), but the

sampling areas for measuring PoT were not at the luminal surface. A lumen is the inside

space of a tubular structure, such as in the bowel and the interior of the gastrointestinal

tract. This surface is important because it is the location where cancers first develop,

and they spread into the deeper stomach from lumen. Furthermore, West et al. (2010a)

hypothesised that patients with low proportion of tumor might be more likely to have

more responded than POT -high and they recommend that this area warrants further in-

vestigations. Aoyama et al. (2018) showed a similar study using gastric cancer, where

the POT was measured at the luminal surface, but the result was opposite. Patients with

low POT survived significantly longer than whose with high POT . The POT measure-

ment is commonly used in analysing biomedical images, for instance in the following

papers: Huijbers et al. (2013), Mouliere et al. (2013) and Hale et al. (2016).
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Pathologists also use an objective quantitative tumor cell density (TCD) analysis

which has been found to be a useful prognostic indicator of the response to preoperative

therapy (West et al., 2010b). Mesker et al. (2007) and West et al. (2010a) also observed

significant heterogeneity subjectively in the POT within individual tumors, but reported

that it is difficult to measure objectively.

Biomedical images have also been analysed in Almohri (2012) as compositional data,

where the proportion of spots of many different types was given; not just tumor and

stroma. The aim was to classify the images into two or more groups, but there was no

definite answer regarding the number of groups.

Nevertheless, pathologists still need better ways to understand biomedical images ob-

jectively and new quantitative summaries which can be used in further analysis. Pathol-

ogists see spatial pattern in tumors, which they believe can be quantified statistically, in

order to aid patient diagnosis. However, they currently have no objective measurement

tools and an obvious idea is to use spatial statistical techniques. Hence, spatial analysis

could be used to describe images instead of only, for example, considering the overall

POT in relation to other factors (e.g. to patient survival).

1.3 Background to biomedical images

Two datasets of biomedical images were provided for two different cancer studies: 1)

gastric cancer images (one image per patient) and 2) rectal cancer images (multiple im-

ages per patient).

Figure 1.2: Examples of delineation types, drawn on the same digital tissue slide (viewing mag-
nification 20X): rectangular, elliptical and polygonal, taken from Wright et al. (2015).

We will start by explaining the process of how the biomedical images are generated
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and recorded, and then represented using statistical software. From digital tissue slides,

the area of interest is highlighted manually by a pathologist in black ink. One of three

types of image delineation can be used: square, elliptical/circle or polygonal, as shown

in Figure 1.2. The delineated area is then scanned with capture resolutions of 0.5 mi-

crons/pixel (20X magnification). The target number of spots is then determined and they

are spaced equally using a hexagonal mesh by the RandomSpot algorithm (Treanor et al.,

2008; Wright et al., 2015). The ratio of distances between spots on vertical lines divided

by that of horizontal lines was approximately 0.79 in all images, and hence the distance

of vertical lines is actually shorter than the distance between horizontal lines. Therefore

the edges of the hexagons are not the same length. Figure 1.3 shows how a grid of spots

is added to a virtual slide of a whole tumor. Virtual slide viewing software was then used

to view the spots at different resolutions. The tissue-type classes were then recorded

manually.

Figure 1.3: Example of preparation of a virtual slide where (a) shows delineating of a tumor
boundary by hand. (b)-(e) show the spots added by RandomSpot, at different zoom levels (from
2.5X to 40X), and (f) shows the manual classification of a spot, taken from Wright et al. (2015).
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(a)

(b) (c)

(d)

Figure 1.4: An example of highlighting the region of interest: (a) by the pathologist in black ink
with the sampling target area shown as a green circle, (b) displays a zoomed in version of the
sampling area and (c) Dirichlet tessellation of a set of spots after sampling the area based on Lee
and Schachter (1980), (d) illustrates the same sampling area plotted using R, where the red spots
show tumor spots, green indicates stroma spots, and missing data are shown in white.

The digitised images are exported in one or many files in XLS format containing

two dimensional co-ordinates of the spots, as well as the classes of the spots. The clas-

sification of spots is subjective, as it is done by manual inspection, and takes a fully

trained pathologist about 25 minutes to score 300 spots (Wright et al., 2015). The spot

classification images can then be plotted in a new way using R software, where the clas-

sification of a spot is shown as a hexagon. Figure 1.4(a) displays a digital tissue slide

example from a gastric cancer where the tumor is delineated in black and an area of

interest shown as a green circle. This area of interest is shown at higher magnification



Chapter 1. Introduction 8

(20X) in Figure 1.4(b). Once the spots are labelled, they can be plotted as dots in Figure

1.4(c) where a gap indicates a missing spot. Then, in 1.4(d), the spots are illustrated as

hexagonal shapes for each label, where the actual spot location is in the centre of the

hexagon. Background definitions and related clinical data for the two sets of biomedical

images, which will be considered later, are given in Sections 1.3.1 and 1.3.2.

1.3.1 Gastric cancer images

Gastric cancer is the third most common cause of cancer death in the world (Ferlay et al.,

2013). This dataset was taken from a clinical trial where 50% of patients are randomised

to receive chemotherapy after surgery but they were not treated with neoadjuvant treat-

ments which means no TRG clinical variable is provided. Some digital tissue slides of

gastric cancer are available online (Grabsch, 2013) without the spot information files.

The 246 gastric cancer images to be studied belong to patients from the Kanagawa Can-

cer Center Hospital (KCCH), Yokohama, Japan who had surgery between January 2000

and February 2004 (Yamada et al., 2016a). The area of interest of these gastric can-

cer images is the luminal site of the tumor, which is the inner open space in the bowel.

In this set of images, each patient has one image, but the image can have either single

or multi-regions; though only 19 of the images have multi-regions. An example of a

single-region image which contains 300 spots, is shown in Figure 1.4(c).

Table 1.1: Discrete covariates for the gastric cancer study (223 patients).

Covariate # of patients
Pathological tumor stage pT = 1 Tumor invades lamina propria, mucosae, or submucosa 4

pT = 2 Tumor invades muscularis propria 35
pT = 3 Tumor penetrates subserosal connective tissue without 30

adjacent structures
pT = 4 Tumor invades serosa with adjacent structures 154

Japanese Classification of tumor JS = 1 Benign epithelial tumor 5
JS = 2 Malignant epithelial tumor 17
JS = 3 Non-epithelial tumor 78
JS = 4 Lymphoma 46
JS = 5 Metastatic tumor 56
JS = 6 Tumor-like lesion 12
JS = 7 Gastrointestinal polyposis 9

Lauren Classification of tumor LS = 1 Intestinal type 107
LS = 2 Diffuse type 116

Chemotherapy chemo = 1 No chemotherapy 92
chemo = 2 Chemotherapy 131

Survival Status Status = 0 Alive 116
Status = 1 Deceased 107

Clinical data was provided for most patients, see Table 1.1, however, some images
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had incomplete clinical data and thus were removed. Hence, the total number of biomed-

ical images matched with the clinical data was 223 out of 246.

The response variable of interest is the survival time in years (range, 0.27-9.53 years

and median, 3.23 years) This is the length of survival post treatment (either time to death

or time alive since treatment up to the end of the study), with survival status recorded as

either deceased or alive. The other covariates are: having chemotherapy, where chemo =

1 indicates the patients who had only an operation and chemo = 2 indicating those who

had chemotherapy after the surgery; slightly more patients had chemotherapy treatment

(59%).

Three types of classification of tumor are considered as covariates. The American

Joint Committee on Cancer (AJCC) defines the pathological classification (pT ) using a

staging system for gastric cancer, where pT refers to the term used in the pathological

laboratory system (Shamudheen Rafiyath, 2018). This classification has four stages and

depends on the diagnosis of tumor depth and how far it is progressed, where stage pT =

1 for the smallest and pT = 4 for the largest size. The meaning of each stage is shown

in Table 1.1 for the layers of stomach illustrated in Figure 1.5.

Figure 1.5: The structure of the stomach which helps to determine the stage of cancer, taken
from American Cancer Society (2017).

Another type of tumor classification has seven stages. This is based on the Japanese

Pathology System (JS) and it depends on the appearance of the tumor (Japanese Gastric

Cancer Association, 2011). Lauren’s Classification is another approach which is based

on histologic features, genotypes and molecular phenotypes (Hu et al., 2012).

An essential step in understanding the clinical data is applying exploratory analysis
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Figure 1.6: Box plots of the clinical variables for gastric cancer data occurring over the years.

to investigate whether there is an association between potential explanatory variables

and the response variable. In this analysis, the information about patient survival status

was ignored, and therefore, the outputs are indicative but not conclusive. We start with

a test of independence for all possible pairs of categorical variables. The Pearson χ2

test of independence is used with the null hypothesis that the two variables are inde-

pendent. The assumptions of this test are: a large sample (e.g. > 100) so that the test

statistic has an approximate χ2 distribution, independence of variables and that all cells

in the table have expected frequency higher than 1 and approximately 80% higher than 5

(Cochran, 1952). To achieve the required frequencies, some categories were combined,

for instance, JS & pT , where pT = 1, pT = 2 and pT = 3 have been combined; the

degrees of freedom (df) now equals 6 instead of 18. The p-value can then be found as

the χ2 right-tail probability above the observed test statistic.

Table 1.2 shows the statistical test result for each pair of categorical variables. At

α = 0.05/10 = 0.005 level of significance, using a Bonferroni correction for multiple

testing (Bland and Altman, 1995), there is evidence of association between JS &LS and

pT & chemo. As the analysis in this section is exploratory to investigate the dataset, the
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Table 1.2: The tests of independence using a χ2 test where Bonferroni correction is used for
significant p-values.

Pairs of variables χ2 df p-value
JS & LS 216.77 6 0.000
JS & chemo 9.92 6 0.118
JS & pT 7.25 6 0.299
JS & Status 8.23 6 0.221
LS & chemo 1.40 1 0.236
LS & pT 4.62 3 0.202
LS & Status 0.26 1 0.608
chemo & pT 13.26 3 0.004
chemo & Status 2.26 1 0.133
pT & Status 11.56 3 0.009

survival time response variable was only compared to each explanatory variable using

one-way ANOVA test.

In general, the normality test is a method to tell if a random sample comes from a nor-

mal distribution, where a statistic is calculated to test the null hypothesis that a random

sample comes from a normal distribution. The null hypothesis is rejected when the sta-

tistical values are under a certain threshold. The larger the sample size, the more likely

we will get a statistically significant result. Regarding to survival time, there is a strong

evidence against it follows a normal distribution using the Shapiro-Wilks test (McDon-

ald, 2009) with p-value= 1.1× 10−05, the Kruskal-Wallis test (Shapiro and Wilk, 1965)

will be performed which is a non-parametric one-way ANOVA test. This test is used to

identify significant differences in survival times between groups defined by a categorical

independent variable. Figure 1.6 displays the distribution of the categorical variables.

There are only significant differences between chemotherapy groups (p-value= 0.0003);

where the patients who had no chemotherapy before surgery tend to live longer than

those who have chemotherapy beforehand. This result is unexpected but may be done

to the data being a pilot study. The same gastric cancer dataset has been analysed by

Yamada et al. (2016b), but considering only the patients who had no treatment. Thus we

have no evidence in gastric cancer about how life expectancy depends on whether or not

chemotherapy was administered.
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1.3.2 Rectal cancer images

Bowel cancer is the second most common cause of cancer death in Europe, with around

215, 000 deaths in 2012 (Cancer Research UK, 2018). The dataset provided is called the

Eindhoven dataset, named after the city where the images were gathered in 2014 (Stone,

2017). This set of images were from an observational study and not a designed clinical

trial. Neither the images, nor the derived spot score data, have been published.

There are multiple images per patient, but the number of images vary. In all cases, the

number of spots is 300 with a fixed magnification of 20X. There are five image types,

some of them are pre-treatment and some are of post-treatment resection specimens.

In the Eindhoven dataset, pathologists use an automatic method to measure tumor spot

density (TCD) in high resolution pathology images. This measurement is commonly

used to determine the target area for sampling post-treatment images. The types of

images provided were:

1. A pre-treatment image from a biopsy tissue sample. When a tumor is detected,

the first stage is usually to take a small sample cut from the tumor, using a thin

flexible tube (endoscope). The biopsy has no fixed area and may contain single or

multi-region images. The shorthand name for this type of image is Bx.

2. A post-treatment image of the whole tumor at low resolution. The sampling area

has no fixed shape and it may contain either single or multi-region. The shorthand

name for whole image is W .

3. A post-treatment image at high resolution of a 3x3 mm square sampled from W .

The sample is only from a region at the lumenal surface with high TCD. The

location is deliberately chosen close to the surface where the biopsy has been

taken before treatment. This is called L for lumen.

4. A post-treatment image at high resolution of a 3x3 mm square sampled from W ,

but this time the area of sampling is in the region of highest TCD anywhere within

the tumor. The shorthand name for this image type is G for greatest.

5. A post-treatment image at high resolution of a 3x3 mm square sampled from W .

This image has both the highest TCD in the whole tumor and is allocated in



Chapter 1. Introduction 13

the lumenal site, so we use the shorthand name LG meaning both lumenal and

greatest.

Table 1.3: The summary count of all the biomedical rectal cancer images.

Matched images # of images
Before matching Bx and clinical data

W & L & G 66
W & LG 202
W & L 1
W & G 12

Incompleted 12
Total 293

After matching Bx and clinical data
Bx & W & L & G 29
Bx & W & LG 84

Total 113

The delineation of the study area in G, L and LG is square, but for Bx and W it is

polygonal. The Bx is sampled from the lumenal region, thus the image is superficial,

and so the lumen sample is likely to be more correlated with the L. TheW , L,G and LG

images have the same coordinate system, but the Bx is different. The spot region in the

whole tumor image (W ) is partly overlapping with the high resolution images (L, G and

LG). Each patient has between one and four different images with approximately 300

spots each. For instance, the patient can have either Bx, W , L and G images, or Bx, W

and LG images, or Bx, W and L images, or Bx, W and G images. The summary of all

images is given in Table 1.3 before and after a preliminary processing of matching the

images with clinical data. The preliminary processing of data is vital as the image data

files, virtual slides information and clinical data from the pathologists were not organized

well and were very complicated to match with related images so it was time-consuming

to be ready for analysis. The final set of images with clinical information includes a set

of 113 images, where 29 patients have Bx, W , L and G images, and 84 patients have

Bx, W and LG images.

The clinical variables are shown in Table 1.4 and will be explained in more detail

before an exploratory analysis is performed. The patients analysed included 76 males

and 37 females, with a median age of 62 years (range, 32-84). The clinical data have two

discrete survival response times: (i) follow-up time recorded to nearest month, which

is the length of survival post treatment, and (ii) disease-free survival time, which helps
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Table 1.4: Discrete covariates of the rectal cancer images (113 patients).

Covariate # of patients
Pre-operative tumor assessment Pr.Tstage = 1 Early stage 1

Pr.Tstage = 2 Intermediate stage 45
Pr.Tstage = 3 Advanced stage 67

Tumor stage pT = 0 No evidence of primary tumor 15
pT = 1 Tumor invades into submucosa 2
pT = 2 Tumor invades muscularis propria 23
pT = 3 Tumor invades through muscularis propria into subserosa 61
pT = 4 Tumor directly invades other organs or structures 12

Lymph nodes stage pN = 0 No regional lymph nodes metastasis 75
pN = 1 Metastatic disease in 1-3 regional nodes 28
pN = 2 Metastatic disease in > 3 regionals 10

Distant metastasis Stage pM = 0 No distant metastasis 112
pM = 1 Distant metastasis 1

Follow-up survival status FU.status = 0 Disease-free 78
FU.status = 1 Alive with disease 10
FU.status = 2 Dead of disease 17
FU.status = 3 Dead of other cause 7

Disease-free survival status DF.status = 0 Disease-free 107
DF.status = 1 Not disease-free 116

Therapy type therapy = 1 RTx + 5FU* 37
therapy = 2 RTx + Cap* 21
therapy = 3 RTx + 5FU + Ox* 55

Gender Gender = 1 Male 76
Gender = 2 Female 37

*Therapy types explained in text.

to see how well a treatment works, recorded to nearest month. The follow-up survival

time has a range of 0-98 months, median 29 months, and its status (FU.status) has four

categories, but pathologists usually combine groups 0 and 1 as disease-free and groups

2 and 3 as not disease-free. The range of disease-free survival time was 0-87 months,

median 22 months, and its status (DF.status) is either disease-free or not disease-free

as a binary variable.

Figure 1.7: The structure of rectum including various pathologist stages of the rectal cancer
(plantmedicine, 2018).

The other covariates are: preoperative tumor stage (Pr.Tstage) which was assessed

from a biopsy sample using high resolution magnetic resonance imaging (MRI) (Greene

et al., 2002; Guidelines for the Management of Colorectal Cancer, 2007). The MRI pro-
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duced a series of detailed pictures of the affected areas inside the body. The Pr.Tstage

contains three stages, where 59% of patients have advanced Pr.Tstage. The Ameri-

can Joint Committee on Cancer (AJCC) Tumor-Node-Metastasis (TNM) staging model

was also used to assess how much the cancer has spread (American Joint Committee on

Cancer, 2009). The TNM classification is pathological tumor stage (pT ) which has five

stages where the lower stage (pT = 0) shows no tumor and the highest stage (pT = 4)

shows that the tumor has invaded several organs or structures and all stages are illus-

trated in Figure 1.7. Guidelines for the Management of Colorectal Cancer (2007) also

defines a classification of the lymph nodes (pN ) which has three stages according to

the number of metastatic sites. The pN = 0 corresponds to when there is no regional

lymph node metastasis, pN = 1 for metastasis in 1 to 3 perirectal lymph nodes and

pN = 2 for metastasis in 4 or more pericolic lymph nodes. Moreover, distant metastasis

(pM ) has two stages, when distant metastasis are present pM = 1, and pM = 0 oth-

erwise. All patients had radiotherapy (RTx) after surgery using various chemotherapy

regimens: therapy = 1 for Fluorouracil (5FU), therapy = 2 for Capecitabine (Cap)

and therapy = 3 is a combination of 5FU and Oxaliplatin (Ox). The pathologists also

provided the tumor spot density of W , L, G and LG as continuous variables, called

TCD(W ), TCD(L), TCD(G) and TCD(LG) respectively.

Exploratory analysis was applied to the data set of 67% male and 33% female pa-

tients to summarise its main characteristics. The aim from this step was to find out,

for example, which variables suggest interesting relationships, or if there are any either

categorical or continuous variables correlated with the response variable (survival time).

Hence we will start by comparing pairs of categorical variables and then the response

variable will be compared with all variables (either categorical or continuous variable).

We start with each pair of categorical variables and use the χ2 test of independence

to determine if there is a significant relationship between the variables whilst recalling

the assumptions of the test. The pT was associated with many covariantes: therapy

(p-value= 0.045), Pr.Tstage (p-value= 0.002), pN (p-value= 0.028), FU.status (p-

value= 0.026) and DF.status (p-value= 0.019). Similarly, DF.status was associated

with pN (p-value= 0.028) and pT .
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(a) (b)

Figure 1.8: Box plots of survival time for categorical variables of rectal cancer.

Next, we consider the two survival time response variables (FU.status andDF.status)

against both categorical and continuous variables. Neither survival variable follows a

normal distribution using the Shapiro-Wilks test (Royston, 1993), with p-value < 0.05.

By considering the categorical variables, the Kruskal-Wallis non-parametric test is

performed. We found that various treatments are changed over FU (p-value= 5.06 ×

10−10) andDF survival times (p-value= 0.04). Similarly, lymph node stage changes sig-

nificantly over the FU survival time (p-value= 1.95× 10−06) and the DF survival time

(p-value= 0.02). Figure 1.8 shows how the survival times change according to therapy

types and pN stages for both FU and DF survival times. For both survival times, pa-

tients who had the first theory type tend to have better survival rate than other therapy

types. Also, the survival time of the first stage of pN has better survival time than the

third stage of pN . However, there is no correlation between the response survival time-

variables and continuous variables, TCD(W ), TCD(L), TCD(G) and TCD(LG).

1.4 The classification of spots

Biomedical image contains different classifications of spots. All spot types are identified,

and then a combined version of spot is explained as defined by pathologists. Only the
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gastric cancer images are considered as an example for spots comparison.

Table 1.5: Spots types and pathological classification.

Spot type Spot color Description of spot Pathological classification
0 Orange Non informative Exclude
1 Red Tumor Tumor
2 Green Stroma Stroma
3 Blue Necrosis Exclude
4 Cyan Vessel Stroma
5 Magenta Inflammation Stroma
6 Purple Tumor lumen Tumor
7 Yellow Extracellular Mucus Exclude
8 Brown Muscle Stroma

Table 1.6: The percentage of each spot type and combination of spot types for pathological
classifications using 246 images.

Spot type % % of joint group Group type
1 34.6%

36.3% Tumor
6 1.7%
2 52.4%

57.4%
Stroma4 1.7%

5 3.1%
8 0.2%
0 4.3%

6.3% Excluded spots7 0.5%
3 1.5%

There are nine types of spots, which are listed in Table 1.5 along with the colours used

in later figures. In the same table, we define a combined grouping which has three types:

tumor, stroma and excluded as recommended by an expert pathologist. The excluded

spots should be removed before the analysis and are plotted with in white. This combined

classification was applied before the images were analysed. The percentage of each spot

type is shown in Table 1.6. The stroma has the highest percentage (57.4%) followed by

tumor spot (36.3%). Figure 1.9 shows two examples of single and multi-region images

of the original biomedical image and combined classification.

A box-plot and histogram of the proportion of each spot type are plotted for the 246

images and are shown in Figures 1.10a and 1.10b, respectively. It can be seen from

both figures that some images have 40% of their spots of type 5. Also, most of the

images have no spots of type 8, whereas some have between 20% and 30% of type 8.
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(a) (b)

Figure 1.9: Example of gastric cancer image, plotted using R, where (a) shows the original
biomedical image, and (b) shows the pathological classification where the red spots indicate
tumor spots, the green spots indicate stroma spots, and the white spot shows the excluded spots.

Figure 1.10a shows that all types have outlier points except types 1 and 2. Also, some

images have lots of non-informative spots (type 0), for example there is an image that

has 62% of type 0 spot. Figure 1.10b shows the distribution of type frequency, using the

probability density. For instance, the distribution of type 1 is positively skewed whereas

the distribution of type 2 is more symmetric. The rest of types rarely appear in the images

and hence their distributions are not important.

1.5 Thesis overview

In this thesis two dimensional biomedical images are considered, which are derived from

pathology digital tissue slides. In Chapter 2, we cover the definition of the neighbour-

hood system in the hexagon grid, which has been generalised to be applicable in single

and multi-region images. Some spatial statistics are defined and then compared numer-

ically. A simulation is also used to investigate the suitability of distributional assump-

tions. The optimal spatial statistic to measure the degree of clustering is then determined

to be Moran’s I statistic (Moran, 1950) with an approximate distribution considered for
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(a)

(b)

Figure 1.10: (a) Box-plot for each spot type, and (b) the density histogram of individual spot
type using 246 images, where the spots are ordered similar to Table 1.6.

large images. This statistic is then computed for all the gastric and rectal images.

The I statistic is then extended in Chapter 3 to investigate anisotropy. A base for

a neighbourhood system is adjusted to be defined for three directions, the directional

I statistics are then computed. Several hypotheses are tested to determine if there is

specified spatial structure in the different directions. From a clinical point of view, the

dependency of spatial structure toward the direction of the lumen is particularly impor-

tant. To calculate the I statistic and test the hypothesis that the anisotropy in the lumen

site is different than the other two sites, the biomedical images are first rotated. This

rotation is generalised for single and multi-region images. A new generalised statisti-

cal test is then defined under the null hypothesis that dependency in the direction of the
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lumen is the same as in the other directions. This test is applied to the gastric cancer

images as the lumenal direction is provided for this dataset only.

Another method of detecting the dependency of spots is explained in Chapter 4 using

a binary Markov random field (BMRF), which explicitly includes clustering parameters.

The test in this model is non-parametric with the significance computed without assum-

ing forms from the data distribution. A new method for estimating parameters, which

will be called the Iterative Method (IM), is introduced and explained in detail. Through-

out the description of this method we include the steps of the estimation method, statisti-

cal inference and hypothesis testing. This estimation approach depends on a simulation

method based on the given image, avoiding the need for the likelihood function. A gener-

alisation of IM for detecting directions is explained theoretically and many applications

of the IM for estimating parameters are included. Finally, the IM is compared to the I

statistic in addition to comparing it with existing parameter estimation methods.

A method for prediction of spot classes using the spatial features is explained in

Chapter 5. This process can help in predicting overlapped low-resolution from high-

resolution images. The prediction may save clinical time and effort. The appropriate

dataset to test the prediction method is the rectal cancer images as it contains several

images per patient at different resolutions. In the prediction method, the spot classes

are estimated by, for instance, weighted voting according to the distance between the

predicted and observed spot type. Many spatial cases of prediction are covered, and the

optimal method of prediction is determined.

In Chapter 6, several applications in pathology are considered statistically. Some of

the questions are: can the spatial analysis help to predict chemotherapy, can the spatial

statistics assist in predicting survival of patients, and can the I statistic help in predicting

the survival time of patient.

Finally, in Chapter 7, the main results are summarised in addition to explaining pos-

sible future work and recommendations for pathologists.
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Spatial Statistics for Biomedical Images

2.1 Introduction

Mesker et al. (2007) and West et al. (2010a) subjectively observed remarkable hetero-

geneity in the proportion of tumour POT within individual tumours. As we introduced

in Chapter 1, however, the pathologists’ diagnoses are subjective which makes compar-

ison of patterns or spatial features difficult. Thus a more objective technique is needed

even in an exploratory analysis.

This chapter considers a study of many spatial statistics with a review to then rec-

ommend which statistics can be approximated by a normal distribution under the null

hypothesis with the required sample size. This can then help to distinguish between im-

ages using spatial dependent features with correct statistical test. Spatial measure may

help in future analysis of biomedical images to save pathologist’s time as well as effort.

One of the main challenges in this chapter is determining the neighbourhood structure

in a nearly regular hexagonal lattice. The resulting adjacency matrix, δ, is essential, as

Cliff and Ord (1981) explained, to be able to calculate the spatial measurements. The

proposed method of determining the δ matrix works well for single regions and it has

been generalised in the case of multi-region images.

The spots on biomedical images are binary variables as described in Section 1.4, and

hence in this chapter, the most common spatial statistics for binary data are covered: the

black-white join-count, Moran’s I and Geary’s C statistics (Cliff and Ord, 1981; Geary,

1954; Moran, 1950). Cliff and Ord (1981, pp. 12) and Lee and Wong (2001, pp. 81)

21
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derived the moments of each of these spatial statistics under two different assumptions.

The first assumption, which has no restriction on the sampling process, is called free (F)

sampling where the spot values {xi} are independently coded 0 or 1 with probability

p and p − 1 respectively. Alternatively, nonfree (NF) sampling (Cliff and Ord, 1981;

Schabenberger and Gotway, 2005) fixes the number of spots of each type and hence

only the spatial arrangement is random. Cliff and Ord (1981) and Sen (1976) proved the

asymptotic normality of continuous spots. However, the output of this study is assuming

normality is not good for sparsely connecting spots.

This chapter starts by defining the neighbourhood structure on the hexagonal grid

of the biomedical images described in Section 2.2. The three spatial autocorrelation

statistics are defined and explained in Section 2.3, and then we mathematically determine

the relationship between them in Section 2.3.3. Extensive simulation studies under the

null hypothesis are computed to investigate the normality of all defined spatial statistics

in Section 2.4. Then, the power of I statistical tests is evaluated in Section 2.5. Some

applications of spatial statistics on real biomedical images are shown in Section 2.6 with

pathologists review about I . Finally, some discussion appears in Section 2.7.

2.2 Neighbourhood structure on a hexagonal grid

The nearly regular hexagon grid is not straightforward and even regular hexagonal grids

are not as commonly used as square grids. This is because the distances of the six ad-

jacent spots are not identical, and further determining neighbours becomes more tricky

with missing spots. The spatial structure of the neighbourhood can, however, be sum-

marised in elegant mathematical terms in order to calculate spatial measurements. The

sharing a common border method is the most common approach to create neighbour-

hood structures. For example, Delaunay Triangulation (Bivand et al., 2008; Diggle,

1981) involves subdividing the hexagonal grid into triangles (mesh generation) where

each triangle contains exactly one spot.

We started by applying this method to a nearly regular hexagon grid to see how well

it works if there are no missing spots. Some spots, however, can be blanked off as there

is no information allocated on the boundary of grid. This can be solved by adding a set

of four dummy vertices as a square around the images (Turner, 2018); where each pair
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of dummy spots are joined by an edge to have a rectangular window around the image

and all spots lie inside the window. In this case, the method of sharing a common border

can still work effectively. When there are missing spots in the grid, however, some spots

which share a common boundary, should not be considered as neighbours.

The objective is to create a meaningful neighbouring structure even if we have miss-

ing spots anywhere in hexagon grid for a single region. In addition to determine the

neighbourhood for multi-region image when some regions sometimes overlap. The first

step is to define which cells are to be neighbours by making a Delaunay mesh of the

spots based on Euclidean distance, that is to identify hexagons which share a boundary

and choose a neighbour criterion to use. The second step is to assign a specific limited

distance as a threshold to be used to avoid spots that are relatively far apart but share a

boundary.

Now we consider the study area which has been partitioned into n nonoverlapping

sub-areas. Suppose that a random variable X has been measured in each sub-area, and

that the value in the typical sub-area i, is xi, for i = 1, . . . , n, where xi is the classifica-

tion of the ith spot, and a vector of classes for each dataset will be denoted x. The cells

have been classified into two types, which has been explained in Section 1.4, as follows:

xi =

 1 if the class of spot i is tumor,

0 otherwise.

An effective combination of two steps for determining the neighbourhood structure

has been introduced in this section which is a distance-based neighbour and boundary

sharing approach. These steps define matrices M (1) and M (2) respectively with sizes

n×n. The element-wise multiplication of these matrices gives a “connection matrix”, δ,

determining the neighbouring structure where the contents of this matrix is explained by

Moran (1948). It contains values zero and one, where one is an indicator of neighbouring

spots. Thus δij = 1, if the ith and jth spots are joined, and δij = 0 otherwise. The

definition of a “join” implies that δij = δji for all i and j, so δ is symmetric (Cliff and

Ord, 1981). Because the biomedical images have a nearly regular grid of locations, the

maximum number of neighbours for each spots is six.

To define the first matrix M (1)
n×n = {M (1)

ij }, the spots that share a boundary are deter-
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mined by the dirichlet tessellation using the deldir function of tessellations (Lee and

Schachter, 1980). Figure 2.1 (right) shows the shared boundaries of each spot. We let

M
(1)
ij = 1 if the ith and jth spots share a boundary, and M (1)

ij = 0 otherwise. Delaunay

triangulation neighbours is a symmetric property by design, if i is a neighbour of j, then

j is a neighbour of i.

Figure 2.1: Distance-based neighbours (left) and boundary sharing approach (right) of a single
hexagon, where the dotted lines represent the Delaunay Triangulation.

To define the second matrixM (2)
n×n = {M (2)

ij }, a threshold must to be selected in order

to exclude far away neighbours. First of all, the distances between all pairs of spots, with

coordinates (u,v), are measured using an n×n Euclidean distance matrix with elements

Dij =
√
(ui − uj)2 + (vi − vj)2, i, j = 1, . . . , n, (2.1)

where (ui, vi) and (uj, vj) are the coordinate of the ith and jth spots respectively. Each

element Dij in Equation 2.1 is then divided by the smallest positive non-zero element

which defines as Dmin = min
i,j
{Dij, i ̸= j}, to give

D∗
ij =

Dij

Dmin
, i, j = 1, . . . , n. (2.2)

The D∗
ij, i ̸= j is rounded off at the fifth decimal place. As the side lengths of the nearly

regular hexagons are not exactly equal, we need now to define the six nearest neighbours

for each spot. If D∗
ij = 1, this then defines the smallest distance, say a, which defines

only two neighbours. The other four neighbours, which are a bit larger than a, have the
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same length, say b (see Figure 2.1). Here, b occurs more than a, hence b has the highest

frequency in image which can then be easily determined.

However, if we have a blanked spot, say spot 3 in Figure 2.1(left), the neighbourhood

of spot 4 is reduced to five spots. Here, spots 1 and 6 are not neighbours even though they

are sharing the same boundary since they are not close enough. The distance between

these two spots, say m, which is used to define as a threshold to avoid spots 1 and 6 to

be neighbours if spot 3 was missing. The b cannot be used as a threshold because there

is some variation, by 0.00003, between b sides.

To compute the distance m for the nearly regular hexagon in Figure 2.1(left), we

observe that in either the horizontal or vertical direction the spots lay exactly on a line

which satisfies right angles at the junctions. Thus m is computed as follows

m = 2
(√

b2 − (a/2)2
)
. (2.3)

The value of a in D∗
ij is always 1 for any image, but b can vary a little. From Equation

(2.3), the m can be approximately calculated if we assume that a = b. This corresponds

to a regular hexagon with equal sides, the scaled distance m equals
√
3b. This means,

in Figure 2.1, the angle between spots 3 and 6 at point 4 is 600 (∠346 = 600). Indeed,

we need to select a threshold, which is smaller than
√
3b. We choose a threshold of

maximum distance is
√
2b (where ∠346 > 600). Now the matrix M (1) has elements

M
(2)
ij =

 1 if 1 < D∗
ij ≤
√
2b and i ̸= j,

0 otherwise,

which defines when the spots are sufficiently close to each other. The thresholding

method only works well if a ≤ b and 0.79 ≤ |a
b
| ≤ 1.

The matrix δ is now defined as the element-wise multiplication of two indicator ma-

trices: M (1)
n×n, which specified the spots that share boundaries, and M (2)

n×n, which defines

which spots are close to each other. Thus δ is the element-wise product of M (1) and

M (2) as follows

δij =M
(1)
ij ×M

(2)
ij , i, j = 1, . . . , n. (2.4)
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Example:

To clarify how the matrix δ can be calculated, we use a toy example of 7 spots, which

has a similar structure to Figure 2.1, but is from a real image. The matrix M (1) is defined

first determining which spots share the same boundaries as follows

M
(1)
7×7 =



1 2 3 4 5 6 7

1 0 1 1 1 0 0 0

2 1 0 0 1 1 0 0

3 1 0 0 1 0 1 0

4 1 1 1 0 1 1 1

5 0 1 0 1 0 0 1

6 0 0 1 1 0 0 1

7 0 0 0 1 1 1 0


.

We need to define M (2) by finding the distance matrix (D7×7), then all elements in this

matrix are divided by the minimum non-zero positive element, 557.3666, producing the

following scaled distance matrix,

D∗
7×7 =



1 2 3 4 5 6 7

1 0 1.00000 1.25830 1.25830 1.89297 2.30939 2.51660

2 0 1.89297 1.25830 1.25830 2.51660 2.30939

3 0 1.00000 2.00000 1.25830 1.89297

4 0 1.00000 1.25830 1.25830

5 0 1.89297 1.25830

6 0 1.00000

7 0


.

From this matrix, the non-zero value which has the highest frequency was found, after

rounding all elements to five decimal places, hence b = 1.25830. Then, the threshold
√
2b = 1.7795 is calculated, giving the matrix

M
(2)
7×7 =



1 2 3 4 5 6 7

1 0 1 1 1 0 0 0

2 1 0 0 1 1 0 0

3 1 0 0 1 0 1 0

4 1 1 1 0 1 1 1

5 0 1 0 1 0 0 1

6 0 0 1 1 0 0 1

7 0 0 0 1 1 1 0


.
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Now the matrix δ is calculated as the element-wise product multiplication of M (1) and

M (2),

δij =



1 2 3 4 5 6 7

1 0 1 1 1 0 0 0

2 1 0 0 1 1 0 0

3 1 0 0 1 0 1 0

4 1 1 1 0 1 1 1

5 0 1 0 1 0 0 1

6 0 0 1 1 0 0 1

7 0 0 0 1 1 1 0


.

In this example, it is clear that M (1) = M (2) as there are no missing spots ( see also

the first case of Figure 2.2). However, if the two matrices are not equal, neither of M (1)

or M (2) is appropriate matrix and it is essential to use δ. When M (1) ̸= M (2), there are

two cases: spots share a boundary but they are not close enough (Case 2 in Figure 2.2),

and spots can be close but not sharing a boundary, this occurs in multi-region images

when some rejoins are overlap (Case 3 in Figure 2.2).

Figure 2.2: Sharing approach for all possible neighbouring structures on a single hexagon, where
the dotted lines represent the Delaunay Triangulation.

The M (1) and M (2) matrices of Case 2 and Case 3 as follows:
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Case 2:

M (1) =



1 2 3 5 6 7

1 0 1 1 0 0 0

2 1 0 1 1 0 0

3 1 1 0 1 1 1

5 0 1 1 0 0 1

6 0 0 1 0 0 1

7 0 0 1 1 1 0


and M (2) =



1 2 3 4 5 6

1 0 1 1 0 0 0

2 1 0 0 1 0 0

3 1 0 0 0 1 0

4 0 1 0 0 0 1

5 0 0 1 0 0 1

6 0 0 0 1 1 0


.

Case 3:

M (1) =



1 2 3 4 5 6 7 8

1 0 1 1 0 0 0 0 1

2 1 0 0 0 1 0 0 1

3 1 0 0 1 0 1 0 1

4 0 0 1 0 1 1 1 1

5 0 1 0 1 0 0 1 1

6 0 0 1 1 0 0 1 0

7 0 0 0 1 1 1 0 0

8 1 1 1 1 1 0 0 0



and M (2) =



1 2 3 4 5 6 7 8

1 0 1 1 1 0 0 0 1

2 1 0 0 1 1 0 0 1

3 1 0 0 1 0 1 0 1

4 1 1 1 0 1 1 1 1

5 0 1 0 1 0 0 1 1

6 0 0 1 1 0 0 1 0

7 0 0 0 1 1 1 0 0

8 1 1 1 1 1 0 0 0



,

where the different indexes are shown in red.

The method of calculating the matrix δ works well for single and multi-region images

even if they have missing spots anywhere in the image. In the case of exactly regular

hexagons, our approach to defining neighbours still works effectively but the threshold

will be a constant m =
√
2. Moreover, from Equation (2.2), it never occurred in our

dataset, particularly with multi-region images, that Dmin equaled zero. If this happened

in the general setting, we would need to define the next minimum number.

2.3 Spatial autocorrelation

Spatial autocorrelation is an important concept in spatial statistics, which measures the

similarity between nearby observations. The similarity can also be described as clus-

tering. This section defines in detail the various measures of autocorrelation that we

considered in our project, and how they are mathematically described and computed.
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After the definitions of statistics, the first two moments are given using free and non-free

sampling assumptions.

All spatial statistics in this section are assumed to be asymptotically normally dis-

tributed under the null hypothesis of no spatial autocorrelation (Cliff and Ord, 1981).

The alternative hypothesis, H1, is that spatial autocorrelation exists where images can be

either clustered or regular. Under H0, the z-test is an appropriate two-tailed hypothesis

test which follows a normal distribution under the Central Limit Theorem (CLT). This

test seems appropriate to use as we have large samples of more than 30 spots. From a

rule of thumb, this sample size choice is a boundary, however, between small and large

samples. The images provided contain approximately 50 or 300 spots depending on the

dataset. As soon as the theoretical expectation and standard deviation of spatial statistics

are obtained, the corresponding p-value can be found in order to test for significance

with an α value of 0.05, say.

To calculate the z-value (zo) and p-value for z-tests, the critical value of z is found

by subtracting the theoretical mean, and dividing by the theoretical standard deviation

calculated under either F or NF sampling. Once the z value is calculated, a two-sided

p-value can be found. For instance, suppose L is a spatial statistic, then zo is L−E(L)√
V (L)

,

whereE(L) and V (L) are the theoretical expectation and variance respectively, and then

the p-value equals

p-value = 2P (Z < −|zo|), with Z ∼ N(0, 1). (2.5)

Now, the next sections are organised as follows. The join-count index for binary

data, as the first set of clustering measures is described in Section 2.3.1. The second

group, which are more commonly used, are Moran’s I and Geary’ C statistics which are

explained in Section 2.3.2. At the end of this section, the relationship between spatial

measurements is investigated in Section 2.3.3.

2.3.1 The join-count statistics

The join-count statistics are measures of autocorrelation within binary spatial datasets

with values labelled as black and white which can be defined under both the F and NF

sampling assumptions. The mathematical definition of these statistics, their first two
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moments and the statistical tests are illustrated.

The join-count statistics include three coefficients: black-black (BB), black-white

(BW ) and white-white (WW ), which count the number of joins between black and

white areas, where here the black represents the tumor cell. The join may link two B

spots, two W spots, or a B and a W spot. These joins are labeled BB, WW and BW

respectively. Here, xi = 1 if the ith spot is B (tumor spot), otherwise xi = 0, for

i = 1, . . . , n. These spatial arrangements have been defined by Cliff and Ord (1981) and

Bailey and Gatrell (1995) for testing the random scatter of, for example, black sites in

black/white images. However, these statistics can only be applied to binary classes.

The observed numbers of BB, BW and WW joins in the spot structure are given by

BB =
1

2

n∑
i=1

n∑
j=1

δijxixj, (2.6)

BW =
1

2

n∑
i=1

n∑
j=1

δij(xi − xj)2, (2.7)

and WW is a linear function of BB and BW , where

WW = A− (BB +BW ), (2.8)

where A is the total number of joins in the image and 2(BB +BW +WW ) =
∑

i,j δij

(Cliff and Ord, 1981), where δ is defined in Equation (2.4).

The moments of the BB, WW and BW coefficients can be evaluated under either F,

or NF sampling (Bailey and Gatrell, 1995; Cliff and Ord, 1981). Under the F sampling

assumption, the moments are equal to

EF(BW ) = S0p(1− p),

VF(BW ) = S1p(1− p) + 1
4
[S2p(1− p)(1− 4p(1− p))],

EF(BB) = 1
2
S0p

2,

VF(BB) = 1
4
[S1(p

2 − p4) + (S2 − 2S1)(p
3 − p4)],
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where

S0 =
∑
i,j

δij, (2.9a)

S1 =
1

2

∑
i,j

(δij + δji)
2, and (2.9b)

S2 =
n∑
i=1

(
n∑
j=1

δij +
n∑
j=1

δji)
2. (2.9c)

Likewise, EF(WW ) and VF(WW ) satisfy the same formula as BB but replacing

p with 1 − p, where EF and VF are the mean and variance under the F assumption

respectively. Under the NF sampling assumption, the moments are equal to

ENF(BW ) = S0n1n2

n(2) ,

VNF(BW ) = 1
4
[2S1n1n2

n(2) + (S2−2S1)n1n2(n1+n2−2)

n(3) +
4(S2

0+S1−S2)n
(2)
1 n

(2)
2

n(4) ]− (ER(BW ))2,

ENF(BB) = S0

2

n
(2)
1

n(2) ,

VNF(BB) = 1
4

[
S1[

n
(2)
1

n(2) −
2n

(3)
1

n(3) +
n
(4)
1

n(4) ] + S2[
n
(3)
1

n(3) −
n
(4)
1

n(4) ] +
S2
0n

(4)
1

n(4) − [
S0n

(2)
1

n(2) ]2
]

,

where n(b) = n(n − 1) . . . (n − b + 1), n1 equals the number of black spots and n2

equals the number of white spots.

Similarly, ENF(WW ) and VNF(WW ) satisfy the same formula as BB, but replacing

n1 by n2 and n2 by n1.

The interpretation of the BB, WW and BW coefficients as follows: when the value

of BW joins is small and the proportion of BB and WW joins are large, the image

tends to be clustered. Whereas, if BW has a large value and the number of BB and

WW joins is low, the image tends to be regular. However, if BB, WW and BW have

different numbers, we will have a random image. These coefficients can also compared

with the expected numbers of BB, WW and BW joins under the null hypothesis, H0,

of no spatial autocorrelation among the spots and H1 of a spatial autocorrelation exist

with either cluster or regular image. As explained in the introductory part of this section,

the inference, typically based on BB, WW and BW , proceeds by assuming a normal

distribution of the test statistic. For BB, for example, zo =
BB−E(BB)√

V (BB)
, where the mean

and variance come from a particular sampling assumption, is compared to the normal

distribution to calculate the significance level.
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2.3.2 The I and C spatial statistics

Now we will define the second group of statistics for assessing the degree of spatial

autocorrelation: Moran’s I and Geary’s C statistics. Moran’s I statistic is defined in

terms of the difference between each value and the mean of all spot values (Lee and

Wong, 2001) as

I =
n

2A

∑n
i=1

∑n
j=1 δijzizj∑n
i=1 z

2
i

, (2.10)

where zi = xi − x. The Geary’s C statistic (Geary, 1954) is defined as

C =
(n− 1)

∑n
i=1

∑n
j=1 δij(xi − xj)2

4A
∑n

i=1 z
2
i

, (2.11)

where δ is defined in Equation (2.4). The I and C spatial statistics can be extended to

more than two spot values (Moran, 1950), but only a binary case has been considered in

this work.

Inference for I and C statistics can proceed via approximate tests. These are based

on the asymptotic z-test with F and NF sampling. Schabenberger and Gotway (2005)

and Cliff and Ord (1981) presented the moments of I and C under the two sampling

assumptions: The moments of I for both F and NF assumptions are

EF(I) = ENF(I) = −(n− 1)−1,

EF(I
2) =

n2S1−nS2+3S2
0

S2
0(n

2−1)
, and

ENF(I
2) =

n[(n2−n3n+3)S1−nS2+3S2
0 ]−K[(n2−n)S1−2nS2+6S2

0 ]

(n−1)(3)S2
0

.

The moments of C for both F and NF assumptions are

EF(c) = ENF(c) = 1,

VF(c) =
(2S1+S2)(n−1)−4S2

0

2(n+1)S2
0

, and

VNF(c) =
(n−1)S1[n2−3n+3−(n−1)K]+ 1

4
(n−1)S2[n2+3n−6−(n2−n+2)K]+S2

0 [n
2−3−(n−1)2K]

n(n−2)(2)S2
0)

,

where K = k1
(k2)2

, k1 =
∑

i ̸=j(xij − x̄)2/n, k2 =
∑

i ̸=j(xij − x̄)4/n. and all other

symbols have been introduced in Section 2.3.1.

As I is a coefficient of spatial autocorrelation, the interpretation of its value is similar

to a correlation coefficient. It is restricted to the range [−1,+1] with values near −1 or

+1 indicating the image is highly dispersed or clustered respectively. However, Bailey

and Gatrell (1995) explained that the C statistic, although still similar to a correlation

coefficient, it is not restricted to [−1,+1], and instead the p-value for the z-test is used
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to interpret the value of the C statistic as has been done in Section 2.3.1.

Schabenberger and Gotway (2005) and Lee and Wong (2001, pp. 80) also interpreted

the result of the I and C statistics as follows: if I > E(I) and 0 < C < 1, then spots

tend to be connected to spots that have similar attribute values, so the spots are clustered.

Alternatively, if I < E(I) and 1 < C < 2, attribute values of connected spots tend to

be different and hence we see a dispersed pattern. If I ≃ E(I) and C ∽ 1, spots do not

show particular clustering or dispersity.

As the provided images have a large number of spots n, the test statistic formulated as

zo =
I−E(I)√
V (I)

, where the mean and variance come from either F or NF sampling, follows

approximately a standard normal under the null hypotheses, where there is no spatial

autocorrlation and alternative hypotheses of either cluster or regular image.

All possible values of I and C coefficients are investigated in Section 2.3.2.1 for a

small n. The purpose here is to check how the arrangement of spots could affect the

values of those statistics and their possible ranges.

2.3.2.1 Checking possible I and C values for small n

A toy example is considered with two sample sizes n = 2 and 3, with a vector x, which

contains the spot labels. The two samples are explained next in more detail with various

arrangements of the spots.

1) n = 2:

In this example there is one join, A = 1, so the connection matrix δ is

δ =

 0 1

1 0

 .

In this situation, x has two different cases. Firstly, if the two spots are from the same

class (either x = (1, 1) or x = (0, 0)), the I and C statistics are undefined. Secondly,

if the two spots are from different classes (either x = (1, 0) or x = (0, 1)), the I and C

statistics are −1 and 1 respectively.

2) n = 3:

There are two main cases for the spot joins: all spots being joined (Case1) and only some

spots being joined (Case2, Case3, Case4, Case5 and Case6). In the case of all spots being
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joined (Case1) the δ matrix is equal to

δ1 =


0 1 1

1 0 1

1 1 0

 , with A = 3.

In this case, there are several different arrangements and values for the x class vector.

All options are presented in Table 2.1 with their resulting values of the I and C statistics.

Similarly, in the case of some joined spots, there are two main subcases: when A = 1

(Case2, Case3 and Case4) and whenA = 2 (Case5 and Case6). ForA = 1, there are three

subcases: Case2 with δ2, where spots 2 and 3 are joined, Case3 with δ3, where spots 1

and 3 are joined, and Case4 with δ4, where spots 1 and 2 are joined. The δ matrix for

these cases are shown below:

δ2 =


0 0 0

0 0 1

0 1 0

 , δ3 =


0 0 1

0 0 0

1 0 0

 and δ4 =


0 1 0

1 0 0

0 0 0

 .

All these cases are illustrated in Figure 2.3, and their I and C statistics are presented in

Table 2.1.

Figure 2.3: Seven different cases of joining spots with n = 3.

For A = 2, there are three possible connection matrices (Figure 2.3): Case5 with δ5,

where spots 1 and 2 as well as 2 and 3 are joined, Case6 with δ6, where spots 1 and 2 as

well as 1 and 3 are joined, and Case7 with δ7, where spots 1 and 3 as well as 2 and 3 are
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Table 2.1: The results of I and C for n = 3

x
# of joined spots (A) Case δ Statistic (1, 1, 0) (1, 0, 1) (0, 1, 1)

(0, 0, 1) (0, 1, 0) (1, 0, 0)

3 Case1 δ1
I -0.5 -0.5 -0.5
C 0 0.5 0.5

1

Case2 δ2
I -1 -1 0.5
C 0 0 0

Case3 δ3
I -1 0.5 -1
C 0 0 0

Case4 δ4
I 0.5 -1 -1
C 0 1.5 1.5

2

Case5 δ5
I -0.25 -1 -0.25
C 0.75 1.5 0.75

Case6 δ6
I -0.25 -0.25 -1
C 0.75 0.75 1.5

Case7 δ7
I -1 -1 -0.25
C 1.5 1.5 0.75

joined, where

δ5 =


0 1 0

1 0 1

0 1 0

 , δ6 =


0 1 1

1 0 0

1 0 0

 and δ7 =


0 0 1

0 0 1

1 1 0

 .

The I and C statistics have been calculated for these three cases: (Case5, Case6 and

Case7) for all possible x (see Table 2.1).

As a result of using a very small example with various subcases, the range of the

I statistic is between −1 and 1. However, the C value is sometimes not restricted to

[−1, 1], which has been confirmed by Bailey and Gatrell (1995).

2.3.3 The relationship between the spatial statistics

In this section, the I and C statistics will be written as functions of BB, BW and WW ,

and hence the C statistic can also be written as a function of I . The purpose here is

to give another way of calculating one spatial statistic by knowing the others. For any

statistic, which is calculated from basic equation, we can then calculate another statistic

using a new formula as a function of known measurements.
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The C statistic from Equation (2.11) can be written as a function of BW as follows,

C =
(n− 1)

2A

BW∑n
i=1 z

2
i

. (2.12)

Then, from Equation (2.10), the I statistic can be written as a function ofBB as follows:

I =
n

2A
∑n

i=1 z
2
i

[
BB − x̄

∑
i,j

δij(xi + xj) + x̄2
∑
i,j

δij

]
,

where

x̄
∑
i,j

δij(xi + xj) = x̄

[∑
i,j

δijxi +
∑
i,j

δijxj

]
,

here x̄
∑

i,j δijxi = x̄
∑

i,j δijxj because of the symmetry of the δ matrix. Therefore, the

I statistic as a function of BB is

I =
n

2A
∑n

i=1 z
2
i

[
BB − 2x̄

∑
i,j

δijxi + x̄2
∑
i,j

δij

]
.

Finally, the C statistic can be written as a function of I , from Equation (2.11), as

C =
(n− 1)

4A
∑n

i=1 z
2
i

[∑
i,j

δij(xi − x̄+ x̄− xj)2
]
.

Then, substituting xk − x̄ by zk gives

C =
(n− 1)

4A
∑n

i=1 z
2
i

[∑
i,j

δij(zi − zj)2
]
.

Then, expanding
∑

i,j δij(zi − zj)2 gives

C =
(n− 1)

4A
∑n

i=1 z
2
i

[∑
i,j

δij(z
2
i + z2j )− 2

∑
i,j

δijzizj

]
.

Next, Equation (2.10) can be rewritten as

∑
i,j

δijzizj = I
2A
∑n

i=1 z
2
i

n
,
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giving

C =
(n− 1)

4A
∑n

i=1 z
2
i

∑
i,j

δij(z
2
i + z2j )−

(n− 1)

n
I.

Since
∑

i,j δijz
2
i =

∑
i,j δijz

2
j , the C statistic can therefore be written as

C =
(n− 1)

2A
∑n

i=1 z
2
i

∑
i,j

δijz
2
i −

(n− 1)

n
I. (2.13)

2.4 Simulation studies to investigate the distribution of

the spatial statistics

A simulation study can help to assess the normality assumption of the spatial statistics,

which were defined in Section 2.3, and determine which one is more informative and

under which assumption (either F or NF sampling). This investigation reflects the com-

plex situations seen in practice, such as the sample size (n) and the proportion of tumor

p. The procedure of generating the datasets is explained in detail, in particular, how each

study is performed, tested and reported.

As the classification of spots in the images is taken as binary, a useful motivation

is to start using an example of a simple case when we have a binomial distribution as

we want to introduce a guideline when normal approximation can be used. In this task,

we examine in Section 2.4.1 how well can the binomial distribution approximates by

the normal distribution as n increases. The approximation of the binomial distribution

to the normal distribution helps to demonstrate the normality of the spatial statistics.

Some normality tests are used, including the Shapiro-Wilk, to check the normality of the

simulated statistics. Then in Section 2.4.2, the simulation studies, with various n and

p, are implemented to asses the normality of spatial statistics and consistency of their

outputs with different assumptions. Finally, the I and C statistics are then selected in

Section 2.4.3 to be further investigated.

2.4.1 The approximation of the Binomial distribution

In this section, we investigate for which values of n and p how well can the binomial

distribution approximated by the normal distrubution. The binomial distribution repre-
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sents the probability of exactly x successes in n independent Bernoulli trials, where a

given trial has two possible outcomes: a tumor with probability p and a not tumor with

probability 1−p. Here the probability of success is the same for each trial. In our exper-

iment, the rbinom function is used to sample N random samples, which has been fixed

to 100 replications, from a binomial distribution of spots over n trials with probability

of success p. The general rule of thumb says if n ×min(p, 1 − p) > 5, the sample size

n is sufficiently large. This principle is investigated for various sets of n and p.

To do the simulation study, samples sizes n = 5, 10, 15, 20, 25, . . . , 300, and pro-

portions p = 0.1, 0.15, 0.20, . . . , 0.95 are used. For each combination of n and p, 100

datasets are simulated. The generated data is then used to see if it could be described

by a normal distribution using the following normality tests: Kolmogorov-Smirnov and

Shapiro-Wilk tests (Birnbaum and Tingey, 1951; Royston, 1993).

For each normality test, the p-value is saved and the results can be displayed visu-

ally using a "checkerboard"-type plot which is shown in Figure 2.4. Here, each square

represents the p-value from a normality test using simulated data from the binomial dis-

tribution for specific pairs of n and p.

Figure 2.4: The p-value matrices from two normal tests of replicates for binomial data with
various combinations of n (x-axis) and p (y-axis), where more than 0.05 refers to normal.

From Figure 2.4, it is clear that when the sample size becomes larger (>50), the bino-

mial distribution is approximately normal. However, when the sample size is small (es-

pecially n = 5 and 10), the distribution tends away from normality. When the p-values

are bigger than 0.05, the null hypothesis is retained at the 95% level of significance with

normal approximation. In conclusion, the simulated data from the binomial distribution

is approximately normal when the sample size becomes sufficiently large, say more than
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n = 100 with various p and 20 < n < 100 with p close to 0.5.

2.4.2 Accuracy and normality of the spatial statistic

The permutation test is a standard tool to assess the statistical significance in cases for

which no distribution in known. The significance of a permutation test is shown by its

p-value. Before using a normality test for the spatial statistics, we should perform some

preliminary tests to make sure that the test assumptions are met.

To demonstrate the reliability of the spatial statistic p-values from the normal approx-

imation with p-values from simulation based methods, we simulate data under the null

hypothesis of no spatial autocorrelation. Both types of p-values can be computed under

F and NF sampling. The idea behind these comparisons is to find which spatial statistic

follows a normal distribution and under which assumption so that we can use the normal

approximation in the statistical test. We also aim to test if each spatial statistic follows a

normal distribution by applying the normality test.

Algorithm 1: Sampling Algorithm for generating x binary spots of length n
under either F or NF assumptions.
1 function Binary Sampling (p, n,M);

Input : The proportion of tumor spot p, sample size n and the method of
simulation M

Output: A binary classification of spots denoted by x
2 if M = F then
3 x ∼ bin(n, p);
4 else
5 n1 =: np;
6 n2 =: n(1− p);
7 x =: ⟨rep(1, n1), rep(0, n2)⟩;
8 x =: sample(x);

9 end
10 return x;

To make the assessment of normality, the comparison between p-values requires gen-

erating sufficiently many spots under the null hypothesis to follow the Central Limit The-

orem (CLT). To generate an image under H0, the neighbouring structure of the hexagon

grid defined by δ is fixed with a particular n. For given n, p and the assumption of simu-

lation (either F or NF), the spots are obtained from Algorithm 1. In the simulated image,

two sample sizes are considered n = 50 and 300 with two proportions of tumor spot
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p = 0.1 and 0.5. Two main scenarios are considered in assessing normality of spatial

measurements: a single sample simulation and a 1000 sample simulation. The gener-

ation methods are explained in detail, and then the result of the simulation studies and

optimal spatial statistics are highlighted.

Algorithm 2: A single sample simulation of a spatial statistic, say, L with its
theoretical and empirical p-values, where the empirical p-value used k = 100
replications.
1 function Single simulation (M,n, p, Image);

Input : The probability of tumor p, sample size n, the method of simulation M
(F or NF) and Imagen×2 which contains the coordinates (ui, vi)

output: Means, variances and p-values of normal and simulation bases
2 Image[, 3]← Sampling(M,n, p);
3 Calculate Lo;
4 Calculate E(Lo) and V (Lo) for assumption M (from Sections 2.3.1 and 2.3.2);
5 Calculate Th.p-value from Equation (2.5);
6 for j = 1 to k do
7 Image[, 3]← Binary Sampling(p, n,M );
8 Calculate spatial statistic L[j];
9 end

10 L =: L1, L2, . . . , Lk;

11 Calculate L̄ =:
∑k

i=1 Li

k
;

12 Calculate VL =:
∑k

i=1(Li−L̄)2
k−1

;
13 Calculate Em.p-values from Equation (2.14);
14 return (E(L), V (L),Th.p-value,L̄,VL,Em.p-values);

The steps of a single sample simulation experiment are shown in Algorithm 2, which

returns a single theoretical mean, variance and p-value (Th. p-value) as well as the em-

pirical mean, variance and p-value (Em. p-value) of each spatial statistic. By using this

algorithm, we consider each possible pair of n and p to generate a random binary im-

age under the null hypothesis for both sampling assumptions. The spatial statistics: I ,

C, BB, WW and BW , which are defined in Sections 2.3.1 and 2.3.2, are then calcu-

lated. From each spatial statistic, the first calculated spatial statistic is selected to be an

observed value. Imagine L is one of the spatial statistics and its observed value is Lo,

the theoretical mean (E(Lo)) and variance (V (Lo)) are then computed under both sam-

pling assumptions. The test statistic is then calculated from the simulated images and

we determined if the null hypothesis is accepted or rejected by computing the theoretical

p-value (Th. p-value).
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Now, to calculate the empirical p-value, from Algorithm 2, we sample k = 100

independently random images for a fixed pair of n and p to calculate 100 replicates of

the spatial statistic (L = L1, L2, . . . , Lk). From our samples we can then calculate a

sample mean L̄, a sample variance VL, and the empirical p-value. The empirical p-value

is the probability, under the null hypothesis, of observing the observed value Lo more

extreme than L. For this we simply take twice the minimum proportion of either each

statistic occurred less than or bigger than or equal the observed value. This p-value can

be written mathematically as

Em.p-values = 2×min

(∑m
i=1 I[Li < Lo]

m
,

∑m
i=1 I[Li ≥ Lo]

m

)
, (2.14)

where I[.] is the indicator function.

From the single sample simulation, we will have one theoretical p-value and one

empirical p-value for each spatial statistic and for each assumption. For 100 replicates

of each spatial statistic, which have been used to calculate the empirical p-value, the

normality test is also performed using the Shapiro-Wilk test. The results of each combi-

nation of n and p, in the case of single sample simulation, are shown in Table 2.2. From

this table, the conclusions of using the theoretical and empirical p-values of all spatial

statistics, with 0.05 level of significance, are almost the same with the same level of

significance except the BB statistic under both sampling assumptions when n = 50 and

p = 0.1. We can say that all spatial statistics adequately follow the normal distribution

when n ≥ 300 with any p for both sampling assumptions. From these results, the normal

distribution may be a good approximation for the statistical test of all spatial statistics

when n = 300, except BB statistic.

There is some evidence that some spatial statistics follow a normal distribution, in

Table 2.2, when n = 50, but not all. However, most of the spatial statistics, when n =

300, are normally distributed (highlighted with red color) except I under NF assumption

and BB. However, to decide about the normality of spatial statistics, more than a single

sample simulation is needed.

Hence instead of a single sample simulation, an experiment of 1000 generated sam-

ples under the null hypothesis (that the spots are independent) is now considered to

further investigate the results for the single simulation study. In this study, Algorithm 2
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is used but with 1000 iterations, hence we have for each statistic and sampling method,

1000 Th. p-values and 1000 Em. p-values.

Figure 2.5 shows a plot of the differences between the theoretical and the empirical

p-values against the empirical p-value. There is lots of variation between the two p-

values when n = 50 for both values of p. When n equals 300, the variability reduces

for I and for C when p is 0.5. However, there is still not enough evidence to choose

among spatial statistics. The significance level can also be viewed as the percentage of

times the p-value is less than α, the type I error. The level of significance is computed

for all combinations of n and p for both theoretical and empirical p-values in Table 2.3.

As soon as we have the same level of significance for both p-values under certain spatial

statistics, assumptions, and values of n and p, a statistical test can be based on a normal

approximation. An exact α = 0.05 level of significance is considered in Table 2.3, where

we expect 50 out of 1000 p-values to be less than 0.05. In addition to 0.05, the 95%

confidence interval for p = 0.05 is (0.04, 0.06) based on the binomial distribution. These

lower and upper confidence limits are used as a threshold of acceptance to cover the true

value α = 0.05. From Table 2.3, the approximate agreement between the theoretical and

the empirical p-values tends to be the same when n = 300 and p = 0.5, except C and

BW statistics under F sampling.

As a result, the I statistic is normally distributed when n = 300 with 0.05 level of

significance. Also, there is no evidence that the BB, WW and BW follow a normal

distribution, and hence they will be excluded from the next experiment in the following

section. Despite the fact that there is no evidence about the normality of the C statistic,

this statistic will be still used to compare with I using different levels of significance.

Another reason behind choosing C is because both of I and C can be generalised and

applied to continuous spot values.
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Table 2.2: One sample simulation study for combinations of n = 50 and 300 with p = 0.1
and 0.5 to calculate I , C, BB, WW and BW statistics with their theoretical expectations,
variances and p-values under F and NF assumptions. Also under both assumptions, the empirical
expectations, variances and p-values (based on a 100 simulations) are found for all statistics in
addition to their normality tests.

n = 50 & p = 0.1

Statistic Assumption
Obs. value Empirical method Theoretical method Normality test

Lo L̄ VL Em. p-value E(Lo) V (Lo) Th. p-value p-value

I
F -0.027 -0.020 0.006 0.912 -0.02 0.007 0.942 0.000

NF -0.126 -0.023 0.006 0.082 -0.02 0.006 0.190 0.000

C
F 0.837 0.997 0.024 0.222 1.000 0.010 0.099 0.028

NF 1.160 1.005 0.017 0.130 1.000 0.017 0.215 0.021

BB
F 0.000 1.233 2.069 0.000 1.220 2.135 0.404 0.000

NF 0 0.977 0.785 0.000 0.996 0.828 0.274 0.000

WW
F 114 98.610 94.136 0.104 98.820 93.863 0.117 0.040

NF 96 98.505 7.315 0.252 98.596 7.201 0.333 0.008

BW
F 8 22.157 77.822 0.108 21.960 117.302 0.197 0.097

NF 26 22.518 8.366 0.130 22.408 8.410 0.215 0.021

n = 50 & p = 0.5

Statistic Assumption
Obs. value Empirical method Theoretical method Normality test

Lo L̄ VL Em. p-value E(Lo) V (Lo) Th. p-value p-value

I
F 0.018 -0.016 0.008 0.664 -0.02 0.007 0.656 0.878

NF 0.016 -0.018 0.007 0.596 -0.02 0.008 0.672 0.094

C
F 0.956 0.996 0.007 0.606 1.000 0.010 0.658 0.904

NF 0.964 0.997 0.007 0.596 1.000 0.007 0.672 0.094

BB
F 43 30.617 91.830 0.184 30.500 87.250 0.181 0.422

NF 31 30.001 12.856 0.624 29.878 12.353 0.749 0.379

WW
F 21 30.708 90.153 0.270 30.500 87.250 0.309 0.000

NF 31 29.913 12.009 0.604 29.878 12.353 0.749 0.003

BW
F 58 60.675 30.924 0.534 61.000 122.000 0.786 0.278

NF 60 62.086 27.258 0.596 62.245 28.167 0.672 0.094

n = 300 & p = 0.1

Statistic Assumption
Obs. value Empirical method Theoretical method Normality test

Lo L̄ VL Em. p-value E(Lo) V (Lo) Th. p-value p-value

I
F 0.011 -0.006 0.001 0.564 -0.003 0.001 0.674 0.585

NF -0.019 -0.004 0.001 0.698 -0.003 0.001 0.645 0.042

C
F 0.973 1.002 0.002 0.482 1.000 0.001 0.451 0.369

NF 1.019 1.001 0.002 0.662 1.000 0.002 0.654 0.105

BB
F 5 8.230 14.568 0.316 8.370 15.400 0.390 0.000

NF 7 8.068 6.466 0.560 8.118 6.734 0.667 0.029

WW
F 721 677.236 691.013 0.08 677.970 705.016 0.105 0.984

NF 676 677.601 23.940 0.74 677.718 23.976 0.726 0.186

BW
F 111 151.534 572.055 0.078 150.660 853.013 0.174 0.928

NF 154 151.331 37.861 0.662 151.164 40.011 0.654 0.105

n = 300 & p = 0.5

Statistic Assumption
Obs. value Empirical method Theoretical method Normality test

Lo L̄ VL Em. p-value E(Lo) V (Lo) Th. p-value p-value

I
F -0.048 -0.005 0.001 0.192 -0.003 0.001 0.197 0.209

NF 0.037 -0.004 0.001 0.222 -0.003 0.001 0.240 0.319

C
F 0.044 1.002 0.001 0.198 1.000 0.001 0.233 0.244

NF 0.960 1.000 0.001 0.222 1.000 0.001 0.240 0.319

BB
F 213 208.602 640.204 0.830 209.25 650.938 0.883 0.382

NF 211 208.382 63.105 0.694 208.55 66.498 0.764 0.706

WW
F 186 209.224 647.289 0.334 209.25 650.938 0.362 0.614

NF 223 208.589 70.541 0.084 208.55 66.498 0.076 0.632

BW
F 438 419.174 205.832 0.162 418.5 837.000 0.500 0.109

NF 403 420.029 208.202 0.222 419.9 206.525 0.240 0.319
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Table 2.3: The level of significance for 1000 sample simulations of theoretical and empirical
p-values using different combinations of n = 50 and 300 with p = 0.1 and 0.5. All I , C, BB,
WW and BW statistics are considered under F and NF assumptions where the shaded rows
show approximate agreement between p-values.

n = 50 & p = 0.1 n = 50 & p = 0.5

Statistic Assumption
Level of significance Level of significance

Th.p-value Em.p-value Th.p-value Em.p-value

I
F 0.05 0.07 0.06 0.05

NF 0.05 0.08 0.06 0.08

C
F 0.15 0.05 0.02 0.06

NF 0.04 0.09 0.06 0.08

BB
F 0.05 0.44 0.05 0.06

NF 0.06 0.37 0.05 0.08

WW
F 0.04 0.06 0.05 0.06

NF 0.05 0.11 0.05 0.09

BW
F 0.01 0.06 0.00 0.06

NF 0.04 0.09 0.06 0.08

n = 300 & p = 0.1 n = 300 & p = 0.5

Statistic Assumption
Level of significance Level of significance

Th.p-value Em.p-value Th.p-value Em.p-value

I
F 0.05 0.06 0.05 0.05

NF 0.05 0.06 0.04 0.06

C
F 0.10 0.07 0.03 0.05

NF 0.05 0.07 0.04 0.06

BB
F 0.04 0.08 0.04 0.05

NF 0.05 0.08 0.05 0.06

WW
F 0.05 0.07 0.04 0.05

NF 0.05 0.08 0.04 0.06

BW
F 0.02 0.07 0.00 0.06

NF 0.05 0.07 0.04 0.06

2.4.3 Examining I and C statistics

In this section, the I and C statistics are considered in more detail. Even though Cliff

and Ord (1981) strictly used the free sampling assumption to calculate the statistical

moments of I and C when p is known, this section considers both assumptions in all

simulation studies. In Section 2.4.2, we considered n = 50 and 300, and here the same

number of spots are used in the plots of the distributions of both statistics to allow com-

parison between them. In Section 2.4.2, we used only one level of significance. In

this section, however, more than one level of significances are considered with the same

combination of n and p as in the pervious chapter. After that, different numbers of spots

(n), which are between 50 and 300, are used to check the levels of significance. The aim

is determining the minimum number of spots that lead to acceptable normality of the I

and C spatial statistics.

Historically, the Moran (Moran, 1950) and Geary (Geary, 1954) statistics were for-
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mally proved for the first time by Sen (1976), under fairly weak conditions, to be asymp-

totically normal for n > 50. He also showed that the Cliff-Ord theorem (Cliff and Ord,

1973) on asymptotic normality was incorrect. Cliff and Ord (1981) then confirmed that

both the I and C statistics were asymptotically normally distributed as n increased.

However, they explained that the I statistic was more robust than C as the variance of

I was less sensitive to the distribution of the sample data than the differences-squared

form used in Geary’s C statistic. Now the experiments in this chapter will determine

which spatial statistic follows the normal distribution and what is the appropriate n and

sampling assumption method.

In Table 2.2, the I and C statistics sometimes adequately follow a normal distribution

when n = 300. We still need to confirm which one is more appropriate to use. Two

ways are considered to investigate and confirm the distribution of the I and C statistics:

plotting the distribution of I and C statistics with large sample size, and doing a level

check of significance.

Testing the assumption of distributional normality for I andC statistics can be checked

by plotting their distribution using 100 replications for a fixed n = 300 with different

proportions of tumor under both sampling methods. Previously in Table 2.2, the I statis-

tic did not follow normality under the NF assumption when p = 0.1. From Figure 2.6,

however, it is clear that the distribution of the I and C statistics (under both sampling

methods) reasonably meet the normal assumption as the shape looks approximately sym-

metric and bell-shaped.

Secondly, a level check of significance is applied to investigate whether the p-value

from the normal approximations of I and C statistics are reliable and compare them

with the empirical p-value. The true significance level was estimated by simulation

using the proportion of times that the null hypothesis was rejected, given that it is true.

What we would like to argue here is if we use, for example, a 5% cut off, the normal

approximation gives the right answer for a particular sample size. This experiment was

performed using two sample sizes (n = 50 and 300) and two proportions of tumor

(p = 0.1 and 0.5). For given n and p, the image was simulated under the null hypothesis

of no spatial autocorrelation based on F and NF sampling methods.

Now the empirical and theoretical p-values are defined and the processes of calcu-

lating the significance level is then explained. In terms of the empirical p-value (Em.
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Figure 2.6: The distribution of 100 simulated I and C statistics for given p = 0.1 and 0.5 with
n = 300 under free and nonfree sampling. The vertical lines show the mean of replications.

p-value), 1000 images were simulated under F and NF sampling and for each, the I and

C statistics were calculated. A randomly chosen one was used in place of the observed

value for each of the F and NF methods. Thus we will have Io(F) and Co(F) which are the

observed values from an image simulated under free assumption, and Io(NF) and Co(NF)

with the non-free assumption. The empirical p-value is calculated using Equation (2.14).

This test is a two-tailed test for given α under the null hypothesis that there is no spatial

autocorrelation among the spots. This procedure was repeated 1000 times, and then the

empirical significance level was estimated as the proportion of p-values which are less

than the nominal significance levels. In our experimental situation, we specify many

values for the probability of a type I error, α = (0.01, 0.02, 0.3, 0.04, 0.05) which occur

when a true null hypothesis is rejected.

For the theoretical p-value, the expectation and variance of the I and C statistics

were calculated for each of 1000 simulated images under F and NF methods and the
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usual normal distribution test was performed for both F and NF sampling. Here the

theoretical p-value can be calculated under free (Th. p-value(F)) and non-free (Th. p-

value(NF)) sampling. To have a wider view from the simulation study, the theoretical

p-value under F sampling is calculated for both F and NF stimulated images. The true

significance level was again estimated using α = (0.01, . . . , 0.05) nominal significance

levels.

All results are shown in Table 2.4. Even though the agreement of the level of sig-

nificance of the C statistical test is sometimes reliable, for example, in the empirical

p-value with any sampling size and p = 0.5 using free and nonfree sampling methods,

lots of agreement for the level of significance are not good. For instance, the agreement

of significance for theoretical p-values when n = 300 and and p = 0.1 under free sam-

pling. However, it is clear that the level of significance of I statistical test is reliable for

large n with any p and any sampling method. Sampling with replacement rather than

without does not make any difference in demonstrating the normality of spatial statis-

tics, but the free sampling is more appropriate as p is known. This result confirms the

argument of Cliff and Ord (1981), that the statistical test of I is more accurate and better

approximated by normality than C.

For the I statistic, the level check of significance was also applied for further sample

sizes between 50 and 300 observations, n = (79, 98, 111, 160, 173, 199, 271). However

these sample sizes were not enough to have approximate normality. As a result, it is

better to use a large sample, for example 300 or more, to calculate the I statistic in order

to have a reliable p-value under normal approximation for any proportion of tumor.

It is important to note that when the p-value of I indicates statistical significance, a

positive I value indicates a tendency toward clustering while a negative I value indicates

a tendency toward regularity. To consider this case, an example of square grid for 380

spots was simulated to check several values of I . The square grid is used as it is easer

in simulating different cases than hexagon. Figure 2.7 displays dispersed, random and

clustered images with the relevant I statistic−1, close to zero and close to 1 respectively.

However in the case of the image having only one colour, I is undefined and so the p-

value can not be computed. Since I becomes closer to zero when the image becomes to

one colour, we define the I statistic to be zero (with its p-value equal to 1) for images

which have only one colour.
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Table 2.4: The level check for I and C statistics in various cases for 5 levels of nominal sig-
nificance using empirical and theoretical p-values with the assumption of free F and nonfree NF
sampling.

Statistic
Simulated Image Em. p-value Th. p-value(F) Th. p-value (NF)

n p
Simulate from

Level (α) NF F NF F NF F
0.05 0.06 0.06 0.04 0.04 0.05 0.03
0.04 0.04 0.05 0.04 0.03 0.04 0.03

I 50 0.1 0.03 0.03 0.04 0.03 0.02 0.03 0.02
0.02 0.02 0.02 0.03 0.02 0.02 0.02
0.01 0.01 0.01 0.02 0.01 0.02 0.01
0.05 0.05 0.05 0.05 0.05 0.05 0.06
0.04 0.04 0.04 0.04 0.04 0.04 0.04

I 50 0.5 0.03 0.03 0.02 0.03 0.03 0.03 0.03
0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.04 0.03 0.04 0.04 0.04 0.04 0.04

I 300 0.1 0.03 0.02 0.03 0.03 0.03 0.03 0.03
0.02 0.01 0.02 0.02 0.02 0.02 0.02
0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.04 0.04 0.04 0.04 0.04 0.04 0.04

I 300 0.5 0.03 0.03 0.03 0.03 0.03 0.03 0.03
0.02 0.02 0.02 0.02 0.02 0.02 0.02
0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.05 0.06 0.07 0.05 0.12 0.06 0.12
0.04 0.06 0.05 0.04 0.12 0.06 0.12

C 50 0.1 0.03 0.05 0.04 0.03 0.12 0.04 0.12
0.02 0.03 0.03 0.02 0.08 0.02 0.08
0.01 0.01 0.02 0.01 0.05 0.01 0.05
0.05 0.05 0.05 0.05 0.03 0.05 0.03
0.04 0.04 0.04 0.04 0.02 0.04 0.02

C 50 0.5 0.03 0.03 0.03 0.03 0.01 0.03 0.02
0.02 0.02 0.02 0.02 0.01 0.02 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.004
0.05 0.06 0.05 0.05 0.09 0.06 0.09
0.04 0.05 0.04 0.04 0.07 0.04 0.07

C 300 0.1 0.03 0.03 0.02 0.03 0.06 0.03 0.06
0.02 0.03 0.02 0.02 0.04 0.02 0.05
0.01 0.02 0.002 0.01 0.03 0.01 0.02
0.05 0.05 0.05 0.05 0.04 0.05 0.03
0.04 0.04 0.04 0.04 0.03 0.04 0.03

C 300 0.5 0.03 0.03 0.03 0.03 0.02 0.03 0.02
0.02 0.02 0.02 0.02 0.01 0.02 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01
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Figure 2.7: The range of images with relative I statistic, left to right, dispersed, random and
clustered images with their values of I and p-values.

2.5 The power of the I statistical test

The purpose of studying the power of the I statistical test is to make sure that the test

has the ability to correctly reject the null hypothesis. This can be done by estimating

the probability of correctly rejecting a false null hypothesis of no spatial autocorrelation

whenH1 is true at fixed level significance test (α = 0.05). Let β represent the probability

of a type II error when the power equals 1−β. When the spots of an image become more

autocorrelated, the expectation of rejecting H0 is increased and if the power is close to

1 (or 100%), the hypothesis test is very good at detecting H1. In this section two main

points are considered: how can we generate spatially autocorrelated images and then a

simulation study check is carried out to compute the power of the I statistical test.

To generate correlated spots x1, . . . , xn, from the distribution specified by the alter-

native hypothesis, we can sample from a multivariate normal with zero mean vector (µ)

and covariance matrix (Σn×n),where σij ̸= 0, i ̸= j. Generating such data, the MASS

em R package has a function mvrnorm which produces normally distributed samples

with specified mean vector and covariance matrix (Venables and Ripley, 2010). This

sample is then converted into a binary sample x by setting the mean as the cut-off point,

where the negative values are replaced by zero, and 1 otherwise.

It is necessary, however, to appropriately define the covariance matrix. Spatial auto-

correlation means that the spot at a given location depends on the spots at surrounding

locations. To specify the close locations, the distance matrix in Equation (2.1) is used. To

give spots that are further away, less weight and a positive-definite matrix, the covariance
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matrix is defined as

σij = e−κDij , (2.15)

where κ is a parameter to control the amount of spots dependency. Now, as soon as

we generated data under the alternative hypothesis, the proportion of rejections of H0,

when it is false, is then calculated. When κ is close to zero, we are expecting a greater

occurrence of low p-values for these dependent spots.

Table 2.5 presents the simulation results. It shows that under the null hypothesis,

the rejection rate is close to the nominal level of α = 0.05 and that power to detect

dependence increases with κ. Lastly, Figure 2.8 displays some examples of dependent

spots shown as images; where the I statistic and p-value are also shown. Here as κ

increases the spots becomes less correlated.

Table 2.5: Normal based tests for a fixed image of 300 spots with various κ. Dependence
increases as κ decreases, and power (= 1− β) is the proportion of 500 images in which the test
rejected Ho

κ p-value < 0.05 Power(%) β (%)
0.001 500 100% 0%
0.003 364 73% 27%
0.005 69 14% 86%
0.007 31 6% 94%
0.009 29 6% 94%
0.010 36 7% 93%
0.030 33 7% 93%
0.050 25 5% 95%
0.070 31 6% 94%
0.090 29 6% 94%
0.100 24 5% 95%

Figure 2.8: Simulating correlated images with various κ, the I statistic and its p-value are stated.
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2.6 The I statistic for biomedical images

Moran’s I statistic and proportion of tumor POT are calculated for both the gastric

cancer dataset (which contains only one set) and the rectal cancer dataset (which has a

set of three images). The classification method in Section 1.4 is used before calculating

the I statistic. In the rectal images, the I statistic before and after treatment is compared

using a paired t-test. The correlation between POT and the I statistic is also found for

different cancer images, in addition to relating the I statistic with a pathologists review

of the images in Section 2.6.1.

Table 2.6: The p-values of the I statistics for 231 images

p-value range Frequency Percentage
0.00− 0.04 172 74%
0.05− 0.95 59 26%

Figure 2.9: The distribution of the I statistic for all gastric cancer images, including image
examples of maximum, mean and minimum of I with their p-values at the top.

In the gastric cancer dataset, there are 223 images containing single- and multi-

regions. The ranges of p-values are shown in Table 2.6. Here 74% of the images are

significant and 26% of the images have non-significant p-values, which means that they

are independently distributed. It is important to note that all significant p-values cor-

respond to positive I meaning that all significant images are clustered rather than dis-
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persed. The distribution of I , for all gastric cancer images, is illustrated in Figure 2.9,

where we picked the images of minimum, mean and maximum values of I .

Figure 2.10: An example of matching whole (W ), biopsy (BX), and L of two patients, where
the I statistic and its p-value are shown at the top of each image.

The rectal cancer dataset contains 113 individuals. For each individual, there are Bx,

W as well as L, G or LG images as appropriate, which have been described in Section

1.3.2. To simplify the presentation of the I statistic for all images and compare between

them, L in this section and onwards will refer to either L or LG and thus G is removed

from the analysis. We have chosen L as it had been sampled close the luminal site and

this area is more related to Bx.

The I statistic is computed for all 113 individuals. Two examples of I for pre- (Bx)

and post-treatment (W and L) are shown in Figure 2.10. The distribution of I for each

individual is shown in Figure 2.11. A paired t-test is used to compare two population

means for each combination of I(Bx) vs I(W ) and I(L) in Table 2.7. Here, there

is a significant difference between the I statistic mean of the Bx and W images, in

addition to similarly the I statistic mean of theW and L. However, there is no significant

difference between the the mean of I of Bx and L, this may because the Bx sample is

particularly taken from lumen surface before surgery.
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Now, we will find the correlation between the POT and the I statistic. In the gas-

tric cancer dataset, the correlation is -0.04, which is close to zero. In the rectal cancer

images, the correlation between POT of L (POT (L)) and I(L) as well as POT of W

(POT (W )) and I(W ) are 0.43 and 0.53 respectively. however, there is low correlation

between POT of Bx (POT (Bx)) and I(Bx), which equals 0.01. Therefore, we can

say that the I statistic gives different information than POT .

Table 2.7: The summary of the I statistic and its p-value for 113 rectal cancer images, and a
paired t-test of I(Bx) vs I(W ) and I(L).

I p-value (I)≤ 0.05 Ī VI
Paired t-test

t Df p-value
I(Bx) vs I(W )

I(Bx) 102 (90%) 0.23 0.014
4.57 112 1.3 ×10−5

I(W ) 58 (51%) 0.144 0.025
I(Bx) vs I(L)

I(Bx) 102 (90%) 0.232 0.014
1.34 112 1.8 ×10−1

I(L) 80 (71%) 0.205 0.033
I(W ) vs I(L)

I(W ) 58 (51%) 0.144 0.025
-3.95 112 1.4 ×10−4

I(L) 80 (71%) 0.205 0.033

Figure 2.11: The distribution of the I statistic for Bx, W and L of 133 images.

2.6.1 Pathologist review and the I statistic

The pathologists believe that the tissue of cancers before treatment tends to be more

homogeneous with high POT and TRG= 0, which had been explained in Section 1.2.

Dworak et al. (1997) showed that preoperative chemotherapy was able to reduce tumor
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mass and the proportion of tumor was decreased. That means we expect after treatment

the images change from a clustering pattern to be more dispersed or random. From Table

2.7, it is clear that we have more significant I statistic on the Bx images than on W and

L. This differentiation is because the Bx images are before treatment, and therefore the

distribution of spots is possibly affected by therapy. Also, some W and L images have

only one colour, which may be the effect of treatment on the tissue.

2.7 Discussion

This chapter starts by defining the neighbourhood structure of nearly regular hexagonal

grids in terms of an indicator matrix δn×n, which also works well for regular grids. This

approach was developed to overcome the problem of missing spots inside the image as

well as detecting neighbours in the multi-region images. The δ matrix is then used as a

component of the most commonly used spatial statistics: the join-count statistics: BB,

BW and WW as well as the I and C statistics. We assessed the normality of these

statistics by different simulation based approaches. The assessment was under the null

hypothesis and used free and non-free sampling methods with various image sizes and

proportions of tumor. Then, the simulation studies are extended to check different levels

of significances for I and C statistics and various sample sizes.

The test statistic based on Moran’s I was found to follow a normal distribution with

a large number of spots, 300 or more, hence it will be used as an accurate spatial auto-

correlation statistic for large grids. Both F and NF sampling approaches give the same

p-value output, but it is better to use the free sampling as p is known a priori. The study

of the power of the I statistical test under the alternative hypothesis also confirms that

it is appropriate to use I with a normal approximation for n ≥ 300. The same num-

ber of spots was also pathologically determined by Wright et al. (2015) as the optimal

target number of spot sampling to minimise image variation. Even though a binary set-

ting of spots was used to calculate I , the I statistic can be generalised effectively if the

classification of spots has been changed to a discrete variable.

Pathologists used hexagonal grids as they are more beneficial than a square grid.

Each spot on a hexagon grid has six nearest neighbours where the distance to all these

neighbours is the same. By using a hexagonal grid, we also minimise the edge effects in
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a given region by considering more sides around the spot, whereas in the square shape

the four sides are only considered. In practice, a hexagonal lattice of spots can be easily

fitted with any given area of interest even on the curved regions, whereas a square lattice

is difficult to fit to the curved regions.



Chapter 3

Detecting Anisotropy

3.1 Introduction and motivation

The way tumors spread varies depending on the structure of the surrounding tissue. Re-

cent histopathological methods of detecting tumor directional spreading are objective

and differentiable depending on the pathologists experience.

The behaviour of tumor growth is obvious in some organs, for instance, the tumor

growth in a brain has the same rate in all directions, whereas in skin it starts by growing

radially on the skin, then later grows vertically downwards (Cancer Research UK, 2018).

However, how a cancer actually grows into the surrounding tissues in gastric and rectal

cancer is not fully understood; it may grow out in a random direction from the place

where it started. As the growth is anisotropic in stomach and rectum, it may have a spatial

directional in which it grows faster. In another words, if there is a preferred direction,

it may indicate a more aggressive or active tumor, which is subjectively evaluated by

pathologists.

Underwood and Cross (2009) also explained how the tumor is spread in organs. His-

tological examination is of little or no value in patient management, however, and the

role of the pathologist after cancer surgery is to determine the completeness of tumor

removal and the extent of any spread. Only about 70% of patients with colorectal cancer

undergo a potentially curative operation; in about 15-25% of patients only a palliative

operation is possible because of widespread liver secondary tumors and the remainder

are totally inoperable. However with pre-operative radiotherapy the proportion of poten-

57
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tially curative operations is set to increase, and patients formerly considered inoperable

because of liver metastases are now undergoing partial liver resections.

The motivation for quantitatively subjectively detecting directionality on images is:

1) to increase the chance of curing the cancer by extra treatments, 2) to help pathologists

understand how cancer cells change shape as they move and spread to organs close by, 3)

to avoid the spread of a tumor to another part of the body and start growing there (Cancer

Research UK, 2018), 4) to evaluate the aggressiveness of the tumor, 5) to determine if the

tumor grows through the layer vertically or horizontally and 6) to predict the next target

area of cancer growth. However, no aggressive covariate (TRG) is provided which is

tumor regression gird. Clinically, the alternative covariances for recognising aggressive

of tumor are the patients who survived less and the second category of both Japanese

and Lauren classifications (JS = LS = 2). Although the heterogeneity of overall

biomedical images is important, pathologists intuitively acknowledge that the direction

is also important and it may help as a diagnosis tool. Histologically, the investigation

of directional pattern is a hypothesis rather than a guideline which is based on clinical

practice and knowledge that the tumor in stomach and rectum can spread either linearly

or radially.

In terms of directionality, pathologists are more interested in detecting pattern which

is parallel to the lumen direction of the organ. The lumen, in general, refers to the inside

space of a tubular structure, such as inside the stomach or rectum. Hence, it is possi-

ble statistically to investigate, in particular, if the homogeneity of spots toward lumen

differs from other directions which has not been properly investigated. For directional

application, the direction of luminal site is only provided for the gastric cancer dataset.

The aim of this chapter is to investigate if there is a difference between directions

and, if there is a preferred direction is as the pathologists expect. New statistical tests

for detecting dependency amongst spots in a specific direction are found. To do this,

directional I statistics, labelled I1, I2 and I3, are defined which consider three separate

directions in the hexagonal grid with their corresponding neighbouring system, labelled

δ1, δ2 and δ3. The statistical tests in this chapter, which are specific to detecting if there

is autocorrelation in particular direction, only strictly and hold under the assumptions of

independent image since otherwise the distribution of statistical test is unknown. Hence

only 26% of images from Chapter 2 in Table 2.6 are considered.
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This chapter structured as follows. Section 3.2 defines a hexagonal neighbouring

system of three directions. A statistical test for detecting anisotropy of pairs of directions

is explained in Section 3.3.1. More generally, a multivariate statistical test is applied to

each image in Section 3.3.2 under the null hypothesis that there is no preferred direction.

The final set of work for this chapter is detecting anisotropy in a specified direction

(toward the lumen site of the organ) in Section 3.3.3 using a new statistical test. The

power of this test is then investigated in Section 3.4. Some discussions of key ideas of

this chapter are highlighted in Section 3.5.

3.2 Connection matrices for the three directions

The general structure of the neighbourhood system of a hexagon grid was explained and

defined, by the connection matrix δ, in Section 2.2. The diagonals of a hexagon, which

connect diametrically opposite vertices, partition the hexagon into six triangles. These

triangles help then in creating the three directional neighbouring system by picking spots

in a relevant triangle creating δ(1), δ(2) and δ(3), where each one is a subset from δ. The

directional connection matrices are then used to calculate the directional I statistics, I1,

I2 and I3, which are defined as

Ir =
n

2Ar

∑
i,j δ

(r)
ij zizj∑n

i=1 z
2
i

, r = 1, 2, 3, (3.1)

where zi = xi − x, Ar =
∑

i,j δ
(r)
ij and δ

(r)
ij denotes the connection matrix for the

neighbourhood structure in direction r. Note that here the summation of δ(1), δ(2) and

δ(3) gives δ.

The moments of I have been defined in Section 2.3.2 under free sampling. These

formulas can be generalised for expectation and variance of the directional I statistics in

given direction r as,

E(Ir) = −(n− 1)−1

V (Ir) =
n2S

(r)
1 − nS

(r)
2 + 3

(
S
(r)
0

)2
(
S
(r)
0

)2
(n2 − 1)

+ (n− 1)−2,
(3.2)
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where
S
(r)
0 =

∑
i,j

δ
(r)
ij ,

S
(r)
1 =

1

2

∑
i,j

(
δ
(r)
ij + δ

(r)
ji

)2
, and

S
(r)
2 =

n∑
i=1

(
n∑
j=1

δ
(r)
ij +

n∑
j=1

δ
(r)
ji

)2

.


(3.3)

In practice, the neighbourhood system for a direction is started by defining angles be-

tween the positive x-axis and the ith spot, with coordinates (ui, vi), as the anti-clockwise

direction to be able to identify the direction of each spot from another. These angles can

be classified into three principle directions. Creating the neighbouring system of three

directions is described and then a small image of six spots is used as an example. A real

image is then used to illustrate the directional I statistic. The main target for using the

directional I is to identify whether spots are autocorrelated in a specific direction.

We now explain how to define the δ(1), δ(2), δ(3) matrices. A matrix of angles, say ζ ,

with dimensions n×n is needed to divide the angles into three groups of directions. Sup-

pose we have n spots and the neighbourhood system defined by the connection matrix δ,

then the matrix ζ is defined by the following steps:

1. To make the work more accessible to pathologists, we need to obtain the matrix of

angles in degrees. To do this, an matrix calledB with dimensions n×n is defined.

This matrix contains the angles in radians between the positive x-axis and the n

spots in the anti-clockwise direction. The arctangent function (atan2 function in

R), which returns angles in radians (−π, π], is applied to a vector (vi−vj, ui−uj).

Mathematically, the B matrix is as follows:

Bij = atan2(vi − vj, ui − uj), i, j = 1, . . . , n, i ̸= j, (3.4)

where Bij is an angle of complex number x + iy. As we would like to use the

angle in degrees, angles in B are converted to degrees B∗
ij = Bij × (180◦/π).

This matrix can have a negative angle which is pointing in the opposite direction

to that of a positive angle. In fact, the B∗ matrix has the same properties as the

distance matrix since it has a symmetric pattern.
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Figure 3.1: The left panel represents the location of the directional I statistic on a hexagonal grid,
and the right shows the process of selecting spots allocated to the same direction and classifying
them into three symmetric directions.

2. The B∗
ij is transformed into the interval (0◦, 360◦] to facilitate the division of

angles into three symmetric groups. The new matrix, say Q, is as follows:

Qij =

 B∗
ij mod 360◦ B∗

ij ̸= 0,

360◦ B∗
ij = 0.

The mod keeps the positive elements and converts the negative angles to the

range 180◦ and 359◦ degrees. All zero angles are replaced by 360◦ to distinguish

between direction zero and an indicator of not being a neighbour.

3. Determining angles of neighbouring spots only. To do this, we define a matrix ζ

which is the element-wise multiplication of Q by the matrix δ,

ζij = Qij × δij, i, j = 1, . . . , n. (3.5)

If ζij = 0, spots ith and jth are not neighbours, otherwise ζij ∈ (0◦, 360◦].

Now the angles in ζ are divided into three symmetric groups. To do this, the angles

in this matrix are summarised as a frequency table to determine the groups of angles,

and then sorted from the smallest angle, excluding zeros. Here, we will have six angles

in order as shown in Figure 3.1. We then draw a straight line through the center of the

circle between a pair of angles (grey lines) as the distance between angles are not equally

spaced. The set of angles between a pair of grey lines represents one group, where each

group refers to a hexagonal axis.
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For example, let us suppose we consider Figure 3.1 as a hexagon setting, here there

are three pairs of opposing angles: 360◦ vs 180◦, 67◦ vs 247◦ and 113◦ vs 293◦, where

each pair represents a specific direction. To classify the angles into various directions

and define the range of angles, six thresholds are set as a midpoint between two angles

next to each other as shown by the gray lines in Figure 3.1 (right panel). In the first

direction (I1), for example, the range of angles for this direction is 90◦ < ζij ≤ 146.5◦

or 270◦ < ζij ≤ 326.5◦. So if ζij is allocated in these ranges δ(1)ij = 1, and zero otherwise.

The matrices δ(2), for the second direction, and δ(3), for the third direction are defined

in the same way. The method of defining the neighbouring structure for three directions

on the hexagonal grid works efficiently for both single and multi-region region images,

even after image rotation.

A small example of dividing angles into different directions:

The neighbouring system of three directions is explained on a small example of 4 spots

(part of a real image in Figure 3.2), where the red spot refers to tumor and the green non-

tumor and the numbers show the spots order. The connection matrix for this example

is

δ =



1 2 3 4

1 0 1 1 1

2 1 0 0 1

3 1 0 0 1

4 1 1 1 0

.

The B matrix is firstly defined from Equation (3.4) in degrees as:

B =



1 2 3 4

1 0.00000◦ 180.0000◦ −66.58666◦ −113.41334◦

2 0.00000◦ 0.0000◦ −37.58894◦ −66.58666◦

3 113.41334◦ 142.4111◦ 0.00000◦ 180.00000◦

4 66.58666◦ 113.4133◦ 0.00000◦ 0.00000◦

.
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Figure 3.2: A small example of 4 spots.

Next, we convert all angles to positive values and replace all zeros by 360◦ as follows:

Q =



1 2 3 4

1 360.00000◦ 180.0000◦ 293.4133◦ 246.5867◦

2 360.00000◦ 360.0000◦ 322.4111◦ 293.4133◦

3 113.41334◦ 142.4111◦ 360.0000◦ 180.0000◦

4 66.58666◦ 113.4133◦ 360.0000◦ 360.0000◦

.

The ζ matrix is then calculated using Equation (3.5) as:

A =



1 2 3 4

1 0 180◦ 293◦ 247◦

2 360◦ 0 0 293◦

3 113◦ 0 0 180◦

4 67◦ 113◦ 360◦ 0

.

Lastly, the angles in ζ matrix are classified into three groups after determining six mid-

points between these angles. The matrices of the three directions are as follows:
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δ(1) =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , δ(2) =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 and δ(3) =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,

where the summation of these matrices equals δ.

3.3 Statistical tests for detecting anisotropy

The anisotropy can be effectively investigated in biomedical images using the directional

I statistic. A couple of statistical tests can be carried out under the assumption of inde-

pendent image. That means that a biomedical image can have no clustering but it may

have direction. In this section, statistical tests are performed on the hypothesis about

the direction. Each test statistic is constructed using the theoretical mean and variance.

To assess the null hypothesis of each test, the p-value is compared to the significance

level, we reject H0 when the p-value is less than α = 0.05. Three z-tests for an im-

age are firstly defined in Section 3.3.1 and a generalisation, using a bivariate normal

distribution, is explained in Section 3.3.2. More importantly, pathologists are interested

in determining if the autocorrelation of spots in the direction of the lumen differs from

the other directions. A null hypothesis of no significant difference in autocorrelation

between the direction of lumen verses the other directions is stated and performed in

Section 3.3.3. Applications of all tests are shown in Section 3.3.4 on real images.

3.3.1 Directional z-tests

As we have three directional I statistics, I1, I2 and I3, the differences between pairs

of directions for an image can be considered in detecting directionality. This can be

achieved by using three statistical tests, say a pair Ir and Is, where r, s ∈ {1, 2, 3} and

r ≠ s. The assumption of this is that the distribution of I under the null hypothesis of no

overall autocorrelation between spots. The directional pattern can be assessed under the
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null hypotheses of directional I is that there is no direction versus directionality as an

alternative hypothesis. The three statistical tests are defined in detail including direction

of the first two moments which are used to define the probability distribution under the

null hypothesis.

As the distribution of any I statistic is normal and the variance of difference between

pairs of I is already known, a one-sample z-test can be used. Suppose thatE(Ir−Is) and

Var(Ir − Is) represent the theoretical mean and variance of the difference between two

I statistics, and the null hypothesis for comparing the two statistics is H0 : Is − Ir = 0,

meaning that there is no significant difference between pairs of directions Ir and Is. The

alternative hypothesis is two sided. The z-statistics are formed using the formulas:

z1 =
(I1 − I2)− E(I1 − I2)

sd(I1 − I2)
, (3.6a)

z2 =
(I1 − I3)− E(I1 − I3)

sd(I1 − I3)
, and (3.6b)

z3 =
(I2 − I3)− E(I2 − I3)

sd(I2 − I3)
. (3.6c)

Now, we will need to calculate the expectations and variances of Ir − Is. Some basic

explanations are firstly defined. Under the null hypothesis, let x1, . . . , xn be indepen-

dent and identically distributed random variables with mean µ and variance σ2. Then,

if xi is N(µ,σ2) for each i, the first four moments are E(xi) = µ, E[(xi − µ)2] = σ2,

E[(xi − µ)3] = 0 and E[(xi − µ)4] = 3σ4 (Cliff and Ord, 1981). These moments are

essential in deriving Var(Ir− Is), which are used later. For a given random sample with

observed values x1, . . . , xn and x̄ = 1
n

∑n
i=1 xi, Cliff and Ord (1981) found the variates

zi, corresponding to the observed values zi = xi − x̄, to have expectations:

E(zi) = 0,

E(z2i ) = (1− 1

n
)σ2,

E(zizj) = −
σ2

n
,

E(z2i z
2
j ) =

(n2 − 2n+ 3)σ4

n2
,

E(z2i zjzk) = −
(n− 3)σ4

n2
,

E(zizjzkzl) =
3σ4

n2
.



(3.7)
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All equations (3.7) had been proved by Cliff and Ord (1981), and we have checked them

mathematically to verify the results. The moments of Ir−Is are explained generally, and

these moments will then be calculated for each pair of directional I statistics in order to

compute the z-tests under H0 : Ir = Is = 0 in Equation (3.6).

The expectation and variance of Ir − Is, where r ̸= s

The expectation of the non-directional I depends only on n and has no spatial informa-

tion. That means the expectation of any directional I has the same value. Thus, the first

moment of Ir − Is equals zero. The E(Ir − Is) is expressed algebraically as follows:

E(Ir − Is) = E

n2

∑

i ̸=j

(
δ
(r)
ij

Ar
− δ

(s)
ij

As

)
zizj∑n

i=1 z
2
i


 .

As we introduced at the beginning of this chapter, the statistical test for detecting

direction only holds under the assumption of no autocorrelation between spots which is

the same assumption of I for independent spots. Therefore, the expected value of the

ratio is equal to the ratio of the expected values shown in following equation as

E(Ir − Is) =
n

2ArAs

(∑
i ̸=j Asδ

(r)
ij − Arδ

(s)
ij

)
E(zizj)∑n

i=1E (z2i )
.

Using Equations (3.7), for E(zizj) and E(z2i ), in the above equation, we have

E(Ir − Is) =
1

2ArAs (n− 1)

(∑
i ̸=j

Asδ
(r)
ij − Arδ

(s)
ij

)

=
1

2ArAs (n− 1)

(
AsS

(r)
0 − ArS

(s)
0

)
(3.8)

=
1

2 (n− 1)

(
S
(r)
0

Ar
− S

(s)
0

As

)
, (3.9)

where S(r)
0 and S(s)

0 are given by Equation (3.3) as 2Ar and 2As respectively, the E(Ir−

Is) is equal to zero.
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Now moving to the variance of Ir− Is with dependent directions, which is as follows

Var(Ir − Is) = Var(Ir) + Var(Is)− 2Cov(Ir, Is), (3.10)

where

Cov(Ir, Is) = E(IrIs)− E(Ir)E(Is).

As it has been defined in Equation (3.2), the expectations of various directional I statis-

tics are not dependent on the neighbouring system, therefore E(Ir) = E(Is). However

the tricky term is E(IrIs) which can be expressed as follows

E(IrIs) =
n2

2ArAs

E
[(∑

i ̸=j δ
(r)
ij zizj

)(∑
k ̸=l δ

(s)
kl zkzl

)]
(n− 1)(n+ 1)σ4

 .

Here Ers = E
[(∑

i ̸=j δ
(r)
ij zizj

)(∑
k ̸=l δ

(s)
kl zkzl

)]
can be extended to include eight pos-

sible scenarios: i = k

j = l

 ,

 i ̸= k

j = l

 ,

 i = k

j ̸= l

 ,

 i ̸= k

j ̸= l

 ,

 i = l

j ̸= k

 ,

 i ̸= l

j = k

 ,

 i = l

j = k

 , and

 i ̸= l

j ̸= k

 .

In the first scenario, for instance

 i = k

j = l

, this leads to

Ers = E

( ∑
i=k ̸=j=l

δ
(r)
ij δ

(s)
ij z

2
i z

2
j

)
,

here for given ith and jth, we sum over the multiplication of δ(r)ij δ
(s)
ij .

Now Ers is defined using all scenarios, which will then be extended using the same

method with has been explained in Cliff and Ord (1981) which is used for the expectation

of the I statistic. The expectation of various scenarios are as follows:

Ers = S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8, (3.11)
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Ers = E

( ∑
i=k ̸=j=l

δ
(r)
ij δ

(s)
kl zizjzkzl

)
+ E

( ∑
l=j ̸=i ̸=k

δ
(r)
ij δ

(s)
kl zizjzkzl

)

+ E

( ∑
k=i ̸=j ̸=l

δ
(r)
ij δ

(s)
kl zizjzkzl

)
+ E

( ∑
i ̸=j ̸=k ̸=l

δ
(r)
ij δ

(s)
kl zizjzkzl

)

+ E

( ∑
l=i ̸=j ̸=k

δ
(r)
ij δ

(s)
kl zizjzkzl

)
+ E

( ∑
k=j ̸=i ̸=l

δ
(r)
ij δ

(s)
kl zizjzkzl

)

+ E

( ∑
j=k ̸=l=i

δ
(r)
ij δ

(s)
kl zizjzkzl

)
+ E

( ∑
l ̸=i ̸=j ̸=k ̸=l

δ
(r)
ij δ

(s)
kl zizjzkzl

)
, (3.12)

which can be simplified as

Ers = E

(∑
i ̸=j

δ
(r)
ij δ

(s)
ij z

2
i z

2
j

)
+ E

(∑
j ̸=i ̸=k

δ
(r)
ij δ

(s)
kj ziz

2
j zk

)

+ E

(∑
i ̸=j ̸=l

δ
(r)
ij δ

(s)
il z

2
i zjzl

)
+ E

( ∑
i ̸=j ̸=k ̸=l

δ
(r)
ij δ

(s)
kl zizjzkzl

)

+ E

(∑
i ̸=j ̸=k

δ
(r)
ij δ

(s)
ki z

2
i zjzk

)
+ E

(∑
j ̸=i ̸=l

δ
(r)
ij δ

(s)
jl ziz

2
j zk

)

+ E

(∑
j ̸=i

δ
(r)
ij δ

(s)
ij z

2
i z

2
j

)
+ E

( ∑
l ̸=i ̸=j ̸=k ̸=l

δ
(r)
ij δ

(s)
kl zizjzkzl

)
. (3.13)

Equation (3.13) can be simplified by substituting some terms using Equation (3.7).

Ers =
∑
i ̸=j

δ
(r)
ij δ

(s)
ij

(
(n2 − 2n+ 3)σ4

n2

)
+
∑
j ̸=i ̸=k

δ
(r)
ij δ

(s)
kj

(
−(n− 3)σ4

n2

)
+
∑
i ̸=j ̸=l

δ
(r)
ij δ

(s)
il

(
−(n− 3)σ4

n2

)
+

∑
i ̸=j ̸=k ̸=l

δ
(r)
ij δ

(s)
kl

(
3σ4

n2

)
+
∑
i ̸=j ̸=k

δ
(r)
ij δ

(s)
ki

(
−(n− 3)σ4

n2

)
+
∑
j ̸=i ̸=l

δ
(r)
ij δ

(s)
jk

(
−(n− 3)σ4

n2

)
.

+
∑
j ̸=i

δ
(r)
ij δ

(s)
ij

(
(n2 − 2n+ 3)σ4

n2

)
+

∑
l ̸=i ̸=j ̸=k ̸=l

δ
(r)
ij δ

(s)
lk

(
3σ4

n2

)
.

Here the S1 and S7 scenarios equal zero, as i’s and j’s have been repeated in both δ’s

and we suppose δ(r) and δ(s), in different directions, means the product of neighbouring

systems for given i and j can not be 1. For instance, when δ
(r)
ij = 1, the δ(s)ij is by

definition equal to zero. The S2, S3, S5 and S6 cases are also identical, and similarly S4
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and S8. All these results were checked numerically using examples.

Hence E(IrIs) can be calculated as

E(IrIs) =
1

2ArAs(n− 1)(n+ 1)

[(
4× (3− n)

∑
i ̸=j ̸=k

δ
(r)
ij δ

(s)
kj

)
+ 6

∑
i ̸=j ̸=k ̸=l

δ
(r)
ij δ

(s)
kl

]
.

(3.14)

The formula of covariance between two dependent directional I statistics is

Cov(Ir, Is) =
1

h

[(
4× (3− n)

∑
i ̸=j ̸=k

δ
(r)
ij δ

(s)
kj

)
+ 6

∑
i ̸=j ̸=k ̸=l

δ
(r)
ij δ

(s)
kl

]
− (n− 1)−2,

(3.15)

where r ̸= s ∈ {1, 2, 3}, h = 2ArAs(n− 1)(n + 1) and n is the number of spots in the

image. We can now substitute Cov(Ir, Is) in Equation (3.10) to obtain the variance of

Ir − Is, considering the dependency between directions, as follows:

V (Ir − Is) = V (Ir) +V (Is)−
2

h

4× (3− n)
∑
i ̸=j ̸=k

δ
(r)
ij δ

(s)
kj

+ 6
∑

i ̸=j ̸=k ̸=l
δ
(r)
ij δ

(s)
kl


+ 2(n− 1)−2, (3.16)

where the variance of a particular direction is defined in Equation (3.2). As a result,

Ir−Is for pairs of directions has distributionN(0,Var(Ir−Is)). This test approximately

follows a standard normal under H0 : Ir− Is = 0. A two-sided p-value can be found for

each z-test. For instance, suppose I1− I2 is the observed value, then z1 is I1−I2√
V (I1−I2)

and

p-value= 2p(Z < −|z1|), with Z ∼ N(0, 1) which is to be compared to α = 0.05/3 =

0.016, using a Bonferroni correction for multiple testing (McDonald, 2009).

The z-tests in this section can be applied easily, but each image will have three p-

values for the three pairs of directions. However, It is more appropriate to have a general

statistical test with one p-value to distinguish images which have a preferred direction.

This test is explained and obtained in the next section.

3.3.2 Bivariate normal test

In section 3.3.1, the three z-tests, which used pairs of directional I statistics (Ir and Is),

and the normal approximation under the null hypothesis Ir−Is = 0, where r ̸= s, can be

used to detect if the image has a preferred direction. However, each image has three tests
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with three corresponding p-values, and thus it is better to have a single test investigate

the preferred direction. A generalisation of the one-dimensional normal distribution, to

higher dimensions, is explained.

The bivariate normal distribution is often used to model pairs of dependent normal

variables, where each is a linear combination of the other. The new bivariate statistic

of directional I is defined with its hypothesis and mean and variance below and how to

obtain the required p-value is also explained.

The bivariate case, involving 2 random dependent variables can be one of

I = (I1 − I2, I1 − I3),

I = (I1 − I2, I2 − I3),

or I = (I1 − I3, I2 − I3),

(3.17)

and follows a bivariate normal distribution with 2-dimensional mean, µ, and 2 × 2

variance-covariance matrix, Σ. All bivariate cases in Equation (3.17) contain the same

information which aims to investigate if any direction is different. Now let us represent

this in matrix algebra notation, for example, suppose we have I = (I1 − I2, I1 − I3) as

a random vector, the shorthand notation we use is

I ∼ MVN

µ =

 E(I1 − I2)

E(I1 − I3)

 ,Σ =

 V (I1 − I2) Cov(I1 − I2, I1 − I3)

Cov(I1 − I3, I1 − I2) Var(I1 − I3)

 ,

where

Cov(I1 − I2, I1 − I3) = E(I21 − I1I3 − I2I1 + I2I3)− E(I1 − I2)E(I1 − I3)

= E(I21 )− E(I1I3)− E(I2I1) + E(I2I3),

V (Ir − Is), r ̸= s, can be calculated from Equation (3.16), the expectations of I2 can be

defined from Equation (3.2) and E(IrIs), r ̸= s is defined in Equation (3.14). Further-

more, we have already shown in Section 3.3.1 underH0 thatE(I1−I2) = E(I1−I3) = 0.

So we have I ∼ N2(0,Σ) under the null hypothesis H0 : I = 0, which means there is

no preferred direction in the image.

To test the null hypothesis, Chatfield and Collins (1980) explained that if we have a

one-sample multivariate test with known Σ, the appropriate test is the likelihood ratio
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test. The test statistic (T ) is written as

T = ITΣ−1I, (3.18)

where Σ−1 is the inverse matrix of Σ. This test statistic converges in distribution to a

central chi-squared distribution, as it is a quadratic form, with two degrees of freedom

as there are two independent elements in I . Based on the chi-square approximation, a p-

value is computed. If this p-value is significant ( < 0.05), then the significant directions

can be specified by the three p-values of the z-test from the normal approximation for

each direction as described in Section 3.3.1. The statistical test in Equation (3.18) can be

computed using any of the two-dimensional random vectors in (3.17) because the results

of the test for all vectors were identical. Therefore, any of these vectors can be used to

investigate if the image has a preferred direction.

3.3.3 A z-test for anisotropy in the direction of the lumen

Pathologists are interested in detecting the clustering of spots in a particular direction.

More importantly, they would like to find if the direction parallel to the lumen surface

differs from the other directions. The direction of the lumen is only available for the

gastric cancer dataset described in Section 1.3.1. In this section a new statistical test is

established to find if there is a significant difference between the autocorrelation of spots

in the lumen direction verses the other two hexagonal axes. To do this test, all images are

first rotated so that the lumen surface is at the top of the image. The rotation procedure is

explained and then the directional I statistics are calculated. The new statistical hypoth-

esis testing problem is then defined with the null hypothesis that the autocorrelation of

spots towards the lumen surface is equal to the other two directions. The hypothesised

sample mean and covariance matrix are defined, because a pair of Ir and Is, r ̸= s, are

not independent, in addition to defining the p-value.

The location of the lumen surface on images is defined as a “clock system” indicator.

Suppose c is the subjective indicator variable of the lumen direction which takes the

value 1, 2, 3, . . . , 12 where c = 12 indicates the direction of the lumen with c = 12 do

not need rotation. To rotate the image toward the lumen, the image is firstly moved to

the centre of the coordinate system, and then adjusted by rotation. Suppose we have an
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image and the direction of lumen, c, then the image will be anticlockwise rotated by an

angle, say φc, in radians about the origin to be directed towards the lumen. The angle of

rotation is defined as a function of the clock system

φc =
c π

6
, c = 1, . . . , 12.

Here the direction of the lumen is c = 12, all possible values of lumen direction are

illustrated in Figure 3.3 with angles in degrees. For given φ, a rotation matrix is used to

perform a rotation in Euclidean space which is given by

R(φ) =

 cos(φ) sin(φ)

−sin(φ) cos(φ)

 .
This matrix is used to rotate spots in the two-dimensional coordinate system anti-clockwise

through an angle φ about the origin to give new coordinates for the rotated image. Sup-

pose we have the coordinates of the spots in a n × 2 matrix Y . A rotated matrix, Y ′ , is

obtained by using the matrix multiplication Y R(φ). This type of rotation, called rigid

transformation, does not alter the size or the shape of any object.

Figure 3.3: Counter-clockwise rotation for each possible clock values, c, to be toward the lumen
surface (12 o’clock).

After rotation, the three directional I statistics can be computed as described in Sec-

tion 3.2 where I1 presents the direction of the lumen. The direction of the lumen is

sometimes not lined up exactly on one of three main hexagon axes. Therefore, the divi-
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sion of angles need to be generalised. The new set of directional I statistic is shown in

Table 3.1 and Figure 3.4.

Table 3.1: The classification of angles after rotation with I1 determining the direction of lumen.

Directional I The range of directional I from the angle matrix ζ
I1 [330◦, 30◦) OR[150◦, 210◦)
I2 [30◦, 90◦) OR [210◦, 270◦)
I3 [90◦, 150◦) OR [270◦, 330◦)

Figure 3.4: The three different directions of I after rotation and the classification of angles
toward I1 where I1 indicates the direction of the lumen.

For example, Figure 3.5 shows all 12 possible rotations of 30 spots in the hexagonal

grid. The green line represents the direction of the lumen (approximately 12 o’clock).

Sometimes the direction of the lumen does not line up exactly toward 12 and it can be

approximately between 11 and 1 o’clock.

The appropriate statistical test here is the z-test with null hypothesis that there is no

significant difference in the autocorrelation of spots in the lumen direction verses the

other directions, that is I1 verses I2 and I3. The z-test is computed using the following

formula

z =
(2I1 − I2 − I3)− 0

sd(2I1 − I2 − I3)
∼ N(0, 1), (3.19)

here E(2I1 − I2 − I3) = 0 as the expectations of all directional I statistics are identical.

The variance term can be obtained by considering the correlation between directional I
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Figure 3.5: The 12 possible clock rotations for 30 spots where the green lines display the direc-
tion of the lumen (I1).

statistics as before

V (2I1 − I2 − I3) = 4V (I1) + V (I2) + V (I3)− 4Cov(I1, I2)

− 4Cov(I1, I3) + 2Cov(I2, I3), (3.20)

where Cov(Ir, Is), r ̸= s, was derived in Equation (3.15). Under the normal approxima-

tion, the p-value can then be calculated.
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3.3.4 Applications

A random selection of images, with direction of lumen equal to 12, are used to illustrate

all statistical tests defined in previous sections, and then the main statistical test described

in Section 3.3.3 is preformed for all random images.

Observed value(s) E(.) V (.) Test statistic p-value
The z-test for non- directional I

I 0.0452 -0.0033 0.0012 1.4170 0.1565
The z-test for directional I

I1 -0.0812 -0.0033 0.0035 -1.3079 0.1909
I2 0.0000 -0.0033 0.0036 0.0543 0.9567
I3 0.2159 -0.0033 0.0035 3.6862 0.0002

The z-test for differences between directional I
I1 − I2 -0.0811 0.0000 0.0071 -0.9611 0.3365
I1 − I3 -0.2971 0.0000 0.0071 -3.5250 0.0004
I2 − I3 -0.2159 0.0000 0.0071 -2.5598 0.0105

Bivariate normal test for detecting anisotropy(
I1 − I2
I1 − I3

) (
−0.0811
−0.2971

) (
0.0000
0.0000

) (
0.0071 0.0036
0.0036 0.0071

)
13.2818 0.0013

The z-test for detecting if anisotropy in lumen direction is differ
2I1 − I2 − I3 -0.3782 0.0000 0.0213 -2.5888 0.0096

Figure 3.6 & Table 3.2: Different statistical tests for a single image (# 137518), where E(.) and
V (.) are the mean and variance used in the test.

Consider two chosen images as shown in Figures 3.6 and 3.7. We start by obtaining

the directional δ’s matrices, to be able to calculate the directional I statistics. All statisti-

cal tests are then performed with results in Tables 3.2 and 3.3 respectively. These tables

also include the non-directional I statistics with their p-values.

In Table 3.2, only the spots in the third direction are autocorrelated (p-value = 0.0002).

For the same image the z-tests were applied for the difference between pairs of directions
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Observed value(s) E(.) V (.) Test statistic p-value
The z-test for non-directional I

I 0.0525 -0.0033 0.0012 1.6004 0.1095
The z-test for directional I

I1 -0.0491 -0.0033 0.0037 -0.7541 0.4508
I2 0.1142 -0.0033 0.0037 1.9200 0.0549
I3 0.0936 -0.0033 0.0037 1.5979 0.1101

The z-test for differences between Directional I
I1 − I2 -0.1633 0.0000 0.0075 -1.8918 0.0585
I1 − I3 -0.1427 0.0000 0.0074 -1.6607 0.0968
I2 − I3 0.0206 0.0000 0.0075 0.2390 0.8111

Bivariate normal test for detecting anisotropy(
I1 − I2
I1 − I3

) (
−0.1633
−0.1427

) (
0.0000
0.0000

) (
0.0075 0.0037
0.0037 0.0074

)
4.2665 0.1184

The z-test for detecting if anisotropy in lumen direction is differ
2I1 − I2 − I3 -0.3060 0.0000 0.0222 -2.0530 0.0401

Figure 3.7 & Table 3.3: Different statistical tests for a single image (# 138763), where E(.) and
V (.) are the mean and variance used in the test.

Ir−Is, r, s = 1, 2, 3; r ̸= s and the p-values calculated. The p-value(I1−I2) = 0.3365,

p-value(I1 − I3) = 0.0004 and p-value(I2 − I3) = 0.0105. At an α = 0.0167, there

are significant differences between I1 and I2 as well as I2 and I3 meaning that image#

137518 has preferred direction toward I3 which is also shown in previous test that p-

value of I3 has high autocorrelation. This significant direction is also shown on im-

age# 137518 where the the green spots tend to be autocorrelated. The bivariate test

for (I1 − I2, I1 − I3) was also applied for image# 137518. The single p-value of this

test shows that there is a preferred direction in the image. The final test for detecting

if the spot clustering in the lumen direction differs from the other two directions, the

p-value of this test is small indicating that the anisotropy in I1 direction differs from the

combination of I2 and I3.
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The same tests have been performed on image# 138763 figure with results in Table

3.3. None of the tests, however, show a significant result except the final test with p-value

equal to 0.0401. This means that we have enough evidence to reject the null hypothesis

and accept the alternative which claims that the property of being anisotropic in the

lumen direction differs from the other two directions. This difference was not detected

by the other statistical tests.

The main and final test statistic is also applied for all independent gastric cancer

images in Table 2.6 (59 images) after they have been rotated toward the lumen surface.

Only 7% of images (4 images), which are shown in Figure 3.8, have a significant p-value

(< 0.05) so we reject the null hypothesis 2I1−I2−I3 = 0 in these cases. A half of those

patients had chemotherapy and have Lauren classification equals two (LS = 2), but with

various Japanese classification (JS). More interesting, however, is that the pathological

tumor stage (pT ) for all these patients is 5 which is the highest stage of tumor. These

patients are survived approximately between one to three years and their status recored

as died. This may indicate that the tumor is more deep into nearby tissue and more

aggressive. However, this result has not been checked clinically as well as not enough

significant directional images to check if directional image can be aggressive. In fact, if

H0 was true for all patients, we would expect 5% of the images to be rejected. Hence

the rejection of H0 for 4 images is consistent with α = 0.05 level of significance.

Figure 3.8: Four images rotated toward the lumen surface (12 o’clock) and p-value of statistical
test for detecting if anisotropy in lumen direction is different to the other two directions.
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3.4 The power of the test for detecting anisotropy to-

ward lumen

The statistical power of the non-directional I test was investigated in Section 2.5 with a

parameter κ which controlled autocorrelation in the image. The power of the directional

version for lumen direction detection is now defined with an additional parameter in

the covariance matrix, say ψ, which controls the autocorrelation in a specific direction.

This matrix measures the joint variability of two random spots which are close and the

position of spots is in the same direction. The first goal is to define an appropriate

parametrisation of the covariance matrix that can be used to simulate directional images

from the alternative hypothesis (2I1 − I2 − I3 ̸= 0). Then we will be able to find the

power of test, which is the proportion of rejections of H0 when it is false.

The process of simulating autocorrelated images from a multivariate normal was ex-

plained in Section 2.5. The same approch is used in this section but we need to adjust the

definition of covariance matrix (Σn×n, where σij ̸= 0, i ̸= j) which previously only took

distance, not direction, into account. The extra parameter (ψ) is added to the definition

of this matrix to also give spots that are allocated in the same direction more weight.

To do this, suppose we have a preferred direction, say m, and an angle matrix using

formula (3.4), where Bij ∈ (−π, π]. This angle matrix is subtracted from the m to give

θij = Bij −m which is a new angle matrix relative to the direction of interest m. For

given κ and ψ, the variance-covariance matrix is defined as

σij = e−κDij×ψ(1.2−cos(2θij)), (3.21)

where Dij is defined in Equation (2.1), cos(2θij) ∈ (−1, 1] and we take double the

angle, as each angle has a symmetric angle at the opposite side. Also we set 1.2 because

the maximum value of cos(2θij) is one, and we add an extra decimal place, say 0.2.

This small ratio avoids cos(2θij) to be zero when it is equal 1, otherwise the power of

exponential function equals zero. In parametrisation, κ and ψ control the correlation in

the image overall and in a direction m direction respectively.

For a given hexagonal grid using a real image, the positive angle of the favoured

direction m, when it is lined up exactly on the hexagonal axes, can be either 1.9794
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(direction of I1), 1.1622 (direction of I2) or 3.1416 (direction of I3). These angles can

be used to simulate images with high autocorrelation in different directions. Under an

independent configuration, for instance, we select κ to be 0.1 from Table 2.5 and set ψ as

0.3 in the covariance definition function to simulate directional autocorrelated images.

Figure 3.9 displays examples of directional images, containing 300 spots, with various

m angles.

Figure 3.9: Simulated images with various directional autocorrelated using κ = 0.01 and ψ =
0.3 in the covariance matrix.

Now, a power function is calculated where the angles of directions I2 and I3 are

interchangeable in power evaluation, but the main direction is I1, where we expect that

the statistical test has more power. Thus, the angle of I1 is mainly considered in addition

to either the angle of I2 or I3. Let us consider the angles of I1 and I3, however, the

angles in between these two needed to be evaluated. Hence, an interval of angles, which

are allocated between the angles of I2 or I3, are considered. This interval of angles is

approximately symmetric in evaluation about its midpoint. Even though some angles

can not be lined up exactly on hexagonal axes, they are essential to evaluate the power

of the test with the high directionality of spots is between axes of the hexagon.

To determine the angles, the main angle is for I1, which ism = 1.9794, is considered.

Also we consider the angle of I3, which is m = 3.1416 equivalent to m = 0. Now, we

select some angles far away from the main hexagonal axes, e.g. 0.2, 0.3, 0.5 and 0.6,

where m = 0.6 illustrates a midpoint between the angles of I2 and I3. To compute the

power, for each angle, we simulate 500 images of 300 spots under H1 that is from a mul-

tivariate normal with zero mean vector and covariance matrix (Σn×n) which is defined
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from Equation (3.21) with κ = 0.1 and various value of ψ. The κ value is determined

from Section 2.5 to have independent images. Then, the test statistic in Section 3.3.3 is

calculated for each simulated image to find the probability of rejecting the null hypothe-

sis when it is false, 1− β, where β represent the probability of type II error. Figure 3.10

shows the power function for different angles. We can see that the test is most powerful

when the maximum autocorrelation direction is lined up exactly with the direction of

I1. The statistical test is also still powerful when the highest autocorrelation is lined up

with direction of both I1 and I3. This test, however, has very low power if the maximum

autocorrelation lies in between hexagonal axes.

Basically, the pathological technique which generates a systematic grid of spot lo-

cations by RandomSpot system is a completely random process. Also, the locations of

spots are in a continuous space and thus the direction of the lumen direction is arbitrary.

That means the direction of maximum autocorrelation can occur between two axes of

the hexagon and it may be difficult to detect. If the direction of lumen is precisely lined

up with one of the axes of the hexagon grid it may increase the chance of detecting the

maximum autocorrelation.

Figure 3.10: Estimated power function from 500 simulated directional images with κ = 0.1 and
different ψ using various preferred direction m, where m = 1.96 shows the angle of directional
I1, and m = 0 represents the angle of directional I3.
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3.5 Discussion

Detecting anisotropy in biomedical images helps us to understand the behaviour of can-

cer movement, especially if there is a difference between the direction to the lumen

surface and other directions. Many statistical tests have been performed, but the most

interesting tests are the bivariate test in Section 3.3.2 and the z-test in Section 3.3.3. The

first test can investigate if the image has a preferred direction in general, but, the second

test is more specific for detecting if the autocorrelation parallel to the lumen direction,

differs from the other directions. There were two sources of dependency in the process

of detecting direction tests: the first one is between pairs of directional I statistics which

was already covered by considering covariance between them. The second source is the

dependency between spots which has been limited under the assumption of independent

images. The two tests of detecting direction (Sections 3.3.2 and 3.3.3) are not the same

as the region of rejections differ. However, the test of detecting autocorrelation parallel

to the lumen direction is more accurate and powerful which had proved in Section 3.4.

The statistical test for detecting if anisotropy in the lumen direction equals that in

the other directions can accurately identify the preferred direction under the assumption

of independent images. In fact, no information is provided regarding to the reflection

of images. When the reflection occurs, however, I1 still has the same meaning for all

images, but the I2 and I3 are swapped. We are indeed detecting if I1 differs from a

combination of I2 and I3, thus the statistical test still works effectively. When the angles

are divided into three groups after rotation, the sides of the hexagons may not be perfectly

lined up with the clock (just approximately), therefore the statistical test for investigating

the direction in the lumen direction has less power.

By simulating clustered images, we checked the conservatively of the non-directional

I test statistic in Chapter 2. As a result, the p-value of the non-directional I test statistic

is conservative as it is affected by standard deviation when we have a simulated cluster

image. That means the true probability of incorrectly rejecting the null hypothesis is

never greater than the nominal level for a given significance level. The ratio of standard

deviation for high autocorrelated images tends to be 50% smaller than the independent

one. This result has been confirmed by calculating 100 I statistics from 100 random and

clustered images, and then the sample standard deviation of both groups of I statistics
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are found.

Figure 3.11: Example of a whole tumor and a subsample of a single region.

Based in our findings, it is recommended to pathologists that it is better to cover the

whole tumor instead of considering a subsample to be able predict if the image has a pre-

ferred direction. This may help to predict the tumur spread direction and next affected

target area in the body. Another reason is that the directional statistic I1 is not statistically

different to I2 and I3 in most images. This non-significant result may be expected in the

area close to the lumen surface which is more likely to be homogeneous. An example

is shown in Figure 3.11 for a whole tumor and a subsampled single region. Moreover,

a square grid may be better and easier in detecting directionality as each direction is or-

thogonal to each other. To keep the power of the statistical test for any arbitrary rotation,

we can either adjust the indicator of lumen direction to be six directions only, or when

the pathologists generate the images, they need to make sure that the direction of lumen

is lined up exactly with one of the three axes.



Chapter 4

Parameter Estimation in BMRF

Models Using an Iterative Method

4.1 Overview

In Chapter 3, Moran’s I statistic is modified to allow for calculation in various directions

on a hexagonal grid in order to detect isotropy. Further, statistical tests were derived

which considered dependency between directions. However, the statistical inference

from these tests is only valid under the assumption that spots are independent; otherwise

the distribution of I is unknown. Note that both the I and the directional I statistics are

based on non-parametric summaries of data and are not parameters in any model. Now,

in contrast, we consider a model based approach; where we can carry out inference

regarding the parameters of a model rather than non-parametric summaries of data.

Further, modelling of biomedical images may help describe the spatial relationships

of spots which may help in clinical problem solving and suggesting treatment plans.

Other advantages of modelling is that it can help in future prediction for dependent

biomedical image structure and for simulating patterns that occur in reality. In spite of

these possible advantages, the modelling of biomedical images has not been considered

previously.

Most spatial models are complex containing parameters that refer to spatial features

and which can not be measured or quantified directly. The basic idea in this chapter

is to model the connections between spots as parameters, where if there is dependence

83
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between spot colour, then there are non-zero parameters. One of the most widely used

mathematical models on regular grids of binary variables is the Binary Markov Random

Field (BMRF) (Besag, 1975). The Ising model is an example of a BMRF which is used

in statistical physics for modelling the behaviour of magnets in a square lattice.

The BMRF image models can also, more importantly, be a motivation for investigat-

ing a parameter estimation approach. The objective of this chapter is to propose a new

method, called the iterative method (IM), for estimating parameters. This method allows

maximisation of any given probability function p(x;θ) where parameter estimation is

based on the data only and avoids explicit computation of the likelihood function. We

do this by comparing randomly generated data with the observed data and iterating over

parameter choices so that the parameter values become better over time. In this chapter,

for computational convenience and stabilisation of IM, the spot labels take the values−1

and 1 rather than 0 and 1.

This chapter starts by presenting background on BMRF models and existing ap-

proaches to estimating its parameters in Section 4.2. It also includes the practical prob-

lem of maximum likelihood estimation for more than one parameter and a pseudo-

likelihood method for estimating BMRF parameters is described in detail. A motivating

example of IM is presented in Section 4.3 and a general description is given in Section

4.4. The mathematical idea behind the Markov chain Monte Carlo (MCMC) method will

be presented in Section 4.5, which is our “simulator box”, including the assessment of its

convergence. The output of MCMC is modified to consider and test replicates of design

points in Section 4.6. The components of IM are explained in Section 4.7. This section

includes the process of adding and removing design points and determining the stopping

criteria. A general description of IM for any parameter setting is then illustrated. Section

4.9 presents statistical inference for estimated parameters for detecting clustering, along

with a hypothesis testing approach and examples. The inference is also generalised for

detecting directionality. The next section includes the IM evaluation for different pa-

rameter settings and comparison with existing methods of parameter estimation. Finally

some discussion is given in Section 4.11.
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4.2 Background to the Binary Markov Random Field

Besag (1974) provided a general formulation for MRF models for pattern recognition

based on the exponential family class. A general proof for the construction of these joint

distributions is provided by Kaiser and Cressie (2000). Even though other modelling

approaches are available, such as, fractal image models (Dubes and Jain, 1989) and

grey-level variation models based on variograms (Matheron, 1963), the BMRF model

seems best suited for our purpose and we adopt this model also for a hexagonal grid. In

this section, we present the basic definitions of the BMRF.

Suppose an image contains a finite number of binary spots, x = (x1, . . . , xn), in a

hexagonal grid, where xi ∈ {−1, 1}. The neighbourhood system of spots is determined

through the matrix δ, which was defined in Section 2.2, and in addition the neighbour-

hood system for the three directions: δ(1), δ(2) and δ(3).

Let p(x;θ) define the BMRF model, where θ ∈ {θ1, . . . , θk} is a vector of clustering

parameters, defined on a grid which is a collection of spots. These spots correspond to

the sites of the grid, for which the probability of a given site value, conditional on the

values of all other sites in the grid, is equal to the probability of the site value conditional

on the values at a small subset of the grid sites (Waks et al., 1990). The Markov random

field can be written as

p(x;θ) =
1

z(θ)
exp
{
θ1

n∑
i=1

xi +
3∑

k=1

θk+1

∑
i ̸=j

δ
(k)
ij xixj

}
, (4.1)

where

z(θ) =
∑
x̃∈Ωx

exp
{
θ1

n∑
i=1

x̃i +
3∑

k=1

θk+1

∑
i ̸=j

δ
(k)
ij x̃ix̃j

}
, (4.2)

where θ = (θ1, θ2, θ3, θ4) with θi ∈ R, and, xi ∈ {−1, 1} are the spot values. If

the xi’s are the results of independent Bernoulli trials then the sum of the xi’s has the

expectation n(2p−1) and variance 4np(1−p). The normalising constant z(θ) is obtained

by summing over Ωx, which is the set of all possible configurations for x.

In the non-directional version of Equation (4.1), θ2, θ3 and θ4 are equal and the de-

pendence between spots xi and xj is defined only by parameter θ2. If this parameter has

a positive value, neighbouring spots tend to have the same colour; the opposite happens
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if θ2 is negative. When the size of this parameter is increased, the dependency between

neighbouring spots is also increased. Whereas in the directional version, when all the

parameters are considered, the image is said to be anisotropic if θ2, θ3 and θ4 are not

equal.

The BMRF model, which is a flexible stochastic process, is frequently used as a prior

distribution in Bayesian statistics (Cressie, 1993). In many settings, computational issues

can arise when, for example, we have a complex model with many parameters, or the

likelihood is unavailable, either because it is not provided as a function of the parame-

ters or it contains an unknown normalising constant which can not be quickly evaluated.

In the latter case, Mller et al. (2006) used the auxiliary variable method to eliminate

the unknown normalising constant. The auxiliary variable method can consider only

the data (x) or parameters (θ), as one of them should be fixed. Even though the nor-

malising constant can be estimated, the computation of the normalising constant is not

feasible in a large lattice (Mller et al., 2006; Reeves and Pettitt, 2004). The normalising

constant makes it challenging to evaluate the maximum likelihood estimate because of

mathematical reasons making it too expensive to calculate.

Some existing methods for estimating the BMRF parameters are the coding method

(Besag, 1974), maximum pseudo-likelihood estimation (Besag, 1975, 1977) and maxi-

mum likelihood estimation (Cressie, 1993). Maximum likelihood estimation is described

in Sections 4.2.1 for one and two parameter settings and maximum pseudo-likelihood es-

timation is described in Section 4.2.2 for one and two parameter settings, which are used

for comparison with our new method in Section 4.10.

4.2.1 Maximum likelihood estimation of BMRF

The BMRF is a complex model where the exact likelihood function evaluation is a doubly

intractable problem. The complexity comes from the normalisation constant, which is a

sum over an exponentially large number of possible configurations, hence usually hard

to compute.

In this section, we will estimate the parameters of the BMRF by maximum likelihood

estimation for simple cases where we have only one and two parameters. The aim here

is to diagnose the difficulty of using the standard method of parameter estimation and to
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suggest ideas to overcome the limitations of BMRF parameter estimation.

One parameter case

To start thinking about parameter estimation of the BMRF, a simple case is first explained

where there is no interest in the neighbourhood system. This model can be defined as

p(x; θ1) =
1

z(θ1)
exp
{
θ1

n∑
i=1

xi

}
(4.3)

where

z(θ1) =
∑
x̃∈Ωx

exp
{
θ1

n∑
i=1

x̃i

}
. (4.4)

In order to estimate the unknown θ1, the first approach is maximum likelihood estimator

(MLE) using the joint density function in Equation (4.3),

θ̂1 = argmax
θ1

p(x; θ1). (4.5)

For x, the log-likelihood is

L(θ1) = log

{
exp(θ1

∑n
i=1 xi)

z(θ1)

}
=θ1

n∑
i=1

xi − log(z(θ1)). (4.6)

The maximum likelihood estimator (MLE) can be found by finding the derivative of

L(θ1) with respect to θ1:
∂L
∂θ1

=
n∑
i=1

xi −
z
′
(θ1)

z(θ1)
,

and setting to zero, giving

∂L
∂θ1

= 0,⇒
n∑
i=1

xi =
z
′
(θ1)

z(θ1)
, (4.7)

where

z
′
(θ1) =

∑
x̃∈Ωx

(
n∑
i=1

x̃i

)
exp
{
θ1

n∑
i=1

x̃i

}
. (4.8)
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Here z
′
(θ1)

z(θ1)
can not be written as an explicit equation for the parameter estimate.

From Equation (4.7), there is only one summary statistic, t1 =
∑n

i=1 xi, as we have

one parameter to estimate. From the right hand side of Equation (4.7), which contains

the normalising constant and its derivative, we can compute precisely θ1 for a small

image, for example for n = 15 which takes 7 minutes. In fact if a sequence of θ1 (eg.

10 values) is considered to find the parameter value that maximises the log-likelihood

function in Equation (4.6), the total computation time is 70 minutes. An image of 300

spots takes approximately 2 hours for a single value of θ1 and 20 hours for a sequence

of values. Since z(θ1) is definitely an expensive computation, it is infeasible to cover a

sequence of all possible θ1.

Nevertheless, the one parameter BMRF model is not dependent on the spatial ar-

rangement, and so z(θ1) can be computed exactly using a binomial expression. Let us

consider an experiment of n independent Bernoulli trials, each with probability of suc-

cess p. As clarification, suppose that the record values x1, . . . , xn have xi = 1 if the ith

spots is black and xi = −1 otherwise. The sum of the xi’s, t1 =
∑n

i=1 xi, has expecta-

tion n(2p− 1) and variance 4np(1− p). Considering t1 ∈ {−n,−n+2,−n+4, . . . , n}

denoted by 2s − n, s = 0, . . . , n, which is the set of all positive values taken by
∑

i xi

leads to

z(θ1) = exp
{
− nθ1

} n∑
s=0

(
n

s

)
exp
{
2θ1s

}
. (4.9)

Here s corresponds to a binomial distribution, and there are
(
n
s

)
different ways of dis-

tributing s successes in a sequence of n trials. Thus a simplified formula of Equation

(4.9) is

z(θ1) =
(1 + e2θ1)n

enθ1
,

and thus, after the derivative of the exact constant has been found, the righthand side of

Equation (4.7) can be written as

z
′
(θ1)

z(θ1)
= n

[
e2θ1 − 1

e2θ1 + 1

]
. (4.10)

Here z
′
(θ1)

z(θ1)
is replaced by

∑n
i=1 xi using Equation (4.7), so we can write Equation (4.10)
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as
t1
n

=

[
e2θ1 − 1

e2θ1 + 1

]
.

Hence, the probability of success, denoted by p = t1/n, can be formulated as a function

of θ1

p =
e2θ1

e2θ1 + 1
, (4.11)

and similarly θ1 can be written either as a function of p

θ̂1 =
1

2
log
{

p

1− p

}
, (4.12)

or as a function of t1

θ̂1 =
1

2
log
{
t1 + n

−t1 + n
,

}
(4.13)

where p, which is the proportion of tumor and t1, which is a summary statistic, are

calculated from the given image. Also, n refers to the total number of spots and θ̂1 is the

estimated parameter. Here, in the estimation of θ1, no spatial information is included,

and hence the given image is considered to be spatially independent. Therefore, when we

have a completely independent structure image, either p or t1 can be directly calculated

and θ1 can be then estimated exactly.

Two parameter case

The two-parameter setting for the BMRF model reflects the spatial dependence, as the

non-directional I statistic does, because the model contains δ. The BMRF of two param-

eters, θ = (θ1, θ2), and the data, with joint density function, can be written as

p(x;θ) =
1

z(θ)
exp
{
θ1

n∑
i=1

xi + θ2
∑
i ̸=j

δijxixj

}
, (4.14)

where

z(θ) =
∑
x̃∈Ωx

exp
{
θ1

n∑
i=1

x̃i + θ2
∑
i ̸=j

δijx̃ix̃j

}
. (4.15)
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Similarly to the one parameter case, we estimate the unknown θ using maximum likeli-

hood based on the joint density function p(x;θ) as:

θ̂ = argmax
θ

p(x;θ). (4.16)

The log-likelihood is

L(θ) = log

{
exp(θ1

∑n
i=1 xi + θ2

∑
i ̸=j δijxixj)

z(θ)

}

=θ1

n∑
i=1

xi + θ2
∑
i ̸=j

δijxixj − log(z(θ)).

We obtain the maximum by first finding the partial derivatives of L(θ) with respect to θ1

and θ2, respectively. Starting with

∂L
∂θ1

=
n∑
i=1

xi −
∂z/∂θ1
z(θ1)

, (4.17)

and setting to zero gives

∂L
∂θ1

= 0,⇒
n∑
i=1

xi =
∂z/∂θ1
z(θ)

, (4.18)

where

∂z/∂θ1 =
∑
x̃∈Ωx

(
n∑
i=1

x̃i

)
exp
{
θ1

n∑
i=1

x̃i + θ2
∑
i ̸=j

δijx̃ix̃j

}
. (4.19)

Similarly, the derivative of the log-likelihood with respect to θ2 is

∂L
∂θ2

=
∑
i ̸=j

δijxixj −
∂z/∂θ2
z(θ)

,

and setting to zero gives

∂L
∂θ2

= 0,⇒
∑
i ̸=j

δijxixj =
∂z/∂θ2
z(θ)

, (4.20)
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where

∂z/∂θ2 =
∑
x̃∈Ωx

(∑
i ̸=j

δijx̃ix̃j

)
exp
{
θ1

n∑
i=1

x̃i + θ2
∑
i ̸=j

δijx̃ix̃j

}
. (4.21)

From Equation (4.14), there are two summary statistics: t1 =
∑n

i=1 xi and t2 =
∑

i ̸=jδijxixj

corresponding to parameters θ1 and θ2 respectively. Although each summary statistic

can be calculated directly for a given image, it is expensive to evaluate the normalising

constant in Equations (4.18) and (4.20). The image can be thus summarised with these

statistics, which related to unknown parameters. These summarisations of data motivate

estimation of the parameters in the BMRF.

The θ̂2 in Equation (4.14) contains similar information to the I statistic, for instance,

θ2 ̸= 0 means that the spots are not independent, as does I ̸= 0. The inference related to

θ2 is explained in detail in Section 4.9.

4.2.2 Pseudo-likelihood equations for BMRF parameter estimation

As the likelihood maximisation for the BMRF is typically intractable, this problem may

be solved using an approximate inference method. Besag (1974) described and devel-

oped an approximation approach using pseudo-likelihood (PL). He replaced the likeli-

hood by a more tractable object using conditional dependencies present among a finite

set of binary random variables for first-order neighbours with spots labelled 0 and 1. In

this section, the conditional distribution of the BMRF, with two parameters, for site xi

given all other site values is derived. Followed by the maximisation of the log-likelihood

to find the parameter estimates.

Recall the probability density function of the BMRF in Equation (4.14), here we will

simplify some notation as follows

p(x;θ) =
1

z(θ)
exp
{
h(x;θ)

}
, (4.22)

where

z(θ) =
∑
x̌∈Ωx

exp
{
h(x̌;θ)

}
,
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with

h(x;θ) = θ1

n∑
i=1

xi + θ2
∑
i ̸=j

δijxixj,

and

h(x̌;θ) = θ1

n∑
i=1

x̌i + θ2
∑
i ̸=j

δijx̌ix̌j.

To drive the PL, we begin by calculating the conditional distribution of xr given x̌,

p(xr|x̌), where x̌ includes all spots except xr. Let x+ and x− be two spot configurations

obtained from x̌ by setting xr = 1 or xr = −1 respectively. The h(x;θ) function is

additive over spot-spot pairs, and hence the two configurations can be written as

h(x+
r ;θ) = θ1 + θ2

∑
j

δrjxj + h(x̌;θ), and

h(x−
r ;θ) = −θ1 − θ2

∑
j

δrjxj + h(x̌;θ),
(4.23)

where h(x̌;θ) involves summing over spots when r ̸= i. The probabilities of these two

configurations are

p(x+
r ;θ) =

1

z(θ)
exp
{
h(x+

r ;θ)
}
, and

p(x−
r ;θ) =

1

z(θ)
exp
{
h(x−

r ;θ)
}
.

(4.24)

Actually the probability of partial configuration x̌ is just the summation of the two equa-

tions in (4.24) that is p(x̌;θ) = p(x+
r ;θ) + p(x−

r ;θ).

Now the condition distribution of of xr given x̌ is

p(xr|x̌) =
p(x;θ)

p(x̌;θ)
. (4.25)

Here the normalising constant cancels and the partial sum is only over neighbours. The

p(xr|x̌) contains the condition distribution of event xr = s, where s can be either −1 or

1, given x̌ which is

p(xr = s|x̌) =

(
s+1
2

)
exp
{
h(x+

r ;θ)
}
+
(−s+1

2

)
exp
{
h(x−

r ;θ)
}

exp
{
h(x+

r ;θ)
}
+ exp

{
h(x−

r ;θ)
} . (4.26)



Chapter 4. Parameter estimation in BMRF models 93

The PL is then

L(θ;x) =
n∏
r=1

(
p(xr = 1|x̌)

)xr+1
2
(
p(xr = −1|x̌)

)−xr+1
2

=

n∏
r=1

(
exp
{
h(x+

r ;θ)
}

exp
{
h(x+

r ;θ)
}
+ exp

{
h(x−

r ;θ)
})xr+1

2
(

exp
{
h(x−

r ;θ)
}

exp
{
h(x+

r ;θ)
}
+ exp

{
h(x−

r ;θ)
})−xr+1

2

.

(4.27)

The pseudo log-likelihood is then

L(θ;x) =
n∑
r=1

[
xr + 1

2

{
h(x+

r ;θ)− log
(

exp
{
h(x+

r ;θ)
}
+ exp

{
h(x−

r ;θ)
})}

+
−xr + 1

2

{
h(x−

r ;θ)− log
(

exp
{
h(x+

r ;θ)
}
+ exp

{
h(x−

r ;θ)
})}]

.

(4.28)

Here we can substitute h(x+
r ;θ) and h(x−

r ;θ) into Equations (4.23) and the simplified

expression is as follows

L(θ;x) =
n∑
r=1

[
xr
2

(
θ1 + θ2

∑
j

δrjxj

)
+

1

2
h(x̌;θ)− xr

2

(
− θ1 − θ2

∑
j

δrjxj

)
+

1

2
h(x̌;θ)

+
1

2
log
(

exp
{
h(x+

r ;θ)
}
+ exp

{
h(x−

r ;θ)
})]

.

Expanding the pseudo log likelihood we obtain:

n∑
r=1

[
θ1
xr
2

+ θ2
∑
j

δrjxjxr − log

(
exp
{
θ1 + θ2

∑
j

δrjxj
}
+ exp

{
− θ1 − θ2

∑
j

δrjxj
})]

.

The simplest formulation of L(θ;x) we can have is

L(θ;x) = θ1

n∑
r=1

xr
2

+ θ2
∑
j ̸=r

δrjxjxr −
n∑
r=1

log

(
exp
{
θ1 + θ2

∑
j

δrjxj
}

+ exp
{
− θ1 − θ2

∑
j

δrjxj
})

. (4.29)

It is not possible to write the maximum log-likelihood estimator as an explicit function of

the data. Therefore, the optim function in R is used to solve the maximisation problem

by suppling functions multiplied by −1 as optim is written to minimise a function. The

optim function uses a starting value for the parameters to be optimised and outputs the
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estimated parameters. Some examples of using the pseudo-likelihood estimation method

are shown in Section 4.10 and the estimated parameters are then compared with those

from the IM.

Note that the PL parameter estimation method has problems at the boundary of the

image where we have fewer than 6 neighbours per spot. Such problems may be solved

by considering the joint distribution of only internal image spots (Besag, 1974).

4.3 A motivating example of the iterative method

In this section a motivating example of a simple distribution is considered to explain

briefly the method of iterative parameter estimation for one parameter. Suppose that we

have xi ∼ Bin(1, p), i = 1, . . . , n which follows a binomial distribution with sample

size n and unknown parameter p. Let t denote a summary statistic related to p which can

be computed from the data, t =
∑
xi, where xi ∈ {0, 1}. We already know that p̂ = t/n

is an unbiased estimator of p using maximum likelihood estimator MLE, but for the sake

of illustration, we suppose this estimate is not available.

The general process of the iterative method IM to estimate a single parameter, p̂, is as

follows:

1. We create a initial grid of three values of the parameter, p∗1 < p∗2 < p∗3, these values

are called design points with sample size N = 3 which is regularly increased

through the IM.

2. We suppose that we have a simulator box which can simulate data from the bino-

mial distribution for a given parameter.

3. For each value of p∗j , j = 1, . . . , N , with given data size n, we simulate a realisa-

tion x∗ from the simulator box and then compute a summary statistic t∗(p∗j) which

can be written mathematically as follows

t∗(p∗j) =
n∑
i=1

x∗i

where x∗i ∼ Bin(1, p∗j), i = 1, . . . , n.
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4. For the given grid of initial values and related summary statistics, we can calculate

the first estimate of p̂ by solving a simple linear regression as we assume locally a

linear relationship between p∗j and t∗(p∗j), j = 1, . . . , N given by

t∗(p∗j) = β0 + β1p
∗
j + εj, j = 1, . . . , N. (4.30)

After the model is fitted, we will have the estimated model parameters (β̂0 and β̂1).

We then estimate p̂ by prediction to obtain

p̂ =
t− β̂0
β̂1

, (4.31)

where t is the observed summary statistic of our data.

For each p∗j , simulate
t∗(p∗j) =

∑n
i=1 x

∗
i

Initial grid
of (p∗1, p

∗
2, p

∗
3)

Calculate t =
∑
xi

from data

Fit linear regression model
t∗j(p

∗
j) = β0 + β1p

∗
j + εj

Using β̂0, β̂1 and
t, p̂ = t−β̂0

β̂2

For given p̂, pre-
dict t∗(p̂) with
its CI {t∗L, t∗U}

obtain CI of p̂{
t∗L−β̂0
β̂1

,
t∗U−β̂0
β̂1

}

Add new parame-
ters and summary

statistics to exist grid

Remove points

Convergence
check

Final p̂

No

Yes

Figure 4.1: The steps of the iterative method (IM) for a single parameter using binomial distru-
bution.

5. Once we have p̂, this is used to predict a corresponding summary statistic from

Equation (4.30) and to obtain the lower and upper boundaries of a 95% confidence
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interval (CI). We now have an additional set of summary statistics (t∗L, t
∗(p̂), t∗U),

each of which leads to additional values of p using Equation (4.31). The new

points and corresponding summary statistics are added to the existing p∗j and

t∗(p∗j), j = 1, . . . , N respectively. The number of design points is now increased

by 3.

6. After adding three new design points to the old ones, the point p∗j that is furthest

from the current p̂ is removed with its corresponding t∗(p∗j).

7. Repeat the same steps, starting from 4, until the absolute difference of the current

estimate of p̂ and previous one has been minimised below a threshold of, say,

0.001. As this ratio decreases, the parameter estimate becomes more accurate.

N p̂ = t−β̂0
β̂1

p̂L p̂U t∗(p̂) t∗L t∗U
3 0.83 0.03 0.95 13.03 0.00 15.00
4 0.82 0.65 0.99 13.00 11.34 14.66
5 0.82 0.74 0.90 12.97 12.09 13.85

Figure 4.2 & Table 4.1: Figure 4.2 shows, in order, the steps of the IM parameter estimation
technique using Xi ∼ Bin(1, 0.8) and n = 15 by plotting design points for the whole parameter
space and summary statistic space and the internal figure windows are a zoomed in version of
the current local space of the p̂ estimator. The horizontal red line shows the observed summary
statistic t = 13, from data, the vertical red line shows p̂ = 0.87 using MLE and the blue line
shows the fitted regression line. Each row in Table 4.1 illustrates the current parameter estimate
and summary statistic value at each step of the IM with their CI and the number of design points
N . The last row presents the last step with the final value of p̂.

Figure 4.2 shows the steps of the iterative method for estimating a single parameter

of given Xi ∼ Bin(1, p). The mathematical justification for adding points using a
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confidence interval is to add stability to the regression fit. The danger, however, is that if

this interval is too big then the convergence is more time-consuming.

To illustrate the IM on a real image, suppose we have the following data Xi ∼

Bin(1, 0.8) with n = 15 points and t = 13, which is the summary statistic from ob-

served data. To estimate p̂ by the IM, we initialise the first grid of values which is

(0.1, 0.5, 0.9) with N = 3 design points. For given these parameters and n, we simu-

late from the simulator box, to produce corresponding t∗, (t∗(0.1), t∗(0.5), t∗(0.9)). A

simple linear regression is next fitted, using Equation (4.30), and the first extra design

point is estimated using Equation (4.31). Through the IM, the number of design points

N increases. The IM is stopped using the convergence condition that the absolute dif-

ference between the current and previous estimate of p̂ is less than 0.001, then we lastly

determine the optimal and final estimate of p̂ = 0.82.

Figure 4.2 illustrates the design points, for the same example, in the initial, middle

and final steps of IM. Equivalently, Table 4.1 includes all steps of the IM where the last

row of the table includes the final estimate. This table shows how the number of design

points gradually increases, in addition to how the estimation of p̂ converges. Note that the

estimate of p using MLE equals 0.87 which is close to the estimation from IM (p̂ = 0.82).

4.4 General description of the iterative method

In Section 4.3, the iterative method for estimating parameters is illustrated in a sim-

ple framework with a single parameter. In this section, the IM is explained in general.

Some differences and similarities between the IM and Approximate Bayesian computa-

tion ABC are then considered in Section 4.4.1.

The main idea of this method depends on a sequential simulation approach where we

can simulate data x∗ from the model p(x;θ), which is a probability function of data x

with given parameter θ. One of the main problems is that the simulation-based approach

has a random output even when the simulation uses the same parameters. The optimal

parameter values are unknown, and the parameter space is very large, and so the process

can take a long time to run especially as it has a stochastic component. Therefore we

want to get to the right area (homing-in on the parameter estimates) in the space by doing

a sequential process where we move around the space in a clever way. This method is
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explained in more detail for any model with a high-dimensional parameter space.

The method is initialised by setting a grid of values for each parameter that we need

to estimate. Given the availability of a simulator box, which may, as here, produce a

Markov chain Monte Carlo (MCMC) realisation, with given θ = (θ1, θ2, . . . , θk), we can

generate independent and identically distributed data x∗ (x∗ ∼ p(x;θ)) from which we

can calculate summary statistics t∗ = (t∗1, t
∗
2, . . . , t

∗
k). Our aim is to update θ sequen-

tially, in such a way that t∗ converges to the observed t from the given data.

For given summary statistics t∗i , i = 1, . . . , k and θ with k parameters, we fit a local

multiple linear regression model (MRM) in an adaptive local manner in which the sum-

mary statistic is modelled in terms of the parameters. The MRM, which is explained in

Section 4.7.1, is a generalised version for any parameter setting.

After the model is fitted, the next design points are obtained and some design points

are removed according to previous simulation realisations. The method is sequentially

adaptive, whereby new design points are chosen which we think are closer to the part of

the parameter space where the true estimate is located. We keep adding and removing

design points sequentially homing-in on the right part of the parameter space and the

simulated data becomes closer to the observed data. The process stops after convergence

is achieved.

In a local region we can approximate the relationship between the parameters and the

data summaries as linear. Of course, the relationship between t∗ and θ generally will

not be linear, but that does not mean we will have a bad result as the design-points space

is much smaller than the whole space, so the linearity should be reasonable in the local

region, and this will potentially make improvement without any complication. We have

two main spaces in the IM:

1. the space of parameters θ.

2. the space of summary statistics t∗

In high dimensional space, it is challenging and complex to take into account both pa-

rameters and summary statistics spaces. Thus it is simple to compare and concentrate

our approach with the parameter space as we are interested in estimating parameters and

this space gives a similar view to the sample space. Here the main assumption in the

parameter space is a linear relationship between parameters.
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4.4.1 The IM and ABC

The IM shares some characteristics with Approximate Bayesian Computation (ABC)

(Beaumont, 2010; Marin et al., 2012). Here we give some comparisons between the two

methods. Both methods are likelihood-free methods, stochastic processes, less expen-

sive for computational reasons and have the same idea of simulating data samples from

the given model the value of a parameter (or parameter vector). However, the IM uses

MCMC to simulate data, whereas the MCMC can use the ABC to estimate the acceptance

probability without likelihoods.

For given observed data, the IM aims to estimate model parameters, whereas the

ABC is used to estimate the posterior distributions of model parameters. In ABC, the

parameter values are sampled from the prior which can be problematic if the data is

very informative. This leads to the simulated data being far away from the observed

data with no control over what data is simulated. The IM, however, starts by choosing

initial values for each parameter, and new data is simulated from the given model in a

sequential manner so that it will eventually resample close to the observed data.

Sometimes in ABC data can be close to the observed data but the determination of

parameters is challenging (Beaumont, 2010). In the IM, design points, which are param-

eters, are added and old ones removed in an adaptive manner, with iterative steps until

convergence. Our assumption is that the relationship between the parameters and the

summary statistics from simulated data is linear locally to the current estimate.

The rejection technique in ABC is quite similar to the IM where both methods accept

the close values. The ABC takes the nearest neighbours, whereas in the IM all parameters

(design points) are accepted and then we remove those far away from the optimal values.

Here the IM can accept more values than the ABC.

We can conclude that the IM can avoid the step of choosing the prior distribution,

so that it is enough to have initial parameter values to start the method until we reach

the convergence with optimal estimation of parameters. We can say that the IM is an

extended and improved version of ABC approach.
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Algorithm 3: The modified Metropolis-Hastings algorithm (MCMC simulator
box) for generating image x.
1 MCMC (n,M,θ);

Input: Number of spots n, number of iterations M and parameter value θ
Output: x

2 Generate a binary x;
3 for j = 1 to M do
4 Set x∗ = x;
5 Choose random i in (1, . . . , n);
6 Consider proposal x∗[i] = −x∗[i];
7 Calculate the acceptance ratio q = p(x∗;θ)

p(x;θ)
;

8 if q > 0 then
9 Accept proposal x∗;

10 x = x∗;
11 else
12 Generate u ∼ Uniform(0, 1);
13 if q > u then
14 Accept proposal x∗;
15 x = x∗;
16 else
17 Reject x∗;
18 end
19 end
20 end
21 return x

4.5 MCMC simulator box

Our simulator box is a tool to draw independent Markov chain Monte Carlo (MCMC)

samples from target distributions. This mechanism is an essential component of the it-

erative method that generates samples of size n spots depending on given parameters in

order to calculate summary statistics. The Metropolis-Hastings (M-H) algorithm, pro-

posed by Metropolis et al. (1953), is one of the best known of such methods for generat-

ing a sequence of random samples from a probability distribution especially when direct

sampling is challenging. This algorithm allows us to indirectly sample from the BMRF

in Equation (4.1) which is a complex distribution. This section briefly discusses how

the algorithm can be used in an acceptance-rejection scheme when we have an available

target distribution, and in addition assesses if the algorithm generates independently dis-

tributed data. As the Markov chain is aperiodic even for the same value of parameters,
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the number of steps M for convergence is determined for the BMRF in Section 4.5.1

whatever the initial configuration (x).

Hastings (1970) provided a more general description of the algorithm, see also Chib

and Greenberg (1995), as follows: we start the M-H algorithm by generating a set of

binary spot labels (x) of length n. In the main loop of Algorithm 3, with M iterations,

we pick a random location and flip the value of spot, then compute the acceptance prob-

ability q based upon the proposal distribution p(x∗;θ) and the full joint density p(x;θ),

where the normalising constant cancels out. We accept the new candidate sample with

probability q if q > 0. Algorithm 3 provides the detail of the M-H algorithm. In step 2,

x can be any generated starting point, but the chosen value of M should be sufficiently

large. More detail are provided in Section 4.5.1.

Now the data generated using MCMC is checked to see if it is independently dis-

tributed in the two parameter setting. To choose M , Ripley (1979) suggests M = 4n is

sufficient to ensure that samples are approximately independent. We have verified this

(results not shown) for small values of θ1 and θ2 (θ1 = −0.16, θ2 = 0.05). However, for

large values of |θi|, we have found larger values of M are needed.

4.5.1 Convergence assessment

Ripley (1979) proposed thatM in the simulator box should be equal to 4nwhen a spatial

pattern is simulated with dependent samples, however, by experiment, after this number

of steps the MCMC does not stabilise. In this section, the number of iterations needed is

determined by simulation using the two parameter setting.

The M-H algorithm is a MCMC method for obtaining a sequence of random samples

from a target distribution. Thus it should be run for a large number of iterations (M )

and must be monitored for approximate convergence to its stationary distribution. This

means, as the number of iterations increases, the distribution remains the same and is

stable. The summary statistics (t∗) are used to check convergence for given parameter

values which influences the required number of steps (M ).

To do the experiment, the BMRF is our target distribution which contains two param-

eters, θ1 and θ2, and we would like to investigate the appropriate M . If we consider the

one parameter setting, this means θ2 is assumed to be zero. In this case, no iterations
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are needed, but for more than one parameter and θ2 ̸= 0, the MCMC should be tested

for positive and negative values of θ2. In fact, when θ1 = 0 this means we do not care

about if the spots are black or white, but when, for instance, θ2 equals 0.4 this means we

would like to have either black or white clustering, thus we have two possible outcomes

(all black or all white).

Figure 4.3: Each box-plot gives either the t∗1 or t∗2 summary statistic over various numbers of
iterations M for 100 simulated images with n = 300 and p = 0.5 and for the given different
parameter values θ = (θ1, θ2)

We start by considering an initial configuration by generating an image with n = 300

and p = 0.5. The first parameter value is calculated from Equation (4.12) which equals

zero. We set θ2 = ±0.4 to see how the changing of the second parameter value effects

convergence. Suppose we have various iteration numbers M = (1n, 2n, 3n, 4n, . . . , 10n

, 11n, 12n). A 100 replicate MCMC runs using Algorithm 3, are then used to compute
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summary statistics (t∗1 and t∗2) from each number of iterations. These values are sum-

marised by the box-plots in Figure 4.3 to see the stability of t∗2 across M when it is

increased. In fact, θ1 can be computed precisely for given p, thus the expected value

of t∗1 equals zero in the −1/1 value setting. It is clear that as the number of iterations

increases, t∗2 is visibly stabilised. To test the stability, we compare between pairs of t∗2

observations for various iterations to test for a difference in the mean for the last six

iterations (7n, 8n, 9n, 10n, 11n, 12n). The two-sample Wilcoxon non-parametric test is

performed to compare the means of two independent samples of summary statistics un-

der the null hypothesis that the mean for the summary statistic of the two iterations are

equal. The non-parametric test is used because some of the t∗2 observations with some

iterations do not follow a normal distribution. Figure 4.3 (top) illustrates how t∗2 con-

verged for θ2 = 0.4 as the iteration number (M ) increases. Here there were significant

differences between t∗2 for iteration numbers 7n, 8n and 9n with a small p-value (<0.05).

Whereas the mean for t∗2 when M = 9n is not significantly different from t∗2’s mean

for iterations 10n, 11n and 12n. When θ2 = −0.4, however, (Figure 4.3 bottom), the

p-values of the test between the pairs of t∗2 for the last four iterations are larger than the

significance level α = 0.05. The same experiments using±θ2 were repeated with differ-

ent p = (0.1, 0.2, . . . , 0.9), and we can conclude that the MCMC output converges to its

stationary distribution when M = 10n is sufficient, especially when θ2 is positive. This

is 6n times bigger than the value that Ripley (1979) suggested.

4.6 Modified statistics using an average of replicates

For any given parameter setting, the MCMC simulator box in Section 4.5 is designed

to return a single simulated data point from a BMRF to calculate corresponding sum-

mary statistics. However, if we simulate S replicates of data, with their corresponding

summary statistics, what is the appropriate S that maximises the speed of IM? The one

and two-parameter settings of the BMRF are used in this section to identify how many

replicates we should use in the IM.
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4.6.1 One parameter model

In this section, the appropriate choice for the number of replicates, S, based on the same

given parameter using MCMC is theoretically confirmed using the one parameter setting,

followed by experimental illustration.

In a single parameter setting, the M-H algorithm produces a single output (x∗) which

is then used to calculate the corresponding summary statistic. We would like, however, to

check if the average over many simulated summary statistics in the IM, works effectively

or if a single simulated summary statistic is better to use.

Suppose we have a value of θ1 which is chosen correctly, and we can simulate sum-

mary statistic t∗1 =
∑n

i=1 x
∗
i from each of S replicates. The average of t∗1 over S is equal

to the summary statistic from the observed data, t1 =
∑n

i=1 xi, and it can be written

mathematically as

Ê (t∗1) ≃
1

S

S∑
r=1

{
t∗1

}
r
≃ t1, (4.32)

where Ê (t∗1) is the estimate of expected value for the sample mean. This leads us to

rewrite Equation (4.7) as
z
′
(θ1)

z(θ1)
≃ 1

S

S∑
r=1

{
t∗1

}
r
. (4.33)

Considering the mean of the simulated summary statistic over S replicates in Equation

(4.33). This can also be proved theoretically by assuming a fixed function of data g(x) =∑
i xi which should occur with probability p(x; θ). Hence, for a single given θ, we can

estimate the expected value of g(x) as

E(g(X)|θ) =
∑
x∈Ωx

p (g(x); θ) g(x). (4.34)

Now suppose A = 1
S

∑S
r=1 g(x)r, thus Equation (4.34) can be expressed as

A =
∑
x∈Ωx

1

z(θ)
exp (θg(x)) g(x).
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Here z′
(θ) =

∑
x∈Ωx

exp (θ1g(x)) g(x), thus A can be written as

A =
z
′
(θ)

z(θ)
,

where z
′
(θ)

z(θ)
is approximately the average over S simulated summary statistics t∗.

By experiment, Equation (4.33) can be investigated for a single parameter. However,

the choice of the number of replicates S is vital to simulate data closer to the observed

data. The appropriate choice helps in speeding-up the IM and obtaining the parameter

estimates accurately. There are different ways of incrementing S, such as linear, geo-

metric or fixed increasing. In addition to the increment of S, say r, with various levels

choices for removing either no points or one design point, say M , are also needed to run

the experiment. To check the speed of IM, the last number of design points, say N , after

the IM is stopped with last parameter estimates, is recorded.

The objective in this section is to study the effect on IM of the last number of final

design points for two methods of increment, five ratios for incrementing S and two ways

of removing design points. As previously said, the binomial simulator is used in only

one parameter setting because it is cheaper than the BMRF and provides similar output.

We start by explaining the experiment in detail. Suppose we use a given data set of

n = 15 with the observed summary statistic t1 =
∑n

i=1 xi = 6 and θ1 = 0 as initial

value. We have three possible methods of incrementing S: linearly (L), geometrically

(G) and without change using fixed S (F ). For each, we will consider five increments

of S, say r, which can be either 10, 20, 30, 40, or 50 as well as removing no points or

one point which we donate M , which can be either 0 or 1. For each combination, the

experiment is designed to perform the IM 50 times, so that each method of increment S

(L,G, F ) uses each value of r 50 times using both removal of no or one point. The last

number N of design points from the IM is record as soon as we have the final parameter

estimates. When we used, for example, a linear method (L) in running the IM, each

value of r iterates 50 times for each removal of no or one points. Thus, we will produce

a vector N of length 500 including the last number of design points. This dataset is

called ML, and a subset dataset ML
0 refers to removal of no point and ML

1 refers to

removal of one point where each subset contains 250 observations.
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Methods of comparison:

Two statistical tests have been used: 1) when we compare between groups of N which

is a discrete variable using a large sample but N has many outliers. In this case the

Kruskal-Wallis non-parametric test is used. The null hypothesis states that there is no

differences in means across groups versus the alternative hypothesis that at least one

mean is different from the others, and 2) we have one independent variable (N ) and three

explanatory variables, which are factors for different levels with a large sample size, a

two-way analysis of variance (ANOVA), which is a parametric test, is used to describe a

linear relationship between variables. The full mathematical two-way ANOVA model is

given by

Njlk = µ+ rj ∗Ml ∗ bk + ϵjlk

which can be expanded to include all main effect as

Njlk = µ+ rj +Ml + bk + (rM)jl + (rb)jk + (Mb)lk + (rMb)jlk + ϵjlk,

where µ is the grand mean, j = 1, 2, 3, 4, 5 and l = k = 1, 2. The rj is the additive main

effect of level j from the first factor, Ml is the additive main effect of level l from the

second factor, rjbk is the interaction of level l and k from the first and second factor and

so forth. The errors ϵjlk are assumed to be independent and follow a normal distribution

with mean zero and variance σ2.

By fitting the ANOVA model, we need to examine how different levels of three factors

(r,M , b) and their interactions effect N . Using a 0.05 level of significant, the null

hypothesis of any main effect is that the means of observations grouped by one factor

are equal, however H0 of any interaction term is that there is no interaction between the

main effects. For example, consider the method of incrementing S which is factor M

with two levels L and F ,H0 is µL = µF . The p-values of the main effects and interaction

are then determined using the F distribution (Freund and Wilson, 1998).

Steps of comparison:

1. The geometric method of incrementing S is excluded from the first analysis as it

is too time-consuming. Let us consider the last number of design points N of the
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geometric method removing no points (MG
0 ) and compare it with the linear method

(ML
0 ) and the fixed method (MF

0 ). The range of N of MG
0 is 930-318877550 with

mean 98476730, whereas the last number of design points for linear and fixed

methods have the ranges 30-66120 and 40-89150 with means 17966 and 16035

respectively. The N of MG
0 is nearly 3577 times bigger than the fixed method.

Table 4.2: ANOVA summary table of response variable Njlk with main effects (rj ,Ml, and
bk) and their interactions, where N is the last number of design points from the IM, rj shows
an indicator of the incrementing of S using one of 5 levels (10, 20, 30, 40, 50), Ml which is an
indicator of the method type of incrementing S using one of two levels L and F and bk can
include two levels of removing points, the total number of observations is 1000.

Anova model Variable Dof F -value P-value

Njlk = µ+ rj ∗Ml ∗ bk

rj 4 0.879 0.476
Ml 1 2.356 0.125
bk 1 2.588 0.108
rjMl 4 0.893 0.468
rjbk 4 0.885 0.472
Mlbk 1 2.317 0.128
rjMlbk 4 0.901 0.462

Njlk = µ+ rj +Ml + bk

rj 4 0.879 0.476
Ml 1 2.356 0.125
bk 1 2.588 0.108

2. We consider next only the linear (ML) and fixed (MF ) methods as one set and

define an indicator variable called M which contains two levelsL and F , therefore

the total number of observations is now 1000. The ANOVA model is fitted with

results in Table 4.2 which contains N as the response variable and main effects

M , r and b as well as the interaction between them. If the interaction terms were

not significant, we then refitted the model without them to see if the p-values of

the main effects were changed.

Consider first the interaction terms, none of the p-values are significant (> 0.05).

This indicates that different combinations of interactions have no affect on N .

Based on the same table, and a 0.05 level of significance, the p-values for all main

effects are more than 0.05 and therefore we can not reject the null hypothesis.

This means the last number of design points (Njlk) does not affect by the method

of increasing S (Ml), ways of removing points (bk) and values of increasing S (rj)

which states that none of them affect the last number of design points. This means,
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there are no significant differences between methods and ratios of incrementing S

and the way of removing points.

3. However, removing no point takes approximately five times longer than removing

one point. Thus we are going to compare the methods of removing points for

each linear (ML
0 and ML

1 ) and fixed method (MF
0 and MF

1 ) separately where each

dataset has 250 observations. Figure 4.4 shows that the process of IM takes longer

when removing no points in both the fixed and linear methods but that removing a

single point has smaller variance. To confirm these differences, a Kruskal-Wallis

non-parametric test is used as we have many outliers. In Table 4.3 there was

no significant differences in means across the number of design point groups of

removing no or one points in the fixed method, whereas the means of the last

number of design points in linear method were significant.

Figure 4.4: Box-plots of the last number of design points for fixed and linear methods including
the two strategies of removing points (0 is removing no and 1 is removing one point).

Table 4.3: The non-parametric Kruskal-Wallis test comparing the last number of design points
for removing no or one point in each L and F method.

Pairs of variable Chi-squared Dof p-value
MF

0 and MF
1 2.092 1 0.148

ML
0 and ML

1 15.549 1 0.000

To sum up, there is no significant difference between the increments of S (r), and

the method of incrementing S (M ) and the method of removing point (b). However,

a statistically significant difference was clear between removing no and one point, but
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only for the linear method. In general, removing no points takes a longer time in the

IM so it is better to remove points to move through the parameter space toward the true

estimation and reduce the time-consumption. We can say that linear and fixed methods

were equal so any method can be used. Our conclusion is that any r can do the same

job in the MCMC, thus it is better to use only one observation (r = 1) which has lower

time-consumption instead of considering the average over many observations. Also the

way of incrementing S, therefore, is not needed and the output of MCMC is better to be

a single output of simulated data (x∗) in the one parameter setting.

4.6.2 Two parameter model

In this section, the output of MCMC as an average of S replicates is checked using the

two parameter setting. A statistical experiment is only performed because it is challeng-

ing to prove it theoretically, as it was done for the one parameter setting in Section 4.6.1.

To do the experiment, a range of θ2 = (−1,−0.9,−0.8, . . . , 0.8, 0.9, 1) is considered

with a couple fixed values of θ1 = (−1, 0, 1) as θ2 effects the spots being black or white

especially when θ1 = 0. Then we simulate data using 100 MCMC runs using Algorithm

3 for each given pairs of parameters and fixed n = 300. From the simulated data, the

summary statistics (t∗1 and t∗2) are calculated. The box-plots of the summary statistics,

over a range of θ2 and fixed θ1, are shown in Figure 4.5. It is clear that t∗1 versus θ1 looks

fine with small variances, but t∗1 for given θ2 behaves unexpectedly. In the top part of

Figure 4.5, the means of t∗1 with θ2 should be unrelated and symmetric around (−n, n),

however t∗1 samples vary when θ2 is increased positively. This variation indicates either

completely black or white image.

There is a large variability in the MCMC output. This result was also confirmed by

Aykroyd et al. (1996) who shows that the realisations from BMRF using the MCMC for

appropriate combinations of parameters widely are different and the behaviour of certain

parameter combinations are not straightforward and have big variances. Consequently

the output of the simulator should not be the averaging over S replicates as it is mean-

ingless, especially when we have very white and back images simulated from the same

parameter value. This leads us to consider several outputs, say three, but without averag-

ing as more sufficient for IM. Although a couple of outputs from MCMC are considered,
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t∗1 could sometimes be extreme, especially with θ2 > 0. If the extreme t∗1 occurs, this

leads us to add design points relatively far away in space from the current estimate and

slows down the IM. However, the outlier design points are still controllable as these

points are later removed in the IM.

Figure 4.5: Each box-plot gives either t∗1 or t∗2 summary statistic from 100 simulated images
using Algorithm 3 over a grid of θ2 with fixed value of θ1.

According to Section 4.6.1 and the experiment in this section, the MCMC is better to

consider several values, eg. three values, as the output without averaging them because

t∗ has a large variability especially when θ2 is positive.

4.7 The components of IM

Detail about IM components, which include how we can add/remove design points, as

well as the appropriate criteria to stop the IM, are explained. As this estimation method

is a sequential simulation-based approach, it is time-consuming. To reduce the computa-
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tional burden, we introduce in Section 4.7.1 a way of sequentially removing and adding

design points to reach the correct region of parameter space faster. In the meantime, the

stopping criteria of the IM is explained in Section 4.7.2 which determines a convenient

time to stop the method with accurate parameter estimates.

4.7.1 Sequentially adding/removing design points

Adding and removing design points at each iteration of the IM are essential parts of this

method. The rationale is to move the points to the right place in the parameter space by

adding new points close to the current estimate, and removing those far away. In each

iteration of the IM, we add/remove more than one design point and compare with the

current estimated design point that was obtained from previous step.

Let ΘN×k denote the existing design matrix of N design points with k parameters,

and Θnew with dimension l × k denote the current design points with l values. The last

row of Θnew contains a newly estimated design point, with k parameters that depend on

previous fitted realisations (more detail in Section 4.8). To add points to existing ones,

we do the following: Θ(N+l)×k = [ΘT ,ΘT
new]

T , here we are binding the two matrices

and increasing the number of design points to be N = N + l and the newly estimated

design points are allocated in the last row of Θ(N+l)×k. Algorithm 4 (Part 1) shows the

steps of adding new design points to Θ. However, the process of removing points from

Θ depends on evaluating the distance to the newly estimated design point from existing

design points to detect where the differences are big. The evaluation is applied for each

parameter to find the maximum difference. When the maximum differences for k pa-

rameters are allocated in the same row in Θ, one design point is removed, otherwise 2 to

k points are removed. Suppose, for instance, we have the two parameter setting and the

maximum differences between the new and all previous estimates of θ1 and θ2 are allo-

cated in the same row of Θ, therefore one design point is removed, otherwise two points

should be removed. The process of removing points is now explained mathematically.

For given ΘN×k, where the last row contains the current estimate design point θN=

(θN1, θN2, . . . , θNk), we define

ji = argmax
j
|θji − θNi|, i = 1, . . . , k,
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where ji is an indicator of the maximum difference for the kth parameter. The set of

indicators for the parameters are defined as

J = {j1, . . . , jk}.

The values of the index may be repeated when the maximum difference is allocated

in the same row. Then, we define θ(J), which is as Θ with rows corresponding to J

removed. Finally the new design matrix will be Θ = θ(J). The steps of removing points

are summrized in Algorithm 4 (Part 2).

Algorithm 4: The technique of adding/removing design points-Part 1.
1 ADD (Θ,Θnew);

Input: Old and new matrices of design parameter points
Output: A combined matrix

2 Θ = [ΘT ,ΘT
new]

T ;
3 return Θ;

Algorithm 4: The technique of adding /removing design points-Part 2.
1 REMOVE (Θ);

Input: A matrix of design parameter points
Output: Update matrix after removing some points

2 ji = argmaxj |θji − θNi|, i = 1, . . . , k, J = {j1, . . . , jk};
3 Define θ(J) ;
4 Θ = θ(J);
5 return Θ;

The add/remove points step is vital to make sure the simulated data, for given param-

eters, is close to the local region of the observed one and moves points to the correct

parameter space. When we remove points, we want to concentrate design points in the

parameter space and reduce the variance. We then get the position required to be able to

fit a linear regression model and then estimate the required parameters.

4.7.2 IM stopping criteria

Convergence of IM to the correct parameter estimates depends on the stopping criteria.

Two possible criteria for stopping IM are considered, which depend on either the pa-

rameter estimates or their corresponding summary statistics, after which the parameter
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estimates are taken as the values from the final iteration. When we actually reach the

convergence stage in the IM, the parameter estimates become closer to the true values

as well as the number of design points, N , increases and variance of estimated parame-

ters/design points decreases. We begin by defining the two possible stopping criteria:

1. Based on the parameter estimates: stop if the summation of the absolute values

of differences between the previous and current parameter estimates of any iter-

ation is less than or equal to a small constant ratio, say r = 0.01. This can be

written mathematically as

Stop if |θ̂1 − θ̂o1|+ |θ̂2 − θ̂o2|+ · · ·+ |θ̂k − θ̂ok| ≤ r (4.35)

where θo1, . . . , θ
o
k are the parameter estimates from the previous iteration.

Figure 4.6: The iterative method repeated three times starting from an independent random
configuration with p = 0.358, θ1 = −0.293 and θ2 = 0, where the blue vertical lines are
|θ̂1 − θ̂o1| + |θ̂2 − θ̂o2| ≤ 0.01, and the green vertical lines are the CI width of t1 in the case of
independence.
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2. Based on corresponding summary statistics: select a threshold value for only

the first summary statistic, t1, using the width of its confidence interval (CI) to

stop IM. The threshold is defined by calculating the width of the 95% confi-

dence interval for t1, where, for simplicity, we estimate the standard deviation

on the assumption that the spots are independent to be able to calculate the con-

fidence interval accurately otherwise the CI is unknown. As it has been defined

in Section 4.2.1, the image belongs to a binomial distribution and the CI of t1 is

t̂1 ± 1.96
√

4np(1− p). To check the threshold in each iteration of IM, the cur-

rent CI width of t1 is calculated and determined and if it is less than or equal the

threshold, then IM is stopped.

To investigate the optimal stopping criteria and convergence of IM, we design a sim-

ulation experiment using only the two parameter setting for simplification. The stop-

ping criteria can then be generalised for any parameter setting. In order to investigate

how long each stopping criteria takes, we consider an independent random image using

p = 0.4, θ1 = −0.2 and θ2 = 0. The IM is iterated 20 times for each of three repli-

cas, and then we highlight the two stopping methods as vertical lines in Figure 4.6 (the

middle figure in the first and second rows). The second stopping method (green lines)

stopped earlier, before the estimates of θ̂1 and θ̂2 had stabilised. Even though the second

rule stopped earlier and consumed less time, the accuracy of estimated parameters was

less than the first method.

In the same figure, we can see how the values of the estimated parameters of θ1 and

θ2 as well as the CI of the summary statistics, converged when the number of iterations

increased. Moreover, the summation of the absolute values of the differences between

the previous and current parameter estimates in each iteration are shown in the bottom

row of Figure 4.6.

The difference between the two stopping methods can also be shown using another

experiment by iterating the IM 100 times using simulated independent image with, for

instance, p = 0.4, θ1 = −0.2 and θ2 = 0. Then, we record the parameter estimates of the

first and second stopping criteria in Figure 4.7. This plot displays the second stopping

method (blue) has the highest variation, where parameter estimates are indeed far away

from the given parameters. As a result, the first stopping criteria is used in the IM.



Chapter 4. Parameter estimation in BMRF models 115

Figure 4.7: The iterative method repeated 100 times using the two stopping methods starting
from an independent random image using p = 0.4, θ1 = −0.2 and θ2 = 0 in a red spot, where
green spots denote the first method and blue spots denote the second method.

The ratio r in the fist criteria is chosen to be 0.01, which is good because the dif-

ferences between current and previous estimated parameters are close to zero. To have

unbiased estimators, the ratio r can be selected to be smaller but the time-consumption

increases.

4.8 The sequential steps of IM for k parameters

The IM is a simulation-based optimisation method which can be applied to complex

models. This method can also be beneficial when we have more than a one parameter

setting which is hard to deal with. The main idea of the IM is similar to stochastic

optimisation where the process works by minimising the value of a mathematical or

statistical function when only simulated realisations are available. The general idea of

the iterative method was explained in Section 4.4. The steps of IM for k parameters are

now explained in detail.

The steps of IM for k parameters are as follows:

1. For a given real image, we calculate the observed summary statistics

t̃ = (t̃1, t̃2, . . . , t̃k).



Chapter 4. Parameter estimation in BMRF models 116

2. Creating an initial design point of k parameters θo = (θ1, θ2, . . . , θk), where θ1

is calculated from Equation (4.13), where θ2 = θ3 = · · · = θk = 0. For each

θi, i = 1, . . . , k, an interval of parameter values, θi ± 0.1, is also calculated, thus

each parameter has three possible values and the number of design points is 3.

Also, a central design point is considered as a midpoint, where all parameters are

zeros. By considering the combination of k design points each with 3 values and

the central point, we now have, in total, N = 2k + 1 design points. The design

matrix ΘN×k, which was defined in Section 4.7.1, contains all parameter values,

where the last row, (θN1, . . . , θNk), contains the initial design point θo.

3. For the j th set of parameters, θj = (θj1, θj2, . . . , θjk), j = 1, . . . , N , an image

is simulated using Algorithm 3. Then, the j th corresponding summary statistics,

tj = (tj1, tj2, . . . , tjk), is calculated.

4. The relationship between design points, Θ, as explanatory variables and a response

summary statistic, ti, is modelled by fitting a multiple regression model. Here,

we assume the relationship between ti, where the ith summary statistic contains

N values, and Θ is locally linear and that there is no correlation between the

corresponding summary statistics to simplify the calculations. The model can be

written as

ti = Θβ(i) + ϵi, i = 1, . . . , k, (4.36)

where Θ is the design matrix of dimensionsN×(k+1) with the first column fixed

to be 1, ti is the ith summary statistic of length N and β(i) is the parameter of the

model with dimensions (k + 1)× 1. The error term ϵi = (ϵ1i, . . . , ϵNi) for the ith

summary statistic has E(ϵi) = 0 and V ar(ϵi) = σ2
i . From the ti observation of

the ith summary statistic, the least squares estimate β(i) is then given by

β̂(i) = (ΘTΘ)−1ΘT ti. (4.37)

The fitted model with this estimate can be shown as

ti = Θβ̂(i). (4.38)
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From Equation (4.38), β̂(i) is now treated as known and we seek to solve for θ

where t is replaced by unknown parameters θ of length k that need to be estimated

as follows

t̃i − β̂
(i)
0

1×1

= θT
1×k
× β̂∗(i)

k×1
, i = 1, . . . , k (4.39)

where β̂∗(i) contains β̂(i) of the ith summary statistic, but without β̂(i)
0 . To estimate

θ of length k, all summary statistics, ti, i = 1, . . . , k, are joined to Equation (4.39)

to give

θ̂
k×1

= B̂∗
k×k
× (t̃− β̂0)

k×1

, (4.40)

where B̂∗ includes the model coefficients for all summary statistics. Here we have

k linear equations and k unknown parameters. This is a system of linear equations

which can be easily solved mathematically to give θ̂ = (θ̂1, . . . , θ̂k).

5. Check for convergence. If Equation (4.35) holds, stop the IM and θ̂ is the last

parameter estimates, otherwise set θo = θ̂ and continue the steps of IM.

6. For the given fitted model in Equation (4.38) and θ̂, we predict the corresponding

summary statistics t̂ = t̂1, . . . , t̂k. In this prediction, the lower and upper bounds

of each summary statistic, (t̂L, t̂U), are estimated. Each summary statistic now

has three values and the number of summary statistics is 3. By considering the

combination of k summary statistics with 3 values, we now have, in total, 2k + 1

summary statistics. Similarly Step 2, but the other way around, the corresponding

θ̂ is predicted from Equation (4.40). In fact, the given 2k + 1 parameters are

replicated three times, but the corresponding summary statistics are regenerated

from the MCMC to give various outputs of summary statistic for 2k+1 parameters.

The reason for replication is because the simulator box output can vary even for

the same parameter setting (see Section 4.6.2). The final total number of design

points is l = 3(2k+ 1). Define a new matrix, Θnew, which includes the final set of

design points with dimensions l × k.

7. Add design points using Algorithm 4 (Part 1), and remove 4k design points using

Part 2 of Algorithm 4 which has been repeated four times to remove approximately

50% of added design points.
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8. If any parameter estimate goes far away, say −5 < θ̂i < 5, i = 1, . . . , k, these

parameters are immediately removed using Algorithm 4.

9. Go to step 4.

Note that both design points (parameters) and corresponding summary statistics are

added and removed. Furthermore, as the output of the simulator box can vary, sometimes

it is difficult to control the extreme outlier design points in step 8. Hence, the range of

parameter values is restricted to the range (−5, 5). If we have design points outside

this range, we should then remove 1 to 4k points to reduce the problem. Such extreme

points mean that the IM takes a longer time to converge, and to obtain the last parameters

estimates. Outlier design points can cause a completely prefect fitting of model (4.40),

and thus the IM is stopped as the regression coefficients, in Equation (4.37), are not

estimated.

Beaumont (2010) show the high correlation between the parameters of BMRF and the

summary statistics. They also showed that the relationship between summary statistics

and parameters is highly non-linear. The assumption of the multiple regression model

(MRM) in the IM is that there is no correlation between dependent variables, but it could

be broken as the fitting is local.

Figure 4.8: Snapshots from three stages of IM of the two parameter setting using a real image
which contains 317 spots, where the big windows shows the whole parameter space and the
internal figure windows are zoom-in versions of current estimated parameter space. By the last
step of IM we determined θ̂1 = −0.16 and θ̂2 = 0.05.

An example of IM is shown in Figure 4.8 using the two parameter setting. A real

image of 317 spots is used which has 0.36% proportion of tumor (POT ). The initial
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parameter values for θ1 and θ2 are -0.295 and 0, respectively. Here some snapshots

are shown from first to final iterations in the IM. In the final stage of IM, we reach the

optimal parameter estimates, θ̂1 = −0.16 and θ̂2 = 0.05, with total number of design

points N = 332.

4.9 Statistical inference and hypothesis testing for θ̂

The distribution of estimated parameters θ̂ is unknown. Also, the calculation of the

mean and standard deviation of θ̂ through the IM can be quite challenging. Basically, the

parameter space is unbounded during the IM, but the explored region is concentrating

around the optimal estimate. The procedure for making statistical inference, which is

based on simulation, is explained for two and k parameter settings. Some examples are

given for the non-directional two-parameter setting. Statistical inference for more than

two parameters is then explained in Section 4.9.1, including examples.

In order to make the inference, we need to test the hypotheses H0 : θ2 = 0 which

means there is no clustering in the image. To consider the alternative hypothesis (H1 :

θ2 ̸= 0) means we must carry out the next step of the analysis with the estimated θ2 from

the IM.

The main idea of making the inference is estimating the confidence interval (CI) of

the summary statistics under θ2 = 0, when the spots of the image are independently dis-

tributed, by simulation using MCMC. The distribution of the simulated summary statis-

tics is then compared with the summary statistics of the observed image be able to accept

or reject the null hypothesis. The steps of making the inference are as follows:

1. For a given real image, the observed summary statistics, t̃ = (t̃1, t̃2), are calcu-

lated.

2. The optimal parameter estimates, θ̂ = (θ̂1, θ̂2), are found using the IM.

3. Under the null hypothesis θ2 = 0 and θ1, which is estimated by Equation (4.13),

simulate independently t∗i = (t∗i1, t
∗
i2), i = 1, . . . ,M, where e.g. M = 500, using

the MCMC from Algorithm 3. Here, however, the t∗i1 and t∗i2 of the ith summary

statistic are correlated.
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4. Check if t̃ is consistent with the distribution of t∗i , i = 1, . . . ,M . To do this,

the Mahalanobis distance is calculated (Mardia et al., 1979), which measures the

distance between the point t̃ and the simulated summary statistics using the distri-

bution of t∗i . But we first need to define the mean and variance-covariance matrix

of a set of t∗i including t̃. The mean is calculated as

t̄ =

∑M
i=1 t

∗
i + t̃

M + 1
,

where t̄ = (t̄1, t̄2) and we added one to the denominator as t̃ is included. Now the

variance-covariance matrix is

Σ
1/2
2×2 =

∑M
i=1(t

∗
i − t̄)2 + (t̃− t̄)2

M
. (4.41)

The Mahalanobis distances of t∗i and t̃, with respect to Σ, are

d∗
i =

√
(t∗i − t̄)2

Σ
, i = 1, . . . ,M

d =

√
(t̃− t̄)2

Σ
.

(4.42)

5. Then, we compare and count how many d∗i are larger than or equal to d (d∗i ≥ d)

to calculate the p-value as follows

p-value =
1 +

∑M
i=1 I [d

∗
i ≥ d]

M + 1
, (4.43)

where 1
1+M

≤ p-value ≤ 1.

If the p-value is less than or equal to α = 0.05, we reject the null hypothesis

(H0 : θ2 = 0) at the 5% level of significance, which means there is clustering in the

given image. Basically, the minimum value of the p-value can not be less than 1
1+M

,

to increase the range of the p-value to include zero, we could increase M . Making in-

ference in this section does not depend on the normal approximation but it is essential

to have a large M . The Mahalanobis distance is an appropriate measure as there is a

high correlation between the components of each summary statistic (t∗1 and t∗2). Making

statistical inference in this section can also be generalised for more than two parameters.
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Table 4.4: The optimal parameter estimates of the non-directional parameter using the IM for 10
images with their corresponding p-values as well as the p-value of the I statistic.

Image #
Non-directional parameter estimates H0 : θ2 = 0 Non-Directional I

θ̂1 θ̂2 p-value I p-value
137507 −0.1573 0.0504 0.0045 0.1153 0.0004
137508 −0.0100 0.0984 0.0001 0.3464 0.0000
137509 −0.1501 0.0334 0.2052 0.0731 0.0304
137511 −0.0470 0.1221 0.0001 0.3446 0.0000
137513 −0.0761 0.1032 0.0001 0.2587 0.0000
137515 −0.0716 0.0614 0.0065 0.1538 0.0002
137516 0.1933 0.0761 0.0001 0.1680 0.0000
137517 −0.4809 0.0647 0.0210 0.1070 0.0012
137518 0.4640 0.0291 0.3683 0.0452 0.1565
137519 0.1056 0.0216 0.3518 0.0559 0.1393

The null hypothesis in this case will be H0 : θ = 0, where 0 refers to all θ2, θ3 and θ4

being zero which means the spots of an image are randomly distributed.

Examples:

From Table 4.4, two different scenarios have been chosen. Image# 137507 has n =

316 spots and estimates of θ̂1 = −0.1573 and θ̂2 = 0.0504 were determined using the

IM. To calculate the p-value, we use the parameter value θ1 = −0.29, which is the

estimated parameter when the spots of the image are independent, and θ̂2 = 0. For these

given parameter values, 500 images are simulated using MCMC. The summary statistics

(t∗) are then calculated, which are compared with the observed summary statistics, t̃ =

(−90, 332), from the real image. Using the Mahalanobis distance in Equation (4.42),

the p-value is then calculated by Equation (4.43) which, in this case, is equal to 0.0045.

As a result, the null hypothesis, that θ2 = 0, is rejected. This means t̃ is not consistent

with t∗, which is also shown in Figure 4.9 (top). We can now say that there is clustering

in image# 137507 and the estimated parameter values for θ̂ are θ̂1 = −0.1573 and

θ̂2 = 0.0504 from the IM.

Another example of calculating the p-value of image# 137509 is shown in Figure

4.9 (bottom). Here, the t̃, (−69, 180) (in a red point), is acutely consistent with t∗.

This means there is no evidence of clustering and the estimated parameter values are

θ̂1 = −0.2366 and θ̂2 = 0. These parameters have been estimated when the spots of the
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Figure 4.9: Making inference for θ̂ for two images by comparing the observed t̃ (red point) with
the generating t∗ (green) using independent images simulation using MCMC under H0 : θ2 = 0
repeated 500 times.

image are considered independent.

The p-value in Equation (4.43) can be compared with the p-value of the I statistic to

see if they both lead to the same conclusion of accepting or rejecting H0 (the spots are

independent). We used 10 images to show both p-values in Table 4.4. The p-values are

similar, with α = 0.05, except image# 137509 which shows no significant difference in

the non-parametric test, whereas the parametric test was significant.

4.9.1 Statistical inference for directional θ̂

When we use statistical inference, this is an alternative to the likelihood ratio test which

is difficult to evaluate. The procedure that we do is making a comparison between the
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Figure 4.10: Location of the directional θ on a hexagonal grid.

ratios of three likelihood functions and finding values of the parameters that maximise

the likelihood functions. The three proposed likelihood functions are: 1) All spots of the

image are independent, where the likelihood is unrestricted (H0 : θ = 0); 2) isotropic

where all θ’s being equal and not zero (H0 : θ = θ0); and 3) anisotropic where all θ’s

are not equal (H1 : θ ̸= θ0). At the beginning of this section, when H0 : θ = 0 is

rejected, there is an extra scenario of the hypothesis test that determines if the image

also has a preferred direction. The directional parameters are an alternative compared

to the directional I statistics. Figure 4.10 shows the direction of each parameter, where

the direction of I1 is equal to the direction of θ2 and so forth. The hypothesis test for

detecting direction is now stated and explained, including examples.

When H0 : θ2 = 0 (or in a general form H0 : θ = 0 ) is rejected in the previous

section, we need to make inference about whether θ2 = θ3 = θ4 ̸= 0 because we need to

test for isotropy of being equal but not zero. The null hypothesis is θ = θ0, which states

that the image has no preferred direction with all parameters being equal. Here θ0 =

(θ̂1, θ̂2, θ̂2, θ̂2) where θ̂1 and θ̂2 are estimated using IM when there is no directionality

framework. If H0, is rejected, this means θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4), which are estimated from

the IM whilst considering directionality, is the correct parameter estimator and the image

has a preferred direction.

The steps of calculating the p-value of the direction parameters is similar to the steps

in Section 4.9. After rejecting H0 : θ = 0, the estimated non-directional parameter

θ̂2, using the IM, is kept to create θ0. The directional parameters, using the IM, are

also estimated θ̂. Then, for given θ0, we generate a distribution of independent sum-

mary statistics t∗i = (t∗i1, t
∗
i2, t

∗
i3, t

∗
i4), i = 1, . . . ,M , if t̃ = (t̃1, t̃2, t̃3, t̃4), from real data,
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is consistent with the distribution of t∗i , then there is no evidence to reject H0. Here,

the Mahalanobis distance is used to calculate the p-value using Equation (4.43). If the

p-value is less than or equal to α = 0.05, the null hypothesis, at the 5% level of sig-

nificance, is rejected. This means that there is a preferred direction in the image and

estimated parameter values are θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4). The biggest values from θ̂2, θ̂3 and

θ̂4 are then picked, where the spots of the chosen directions are highly autocorrelated.

Examples:

Some clustered images from Table 4.4 are picked, which have a significant p-value for

the hypothesis H0 : θ = 0 to be able then to investigate if the image also has a preferred

direction. Table 4.5 displays that the directional parameter estimates, of images in Figure

4.11, using IM with the extra hypothesis is applied when H0 : θ = θ0 being rejected.

Figure 4.11: Example of three images that are used in Table 4.5.

Table 4.5: The optimal parameter estimates for directional parameters using the IM with their
corresponding p-values as well as the p-values of the directional I statistic.

Image #
Directional parameter estimates H0 : θ2 = 0 H0 : θ = θ0 Directional I

θ̂1 θ̂2 θ̂3 θ̂4 p-value p-value p-value
137507 −0.1600 0.0562 0.0392 0.0466 0.0045 0.9422 0.7868
137508 −0.0110 0.0284 0.2249 0.0901 0.0001 0.0100 0.0871
137511 −0.2225 0.1465 −0.0465 0.2092 0.0001 0.0020 0.9924

As soon as we decide that there is a preferred direction, we could also detect the

location of this direction. To do this we just determine the parameter values are big-

ger compared to others in the same image. Image# 137507 has no preferred direction,

whereas the other images have preferred directions. In image# 137508, the direction
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of θ̂3 stands out as being the largest. However, θ̂2 and θ̂4 of image# 137511 indicate

preferred directions over θ̂3 as they have bigger values. Thus, we have mainly high cor-

relation in the directions of θ4 but also θ2 is not far behind. The directional I was also

calculated for the same images to compare the result with directional parameters. How-

ever, recall the distributional assumption of the directional I is not valid when the spots

are not independent, and therefore we can not trust the p-value for the directional I .

4.10 Accuracy of IM based on simulation

In order to inspect the performance and accuracy of the IM proposed in this chapter,

the MCMC as in Algorithm 3, is used to sample images, using image sizes 50 and 300,

with the specified parameters. Here, a fixed neighbourhood system on hexagonal grid

is used. The performance and accuracy can be checked by simulating various spatial

autocorrelations for given staring parameter values (θ0) and we find out if the IM esti-

mated the parameters correctly. A comparison of an existing estimation method with IM

is also presented. The mean squared error (MSE) and the one-sample Hotelling’s T 2 test

statistic are used as the critera for comparisons.

Image structure
Parameter values Non-directional I
θ1 θ2 I P-value

Regular 0.05 −0.1 −0.15 0.00
Random 0.00 0.0 0.00 0.90
Cluster 0.05 0.1 0.28 0.00

Figure 4.12 & Table 4.6: Three simulated images from MCMC for given non-directional pa-
rameters (θ1 and θ2), from the left regular, random and clustered images of 300 spots.

We start by defining briefly one-sample Hotelling’s T 2 test statistic. This test is a

multivariate generalisation of the t-test which compares between the sample mean vector
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θ̄ = (θ̄1, . . . , θ̄k) of parameters and the hypothesised mean vector θ0 = (θ01, . . . , θ
0
k).

Suppose Θ is a k-dimensional random variable which follows a multivariate normal

distribution with E(Θ) = θ̄ and V (Θ) = Σ. Each random variable θi, i = 1, . . . , k, in

Θ has n elements and the elements of Θ are not independent. The population variance-

covariance matrix Σ is known and can be mathematically computed. The Hotelling’s T 2

test statistic is

T 2 = n(θ̄ − θ0)Σ−1(θ̄ − θ0).

Under the null hypothesis, H0 : θ̄ = θ0, the transformation of the test statistic T 2

is T 2(k, n) = n−k
k(n−1)

T 2 which follows an F distribution with k and n − k degrees of

freedom. A one-sided p-value can be evaluated for T 2(k, n) and we reject H0 when the

p-value is less than α = 0.05. A sample size n = 50 is considered sufficient for the CLT

to hold.

Different spatial autocorrelations can be determined by initialising non- and direc-

tional parameter settings in inclusive IM evaluation. Starting with the non-directional

parameter setting, we choose θ0 as a starting combination of θ01 and θ02 to generate reg-

ular, random and cluster images. Images are generated with two image sizes (50 and

300 spots). Figure 4.12 shows three images generated using MCMC for the starting pa-

rameter values using 300 spots. The parameter values are also listed in Table 4.6 with

corresponding non-directional I statistics and corresponding p-values. The p-values of

the I statistic confirmed the significance of regularity and clustered images, as appropri-

ate.

For each combination of θ01 and θ02, 50 iteration images are generated using image

sizes 50 and 300 spots, then the IM is run and the parameter estimates are recorded.

Figure 4.13 shows 50 estimated parameters, here the θ01 and θ02 are highlighted as red

cross points. For determination of the accuracy, the MSE and Hotelling’s T 2 test are

calculated in Table 4.7. The iterative method can accurately estimate the parameter

when the image size is 300 because the MSE is quite small as well as the p-values,

for all parameter combinations, being big (p-value> 0.05), thus there is no significant

difference between the sample means θ̄ and θ0. This means the estimated parameters

from the IM are consistent with the true parameter values, however, the IM does not

work well when the image size is 50 spots. It is clear that the estimated parameter values
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are not consistent because the MSE of θ1 is big, although the MSE of θ2 is quite small.

Thus, we reject the null hypothesis and conclude that there is a significant difference

between θ̄ in the sample and θ0. Hence, the image size 50 is not considered in the next

simulation studies.

Figure 4.13: Box-plots of 50 estimated θ1 and θ2 from IM using simulated images from MCMC
for given θ01 and θ02 which are shown as red cross points.

Table 4.7: The mean square error (MSE), standard deviation (Sd) and the p-value of Hotelling’s
T 2 multivariate test of 50 estimated parameters using the IM from simulated images (regular,
random and cluster) for given parameters θ0 = (θ01,θ02) with an image size of 50 and 300 spots.

Image simulated using 50 spots image
Hotelling’s T 2 test

Image structure θ01 Sd(θ1) MSE(θ1) θ02 Sd(θ2) MSE(θ2) p-value
Regular 0.00 0.2119 0.0473 −0.05 0.0609 0.0041 0.0432
Random 0.10 0.2715 0.0744 0.00 0.0533 0.0035 0.0049
cluster 0.05 0.2173 0.0510 0.05 0.0473 0.0034 0.0000

Image simulated using 300 spots image
Hotelling’s T 2 test

Image structure θ01 Sd(θ1) MSE(θ1) θ02 Sd(θ2) MSE(θ2) p-value
Regular 0.00 0.0895 0.0080 −0.05 0.0222 0.0005 0.9627
Random 0.10 0.0776 0.0062 0.00 0.0196 0.0004 0.2587
cluster 0.05 0.0521 0.0027 0.05 0.0120 0.0002 0.1624
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Image structure
Parameter values Directional I
θ1 θ2 θ3 θ4 I1 I2 I3 p-value

Random 0.05 0.0 0.0 0.0 −0.01 0.09 −0.07 0.86
Directional 0.05 0.1 0.1 0.1 0.37 0.39 0.38 0.00

Figure 4.14 & Table 4.8: Two simulated images of 300 spots fromm MCMC for given direc-
tional parameters (θ1, θ2, θ3 and θ4), from the left non-directional and directional images.

Similarly, we consider the directional parameter setting. The θ0 is chosen as a com-

bination of θ01, θ02, θ03 and θ04 that can generate independent/random and dependent direc-

tional images. Images are generated with image sizes 300 spots. Figure 4.14 illustrates

two images generated from MCMC for given parameter values. The parameter values

are also shown in Table 4.8 with corresponding directional I statistics and corresponding

p-values. Here the p-value in red indicates the detection of directionality in the image.

A similar experimence as for non-directional is applied here where we test the con-

sistency of estimated parameters θ̄ with the true parameter values (θ0) using Hotelling’s

T 2 test. Figure 4.15 shows the box-plots of 50 sets of estimated parameters using inde-

pendent and various dependent directional images where θ0 is shown at the top of the

plots as well as red cross points on the box-plots. From Table 4.9, it is clear that the

MSE for all parameters are small as well as the p-values of the multivariate test are not

significant. At the 5% level of significance, there is no evidence to reject H0 : θ̄ = θ0

that means the true parameter values (θ̄) are consistent with estimated values (θ0). As a

result, the IM works effectively in estimating the parameter values of BMRF in the case

of directional and non-directional images.
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Figure 4.15: Box-plots of 50 estimated θ1, θ2, θ3 and θ4 from IM using simulated images from
MCMC for given θ01,θ02, θ03 and θ04 which show as red cross points.
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Table 4.9: The mean square error (MSE), standard deviation (Sd) and the p-value of Hotelling’s
T 2 test of 50 estimated parameters using the IM from simulated images (independent and depen-
dent) for given parameters (θ01,θ02,θ03,θ04) with image sizes 300 spots.

Independent image
Hotelling’s T 2 test

θ01 Sd(θ1) MSE(θ1) θ02 Sd(θ2) MSE(θ2) p-value
0.05 0.052 0.003 0.00 0.029 0.001

0.329θ03 Sd(θ3) MSE(θ3) θ04 Sd(θ4) MSE(θ4)
0.00 0.027 0.001 0.00 0.033 0.001

Dependent Directional image (θ2)
Hotelling’s T 2 test

θ01 Sd(θ1) MSE(θ1) θ02 Sd(θ2) MSE(θ2) p-value
0.00 0.048 0.002 0.20 0.038 0.001

0.161θ03 Sd(θ3) MSE(θ3) θ04 Sd(θ4) MSE(θ4)
0.01 0.036 0.001 0.01 0.030 0.001

Dependent Directional image (θ3)
Hotelling’s T 2 test

θ01 Sd(θ1) MSE(θ1) θ02 Sd(θ2) MSE(θ2) p-value
0.00 0.044 0.002 0.01 0.030 0.001

0.391θ03 Sd(θ3) MSE(θ3) θ04 Sd(θ4) MSE(θ4)
0.20 0.033 0.001 0.01 0.036 0.001

Dependent Directional image (θ4)
Hotelling’s T 2 test

θ01 Sd(θ1) MSE(θ1) θ02 Sd(θ2) MSE(θ2) p-value
0.00 0.045 0.002 0.01 0.036 0.001

0.291θ03 Sd(θ3) MSE(θ3) θ04 Sd(θ4) MSE(θ4)
0.01 0.037 0.001 0.20 0.034 0.001

Now, we compare the effectiveness of the iterative method (IM) with the existing

pseudo-likelihood method (PL), which is defined in Section 4.2.2, using only non-directional

parameters and image sample size 300 spots. Different combinations of θ01, θ02, which

are listed in Table 4.10, are considered to generate 100 images and then the parameters

of these images are estimated by both (IM) and (PL) and the mean square error is used

for comparisons. The results in Table 4.10 of the MSE of PL and IM parameter estima-

tions show that our method predicts the parameters equally well or even better and the

IM gives a better agreement between the prediction and the truth.

To sum up, the IM works well for a variety of image structures which cover regu-

lar, random, cluster and directional images but using only image size 300 spots. Fur-
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thermore, the iterative method predicts the parameters better than the pseudo-likelihood

method.

Table 4.10: The mean square error (MSE) of 100 estimated parameters using the iterative method
(IM) and pseudo-likelihood method (PL), where the images are simulated for specified non-
directional parameters, θ01 and θ02, with image size 300 spots.

Image simulate from IM PL
θ01 θ02 MSE(θ1) MSE(θ2) MSE(θ1) MSE(θ2)
−0.05 −0.05 0.0057 0.0005 0.0991 0.0037
−0.05 0.00 0.0040 0.0003 0.0974 0.0016
−0.05 0.05 0.0026 0.0002 0.0992 0.0048
0.00 −0.05 0.0059 0.0005 0.0750 0.0040
0.00 0.00 0.0033 0.0003 0.0734 0.0021
0.00 0.05 0.0025 0.0002 0.0733 0.0052
0.05 −0.05 0.0058 0.0005 0.0495 0.0034
0.05 0.00 0.0039 0.0004 0.0479 0.0018
0.05 0.05 0.0026 0.0002 0.0500 0.0055

4.11 Discussion

In this chapter, we established the IM simulation approach based on a new method for

estimating the model parameters. This method has no assumption about test statistics,

nor about the distribution of either data or parameters. The emphasis in this chapter is

firstly, estimating in the two-parameter setting for a first-order system in a hexagon grid,

which detects clustering. The IM is then generalised and extended to four parameters

which detect directionality in images. The parameter estimation tends to be more accu-

rate when the ratio of stopping criterion r, decreases but the computation time increases.

The IM can also work effectively using any n× n square grid in R2.

The IM is a general technique that can be used in any application when the likelihood

is difficult to evaluate in a complex model and a simulator box is available to simulate

data easily from given parameter values. When a spatial pattern is simulated, M in the

simulator box should be equal to 10n to stabilise the MCMC. Simulation-based statis-

tical inference is effectively obtained as an alternative approach to the likelihood ratio

test. Here there are three scenarios to test, either random, cluster (heterogeneous) or

directional images.

The BMRF model captures similar information to the I statistic and is particularly
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useful for large image sizes (n = 300). The BMRF has parameters, where significant

positive values refer to clustered images, whereas negative values refer to a regular pat-

tern. It is challenging to explain the mathematical relationship between the formula of

the I statistic and the BMRF model, but this connection can be determined by the p-value

of each test.

Directional BMRF parameters are more flexible than the directional I statistic and

work effectively in detecting directions with fewer assumptions. The directional pa-

rameters are applicable for any image structure. The rotation of an image to the lumen

direction has not been considered in this chapter. The reason for avoiding rotation is

that when we do rotation, the direction of the lumen is not lined up exactly on one of

the hexagon axes, and the power of the test is expected to be less, as we discussed for

the I statistic in Chapter 3. However, if the orientation of the largest parameter value

is allocated in the same axis as the lumen surface, we can say that there is a preferred

direction in the direction of the lumen.

The pseudo-likelihood method of parameter estimation has a limitation of not con-

sidering the boundary spots in its calculation. In addition to this limitation, the result of

parameter estimation will not be accurate when we have missing spots inside the image.

Hence the IM is more flexible and more accurate. Nevertheless, the IM has one limita-

tion, which is when we have extreme images, either very black or white, with p = 0.1

or 0.9, the method is less effective. This is simply because extreme images produce

extreme design points which lead to perfect fitting of the linear regression model.



Chapter 5

Prediction of Biomedical Images

5.1 Motivation and introduction

The work in this chapter is an exploratory analysis motivated by the fact that pathologists

tend to collect different samples from the whole tumor, where each patient can have more

than one sampling image with different areas and resolutions.

The applications in this chapter use the rectal cancer dataset, which was described

in Section 1.3.2. This dataset contains low-resolution spot classification of the whole

cancer image W , a high-resolution biopsy Bx, which is sampled from the luminal site

before surgery and a high-resolution subset from the whole tumor image which can be

one or two disjoint sampling areas. Two sampling areas are G, which contains the high-

est proportion of tumor, and L, which is closest to the luminal site. A single sampling

area is LG which is the area which is closest to the luminal site and in the meantime has

the highest proportion of tumor. There are 202 images of pairs W and LG, 66 images of

three sets W , G and L and 158 images of pairs W and Bx.

Nevertheless, there is no obvious criteria or method to follow in choosing sampling

strategies and we need to find ways, if possible, to compare the information from the

samples to see if efficiencies can be made in the collection of data. We focus on im-

age prediction to determine the consistency of low and high resolution images. If the

low-resolution images are correctly predicted, this means both images contain the same

information, otherwise we need to either sample from both images or to increase the

sampling frequency of low-resolution images as we loose information. The consistency

133
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between sampling areas can be considered either from the overall differences of propor-

tions of spot class distributions or the similarity of their spatial features. Here, a funda-

mental question is: "Can we gain much more information from doing more sampling of

the same image or it is not worthwhile?"

By considering the difference in proportions of spot class distributions, another sta-

tistical question is "Do the high-resolution images, either Bx, G, L or LG, contain the

same information as the whole (W )?" The purpose here would be to estimate the density

of cell in the whole tumor (TCD(W )) without sampling the whole area, as this mea-

surement is widely used by pathologists. Otherwise, it is better to sample the whole area

of cancer. Moreover, pathologists tend to do two high-resolution samples which are L

and G, the questions here are "Is it worth sampling both G and L?" or is it enough to

consider the corresponding low-resolution areas in W , also "Do both G and L contain

the same information?"

This chapter introduces a method for spatial prediction of spot class of low-resolution

images from high-resolution images, L, G and LG, where these images overlap with W .

Here we are investigating the consistency of the images by attempting to predict the

spot class in one of the images from the information in the other one. As the biopsy

images do not overlap with the others, the consistency of this type with others will be

only checked by spot class distributions. Previously, a binary image (tumor vs. stroma)

was considered, but now the excluded spots, which were described in Table 1.5, are kept

as there are lots of missing spots which can affect the prediction evaluation. Now we

have three classifications of spots: 1 refers to tumor, 2 denotes stroma and 0 to others.

This chapter begins with some notation and definitions of images in Section 5.2 which

are used in the prediction process. The distribution of image class proportions for all

patients is in Section 5.3. The prediction process is defined for predicting low from high

resolution images. This approach is described in Section 5.4 which includes many cases

of prediction depending on a smoothing parameter. A better way of prediction is then

determined in Section 5.4.2. Finally some discussion is given in Section 5.5.
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5.2 Notation and definitions

The notation used for our rectal cancer biomedical images is explained for images with

various resolutions. The theoretical definitions are then used to define new methods of

predicting spot classes:

1. A whole tumor image, W , is a set of coordinates of spots with the cor-

responding classes two-dimensional, where the delineation of tumor and here

the boundary of W is usually a convex polygon. The ith spot has coordinate

wi = (wi1, wi2), with class ci(W ) ∈ {0, 1, 2}; i = 1, . . . , n, where 1 refers to

tumor, 2 denotes stroma, 0 to others and n is the number of spots in W . The set of

spot indices in W is S(W ) = {1, . . . , n}.

2. A high resolution image, Y , is a set of coordinates of spots with the

corresponding classes in two dimensions, where the delineation of tumor is usually

a square region. The jth spot in Y has coordinate yj = (yj1, yj2), with class

cj(Y ) ∈ {0, 1, 2}; j = 1, . . . ,m where m is the number of spots in Y . The set of

spot indices in Y is S(Y ) = {1, . . . ,m}.

The high resolution image Y can be displayed in the whole image W , but there are

no coincident locations. A new image is defined which is a subset of W , say W (Y ),

containing the elements of W close to Y . Specifically W (Y ) is the union of all spots in

W that are a nearest neighbour to at least one spot in Y .

Table 5.1: The general notation of spots, classes of W , Y and W (Y ) images, and the distances
between pairs of images.

W Y W (Y )

Set of spot indices S(W ) S(Y ) S(W (Y ))

Class of a spot ci(W ) cj(Y ) c̃i(W )

Coordinates of a spot wi = (wi1, wi2) yj = (yj1, yj2) w̃i = (w̃i1, w̃i2)

Number of spots n m << n &m

Distance between pairs
Dijof spots in W and Y

Distance between pairs
D̃ijof spots in W (Y ) and Y

To obtain the image W (Y ), we need to calculate the distance matrix, D, between two

sets of spots in the W and Y images with dimensions (n ×m), where n and m are the
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number of spots in W and Y respectively, with elements

Dij = ||wi − yj||, i ∈ S(W ); j ∈ S(Y ). (5.1)

From this matrix we can find the minimum value over i in order to see which wi is

the nearest spot to yj with related index Ij , where

Ij = argmin
i
Dij, j ∈ S(Y ). (5.2)

Here Ij ∈ S(W ) are indices of W corresponding to the jth element of Y . So the set of

indices for the subset image W (Y ) ⊂ W is

S(W (Y )) =
m∪
j=1

{Ij} , S(W (Y )) ⊂ S(W ), (5.3)

where the spots are included in W (Y ) if their index is in S(W (Y )). The number of spots

in subset images W (Y ) is less than or equal to the number of spots in W . From here we

can also define the indices of Y that are close to S(W (Y )) as follows. Suppose the ith

spot in S(W (Y )) has neighbours in S(Y ) defined by those spots in S(Y ) being closer to

the ith spot than any other spots. We denote this set by Ii. In our data the size of Ii is

in the range 1 to 10. This range represents the ratio of low and high resolution images.

We refer to this set as the “immediate neighbours” for each i and this can be defined

mathematically as

Ii = {j : Ij = i} , j ∈ S(Y ); i ∈ S(W (Y )). (5.4)

Here Ii ⊂ S(Y ) includes the indices of Y that are immediate spots to W (Y ). Here if

min
i,j
{Dij; i ∈ S(W (Y )); j ∈ S(Y )} > 0, this means none of the spots in Y are clearly

stated in the same location as those in W (Y ).

As W (Y ) ⊂ W , the spots and classes of W (Y ) can be easily obtained. The set of

spots indices S(W (Y )) ⊂ S(W ), so any spot i in S(W (Y )) is also a spot in W (Y ), and

its class can be defined as c̃ = {ci(W ); i ⊂ S(W (Y ))} ∈ {0, 1, 2} with coordinates
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w̃i = wi; i ∈ S(W (Y )). The distance matrix between W (Y ) and Y , is defined as

D̃ = {Dij; i ∈ S(W (Y )); j ∈ S(Y )}. (5.5)

The D̃ helps in predicting W (Y ) from Y . The general notations of the spots and

classes in W , Y and W (Y ) are summarised in Table 5.1, including the distance between

pairs of images.

Figure 5.1 shows an example of image# 105420 which has a low-resolution whole

tumor image W with two high-resolution layout images G and L with corresponding

subset images W (G) and W (L) from W .

Figure 5.1: Image# 105420. (a) the whole tumor image, where the yellow dots show the loca-
tions of the spots on the high resolution images (G and L), (b) a subset image W (G) from the
whole, (c) the high resolution image G, (d) a subset image W (L) from the whole and (e) the high
resolution image L.
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5.3 Consistency of distributions for class proportions

The consistency of images are investigated by comparing the overall distribution of spot

class proportions. The questions here are: 1) Is Bx consistent with W ; 2) Are any G, L

or LG consistent withW ; 3) Are high-resolutionG and L consistent with low-resolution

W (G), W (L) and 4) Are G and L consistent. The statistical test of assessing consistency

is explained theoretically and then an example of a single image W , which has two

corresponding images L and G, is illustrated. All images are then included for each

question.

In general, the consistence of c images can be checked by firstly consider the differ-

ences in class distribution for c of images. Fisher’s exact test is based on the hypergeo-

metric distribution under the null hypothesis is that the frequency of classes in c images

are the same which would be true if the c images are consistent. A dataset like this is

summarised in an r × c table where r is the number of rows, which represents the class

frequency, and c is the number of columns. The Fisher’s test is more appropriate than

the Pearson’s χ2 test as we expect at least one expected frequency in the table to be less

than five when the small images are considered. Hogg and Tanis (1977) explained the

Fisher’s test for multiple groups as follows. Suppose we have n1, n2, . . . , nc objects in

each class, and n1 + n2 + · · ·+ nc = N , then the probability in Fisher’s exact test is

P (X1 = x1, X2 = x2, . . . , Xc = xc) =

(
n1

x1

)(
n2

x2

)
. . .
(
nc

xc

)(
N
m

) , (5.6)

where X1 is the number of successes in the first class of size n1 and so forth,
(
x
y

)
=

x!
y!(x−y)! and x1 + x2 + · · · + xc = m which is the total number of successes. A two-

tailed p-value is then obtained directly by summing of the tails using the hypergeometric

distribution.

Example:

The proportion distributions of classes are compared for image# 105420 in Figure 5.1.

The frequency of the classes per image (W , LG, W (G) and W (L)) is calculated, for

instance for image W , by

fk =
n∑
i=1

I[ci(W ) = k], k = 0, 1, 2. (5.7)
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Here fk is the frequency of class k. The frequencies of classes for each image version

corresponding to Equation (5.7) are summarised in Table 5.2.

Table 5.2: The class summaries of image# 105420.

Frequency W G L W (G) W (L)

f0 132 (42%) 58 (20%) 104 (35%) 16 (33%) 24 (48%)
f1 131 (42%) 191 (64%) 145 (49%) 24 (49%) 22 (44%)
f2 52 (16%) 47 (16%) 47 (16%) 9 (18%) 4 (8%)

Total 315 (100%) 296 (100%) 296 (100%) 49 (100%) 50 (100%)

Now pairs of images are compared. From Table 5.2, pairs of images (corresponding

to two columns) are considered to create a 3 × 2 table. The corresponding p-values of

Fisher’s exact test are displayed in Table 5.3. Here, the small p-values (< 0.01) are high-

lighted as a red, where α = 0.05/5 = 0.01 is the level of significance using a Bonferroni

correction for multiple testing (Bland and Altman, 1995). These significant p-values

show inconsistency between the class distributions of G and W as well as between G

and L. This means the distribution of classes of the G image is not consistent with W

and L. However, the distributions of classes for the other image pairs may be consistent.

Table 5.3: The p-values of the Fisher’s test for comparing the proportion distributions of classes
using all possible pairs of images which are plotted in Figure 5.1. Bonferroni correction is used
for significant p-values.

Pairs of images P-value
G vs. W 0.000
L vs. W 0.157
G vs. W (G) 0.075
L vs. W (L) 0.156
G vs. L 0.000

The same comparisons are applied to all images to answer the questions at the be-

ginning of this section. Under the null hypothesis, we would expect 5% of images to be

rejected to confirm pairs of images are consistent, otherwise there is not enough evidence

of consistency. This is a binomial problem, thus we can also consider the confidence in-

terval to get an overall view of consistency. If we have consistency, we expect 95% of

images to have large p-values (p-value> 0.05). The confidence interval using the bino-

mial distribution for the 66 images is [87%, 99%]. Likewise the confidence interval of

accepting consistency for the set of LG and W images is [92%, 98%] and for the set of

Bx and W images is [90%, 98%].
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Table 5.4: The percentage of the Fisher’s test p-values being not rejected (> 0.05) for comparing
the proportion distributions of class for all patient images where the percentages in red show the
consistent pairs of images.

Pairs of images p-value> 0.05

66 images
G vs. W 12%
L vs. W 23%
G vs. W (G) 97%
L vs. W (L) 98%
G vs. L 17%

202 images
LG vs. W 16%

LG vs. W (LG) 92%
158 images

Bx vs. W 4%

In Table 5.4, the set of W , L and G, only G and L are consistent with W (G) and

W (L) respectively. Similarly, the LG and W (LG) have 92% of pairs of images which are

consistent. This means the proportion distributions of classes for low-resolution images

are consistent with high-resolution images when they are overlapping. These pairs of

images can be then used in the following section to consider the prediction of spots

spatially. However, the proportion distributions of classes for the whole tumourW is not

consistent with any high-resolution images (G, L, LG, Bx). The proportion of classes

for high-resolution images G and L are also not consistent.

To investigate the differences between the class distributions of inconsistent pairs of

images, the box plot for each pair of images is plotted. Figure 5.2 shows box plots for

the distributions of classes for each pair of images that were compared in Table 5.4. Here

the median of class 0 for each pair of images is quite similar with lots of outliers, except

Bx and W . The median of class 1 for W , which is the proportion of tumor in the whole

image, tends to be lower than the others. Whereas the proportion of stroma on W has

higher median than the other images.

To sum up, the low-resolution images are consistent with high-resolution images

when they overlap. However, none of the high-resolution images can represent W and

the high-resolution of G and L are not consistent. Therefore, it is important to sample

the whole image, but there is less need to sample high-resolution images as they contain

the same proportion of classes as the low-resolution images.
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Figure 5.2: Box plots of class distributions for pairs of inconsistent images from Table 5.4, where
1 refers to the proportion of tumor, 2 denotes the proportion of stroma and 0 to the proportion of
other classes.

5.4 Spatial class prediction of W (Y ) using Y with distance-

weighting

This section presents some methods of spatial prediction for the spot classes of low-

resolution images from high-resolution images, and then tries to compare methods. Pairs

of images, which share the same location but with different resolutions, are considered,

e.g. W (Y ) and Y . The distributions of classes for these pairs of images were confirmed

in Section 5.3 that they are consistent. The objective now is to predict the class of each

spot spatially, and find if there is a good matching agreement between the predicted and

observed spot classification to determine then if pairs of images are spatially consistent.

The spots classes are predicted spatially using a weighted-distance mode, with weights

dependent on distance, to be defined later. To assess the prediction, a correctly predicted

ratio (CPR) is calculated which considers how many spots in the predicted image have
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been correctly classified. This statistic allows us to compare the predicted and observed

images to see if they are consistent.

To define this statistic, suppose we have observed and predicted W (Y ) with a number

of spots N .

CPR =
# of spots correctly predicted

N
× 100. (5.8)

The distance matrix D̃ between the pairs of spots in W (Y ) and Y images, which was

defined in Equation (5.5), is used to find the weight of each spot in W (Y ). This can be

implemented by predicting the spot classes using a weighted sum of any neighbouring

setting which is important in the prediction process. Two neighbouring settings are con-

sidered: a weighted-distance mode of either the immediate neighbours or all spots in the

image. In addition to the neighbouring setting, a smoothing parameter, α, controls the

relative weights.

Figure 5.3: Plot of the relationship between the distance and weight for different α, where each
line displays different values of α, where α = 0 shows all spots with different distances have the
same weight.

The distance matrix, D̃, is used to weight the spots depending on their distances

from the original image Y . For instance, either all spots can contribute equal weights

across the neighbourhood system, or the weight of immediate spots can be increased.

This allows us to either weight all spots, or restrict to the immediate neighbourhood. To

predict a spot class, the weighted-distance mode predicts the spot classification which

depends on the weighting of this spot. The weight of spots can be calculated as an
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exponential function of the negative distance between W (Y ) and Y images raised to the

power parameter α. Suppose that the ith spot ∈ S(W (Y )), which includes all spots in

W (Y ), needs to be predicted. Then the weight can be written as

wij = exp
(
−D̃α

ij

)
, j ∈ S(Y ); i ∈ S(W (Y )). (5.9)

Here there are j = 1, . . . ,m spots ∈ S(Y ) with their distances and different weights

depending on α. When this smoothing parameter increases, the weight decreases for far

away spots. Figure 5.3 shows the relationship between the weight function and differ-

ent smoothing parameters α. As α decreases the distance of spots tends to be equally

weighted. Thus the determination of the spot class can vary depending on the smoothing

parameter which affects the weight of spots. Different values of α are consider in predic-

tion methods. In Section 5.4.1, methods of predicting low-resolution images W (Y ) from

high-resolution Y are explained, and then all methods are assessed in Section 5.4.2.

5.4.1 Predicting W (Y )

In this section the steps of predicting W (Y ) from Y are explained including all special

cases of different α. Suppose that for the ith spot, the class c̃i(W ) can be predicted

by considering the class of the spots in Y and their distance from spots in W (Y ). This

information contained in cj(Y ) and D̃ij which were introduced in Section 5.2. A general

formula for predicting the W (Y ) classes from Y as a function of the weighted-distance

cold be written as

ˆ̃ci(W )(w) = argmax
k

∑
j∼i

I [cj(Y ) = k]wij, i ∈ S(W (Y )); j ∈ S(Y ), (5.10)

where

wij = exp
(
−(ψiD̃ij)

α
)
, i ∈ S(W (Y )); j ∈ S(Y ), (5.11)

where j ∼ i can be either immediate neighbours of i, which defined in Equations (5.4),

or can include all S(Y ), k ∈ {0, 1, 2}, ψi is a constant which helps to scale the distance

matrix and α controls distance priority. Equation (5.10) predicts the class of the ith

spot in which the classes of either immediate or all spots are weighted according to the
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distance to the ith spot. When α = 0 for any neighbouring setting, all weights are equal,

thus we only count how many times we take a certain class by considering the agreement

over all classes k which maximises Equation (5.10).

Table 5.5: Methods of spatial prediction for classes ofW (Y ) from Y using Equation (5.10) using
immediate neighbouring and all settings.

Prediction method Method description α Neighbourhood setting

M1 Maximum class 0 All

M2 Unweighted local mode 0 Immediate

M3 Weighted mode 0 < α <∞ All

M4 Weighted mode 0 < α <∞ Immediate

M5 Nearest spot α −→∞ Both immediate and all

Appropriate values of α and ψi in Equation (5.10) need to be determined. To choose

the optimal α, the distance matrix is firstly scaled to find how well this smoothing pa-

rameter performs using CPR. The reason behind scaling is standardising the distance,

and the α is then commensurable. The scaling of the distance matrix can be applied

according to 1) nearest distance as minimum
(
ψi =

1
minj∈Ii

D̃ij

)
, 2) farthest distance(

ψi =
1

maxj∈Ii
D̃ij

)
or 3) fixed scaling (ψi = 1). To compare between different scaling

methods to be used later in spatial prediction, the CPR(%) was tested for an image with

different values of α. The scaling by minimum distance had the behaviour that we ex-

pected, as it shows some special cases of Equation (5.10) when α = 0 and α −→ ∞,

which are explained below.

There are five methods of spatial prediction that can be applied using Equation (5.10).

An example of image# 105420, which is shown in Figure 5.1, is used for predicting low-

from high-resolution images using all methods. The prediction methods are summarised

in Table 5.5, which can be explained as follows:

M1: Predicting W (Y ) when α = 0 over all spots

In Equation (5.10), when α = 0 using all spots, all spots are equally weighted and every

spot is predicted to have the most common class in Y . This method is a totally naive

approach, but most spots are classified correctly. This case takes the most frequent class

in Y as a prediction of W (Y ) because we know nothing about the location of spots but at
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least the most common spot classes are correctly estimated.

Table 5.6: Tables of agreements between the original classes (c̃) and predicted classes (ˆ̃c) of
W (G) and W (L) images predicted by M1 with corresponding CPR using the image# 105420.

W (Y ) ˆ̃c
c̃

Total CPR
0 1 2

W (G) 1 16 24 9 49 49%

W (Y ) ˆ̃c
c̃

Total CPR
0 1 2

W (L) 1 24 22 4 50 44%

Table 5.6 illustrates the agreement of the classes between the original image and

predicted image for both W (G) and W (L). Here, only class 1 is correctly predicted in

both W (G) and W (L) with CPR equal 49% and 44% respectively.

M2: Predicting W (Y ) when α = 0 over immediate neighbours

Again when α = 0 using immediate neighbours, all spots are equally weighted. The

prediction process for a spot is just counting how many times a certain class has been

repeated in its immediate neighbourhood. This case can be called the “unweighted local

mode”.

Table 5.7: Tables of agreements between the original classes (c̃) and predicted classes (ˆ̃c) of
W (G) and W (L) images predicted by M2 with corresponding CPR using the image# 105420.

W (Y ) ˆ̃c
c̃

Total CPR
0 1 2

W (G)

0 8 1 0 9

69%1 8 22 5 35

2 0 1 4 5

Total 16 24 9 49

W (Y ) ˆ̃c
c̃

Total CPR
0 1 2

W (L)

0 18 1 0 19

76%1 6 19 3 28

2 0 2 1 3
Total 24 22 4 50

Table 5.7 shows the agreement of classes between the original image and predicted

image with corresponding CPR for each W (G) and W (L) using image# 105420. The the
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diagonal part of the table shows the correctly predicted classes. For example, the second

class of the W (G) image has the highest frequency which means 45% of spots with class

1 are correctly predicted using the unweighted method, but only 8% of the class 1 is well

predicted. This method has a better prediction with higher CPR for spot classes more

than the maximum class method.

M3&M4: Predicting W (Y ) when 0 < α < ∞

This method contains two special cases which consider a range of the smooth parameter

α with immediate neighbours called M3 and with all spots settings called M4. These

methods described as “weighted mode”.

To explain how the weighted mode method works, suppose we would like to predict

the ith spot in W (Y ) using only the immediate neighbours Ii, so the ˆ̃ci(W ) for given

α can be estimated as the weighted majority of its neighbours. Here the ith spot has

a list of immediate neighbours in Ii ∈ S(Y ). For instance, for the ith spot, suppose

Ii = {10, 60, 54} with corresponding classes {c10(Y ) = 1, c60(Y ) = 0, c54(Y ) = 1} and

weights wj1 = {w10,1 = 0.22, w60,1 = 0.33, w54,1 = 0.12}. Here, there are three immediate

neighbours. The weighted frequency of class zero is 0.33 and class 1 is 0.22+0.12=0.34,

thus ˆ̃ci(W ) = 1 is the right estimate of the ith spot as class 1 has the higher weight.

Sometimes the classes are equally weighted, in this case the first element in the classes

set is considered for predicting ˆ̃ci(W ). The same procedure of spot prediction also works

when we consider all spots.

Using the weighted mode method, the CPR(%) is calculated when 0 < α < 5 in

Figure 5.4 using W (G) and W (L) from image# 105420 considering the immediate neigh-

bouring and all spots orders. This method of prediction considers different weights of

spots by changing α, then we calculate CPR which depends on the mode of the highest

weighted distance using the immediate neighbouring and all spots settings. It is clear

that the CPR of W (G) and W (L) change with α and when the parameter value increases

the CPR settles down. In the same figure, we also highlighted the CPR for both W (G)

and W (L) using the maximum class method (M1) as a green line, and the unweighted lo-

cal mode method (M2) in a blue line. Sometimes the CPR of the weighted mode method

is identical to the CPR of either the maximum class or unweighted local mode method.

For example, when α ⩾ 2 in the W (L) image, the CPR of the weighted mode (M3 and
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M4) and maximum class methods (M1) are identical, where CPR is equal to 44%.

Figure 5.4: The CPR of W (G) and W (L) for image# 105420 using the weighted mode method
for immediate neighbours (M3) in black line and all spots (M3) in pink line over α. Also, the
CPR of M1 in green lines, M2 in blue lines and M5 in red lines.

M5: Predicting W (Y ) when α −→ ∞ using immediate neighbour

When α −→ ∞ in Equation (5.10), wij tends to zero (see also Figure 5.3). Thus the

prediction of spot classes are the same if we consider either immediate neighbourhood or

all spots setting. For the ith, we consider only the nearest spot in Y . Table 5.8 shows the

Table 5.8: Tables of agreements between the original classes (c̃) and predicted classes (ˆ̃c) of
W (G) and W (L) images predicted by M5 with corresponding CPR using the image# 105420.

W (Y ) ˆ̃c
c̃

Total CPR
0 1 2

W (G)

0 8 4 1 13

53%1 8 15 5 28

2 0 5 3 8

Total 16 24 9 49

W (Y ) ˆ̃c
c̃

Total CPR
0 1 2

W (L)

0 20 2 0 22

78%1 3 17 2 22

2 1 3 2 6
Total 24 22 4 50

prediction by nearest spots method of image# 105420 for W (G) and W (L) images, where

the CPR of W (L) image is better than W (G), by 25%. In W (G) image, the class 1 is the



Chapter 5. Prediction of Biomedical Images 148

best predicted spot class by 36% out of 53%, whereas in W (L) the better predicted class

is class 0 with 40%. Figure 5.4 also shows the CPR of the immediate neighbours method

in red line. In the following section all images are considered to equality assessment of

spatial prediction methods.

5.4.2 Comparisons of spatial prediction methods

The five spatial prediction processes for low-resolution images from high-resolution im-

ages are explained with an application on a single image in Section 5.4.1. The equality of

these methods is now assessed using all provided images. However, the optimal values

of α for the weighted mode prediction method of immediate (M3) and all spots settings

(M4) should firstly be determined. For each low-resolution image (W (G), W (L) and

W (LG)), a cross-validation technique is used to choose values of α for M3 and M4. After

choosing α, a pairwise t-test is used to assess the equality of all prediction methods.

We start by defining the statistical methodologies, which are a cross-validation tech-

nique and a pairwise t-test, that are used followed by applications. The cross-validation

method is a standard resampling technique which bases on leave out an image, whereby

an image is excluded, the value of α which maximises the CPR is estimated and then

this value of α is used to predict the CPR for excluded image (Bro et al., 2008). The

steps of this technique are illustrated in Algorithm 5.

To explain how the algorithm works, let us consider the set of W (G) images called x

of length 66 and we would like to estimate the smoothing parameters of the two neigh-

bourhood settings and then calculate the corresponding CPR using M3. We start by

considering a range of α values, say 0 < α < 3, of length m. Each time an image is left

out called xout and the remaining number of images is then 65 images. For the remaining

set of images, the CPR is calculated for each image using all α values. The output is

B65×m, where each column is the CPR values of all images for a specific α. From this

matrix, the mean of the CPR values for each column of α are calculated. Then we find

which value of α has maximum CPR called α̂. Now using this α̂, the CPR of xout is

calculated called cpr. This process is repeated for all 66 images of W (G) to generate

cpr using the prediction method M3. We follow the same step to generate cpr of W (G)

set using M4. Likewise the cpr of W (L) and W (LG) are calculated for both M3 and M4.
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Algorithm 5: Cross validation method for estimating cpr from a list of x
images for given neighbouring setting.
1 Cross-validation (x, N);

Input : List of W (Y ) images x of length n and neighbouring setting N
output: cpr

2 Set α =: (0, 0.1, 0.2, . . . , 3);
3 m =: |α|;
4 for i = 1 to n do
5 Set xout =: xi;
6 Set xin =: x1, . . . , xi−1, xi+1, xn;
7 Define B(n−1)×m ;
8 for k = 1 to (n− 1) do
9 W (Y ) = xin[k];

10 for j = 1 to m do
11 For given αj and N , predict the class of W (Y ) from Equation (5.10);
12 For given observed and predicted W (Y );
13 Calculate CPRj from Equation (5.8);
14 end
15 B[k, ]← CPR;
16 end
17 α̂ =: α

[
argmax

∑n−1
k=1 B[k,]

n−1

]
;

18 For given α̂ and N , predict the classes of xout from Equation (5.10);
19 For given observed and predicted xout;
20 Calculate cpri from Equation (5.8);
21 end
22 cpr =: cpr1, . . . , cprn;
23 return (cpr);

Figure 5.5 shows the mean of CPR from a single step of the cross-validation technique

for W (G), W (L) and W (LG) images.

As a result from the cross-validation method with considering all images, the optimal

parameter values (α̂) of W (G) image for M3 are found to be one of 0.8, 0.9 and 1, and

for M4 are 0.7 and 0.8. For W (L), the α̂ of M3 equals 0.3, but α̂ is in the range 0.8-2.5

when M4 is used for prediction. The estimated smoothing parameters for W (LG) are 0.8

and 0.9 when we predict by M3 and 0.7 when M4 is used.

The cpr of spatial prediction methods M1,M2 and M3, which have a fixed setting of

α, is also calculated. The distributions and means of each cpr for each method and each

image type are shown in Figure 5.6 and Table 5.9 respectively. In this table, the highest

means are highlighted in red.
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Figure 5.5: The mean of CPR for W (G), W (L) and W (LG) including all images over α except
one excluded image using the weighted mode method for immediate neighbours (M3) in black
line and all spots (M3) in pink line, where the number of images for pairs W (G) and W (L) is 65
and for W (LG) is 201.
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All Prediction methods

Figure 5.6: Boxplots of CPR for W (G), W (L) and W (LG) images using five prediction methods,
where the number of images in pairs of W (G) and W (L) is 66 images and 202 images of W (LG).

Table 5.9: Means of CPR for different prediction methods for W (G), W (G) and W (G) images,
where the highest means are in red.

W (G)

cpr(M1) cpr(M2) cpr(M3) cpr(M4) cpr(M5)
65.95% 72.30% 72.67% 73.92% 71.80

W (L)

cpr(M1) cpr(M2) cpr(M3) cpr(M4) cpr(M5)
71.02% 77.86% 79.57% 79.22% 79.76%

W (LG)

cpr(M1) cpr(M2) cpr(M3) cpr(M4) cpr(M5)
71.51% 77.67% 79.79% 80.01% 78.36%

To assess all spatial prediction methods, pairwise comparisons between all possible

paired methods, with corrections for multiple testing to obtain adjusted p-values, are

performed. The used adjustment method is Bonferroni correction, which simply divides

the Type I error rate (0.05) by the number of tests (McDonald, 2009).

A single paired t-test is explained to assess whether pairs of prediction methods are

equally predicting low-resolution images. For W (LG), let cpri(M1) denote the CPR val-

ues of prediction method M1 and cpri(M2) denote the CPR values of prediction method

M2, where i = 1, . . . , n. The null hypothesis states that the true mean difference is zero,

the differences are calculated di = cpri(M1) − cpri(M2). Then, the mean (d̄) and stan-

dard deviation (dsd ) of the differences, are calculated. The statistical test under H0 is
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Table 5.10: P-values of pairwise t-test for comparing CPR of pairs of prediction methods in
W (G), W (G) and W (G) images, where the significant p-values are in red.

W (G)

M1 M2 M3 M4

M2 0.00 - - -
M3 0.00 1.00 - -
M4 0.00 0.61 0.67 -
M5 0.00 1.00 1.00 0.12

W (G)

M1 M2 M3 M4

M2 0.00 - - -
M3 0.00 1.00 - -
M4 0.00 1.00 1.00 -
M5 0.00 0.47 1.00 1.00

W (LG)

M1 M2 M3 M4

M2 0.00 - - -
M3 0.00 0.11 - -
M4 0.00 0.01 1.00 -
M5 0.00 1.00 0.37 0.03

defined as

T =
d̄

SE(d̄)
,

where SE(d̄) = dsd/
√
n. This test follows a t-distribution with n−1 degrees of freedom.

A two-sided p-value of the single paired t-test is then calculated by comparing T to

the tn−1 distribution from tables. Table 5.10 shows the pairwise t-test for all possible

pairs of prediction methods with considering the adjustment of p-values. For predicting

W (G) and W (L), on average, all methods are equally predicted except for M1 which is is

different. Similarly, the CPR average of M1 is different than other methods in addition

to the CPR average of M4 which is different than the CPR averages of both M2 and M5.

Whereas, M2 and M3, on average, are equally predicting images like M5.

As a result, the prediction methods of W (G) and W (L) are the same with slightly

relative parameter values, in particular in M3 and M4. This differences due to the the

structure of images are different, and hence the smoothing parameter can also be differ.

The prediction methods in W (LG) is different than W (G) and W (L), this occurs because

the sample size of this type of image is approximately 4 times bigger than the other



Chapter 5. Prediction of Biomedical Images 153

images. Therefore, all low-resolution images can be predicted by high-resolution im-

ages with different prediction methods. This leads to the these two image types being

considered to be consistent spatially.

5.5 Discussion

In this chapter the rectal cancer dataset, which contains different sampling area of the

whole tumor, is only used to assess the consistency of pairs of images. Two ways of

consistent assessment for pairs of images have been consider. The consistency of the

distribution of spot classes is investigated for any pairs of images to find if they are con-

sistent. More interestingly, the consistency of pairs of images sharing the same location

can be checked by spatial prediction.

Different methods of spatial prediction for pairs of overlapping images are explained

and their predictions are assessed for various images. We found that the distribution of

classes for the low-resolution images are consistent with high-resolution images. These

pairs of images were also spatially smooth, where nearby points in image tend to have

the same classes. This means, sampling the the whole image is essential, however there

is less need to sample high-resolution images.
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Applications in Pathology

6.1 Introduction and motivation

Response to cancer treatment, which is the body’s reaction to a specific treatment regi-

mens, is varied and it could be determined by, for instance, the tumor spot density in the

whole tumor (TCD(W )) (West et al., 2010b), or the proportion of tumor (POT ) (West

et al., 2010a), but they suggested that more investigation is needed for POT . Similarly,

we would like to investigate whether the spatial information encapsulated in I helps to

classify patients into different treatment groups. Also, Hale et al. (2016) showed that

POT of the biopsy (Bx), can be used to predict the chemotherapy benefit for patients,

however, chemotherapy treatment, in our datasets, has been randomly given. It is of no

interest to predict a random event, whereas treatment might be predicted if it has been

allocated based on a diagnosis. This chapter covers the pathologists statistical questions

through the project by investigating the usefulness of the I statistic. An exploratory anal-

ysis for all clinical covariates (also called variables) is performed in Sections 1.3.1 and

1.3.2, however, the I statistic was not included.

Now the frequently asked questions are highlighted for both gastric and rectal cancer

datasets with specific aims. An essential question is: "Is the I statistic associated with

the survival time of patients?" as we need to determine if the I statistic can be beneficial

as a prognostic tool. Moreover, "Is I associated with any clinical variables, in particular,

the proportion of tumor (POT )?" which is commonly used by pathologists. Finding any

associations with I may help to find which variable affects tumor heterogeneity.

154
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Moreover, the classification of spots, into tumor and stroma, is determined by the

pathologist as described in Section 1.4, yet this has changed a couple of times through

the project. Therefore, we perform an investigation, using only the gastric cancer dataset,

to explore whether the changing of spot classification affects the significance of survival

curves of the I statistic. Finally, the tumor spot density in the whole tumor (TCD(W )),

which has been defined in Section 1.3.2, is an essential measurement for pathologists,

which requires sampling the whole tumor image (W ) and then calculating the TCD.

Hence, another clinical question is "Can the TCD(W ) be predicted from I , as well as

all clinical variables among patients?" The aim here is to find if there is any relationship

that could decrease tumor heterogeneity and might improve targeted treatment.

The I statistic is a continuous covariate but can be made discrete by grouping patients

into subcategories (e.g., two I subgroups classified relative to the median). The aim

of this division is to allow the use of various standard analyses, in particular survival

analysis, and answering the pathologists’ questions. In addition to make a guide for

pathologists to use the I statistic as a diagnostic tool. There are three different cutoffs

that have been used to divide I into different subgroups. The first partitions I according

to the median value classifying I into two sets, where IM = 0 if I is less than or equal to

the median, otherwise IM = 1. The second division, divides the sorted values of I into

three equal groups, called IT , so that each group contains the same number of patients.

Another classification divides I into three groups depending on its significance using the

statistical test in Section 2.3.2. If we have a significant negative I with regular pattern,

IS = 0, if we have a random image, IS = 1 and otherwise IS = 2 when we have positive

I with a significant clustering pattern. The proportion of tumor is also partitioned by the

median which gives the binary variable POTD.

Several survival techniques for modelling are considered, which are parametric, non-

parametric and semi-parametric, in order to investigate the benefit of the I statistic for

gastric and rectal cancers datasets. The main objective from modelling is investigating

if the I statistic, IM , IT ,or IS , helps to predict the survival time of the patients. All

clinical variables are also considered, and a variable selection procedure is applied. If

the model included the I statistic, the model is highlighted and then its goodness of fit

is assessed, otherwise the model is not relevant. To predict I and TCD(W ), we can

simply fit a multiple regression model using only the main effects. The best model is
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checking based on Akaike Information Criterion (AIC) (Akaike, 1973). Thus we choose

the model that has the smallest AIC value using a stepwise selection method. Then, the

goodness-of-fit is assessed by testing the randomness of residuals for the fitted model.

This chapter has been divided into four main sections. Some background about sur-

vival analysis and model selection and diagnostic is reviewed in Section 6.2. Sections

6.3 and 6.4 contain the analysis which is related to gastric cancer and rectal cancer,

respectively. The conclusions and findings from this chapter are given in Section 6.5.

6.2 Survival analysis and model selection

Survival analysis can be defined as modelling of the time to death. The probability

distribution of survival time can be either assumed to follow a particular form or to be

distribution-free. Our aim is not predicting survival, but to use various survival models

and compare the survival curves statistically to assess, in particular, whether there is a

significant association between the I statistic and time to event. Finding any survival

modes in which the I statistic is involved may help the pathologists in patient diagnosis.

However, all covariates will also be considered in the assessment and the best model is

selected based on a stepwise selection procedure. The diagnosis of the goodness for the

fitted model is also obtained, however, the comparison between different survival models

for the same dataset is not checked. If the model included the I statistic and well-fitted,

the interpretation of the model is presented. Most definitions and models are drawn from

Chatterjee and Chatterjee (2010); Collett (1994); Klein and Moeschberger (1997); Lee

(2003); Parmar and Machin (1995); Rodríguez (2010).

Suppose T is a continuous non-negative random variable which is the survival time.

Suppose the random variable T follows a distribution with a probability density function

f(t). Let F (t) be the cumulative distribution function, i.e. F (t) = P (T < t). The

survival function S(t) is given by

S(t) = P (T > t) = 1− F (t). (6.1)

Equation (6.1) gives the probability that a subject will survive past time t. A hazard

function, h(t), which is the instantaneous rate at which events occur, is defined mathe-
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matically by

h(t) =
f(t)

S(t)
. (6.2)

A functional form from the hazard function can be an alternative approach which can,

alternatively, be determined from

S(t) = exp
{
−H(t)

}
, (6.3)

where H(t) =
∫ t
0
h(u)du denotes the cumulative hazard, which can be obtained from

the survivor function, since H(t) = − logS(t).

From Equation (6.2) it is clear that if one of h(t),f(t) or S(t) is known, the others can

be calculated. These functions can be estimated using three classes of survival analysis

models: parametric, non-parametric and semi-parametric. All models used will now be

briefly described.

6.2.1 Parametric survival models

Parametric approaches are methods in which we make distributional assumptions about

the survival times. Suppose ε is a random variable with a specific distribution on (−∞,∞).

For different individual, this random variable is assumed to be independent and identi-

cally distributed with known forms of density function g(ε;d) and survivorship function

G(ε;d) but unknown parameters d. The G(ε;d) can be generated by introducing loca-

tion and scale of the form

log T = β0 +

p∑
j=1

βjxj + ηε, (6.4)

where β0 is the intercept, β = (β1, . . . , βp) is a vector of regression coefficients, xj , j =

1, . . . , p, are the covariates, η is an unknown scale parameter and T is the survival time

(Lee, 2003; Rodríguez, 2010). Equation (6.4) is the general form of accelerated failure

time (AFT) which describes contraction of survival time as a function of independent

variables. The model (6.4) can also be expressed in term of survival time as

T = exp
{
β0 +

p∑
j=1

βjxj + ηε
}
, (6.5)
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where the respective alternative density and survival functions are f(t; b) and S(t; b), re-

spectively. The coefficients to be estimated and regression parameters are b =(β0,β, η).

The MLE of b is a set of b1, . . . , bk, that maximise l(b). The MLE of b̂ must be ob-

tained by a numerical method as there is no closed form solution. The commonly used

numerical method is the Newton-Raphson iterative procedure (also known as Newton’s

method). For more information see Lee (2003).

We now review five different distributional assumptions, which have been used, for

the error term ε in model (6.4). This term can be, for instance, assumed to follow stan-

dard normal distribution which is similar to assume that T has a log-normal distribution

in Equation 6.5. The five distributions are Weibull, exponential, log-logistic, logistic and

log-normal. The parametric model can be fitted using the survival package survreg

for any distribution. The distributions used are briefly defined with their h(t),f(t) or

S(t) functions in Table 6.1.

Table 6.1: Commonly used distributions for parametric survival models with corresponding
probability density functions, survival functions, hazard rates and model parameters.

Distribution
f(t) S(t) h(t) Parameters

T
Weibull λγtγ−1exp{−λtγ} exp{−λtγ} λγtγ−1 λ, γ

γ, λ > 0, t ≥ 0
Exponential λexp{−λt} exp{−λt} λ λ

λ > 0, t ≥ 0

Log-logistic λγtγ−1

(1+λtγ)2
1

1+λtγ
λγtγ−1

1+λtγ
λ, γ

γ, λ > 0, t ≥ 0

Logistic exp{t}
1+exp{t}

1
1+λtγ

(1+λtγ) exp{t}
1+exp{t} λ, γ

γ, λ > 0, t ≥ 0

Log-normal
exp{− 1

2σ2 (log t−µ)2}
tσ

√
2π

1− Φ
(
log at

σ

)
f(t)
S(t)

σ

σ > 0, t ≥ 0

where a = exp{−µ} and Φ(y) = 1√
2π

∫ y
0
exp{−u2

2
}du.

First of all the Weibull distribution, with parameters λ and γ (both of them greater

than zero), is the most popular assumption. The λ is known as a scale parameter, while

the parameter γ is the shape parameter. The hazard function, h(t), is increasing over time
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if γ > 1, constant if γ = 1, and decreasing if γ < 1. The second model is the exponential

distribution, which is the simplest model of hazard function, h(t) = λ, which is assumed

to be constant over time. The λ parameter is a positive constant which can be estimated

by fitting the model to the observed data. The third model is the log-logistic with λ and

γ parameters, and similarly the logistic. Finally, if ε ∼ N(0, 1), T has a log-normal

distribution with σ parameter. Survival time is a continuous response in all distributions,

but if the survival time is a discrete variable, the logistic distribution can also accept

discrete response times.

6.2.2 Non-parametric survival models

Non-parametric survival models can be explained by the empirical probability of surviv-

ing past certain times obtained in the sample. This model has no distributional assump-

tion required but it is a univariate method which requires categorical covariates, thus the

discretised I (IM , IT and IS) are used. In this section, the Kaplan-Meier (KM) method

(Kaplan and Meier, 1958) is used to illustrate and plot the survival curves from lifetime

data for each individual variable, but the log-rank test (Harrington, 1982) is used to com-

pare between KM survival curves to detect if they are statistically different. The survival

curves of the KM estimator are plotted using the survival package survfit function,

and the log-rank test is applied using the survival package survdiff function to com-

pare survival curves between specified groups. To compare statistically between curves,

the log-rank test is used.

Table 6.2: At the jth death time, number of deaths in each of two groups (Collett, 1994).

Group Number of deaths Number surviving Number at risk
at tj beyond tj just before tj

1 d1j n1j − d1j n1j

2 d2j n2j − d2j n2j

Total dj nj − dj nj

A log-rank test is used to compare between survival functions from different groups.

Considering two groups of treatment, group 1 and group 2, the log-rank test is con-

structed as follows. We assume death times are independent in both groups and r are

distinct death times recorded to the nearest time of death, t1 < t2 < · · · < tr, across the
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two groups, so at time tj , dij individuals in the ith group, j = 1, 2, . . . , r and i = 1, 2.

Suppose also that there are nij individuals at risk of death in the ith group before time

tj . As a consequence, at time tj , there are dj = d1j + d2j deaths out of nj , where

nj = n1j + n2j individuals are at risk (see also Table 6.2). Sometimes it is possible to

have two patients die at the same time. This rarely occurs in the gastric cancer dataset

as the time is recorded by day, but we could have a multiple event in the rectal cancer

dataset because the time of death is recorded by the nearest month of death.

Now we consider the null hypothesis, H0, that there is no difference between two

survival functions. In order to assess the validity of this hypothesis we consider the

difference between the observed number of dead individuals in the two groups at each

of the death times. Collett (1994) explained that d1j in Table 6.2 has a hypergeometric

distribution, according to which the probability that the random variable associated with

the number of death in group 1 takes the value d1j is

(
dj
d1j

)(
nj−dj
n1j−d1j

)(
nj

n1j

) , (6.6)

where (
x

y

)
=

x!

y!(x− y)!
.

The mean of the hypergeometric random variable dij is

eij = nijdj/nj.

Next, we sum the differences d1j − e1j over all r death times, in the first and second

group of treatments

UL =
r∑
j=1

(d1j − e1j).

The variance of UL is the sum of the variances of the d1j , because the death times are

independent of one another. Now, as d1j has a hypergeometric distribution, the variance

of d1j is

v1j =
n1jn2jdj(nj − dj)

n2
j(nj − 1)

,
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therefore, the variance of UL is

var(UL) =
r∑
j=1

v1j = VL.

When the number of death times is large, UL is approximately normally distributed. It

then follows that, when the null hypothesis is true

UL/
√
VL ∼ N(0, 1),

the square of a standard normal random variable has a chi-squared distribution on one

degree of freedom (dof= 2− 1 = 1) under H0

WL =
U2
L

VL
∼ χ2

1.

The test based on this statistic is called the log-rank test. The larger the value of this

statistic, the greater the evidence against the null hypothesis in favour of the alternative

that the two treatment groups are not equally effective. The corresponding p-value of this

statistic can be obtained from the distribution function of a chi-squared random variable.

6.2.3 Semi-parametric survival models

The Cox proportional hazard (PH) model (Cox, 1972) is one of predominant semi-

parametric survival models, where the distribution of survival times is unknown. This

model investigates the association between the survival time of patients and one or more

independent variables. The Cox PH model works for quantitative and categorical vari-

ables and in addition can be extended to assess the effect of several risk factors on sur-

vival time. The Cox PH model is fitted using the survival package coxph function. The

standard Cox proportional hazards model can be written as

h(t) = h0(t) exp{β1x1 + · · ·+ βpxp}, (6.7)

where h(t) is the hazard function at time t, which is determined by a set of p variables,

h0(t) is called the baseline hazard which illustrates the hazard when x1 = x2 = · · · =
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xp = 0 and the coefficients β1, . . . , βp measure the impact of the variables. The exp(β1),

. . . , exp(βp) are also called hazard ratios (or relative risks). Coefficients and hazard

ratios interpretations will be compared for each dataset. The coefficients estimation

can be obtained without specifying the baseline hazard h0(t) by maximising the partial

likelihood using the Newton-Raphson algorithm.

6.2.4 Model selection and diagnosis

In modelling, the essential variables need to be selected and then the optimal model

is assessed. This section explains the process of selecting variables to determine the

optimal model, in addition to diagnosing its goodness-of-fit.

Choosing the optimal model is determined by Akaike Information Criterion (AIC)

which is a measure of goodness-of-fit. This statistical process of model selection is

based on the log-likelihood l(b̂) for the fitted model, where b̂ refers to the parameters of

the model. The AIC is computed as

AIC = −2l(b̂) + 2k, (6.8)

where k is the number of parameters in the model. A lower AIC value indicates a better

model fit. The computation of the AIC statistics is difficult to obtain for all possible

models with various variable settings due to computational efficiency. Thus the stepwise

regression method using both forward and backward elimination is applied to compute

the AIC statistics. The stepwise algorithm estimates the quality of each model, relative

to each of the other models in order to choose which model has the best fit.

To assess the appropriateness of the linear regression model, residuals are defined and

their plot examined. The residuals are defined as the difference between the observed

value of the dependent variable, say y, and the predicted value (ŷ), which can be written

mathematically as ei = ŷi− yi,i = 1, . . . , n, where each observation (or patient) has one

residual. In the case where the points in a residual plot are randomly dispersed around

the horizontal axis, the model is well-fitting.

Nevertheless the standard residual-based measures of multiple regression are inap-

propriate for checking the survival time in parametric and semi-parametric models. To

diagnose the survival model, after the model selection step, Cox-Snell residuals (Cox
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and Erricker, 1968) are used. The procedure can be summarised as follows: Let Ŝ(ti)

denote the estimated survival function of the ith individual. The Cox-Snell residuals are

calculated as ri = − log{Ŝ(ti)}, i = 1, . . . , n. Then we need to apply the Kaplan-Meier

method to estimate the survival function ŜR(ri) of the Cox-Snell residual ri, and calcu-

late − log{ŜR(ri)}, i = 1, . . . , n, which is the estimated cumulative hazard. Finally, we

plot ri against− log{ŜR(ri)}, and if the plot is close to a straight line with zero intercept

and unit slope, the model is well-fitting. For more information see Collett (1994).

6.3 Gastric cancer

This section includes the analysis which is related to the gastric cancer dataset containing

223 patients. Variables in this dataset, which are used in this section, are defined in

Table 1.1, and are as follows: pT of four stages is pathological tumor stage, JS of seven

stages is the Japanese classification of tumor, LS of two stages is Lauren Classification

of tumor and chemo is a received chemotherapy indicator, where chemo = 1 indicates

the patients who had no chemotherapy and chemo = 2 otherwise. The POT and the I

statistic are also used as well as their partitioned versions POTD, IM , IT and IS , where

the median of POT is 0.384 and I is 0.127. As the direction of lumen, defined in Section

3.3.3, was provided for this dataset, we can use the directional versions of the I statistic

(I1, I2 and I3). Only 218 images, however, have the indicator of direction to the lumen

site, so only these images are considered.

This section begins with a survival time analysis using parametric, non-parametric

and then semi-parametric models in Section 6.3.1. Then, we find if there are any asso-

ciations between the I statistic and clinical variables in Section 6.3.2. Classification of

spots, previously explained in Section 1.4, is also adjusted to include other possible clas-

sification of spots into tumor and stroma and then each option of classification is used to

calculate the classified I statistics (IM , IT and IS) in order to find if their significance of

survival curves are changed.
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6.3.1 Survival analysis

Three models of survival times are considered. We start with a parametric model, then

non-parametric and semi-parametric models.

Firstly, in the parametric model, we need to determine the appropriate survival time

distribution for the gastric cancer dataset, which was described in Table 6.1. To choose

the appropriate distribution, we fit all five parametric models for a fixed covariates, where

each variable is the only one in the model, and then the AIC is calculated. The AIC pro-

cedure is similar to those based on the likelihood function. Now all AIC values are

shown in Table 6.3. By comparing the Weibull, exponential, log-logistic, logistic and

log-normal models, we found that the log-normal has the smallest AIC for all variables.

This distribution is now used to fit a parametric survival model for all clinical variables

(pT, JS, LS, chemo, POT ) in addition to including I, IM , IT , and IS , which are sepa-

rately added to the model.

Table 6.3: Comparison of survival models using Akaike Information Criterion (AIC) for each
variable in turn, where lower AIC values indicate a better fit.

Variables
Models

Weibull Exponential Log-logistic Logistic Lognormal
pT 525 526 519 589 514
JS 531 531 526 595 521
LS 533 534 528 598 523
chemo 527 529 523 591 520
POT 531 532 526 595 521
I 532 532 527 597 522

We now have four possible parametric models with different versions of I . After

the stepwise selection method, the I statistic and IT and IM were dropped from the

survival models. We are left with only one model, which contains IS as shown in Table

6.4 with AIC= 511. Some p-values of parameters (pT = 2, 3 and 4), however, are not

significant, thus levels 1 and 2 as well as levels 3 and 4 of the pT covariate are merged

as showing in the same table with AIC=514, but most of parameters are significant. The

best parametric survival model can be expressed as

log T = β0 + β1I[pT = 2] + β2I[IS = 2] + β3I[chemo = 2] + ηε, (6.9)
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Table 6.4: The estimated coefficients with corresponding standard deviation, p-values and es-
timated scale parameter of the log-normal model for the gastric cancer dataset after a stepwise
selection method.

Covariate Estimated parameters Sd P-value
Intercept 7.886 943.664 0.993
I[pT = 2] −5.843 943.664 0.995
I[pT = 3] −5.606 943.664 0.995
I[pT = 4] −6.319 943.664 0.995
I[IS = 2] 0.385 0.217 0.076
I[chemo = 2] −0.351 0.211 0.096
Scale(η) 0.190 0.086

Intercept 2.103 0.316 0.000
I[pT = 2] −0.434 0.286 0.129
I[IS = 2] 0.437 0.216 0.043
I[chemo = 2] −0.418 0.211 0.047
Scale(η) 0.197 0.087

where I[.] indicates a particular level of a discrete variable and η is a scale parameter.

The estimated coefficients for the log-normal survival model for each variable are shown

in Table 6.4, together with standard error and p-values to test the null hypothesis H0 :

βj = 0. The significant coefficients have an important effect on the survival time, but

none of p-values are significant. We can also check the model in Equation (6.9), using

the Cox-Snell residuals plotted in Figure 6.1 showing that the model fit is unacceptable

as there is serious deviation from the central line. Hence, the interpretation of this model

is not included.

Secondly, the Kaplan-Meier non-parametric survival function is used to investigate

the differences in survival curves. This model is fitted for each discrete variable individ-

ually where some examples are shown in Figure 6.2. There were significant differences

between some survival curves within each variable, for instance, IS , pT chemo. Let’s

compare the survival curves of two IS groups. From Figure 6.2 (top-right plot), the

horizontal axis represents time in years, and the vertical axis gives the probability of

surviving. The two lines show survival curves of the two groups of IS . The survival

probability for patients is 100% at time zero. At year 2, the probability of survival is ap-

proximately 73% for IS = 1 and 81% for IS = 2. The median survival is approximately

4 years for IS = 2 and zero years for IS = 1. That means patients in group IS = 2 had

better survival than those for IS = 1.
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Figure 6.1: Cox-Snell residuals to assess the fit of the log-normal regression model in Equation
(6.9) for gastric cancer dataset using, where the red line shows ri against − log{ŜR(ri)}.

Figure 6.2: The Kaplan-Meier survival curves in the gastric cancer images for the classified I
statistic ( IM , IT and IS), tumor stage pT , treatment type chemo and classified POT (POTD).
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The significant differences between survival curves in Figure 6.2 can be confirmed

using the log-rank test in Table 6.5, where the p-values less than 0.05 indicating that we

can reject the null hypothesis H0 : there is no difference between two survival curves.

However, IT , IM , JS, LS and POTD have similar survival curves.

West et al. (2010a) also found that the p-value of pT was significant (p-value= 0.0001).

However, they found that there is a significant difference in survival times between low-

POT and high-POT , but their median of POT value was 57.1%, whereas the median

of POT in our data set is relatively low, 38.3%.

Table 6.5: The chi-squared statistic of the log-rank test with corresponding degrees of freedom
and p-values for each discrete variable for the gastric cancer dataset.

Variables Chi-square Dof p-value
IT 2.9 2 0.20
IM 2.9 1 0.60
IS 4.4 1 0.04

pT 10.3 3 0.02
JS 8.0 6 0.20
LS 0.4 1 0.50
chemo 5.9 1 0.02
POTD 0.0 1 0.90

In addition to the I statistic, the directional versions (I1, I2 and I3) in Section 3.3.3

are also used in survival analysis. A new measurement, called I(R), is calculated for

218 patients defined as

I(R) = max(I1, I2, I3)−min(I1, I2, I3).

The objective from calculating IR measurement using the directional I statistics is

investigating if heterogeneity affects the survival time and useful in patient dignosis.

The IR measurement is then classified using the same method as I which we call IM(R)

and IT (R). The long-rank test is applied for the division of IR shown in Table 6.6. Here

there is no significant difference between survival curves of IM(R) and IT (R).

Table 6.6: The chi-square statistic of the log-rank test with their degrees of freedom and p-values
for the divisions of the I(R) statistic for directions.

Original I stat classified I Chi-square Dof p-value

I(R)
IT (R) 0.3 2 0.9
IM(R) 0.5 1 0.9
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Finally, the Cox PH regression is fitted, where all variables pT , JS, LS, chemo,

POT are included in addition to the I statistic and its partitioned versions IM , IT and IS

which have been separately added. However, level 1 and 2 in pT covariate are merged

as the number of patients in level 1 is low and the Cox PH model does not accept a low

number of patients in any group, and thus the pT now has three levels: 2, 3, 4, where

pT = 2 is the default group. The best model is then selected by the stepwise method,

which has the lowest AIC= 807, and can be expressed as

h(t) = h0(t) exp
{
β1I[pT = 3] + β2I[pT = 4] + β3I[IS = 2] + β4I[chemo = 2]

}
.

(6.10)

Table 6.7: Cox PH model for the gastric cancer dataset shown in Equation (6.10).

Covariate β̂ exp{β̂} Sd(β̂) P-value
I[pT = 3] −0.380 0.683 0.549 0.489
I[pT = 4] 0.579 1.784 0.343 0.091
I[IS = 2] −0.466 0.627 0.232 0.044
I[chemo = 2] 0.522 1.686 0.239 0.029

The estimated coefficients with their corresponding exponential, standard error and

p-values, to test the null hypothesis that H0 : βj = 0, are shown in Table 6.7. From this

table the significant coefficients on the survival time are IS = 2 and chemo = 2. The

estimation of the baseline hazard function h0(t) is the estimated hazard of death at time

T for an individual whose I is random and who has not had chemotherapy treatment.

To assess the goodness-of-fit for model (6.10), Cox-Snell residuals are plotted in Figure

6.3. It is clear that the Cox PH model is appropriate as the plot of the residual is close to

the straight line.

The interpretation is that holding the other covariates constant, being a patient with

clustered image (IS = 2) reduces the hazard by a factor of 0.627 or 37.3%. While

patients who had chemotherapy (chemo = 2) have a hazard ratio 1.686 indicating an

increased risk of death by 68.6% compared with patients who had no treatment. As

a result, the survival time for the gastric cancer dataset can be significantly predicted

using IS and non- and semi-parametric survival models, where the clustered images are

associated with higher survival time and we can say that being clustered images are

associated with a good prognostic.
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Figure 6.3: Cox-Snell residual plot for the gastric cancer dataset using the parametric model in
Equation (6.9), where ri against − log{ŜR(ri)} is red line.

6.3.2 Predicting the I statistic

The I statistic may be considered as a measure of image heterogeneity. The aim for this

section is to find how I is associated to clinical variables including POT . To describe

the relationship between a set of clinical predictors and response I , we simply fit a

multiple regression model. The survival variables are excluded as they have already been

considered in Section 6.3.1. The clinical variables are pT, JS, LS, chemo and POT .

Table 6.8: The estimated coefficients with their corresponding standard error and p-values of the
fitted multiple regression model in Equation (6.11) for the gastric cancer dataset.

Covariate β̂ Sd(β̂) P-value
Intercept 0.179 0.090 0.047
I[pT = 2] 0.030 0.066 0.644
I[pT = 3] 0.025 0.067 0.706
I[pT = 4] −0.017 0.064 0.780
I[JS = 2] −0.021 0.063 0.737
I[JS = 3] 0.020 0.057 0.719
I[JS = 4] 0.237 0.115 0.041
I[JS = 5] 0.125 0.116 0.283
I[JS = 6] 0.257 0.119 0.032
I[JS = 7] 0.057 0.073 0.436
I[LS = 2] −0.194 0.099 0.052
I[chemo = 2] 0.031 0.017 0.084
POT −0.107 0.046 0.022



Chapter 6. Applications in Pathology 170

After fitting the regression model and then applying the stepwise selection procedure,

the best model with the smallest AIC value, equals −282, as follows

I = β0 + β1I[pT = 2] + β2I[pT = 3] + β3I[pT = 4] + β4I[JS = 2] + β5I[JS = 3]

+ β6I[JS = 4] + β7I[JS = 5] + β8I[JS = 6] + β9I[JS = 7] + β10I[LS = 2]

+ β11I[chemo = 2] + β12POT + ε, (6.11)

where ε is a random error which is assumed to be normally distributed with mean 0 and

variance σ2, and I[.] refers to a particular level in a covariate.

Figure 6.4: The residuals distribution of model in Equation (6.11)

However, none of the variables are dropped. The estimated regression coefficients

βi’s together with their corresponding standard error and p-values are shown in Table

6.8. The null hypothesis of coefficient are H0 : βi = 0, . . . , 11. A low p-value (< 0.05),

implies that the null hypothesis can be rejected. To confirm the quality of the model, we

look at the residual plot of this model in Figure 6.4. There is not much change in the

overall pattern and residuals are randomly distributed. When none significant parameters

are removed, for example pT , the AIC increased to -280 and the significant parameters

are become not significant.

The interpretation of model (6.11), from Table 6.8, is as follows: the covariate that

has a low p-value is likely to be meaningfully related to changes in the I statistic. For

example, as POT increases by 1%, the I on average, decreased by 10.7%. Also, the
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coefficients of JS for level 4 and 6 are positive which means that these levels have a

higher I statistic than the default group (JS = 1). As a result, it is clear that there is a

relationship between the I statistic and Japanese classification of tumor and proportion

of tumor.

6.3.3 Sensitivity analysis of alternative allocation of spots

As discussed in Section 1.4, the pathologists recommended the way of grouping the spot

types into two sets. However, the way of groping had been changed couple of times

during the project. Using sensitivity analysis, several different ways of grouping the

spots into two sets are considered to investigate the impact of spot allocation could affect

the difference of the survival distributions. This section considers the classification of

spots in Section 1.4 as well possible alternative allocation for the gastric cancer dataset.

Table 6.9: Different options of spot classification, where each of spot types 1, 2, 4, 5, 6 and
8 are defined as S (stroma) and T (tumor) and the highlighted grey column is the pathologists
recommended classification.

Spot type O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16

1 T T T T T T T T T T T T T T T T
2 S S S S S S S S S S S S S S S S
4 T S T S S S S T T T T T S S T S
5 T S S T S S T S T T T S T S S T
6 T S S S T S T T S T S T S T S T
8 T S S S S T T T T S S S T T T S

Pathologists have no doubt about both tumor and stroma spot classifications, which

are spot types 1 and 2, in addition to excluding some spot classifications (0, 3 and 7).

However, they sometimes reallocated other spot types, which are 4, 5, 6 and 8 spot

classification, to be either a tumor or stroma. Considering every possible allocation of 4,

5, 6 and 8 that means there are 24 ways can be allocated to tumor or stroma. Here, we

will investigate and experiment how different allocations could affect the log-rank test.

Suppose the spot classification is denoted by O, so the different options of classification

can be written as O1, . . . ,O16 (see Table 6.9), where O1, for instance, means we consider

the classification number 2 as stroma and the rest are tumor.

Table 6.9 displays all possible allocations, given that the tumor and stroma spot types

are fixed, where O5, highlighted in grey, is the allocation of spots which has been con-

firmed by pathologists in Section 1.4. All these different option sets of allocation have
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Table 6.10: The p-values of log-rank test for different divisions of I statistics for 218 patients,
where Ok, k = 1, . . . , 16, are from Table 6.9, where the highlighted grey row is the pathologists
recommended classification, where IM refers to dividing the I statistic by median, IT refers
to dividing the I statistic into three equal groups and IS refers to divide I into three groups
depending on its significance

Classification option P-value
IM IT IS

O1 0.662 0.104 0.008
O2 0.232 0.237 0.121
O3 0.346 0.243 0.116
O4 0.188 0.083 0.002
O5 0.599 0.298 0.044
O6 0.530 0.366 0.157
O7 0.630 0.232 0.004
O8 0.959 0.604 0.062
O9 0.064 0.137 0.002
O10 0.484 0.103 0.005
O11 0.070 0.171 0.002
O12 0.637 0.451 0.029
O13 0.164 0.120 0.004
O14 0.761 0.271 0.060
O15 0.326 0.335 0.208
O16 0.654 0.216 0.003

been used to calculate the I statistic for 218 patients in Table 6.10, and we then applied

the long-rank test to determine whether there is a significant difference between survival

curves, partitioning I as before.

As a result, there are some option sets which have no significant differences in sur-

vival curves which are O2, O3, O6, O8, O14, O15 and O16. The IM and IT division of

the I statistic show no significant values for all options of allocations. The significant

p-values were only in IS using O1, O4, O5, O7, O9, O10, O11, O12, O13 and O16 allocation

options. As a result, we can say that the allocation options that are close in the result

of log-rank test for all IM , IT and IS are O7, O12, O16 which is close to O5. Therefore,

we can say that if the pathologists used either O7, O12 and O16 or O5 of allocation of the

spots, they could have a similar result of log-rank test.
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6.4 Rectal cancer dataset

The rectal cancer dataset includes multiple images per patient which are biopsy images

(Bx), whole tumor images (W ) and luminal site images (L). The clinical variables,

defined in Section 1.3.2, are used in two types of survival times: follow-up (FU ) and

disease-free (DF ) survival times. The clinical variables of 113 patients are Pr.Tstage

of three stages, which indicates pre-operative tumor assessment, pT of five stages, which

shows the tumor stage, pN of two stages, which indicates lymph nodes stage, pM of two

stages, which shows distant metastasis stage, therapy of three types, which indicates the

chemotherapy type, Gender, indicates the gender of patient, where Gender = 1 refers

to male and 2 otherwise and Age, which is the age of patient. In addition to these

variables, the tumour cell density of image type, which are TCD(Bx), TCD(W ) and

TCD(L), are also defined. Extra variables, which we have calculated, are also defined

in Table 6.11 to be used in the analysis of this section. This table includes the notation of

proportion of tumor and the I statistic with different divisions for the three image types.

Table 6.11: Extra variables description of rectal cancer dataset, whereBx refers to biopsy image,
W the whole tumor image and L lumen site image.

Variable name Description
POT (Bx) The proportion of tumor from Bx
POT (W ) The proportion of tumor from W
POT (L) The proportion of tumor from L
POTD(Bx) Divide POT (Bx) by median, where POTD(Bx) = 0 if POT (Bx) ≤ median(POT (Bx)) and 1 otherwise
POTD(W ) Divide POT (W ) by median, where POTD(W ) = 0 if POT (W ) ≤ median(POT (W )) and 1 otherwise
POTD(L) Divide POT (L) by median, where POTD(L) = 0 if POT (L) ≤ median(POT (L)) and 1 otherwise
I(Bx) The I statistic of BX
I(W ) The I statistic of W
I(L) The I statistic of L
IM(Bx) Divide I(Bx) by median, where IM(Bx) = 0 if I(Bx) ≤ median(I(Bx)) and 1 otherwise
IM(W ) Divide I(W ) by median, where IM(W ) = 0 if I(W ) ≤ median(I(W )) and 1 otherwise
IM(L) Divide I(L) by median, where IM(L) = 0 if I(L) ≤ median(I(L)) and 1 otherwise
IT (Bx) Classify sorted I(Bx) into three equally groups
IT (W ) Classify sorted I(W ) into three equally groups
IT (L) Classify sorted I(L) into three equally groups
IS(Bx) Classify I(Bx) into three groups IS(Bx) = 0 refers to significant regular image of Bx,

IS(Bx) = 1 denote a random image and IS(Bx) = 2 show significant clustered image
IS(W ) Classify I(W ) into three groups IS(W ) = 0 refers to significant regular image of W ,

IS(W ) = 1 denote a random image and IS(W ) = 2 show significant clustered image
IS(L) Classify I(L) into three groups IS(L) = 0 refers to significant regular image of L,

IS(L) = 1 denote a random image and IS(L) = 2 show significant clustered image
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Table 6.12: Best logistic models with corresponding estimated coefficients, standard error, p-
values, estimated scale parameter and AIC value for the rectal cancer dataset using FU survival
time after variable selection.

FU survival time
Model 1: log(T ) ∼ Age+ pT + pN + TCD(W ) + TCD(L) + POT (L) + I(Bx)

AIC=300.4
Covariate Estimated parameters Sd P-value
(Intercept) 143.537 28.371 0.000
Age −0.575 0.347 0.098
I[pT = 2] −37.364 18.628 0.045
I[pT = 3] −30.866 16.783 0.066
I[pT = 4] −18.068 19.001 0.342
I[pN = 1] −20.414 8.643 0.018
I[pN = 2] −37.591 12.100 0.002
TCD(W ) 1.659 0.936 0.076
TCD(L) −5.234 1.391 0.000
POT (L) 3.908 1.203 0.001
I(Bx) −48.555 30.364 0.109
Scale(η) 2.646 0.157

Model 2: log(T ) ∼ Age+ pT + pN + TCD(W ) + TCD(L) + POT (L) + IM(Bx)
AIC= 299.9

Covariate Estimated parameters Sd P-value
Intercept 139.575 28.444 0.000
Age −0.561 0.358 0.116
I[pT = 2] −36.111 18.805 0.055
I[pT = 3] −32.243 17.016 0.058
I[pT = 4] −22.689 19.619 0.247
I[pN = 1] −18.852 8.925 0.035
I[pN = 2] −36.247 12.326 0.003
TCD(W ) 1.750 0.957 0.067
TCD(L) −5.337 1.406 0.000
POT (L) 3.984 1.213 0.001
I[IM(Bx) = 1] −14.550 8.724 0.095
Scale(η) 2.659 0.157

Model 3: log(T ) ∼ Age+ pN + TCD(W ) + TCD(L) + POT (L) + IT (W )
AIC= 299.6

Covariate Estimated parameters Sd P-value
Intercept 132.674 28.324 0.000
Age −0.841 0.420 0.045
I[pN = 1] −21.900 9.362 0.019
I[pN = 2] −38.015 12.357 0.002
TCD(W ) 1.797 1.054 0.088
TCD(L) −5.256 1.434 0.000
POT (L) 4.224 1.259 0.001
I[IT (W ) = 1] −21.170 10.828 0.050
I[IT (W ) = 2] −29.976 14.325 0.036
Scale(η) 2.701 0.155

Model 4: log(T ) ∼ Age+ pN + TCD(Bx) + TCD(W ) + TCD(L) + POT (Bx) + POT (L) + IS(Bx)
AIC= 299.8

Covariate Estimated parameters Sd P-value
Intercept 316.823 26.836 0.000
Age −0.694 0.375 0.064
I[pN = 1] −17.569 9.162 0.055
I[pN = 2] −33.466 12.255 0.006
TCD(Bx) 1.713 1.032 0.097
TCD(W ) 1.271 0.926 0.169
TCD(L) −4.651 1.302 0.000
POT (Bx) −1.390 0.901 0.123
POT (L) 3.483 1.141 0.002
I[IS(Bx) = 2] −209.109 0.000 0.000
Scale(η) 2.694 0.154
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Table 6.13: Best logistic models with corresponding estimated coefficients, standard error, p-
values, estimated scale parameter and AIC value for the rectal cancer dataset using DF survival
time after variable selection.

DF survival time
Model 1: log(T ) ∼ pT + pN + TCD(W ) + POT (L) + IS(Bx)

AIC= 367.8

Covariate Estimated parameters Sd P-value
Intercept 131.033 29.671 0.000
I[pT = 2] −51.068 21.776 0.019
I[pT = 3] −32.120 20.235 0.112
I[pT = 4] −60.340 22.981 0.008
I[pN = 1] −35.303 10.400 0.001
I[pN = 2] −38.840 13.984 0.005
TCD(W ) 6.359 3.883 0.101
TCD(L) −2.323 1.476 0.115
POT (W ) −4.415 3.040 0.146
POT (L) 1.680 1.222 0.169
I[IS(Bx) = 2] −27.749 20.890 0.184
Scale(η) 2.873 0.147

The Pr.Tstage and pT have low numbers of patients in their levels, for example

there are only two patients when Pr.Tstage = 1 and one patient when pT = 2. Very

low numbers of patients in any level is problematic in fitting some survival models. To

solve this problem, the levels, with a low number of patients, are grouped with the next

level. In pT , we now have 4 levels instead of 5, where pT = 0 and pT = 1 are combined

to be 17 patients. Similarly, Pr.Tstage = 1 and Pr.Tstage = 2 are joined, to form 46

patients in the first level (pT = 1) and 67 patients otherwise. The clinical variable pM

is removed from the analysis as it has only one patient when pM = 1.

When survival models (parametric and semi-parametric) and multiple regression mod-

els are fitted, all defined variables at the beginning of the section are included in addition

to the I statistic and its partitioned versions which are included individually, for exam-

ple adding I(Bx), I(W ) and I(L) or IM(Bx), IM(W ) and IM(L) and so forth. The

best model is then selected by the stepwise selection procedure, assessed by checking

the residual plots and finally interpreted if it is well-fitting and includes the I statistic.

In this section, different survival models, which have been defined in Section 6.2,

are applied in Section 6.4.1 in order to find if the survival time can be predicted by

the I statistic or its classified versions (IM , IT or IS) for each image type including the

clinical variables. Tumor heterogeneity may be detected by TCD(W ) or I(W ). Thus

the relationship between these covariates, as explanatory variables, and the rest of the



Chapter 6. Applications in Pathology 176

clinical variables are investigated by fitting multiple regression models in Section 6.4.2.

6.4.1 Survival Analysis

The survival analysis of the rectal cancer dataset is considered using parametric, then

non-parametric and finally semi-parametric models. Firstly, as the survival times for

the rectal dataset is a discrete variable (time in months), the appropriate distribution for

survival time is the logistic distribution from Table 6.1. For the FU survival time, the

I statistic and its different divisions are included individually, along with all clinical

variables, and thus we have four possible models.

The best logistic models which include any version of I statistic are shown in Table

6.12, where each method includes the corresponding estimated coefficients, standard

error, p-values, estimated scale parameter and AIC value. Here, each model includes

different version of IM , IT or IS for all image types. Similarly, the same process is used

forDF survival time and the best logistic models are shown in Table 6.13. The residuals

of each of these fitted models are plotted in Figure 6.5. Even though I was included in

all models, none of their plots are close to a straight line and thus all models using FU

and DF survival times are not well fitted. Thus, the interpretation of these models is not

included.

Secondly, the survival function of FU and DF is estimated by non-parametric mod-

els. Figures 6.6 displays the Kaplan-Meier curve for groups of some variables. Patients

with pN = 0, using FU and DF survival times, have significantly higher survival than

those from other levels (p-value equals 0.04 and 0.01 respectively). At month 16, the

probability of survival is approximately 93% for pN = 0, 86% for pN = 1 and 64%

for pN = 2. Similarly, the tumor stage (pT ) has significant differences in the survival

curves using DF survival time, whereas the same variable produce no significant dif-

ferences in FU survival curves. Also the log-rank test is applied for all covariates in

Table 6.14, where the significant p-values are highlighted in red to test the null hypoth-

esis that H0 : βj = 0. Neither of Pr.Tstage, therapy, Gender, partitioned I for all

images classified POT nor divided TCD have significant p-values (<0.05) for either

FU or DF survival times which means that there is no significant evidence to reject the

null hypothesis (no difference between two survival functions). Note that, to save space,
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none of the survival curves nor the log-rank test results were included.

Figure 6.5: Cox-Snell residuals to assess the fit of logistic models in Table 6.12 and 6.13 for
rectal cancer dataset using FU and DF survival times, where the red line shows ri against
− log{ŜR(ri)}.
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Figure 6.6: The Kaplan-Meier survival curves for the rectal cancer dataset for lymph node stage
pN , chemotherapy type therapy and tumor stage pT , where the first column shows follow-up
(FU ) and the second column presents disease-free (DF ) survival times.

Finally, the Cox PH model is also applied using FU and DF survival times. Each

version of I statistic is added individually with all clinical variables as we did in the

parametric models. We have in total four models for each survival time. After the step-

wise variable selection procedure, we only selected the models that included a division

of the I statistic. The best models that includes I are three models using FU survival
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Table 6.14: The chi-squared statistic of the log-rank test with corresponding, degrees of freedom
and p-values for the variables of the rectal cancer dataset using FU and DF survival times.

FU survival time
Variable Chi-square Dof P-value
Pr.Tstage 0.4 2 0.80
pT 2.8 4 0.60
pN 6.6 2 0.04
pM 20.4 1 0.00
therapy 1.8 2 0.40
Gender 1.7 1 0.20

DF survival time
Variable Chi-square Dof P-value
Pr.Tstage 0.5 2 0.80
pT 10.6 4 0.03
pN 10.6 2 0.01
pM 55.5 1 0.00
therapy 0.5 2 0.80
Gender 0.1 1 0.80

time and only one model using DF survival time.

The best models with their estimated coefficients, exponential, standard error, p-

values and AIC values are shown in Table 6.15. The goodness of fit assessment for

the Cox PH best models is checked by the Cox-Snell residuals in Figure 6.7. The only

graph which is close to a 45% line, is Model 3 Cox PH using FU survival time, indicat-

ing that this model provides a reasonable fit to the rectal cancer dataset. The best fitted

model can be expressed as

h(t) = h0(t) exp{0.034Age+ 0.694I[pN = 1] + 1.622I[pN = 2]− 0.075TCD(W )

+ 0.274TCD(L)− 0.227POT (L) + 1.019I[IT (W ) = 1] + 1.578I[IT (W ) = 2]}.

(6.12)
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Table 6.15: The Cox PH model for the I statistic of various images from the rectal cancer dataset
using the FU survival information after variable selection.

FU survival time
Covariate β̂ exp{β̂} Sd(β̂) P-value
Model 1: log(T ) ∼ Age+Gender + pN + TCD(W ) + TCD(L) + POT (L) + I(Bx)

AIC= 179.9

Covariate β̂ exp{β̂} Sd(β̂) P-value
Age 0.034 1.035 0.019 0.082
I[Gender = 2] −0.767 0.464 0.524 0.143
I[pN = 1] 0.758 2.135 0.502 0.131
I[pN = 2] 1.436 4.205 0.734 0.050
TCD(W ) −0.083 0.920 0.054 0.126
TCD(L) 0.281 1.324 0.089 0.002
POT (L) −0.206 0.813 0.078 0.009
I(Bx) 2.579 13.189 1.547 0.095

Model 2: log(T ) ∼ Age+Gender + TCD(W ) + TCD(L) + POT (L) + IM(Bx)
AIC= 178.6

Covariate β̂ exp{β̂} Sd(β̂) P-value
Age 0.041 1.042 0.019 0.032
I[Gender = 2] −0.733 0.480 0.527 0.1647
TCD(W ) −0.078 0.924 0.049 0.111
TCD(L) 0.307 1.359 0.085 0.000
POT (L) −0.223 0.799 0.074 0.003
I[IM(Bx) = 1] 0.914 2.494 0.463 0.048

Model 3: log(T ) ∼ Age+ pN + TCD(W ) + TCD(L) + POT (L) + IT (W )
AIC= 180.0

Covariate β̂ exp{β̂} Sd(β̂) P-value
Age 0.034 1.035 0.020 0.091
I[pN = 1] 0.694 2.003 0.501 0.166
I[pN = 2] 1.622 5.067 0.717 0.024
TCD(W ) −0.075 0.927 0.054 0.167
TCD(L) 0.274 1.316 0.084 0.001
POT (L) −0.227 0.796 0.075 0.003
I[IT (W ) = 1] 1.019 2.772 0.592 0.085
I[IT (W ) = 2] 1.578 4.845 0.794 0.047

DF survival time
Model 1: log(T ) ∼ pT + pN + TCD(W ) + TCD(L) + IT (Bx) + IT (L)

AIC= 249.0

Covariate β̂ exp{β̂} Sd(β̂) P-value
I[pT = 2] 2.225 9.257 1.141 0.051
I[pT = 3] 1.465 4.328 1.135 0.197
I[pT = 4] 2.689 14.730 1.157 0.020
I[pN = 1] 1.305 3.688 0.437 0.003
I[pN = 2] 1.570 4.809 0.668 0.018
TCD(W ) −0.064 0.937 0.042 0.129
TCD(L) 0.024 1.025 0.016 0.135
I[IT (Bx) = 1] −1.161 0.312 0.628 0.064
I[IT (Bx) = 2] −3.526 0.029 1.351 0.009
I[IT (L) = 1] 1.077 2.936 0.584 0.065
I[IT (L) = 2] 3.559 35.141 1.378 0.009
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Figure 6.7: Cox-Snell residuals to assess the fit of Cox PH models in Table 6.15 for rectal cancer
dataset using FU and DF survival times, where the red line shows ri against − log{ŜR(ri)}.

Table 6.15 shows, in red, the p-values which are significantly different from zero

under H0 : βj = 0 (p-value<0.05), whereas the others are not. However, if there is one

of two levels in the same variable which is not significant, the insignificant level is still

considered in the interpretation of the model. The interpretation of the model is that the

positive estimate of I[pN = 2] means that the higher stage of lymph nodes will increase

the hazard level, the hazard for patients have I[pN = 1] and I[pN = 2] are 2 and 5 times

that for those of who are in I[pN = 0]. Similarly, the positive estimate of I[IT (W ) = 2]

(more likely to be clustered images) illustrates that the structured images increase the

hazard risk, thus those patients who have I[IT (W ) = 1] and I[IT (W ) = 2] have a

hazard approximately 2.78 and 4.85 times those who are in I[IT (W ) = 0], which is more

likely to be unstructured images. For all patients, a 1% ratio increases in TCD(W ), the

hazard increased by 27.4%, but a 1% ratio increase in POT (W ), the hazard decreased

by 22.7%. In conclusion, the I statistic and its divisions were included in the logistic

parametric models, but none of models were well-fitted for the rectal cancer dataset. In

the non-parametric model, none of the classified I were significant. The only significant
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I was when IT (W ) = 2 (more likely to be clustered images), which showed an increase

of FU survival time.

6.4.2 Predicting I(W ) and TCD(W )

The aim for this section is to find the association between both the I statistic and tumor

cell density for whole tumor only and explanatory variables. Both I(W ) and TCD(W )

can reflect tumor heterogeneity, but we need to find which clinical variables are associ-

ated with them. For simplicity in analysis, the I statistic for all images, as continuous

variables, is only used without considering the partitional versions of I images, IM , IT

and IS . To model the relationship between more than two explanatory variables and

each response variable, a multiple regression model for the main effects is fitted. Es-

sential predictor variables are then selected by the stepwise procedure, the best model is

assessed by checking the distribution of residuals and we use this to also interpret if the

model is well-fitted. No survival time variables have been included because they have

already been considered in Section 6.4.1.

Table 6.16: The estimated coefficients with their corresponding standard error and p-values of
multiple regression model for rectal cancer dataset after variable selection.

I(W ) ∼ POT (Bx) + POT (L) + I(L)

Covariate β̂ Sd(β̂) P-value
Intercept −0.049 0.023 0.037
POT (Bx) 0.122 0.049 0.015
POT (L) 0.422 0.041 0.000
I(L) 0.236 0.053 0.000

TCD(W ) ∼ TCD(Bx) + TCD(L) + POT (Bx) + POT (W ) + POT (L) + I(W )

Covariate β̂ Sd(β̂) P-value
Intercept 0.887 0.650 0.175
TCD(Bx) −0.158 0.071 0.029
TCD(L) 0.240 0.065 0.000
POT (Bx) 11.539 5.986 0.057
POT (W ) 74.507 3.365 0.000
POT (L) −13.606 5.576 0.016
I(W ) −5.736 2.582 0.028

To find the association between I(W ) and all variables, a multiple regression model

is fitted. By using the stepwise selection procedure, we select the best model with lower
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AIC= −213,

I(W ) = β0 + β1POT (Bx) + β2POT (L) + β3I(L) + ε. (6.13)

The same set of variables is used to predict the TCD(W ). The best model is selected by

the lowest AIC value using the stepwise selection procedure, which is as follows

TCD(W ) = β0 + β1TCD(Bx) + β2TCD(L) + β3POT (Bx) + β4POT (W )

+ β5POT (L) + β6I(W ) + ε. (6.14)

The AIC of this model equals 553 and the I statistic of the whole tumor contributes to

the model. The parameter estimates for models 6.13 and 6.14, with their corresponding

standard error and p-values, are shown in Table 6.16. The plots of residuals of both

models are shown in Figure 6.8. It is clear that the residuals of model 6.14 (right figure)

are not randomly distributed which means the model is not well fitted and one of the ob-

servation is identified as an outlier. In Figure 6.8 (left figure), however, the visualisation

of the residuals from model 6.13 is well dispersed which means the model is well-fitted.

Figure 6.8: (a) Residuals versus fitted values plot of model (6.13) and (b) Residuals versus fitted
values plot of model (6.14).

Therefore, only model (6.13) is interpreted. From Table 6.16, all covariates of model

(6.13) have a low p-value (< 0.05) which means they are meaningfully related to changes

in the I statistic. For instance, the coefficients of both proportions of tumor for Bx and

L images indicate that for every additional 1% in POT we can expect the I statistic
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of the whole tumor image to increase by an average of 12.2% and 42.2% respectively.

Similarly, as the I statistic of the lumen site image rises by 1%, the I statistic of the

whole tumor image on average, increased by 23.6%. As a result all covariates in model

6.13 are contributing, on average, to increase the I statistic of the whole tumor image

that means more clustered image. More precisely the proportion of tumor for the lumen

site image reflects more on the heterogeneity of the whole tumor image.

6.5 Conclusion

Clinical questions were answered in this chapter. The advantages of using non-parametric

and Cox PH model are that there are no restriction about the distribution of survival times

which can be either continuous or discrete. Although the survival time was not directly

predicted by the I , when this statistic was divided by different cutoffs, we found there

was significant difference between survival curves.

Regarding to the gastric cancer dataset, only the partitioned versions of I , IS , has

shown that there is significant difference between survival curves using non- and semi-

parametric survival models. Patients who have clustered images tend to survive longer.

This finding suggests that more structured tissue tends to be better than random ones.

We also tested whether proportion of tumor (POT ) is related to I , we showed that when

POT has been increased, the I statistic, on average, is decreased.

In terms of the rectal cancer dataset, we found that using Cox PH model, when the

images tends to be clustered (IT (W ) = 2), the survival time was increased. Furthermore,

we investigated that TCD(W ) was not predicted by any clinical variables. As proportion

ofBx and (L) as well as the I statistic of lumen site image were increased, the I statistic

of whole tumour, on average, increased.

The affects of cluster in images on survival time are, in general, consistent which

have been obtained in both gastric and rectal cancer datasets.



Chapter 7

Discussion, Future Work and

Recommendations for the Pathologist

7.1 Discussion

In this thesis we used statistical methods to explore the spatial features of biomedical

images on a hexagonal grid for stomach and rectum cancers. The analysis focussed on

detecting local heterogeneity, detecting anisotropy and spatial consistency of images.

We used statistical tests which were based on both derived asymptotic distributions and

simulation-based methods. This project is the first one to look at pathological images

spatially, and we found that objective numerical summaries of heterogeneity are more

informative than only comparing the overall proportion of tumor (POT ).

In the first part of this thesis, traditional pathological methods of biomedical image

analysis were discussed. The gastric and rectal cancer datasets were also described using

exploratory analysis. The spots classification of images were ascertained as the preferred

classification of spots by pathologists.

In Chapter 2, we considered spatial statistical measurements, under a normal approx-

imation of distribution, including the black-white join-count, Moran’s I and Geary’s

C statistics. These statistics were compared and examined using extensive simulation

studies. Moran’s I was the most powerful measurement of spatial analysis when we had

300 or more spots. The I statistic was then used to assess the heterogeneity of images.

To compute spatial statistics, a neighbouring system of the hexagonal grid was defined
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effectively for single- and multiple-regions which also allowed for missing spots.

In the following part of this thesis, the I statistic was modified to measure the hetero-

geneity/clustering in different directions. Neighbouring systems for different directions

were also defined to consider single and multi-region images in addition to the neigh-

bouring system of rotated images. A statistical test for determining the heterogeneity

in the direction of the lumen was established. However, the statistical test for detecting

directionality was only valid under the null hypothesis that the spots are independently

distributed (rather than isotropically clustered). Obviously when the spots in an image

are independent, we mostly have no direction. Here it is meaningless to detect direc-

tion in an independent framework, but this was a limitation of testing the directional I

statistic.

In Chapter 4, we overcame the limitation of directional I and investigated a more

flexible simulation-based statistical test for detecting directions by parameter estimation.

The parameters of the Markov random field model were another way to investigate the

clustering which gives similar information to the I statistic. Here, we introduced a new

simulation-based iterative method (IM) for the estimation of parameters in BMRF as

the exact likelihood function is intractable. The statistical test of IM is distribution-

free and effective for detecting heterogeneity either in the overall image or in different

directions without any restrictions needed. We only need to use 300 spots to make the IM

work effectively. Based on simulation, the accuracy of IM was compared with existing

methods, and it was found that our method had a better performance and less error.

After that, the consistency for pairs of images with different resolutions is checked by

either considering the overall distribution of spot classifications, or by considering the

spot spatial features. The spatial consistency for pairs of images was checked by spot

prediction, where we predicted low-resolution images from the high-resolution version.

We investigated whether the images can be spatially predicted, which would mean the

pairs of images were consistent. Finally, we addressed several pathology questions in

both gastric and rectal cancer datasets in addition to relating the I statistic to patient

survival. The I statistic displayed a difference in the survival curves for patients in the

gastric cancer dataset. This showed that the patients can be classified into two groups de-

pending on their image structure, where patients with heterogeneous images had higher

survival times.
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7.2 Future work

In this section possible future work is described for each chapter. In Chapter 2, the

distribution of the directional I statistic is only valid under the null hypothesis that the

spots are independently distributed. Future work would define the theoretical statistical

test under H0 : I1 = I2 = I3 when the spots are autocorrelated.

In Chapter 4, future work would be to determine the output of MCMC, which has

been checked with different settings by simulation, without large number of simulations.

If we extend the MCMC to the extra parameter setting, can we determine the answer

without simulation using theoretical methods. Future work coming from a combination

of Chapters 4 and 5 could be to determine if pairs of images are consistent in terms

of their parameters. For example, patients for before and after operations might have

different estimated parameter values.

In Chapter 5, there are different ways of sampling images using low- and high-

resolution spot classifications, here we would like to investigate how the standard error

depends on the number of sampling spots. Pathologists could then decide what density

of spots is better to use.

From Chapter 6, future work could be to further investigate the findings relating the

heterogenous tumour to higher survival by considering more images for both gastric and

rectal cancer datasets, where we found that more structured tissues tends to have better

survival than random patterns. This features needs a pathological review.

7.3 Pathologist Recommendations

Pathologists should consider the following recommendation in which the heterogeneity

of a tumor can be better measured numerically. Statistical tests are more effective when

images of size 300 spots or more are provided and to avoid sample size 50 spots. When

the pathologist allocating the hexagonal grid in the digitised histological slides and be-

fore sampling, it is important to do a rotation of the grid to make the direction of the

lumen line up exactly with one of the three hexagonal axes to be able to measure the het-

erogeneity in the direction of the lumen accurately. Moreover, it is better to sample the

whole tumor, in particular in the gastric cancer dataset, as we observed clustering in the
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digital slide of the whole tumor, but with nothing showing in the sampling area which is

close to the tumor site. In digital image sampling in rectal cancer dataset, we recommend

to sample the whole image, but there is less need to sample high-resolution images as

they are consistent with the low-resolution images. We would also recommend that the

hexagon axes of the sampling grid should be exactly equal to simplify the mathematical

computation in the future.
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