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Abstract 

 

Maintaining healthy river ecosystems is crucial for sustaining human needs and biodiversity. 

Therefore, accurately assessing the ecological status of river systems and their response to short 

and long-term pollution events is paramount. Water quality modelling is a useful tool for 

gaining a better understanding of the river system and for simulating conditions that may not 

be obtained by field monitoring. Environmental models can be highly unreliable due to our 

limited knowledge of environmental systems, the difficulty of mathematically and physically 

representing these systems, and limitations to the data used to develop, calibrate and run these 

models. The extensive range of physical, biochemical and ecological processes within river 

systems is represented by a wide variety of models: from simpler one-dimensional advection 

dispersion equation (1D ADE) models to complex eutrophication models. Gaining an 

understanding of uncertainties within catchment water quality models across different spatial 

and temporal scales for the evaluation and regulation of water compliance is still required. 

Thus, this thesis work 1) evaluates the impact of parameter uncertainty from the longitudinal 

dispersion coefficient on the one-dimensional advection-dispersion model and water quality 

compliance at the reach scale and sub-hourly scale, 2) evaluates the impact of input data 

uncertainty and the representation of ecological processes on an integrated catchment water 

quality model, and 3) evaluates the impact of one-dimensional model structures on water 

quality regulation. Findings from this thesis stress the importance of longitudinal mixing 

specifically in the sub daily time scales and in-between 10s of meters to 100s of meters. After 

the sub daily time scale, other biological and ecological processes become more important than 

longitudinal mixing for representing the seasonal dynamics of dissolved oxygen (DO). The 

thorough representation of the dominant ecological processes assists in obtaining accurate 

seasonal patterns even under input data variability. Furthermore, the use of incorrect model 

structures for water quality evaluation and regulation leads to considerable sources of 

uncertainty when applying duration over threshold regulation within the first 100s of meters 

and sub hourly time scale.  
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1. Introduction 

1.1 Background and motivation 

The healthy functioning of river systems is crucial for sustaining human needs and biodiversity. 

Moreover, improving and maintaining good water quality conditions in surface waters for the 

different uses (drinking, recreation, ecological habitat, etc.) is a challenging task due to the 

complex nature of the physical, biogeochemical and hydrochemical processes of surface waters 

and anthropogenic and climate change impacts. 

Water policies such as the Water Framework Directive (WFD) (2000/60/EC) in Europe have 

been implemented to ensure that waters are protected and have a ‘good ecological status’ 

(European Commission, 2000). For surface waters, the ecological status depends on biological, 

hydro-morphological and physico-chemical elements. The WFD uses a combined approach to 

evaluate the river basins’ ecological functioning having taken into consideration the various 

protection objectives (European Commission, 2000) . In addition to the WFD, the Foundation 

for Water Research (2012) in the United Kingdom suggests following the Urban Pollution 

Management (UPM) Manual to address the impacts of urban wet weather discharges (e.g. 

Combined Sewer Overflows, Wastewater Treatment Plants). Several standards under the UPM 

have been researched and implemented; for instance, the Fundamental Intermittent Standards 

(FIS) address wet weather impacts on dissolved oxygen and un-ionised ammonia using a 

duration-concentration-frequency threshold analysis based on the ecosystem’s suitability for 

salmonid fishery, cyprinid fishery and marginal cyprinid fishery (Foundation for Water 

Research, 2012). For a detailed description of how regulation for intermittent discharges is 

implemented, for example in England, see Environmental Agency (2018). Understanding and 

predicting the functioning of surface water systems in response to dry and wet weather 

pollution events are key for the adequate management of the water bodies and compliance with 

water regulation.  

Water quality modelling assists in the assessment and improvement of water systems by 

simulating and predicting water quantity and quality conditions. The complexity of water 

quality models spans from zeroth dimensional models, representing water volumes and 

concentrations without dispersion to biochemical models which include reaction terms to 

describe the biochemical processes in river systems (Shanahan et al., 2001). However, 
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environmental modelling can be highly unreliable (Rode et al., 2010) and uncertainties should 

be considered since the early stages of the model development process (Refsgaard et al., 2007). 

Quantifying and communicating these uncertainties in model predictions is crucial to the 

decision-making process and the proper management of water resources (Refsgaard et al., 

2006; Tscheikner-Gratl et al., 2018; van Griensven & Meixner, 2006) 

Many different definitions of sources of uncertainty in models exist, however, this thesis will 

focus on the definitions described in Freni and Mannina (2010) as they are quantifiable sources 

of uncertainty in environmental models. These uncertainties are: 1) structural uncertainty, 

which are inherited from the physical, mathematical and biochemical representation of the 

pollutant transport, mixing and transformations processes, 2) parameter uncertainty, due to the 

quantification, selection and calibration of parameters, and 3) input data uncertainty attributed 

to inaccuracies in the input data and boundary conditions.  

Although several studies have investigated these uncertainties in isolation, there is a need to 

evaluate and compare uncertainties across multiple time and space scales to provide guidance 

on how to reduce uncertainties in water quality modelling. For instance, studies focusing on 

rainfall input data uncertainty have shown that rainfall variability is a main source of 

uncertainty when predicting the catchment hydrological response in small (< 15 km2) urban 

catchments (Cristiano et al., 2016; Niemczynowicz, 1988; Rico-Ramirez et al., 2015; Schellart 

et al., 2012). On the other hand, Moreno-Rodenas et al. (2017) found that the effect of tested 

rainfall time-accumulation level did not influence the predicted seasonal dynamics of dissolved 

oxygen for the Dommel River (with a catchment area of approximately 913 km2). Another 

important source of uncertainty has been attributed to the interlink between sub-models of 

varying space and time scales within Integrated Catchment Models (ICM) (Tscheikner-Gratl 

et al., 2018). By coupling a data-intensive sewer model to a coarse river water quality model, 

the detailed information from the sewer model is lost potentially leading to large uncertainties 

in water quality concentrations (Schellart et al., 2010; Tscheikner-Gratl et al., 2018). However, 

an understanding on the importance of the different types of water quality modelling 

uncertainties and their dominance across the time and space scales is still pending. 

This PhD work studies the structural, parameter and input uncertainties from river water quality 

models evaluating the time and space domains where each uncertainty type influences water 

regulation. The work is limited to models compatible with concentration-duration-frequency 
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regulation, such as the FIS regulation specified in the UPM standards (Foundation for Water 

Research, 2012). This require the model to retrieve results that allow for the temporal dynamics 

evaluation at the catchment scale. Thus, the work is limited to one-dimensional models capable 

of simulating the flow and water quality temporal and spatial dynamics (zeroth models are not 

currently capable of representing the temporal dynamics. 2D and 3D models are data intensive 

and not feasible to use in large catchments). Further emphasis is made on understanding the 

structural and parameter uncertainties inherited from the pollutant mixing processes and their 

implications on concentration-duration-frequency type water quality regulation. 
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1.2 Contributions and thesis structure 

A literature review presenting the background and the definitions used throughout this PhD 

thesis, and knowledge gaps within modelling of water quality uncertainties is provided in 

Chapter 2. The overall aim, hypothesis and specific objectives of this PhD thesis are presented 

in Chapter 3. 

Chapter 4 presents the propagation of parameter uncertainty in the longitudinal dispersion 

coefficient, first for a case study for which detailed tracer data is available (Chillan river in 

Chile), followed by four rivers of varying geometry evaluating the effect on water quality 

regulation. This chapter is based on: 

 Camacho Suarez, V. V., Schellart, A. N. A., Brevis, W., & Shucksmith, J. D. (2019). 

Quantifying the Impact of Uncertainty within the Longitudinal Dispersion Coefficient 

on Concentration Dynamics and Regulatory Compliance in Rivers. Water Resources 

Research, 55(5), 4393-4409. doi:10.1029/2018WR023417 

The modelling capabilities and input sensitivity of a complex hydrodynamic-ecological long-

term catchment model are evaluated in Chapter 5. This analysis simulates dissolved oxygen 

concentrations in the River Dommel, Netherlands. This chapter is based on: 

 Camacho Suarez, V. V., Brederveld, R. J., Fennema, M., Moreno-Rodenas, A., 

Langeveld, J., Korving, H., . Shucksmith, J. D. (2019). Evaluation of a coupled 

hydrodynamic-closed ecological cycle approach for modelling dissolved oxygen in 

surface waters. Environmental Modelling & Software, 119, 242-257. 

doi:https://doi.org/10.1016/j.envsoft.2019.06.003 

Chapter 6 evaluates the potential impact of uncertainty in longitudinal dispersion in models of 

different complexity and varying spatial and temporal scales. First, the uncertainty from 

modelling the dispersion processes in the Dommel River case is studied, followed by 

evaluating the impact of dispersion uncertainty in pollutant model structures, which are 

implemented within commercial models. 

The overall conclusions (and recommendations??) of this thesis are presented in Chapter 7. 

  

https://doi.org/10.1016/j.envsoft.2019.06.003
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2. Literature review 

The aim of this literature review is to provide a synthesis of the state of the art literature relevant 

to water quality modelling and uncertainty evaluation. River water quality modelling is 

important for both, point and non-point source pollution management. Point source pollution 

sources (e.g. combined sewer overflows, industrial, domestic or wastewater discharges) may 

have adverse effects on river health. Similarly, non-point source pollutants from agricultural or 

urban runoff (for which quantification may be more difficult due to their diffuse nature) can 

alter the natural ecosystems in rivers leading to oxygen depletion and poor water quality 

conditions (Zheng et al., 2014). This section also highlights where the knowledge gaps are 

within understanding and assessing the sources of uncertainty associated with water quality 

modelling for the various temporal and spatial scales. 

2.1 River water quality processes 

River water quality processes can be subdivided into their physical and bio-chemical processes 

(Runkel & Bencala, 1995). These processes are often non-linear and non-independent making 

rivers complex systems to describe. Rivers interact with the landscape and are greatly affected 

by the catchment characteristics. Within river hydraulics, river width, depth, velocity, and 

energy slope are the most common relationships used in studying discharge and channel 

characteristics. On the other hand, the geomorphology is influenced by sediment supply and 

transport which consequently influence the flow, turbulence and bed forms (Robert & Robert, 

2003). 

2.1.1 Physical Processes 

Key physical processes in rivers that pollutants undergo are advection, molecular and turbulent 

diffusion and dispersion. These processes are often termed ‘transport and mixing’. Then, 

further key processes are related to sediment movement. 

2.1.1.1 Advection 

Advection is the process by which the tracer cloud moves bodily in the flowing stream under 

the action of an imposed current (Rutherford, 1994; Sharma & Ahmad, 2014). In rivers, 

advection is defined by a balance between the hydraulic forces (gravity and hydrostatic 

pressure). These are influenced by the channel slope and flow resistance. Advection does not 
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change the concentration of a solute but transports the pollutant cloud through the river system. 

Advection is an important process because it dictates the time of passage and arrival of a 

pollutant. 

2.1.1.2 Molecular diffusion 

Molecular diffusion refers to the spreading of the pollutant due to random motion of molecules 

(Sharma & Ahmad, 2014). Fick’s law is used to describe the spreading of a tracer from a region 

of high concentration to a region of low concentration (Rutherford, 1994). This flux is 

proportional to the concentration gradient, and is dependent on the energy states (temperature) 

and mass of the relative molecules. This concentration gradient causes the pollutant to mix 

moving from areas of higher concentration to lower concentration. 

2.1.1.3 Turbulent diffusion 

In most open channels, flows are turbulent. The chaotic nature of turbulent flow acts to increase 

local concentration gradients and rapidly increases mixing. In a landmark paper, Taylor (1954) 

demonstrated that turbulent diffusion can still be described in terms of Fickian processes 

provided the Lagrangian timescale had been reached. The Lagrangian coordinate system 

travels at the mean velocity (Rutherford, 1994). The rate of mixing is a function of the 

turbulence within the flow, and is hence difficult to characterise fully. 

2.1.1.4 Dispersion 

Dispersion is the process by which the tracer cloud spreads due to the non-uniform vertical and 

transversal velocity profiles (in rivers, the maximum velocities occur at the centre and top 

surface of the stream and minimum velocities occur at the river edges and bed) and turbulent 

diffusion (Figure 1). The velocity profile distribution causes that at the centre surface of the 

river, the concentration of the pollutant will travel faster than at the edges and at the bottom of 

the stream. The differences in concentration profiles due the differences in advective flow then 

enhance lateral and vertical diffusion (Figure 1). This gradient causes the tracer to mix in the 

perpendicular direction enhancing lateral mixing (Deng et al., 2002; Fischer, 1967; Rutherford, 

1994; Sharma & Ahmad, 2014; Taylor, 1954). The combination of the differences in velocity 

shear and lateral diffusion are referred as dispersion. 
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Figure 1. Diagram showing the combined effects of transverse velocity shear and transverse turbulent 
diffusion on longitudinal spreading (Rutherford, 1994) 

2.1.1.5 Dimensions of mixing 

Mixing occurs in the three dimensions. Vertical mixing refers to mixing over the depth of the 

river. Transverse mixing indicates mixing over the river cross section (river width), and 

longitudinal mixing denotes mixing in the direction of the river flow. Generally, rivers have a 

greater length and width than depth. This causes the tracer to mix fully in the vertical direction 

in a relatively short time. Then, the tracer mixes transversally before it mixes in the longitudinal 

direction. 

 

 

Figure 2. Representation of river mixing showing advection dispersion in the near, mid and far field 
(Kilpatrick & Wilson, 1989) 
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Rutherford’s terminology (Rutherford, 1994) can be used for defining the spatial domain as 

longitudinal (far field), transverse (mid field) and vertical (near field). The longitudinal domain 

is the river length in the direction of the river flow as depicted in Figure 2. The transverse 

domain is defined by the river cross section (river width) and the vertical domain is defined by 

the river depth. 

2.1.1.6 Transient storage and hyporheic zones 

Transient storage characterises the areas where the flow has been significantly reduced in 

comparison to the main flow (Bencala & Walters, 1983; Briggs et al., 2009), and hyporheic 

zone is the area where the river flow interacts with the river bed exchanging mass and 

momentum (Bottacin-Busolin & Marion, 2010). Several studies have evaluated the effects of 

transient storage and hyporheic zones on dispersion. For instance, Bottacin-Busolin and Marion 

(2010) illustrated the complex temporal and spatial dynamics of advective flow and dispersion 

on bed-induced hyporheic exchange. Their results found that both competitive processes, 

advective pumping and dispersion, were required for the adequate estimation of solute transfer 

mass. 

2.1.1.7 Sediments 

Sediments are generally classified as silt or clay (<0.07 mm), sand (0.07-2 mm) and gravel (2-

20 mm). Depending on their size and density, sediments undergo the processes of suspension, 

settling, rolling, sliding, saltation, precipitation and sorption (Robert & Robert, 2003). 

Sediments play a crucial rule in the flow regime and the geomorphology of streams. Sediments 

can clog up riverbeds disrupting e.g. fish spawning, and sediments can be a vector for 

pollutants, as various pollutants such as heavy metals can be attached to sediments. 

2.1.2 Biochemical reactions 

An extensive range of biochemical processes occur in streams. Depending on the problem that 

is examined, the variables of interest and the associated relevant river processes are identified. 

In this literature review, the variables covered are dissolved oxygen, temperature, nitrogen and 

phosphorus, sediments, phytoplankton and macrophytes since these are often included within 

water quality models (Fu et al., 2018; Kannel et al., 2011; Koelmans et al., 2001). 
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2.1.2.1 Dissolved Oxygen (DO) 

Oxygen is one of the most important variables in water quality, as it is needed for sustaining 

life within aquatic ecosystems. The main sources of dissolved oxygen are from the atmosphere 

(re-aeration), oxygen production from photosynthetic plants, and denitrification (Loucks et al., 

2005). In unpolluted river systems, oxygen levels are approximately at saturation levels, but 

when pollution is introduced, for instance untreated wastewater, the quantity of organic matter 

rises increasing the oxygen demand for mineralization and nitrification processes. (Janse, 

2005). This increased quantity of decomposer organisms reduces the available oxygen in the 

water (Chapra, 1997). 

2.1.2.2 Temperature 

Temperature affects almost every water quality process such as the capacity of water to hold 

DO as well as microbial activity. The main sources of heat are solar radiation, heat conduction 

from atmosphere and direct inputs (e.g. wastewater, groundwater) while the sinks of heat from 

rivers are mainly evaporation and conduction of heat from water to atmosphere (Loucks et al., 

2005). 

2.1.2.3 Nitrogen and Phosphorus 

Nitrogen affects oxygen in the water cycle through nitrification, de-nitrification, nutrient 

uptake, and eutrophication processes among others. Denitrification comprises the 

transformation of nitrate into volatile nitrogen compounds such as nitrogen gas. This process 

usually occurs in the water column and sediment layer when an electron is accepted for the 

mineralization of organic matter. Thus, it requires nitrate and organic carbon under an 

anaerobic process (Gold et al., 2019). Nitrification refers to the process of transforming 

ammonia to nitrate by microbial organisms under aerobic conditions (Janse, 2005). 

Nitrification is influenced by various parameters including pH, dissolved oxygen, water 

temperature, organic matter, and nitrifying bacteria (Chen et al., 2006; Le et al., 2019). A wide 

range of the minimum dissolved oxygen concentration required for nitrification to occur have 

been found in the literature (Bellucci et al., 2011; Park & Noguera, 2004; Stenstrom & Poduska, 

1980). These range from 0.3 mg l-1 to 4.0 mg l-1 of DO. 
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Phosphorus in river systems can be found in organic or inorganic forms. Inorganic phosphorus 

is readily available for uptake usually in the form of PO4 while organic phosphorus may be in 

the form of sugars or various decomposing microbial or plant tissues (Records et al., 2016). 

Both, phosphorus and nitrogen can be limiting elements in macrophytes growth. The 

underlying problem of nitrogen and phosphorus are the excess nutrients that leads to oxygen 

and light depletion and therefore eutrophication (Janse et al., 2008). 

2.1.2.4 Phytoplankton 

Phytoplankton are photosynthetic organisms. They are primary producers in aquatic 

ecosystems (Litchman, 2007). Phytoplankton are a diverse group, thus they are usually divided 

into functional groups covering organisms such as cyanobacteria and algae (Raven & Maberly, 

2009) . They are often used as indicators of water quality regime of pristine versus turbid states 

(Reynolds et al., 2002). 

2.1.2.5 Macrophytes 

Macrophytes are vascular plants which transport water and minerals from the true roots through 

specialized cells (Hauer et al., 2007). They are traditionally classified under emergent plants 

(usually erect over water), floating-leaved plants (permanently submerged and produce floating 

leaves), submerged plants (permanently submerged), and free-floating plants (not attached to 

the substrate) (Hauer et al., 2007). Macrophytes are sensitive to human intervention. Increased 

runoff velocities, may be responsible for the decrease in macrophytes population. (White & 

Hendricks, 2000) 

2.2 River Water Quality Modelling 

River water quality modelling assists in the management of water resources by providing 

information in situations were monitoring data may be incomplete or non-existent or where the 

analysis of future scenarios are required (Loucks et al., 2005). Moreover, river water quality 

models provide a tool to evaluate water ecosystems in response to environmental management 

actions and/or pollution impacts (Arhonditsis et al., 2006). River water quality modelling is 

mainly based on mathematical relationships based on theoretical understanding of the physical, 

biogeochemical and ecological processes. 
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2.2.1 Space and time scales in water quality modelling 

When deciding an appropriate model for the successful simulation of water quality processes, 

Shanahan et al. (2001) suggested a six-step decision process for the model selection. The first 

step involves the definition of the temporal representation. This highlights the importance of 

using the correct time scales when modelling. The time constant denotes the temporal domain 

expressed as the inverse relationship between the length scale and the mean velocity of the 

water body. 

Blöschl and Sivapalan (1995) define the term scale as the characteristic time or length of the 

studied process. The ‘process scale’ should be in accordance with the ‘observed scale’ and 

‘modelling scale’. Smaller space scales tend to be associated with smaller time scales. Cristiano 

et al. (2016) highlight the wide ranges of time and space variability as shown in Figure 3 where 

the various hydrological processes span over several orders of magnitude. 

 

Figure 3. Spatial and temporal variability of hydrological processes in Cristiano et al. (2016) (modified 
from Berndtsson & Niemczynowicz, 1988; Blöschl & Sivapalan, 1995; Salvadore et al., 2015) 

2.2.2 Physical pollutant behaviour 

The advective process can be mathematically described by the open channel flow equations, 

the Saint-Venant equations describing the mass and momentum conservation in its one-

dimensional form as shown in: 
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Equation 1 

 

𝜕𝐴𝑊

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
=  𝑞𝑡 

Equation 2 

𝜕𝑄

𝜕𝑡
+

𝜕(𝑄𝑢)

𝜕𝑥
+ 𝑔𝐴𝑊

𝜕ϛ

𝜕𝑥
+ 𝑔

𝑄|𝑄|

𝐶𝑍
2 𝑅𝐴𝑊 

 

 

Where 𝐴𝑊 is the wetted area (m2), 𝑄 is the flow (m3s-1), 𝑞𝑡 is the lateral flow per unit length 

(m3 s-1 m-1), 𝑢 is the fluid average velocity in the x direction (m s-1), ϛ is the water level (m), 

𝐶𝑧 is the Chezy coefficient in (m1/2s-1), 𝑅 is the hydraulic radius (m) , 𝑔 is the gravity constant 

(m2s-1) (Chow, 1959; Xu et al., 2012).  

2.2.2.1 Fick's law of diffusion 

Fick’s law of diffusion, developed in 1855 by Adolf Eugen Fick (Fick, 1855), originated from 

the analogy that salt diffuses in a water as heat diffuses in a metal rod. This lead to the creation 

of Fick’s law (shown in Equation 3) indicating that the net flux of tracer concentration is 

proportional to the concentration gradient: 

Equation 3 

𝐽𝑥 = −𝑒𝑚

𝜕𝑐

𝜕𝑥
 

Where 𝐽𝑥 is the mass flux in (M T-1), −𝑒𝑚 is the molecular diffusion coefficient (L2 T-1) and 𝑐 

is the tracer concentration in (M L-3). 

Turbulent diffusion relates to the short-term fluctuations of the fluid velocities. It is 

characterised by the dominance of inertial forces over viscous forces. In turbulent flows, 

particles released from the same point follow irregular and different paths. However, the 

particles and flow velocities are correlated. These correlations decrease with distance. The 

study of the circular currents and the correlations between flow velocities has led to the 

understanding and development of eddy viscosity theory (Rutherford, 1994). 

In 1921, Taylor demonstrated that the tracer cloud can be modelled using Fickian diffusion 

given that enough time has occurred and the equilibrium zone has been reached  (Taylor, 1921). 
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Taylor (1954) showed that in pipe flow, there is a point downstream (after the pollutant has 

been released) where the velocity shear and turbulent diffusion reach equilibrium as discussed 

in the dispersion Section 2.1.1.4. At this point, the variance of the concentration profile 

increases linearly, the skewness reduces and the concentrations tend towards a Gaussian 

distribution and hence can be described as a Fickian process. Figure 4 shows the advective and 

equilibrium zones of a concentration profile. The advective zone is the region closest to the 

source where the velocity distribution plays a crucial role in mixing of the solute. The 

equilibrium zone is referred as the zone where the variance of the concentration profile 

becomes linear, the skewness reduces (Rutherford, 1994) and the pollutant cloud can be 

theoretically modelled as a Fickian process. 

 

Figure 4. Variance and skewness versus distance of a change of concentration profile according to 
Fickian model predictions (Rutherford, 1994; Shucksmith et al., 2007) 

2.2.2.2 Advection Dispersion Equation (ADE) Model  

The Advection Dispersion Equation (ADE) is derived from the conservation of mass in a unit 

volume where the accumulation of mass equals the mass input minus the mass output. 

Assuming that the flow and cross section are constant, the advective influx is characterized as 

the river velocity times the solute concentration. 

The flux out of the volume is equal to the influx plus the change in flux in the control volume. 

Then, Fick’s law (Equation 3) is used to describe the dispersive flux where the mixing 

coefficient is proportional to the concentration gradient. Both, advective and dispersive fluxes 

are then placed in the conservation of mass equation leading to the 3D ADE equation: 
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Equation 4 

𝜕𝑐

𝜕𝑡
+ 𝑢𝑥

𝜕𝑐

𝜕𝑥
+ 𝑢𝑦

𝜕𝑐

𝜕𝑦
+ 𝑢𝑧

𝜕𝑐

𝜕𝑧
=  

𝜕

𝜕𝑥
(𝑘𝑥

𝜕𝑐

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘𝑦

𝜕𝑐

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝑘𝑧

𝜕𝑐

𝜕𝑧
) + 𝑅(𝑐, 𝑃) 

Where 𝑐 is the solute concentration in (M L-3), 𝑥 𝑦 𝑧 are the longitudinal, transverse and vertical 

directions in (L), 𝑢𝑥 𝑢𝑦 𝑢𝑧 are the velocities (LT-1), 𝑘𝑥 𝑘𝑦 𝑘𝑧 are the mixing coefficients in 

(L2T-1) . The mixing coefficient represents mixing due to both turbulence and molecular 

diffusion, but they are usually combined into a single coefficient. 

The three dimensional form of the ADE (3D ADE) is the basis for complex mixing models and 

the most detailed method for estimating concentrations. The 3D ADE is difficult and 

impractical to solve in most natural channels and it requires information on water depths, 

velocities and diffusion coefficients which are expensive to collect (Rutherford, 1994). In 

natural rivers, the vertical dimension is usually much smaller than the longitudinal and 

transverse dimensions. This leads to the simplification of the 3D ADE to its two-dimensional 

form by depth averaging the concentrations. Similarly, once enough time has passed and the 

transverse concentration gradients become negligible, attention is given to the longitudinal 

directions and the 3D ADE can be further reduced to its one-dimensional form by focusing on 

the cross-sectional averaged concentrations. These simplifications are reasonable in shallow 

rivers or rivers of narrow width. (Runkel & Bencala, 1995). 

Advection Dispersion Equation semi 2D (2D ADE) – This model neglects transverse 

velocities (𝑢𝑥>>𝑢𝑦), but includes the effect of mixing in the transverse direction. The 2D ADE 

is also an analytical solution of Equation 4. Concentrations are estimated using Fisher’s (1979) 

analytical solution: 

Equation 5 

𝑐(𝑥, 𝑦, 𝑡) =  
𝑀

4𝜋𝑑𝑡 √ 𝑘𝑥𝑘𝑦

exp ⌊−
(𝑥 − 𝑢𝑥𝑡)

2

4 𝑘𝑥𝑡
−

𝑦2

4 𝑘𝑦𝑡
⌋ 

Where the transverse dispersion coefficient ky and location y are introduce in the equation. The 

release of pollutant with mass M occurs at x=0, y=0 (at the middle section of the stream width) 

and time t=0. 

Advection Dispersion Equation 1D (1D ADE) – Using Fick’s law of dispersion in the 

longitudinal dimension (Equation 3), the tracer is assumed to mix instantaneously over the 

cross sectional area. This equation is simplified from the three-dimensional advection 
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dispersion equation presented in Equation 4 by assuming fully mixed conditions over the 

vertical and transverse planes. The Fisher (1979) analytical solution to the 1D ADE equation 

is shown where the pollutant concentration is: 

Equation 6 

𝑐(𝑥, 𝑡) =  
𝑀

𝐴 √4𝜋 𝑘𝑥𝑡
exp ⌊−

(𝑥 − 𝑢𝑥𝑡)
2

4 𝑘𝑥𝑡
⌋ 

Where M is the mass of the pollutant released at t=0 and x=0 and A is the cross sectional area 

of the channel, kx is the longitudinal dispersion coefficient, ux is the average velocity in the 

longitudinal direction, x is the spatial location and t is time. The advection dispersion equation 

is widely used to predict solute concentrations (Kashefipour & Falconer, 2002) 

Figure 5 shows a conceptual representation of the pollutant mixing processes due to Advection-

only, 1D ADE, and semi 2D ADE. As noted in Figure 5, the advection-only model transports 

the pollutant, but the concentration remains the same after a certain distance of the pollutant 

release. The 1D ADE model spreads the pollutant in the longitudinal direction, but remains 

constant along the cross section since it assumes that the cross section is fully mixed. The semi 

2D ADE model spreads in both directions, transverse and longitudinal, having the maximum 

concentration in the centre of the pollutant cloud (for this case, the maximum concentration 

coincides with the centre of the cross section). 
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Figure 5. Conceptual diagram of pollutant transport due to advection and dispersion in the longitudinal 
and transverse direction. Please note that no differences in transverse velocities are considered 

 

The 1D Advection Dispersion Equation (ADE) is the most widely used model within water 

quality applications representing the transport of pollutants (Cox, 2003a). Additional terms can 

be added to the ADE to characterise the biochemical transformations of water quality 

parameters (Reichert et al., 2001; Rode et al., 2010). Moreover, as the river length increases, 

reaching the catchment scale, the vertical and transverse directions become negligible (as the 

river length largely exceeds the river depth and width (Cox, 2003a). Thus at the catchment 

scale, the ADE can be reduced to its one-dimensional form (1D ADE). This facilitates the 

modelling by reducing the computational time/costs and data requirements (Launay et al., 

2015). Many studies in rivers have shown that the 1D ADE is sufficiently complex to capture 

the main features of concern for water quality assessments (Ani et al., 2009; Marsili-Libelli & 

Giusti, 2008). 

The successful application of the 1D models relies on the assumption that the cross section has 

fully mixed in the transverse direction (Rutherford, 1994). The significance of this assumption 

and its impact on water quality concentrations and regulation has not, however, been robustly 

evaluated yet. Studies have shown that to reduce the uncertainty due to transverse mixing, 2D 

models can be applied (Moghaddam et al., 2017). However, this solution is computationally 
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and data intensive raising the question if increasing the model complexity is worth the 

reduction in uncertainty. 

An alternative to reduce the uncertainty due to transverse mixing, is to apply the ADE after an 

equilibrium is established between the velocity shear and the turbulent diffusion (Taylor, 

1954). This region, also known as the equilibrium zone, is the region where the variance of the 

tracer profile increases linearly with time and Fick’s law of diffusion can be applied 

(Rutherford, 1994). 

Estimating the time and space where the equilibrium zone starts is a challenging task. 

Experimentally, Rutherford (1994) used a database of transverse dispersion coefficients in 

straight, sinuous and meandering natural channels to estimate the transverse mixing length 

suggesting that full transversal mixing occurs in-between 100 to 300 channel widths from the 

point where the source has been discharged at the middle of the stream. Moreover, the time 

and space scales of the mixing length cannot be obtained theoretically (Rutherford, 1994), and 

their impact over water quality concentrations and legislation still requires evaluation. 

2.2.2.3 Aggregated Dead Zone (ADZ) model 

The ADZ model is an alternative to the ADE. Developed by Beer and Young (1983), the ADZ 

considers the river an imperfectly mixed system where advection takes place first and then 

dispersion occurs in a mixing zone (Lees et al., 2000). 

The ADZ model assumes that dispersion occurs mainly due to dead zones. The model can be 

used for estimating tracer concentrations using the discretization: 

Equation 7 

𝑐(𝑥2, 𝑡) =  𝛼 𝑐(𝑥2 , 𝑡 − 1) +  𝛽 𝑐(𝑥, 𝑡 − 𝛿) Where 

 

𝛼 = −exp (
∆𝑡

𝑇𝑅
)  

𝛽 = 1 +  𝛼 

𝛿 =  𝜏/∆𝑡 𝑇𝑅 = 𝑡̅ − 𝜏 

Where TR is the residence time (s), τ is the time delay (s), ∆𝑡 is the time step (s), and 𝑡̅ is the 

mean travel time (s). 
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The parameters tau and mean travel time for the Aggregated Dead Zone model can be 

associated to the 1D ADE dispersion parameters by the method of moments of the 

concentration profiles as shown in Equation 8 and Equation 9 (Gonzalez-Pinzon, 2008). 

Equation 8 

𝑡̅ = 2 𝑘𝑥 (
𝐴

𝑄
)
2

+ 𝐿 (
𝐴

𝑄
) 

Equation 9 

 

𝜏 = 𝑡̅ − √
8𝑘𝑥  2

𝑄
𝐴

4 +
2𝐿𝑘𝑥 

𝑄
𝐴

3  

Where 𝑡̅ (s) is the average travel time, 𝜏 is the time delay in (s), 𝑘𝑥 is the longitudinal dispersion 

coefficient in (m2 s-1), 𝐴 is the cross-sectional area (m2), 𝑄 is the discharge (m3 s-1) and 𝐿 is the 

river reach length (m). 

2.2.3 Biochemical models and ecological modelling 

Water quality models have substantially evolved since the first water quality model established 

by Streeter and Phelps to evaluate dissolved oxygen (DO) and biological oxygen demand 

(BOD) in the Ohio River (Streeter et al., 1925). Since then, the understanding and advances in 

modelling the dynamics of physical, biochemical and ecological variables have significantly 

increased (Shimoda & Arhonditsis, 2016) by using differential equations, initial conditions, 

specific parameters and forcing functions (Chen, 1970). 

Streeter and Phelps model used a differential partial equation to estimate the total oxygen 

deficit (D) as shown in: 

Equation 10 

𝑑𝐷

𝑑𝑡
=  𝑘1𝐿𝑡 − 𝑘2𝐷 

Where 𝑘1is the de-oxygenation rate in (d-1), 𝑘2 is the reaeration rate in (d-1), and 𝐿𝑡 is the 

oxygen demand at time t. 

Based on Streeter and Phelps model (Equation 10), the complexity of models has increased to 

integrate additional processes. Dobbins (1964) modified the Streeter and Phelps model to 
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include the effects of: 1) longitudinal dispersion, 2) removal of BOD by sedimentation, 3) 

addition of BOD along the path of flow, 4) removal of oxygen by plant respiration and by the 

oxygen demand of benthic deposits, and 5) the addition of oxygen by photosynthesis. Their 

findings showed that the effect of longitudinal dispersion was negligible while the micro-scale 

turbulence energy was responsible for replenishing the interfacial liquid film (the layer between 

air and water interface) upon which aeration depends. 

From the 1970s, the inclusion of state variables in water quality models increased, and non-

linear models were developed to account for nitrogen and phosphorus nutrient cycling and 

phytoplankton, zooplankton and plankton growth as a function of nutrients, sunlight and 

temperature available (Wang et al., 2013; Yih & Davidson, 1975). 

Reichert et al. (2001) illustrate the variety of biochemical process equations implemented 

within the River Water Quality Model No. 1 (RWQM1) to simulate water quality processes 

under aerobic conditions. Sub-models with case-specific processes can be derived using the 

Peterson matrix, a stoichiometric 23×24 matrix (relating to the coefficients of the reaction 

equations), which includes aerobic and anoxic growth, respiration of heterotrophs, algae and 

nitrifiers, growth of algae and nitrifiers, death of algae, hydrolysis, and aerobic and anoxic 

degradation of organic material, as developed by Vanrolleghem et al. (2001). 

Moreover, water quality and ecological modelling is not only complex due to the large quantity 

of modelled variables and processes, but also, it is a challenging task due to the lack of 

understanding of the plankton and macrophytes processes, lack of data, aggregation of diverse 

species into functional groups, and their sensitivity to external factors (Anderson, 2005). 

Shimoda and Arhonditsis (2016) presented an extensive review of 124 studies regarding the 

modelling of plankton functional groups. Their study found that ecological understanding was 

key for the adequate spatiotemporal parametrization of plankton functional groups 

2.2.4 Water quality modelling software 

To date, tens of water quality software models are available in the literature for water quality 

modelling. Fu et al. (2018) reviewed 42 catchment scale water quality models determining that 

Soil and Water Assessment Tool (SWAT), Simulation Program - Fortran (HSPF), Integrated 

Catchment Model (INCA) and SPAtially Referenced Regressions on Watershed attributes 

(SPARROW) were among the most studied models. Although each modelling study has a 

specific purpose, these water quality models have the following capabilities: 
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- Representation of transport and mixing processes.  

- Modelling of sediments, nitrogen and phosphorus. More commonly, nitrogen variables 

are represented by nitrate, nitrite, ammonia and total nitrogen, and phosphorus is 

commonly represented by dissolved and/or particulate forms of organic and/or 

inorganic phosphorus 

- Spatiotemporal distribution of water quality variables 

Due to the external influences and interactions between land practices and in-stream nutrient 

processes, integrated water quality models have been developed and implemented for 

catchment evaluation. These integrated models may link several sub-models such as rainfall-

runoff, urban drainage, rural runoff routing, river and wastewater treatment plant models 

(Tscheikner-Gratl et al., 2018). Moreover, eutrophication and contaminant fate models have 

generally been studied separately. Thus there is a need to link these models to assess the 

capacity of surface waters to attenuate pollution and purify themselves in response to changes 

in nutrient loadings (Koelmans et al., 2001). 

A review of water quality modelling software pointing out the variables that are modelled, the 

governing equations implemented and the uncertainty analysis options is available in Appendix 

A.  

2.2.4.1 Commercial water quality models used for water quality evaluation and 

compliance  

Several commercial models are used for evaluating compliance of water regulation, and/or 

determining water quality improvement options. For instance, in Verghetta and Taylor (2019), 

three small urban catchments of approximately 60km in river length were selected to evaluate 

the impact of bacteria and E.coli originating from urban discharges on bathing waters. Several 

models were used (MIKE11, Infoworks ICM, compliance assessment tool, and a bathing water 

prediction system) to integrate the interactions between the sewer network, river, estuary and 

coastal waters. However, significant simplifications such as setting head losses to zero had to 

be implemented to minimise modelling instabilities and improve run times. Despite such 

simplifications and the use of one-dimensional models (e.g. Mike11 and Infoworks ICM), a 

good match between the model predictions and observations of the concentration of E.coli were 

obtained, as well as the match between the predicted and observed distribution of impacts on 
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the water body. Southern Water in the UK is currently using this framework for specific 

investigations on measures to improve their services (Verghetta & Taylor, 2019).  

Scottish Water carried out a pilot study using a MIKE11 hydrodynamic model on the Almond 

River in Scotland (Jones et al., 2019). The main contributor of flow during dry weather to the 

Almond River is inflow from eight wastewater treatment plants (WWTP). The river also 

receives discharges from combined sewer overflows, septic tanks, industrial states and 

agricultural runoff. Scottish water studied four cases that would improve the concentrations of 

reactive phosphorus (SRP), ammonia, and biochemical oxygen demand (BOD) in the river for 

bathing purposes. The cases included the optimization of the WWTP processes, inclusion of 

best available technologies to the WWTP, improvement of diatoms and compliance through 

changes in the effluent of the WWTP and CSOs. Results showed that the four options could be 

practically implemented by Scottish Water in order to improve the water quality in the Almond 

River.  

Schellart et al. (2010) showed a UK pilot case study to demonstrate the impact of model 

uncertainties on predicted water quality failures under the Fundamental Intermittent Standards 

(Foundation for Water Research, 2012) in an existing study for a UK Water Utility where 

industry standard software was used. The integrated water quality model included the rainfall-

runoff MIKE NAM model, the sewer network and wastewater treatment plant (modelled in 

Infoworks CS), and the river water quality model (RIOT) for the prediction of river flow, DO 

and ammonia. RIOT is an in-house software package developed by a UK consultant and used 

in studies for UK Water utilities. It assumes instantaneous mixing of pollutants across the river 

reach studied (Priestley and Barker, 2006).The area of coverage by the sewer system was 

approximately 294 ha serving approximately 11,000 inhabitants. Their findings revealed that 

the predicted number of water quality failures could vary by approximately 45% for dissolved 

oxygen and approximately 32% for ammonia (Schellart et al., 2010).     

2.3 Water Quality Regulation 

The European Union (EU) Water Framework Directive (WFD) since 2001 has been 

implemented to ensure clean rivers, lakes, groundwater and bathing waters for citizens of the 

European Union (European Commission, 2000). The WFD requires that a holistic approach is 

taken to obtain a “good ecological status” for surface water and groundwater. This good 
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ecological status is classified according to the biological, chemical and hydrological 

characteristics of the water body.  Specific implementations of the WFD fall into each member 

of the European Union. For instance in the Netherlands, key ecological factors indicate the 

ecological status which then is matched with the human pressures on the water body. These 

pressures range from diffuse pollution to intervention measures such as channelization or 

vegetation maintenance (STOWA, 2015). 

In the United Kingdom, the Foundation for Water Research developed the Urban Pollution 

Manual (UPM) which establishes specific standards for the implementation of the WFD 

(Foundation for Water Research, 2012). Furthermore, the UPM manual specifies a range of 

wet weather discharges criteria to protect receiving waters and aquatic life.  Environmental 

Quality Objectives are defined to indicate the desired used of the water body, and accordingly, 

Environmental Quality Standards are set to accomplish these objectives. Regulators may use 

intermittent standards that directly affect the ecosystem during or after an event, or high 

percentile standards (99 percentiles) based on the extrapolation of 90/95 percentile thresholds 

used to protect the water body. (Foundation for Water Research, 2012). The Fundamental 

Intermittent Standards (FIS) are the former method. FIS are applied to dissolved oxygen (DO) 

and un-ionised ammonia establishing duration thresholds for a range of return periods (1 

month, 3 months, and 1 year) for individual pollution events (Foundation for Research, 2012) 

Three levels of protection are defined within FIS to provide protection to aquatic life during 

their various stages of development. 

Currently, there is a lack of research on the interactions between water quality model 

development, model uncertainty and water quality regulations (Sriwastava et al., 2018; 

Tscheikner-Gratl et al., 2018). An example of this was studied by Yorkshire Water, where 

historical sampling data were used to determine compliance. However, no modelling methods 

were implemented to determine current or future water quality failures (Priestley & Barker, 

2006). 

2.4 Sources of Uncertainty 

As stated in the introduction, this thesis will focus on the definitions described in Freni and 

Mannina (2010) as they are quantifiable sources of uncertainty in environmental models. These 

include: i) input data uncertainty, corresponding to the data used for the initial and boundary 
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conditions, ii) parameter uncertainty, due to the quantification, selection and calibration of 

parameters, and iii) model structure uncertainties due to the equations and algorithms used in 

the representation of the real processes and/or coupling these processes (Freni & Mannina, 

2010). It is important to note that these uncertainties may fall under other categories of 

uncertainty classification. Moreover, other sources of uncertainty such as ‘ignorance’ as 

described by Wynne (1992) will not be the focus of this literature review. In addition, the scope 

of this thesis is limited to catchment scale studies and up to the seasonal time scale for the 

evaluation of the impact of uncertainties when applying the Fundamental Intermittent 

Standards (FIS). 

2.4.1 Structural uncertainty 

Model structure uncertainty is usually referred to the uncertainty associated with the 

deficiencies in matching the model to the real processes of interest (Refsgaard et al., 2006). 

Frequently, in order to simplify complex processes, key components are not considered or 

undergo scaling problems (Blumensaat et al., 2014). Model structure uncertainty is also 

associated with the mathematical expressions chosen to represent reality. Although widely 

accepted as a major source of uncertainty, structural uncertainty has received less attention in 

the literature than parameter and input uncertainty (Freni & Mannina, 2010; Lindenschmidt et 

al., 2007; Refsgaard et al., 2006). 

Several sources of structural uncertainty are identified within the pollutant transport and mixing 

models. For instance, within pollutant transport modelling, representing the skewness in 

observed pollutant concentration profiles from field data has been challenging. Although 

skewness is considerably higher within the advective zone, skewness has also been noted over 

extended distances (Rutherford, 1994). Explanations for this skewness have been attributed to 

the effects of trapping areas (frequently called dead zones), shear velocities (e.g. data collected 

in the advective zone), and the hyporheic zone. Dead and hyporheic zones release the stored 

water slowly attenuating the peak concentrations resulting in longer concentration profiles 

(Bencala & Walters, 1983; Nordin & Troutman, 1980). To address the skewness issue, models 

have been developed incorporating the effect of transient and storage zones. The transient 

storage model (TSM) is a conceptual model to simulate pollutant transport using the 1D ADE 

and the transverse exchange with the storage zones using a mass transfer term (Runkel, 1998). 

Moreover, Ge and Boufadel (2006) found that the TSM model could not fit the observed 

profiles estimated after a large pool formation in the river section. They attributed the poor fit 
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to the poor mixing of the river cross section. Due to the effect of transverse velocities, the solute 

did not mix completely along the cross section causing a 2D problem with higher velocities at 

the centre of the pool and lower velocities at the edges. This example illustrates how the 

assumption of full cross sectional mixing may lead to inaccuracies in the predictions. 

Among studies of structural uncertainty, Van Der Perk (1997) studied model complexity 

associated with modelling phosphorus concentrations in rivers by comparing eight 1D models. 

The accuracy of predictions increased when increasing the model complexity by adding more 

processes (e.g. first-order removal, adsorption, first-order uptake, etc.). Radwan and Willems 

(2007) studied structural uncertainty by comparing two water quality models, QUAL2E and 

Mike11. They found that structural uncertainty accounted for between 2% and 13% of total 

uncertainty depending on the studied variable. On the other hand, Lindenschmidt et al. (2007) 

used WASP5 package to analyze structural uncertainty in modelling dissolved oxygen, 

phytoplankton dynamics, sediment and micropollutants. They found that for organic soluble 

pollutants, uncertainties due to the structure of coupling models was more significant than 

parameter uncertainty. Blumensaat et al. (2014) compared three models of dissolved oxygen 

to study structural sensitivity (model flexibility). Their study suggests that more complex 

models result in higher structural sensitivity which leads to less model error as long as adequate 

data is available. Although strucural uncertainty has been identified as a major source of 

uncertainty, only a few studies have quantified it. Quantifiying structural uncertainty is a 

challenging task due limitations in representing real physical and biochemical processes and 

often overparametrization of these processes (Radwan & Willems, 2004). 

Another aspect of structural uncertainty is the reduction from the three-dimensional space to 

one-dimensional space. Most solute transport studies involving uncertainty analysis have been 

carried out in one dimension as observed in G. Mannina and G. Viviani (2010a), Choi and Han 

(2014) and Ani et al. (2009). However, the question of the level of uncertainty from 

dimensionality reduction remains. It is important to note that the inclusion of a second or third 

dimension involves the inclusion of other parameters, which will add parameter uncertainty to 

the overall uncertainty analysis (Ani et al., 2009). 

2.4.2 Parameter uncertainty 

Parameter uncertainty is associated with the process of selection of the parameters used in the 

model (Freni et al., 2011). Although model structural uncertainty and parameter uncertainty 
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are not independent of each other (as model complexity increases so does the number of 

parameters), this review refers to parameter uncertainty as the uncertainty from the data and/or 

methods used for estimating the parameters. There are several parameters that require attention 

in the water modelling process. For instance, roughness coefficients can be an important source 

of uncertainty (Lindenschmidt, 2006). Moreover, this review focuses on parameter 

uncertainties within water quality models rather than the hydrodynamic model. 

ADE Dispersion Coefficients – Mixing processes and therefore dispersion coefficients are 

highly variable over the time and space scales. Riverine features such as irregular bed-forms, 

channel meandering, vegetation, pools and riffles can largely influence hydraulic and 

geometric conditions which contribute to the dispersion processes (Guymer, 1998; Noss & 

Lorke, 2016; Shucksmith et al., 2010). 

The concept of longitudinal dispersion was first introduced by Taylor (1954) in a circular pipe. 

Then, Elder (1959) derived a more theoretical dispersion equation for an infinite width channel. 

Elder’s equation has been scrutinized for underestimating the natural dispersion in rivers 

(Fischer, 1979). Since then, more methodologies for estimating or calibrating the dispersion 

coefficients have been developed given their importance in predicting solute concentrations. 

These include: regression analyses methods based on bulk river hydraulic and 

geomorphological properties (Kashefipour & Falconer, 2002; Liu, 1977; Magazine et al., 1988; 

McQuivey & Keefer, 1974; Seo & Cheong, 1998); theoretical formulations (Fischer, 1967; Seo 

& Baek, 2004); genetic algorithms (Etemad-Shahidi & Taghipour, 2012; Sahay & Dutta, 

2009), and geostatistical methods (Altunkaynak, 2016). However, most theoretical and 

regression methods developed do not incorporate the heterogeneity and non-linearity of 

catchments (Altunkaynak, 2016). 

Through tracer experiments, dispersion coefficients may also be estimated. These experiments 

are more site-specific and may give better parameter estimations. However, they are also 

associated with field collection errors. 

ADZ time delay and residence time –The time delay and residence time are obtained from the 

pollutant cloud travelling times. The time delay is the advective time it takes for the cloud to 

move only due to advection of the bulk flow while the residence time is a lumped parameter 

that describes the travel time associated with dispersion (González-Pinzõn et al., 2013). These 

parameters can also be obtained from experimental studies. Relationships between the ADZ 
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parameters and hydraulic conditions have been studied for instance by Holguin-Gonzalez et al. 

(2013) 

Model calibration parameters – Calibration or estimation of model parameters is generally 

implemented by minimizing the discrepancy between model outputs and predicted data by 

adjusting the model parameters. This practice assumes that the model provides an accurate 

representation of reality (Arhonditsis et al., 2008). Calibration is subject to both, structural 

uncertainty (due to the assumption that the mathematical model is a fair representation of 

reality), and input data uncertainties (potentially due to the lack of data). 

Parameter uncertainty in complex models - For more complex models, such as eutrophication 

models, the number of parameters required to have a realistic description of the ecological 

system dynamics increases. Reichert and Omlin (1997) argue that a set of global optimum 

parameters which describe the real system is not achievable. To address this issue, the use of 

distributions instead of point estimates for describing parameters has been suggested 

(Arhonditsis et al., 2008; Hornberger & Spear, 1981). Another alternative to assist with the 

identification of parameter uncertainty and to gain a better understanding of the natural system 

is the implementation of sensitivity analysis (Jia et al., 2018). 

2.4.1 Input Data Uncertainty 

Input data uncertainty is usually case dependent. Often, uncertainties arise from the data 

temporal and spatial resolution. Input data uncertainties may arise from the model forcing data 

(precipitation), digital elevation model representation, soil or sewer network maps (Moreno-

Rodenas et al., 2019) among other sources. Several techniques have been used to reduce the 

input uncertainty. Han and Zheng (2018) coupled a Markov Chain Monte Carlo (MCMC) and 

Bayesian Model Averaging (BMA) techniques to investigate the input and parameter 

uncertainty associated with modelling synthetic nitrate pollution for the Newport Bay 

Watershed, California finding that if input uncertainty was not explicitly accounted for, it lead 

to large sources of uncertainty which were compensated by parametric uncertainty. Sohrabi et 

al. (2002) used a statistical sensitivity analysis to determine uncertain input parameters in a 

flow transport model, finding that input uncertainty resulted in 20% higher mean flow rates 

and three times the estimated atrazine leaching rates. 

Studies regarding the dominance of structural, parameter and input uncertainties in water 

quality modelling have revealed contradictory findings regarding the importance of these 
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uncertainties. For instance, Radwan and Willems (2007) quantified the contribution to total 

uncertainty from a small catchment (57.44 Km2) west of Brussels. They analysed the 

uncertainties arising from input, parameter and structural uncertainties. They evaluated the 

water quality models MIKE11 and Qual2E models concluding that the largest uncertainty arose 

from input uncertainty accounting up to 61% of total uncertainty for DO, followed by 

parameter uncertainty (37% for DO). Structural uncertainty resulted in the smallest uncertainty 

(2% of total uncertainty for DO). On the other hand, Lindenschmidt et al. (2007) analysed the 

uncertainties from modelling the largest tributary of the Elbe River (23770 km2). In their study, 

they quantified the parameter and structural uncertainties in an integrated model composed of 

three sub models: DYNHYD (hydrodynamic), EUTRO (dissolved oxygen and phytoplankton 

dynamics), and TOXI (transport and transformation of sediments and micro pollutants). Using 

a regression error term to quantify the structural uncertainty from the TOXI and EUTRO 

models, they found that the structural uncertainty was more significant that the parameter and 

input uncertainty. Zhang and Shao (2018) studied the Shaying River catchment (3,651 km2) 

from 2003 to 2005. Their integrated catchment model was composed of a hydrological cycle 

module, soil erosion module, overland water quality module, water quality module in water 

bodies, crop growth module, soil biochemical module and dam regulation module (DRM). 

Zhang and Shao (2018) evaluated structural and parameter uncertainties in the runoff and water 

quality models and their propagation. Their study found that the 95% uncertainty intervals due 

to structural uncertainty were wider than those due to the parameter uncertainty when 

modelling daily observations of NH4.  

2.5 Concluding Remarks 

There is a plethora of water quality models available for the prediction of water quality 

variables and the assessment of water quality compliance. However, there is still a need to 

evaluate the impact of parameter, input data and structural uncertainties on predicted water 

quality concentrations and water quality regulation (e.g. Fundamental Intermittent Discharges) 

at different time and space scales.  

Several attempts have been made to develop improved equations of longitudinal dispersion as 

pointed out in Section 2.4.2 for the estimation of pollutant concentrations using one-

dimensional models. However, the effect of the propagated uncertainty from the use of 

empirical parameter formulations of the longitudinal dispersion coefficient on simulating 
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concentration-duration-threshold type water quality standards was not studied despite the wide 

ranges of longitudinal dispersion coefficients found in the literature. Etemad-Shahidi and 

Taghipour (2012) showed that longitudinal dispersion coefficients ranged from 0.2 to 1487 m2 

s-1 in the database they collated. Alizadeh, Ahmadyar, et al. (2017) used statistical analysis 

such as the Root Mean Square Error and the percent accuracy to estimate the uncertainty from 

the dispersion coefficient. However, this study and previous studies have estimated the 

uncertainty from the coefficient itself (Alizadeh, Ahmadyar, et al., 2017; El Kadi Abderrezzak 

et al., 2015; Lanzoni et al., 2018; Wang & Huai, 2016; Zeng & Huai, 2014), but few studies 

have propagated these uncertainties within transport predictions (Kashefipour & Falconer, 

2002) and to the author’s knowledge, no methodology for evaluating the impact of the 

longitudinal parameter uncertainty on simulations used for testing compliance with water 

quality regulation has been proposed. 

As the spatial and temporal scales increase from the reach scale to the catchment scale and 

from the sub-hourly time scale to the seasonal scale, the complexity of river models also 

increases in order to accommodate biological, chemical and ecological processes (Blumensaat 

et al., 2014; Rode et al., 2010). A thorough description of the biochemical processes that are 

added to the Advection Dispersion Equation within the River Water Quality No. 1 (RWQM1), 

shown by Reichert et al. (2001), illustrates the wide variety of components and processes 

required for the simulation of oxygen, nutrients, vegetation, algae and sediments cycling and 

interactions. At these longer time and space scales, the following questions remain unanswered: 

1) which are the dominant processes and uncertainties at the catchment scale, and 2) what is 

the impact of uncertainty of the longitudinal dispersion coefficient estimation over predicted 

pollutant concentrations. As the river water quality model complexity increases, the potential 

structural uncertainty decreases. However, the parameter and inputs required by the model also 

increase augmenting the problem of equifinality and parameter identification (Arhonditsis et 

al., 2006; Beven & Freer, 2001; Rode et al., 2010). Ge and Boufadel (2006) highlight the 

problem of identifiability of the dispersion parameters suggesting that as the distance between 

the pollutant release increases, the identification of parameters becomes poorer.  

Commonly used commercial water quality models contain model simplifications, which may 

propagate uncertainty into water quality predictions and therefore into river management 

strategies designed to satisfy water quality regulation. For instance, the models SIMulation of 

CATchments (SIMCAT) and SIMPOL ICM developed by the Water Research Centre (WRc) 
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predict variables such as Biological Oxygen Demand (BOD), Chemical Oxygen Demand 

(COD), Dissolved Oxygen (DO) and ammonia. SIMCAT and SIMPOL represent the river as 

Continually Stirred Tank Reactors in Series (CSTRS) assuming perfect mixing within each 

tank (Cox, 2003a). Both models have been used in evaluating water quality compliance by the 

United Kingdom Environmental Agency. Crabtree et al. (2009) illustrates how SIMCAT was 

used for a pilot study for the River Ribble in the Northwest of England to assess 80 catchment 

scenarios, and to developed a range of Programmes of Measures (PoM) to achieve a ‘good 

status’ under the Water Framework Directive. These PoM included alternatives to reduce 

diffuse pollution and options for the water industry to assess management scenarios. SIMPOL 

ICM is currently used to address the interactions between water company assets and the natural 

environment (e.g. how wastewater and businesses affect each other for a range of scenarios) 

(Water Resources Centre, 2012). More complex models that use the 1D ADE such as MIKE 

11 (DHI Water and Environment, 2009) and Inforworks ICM (Innovyze, 2017) are also used 

by the water industry for the evaluation of water resources, evaluation of water quality failures 

and design of PoMs. (Jones et al., 2019; Schellart et al., 2010; Verghetta & Taylor, 2019). 

There is a need to examine the scale and magnitude of the uncertainties resulting from the 

structural error of such model simplifications.  
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3. Thesis Aim and Objectives 

The overall aim of the work presented in this PhD thesis is to evaluate and quantify the 

dominant sources of uncertainty in river water quality modelling at multiple time and space 

scales for varying degrees of model complexity. The work is limited to models ranging from 

the reach scale to the catchment scale and from the sub-hourly time scale to the seasonal scale 

thus allowing the evaluation of water quality models used for water regulation under the 

Fundamental Intermittent Standards (FIS). Further emphasis is made on evaluating the time 

and space scales where mixing processes are key in estimating pollutant concentrations and 

duration over threshold type standards, from the Urban Drainage Pollution Manual (Foundation 

for Water Research, 2012).  

3.1 Specific Objectives 

The following specific objectives have been set to evaluate individually the dominant 

uncertainties at the different time and space scales: 

1. To quantity the propagated uncertainty of the longitudinal dispersion coefficient on 

water quality concentrations and water quality regulation using the 1D ADE (Chapter 

4). 

2. To evaluate the performance of an integrated transport and ecological model and 

quantify input data uncertainty (Chapter 5). 

3. To evaluate the implications of using simple and complex model structures and their 

uncertainty on water quality regulation (Chapter 6).  
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4. Quantifying the Impact of Uncertainty within the 
Longitudinal Dispersion Coefficient on Concentration 
Dynamics and Regulatory Compliance in Rivers 

This chapter addresses the thesis objective associated with evaluating and quantifying the 

propagated uncertainty of the longitudinal dispersion coefficient on water quality estimations 

and water quality regulation (Objective 1). This chapter is based on the publication: 

V.V. Camacho Suarez, A. N. A. Schellart., W. Brevis and J. D. Shucksmith. (2019). 

Quantifying the Impact of Uncertainty within the Longitudinal Dispersion Coefficient on 

Concentration Dynamics and Regulatory Compliance in Rivers. Water Resources Research, 

10.1029/2018wr023417 

4.1 Introduction 

Maintaining good surface river water quality standards for different uses (drinking, recreation, 

ecological habitat, etc.) is a challenging task due to the extensive list of complex and variable 

natural and anthropogenic factors affecting water quality conditions. Rivers are subject to 

variable physical, chemical and biological processes that may affect their vulnerability to 

pollution loads (Chapman, 1996). River water quality models provide a tool for simulating 

such processes to assist in the assessment and improvement of water quality conditions that 

may not be otherwise obtained from field monitoring. However, lack of knowledge of water 

quality processes and the river system of interest can limit the reliability of the model 

predictions. Modelling uncertainties can thus lead to sub-optimal water or infrastructure 

management decisions (Sriwastava et al., 2018). Thus, quantifying and communicating the 

accuracy of water quality predictions is a key component for improving water quality 

conditions and managing better water resources (Refsgaard et al., 2006; van Griensven & 

Meixner, 2006). 

Whilst uncertainties have been studied within other areas of catchment modelling, such as 

rainfall-runoff, groundwater, wastewater treatment and urban drainage models (Arnbjerg-

Nielsen & Harremoës, 1996; Beven & Binley, 1992; Dotto et al., 2012; Freni & Mannina, 2010; 

Giorgio Mannina & Gaspare Viviani, 2010; Refsgaard et al., 2007; Schellart et al., 2010; 

Willems, 2008), relatively few studies have focused on the uncertainties within surface water 

quality modelling, of these most relate to biochemical processes of specific substances. For 

instance Van Der Perk (1997) explored the model uncertainty and accuracy using eight 
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phosphate concentration models for the Biebrza River, Poland. Although they found that when 

increasing model complexity, the accuracy of the model also increased, the parameter 

identifiability decreased and the parameters became increasingly correlated. Abbaspour et al. 

(2007) evaluated the capabilities of SWAT (Soil and Water Assessment Tool) when modelling 

the Thur River basin in Switzerland. Using the 95% confidence intervals and the ratio of the 

mean distance in-between the 95% confidence intervals and standard deviation, they found 

excellent predictions for flow and nitrate and good predictions for sediment and total 

phosphorus. Lindenschmidt et al. (2007) examined the structural uncertainty in modelling 

dissolved oxygen nutrients, phytoplankton dynamics, sediment and micro pollutants using the 

WASP5 package (Water quality Analysis Simulation Program) which coupled three models: 

1) a hydrodynamic model 2) a dissolved oxygen, nutrient and phytoplankton model and 3) a 

sediments model. Vandenberghe et al. (2007) utilised a Monte Carlo based uncertainty 

propagation approach to examine predictive uncertainties in the ESWAT model due to a 

selection of water quality parameters and model inputs. Despite its importance in modelling 

time varying/dynamic river and pollution impacts (Boxall & Guymer, 2003; G. Mannina & G. 

Viviani, 2010a), studies investigating the impacts of uncertainties associated with mixing 

processes on water quality modelling and decision making are limited (Benke et al., 2008; 

Tscheikner-Gratl et al., 2018). Existing studies have mostly focused on either comparing the 

accuracy of calibrated models of varying complexity (Moghaddam et al., 2017), or on the 

uncertainty in estimating dispersion (or other) parameters in themselves using different 

methods, without propagating the effect of these parameter uncertainties within water quality 

modelling predictions (Alizadeh, Shahheydari, et al., 2017; Noori et al., 2016; Piotrowski et 

al., 2010; Sattar & Gharabaghi, 2015). 

When simulating large (catchment scale) systems, the modelling of the physical transport of 

pollutants in rivers is commonly implemented within water quality models using the one 

dimensional advection dispersion equation 1D ADE (Rutherford, 1994). 

Equation 11 

𝜕𝐶

𝜕𝑡
= −𝑣

𝜕𝐶

𝜕𝑥
 + 𝑘𝑥

𝜕2𝐶

𝜕𝑥2
 

Where 𝐶 is the concentration in (mg l-1), 𝑡 is the time (s), 𝑣 is the river mean velocity (m s-1), 

𝑥 is the distance downstream (m) and kx is the longitudinal dispersion coefficient (m2 s-1). The 

1D ADE describes the change in cross sectional averaged concentration of a solute with respect 
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to time as a result of the advection and dispersion processes in turbulent flows (Fischer, 1979; 

Rutherford, 1994), dispersion being a product of differential advection (velocity shear) and 

turbulent diffusion processes. The 1D ADE is applicable in conditions where an equilibrium 

becomes established between the velocity shear and diffusion processes (Shucksmith et al., 

2007). An appropriate solution to Equation 11 is dependent on the boundary conditions. 

Mixing processes and hence dispersion coefficients are known to be highly variable between 

rivers and over different hydraulic regimes. The presence of various common riverine features 

such as irregular bed-forms, channel meandering, vegetation, pools and riffles can largely 

influence such hydraulic and geometric conditions leading to significant variations in 

dispersion and mixing processes (Guymer, 1998; Noss & Lorke, 2016; Shucksmith et al., 

2010). Despite its widespread use within modelling tools, several sources of uncertainty have 

been identified within the 1D ADE when applied to river systems. Primarily, the 1D ADE does 

not represent the asymmetry typically observed in tracer concentration profiles observed in 

field studies (van Mazijk & Veling, 2005).The persistent skewness in observed concentration 

profiles has been attributed to a number of processes, including transient storage effects and 

hyporheic exchange processes (Bottacin-Busolin & Marion, 2010; Briggs et al., 2009; Fernald 

et al., 2001; Nordin & Troutman, 1980; Zaramella et al., 2003), prolonged lack of equilibrium 

between diffusion and dispersion effects (Schmalle & Rehmann, 2014), and use of frozen cloud 

type approximations within field measurements (Rutherford, 1994). A number of modelling 

tools have been developed to account for profile asymmetries, which generally include 

additional or replacement terms and parameters to account for storage type effects in river 

systems (Runkel, 1998). However, this can lead to increased difficulties in parameter 

estimation due to issues associated with equifinality (Beven & Binley, 1992; González-Pinzõn 

et al., 2013), and generally requires more complex and well-designed measuring campaigns for 

calibration (Reichert & Vanrolleghem, 2001). Despite its limitations, the 1D ADE is still the 

most commonly used type of model for water quality assessments. In addition, most water 

quality assessments are relatively insensitive to the accurate prediction of distribution tails, 

instead being based on concentration exceedance frequencies, and durations over given 

thresholds (Foundation for Research, 2012). A number of studies have shown that the 

calibrated 1D ADE is able to reproduce field observations of mixing processes with accuracy 

sufficient for such catchment scale water quality modelling applications, without the inclusion 



 

34 

 

of transient storage/increased skewness effects (Ani et al., 2009; Launay et al., 2015; Marsili-

Libelli & Giusti, 2008). 

A common aspect of transport and mixing models is the identification of parameters via 

calibration/fitting of the model to observed data (Fischer, 1979). However, field measurements 

needed to calibrate mixing models over a range of flow conditions at a study site are often 

costly and time-consuming. Several attempts have therefore been made to empirically and 

physically quantify the 1D ADE dispersion coefficient in terms of the underlying hydraulic 

processes and/or general river characteristics. Elder (1959) first derived an equation for this 

dispersion coefficient based on an analysis of an infinitely wide channel. This method has been 

generally recognized (Rutherford, 1994; Seo & Cheong, 1998) to underestimate natural 

dispersion in rivers due to the neglect of transverse shear dispersion processes. Fischer (1979) 

derived an equation for the dispersion coefficient that included a triple integral to account for 

the local transverse mixing. However, difficulties in accounting for the transverse mixing 

coefficient have been encountered mainly due to the absence of information regarding the 

transverse velocity and depth (Deng et al., 2001). More recently, numerous empirical equations 

to estimate dispersion coefficient based on geometrical river characteristics have been 

developed based on regression analyses of published datasets of tracer studies and the resulting 

fitted 1D ADE parameters (Kashefipour & Falconer, 2002; Liu, 1977; Magazine et al., 1988; 

Seo & Cheong, 1998; Zeng & Huai, 2014). These equations are commonly based on 

dimensional analysis of key hydraulic and geometric parameters known to influence dispersion 

and turbulent diffusion processes including the width, depth, mean velocity and mean shear 

velocity. Such empirically based formulations of dispersion coefficient as a function of bulk 

river properties are often implemented within water quality models to determine longitudinal 

dispersion coefficient default parameters. For instance, the default longitudinal dispersion 

coefficient in the Qual2K water quality model is calculated using a regression equation from 

Fischer (1975). The default value within the D-Water Quality module used within the software 

packages Delft3D and SOBEK is calculated using a function based on the mean velocity, 

width, Chezy coefficient and the total depth (Deltares, 2018). InfoWorks ICM uses a default 

equation based on bulk river characteristics (shear velocity, channel width, mean flow velocity) 

to determine the dispersion coefficient (Innovyze, 2017). This, however, raises important 

questions regarding the sensitivity of water quality assessments (and associated decision 

making) to inaccuracies in the estimates of such parameters. Understanding the uncertainties 



 

35 

 

introduced via the use of these methodologies for quantifying the dispersion coefficient based 

on bulk river characteristics is therefore of importance when considering the accuracy of water 

quality modelling studies. Little research on error propagation through existing calibrated 

models for water quality in rivers has been conducted to date (Benke et al., 2008) and work to 

understand the implications of the longitudinal dispersion coefficient uncertainty within water 

quality predictions is rare. Whilst some studies have determined the accuracy of some 

parameter estimation techniques at specific case study sites (El Kadi Abderrezzak et al., 2015; 

Launay et al., 2015), or investigated the uncertainties resulting from the use of the 1D ADE (as 

well as an alternate stochastic transfer function based approach) at a site at different flow rates 

(Romanowicz et al., 2013), to the authors knowledge, there is a lack of studies that robustly 

estimated and propagated parametric uncertainties associated with the determination of the 

dispersion coefficient. The nature, scale or significance of this uncertainty, its relationship to 

model structure uncertainty, or the associated implications for commonly deployed water 

quality assessments is therefore not currently well understood. 

The aim of this chapter is to quantify the impact of uncertainty introduced to river water quality 

modelling as a result of utilising current state of the art regression equations to determine 

longitudinal dispersion coefficients. The assessment is based on the 1D ADE due both to its 

ongoing widespread application, as well as the availability of a significant number of historical 

published datasets over a range of field sites with which to robustly characterise parameter 

uncertainty. This paper first independently evaluates six longitudinal dispersion regression 

equations by quantifying their statistical accuracy against published datasets of tracer studies. 

Then, a Monte Carlo analysis is carried out to propagate uncertainty inherent in the empirical 

formulations of dispersion coefficient, to time-concentration profiles for an independent river 

solute tracing case study. Finally, the paper estimates and discusses potential impact of this 

uncertainty on water quality legislation compliance based on a concentration-duration-

frequency analysis using rivers of different hydraulic and geometric characteristics. 

4.2 Evaluation of methodologies to estimate dispersion coefficient 
in rivers 

This study identified and reviewed a range of methodologies and equations for predicting 

longitudinal dispersion coefficients in rivers. It was found that most regression analyses have 

been based on the same underlying dataset which has grown over time as more studies have 
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been added. The datasets consist of published values of bulk river characteristics and 

‘measured’ dispersion coefficients. Typically, these values are based on averaged values of 

cross sectional river surveys as well as the results of tracer study tests in which some form of 

parameter identification techniques (e.g. method of moments) have been performed to identify 

mixing parameters. However, given the size of the database and the unavailability of the raw 

data, it is not possible to robustly evaluate the accuracy of the underlying datasets. There is 

considerable overlap in the empirical basis for most published regression based methods found 

in the literature. However, a number of statistical and regression analysis methods have been 

deployed in order to produce numerous formulations to determine dispersion coefficients. In 

this study, we focus on six published equations (shown in Table 1) for a more rigorous 

evaluation and uncertainty analysis. These studies were selected because they contain large and 

clearly identifiable published datasets which are comparable, thus making a fair comparison of 

their potential predictive accuracy. In addition, as analysis techniques have progressed, the 

predictive power and accuracy of the regression equations has tended to grow over time. 

Therefore, by utilising relatively recent methodologies we aim to evaluate the best case in terms 

of uncertainty levels within water quality predictions. The identified equations are commonly 

based on regression analysis of key identified parameters such as the ratio between river mean 

velocity and shear velocity (
𝑣

𝑢∗) and river aspect ratio(
𝐵

𝐻
). These parameters have been 

determined to be influential on calculating the dispersion coefficient by several studies via 

dimensional analysis and observed correlations (Kashefipour & Falconer, 2002; Zeng & Huai, 

2014). The six equations selected for analysis are described in Table 3. 
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Table 1. Evaluated Longitudinal Dispersion Equations and number of datasets used in their 
development. 𝒌𝒙 is the longitudinal dispersion coefficient (m2 s-1), 𝑩 is the river width (m), 𝑯 is the river 
depth (m), 𝒗 is the river mean velocity (m s-1), 𝒖∗ is the river mean shear velocity (m s-1), and 𝑭𝒓 is the 
Froude number 

Name Equation 

Number of 

training/calibration 

datasets 

Deng et al. (2001) 

𝑘𝑥  =  
0.15

8 𝐸𝑡
(

𝑣

𝑢∗
)

2

(
𝐵

𝐻
)
1.67

𝐻𝑢∗, 𝑤ℎ𝑒𝑟𝑒 

𝐸𝑡 =  0.145 + (
1

3520
)(

𝑣

𝑢∗
) (

𝐵

𝐻
)
1.38

 

73 

Etemad-Shahidi and 

Taghipour (2012)  

𝑖𝑓
𝐵

𝐻
≤  30.6, 𝑘𝑥 =  15.49 (

𝐵

𝐻
)

0.78

(
𝑣

𝑢∗
)

0.11

𝐻 𝑢 ∗ 

𝑖𝑓
𝐵

𝐻
>  30.6, 𝑘𝑥  =  14.12 (

𝐵

𝐻
)

0.61

(
𝑣

𝑢∗
)

0.85

𝐻 𝑢 ∗ 

 

149 

Zeng and Huai (2014) 𝑘𝑥  =  5.4 (
𝐵

𝐻
)

0.7

(
𝑣

𝑢∗
)

0.13

𝐻 𝑣 116 

Disley et al. (2015)  𝑘𝑥  =  3.563 𝐹𝑟−0.4117  (
𝐵

𝐻
)

0.6776

 (
𝑣

𝑢∗
)
1.0132

 𝐻 𝑢 ∗ 56 

Wang and Huai (2016) 𝑘𝑥  =  17.648 (
𝐵

𝐻
)

0.3619

(
𝑣

𝑢∗
)
1.16

𝐻 𝑢 ∗ 116 

Wang et al. (2017)  𝑘𝑥  = (0.718 + 47.9
𝐻

𝐵
) 𝑣 𝐵 116 

 

The equation presented in Deng et al. (2001) is based on Fischer’s (1975) triple integral for 

longitudinal dispersion coefficient. By deriving an expression for the transverse velocity profile 

in alluvial rivers, they considered the local velocity deviation from the cross-sectional average 

velocity and solved the triple integral to derive an analytical equation for the longitudinal 

dispersion coefficient. A regression dataset was used to test the proposed equation to determine 

the suitability of the coefficients in the equation. Etemad-Shahidi and Taghipour (2012) 

developed a model tree method to produce an alternate equation to derive the longitudinal 

dispersion coefficient. The method consists of a recursive algorithm that performs the 

regression analysis on the underlying datasets by reducing a standard deviation factor. Zeng 
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and Huai (2014) used a non-dimensional analysis to determine that most previous equations 

underestimate the longitudinal dispersion coefficient for rivers with aspect ratios between 20 

and 100. They suggested that a more accurate formula for longitudinal dispersion can be found 

via implementing an additional factor based on the mean velocity. Disley et al. (2015) 

performed dye tracing experiments on a small stream in Ontario. Using the collected data and 

a selection of rivers from previous studies, they developed a new regression equation of 

longitudinal dispersion. Disley et al. (2015) incorporated the Froude number to capture the 

effect of the slope on dispersion processes. Wang and Huai (2016) based a new equation on an 

analysis of dispersion in a rectangular flume and applied this understanding to natural rivers. 

To obtain the longitudinal dispersion coefficient from a rectangular flume, they transformed 

the non-integral form of the velocity distribution into a Fourier series to solve the triple integral 

for longitudinal dispersion. Consequently, they used 80% of their selected dataset to train the 

algorithm developed for predicting the dispersion equation. Finally, Wang et al. (2017) 

suggested a concise form of the dispersion coefficient equation for various flow conditions. 

The study developed a general dispersion equation for pipe flows and calibrated it for natural 

rivers using a genetic algorithm model. 

To initially evaluate the predictive accuracy of each of the regression equations presented in 

Table 1, a statistical analysis was conducted using the original regression datasets employed in 

the construction of each formulation (Table 2). The corresponding datasets were selected for 

the analysis to provide a fair evaluation of each model, so that each equation is only compared 

against its own regression dataset. The statistical criteria used to evaluate the equations include: 

i) percent accuracy, ii) the RMSE-observations standard deviation ratio (RSR), iii) percent bias 

(PBIAS), iv) coefficient of determination (R2), and v) Nash-Sutcliff Coefficient (NSC). A 

definition of these criteria can be found in Table 2. The optimal value of the RMSE-

observations standard deviation ratio (RSR) is 0.0. RSR standardizes the Root Mean Square 

Error (RMSE) using the observations and describes the residual variance (Moriasi et al., 2007). 

The percentage bias (PBIAS), is used to measure the tendency of the formulations to 

overestimate or underestimate the observed value. The optimal value of the PBIAS is 0.0. 

Therefore, the best performing equation is the one with the smallest absolute value of PBIAS 

(Gupta et al., 1999). Negative PBIAS value indicates that the equation is over-predicting the 

value of the longitudinal dispersion coefficient, while positive values indicate under-prediction. 

The accuracy is the percentage of Predictive ratios (Pr) between 0.5 and 2 or its equivalent 
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logarithmic range between -0.3 and 0.3 (Seo & Cheong, 1998; White, 1973). The R2 describes 

the degree of collinearity between the predicted and observed data. It also indicates the 

proportion of the observed data that is explained by the variance. Higher values indicate less 

error variance. However, R2 does not detect systematic over or under-predictions (Krause et 

al., 2005). The NSC is a normalized indicator of the performance of the equation. The weakness 

of the NSC is that, because it is squared, it is sensitive for high values in the dataset, but not 

for lower values (Krause et al., 2005). These statistical measures were selected because they 

are commonly used to evaluate, train or optimise the dispersion equations (Disley et al., 2015; 

Etemad-Shahidi & Taghipour, 2012; Sattar & Gharabaghi, 2015; Seo & Cheong, 1998). 

Table 2 presents the statistical results of the evaluation of the dispersion equations. According 

to the statistical model evaluation techniques described above, Disley et al. (2015) equation 

has the highest accuracy, lowest RSR, least absolute PBIAS, highest R2, and highest NSC. The 

Etemad-Shahidi and Taghipour (2012) equation has the second lowest RSR, and second highest 

R2 and NSC. Deng et al. (2001) equation has the second highest accuracy. From the negative 

PBIAS (Table 2), it is noted that the Disley et al. (2015), Zeng and Huai (2014) and Deng et 

al. (2001) equations tend to over-predict the dispersion coefficient. 
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Table 2. Summary of statistical analysis based on individual datasets used in the construction of 
dispersion equations. Analysis includes percent accuracy, RMSE-observations standard deviation ratio 
(RSR), Percent bias (PBIAS), Coefficient of determination (R2), Nash-Sutcliff coefficient (NSC) 

 

 Wang 

et al. 

(2017) 

Wang 

and 

Huai 

(2016) 

Disley 

et al. 

(2015) 

Zeng 

and Huai 

(2014) 

Etemad-

Shahidi and 

Taghipour 

(2012) 

Deng 

et al. 

(2001) 

Percent Accuracy 

 
61.2 63.8 73.2 61.2 62.4 64.4 

𝑹𝑺𝑹 =  

√∑ (𝒌𝒙𝒊
𝑴 − 𝒌𝒙𝒊

𝑷)𝒏
𝒊=𝟏

𝟐

√∑ (𝒌𝒙𝒊
𝑴 − 𝒌𝒙

𝑴
)𝒏

𝒊=𝟏

𝟐
 0.78 0.83 0.39 0.88 0.68 1.4 

 

𝑷𝑩𝑰𝑨𝑺 =  
∑ (𝒌𝒙𝒊

𝑴 − 𝒌𝒙𝒊
𝑷) ∗ 𝟏𝟎𝟎𝒏

𝒊=𝟏

∑ 𝒌𝒙𝒊
𝑴𝒏

𝒊=𝟏

 
20.8 3.49 -3.01 -7.48 31.9 -47.0 

𝑹𝟐 =

[
 
 
 

∑ (𝒌𝒙𝒊
𝑴 − 𝒌𝒙̅̅̅̅ 𝑴)(𝒌𝒙𝒊

𝑷 − 𝒌𝒙̅̅̅̅ 𝑷)𝒏
𝒊=𝟏

√∑ (𝒌𝒙𝒊
𝑴 − 𝒌𝒙𝑴)

𝟐𝒏
𝒊=𝟏

√∑ (𝒌𝒙𝒊
𝑷 − 𝒌𝒙̅̅̅̅ 𝑷)

𝟐𝒏
𝒊=𝟏 ]

 
 
 
𝟐

 

 

0.41 0.43 0.85 0.44 0.63 0.36 

𝑵𝑺𝑪 = 𝟏 − 
∑ (𝒌𝒙𝒊

𝑴 − 𝒌𝒙𝒊
𝑷)

𝟐𝒏
𝒊=𝟏

∑ (𝒌𝒙𝒊
𝑴 − 𝒌𝒙̅̅̅̅ 𝑴)

𝟐𝒏
𝒊=𝟏

 

 

0.39 0.31 0.84 0.23 0.53 -0.99 

 

Figure 6 shows the distribution of Predictive ratios (Pr = kXp / kxM; where kXp and kxM are the 

predicted and measured longitudinal dispersion coefficients), grouped into histogram bins, for 

each of the equations. The equations that have the highest percentages of Pr values within 0.5 

and 2.0 are the most accurate equations as also shown by the “Percent Accuracy” in Table 2. 

Among the studied equations, it is observed that Disley et al. (2015) equation has the largest 

amount of Pr values between 0.5 and 2.0 (73.2%). The other equations all have similar Pr 

values between 0.5 and 2.0, namely 61.2% and 64.4%. 
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Figure 6. Probability histograms of Predictive ratios (Pr) obtained from individual regression datasets 
used in the construction of dispersion equations 

4.3 Methodology for Uncertainty Propagation 

This section presents a methodology to evaluate the uncertainty within water quality modelling 

due to the selection of the dispersion coefficient using the equations detailed in Table 1, 

utilising a dataset from an independent dye tracing experiment conducted in the Chillan River. 

A general background description and discussion of uncertainty propagation using Monte Carlo 

methods within environmental modelling can be found in e.g. Benke et al. (2018) and Helton 

(1993). The Chillan River field study has been selected as the data has not been included in the 

derivation of any of the studied dispersion coefficient equations, and because field survey and 

solute concentration versus time profiles are available, measured downstream of an 

instantaneous release of tracer. The Chillan River is located in Chile’s 8th Region, 

approximately 400 km south of Santiago de Chile. It emerges from the Andes Mountains and 

flows west until it meets the Ñuble River (Brevis, 2001). In May and April of 2003, river survey 



 

42 

 

information was collected alongside two tracer experiments at a site close to the city of Chillan. 

60 ml of 20% Rhodamine WT tracer was released in the river following the general guidelines 

described in Hubbard et al. (1982). The tracer experiment carried out in May 2003 was selected 

because the tracer breakthrough curve was complete and the river hydraulic and geometric data 

were available. The data were obtained following the same methodology for concentration 

measurements as the one used in De Smedt et al. (2005), also taken at the Chillan river. A 

calibrated fluorimeter, Turner Designs Model 10, with a detection limit of 0.01 ppb was used 

for the concentration measurements. Samples were analysed in-situ and in the laboratory. The 

in-situ samples were immediately analysed using the fluorimeter. Due to time overlap between 

concentration curves at different sampling stations, some of the samples were stored in 

thermally-isolated compartments and later analysed using the same fluorimeter and the same 

calibration curves. The samples were periodically checked for changes in the pH of the river. 

Comparison of the total mass between the sampled concentrations curves confirmed that losses 

of Rhodamine mass between stations can be assumed negligible. The resulting river 

concentration versus time profiles in the study reach were obtained from samples taken at 

measurement points positioned 2.5 km and 3.8 km downstream of the release (after full cross-

sectional mixing of the solute). A total of 28 cross-section surveys were carried out between 

the upstream and downstream sampling points containing hydraulic and geometric 

information. The study reach was divided into several consecutive sub-reaches between each 

pair of cross-sections. Longitudinal and transverse survey data were collected and then 

digitized using AUTOCAD 2000 to determine the cross-sectional area (reach mean: 10.6 m2, 

std. dev: 7.5 m2), wetted perimeter (reach mean: 17.2 m, std. dev: 5.7 m), surface width (reach 

mean: 16.4 m std. dev: 6.1 m), depth (reach mean: 0.7 m, std. dev: 0.5 m), sinuosity (reach 

mean:1.5, std. dev: 0.2) and average slope (reach mean: 0.005, std. dev: 0.002). During the 

selected tracer experiment, flow measurement was carried out at the injection site. A current 

meter (OTT Waterflow) was used to determine velocity over the cross-section, and these 

measurements were integrated over the cross-section to calculate mean flow rate according to 

standard practice described in standard ISO-748:2007(E) (ISO, 2007). The flow rate was 

calculated as 2.6 m3 s-1 + 0.05 m3 s-1. The mean velocity at each measured cross-section was 

calculated using the flow rate and measured wetted area resulting in a reach mean and standard 

deviation of 0.45 m s-1 and 0.34 m s-1 respectively. Further details and results of the experiment 

are presented in Segura (2004). 
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To quantify and propagate the parameter uncertainty from the various dispersion equations, the 

following steps were conducted for each equation analysed: 

1. Probability functions were fitted to the distributions of Predictive ratios (Pr, from Figure 

6). The distributions were fitted using the Python package (Fitter) developed by 

(Cokelaer, 2014). Fitter evaluates 80 function types from the statistical distributions of the 

Scipy package (Oliphant, 2007). In all cases, the Pr distributions were best described by 

lognormal functions. This concurs with previous studies which evaluate predictive ratios 

(Kashefipour & Falconer, 2002; Seo & Cheong, 1998; Zeng & Huai, 2014). The 

probability distributions with their corresponding mean, sum of square errors and kurtosis 

are shown in Figure 7 

2. A Monte Carlo analysis was carried out obtaining 2000 randomly drawn Pr values from 

each logarithmic probability function. These Pr values were used to adjust the 

deterministic dispersion coefficient value calculated using each dispersion coefficient 

equation for each river sub-reach using the measured and calculated hydraulic and 

geometric information (B,h, 𝑣, u* Fr) derived from the field measurements. This is 

similar to the method used by Schellart et al. (2010a) for studying uncertainty inherent in 

coefficients in existing regression equations. For example, Figure 7 shows that following 

Disley et al. (2015) equation, the predicted kx could be anywhere between approximately 

0 and 10 times the ‘possible real kx’, so dividing the predicted kx by each of the randomly 

drawn Pr values, would give 2000 ‘possible real kx’ values. A straightforward Monte 

Carlo simulation was deemed the most suitable approach, due to its conceptual simplicity 

as well as its ease of explanation to e.g. regulators (Benke et al., 2018; Helton, 1993; 

Sriwastava et al., 2018). 

3. Using an analytical solution of the 1D ADE, given by Equation 12 below (Rutherford 

1994), and the ‘possible real kx values’ (based on the drawn Pr value from step 2) the 

downstream concentration profile located at 3.8 km was calculated. This was achieved by 

successively routing the observed upstream concentration profile (at 2.5 km) over each 

sub-reach until the concentration profile at the last sub-reach was obtained (utilising the 

geometric and hydraulic data). This resulted in 2000 possible predicted downstream 

concentration profiles. 

4. The 12.5th, 50th and 87.5th percentiles of each concentration distribution were then 

identified and compared with the observed concentration profile and with the routed 
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concentration profile obtained using the deterministic dispersion coefficient. The 75% 

confidence intervals were selected because these can be estimated more reliably than 

larger confidence intervals based on the relatively limited available data. 

5. To remove errors caused by the field measurements of velocity, the observed 

concentration profile at the last sub-reach was used to calibrate the travel time and mean 

velocity of each sub-reach, i.e. the total travel time was adjusted until a match was 

achieved between the observed and predicted concentration distribution centroids. This 

was required as the aim of this work is to identify the uncertainty associated with the 

dispersion coefficient, rather than the initial estimation of velocity caused by field 

measurement. Consequently, the velocities for each sub-reach were corrected 

proportionally based on the re-calculated travel time. Steps 2-4 were repeated with the 

corrected mean velocity and travel time values to produce the final predictions and 

confidence bands. 

Equation 12 

𝐶(𝑥2, 𝑡) =  ∑
𝐶(𝑥1, 𝑡𝑖) 𝑣 ∆𝜏

√4𝜋 𝑘𝑥𝑇

∞

𝜏=−∞

𝑒𝑥𝑝 (−
𝑣2 (𝑇 − 𝑡 + 𝑡𝑖)

2

4𝑘𝑥 𝑇
) 

Where 𝐶(𝑥1, 𝑡𝑖) is the temporal concentration profile at 𝑥1 (upstream of each sub reach) at time 

𝑡𝑖, 𝐶(𝑥2, 𝑡) is the concentration at the location 𝑥2 (downstream of each sub reach) and time t, 𝑣 is the 

mean velocity over the sub reach, 𝑘𝑥 is the longitudinal dispersion coefficient, T is the travel 

time over the cross section, initially calculated (pre calibration) using the cross section 

distances and measured velocity. Equation 12 is based on Taylor’s analytical solution to 

Equation 11, utilising the frozen cloud approximation to convert between the temporal and 

spatial domains. A full discussion of this solution can be found in Rutherford (1994). 
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Figure 7. Fitted probability distributions for Predictive ratio (Pr) using regression datasets with their 
corresponding mean (µ) Sum of Square Errors (SSE), and Kurtosis (Kurt). 

4.3.1 Uncertainty Quantification Results 

The mean, sum of square errors and kurtosis of each fitted lognormal distribution for the 

corresponding dispersion equations are shown in Figure 7. The mean values of the distributions 

range between 0.95 and 1.17 (with 1.0 representing as the perfect agreement between predicted 

and measured coefficients). Wang et al. (2017), Wang and Huai (2016) and Disley et al. (2015) 

have the narrowest distributions and mean values closest to 1.0 as also noted by the narrower 

histogram in Figure 6, while the remaining dispersion equations have wider distributions and 

have mean values higher than 1.0 (hence an average over-prediction). Disley et al. (2015) has 

the largest SSE while Wang et al. (2017) has the smallest SSE indicating a better fit between 

distributions and predictive ratios. Wang et al. (2017), Wang and Huai (2016) and Etemad-

Shahidi and Taghipour (2012) have the highest levels of kurtosis indicating longer tails. 

Heavier tails indicate that some predictions heavily overestimate the dispersion coefficients. 

However, it should be noted that distribution tails are very sensitive to small numbers of 

outlying data. Disley et al. (2015) equation results in the highest probability density in Figure 

7 which is in agreement with having the highest accuracy in Figure 6. 

Figure 8 presents the results of the uncertainty propagation methodology when applied to the 

field dataset from the River Chillan. Figure 8 displays the observed concentration profiles at 
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the upstream and downstream measurement stations, and the predicted concentration profiles 

based on the dispersion coefficients calculated using each of the deterministic equations in 

Table 1 and the analysis presented above. The predicted concentration profiles include the 

deterministic prediction, the 50th percentile (median), and the 12.5th and 87.5th percentiles (75% 

confidence interval) resulting from the Monte Carlo analysis. To show the influence of the 

changes of the river characteristics (e.g. river depth and width) on the deterministic dispersion 

coefficients, the reach mean and standard deviation values of the river reaches deterministic 

dispersion coefficients are shown in Figure 8. It is noted that the standard deviation of predicted 

dispersion coefficient over the sub reaches varies significantly between the equations, 

indicating that some equations are more sensitive to longitudinal variations in the river 

characteristics. The largest mean deterministic longitudinal dispersion coefficient leads to 

flatter concentration profiles as observed in Figure 8 for Etemad-Shahidi and Taghipour (2012) 

with lower peak concentration values. The opposite is true for a low dispersion coefficient 

when using Deng et al. (2001) equation. This results in a taller and narrower concentration 

versus time profile. It is noted that a significant proportion of observed concentration values 

fall outside the 75% confidence intervals when using Etemad-Shahidi and Taghipour (2012) 

and Disley et al. (2015) equations. The concentration versus time profiles obtained using Wang 

et al. (2017), Wang and Huai (2016) and Zeng and Huai (2014) dispersion equations have 

similar 75% confidence intervals, median and deterministic concentrations. The deterministic 

predictions from these dispersion equations still underestimate the observed concentrations, 

but the observed concentrations are within the 75% confidence intervals. The simulated 

concentrations using the deterministic dispersion coefficient predicted by the Deng et al (2012) 

equation visually resemble the observed concentrations more accurately than the other 

equations, with the observed concentrations well within the 75% confidence interval. It is noted 

that almost all predicted profiles within the 75% confidence interval fail to reproduce the early 

leading edge of the observed concentration profiles. Overall, the methodology has been shown 

to provide additional information in regard to concentration predictions over and above the use 

of the deterministic models, with uncertainty bands encompassing the observed concentration 

values. Five out of the six studied deterministic equations underestimate observed peak 

concentration levels (by an average of 29%). Etemad-Shahidi and Taghipour (2012) equation 

results in the largest underestimation among the studied equations by approximately 64%. Such 

under-predictions indicate that mixing processes are generally lower in the River Chillan than 

is predicted by the studied regression equations. Confidence intervals are of considerable size, 
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but are approximately equivalent between the equations, indicating the inherent uncertainty 

associated with the evaluation of dispersion coefficients by using regression equations derived 

from data from other rivers. The simulated 12.5th percentile concentration profiles resulted in 

simulated peaks between 26% and 81% of the measured value.

 

Figure 8. Concentration versus time profiles retrieved when using six different dispersion equations and 
their corresponding datasets for sampling stations of the river Chillan. Shaded bands represent the 75% 
confidence interval. kx mean and kx std dev are the results of the mean and standard deviation of the 
dispersion coefficients for the 28 river cross-sections. 
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4.4 Impact of dispersion coefficient uncertainty on concentration-
duration threshold based standards 

Section 4.3 presented a propagation methodology to estimate uncertainty within surface water 

quality predictions associated with the dispersion coefficient derived using the regression 

equations based on river characteristics. To understand the potential implications of this 

uncertainty, this section evaluates the propagated uncertainty from the dispersion coefficient 

taking into consideration water quality standards and regulatory guidance in a site specific 

context. Such guidelines and water quality standards have been developed and improved over 

the years to protect aquatic life from situations that may cause stress in river environments 

(Milne I, 1992). One methodology widely used in the UK to regulate rainfall driven time 

varying releases (e.g. from urban drainage systems) into receiving waters is the intermittent 

standards approach. This consists of defined concentration-duration-frequency thresholds for 

specific substances (UPM, 2012). With this approach, dissolved oxygen and un-ionised 

ammonia concentrations must not exceed given thresholds for longer than specified durations, 

with values based on the return period of the storm event. 

To evaluate the uncertainty due to the empirical dispersion equations with regard to 

concentration-duration-frequency water quality regulation, an analysis of four rivers of 

different geometrical and hydraulics properties (Table 3) obtained from the dataset in Wang 

and Huai (2016) is conducted. This dataset was selected because it was the most extensive 

dataset with the most overlapping data among the evaluated studies. The measured, 

deterministic (from each equation in Table 1), and the upper, median and lower quantiles of 

the dispersion coefficients for the four rivers as calculated using the method described in 

Section 4.3 are also shown in Table 3. John Day River represents a deep (2.5 m) river with one 

of the lowest aspect ratios (
𝐵

𝐻
) of 13.8 in the dataset. The measured dispersion coefficient of 

65 m2 s-1 was the largest among the studied rivers. The Monocacy River is a shallow river with 

one of the largest aspect ratios (130.8) and largest widths (92.9 m). Its measured dispersion 

coefficient was 41 m2 s-1. The Copper Creek and New River show the contrast between a low 

versus a high mean to shear velocity ratio (
𝑣

𝑢∗). Copper Creek has a mean shear velocity of 

0.116 m s-1 thus a low mean to shear velocity ratio (1.2) and a measured dispersion coefficient 

of 10 m2 s-1. The New River has a lower shear velocity (0.008 m s-1), high mean to shear 

velocity ratio (21.3), and a measured dispersion coefficient of 22 m2 s-1. In each river, we utilise 
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a pseudo concentration distribution of ammonia and route it downstream, utilising the same 

methodology as presented in Section 4.3 to estimate confidence intervals. A constant cross 

section and flow were applied to the simulated rivers. At discrete positions (every 200m) 

downstream of the release, the duration over a specified threshold is determined and evaluated 

in light of UK concentration-duration water quality standards for ammonia (Foundation for 

Research, 2012). The analysis illustrates how uncertainty in the use of dispersion coefficient 

regression equations has the potential to influence the degree of compliance with water quality 

regulation within modelling studies. 
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Table 3. Measured and deterministic dispersion coefficient values together with median and 75% percentile values obtained from Monte Carlo analysis for the 
four selected rivers 

 John Day River Monocacy River Copper Creek New River 

Width (m)  34.1   92.9   18.6   102  

Depth (m)  2.5   0.71   0.39   4.4  

Mean Velocity (m s-1)  0.82   0.16   0.14   0.17  

Shear Velocity (m s-1)  0.18   0.046   0.12   0.0080  

Aspect ratio 
𝐵

𝐻
 (-)  13.8   130.8   47.7   23.2  

Mean to shear velocity 

ratio 
𝑣

𝑢∗
 (-)  

4.6  
 

3.5 
 

 
1.2  

 
21.3 

 

Measured kx (m2 s-1)  65.0   41.4   9.9   22.4  

kx Equation (m2 s-1) 
Deterministic 

kx  
kx 50  kx 12.5 , kx 87.5  

Deterministic 

kx  
kx 50  kx 12.5 , kx 87.5  

Determinis

tic kx  
kx 50  kx 12.5 , kx 87.5  

Determini

stic kx  
kx 50  kx 12.5 , kx 87.5  

Wang et al. (2017) 117.1 119.6 19.4, 420.2 16.1 14.2 6.1, 34.0 4.5 3.9 1.5, 10.6 48.3 42.6 16.4, 110.1 

Wang and Huai (2016) 117.9 127.0 20.5, 500.5 14.3 15.0 5.9, 33.7 4.0 4.1 1.5, 10.2 67.1 65.9 25.1, 177.7 

Disley et al. (2015) 91.3 107.4 42.2, 297.7 35.5 41.3 24.2, 76.0 7.9 9.0 5.0, 17.9 105.1 122.7 67.6, 249.0 

Zeng and Huai (2014) 83.7 91.2 15.8, 344.0 21.9 24.6 10.5, 54.0 4.5 5.1 1.9, 12.3 54.3 58.8 21.7, 147.4 

Etemad-Shahidi and 
Taghipour (2012) 

63.1 67.5 8.4, 329.4 26.0 27.6 10.0, 70.0 7.9 8.4 2.5, 23.9 8.9 9.5 2.9, 26.4 

Deng et al. (2001) 71.2 81.2 15.0, 344.4 25.8 29.7 12.8, 67.6 3.6 3.9 1.5, 10.7 92.5 100.3 39.8, 267.6 
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The initial concentration distribution (upstream boundary condition) is based on an integrated 

modelling study presented by Norris et al. (2014) where an integrated catchment in the UK was 

modelled using Infoworks ICM. The peak of the simulated initial concentration profile was 

0.61 mg Nl-1 and its duration was 15 hours. The distribution is considered only as an indicative 

description of a potential concentration, and is used in the analysis to determine the confidence 

intervals of predictions using 1D ADE modelling. The water quality threshold was obtained 

from the Urban Pollution Drainage Manual (UPM, 2012) for Salmonid Fishery Standards for 

1-hour/1-year event, specified as 0.105 mg Nl-1 unionised ammonia. It is noted that to model 

ammonia concentrations, it may require to incorporate other processes such as Biological 

Oxygen Demand (BOD) decay, nitrification, uptake by plants and bacteria and heterotrophic 

respiration as applied in other studies (Lopes et al., 2005; Radwan et al., 2001). However, as 

more parameters are added to the transport model, the parameter uncertainty is less identifiable. 

This study aims to analyse the uncertainty from the dispersion coefficient only, thus the 

ammonia concentration is assumed conservative within the river reach. 

4.4.1 Duration over Threshold Analysis Results 

Figure 9 presents the resulting simulated durations that the ammonia concentrations exceed the 

water quality threshold (0.105 mg Nl-1) as a function of distance downstream of the simulated 

initial distribution within the John Day river when utilising i) observed dispersion coefficient 

values (from the original database), ii) dispersion values predicted using each of the 

deterministic equations and iii) median plus 75% confidence intervals derived using the method 

described above. 
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Figure 9. Duration over threshold versus distance for John Day River. Dotted lines present upper and 
lower 75% confidence intervals, red continuous line displays the deterministic kx equation used, black 
dashed line presents the median of Monte Carlo simulation, blue continuous line presents the water 
quality set threshold, and green semi dotted line represents the DoT values obtained when using the 
measured kx. 

 

The horizontal line represents the specified maximum 1-hour duration of exceedance for a 1-

year return period event; when the simulated duration falls below this level of compliance, the 

standard is achieved. Figure 9 shows that four deterministic equations overestimate the length 

of river stretch where the water quality threshold is exceeded compared to observed mixing 

parameters in the John Day River. Overall, there is considerable uncertainty regarding the 

length of river section that exceeds the 1-hour/1-year return period standards for ammonia 

when using regression equations for the determination of the dispersion coefficient. For 

example, when using Wang et al. (2017) equation, the duration over threshold exceeds one 

hour at 181 km downstream of the release when the deterministic dispersion coefficient is used. 



 

53 

 

However, this distance varies between 28 km and 854 km if the 75% confidence interval is 

considered. Figure 9 shows that when using the measured dispersion coefficient, the duration 

over threshold values fall within the 75% confidence interval bands in all cases. The Etemad-

Shahidi and Taghipour (2012) equation results in the narrowest 75% confidence interval. 

Figure 10 summarizes this information for all four of the rivers, showing the distance 

downstream of the release where the modelled pollutant has exceeded the 1-hour/1-year 

threshold using the deterministic dispersion coefficients from each of the regression equations, 

the 75% confidence intervals using the methodology outlined in Section 4.3, as well as when 

using the measured value of dispersion coefficient for each river. The larger measured 

dispersion coefficient values for the John Day River and the Monocacy River (see Table 3) 

mean that the pollutant disperses faster and the 1-hour/1-year standard is achieved after a 

shorter distance. In most cases, there are considerable differences between the measured and 

deterministically estimated dispersion coefficients. The closest prediction is obtained when 

using the Etemad-Shahidi and Taghipour (2012) equation in the John Day river (2 km 

difference). The largest difference between predicted and measured values is found when using 

the Deng et al. (2001) equation in the Copper Creek (236 km difference). Considering all four 

rivers, the Disley et al. (2015) equation provides the closest predictions on average (43 km 

difference). When considering the 75% confidence intervals, considerable differences are 

observed between rivers and between equations, however values using measured dispersion 

coefficients lie within predicted confidence intervals in almost all cases apart from the New 

River. 
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Figure 10. 75th quantile boxplots of distance where the Duration over Threshold (DoT) exceeded the allowed time as stated in the water quality regulation for 
the studied dispersion coefficient equations 
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4.5 Discussion 

This study examines six published equations for estimating the longitudinal dispersion 

coefficient with an independent analysis of published data (Section 4.2). The study then 

proposes a method to propagate the uncertainty to concentration versus time profiles (Section 

4.3), and assesses the implications that this propagated uncertainty may have on testing 

compliance with water quality regulation (Section 4.4). 

The results showed that the equation by Disley et al. (2015) performed best in describing the 

longitudinal dispersion coefficient according to the efficiency criteria (higher percent accuracy, 

R2 and NCS, least PBIAS and lowest RSR) while the equation by Deng et al. (2001) resulted 

in a poorer performance (second highest accuracy but most PBIAS and lowest NSC). Previous 

studies used similar statistical criteria to evaluate equations for predicting the longitudinal 

dispersion coefficient (Disley et al., 2015; Etemad-Shahidi & Taghipour, 2012; Sattar & 

Gharabaghi, 2015; Seo & Cheong, 1998). However, as far as the authors are aware, no studies 

have indicated which of these efficiency criteria would be most useful in terms of evaluating 

the performance of the equation when subsequently calculating concentration versus time 

profiles. This study presents a propagation methodology to analyse the effect of uncertainty 

inherent in the dispersion coefficient on the resulting concentrations when using the 1D ADE 

model. Section 4.3 uses this methodology to estimate confidence intervals on the concentration 

versus time profile of an independent tracer study measured in the Chillan River. Figure 8 

shows that in the case of the river Chillan, five out of six equations tend to over-predict the 

dispersion coefficient. Although Deng et al. (2001) equation had a poor performance according 

to the efficiency criteria in Table 2, it provides the best visual resemblance to the observed 

concentrations. In contrast, Disley et al. (2015) is the best performing equation according to 

the efficiency criteria, but underestimates the observed concentrations considerably even when 

the confidence interval is taken into consideration (Figure 8). This demonstrates that not all the 

efficiency criteria (percent accuracy, RSR, PBIAS, R2, and NSC) presented in Table 2 appear 

equally suitable for selecting a dispersion equation to use with the 1D ADE model. For the 

same reason, Nash-Sutcliffe efficiency seems particularly unsuitable for selecting the best 

performing dispersion equation. As described by Krause et al. (2005), the largest disadvantage 

of the Nash-Sutcliffe efficiency is the fact that the differences between the observed and 

predicted values are calculated as squared values. This means that larger values in a dataset are 
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over emphasized whereas lower values are neglected, however, in case of the kx coefficient 

both high and low values are of equal importance. If the aim of using the 1D ADE model is to 

check environmental standards based on concentration-duration-frequency, then looking at the 

PBIAS may give a better indication of how ‘conservative’ an equation is when checking 

environmental standards. A positive PBIAS value indicates that the equation is under-

predicting the dispersion coefficient and hence more likely to fail a water quality standard. 

The bulk river characteristics of the river Chillan would suggest that all the six longitudinal 

dispersion equations studied would be equally suitable for application. The performance of the 

equations and the scale of the uncertainty bands suggest that despite academic focus on 

regression equations to provide dispersion coefficients based on bulk river characteristics, 

considerable uncertainty remains when dispersion coefficients are utilised within modelling 

tools to describe concentration versus time dynamics within water quality modelling 

applications. Uncertainty within the estimation of dispersion coefficients is likely due to a 

number of reasons. These include the accuracy of the original datasets used in regression model 

calibration. For example, the practical difficulty in the measurement of bulk river 

characteristics (e.g. bed shear stress or river depth) over the same reach as the dispersion 

coefficient, meaning that the calibration datasets are prone to error due to the averaging of these 

key geometrical and hydraulic parameters over the river reach. In addition, there is lack of 

information regarding the original tracer experiment datasets from which the dispersion 

coefficients are derived. The quantification of the dispersion coefficient is prone to 

measurement error if data processing techniques are not conducted in a robust manner and field 

experiments are not conducted appropriately. It should also be noted that bulk river 

characteristics cannot fully describe the complexity of mixing processes in river systems, which 

are heavily affected by conditions such as sinuosity, presence of vegetation, pools and riffles, 

planform variability and hyporheic exchange amongst others. It is therefore questionable if 

further statistical analysis of such existing datasets can produce regression equations with the 

potential to describe dispersion coefficients with sufficient accuracy such that model 

confidence intervals could be meaningfully reduced. 

The implications of the uncertainty inherent within the longitudinal dispersion coefficient 

equations on water quality regulation were examined by calculating the duration that a pollutant 

exceeded a water quality standard. This calculation was carried out for four rivers in the dataset 

shown in Wang and Huai (2016). It was observed that wide ranges of uncertainty are obtained 
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for the John Day River and Copper Creek. This implies that the water quality failure can occur 

over a larger interval downstream of the pollutant release (over 100s of km). The opposite was 

found for the Monocacy River and New River. The uncertainty interval is smaller, making it 

more likely to obtain an accurate estimation of where the water quality failure occurs. However, 

the results for all four rivers indicate that even when using the most recent equations for 

estimating longitudinal dispersion coefficient, a considerable level of uncertainty inherent to 

these equations remains when determining water quality failures. To produce water quality 

simulations with lower uncertainties, robust calibration of a river-specific kx, using dye tracing 

studies over a range of flow rates is recommended. Further options include the use of more 

complex 2D models in which dispersion is less important (due to the none-width averaged 

condition), however this option is often limited to small reaches due to computational cost. 

Work on alternate modelling approaches which seek to quantify and describe processes such 

as transient storage are of value as much due to the potential for more stable and predictable 

parameters (relatable to measurable physical properties, Briggs et al. 2009), as their enhanced 

ability to describe specific properties of the concentration distributions. 

4.6 Conclusion 

This paper examines uncertainty in 1D ADE model predictions of time-concentration profiles, 

given uncertainty inherent in using existing regression equations for estimating the longitudinal 

dispersion coefficient. Six recently published longitudinal dispersion equations are 

independently evaluated and compared. When considering dispersion coefficient prediction, 

this evaluation indicates that Disley et al. (2015) equation has the highest accuracy (73.2%), 

while the remaining equations have similar accuracies ranging between 61.2% and 64.4%. It is 

argued that evaluation criteria such as PBIAS may be important to include in the evaluation, 

due to its capability to indicate under or over-prediction of the dispersion coefficient, which 

are both important for estimating duration of concentration peaks over a threshold. It is also 

concluded that Nash-Sutcliffe is not a suitable criterion for evaluation of dispersion coefficient 

equations, as it neglects lower coefficient values, which for the purpose of estimating duration 

of concentration peaks over a threshold are equally important as high values. 

Using Monte Carlo simulations, the uncertainty in the longitudinal dispersion coefficient 

given these six equations is propagated through the 1D-ADE to create time-concentration 

profiles for an independent case study. Results from a case study site suggest that when using 
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Deng et al. (2001) equation, the closest prediction of peak concentrations to observed values 

(approximately 3% difference between measured and 50th percentile predicted peak 

concentration) are obtained, as well as the narrowest uncertainty interval. However, resulting 

uncertainty intervals were considerable for all the six studied regression equations. For the 

Disley et al. (2015) and studied Etemad-Shahidi and Taghipour (2012) equations, the measured 

peak concentration values were above the simulated 87.5th percentile, for the Deng et al. (2001) 

equation it was close to the 50th percentile and for the other equations it was close to the 87.5th 

percentile. The simulated 12.5th percentile resulted in simulated peaks between 26% and 81% 

of the measured value. 

Finally, the uncertainty methodology has been implemented into four rivers with different 

characteristics, and the interaction with concentration-duration-frequency type regulatory 

targets has been considered. It is shown that resulting model confidence intervals are likely to 

be significant for assessment of regulatory compliance in areas with complex prescriptive 

concentration based targets (e.g. the UK) as observed for the John Day River and the Copper 

Creek. Moreover, the effect of uncertainty is highly variable between rivers with different 

characteristics. 

Within water quality assessments this highlights the value of using longitudinal dispersion 

coefficients derived specifically from field measurements for the river under study. A reduction 

of uncertainty in estimation of longitudinal dispersion coefficient using regression equations is 

likely to be dependent on further understanding and quantification of how other, more detailed 

river features affect mixing processes and dispersion coefficients, and an incorporation of such 

features within regression based models. 
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5. Evaluation of a coupled hydrodynamic-closed ecological 
cycle approach for modelling dissolved oxygen in surface 
waters 

This chapter aims to evaluate the performance of a complex model, which includes transport 

and ecological processes for longer time scales addressing the thesis Objective 2. This chapter 

also evaluates the sensitivity of model predictions to input data variability. This chapter is based 

on the publication submitted for review: 

Vivian V. Camacho Suarez, R. J. Brederveld, Marieke Fennema, Antonio Moreno, Jeroen 

Langeveld, Hans Korving, Alma N.A. Schellart, James Shucksmith. (2019). Evaluation of a 

coupled hydrodynamic-closed ecological cycle approach for modelling dissolved oxygen in surface 

waters. Submitted to: Environmental Modelling and Software 

5.1 Introduction 

The European Union (EU) Water Framework Directive (WFD) requires that a ‘good ecological 

status’ should be achieved and maintained in all surface water and groundwater (Council of 

European Commission, 2000). A good ecological status is established by the biological, 

chemical and hydrological characteristics of the water body. Moreover, EU member states have 

specific interpretations of what is considered ‘good ecological status’. For example in the 

Netherlands key ecological factors and water system analyses are used as a method to 

understand ecological water quality processes and to define goals and measures for water 

bodies. These key ecological factors cover a ‘crossing’ between human pressures on a water 

body (e.g. channelization, vegetation maintenance or diffuse pollution) and environmental 

factors (e.g. temperature regime, substrate variation or nutrient concentration) (STOWA, 

2015). Water quality modelling can be used at different spatial and temporal scales to 

understand relationships between human pressures on a water body and environmental factors 

as well as enabling discussions amongst stakeholders of potential intervention, management or 

maintenance strategies. As catchments are complex systems encompassing a vast quantity of 

processes and components, integrated water quality modelling is currently the preferred choice 

(Tscheikner-Gratl et al., 2018) for determining the best management practices to address both 

urban and rural pressures for the improvement of the water body. 

Modelling river water quality has generally been conducted using the advection dispersion-

reactions approach (which may also include terms for transient storage, biota uptake, 

groundwater and lateral flows, sediment deposition or uptake). The advection and dispersion 
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processes are usually described within the hydrological/hydrodynamic model and the 

biochemical and physical conversion processes are described within reactions equations 

(Rauch et al., 1998). Most surface water quality studies have focused separately on these 

processes and over various time scales. For instance, solute transport using advection 

dispersion equations with point source pollution have been widely applied in river systems 

(Ani et al., 2009; van Mazijk & Veling, 2005; Wallis et al., 2014) and their applications focus 

on modelling point source discharges over timescales of hours or days. Dissolved oxygen and 

biochemical models represent the dynamics of reaeration and decomposition of organic matter 

(Streeter et al., 1925). Important additional oxygen production and consumption processes such 

as the removal of Biological Oxygen Demand (Dobbins, 1964), oxygen production and uptake 

due to periphyton biomass (Welch et al., 1989) and the dynamics of nutrient cycling and algae 

have been incorporated in other water quality models such as the QUAL2 family of models 

(Brown, 1987) and the River Water Quality Model no. 1 (Shanahan et al., 2001). Moreover, 

eutrophication models in varying degrees of complexity (e.g. modelling nutrient enrichment 

due to various processes) can be used over longer time scales to study interactions between 

macrophytes, phytoplankton and nutrients in the ecosystem. However, to date eutrophication 

models have been primarily applied to lake systems or to study the nutrient transport to the 

destination ecosystems such as estuaries or oceans (Nijboer & Verdonschot, 2004). 

To obtain a complete physical, chemical and ecological description of the river catchment for 

ecological status evaluation, integrated modelling approaches covering both urban and rural 

catchments, have gained popularity over the past years (Holguin-Gonzalez et al., 2013; Mouton 

et al., 2009). Mouton et al. (2009) used the Water Framework Directive (WFD)-Explorer 

Toolbox to evaluate the ecological status of the Zwalm River in Belgium. Their study 

integrated a hydraulic model, with a mass balance module to assess ecological pressures based 

on expert knowledge. However, the approach oversimplified water quality processes, and had 

a coarse catchment scale (Holguin-Gonzalez et al., 2013). Holguin-Gonzalez et al. (2013) 

developed a framework integrating a MIKE 11 hydraulic and physicochemical water quality 

model with two ecological models based on habitat suitability and ecological assessment with 

an emphasis on macroinvertebrates. However, the QUAL2E and MIKE11 models lack the 

ability to represent sediment processes as biological conversions. This disables their capability 

to model closed nutrient cycles (Trinh Anh et al., 2006) which is beneficial to account for the 

nutrient ratios at the various trophic levels. 
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A holistic ‘combined modelling approach’ incorporating the long-term intertwined dynamics 

of flow, nutrients and aquatic biota and physical and ecological interactions is still lacking in 

the literature. More specifically, the capability to model closed nutrient cycles, plant 

competition, organisms, water and sediment processes using an extensive ecological model 

coupled to a hydrologic and hydrodynamic model is still pending. Therefore, in this study, we 

adopt such ‘combined modelling approach’ to represent the medium to long-term hydrological 

processes of a catchment (precipitation, evapotranspiration and runoff), transport and mixing 

processes from both urban (pollution loadings of CSOs and WWTP) and rural areas, and 

ecological processes in a slow flowing river system. This combined approach is illustrated in 

Figure 11 where the three main rainfall-runoff, hydrodynamic and ecological models are shown 

with their corresponding data requirements. The main objectives of the chapter are: 1) to 

evaluate the capability of the combined modelling approach to simulate DO for medium to 

long-term time scales (months to years), 2) to determine the sensitivity of DO model 

predictions a in the river system given uncertainty in the input boundary conditions, and 3) to 

determine the dominant oxygen production and consumption processes and their sensitivity to 

the changes in input boundary conditions. The novelty of this chapter is the combination of a 

hydrodynamic and ecological model which include urban and rural components and their 

interactions within the ecological closed nutrients cycles. This can also include the effects of 

river management practices such as vegetation clearance and dredging. In addition, this 

methodology can include the effects of nutrient inputs and cycling from rural areas, Combined 

Sewer Overflows (CSOs) and a Wastewater Treatment Plant (WWTP) on oxygen, nutrient and 

biota concentrations in the river system. Inclusion of both rural and urban inputs has been 

recognized as the ideal modelling approach. However, to date, few studies have successfully 

implemented such methodology (Honti et al., 2017; Tscheikner-Gratl et al., 2018). 

The nutrient and vegetation model for ditches PCDitch was used in this study. Originally 

developed for lakes (PCLake), PCDitch was selected because it is among the most extensive 

ecosystem models to date which can include the competition for nutrients, light and 

temperature and can model production by plants, algae, reaeration and oxygen consumption 

due to different water and sediment processes (Janse, 2005; Trolle et al., 2014). In addition, 

PCDitch is a dynamic model that describes the dominant biological components in the river 

using closed nutrient cycles. The closed mass balance approach is implemented through 

nutrient-to-dry weight ratios. This allows the stoichiometry of organisms to change with trophic 
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level (Mooij et al., 2010). Management practices such as mowing and dredging can also be 

implemented in PCDitch allowing water managers to identify target measures on specific 

processes that assist to improve the quality of the river system. However, the capability of 

PCDitch to simulate ecological conditions in rivers has not been tested, neither has its 

capability to predict changes in dissolved oxygen (DO) concentration as a by-product of the 

various biochemical and ecological processes (e.g. mineralization of organic material, 

respiration and production of macrophytes). For this to be attempted, coupling with rainfall 

runoff and hydrodynamic models is required. 

 

Figure 11. Combined modelling diagram. WALRUS model inputs: precipitation (P), potential 
evapotranspiration (ETp), river discharge (Q), and model parameters used in calculation of surface and 
groundwater runoff (QRural Runoff). Sobek inputs: Combined Sewer Overflows discharge (QCSO), 
Wastewater Treatment Plant Discharge (QWWTP), river morphology, and river structures used in 
calculation of total river discharge (Qriver), depth (Hriver), and velocity (Vriver). PCDitcht/D-Water Quality 
inputs: Input boundary concentrations for the rural runoff (CRural Runoff), Combined Sewer Overflows 
(CCSO), and Wastewater Treatment Plant (CWWTP) to calculate DO and ecological variables.   
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5.2 Methodology 

5.2.1 Study Area Description 

The Dommel River (shown in Figure 12) flows from the northeast of Belgium to the south of 

the Netherlands until it joins the Meuse River. The upstream region of the catchment is heavily 

influenced by agriculture, mainly livestock farming, while the downstream area runs through 

the city of Eindhoven (Netherlands). The river receives urban discharges from approximately 

750,000 P.E. (population equivalent) from the Eindhoven wastewater treatment plant (WWTP) 

and over 200 CSOs (Weijers et al., 2012). In the summer, the WWTP discharge on the river 

can account for up to 50% of the Dommel baseflow of 1.5 m3 s-1 (J. G. Langeveld et al., 2013). 

The geology is dominated by sandy deposits with small amounts of mica, feldspars and clay 

minerals (Petelet-Giraud et al., 2009). Pollution sources include nitrogen and phosphates 

leaching from agriculture (mainly manure application) and urban inputs from CSOs and 

WWTP discharges. Figure 12 shows the main flow contributions to the Dommel River and the 

locations where measured flow, dissolved oxygen, total nitrogen, and total phosphorus 

concentrations are available. The flow contributions include surface and groundwater runoff 

sources which for simplicity in this paper are referred as ‘runoff’, CSOs and the Eindhoven 

WWTP. These sources are described in more detail in Section 5.2.4.1. 
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Figure 12. Model schematization and subcatchments of the Dommel River catchment 

5.2.2 Rainfall-Runoff Modelling 

The study area was divided into six sub catchments (Figure 12). A rainfall-runoff model was 

created for each sub catchment using the Wageningen Lowland Runoff Simulator (WALRUS) 

model. WALRUS was selected because of its ability to account for dominant low-land areas 

processes such as couplings between the groundwater and unsaturated zone, flow routes that 

depend on wetness conditions, and interactions between groundwater and surface water 

(Brauer et al., 2014). 

The WALRUS model inputs include precipitation and evapotranspiration data. Measured 

discharge data was used for model calibration. Data was collected from January 1st, 2011 to 

December 31st, 2013. Hourly precipitation rates were obtained from merged radar and rain 
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gauge data from the Dutch meteorological agency (KNMI) and the Dommel Water Board 

(Moreno-Ródenas et al., 2017). Daily Penman-Monteith evapotranspiration rates were 

obtained from the Foundation for Applied Water Research (Stichting Toegepast Onderzoek 

Waterbeheer) in the Netherlands (STOWA, 2013). Hourly discharge was available for the 

Keersop, Tongelreep and St. Michielsgestel sub catchments from the Dommel Water Board. 

The total observed runoff from the Keersop and Tongelreep catchments were separated into its 

rural and urban runoff components using the sub-flow separation technique suggested by 

Willems (2009) to account for contributing flows from combined sewer overflows (CSOs). The 

flow at Sint-Oedenrode (from the St. Michielsgestel sub catchment) was not subdivided into 

sub flows due to the large contribution of the wastewater treatment plant discharge. Therefore, 

this sub catchment was not used for calibration of the rainfall-runoff model. The Keersop and 

Tongelreep sub catchments were used to calibrate the model parameters (Table 4), which was 

then also applied to the other sub catchments. This calibration was carried out using the swarm 

optimization technique hydroPSO available in the WALRUS model. The parameters in Table 

4 remained constant for the studied catchments including groundwater depths, surface water 

fractions, quickflow and groundwater reservoir constants and soil properties. 

Table 4. WALRUS Model parameters per sub catchment 

Parameter  Unit Abbreviation Value 

Surface water parameter bankfull discharge  (mm h-1) cS 4.0 

Initial groundwater depth  (mm) dG0 1200 

Channel depth  (mm) cD 2750-3250 

Surface water area fraction (-) aS 0.0090 

Soil type  (-) st loamy sand 

Wetness index parameter  (mm) cW 400 

Vadose zone relation time (h) cV 4 

Groundwater reservoir constant  (mm h) cG 30,000,000 

Quickflow reservoir constant  (h) cQ 25 

 

5.2.3 Hydrodynamic Modelling 

A SOBEK-River one-dimensional (1D) model was provided by the Dommel Water Board 

containing the river network shown in Figure 12. SOBEK is based on the 1D Saint Venant 

equations and utilises the Delft numerical scheme (Deltares, 2014a). This model was used to 

estimate the spatially distributed hydraulic characteristics of the river network including flow 
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velocities, volumes and discharges. The model schematization includes 1,696 cross sections, 

29 runoff inflows (shown as the Surface and Groundwater Runoff inflows), 2 boundary 

outflows, 27 lateral flows (shown as the CSOs), 146 weirs and 211 bridges and 2018 

Connection Nodes with Storage and Lateral Flow. Culverts were removed from the SOBEK 

model in order to accelerate the simulation and reduce instabilities, this was deemed acceptable 

as no flooding or culvert surcharge occurred during the simulated period. 

The Surface and Groundwater Runoff inflow boundary conditions were implemented in the 

SOBEK hydrodynamic model from the runoff generated using the WALRUS model. The flows 

at the outlet of the sub catchments were divided into sub flows according to hydrological areas 

based on the natural drainage as observed in (J. Langeveld et al., 2013). The 27 clusters of 

CSOs were included in SOBEK to represent the urban inputs as lateral inflows in the river 

schematization, containing monitored discharge data with a frequency of every 15 minutes for 

the three years from Jan 1, 2011 to December 31, 2013. Similarly, hourly WWTP discharge 

was also included as a lateral inflow for the same period. A flow weir located between the 

Dommel Run and the Sint-Oedenrode subcatchments represented the flow control during 

summer (1.5 m3 s-1) and winter (0.75 m3 s-1). 

5.2.4 Water Quality Modelling 

The model PCDitch was used to simulate the biochemical and ecological components in the 

river such as dissolved oxygen concentrations, dry organic matter, nutrient concentrations, 

Secchi depth and biomass coverage. PCDitch is a plant/nutrient based competition model that 

includes the water column and upper sediment layer incorporating the competition for nutrients 

from submerged rooted and non-rooted vegetation, floating duckweed, algae, Charophytes, 

Nymphaeids and Helophytes. Macrophytes groups are limited by light, nutrients and 

temperature. A more comprehensive description of PCDitch is found in (Janse, 2005). 

PCDitch is used in conjunction with the water quality and transport package D-Water Quality 

(Deltares, 2018). This platform uses the finite volumes method to solve the advection 

dispersion-reaction equation. Furthermore, the hydrodynamic information (e.g. the river mean 

water depths, water inflows and retention times) was still retrieved from SOBEK and processed 

by D-Water Quality/PCDitch. The simulation was carried out for a period of three years from 

Jan 1st 2011 to Dec 31st 2013. Hourly monitored temperatures were obtained from the Dommel 

Water Board and implemented in the model. The effects of in river mowing and dredging were 
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included in the model. Mowing was set to twice per year removing 95% of the vegetation and 

dredging was set yearly with a removal of 1 cm of the bottom bed thickness. 

5.2.4.1 Set-up of boundary conditions: Rural runoff, CSOs, WWTP and Connection 

Nodes 

External water quality concentrations were defined in PCDitch for the rural runoff, CSOs, 

WWTP flow and connection Nodes with Storage and Lateral Flow. Table 5 presents the 

PCDitch inputs required for each boundary including: the dry weights of detritus (mg DW l-1), 

inorganic matter and phytoplankton (mg DW l-1), the concentrations of nitrogen in detritus, 

ammonium, nitrate and phytoplankton (mgN l-1), the concentration of dissolved oxygen (mgO2 

l-1) and the phosphorus concentrations in adsorbed inorganic matter, detritus, phosphate and 

phytoplankton (mgP l-1). Detritus concentrations were used to describe the total amount of 

organic matter. Detritus was used because it is the only available parameter in PCDitch to 

describe organic matter loads. The detritus and inorganic matter concentrations were 

approximated from the percentage of organic matter (OM) and concentrations of total 

suspended solids in the water column (TSS). Incoming amounts of phytoplankton were 

assumed to be negligible from the three external sources since rural runoff, CSO and WWTP 

outflows usually do not contain phytoplankton, apart from some remnants of biofilm, which 

are accounted for in the detritus concentrations. The nitrogen and phosphorus amounts in 

detritus were estimated using the relationships shown in Table 5. Adsorbed phosphorus was 

estimated as the remainder from subtracting phosphate (PO4) from total phosphorus (Ptot). 

Dissolved oxygen (O2), ammonium (NH4), nitrate (NO3) and phosphate (PO4) concentrations 

were obtained from collected field measurements by the Water Board. The water quality 

concentrations from the wastewater treatment plant discharge into the river were simulated. An 

explanation regarding the WWTP discharge simulation, and the description of the input 

concentrations for each boundary and how they were obtained is given in the following 

paragraphs. 
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Table 5. PCDitch Boundary inputs and their estimation methods. Detritus and inorganic matter are 
estimated from the Total Suspended Solids (TSS) and Organic Matter percentage (OM). Adsorbed 
phosphorus is estimated from Total Phosphorus (Ptot) 

 Parameter Abbreviation Units Estimation method 

Detritus in water  Det mgDW l-1 Physical relation: TSS*OM /100 

Inorganic Matter (IM) in water IM mgDW l-1 Physical relation: TSS*(100-OM) /100 

Phytoplankton Phyt mgDW l-1 Negligible 

Nitrogen in detritus NDet mgN l-1 Standard assumption in PCDitch: Det* 0.025 

Ammonium in water NH4 mgN l-1 Measured, simulated for WWTP 

Nitrate in water NO3 mgN l-1 Measured, simulated for WWTP 

Nitrogen in phytoplankton NPhyt mgN l-1 Negligible 

Dissolved oxygen in water O2 mgO2 l
-1 Measured, simulated for WWTP 

Adsorbed phosphorus on IM in 

water 

PAIM mgP l-1 Physical relation: Ptot - PO4- PDet 

Phosphorus in detritus  PDet mgP l-1 Standard assumption in PCDitch: Det* 0.0025 

Phosphate in water PO4 mgP l-1 Measured, simulated for WWTP 

Phosphorus in phytoplankton  PPhyt mgP l-1 Negligible 

 

Rural runoff water quality characterization 

The rural inflows relate to surface and groundwater runoff from agricultural and natural areas. 

These flows were quantified using the WALRUS model. The mean concentrations in Table 6 

were used for the input boundary conditions. Monthly water quality input concentrations were 

obtained from monitored data provided by the Dommel Water Board for the years 2011 to 

2013. These include total nitrogen (TN), ammonium (NH4), total phosphorus (TP), phosphate 

(PO4), dissolved oxygen (O2) and total suspended solids (TSS). Nitrate concentrations (NO3) 

were estimated as half of the total nitrogen concentrations and Kjeldahl nitrogen (Nkj), nitrogen 

in organic compounds, as the other half. Nitrite was considered negligible. The organic matter 

content was estimated by subtracting ammonia (NH4) from Kjeldahl nitrogen and then dividing 

it by the total nitrogen concentration. 

CSOs water quality characterization 

Over 200 CSOs discharge on the Dommel River. Probability distributions for CSO pollutant 

concentrations were estimated from a monitoring campaign (Moens et al., 2009). The CSO 

concentrations were added as lateral flows with event mean concentrations. These event mean 
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concentrations have shown to give acceptable model results despite the difficulty in capturing 

the high variability of CSOs water quality parameters (Moreno-Ródenas et al., 2017). 

Wastewater treatment plant water quality characterization 

The Dommel receives effluent of the central WWTP in Eindhoven. The Eindhoven WWTP is 

composed by three biological lines (primary clarifier, activated sludge tanks and secondary 

clarifiers) with a capacity of 26,000 m3h-1 and a bypass storm settling tank with a capacity of 

9,000 m3h-1. A fully detailed ASM2d bio-kinetic model was created to simulate water quality 

processes in the WWTP (Benedetti et al., 2013). The influent quantity (sewer network - 

WWTP) was represented using observed data at the boundary connection. This was derived 

from three magnetic flow sensors located at three influent pressurised pipes. Influent water 

quality characteristics were estimated using a calibrated empirical influent generator 

(Langeveld et al., 2017). Effluent hourly series (Jan 01, 2011 to Dec 31, 2013) were derived 

from a forward uncertainty propagation scheme accounting for uncertainties in the influent 

water quality and quantity characteristics. This time series of WWTP water quality discharge 

were generated to include the dynamics of the treated wastewater quality characteristics during 

wet and dry weather conditions. 

5.2.4.2 Scenarios for Sensitivity Analysis 

To evaluate the effects of the rural runoff, CSOs and WWTP discharge and nutrient inputs on 

the dissolved oxygen concentrations, three nutrient levels for each of these boundaries were 

defined as shown in Table 6. The scenarios were selected based on the total phosphorus 

concentrations. Phosphorus was used as it is an indicator of eutrophication and commonly 

assumed to be the limiting growth factor for phytoplankton and macrophytes in oligotrophic to 

mesotrophic waters (Janse, 2005; Newton & Jarell, 1999). Using the observed and simulated 

data described in Section 5.2.4.1, the three scenarios (Table 6) were defined for each boundary 

as follows: 1) a ‘base’ scenario representing average nutrient inputs observed, 2) a ‘high’ 

scenario representing higher levels of nutrient inputs, and 3) a ‘low’ scenario representing 

lower levels of nutrient inputs. For the rural runoff base scenario, average observed values of 

total phosphorus concentrations were found with their corresponding water quality parameters 

(e.g. NO3, NH4, O2, TSS and PO4). Similarly, for the high and low scenarios, the maximum 

and minimum observed values of total phosphorus over the period of analysis (2011-2013) 

were selected with their corresponding datasets of water quality variables. Several datasets 
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presented at Evers and Schipper (2015) were studied at various locations in the catchment to 

ensure that outliers in the data were not selected. Also, the selected input data was checked 

against monitored data from the Dommel River Water Board (2019) to ensure that the input 

concentrations selected were representative of regular water quality concentrations in the river. 

For the CSOs, the nature of rainfall driven sewer surcharge events results in skewed water 

quality distributions, with the mean value not providing a good representation of the water 

quality impacts on the river. Hence the modes of the water quality distributions were used for 

determining the water quality concentrations of the base scenario with their corresponding 

water quality parameters, except for the total suspended solids where monitored data was 

available from (Brouwer, 2012). The 2.5th and 97.5th and percentiles of the CSO frequency 

distributions were used for determining the high and low nutrient load scenarios. The WWTP 

scenarios were selected from a total of 99 samples drawn using a Latin Hypercube sampling 

scheme to describe the variability of the simulated WWTP output. The 2.5 th and 97.5th 

percentiles were used to determine the low and high scenarios for the WWTP based on total 

phosphorus with their corresponding water quality parameters (Ptot, Kjeldahl Nitrogen, PO4, 

NO2, NH4, TSS, and NO3). Given the large quantity of WWTP data generated using the 

simulation described in Section 5.2.4.1, the WWTP low, high and base scenarios are given in 

Appendix B. 

Table 6. High, middle and low scenarios of rural runoff and CSO Water Quality concentrations 

   Rural Runoff CSOs inflows 

Parameter Low 

scenario 

Base 

scenario 

High 

scenario 

Low 

scenario 

Base 

scenario 

High 

scenario 

Phosphate (PO4) mg l-1 0.04 0.05 0.08 0.5 0.8 5.7 

Total phosphorus (Ptot) mg l-1 0.1 0.2 0.3 0.5 2.1 34.6 

Chlorophyll-a µg l-1 30 35 40 0 0 0 

Dissolved Oxygen (O2) mg l-1 6.3 6.8 4.4 3.4 4.6 6.2 

Total nitrogen (Ntot) mg l-1 2.8 3.6 4.6 4.5 8.0 16.2 

Nitrite (NO2) mg l-1 0 0 0 0 0 0 

Nitrate (NO3) mg l-1 1.4 1.8 2.3 0.7 1.2 1.7 

Ammonium (NH4) mg l-1 0.1 0.6 1.7 1.6 2.2 4.9 

Kjeldahl Nitrogen (Nkj) mg l-1 1.4 1.8 2.3 3.8 4.8 14.5 

Total Suspended Solids (TSS) mg l-1 1 15 50 25.0 298 397.0 

Organic Matter (OM) % 13.0 33.3 48.2 48.9 50.9 59.3 
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5.3 Results 

The hydrological processes and runoff generation quantified using the WALRUS model for 

the calibrated catchments can be found in Appendix C. The results of the hydrodynamic 

simulation (flow versus time) can also be found in the Appendix D. The Nash Sutcliffe 

Coefficient (NSC) was used to determine the goodness of fit of the hydrodynamic simulation 

results and the observed flows. According to Moriasi et al. (2007), model performance is 

satisfactory when NSC is greater than 0.5. The NSC values from this study ranged from 0.5 to 

0.7 for the Sint-Oedenrode and Keersop subcatchment outlets, and downstream and upstream 

locations at the Tongelreep catchment. In the following sections, the results of the integration 

of the hydrological, hydrodynamic and ecological processes is shown by presenting first the 

evaluation of the combined modelling approach to assess its ability to simulate DO (Section 

5.3.1), followed by the sensitivity of DO to various nutrient input scenarios (Section 5.3.2) and 

the decomposition of the dominant oxygen consumption and production processes along with 

the sensitivity of these processes to changes in input boundary conditions (Section 5.3.3). 

5.3.1 Evaluation of combined modelling approach 

Figure 13 shows the simulated and observed DO concentrations at the four studied locations 

versus time. The Percent bias (PBIAS) and the Root Mean Square Error (RMSE) shown also 

in Figure 13 were used to give an indication of the match between observed and simulated DO 

concentrations. The PBIAS and RMSE equations are shown below: 

Equation 13 

𝑃𝐵𝐼𝐴𝑆 =  
∑ (𝑌𝑖

𝑂𝑏𝑠 − 𝑌𝑖
𝑆𝑖𝑚)𝑛

𝑖=1 ∗ 100

∑ 𝑌𝑖
𝑂𝑏𝑠𝑛

𝑖=1

 

 

Equation 14 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑌𝑖

𝑆𝑖𝑚 − 𝑌𝑖
𝑂𝑏𝑠)

2
𝑛

𝑖=1

 

Where 𝑌𝑖
𝑂𝑏𝑠 and 𝑌𝑖

𝑆𝑖𝑚 are the observed and simulated daily average DO concentrations 

respectively. The PBIAS assists in determining whether the model has a positive or negative 

bias. Positive values indicate underestimation, negative PBIAS indicate overestimation and 

zero PBIAS indicates a perfect match (Moriasi et al., 2007). Sint-Oedenrode and Hooidonkse 

Watermolen have negative PBIAS, showing that the model is slightly over-predicting, while 
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Bovenstrooms Effluentgoot and Genneper Watermolen have positive PBIAS indicating under-

prediction. The RMSE compares simulated and observed data and expresses the spread 

in 𝑌𝑖
𝑆𝑖𝑚 − 𝑌𝑖

𝑂𝑏𝑠. The largest RMSE was obtained at Hooidonkse Watermolen while the 

smallest RMSE was obtained at Genneper Watermolen. 

 

Figure 13. Simulated and observed dissolved oxygen concentrations versus time at various locations in 
the Dommel catchment (daily average) 

Figure 14 shows the empirical cumulative distribution functions (ECFD) for the errors between 

the observed and predicted DO concentrations. Overall, there is a good match between 

simulated and observed concentrations. 83.9%, 87.9%, 71.1% and 84.2% of Sint-Oedenrode, 

Hooidonkse Watermolen, Bovenstrooms Effluentgoot and Genneper Watermolen predicted 

values were less than 1mg l-1 of the observed values, respectively. The largest differences 

between simulated and observed concentrations are observed in the recovery period following 

the DO falls from CSO events. This is shown by Figure 14 where EFCDs have longer tales 

towards the negative values. The observed DO concentrations at the Bovenstrooms 

Effluentgoot location after March 2013 systematically increased, potentially due to a 

monitoring error. These results suggest that the ‘combined modelling approach’ (referred as 

‘the model’ for simplicity) can visually match the observed seasonal dynamics of dissolved 
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oxygen. However whilst the DO falls (due to oxygen depletion from CSO events) can be 

observed, their recovery is not fully captured by the model. 

 

Figure 14. Empirical Cumulative Distribution Function (ECDF) of the difference between observed and 
predicted DO values. 

5.3.2 Input Boundaries Sensitivity Analysis on Dissolved Oxygen 

Concentrations 

The flow contributions from the boundary conditions (Rural runoff, CSOs, WWTP) are shown 

in Figure 15. It is important to note that Figure 15 does not show a hydrograph separation. It 

displays the precipitation as the average catchment precipitation, the total modelled flow at the 

outlet (Sint-Oedenrode), the sum of the surface and groundwater rural runoff inflows, the 

WWTP outflow into the Dommel upstream of the Bovenstrooms Effluentgoot sampling 

location, and the CSOs discharge inputs at various locations within the catchment. Figure 15 

shows that the largest contribution of base flow arises from the rural inflows. These flows 

which are the main water inflow of the Dommel river are formed of fast surface runoff 

(activated during and after rainfall events) and slow groundwater baseflow. The next largest 

contributor of flow is the WWTP which has a constant base discharge of approximately 1.5 

m3s-1. The WWTP has an overflow bypass storm settling tank which is activated during rainfall 

events, contributing additional flow to the river during and after rainfall events. The CSOs are 

significant contributors during precipitation events. 
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Figure 15. Daily flow average contributions in the River Dommel and Precipitation versus time 
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Figure 16. Sensitivity analysis results versus time 

The sensitivity analysis results are shown in Figure 16. The baseline scenario represents the 

‘base’ nutrient concentrations for the rural runoff, CSOs, and WWTP. The input concentrations 

for the rural and CSOs are shown in Table 6. The yellow, red, and blue areas display the ranges 

between the selected ‘high’ and ‘low’ scenarios of rural runoff, CSOs, and WWTP 

concentration levels, respectively. The seasonal influence of the rural runoff is observed in 

Figure 16 were the rural flows have a higher influence over the winter months. This effect is 

more noticeable in the upstream locations (Boverstrooms and Genneper Watermolen) where 

the catchment is less urbanized. Most of the connected urban area is located in the downstream 

sections at the Eindhoven city. The influence of the CSOs is visible during precipitation events. 

The short-term CSO effects are expected since these occur due to excess of drainage capacity 

during rainfall events. Moreover, the oxygen depletion occurrences due to the CSOs have 

severe acute effects on the river ecology. The high and low scenarios of WWTP input 

concentrations have the lowest impact over the DO concentrations as noted by the WWTP blue 

range which is narrower for the Boverstrooms and Genneper Watermolen locations than the 
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Sint-Oedenrode and Hooidonkse Watermolen locations. The first two do not receive flow from 

the WWTP.  

5.3.3 Dominant Processes in Oxygen Production and Consumption 

The sources and sinks of dissolved oxygen (DO) in the Dommel River at Sint-Oedenrode are 

shown in Figure 17 and Figure 18. These illustrate the daily production and consumption of 

DO for the simulated period from 2011 to 2013. The sum of these processes results in the daily 

concentration contribution that was produced or consumed. In addition, Figure 17 and Figure 

18 show the ranges of concentrations obtained when the low and high scenarios of boundary 

conditions are analysed. The yellow, red and blue correspond to the low-high ranges for the 

rural, CSOs and WWTP respectively. 

Figure 17 reveals that aeration is the main source of DO, followed by the production of oxygen 

by phytoplankton, and macrophytes production. The contribution of DO from aeration is higher 

than the contribution of DO from macrophytes production and production by NO3 uptake by 

macrophytes by several orders of magnitude. Aeration remains fairly constant throughout the 

simulation except for when CSOs occur when aeration may increase up to 7 mg l-1d-1. This is 

expected due to turbulent flows entering the river from the CSOs during and after rainfall 

events. 

Figure 18 shows that the dominant consumption processes consist of mineralization and 

nitrification of detritus (in water and the sediment) and respiration of macrophytes and 

phytoplankton. The dominant consumption process observed in Figure 18 is the mineralization 

of detritus in water, followed by the nitrification of detritus in water. Higher mineralization 

processes are expected in the Dommel due to the high organic loads coming from both rural 

runoff and CSOs. 

The macrophytes processes of production and NO3 uptake display a seasonal pattern in which 

vegetation suddenly increases during the spring/summer. However, the effect of mowing is 

highly noticeable by the sudden drop in production and NO3 uptake on June 1st of each studied 

year (when mowing occurs). After mowing, the remaining vegetation starts to increase again 

until winter arrives, and the vegetation reduces once again. Moreover, the peaks of 

macrophytes production and NO3 uptake, and dips in macrophytes respiration become 

progressively smaller over the three years that were simulated, indicating that with the current 
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simulated mowing regime the vegetation appears to be incapable of fully recovering after 

mowing. 

The sensitivity of the system to changes in input boundary conditions (low and high levels of 

nutrient scenarios) is visible in Figure 17 and Figure 18. The rural runoff (yellow range) has a 

constant impact over aeration throughout the studied time, while the CSOs (red range) have 

specific impacts on aeration, which are evident by the aeration spikes that occur during and 

after precipitation events. The macrophytes processes are more sensitive to CSOs impacts than 

the other boundary conditions. This is expected to be due to the organic loads within CSOs. 

Although CSOs occur at daily or sub-daily timescales, the organic loads remain in the system 

and decompose throughout time, reducing the oxygen available for vegetation. Mineralization 

and nitrification processes are sensitive to all boundaries. Particularly, rural nutrient input is 

constantly reflected in nitrification. In addition, sudden drops in nitrification are also noticeable 

due to WWTP input. 
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Figure 17. Dissolved Oxygen production processes versus time and sensitivity of boundary input 
scenarios 
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Figure 18. Dissolved Oxygen consumption processes versus time and sensitivity of boundary input 
scenarios  
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5.4 Discussion 

This study combined a rainfall-runoff model, hydrodynamic model and closed-nutrient cycle 

model to simulate DO concentrations for the Dommel River, and their sensitivity to low and 

high scenarios of nutrient inputs. In addition, the oxygen decomposition into the production 

and consumption processes was carried out along with the sensitivity of these processes to 

changes in nutrient levels. 

The first aim of the paper, to evaluate the combined modelling approach (from now on referred 

to as ‘the model’), demonstrated that the methodology can be used to simulate the seasonal 

dynamics of DO. The DO concentrations were the highest during the winter months and lowest 

during the summer months. The model matches this winter/summer dynamic with low values 

of Root Mean Square Errors ranging from 1.2 to 1.7 mg l-1, and PBIAS values ranging from -

11.0% to 1.5% despite some measurement errors in the observed data (Figure 13). Accurately 

estimating the seasonal behaviour is necessary when evaluating the long-term effects of 

eutrophication. The model, however, is not as suitable for simulating the short-term dynamics 

of DO since it cannot fully capture the DO depletion and recovery events (Figure 13). This is 

partly due to the time step of the ecological model PCDitch, which has a daily time resolution. 

The lack of representation of these DO falls and their recovery might also be due to the absence 

of slow degradation of organic matter. Moreover, this modelling approach can be coupled with 

a higher temporal resolution DO model to simulate shorter periods if this is the main interest 

or purpose of the user thus providing boundary conditions for higher temporal resolution 

models. For instance, Moreno-Rodenas et al. (2017) carried out an integrated catchment 

modelling study in the Dommel River. With a focus on determining the impact of the 

spatiotemporal effects of rainfall variability, they evaluated the dissolved oxygen 

concentrations in the Dommel River. Their Integrated Catchment Model (ICM) included a 

rainfall-runoff model that was complemented with the urban components of CSOs and the 

WWTP and a water quality module. The processes of fractionation of Biological Oxygen 

Demand, respiration from macrophytes and nitrification-denitrification were included in the 

water quality module in a three-phase layout module to account for the atmosphere-water-

sediment interactions. In contrast to the study presented in this paper, Moreno-Rodenas et al. 

(2017) focused on shorter time scales studying particular rainfall events. These allowed the 

better understanding of the dynamics of the CSOs, and the WWTP in response to the 

precipitation events. However, such models require more computational resources for a long-
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term eutrophication study evaluation, have a reduced representation of the modelling system 

(by integrating less ecological processes and components), and do not provide insights 

regarding the ecological processes involving the aquatic biota. 

The sensitivity of the DO concentrations, and the DO consumption and production processes 

in response to changes in nutrient levels at the boundary conditions was analysed (Figure 16, 

Figure 17 and Figure 18). The varing influence of the rural runoff over the year is noted in 

Figure 16, with rural impacts being dominant during winter months. This is in contrast to the 

influence of CSOs, which are significant during shorter-term rainfall events. Both, short and 

long-term effects have consequences over the river habitat. The short-term DO depletion 

caused by the CSOs may have acute effects (lethal for fish/macro fauna) while the while 

seasonal lowering of oxygen concentration affects the habitat, meaning that oxygen sensitive 

species will not be abundant in the river basin. The discharge of the WWTP flow in the river 

appears to have a smaller impact over the DO concentrations at the Hooidonkse Watermolen 

and Sint-Oedenrode locations, even though the WWTP is a major contributor of flow to the 

river system (Figure 15). 

Figure 17 and Figure 18 illustrate how the sources and sinks of DO behave seasonally and in 

response to the changes in boundary conditions. The decomposition of dissolved oxygen 

processes shows that aeration is the main source of DO into the river system with values 

ranging from 1.5 to 7 mg l-1. Aeration is also sensitive to changes in the boundary conditions 

of rural runoff and CSOs. When organic loads from both rural runoff and CSO’s, enter the 

water system, water depth is affected, causing increased flows and turbulence in the system 

which will lead to spikes in aeration. 

Figure 18 shows the influence of the rural runoff and the CSOs over the mineralization and 

nitrification of detritus in the water and also in the sediment. This is due to the inflow of 

suspended solids contributing to both, organic and inorganic matter into the system. Most of 

the organic matter in the system will settle into the sediment and decompose contributing to 

the mineralization and nitrification processes. The mineralization of detritus in the water 

column is sensitive to the CSO events resulting in spikes of DO depletion. The wastewater 

treatment plant mainly affects the nitrification processes in the water column by the WWTP 

discharges of ammonium in the water system. The remaining organic matter mainly consists 

of humidic acids, which are slowly to not degradable and do not cause a significant and direct 



 

87 

 

oxygen demand in the water column. These interactions between nutrient inputs and oxygen 

processes show that the system, already loaded by high organic matter content, is likely to tip 

on to a low oxygen state as observed in a study by Veraart et al. (2011). 

Vegetation is significantly affected by mowing. The sharp decrease in macrophytes production 

in Figure 17 is due to mowing every June 1st. Consequently, the vegetation recovers over the 

summer but dies during the winter months. It is noted that this particular mowing scenario is 

removing more vegetation faster than the system can replenish itself. This effect is also visible 

for the macrophytes respiration and NO3 uptake. This supports the view that vegetation 

management strategies can have a substantial effect on water quality and ecological function 

in river systems. The modelling approach also showed that vegetation is sensitive to CSO 

events (Figure 17 and Figure 18). A constant influence of the CSOs is noted over the 

macrophytes DO production. 

Overall, the advantages of using PCDitch over other water quality models is noted by this study 

where the decomposition of dissolved oxygen process and the sensitivity analysis of the 

boundary inputs revealed critical interactions such as the importance of the CSOs over 

vegetation, the influence of rural runoff and the WWTP discharge on nitrification, and the 

sensitivity of the system to the removal of vegetation. This modelling approach is capable of 

providing an overview of the river processes due to its ability to include the various ecological 

processes such as the competition of vegetation for nutrient, lights, and temperature. Other 

models, for instance the Charisma model (van Nes et al., 2003), are also able to model the 

competition of plants. However, only two types of submerged vegetation are included in the 

Charisma model (McCann, 2016) while PCDitch incorporates six types of aquatic vegetation. 

Capturing such vegetation density and its relationship to flow dynamics has been recognized 

to assist in assessing the ecological quality of the water system (Kuipers et al., 2016), and this 

is attainable with this modelling approach by coupling the hydrodynamic and ecological 

models. Furthermore, PCDitch describes the relation between external nutrient loadings, 

nutrient concentrations and the dynamics of the different types of vegetation (submerged 

plants, algae, duckweed and helophytes). 



 

88 

 

5.5 Conclusion 

This work evaluates a combined modelling approach to describe hydrologic, hydrodynamic 

and ecological processes within a catchment in order to provide a holistic view of a river system 

and its sensitivity to both urban and rural inputs. Such integrated approach is crucial for the 

full assessment of the catchment and implementation of management measures in response to 

human pressures. In this study, the modelling approach is evaluated based on a rural and urban 

catchment (the Dommel River catchment). Precipitation evaporation, and runoff inputs were 

modelled using a rainfall-runoff modelled designed for low-land areas, followed by the 

hydrodynamic simulation which included CSOs, the Eindhoven treatment plant and other 

urban components. The novelty of this study lies in the successful implementation of the 

extensive closed-nutrients cycle model to the slow flowing river highly impacted by 

urbanization and rural inputs. PCDitch, which was initially developed for ditches, was used to 

model DO concentrations for the first time. In addition, this paper studies the decomposition 

of oxygen processes into production and consumption processes and their sensitivity to low 

and high levels of nutrient inputs from the different boundaries given mowing and dredging in 

the river system. 

This study found that the seasonal pattern of dissolved oxygen can be well simulated with the 

combined modelling approach, although some shortcomings are identified when modelling DO 

recovery following CSO events. Secondly, the sensitivity of the dissolved oxygen processes to 

changes in nutrient high and low levels from the boundary conditions showed that DO levels 

are influenced by rural runoff mainly during the winter months. This influence is more 

notorious in the upstream locations. In addition, it was observed that the CSOs have short-term 

impacts over DO during and after precipitation events. Thirdly, the separation of oxygen 

processes into the production and consumption processes and sensitivity analysis revealed: i) 

a continuous influence of the CSOs input concentrations on the vegetation processes of 

production, respiration and NO3 uptake, ii) an influence of rural runoff over nitrification and 

mineralization processes, iii) a sharp impact of mowing on vegetation processes, and iv) an 

intermittent effect of the WWTP on mineralization during and after precipitation events. 

The model structure of PCDitch using closed nutrient cycles allows for a better understanding 

of the nutrient dynamics within the ecological habitat allowing the study of important 

ecological processes affecting the production and degradation of oxygen while implementing 
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vegetation and dredging management practices. This allows for a deeper consideration of such 

important processes into river management strategies than is currently possible. 

These findings are an illustration of the knowledge that can be gained from a modelling 

approach that incorporated both hydrological, hydrodynamic and detailed ecological processes. 

With such understanding, specific urban or rural management measures may be more fully 

considered to improve the overall health of the river system. 
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6. Importance of longitudinal dispersion uncertainty in 
water quality models used for Water Framework Directive 
(WFD) implementations 

This chapter addresses the thesis objective 3, associated with evaluating the impacts of using 

simple and complex model structures on water quality modelling and duration over threshold 

analysis. Further assessment is made regarding the scales where longitudinal mixing leads to 

uncertainty over FIS regulation 

6.1 Introduction 

The European Union Water Framework Directive (WFD) requires that a holistic approach is 

taken to evaluate the ecological status of water bodies (European Commission, 2000). This 

requires a comprehensive understanding of human and natural pressures on aquatic 

ecosystems. In the United Kingdom, the Fundamental Intermittent Standards (FIS) are used to 

protect surface water from wet weather discharges as stated in Section 2.3. These Fundamental 

Intermittent Standards (FIS) are applied to dissolved oxygen (DO) and un-ionised ammonia for 

specific duration thresholds and for a range of return periods (1 month, 3 months, and 1 year) 

during wet weather conditions (Foundation for Research, 2012). 

Mathematical models are efficient tools for assisting in gaining an overall understanding of the 

complex dynamics of catchments, providing information in instances were field data collection 

is not feasible, and predicting the responses of ecosystems to the implementation of measures 

for the improvement of water resources (Hartnett et al., 2007). The accurate estimation of 

dispersion processes is key in water quality modelling for the proper estimation of water quality 

variables (Velísková et al., 2019; Zeng & Huai, 2014). Two-dimensional (2D) models have 

been proven superior in modelling mixing processes due to their ability to capture the stream-

wise variation of the transverse mixing (Baek & Seo, 2016). Seo et al. (2016) studied the river 

Sum (2.5km reach and varying width between 20m and 77m) in South Korea using a finite  

element-based  model which  included  the  depth-averaged  shallow water model, 2D Hydro 

Dynamic Model (HDM-2D). Their findings revealed a good match between observations and 

model predictions at locations where secondary currents were negligible. However, 2D models 

require additional data, thus they are more costly and computationally demanding, particularly 

at the catchment scale. As a result, water quality practitioners may resort to less complex 
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models such as the advection-only or the one-dimensional advection dispersion equation (1D 

ADE) model.  

Advection-only models are not capable of representing dispersion processes since these models 

can only transport the pollutant due to the movement of the flow parcel. Despite this, advection-

only models such as the SIMulation of CATchments (SIMCAT) model have been widely 

applied in the United Kingdom for catchment management and evaluation of compliance with 

the Water Framework Directive (Hankin et al., 2016). The SIMCAT model, created by the 

Water Research Centre (WRc), is used by the UK Environmental Agency. SIMCAT 

conceptualizes the river as continuous stirred-tank reactors with perfectly and instantaneously 

mixed sections (Cox, 2003b; Kayode, 2018). Crabtree et al. (2009) illustrate how SIMCAT 

was used to support decision making for the River Ribble Catchment in the UK. In their study, 

they assessed 80 catchment scenarios for the implementation of Programmes of Measures 

(PoMs) to reduce diffuse pollution and evaluate water industry management options. SIMCAT 

is still the preferred choice within the River Quality Planning (RQP) software suite by the UK’s 

Environment Agency to evaluate single discharges into a watercourse (Foundation of Water 

Research, 2014). SIMPOL ICM is another simplified urban pollution model that assists water 

companies to assess the pollutant loads and investigate the impacts of human pressures on 

watercourses (Water Research Centre, 2012). SIMPOL represents key urban processes by 

using surface, sewer, and CSO tanks connected together. Dempsey et al. (1997) used SIMPOL 

to evaluate the upgrade of the drainage system of an urban area serving approximately 220,000 

people in response to extreme rainfall events. Predicted Biological Oxygen Demand and un-

ionised ammonia concentrations in the river were evaluated for compliance with water quality 

standards (Dempsey et al., 1997).  

One-dimensional advection dispersion models (1D ADE) have been popular as shown in 

Section 2.2.4 for estimating water quality variables and are widely implemented in commercial 

software such as Infoworks ICM (Innovyze, 2017) the D-Water Quality Suite (Deltares, 2018) 

and MIKE11 (DHI, 2017). These models typically use empirical formulations for the 

estimation of longitudinal dispersion. For instance, Infoworks ICM estimates dispersion as a 

result of the shear velocity and the river width (Innovyze, 2017). MIKE11 can include estimates 

of dispersion coefficient using the mean flow velocity, and suggests to use dispersion 

coefficients of 1-5 m2 s-1 for small streams and 5-20 m2 s-1 for rivers, but the default setting of 

dispersion coefficient is 0 m2 s-1 (i.e. advection only) (DHI, 2017). Additional information of 
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commercial software is provided in Appendix A, and examples of the use of commercial 

software for evaluation of water regulation compliance are provided in Section 2.2.4. 

As pointed out in Chapter 4, the use of empirical equations for estimating dispersion potentially 

leads to large uncertainty intervals in water quality concentrations and estimations of durations 

that the pollutants exceeded a water quality threshold. Another deficiency of the 1D ADE is its 

inability to reproduce the observed skewness in pollutant concentration profiles (van Mazijk & 

Veling, 2005). This skewness has been attributed to several reasons including the effects of 

vertical and transverse shear velocities over turbulent diffusion (more dominant in the 

advective zone) (Schmalle & Rehmann, 2014) and trapping areas and zones of hyporheic 

exchange where pollutant mass is stored and slowly released (Nordin & Troutman, 1980; 

Zaramella et al., 2016). 

In order to include the effects of pollutant exchange with storage and hyporheic zones, transient 

storage models, which include a first order mass exchange mechanism between the main flow 

and the storage areas were proposed (Bencala & Walters, 1983; Zaramella et al., 2016). The 

Aggregated Dead Zone model was introduced conceptualizing the river as an imperfect mixed 

reach dominated first by advection and then by dispersion (Lees et al., 2000). Moreover, 

transient storage models have been further developed and improved over the years. Some 

examples include the Continuous Time Random Walk model (CTRW) introduced by Boano et 

al. (2007), the Multi Rate Mass Transfer model (MRMT) (Haggerty et al., 2002) and the Solute 

transport in rivers (STIR) model by Marion et al. (2008). 

Although there is evidence that simpler models potentially lead to larger sources of uncertainty 

(Blumensaat et al., 2014), simpler models can still resemble experimental data when modelling 

urban effects on receiving water bodies. G. Mannina and G. Viviani (2010b) compared the 

differences between a more complex Saint-Venant equations along with 1D advection-

dispersion approach to a simplified reservoir model approach. Both methodologies lead to a 

good fit to the experimental data. However, the simpler reservoir model lead to larger 

uncertainty intervals than the more complex model. Nevertheless, simpler models (e.g. nutrient 

export coefficient or regression models) can be used for an overall characterization of nutrient 

loads in the catchment, and assessing the risk that the water body may fail to meet the WFD 

requirements (Hartnett et al., 2007). 
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Moreover, a disconnection between researchers and practitioners still exists when applying 

appropriate water solutions to freshwater systems (Brown et al., 2010). Water quality 

practitioners and modellers are still limited by insufficient input data (Rode et al., 2010) that 

are often required by more complex models. Another challenge raised by UK water 

practitioners is the lack of scientific knowledge of biological, physical and socio-economic 

processes required for the proper management of freshwater ecosystems (Brown et al., 2010).  

This example illustrates the timeliness of understanding the impact of utilising complex and 

simple water quality models on predicted river water quality variables and implications on 

water regulation evaluation, as well as, the need for practical studies that look into uncertainty 

in the light of water quality regulation. 

This chapter studies the impacts of uncertainty in the dispersion coefficient on modelled water 

quality concentrations and regulation when the Fundamental Intermittent Standards are 

applied. Two types of modelling approaches are studied: 1) a complex integrated water quality 

modelling approach, and 2) simpler pollutant transport models. The first study introduced in 

Chapter 5 focuses on the integrated water quality model of the Dommel River that is highly 

influenced by diffuse pollution, a wastewater treatment plant and combined sewer overflows. 

The second case study focuses on point source pollution from CSO discharges in the UK where 

simpler but widely used pollutant transport models are used to describe the trajectory of 

pollution along the stream reach. This analysis addresses the questions of the impact of 

structural uncertainty on water quality concentrations and the impact on water quality 

regulation.    

6.2 Impact of dispersion uncertainty on water quality 
concentrations in an integrated water quality model  

This section evaluates the impact of diffuse nutrients (e.g. nitrates and phosphorus) originating 

from agricultural rural runoff on the predicted river Dissolved Oxygen (DO) concentrations. 

The Dommel River (described in Section 5.2.1) is highly impacted by agricultural runoff at the 

upstream regions of the catchment and urban discharges (CSOs and a wastewater treatment 

plant) at the downstream region. 

Using the integrated water quality modelling approach described in Sections 5.2.2, 5.2.3, and 

5.2.4, the sensitivity of the modelled DO concentrations to changes in dispersion coefficients 
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was analysed. To represent the longitudinal dispersion for the Dommel Case Study, a linear 

relationship of the concentration gradient between the river segments was implemented as this 

is one of the user options within the Delwaq/PCDitch interface (the concentrations at each river 

segment are obtained from the pollutant load over the segment volume) (Deltares, 2014b). 

Moreover, the calculated model dispersion resulted in a zero dispersion coefficient. This 

indicates that in the Dommel River, the concentration gradients are negligible representing a 

network of fully mixed river segments. This is potentially because the mixing processes within 

the river are only significant at sub-daily time scales. In order to check this assumption, the 

effect of dispersion has been further evaluated on the Dissolved Oxygen (DO) concentrations 

by setting a constant longitudinal dispersion coefficient for the river network as shown in 

(Figure 19) where a set dispersion coefficient of 8.1 m2s-1
 was implemented. This dispersion 

coefficient was obtained using Deng et al. (2001) equation and applied to the river sections. 

Deng et al. (2001) equation was selected because visually it matched the concentration peaks 

better than the other studied equations in Section 4.3.1. Figure 19 shows that when including 

dispersion, the DO concentrations do not vary considerably for the downstream locations at 

St.-Oedenrode  and Hooidonkse Watermolen. The RMSE increased by 0.3 mg l-1 and 0.1 mg 

l-1 at the mentioned locations when dispersion was included, respectively. Moreover, at the 

outlet of the catchment (Sint-Oedenrode), a poorer fit between observations and predictions is 

obtained, especially over the summer months, during periods of low flow.  For the upstream 

locations, no change in the RMSE of the concentrations was obtained when including 

dispersion into the model. This indicates that especially in the upstream locations, the model is 

not sensitive to the inclusion of dispersion, and that dispersion does not have a major influence 

over the DO concentrations when a daily time step is evaluated.   

Under FIS Standards for ecosystem suitability for sustainable salmonid fishery (most strict FIS 

Standard), thresholds are based on 1-hour, 6-hour and 24-hour durations and 1-month, 3-month 

and 1-year return periods (Foundation for Water Research, 2012). When applying these FIS 

thresholds to the Dommel case study, the resolution of the model is not detailed enough to 

apply the sub-daily standards (1-hour and 6-hour). However, if evaluation is required for the 

24-hour/1-year return period event, the integrated modelling approach presented in this study 

allows observing that there are instances where the DO concentrations fail to meet the 

minimum DO concentrations of 5.0 mg l-1 during the summer months as observed in Figure 

19. Thus, at the daily scale, this tool can be used by water managers for evaluation of water 
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quality compliance. Moreover, by including dispersion in the model, there is a reduction in the 

model prediction accuracy. This inclusion of dispersion for this particular case and at the daily 

scale would result in no differences when complying with FIS standards for the upstream 

locations of the catchment where rural agricultural runoff dominates. However, when looking 

at the outlet of the catchment (Sint-Oedenrode) during the winter months of 2013, the modelled 

concentrations considering dispersion show erroneous spikes of higher DO  concentrations in 

the summer months. This could lead to situations of compliance when in reality; concentrations 

were lower than the acceptable limits.  

 

Figure 19. Dommel River model. Sensitivity of DO concentrations to inclusion of longitudinal dispersion 

6.3 Impacts in river dominated by CSOs 

To evaluate the impact of dispersion when using simple advection-dispersion water quality 

models for representing the transport of pollution from CSO discharges on FIS (Foundation for 

Water Research, 2012), a case study from an urban catchment in the United Kingdom is 

presented. Flow and quality data describing a CSO spill has been collected as part of a wider 

integrated model verification study as shown in Figure 20  (Norris et al., 2014). Within the 

integrated model, the receiving water is modelled using the DUFLOW package to evaluate the 
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potential use of Event Mean Concentrations (EMC) models to predict CSO spills. Data from 

the model is extracted to provide boundary river conditions immediately upstream of the CSO, 

as well as the receiving water characteristics during the monitored spill event (Table 7).  The 

evolution of un-ionised ammonia concentrations was evaluated in accordance to the 

Fundamental Intermittent Standards (FIS) for ecosystem suitable for sustainable salmonid 

fishery, establishing that the concentration should not exceed 0.105 mg Nl-1 unionised ammonia 

for 1-hour/1-year event (Foundation for Water Research, 2014).  

Table 7. River and pollutant information  

Parameter Value 

River mean velocity (m s-1) 0.11 

River mean shear velocity (m s-1) 0.0495 

Un-ionised ammonia initial concentration (mg L-1) 5.10 

River average depth (m) 2.5 

River cross section area (m2) 50.0 

Longitudinal dispersion (m2 s-1) 2.35 

Transverse dispersion (m2 s-1) 0.01 

 

Figure 20. Study catchment (courtesy of Thomas Norris from United Utilities) 
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The CSO is modelled using the initial Event Mean Concentration (EMC) of 5.1 mg L-1, 

assuming an instantaneous discharge. The propagation of the pollution events was simulated 

using four models implemented within the modelling framework as described in Camacho 

Suarez et al. (2017). The models included were: 1) Advection-only: based on the advective 

velocity, it does not include dispersion. 2) 1D ADE, using the one-dimensional advection 

dispersion equation includes both, advection and dispersion in the longitudinal direction. 3) 

Semi 2D ADE, where dispersion is considered in both, transverse and longitudinal directions. 

However, only the longitudinal advective velocities are considered, and the 4) ADZ 

(aggregated dead zone) model which is a simplified model that assumes imperfect mixing. 

These less complex models were selected for this study since they are commonly used for 

water quality estimations as first indicators of water compliance (Hartnett et al., 2007). The 

longitudinal dispersion coefficient was calculated using Deng et al. (2001) equation for 

consistency with the study in Section 6.2, and the transverse longitudinal dispersion 

coefficient was obtained from the summary of field measurements of transverse dispersion 

coefficients for a rivers of similar conditions shown in Rutherford (1994). 

Figure 21 shows the predicted concentration versus time profile at 25m, 50m, 75m and 100m 

downstream of the CSO release using the four models. As expected, the concentrations 

modelled using the advection-only model remain constant. The differences between the 1D 

ADE and the semi 2D ADE model predictions reduce with increasing distance from the CSO 

discharge. The predicted concentrations using the ADZ model for this case take longer to 

attenuate than the 1D ADE and semi 2D ADE models.  
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Figure 21. Modelled river NH4 concentration profile in (mg l-1) after CSO discharge at various times and 
distances after release at the centreline of the river width. Blue dotted line shows advection processes 
only, solid orange line uses one-dimensional advection dispersion equation, semi-dotted green displays 
the use of semi 2D advection dispersion assuming the pollutant has been released at the centre of the 
stream and the transverse velocities are negligible, and red dashed line uses aggregated dead zone 
model (ADZ) where advection occurs before dispersion. Please note that y-axis has different scales for 
the four plots. 

 

To further evaluate the impact of using the various models on comparing model results against 

water regulation, the durations that the un-ionised ammonia concentrations exceeded the 

Fundamental Intermittent Standards of 0.105 mg Nl-1 unionised ammonia for Salmonid 

Fishery were calculated for the first 500m after the CSO release. Figure 22 shows that the 

advection-only model constantly exceeds the threshold by 12 seconds over the modelled spatial 

range. The other models exceed the threshold for approximately 410m (semi 2D ADE), 180m 

(ADZ) and 60m (1D ADE). Although none of the models exceed the 1hr duration (therefore 

complying with FIS), the estimations of the durations over the threshold vary considerably 

between the models selected.  
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Figure 22. Duration over threshold (DOT) versus distance downstream of the CSO release. DOT values are 
based on the Fundamental Intermittent Standards of 0.105 mg Nl-1 unionised ammonia for Salmonid 
Fishery.  

Commercial software such as SIMCAT and SIMPOL can only represent the advective 

pollutant transport. As seen in Figure 21, this type of models tends to overestimate the pollutant 

concentrations, but underestimate the time that the concentration has exceeded the threshold 

when compared to the semi 2D ADE model. The commonly used models such as MIKE11, 

Infoworks ICM and D-Water Quality, by integrating the dispersion component, they potentially 

underestimate the concentration peaks (Figure 21) and the durations that the pollutant exceeded 

the threshold when compared to the semi 2D ADE (Figure 22).  Moreover, this study is based 

on an instantaneous pollution discharge. In reality, wet weather discharges have longer 

durations and are subject to the effects of varying hydraulic and geomorphological features, 

transient storage and hyporheic zones, which will alter the dynamics of the pollutant transport. 

Even more so when secondary currents are present requiring a 3D model representation (Seo 

et al., 2016).Moreover, the spatial and temporal scales of this study (<500 m reach length and 

sub-hourly time step), demonstrated the importance of a 2D representation of the pollutant 

transport problem in order to capture the effects of transverse mixing (Seo et al., 2006) at these 

shorter time and space scales..  
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6.4 Discussion 

In the Dommel study, the dispersion analysis (Section 6.2) shows that dispersion is not a 

dominant process affecting the dissolved oxygen (DO) concentrations and water quality 

conditions in the river at the seasonal scale. In order to determine the dominant processes 

driving the DO concentrations, and the largest sources contributing to overall uncertainty, a 

sensitivity analysis of the DO production and consumption processes was carried out as 

discussed in Section 5.3.3. Results showed that aeration and macrophytes production processes 

were the dominant sources of oxygen while mineralization and nitrification processes were the 

dominant sinks of oxygen. The oxygen depletion concurs with Wheaton et al. (1994) whom 

suggest that a minimum dissolved oxygen concentration of 2.0 mg l-1 needs to be maintained 

for nitrification to occur.  

The macrophytes production and respiration processes drive the seasonal behaviour observed 

in the concentration versus time plots (Figure 13). Accurately modelling these processes is key 

for the estimation of dissolved oxygen and the reduction of uncertainty at these longer time 

scales. It is important to note that additional uncertainty from input data may affect the 

concentrations considerably. The sensitivity analysis of input boundary conditions on dissolved 

oxygen concentrations (Figure 16) showed that despite the high variability of water quality 

concentrations in the input variables shown in Table 6 (e.g. organic matter content, total 

suspended solids), the seasonal dynamics of DO concentration still visually matched DO 

observations. Figure 16 also revealed that the input data from the rural areas resulted in a 

seasonal influence over the DO concentrations while the Combined Sewer Overflow (CSO) 

input data lead to more acute sudden effects on the DO estimations. 

Contrasting results were found when using a simplified integrated water quality model by 

Moreno-Rodenas et al. (2019) when evaluating DO dynamics in the Dommel River.   Their 

study found that the CSO water quality parameters, which included Biological Oxygen 

Demand (BOD), Chemical Oxygen Demand (COD), ammonia, and DO, accounted for 

approximately 20% of the variance in the DO predictions in the river water. The reason of these 

opposing results regarding the influence of pollutant concentrations may be due to the 

differences in model structures. In contrast to the catchment model used by Moreno-Rodenas 

et al. (2019), the hydrodynamic-ecological model used in this study included the closed-

nutrient dynamics, management practices (mowing and dredging), respiration, production and 
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nutrient uptake for several groups of macrophytes and phytoplankton. A more detailed 

description of the modelled processes can be found in  Janse (2005). The Duflow water quality 

model used in Moreno-Rodenas et al. (2019) uses the pre-defined EutroF1 model, which 

includes cycling of nitrogen, phosphorus and oxygen. It only includes one phytoplankton 

species. DO is estimated from the oxidation of carbon through the biological oxygen demand, 

algal respiration, nitrification and sediment oxygen demand (EDS, 1995).    

Moreover, from the integrated water quality model presented in this thesis, it was found that 

the thorough and complete representation of the seasonal processes and management practices, 

while accounting for the nutrient ratios within the food chain of the ecological system, is 

necessary for the accurate seasonal estimations of DO. 

Furthermore, the Dommel integrated water quality model presented in this thesis was not able 

to capture the short-term (lasting up to a few days) DO depletion events and their recovery 

during and after precipitation events. This deficiency in representing the short-term dynamics 

of DO due to CSO events might be due to the time resolution of the ecological model. With a 

daily time step, the model is not capable of capturing the fast degradation processes of organic 

matter, the oxygen consumption and the mixing processes, which may explain the insensitivity 

of the model to changes in dispersion coefficient. 

The case study presented in Section 6.3 evaluates the impact of using simple models on 

estimated pollutant concentrations and water quality regulation in light of Duration over 

Threshold (DOT) analysis. By using models with different characterizations of dispersion, we 

can further understand the impact of dispersion on water quality concentrations and 

consequently, on water quality regulation. The semi 2D ADE model can represent longitudinal 

and transverse dispersion processes while the 1D ADE and the ADZ can only represent 

longitudinal dispersion. When compared to the semi 2D ADE, the 1D ADE and the ADZ 

models underestimate the durations over the threshold and the distances where the pollutant 

has exceeded the water quality threshold (Figure 22). This example illustrates the implications 

of using an inappropriate dispersion model for water quality assessment related to CSO 

discharges.  

Although one-dimensional models may be limited by only representing longitudinal 

dispersion , Ge and Boufadel (2006) highlight that by using the 1D ADE, the high values of 

the concentration profiles (peaks) can be better represented when compared to transient storage 
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or dead zone models such as TSM or ADZ which better represent the tail of the concentration 

profiles. When testing for compliance using DOT analysis, the representation of the peaks is 

more important given that the Fundamental Intermittent Standards (FIS) focus on the high 

values that have exceeded a water quality threshold. Therefore, the 1D ADE is a preferable 

choice of model for DOT compliance given the importance of accurately representing the 

concentration profile peaks. However, the application of the 1D ADE should be implemented 

after the cross section has fully mixed as also suggested by previous studies (Rutherford, 1994).  

The use of 2D or 3D models is recommended to reduce uncertainty for the region near the 

pollutant release. However, higher dimensional modelling requires the representation of 2D or 

3D hydrodynamics. This is also subject to additional parameter uncertainty if calibration data 

is not available as illustrated by Baek and Seo (2016) who developed a two-dimensional routing 

procedure to estimate the longitudinal and dispersion coefficient from empirical observations. 

Previous studies have also proposed empirical models to estimate the transverse dispersion 

(Boxall & Guymer, 2001; Fischer, 1969). Moreover, the need for 3D models increases for 

lakes, estuaries and the subsurface as mixing in the three directions becomes important. This 

is illustrated by studying the effects of heterogeneity on aquifers (Chen et al., 2018), wind 

currents and circulation patterns on the transport of substances in lakes (Cimatoribus et al., 

2019), sediment initial conditions and pelagic processes (Amunugama & Sasaki, 2018), and 

river-borne particles spreading over estuary systems (Legorburu et al., 2015). 

6.5 Conclusion  

This chapter studied the effects of dispersion on water quality models of different complexity 

and different sources. The first study focussed on a complex integrated water quality model 

with dominant diffuse pollution where dispersion processes are less significant than other 

physical and ecological processes (e.g. aeration and mineralization of organic matter). This is 

potentially due to the coarser temporal and spatial resolutions covered by the model. In 

contrast, the second study demonstrated how when using simple pollutant transport models, 

the role of dispersion becomes considerable in the estimation of water quality concentrations 

and when complying with concentration-duration-threshold type water regulation. By 

including both, longitudinal and transverse dispersion coefficients by means of the semi 2D 

ADE model, the durations that the pollutant exceeded the established water quality threshold 

were larger than when using one-dimensional models by several 10s of meters. This could 
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make the difference between whether compliance has been demonstrated or not. Moreover, as 

the distance from the pollutant release increases, the differences between the predictions by the 

1D ADE and semi 2D ADE models reduce and the 1D ADE model can be used with more 

confidence for water regulation purposes.    
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7. Summary, Conclusions and Outlook 

This PhD thesis studied one-dimensional river water quality models to determine the impacts 

of parameter, input and structural uncertainties on water quality predictions made to check 

compliance with concertation duration frequency type regulation such as the Fundamental 

Intermittent Standards (FIS; FWR, 2012). The study also provided insights regarding the 

importance of longitudinal mixing for models of different complexity and varying spatial and 

temporal scales. The first study (Chapter 4) evaluated the impact of the longitudinal dispersion 

coefficient on the 1D ADE water quality predictions at the sub-daily time scales for checking 

compliance with the Fundamental Intermittent Standards for discharges (Foundation for Water 

Research, 2012). Chapter 5 presented an integrated water quality model using a closed-

nutrients cycle at daily timescales for the prediction of seasonal dissolved oxygen processes. 

Chapter 6 evaluated the impact of longitudinal dispersion on water quality variables used to 

check compliance with the Fundamental Intermittent Standards regulation for models of 

varying complexity. Below a summary of each chapter is provided along with conclusions and 

recommendations for future work.   

7.1 Parameter uncertainty from the conceptualization of 
longitudinal dispersion  

Chapter 4 presented a statistical analysis carried out on six of the latest longitudinal dispersion 

equations. Regression equations, based on hydraulic and geomorphological river properties for 

the estimation of longitudinal dispersion equations are abundant in the literature. However, 

understanding the impact of implementing such methods for the quantification of dispersion in 

advection dispersion models is crucial for the proper estimation of water quality variables and 

their impact on evaluating compliance with water quality standards.    

By studying the distributions of predictive ratios (predicted over measured longitudinal 

dispersion coefficients), information regarding the behaviours of the goodness of fit of the 

longitudinal dispersion equations was gained. Probability distributions of predictive ratios were 

derived and  propagated using Monte Carlo analysis to estimate confidence intervals for time-

concentration profiles for an independent study (Chillan River), and four rivers of different 

characteristics. For four rivers of different mean to shear velocity ratios and aspect ratios, 

confidence intervals of concentration profiles were derived, and compared to water quality 

standards by estimating the duration that the pollutant had exceeded a water quality threshold 
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under the Fundamental Intermittent Standards (Foundation for Water Research, 2012). The 

duration over threshold analysis demonstrated that the uncertainty from the longitudinal 

dispersion coefficient extends up to 100s of meters from the pollutant release. This 

demonstrates that uncertainty in the longitudinal dispersion coefficient can have a major impact 

in determining how compliance with water quality regulation can be achieved following 

simulation of different water quality improvement strategies. The parameter uncertainty study 

in this thesis was limited to the longitudinal dispersion coefficient given its importance within 

the 1D ADE, and the wide use of the 1D ADE. However, further work should include the 

evaluation of parameter uncertainty and its propagation over water quality regulation from 

other transport models such as the transient storage and hyporheic exchange models. 

7.2 Input uncertainty in integrated water quality modelling  

A combined modelling approach involving a rainfall-runoff, hydrodynamic and ecological 

model was used for determining the sensitivity of input water quality concentrations on 

dissolved oxygen concentrations. An emphasis was made on input data as it is challenging to 

obtain accurate input data to describe the biochemical factors driving the ecosystem ecological 

response. A sensitivity analysis was carried out in order to evaluate the river system’s response 

to changes in pollution inputs. This analysis was carried out for a case study on the River 

Dommel catchment in the Netherlands, for which water quality data was available. Scenarios 

of high and low input water quality concentrations incoming from rural and urban flows were 

simulated to assess their effect on total Dissolved Oxygen (DO) and find out the dominant DO 

production and consumption processes. These variables included concentrations of NH4, NO3, 

total nitrogen, organic nitrogen, PO4, total suspended solids, organic matter content and 

chlorophyll-a.  

The impact over DO processes originating from the variability of input concentrations 

originating from rural runoff, CSOs and the Eindhoven wastewater treatment plant (WWTP) 

discharges is visible at the four studied locations in the Dommel River. This analysis assisted 

to identify both short-term and long-term effects. CSOs impacts are visible by the sudden drops 

and spikes of DO and DO production processes that occur in response to precipitation events. 

Such oxygen depletion events can be lethal for the aquatic habitat. The sensitivity analysis 

results showed that the rural runoff input concentrations have a larger influence over DO 

concentrations over the winter months than the summer months, while CSO input 



 

115 

 

concentrations have sudden short-time impacts over DO.  The impact of the WWTP input water 

quality concentrations shows both, short-term and long-term effects over DO concentrations. 

Aeration is sensitive to both, rural runoff inflows and CSOs inflows. The results of the 

sensitivity analysis (Figure 17) studying then influence of varying input boundary conditions 

on aeration showed that the changes in input concentrations (shown in Table 6) of the rural 

boundary flows had a noticeable impact on aeration throughout the entire simulation time while 

the CSOs impacted aeration only during CSO discharge events. It is noted that the CSOs and 

the rural runoff input boundary conditions have an effect over the mineralization and 

nitrification processes on the sediment over the longer time scale while for the mineralization 

of detritus in the water, CSOs, have more sudden effects over shorter time scales. Similarly, 

the WWTP has acute short time effects over nitrification in water while the rural runoff has a 

constant effect over nitrification in water. 

This study found that although uncertainty in the values of input data has influence over the 

simulation results, it is not a deterrent for obtaining reasonable seasonal DO predictions in the 

Dommel River. Despite the wide ranges of input boundary conditions, as shown in table 6, the 

seasonal behaviour of DO is still well represented. Furthermore, this analysis can be used to 

further evaluate the influence of individual pollution sources over the oxygen production and 

consumption processes, including ecological processes. This allows for testing of a wider range 

of water quality management options, such as mowing or dredging. Although the model runs 

at daily timescale and is therefore not suitable for testing sub-daily concentration-duration-

frequency regulation, the effect of CSO spills is still visible, so the impact of considerable spills 

could still be seen.    Future would should use this modelling approach for longer term (decades) 

of simulation, to see if the model would be capable of studying detrimental effects of build-up 

of pollutants in the river sediments over time.  

7.3 Importance of dispersion in water quality models  

Chapter 6 evaluated the impacts of longitudinal dispersion on models of varying complexity 

used for compliance with water regulation under the Fundamental Intermittent Standards 

(FIS). The first study (Section 6.2) focused on an integrated water quality model, which 

included the impacts of diffuse pollution from agricultural areas and urban pollution from wet 

weather discharges of combined sewer overflows and a wastewater treatment plant. No 
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substantial influence on the dissolved oxygen concentrations was observed by varying the 

longitudinal dispersion coefficient, especially in the upper locations of the catchment where 

rural agricultural runoff is dominant. Moreover, the root mean square error between the 

observed and predicted DO concentrations increased by including the dispersion component 

in the downstream regions of the catchment indicating a mismatch between observed and 

predicted concentrations of DO. One potential reason for the low influence of dispersion in 

this study may be due to the daily time step resolution of the model. This coarse time 

resolution (daily) may not capture the effects of dispersion that usually occur at the sub daily 

time scale. The second study of a river reach within the UK focused on studying the impact 

of pollutant transport model structures: Advection-only, 1D ADE, ADZ, and semi 2D ADE 

(commonly implemented within commercial water quality software) on water quality 

concentrations and compliance with FIS regulation. The model structure selection resulted in 

wide differences of durations over the thresholds extending over 100s of meters between the 

different models. This indicates that the model selection has a substantial influence when 

estimating water quality concentrations as it affects the shape of the peaks of pollutant 

concentrations. Further analysis integrating the impacts of continuous pollution discharges as 

well as non-conservative substances is still required to further assess the impact of such 

discharges on river water quality parameters.  

7.4 Overarching conclusions and recommendations 

The longitudinal dispersion coefficient propagates substantial uncertainty at the sub-daily time 

scales and up to 100s of meters from the pollutant release when using the 1D ADE equations, 

which are often included in industry standard software packages. It is therefore recommended 

that in water quality studies where accurately simulating water quality parameters at sub-daily 

scales and within 100s of meters of the pollutant release, tracer tests are carried out to establish 

the specific longitudinal dispersion coefficient for the river reach studied.  

At larger space and time scales (daily/seasonally and catchment scale), the mixing processes 

become less evident. It would therefore be recommended for larger space-time scale studies, 

that some initial exploratory sensitivity analysis be done to see if water quality parameters 

simulated are sensitive to varying longitudinal dispersion coefficients. If they are, local tracer 

tests would be recommended, if not then other types of water quality processes should be 

simulated.  
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Hence, for every proposed water quality modelling study, it is important to first establish which 

type of water quality processes are thought to be dominant at the space and time scales studied, 

and select an appropriate model type and structure accordingly. If there is a mismatch between 

the space and time scales at which water quality parameters are simulated, and the model type 

and resolution used, model results could contain considerable uncertainty.  

There also appears to be a mismatch between more and more sophisticated water quality 

models developed by researchers, and the water quality models used in practice by industry to 

show compliance with regulations. More work should be done to study and quantify the 

implications of uncertainty related to the use of industry standard models on investment in 

water quality management strategies. 

 

References 

 

Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., . . . Srinivasan, 

R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur 

watershed using SWAT. Journal of Hydrology, 333(2-4), 413-430. 

doi:10.1016/j.jhydrol.2006.09.014 

Agency, U. E. (2018, 13 September 2018). Water companies: environmental permits for 

storm overflows and emergency overflows.   Retrieved from 

https://www.gov.uk/government/publications/water-companies-environmental-

permits-for-storm-overflows-and-emergency-overflows/water-companies-

environmental-permits-for-storm-overflows-and-emergency-overflows 

Alizadeh, M. J., Ahmadyar, D., & Afghantoloee, A. (2017). Improvement on the Existing 

Equations for Predicting Longitudinal Dispersion Coefficient. Water Resources 

Management, 31(6), 1777-1794. doi:10.1007/s11269-017-1611-z 

Alizadeh, M. J., Shahheydari, H., Kavianpour, M. R., Shamloo, H., & Barati, R. (2017). 

Prediction of longitudinal dispersion coefficient in natural rivers using a cluster-based 

Bayesian network. Environmental Earth Sciences, 76(2). doi:10.1007/s12665-016-

6379-6 

Altunkaynak, A. (2016). Prediction of longitudinal dispersion coefficient in natural streams 

by prediction map. Journal of Hydro-environment Research, 12, 105-116. 

doi:http://dx.doi.org/10.1016/j.jher.2016.05.001 

Amunugama, M., & Sasaki, J. (2018). Numerical modeling of long-term biogeochemical 

processes and its application to sedimentary bed formation in Tokyo Bay. Water 

(Switzerland), 10(5). doi:10.3390/w10050572 

Anderson, T. R. (2005). Plankton functional type modelling: Running before we can walk? 

Journal of Plankton Research, 27(11), 1073-1081. doi:10.1093/plankt/fbi076 

Ani, E.-C., Wallis, S., Kraslawski, A., & Agachi, P. S. (2009). Development, calibration and 

evaluation of two mathematical models for pollutant transport in a small river. 

https://www.gov.uk/government/publications/water-companies-environmental-permits-for-storm-overflows-and-emergency-overflows/water-companies-environmental-permits-for-storm-overflows-and-emergency-overflows
https://www.gov.uk/government/publications/water-companies-environmental-permits-for-storm-overflows-and-emergency-overflows/water-companies-environmental-permits-for-storm-overflows-and-emergency-overflows
https://www.gov.uk/government/publications/water-companies-environmental-permits-for-storm-overflows-and-emergency-overflows/water-companies-environmental-permits-for-storm-overflows-and-emergency-overflows
http://dx.doi.org/10.1016/j.jher.2016.05.001


 

118 

 

Environmental Modelling & Software, 24(10), 1139-1152. 

doi:http://dx.doi.org/10.1016/j.envsoft.2009.03.008 

Arhonditsis, G. B., Perhar, G., Zhang, W., Massos, E., Shi, M., & Das, A. (2008). Addressing 

equifinality and uncertainty in eutrophication models. Water Resources Research, 

44(1). doi:10.1029/2007WR005862 

Arhonditsis, G. B., Stow, C. A., Steinberg, L. J., Kenney, M. A., Lathrop, R. C., McBride, S. 

J., & Reckhow, K. H. (2006). Exploring ecological patterns with structural equation 

modeling and Bayesian analysis. Ecological Modelling, 192(3-4), 385-409. 

doi:10.1016/j.ecolmodel.2005.07.028 

Arnbjerg-Nielsen, K., & Harremoës, P. (1996). The importance of inherent uncertainties in 

state-of-the-art urban storm drainage modelling for ungauged small catchments. 

Journal of Hydrology, 179(1-4), 305-319.  

Baek, K. O., & Seo, I. W. (2016). On the methods for determining the transverse dispersion 

coefficient in river mixing. Advances in Water Resources, 90, 1-9. 

doi:http://dx.doi.org/10.1016/j.advwatres.2016.01.009 

Beer, T., & Young, P. C. (1983). Longitudinal Dispersion in Natural Streams. Journal of 

Environmental Engineering, 109(5), 1049-1067. doi:doi:10.1061/(ASCE)0733-

9372(1983)109:5(1049) 

Bellucci, M., Ofiteru, I. D., Graham, D. W., Head, I. M., & Curtis, T. P. (2011). Low-

dissolved-oxygen nitrifying systems exploit ammonia-oxidizing bacteria with 

unusually high yields. Applied and environmental microbiology, 77(21), 7787-7796. 

doi:10.1128/AEM.00330-11 

Bencala, K. E., & Walters, R. A. (1983). Simulation of solute transport in a mountain pool-

and-riffle stream: A transient storage model. Water Resources Research, 19(3), 718-

724. doi:doi:10.1029/WR019i003p00718 

Benedetti, L., Langeveld, J., van Nieuwenhuijzen, A. F., de Jonge, J., de Klein, J., Flameling, 

T., . . . Weijers, S. (2013). Cost-effective solutions for water quality improvement in 

the Dommel River supported by sewer-WWTP-river integrated modelling. Water Sci 

Technol, 68(5), 965-973. doi:10.2166/wst.2013.312 

Benke, K. K., Lowell, K. E., & Hamilton, A. J. (2008). Parameter uncertainty, sensitivity 

analysis and prediction error in a water-balance hydrological model. Mathematical 

and Computer Modelling, 47(11), 1134-1149. 

doi:https://doi.org/10.1016/j.mcm.2007.05.017 

Berndtsson, R., & Niemczynowicz, J. (1988). Spatial and temporal scales in rainfall analysis 

— Some aspects and future perspectives. Journal of Hydrology, 100(1), 293-313. 

doi:https://doi.org/10.1016/0022-1694(88)90189-8 

Beven, K., & Binley, A. (1992). The future of distributed models: Model calibration and 

uncertainty prediction. Hydrological Processes, 6(3), 279-298. 

doi:10.1002/hyp.3360060305 

Beven, K., & Freer, J. (2001). Equifinality, data assimilation, and uncertainty estimation in 

mechanistic modelling of complex environmental systems using the GLUE 

methodology. Journal of Hydrology, 249(1–4), 11-29. 

doi:http://dx.doi.org/10.1016/S0022-1694(01)00421-8 

Blöschl, G., & Sivapalan, M. (1995). Scale issues in hydrological modelling: A review. 

Hydrological Processes, 9(3‐4), 251-290. doi:10.1002/hyp.3360090305 

Blumensaat, F., Seydel, J., Krebs, P., & Vanrolleghem, P. A. (2014). Model structure 

sensitivity of river water quality models for urban drainage impact assessment. Paper 

presented at the Proceedings - 7th International Congress on Environmental 

Modelling and Software: Bold Visions for Environmental Modeling, iEMSs 2014. 

http://dx.doi.org/10.1016/j.envsoft.2009.03.008
http://dx.doi.org/10.1016/j.advwatres.2016.01.009
https://doi.org/10.1016/j.mcm.2007.05.017
https://doi.org/10.1016/0022-1694(88)90189-8
http://dx.doi.org/10.1016/S0022-1694(01)00421-8


 

119 

 

Boano, F., Packman, A. I., Cortis, A., Revelli, R., & Ridolfi, L. (2007). A continuous time 

random walk approach to the stream transport of solutes. Water Resources Research, 

43(10). doi:10.1029/2007wr006062 

Board, D. R. W. (2019). Waterkwaliteitsportaal.nl.   Retrieved from 

https://www.waterkwaliteitsportaal.nl/Beheer/Data/Bulkdata 

Bottacin-Busolin, A., & Marion, A. (2010). Combined role of advective pumping and 

mechanical dispersion on time scales of bed form–induced hyporheic exchange. 

Water Resources Research, 46(8). doi:doi:10.1029/2009WR008892 

Boxall, J. B., & Guymer, I. (2001). Estimating transverse mixing coefficients. Water 

Management, 148(4), 263-275. doi:10.1680/wama.148.4.263.40575 

Boxall, J. B., & Guymer, I. (2003). Analysis and prediction of transverse mixing coefficients 

in natural channels. Journal of Hydraulic Engineering, 129(2), 129-139. 

doi:10.1061/(ASCE)0733-9429(2003)129:2(129) 

Brauer, C. C., Torfs, P. J. J. F., Teuling, A. J., & Uijlenhoet, R. (2014). The Wageningen 

Lowland Runoff Simulator (WALRUS): application to the Hupsel Brook catchment 

and the Cabauw polder. Hydrol. Earth Syst. Sci., 18(10), 4007-4028. 

doi:10.5194/hess-18-4007-2014 

Briggs, M. A., Gooseff, M. N., Arp, C. D., & Baker, M. A. (2009). A method for estimating 

surface transient storage parameters for streams with concurrent hyporheic storage. 

Water Resources Research, 45(4). doi:doi:10.1029/2008WR006959 

Brouwer, L. (2012). Obtaining a clear view: sediment dynamics of river de Dommel and the 

possible consequences of suspended solids on the underwater light climate. [S.l.: s.n.]. 

Brown, L. C. B., T. O. (1987). The enhanced stream water quality models QUAL2E and 

QUAL2E-UNCAS : documentation and user model Retrieved from Athens, Georgia:  

Brown, L. E., Mitchell, G., Holden, J., Folkard, A., Wright, N., Beharry-Borg, N., . . . 

Woulds, C. (2010). Priority water research questions as determined by UK 

practitioners and policy makers. Science of The Total Environment, 409(2), 256-266. 

doi:https://doi.org/10.1016/j.scitotenv.2010.09.040 

Centre, W. R. (2012). Integrated Catchment Modelling (ICM) using SIMPOL ICM.   

Retrieved from http://www.wrcplc.co.uk/water-quality-modelling 

Chapman, D. (1996). Water quality assessment, a guide to the use of biota, sediments and 

water in environmental monitoring (D. Chapman Ed. 2nd ed.): London : E. & F.N. 

Spon. 

Chapra, S. C. (1997). Surface water-quality modeling. New York ; London: McGraw-Hill. 

Chen, C. W. (1970). Concepts and utilities of ecologic model. J. Sanit. Eng. Div. ASCE, 

96(SA5), 1085-1097.  

Chen, G., Sun, Y., Liu, J., Lu, S., Feng, L., & Chen, X. (2018). The effects of aquifer 

heterogeneity on the 3D numerical simulation of soil and groundwater contamination 

at a chlor-alkali site in China. Environmental Earth Sciences, 77(24). 

doi:10.1007/s12665-018-7979-0 

Chen, S., Ling, J., & Blancheton, J.-P. (2006). Nitrification kinetics of biofilm as affected by 

water quality factors. Aquacultural Engineering, 34(3), 179-197. 

doi:https://doi.org/10.1016/j.aquaeng.2005.09.004 

Choi, H. G., & Han, K. Y. P. (2014). Development and applicability assessment of 1-D water 

quality model in nakdong river. KSCE Journal of Civil Engineering, 18(7), 2234-

2243. doi:10.1007/s12205-014-0457-7 

Chow, V. T. (1959). Open-channel hydraulics. McGraw-Hill civil engineering series.  

https://www.waterkwaliteitsportaal.nl/Beheer/Data/Bulkdata
https://doi.org/10.1016/j.scitotenv.2010.09.040
http://www.wrcplc.co.uk/water-quality-modelling
https://doi.org/10.1016/j.aquaeng.2005.09.004


 

120 

 

Cimatoribus, A. A., Lemmin, U., & Barry, D. A. (2019). Tracking Lagrangian transport in 

Lake Geneva: A 3D numerical modeling investigation. Limnology and 

Oceanography, 64(3), 1252-1269. doi:10.1002/lno.11111 

Commission, E. (2000). Directive 2000/60/EC of the European Parliament and of the council 

of 23rd October 2000 establishing a framework for community action in the field of 

water policy. Official Journal of the European Communities, 327/1, 1-72.  

Cox, B. A. (2003a). A review of currently available in-stream water-quality models and their 

applicability for simulating dissolved oxygen in lowland rivers. Science of The Total 

Environment, 314–316(0), 335-377. doi:http://dx.doi.org/10.1016/S0048-

9697(03)00063-9 

Cox, B. A. (2003b). A review of dissolved oxygen modelling techniques for lowland rivers. 

Science of The Total Environment, 314-316, 303-334. 

doi:https://doi.org/10.1016/S0048-9697(03)00062-7 

Crabtree, B., Kelly, S., Green, H., Squibbs, G., & Mitchell, G. (2009) Water framework 

directive catchment planning: A case study apportioning loads and assessing 

environmental benefits of programme of measures. Vol. 59. Water Science and 

Technology (pp. 407-416). 

Cristiano, E., ten Veldhius, M.-c., & van de Giesen, N. (2016). Spatial and temporal 

variability of rainfall and their effects on hydrological response in urban areas -– a 

review. 

Deltares. (2014a). Deltares: D-Water Quality Processes Technical Reference Manual. 

Retrieved from Delft, Netherlands:  

Deltares. (2014b). Water quality and aquatic ecology modelling suite, D-Water Quality, 

Technical Reference Manual. Retrieved from Delft, Netherlands:  

Deltares. (2018). D-Water Quality Processes Library Description. Retrieved from Delft, 

Netherlands:  

Dempsey, P., Eadon, A., & Morris, G. (1997). SIMPOL: A simplified urban pollution 

modelling tool. Proceedings of the 1996 7th IAHR/IAWQ International Conference on 

Urban Storm Drainage, 36(8-9), 83-88. doi:10.1016/S0273-1223(97)00615-X 

Deng, Z. Q., Bengtsson, L., Singh, V. P., & Adrian, D. D. (2002). Longitudinal dispersion 

coefficient in single-channel streams. Journal of Hydraulic Engineering, 128(10), 

901-916. doi:10.1061/(ASCE)0733-9429(2002)128:10(901) 

Deng, Z. Q., Singh, V. P., & Bengtsson, L. (2001). Longitudinal dispersion coefficient in 

straight rivers. Journal of Hydraulic Engineering, 127(11), 919-927. 

doi:10.1061/(ASCE)0733-9429(2001)127:11(919) 

DHI. (2017). A modelling system for Rivers and Channels User Guide Retrieved from 

Hørsholm, Denmark:  

DHI Water and Environment, M. b. D. (2009). MIKE 11: A modelling system for Rivers and 

Channels User Guide. Retrieved from Hørsholm, Denmark:  

Disley, T., Gharabaghi, B., Mahboubi, A. A., & McBean, E. A. (2015). Predictive equation 

for longitudinal dispersion coefficient. Hydrological Processes, 29(2), 161-172. 

doi:10.1002/hyp.10139 

Dobbins, W. E. (1964). BOD and oxygen relationships in streams. J. Sanit. Eng. Div., 90(3), 

53-78.  

Dotto, C. B. S., Mannina, G., Kleidorfer, M., Vezzaro, L., Henrichs, M., McCarthy, D. T., . . . 

Deletic, A. (2012). Comparison of different uncertainty techniques in urban 

stormwater quantity and quality modelling. Water Research, 46(8), 2545-2558. 

doi:http://dx.doi.org/10.1016/j.watres.2012.02.009 

http://dx.doi.org/10.1016/S0048-9697(03)00063-9
http://dx.doi.org/10.1016/S0048-9697(03)00063-9
https://doi.org/10.1016/S0048-9697(03)00062-7
http://dx.doi.org/10.1016/j.watres.2012.02.009


 

121 

 

EDS. (1995). DUFLOW - A Micro-Computer Package for the Simulation of One-dimensional 

Unsteady Flow and Water Quality in Open Channel Systems - Manual, Version 2.0. 

Retrieved from Leidschendam, The Netherlands:  

El Kadi Abderrezzak, K., Ata, R., & Zaoui, F. (2015). One-dimensional numerical modelling 

of solute transport in streams: The role of longitudinal dispersion coefficient. Journal 

of Hydrology, 527, 978-989. doi:10.1016/j.jhydrol.2015.05.061 

Elder, J. W. (1959). The dispersion of marked fluid in turbulent shear flow. Journal of Fluid 

Mechanics, 5(04), 544-560. doi:doi:10.1017/S0022112059000374 

Etemad-Shahidi, A., & Taghipour, M. (2012). Predicting Longitudinal Dispersion Coefficient 

in Natural Streams Using M5′ Model Tree. Journal of Hydraulic Engineering, 138(6), 

542-554. doi:10.1061/(ASCE)HY.1943-7900.0000550 

Evers, N., & Schipper, M. (2015). Resultaten analyses Kallisto-meetlocaties. Retrieved from 

Eindhoven, Netherlands:  

Fernald, A. G., Wigington, P. J., & Landers, D. H. (2001). Transient storage and hyporheic 

flow along the Willamette River, Oregon: Field measurements and model estimates. 

Water Resources Research, 37(6), 1681-1694. doi:doi:10.1029/2000WR900338 

Fick, A. (1855). Ueber Diffusion. Annalen der Physik, 170(1), 59-86. 

doi:10.1002/andp.18551700105 

Fischer, H. B. (1967). The mechanics of dispersion in natural streams. Journal of Hydraulic 

Engineering ASCE(93), 187-216.  

Fischer, H. B. (1969). The effect of bends on dispersion in streams. Water Resources 

Research, 5(2), 496-506. doi:10.1029/WR005i002p00496 

Fischer, H. B. (1979). Mixing in Inland and Coastal Waters: Academic Press. 

Freni, G., & Mannina, G. (2010). Bayesian approach for uncertainty quantification in water 

quality modelling: The influence of prior distribution. Journal of Hydrology, 392(1–

2), 31-39. doi:http://dx.doi.org/10.1016/j.jhydrol.2010.07.043 

Freni, G., Mannina, G., & Viviani, G. (2011). Assessment of the integrated urban water 

quality model complexity through identifiability analysis. Water Research, 45(1), 37-

50. doi:http://dx.doi.org/10.1016/j.watres.2010.08.004 

Fu, B., S. Merritt, W., Croke, B., Weber, T., & Jakeman, A. J. (2018). A review of catchment-

scale water quality and erosion models and a synthesis of future prospects (Vol. 114). 

Ge, Y., & Boufadel, M. (2006). Solute transport in multiple-reach experiments: Evaluation of 

parameters and reliability of prediction (Vol. 323). 

Gold, A. C., Thompson, S. P., & Piehler, M. F. (2019). Nitrogen cycling processes within 

stormwater control measures: A review and call for research. Water Research, 149, 

578-587. doi:https://doi.org/10.1016/j.watres.2018.10.036 

González-Pinzõn, R., Haggerty, R., & Dentz, M. (2013). Scaling and predicting solute 

transport processes in streams. Water Resources Research, 49(7), 4071-4088.  

Gonzalez-Pinzon, R. A. (2008). Determination of the Dispersive Fraction Behaviour in 

Characteristics Mountain Rivers. (Magiser en Ingenieria - Recursos Hidricos), 

Universidad Nacional de Colombia, Bogota, Colombia.   (295334) 

Guymer, I. (1998). Longitudinal dispersion in sinuous channel with changes in shape. 

Journal of Hydraulic Engineering, 124(1), 33-40.  

Haggerty, R., Wondzell, S. M., & Johnson, M. A. (2002). Power-law residence time 

distribution in the hyporheic zone of a 2nd-order mountain stream. Geophysical 

Research Letters, 29(13), 18-11-18-14. doi:10.1029/2002gl014743 

Han, F., & Zheng, Y. (2018). Joint analysis of input and parametric uncertainties in 

watershed water quality modeling: A formal Bayesian approach. Advances in Water 

Resources, 116, 77-94. doi:https://doi.org/10.1016/j.advwatres.2018.04.006 

http://dx.doi.org/10.1016/j.jhydrol.2010.07.043
http://dx.doi.org/10.1016/j.watres.2010.08.004
https://doi.org/10.1016/j.watres.2018.10.036
https://doi.org/10.1016/j.advwatres.2018.04.006


 

122 

 

Hankin, B., Bielby, S., Pope, L., & Douglass, J. (2016). Catchment-scale sensitivity and 

uncertainty in water quality modelling. Hydrological Processes, 30(22), 4004-4018. 

doi:10.1002/hyp.10976 

Hartnett, M., Berry, A., & Irvine, K. (2007). The use of modelling to implement the Water 

Framework Directive. WIT Transactions on Ecology and the Environment, 104, 11-

20. doi:10.2495/RM070021 

Hauer, F. R., Lamberti, G. A., Lamberti, G. A., & Hauer, F. R. (2007). Methods in Stream 

Ecology. San Diego, UNITED STATES: Elsevier Science & Technology. 

Holguin-Gonzalez, J. E., Everaert, G., Boets, P., Galvis, A., & Goethals, P. L. M. (2013). 

Development and application of an integrated ecological modelling framework to 

analyze the impact of wastewater discharges on the ecological water quality of rivers. 

Environmental Modelling & Software, 48, 27-36. 

doi:https://doi.org/10.1016/j.envsoft.2013.06.004 

Honti, M., Schuwirth, N., Rieckermann, J., & Stamm, C. (2017). Can integrative catchment 

management mitigate future water quality issues caused by climate change and socio-

economic development? Hydrol. Earth Syst. Sci., 21(3), 1593-1609. doi:10.5194/hess-

21-1593-2017 

Hornberger, G. M., & Spear, R. C. (1981). Approach to the preliminary analysis of 

environmental systems. J. Environ. Manage.; (United States), Medium: X; Size: 

Pages: 7-18.  

Innovyze. (2017). 1D Diffusion for Water Quality Simulations - Infoworks ICM Manual. 

Retrieved from  

Janse, J. H. (2005). Model studies on the eutrophication of shallow lakes and ditches Ph.D. 

Thesis. Wageningen University, Netherlands. Retrieved from 

http://library.wur.nl/wda/dissertations/dis3748.pdf   

Janse, J. H., De Senerpont Domis, L. N., Scheffer, M., Lijklema, L., Van Liere, L., Klinge, 

M., & Mooij, W. M. (2008). Critical phosphorus loading of different types of shallow 

lakes and the consequences for management estimated with the ecosystem model 

PCLake. Limnologica, 38(3), 203-219. 

doi:https://doi.org/10.1016/j.limno.2008.06.001 

Jia, H., Xu, T., Liang, S., Zhao, P., & Xu, C. (2018). Bayesian framework of parameter 

sensitivity, uncertainty, and identifiability analysis in complex water quality models. 

Environmental Modelling & Software, 104, 13-26. 

doi:https://doi.org/10.1016/j.envsoft.2018.03.001 

Jones, V., Proctor, A., Lang, I., McLean, H., Gibbs, H., & Firth, S. (2019). Almond Valley 

Strategic Study. Paper presented at the Urban Drainage Group Autumn conference 

2019, Nottingham, United Kingdom.  

Kannel, P. R., Kanel, S. R., Lee, S., Lee, Y. S., & Gan, T. Y. (2011). A Review of Public 

Domain Water Quality Models for Simulating Dissolved Oxygen in Rivers and 

Streams. Environmental Modeling and Assessment, 16(2), 183-204. 

doi:10.1007/s10666-010-9235-1 

Kashefipour, S. M., & Falconer, R. A. (2002). Longitudinal dispersion coefficients in natural 

channels. Water Research, 36(6), 1596-1608. doi:http://dx.doi.org/10.1016/S0043-

1354(01)00351-7 

Kayode, O. (2018). Assessment of Some Existing Water Quality Models. Nature 

Environment and Pollution Technology, 17, 939-948.  

Kilpatrick, F. A., & Wilson, J. F. (1989). Measurement of time of travel in streams by dye 

tracing Techniques of Water-Resources Investigations of the United States Geological 

Survey Book 3 (pp. 27). 

https://doi.org/10.1016/j.envsoft.2013.06.004
http://library.wur.nl/wda/dissertations/dis3748.pdf
https://doi.org/10.1016/j.limno.2008.06.001
https://doi.org/10.1016/j.envsoft.2018.03.001
http://dx.doi.org/10.1016/S0043-1354(01)00351-7
http://dx.doi.org/10.1016/S0043-1354(01)00351-7


 

123 

 

Koelmans, A. A., Van der Heijde, A., Knijff, L. M., & Aalderink, R. H. (2001). Integrated 

Modelling of Eutrophication and Organic Contaminant Fate & Effects in Aquatic 

Ecosystems. A Review. Water Research, 35(15), 3517-3536. 

doi:https://doi.org/10.1016/S0043-1354(01)00095-1 

Kuipers, H. J. G., Netten, J. J. C., & Hendriks, A. J. (2016). Explaining ecological quality by 

using variable vegetation densities in hydrological modelling. Aquatic Botany, 133, 

38-44. doi:10.1016/j.aquabot.2016.05.008 

Langeveld, J., Nopens, I., Schilperoort, R., Benedetti, L., de Klein, J., Amerlinck, Y., & 

Weijers, S. (2013). On data requirements for calibration of integrated models for 

urban water systems. Water Sci Technol, 68(3), 728-736. doi:10.2166/wst.2013.301 

Langeveld, J., Van Daal, P., Schilperoort, R., Nopens, I., Flameling, T., & Weijers, S. (2017). 

Empirical Sewer Water Quality Model for Generating Influent Data for WWTP 

Modelling. Water, 9(7). doi:10.3390/w9070491 

Langeveld, J. G., Benedetti, L., de Klein, J. J. M., Nopens, I., Amerlinck, Y., van 

Nieuwenhuijzen, A., . . . Weijers, S. (2013). Impact-based integrated real-time control 

for improvement of the Dommel River water quality. Urban Water Journal, 10(5), 

312-329. doi:10.1080/1573062X.2013.820332 

Lanzoni, S., Ferdousi, A., & Tambroni, N. (2018). River banks and channel axis curvature: 

Effects on the longitudinal dispersion in alluvial rivers. Advances in Water Resources, 

113, 55-72. doi:10.1016/j.advwatres.2017.10.033 

Launay, M., Le Coz, J., Camenen, B., Walter, C., Angot, H., Dramais, G., . . . Coquery, M. 

(2015). Calibrating pollutant dispersion in 1-D hydraulic models of river networks. 

Journal of Hydro-environment Research, 9(1), 120-132. 

doi:http://dx.doi.org/10.1016/j.jher.2014.07.005 

Le, T. T. H., Fettig, J., & Meon, G. (2019). Kinetics and simulation of nitrification at various 

pH values of a polluted river in the tropics. Ecohydrology & Hydrobiology, 19(1), 54-

65. doi:https://doi.org/10.1016/j.ecohyd.2018.06.006 

Lees, M. J., Camacho, L. A., & Chapra, S. (2000). On the relationship of transient storage 

and aggregated dead zone models of longitudinal solute transport in streams. Water 

Resources Research, 36(1), 213-224. doi:10.1029/1999WR900265 

Legorburu, I., Ferrer, L., Galparsoro, I., & Larreta, J. (2015). Distribution of river-borne 

particulate Pb in the Basque continental shelf (Bay of Biscay). Environmental Earth 

Sciences, 74(5), 4261-4279. doi:10.1007/s12665-015-4495-3 

Lindenschmidt, K.-E., Fleischbein, K., & Baborowski, M. (2007). Structural uncertainty in a 

river water quality modelling system. Ecological Modelling, 204(3–4), 289-300. 

doi:http://dx.doi.org/10.1016/j.ecolmodel.2007.01.004 

Lindenschmidt, K. E. (2006). Parameter, Data Input and Structural Uncertainty Propagating 

through Coupled Models in a River Water Quality Modelling System. 

Litchman, E. (2007). CHAPTER 16 - Resource Competition and the Ecological Success of 

Phytoplankton. In P. G. Falkowski & A. H. Knoll (Eds.), Evolution of Primary 

Producers in the Sea (pp. 351-375). Burlington: Academic Press. 

Liu, H. (1977). PREDICTING DISPERSION COEFFICIENT OF STREAMS. ASCE J 

Environ Eng Div, 103(1), 59-69.  

Loucks, D. P., Van Beek, E., Stedinger, J. R., Dijkman, J. P. M., & Villars, M. T. (2005). 

Water Resources Systems Planning and Management: An Introduction to Methods, 

Models and Applications: Unesco. 

Magazine, M. K., Pathak, S. K., & Pande, P. K. (1988). Effect of bed and side roughness on 

dispersion in open channels. Journal of Hydraulic Engineering, 114(7), 766-782. 

doi:10.1061/(ASCE)0733-9429(1988)114:7(766) 

https://doi.org/10.1016/S0043-1354(01)00095-1
http://dx.doi.org/10.1016/j.jher.2014.07.005
https://doi.org/10.1016/j.ecohyd.2018.06.006
http://dx.doi.org/10.1016/j.ecolmodel.2007.01.004


 

124 

 

Mannina, G., & Viviani, G. (2010a). A hydrodynamic water quality model for propagation of 

pollutants in rivers. Water Science and Technology, 62(2), 288-299.  

Mannina, G., & Viviani, G. (2010b). Receiving water quality assessment: Comparison 

between simplified and detailed integrated urban modelling approaches. Water 

Science and Technology, 62(10), 2301-2312. doi:10.2166/wst.2010.404 

Mannina, G., & Viviani, G. (2010). An urban drainage stormwater quality model: Model 

development and uncertainty quantification. Journal of Hydrology, 381(3–4), 248-

265. doi:http://dx.doi.org/10.1016/j.jhydrol.2009.11.047 

Marion, A., Zaramella, M., & Bottacin-Busolin, A. (2008). Solute transport in rivers with 

multiple storage zones: The STIR model. Water Resources Research, 44(10). 

doi:10.1029/2008wr007037 

Marsili-Libelli, S., & Giusti, E. (2008). Water quality modelling for small river basins. 

Environmental Modelling & Software, 23(4), 451-463. 

doi:https://doi.org/10.1016/j.envsoft.2007.06.008 

McCann, M. J. (2016). Evidence of alternative states in freshwater lakes: A spatially-explicit 

model of submerged and floating plants. Ecological Modelling, 337, 298-309. 

doi:10.1016/j.ecolmodel.2016.07.006 

McQuivey, R. S., & Keefer, T. N. (1974). Simple method for predicting dispersion in 

streams. Journal of Environmental Engineering Division ASCE, 100(4), 997-1011.  

Moens, M., Vroege, M., & Grendelman, R. (2009). Meetprogramma Stadsdommel door 

Eindhoven, eindrapportage fase 1 [Monitoring program for the River Dommel 

through Eindhoven, final report phase 1] (110502/ZF9/2D3/300031). Retrieved from 

The Netherlands:  

Moghaddam, M. B., Mazaheri, M., & Samani, J. M. (2017). A comprehensive one-

dimensional numerical model for solute transport in rivers. Hydrology and Earth 

System Sciences, 21(1), 99-116. doi:10.5194/hess-21-99-2017 

Mooij, W. M., Trolle, D., Jeppesen, E., Arhonditsis, G., Belolipetsky, P. V., Chitamwebwa, 

D. B. R., . . . Janse, J. H. (2010). Challenges and opportunities for integrating lake 

ecosystem modelling approaches. Aquatic Ecology, 44(3), 633-667. 

doi:10.1007/s10452-010-9339-3 

Moreno-Rodenas, A., Tscheikner-Gratl, F., G. Langeveld, J., & Clemens, F. (2019). 

Uncertainty analysis in a large-scale water quality integrated catchment modelling 

study. 

Moreno-Rodenas, A. M., Cecinati, F., Langeveld, J., & Clemens, F. H. L. R. (2017). Impact 

of spatiotemporal characteristics of rainfall inputs on integrated catchment dissolved 

oxygen simulations. Water (Switzerland), 9(12). doi:10.3390/w9120926 

Moreno-Ródenas, A. M., Langeveld, J., & Clemens, F. (2017). Accounting for correlation in 

uncertainty propagation, a copula approach for water quality modelling. Paper 

presented at the International Conference on Urban Drainage (ICUD), Prague, Czech 

Republic.  

Moriasi, D. N., Arnold, J. G., Liew, M. W. V., Bingner, R. L., Harmel, R. D., & Veith, T. L. 

(2007). MODEL EVALUATION GUIDELINES FOR SYSTEMATIC 

QUANTIFICATION OF ACCURACY IN WATERSHED SIMULATIONS. 

Transactions of the ASABE American Society of Agricultural and Biological 

Engineers, 50(3), 885−900.  

Mouton, A. M., Van Der Most, H., Jeuken, A., Goethals, P. L. M., & De Pauw, N. (2009). 

Evaluation of river basin restoration options by the application of the Water 

Framework Directive Explorer in the Zwalm River basin (Flanders, Belgium). River 

Research and Applications, 25(1), 82-97. doi:10.1002/rra.1106 

http://dx.doi.org/10.1016/j.jhydrol.2009.11.047
https://doi.org/10.1016/j.envsoft.2007.06.008


 

125 

 

Newton, B. J., & Jarell, W. M. (1999). procedure to estimate the response of aquatic systems. 

Retrieved from  

Niemczynowicz, J. (1988). The rainfall movement — A valuable complement to short-term 

rainfall data. Journal of Hydrology, 104(1), 311-326. 

doi:https://doi.org/10.1016/0022-1694(88)90172-2 

Nijboer, R. C., & Verdonschot, P. F. M. (2004). Variable selection for modelling effects of 

eutrophication on stream and river ecosystems. Ecological Modelling, 177(1–2), 17-

39. doi:http://dx.doi.org/10.1016/j.ecolmodel.2003.12.050 

Noori, R., Deng, Z., Kiaghadi, A., & Kachoosangi, F. T. (2016). How reliable are ANN, 

ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in 

natural rivers? Journal of Hydraulic Engineering, 142(1). 

doi:10.1061/(ASCE)HY.1943-7900.0001062 

Nordin, C. F., & Troutman, B. M. (1980). Longitudinal dispersion in rivers: The persistence 

of skewness in observed data. Water Resources Research, 16(1), 123-128. 

doi:10.1029/WR016i001p00123 

Norris, T., Squibbs, G., Saul, A., & Shucksmith, J. (2014). Evaluating the Use of Sewer 

Network Event Mean Concentrations within Integrated Catchment Models. Paper 

presented at the 13th International Conference on Urban Drainage, Sarawak, 

Malaysia,.  

Noss, C., & Lorke, A. (2016). Roughness, resistance, and dispersion: Relationships in small 

streams. Water Resources Research, 52(4), 2802-2821. doi:10.1002/2015WR017449 

Park, H. D., & Noguera, D. R. (2004). Evaluating the effect of dissolved oxygen on 

ammonia-oxidizing bacterial communities in activated sludge. Water Res, 38(14-15), 

3275-3286. doi:10.1016/j.watres.2004.04.047 

Petelet-Giraud, E., Klaver, G., & Negrel, P. (2009). Natural versus anthropogenic sources in 

the surface- and groundwater dissolved load of the Dommel river (Meuse basin): 

Constraints by boron and strontium isotopes and gadolinium anomaly. Journal of 

Hydrology, 369(3-4), 336-349. doi:10.1016/j.jhydrol.2009.02.029 

Piotrowski, A. P., Rowinski, P. M., & Napiorkowski, J. J. (2010). Uncertainty study of data-

based models of pollutant transport in rivers. Paper presented at the River Flow, 

Braunschweig, Germany.  

Priestley, M., & Barker, C. (2006). Integrated Catchment Modelling For Freshwater 

Fisheries Directive Compliance Paper presented at the Scottish WaPUG Meeting 

Scottland  

Radwan, M., & Willems, P. (2004). Sensitivity and uncertainty analysis for river quality 

modeling (Vol. 6). 

Radwan, M., & Willems, P. (2007). SENSITIVITY AND UNCERTAINTY ANALYSIS FOR 

RIVER WATER QUALITY MODELLING. Paper presented at the Eleventh 

International Water Technology Conference, IWTC11, Sharm El-Sheikh, Egypt.  

Rauch, W., Henze, M., Koncsos, L., Reichert, P., Shanahan, P., SomlyóDy, L., & 

Vanrolleghem, P. (1998). River water quality modelling: I. state of the art. Water 

Science and Technology, 38(11), 237-244. doi:http://dx.doi.org/10.1016/S0273-

1223(98)00660-X 

Raven, J. A., & Maberly, S. C. (2009). Phytoplankton Nutrition and Related Mixotrophy. In 

G. E. Likens (Ed.), Encyclopedia of Inland Waters (pp. 192-196). Oxford: Academic 

Press. 

Records, R. M., Wohl, E., & Arabi, M. (2016). Phosphorus in the river corridor. Earth-

Science Reviews, 158, 65-88. doi:https://doi.org/10.1016/j.earscirev.2016.04.010 

https://doi.org/10.1016/0022-1694(88)90172-2
http://dx.doi.org/10.1016/j.ecolmodel.2003.12.050
http://dx.doi.org/10.1016/S0273-1223(98)00660-X
http://dx.doi.org/10.1016/S0273-1223(98)00660-X
https://doi.org/10.1016/j.earscirev.2016.04.010


 

126 

 

Refsgaard, J. C., van der Sluijs, J. P., Brown, J., & van der Keur, P. (2006). A framework for 

dealing with uncertainty due to model structure error. Advances in Water Resources, 

29(11), 1586-1597. doi:10.1016/j.advwatres.2005.11.013 

Refsgaard, J. C., van der Sluijs, J. P., Højberg, A. L., & Vanrolleghem, P. A. (2007). 

Uncertainty in the environmental modelling process – A framework and guidance. 

Environmental Modelling & Software, 22(11), 1543-1556. 

doi:http://dx.doi.org/10.1016/j.envsoft.2007.02.004 

Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyody, L., & 

Vanrolleghem, P. (2001). River Water Quality Model no. 1 (RWQM1): II. 

Biochemical process equations. Water Sci Technol, 43(5), 11-30.  

Reichert, P., & Omlin, M. (1997). On the usefulness of overparameterized ecological models. 

Ecological Modelling, 95(2), 289-299. doi:https://doi.org/10.1016/S0304-

3800(96)00043-9 

Reichert, P., & Vanrolleghem, P. (2001) Identifiability and uncertainty analysis of the River 

Water Quality Model No. 1 (RWQM1). Vol. 43. Water Science and Technology (pp. 

329-338). 

Research, F. f. W. (2012). Urban Pollution Management Manual 3rd Edition  Retrieved from 

http://www.fwr.org/UPM3  

Research, F. f. W. (2014). Regulation for Water Quality Retrieved from Buckinghamshire, 

United Kingdom:  

Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a 

functional classification of the freshwater phytoplankton. Journal of Plankton 

Research, 24(5), 417-428.  

Rico-Ramirez, M. A., Liguori, S., & Schellart, A. N. A. (2015). Quantifying radar-rainfall 

uncertainties in urban drainage flow modelling. Journal of Hydrology, 528, 17-28. 

doi:https://doi.org/10.1016/j.jhydrol.2015.05.057 

Robert, A., & Robert, A. (2003). River Processes: An Introduction to Fluvial Dynamics: 

Arnold. 

Rode, M., Arhonditsis, G., Balin, D., Kebede, T., Krysanova, V., Van Griensven, A., & Van 

Der Zee, S. E. A. T. M. (2010). New challenges in integrated water quality modelling. 

Hydrological Processes, 24(24), 3447-3461. doi:10.1002/hyp.7766 

Runkel, R. L. (1998). One-dimensional transport with inflow and storage (OTIS): a solute 

transport model for streams and rivers. Denver, Colo. : Denver, CO: U.S. Dept. of the 

Interior, U.S. Geological Survey ; Information Services [distributor]. 

Runkel, R. L., & Bencala, K. E. (1995). Transport of reacting solutes in rivers and streams. In 

V. P. Singh (Ed.), Environmental Hydrology (Vol. 15, pp. 137-164). Netherlands: 

Kluwer Academic  

Rutherford, J. C. (1994). River mixing: Wiley. 

Sahay, R. R., & Dutta, S. (2009). Prediction of longitudinal dispersion coefficients in natural 

rivers using genetic algorithm. Hydrology Research, 40(6), 544-552. 

doi:10.2166/nh.2009.014 

Salvadore, E., Bronders, J., & Batelaan, O. (2015). Hydrological modelling of urbanized 

catchments: A review and future directions. Journal of Hydrology, 529, 62-81. 

doi:10.1016/j.jhydrol.2015.06.028 

Sattar, A. M. A., & Gharabaghi, B. (2015). Gene expression models for prediction of 

longitudinal dispersion coefficient in streams. Journal of Hydrology, 524, 587-596. 

doi:10.1016/j.jhydrol.2015.03.016 

http://dx.doi.org/10.1016/j.envsoft.2007.02.004
https://doi.org/10.1016/S0304-3800(96)00043-9
https://doi.org/10.1016/S0304-3800(96)00043-9
http://www.fwr.org/UPM3
https://doi.org/10.1016/j.jhydrol.2015.05.057


 

127 

 

Schellart, A. N. A., Shepherd, W. J., & Saul, A. J. (2012). Influence of rainfall estimation 

error and spatial variability on sewer flow prediction at a small urban scale. Advances 

in Water Resources, 45, 65-75. doi:https://doi.org/10.1016/j.advwatres.2011.10.012 

Schellart, A. N. A., Tait, S. J., & Ashley, R. M. (2010). Towards quantification of uncertainty 

in predicting water quality failures in integrated catchment model studies. Water 

Research, 44(13), 3893-3904. doi:http://dx.doi.org/10.1016/j.watres.2010.05.001 

Schmalle, G. F., & Rehmann, C. R. (2014). Analytical solution of a model of contaminant 

transport in the advective zone of a river. Journal of Hydraulic Engineering, 140(7). 

doi:10.1061/(ASCE)HY.1943-7900.0000885 

Seo, I., & Baek, K. (2004). Estimation of the Longitudinal Dispersion Coefficient Using the 

Velocity Profile in Natural Streams. Journal of Hydraulic Engineering, 130(3), 227-

236. doi:10.1061/(ASCE)0733-9429(2004)130:3(227) 

Seo, I., Baek, K. O., & Jeon, T. M. (2006). Analysis of transverse mixing in natural streams 

under slug tests. Journal of Hydraulic Research, 44(3), 350-362. 

doi:10.1080/00221686.2006.9521687 

Seo, I., Kim, J. S., & Jung, S. (2016). Numerical Simulation of Two-dimensional Pollutant 

Mixing in Rivers Using RAMS. Procedia Engineering, 154, 544-549. 

doi:10.1016/j.proeng.2016.07.550 

Seo, I. W., & Cheong, T. S. (1998). Predicting longitudinal dispersion coefficient in natural 

streams. Journal of Hydraulic Engineering, 124(1), 25-32.  

Shanahan, P., Borchardt, D., Henze, M., Rauch, W., Reichert, P., Somlyody, L., & 

Vanrolleghem, P. (2001). River Water Quality Model no. 1 (RWQM1): I. Modelling 

approach. Water Sci Technol, 43(5), 1-9.  

Sharma, H., & Ahmad, Z. (2014). Transverse mixing of pollutants in streams: A review. 

Canadian Journal of Civil Engineering, 41(5), 472-482. doi:10.1139/cjce-2013-0561 

Shimoda, Y., & Arhonditsis, G. B. (2016). Phytoplankton functional type modelling: 

Running before we can walk? A critical evaluation of the current state of knowledge. 

Ecological Modelling, 320, 29-43. 

doi:https://doi.org/10.1016/j.ecolmodel.2015.08.029 

Shucksmith, J., Boxall, J., & Guymer, I. (2007). Importance of advective zone in longitudinal 

mixing experiments. Acta Geophysica, 55(1), 95-103. doi:10.2478/s11600-006-0042-

7 

Shucksmith, J. D., Boxall, J. B., & Guymer, I. (2010). Effects of emergent and submerged 

natural vegetation on longitudinal mixing in open channel flow. Water Resources 

Research, 46(4), n/a-n/a. doi:10.1029/2008WR007657 

Sohrabi, T. M., Shirmohammadi, A., & Montas, H. (2002). Uncertainty in Nonpoint Source 

Pollution Models and Associated Risks. Environmental Forensics, 3(2), 179-189. 

doi:https://doi.org/10.1006/enfo.2002.0089 

Sriwastava, A., Tait, S., Schellart, A., Kroll, S., Dorpe Mieke, V., Assel Johan, V., & 

Shucksmith, J. (2018). Quantifying Uncertainty in Simulation of Sewer Overflow 

Volume. Journal of Environmental Engineering, 144(7), 04018050. 

doi:10.1061/(ASCE)EE.1943-7870.0001392 

Stenstrom, M. K., & Poduska, R. A. (1980). The effect of dissolved oxygen concentration on 

nitrification. Water Research, 14(6), 643-649. doi:https://doi.org/10.1016/0043-

1354(80)90122-0 

STOWA. (2013). Meteobase. Online archief van neerslag- en verdampingsgegevens voor het 

waterbeheer. (2013-02). from STOWA http://meteobase.nl/ 

STOWA. (2015). Ecologische sleutelfactoren voor stromende wateren, een methodiek in 

ontwikkeling. Retrieved from Amersfoort, Netherlands: 

https://doi.org/10.1016/j.advwatres.2011.10.012
http://dx.doi.org/10.1016/j.watres.2010.05.001
https://doi.org/10.1016/j.ecolmodel.2015.08.029
https://doi.org/10.1006/enfo.2002.0089
https://doi.org/10.1016/0043-1354(80)90122-0
https://doi.org/10.1016/0043-1354(80)90122-0
http://meteobase.nl/


 

128 

 

http://beekenrivierherstel.stowa.nl/Publicaties/Ecologische_sleutelfactoren_voor_stro

mende_wateren__een_methodiek_in_ontwikkeling.aspx?eId=5677 

 

Streeter, H. W., Phelps, E. B., & Service, U. S. P. H. (1925). A Study of the Pollution and 

Natural Purification of the Ohio River: Factors concerned in the phenomena of 

oxidation and reaeration. III: United States Public Health Service. 

Suarez, V. C., Shucksmith, J., & Schellart, A. (2017). D4.7 Tool to advise on using 

appropriate river pollutant transport model Retrieved from Sheffield 

 https://www.sheffield.ac.uk/polopoly_fs/1.712539!/file/D4.7_QUICS_FINAL.pdf 

Taylor. (1921). Experiments with rotating fluids. Proceedings of the Royal Society of London. 

Series A, Containing Papers of a Mathematical and Physical Character, 100(703), 

114-121. doi:10.1098/rspa.1921.0075 

Taylor, G. (1954). The Dispersion of Matter in Turbulent Flow through a Pipe. Proceedings 

of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 

223(1155), 446-468. doi:10.1098/rspa.1954.0130 

Trinh Anh, D., Bonnet, M. P., Vachaud, G., Van Minh, C., Prieur, N., Vu Duc, L., & Lan 

Anh, L. (2006). Biochemical modeling of the Nhue River (Hanoi, Vietnam): Practical 

identifiability analysis and parameters estimation. Ecological Modelling, 193(3), 182-

204. doi:https://doi.org/10.1016/j.ecolmodel.2005.08.029 

Trolle, D., Elliott, J. A., Mooij, W. M., Janse, J. H., Bolding, K., Hamilton, D. P., & 

Jeppesen, E. (2014). Advancing projections of phytoplankton responses to climate 

change through ensemble modelling. Environmental Modelling and Software, 61, 

371-379. doi:10.1016/j.envsoft.2014.01.032 

Tscheikner-Gratl, F., Bellos, V., Schellart, A., Moreno-Rodenas, A., Muthusamy, M., 

Langeveld, J., . . . Tait, S. (2018). Recent insights on uncertainties present in 

integrated catchment water quality modelling (Vol. 150). 

Van Der Perk, M. (1997). EFFECT OF MODEL STRUCTURE ON THE ACCURACY 

AND UNCERTAINTY OF RESULTS FROM WATER QUALITY MODELS. 

Hydrological Processes, 11(3), 227-239. doi:10.1002/(SICI)1099-

1085(19970315)11:3<227::AID-HYP440>3.0.CO;2-# 

van Griensven, A., & Meixner, T. (2006) Methods to quantify and identify the sources of 

uncertainty for river basin water quality models. Vol. 53. Water Science and 

Technology (pp. 51-59). 

van Mazijk, A., & Veling, E. J. M. (2005). Tracer experiments in the Rhine Basin: evaluation 

of the skewness of observed concentration distributions. Journal of Hydrology, 

307(1–4), 60-78. doi:http://dx.doi.org/10.1016/j.jhydrol.2004.09.022 

van Nes, E. H., Scheffer, M., van den Berg, M. S., & Coops, H. (2003). Charisma: a spatial 

explicit simulation model of submerged macrophytes. Ecological Modelling, 159(2), 

103-116. doi:https://doi.org/10.1016/S0304-3800(02)00275-2 

Vandenberghe, V., Bauwens, W., & Vanrolleghem, P. A. (2007). Evaluation of uncertainty 

propagation into river water quality predictions to guide future monitoring campaigns. 

Environmental Modelling & Software, 22(5), 725-732. 

doi:https://doi.org/10.1016/j.envsoft.2005.12.019 

Vanrolleghem, P., Borchardt, D., Henze, M., Rauch, W., Reichert, P., Shanahan, P., & 

Somlyódy, L. (2001) River Water Quality Model no. 1 (RWQM1): III. Biochemical 

submodel selection. Vol. 43. Water Science and Technology (pp. 31-40). 

http://beekenrivierherstel.stowa.nl/Publicaties/Ecologische_sleutelfactoren_voor_stromende_wateren__een_methodiek_in_ontwikkeling.aspx?eId=5677
http://beekenrivierherstel.stowa.nl/Publicaties/Ecologische_sleutelfactoren_voor_stromende_wateren__een_methodiek_in_ontwikkeling.aspx?eId=5677
https://www.sheffield.ac.uk/polopoly_fs/1.712539!/file/D4.7_QUICS_FINAL.pdf
https://doi.org/10.1016/j.ecolmodel.2005.08.029
http://dx.doi.org/10.1016/j.jhydrol.2004.09.022
https://doi.org/10.1016/S0304-3800(02)00275-2
https://doi.org/10.1016/j.envsoft.2005.12.019


 

129 

 

Velísková, Y., Sokáč, M., & Siman, C. (2019) Assessment of water pollutant sources and 

hydrodynamics of pollution spreading in rivers. Vol. 69. Handbook of Environmental 

Chemistry (pp. 185-212). 

Veraart, A. J., Faassen, E. J., Dakos, V., van Nes, E. H., Lurling, M., & Scheffer, M. (2011). 

Recovery rates reflect distance to a tipping point in a living system. Nature, 

481(7381), 357-359. doi:10.1038/nature10723 

Verghetta, C. L., & Taylor, P. (2019). Southern Water’s Integrated Bathing Water Modelling 

Framework. Paper presented at the CIWEM UDG AUTUMN CONFERENCE 2019, 

Notthingham, United Kingdom  

Wallis, S. G., Bonardi, D., & Silavwe, D. D. (2014). Solute transport routing in a small 

stream. Hydrological Sciences Journal. doi:10.1080/02626667.2013.863425 

Wang, & Huai, W. (2016). Estimating the Longitudinal Dispersion Coefficient in Straight 

Natural Rivers. Journal of Hydraulic Engineering, 142(11), 04016048. 

doi:doi:10.1061/(ASCE)HY.1943-7900.0001196 

Wang, Huai, W., & Wang, W. (2017). Physically sound formula for longitudinal dispersion 

coefficients of natural rivers. Journal of Hydrology, 544(Supplement C), 511-523. 

doi:https://doi.org/10.1016/j.jhydrol.2016.11.058 

Wang, Q., Li, S., Jia, P., Qi, C., & Ding, F. (2013). A Review of Surface Water Quality 

Models. The Scientific World Journal, 2013, 7. doi:10.1155/2013/231768 

Weijers, S. R., de Jonge, J., van Zanten, O., Benedetti, L., Langeveld, J., Menkveld, H. W., & 

van Nieuwenhuijzen, A. F. (2012). KALLISTO: Cost effective and integrated 

optimization of the urban wastewater system Eindhoven. Water Practice and 

Technology, 7(2). doi:10.2166/wpt.2012.036 

Welch, E. B., Horner, R. R., & Patmont, C. R. (1989). Prediction of nuisance periphytic 

biomass: A management approach. Water Research, 23(4), 401-405. 

doi:https://doi.org/10.1016/0043-1354(89)90130-9 

Wheaton, F. W., Hochheimer, J. N., Kaiser, G. E., Krones, M. J., Libey, G. S., & Easter, C. 

C. (1994). Nitrification filter principles. Aquaculture Water Reuse Systems: 

Engineering Design and Management, 101-126.  

White, D. S., & Hendricks, S. P. (2000). 15 - Lotic Macrophytes and Surface–Subsurface 

Exchange Processes. In J. B. Jones & P. J. Mulholland (Eds.), Streams and Ground 

Waters (pp. 363-379). San Diego: Academic Press. 

Willems, P. (2008). Quantification and relative comparison of different types of uncertainties 

in sewer water quality modeling. Water Research, 42(13), 3539-3551. 

doi:http://dx.doi.org/10.1016/j.watres.2008.05.006 

Willems, P. (2009). A time series tool to support the multi-criteria performance evaluation of 

rainfall-runoff models. Environmental Modelling and Software, 24(3), 311-321. 

doi:10.1016/j.envsoft.2008.09.005 

Wynne, B. (1992). Uncertainty and environmental learning: Reconceiving science and policy 

in the preventive paradigm. Global Environmental Change, 2(2), 111-127. 

doi:http://dx.doi.org/10.1016/0959-3780(92)90017-2 

Xu, M., Negenborn, R. R., van Overloop, P. J., & van de Giesen, N. C. (2012). De Saint-

Venant equations-based model assessment in model predictive control of open 

channel flow. Advances in Water Resources, 49, 37-45. 

doi:https://doi.org/10.1016/j.advwatres.2012.07.004 

Yih, S.-M., & Davidson, B. (1975). Identification in nonlinear, distributed parameter water 

quality models. Water Resources Research, 11(5), 693-704. 

doi:10.1029/WR011i005p00693 

https://doi.org/10.1016/j.jhydrol.2016.11.058
https://doi.org/10.1016/0043-1354(89)90130-9
http://dx.doi.org/10.1016/j.watres.2008.05.006
http://dx.doi.org/10.1016/0959-3780(92)90017-2
https://doi.org/10.1016/j.advwatres.2012.07.004


 

130 

 

Zaramella, M., Marion, A., Lewandowski, J., & Nützmann, G. (2016). Assessment of 

transient storage exchange and advection-dispersion mechanisms from concentration 

signatures along breakthrough curves. Journal of Hydrology, 538, 794-801. 

doi:10.1016/j.jhydrol.2016.05.004 

Zaramella, M., Packman, A. I., & Marion, A. (2003). Application of the transient storage 

model to analyze advective hyporheic exchange with deep and shallow sediment beds. 

Water Resources Research, 39(7). doi:doi:10.1029/2002WR001344 

Zeng, Y., & Huai, W. (2014). Estimation of longitudinal dispersion coefficient in rivers. 

Journal of Hydro-environment Research, 8(1), 2-8. 

doi:http://dx.doi.org/10.1016/j.jher.2013.02.005 

Zheng, Y., Han, F., Tian, Y., Wu, B., & Lin, Z. (2014). Chapter 5 - Addressing the 

Uncertainty in Modeling Watershed Nonpoint Source Pollution. In N.-B. C. Sven Erik 

Jørgensen & X. Fu-Liu (Eds.), Developments in Environmental Modelling (Vol. 

Volume 26, pp. 113-159): Elsevier. 

 

  

http://dx.doi.org/10.1016/j.jher.2013.02.005


131 

 

Appendix A: Review of water quality modelling software 

 

WATER 
QUALITY 
MODEL 
 

VARIABLES 
MODELLED  

GOVERNING EQUATIONS  DIME
NSION  

ASSUMPTIONS  UNCERTAINTY ANALYSIS  REVIEW 
FROM  

DEVELOPED BY  

Simulation 
Catchment 
(SIMCAT) 

BOD, COD, 
DO, NH4 

Mass balance including tributary, 
effluent discharges, abstractions, 
and upstream conditions.  
Solute: for conservatives - only 
advection, for non-conservative - 
first order decay (BOD and NO3), 
DO uses decay, temperature and 
reaeration 
  

1D fully instantaneous 
mixing throughout the 
reach 

Monte Carlo simulation 
Summary Statistics 

Kannel et 
al 2011, 
B. A Cox 
(2003) 

Water Research 
Centre (WRc) 

QUAL2EU waste loads 
in-stream 
water quality 
and non-point 
source waste 
loads DO, N, P, 
and algae,  

advective transport is within 
mean flow and dispersive 
transport is proportional to 
concentration gradient, first-
order decay 
water balance for finite 
difference elements, uses a 
implicit backward difference 
numerical scheme 
 

1D Steady state, 
completely mixed along 
cross section 

uncertainty analysis, 
sensitivity analysis, first 
order error analysis, Monte 
Carlo simulation  

Kannel et 
al 2011 

US EPA  

QUASAR  pH, N,P, E 
Coli, algae, 
BOD, DO, 
Conservative 
pollutants 
 

ADZ Model  1D       developed as 
part of the 
Bedford Ouse 
Study  

MIKE-11 flow and 
quality in 
rivers 

St Venant equations (diffusive 
wave and kinematic wave) allows 
to add ADE module  

1D  Assumes the substance 
is completely mixed 
over the cross-section, 
the substance is 
conservative and Fick’s 
diffusion law applies 

Includes data assessment 
tool to evaluate 
uncertainties on boundary 
conditions in the river 
network, and ensemble 
Kalman filter to implement 
Monte Carlo simulations  

DHI 
(2017) 

DHI  
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Flood modeller 
Pro (Former 
ISIS) 

flow and 
quality  

St Venant equations, finite 
difference approximation to 1 
ADE, transformation equations 
 

      B.A. Cox 
(2003) 

  

AQUATOX organic 
chemicals, 
suspended 
and 
sediments, DO 
fluctuations, 
toxicity from 
low oxygen 
and ammonia 
 

Mass balance of nutrients ,Uses 
4th and 5th Runge-Kutta 
integration method, divides river 
into equal segments 

1D Assumes segments are 
uniformly mixed  

Latin hypercube uncertainty 
analysis, nominal range 
sensitivity and time-varying 
process rates analysis  

Sharma, 
D. & 
Kansal, A. 
(2013) 

  

One 
dimensional 
Riverine 
Hydrodynamic 
and Water 
Quality Model 
(EPD-RIV1) 

16 variables 
including 
water 
temperature, 
N, P, DO, 
CBOD, algae, 
Fe, MN, 
Coliform 
bacteria, 
macrophytes, 
varying point 
and non-poin 
source 
pollution, 
cycling of 
nutrients, and 
fate, effect of 
toxic materials  
 

1D advection - dispersion with 
decay and sinks ,2 point, 4th 
order accurate, Holly-Preissman 
scheme. It has hydrodynamic 
and water quality modes  

1D River is homogenous  
 

Sharma, 
D. & 
Kansal, A. 
(2013) 

 

QUAL2Kw pathogens as 
a function of 
temperature, 
light settling 
velocity, temp, 
pH, 

first order decay, mass balance, 
1D Steady state, water quality 
simulated in dynamic mode with 
diel water quality kinetics and 
heat budget, river is collection of 
reaches 

1D steady flow  provides uncertainty 
analysis component 

Sharma, 
D. & 
Kansal, A. 
(2013); 
Kannel et 
al 2011 

Pelletier & 
Chapra  
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conductivity, 
inorganic 
suspended 
solids, DO, 
CBOD, N, 
Ammonia, P, 
biomass, 
algae, 
alkalinity  
 

WASP 7 DO, N, P, C, 
Temp, salinity, 
bacteria, 
soloca, 
sediments, 
heavy metals, 
mercury, 
inorganic 
loads  
 

ADE and kinetic transformation, 
Conservation of mass, fluid 
dynamics, ADE, based in QUAL2K 
algorithm 

1D, 
2D, 3D 
(Wool 
et al. 
2001) 

Assumes complete 
mixing in river, requires 
hydrodynamic 
component for 
advection, user 
specifies dispersion 
coefficient, may have 
significant numerical 
diffusion 

does not provide 
uncertainty analysis 
component 

Sharma, 
D. & 
Kansal, A. 
(2013) 

 

Water Quality 
for River -
Reservoirs 
Systems 
(WQRRS)  

water quality 
conditions in 
rivers and 
reservoirs  

Conservation of heat and mass 
spatially and temporal, 
hydrologic routing, kinematic 
routing, steady flow, or full St 
Venant equations  
 

1D Instantaneous 
dispersion, 1D 
homogenous 
(longitudinal and lateral 
variations neglected)  

  Sharma, 
D. & 
Kansal, A. 
(2013) 

  

Branched 
Lagrangian 
Transport 
Model (BLTM) 

 
1st order decays, 1D advective 
dispersion equation (Lagrangian 
reference frame) divides into 
sub-reaches, uses finite 
difference solution of mass 
transport and reactions 
equations. Five levels: QULTMP, 
SOLAR, INTRP, MRG BBLTM, 
BQUAL2E, CTPLT, CXPLT  
 

1D Uniform hydraulics, but 
when coupled with 
BLTM, limitation is 
reduced, assumes 
solutes are completely 
mixed across cross 
section and dispersive 
transport is 
proportional to 
concentration gradient  

 
Sharma, 
D. & 
Kansal, A. 
(2013) 

 

  



 

134 

 

Compliance 
Assessment 
Tool 
 

E.coli and 
intestinal 
enterococci 
(IE)  
 

Uses database of hydrographs, 
pollutographs and unit impacts 
to assess environmental 
standards and solution designs  

   Verghett
a and 
Taylor 
(2019) 

 

SIMPOL  BOD, un-
ionised 
ammonia 

Uses surface, sewer and CSO 
tanks connected to each other 

0 perfectly mixed tanks  
 

 Dempsey 
et al., 
(1997) 
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Appendix B: Simulated WWTP nutrient input scenarios 
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Appendix C: WALRUS model results and calibration 

 

 

Figure C1. Walrus model results and calibration for Keersop catchment 

 

Figure C2. Walrus model results and calibration for Tongelreep catchment 
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Appendix D: Observed and predicted flow using Sobek 
hydrodynamic model 

 

 


