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Abstract 

Continuous flow chemistry is currently a vibrant area of research, offering 

many advantages over traditional batch chemistry. These include: enhanced heat 

and mass transfer, access to a wider range of reaction conditions, safer use of 

hazardous reagents, telescoping of multi-step reactions and readily accessible 

photochemistry. As such, there has been an increase in the adoption of continuous 

flow processes towards the synthesis of active pharmaceutical ingredients (APIs) in 

recent years. 

Advances in the automation of laboratory equipment has transformed the way 

in which routine experimentation is performed, with the digitisation of research and 

development (R&D) greatly reducing waste in terms of human and material 

resources. Self-optimising systems combine algorithms, automated control and 

process analytics for the feedback optimisation of continuous flow reactions. This 

provides efficient exploration of multi-dimensional experimental space, and 

accelerates the identification of optimum conditions. Therefore, this technology 

directly aligns with the drive towards more sustainable process development in the 

pharmaceutical industry. Yet the uptake of these systems by industrial R&D 

departments remains relatively low, suggesting that the capabilities of the current 

technology are still limited. 

The work in this thesis aims to improve existing self-optimisation 

technologies, to further bridge the gap between academic and industrial research. 

This includes introducing multi-objective optimisation algorithms and applying 

them towards the synthesis of APIs, developing a new multiphasic CSTR cascade 

reactor with photochemical capabilities and including downstream work-up 

operations in the optimisation of multi-step processes.  
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Chapter 1 Introduction 

1.1 Ideal and Non-Ideal Reactor Types 

In chemical engineering, ideal models are applied to reactors to simplify 

predictions of reactor performance. Three common ideal reactor types include: 

batch reactor, plug flow reactor (PFR) and continuous stirred tank reactor (CSTR). 

Each of these can be classified based on their reactant concentration profiles with 

respect to time and space (Figure 1). Batch reactors operate under transient state, 

where the composition of the reaction mixture changes with respect to time. In 

contrast, the PFR and CSTR are both continuous reactors. Hence, after an initial 

transient period, they operate under steady state, where the composition of the 

reaction mixture is constant with respect to time.1   

(a) (b) (c)

C0 C0Ce

Ce
Ct

 

Figure 1. Concentration profiles of three ideal reactor types: (a) batch reactor; (b) 
plug flow reactor (PFR); (c) continuous stirred tank reactor (CSTR). Ct = [reactant] 
at time t, C0 = initial [reactant], Ce = [reactant] in the effluent.   

Both the batch reactor and CSTR are assumed to have perfect mixing, which 

results in a uniform composition throughout the entire reactor. As such, the effluent 

from a CSTR has the same composition as the mixture within the reactor. For a PFR, 

where the reaction mixture flows through a tube, there is no mixing in the axial 

direction giving rise to an infinite number of discrete reaction plugs. The 

composition of the reaction plugs are the same at a given length along the reactor, 

however, their composition varies as a function of distance travelled. As the distance 

travelled increases, the concentration of reactants decreases, resulting in the 

formation of a concentration gradient along the tube.2 

The residence time distribution (RTD) of a flow reactor is defined as the 

distribution of times which molecules spend within the reactor. Determining the 

RTD reveals information regarding mixing and flow patterns within a reactor. 

Therefore, the RTD of real reactors can be compared to their corresponding ideal 
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model to troubleshoot for potential problems, as well as determine the reactor 

performance for reactions with known kinetics.  

The residence time distribution function, E(t), is a probability distribution 

function which describes the amount of time a molecule could spend within the 

reactor. Hence, the area under the curve for a plot of E(t) against time, t, is unity (E 

curve) [Eq (1)].3 The value of E(t)dt is equal to the fraction of molecules that spend 

time t inside the reactor. This is known as the cumulative distribution function, F(t), 

and is obtained by integrating the area under the E curve between the limits t and 0 

[Eq (2)].4   

∫ 𝐸(𝑡) 𝑑𝑡 = 1
∞

0

 (1) 

∫ 𝐸(𝑡) 𝑑𝑡 = 𝐹(𝑡)
𝑡

0

 (2) 

As E(t) is a probability distribution function, the mean residence time, tm, is 

equal to the first moment of the function i.e. the total area under the curve for a plot 

of tE(t) against t [Eq (3)]. Similarly, the variation around the mean, σ2, is given by 

the second moment of the function [Eq (4)].3 It is standard practice to use the values 

of tm and σ2 when comparing reactors.  

𝑡𝑚 =  ∫ 𝑡𝐸(𝑡) 𝑑𝑡
∞

0

 (3) 

𝜎2 =  ∫ (𝑡 −  𝑡𝑚)2𝐸(𝑡) 𝑑𝑡
∞

0

 (4) 

The RTD for an ideal PFR and CSTR can be derived (Figure 2). In the instance 

of an ideal PFR with no axial mixing, all molecules will spend an equal amount of 

time within the reactor (σ2 = 0). The RTD is a spike of infinite height and zero width, 

as defined by the Dirac Delta function [Eq (5)]. For an ideal single CSTR with perfect 

mixing, not all molecules spend an equal amount of time within the reactor (σ2 > 0). 

Instead, there is an exponential decay in E(t) with time [Eq (6)].1 τ is the space time, 

calculated by dividing the reactor volume, V, by the volumetric flow rate, ν (τ = V/ν).  
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𝐸(𝑡)  =  𝛿(𝑡 −  𝜏) (5) 

𝐸(𝑡)  =  
1

𝜏
𝑒−𝑡/𝜏 (6) 

E(t)

t

(b)

E(t)

t

(a)

≈ 

τ 

≈ 

∞ ∞ 

δ(t – τ) e(-t/τ)/τ 

 

Figure 2. RTD profiles for ideal reactors: (a) PFR: spike of infinite height and zero 
width; (b) single CSTR: exponential decay of E(t) with increasing time. 

In reality the RTDs of reactors will deviate from their ideal models, for 

example, some axial dispersion will be observed in a tubular reactor.  This is caused 

by frictional forces between the walls of the reactor and the fluid resulting in a  

non-uniform velocity profile (Figure 3). This is known as Taylor dispersion, and 

results in a bell-shaped RTD in contrast to the spike expected from the PFR model. 

The extent of dispersion is dependent on the channel dimensions, where narrower 

channels reduce the extent of dispersion.5, 6 

νmax 

νmin 

νmin 

νuniform (a)

(b)

 

Figure 3. Flow through a tube: (a) ideal plug flow where there is no axial dispersion; 
(b) Taylor dispersion caused by a non-uniform flow velocity, and resulting in a 
parabolic profile. 

Other discrepancies from the ideal models can occur as a result of reactor 

failures, including bypassing and dead volume (Figure 4). Bypassing is where some 

material passes straight through the reactor, and dead volume refers to a volume in 

the reactor where material becomes stagnant. For a bypassing system, ν of the  
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non-bypassing material is lower than that expected. Hence, the residence time 

observed is greater than τ. For a PFR, this would be shown by a RTD with two spikes: 

one close to the origin for the bypassing material and a second at a time greater than 

τ. For a CSTR, this results in a slower exponential decay of E(t). For a system with a 

dead volume, the V of the reactor is less that that expected. Hence, the residence time 

observed is lower than τ. For a PFR, this would be shown by a RTD with a spike at a 

time less than τ. For a CSTR, this results in a faster exponential decay of E(t).3 

E(t)

t

(b)

E(t)

t

(a)

τ 0

Bypassing

Dead Volume

 

Figure 4. RTD profiles for reactors deviating from ideality: (a) PFR: bypassing – two 
spikes, one observed at t > τ; dead volume – one spike observed at t < τ; (b) CSTR: 
bypassing – slower exponential decay of E(t); dead volume – faster exponential 
decay of E(t). 

The PFR and CSTR models highlight an important difference in terms of 

reactor efficiency. For reactions with an order greater than 0, the rate of reaction 

decreases as the conversion increases, as a result of a decreasing reactant 

concentration. In the PFR, the reactant concentration decreases gradually along the 

length of the reactor; whereas in the CSTR, the reactant concentration drops 

immediately to a lower value as a result of perfect mixing. Thus, the average rate of 

reaction for a PFR is higher than a CSTR, and a higher conversion will be achieved 

for reactors of the same volume. However, a stepwise drop in concentration for a 

mixed flow reactor can be achieved by using a number, n, of equal volume CSTRs in 

series, where the volume of each CSTR = V/n. This stepwise drop in concentration 

indicates that increasing n brings the behaviour of the system closer to that of a PFR, 

evident in both the concentration and RTD profiles (Figure 5).7 
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Figure 5. Convergence in behaviour of a CSTR cascade to PFR with increasing n: (a) 
concentration profile: stepwise decrease in reactant concentration along the length 
of the reactor; (b) RTD: profile becomes sharper with increasing n. E(ϴ) = 
normalised distribution function, ϴ = normalised residence time. 

1.2 Advantages of Flow Chemistry 

1.2.1 Diffusion, Mixing and Mass Transfer 

The extent of mixing within a reactor influences the conversion and selectivity 

of reactions. The flow pattern of fluids can be defined by the Reynolds number (Re), 

and calculated according to [Eq (7)], where ρ = density, ν = velocity, D = diameter 

and μ = viscosity. For example, flow in a tube can be characterised as laminar (Re < 

2000), transitional (2000 < Re < 3000) and turbulent (Re > 3000).8 Turbulent flow 

has chaotic changes in flow velocity which creates effective mixing between the fluid 

layers. In contrast, laminar flow has a constant flow velocity resulting in no 

disruption between the parallel fluid layers. Therefore, mixing in the laminar regime 

is dependent on the rate of diffusion. Laboratory-scale flow reactors generally 

operate under the laminar regime due to a combination of low flow rates and small 

dimensions. Segregated mixing regimes are observed in conventional batch 

reactors, where turbulent regimes occur in close proximity to the stirrer and 

laminar regimes occur towards the walls of the vessel.9 As tubular flow reactors 

inherently have a higher surface area to volume ratio compared to batch reactors, 

the rate of diffusion, and therefore the rate of mixing, is significantly higher.  

𝑅𝑒 =  
𝜌𝜈𝐷

𝜇
 (7) 
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For reactions with consecutive steps, the Damköhler number (Da) can be used 

to describe reaction selectivity. The Damköhler number defines the ratio of the rate 

of reaction to rate of diffusion [Eq (8)], where k = rate constant, C0 = initial 

concentration, n = order of reaction, dt = diameter of tube and D = diffusion 

coefficient. Therefore, if Da < 1, greater than 95% homogeneity is achieved before 

the reaction takes place. However, if Da > 1, the reaction is diffusion limited resulting 

in the formation of concentration gradients.10         

𝐷𝑎 =
𝑘𝐶0

𝑛−1𝑑𝑡
2

4𝐷
 (8) 

Consider a reaction with a competitive consecutive side-reaction  (S1 + S2 → 

P1 and P1 + S2 → P2). When Da > 1, S1 and S2 react before the reaction mixture is 

fully homogeneous. This results in a localised concentration of P1 forming, which 

can react with S2 to form significant amounts of P2 (Figure 6). This is a phenomenon 

known as ‘mixing-disguised selectivity’.11 Flow reactors can be used to eliminate 

these concentration gradients due to their enhanced mixing properties, making 

them well suited for very fast reactions.12   

 

Figure 6. Graphical representation of a reaction with a competitive consecutive 
side-reaction where Da > 1: (a) reactants S1 and S2 prior to mixing; (b) incomplete 
mixing of reactants S1 and S2 before the reaction starts; (c) localised concentration 
of desired product P1; (d) S2 reacts with P1 to form significant amounts of P2. 

Many chemical reactions involve a combination of multiple phases (gas, liquid 

and solid), particularly in industry where high concentrations are utilised to reduce 

the use of solvents. In these systems, efficient mixing is crucial to maximise the 
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interfacial area between the phases and ensure a high rate of mass transfer. Hence, 

flow reactors generally perform better than batch reactors for multiphasic 

reactions. One of the major challenges for performing flow chemistry in 

microreactors is processing solids which can clog the channels. To circumvent this, 

solid reagents can be encapsulated in a column to create a packed-bed reactor. This 

enables heterogeneous catalysed reactions to be conducted in flow, and removes the 

need to separate the catalyst downstream.13 However, the reagents often require 

immobilisation on solid supports to prevent leaching, and the precipitation of solid 

by-products still remains problematic. 

For gas-liquid and liquid-liquid reactions, slug flow is most commonly 

observed in microfluidic reactors (Figure 7). Slug flow is achieved by mixing in a  

tee-piece, which creates a build-up of pressure behind one of the perpendicular 

phases, resulting in droplet formation.14 The transverse interfaces between the 

slugs provide a high surface area to volume ratio, and therefore an enhanced rate of 

mass transfer. Furthermore, formation of a thin film of gas along the walls of the 

tube creates Taylor recirculation patterns in the liquid phase. This increases the rate 

of mass transfer by minimising the concentration gradients within the slugs.15    

Taylor recirculation

Organic 
phase

Aqueous/
gas phase

Tubular 
reactor

 

Figure 7. Slug flow commonly observed in a microreactor under liquid-liquid or  
gas-liquid biphasic conditions.    

1.2.2 Enhanced Heat Transfer 

Flow reactors have superior heat transfer compared to batch reactors due to 

a higher surface area to volume ratio. This provides rapid dissipation of heat 

generated during exothermic reactions, enabling: better temperature control, safer 

scale-up and a reduced use of energy intensive cryogenic conditions.16 Furthermore, 
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reaction selectivity is increased by preventing side-reactions or decomposition of 

thermally unstable products from occurring. Given this, flow reactors have been 

utilised for aromatic nitration reactions owing to a strong exotherm and tendency 

for poor regioselectivity.17 For example, the nitration of 2-isopropoxybenzaldehyde 

1.1 with fuming HNO3 to form 1.2 was investigated (Scheme 1). On kilogram scale 

in batch, the heat evolved from the reaction resulted in a poor regioselectivity 

(1.2:1.3, 40:60) and isolated yield (30%). Optimisation of this procedure in a 

microreactor gave an improved regioselectivity (1.2:1.3, 87:13) and yield (65%), as 

the enhanced heat transfer prevented the formation of a significant temperature 

gradient within the reactor.18    

 

Scheme 1. Nitration of 2-isopropoxybenzaldehyde 1.1 to form desired regioisomer 
1.2 and undesired by-product 1.3. The flow process compared favourably to batch, 
with a higher regioselectivity and isolated yield, due to rapid dissipation of the 
exotherm. 

1.2.3 Greater Control of Reaction Conditions 

The residence time defines the length of time a molecule spends within a 

reactor. For flow reactors, the residence time can be precisely controlled by 

adjusting the length of the reactor and the flow rates. This, coupled with better 

control over mixing and temperature, enables chemical reactions that cannot be 

achieved in batch.19, 20 These properties have contributed towards the drive in ideal 

synthesis by offering protecting-group-free synthesis. For example, it was shown 

that organolithium transformations could be achieved on ketone bearing aromatics 

using a microreactor, mitigating the need for wasteful protection and deprotection 

steps (Scheme 2).21 Initially, in situ generated o-pentanoyl-substituted 

phenyllithium 1.5 was trapped using methanol as an electrophile. At a 3 s residence 

time, only a 30% yield of 1.6 was achieved due to undesired dimerisation of 1.5 to 
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give 1.7 in 70% yield. A reduction in residence time to 0.003 s resolved the reactions 

and afforded 1.6 in a 90% yield. Hence, the high-resolution reaction time control 

offered by flow reactors enables transformations that better align with sustainable 

chemistry.  

 

Scheme 2. Lithiation of aryl iodide 1.4 with MesLi yielding o-pentanoyl-substituted 
phenyllithium 1.5, followed by quenching with methanol to produce protonated 
product 1.6. Dimerisation of 1.5 forms undesired by-product 1.7. 

1.2.4 High T/p Reactors and Safer Use of Hazardous Reagents 

Increasing the temperature of a reaction increases the rate of reaction, as 

defined by the Arrhenius equation. Therefore, in cases where selectivity is not 

reduced at higher temperatures, the simplest and cheapest way to increase 

productivity is to increase the reaction temperature.22 However, batch reactions are 

often limited to the boiling point of the solvent, as high-pressure batch reactors in 

manufacturing are large and expensive. In contrast, the pressure and temperature 

of continuous flow reactors can be safely manipulated above atmospheric 

conditions. This often results in a reduction in reaction time and reactor size, 

thereby offering significant benefits in terms of process intensification.23  

A key consideration during process development is the safety of the reagents 

used and/or intermediates generated during a reaction. Under continuous flow 

operation, only small amounts of the chemical species are exposed to the reaction 

conditions at any given time. This mitigates the risks linked with the accumulation 

of hazardous intermediates, and enables hazardous reagents to be used in 
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combination with high-temperature/high-pressure conditions.24 For example, the 

use of a silicon carbide microreactor allowed the development of a rapid  

Wolff-Kishner reduction (Scheme 3a).25 The use of flow conditions removed the 

risks associated with build-up of explosive hydrazine gas in the headspace of the 

reactor. Similarly, explosive hydrazoic acid gas was generated in situ to achieve a 

100% atom economical synthesis of tetrazoles (Scheme 3b).26 Furthermore, the use 

of high T/p conditions reduced the reaction time from 24 h in batch to 10 min in 

flow.27 

 

Scheme 3. Examples of processes benefitting from high T/p conditions and 
improved safety in flow: (a) Wolff-Kishner reduction using hydrazine; (b) synthesis 
of tetrazoles using NaN3 generated in situ.    

1.3 Automation of Continuous Flow Systems 

1.3.1 Analysis and Screening 

The automation of laboratory equipment, such as chromatography 

autosamplers, removes the need for chemists to conduct repetitive and laborious 

tasks, providing them more time to focus on research-based challenges.28 Flow 

chemistry is particularly well-suited for automated analysis, as in-line and on-line 

process analytical technologies (PAT) can be integrated at multiple points along the 

reactor.29 This removes the need for sample preparation, and thus generates large 

amounts of real-time data which is more representative of reactor performance and 

reaction composition. Furthermore, unstable intermediates can be detected which 

helps provide greater mechanistic understanding.30 The advantages and 
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disadvantages of the analytical techniques commonly used in organic chemistry are 

highlighted in Table 1. 

Table 1. Advantages and disadvantages of the different analytical techniques used 
commonly in organic chemistry. IR = infrared; UV-Vis = Ultraviolet-Visible; NMR = 
nuclear magnetic resonance; HPLC = high performance liquid chromatography; GC 
= gas chromatography; MS = mass spectrometry. 

 Analytical Technique 

Properties IR UV-Vis NMR HPLC GC MS 

Structural information ✔ ✖ ✔ ✖ ✖ ✔ 

Quantitative ✔ ✔ ✔ ✔ ✔ ✔ 

Short analysis time ✔ ✔ ✔ ✖ ✖ ✔ 

Short method development  ✔ ✔ ✔ ✖ ✖ ✔ 

Simple calibration (no cross-validation) ✖ ✖ ✔ ✔ ✔ ✖ 

Easy data analysis for complex mixtures ✖ ✖ ✖ ✔ ✔ ✖ 

 

High-throughput experimentation (HTE) is where large numbers of 

experiments are conducted in parallel, enabling rapid screening of substrates and 

conditions for reaction discovery and optimisation. The miniaturisation of HTE is 

desirable to ensure its applicability towards highly functionalised compounds. 

Nanomole-scale HTE utilising biological-assay well plates to evaluate 1536 

reactions in 2.5 hours was achieved.31 However, these plate-based approaches 

suffer from limitations such as the use of non-volatile solvents and ambient 

temperatures to avoid evaporation. The development of a nanomole-scale flow 

system circumvented these limitations, whilst maintaining a high throughput of 

>1500 reactions per 24 hours.32 This was achieved by the use of a liquid handler to 

create 5 µL reaction slugs containing two reactants, catalyst, ligand and base (1 µL 

each). These slugs were introduced to the desired reaction solvent, where diffusion 

created a homogeneous 500 µL reaction slug. Notably, this approach enabled the 

screening of solvents as a discrete variable in flow, without the need to make all 

combinations of reagent stock solutions.33 The analysis time was minimised by 

using two ultra performance liquid chromatography-mass spectrometry (uPLC-MS) 

instruments in parallel, such that when one instrument was performing analysis, the 

other was waiting for the next reaction slug (Figure 8).      
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Figure 8. Nanomole-scale flow system for high throughput screening of discrete 
variables.  

1.3.2 Process Control 

The ability to maintain steady state operation by controlling process variables, 

such as pump flow rates, is crucial for consistent product quality and safety. This can 

be achieved by creating a feedback loop, where changes to the process variables are 

made dependant on the real-time interpretation of responses from integrated PAT. 

An example of this includes the controlled dosing of reagents into a segmented flow 

stream, as developed by Ley et al.34 This was demonstrated on a reduction 

crotylation sequence of ester 1.12 (Scheme 4). The formation and dispersion of 

intermediate aldehyde 1.13 from DIBAL reduction of ester 1.12 was monitored 

using in-line IR. This enabled the flow rate of boronate 1.14 to be controlled, such 

that a 1:1 stoichiometry of 1.13 and 1.14 was accurately maintained over a stream 

of varying concentration. Therefore, this method avoided wasting the expensive 

chiral boronate 1.14, and provided a safeguard against upstream equipment failure.         

Similarly, feedback loops can be used to control work-up unit operations for 

continuous purification processing. In terms of gravity-based separation, a 

‘computer-vision’ approach was adopted where inlet and outlet pump flow rates 

were controlled by monitoring the level of the solvent interface.35 In other work,  

in-line pH monitoring was used to control the addition of NaOH for quenching of a 

Boc deprotection under aqueous HCl conditions.36    
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Scheme 4. Diastereoselective reduction crotylation sequence of ester 1.12 to 
alcohol 1.15. Accurate dosing of the chiral boronate 1.14 in a 1:1 stoichiometry with 
aldehyde intermediate 1.13 was achieved using in-line IR monitoring.   

1.3.3 Optimisation 

1.3.3.1 One-Variable-at-a-Time 

Autosampling of reaction mixtures in flow enables a series of predefined 

experiments to be conducted in an automated fashion. This is useful for screening 

reaction conditions during optimisation studies. One strategy is  

one-variable-at-a-time (OVAT) optimisation, where only one variable is changed per 

experiment. This is represented in Figure 9 for a two-variable optimisation. Initially, 

variable Y is held fixed at yi whilst variable X is varied along the line A to B, 

identifying point C as the best result. Variable X is then held fixed at xi whilst variable 

Y is varied along the line D to E, identifying point ☆ as the optimum for the reaction. 

However, this approach suffers from two major drawbacks: (i) failure to account for 

the effect of interactions between the variables; (ii) exploration of a very limited 

region of experimental space. Therefore, OVAT optimisation risks failing to locate 

the optimum for response surfaces similar to that shown in Figure 9, as the absence 

of information regarding variable interactions prevents efficient exploration of the 

entire experimental space.37 
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Figure 9. An example of a two-variable OVAT optimisation. ☆ = optimum. 

This approach was utilised to optimise a Sonogashira reaction for the 

synthesis of a matrix metalloproteinase inhibitor in flow.38 The use of automated 

flow experiments resulted in a combined optimisation and 100 g scale production 

time of just 50 hours. However, the Sonogashira reaction represents a complex 

catalytic process requiring a palladium catalyst and copper co-catalyst. Hence, there 

is a high risk that the true optimum was not located due to unidentified synergistic 

effects between the continuous variables and catalytic species.  

1.3.3.2 Design of Experiments 

Design of experiments (DoE) is a statistical optimisation approach. A series of 

predefined experiments are conducted, with the aim of identifying the effect of each 

individual (main) factor and the effect of synergistic and antagonistic interactions 

between the factors. This enables polynomial modelling of a response surface for 

the defined experimental space and prediction of the global optimum. 

Full factorial designs (FFD) are used to screen the factors that are assumed to 

have a significant effect on the response, by determining the coefficient for each 

main and interaction term. Each factor is assigned a discrete level and experiments 

are conducted at all possible combinations of these levels across all factors. In 

addition, experiments are conducted in replicate at the centre-point conditions to 

give a measure of repeatability. The number of experiments required, N, is given by 

[Eq (9)], where n = number of levels, k = number of factors and m = number of 
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centre-point replicates. Hence, for a 2-level 3-factor FFD with upper and lower levels 

+1 and -1 respectively, the experimental space is defined by a cube with experiments 

at each vertex (Figure 10).39   

𝑁 = 𝑛𝑘 + 𝑚 (9) 

 

Figure 10. A 2-level 3-factor FFD with 3 centre-point replicates. The design requires 
11 experiments to determine the coefficients, b, of the main and interaction terms. 
2k factorial experiments = red circles, centre-point experiments = orange circles. 

When processes have long reaction times and/or involve high value reagents 

it is important to keep the number of experiments required to a minimum. The 

coefficients of the main and interaction terms can be determined by conducting an 

initial FFD screening. When a factor is found to have no significant effect on the 

response, it can be excluded from any subsequent optimisation studies, thus 

reducing the overall number of experiments required. However, the number of 

experiments for the initial FFD increases exponentially with an increase in the 

number of factors. Hence, when the number of factors is high, the use of an FFD can 

be impractical.  

In these cases, fractional factorial designs can be used, which confound main 

effects and/or interaction terms to reduce the number of experiments. This 

approach utilises the sparsity-of-effects principle, which states that a system is 

dominated by main effects and low-order interactions. Therefore, confounding  
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high-order interactions with main effects will have a negligible effect on model 

accuracy. An important property of the design is the resolution, which defines the 

ability to separate main effects and low-order interactions. The extent of 

confounding for resolution III, IV and V designs are summarised in Table 2. The 

number of experiments required, and expression notation, for a fractional factorial 

design is given by [Eq (10)], where n = number of levels, k = number of factors and 

p = number of generators (design settings).40, 41   

𝑁 = 𝑛𝑘−𝑝 (10) 

Table 2. Extent of confounding for different resolution fractional factorial designs. 

Resolution Extent of Confounding 

III Main effects confounded with two-factor interactions. 

IV 
Main effects  not confounded with two-factor interactions;  

two-factor interactions confounded with two-factor interactions. 

V 

Main effects not confounded with ≤ three-factor interactions; 
two-factor interaction not confounded with two-factor 
interactions; three-factor interactions confounded with  

two-factor interactions.  

 

For example, a 24-1 fractional factorial design was used to optimise the reaction 

variables for the synthesis of active pharmaceutical ingredient (API) AZD0530 1.18 

(Scheme 5).42 The variables studied were: equivalents of base (A), equivalents of 

water (B), temperature (C) and equivalents of alcohol 1.17 (D). The design was 

constructed using the generator I = ABCD, which implies D = ABC. A 3-factor FFD was 

produced for A, B and C, which was used to construct the levels of D based on D = 

ABC. This resulted in a resolution IV design, as indicated by the number of letters in 

the generator. Hence, each main effect was confounded with a three-factor 

interaction (A = BCD, B = ACD, C = ABD, D = ABC) and each two-factor interaction was 

confounded with another two-factor interaction (AB = CD, AC = BD, AD = BC). This 

enabled the main effects of the four factors to be studied in half the number of 

experiments compared to a 24 FFD. 
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Exp A B C D = ABC 
1 +1 +1 +1 +1 
2 -1 +1 +1 -1 
3 +1 -1 +1 -1 
4 -1 -1 +1 +1 
5 +1 +1 -1 -1 
6 -1 +1 -1 +1 
7 +1 -1 -1 +1 
8 -1 -1 -1 -1 
9 0 0 0 0 

10 0 0 0 0 

Scheme 5. A 2-level fractional factorial design (resolution IV) with 2 centre-points 
used to optimise the reaction variables for the synthesis of AZD0530 1.18. 

In some cases, the response surface may have a significant degree of curvature. 

Therefore, accurate model predictions cannot be made using a factorial design, 

which assumes a linear relationship between each factor, X, and the response, Y. The 

inclusion of centre-point replicates provides a useful indication for the presence of 

curvature, as a bad fit would be observed if the relationship was non-linear. If 

curvature is detected, an optimisation design is required to characterise the square 

terms. 2-level full factorial designs can readily be extended to central composite 

optimisation designs by the inclusion of axial points, which are defined by [(±α, 0, 

0), (0, ±α, 0), (0, 0, ±α)] for a 3-factor optimisation. The face centred composite (CCF, 

α = 1, Figure 11) design is best suited for the optimisation of chemical reactions, as 

the parameter limits are usually dictated by the experimental limits of the 

equipment, making α > 1 infeasible. The number of experiments required for a CCF 

design is given by [Eq (11)].39 An alternative to central composite optimisation 

designs is the Box-Behnken, which is discussed in more detail in Chapter 3.  
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𝑁 = 2𝑘 + 2𝑘 + 𝑚 (11) 

 

Figure 11. A 3-factor CCF design with 3 centre-points. The design requires 17 
experiments to determine the coefficients, b, of the main, interaction and square 
terms. 2k factorial experiments = red circles, centre-point experiments = orange 

circles, axial experiments = blue circles, optimum = ☆. 

1.3.3.3 Self-Optimisation 

Self-optimisation is an algorithmic optimisation approach using a computer 

controlled reactor platform. The combination of a flow reactor, system controlled 

in/on-line analytical tools and an optimisation algorithm creates a feedback loop, 

where the reaction conditions (pump flow rates and temperature) are changed 

within predefined parameter limits based on the results of previous experiments 

(Figure 12).43 This process is carried out iteratively until convergence on the 

optimum is achieved, or an alternative termination criterion is satisfied. One 

advantage of this approach is that black-box feedback optimisation algorithms do 

not require a priori information, as experimental data is modelled to determine 

subsequent experiments. In this way, intelligent analysis of the experimental space 

reduces the number of experiments required, providing a faster, cheaper and 

‘greener’ method for reaction optimisation. Furthermore, autonomous real-time 

interpretation of data closes the experimental loop, enabling minimal human 

intervention during the entire optimisation process.44, 45      
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Figure 12. Schematic of a self-optimising continuous flow reactor. 

All reported uses of self-optimisation between the 1st of January 2007 and the 

28th of February 2019 are summarised in Table 3. Inspection of Table 3 reveals that 

most reported cases have optimised reactions using relatively simple substrates, 

with only three reports describing the use of self-optimisation towards API or 

natural product synthesis.46-48 This indicates that an increase in experimental 

efficiency is required to enable the optimisation of reactions involving high-value 

reagents. Rather, research has predominantly focused on the development and 

application of PAT, with examples covering all of the major analytical tools used in 

organic synthetic chemistry (HPLC, GC, IR, NMR, MS). Furthermore, studies have 

thus far been limited to the optimisation of continuous variables (residence time, 

temperature, equivalents), with only one reported example including discrete 

variables (solvent, catalyst, ligand).49 This has been partly due to the complexity of 

the set-up required for a droplet-flow approach. Also, investigations have only been 

concerned with single-step reaction optimisation, overlooking the optimisation of 

work-up unit operations and complex multi-step processes.   

The majority of the algorithms used can be categorised as either local search 

or global search. The choice of algorithm is an integral part of a self-optimising 

system, as it controls the experimental efficiency and the nature of the results 

obtained.50 Therefore, algorithm development will play a key role in solving many 

of the limitations highlighted above.  
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Table 3. A summary of all reported applications of self-optimisation between 
01/01/2007 and 28/02/2019. LC = liquid chromatography; DLS = dynamic light 
scattering; GPC = gel permeation chromatography; SNOBFIT = stable noisy 
optimisation by branch and fit; NMSIM = Nelder-Mead simplex; SMSIM = super 
modified simplex; MOAL = multi-objective active learner; TSEMO = Thompson 
sampling efficient multi-objective; MINLP = mixed integer nonlinear programming.  

Year Reaction(s) Analysis Algorithm Ref 

2007 Synthesis of CdSe nanoparticles 
Fluorescence 

spectroscopy 
SNOBFIT 51 

2010 Synthesis of CdSe nanoparticles 
Fluorescence 

spectroscopy 
NMSIM 52 

2010 
Heck-Matsuda cross-coupling of  

4-chlorobenzotrifluoride and  
2,3-dihydrofuran 

HPLC NMSIM 53 

2010 

Knoevenagel condensation between 
p-anisaldehyde and malononitrile; 

oxidation of benzyl alcohol to 
benzaldehyde 

HPLC 

NMSIM; 
gradient-

based; 
SNOBFIT 

54 

2011 

Dehydration of ethanol over  
γ-alumina in scCO2; methylation of 

1-pentanol with DMC over a  
γ-alumina catalyst in scCO2 

GC SMSIM 55 

2011 
Methylation of 1-pentanol with DMC 
and MeOH over a γ-alumina catalyst 

in scCO2 
GC SMSIM 56 

2012 
Paal-Knorr reaction between  

2,5-hexandione and ethanolamine 
IR 

Gradient-
based 

57 

2012 
Methylation of 1-pentanol with DMC 

over a γ-alumina catalyst in scCO2 
GC SMSIM 58 

2013 
Solvent-free methylation of  
1-pentanol with DMC over a  

γ-alumina catalyst 
IR 

SMSIM; 
SNOBFIT 

59 

2015 
Catalytic reaction of aniline with 

DMC in toluene and scCO2 
GC SMSIM 60 

2015 
Imine formation by reaction of 
benzaldehyde and benzylamine 

NMR NMSIM 61 

2015 
Mono-alkylation of  

trans-1,2-diaminocyclohexane with 
4-methoxybenzyl chloride 

LC/MS 
Feedback 

DoE 
62 

2015 Emulsion copolymerisation DLS; GC MOAL 63 

2016 
Methylation of methyl nicotinate 

with aqueous methylamine 
MS SNOBFIT 64 

2016 
Final step in the synthesis of EGFR 

kinase inhibitor AZD9291 
HPLC SNOBFIT 46 
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2016 

Heck-Matsuda cross-coupling of  
cis-2-buten-1,4-diol and  

4-chlorobenzene diazonium 
tetrafluoroborate 

GC/MS NMSIM 65 

2016 
Suzuki-Miyaura cross-coupling (4 

reactions) 
HPLC 

Feedback 
DoE 

49 

2016 

Hydration of 3-cyanopyridine over 
MnO2; Appel reaction of  

1-phenylethanol forming  
(1-bromoethyl)benzene 

MS; IR 
Complex 
Simplex 

66 

2017 Synthesis of o-xylenyl C60 adducts  HPLC SNOBFIT 67 

2018 
Claisen-Schmidt condensation 

between acetone and benzaldehyde 
HPLC SNOBFIT 68 

2018 

SNAr reaction between  
2,4-difluoronitrobenzene and 
morpholine; N-alkylation of  

α-methylbenzylamine with benzyl 
bromide 

HPLC TSEMO 69 

2018 
Steps towards the synthesis of 

carpanone 
HPLC; NMR NMSIM 47 

2018 

Buchwald-Hartwig amination; 
Horner-Wadsworth-Emmons 

olefination; reductive amination; 
Suzuki-Miyaura cross-coupling; 

SNAr; photoredox; ketene generation 
and [2+2] cycloaddition 

HPLC SNOBFIT 70 

2018 

Suzuki-Miyaura cross-coupling of  
3-chloropyridine and  

2-fluoropyridine-3-boronic acid 
pinacol ester 

HPLC 
MINLP 1; 
MINLP 2 

71 

2018 
Steps towards the synthesis of 

lidocaine; steps towards the 
synthesis of bupropion  

IR NMSIM 48 

2018 
Semihydrogenation of  

2-methyl-3-butyn-2-ol to  
2-methyl-3-buten-2-ol  

GC SNOBFIT 72 

2018 

Photoredox iridium-nickel  
dual-catalysed decarboxylative 

arylation cross-coupling of  
Cbz-Pro-OH and various aryl halides 

HPLC 
Feedback 

DoE 
73 

2018 
[2+2] photocyclisation reaction 

between benzophenone and furan 
IR NMSIM 74 

2019 
Thermal RAFT polymerisation of  

n-butyl acrylate 
GPC Not stated 75 
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1.4 Algorithms for the Self-Optimisation of Chemical Reactions 

1.4.1 Local Search 

The basic simplex approach is a local optimisation method first introduced by 

Spendley et al. in 1962.76 The simplex is a convex polyhedron with n + 1 vertices, 

where n is the number of variables and each vertex represents a function evaluation. 

The initial simplex can either be user-defined or random, and moves across the 

predefined experimental space through a series of successive reflections. The vertex 

corresponding to the worst result is reflected through the centroid of the other 

points, and is replaced with a new function evaluation. This process is carried out 

iteratively until an optimum is identified (Figure 13). The disadvantage of this 

approach is that the size of the initial simplex dictates the efficiency with which the 

experimental space is explored.    

 

Figure 13. Graphical representation of a 2-variable basic simplex optimisation: (a) 
initial polyhedron with n + 1 vertices is generated; (b) the worst result 1 is reflected 
through the centroid of the other vertices 2 & 3, and replaced with new function 
evaluation 4; (c) the worst result 2 in the updated simplex is reflected through the 
centroid of the other vertices 3 & 4, and replaced with new function evaluation 5; 
(d) the process is repeated iteratively until convergence on a local optimum 7. 
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The Nelder-Mead simplex (NMSIM) was later reported as a less rigid 

improvement on the basic simplex.77 This approach introduced additional 

geometrical transformations, including: inside contraction, multiple contraction, 

outside contraction, reflection and expansion (Figure 14). This enables the simplex 

to adapt itself to the local landscape, and contract in the neighbourhood of the 

optimum. The coefficients for these transformations are fixed at values that were 

found to be suitable for a wide range of optimisation problems. 

 

Figure 14. Geometric transformations of the Nelder-Mead simplex: inside 
contraction (XIC); multiple contraction (MC); outside contraction (XOC); reflection 
(XR); expansion (XE). 

To further increase the adaptability of the simplex method, Routh et al. 

proposed modifications to allow the coefficients of the geometric transformations 

to change during the optimisation based on the local landscape.78 A graphical 

representation of an expansion in the super modified simplex (SMSIM) approach is 

shown in Figure 15. In contrast to NMSIM, an experiment is conducted at both the 

centroid P and reflected R vertices of the initial simplex WNB. A second order 

polynomial is then fit through points WPR and extrapolated to determine the 

optimum expansion distance to vertex E. Similarly, when an expansion is not 

expected to improve the response, the polynomial model can predict the optimum 

contraction distance. Hence, SMSIM is a faster optimisation method compared to 

NMSIM, as it is better able to elongate along steep gradients in the local landscape. 
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Figure 15. Graphical representation of a SMSIM geometrical transformation for a  
2-variable problem. The worst result W is reflected through the centroid P of the 
best B and next best N vertices, and a function evaluation carried out at reflected 
point R. An additional function evaluation is conducted at P, and a second order 
polynomial at WPR used to predict the optimum expansion coefficient along the line 
Y. The next experiment is conducted at vertex E.  

Gradient-based methods, such as steepest descent (or steepest ascent for 

maximisation problems),41 are another form of local optimisation technique. The 

steepest ascent method is initialised by a 2k FFD design centred on a random point. 

A polynomial model is fit to the local landscape and subsequent experiments 

conducted along the trajectory of steepest ascent. When an experiment gives a 

worse response than the previous experiment, a new 2k FFD is conducted around 

the current best point. The new model is used to identify if the optimum has been 

passed or if a change of direction is required (Figure 16).  

Modifications of the steepest descent algorithm include conjugate gradient79 

and Armijo conjugate gradient.80 The conjugate gradient algorithm utilises a 

weighted sum of the last search direction and the direction calculated from the 

steepest descent method to determine the new trajectory. This prevents large 

changes in search direction, and thus avoids erratic paths across difficult terrain. 

The Armijo conjugate gradient algorithm increases the efficiency of the search by 

varying the step size along the trajectory. This reduces the number of experiments 

required compared to when a fixed step size is used, particularly in cases where the 

initial point is far from the local optimum. 
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Figure 16. Graphical representation of the steepest ascent method. An initial 2k FFD 
is performed, followed by experiments along the trajectory of steepest ascent to the 
optimum.  

1.4.2 Global Search 

Global search algorithms are designed to efficiently locate the global optimum 

of more complex response surfaces. In these cases, local search methods can become 

trapped on local optima and thus yield an overall sub-optimal result. One solution 

to this is to run a local optimiser multiple times at uniformly distributed initial 

points throughout the experimental space. However, this approach requires many 

iterations, and is therefore unsuitable for expensive-to-evaluate problems such as 

the experimental optimisation of chemical reactions.      

Genetic algorithms (GA) are stochastic optimisers which follow the theory of 

evolution in nature. Every iteration of the algorithm is comprised of a fixed-size 

population containing individuals, where an individual is an experiment in the 

context of reaction optimisation. Each experiment in the population is evaluated and 

the experiments which give the best response are selected to form the new 

population (Figure 17). The new population is formed via two different 

mechanisms: (i) reaction variables from different experiments are interchanged 

(crossover); (ii) a single variable of an experiment is randomly changed 

(mutation).81 Combination of a GA with a HTE platform enabled the optimisation of 

a catalyst, cocatalyst and ligand combination for the oxidation of methane.82 

However, this optimisation required 384 experiments, which reflects the large 

population size required for GA.  
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Figure 17. Diagram showing the iterative process of a genetic algorithm (GA). The 
population is evaluated and the best experiments selected to undergo crossover and 
mutation to produce the next population for evaluation.  

SNOBFIT is currently the only single objective global optimisation algorithm 

which has been used in self-optimisation.83 It is a derivative-free optimiser, which 

means it does not require any gradient information regarding the objectives 

response surface. The algorithm builds local polynomial surrogate models in 

subsections of the experimental space. Surrogate models are models of the process 

variables to an objective function built using the current data, which can be 

optimised in silico as a cheaper alternative to conducting experiments.84 SNOBFIT 

uses these surrogate models to exploit areas of high interest (class 1, 2 & 3 

experiments). In addition, experimental space vacant of data is continually explored 

(class 4 & 5 experiments) to ensure the global optimum is identified (Figure 18). The 

five classifications of experiments are highlighted below: 

▪ Class 1: The minimum point predicted from the local polynomial model 

around the current best point. 

▪ Class 2: The minimum points predicted from polynomial models that 

are local to other points. 

▪ Class 3: The minimum points predicted from polynomial models that 

are nonlocal to other points. 

▪ Class 4: Points in currently unexplored regions of experimental space. 

The probability of exploring this space is set by the user. 

▪ Class 5: Random points generated to fill the experimental space. 
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Input 
Variables

Terminate

yes

Add new points to 
current data set

Divide experimental 
space into subsections 

containing one point each

nexp   nmax

Fill experimental space 
with class 5 points

Conduct 
experiments

Fit local 
polynomial 

models

Generate class 
1, 2 & 3 points 
using models

Generate class 4 
points in unexplored 

regions

neval   nreq

Sufficient data to 
fit local models?

no

no

yes

yes

no

 

Figure 18. Flow diagram for a SNOBFIT optimisation. nexp = total number of 
experiments conducted, nmax = maximum number of experiments allowed, neval = 
number of function evaluations in the current call, nreq = number of experiments 
required for one call. 

Bayesian optimisation is a category of derivative-free global optimisation 

methods which use surrogate models to optimise expensive-to-evaluate functions.85 

The surrogate models are often in the form of a Gaussian process (GP), which defines 

a distribution over all possible functions that are consistent with the observed data 

[Eq (12)]. Hence, a GP can be specified by a mean function m [Eq (13)] and a 

covariance function k [Eq (14)], where y is the observation of a function f, x and x’ 

are input vectors and 𝔼𝑓 is the expectation over the function.86 Initially, the 

unknown objective function is treated as a random function overlaid with our prior 

beliefs about the system. The covariance function (or kernel) is a measure of 

similarity between the inputs, and is used to determine the confidence intervals over 

the mean function. The kernel includes a signal variance hyperparameter (algorithm 

setting) which can be tuned to handle noisy optimisations.  

As data is collected, the prior is updated to form the posterior distribution. The 

posterior distribution is used to construct an acquisition function, which utilises the 

trade-off between exploration and exploitation to determine the next evaluation 

point (Figure 19).87 For a maximisation problem, the acquisition function is high 

when the mean function is high (exploitation) and/or the uncertainty is high 

(exploration). Therefore, experiments generally focus on reducing uncertainty in 

the most lucrative regions. However, the hyperparameter which controls the  
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trade-off between exploration and exploitation can be set to favour one of these 

characteristics. Alternatively, the trade-off can be inherent in some acquisition 

functions, such as Thompson sampling.88     

𝑦 (𝐱) ~ 𝐺𝑃 (𝑚(𝐱), 𝑘(𝐱, 𝐱′)) (12) 

𝑚(𝐱) ≔ 𝔼𝑓[𝑓(𝐱)] (13) 

𝑘(𝐱, 𝐱′) ≔ 𝔼𝑓[(𝑦(𝐱) − 𝑚(𝐱))(𝑦(𝐱′) − 𝑚(𝐱′))] (14) 

1
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1
2

3

1
2

3

4

KEY

True Objective

Posterior Mean

Posterior Mean 
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Acquisition max
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Figure 19. Bayesian optimisation approach for maximisation of a single objective. 
The posterior mean and acquisition function are updated after each new data point, 
N, is obtained: (a) N = 2; (b) N = 3; (c) N = 4. Subsequent experiments are conducted 
at the maximum of the acquisition function, which corresponds to a trade-off 
between exploration and exploitation. 

1.5 Project Aims 

Progress in automated feedback optimisation has provided an efficient tool 

towards achieving the goal of accelerated reaction development. Intelligent 

exploration of multivariate experimental space by state-of-the-art algorithms has 

significantly reduced the time and labour intensity required for reaction 

optimisation. Furthermore, the integration of a variety of different in/on-line PAT 

with flow reactors has expanded the scope of self-optimising systems to a wide 

range of chemistries. However, there are still a very limited number of reports for 

the application of this technology towards complex pharmaceutically relevant 
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processes, suggesting that further developments are required to align with the 

interests of industry. Examples of such developments which are addressed in this 

work are outlined below:     

▪ More efficient algorithms – The algorithms used have largely been 

limited to single objective optimisations. However, multiple process 

metrics must be simultaneously considered to achieve both an 

economically and environmentally viable process. 

▪ Multiphasic chemistry – The majority of lab-scale flow reactions 

involve homogeneous solutions. However, many industrially relevant 

processes involve a combination of phases, and can require relatively 

long residence times which are difficult to achieve in microreactors. 

▪ Multi-step processes – Current examples of self-optimisation have 

been limited to a single reaction step. However, API syntheses 

represent more complex multi-step sequences which include work-up 

unit operations.  

Chapter 2 introduces the concept of machine learning multi-objective 

optimisation algorithms, and their application towards self-optimising continuous 

flow reactors. Two conflicting objectives were simultaneously optimised for an 

exemplar reaction, and the trade-off between them identified in a practical number 

of experiments. In addition, the problem of minimising product impurities is 

included, which has not been addressed in previous self-optimisations.    

Chapter 3 focuses on the optimisation of a pharmaceutically relevant process 

for the synthesis of API Lanabecestat. A combination of DoE and multi-objective 

optimisation was utilised to optimise a Sonogashira cross-coupling reaction, where 

the benefits associated with multi-objective optimisation of discrete steps in  

multi-step route design were realised. In addition, a new methodology for the in 

silico comparison of multi-objective algorithm performance was created to enable 

self-optimising platforms to remain up-to-date with state-of-the-art technology.  

Chapter 4 describes the development of a photochemical miniature CSTR 

cascade reactor for multiphasic reactions. The mixing properties and absorbed 

photon flux density of the reactor were characterised via RTD profiling and 

actinometry respectively, showing increased performance compared to batch 

reactors. A self-optimisation approach, utilising a new optimal response surface 
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mapping algorithm, enabled the improvement of continuous flow conditions for the 

site-selective aerobic oxidation of C(sp3)-H bonds. 

Chapter 5 investigates the use of self-optimising systems for complex  

multi-step reaction and work-up processes. Initially, an optimisation platform for 

in-line liquid-liquid separation of structurally similar impurities was developed, and 

the approach utilised to optimise a tandem reaction-extraction process. This was 

further extended to the simultaneous optimisation of a biphasic two-step process 

with respect to three objectives, significantly reducing the time required for process 

development. 
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Chapter 2 Multi-Objective Self-Optimisation of Continuous Flow 

Reactors 

2.1 Introduction 

The majority of algorithms used for the self-optimisation of continuous flow 

reactors in the last decade were designed to minimise or maximise a single objective 

function. However, when developing a process it is important to consider multiple 

economic and environmental process metrics.58 Commonly employed process 

metrics and their equations are displayed in Table 4. 

The % yield [Eq (15)] is a ubiquitous metric used by chemists during reaction 

optimisation and is widely considered very useful for evaluating reaction efficiency. 

However, by itself the % yield fails to adequately account for productivity and 

downstream processing costs. For example, a high yield could be obtained by using 

a large excess of reagents over a prolonged period of time, thus resulting in a costly 

work-up procedure and low productivity respectively. Rather, the % yield, purity 

[Eq (16)] and space-time yield (STY) all need to be considered for a more complete 

economic analysis, where the STY [Eq (17)] is expressed as the mass of product 

produced per unit volume per unit of time.89 Nevertheless, none of these metrics by 

themselves or in combination are sufficient for driving the development of 

sustainable processes. 

Atom economy [Eq (18)] was introduced as an easily accessible metric for 

synthetic chemists to assess waste generation. This metric considers how much of 

the starting materials are incorporated into the desired product, but ignores key 

factors such as the molar excess of reactants and the use of solvents and reagents.90 

Because of this, two other metrics were proposed to give better measures of 

environmental impact: E-factor (or mass intensity) and reaction mass efficiency 

(RME). The E-factor [Eq (19)] is the ratio of the total mass of waste to the mass of 

the desired product, where the total mass of waste includes everything used within 

the process such as reactants, reagents, solvents and catalysts.91 In contrast, the 

RME [Eq (20)] is a combination of yield, atom economy and molar excess. An 

analysis of these metrics across 28 different chemistries led to the conclusion that 

the RME is probably the most useful metric for evaluating how ‘green’ a process is.92 
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Table 4. Metrics for evaluating the economic and environmental impact of a 
chemical process. m = mass, V = volume of reactor, tres = residence time, MW = 
molecular weight, SM = starting material. 

Process Metric                              Equation 

% Yield 
𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡 × 100

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡
 (15) 

% Purity 
𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡 × 100

𝑚𝑚𝑖𝑥𝑡𝑢𝑟𝑒
 (16) 

Space-time yield (STY) 
𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑉 × 𝑡𝑟𝑒𝑠
 (17) 

Atom Economy 
𝑀𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑡

∑ 𝑀𝑊𝑆𝑀(𝑖)𝑛
𝑖=1

 (18) 

E-Factor 
𝑚𝑤𝑎𝑠𝑡𝑒

𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡
 (19) 

Reaction Mass Efficiency (RME) 
𝑀𝑊𝑝𝑟𝑜𝑑𝑢𝑐𝑡 × 𝑦𝑖𝑒𝑙𝑑

𝑀𝑊𝑆𝑀1 + (𝑀𝑊𝑆𝑀2 × 𝑒𝑞𝑢𝑖𝑣𝑆𝑀2)
 (20) 

 

The process metrics outlined above are frequently conflicting, which means 

that the optimum for each metric is located in a different region of experimental 

space. One approach to this problem is to conduct multiple single objective 

optimisations to identify the optimum for each metric. This one-objective-at-a-time 

approach was used to optimise the yield, throughput and cost for a Heck-Matsuda 

reaction using a modified NMSIM algorithm (Scheme 6).65 Notably, optimising for 

the different criteria gave significantly different values of performance with respect 

to % yield. However, this approach does not consider the objectives simultaneously, 

and therefore fails to identify a satisfactory compromise between the conflicting 

performance criteria. 

 

Scheme 6. Heck-Matsuda reaction optimised for yield, throughput and cost. 
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In a separate study, a poor 42% conversion was observed for a Paal-Knorr 

reaction which had been optimised for productivity (Scheme 7a).57 In contrast to the 

one-objective-at-a-time approach, a penalty function was introduced to penalise 

conversions of less than 85%. This method successfully identified a compromise 

between the objectives where the conversion increased to 81% at the cost of a 31% 

decrease in productivity. Nevertheless, the authors concluded that an a priori 

economic analysis of the process would be required to determine the desired 

weighting on the objectives before conducting a final optimisation. Similarly, 

Fitzpatrick et al. combined throughput, conversion and consumption into a single 

objective function [Eq (21)] during optimisation of an Appel reaction (Scheme 7b), 

where τ = residence time, z = [2.08], p = [PPh3O], s = [2.07], x = CBr4 equiv. and y = 

PPh3 equiv.66 However, the a priori determination of adequate weightings for each 

term proved difficult, and initially led to skewed results. These examples highlight 

some major problems with the scalarisation of multiple objectives: (i) quantitative 

a priori knowledge is needed to adequately specify objective weightings, thus 

requiring additional experiments; (ii) minor changes to the weightings can result in 

significant changes to the solution achieved; (iii) only one optimal result is obtained, 

which is dependent on the chosen objective function and does not reveal the 

complete trade-off between conflicting performance criteria.    

 

Scheme 7. Reactions optimised via the scalarisation of multiple objectives: (a)  
Paal-Knorr reaction optimised for throughput and conversion using a penalty 
function; (b) Appel reaction optimised for throughput, conversion and consumption 
using a weighted function [Eq (21)]. 
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(21) 

The true solution to a multi-objective optimisation problem is a set of  

non-dominated solutions known as the Pareto front (Figure 20), where a  

non-dominated solution is one which cannot be improved without having a 

detrimental effect on the other. Hence, a multi-objective maximisation problem 

where variable vector x = {x1,…,xn} is formulated as follows. In objective space X, find 

variable vector x* which maximises K objective functions z(x*) = {z1(x*),…,zK(x*)}, 

where objective space X is restricted by bounds on the variables. A feasible solution 

a dominates another feasible solution b (a ≻ b) when zi(a) ≥ zi(b) for i = 1,…,K and 

zj(a) > zj(b) for at least one objective j.93 In contrast to scalarisation, the 

identification of a set of solutions and presentation of a front enables a posteriori 

decisions to be made regarding the desired optimum based on knowledge of the 

complete trade-off.  

 

Figure 20. An example of a system with two conflicting maximisation performance 
criteria z1 and z2. It is infeasible to find the utopian point where both z1 and z2 are at 
their optimal values. The points on the Pareto front are non-dominated solutions, as 
z1 or z2 cannot be improved without having a detrimental effect on the other. 
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The genetic algorithms discussed in Chapter 1 can readily be modified to 

handle multi-objective optimisation problems, the most widely used of which is the 

fast non-dominated-sort genetic algorithm (NSGA-II).94 NSGA ranks the population 

using Pareto dominance, where solutions on local fronts closer to the Pareto front 

are ranked better i.e. lower. Notably, NSGA-II penalises solutions near dense 

sections of the Pareto front to ensure a diverse Pareto front is obtained (rank = 

number of dominating solutions + 1). For example, in Figure 21a solution i is 

dominated by solutions c, d and e so is given a rank of 4, whereas solutions f, g and 

h are only dominated by one solution so are given a rank of 2. Furthermore,  

NSGA-II is an elitist algorithm, which means it will always select solutions with the 

better ranks for crossover and mutation to create the next generation. If two 

solutions have the same rank, then diversity is prioritised and the solution with the 

higher crowding distance is selected. The crowding distance is calculated by 

averaging the side length of a cuboid with a perimeter defined by the solutions 

nearest non-dominated neighbours as vertices (Figure 21b).   
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Figure 21. Graphical representations of adaptations to the NSGA algorithm to 
ensure a diverse front is identified: (a) ranking system; (b) crowding distance. 

Most problems of interest in chemistry represent expensive-to-evaluate 

functions, particularly in the pharmaceutical industry where the focus is on  

low-volume, high-value products. Although NSGA-II is capable of solving  

multi-objective problems, the population size, and therefore total number of 

evaluations required, are too large to be practical for self-optimisation. Hence, a 

machine learning algorithm called multi-objective active learner (MOAL) was 

designed for expensive-to-evaluate multi-target optimisation tasks.95 The algorithm 

was successfully applied to the optimisation of an emulsion polymerisation recipe 
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with 14 input variables, simultaneously targeting a conversion of ≥99% and particle 

diameter of 100 ± 1 nm.63 Similarly, the Thompson sampling efficient  

multi-objective optimisation (TSEMO) algorithm was recently reported to converge 

on the Pareto front within a small budget of evaluations, and compared favourably 

against other Bayesian multi-objective optimisers for in silico test problems.96   

2.2 Thompson Sampling Efficient Multi-Objective Algorithm 

The Thompson Sampling Efficient Multi-Objective (TSEMO) algorithm follows 

a Bayesian optimisation framework, employing GPs as surrogates and Thompson 

sampling as a heuristic to exploit the trade-off between exploration and exploitation. 

A multi-objective genetic algorithm is used to evaluate randomly selected functions 

from the GPs, and experiments suggested which aim to improve the hypervolume of 

the Pareto front. The algorithm is represented graphically in Figure 22.   

A Latin hypercube (LHC) space-filling design is used to initialise the algorithm. 

The LHC design splits the experimental space into an N-by-N grid, where N is equal 

to the number of samples. Experiments are then conducted such that no experiment 

is in the same row or column as another, thus ensuring that a good spread of samples 

across all possible values is achieved.97 GP surrogate models are then fit to each 

objective. In this case, the GPs are distributions over 4000 possible functions that 

are consistent with the LHC data. A sample from the 4000 possible functions are 

selected at random, and the multi-objective NSGA-II algorithm used to identify their 

Pareto fronts in silico. This generates a candidate set of experiments, which are 

ranked based on their predicted hypervolume improvement (Figure 23). The 

hypervolume is defined as the volume between the current non-dominated front 

and a reference point (anti-utopian point). Experiments corresponding to the 

largest hypervolume improvement are conducted, thus ensuring convergence on a 

well distributed Pareto front.98 The GPs are updated with the results of the 

experiments, and the process repeated iteratively. The trade-off between 

exploration and exploitation desired in Bayesian optimisation is inherently 

accounted for by the randomness of sampling from the GPs. 

It is desirable in self-optimisation to conduct more than one experiment per 

iteration (batch-sequential), as this reduces the overall time spent waiting for 

analysis. The performance of the TSEMO algorithm was found to be very similar 



68 

 

when implementing one or four experiments per iteration.96 Therefore, all 

experimental work herein was conducted using four experiments per iteration. 
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Figure 22. Different stages of the TSEMO algorithm for the minimisation of  
two-objectives, f(x) and f(x)’, with a single variable, x: (a) initial dataset collected; 
(b) GP model fit to the current data for both objectives; (c) Pareto front of a 
randomly selected function determined using NSGA-II. Objective = ---, data point = 
•, mean = —, function = —, Pareto front of sampled function = ×, confidence interval 
= shaded area. 
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Figure 23. Hypervolume plot showing the process used to select experiments from 
the candidate set, Ei. The current hypervolume is the volume between the  
non-dominated front (a, b, c, d) and a reference point, r. In this case, E3 is selected as 
it offers the largest predicted hypervolume improvement. 

2.3 N-Benzylation of Primary Amines 

In 2006 the most frequently used reactions in the pharmaceutical industry 

belonged to the ‘heteroatom alkylation and arylation’ category, 57% of which 

involved N-substitution.99 However, the direct alkylation of primary amines with 

alkyl halides is prone to significant by-product formation via overreaction. This is 

due to the nucleophilicity of the nitrogen atom increasing with an increasing 

number of alkyl substituents: tertiary (3o) > secondary (2o) > primary (1o).100 Hence, 

the N-benzylation of α-methylbenzylamine 2.09 with benzyl bromide 2.10 was 

selected as a suitably challenging case study to test the TSEMO algorithm (Scheme 

8). The reaction forms the desired 2o amine 2.11 and undesired 3o amine 2.12 as a 

by-product. The formation of the corresponding quaternary ammonium salt was 

suppressed by using diisopropylethylamine (DIPEA) as the base for the reaction.101 
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Scheme 8. Schematic of the automated flow reactor used to optimise the  
N-benzylation of α-methylbenzylamine 2.09. P = pump, BPR = back-pressure 
regulator, SL = sample loop. See experimental for more details.  

The optimisation was initially formulated according to [Eq (22)]. To find 

operating conditions that were both economically viable and environmentally 

friendly, we aimed to maximise the STY [Eq (17)] and minimise the E-factor [Eq 

(19)] respectively. As TSEMO is a minimisation algorithm, the negative of the 

response was input to achieve objective maximisation. The objectives were natural 

log-transformed, as this has been shown to better fit response surfaces in cases 

where there is a limited amount of data.102 Due to the natural log-transformation, 

the algorithm favours a natural log-spaced Pareto front. The optimisation was 

conducted with respect to four variables: P1 flow rate, P2:P1 ratio, P3:P1 ratio and 

temperature.  

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[−ln(𝑆𝑇𝑌) , ln(𝐸 − 𝐹𝑎𝑐𝑡𝑜𝑟)] (22) 

subject to: P1/mL min-1 ∈ [0.2, 0.4] 

P2:P1 ∈ [0.5, 3.0] 

P3:P1 ∈ [0.25, 1.0] 

Temperature/°C ∈ [50, 140] 

The objectives were selected based on prior beliefs that the STY and E-factor 

would be conflicting performance criteria. It was hypothesised that the STY would 

favour higher equivalents of 2.10 and shorter residence times (high P2:P1 and P1 

flow rate), whereas the E-factor would favour lower equivalents of 2.10 and longer 
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residence times (low P2:P1 and P1 flow rate). Rather, it was found that the STY and 

E-factor are complimentary performance criteria with the same optimum set of 

conditions. Furthermore, the relationship between the objectives at any point in the 

experimental space could be defined by the curve shown in Figure 24. This reflected 

the nature of the competitive consecutive reaction system, where milder conditions 

limit the conversion of 2.09 and harsher conditions promote the formation of 2.12.       

 

Figure 24. Results for the optimisation of the N-benzylation reaction with respect 
to STY and E-factor. The initial LHC size was 20. The TSEMO algorithm conducted 
58 additional experiments, locating a single optimum.  

These initial results highlighted the selection of conflicting performance 

criteria without a priori information as a significant challenge. To overcome this, a 

pause was introduced in the algorithm after the initial LHC experiments. This would 

enable polynomial models of the current data to be constructed, and the response 

surfaces for different metrics of interest to be evaluated. The experimental space 

was updated to focus on regions of greater interest based on the previous results: 

updated limits: P1/mL min-1 ∈ [0.2, 0.4] 

P2:P1 ∈ [1.0, 5.0] 

P3:P1 ∈ [0.5, 1.0] 

Temperature/°C ∈ [110, 150] 

As the majority of dead-time is spent waiting for the reactor to cool down, the 

20 LHC experiments were conducted in ascending order with respect to 
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temperature. The results were used to model polynomial response surfaces for 

different metrics using multiple linear regression (MLR), with the aim of identifying 

two conflicting performance criteria. When all main, interaction and square terms 

were included, the model was saturated and defined according to [Eq (23)], where 

Y is the response, bi are the coefficients and Xi are the input variables (X1 = P1, X2 = 

P2:P1, X3 = P3:P1, X4 = Temp). 

𝑓 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + 𝑏4𝑋4 + 𝑏12𝑋1𝑋2 + 𝑏13𝑋1𝑋3 + 𝑏14𝑋1𝑋4 + 𝑏23𝑋2𝑋3

+ 𝑏24𝑋2𝑋4 + 𝑏34𝑋3𝑋4 + 𝑏11𝑋1
2 + 𝑏22𝑋2

2 + 𝑏33𝑋3
2 + 𝑏44𝑋4

2 
(23) 

The quality of the model was assessed using R2 and Q2 as validation metrics. 

The results of the experiments (n = 20) are defined by vector y = [y1,…,yn] with a 

mean of ȳ and corresponding vector f = [f1,…,fn] for predicted values. R2 measures 

the proportion of variance in the data which is explained by the model. It is 

calculated according to [Eq (24)], where the residual sum of squares (RSS) [Eq (25)] 

is divided by the total sum of squares (TSS) [Eq (26)]. The RSS and TSS are the sum 

of the squared difference between the observed response yi and the predicted 

response fi or the mean of the observed response ȳ respectively. Therefore, the 

closer R2 is to 1 the better the fit of the model to the experimental data. 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
, 0 ≤ 𝑅2 ≤ 1 (24) 

𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑓𝑖)2

𝑛

𝑖=1

 (25) 

𝑇𝑆𝑆 = ∑(𝑦𝑖 − ȳ)2

𝑛

𝑖=1

 (26) 

Q2 measures the ability of the model to make accurate predictions and is 

calculated according to [Eq (27)], where the predictive error sum of squares (PRESS) 

[Eq (28)] is divided by the TSS. The PRESS is the sum of squared difference between 

the observed response yi and the predicted response fi/i when the i-th sample is 

omitted from the training data. Therefore, the closer Q2 is to 1 the better the 

predictive ability of the model. 
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𝑄2 = 1 −
𝑃𝑅𝐸𝑆𝑆

𝑇𝑆𝑆
, 𝑄2 ≤ 1 (27) 

𝑃𝑅𝐸𝑆𝑆 = ∑(𝑦𝑖 − 𝑓𝑖/𝑖)
2

𝑛

𝑖=1

 (28) 

The goodness of fit for the STY and % impurity (% yield of 2.12) saturated 

models were excellent, with R2 values of 0.9941 and 0.9964 respectively. Therefore, 

a series of modifications were made which focused on improving the models 

predictive ability. Initially, the shape of the response distributions were assessed to 

determine if a transformation was required to achieve a normal distribution. A 

normal distribution is favoured as it fits many natural phenomena. This is explained 

by the central limit theorem, which states that when a large number of random 

samples are taken from a population, the distribution of the means of those samples 

will converge to a normal distribution. Histograms of the responses showed that the 

% impurity distribution was positively skewed (Figure 25a). This was rectified by 

use of a logit transformation according to [Eq (29)], where ŷ is the transformed 

response.40 

ŷ𝑖 = log10 (
𝑦𝑖 − 0

100 − 𝑦𝑖
) (29) 

The models were further refined by removing any insignificant main, 

interaction or square terms from the saturated models.39 As each term was 

removed, the models were refit which adjusted the confidence intervals of the 

coefficients. Hence, each term was removed one at a time in order of relevance to 

the response. For the % impurity, this process reduced the number of terms from 

14 to 9 (Figure 25b).  

Normal probability plots are used as a diagnostic tool for regression models to 

identify potential outliers. They are plots of the normal probability against deleted 

studentised residuals. The deleted studentised residuals were calculated as follows: 

(i) delete each response one at a time; (ii) refit the model with the remaining n-1 

responses; (iii) compare the observed response with the predicted response; (iv) 

divide the deleted residuals by its estimated standard deviation. Therefore, the 

deleted studentised residuals provide a measure of how influential a data point is. 

Responses with deleted studentised residuals that are beyond ±4 standard 

deviations from the mean are identified as outliers, and should be re-evaluated or 
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removed (Figure 25c). In this case, the normal probability plots for the refined 

models of STY and % impurity were linear, indicating normally distributed noise. 

Furthermore, no outliers were detected for either model.  

 

Figure 25. Statistics for modelling of the 20 LHC experiments: (a) histograms 
comparing response distribution for untransformed and logit transformed models 
of % impurity; (b) coefficient plots comparing saturated and unsaturated models of 
% impurity; (c) residuals normal probability plots comparing the unrefined and 
refined models of % impurity; (d) summary of fit plots comparing the unrefined and 
refined models of STY and % impurity. 
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The model refinement process outlined above significantly improved the 

predictive ability of the STY and % impurity models, as highlighted by an increase 

in Q2 (Figure 25d). Response surfaces for a variety of metrics from Table 4 were 

constructed using this method, and compared to identify two conflicting 

performance criteria. The STY and % impurity were identified as suitably conflicting 

objectives based on their 4D contour plots shown in Figure 26 and Figure 27 

respectively.  

Under all conditions, maximising the STY favours high temperatures and low 

P3:P1 ratios, whereas minimising % impurity favours low temperatures and high 

P3:P1 ratios. For example, the predicted optimum conditions for STY were: P1 = 0.40 

mL min-1; P2:P1 = 1.19; P3:P1 = 0.50; temperature = 148.7 °C. In contrast, the 

predicted optimum conditions for % impurity were: P1 = 0.40 mL min-1; P2:P1 = 

1.19; P3:P1 = 0.97; temperature = 111.8 °C. In addition, the factor θi contributions 

for each model are displayed in Table 5, where a higher value corresponds to a 

greater contribution to the response. The temperature had the greatest effect on 

both objectives, which suggested it would be the dominant factor in the conflicting 

relationship. Therefore, the optimisation was reformulated according to [Eq (30)], 

and the TSEMO algorithm initiated using the 20 LHC experiments as the initial 

dataset.   

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[−ln(𝑆𝑇𝑌) , ln(% 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦)] (30) 

 

Figure 26. 4D response contour plots of STY. 
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Figure 27. 4D response contour plots of % impurity. 

Table 5. Factor contributions for the STY and % impurity polynomial models, where 
a higher value corresponds to a greater contribution to the response. θi = factor.  

Variable Poly 1 (STY) Poly 2 (% impurity) 

ϴP1 27.83 13.51 

ϴP2:P1 11.93 28.85 

ϴP3:P1 5.84 13.26 

ϴTemp 54.40 44.39 

 

The TSEMO algorithm conducted an additional 58 experiments, 20 of which 

formed a dense Pareto front (Figure 28). The optimal STY was 331 kg m-3 h-1 with 

an impurity yield of 10.0%. Conversely, the optimal impurity yield was 2.2% with a 

STY of 142 kg m-3 h-1. Therefore, the objective space highlighted the inherent  

trade-off between the objectives, and thus validated the prediction made from the 

polynomial models. Reaction profiles for the STY and % impurity are displayed in 

Figure 29 and Figure 30 respectively. The trends in the reaction profiles were also 

in good agreement with the LHC model-based predictions for both objectives. For 

example, the results showed that the STY could initially be increased whilst having 

a relatively small effect on the % impurity. This corresponded to increasing the 

concentration at the lower temperature limits. Any further increase in STY required 

increasing the temperature, which resulted in a substantial increase in % impurity. 
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The multi-objective optimisation of the N-benzylation reaction successfully 

identified the target trade-off curve.69 However, it should be noted that although the 

TSEMO algorithm searches globally, it is a stochastic method and therefore cannot 

guarantee identification of the global Pareto front within a limited number of 

experiments. One of the main advantages of identifying the Pareto front is that the 

information can be used for process design. For example, it could be beneficial in 

this case to accept higher impurities if the higher STY offsets the additional 

downstream purification costs. In contrast, single objective optimisation methods 

used thus far only identify one solution, and provide no information regarding the 

shape of the Pareto front. Furthermore, the optimum solution identified for one 

objective could still be dominated by the Pareto front. For example, Figure 28 

highlights several points with a low % impurity and different STY. A single objective 

optimisation with respect to % impurity cannot differentiate between these points, 

whereas this approach can identify points which improve the STY without having a 

detrimental effect on the % impurity.   

 

Figure 28. Results for the optimisation of the N-benzylation reaction with respect 
to STY and % impurity. The initial LHC size was 20. The TSEMO algorithm conducted 
58 additional experiments, 20 of which formed a dense Pareto front highlighting the 
trade-off between the objectives. 
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Figure 29. STY results for experiments performed during the multi-objective 

optimisation. ☆ = maximum STY. 

 

 

Figure 30. % impurity results for the experiments performed during the  

multi-objective optimisation. ☆ = minimum % impurity. 
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The GPs constructed during each iteration of the TSEMO algorithm include 

hyperparameters, which provide qualitative information regarding factor θi 

contributions for each objective (Table 6). In this case, lower values correspond to a 

greater contribution to the objective. This is referred to as automatic relevance 

determination, which is a useful tool for identifying important variables amongst 

large multidimensional datasets, where visual techniques are difficult.86 The 

hyperparameters show that temperature is the most relevant variable for both 

objectives. This is consistent with the Pareto optimal points, where temperature is 

the dominant variable in describing the trade-off between STY and % impurity. In 

addition, the GPs provide a hyperparameter σn
2  which defines the noise of the 

system. The low values observed reflected the experimental robustness of the 

automated self-optimising flow platform, which enabled the generation of precise 

GP models.      

Table 6. Hyperparameters for the STY and % impurity GP models, where a lower 
value corresponds to a greater contribution to the response. θi = factor, 𝛔𝐧

𝟐 = noise. 

Variable GP 1 (STY) GP 2 (% impurity) 

ϴP1 13.14 4.20 

ϴP2:P1 11.45 5.53 

ϴP3:P1 20.62 18.11 

ϴTemp 7.50 3.28 

σn
2  4.02×10-5 6.14×10-6 

 

It was hypothesised that models of the initial 20 LHC experiments could be 

sufficient to predict the global Pareto front without any additional experimentation. 

This would lead to a significant reduction in the time and materials required for 

multi-objective optimisation of a chemical system. Ranking of the factor 

contributions in order of importance revealed discrepancies between the LHC 

polynomial models and complete GP models. As a result, both polynomial and GP 

models of the initial 20 LHC experiments were tested to see which provided the best 

fit with the experimentally determined Pareto front. Each model was evaluated in 

silico using 58 iterations of the TSEMO algorithm, with one experiment per iteration. 

The results showed that the polynomial model provided a better prediction of the 

Pareto front compared to the GP model (Figure 31).        
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Figure 31. Comparison between the experimentally determined Pareto front and 
the predicted Pareto fronts from the polynomial and GP models after 20 LHC 
experiments. The models were evaluated using 58 iterations of the TSEMO 
algorithm, with one experiment per iteration. 

The polynomial model was further scrutinised by predicting the response for 

each objective at the conditions corresponding to the experimentally determined 

Pareto optimal solutions. Figure 32 displays the results in ascending order with 

respect to STY, and includes error bars for the model predictions which define the 

95% confidence intervals. The models accurately predict the STY at values less than 

or equal to 300 kg m-3 h-1, and the % impurity at values less than or equal to 8%. 

However, the models were significantly less accurate at higher objective values, 

particularly for the % impurity, where experimental data points were outside the 

95% confidence intervals. This was likely caused by overfitting the model to the 20 

LHC data points, where extra terms were included in the model as a result of residual 

noise associated with the experimental system.              

    In summary, the polynomial models were useful for the identification of 

conflicting performance criteria. In addition, they were satisfactory for providing an 

initial indication of the global Pareto front shape, and outcompeted the GP models 

extracted from the TSEMO algorithm. However, model predictions were not 

accurate in all regions of the experimental space. Therefore, it would be advised that 

the Pareto front should be located experimentally, including cases where the models 

are of high quality according to statistical diagnostics. 



81 

 

 

Figure 32. Comparison between Pareto front solutions determined experimentally 
and predicted from the corresponding conditions using the LHC polynomial models. 
The results are displayed in ascending order with respect to STY. Error bars = 95% 
confidence intervals of the model. 

2.4 Conclusions 

The task of optimising chemical reactions is highly challenging as multiple 

relevant process metrics need to be considered. However, scalarisation approaches 

used in previous work have suffered from the identification of sub-optimal 

compromises.57, 66 In this work, a multi-objective optimisation algorithm has been 

applied to the self-optimisation of an N-benzylation reaction.69, 96 The proposed  

set-up simultaneously optimised conflicting economic (STY) and environmental 

(impurity profile) objectives with respect to four variables. In addition, the problem 

of identifying conflicting performance criteria without a priori knowledge was 

overcome via empirical polynomial modelling of the initial dataset. The trade-off 

curve between the objectives was identified in a total of 78 experiments, providing 

significantly more information per experiment compared to previous single 

objective optimisations. The problem of minimising product impurities had not 

been addressed in previous self-optimisations, but is a scenario of particular 

importance in the pharmaceutical industry. This example demonstrated how 

identification of the Pareto front reveals essential information required for process 

design. Furthermore, the use of GPs provided additional knowledge regarding the 

relevance of the variables for each objective. We envisage that the developed 

approach will become a de facto method for reaction optimisation, as it aligns with 

the drive towards more sustainable process development.  



82 

 

Chapter 3 API Process Development: A Multi-Objective Pareto 

Front Optimisation Approach 

3.1 Introduction 

Currently the pharmaceutical industry is dominated by batch manufacturing, 

owing to a combination of existing infrastructure and the requirement for flexible 

multipurpose reactors. However, continuous processing was highlighted as the 

most important green engineering research area by the Roundtable in 2011.103 This 

was driven by factors such as lower production costs, increased quality from  

steady-state operation and increased process safety. As such, numerous examples 

of end-to-end API syntheses utilising batch-flow hybrid or continuous flow set-ups 

have been reported in recent years (Figure 33).104-109 Therefore, the ability to 

efficiently optimise these processes is of growing importance with respect to 

creating affordable treatments for a wide range of diseases. 

 

Figure 33. Examples of APIs synthesised using flow chemistry: (a) batch-flow 
hybrid set-ups; (b) end-to-end flow synthesis.  
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Alzheimer’s disease (AD) is a chronic neurodegenerative disease which effects 

5.4 million people in America. This is projected to grow to 13.8 million by 2050 

owing to an ageing population. Furthermore, there is currently no cure for AD, with 

pharmacological treatments focusing on improving symptoms.110 It is hypothesised 

that AD is caused by β-site amyloid precursor protein cleaving enzyme 1 (BACE1) 

generating neurotoxic amyloid β (Aβ) fragments. As a result, BACE1 inhibitor drugs 

have been developed with the goal of reducing Aβ concentrations in the brain.111 

Notably, amidine- and guanidine-containing heterocycles were identified to form a 

strong hydrogen-bonding network with the active site of BACE1.112 For example, 

AstraZeneca and Eli Lilly co-developed lanabecestat 3.01 (AZD3293), which entered 

phase III clinical trials in 2016.113 The drug was shown to have desirable properties, 

including: (i) high gastrointestinal and blood-brain barrier permeability; (ii) slow 

off-rate kinetics; (iii) prolonged suppression of Aβ in plasma and cerebrospinal 

fluid; (iv) equivalent bioavailability in tablet and oral solution.114-116    

The retrosynthetic analysis of lanabecestat 3.01 and it’s key  

3-propyne-pyridine moiety 3.03 are shown in Scheme 9. The final step of the 

synthesis involves a palladium-catalysed Suzuki cross-coupling reaction between 

aryl bromide 3.02 and boronic acid 3.03. The boronic acid of 3-propyne-pyridine 

moiety 3.03 is installed via a tandem lithiation-borylation sequence from the 

corresponding aryl bromide 3.04. A palladium-catalysed Sonogashira cross-

coupling reaction between commercially available 3,5-diboromopyridine 3.05 and 

TMS-propyne 3.06 initiates the synthetic sequence.  

 

Scheme 9. Retrosynthetic analysis of lanabecestat 3.01 and it’s key  
3-propyne-pyridine moiety. 
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This method was used for kilogram-scale batch manufacturing of lanabecestat 

3.01.117, 118 The process conditions for the synthesis of the 3-propyne-pyridine 

moiety are shown in Scheme 10. Initially, a Sonogashira cross-coupling reaction 

between 3,5-dibromopyridine 3.05 and TMS-propyne 3.06 yielded a mixture of 

desired mono-alkyne 3.04 and undesired bis-alkyne 3.07. Use of TMS-propyne 3.06 

as a surrogate for propyne gas required the addition of TBAF as a desilylating agent. 

In addition, a relatively long reaction time and high copper co-catalyst loading were 

required. Subsequent lithiation-borylation using n-HexLi and triisopropyl boronate 

under cryogenic conditions afforded boronic acid 3.03, which was converted to a 

diethanolamine boronic ester (DABO) 3.08 by reaction with diethanolamine. The 

resultant DABO 3.08 was shown to be more air-stable than the parent boronic acid 

3.03, and could be used directly in the following Suzuki cross-coupling reaction.118   

This process is a prime example of where transitioning from batch to 

continuous flow has the potential to be advantageous. For example: (i) access to 

higher temperatures to increase the rate of reaction could allow a reduction in the 

copper co-catalyst loading; (ii) safer use of explosive propyne gas would remove the 

need for the expensive TMS-propyne surrogate and TBAF additive; (iii) greater 

control over reaction time and mixing could improve product ratios; (iv) enhanced 

heat transfer could enable the rapid lithiation-borylation step to be performed 

under less energy-intensive cryogenic conditions. Therefore, process characteristics 

such as atom economy and cost have the potential to be significantly improved.       

 

Scheme 10. Batch synthesis of the 3-propyne-pyridine moiety starting from  
3,5-dibromopyridine 3.05.  
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The Sonogashira reaction is a synthetic tool used to construct sp2-sp  

carbon-carbon bonds between aryl halides and terminal alkynes. Hence, it is 

extensively used to synthesise arylalkynes which are ubiquitous scaffolds in APIs. 

Traditionally, the reaction requires a palladium catalyst and a copper co-catalyst 

(Scheme 11). The active Pd(0) catalyst is generated in situ via ligand dissociation or 

reduction from a suitable precatalyst. Initially, oxidative addition of R1-X to Pd(0) 

occurs, where the rate is higher for substrates with a reduced electron density on 

the C-X bond. Meanwhile, the Cu(I) salt coordinates to the terminal alkyne substrate 

to form a π-alkyne-Cu complex, which increases the acidity of the acetylenic proton. 

This enables abstraction of the acetylenic proton in the presence of base, forming a 

copper acetylide. Transmetallation from the copper acetylide to the Pd(II) complex 

generates a palladium acetylide, which undergoes cis/trans isomerisation and 

reductive elimination to afford the arylalkyne and regenerated Pd(0) catalyst.119 

Herein, this chapter focuses on the development and optimisation of a continuous 

flow Sonogashira reaction towards the synthesis of lanabecestat 3.01. 

 

Scheme 11. Sonogashira reaction with independent palladium and copper catalytic 
cycles. L = ligand. 
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3.2 Optimisation of a Continuous Flow Sonogashira Reaction 

Development of the proposed continuous flow synthesis of  

3-propyne-pyridine 3.03 was divided into three process stages: (i) Sonogashira 

reaction; (ii) work-up; (iii) lithiation-borylation reaction. Each stage was assigned 

to a different team for optimisation, as is common during process development. 

Propyne was substituted for 1-hexyne to provide a suitable case study for 

optimisation of the Sonogashira reaction (Scheme 12). 1-Hexyne was selected as it 

was the shortest chain terminal alkyne with a boiling point high enough to avoid 

significant evaporation from the reactant reservoir at room temperature  

(bp = 71-72 °C). This resulted in a practically simpler process which could be 

translated to the propyne system once optimised. An automated platform was used 

throughout this work which utilised on-line HPLC and mass spectrometry for 

quantification and product identification respectively. Furthermore, a dilution 

pump (P3) was required to avoid saturation of the HPLC detector. The discrete 

variables such as catalyst, base and solvents were selected based on preliminary 

studies.120  

P2
LC/MS

Automated 
Reactor

P3

P1

Tubular 
Reactor

SL

MeCN

1-Hexyne
(0.84 M in PhMe/MeCN)

BPR

(0.61 M in PhMe/MeCN)
Pd(PPh3)4 (1.5 mol%)

CuI (5 mol%)
Pyrrolidine (3 eq.)

 

Scheme 12. Schematic of the automated flow reactor used to optimise the 
Sonogashira reaction case study. P = pump, BPR = back-pressure regulator, SL = 
sample loop. See experimental for more details. 

The primary objective during the optimisation was to maximise the 

conversion, as 3,5-dibromopyidine 3.05 was difficult to remove during the 

downstream work-up, and formed additional impurities if present in the 

subsequent lithiation-borylation stage. Initially, a mixture of starting material 3.05, 
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desired mono-alkynylated pyridine 3.09 and undesired bis-alkynylated pyridine 

3.10 was obtained by refluxing 3,5-dibromopyridine 3.05 and 1-hexyne in toluene 

overnight. However, attempts to purify each compound by column chromatography 

were unsuccessful. Therefore, the mass of each compound in the mixture was 

determined by quantitative NMR using 1,3,5-trimethoxybenzene (1,3,5-TMB) as an 

internal standard (Table 7) [Eq (31)]. The calculated purities were used to calibrate 

the HPLC directly from the post-reaction mixture, enabling on-line quantification of 

future reactions.  

𝑝𝑥 =
𝐼𝑥

𝐼𝑐𝑎𝑙
×

𝑁𝑐𝑎𝑙

𝑁𝑥
×

𝑀𝑥

𝑀𝑐𝑎𝑙
×

𝑊𝑐𝑎𝑙

𝑊𝑥
× 𝑃𝑐𝑎𝑙  (31) 

Table 7. NMR data for the purity assessment of compounds 3.05, 3.09 and 3.10 in 
a post-reaction mixture. The nuclei integrated for each compound are circled in red. 
I = integration, N = number of nuclei, M = molecular mass, W = gravimetric weight, 
P = purity. 

   

Compound I N M/g mol-1 W/mg P/% 

SM 3.05 2.04 2 236.89 65.25 28.0 

Mono 3.09 1.98 1 238.13 65.25 54.6 

Bis 3.10 0.26 1 239.36 65.25 7.2 

1,3,5-TMB 4.40 3 168.19 19.22 97.0 

 

A HPLC method was efficiently developed utilising a systematic design of 

experiments approach. A 2-level full factorial was conducted with respect to 

temperature (40-60 °C) and 5-90% gradient time (3-9 min) using a H2O/MeCN 

mobile phase with 3% TFA buffer. Mass spectrometry was used post-HPLC to verify 

the retention times of the reactant and products. Models were fit to the retention 

times for each compound, which were validated with additional runs. The models 

for the reactant, products (Figure 34a) and three minor impurities (Figure 34b) 

showed an excellent predictive ability. Hence, the models were used to identify the 

conditions corresponding to the optimum resolution between the compounds: 40 
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°C, 5-90% gradient 9 min. The resolution between bis 3.10 and impurity 3 was 

further improved by adjusting the pH of the mobile phase (Figure 35). Lower pH 

values were found to increase the resolution between bis 3.10 and impurity 3 and 

decrease the resolution between impurities 1 and 2. A satisfactory compromise was 

obtained using 5% TFA as buffer. As all compounds had eluted after 8 min, the 

method was adjusted to 5-80% gradient in 8 min to reduce the overall analysis time.  

  

Figure 34. HPLC observed vs. predicted plots for the retention time (RT) of 
compounds present in the Sonogashira reaction: (a) SM 3.05, mono 3.09, bis 3.10; 
(b) three minor impurities. □ = 2-level full factorial, × = additional runs conducted 
to validate the models: (i) 40 °C, 5-90% gradient in 5.2 min; (ii) 50 °C, 5-90% 
gradient in 6 min. Imp = impurity.       

 

Figure 35. Overlaid HPLC chromatograms for the Sonogashira reaction using 
different buffers: 5% TFA (—), 3% TFA (—), 5% ammonium acetate (—). a = SM 
3.05, b = impurity 1, c = impurity 2, d = toluene, e = biphenyl (internal standard), f = 
mono 3.09, g = bis 3.10, h = impurity 3.  
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Initially, the loading of the copper catalyst and PhMe/MeCN solvent ratio were 

screened using a 2-level full factorial design. The upper and lower bounds of the 

variables were 5-10 mol% of CuI and 3.6-5.1:1 PhMe/MeCN solvent ratio. Increasing 

the PhMe/MeCN ratio above 3:1 resulted in the formation of free-flowing immiscible 

slugs in the reactor (Figure 36a). It was postulated that these slugs were the 

pyrrolidine.HBr salt formed during the reaction, which is insoluble in more  

non-polar solvent mixtures. In-line Raman spectroscopy was integrated 

downstream of the reactor to ensure steady-state operation was achieved in the 

two-phase flow (Figure 36b). The spectra showed that the consumption of SM 3.05 

and formation of mono 3.09 could be monitored effectively in transient state. For a 

reaction with a 2 min residence time, the profiles stabilised after 5 min. Therefore, 

all experiments were left for 3 reactor volumes to reach steady state before analysis. 

(a) 

 

(b) 

 

Figure 36. (a) formation of free-flowing slugs during the Sonogashira reaction; (b) 
Example Raman spectra for a reaction at 120 °C with a 2 min residence time. Toluene 
(—, 524 cm-1), mono 3.09 (—, 1576 cm-1), mono 3.09 (---, 2232 cm-1), SM 3.05 (—, 
281 cm-1), MeCN (—, 378 cm-1), 1-hexyne (—, 2119 cm-1).  
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Polynomial modelling of the 2-level full factorial with respect to the amount of 

SM 3.05 remaining revealed the presence of a significant interaction term between 

the CuI loading and PhMe/MeCN ratio (Figure 37). At PhMe/MeCN ratios above 

4.2:1, a higher CuI loading is favoured. In contrast, at PhMe/MeCN ratios below 

4.2:1, a lower CuI loading is favoured. Furthermore, increasing the PhMe/MeCN 

ratio has little effect on the reaction at 5 mol% of CuI, whereas a significant increase 

in conversion is observed at 10 mol% of CuI. This suggests that a complex 

relationship between the co-catalytic cycle and the polarity of the solvent exists, 

which would be difficult to predict from chemical intuition alone.  

It was hypothesised that the use of higher CuI loadings at low PhMe/MeCN 

ratios resulted in a lower conversion due to a potential competing Glaser coupling 

reaction. The Glaser coupling is a copper catalysed acetylenic coupling reaction 

which occurs in the presence of oxidants. Hence, Sonogashira reactions conducted 

under aerobic conditions can lead to the formation of 1,3-diynes.121 Therefore, it was 

postulated that the homocoupling of 1-hexyne 3.11 to form 1,3-diyne 3.12 (Scheme 

13) was kinetically favoured over the Sonogashira reaction at low PhMe/MeCN 

ratios. However, it should be noted that 1,3-diyne 3.12 was not observed by LC/MS.      

 

Figure 37. Plot showing the effect of the interaction between CuI mol% and 
PhMe/MeCN ratio on the amount of SM 3.05 remaining. Reaction conditions: tres = 
4.25 min, 1-hexyne equiv. = 1.4, temperature = 135 °C, Pd(PPh3)4 = 1.5 mol%, 
pyrrolidine equiv. = 3.0.  
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Scheme 13. Potential Glaser coupling of 1-hexyne 3.11 to form 1,3-diyne 3.12. 

To test the effect of oxygen on the reaction, reservoir solutions were prepared 

using degassed solvents under an inert atmosphere (Table 8). This resulted in a 

significant decrease in conversion of SM 3.05 compared to when the reservoirs were 

left open to air for one hour prior to the reaction (Entry 1 & 2). This suggested that 

oxygen had a beneficial effect on the Sonogashira reaction, and that the competing 

Glaser coupling reaction had a negligible effect on the reaction outcome under the 

previously determined optimum conditions (10 mol% CuI, 5.1:1 PhMe/MeCN). The 

copper source was changed to CuCl2 to investigate whether oxidation of Cu(I) to 

Cu(II) was having a positive effect on the reaction (Entry 3). Although the reaction 

still proceeded in a good yield, a lower conversion was observed, indicating that 

copper oxidation alone would have a negative effect on the reaction.   

Based on these results, it was rationalised that oxygen was playing a role in the 

palladium catalytic cycle. It is known that PPh3 readily oxidises in air to form 

triphenylphosphine oxide. This could result in a shift in the ligand  

dissociation-association equilibrium from the 18e- Pd(PPh3)4 precatalyst 3.13 

towards the 14e- Pd(PPh3)2 active catalyst 3.14 (Scheme 14). This type of  

rate-limiting ligand dissociation has previously been observed for oxidative 

addition of bromoarenes to Pd0 complexes with hindered phosphine ligands.122 

However, kinetic studies that are beyond the scope of this work would be required 

to confirm this. Nevertheless, all future experiments were conducted under an 

aerobic atmosphere. 

Table 8. Summary of experiments testing the effect of oxygen on the Sonogashira 
reaction.  

Entrya Cu Source SM 3.05/% Mono 3.09/% Bis 3.10/% 

1b CuI 5.7 69.6 24.7 

2 CuI 16.5 70.7 12.8 

3 CuCl2 21.6 65.8 12.6 

a 4.25 min, 135 °C, Pd(PPh3)4 (1.5 mol%), Cu (10 mol%), PhMe/MeCN (5.1:1), pyrrolidine (3 equiv.). 

b Reactant reservoirs open to air for one hour prior to the reaction. 
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Scheme 14. Proposed effect of oxygen on oxidative addition of bromoarenes to Pd0. 
In cases with a rate-limiting ligand dissociation step, removal of PPh3 ligands by 
oxidation to PPh3O drives the equilibrium forward.  

The remaining continuous variables were optimised subject to the following 

variable limits: residence time (3 – 8 min), equivalents of 1-hexyne (1.2 – 1.6) and 

temperature (120 – 150 °C). A Box-Behnken design was selected which is shown 

graphically for three factors in Figure 38a. In contrast to central composite designs, 

a Box-Behnken design always has three levels and conducts experiments at the 

midpoints of the edges. They benefit from a reduced number of experiments 

required to identify all first- and second-order coefficients in cases with three or less 

factors. This makes them particularly well-suited for optimising expensive systems, 

such as those involving high value catalysts. However, this comes at the expense of 

a lower predictive ability at the extremes of the experimental space.   

The composition of the reaction mixture was determined for each experiment 

and response surfaces fitted to the SM 3.05, mono 3.09 and bis 3.10 compounds 

(Figure 38b). Notably, the residence time was found to be insignificant with respect 

to all three, indicating that the reaction had stalled after 3 min. This was likely 

caused by deactivation of the catalyst under the reaction conditions. In addition, the 

temperature had a relatively small effect on the conversion of SM 3.05. Increasing 

the temperature from 120 to 135 °C slightly improved conversion. However, further 

increasing the temperature from 135 to 150 °C was detrimental to the conversion, 

suggesting higher temperatures promoted catalyst deactivation. The yield of the 
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desired mono 3.09 product remained virtually constant with changing 1-hexyne 

equivalents. In contrast, the consumption of SM 3.05 and formation of bis 3.10 were 

approximately inversely proportional, indicating equal rates of reactions for the two 

consecutive steps within the experimental space.  

(a) 

 

(b) 

 

Figure 38. (a) Box-Behnken design for three factors (X1, X2, X3) between limits -1 
and +1; (b) response surfaces for SM 3.05, mono 3.09 and bis 3.10. 
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The main aim of the optimisation was to maximise the conversion to prevent 

SM 3.05 from interfering with downstream steps, whilst still operating under 

economically favourable conditions. This problem belonged to the class of 

expensive-to-evaluate problems, as this work had identified the Sonogashira 

reaction as a complex system involving high value catalysts. Furthermore, strict 

deadlines applied to the pharmaceutical industry resulted in significant time 

constraints for the remaining process development to be completed. Therefore,  

self-optimisation using the previously explored TSEMO algorithm was selected to 

simultaneously maximise STY and minimise the amount of SM 3.05 remaining [Eq 

(32)]. Taking into consideration the factor effects identified from the Box-Behnken 

response surfaces, the lower limit of residence time was reduced to explore 

potentially more interesting regions of space. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[−ln(𝑆𝑇𝑌) , ln(% 𝑜𝑓 𝑆𝑀 𝟑. 𝟎𝟓)] (32) 

subject to: Residence time/min ∈ [1.0, 8.0] 

1-hexyne equivalents ∈ [1.2, 1.6] 

Temperature/°C ∈ [120, 150] 

The optimisation was initialised with 20 LHC experiments, followed by 60 

experiments designed by the TSEMO algorithm. The algorithm converged on a 

Pareto front consisting of 20 non-dominated solutions (Figure 39). The optimal STY 

was 3198.8 kg m-3 h-1 with 10.9% SM 3.05 remaining. In contrast, the optimal 

conversion corresponded to 1.9% SM 3.05 remaining with a STY of  

315.4 kg m-3 h-1. Hence, the results highlighted the inherent trade-off between 

conversion and productivity.    

The reaction profiles for the % of SM-3.05 remaining and STY are shown in 

Figure 40a and 8b respectively. Notably, inspection along the z-axis indicates that 

varying the temperature between 120 and 150 °C has little effect on either objective. 

In contrast, reducing the residence time corresponds to a large increase in STY, due 

to both a reduction in process time and conversion of mono 3.09 to bis 3.10 (Figure 

40c). This correlates with a relatively small increase in SM 3.05 remaining. For 

example, the STY can be increased from 656.9 to 1585.7 kg m-3 h-1 by reducing the 

residence time from 4.1 to 1.8 min, whilst only increasing the SM 3.05 remaining 

from 2.1 to 3.7%. The STY can be further increased at the lower limits of residence 
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time by reducing the equivalents of 1-hexyne, which reduces conversion of mono 

3.09 to bis 3.10. However, this corresponds to a relatively large increase in % of SM 

3.05 remaining. For example, the STY can be increased from 3009.2 to  

3198.8 kg m-3 h-1 by reducing the equivalents of 1-hexyne from 1.60 to 1.46 when 

tres = 1 min, but this results in an increase in SM 3.05 remaining from 7.4 to 10.9%.    

The results from this optimisation followed precise trends and contained no 

erroneous data points, showcasing the high accuracy of the self-optimising reactor 

developed throughout this work. Low experimental noise enabled rapid 

optimisation of the experimental space to meet the time constraints of the project. 

Furthermore, the multi-objective Pareto front optimisation approach enabled clear 

visualisation of the trade-off between conversion and productivity. In this case, the 

best STY could readily be selected under the current work-up limitations with 

respect to SM 3.05. Unlike targeted or weighted objective optimisation, the TSEMO 

algorithm identifies the complete trade-off, such that the data can be re-evaluated 

without further experimentation if process parameters are altered. This is 

particularly beneficial in the pharmaceutical industry, where the specifications of 

the downstream work-up are dynamic during process development. Therefore, with 

most pharmaceutical processes having competing objectives, the use of such 

algorithms is clearly a beneficial tool for flexible project scenario planning. 

 

Figure 39. Results for the optimisation of the Sonogashira reaction with respect to 
STY and SM 3.05 remaining. The initial LHC size was 20. The TSEMO algorithm 
conducted an additional 60 experiments, 20 of which formed a Pareto front 
highlighting the trade-off between the objectives. 
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Figure 40. Plots of experiments performed during the optimisation for different 
responses: (a) % of SM 3.05 remaining; (b) STY with respect to mono 3.09; (c) % of 

bis 3.10, rotated to depict data as viewed along the z-axis. ☆ = optimum. 
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One of the challenges associated with expensive-to-evaluate optimisation is 

determining an appropriate termination criterion. Too few experiments can yield 

inaccurate models, whereas too many experiments are wasteful in terms of time and 

reagents. For multi-objective problems, the optimisation could be terminated once 

the hypervolume improvement between experiments falls below a predefined level. 

Although this method could be easily automated, there is no guarantee that the 

hypervolume will improve between each experiment. For example, the 

hypervolume after each TSEMO experiment for the Sonogashira optimisation is 

displayed in Figure 41a. The hypervolume stabilised between experiments 41 and 

47, however a significant increase in hypervolume was observed between 

experiments 47 and 56. Hence, premature termination would have resulted in the 

identification of an incomplete trade-off curve. Rather, the progress of the 

optimisation was monitored via visual inspection of the predicted Pareto front 

(Figure 41b). This was achieved using NSGA-II to evaluate the hyperparameters of 

the current GP surrogate models. It was evident that the initial 20 LHC experiments 

were insufficient for creating a GP model that accurately describes the actual Pareto 

front. The shape of the Pareto front was improved after initial exploration by the 

TSEMO algorithm, however the extreme points of the front were not identified until 

between experiments 40 and 60. The optimisation was terminated after 80 

experiments, as there were no significant changes to the GP model between 

experiments 60 and 80. Although this method required manual evaluation, it 

avoided using predefined limits and thus reduced the risk of premature termination.    

 

Figure 41. Different approaches for termination of a TSEMO self-optimisation: (a) 
quantified change in hypervolume between experiments; (b) visual inspection of the 
Pareto front predicted from the GP models.  
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3.3 Comparison of Multi-Objective Optimisation Algorithms 

Self-optimising systems must be kept up-to-date with the most recent and 

advanced technologies to ensure maximum efficiency is achieved. Therefore, 

recently developed multi-objective optimisation algorithms (MOOA) should be 

compared against their older counterparts with respect to Pareto convergence and 

diversity. In general, MOOAs are compared using mathematical test functions which 

represent a wide range of optimisation problems.123 These have a different number 

of variables and objectives with varying Pareto front properties. However, the 

variable and objective space are not specifically designed to mimic real chemical 

space, for example, high dimensional problems (e.g. DTLZ7a, inputs = 8) with 

disconnected local Pareto fronts. Hence, a series of chemistry-based test problems 

have been designed to improve the evaluation of MOOAs for the self-optimisation of 

chemical reactions. This was achieved by constructing a kinetic-based reaction 

simulator. 

Four reactions with known kinetics (pre-exponential factors and activation 

energies) were identified in the literature: (i) Van de Vusse reaction;124 (ii) 

nucleophilic aromatic substitution between 2,4-difluoronitrobenzene and 

morpholine;125 (iii) isomerisation of lactose to lactulose;126 (iv) Paal-Knorr reaction 

between 2,5-hexanedione and ethanolamine (Scheme 15).127 These examples 

provided a good representation of non-competitive (iv) and competitive reactions, 

including competing parallel (i, ii & iii) and consecutive pathways (ii & iii). Although 

reactions (iii) and (iv) contain reversible reactions, the k-1 rate constants are 

negligible and were therefore omitted. Six test problems were formulated using 

reaction variable limits as constraints and different process metrics as objectives. 

Details and visual representations of the variable and objective space for each test 

problem are provided in the experimental section. A summary of the test problems 

including a description of the Pareto front is provided in Table 9. Each problem was 

designed to contain between 2-4 variables and 2-3 objectives, as higher dimensional 

problems are not realistic of current self-optimising chemical platforms. 

Furthermore, the variable limits and objectives for each problem were selected to 

ensure a diverse range of Pareto fronts were generated in terms of morphology, 

uniformity and continuity.      
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(i) 

 
 

A1 = 2.1 × 1010 min-1, A2 = 2.1 × 1010 min-1, A3 = 1.5 × 108 min-1,  
Ea,1 = 81.1 kJ mol-1, Ea,2 = 81.1 kJ mol-1, Ea,3 = 71.2 kJ mol-1 

 

 

 
(ii) 

 
 

A1 = 1.6 × 106 M-1 min-1, A2 = 1.4 × 104 M-1 min-1, A3 = 1.0 × 104 M-1 min-1, 
A4 = 3.7 × 108 M-1 min-1, Ea,1 = 43.2 kJ mol-1, Ea,2 = 35.3 kJ mol-1,  
Ea,3 = 40.8 kJ mol-1, Ea,4 = 68.9 kJ mol-1 

 

 
(iii) 

 
 

pH = 11, A1 = 9.5 × 1014 min-1, A2 = 7.0 × 1024 min-1, A3 = 4.0 × 107 min-1,  
Ea,1 = 105.1 kJ mol-1, Ea,2 = 174.0 kJ mol-1, Ea,3 = 54.9 kJ mol-1 
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(iv) 

 
 

A1 = 15.4 M-1 min-1, A2 = 405.2 min-1, Ea,1 = 12.2 kJ mol-1, Ea,2 = 20.0 kJ mol-1 

Scheme 15. Literature reactions and kinetic data used to formulate the  
chemistry-based multi-objective test problems: (i) Van de Vusse reaction; (ii) 
nucleophilic aromatic substitution between 2,4-difluoronitrobenzene 3.16 and 
morpholine 3.17; (iii) isomerisation of lactose 3.21 to lactulose 3.22; (iv)  
Paal-Knorr reaction between 2,5-hexanedione 3.24 and ethanolamine 3.25.  
A = pre-exponential factor, Ea = activation energy. 

 

Table 9. Summary of the chemistry-based multi-objective test problems. VdV = Van 
der Vusse, PK = Paal-Knorr. 

Test Problem Variables Objectives Description of Pareto Front 

VdV1 2 2 

Density of solutions fall away near to 
the Pareto front, which is  

non-uniformly distributed between 
linear and convex regions 

SNAr1 2 3 
Optimal solutions follow a convoluted 

path through objective space with 
concave regions 

SNAr2 4 3 
Convex, non-uniformly distributed 

Pareto front 

Lactose1 2 2 
Pareto front is a convex curve with 

many solutions 

PK1 2 2 
Pareto front is a convex curve with 

relatively few solutions 

PK2 3 2 
Pareto front consists of three 

discontinuous linear and concave 
regions 
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The simulation procedure is outlined below. Firstly, the pre-exponential 

factors, A, and activation energies, Ea, were used to calculate the rate constants, k, 

for each reaction step. This was achieved using the temperature dependant 

Arrhenius equation [Eq (33)], where T = temperature and R = gas constant (8.314 J 

mol-1 K-1). Rate equations with respect to the consumption of each species were 

written in their differential form. For example, the differential rate equations for the 

four compounds (A-D) in the Van de Vusse reaction were written according to [Eq 

(34-(37)] respectively. The concentration of each compound at the outlet of the 

reactor was determined by evaluating the rate equations using an ordinary 

differential equation (ODE) solver. The ODE solver is a temporal discretisation 

method which provides approximate solutions to transient rate problems by 

calculating the concentrations iteratively in time steps. This process was terminated 

after four reactor volumes to ensure steady-state was achieved. In this case, the 

system was modelled for four CSTRs in series by solving simultaneously the coupled 

ODE equations.128      

𝑘 = 𝐴𝑒−
𝐸𝑎
𝑅𝑇 (33) 

𝑟𝑎𝑡𝑒 = −
∆𝐴

∆𝑡
= 𝑘1[𝐴] + 𝑘3[𝐴]2 (34) 

𝑟𝑎𝑡𝑒 = −
∆𝐵

∆𝑡
= −𝑘1[𝐴] + 𝑘2[𝐵] (35) 

𝑟𝑎𝑡𝑒 = −
∆𝐶

∆𝑡
= −𝑘2[𝐵] (36) 

𝑟𝑎𝑡𝑒 = −
∆𝐷

∆𝑡
= −𝑘3[𝐴]2 (37) 

The yields of each compound were calculated from the outlet concentrations. 

The error associated with the experimental platform used throughout this work was 

previously characterised to have a maximum absolute and relative error of 0.25% 

and 0.5% respectively.129 Therefore, the yields were adjusted according to [Eq (38)] 

to better reflect a real chemical system, where Y = yield and rand = random number 

between 0 and 1. If the adjusted yield, Yadj, was less than 0 or greater than 100, then 

it was forced onto the nearest boundary. This ensured the successful calculation of 

alternative objectives of interest such as STY and RME.    
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𝑌𝑎𝑑𝑗 = 𝑌 + ((
𝑟𝑎𝑛𝑑 − 0.5

2
) + 𝑌 (

𝑟𝑎𝑛𝑑 − 0.5

100
)) (38) 

The results were given to a specified MOOA, which generated the next set of 

reaction conditions based on the previous results. To assess the performance of each 

MOOA, the hypervolume after every iteration was calculated during  

post-processing. As calculation of the actual hypervolume is considered to be too 

computationally expensive, a Monte-Carlo method was used to provide a 

satisfactory approximation.130 The estimate was made by calculating the percentage 

of 100,000 random points in the objective space which were dominated by the 

current Pareto front.131, 132 The utopian and anti-utopian point for the objective 

space of each test problem were selected by creating a superset of the  

non-dominated solutions from all runs across all algorithms. The reference point for 

the objective space was then defined as the anti-utopian point shifted by 0.01 of the 

difference between the utopian and anti-utopian point.133   

The performance of TSEMO,96 Pareto efficient global optimisation 

(ParEGO),133 NSGA-II94 and expected improvement matrix efficient global 

optimisation (EIM-EGO)134 were compared using the developed approach. 

Implementations of ParEGO, NSGA-II and EIM-EGO were all available in the platform 

for evolutionary multi-objective optimisation (PlatEMO) toolbox in MATLAB.135, 136 

The TSEMO algorithm used throughout this work was compared with both one and 

four points (batch sequential, BS-TSEMO) per iteration. ParEGO and EIM-EGO were 

chosen as they represent alternative surrogate model-based multi-objective 

optimisation algorithms, whereas NSGA-II is a commonly used genetic algorithm. 

The TSEMO, BS-TSEMO, ParEGO and EIM-EGO were initialised using a LHC design 

of size 20. Each algorithm had a function evaluation budget of 100, and was ran 20 

times for each test problem to compare average performance. To account for the 

function evaluation budget, the NSGA-II population size and total number of 

generations were changed to 20 and 5 respectively.    

Plots showing the average change in hypervolume throughout the 

optimisations are shown in Figure 42. Furthermore, boxplots of the optimisation 

results after 60 function evaluations are displayed in Figure 43, which provides a 

more detailed view at a practical number of experiments. From these results, the 

following observations and conclusions can be made: 
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▪ The NSGA-II algorithm has the lowest hypervolume after any number 

of function evaluations beyond the initial dataset, apart from the 

Lactose1 test problem where it has similar performance to ParEGO. 

Thus, surrogate model-based approaches are more suitable for 

expensive-to-evaluate problems. 

▪ The TSEMO and BS-TSEMO algorithms have a very similar 

performance based on the median and interquartile range of the 

hypervolume after 60 function evaluations. However, a notable 

difference occurs for the VdV1, SNAr2 and PK1 test problems, where 

the increase in hypervolume after the initial dataset is slower for  

BS-TSEMO. This is due to a reduction in the use of information 

gathered at run time. Hence, a balance between experiment time and 

total number of experiments is required. 

▪ ParEGO suffers from a large range of hypervolumes in 3 of the 6 test 

problems (Lactose1, PK1, PK2), indicating that ParEGO is less robust 

compared to the other algorithms. 

▪ EIM-EGO outperforms the other algorithms on 4 of the 6 test problems 

(VdV1, Lactose1, PK1, PK2) based on the median of the hypervolume 

after 60 function evaluations. Furthermore, the increase in 

hypervolume is significantly faster after the initial dataset compared 

to TSEMO for the VdV1 and PK2 test problems. This is likely caused by 

an increased emphasis on exploitation when using an expected 

improvement matrix compared to Thompson sampling.   

 

 

 

 

 

 

 



104 

 

 

Figure 42. Plots showing the average change in hypervolume across 20 runs with 
100 function evaluations each. 
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Figure 43. Boxplots of the optimisation results after 20 runs and 60 function 
evaluations using hypervolume as a performance indicator. The NSGA-II results 
were omitted for clarity. + = outlier (more than 1.5× the interquartile range away 
from the upper or lower quartile). 

3.4 Conclusions 

There has been an increasing shift towards the use of continuous flow 

chemistry for the synthesis of APIs in recent years.137 In this work, a Sonogashira 

reaction used in the synthesis of lanabecestat, a phase III clinical trial drug candidate 

for the treatment of Alzheimer’s disease, was transferred from batch to flow.113 

Initial analytical development resulted in a robust autonomous flow reactor, which 

was utilised to perform a systematic DoE study. These investigations led to the 

identification of: (i) unexpected interactions between the solvent and co-catalyst; 

(ii) a positive correlation between aerobic conditions and conversion; (iii) response 

surface models for each compound of interest, which guided further optimisation 

studies. 
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Despite the advantages associated with feedback-directed optimisation, the 

use of self-optimisation to develop pharmaceutically relevant steps have been 

sparsely reported.46, 48 This is partly due to the focus on single objective optimisation 

in academia, whereas industry must consider multiple conflicting objectives during 

process design. Our previously described multi-objective optimisation approach 

was used to simultaneously optimise conversion and STY of the Sonogashira 

reaction with respect to three parameters. Identification of the Pareto front enabled 

the optimum reaction conditions to be re-evaluated with changing downstream 

work-up specifications in the active learning process. In this way, individual steps 

could be optimised in parallel and combined to yield a multi-step process in a 

reduced time frame. Furthermore, optimisation of the Sonogashira reaction 

required only 35 hours with no human intervention. Hence, this work demonstrated 

how a standardised workflow of analytical development, automated DoE studies 

and multi-objective self-optimisation can be utilised to provide all necessary 

information within the time constraints of a late-stage pharmaceutical development 

project.  

The efficiency of self-optimisation can be directly related to the choice of 

optimisation algorithm. Therefore, it is important to keep self-optimising systems 

up-to-date with the latest advances in computer science. This is imperative in the 

pharmaceutical industry, where reactions involve high-value drug precursors. A 

method to compare the performance of multi-objective optimisation algorithms for 

the self-optimisation of chemical reactions was developed using a kinetic-based 

reaction simulator. Of the algorithms tested, EIM-EGO was found to outperform the 

TSEMO algorithm used throughout this work, and should therefore be implemented 

for future multi-objective optimisations.134     
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Chapter 4 A Miniature CSTR Cascade Reactor for Biphasic 

Continuous Flow Photochemistry 

4.1 Introduction 

Ultraviolet and visible (UV-Vis) light are parts of the electromagnetic spectrum 

defined by wavelengths between 10-400 nm and 400-700 nm respectively. The 

energy from UV-Vis photons can be absorbed by molecules and exploited to achieve 

many organic transformations, such as: cycloadditions, sigmatropic rearrangements 

and electrocyclic ring closures.138 Photoactivation of substrates often removes the 

need for additional reagents, thus reducing by-product formation. Hence, photons 

can be described as “traceless and green reagents”, making photochemical methods 

attractive for sustainable process development.139 A reaction of particular interest 

to the fine chemical industry is the aerobic oxidation of C-H bonds. This reaction 

utilises molecular oxygen as a low cost and environmentally friendly oxidant, to 

provide access to valuable building blocks for further functionalisation. As such, this 

work will focus on photochemistry in the context of aerobic oxidations. 

Absorption of photons by a molecule results in photoexcitation, where an 

electron is promoted from a lower energy level to a higher energy level. In the case 

of oxygen, the ground state (Figure 44a) and excited states (Figure 44b & c) differ in 

the spin and occupancy of the degenerate π* orbitals. Triplet state refers to ground 

state oxygen (3∑g-) where the two π* electrons occupy different orbitals with the 

same spin. Singlet state refers to the two excited states of oxygen, where the spin of 

the two π* electrons are opposite. The configuration where the electrons occupy 

different orbitals (1∑g+) is 63 kJ mol-1 higher in energy compared to when the 

electrons are paired (1Δg).140 This results in rapid conversion from O2(1∑g+) to 

O2(1Δg), which is a highly reactive and electrophilic species due to a low-lying lowest 

unoccupied molecular orbital (LUMO). Therefore, O2(1Δg) readily reacts with 

electron-rich substrates such as activated alkenes.141  

In systems that have poor UV-Vis light absorptivity, a photosensitiser (PS) can 

be used to induce a chemical reaction. A photosensitiser is defined as a molecule 

which absorbs radiation and causes a photochemical change in a different molecule, 

without itself being consumed in the reaction.142 Photosensitisers absorb light and 

are promoted from the ground singlet state, S0, to the excited singlet state, S1. 



108 

 

Intersystem crossing (ISC) generates the lower energy excited triplet state, T1, of the 

photosensitiser, which has a longer lifetime (μs vs. ns).143 This enables the T1 state 

of the photosensitiser to instigate aerobic oxidation following either a type I or type 

II mechanism.144 The type II mechanism (Figure 44d) is characterised by energy 

transfer from PS(T1) to O2(3∑g-), resulting in the formation of singlet oxygen.145 

O2(1Δg) can then either react with the substrate or return to a lower energy state via 

non-radiative relaxation.  

  

  

Figure 44. Photoexcitation of oxygen: (a) molecular orbital (MO) diagram for 
ground state triplet oxygen; (b) MO diagram for excited state singlet oxygen with 
paired π* electrons; (c) MO diagram for excited state singlet oxygen with unpaired 
π* electrons; (d) Jablonski diagram showing singlet oxygen production by energy 
transfer from a photosensitiser (type II mechanism). ISC = intersystem crossing. 

Excitation of the photocatalyst results in a high energy electron which can be 

more easily removed, whilst the low-lying vacant orbital can accept an electron. 

Thus, the excited photocatalyst can  behave as both an oxidant and reductant, where 
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the redox properties are related to the energy difference between the exited and 

ground states.146 In the type I mechanism (Scheme 16), the excited state of the 

photocatalyst oxidises the substrate to produce a radical cation. The photocatalyst 

is reoxidised by oxygen, resulting in the formation of superoxide. Loss of a proton 

from the radical cation produces a substrate radical, which subsequently reacts 

directly with triplet oxygen, or the superoxide formed during photocatalyst 

reoxidation. Alternatively, hydrogen abstraction from the radical cation produces a 

substrate cation, which is quenched by water to form the oxygenated product.147   

 

Scheme 16. Type I mechanism for photocatalytic aerobic oxidation. Cat = 
photocatalyst, Sub = substrate. 

Despite the clear advantages of photochemical aerobic oxidations from a 

sustainability perspective, the uptake of these reactions by the fine chemicals 

industry has been relatively slow. This is due to difficulties associated with the  

scale-up of photochemical reactions and the safe use of molecular oxygen in batch. 

However, recent developments in continuous flow reactor technology have 

provided a solution to these issues.148  

The Beer-Lambert law states that there is a logarithmic decrease in the light 

intensity with increasing path length (Figure 45). Therefore, scaling-up to larger 

reactors extends the reaction time, causing overirradiation of the reaction mixture. 

This can result in the formation of significant by-products and impurities, which 

complicates the subsequent purification steps. In contrast, the narrow channels of 

continuous flow microreactors provide uniform irradiation of the entire reaction 

mixture. This significantly reduces reaction times and increases product selectivity, 
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providing an overall more productive photochemical process.149 Furthermore, 

increased productivity can be achieved by running multiple reactors in parallel 

(numbering-up), rather than increasing the dimensions of the reactor.150        

l

I/I0

-log(I/I0) = εcl

hν 

 

Figure 45. Logarithmic decrease in light intensity with increasing path length, as 
defined by the Beer-Lambert law. I = light intensity, I0 = initial light intensity, ε = 
molar extinction coefficient, c = concentration, l = path length. 

One of the challenges associated with aerobic oxidation in batch is achieving 

good mixing between the gas and liquid phases. This, combined with the poor 

solubility of O2 in most organic solvents, results in processes that are often mass 

transfer limited. Furthermore, the build-up of O2 in the headspace of the reactor 

poses a significant explosion risk when used in combination with organic solvents. 

Therefore, O2 is generally diluted with N2 to prevent formation of combustible 

mixtures. However, this further limits O2 availability due to competitive dissolution 

between the gaseous species.151 The reaction efficiency can be significantly 

improved in continuous flow microreactors, as the absence of a headspace enables 

safer use of pure O2. In addition, the segmented flow observed for biphasic gas-liquid 

flow in capillary tubing provides a high interfacial area, thus enhancing the rate of 

mass transfer.152   

Although microreactors offer more productive photochemical processes on a 

laboratory-scale, limitations still exist regarding the scale-up of these systems. 

While numbering-up offers a potential solution, there remains operational 

challenges in the context of highly regulated manufacturing of pharmaceuticals. 

Therefore, CSTRs remain the favoured choice of reactor for high productivity 

applications in the pharmaceutical industry. This led to the development of a 100 

mL laser driven CSTR for a kilogram-scale photocatalysed C-N coupling reaction.153 
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The authors utilised a high intensity laser (25 W) to increase the total amount of 

light absorbed, and thereby overcome the lower surface area to volume ratio. 

Miniature CSTR cascades have previously been reported for the  

laboratory-scale development of multiphasic reactions.154 Active mixing provided 

by the CSTRs decouples flow rate and mixing performance, making them more 

suitable for mass transfer limited reactions with longer residence times.155 This also 

enables a low liquid holdup to be maintained, which is essential for minimising 

material consumption during reaction optimisation. Furthermore, the constant 

agitation prevents the settling of particulates, thus reducing the risk of reactor 

fouling compared to microreactors.156 This is particularly desirable for photodriven 

reactions, where deposition on the walls of the reactor reduces their performance 

over time.157 Herein, this work describes the design, characterisation and 

application of a LED-based miniature CSTR cascade for biphasic continuous flow 

photochemistry. The reactor is combined with an automated experimental platform 

for the development of a photochemical aerobic oxidation reaction, utilising a novel 

hybrid self-optimisation approach.      

4.2 Miniature CSTR Cascade 

4.2.1 Reactor Design 

A schematic and photo of a single miniature CSTR are shown in Figure 46a. The 

CSTR was designed with a 2 mL cylindrical reaction chamber, to provide a low liquid 

holdup for sustainable process development on a laboratory-scale. Active mixing 

was achieved via magnetic coupling between a PTFE cross stirrer bar (10 mm 

diameter) and a conventional stirrer plate, both of which are ubiquitous in most 

chemical laboratories. The magnetic coupling design removed the need for sealing 

of a motor shaft, which can be challenging on a small-scale.155 The lid and base of the 

reactor were constructed from polyacetal and stainless steel respectively. This 

ensured a good thermal conductivity for high temperature applications, whilst 

providing high chemical resistance and a low cost of production. Each CSTR had a 

minimum of two inlet ports for the direct addition of multiple reagents. The reactor 

was sealed with PTFE gasket and transparent glass cabochon (viewing window), 

thus enabling visual inspection of the reaction mixture. This simple design allowed 
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the reactor to be easily cleaned in cases of fouling, providing a more economical 

alternative to the replacement of blocked microreactors (e.g. chip reactors).        

(a) 

 

 

(b) 

 

Figure 46. Miniature CSTR cascade design: (a) exploded view CAD drawing of a 
single miniature CSTR and a top-view photograph of a constructed single miniature 
CSTR; (b) photograph of four photochemical CSTRs in series. 

Irradiation of the reaction mixture was achieved by fitting a light-emitting 

diode (LED, 365 nm, 2.9 W) above the viewing window of each miniature CSTR 

(Figure 46b). LEDs offer significant advantages over traditional mercury lamps, 

including: (i) tailored wavelengths between 365 and 900 nm which provides a wider 
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range of applications;158 (ii) narrow emission bands (± 20 nm) which improves 

selectivity;148 (iii) high energy efficiency resulting in lower surface temperatures. 

Advantage (iii) enabled the heat generated from the LEDs to be easily dissipated 

through a combination of passive and convective cooling, using heat sinks and 

server square fans respectively. This prevented the heat generated from the LEDs 

from negatively influencing the reaction. All experiments were conducted at 1000 

rpm (highest setting) to maximise the interfacial area between the phases. 

Furthermore, the modular and versatile design of the reactor enabled the number 

of CSTRs to easily be changed for different applications. A modified version of this 

miniature CSTR cascade (fReactor) was made commercially available in 2019 

(Asynt), with a view of incorporating photoirradiation in the near future.159 This 

provides an affordable plug-and-play continuous flow reactor which is accessible 

for the general chemist.  

4.2.2 Reactor Characterisation 

4.2.2.1 Mixing Properties 

The mixing properties of the reactor were characterised by determining the 

residence time distribution (RTD). This was achieved using the pulse method which 

is outlined below (Figure 47). Initially, the miniature CSTR cascade was pre-filled 

with water at a flow rate of 4.0 mL min-1. A pulse of 10% (v/v) red food dye was 

rapidly introduced into the flow stream using a six-port valve, and samples were 

collected from the outlet of the reactor at regular time intervals. The absorbance of 

each sample was determined via offline UV-Vis spectroscopy (516 nm). The RTD 

function E(t) was calculated by dividing the absorbance at each residence time by 

the total area under the absorbance curve. 

The mixing performance was assessed by comparing the experimentally 

determined RTDs against the CSTRs in series model defined by [Eq (39)].1 The 

experimentally determined RTDs were consistent with the CSTRs in series model 

for n = 1, 3 and 5, where n = number of CSTRs (Figure 48). This suggests that a 

uniform concentration in each CSTR is achieved, and therefore the agitation 

provides rapid mixing. As expected, the RTDs become narrower with increasing n, 

and thus bring the behaviour of the system closer to that of a plug flow reactor (PFR). 

In addition, the absence of any significant peak tailing indicates that dead volumes 
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are negligible. As such, the performance of this reactor for a reaction with known 

kinetics could be predicted using the CSTRs in series model.  

Tracer

Syringe 
pump

Six-port 
valve

Waste

n
CSTR 

Cascade

UV-Vis
 

Figure 47. Set-up for determining the RTD of a miniature CSTR cascade using the 
pulse method. 

𝐸(𝑡) =
𝑡𝑛−1

(𝑛 − 1)! 𝜏𝑖
𝑛 𝑒−𝑡/𝜏𝑖  (39) 

 

Figure 48. Comparison between theoretical and experimental RTDs for a CSTR 
cascade with a varying number of stages, n. E(θ) = normalised RTD function. 

The average residence times (tm) were determined by calculating the area 

under the curve for a plot of tE(t) against t [Eq (40)]. The calculated and theoretical 

values are displayed in Table 10. The relative difference between the calculated and 

theoretical average residence times increases with decreasing n. These 
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discrepancies are likely due to the impossibility of experimentally injecting a perfect 

tracer spike. If additional equipment was available, these experimental limitations 

could be overcome by conducting in-line UV-Vis analysis at the inlet and outlet of 

the reactor, which would enable deconvolution of the inlet concentration profile and 

RTD.156    

𝑡𝑚 =  ∫ 𝑡𝐸(𝑡) 𝑑𝑡
∞

0

 (40) 

Table 10. Average calculated and theoretical residence times for 2 mL CSTRs in 
series at a flow rate of 4 mL min-1. 

n Theoretical tm/min Calculated tm/min 

1 0.50 0.80 

3 1.50 1.67 

5 2.50 2.52 

 

4.2.2.2 Absorbed Photon Flux Density 

The absorbed photon flux density (qp/Vr) defines the amount of light absorbed 

per unit of volume per unit of time. Therefore, the higher the absorbed photon flux 

density of a reactor, the higher the intrinsic rate of reaction for a photochemical 

process. The absorbed photon flux density can be experimentally determined via 

chemical actinometry, which uses a photoinduced reaction of a compound with a 

known quantum yield (ɸλ), to measure the incident light intensity (I0) at a given 

wavelength. The rate of conversion of the actinometric compound (Act) is defined 

by [Eq (41)], where f is the fraction of light absorbed. The relationship between the 

rate of conversion of the actinometric compound [Eq (41)], and the rearranged form 

of the Beer-Lambert law [Eq (42)], can be used to derive [Eq (43)] for the calculation 

of the incident light intensity.  

In this case, the experiments were conducted with a relatively long path length 

(l = 1 cm) and high concentration of the actinometric compound ([Act] = 0.1 M). 

Hence, the right-hand term of [Eq (43)] tends towards unity, indicating operation 

under full absorption (f = 1). Under these conditions, the kinetics of the reaction can 

be assumed to be zero-order. This simplifies [Eq (43)] to [Eq (44)], where the only 

unknown is the zeroth-order rate constant (k0). Notably, the incident light intensity 

is equivalent to the absorbed photon flux density when f = 1.160  
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o-Nitrobenzaldehyde 4.01 (NBA) is a well characterised chemical actinometer 

with a known molar extinction coefficient (ε = 260 M-1 cm-1) and quantum yield (ɸ365 

= 0.5) at 365 nm.161 Therefore, the photochemical isomerisation of NBA 4.01 to  

o-nitrosobenzoic acid 4.02 was investigated using an automated continuous flow 

platform (Scheme 17). In theory, the zeroth-order rate constant is equal to the 

negative slope of the residence time profile for the photochemical conversion of NBA 

4.01 (Figure 49). However, significant curvature was observed as a result of light 

absorption by the o-nitrosobenzoic acid 4.02 product.160 As such, a second-order 

polynomial was fit to the data (R2 = 0.9833), and the initial slope of the curve 

determined by evaluating the derivative at tres = 0. The resultant zeroth-order rate 

constant (k0 = 1.67 μg μL-1 min-1) was used to calculate the absorbed photon flux 

density according to [Eq (44)].     

The absorbed photon flux density for the CSTR cascade (qp/Vr = 0.37 einstein 

m-3 s-1) is an order of magnitude greater than previously reported photochemical 

batch reactors (qp/Vr = 0.033 einstein m-3 s-1), whilst being only 2x less than a 

photochemical microreactor chip (qp/Vr = 0.71 einstein m-3 s-1).162 This can be 

attributed to the enhanced mixing within the CSTRs, which rapidly transports the 

reactants and products into and out of the photochemically active region. This 

overcomes the issue of diminishing light intensity as a function of distance travelled 

through the reaction medium. Therefore, this design successfully improves 

productivity compared to batch reactors whilst maintaining the advantages of 

CSTRs described previously. In addition, as the incident light intensity of this set-up 

is now known, the quantum yield of reactions can be experimentally determined via 

kinetic profiling, which provides useful mechanistic insights.163, 164  
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Scheme 17. Automated set-up for the characterisation of absorbed photon flux 
density using o-nitrobenzaldehyde 4.01 as a chemical actinometer. 

 

 

Figure 49. Residence time profile for the conversion of o-nitrobenzaldehyde 4.01 
(NBA) under irradiation at 365 nm. 

4.3 Aerobic Oxidation of C(sp3)-H Bonds 

The site-selective oxidation of aliphatic C-H bonds, which are abundant in 

organic chemistry, provides a strategic tool for the late-stage functionalisation of 

complex molecules.165 Despite this, efficient methods for the oxidation of C(sp3)-H 

bonds are still limited, with most approaches requiring complex  

transition-metal-based catalytic systems and strong oxidants.166 Biocatalytic 
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methods offer significantly milder reaction conditions, but suffer from a very limited 

substrate scope.167 An alternative approach involves hydrogen abstraction transfer 

(HAT), where substrate radicals and generated and trapped by molecular oxygen. 

This can be achieved electrochemically or photochemically, and thus has a reduced 

environmental impact.168, 169  

The decatungstate anion has previously been used as a HAT photocatalyst for 

the aerobic oxidation of C(sp3-H) bonds.170 Notably, Noël et al. recently reported an 

improved continuous flow process, utilising an LED-based microreactor.171 This 

enabled the safer use of pure oxygen, whilst overcoming photon penetration and 

mass transfer limitations. Furthermore, this method had a wide substrate scope for 

both activated and unactivated C(sp3)-H bonds. However, the poor solubility of 

tetra-n-butylammonium decatungstate (TBADT) increases the risk of reactor 

fouling, and limits the solvent selection to acetonitrile, which ranks poorly in terms 

of waste and life cycle assessment (LCA).172 In addition, the reaction still requires 

relatively long residence times (45 mins). Herein, this work focuses on the 

optimisation of the selective aerobic oxidation of tetralin to α-tetralone (Scheme 18) 

in continuous flow, utilising the developed LED-based miniature CSTR cascade. 

 

Scheme 18. Selective aerobic oxidation of tetralin 4.03 to α-tetralone 4.04. 
Overoxidation results in the formation of 1,4-naphthoquinone 4.05. Reaction 
conditions and yields are quoted from Noël et al.171 

Although TBADT is commercially available, it is relatively expensive (£296 g-1, 

Merck).173 Therefore, TBADT 4.06 was prepared by reaction of sodium tungstate 

dihydrate with tetrabutylammonium bromide under acidic conditions (Scheme 

19).174 The UV-Vis spectra of the product (Figure 50) showed good agreement with 

literature, thus confirming the successful synthesis of TBADT 4.06.175 Furthermore, 

the known molar extinction coefficient at 323 nm (ε323 = 1.35×104 dm3 mol-1 cm-1) 

was used to calculate a high purity of 92%.176 However, in contrast to the previously 

reported yields of 85-95%, only a 47% yield was obtained, indicating poor 
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reproducibility. Nevertheless, the overall cost was still significantly reduced 

compared to commercial sources (£1.74 g-1 cf. £296 g-1).   

 

Scheme 19. Synthesis of TBADT 4.06 from sodium tungstate dihydrate and 
tetrabutylammonium bromide. 

 

Figure 50. UV-Vis spectrum of prepared TBADT 4.06. The spectrum is in good 
agreement with literature, and shows a 92% purity (ε323 = 1.24×104 dm3 mol-1  

cm-1). ★ = absorbance value used to calculate ε323.  

The miniature photochemical CSTR cascade was integrated with an automated 

reactor platform to enable efficient optimisation of the aerobic oxidation of tetralin 

4.03 to α-tetralone 4.04 (Scheme 20). Although the use of pure oxygen is desirable 

from a process intensification perspective, the headspace in the CSTRs present the 

same safety risks associated with traditional batch vessels. Therefore, compressed 

air (21% O2, 79% N2) was utilised as a safe source of oxygen for the reaction. The 

expansion of gas at different temperatures was accounted for using the ideal gas law 

[Eq (45)], where P = pressure, V = volume, n = number of moles, R = gas constant 
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(8.314 J K-1 mol-1) and T = temperature. This enabled calculation of the fluid and air 

flow rates required to achieve the desired residence time and oxygen equivalents. 

𝑃𝑉 = 𝑛𝑅𝑇  (45) 

One of the challenges associated with multiphasic continuous flow chemistry 

is achieving reliable autosampling from the phase of interest. In this case, the  

gas-liquid segmented flow regime, in the tubing between the reactor outlet and 

sample loop, resulted in sporadic sampling of the undesired gaseous phase. This 

problem was overcome by the integration of a commercially available inline 

membrane-based separator (Zaiput).177, 178 When fitted with a PTFE membrane, the 

gaseous phase was retained whereas the liquid phase was permeated. This enabled 

degassing of the reaction mixture at the outlet of the reactor, thus providing reliable 

autosampling of the liquid phase. 

 

Compressed 
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Scheme 20. Automated reactor for the optimisation of the aerobic oxidation of 
tetralin 4.03 to α-tetralone 4.04. MFC = mass flow controller. 

Initially, a 2-level full factorial DoE was conducted to screen the following 

variables and experimental space: residence time (5 – 20 min), O2 equivalents (0.5 

– 3) and temperature (29 – 59 °C). Although an increased pressure would increase 

the amount of dissolved oxygen, use of a BPR resulted in inaccurate gas flow rates. 

Therefore, all reactions herein were conducted at ambient pressure. The results of 

the experiments at the lower temperature limit are shown in Table 11. 
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Table 11. Results of the full factorial experiments at the lower temperature limit. 

Entrya tres/min O2 equiv. Conversion/% Yield/%b 

1 5 0.5 32 9 

2 20 0.5 31 10 

3 5 3.0 51 13 

4 20 3.0 87 22 

a TBADT (5 mol%), temperature = 29 °C, MeCN. b Yield of α-tetralone 4.04. 

In all cases the conversion was significantly higher than the yield of α-tetralone 

4.04. This indicated the formation of a by-product, which was verified by the 

presence of a significant impurity peak in the HPLC chromatograms. A sample was 

collected and the by-product isolated via flash column chromatography. 1H NMR 

spectroscopy characterised the impurity as an ≈15:1 mixture of tetralin-1,4-dione 

4.08 and 1,4-naphthoquinone 4.05. Reanalysis of this mixture by HPLC showed that 

1,4-naphthoquinone 4.05 had formed during purification, and was therefore not a 

product of the reaction conditions.  

A proposed reaction scheme, which is consistent with the above observations, 

is shown in Scheme 21. Initially, tetralin 4.03 is oxidised to peroxide 4.07, which 

subsequently decomposes into α-tetralone 4.04. Over-oxidation of α-tetralone 4.04 

results in the formation of diketone 4.08. Notably, the potential α-tetralol products 

were not observed, suggesting that they were either not formed, or were rapidly 

oxidised under the reaction conditions to their corresponding ketones.179 The  

keto-enol tautomerisation between diketone 4.08 and dienol 4.09 results in further 

oxidation to yield enedione 4.05. The degradation of diketone 4.08 occurred  

post-reaction, and thus prevented accurate HPLC calibration. Rather, the yield of 

4.08 was estimated based on the expected mass balance.      
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Scheme 21. Proposed reaction scheme for the TBADT photocatalysed aerobic 
oxidation of tetralin 4.03. 

The composition of the reaction mixture was determined for each experiment 

and response surfaces fit to the tetralin 4.03, α-tetralone 4.04 and diketone 4.08 

compounds (Figure 51). Notably, temperature was found to have no significant 

effect on the reaction, suggesting it had a negligible influence on the oxygen 

solubility and reaction kinetics. Therefore, ambient temperature was used for all 

future experiments. Conversion of tetralin 4.03 and formation of diketone 4.08 

favoured long residence times and high oxygen equivalents. An interaction term 

between the variables was also identified, which showed residence time to have a 

greater influence on the reaction at higher equivalents of oxygen. Furthermore, the 

yield of α-tetralone 4.04 was severely limited as a result of over-oxidation to 

diketone 4.08 at all points within the experimental space. This indicates that the 

rate of oxidation of α-tetralone 4.04 is faster than the rate of oxidation of tetralin 

4.03. In addition, a square term was detected for the α-tetralone 4.04 model. 

Although a full factorial design alone cannot differentiate between square terms, it 

could be concluded that the yield of tetralone 4.04 favoured either intermediary 

residence times or oxygen equivalents, which corresponds to a balance between 

conversion and over-oxidation.  
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Figure 51. Response surfaces for tetralin 4.03, α-tetralone 4.04 and diketone 4.08. 
The α-tetralone 4.04 model is shown with the tres*tres square term. 

It was hypothesised that the experimental space was dominated by  

over-oxidation due to the high photocatalytic activity of TBADT. Therefore, a batch 

screening was conducted to identify a more suitable photosensitiser (Table 12, 

entries 1-3). Benzophenone was selected for further optimisation, as the degree of 

over-oxidation was significantly reduced. However, α-tetralone 4.04 yields were 

lower when using benzophenone compared to TBADT in continuous flow, including 

at higher benzophenone loadings (entries 4-7). One of the advantages of using 

benzophenone compared to TBADT is an increased solubility in a wide range of 

organic solvents.180 This enabled the effect of different solvents on the reaction to 

be investigated (entries 8-10). Ethyl acetate was found to outperform both 

acetonitrile and toluene. Notably, entry 10 showed a similar α-tetralone 4.04 yield 

(25%) and a reduced diketone 4.08 yield (7%) compared to that predicted from the 

response surface of the previous TBADT system (4.04 = 27%, 4.08 = 60%). Control 

experiments under these new conditions confirmed that light was required for the 

reaction to proceed (entry 11). Furthermore, despite the structural similarities 

between benzophenone and the product, α-tetralone 4.04 was not an effective 

photosensitiser for the reaction (entry 12).        

The residence time profile for the conversion of tetralin 4.03 to α-tetralone 

4.04 and diketone 4.08 was determined under the new reaction conditions (Figure 

52a). The yield of α-tetralone 4.04 increases with increasing residence time up to 

30 min, where further increasing the residence time has a detrimental effect on the 
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reaction progress. This can be accounted for by the decomposition of benzophenone 

(Figure 52b), which resulted in a complex mixture of impurities. This is consistent 

with previous studies, which identified 15 degradation products as a result of OH-

addition, carboxylation and ring opening in the presence of hydroxyl radicals.181  

Table 12. Screening experiments for the photochemical aerobic oxidation of tetralin 
4.03 to α-tetralone 4.04. 

Entry PSe PS mol% Solvent Time/min 4.03/% 4.04/% 4.08/% 

1a A 5 MeCN 240 0 0 100 

2a B 5 MeCN 240 3 60 37 

3a C 5 MeCN 240 10 77 13 

4b A 5 MeCN 20 13 22 65 

5b C 5 MeCN 20 74 9 17 

6b C 10 MeCN 20 71 9 20 

7b C 20 MeCN 20 57 17 26 

8b C 20 MeCN 10 71 19 10 

9b C 20 PhMe 10 93 7 0 

10b C 20 EtOAc 10 68 25 7 

11b,c C 20 EtOAc 10 > 99 < 1 0 

12b,d C 20 EtOAc 10 97 3 0 

a Batch experiments open to air. b Flow experiments with 3.0 equivalents of oxygen. c No light. d No 
photosensitiser. Reaction mixture spiked with 20 mol% of α-tetralone. e PS = photosensitiser (A = 
TBADT; B = 2-tert-butylanthraquinone; C = benzophenone).  

  

Figure 52. Residence time profiles for the photochemical aerobic oxidation of 
tetralin 4.03: (a) conversion of tetralin 4.03 to α-tetralone 4.04 and diketone 4.08; 
(b) decomposition of benzophenone. Conditions: benzophenone (20 mol%), O2 (3 
equiv.), EtOAc. 
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To ensure consistent product quality, it is important to understand how 

fluctuations in process variables, such as those caused by system drift, affect the 

response of the system. However, previous self-optimisations of photochemical 

reactions have solely focused on the identification of optimum conditions, thus 

overlooking process robustness.73, 74 Bourne et al. described how statistical 

empirical modelling of data acquired during a global self-optimisation (i.e. 

SNOBFIT), could be used to predict reaction outcomes within the entire 

experimental space.68 Although the models in this work showed good fit to the data, 

experiments were not specifically directed towards the regions of highest interest. 

Therefore, a hybrid self-optimisation approach is proposed, which combines global 

optimisation techniques with local response surface mapping to provide greater 

understanding of process stability around the optimum conditions.a 

The hybrid self-optimisation algorithm can be divided into three consecutive 

stages: optimisation, screening and response surface mapping (Figure 53). Initially, 

the global optimum of the system is located using the SNOBFIT algorithm described 

previously. This stage is terminated once the best predicted conditions are the same 

for three consecutive iterations. Following this, a predefined target region is 

identified using a series of Plackett-Burman screening designs (fractional factorials, 

resolution III).182 This is achieved by constructing a GP surrogate model of the 

existing data, and optimising for the upper and lower bounds of the target region. 

The system is then evaluated at the candidate set of experiments, and the process 

repeated until the target region is experimentally identified within a 20% relative 

tolerance. In the final stage a CCF design is conducted, which has the upper and 

lower bounds that were determined during the screening stage. These results are 

then used to construct a local response surface of the target region around the 

optimum.     

The hybrid self-optimisation approach was used to further optimise the 

photochemical aerobic oxidation of tetralin 4.03. The aim of the optimisation was 

to maximise the yield of α-tetralone 4.04 [Eq (46)], and explore a target region 

corresponding to a 10% decrease in yield from the optimum. Based on the previous 

 

a The remaining work in this chapter was carried out in collaboration with Ph.D. student J. 
A. Manson. JAM wrote the hybrid self-optimisation algorithm and the Author conducted all 
experimental work.  
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results, the upper bounds with respect to residence time and oxygen equivalents 

were increased. Furthermore, the amount of benzophenone was also increased from 

20 to 50 mol%.   
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Figure 53. Hybrid self-optimisation algorithm flowchart. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒[% yield of 𝟒. 𝟎𝟒], 𝑒𝑥𝑝𝑙𝑜𝑟𝑒[10 ± 2 % < max] (46) 

subject to: Residence time/min ∈ [2, 30] 

O2 equivalents ∈ [1.0, 5.0] 

The initial SNOBFIT optimisation was terminated after 38 experiments, with 

an improved α-tetralone 4.04 yield of 65% (Figure 54a). This was achieved at a tres 

of 18.3 min and O2 equiv. of 4.69. These conditions corresponded to a sweet spot in 

the experimental space, balancing the conversion of tetralin 4.03 with  

over-oxidation i.e. formation of diketone 4.08. The screening stage required three 

iterations totalling 12 experiments (Figure 54b). On each successive iteration, the 

size of the Plackett-Burman design decreased, as the algorithm converged on a point 

corresponding to a 10 ± 2 % reduction in yield. This point gave an α-tetralone 4.04 

yield of 53%, which was observed at a tres of 19.4 min and O2 equiv. of 3.69. 
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Figure 54. Hybrid self-optimisation results: (a) SNOBFIT optimisation; (b)  
Plackett-Burman screening designs where ■ = iteration 1, ◆ = iteration 2 and ●  = 
iteration 3; (c) response surface of the target region determined using a CCF DoE. 

Conditions: benzophenone (50 mol%), EtOAc. ☆ = maximum yield. 
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The subsequent CCF design was conducted between the upper and lower 

bounds of the target region determined during screening (tres ∈ [18.3, 19.4]; O2 

equiv. ∈ [3.69, 4.69]), and a response surface fit to the data (Figure 54c). The 

response surface showed a stronger dependence on oxygen equivalents compared 

to residence time. In addition, an interaction term between the variables was 

identified, where increasing residence time at low and high oxygen equivalents had 

a positive and negative impact on the yield respectively. Although the algorithm was 

successful in identifying a target region, it failed to explore all areas of interest 

around the optimum, such as those at longer residence times. This can be attributed 

to the symmetrical experimental designs used throughout, which have limited 

flexibility for exploration of experimental space. 

Nevertheless, an optimum α-tetralone 4.04 yield of 65% was obtained, which 

is comparable with previously reported examples (Scheme 22).171 Notably, the 

optimised reaction conditions provide an improved process from both an 

economical and environmental perspective. For example, benzophenone offers a 

metal-free, cheaper and more readily available alternative to TBADT. Air is also 

utilised as a non-toxic oxidant, which has minimal risks associated with its storage. 

The replacement of pure oxygen with air was enabled by the rapid mixing achieved 

in the miniature CSTRs, which helps to overcome the mass transfer limitations 

associated with gas-liquid segmented flow in tubular reactors. Furthermore, ethyl 

acetate is a preferred solvent of choice compared to acetonitrile in terms of LCA, and 

provides greater solubility for alkanes. This, combined with a significantly reduced 

residence time, provides an overall more productive process. 

 

Scheme 22. Comparison of optimised reaction conditions between previous work 
and this work for the photochemical aerobic oxidation of C(sp3)-H bonds. 
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4.4 Conclusions 

The development of LED-based continuous flow microreactors has led to a 

renewed interest in photochemistry in recent years.148 In this work, a new 

photochemical miniature CSTR cascade was developed and characterised. The RTD 

of the reactor showed good agreement with the CSTRs in series model, thus 

confirming that rapid mixing was achieved. Furthermore, chemical actinometry 

showed the reactor to have a 10× greater absorbed photon flux density compared to 

previously reported photochemical batch reactors.162  

The reactor was used to develop a continuous flow process for the  

site-selective aerobic oxidation of C(sp3)-H bonds; a reaction of great utility in the 

late-stage functionalisation of complex molecules.147 For this, the oxidation of 

tetralin to α-tetralone was selected as an appropriate case study. In contrast to 

previous work, initial DoE studies using TBADT as a photocatalyst led to the 

identification of tetralin-1,4-dione as the major by-product. Subsequent screening 

experiments identified benzophenone as a more favourable photosensitiser, 

however, reaction profiles indicated significant degradation at residence times 

greater than 30 min.  

During process design, it is equally important to gain a detailed understanding 

of process stability, as it is to identify optimal operating conditions. Therefore, a new 

hybrid self-optimisation algorithm was developed, which had synergistic aims of 

identifying the global optimum and mapping a local response surface around it. This 

approach successfully optimised the formation of α-tetralone in a yield of 65%, and 

provided a response surface in the target region corresponding to a 10% reduction 

in yield. This response surface was useful for identifying the relative influence of 

each variable in close proximity to the optimum. However, this approach is currently 

limited by rigid symmetrical experimental designs, which fail to locate and fully 

explore the entire area of interest.  

In summary, a new photochemical miniature CSTR cascade reactor was used 

to provide good yields for the aerobic oxidation of C(sp3)-H bonds in continuous 

flow under mild reaction conditions. Notably, pure oxygen was replaced with air as 

the oxidant, and the residence time of the reaction reduced by a factor of 2.5 

compared to previous work.171 This highlights the efficiency of the developed 

reactor towards multiphasic reactions on a laboratory-scale. Furthermore, the 
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decoupling of flow rate and mixing performance greatly broadens the scope of  

self-optimisations to a wider range of chemistries.  
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Chapter 5 Self-Optimisation of Multi-Step Continuous Reaction 

and Extraction Processes 

5.1 Introduction 

Multi-step reactions are those that involve more than one chemical 

transformation of the same compound, and are key for the synthesis of complex APIs 

from readily available starting materials. Traditionally, this has been achieved by 

iterative step-by-step transformations in batch, where intermediates are purified 

and isolated between each synthetic step (Figure 55a).183 However, this process has 

a very high space-time demand, as large inventories of intermediates must be stored 

and transported between different manufacturing sites. In contrast, continuous flow 

offers in-line purification and the addition of reagents at set points in the sequence, 

thus providing a more productive uninterrupted reaction network (Figure 55b).184 

This minimises the risk of supply chain disruptions, enabling reliable on-demand 

synthesis of APIs with a reduced ecological footprint. These benefits are especially 

emphasised in cases where APIs have a short shelf life.185   

Reaction Purification
Storage & 
Transport

a) Batch Production

b) End-to-End Continuous Flow

Reagents
Final 

Product

✔ Minimal supply chain disruption
✔ No large inventories of intermediates
✔ On-demand synthesis of APIs

Reagents
Final

Product

 

Figure 55. Comparison of multi-step manufacturing: (a) batch production; (b)  
end-to-end continuous flow. 

The end-to-end continuous flow synthesis of APIs is enabled by emerging  

in-line purification technologies.186 In-line purification accommodates the use of 
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excess reagents to drive reactions to completion, and allows reactions with 

otherwise incompatible conditions to be combined in the same continuous process. 

One of the most widely used purification techniques is liquid-liquid extraction (LLE), 

which separates compounds based on their relative solubilities in two immiscible 

liquids.187  

An in-line gravity-based LLE system was developed utilising computer vision 

to automate the process (Scheme 23), where computer vision refers to the ability of 

computers to interpret digital media.188 In this case, a camera was used to monitor 

the biphasic interface in the separation column, and a feedback loop created to 

dynamically adjust the flow rate of the light-phase outlet, thus keeping the interface 

at the desired position.189 This method was shown to be suitable for a number of 

transformations in DCM, including: hydrazone formation, mCPBA epoxidation of 

allyl alcohols and dithiane formation. In-line aqueous work-up of the reaction 

mixtures successfully removed the hydrazine 5.01, mCPBA by-product 5.02 and 

dithiol 5.03 impurities, yielding analytically pure hydrazones 5.04, epoxides 5.05 

and dithianes 5.06 respectively. However, gravity-based systems are hindered by 

slow rates of phase separation for solvents with similar densities.  

Synthesis
Hydrazones

Epoxides
Dithianes

Feedback

Aqueous

Organic

x = liquid level
y = flow rate

 

Scheme 23. A computer vision approach for in-line gravity-based liquid-liquid 
extraction. 

Alternatively, membranes can be used for the continuous separation of 

immiscible organic and aqueous phases. The phase with a higher affinity for the 
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membrane material (wetting phase) fills the pores, creating a differential pressure 

across the membrane. For complete separation to occur, the transmembrane 

pressure must be adjusted to allow permeation of the wetting phase, whilst 

simultaneously retaining the non-wetting phase.190 One challenge associated with 

this includes accounting for variations in pressure as a result of changing operating 

conditions downstream. This has previously required sophisticated feedback 

pressure control systems, comprising of adjustable back-pressure regulators at the 

outlets of the separtor.191 More recently, a liquid-liquid separator which utilises a 

diaphragm as an internal pressure controller has been reported (Figure 56).177 This 

improved design significantly simplifies in-line membrane-based separation, 

providing a modular plug-and-play unit (Zaiput) which can be readily integrated 

into reconfigurable continuous flow systems.70, 185 As such, this separator has been 

used for a wide range of applications, including: multi-step syntheses,192 reaction 

quenching,193 solvent switching194 and multistage counter-current extraction.195   

Segmented Flow

Diaphragm

Membrane

Retentate Outlet

Permeate Outlet

 

Figure 56. An in-line membrane-based liquid-liquid separator with internal 
pressure control (diaphragm). 

Although significant advances have been made towards the development of  

in-line LLE equipment, there has been little work regarding the efficient 

optimisation of extraction steps in multi-step continuous flow processes. Rather, 

automated optimisation has focused solely on the optimisation of reaction 

conditions, overlooking the significant effect of downstream purification steps on 

important process metrics. Jamison et al. reported the self-optimisation of a diverse 
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range of multi-step processes, using a reconfigurable continuous flow system and a 

black-box algorithm.70 However, the downstream extraction conditions were fixed, 

and therefore not included in the optimisation. Herein, this work describes for the 

first time the self-optimisation of in-line LLEs, and reaction-extraction multi-step 

continuous flow processes, where both stages are simultaneously optimised.  

5.2 In-Line Separation of Structurally Similar Impurities 

The presence of structurally similar impurities presents a significant challenge 

during multi-step continuous flow sequences. These can arise as a result of 

incomplete reactions and/or limited product selectivity. The ability to control these 

during the reaction steps is not always possible, therefore rigorous optimisation of 

the purification steps is required to provide a robust process. In cases where 

compounds possess acidic or basic functional groups, in-line purification can be 

achieved via pH-based LLE.196 However, such systems are generally very sensitive 

to changes in pH, and thus present a challenging optimisation problem. Herein, the 

continuous extraction of a 1o and 2o amine mixture is optimised using a  

self-optimisation approach.  

In-line membrane-based separation was achieved using the commercially 

available Zaiput fitted with a hydrophobic membrane, which could be readily 

integrated into our existing automated continuous flow system. There are two 

modes of failure associated with membrane-based separators: (i) breakthrough of 

the retained (aqueous) phase; (ii) retention of the permeate (organic) phase. 

Previous studies showed that full separation occurred for both hexane-water and 

ethyl acetate-water solvent systems when no back pressure was applied.178 

However, this was only tested for total flow rates between 4-16 mL min-1. Therefore, 

we initially tested the performance of the Zaiput to separate our desired  

toluene-water solvent system at lower flow rates (Table 13). For toluene-water 

ratios of 1:1, almost complete separation was achieved at total flow rates between 

0.2-2.0 mL min-1. In contrast, small amounts of retention and breakthrough were 

observed at toluene-water ratios greater than 2:1, and lower than 1:3 respectively. 

Therefore, to ensure successful separation of the solvent system, toluene-water 

ratios were maintained between 2:1 and 1:3 throughout optimisation of the LLE.  
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Table 13. Performance of the Zaiput for the membrane-based liquid-liquid 
separation of a water-toluene solvent system. R = retention, B = breakthrough.  

System 
Flow Rate/mL min-1 Failure 

Organic Aqueous % R % B 

T
o

lu
en

e-
W

at
er

 
0.10 0.10 0.0 0.0 

0.25 0.25 0.0 1.2 

0.50 0.50 0.0 0.0 

1.00 1.00 0.0 0.0 

0.80 0.20 2.5 0.0 

0.75 0.25 1.9 0.0 

0.67 0.33 0.1 0.0 

0.33 0.67 0.0 0.1 

0.25 0.75 0.2 0.0 

0.20 0.80 0.0 2.0 

 

A schematic of the automated pH-based extractor is shown in Scheme 24. A 

mixture of α-methylbenzylamine 5.07 (α-Me-BA) and  

N-benzyl-α-methylbenzylamine 5.08 (N-Bn-α-Me-BA) was prepared in toluene, 

such that the N-Bn-α-Me-BA 5.08 represented a minor impurity (≈ 5%). The pH of 

the aqueous phase was varied by adjusting the dilution of a nitric acid stream, where 

the lower limit of the pH range corresponded to full protonation of the amine 

mixture, under the assumption of complete acid dissociation. Emulsification of the 

two phases, by mixing in a miniature CSTR cascade, enabled efficient extraction 

prior to liquid-liquid separation. The concentration of each amine in the organic 

phase was determined via on-line HPLC analysis. The aim of the optimisation was to 

maximise the % difference of the amines remaining in the organic phase [Eq (47)], 

which is directly related to the separation efficiency.    

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[−∆𝑎𝑚𝑖𝑛𝑒(𝑜𝑟𝑔)] (47) 

subject to: pH ∈ [0.358, 0.873] 

Organic:Aqueous Ratio ∈ [0.8, 2.0] 
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Scheme 24. Schematic of the automated extractor used to optimise the pH-based 
LLE of an α-Me-BA 5.07 and N-Bn-α-Me-BA 5.08 mixture. P = pump, LLS =  
liquid-liquid separator, Aq = aqueous phase, Org = organic phase. SL = sample loop. 
See experimental for more details. 

Due to the high sensitivity of pH-based LLEs, the SNOBFIT algorithm was 

selected in preference to simplex, as it is less likely to get stuck in the presence of an 

erroneous data point. The % of each amine remaining in the organic phase under 

different conditions is shown in Figure 57. The results showed an increase in the 

extraction of α-Me-BA 5.07 into the aqueous phase with decreasing pH and 

organic:aqueous ratio. The preferential extraction of α-Me-BA 5.07 over  

N-Bn-α-Me-BA 5.08 indicates that α-Me-BA 5.07 has a higher pKa. This suggests 

that the 1o amine cation has increased solvation as a result of less steric hindrance, 

which outweighs the stabilising effect of additional alkyl chains. 

In this case, the optimum was rapidly identified in just 15 experiments, 

providing a 90% separation at a pH of 0.420 and organic:aqueous ratio of 1.0. The 

optimisation was run for an additional 46 experiments, where exploration 

predominantly focused on the region around the optimum, revealing the presence 

of a cliff edge in the local response surface (Figure 58). This corresponded to a sharp 

decrease in the % of N-Bn-α-Me-BA 5.08 remaining in the organic phase at pHs and 

organic:aqueous ratios lower than the optimum conditions. At these conditions, 

both amines were extracted into the aqueous phase, resulting in a poor separation. 

Therefore, the optimum exists in a region of low process stability, which would need 

to be accounted for to provide a rigorous plant-scale process.    
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Figure 57. Plot of % amines remaining in the organic phase under different in-line 
LLE conditions.  

 

 

Figure 58. Plot of % difference of amines remaining in the organic phase under 
different in-line LLE conditions.  
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Due to the presence of a sharp peak in the response surface, fine-tuning of the 

extraction conditions was crucial for the optimisation of this system. Hence, 

automated continuous flow platforms are well suited for the optimisation of LLEs, 

as they provide precisely adjustable flow rates and effectively remove human error. 

In addition, this approach is less time-consuming and labour intensive than 

traditional experimental methods, requiring only 13 hours (i.e. overnight) to 

identify the optimum with no prior knowledge of the system.  

The use of statistical modelling methods, such as DoE, are not appropriate for 

global optimisation problems with sharp peaks in the response surface. This is due 

to the poor ability of polynomial models to fit sharp changes in response over a wide 

variable range.197 This is shown in Figure 59a, where the global model failed to 

accurately describe the true nature of the response surface around the optimum. In 

contrast, the SNOBFIT algorithm fits local polynomial models in subsections of the 

experimental space. An example of this is shown in Figure 59b, where a local model 

was fit around the optimum using data in the following region: pH ∈ [0.358, 0.500]; 

organic:aqueous ratio ∈ [0.8, 1.2]. This provided a model which successfully 

detected the observed cliff edge. Therefore, it was concluded that SNOBFIT is a well 

suited algorithm for the self-optimisation of LLEs.  

 

Figure 59. Contour plots showing polynomial models derived from  
self-optimisation data: (a) global model from all data, dashed box highlights local 
area around the optimum; (b) local model exclusively from data around the 
optimum.  
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5.3 Multi-Step Reaction-Extraction Processes 

The production of APIs belongs to the class of complex multi-step processes, 

which involve multiple transformation and purification steps. For the benefits of 

end-to-end continuous flow synthesis to be fully exploited, efficient methods to 

optimise these processes are required. Work in Chapter 3 demonstrated how  

multi-objective optimisation of individual steps in parallel could theoretically 

enable the development of a multi-step process in a reduced time frame. An 

alternative approach would be to optimise the reaction and work-up steps 

simultaneously on the same experimental platform. Optimising more than one step 

per optimisation in this way has the potential for significant savings in time and 

resources, thus streamlining the drug development process. Furthermore, the 

impact of downstream work-up operations on important process metrics would be 

automatically considered, thus avoiding the identification of optimum reaction 

conditions which are later determined to be infeasible. Herein, this work explores 

the nature of multi-step process optimisation, using two exemplar case studies. 

5.3.1 Synthesis of Secondary Amines via Direct N-alkylation 

With a suitable system for the automated optimisation of LLEs in hand, 

attention shifted to the self-optimisation of multi-step reaction-extraction 

processes. For this, the synthesis and purification of N-Bn-α-Me-BA 5.08 in 

continuous flow was investigated. This was achieved by combining the  

N-benzylation of α-Me-BA 5.07 with a downstream aqueous LLE (Scheme 25). The 

aim of the optimisation was to maximise the purity of N-Bn-α-Me-BA 5.08 with 

respect to all impurities [Eq (48)]. These included unreacted starting materials  

α-Me-BA 5.07 and benzyl bromide 5.09, and by-products 3o amine 5.10 and salt 

5.11. Salt 5.11 was formed as a result of the reaction between DIPEA and in situ 

generated hydrobromic acid. Unlike DIPEA, its protonated form 5.11 was detectable 

by HPLC at 210 nm, and was therefore easily quantified using the same experimental 

set-up. Aqueous nitric acid was introduced downstream of the reactor for in-line 

LLE of the amine and salt impurities. Notably, use of purity as the objective function 

in this case ensured that the optimisation would favour a high yielding reaction step, 

as well as efficient extraction conditions. Due to the observations in the previous 

LLE example, SNOBFIT was selected as an appropriate optimisation algorithm. 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[− % 𝑝𝑢𝑟𝑖𝑡𝑦 𝑜𝑓 𝟓. 𝟎𝟖] (48) 

subject to: tres/min ∈ [6.7, 10.0] 

Temperature/°C ∈ [30, 130] 

pH ∈ [0.25, 2.26] 

Aqueous:Organic Ratio ∈ [0.574, 1.000] 
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Scheme 25. Schematic of the automated reactor-extractor used to optimise the 
synthesis and purification of N-Bn-α-Me-BA 5.08. P = pump, BPR = back pressure 
regulator, LLS = liquid-liquid separator, SL = sample loop. See experimental for more 
details. 
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The results of the optimisation are shown in Figure 60. An optimum purity of 

71% was identified at the following process conditions: tres = 6.9 min, temperature 

= 127.2 °C, pH = 0.772 and aqueous:organic ratio = 0.408. In terms of reaction 

conditions, a high purity was favoured at high temperatures and short residence 

times. High temperatures were found to drive the reaction to high conversion, 

where the reduction in unreacted starting materials (Figure 61a & b) outweighed 

the increase in formation of the 3o amine 5.10 impurity (Figure 61c) with respect to 

the purity of N-Bn-α-Me-BA 5.08. Although the highest conversions were observed 

at the longer residence times, this corresponded to an increase in the concentration 

of salt 5.11 (Figure 61d), which was not efficiently extracted from the organic phase 

in this region.  

Similar to the previous LLE example, there was a noticeable cliff edge around 

the optimum, where increasing the aqueous:organic ratio from 0.408 to 0.759 

corresponded to a decrease in purity from 71% to 16%. This could mainly be 

attributed to the salt 5.11 impurity, which disfavoured extraction from the organic 

phase at aqueous:organic ratios greater than 0.5 (Figure 61d). This was likely 

caused by an increase in ionic strength of the aqueous phase, as a result of other 

cationic impurities. This could have reduced the solubility of salt 5.11 in the aqueous 

phase, causing it to favour partitioning in chloroform.198 Nevertheless, a comparison 

of the optimum reaction conditions, including and excluding the downstream LLE, 

showed that the optimised extraction significantly improved the purity of  

N-Bn-α-Me-BA 5.08 (Figure 62). The aqueous acidic work-up reduced the amount 

of salt 5.11 by 81%, whilst selectively extracting 43% of the unreacted α-Me-BA 

5.07 starting material. Therefore, the system was able to successfully optimise both 

the reaction and extraction steps in just 53 experiments, with no human 

intervention. 

Chloroform was selected as the organic solvent for this reaction as it 

solubilised the salt by-products formed, thus providing a homogeneous reaction 

mixture. However, the relatively high dielectric constant of chloroform, compared 

to other water immiscible solvents, resulted in a challenging extraction. Further 

improvements in purity could be achieved via multi-stage LLE, where a similar  

self-optimisation approach could be utilised. Alternatively, purification could be 

achieved via in-line filtration of a reaction slurry, although the challenges associated 

with self-optimisation of solid-forming reactions have yet to be fully addressed.  
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Figure 60. Results for the optimisation of the N-benzylation reaction and in-line LLE 

with respect to purity of the desired product 5.08. ☆ = maximum % purity. 

 

 

Figure 61. Impurity plots for the N-benzylation reaction-extraction process: (a)  
α-Me-BA 5.07; (b) benzyl bromide 5.09 (BnBr); (c) 3o amine 5.10; (d) salt 5.11. 
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Figure 62. Comparison of the reaction mixture composition at the optimum process 
conditions, including and excluding the downstream LLE. SM = starting material. 

5.3.2 Biphasic Claisen-Schmidt Condensation 

Liquid-liquid biphasic reactions are an industrially important class of reaction, 

which benefit from the use of inexpensive and environmentally benign water 

soluble inorganic bases. In addition, biphasic solvent systems can solubilise a wide 

range of polar and non-polar compounds, thus enabling reactions that would 

otherwise be slurries, to be conducted in continuous flow. In the previous example, 

LLE of a single phase reaction was achieved by introduction of an aqueous phase 

downstream of the reactor. In contrast, for liquid-liquid biphasic reactions, 

partitioning of the starting materials and products between the phases occurs 

throughout the reaction. Therefore, an automated continuous flow reactor suitable 

for the self-optimisation of this type of process was developed.  

Liquid-liquid biphasic reactions rely on a high interfacial area to overcome 

mass transfer limitations. Therefore, it was reasoned that the miniature CSTR 

cascade, described in Chapter 4, would be a suitable choice of reactor. Initially, 

thermal control of the reactor was established, to broaden the range of chemistries 

beyond room temperature and photoactivated reactions. A schematic of the design 

for higher temperature applications is shown in Figure 63a, with a photograph of 

the resultant reactor displayed in Figure 63b.  
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An aluminium heating mantle was designed to inset four CSTRs, and maximise 

the contact area between the reactors and the heat source. The inlet ports of each 

CSTR were aligned with grooves in the heating mantle, thus enabling the direct 

addition of reagents. The temperature of the heating mantle was regulated using a 

feedback loop consisting of: two nickel heating elements, a type K thermocouple and 

a Eurotherm temperature controller, which was programmed into the control 

software for the self-optimising system. The design ensured that the cascade was in 

a compact configuration, which enabled stirring of all four CSTRs to be achieved 

using a conventional stirrer plate. Type K thermocouples were placed in the 

additional inlet ports of each CSTR, to directly monitor and record the internal 

temperature of the reactors using a Pico logger. 

(a) 

Pumps

Heaters

Temperature 
Controller

Pico 
Logger

Thermocouples

 

(b) 

 

Figure 63. Temperature controlled CSTR cascade using a custom-built heating 
mantle: (a) schematic; (b) photograph. 
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The base catalysed aldol condensation remains a widely used C-C bond 

forming reaction. This involves the nucleophilic addition of an enolate to an 

aldehyde or ketone, with subsequent dehydration of the resultant β-hydroxy 

carbonyl yielding α,β-unsaturated carbonyl compounds (enones). The  

Claisen-Schmidt condensation is a type of crossed-aldol condensation, and refers 

specifically to the condensation of an aromatic aldehyde with an aliphatic aldehyde 

or ketone.199 Enones are useful and versatile synthetic retrons, providing access to 

greater structural complexity, through transformations such as Michael additions 

and hetero Diels-Alder reactions.200, 201 Therefore, the biphasic Claisen-Schmidt 

condensation between benzaldehyde 5.12 and acetone 5.13 was selected as a 

relevant case study for this investigation (Scheme 26).  
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Scheme 26. Schematic of the automated reactor-extractor used to optimise the 
synthesis and purification of benzylideneacetone 5.14. P = pump, BPR = back 
pressure regulator, LLS = liquid-liquid separator, SL = sample loop. See 
experimental for more details. 

Initially, the repeatability of the system was tested by conducting three 

replicates at the following reaction conditions: tres = 8.0 min, temperature = 80.0 °C, 

equivalents of acetone 5.13 = 21.5 and NaOH mol% = 30. The yields of the desired 

benzylideneacetone 5.14 product (32.9%, 39.0% & 40.4%) had a range of 7.5 and a 

standard deviation of 3.99, indicating low repeatability. It was hypothesised that the 

heat transfer between the heating mantle and CSTRs was causing a delay in the time 

taken to achieve steady state.  

To test this hypothesis, the internal temperature of each CSTR was monitored 

as a toluene-water mixture was heated at 20 intervals between 50 and 110 °C 

(Figure 64). The results indicated that there was a 15 min delay between 
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stabilisation of the heating mantle temperature and stabilisation of the CSTRs 

temperature. In addition, there was a further 5 min delay for the temperature of 

CSTR 1 to stabilise after setting the pumps to their desired flow rates (i.e. increasing 

the flow rates from dead-time conditions). The data from these experiments showed 

a very good linear fit between the heating mantle temperature and the average CSTR 

temperature (R2 = 0.9999, see experimental). Therefore, the average process 

temperature (y) could easily be calculated from the set temperature of the heating 

mantle (x) using the relationship y = 0.9002x + 2.1477, for temperatures between 

50 and 110 °C. 

 

Figure 64. Plot showing the internal temperature profile of each CSTR on heating a 
toluene-water mixture at 20 intervals between 50 and 110 °C. Inset graph: heating 
mantle temperature = 71.4 °C. 

Based on the observations above, adjustments were made to the  

self-optimisation procedure (Figure 65). A 15 min wait and 5 min wait were 

included in the temp stable timer and steady state timer respectively. Three 

replicates were repeated at the same reaction conditions as previously. In this 

instance, the yields of benzylideneacetone 5.14 (39.0%, 39.0% & 40.4%) had a 

range of 1.4 and a standard deviation of 0.808. This highlighted a significant 

improvement in the repeatability of the system, and confirmed that the changes 

made to the optimisation program successfully accounted for the heat transfer 

characteristics of the reactor. However, this increased repeatability came at the cost 
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of reduced optimisation efficiency, with each experiment taking an additional 20 

min longer. 

Set desired 
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Figure 65. Flow chart of the adjusted self-optimisation procedure. 

The reactor set-up for self-optimisation of the Claisen-Schmidt condensation 

is shown in Scheme 26. In contrast to the previous multi-step optimisation, the 

multi-objective TSEMO algorithm was selected. As TSEMO utilises GP surrogate 

models, it was hypothesised that it would be well suited for optimising complex 

multi-step processes within a relatively small number of experiments. The aim of 

the optimisation was to simultaneously maximise the purity, STY and RME with 

respect to benzylideneacetone 5.14 in the organic phase [Eq (49)], thus 

demonstrating for the first time the tri-objective self-optimisation of a chemical 

system. The purity of benzylideneacetone 5.14 in the organic phase was determined 

using on-line HPLC, with respect to unreacted benzaldehyde 5.12 and by-product 

dibenzylideneacetone 5.15.  

As acetone 5.13 is cheap and readily available, it was used as a neat reagent 

for the reaction. The miscibility of acetone 5.13 in both toluene and water resulted 

in a biphasic liquid-liquid reaction medium, where the organic and aqueous phases 

were toluene-acetone and water-acetone mixtures respectively. The optimisation 

was conducted with respect to flow rates, flow rate ratios and temperature. Varying 

the flow rates had an effect on both steps of the process: (i) the reaction in terms of 

residence time and acetone/sodium hydroxide equivalents; (ii) the extraction in 

terms of the toluene-acetone-water solvent ratio, and therefore the partitioning of 

the compounds between the organic and aqueous phases.           
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𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[− ln(𝑝𝑢𝑟𝑖𝑡𝑦), − ln(𝑆𝑇𝑌), − ln(𝑅𝑀𝐸)] (49) 

subject to: P1/mL min-1 ∈ [0.2, 0.4] 

P2:P1 ∈ [0.5, 1.1] 

Aqueous:Organic Ratio ∈ [0.5, 1.2] 

Temperature/°C ∈ [50, 110] 

The optimisation was initialised with 20 LHC experiments, followed by a 

subsequent 89 experiments designed by the TSEMO algorithm. Of the 109 

experiments conducted, 18 non-dominated solutions were identified. A comparison 

of the responses at the optimum for each function identified conflicts between all 

three objectives (Table 14). In this case, the purity was ≈ 10% lower, the STY was ≈ 

2.5× lower and the RME was ≈ 1.5× lower at the optima of the other objectives 

compared to their own. Inspection of the optimum conditions for each objective 

showed that they were located at three different corners of the experimental space 

(see experimental for plots). In general, all of the objectives favoured high 

temperatures, as formation of the dibenzylideneacetone 5.15 by-product was 

negligible (< 1%) in the presence of a large excess of acetone 5.13.202 Although the 

optimum conditions for each objective were identified, this method provided 

limited process knowledge regarding the influence of the variables on each 

individual step. This was due to confounding between the reaction and work-up 

steps, caused by monitoring of the multi-step process using a single downstream 

analytical source. Therefore, systems optimised using this method are best treated 

as a black-box, where the inputs and outputs are described but without knowledge 

of how they are related. In cases where a higher degree of process understanding is 

required, additional PAT should be integrated downstream of each individual step.29  

Table 14. Comparison of the three optimised functions (row headings) and the 
purity, STY and RME at these optimised conditions (column headings). Figures in 
bold are values for the function that has been optimised. 

Objective Purity/% STY/kg m-3 h-1 RME 

Purity/% 87.9 97.9 4.74 

STY/kg m-3 h-1 76.1 259.9 4.42 

RME 78.8 108.3 7.16 
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A surface was fitted to the non-dominated solutions to provide a visual 

representation of the Pareto front (Figure 66). This successfully highlighted the 

complete trade-off between all three objectives, which could be used to aid decision 

making during process design. For example, the Pareto front indicates that a purity 

of 82.8%, STY of 166.1 kg m-3 h-1 and RME of 5.66 can be obtained, which represents 

an approximately equal compromise between all three objectives. Alternatively, a 

greater importance could be placed on one or more of the objectives, and the process 

conditions selected accordingly post-optimisation.  

 

Figure 66. Results for the optimisation of the Claisen-Schmidt condensation 
reaction and in-line LLE with respect to purity, STY and RME. The initial LHC size 
was 20. The TSEMO algorithm conducted 89 additional experiments, 18 of which 
formed a Pareto front highlighting the trade-off between the objectives. 

In this case, all reagents were cheap and readily available. Therefore, the 

termination criteria was based on practical time limitations, and the optimisation 

was stopped after 65 hours. This corresponds to a significant reduction in the time 

taken to optimise two steps with respect to three objectives, which would 

conventionally require six separate optimisations carried out over multiple weeks, 

and with no guarantee that the trade-off between the objectives would be identified. 

The major bottleneck with the current system is the heat transfer time between the 

heating mantle and the CSTR cascade. This could be removed by integrating 

temperature control into each individual CSTR, which would theoretically reduce 

the optimisation time further from 65 hours to 29 hours. 
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5.4 Conclusions 

The end-to-end continuous flow synthesis of APIs offers a significantly 

reduced space-time demand and risk of supply chain disruption compared to 

traditional batch manufacturing.185 Furthermore, the development of modular  

in-line purification technologies has played a key role in enabling multi-step 

continuous flow processing.184 However, there has been few reports regarding the 

efficient optimisation of such systems. In this work, automated methods for the 

optimisation of in-line liquid-liquid extractions and multi-step reaction-extraction 

processes were explored.  

The removal of structurally similar impurities between reactions is critical to 

avoid undesired side-reactions. Self-optimisation of a pH-based LLE was 

investigated for the separation of a 1o and 2o amine mixture. The SNOBFIT algorithm 

successfully identified an optimum separation of 90% in just 15 experiments, 

despite its location on a cliff edge in the response surface. The ability of the system 

to handle sharp changes in response was attributed to a combination of: (i) high 

precision of the automated continuous flow platform; (ii) fitting of local polynomial 

models by the SNOBFIT algorithm. In contrast, it was shown that a global polynomial 

model was unable to detect the sharp change in response over the defined variable 

range. Therefore, it was concluded that the SNOBFIT algorithm was well suited to 

the optimisation of LLEs, outperforming more traditional approaches such as DoE. 

Using this method, a multi-step process for the synthesis and purification of a 2o 

amine via direct N-alkylation and acidic work-up was optimised. An optimum purity 

of 71% was identified for the desired product, with the single-stage LLE removing 

43% of unreacted starting material and 81% of the salt by-product. Notably,  

self-optimisation of the multi-step process enabled the effect of both the reaction 

and work-up steps on the purity to be simultaneously considered. This overcomes 

the challenges associated with sequential optimisation where, for example, an 

optimised reaction can result in a costly work-up procedure.    

During process design, it is equally important to consider the impact of 

downstream purification on both economic and environmental metrics. Therefore, 

the ability of the multi-objective TSEMO algorithm to optimise multi-step processes 

was investigated. For this, a biphasic Claisen-Schmidt condensation  

reaction-extraction process was selected as an exemplar case study. Initially, a 
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temperature controlled miniature CSTR cascade was developed and characterised, 

thus broadening the suitability of the reactor to a wider range of chemistries. The 

two-step process was then optimised with respect to purity, STY and RME. This 

method successfully identified the trade-off curve between all three objectives in 

just 65 hours, thus providing a highly efficient and sustainable approach for the 

optimisation of multi-step processes. Potential improvements regarding the heating 

mechanism of the reactor were identified, and could theoretically more than half the 

current optimisation time. Furthermore, this study revealed that confounding of the 

reaction and extraction steps can result in limited process knowledge regarding the 

effect of the variables on each step. This could be overcome by the inclusion of 

additional PAT throughout the system, albeit at a substantial capital cost.29 

Nevertheless, this self-optimisation approach enabled rapid identification of 

different process optima for complex multi-step sequences without any human 

intervention.  
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Chapter 6 Conclusions and Future Work 

The work in this thesis has focused on exploring the nature of existing  

self-optimising continuous flow systems, and how the technology could be 

improved to optimise more challenging and industrially relevant problems. The 

main areas that needed to be addressed were highlighted at the start of this work, 

and included: (i) application of more data efficient algorithms; (ii) development of 

suitable laboratory-scale flow reactors; (iii) optimisation of downstream unit 

operations. This thesis has contributed to each of the areas above, and demonstrated 

improvements in the form of relevant case studies.  

When designing a chemical process, it is important to consider multiple 

relevant performance criteria. Work in Chapter 2 described the application of 

TSEMO, a recently developed Bayesian multi-objective optimisation algorithm.96 

Initial work highlighted the a priori selection of suitable objectives as a significant 

challenge. This was overcome by empirical modelling of the initial dataset, which 

subsequently enabled successful optimisation of two conflicting economic and 

environmental performance criteria. This approach provided the optimum values 

for two objectives, and highlighted the complete trade-off curve between them.69 

Therefore, this presents a significantly more data efficient methodology compared 

to single objective optimisation, and the scalarisation of multiple objectives.66 

Despite this, the amount of material required would still be a significant bottleneck 

for more expensive-to-evaluate systems, such as those involving APIs. It was 

hypothesised that the number of experiments could be reduced by predicting the 

Pareto front from the empirical models of the initial dataset. Although the 

simulations were in fair agreement with the experimental data, the models were at 

risk of overfitting in some regions of the variable space. Rather, future work should 

focus on the development of nanomole-scale high throughput flow equipment, 

which when combined with multi-objective optimisation, would synergistically 

increase the efficiency of self-optimising systems.32      

In Chapter 3, a continuous flow Sonogashira reaction towards the synthesis of 

API lanabecestat (AZD3293) was self-optimised. Lanabecestat is a BACE1 inhibitor 

used for the treatment of Alzheimer’s disease which entered phase III clinical trials 

in July 2016, and was developed by AstraZeneca and Eli Lilly & Co.113 Optimisation 

of the continuous flow Sonogashira reaction started in April 2019, where results 
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were due at the time of the interim analysis in June 2019. To achieve this, the  

multi-objective self-optimisation approach, developed in Chapter 2, was integrated 

with a traditional design of experiments workflow. The combination of these 

methods provided all the desired information within the time constraints of a late-

stage pharmaceutical development project. Notably, the trade-off between 

conversion and productivity was identified, which could be re-evaluated with the 

dynamic downstream work-up specifications in the active learning process. Hence, 

data obtained from the multi-objective self-optimisation played a key role in the 

design of a multi-step process.  

In this case, the continuous variables (residence time, temperature, 

equivalents) were included in the self-optimisation, and the discrete variables 

(catalyst, ligand, solvent) were screened in preliminary work. Ideally, both 

continuous and discrete variables would be simultaneously optimised to account for 

any underlying interactions.49 Therefore, the future development of multi-objective 

algorithms for mixed-variable optimisations will play a crucial role in the 

application of self-optimisation to more complex catalytic systems. Furthermore, 

optimisation of the Sonogashira reaction required 80 experiments carried out over 

a period of 35 hours. To facilitate a wider uptake of this technology in the 

pharmaceutical industry, a further reduction in the number of experiments is 

required, which is directly related to the efficiency of the algorithm. A kinetic-based 

reaction simulator was developed to assess the performance of multi-objective 

optimisation algorithms. By assessing new algorithms in this way, it can be ensured 

that self-optimising platforms are kept up-to-date with the latest advances in 

computer science. Of the algorithms tested, EIM-EGO was found to outperform 

TSEMO, and should therefore form the basis of future work in this area.134  

In Chapter 4, a miniature CSTR cascade was developed to decouple flow rate 

and mixing performance. This provided a laboratory-scale reactor suitable for mass 

transfer limited reactions with longer residence times, thus broadening the scope of 

self-optimisation to a wider range of chemistries. In addition, the design enabled the 

incorporation of LEDs for photochemical applications, and was found to have a 10× 

greater absorbed photon flux density compared to photochemical batch reactors.162 

A biphasic continuous flow process for the site-selective aerobic oxidation of  

C(sp3)-H bonds was self-optimised using a new hybrid algorithm, which combined 

global optimisation with local response surface mapping around the optimum. This 
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successfully located an optimum with milder reaction conditions compared to 

previous work, and provided important details regarding process stability around 

the optimum.171 Further development of the reactor is underway to enable light 

intensity to be included as a variable during optimisation, which can have a 

significant impact on processes involving photodecomposition pathways. In this 

case, the developed reactor was suitable for the self-optimisation of a gas-liquid 

biphasic reaction. However, there still remains a lack of techniques for sampling and 

on-line analysis of slurries, which is a challenge that requires future attention to 

enable the automated optimisation of multiphasic reactions involving solids. 

The end-to-end continuous flow synthesis of APIs involves multiple reaction 

and work-up unit operations, all of which need to be optimised to yield an efficient 

overall process.183 Work in Chapter 5 addressed for the first time the  

self-optimisation of in-line liquid-liquid extractions and multi-step  

reaction-extraction processes. Initially, a pH-based LLE of structurally similar 

impurities was optimised, and the SNOBFIT algorithm found to outperform 

traditional statistical methods for response surfaces containing cliff edges. This 

approach was then adopted for the optimisation of a multi-step reaction-extraction 

process, where the effect of both the reaction and work-up steps on the purity were 

simultaneously considered. The ability of the multi-objective TSEMO algorithm to 

optimise a multi-step process was also explored. A biphasic Claisen-Schmidt 

condensation reaction-extraction process was successfully optimised with respect 

to three objectives, utilising a temperature controlled version of the miniature CSTR 

cascade described in Chapter 4. The trade-off curve between the three objectives 

was identified in 65 hours without any human intervention, and thus presents an 

efficient method for multi-step process optimisation. As such, this work will likely 

be extended for the optimisation of complete end-to-end syntheses of APIs in the 

future. However, challenges which will need to addressed include the deconvolution 

of factor effects on each step, and the individual control of residence time in 

telescoped reactors.     

In summary, self-optimising continuous flow reactors provide an automated 

method for intelligent exploration of experimental space, thus rapidly identifying 

optimum conditions.50 This thesis has focused on improving self-optimisation to 

further align with the interests of industry, which has been achieved by introducing 

multi-objective optimisation algorithms and applying them towards the synthesis of 
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APIs, developing a new multiphasic CSTR cascade reactor with photochemical 

capabilities and including downstream work-up operations in the optimisation of 

multi-step processes. During this work, areas of interest for future research in the 

field of self-optimisation have been identified. These include: (i) saving material by 

using nanomole-scale high throughput flow equipment; (ii) developing  

multi-objective algorithms for mixed variable optimisations; (iii) introducing 

sampling techniques for multiphasic reactions involving solids; (iv) optimisation of 

end-to-end total syntheses of APIs. Furthermore, as not all reactions are suitable for 

continuous flow, there would be a significant interest in the application of  

self-optimising technology to batch systems. As the rise of automation in chemistry 

continues, the production of commercially available self-optimising platforms is 

inevitable. Therefore, providing a user-friendly end product, that does not require 

specialist knowledge to operate, will be crucial for the widespread adoption of these 

systems by general chemists and synthetic-based laboratories.  
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Chapter 7 Experimental 

7.1 Automated Reactor Platform 

A photo of the automated reactor platform is shown in Figure 67. Reagents 

were pumped using JASCO PU-980 dual piston HPLC pumps and pump streams 

mixed using Swagelok SS-100-3 tee-pieces. Gas flow was achieved using a 

Bronkhorst EL-FLOW prestige mass flow controller. The reactor used was 

dependent on the experiment, and is stated in the corresponding Chapter 

Procedures. Sampling was achieved using a VICI Valco EUDA-CI4W sample loop  

(4-port) with 0.06 or 0.5 μL injection volumes. The reactor was maintained under 

the desired fixed back pressure using an Upchurch Scientific back pressure 

regulator. Stainless steel and Polyfon PTFE tubing (1/16” OD, 1/32” ID) was used 

throughout the reactor. Quantitative analysis was performed on an Agilent 1100 

series HPLC instrument fitted with a Sigma Ascentis Express C18 reverse phase 

column (5 cm length, 4.6 mm ID and 2.7 μm particle size).  

 

Figure 67. Photograph of the automated continuous flow platform used throughout 
this work. 

 An optimisation program was written in MATLAB that; controlled the pump 

flow rates, reactor temperature and sampling frequency (RS232 control), 

determined steady state, calculated the responses and controlled the inputs and 

outputs to and from the optimisation algorithm (Figure 68). Monitoring of the HPLC 
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was achieved using Agilent ChemStation software, which generated reports in .xls 

format. Scripts were written to transcribe the data from the reports into MATLAB. 

The automated reaction and analysis procedure were designed to consume a 

minimum amount of material during optimisations. Firstly, reactant flow rates were 

reduced to a minimum during heating/cooling of the reactor. Once the reactor 

reached the desired operating temperature, the reactant flow rates were set to their 

desired values. Secondly, experiments in each iteration were sorted in order of 

increasing temperature. This avoided unnecessary switches between hot and cold 

reactions. Finally, sequential experiments were started whilst analysis of the 

previous experiment was running, except during analysis of the final experiment in 

the iteration. Hence, the amount of time waiting for analysis was minimised. The 

responses for the objective function(s) were calculated from the HPLC 

chromatograms at the end of each iteration, and the results input into the 

optimisation algorithm to generate the next set of conditions. 
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Figure 68. Flow chart of the self-optimisation procedure used throughout this work. 
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7.2 Offline Analytical Equipment 

NMR spectroscopy was performed on a Bruker 500 UltraShieldTM NMR 

Spectrometer (1H NMR at 500 MHz, 13C at 126 MHz) with the appropriate deuterated 

solvent. Chemical shifts in 1H and 13C NMR spectra are expressed as ppm downfield 

from TMS, and reported as singlet (s), doublet (d), triplet (t), quartet (q) and 

combination thereof, or multiplet (m). Coupling constants (J) are quoted in Hz and 

are averaged between coupling partners. LC-MS analysis was performed using an 

Agilent 1290 series uPLC and a Bruker HCT-Ultra detector with electrospray 

ionisation in the positive mode. UV-Vis analysis was performed using an Agilent 

Cary 100 series UV-Vis spectrophotometer. 

7.3 Chapter 2 Procedures 

7.3.1 Chemicals 

α-Methylbenzylamine (99%, Aldrich), diisopropylethylamine (>99%, 

Fluorochem), benzyl bromide (>99%, Fluorochem),  

(R)-(+)-N-benzyl-α-methylbenzylamine (98%, Sigma) and chloroform (HPLC grade, 

VWR) were purchased from suppliers and used without further purification. A 

standard of N,N-dibenzyl-ɑ-methylbenzylamine was synthesised for HPLC 

calibration. 

7.3.2 Synthesis of N,N-dibenzyl-α-methylbenzylamine 

 

To a round-bottomed flask, α-methylbenzylamine 2.09 (2.50 g, 20.6 mmol) 

and diisopropylethylamine (5.33 g, 41.3 mmol) in acetonitrile (150 mL) was added. 

To this, benzyl bromide 2.10 (10.58 g, 61.9 mmol) was added and the reaction 

mixture left to stir under reflux for 48 hours. The resultant mixture was 

concentrated in vacuo, then partitioned between an ethyl acetate (100 mL) and 

water (100 mL) biphasic mixture. The aqueous layer was acidified to pH 1 with HCl 

(2 M), then separated and basified to pH 12 using NaOH (2.5 M). The aqueous 
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solution was then extracted with ethyl acetate (2 × 100 mL). The combined organic 

extracts were concentrated in vacuo to yield N,N-dibenzyl-α-methylbenzylamine 

2.12 as an orange solid (1.48 g, 24%).  

1H NMR (CDCl3, 500 MHz) δ 7.46 – 7.06 (m, 15H), 3.92 (q, J = 6.9 Hz, 1H), 3.61 

(d, J = 14 Hz, 2H), 3.46 (d, J = 14 Hz, 2H), 1.43 (d, J = 6.9 Hz, 3H) ppm; 13C NMR (CDCl3, 

101 MHz) δ 142.8, 140.5, 128.7, 128.2, 128.1, 128.0, 126.8, 126.7, 56.2, 53.6, 13.8 

ppm; m/z (ESI+) C22H23N [M+H]+, calculated 302.19, found 302.37; in agreement 

with published data.203 

7.3.3 Experimental Set-Up 

Reactor: Cambridge Reactor Design Polar Bear Flow Synthesiser, fitted with 4 

mL Polyfon PTFE tubing (1/16” OD, 1/32” ID), and maintained under 250 psi  

back-pressure.  

Reservoir solutions were prepared by dissolving the desired reagents in 

solvent under stirring at ambient conditions. Pump 1: α-methylbenzylamine 2.09 

(12.9 mL, 0.10 mol, 0.400 mol L-1), diisopropylethylamine (17.4 mL, 0.10 mol, 0.400 

mol L-1) and biphenyl (1.54 g, 10 mmol, 0.040 mol L-1) in chloroform (219.7 mL). 

Pump 2: benzyl bromide 2.10 (16.6 mL, 0.14 mol, 0.400 mol L-1) in chloroform 

(333.4 mL). Pump 3: chloroform. Reservoir solutions were replenished when 

required. 

HPLC mobile phases were A H2O (18.2 MΩ), B MeCN, both buffered with 0.1% 

TFA. Method: 10% to 90% B 3.5 mins, 90% to 10% B 0.5 min, 10% B 1 min, flow 

rate 1.75 mL min-1, column temperature 20 °C. 

7.3.4 Empirical Modelling 

Polynomial response surface models of the LHC experiments were fitted using 

Umetrics MODDE (ver 12.1) by including all square and interaction terms then 

removing terms with a p-value less than 0.05. The model for % impurity was 

transformed logarithmically (ŷi = log(yi)/(100-yi)) to provide a more normal 

distribution.  
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Figure 69. Summary of fit plots for STY and % impurity. STY: R2 = 0.988, Q2 = 0.977. 
% impurity: R2 = 0.996, Q2 = 0.983. 

 

 

Figure 70. Coefficient plots for the models of STY and % impurity. Insignificant 
terms (confidence interval crosses 0) were removed from the saturated model one 
at a time.  
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Figure 71. Residuals normal probability plots for STY and % impurity. A straight 
diagonal line represents a normal distribution. Experiments outside of the 4 
standard deviation limits represent outliers.   

 

 

Figure 72. Plots of observed vs. experimental for the models of STY and % impurity. 
A straight diagonal line indicates the model has a good fit to the experimental data. 
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7.3.5 Self-Optimisation Results 

minimise[-ln(STY), ln(% impurity)] 

Table 15. Self-optimisation variables, directly input in terms of flow rates and 
ratios. P = pump.  

 Variables 
Limits P1/mLmin-1 P2:P1 P3:P1 Temp/°C 

Lower 0.20 1.00 0.50 110 
Upper 0.40 5.00 1.00 150 

Table 16. List of results from the self-optimisation. The first 20 experiments are a 
LHC design in ascending order of temperature. The non-dominated solutions are 
highlighted in bold. 

Entry P1/mL min-1 P2:P1 P3:P1 Temp/°C Impurity/% STY/kg m-3 h-1 
1 0.252 4.900 0.694 111.8 4.3 94 
2 0.212 2.360 0.785 113.8 5.8 127 
3 0.346 2.823 0.661 114.8 3.8 129 
4 0.290 1.189 0.704 117.6 4.8 158 
5 0.222 4.650 0.953 118.7 5.6 111 
6 0.396 2.169 0.883 120.7 3.5 165 
7 0.231 1.570 0.861 122.3 7.9 162 
8 0.382 1.962 0.613 124.3 4.8 208 
9 0.312 3.497 0.629 126.5 6.2 167 

10 0.268 3.736 0.528 128.0 8.2 175 
11 0.321 4.182 0.500 130.8 7.2 195 
12 0.378 1.301 0.802 133.0 5.6 233 
13 0.336 2.664 0.930 136.0 8.2 231 
14 0.202 3.835 0.975 136.5 15.0 162 
15 0.301 4.482 0.577 139.5 10.3 217 
16 0.367 3.178 0.737 140.1 9.2 255 
17 0.286 2.442 0.575 142.2 17.3 249 
18 0.243 4.373 0.763 144.8 16.4 199 
19 0.272 3.293 0.835 146.5 16.5 225 
20 0.356 1.719 0.905 148.7 11.8 290 
21 0.400 1.000 0.987 118.5 3.5 146 
22 0.400 1.000 1.000 126.7 3.2 175 
23 0.400 1.000 1.000 135.8 4.6 216 
24 0.400 1.000 1.000 143.2 5.8 251 
25 0.400 5.000 0.500 111.8 3.5 108 
26 0.400 1.000 0.757 128.8 4.7 215 
27 0.400 1.000 0.530 130.7 5.5 259 
28 0.400 1.000 0.520 139.5 7.6 294 
29 0.400 5.000 0.660 126.8 4.8 160 
30 0.400 4.852 0.549 131.2 4.9 181 
31 0.400 1.000 0.799 143.2 7.8 278 
32 0.400 1.000 0.500 150.0 10.0 331 
33 0.400 2.785 1.000 139.1 6.4 231 
34 0.400 2.755 0.978 146.7 9.0 266 
35 0.400 1.000 0.615 146.9 9.7 317 
36 0.400 5.000 1.000 120.9 3.1 132 
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37 0.400 1.000 0.500 122.0 4.5 228 
38 0.400 1.259 0.505 127.7 5.5 254 
39 0.400 1.000 0.500 133.7 6.4 271 
40 0.400 1.026 0.701 110.0 2.2 142 
41 0.400 2.216 0.992 110.0 2.4 101 
42 0.400 1.000 0.500 134.6 6.8 271 
43 0.400 1.068 0.500 145.3 9.2 321 
44 0.400 1.000 0.655 110.0 2.3 147 
45 0.400 5.000 1.000 111.2 2.7 84 
46 0.400 1.000 0.907 130.7 4.1 201 
47 0.400 1.000 0.500 140.7 7.3 298 
48 0.400 1.055 0.500 119.6 3.2 205 
49 0.400 1.239 0.500 126.4 5.0 241 
50 0.400 1.682 0.500 131.3 6.8 263 
51 0.400 1.000 0.569 113.1 2.9 160 
52 0.400 1.000 0.569 115.7 3.2 175 
53 0.400 1.000 0.568 119.1 3.3 189 
54 0.400 1.005 0.677 150.0 8.9 326 
55 0.400 1.000 0.549 111.2 2.4 162 
56 0.400 1.000 0.621 132.1 4.8 243 
57 0.400 1.000 0.549 149.0 9.5 321 
58 0.400 1.000 0.528 150.0 8.7 325 
59 0.400 1.000 0.500 118.2 3.2 203 
60 0.400 1.000 0.500 123.9 3.9 226 
61 0.400 1.000 0.870 150.0 8.5 300 
62 0.400 1.000 0.644 150.0 8.3 314 
63 0.400 1.000 0.500 110.0 2.4 166 
64 0.400 1.000 0.500 115.4 2.7 181 
65 0.400 1.000 0.500 118.2 3.2 202 
66 0.400 1.000 0.500 134.8 6.4 279 
67 0.346 1.001 0.756 110.0 2.8 132 
68 0.355 1.000 0.500 110.0 2.5 155 
69 0.400 1.000 0.500 133.4 6.0 269 
70 0.400 1.000 0.500 145.7 9.2 318 
71 0.400 1.000 0.558 126.3 4.4 231 
72 0.397 1.000 0.558 135.6 6.4 274 
73 0.400 1.000 0.558 145.7 8.3 311 
74 0.400 1.000 0.513 150.0 9.4 326 
75 0.400 1.000 0.500 113.2 3.1 179 
76 0.400 1.000 0.500 131.5 5.6 263 
77 0.400 1.000 0.500 137.0 6.7 282 
78 0.400 1.000 0.500 141.9 7.9 303 
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7.4 Chapter 3 Procedures 

7.4.1 Chemicals 

3,5-Dibromobenzene 3.05 (98%, Fluorochem), 1-hexyne 3.11 (97%, Merck), 

tetrakis(triphenylphosphine)palladium(0) (99%, Merck), copper (I) iodide 

(99.999%, Merck), pyrrolidine (≥99%, Merck), toluene (HPLC grade, VWR), 

acetonitrile (HPLC grade, VWR) and biphenyl (≥99%, Merck) were purchased from 

suppliers and used without further purification. The wt% of mono and bis in a 

reaction mixture was quantified via 1H NMR and used for HPLC calibration.  

7.4.2 Experimental Set-Up 

Reactor: Cambridge Reactor Design Polar Bear Flow Synthesiser, fitted with 3 

mL Polyfon PTFE tubing (0.1 cm ID), and maintained under  5 bar back-pressure. 

Changes to the reactor platform: HiTec Zang SyrDos syringe pumps and Knauer 

AZURA HPLC pumps; Waters Acquity C18 reverse phase column (3 cm length, 4.6 

mm ID and 1,7 μm particle size); steady state was monitored using a Kaiser RxN1 

785 nm Raman System. 

Reservoir solutions were prepared by dissolving the desired reagents in 

solvent under stirring at ambient conditions. Pump 1: 3,5-dibromopyridine 3.05 

(143.55 g, 0.61 mol, 0.61 mol L-1), Pd(PPh3)4 (10.40 g, 0.009 mol, 0.009 mol L-1), CuI 

(11.61 g, 0.061 mol, 0.061 mol L-1), pyrrolidine (131.50 g, 1.85 mol, 1.85 mol L-1) and 

biphenyl (18.80 g, 0.122 mol, 0.122 mol L-1) in PhMe/MeCN (2:1, 1 L); Pump 2:  

1-hexyne 3.11 (68.58 g, 0.84 mol, 0.84 mol L-1) in PhMe (1 L); Pump 3 (dilution): 

MeCN.  

HPLC mobile phases were A H2O (18.2 MΩ), B MeCN and C TFA (1%). The 

method used was 5% to 80% B 8 mins, 80% to 5% B 0.1 min, 5% B 1 min, flow rate 

2 mL min-1, column temperature 40 °C. The method was isocratic with respect to C 

(5%). The dilution pump was set to 5× the combined flow rate of the reagent pumps, 

to prevent saturation of the HPLC detector by the mono product. 

7.4.3 Full Factorial DoE 

The 2-level full factorial design was constructed using Umetrics MODDE (ver 

12.1). Polynomial response surface models of the experiments were fitted by 
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including all square and interaction terms then removing terms with a p-value less 

than 0.05.  

Table 17. Variables for the full factorial design of experiments. 

 Variables 
Limits CuI/mol% PhMe:MeCN 
Lower 5 3.6:1 
Upper 10 5.1:1 

 

Table 18. List of results from the full factorial design of experiments, including two 
centre point and upper extreme point replicates. 

Entry CuI/mol% PhMe:MeCN SM/% 
1 7.5 4.35:1 8.6 
2 10 3.6:1 11.2 
3 5 5.1:1 8.4 
4 7.5 4.35:1 7.5 
5 5 3.6:1 8.0 
6 10 5.1:1 3.6 
7 10 5.1:1 3.4 

 

 

Figure 73. Summary of fit plot for SM. R2 = 0.986, Q2 = 0.923. Reproducibility is 
determined from the replicates, and determines the models sensitivity towards 
factor effects. 
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7.4.4 Box-Behnken DoE 

The Box-Behnken design was constructed using Umetrics MODDE (ver 12.1). 

Polynomial response surface models of the experiments were fitted by including all 

square and interaction terms then removing terms with a p-value less than 0.05.  

 

Table 19. Variables for the Box-Behnken design of experiments.  

 Variables 
Limits tres/min 1-hexyne equiv. Temp/°C 
Lower 3.0 1.2 120 
Upper 8.0 1.6 150 

 

Table 20. List of results from the Box-Behnken design of experiments, including 
three centre point replicates. 

Entry tres/min 1-Hexyne equiv. Temp/°C SM/% Mono/% Bis/% 
1 5.5 1.4 135.0 7.5 73.5 19.0 
2 5.5 1.4 135.0 5.8 73.3 20.9 
3 3.0 1.2 135.0 14.6 71.5 13.9 
4 8.0 1.4 150.0 8.9 72.6 18.6 
5 3.0 1.4 150.0 8.2 70.7 21.1 
6 5.5 1.6 150.0 3.5 68.5 28.0 
7 8.0 1.2 135.0 14.2 71.7 14.1 
8 3.0 1.4 120.0 6.8 73.3 19.9 
9 3.0 1.6 135.0 3.2 68.6 28.2 

10 5.5 1.2 150.0 16.0 70.0 14.0 
11 5.5 1.6 120.0 2.8 70.4 26.8 
12 5.5 1.2 120.0 15.4 70.7 13.9 
13 8.0 1.6 135.0 2.9 68.2 28.9 
14 8.0 1.4 120.0 8.6 71.9 19.5 
15 5.5 1.4 135.0 7.5 72.5 20.1 
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Figure 74. Summary of fit plots for SM, mono and bis. SM: R2 = 0.985, Q2 = 0.968. 
Mono: R2 = 0.764, Q2 = 0.634. Bis: R2 = 0.982, Q2 = 0.973. Reproducibility is 
determined from the centre points replicates, and determines the models sensitivity 
towards factor effects.  

 

Figure 75. Coefficient plots for the models of SM, mono and bis. Insignificant terms 
(confidence interval crosses 0) were removed from the saturated model one at a 
time. 
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Figure 76. Residuals normal probability plots for SM, mono and bis. A straight 
diagonal line represents a normal distribution. Experiments outside of the 4 
standard deviation limits represent outliers.   

 

 

Figure 77. Plots of observed vs. experimental for the models of SM, mono and bis. A 
straight diagonal line indicates the model has a good fit to the experimental data. 
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7.4.5 Self-Optimisation Results 

minimise[-ln(STY), ln(% of SM 3.05)] 

Table 21. Self-optimisation variables. 

 Variables 
Limits tres/min 1-Hexyne equiv. Temp/°C 
Lower 1.0 1.2 120 
Upper 8.0 1.6 150 

Table 22. List of results from the self-optimisation. The first 20 experiments are a 
LHC design in ascending order of temperature. The non-dominated solutions are 
highlighted in bold. 

Entry tres/min 1-Hexyne equiv. Temp/°C STY/kg m-3 h-1 SM/% 
1 2.8 1.59 121.3 984.2 3.3 
2 1.4 1.34 122.9 2268.3 10.3 
3 6.1 1.38 123.6 542.2 7.7 
4 4.2 1.22 125.7 808.4 11.7 
5 1.8 1.57 126.5 1635.3 4.3 
6 7.9 1.31 128.0 407.7 9.9 
7 2.1 1.26 129.2 1597.3 12.4 
8 7.4 1.30 130.7 432.5 8.7 
9 4.9 1.45 132.4 631.5 5.9 

10 3.4 1.47 133.5 888.7 5.1 
11 5.2 1.52 135.6 535.3 3.4 
12 7.2 1.23 137.3 455.0 13.8 
13 5.7 1.37 139.5 544.6 6.8 
14 1.1 1.48 139.9 2740.3 8.2 
15 4.5 1.55 142.1 610.0 3.6 
16 6.8 1.42 142.6 441.4 6.6 
17 4.0 1.35 144.2 782.6 9.6 
18 2.5 1.54 146.1 1098.8 4.1 
19 3.5 1.43 147.3 848.2 6.8 
20 6.5 1.27 149.1 497.7 9.9 
21 1.0 1.60 120.0 2979.6 8.1 
22 1.0 1.59 125.9 2989.6 7.8 
23 1.7 1.60 126.2 1731.1 5.0 
24 1.0 1.54 131.6 3049.7 8.1 
25 1.0 1.56 141.7 3067.6 7.9 
26 3.1 1.58 145.8 855.9 3.7 
27 1.6 1.57 148.7 1797.9 5.7 
28 2.4 1.52 149.0 1199.8 5.6 
29 2.0 1.58 126.2 1428.0 4.0 
30 1.0 1.60 126.5 3004.6 8.0 
31 1.3 1.60 135.1 2193.2 6.0 
32 2.3 1.57 137.8 1282.5 4.1 
33 2.5 1.59 125.3 1132.1 3.4 
34 1.6 1.55 127.0 1822.9 5.5 
35 1.0 1.60 136.1 2799.8 7.4 
36 1.3 1.55 136.8 2247.8 6.4 
37 1.5 1.60 139.5 1845.1 5.4 
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38 1.2 1.60 142.9 2300.9 5.8 
39 1.0 1.60 145.3 2826.3 6.4 
40 2.4 1.57 148.6 1169.2 4.2 
41 2.2 1.59 121.5 1337.2 4.1 
42 3.5 1.60 146.9 760.9 3.9 
43 1.0 1.57 147.8 2756.5 7.5 
44 1.2 1.57 150.0 2306.7 6.0 
45 1.4 1.60 138.4 2036.3 5.0 
46 1.7 1.58 143.2 1676.6 5.2 
47 2.1 1.58 145.0 1330.0 4.1 
48 1.0 1.60 148.7 2874.1 6.6 
49 1.2 1.58 122.4 2517.3 6.7 
50 1.7 1.60 126.7 1722.7 4.0 
51 3.8 1.56 133.5 710.3 3.3 
52 6.4 1.59 134.6 405.4 3.0 
53 1.0 1.46 120.0 3198.8 10.9 
54 2.0 1.60 120.0 1414.7 3.8 
55 3.3 1.59 126.6 861.7 2.9 
56 7.7 1.59 135.8 315.4 1.9 
57 1.8 1.60 120.0 1585.7 3.7 
58 3.6 1.57 120.7 763.3 2.6 
59 1.3 1.59 122.0 2317.9 6.1 
60 2.9 1.60 122.9 955.8 2.9 
61 3.3 1.55 120.6 873.3 3.4 
62 1.9 1.59 128.1 1468.3 3.7 
63 1.0 1.59 130.1 3001.4 7.5 
64 1.2 1.59 134.4 2441.9 6.0 
65 5.7 1.59 133.2 485.8 3.5 
66 2.5 1.58 134.6 1127.4 3.7 
67 1.2 1.60 149.8 2239.8 5.7 
68 1.0 1.60 150.0 2767.7 6.9 
69 2.5 1.60 120.0 1093.2 2.9 
70 1.7 1.58 120.2 1734.1 4.8 
71 4.1 1.58 121.4 656.9 2.1 
72 1.0 1.58 149.8 2783.0 6.8 
73 2.4 1.60 120.0 1162.5 3.4 
74 1.0 1.60 121.3 3009.2 7.4 
75 1.6 1.60 125.1 1776.2 4.5 
76 7.2 1.58 142.5 341.3 2.3 
77 1.4 1.60 120.0 1942.6 5.5 
78 2.7 1.60 122.7 1053.1 3.1 
79 1.2 1.57 123.3 2598.4 6.8 
80 1.9 1.59 125.3 1454.4 4.4 

 

7.4.6 In Silico Multi-Objective Test Problems 

7.4.6.1 VdV1 Test Problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[−ln(% 𝑩) , ln(𝑆𝑇𝑌)] (50) 
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subject to: Residence time/min ∈ [0.5, 10] 

Temperature/°C ∈ [25, 100] 

[A]/M = 1 

 

(i) 

 

(ii) 

 

Figure 78. Graphical representations of the VdV1 test problem: (i) variable space; 
(ii) objective space. Black dots = possible solutions, red dots = non-dominated 
solutions. 

Table 23. List of simulated experiments for the VdV1 test problem, showing 
changes in average hypervolume (20 runs) with an increasing number of 
evaluations for 5 different multi-objective algorithms.  

 Average Hypervolume 
Experiment TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

1 0.874 0.204 0.000 4.440 0.671 
2 2.479 0.901 0.977 6.079 3.520 
3 3.726 1.481 2.894 7.839 6.631 
4 4.263 2.325 3.292 8.739 8.129 
5 5.976 4.103 5.816 11.061 9.531 
6 7.517 5.754 6.328 11.870 10.678 
7 8.914 7.046 8.014 13.785 12.298 
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8 10.314 7.796 9.328 16.531 13.973 
9 10.345 9.337 10.236 18.484 14.005 

10 10.333 10.235 10.981 18.633 14.176 
11 10.355 13.175 11.734 19.161 15.172 
12 11.408 13.413 13.973 19.201 15.164 
13 13.330 13.849 14.922 19.218 17.101 
14 14.403 13.918 15.745 20.319 17.042 
15 15.153 14.284 16.181 20.361 17.750 
16 15.271 16.165 16.672 20.487 17.798 
17 16.326 17.292 17.087 21.712 19.558 
18 19.529 18.772 19.318 21.941 20.255 
19 21.605 19.573 20.130 21.956 20.929 
20 21.665 20.085 20.212 23.097 21.667 
21 24.073 24.317 20.158 24.821 28.110 
22 26.096 25.626 20.236 30.520 32.442 
23 30.630 26.837 20.149 34.335 37.610 
24 33.733 27.528 20.191 36.758 41.595 
25 35.127 29.990 20.145 40.273 43.609 
26 36.378 30.693 20.158 42.547 44.766 
27 37.556 31.532 20.147 44.670 46.124 
28 38.691 31.949 20.153 46.401 46.956 
29 39.387 32.958 20.271 48.753 48.126 
30 40.270 33.569 20.487 49.385 48.883 
31 41.178 34.060 20.562 50.406 49.923 
32 41.795 35.569 20.611 50.687 50.361 
33 42.243 36.289 20.649 51.512 50.915 
34 42.852 37.692 20.812 51.983 51.182 
35 43.384 38.403 20.796 52.380 51.720 
36 43.605 38.691 21.197 52.722 52.122 
37 43.744 39.015 21.257 53.282 52.727 
38 44.073 39.370 21.659 53.405 52.973 
39 44.456 39.860 21.893 53.492 53.326 
40 44.804 41.010 22.237 53.840 53.515 
41 45.458 41.790 22.210 53.836 53.658 
42 45.507 42.512 22.225 54.123 53.953 
43 45.718 42.860 22.244 54.196 54.071 
44 45.818 42.929 22.253 54.165 54.325 
45 46.056 44.087 22.280 54.496 54.398 
46 46.762 44.536 22.236 54.526 54.650 
47 47.009 44.946 22.278 54.621 54.728 
48 47.439 45.447 22.287 54.792 55.264 
49 48.010 46.199 22.239 54.992 55.341 
50 48.360 46.769 22.756 55.160 55.445 
51 48.578 46.998 22.880 55.296 55.561 
52 48.736 47.382 23.129 55.408 55.673 
53 48.988 47.784 23.284 55.580 55.834 
54 49.137 48.006 23.333 55.640 55.855 
55 49.307 48.381 23.475 55.723 55.921 
56 49.528 48.661 25.106 55.815 56.050 
57 49.842 48.749 25.717 55.985 56.021 
58 50.100 49.234 25.909 56.027 56.126 
59 50.201 49.557 26.025 56.125 56.133 
60 50.287 49.532 26.257 56.346 56.178 
61 50.332 50.127 26.290 56.453 56.230 
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62 50.561 50.285 26.363 56.495 56.309 
63 50.735 50.968 26.264 56.637 56.429 
64 50.873 51.109 26.297 56.781 56.535 
65 51.076 52.003 26.339 56.896 56.507 
66 51.322 52.213 26.283 56.962 56.677 
67 51.704 52.393 26.250 57.044 56.689 
68 51.750 52.674 26.960 57.077 56.679 
69 52.285 52.764 27.169 57.018 56.890 
70 52.620 52.951 27.252 57.067 56.918 
71 52.776 53.058 27.472 57.133 56.913 
72 52.813 53.133 27.714 57.212 57.022 
73 53.000 53.273 27.982 57.215 56.999 
74 53.154 53.586 28.302 57.248 57.064 
75 53.261 53.671 28.503 57.251 57.091 
76 53.427 53.767 28.551 57.405 57.221 
77 53.674 53.974 28.615 57.400 57.244 
78 53.887 54.032 28.825 57.403 57.281 
79 53.969 54.354 28.831 57.416 57.284 
80 54.121 54.471 29.014 57.484 57.303 
81 54.237 54.533 28.980 57.446 57.339 
82 54.244 54.766 28.969 57.468 57.423 
83 54.299 54.799 29.034 57.532 57.475 
84 54.483 54.898 29.058 57.606 57.421 
85 54.537 55.191 29.001 57.627 57.440 
86 54.636 55.275 28.984 57.682 57.486 
87 54.816 55.364 29.037 57.735 57.589 
88 55.024 55.671 28.935 57.823 57.610 
89 55.114 55.715 29.011 57.806 57.632 
90 55.221 55.840 28.980 57.799 57.596 
91 55.401 55.902 29.001 57.813 57.697 
92 55.279 55.964 28.972 57.888 57.641 
93 55.412 56.027 28.972 57.832 57.663 
94 55.466 56.075 28.994 57.893 57.721 
95 55.673 56.215 28.973 57.904 57.732 
96 55.975 56.218 28.977 57.944 57.750 
97 55.959 56.480 28.984 57.914 57.760 
98 56.086 56.531 29.006 57.953 57.745 
99 56.193 56.651 29.046 57.934 57.812 

100 56.368 56.774 29.044 58.051 57.932 

Table 24. Statistics describing the performance of 5 multi-objective algorithms for 
the VdV1 test problem (20 runs). LQ = lower quartile, UQ = upper quartile. 

 Hypervolume @ Experiment 60 
Statistic TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

Min 40.223 28.469 7.933 53.217 50.874 
LQ 46.146 45.753 20.505 56.111 55.289 

Median 49.756 51.241 24.799 56.451 57.095 
UQ 56.575 56.413 35.305 57.186 57.517 

Max 58.110 58.043 43.999 57.656 58.884 
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7.4.6.2 SNAr1 Test Problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[−ln(% 𝟑. 𝟏𝟖) , ln(% 𝟑. 𝟏𝟗) , ln(% 𝟑. 𝟐𝟎)] (51) 

subject to: Residence time/min ∈ [0.5, 20] 

Temperature/°C ∈ [60, 140] 

[3.16]/M = 1 

[3.17]/M = 3 

 

(i) 

 

(ii) 

 

Figure 79. Graphical representations of the SNAr1 test problem: (i) variable space; 
(ii) objective space. Black dots = possible solutions, red dots = non-dominated 
solutions. 
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Table 25. List of simulated experiments for the SNAr1 test problem, showing 
changes in average hypervolume (20 runs) with an increasing number of 
evaluations for 5 different multi-objective algorithms. 

 Average Hypervolume 
Experiment TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

1 17.580 19.124 5.963 15.367 20.616 
2 29.510 34.706 21.239 27.993 31.235 
3 35.446 39.469 32.507 37.005 36.563 
4 41.089 43.924 39.178 43.583 43.101 
5 45.645 47.251 42.037 46.166 45.796 
6 47.974 50.050 44.185 49.507 46.457 
7 49.653 51.596 45.913 51.204 49.450 
8 50.410 52.479 47.577 52.672 50.267 
9 53.028 53.794 50.246 53.204 52.899 

10 53.955 54.267 51.504 53.526 54.830 
11 54.724 55.842 54.699 55.689 55.123 
12 55.769 56.572 56.064 56.615 56.282 
13 56.971 57.281 56.767 57.162 57.467 
14 58.113 58.989 58.032 57.924 58.579 
15 58.774 59.793 59.086 58.295 58.795 
16 59.911 60.525 59.982 58.971 59.170 
17 60.493 60.956 60.510 59.238 59.978 
18 60.910 62.033 61.106 59.311 61.301 
19 61.501 62.955 61.509 60.484 61.486 
20 61.796 63.194 61.853 60.688 61.876 
21 63.099 64.325 61.833 61.535 63.110 
22 64.027 65.477 61.872 63.157 63.888 
23 66.316 66.265 61.845 64.233 64.773 
24 67.352 66.676 61.815 64.444 65.376 
25 67.936 67.942 61.852 65.142 65.975 
26 69.577 68.398 61.835 65.268 66.903 
27 70.032 68.718 61.861 66.339 67.435 
28 70.695 68.887 61.884 66.474 67.895 
29 71.741 69.521 61.880 66.929 68.078 
30 71.898 69.794 61.857 67.673 68.222 
31 72.304 70.485 61.932 68.300 68.307 
32 72.690 70.675 62.011 68.515 68.755 
33 72.933 71.264 62.012 68.601 69.186 
34 72.951 71.598 62.564 68.742 69.295 
35 73.170 71.775 62.739 69.189 69.438 
36 73.624 71.823 62.771 69.182 70.498 
37 73.804 72.411 63.039 69.301 70.587 
38 73.920 72.444 63.013 69.469 70.685 
39 74.040 72.524 63.292 69.661 71.145 
40 74.238 72.770 63.447 69.740 71.313 
41 74.417 72.996 63.482 69.852 71.547 
42 74.615 73.654 63.559 69.880 71.744 
43 74.809 73.736 63.525 69.994 72.147 
44 74.905 73.899 63.495 70.194 72.181 
45 75.093 74.023 63.509 70.136 72.220 
46 75.370 74.216 63.496 70.362 72.291 
47 75.539 74.458 63.449 70.502 72.414 
48 75.599 74.565 63.497 70.792 72.445 
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49 75.859 74.752 63.446 70.791 72.833 
50 75.915 74.843 63.443 70.984 72.920 
51 75.966 74.994 63.470 71.064 72.930 
52 76.044 75.020 63.492 71.565 72.951 
53 76.064 75.048 63.516 71.581 73.204 
54 76.450 75.194 63.500 71.596 73.354 
55 76.416 75.223 63.616 71.744 73.413 
56 76.556 75.699 63.811 71.714 73.434 
57 76.725 75.744 63.802 72.082 73.461 
58 76.860 75.837 63.856 72.067 73.560 
59 76.991 76.010 64.132 72.119 73.581 
60 77.023 76.099 64.159 72.202 73.810 
61 77.178 76.365 64.148 72.247 73.866 
62 77.158 76.314 64.072 72.315 73.932 
63 77.174 76.379 64.160 72.315 74.090 
64 77.201 76.387 64.070 72.349 74.076 
65 77.264 76.425 64.179 72.530 74.150 
66 77.242 76.468 64.092 72.502 74.322 
67 77.303 76.510 64.087 72.500 74.576 
68 77.357 76.696 64.124 72.508 74.606 
69 77.418 76.812 64.118 72.490 74.663 
70 77.473 76.847 64.087 72.651 74.764 
71 77.548 76.866 64.135 72.668 74.842 
72 77.523 76.954 64.196 72.661 74.996 
73 77.586 76.918 64.194 72.797 75.027 
74 77.640 77.159 64.216 72.789 75.100 
75 77.605 77.237 64.328 72.923 75.147 
76 77.634 77.286 64.447 73.023 75.240 
77 77.728 77.283 64.500 72.965 75.276 
78 77.751 77.350 64.641 73.084 75.294 
79 77.788 77.472 64.655 73.069 75.332 
80 77.750 77.447 64.710 73.202 75.374 
81 77.762 77.476 64.641 73.234 75.369 
82 77.833 77.490 64.678 73.378 75.358 
83 77.875 77.512 64.728 73.424 75.465 
84 77.824 77.492 64.679 73.396 75.638 
85 77.958 77.593 64.716 73.459 75.696 
86 77.921 77.579 64.666 73.449 75.776 
87 77.945 77.591 64.672 73.867 75.790 
88 77.993 77.588 64.646 73.796 75.883 
89 77.981 77.760 64.672 73.849 75.978 
90 77.979 77.823 64.704 74.093 76.032 
91 78.034 77.873 64.679 74.073 76.173 
92 77.987 77.876 64.692 74.140 76.210 
93 78.035 77.900 64.703 74.176 76.231 
94 77.996 77.990 64.666 74.191 76.285 
95 78.042 78.015 64.626 74.198 76.321 
96 78.132 78.101 64.701 74.254 76.318 
97 78.108 78.111 64.714 74.318 76.396 
98 78.194 78.151 64.714 74.264 76.525 
99 78.230 78.173 64.720 74.348 76.528 

100 78.266 78.237 64.654 74.376 76.555 
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Table 26. Statistics describing the performance of 5 multi-objective algorithms for 
the SNAr1 test problem (20 runs). LQ = lower quartile, UQ = upper quartile. 

 Hypervolume @ Experiment 60 
Statistic TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

Min 74.419 72.810 53.372 62.485 70.382 
LQ 75.925 75.119 59.482 71.701 72.191 

Median 77.122 76.107 66.405 72.962 73.718 
UQ 78.131 77.184 68.150 74.514 75.702 

Max 79.845 78.553 73.593 75.923 77.106 

7.4.6.3 SNAr2 Test Problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[ln(% 𝟑. 𝟏𝟗) , −ln(𝑅𝑀𝐸) , −ln(𝑆𝑇𝑌)] (52) 

subject to: Residence time/min ∈ [0.5, 2] 

Temperature/°C ∈ [60, 140] 

[3.16]/M ∈ [0.1, 2.0] 

[3.17]/M ∈ [2, 5] 

 

Figure 80. Graphical representations of the objective space for the SNAr2 test 
problem. Black dots = possible solutions, red dots = non-dominated solutions. 

Table 27. List of simulated experiments for the SNAr2 test problem, showing 
changes in average hypervolume (20 runs) with an increasing number of 
evaluations for 5 different multi-objective algorithms. 

 Average Hypervolume 
Experiment TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

1 3.415 3.681 0.501 4.414 3.080 
2 6.747 5.550 5.570 6.880 5.072 
3 8.856 7.826 7.192 10.095 7.735 
4 12.249 11.146 10.968 11.873 9.712 
5 13.298 14.773 12.643 14.327 12.083 
6 16.167 15.615 13.682 15.522 12.666 
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7 17.732 16.803 14.190 16.858 14.283 
8 18.835 17.260 16.635 18.381 16.393 
9 20.734 19.728 17.479 19.627 19.999 

10 22.195 21.227 18.570 21.225 20.563 
11 22.793 21.937 19.217 21.614 21.081 
12 23.019 22.337 19.528 22.456 22.004 
13 23.740 22.590 20.567 22.720 22.916 
14 24.423 23.379 23.067 23.392 23.623 
15 24.555 23.654 24.392 23.871 24.085 
16 24.871 23.830 24.709 24.319 24.838 
17 25.862 24.545 25.292 25.803 24.919 
18 26.353 25.030 25.530 26.218 25.587 
19 26.676 25.334 25.845 27.191 26.381 
20 26.786 25.744 26.434 28.010 26.781 
21 31.823 31.740 26.426 38.698 31.528 
22 38.664 36.174 26.398 41.392 35.714 
23 41.207 38.023 26.376 42.591 39.799 
24 44.662 38.735 26.388 44.345 43.460 
25 48.371 42.973 26.458 47.906 47.241 
26 51.742 46.077 26.402 51.500 50.590 
27 54.729 49.320 26.397 52.105 53.003 
28 56.808 50.780 26.366 57.146 54.085 
29 57.365 53.692 26.444 58.990 54.558 
30 60.055 55.282 26.430 61.617 57.484 
31 61.516 56.735 26.469 64.859 58.301 
32 62.814 57.260 26.510 64.963 59.997 
33 63.184 59.080 26.798 66.607 61.464 
34 64.246 60.249 27.027 67.114 63.602 
35 65.025 60.797 27.062 67.483 64.122 
36 65.520 62.462 27.083 67.692 65.200 
37 66.364 63.530 27.321 68.348 65.852 
38 68.809 64.487 29.135 68.472 67.602 
39 69.786 65.129 30.064 68.821 68.084 
40 70.016 65.764 30.458 69.170 68.384 
41 70.468 67.696 30.466 69.372 69.758 
42 70.727 68.368 30.480 69.500 70.421 
43 71.048 68.717 30.403 69.907 70.659 
44 71.698 68.945 30.435 70.628 70.941 
45 72.196 70.877 30.453 70.751 71.285 
46 72.670 71.584 30.479 71.271 71.544 
47 73.177 71.936 30.438 71.371 72.298 
48 73.671 72.363 30.463 71.598 72.480 
49 74.118 72.845 30.448 71.653 72.884 
50 74.226 73.239 30.419 72.888 73.169 
51 74.538 73.432 30.432 73.228 73.426 
52 74.831 73.509 30.722 73.353 73.755 
53 74.922 74.094 30.674 73.561 73.986 
54 75.135 74.287 30.860 73.975 74.123 
55 75.550 74.699 30.977 74.099 74.415 
56 75.673 74.784 31.084 74.564 74.747 
57 75.742 75.172 31.454 74.970 75.004 
58 75.978 75.531 31.485 75.151 75.256 
59 76.159 75.780 31.636 75.255 75.496 
60 76.216 76.125 31.945 75.315 75.536 
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61 76.353 76.701 32.011 75.403 75.778 
62 76.494 76.757 31.919 75.437 75.859 
63 76.571 77.092 32.007 75.723 75.959 
64 76.677 77.211 31.982 75.703 76.240 
65 77.062 77.415 31.985 75.772 76.312 
66 77.356 77.479 31.998 75.832 76.406 
67 77.495 77.496 31.938 75.980 76.655 
68 77.550 77.724 31.959 76.088 76.679 
69 77.597 77.851 32.001 76.203 76.993 
70 77.675 77.828 31.995 76.174 76.987 
71 77.798 78.150 32.085 76.357 77.150 
72 77.887 78.215 32.156 76.546 77.245 
73 77.999 78.308 32.188 76.477 77.458 
74 78.134 78.398 32.305 76.576 77.468 
75 78.151 78.449 32.319 76.628 77.604 
76 78.209 78.558 32.487 76.611 77.784 
77 78.379 78.671 32.536 76.680 77.895 
78 78.507 78.750 32.793 76.724 77.918 
79 78.665 78.770 32.903 76.775 78.060 
80 78.767 78.885 33.160 76.725 78.116 
81 78.978 78.980 33.082 76.760 78.254 
82 79.037 79.125 33.194 76.802 78.359 
83 79.127 79.213 33.148 76.924 78.437 
84 79.141 79.209 33.128 76.971 78.520 
85 79.227 79.271 33.129 76.979 78.649 
86 79.286 79.389 33.129 77.029 78.624 
87 79.339 79.412 33.053 77.081 78.761 
88 79.424 79.518 33.090 77.162 78.831 
89 79.470 79.605 33.129 77.140 78.790 
90 79.550 79.616 33.132 77.233 78.851 
91 79.626 79.721 33.156 77.247 78.900 
92 79.657 79.829 33.112 77.258 78.934 
93 79.692 79.943 33.059 77.338 79.003 
94 79.722 79.944 33.034 77.306 79.001 
95 79.764 80.016 33.127 77.371 79.080 
96 79.775 80.050 33.165 77.366 79.161 
97 79.987 80.163 33.098 77.440 79.131 
98 80.005 80.182 33.088 77.384 79.253 
99 80.015 80.274 33.099 77.437 79.280 

100 80.111 80.287 33.138 77.490 79.349 

Table 28. Statistics describing the performance of 5 multi-objective algorithms for 
the SNAr2 test problem (20 runs). LQ = lower quartile, UQ = upper quartile. 

 Hypervolume @ Experiment 60 
Statistic TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

Min 64.381 69.104 17.235 62.239 69.264 
LQ 75.194 74.750 23.325 74.199 73.751 

Median 76.840 77.065 32.032 76.375 75.505 
UQ 78.234 77.952 38.557 77.433 77.626 

Max 80.343 79.720 47.638 79.114 79.396 
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7.4.6.4 Lactose1 Test Problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[−ln(% 𝟑. 𝟐𝟐) , ln(% 𝟑. 𝟐𝟑)] (53) 

subject to: Residence time/min ∈ [0.5, 10] 

Temperature/°C ∈ [25, 100] 

[3.21]/M = 1 

(i) 

 

(ii) 

 

Figure 81. Graphical representations of the Lactose1 test problem: (i) variable 
space; (ii) objective space. Black dots = possible solutions, red dots = non-dominated 
solutions. 

Table 29. List of simulated experiments for the Lactose1 test problem, showing 
changes in average hypervolume (20 runs) with an increasing number of 
evaluations for 5 different multi-objective algorithms. 

 Average Hypervolume 
Experiment TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

1 20.994 22.299 0.064 12.090 12.911 
2 29.239 31.922 11.413 20.616 23.178 
3 37.443 42.419 21.925 27.741 32.586 
4 43.191 44.265 34.176 40.602 40.128 
5 46.848 48.798 44.624 43.800 43.760 
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6 51.229 52.579 48.717 51.106 53.551 
7 54.247 55.145 52.689 55.315 55.948 
8 58.335 57.312 54.871 56.390 58.920 
9 59.379 59.934 56.668 59.129 59.717 

10 60.174 61.304 57.479 60.561 60.529 
11 61.440 62.950 58.425 62.315 62.826 
12 61.813 64.691 59.693 64.299 63.001 
13 62.321 65.073 60.195 64.778 63.844 
14 62.890 65.731 61.592 65.668 65.123 
15 64.639 66.019 62.104 66.344 66.085 
16 66.555 66.627 63.085 67.613 66.445 
17 67.156 66.909 64.945 68.370 66.866 
18 67.645 67.171 66.415 68.908 67.585 
19 68.375 67.764 66.575 69.186 68.231 
20 68.700 69.082 67.621 69.407 68.686 
21 69.235 69.465 67.564 69.748 68.923 
22 69.858 69.751 67.542 70.008 69.613 
23 70.068 69.998 67.584 70.199 70.252 
24 70.324 70.276 67.486 70.344 70.711 
25 70.523 70.456 67.493 70.389 71.307 
26 70.763 70.807 67.552 70.476 71.673 
27 71.455 71.048 67.498 70.523 71.825 
28 71.556 71.055 67.637 70.664 72.412 
29 71.646 71.038 67.654 70.686 72.894 
30 71.923 71.160 67.727 70.760 73.246 
31 72.187 71.207 67.659 70.738 73.275 
32 72.241 71.652 67.755 70.766 73.416 
33 72.302 72.142 68.123 70.734 73.732 
34 72.467 72.229 69.816 70.763 73.936 
35 72.598 72.462 69.928 70.806 74.134 
36 72.888 72.625 70.049 70.822 74.281 
37 73.016 72.789 70.270 70.767 74.566 
38 73.440 72.862 70.669 70.816 74.797 
39 74.029 73.121 70.705 70.878 74.995 
40 74.305 73.501 70.942 70.845 75.113 
41 74.277 73.568 70.980 70.791 75.083 
42 74.326 73.730 71.019 70.849 75.647 
43 74.513 73.740 70.991 70.861 75.680 
44 74.677 73.808 71.011 70.893 75.688 
45 74.919 73.935 71.075 70.870 75.806 
46 74.978 74.231 70.935 70.939 75.864 
47 75.013 74.367 71.005 71.042 76.065 
48 75.180 74.323 70.999 71.038 76.128 
49 75.238 74.635 70.994 71.056 76.115 
50 75.321 74.718 71.018 71.237 76.241 
51 75.334 74.749 71.037 71.314 76.266 
52 75.471 74.807 71.088 71.299 76.367 
53 75.558 74.872 71.061 71.388 76.419 
54 75.627 74.998 71.504 71.420 76.452 
55 75.686 75.037 71.792 71.463 76.515 
56 75.794 74.975 72.044 71.621 76.607 
57 75.812 75.017 72.337 71.649 76.630 
58 75.908 75.211 72.465 71.667 76.770 
59 76.016 75.236 72.587 71.723 76.752 
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60 76.069 75.595 72.770 71.749 76.938 
61 76.223 75.691 72.760 71.786 77.063 
62 76.329 75.760 72.745 71.793 77.163 
63 76.269 75.750 72.782 72.044 77.143 
64 76.278 75.817 72.714 72.028 77.202 
65 76.495 75.982 72.762 72.058 77.240 
66 76.504 76.060 72.720 72.126 77.236 
67 76.473 76.085 72.735 72.200 77.337 
68 76.564 76.232 72.711 72.192 77.369 
69 76.567 76.237 72.736 72.209 77.413 
70 76.663 76.351 72.784 72.229 77.449 
71 76.776 76.351 72.723 72.196 77.480 
72 76.954 76.528 72.905 72.305 77.568 
73 77.058 76.545 73.419 72.535 77.690 
74 77.074 76.548 73.657 72.591 77.740 
75 77.141 76.609 73.652 72.577 77.780 
76 77.123 76.652 73.730 72.626 77.876 
77 77.211 76.614 73.704 72.542 77.894 
78 77.276 76.643 73.754 72.781 77.875 
79 77.281 76.795 73.890 72.862 77.958 
80 77.293 76.763 73.913 72.882 78.014 
81 77.309 76.785 73.942 73.070 78.038 
82 77.362 76.924 73.917 73.065 78.174 
83 77.436 76.920 73.879 73.070 78.176 
84 77.402 76.936 73.903 73.101 78.253 
85 77.419 76.924 73.924 73.204 78.249 
86 77.458 77.022 73.881 73.289 78.411 
87 77.469 77.023 73.900 73.335 78.466 
88 77.532 77.052 73.901 73.462 78.536 
89 77.558 77.085 73.907 73.419 78.561 
90 77.594 77.117 73.918 73.541 78.619 
91 77.654 77.289 73.898 73.569 78.615 
92 77.722 77.305 73.882 73.608 78.707 
93 77.764 77.400 73.905 73.663 78.722 
94 77.854 77.402 73.932 73.768 78.755 
95 77.864 77.435 73.900 73.790 78.827 
96 77.893 77.473 73.982 73.702 78.812 
97 77.910 77.509 73.893 73.754 78.877 
98 77.947 77.579 73.880 73.775 78.870 
99 77.870 77.684 73.883 73.745 78.836 

100 77.954 77.744 73.880 73.802 78.948 

Table 30. Statistics describing the performance of 5 multi-objective algorithms for 
the Lactose1 test problem (20 runs). LQ = lower quartile, UQ = upper quartile. 

 Hypervolume @ Experiment 60 
Statistic TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

Min 72.209 73.297 55.462 66.546 73.708 
LQ 75.793 74.201 72.102 70.213 75.663 

Median 76.534 75.382 73.492 71.738 77.325 
UQ 77.258 77.018 74.874 73.076 78.056 

Max 78.365 78.160 78.667 76.795 79.235 
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7.4.6.5 PK1 Test Problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[−ln(𝑆𝑇𝑌) , −ln(𝑅𝑀𝐸)] (54) 

subject to: Residence time/min ∈ [0.5, 2] 

Equivalents of 3.25 ∈ [1, 10] 

Temperature/°C = 50 

[3.24]/M = 1 

 

 

(i) 

 

(ii) 

 

Figure 82. Graphical representations of the PK1 test problem: (i) variable space; (ii) 
objective space. Black dots = possible solutions, red dots = non-dominated solutions. 
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Table 31. List of simulated experiments for the PK1 test problem, showing changes 
in average hypervolume (20 runs) with an increasing number of evaluations for 5 
different multi-objective algorithms. 

 Average Hypervolume 
Experiment TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

1 10.495 10.191 0.000 5.387 6.393 
2 19.892 16.785 5.447 13.056 14.002 
3 21.360 22.190 15.835 17.445 21.368 
4 25.468 24.784 19.783 21.264 25.328 
5 26.631 27.343 23.799 26.672 32.199 
6 27.973 31.226 26.785 30.144 35.210 
7 35.191 35.031 30.277 34.259 39.549 
8 36.675 40.252 30.285 39.036 43.893 
9 38.159 45.092 30.952 41.393 44.952 

10 41.093 47.456 34.141 44.718 46.726 
11 42.933 48.249 35.842 46.566 46.798 
12 45.572 48.814 39.204 49.496 47.388 
13 47.162 49.899 40.400 49.849 48.822 
14 47.180 51.324 43.418 50.228 50.427 
15 48.101 52.925 44.239 51.055 50.807 
16 49.012 53.218 44.952 52.648 51.839 
17 49.348 53.977 46.368 54.919 55.008 
18 50.556 54.838 48.531 55.310 56.293 
19 50.528 54.967 49.103 55.527 56.355 
20 54.847 55.735 50.001 56.616 56.754 
21 59.819 58.787 50.061 64.176 62.514 
22 62.364 60.804 50.025 68.442 65.534 
23 65.456 61.124 49.984 70.500 67.986 
24 67.184 61.577 50.069 71.827 71.471 
25 68.803 64.183 50.024 73.558 73.324 
26 70.143 65.642 50.014 74.363 74.287 
27 71.879 66.241 50.008 75.064 75.454 
28 72.210 67.045 50.164 76.321 76.504 
29 73.431 69.492 50.455 77.021 76.824 
30 73.840 70.216 50.642 77.503 77.512 
31 74.601 70.725 50.849 78.259 77.921 
32 75.214 71.155 51.029 78.495 78.506 
33 75.485 72.396 51.343 78.713 78.694 
34 76.040 73.301 51.880 78.873 78.995 
35 76.423 73.808 52.803 79.196 79.178 
36 76.972 74.414 53.047 79.295 79.475 
37 77.333 75.285 53.259 79.436 79.690 
38 77.760 75.669 53.488 79.515 79.780 
39 78.128 76.225 54.545 79.716 80.012 
40 78.223 76.330 55.367 79.848 80.121 
41 78.358 76.760 55.335 80.145 80.181 
42 78.750 77.097 55.331 80.183 80.387 
43 78.942 77.219 55.299 80.375 80.447 
44 79.159 77.421 55.450 80.405 80.556 
45 79.315 77.930 55.406 80.562 80.554 
46 79.455 78.237 55.347 80.607 80.585 
47 79.664 78.498 55.365 80.672 80.642 
48 79.720 78.548 55.432 80.688 80.711 
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49 79.888 79.130 55.580 80.745 80.786 
50 80.065 79.377 55.850 80.874 80.851 
51 80.202 79.624 55.890 80.886 81.115 
52 80.333 79.655 56.346 80.950 81.169 
53 80.411 79.767 56.502 81.042 81.323 
54 80.578 80.017 56.938 81.122 81.284 
55 80.645 80.089 57.257 81.154 81.406 
56 80.947 80.257 57.983 81.232 81.490 
57 81.072 80.488 58.174 81.302 81.537 
58 81.187 80.639 58.283 81.312 81.599 
59 81.348 80.678 58.493 81.335 81.728 
60 81.507 80.741 59.164 81.364 81.753 
61 81.532 80.858 59.181 81.444 81.903 
62 81.707 80.935 59.142 81.516 81.913 
63 81.800 81.068 59.122 81.487 82.031 
64 81.908 81.135 59.115 81.548 82.095 
65 81.970 81.106 59.122 81.530 82.136 
66 82.020 81.250 59.222 81.570 82.217 
67 82.044 81.248 59.111 81.620 82.240 
68 82.174 81.329 59.172 81.683 82.288 
69 82.225 81.490 59.197 81.670 82.297 
70 82.282 81.501 59.152 81.722 82.419 
71 82.269 81.577 59.189 81.796 82.465 
72 82.308 81.681 59.419 81.749 82.594 
73 82.385 81.704 59.415 81.790 82.633 
74 82.364 81.709 59.923 81.773 82.683 
75 82.469 81.774 60.182 81.791 82.725 
76 82.521 82.003 60.648 81.805 82.791 
77 82.536 82.062 61.061 81.792 82.858 
78 82.608 82.061 61.735 81.812 82.933 
79 82.670 82.077 62.255 81.805 83.013 
80 82.663 82.110 62.696 81.798 82.988 
81 82.694 82.219 62.644 81.793 83.089 
82 82.745 82.223 62.651 81.862 83.077 
83 82.785 82.281 62.656 81.791 83.194 
84 82.778 82.310 62.655 81.826 83.179 
85 82.865 82.347 62.667 81.810 83.229 
86 82.884 82.382 62.665 81.923 83.303 
87 82.975 82.457 62.640 81.876 83.313 
88 82.970 82.494 62.698 81.881 83.329 
89 82.982 82.518 62.676 81.911 83.381 
90 82.986 82.645 62.614 81.926 83.394 
91 83.004 82.670 62.615 81.924 83.442 
92 83.015 82.703 62.665 81.935 83.532 
93 83.034 82.785 62.640 81.962 83.493 
94 83.064 82.781 62.716 81.987 83.544 
95 83.099 82.806 62.688 81.930 83.512 
96 83.141 82.842 62.695 82.005 83.594 
97 83.184 82.885 62.672 81.979 83.562 
98 83.188 82.862 62.615 81.980 83.601 
99 83.172 82.909 62.684 82.037 83.611 

100 83.284 82.985 62.641 82.011 83.610 



186 

 

Table 32. Statistics describing the performance of 5 multi-objective algorithms for 
the PK1 test problem (20 runs). LQ = lower quartile, UQ = upper quartile. 

 Hypervolume @ Experiment 60 
Statistic TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

Min 80.360 77.958 33.177 78.630 80.302 
LQ 80.913 80.140 57.005 80.606 81.005 

Median 81.343 80.774 61.587 81.338 81.814 
UQ 82.189 81.402 64.755 82.404 82.171 

Max 82.805 82.625 74.047 82.890 83.895 

 

7.4.6.6 PK2 Test Problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒[ln(% 𝟑. 𝟐𝟔) , −ln(𝑆𝑇𝑌)] (55) 

subject to: Residence time/min ∈ [0.5, 2] 

Temperature/°C ∈ [25, 150] 

Equivalents of 3.25 ∈ [1, 10] 

[3.24]/M = 1 

 

Figure 83. Graphical representations of the objective space for the PK2 test 
problem. Black dots = possible solutions, red dots = non-dominated solutions. 

Table 33. List of simulated experiments for the PK2 test problem, showing changes 
in average hypervolume (20 runs) with an increasing number of evaluations for 5 
different multi-objective algorithms. 

 Average Hypervolume 
Experiment TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

1 7.647 5.400 1.704 5.686 8.458 
2 14.359 11.031 11.656 15.037 15.735 
3 19.872 15.286 15.404 17.233 19.619 
4 21.979 20.152 23.177 22.321 23.153 
5 25.247 23.027 25.703 25.080 26.296 
6 27.162 28.071 28.204 31.276 28.931 
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7 27.739 29.268 29.288 32.925 30.428 
8 28.596 30.682 32.199 33.962 30.762 
9 29.396 32.079 34.113 34.142 32.527 

10 31.256 34.158 35.389 34.705 34.119 
11 33.476 34.845 36.332 36.171 35.955 
12 33.884 36.224 37.339 36.922 36.504 
13 35.067 36.996 37.741 38.083 37.158 
14 35.463 37.402 38.087 38.711 38.759 
15 36.115 38.452 38.226 38.888 39.145 
16 36.729 38.716 39.411 39.411 39.840 
17 37.269 39.792 39.729 40.110 40.737 
18 38.297 40.068 39.951 40.348 41.806 
19 38.966 40.989 40.132 40.968 42.103 
20 40.465 41.862 40.457 41.346 42.207 
21 43.205 44.712 40.446 48.107 44.690 
22 44.919 46.638 40.466 49.502 47.608 
23 47.394 47.552 40.491 50.650 50.106 
24 49.110 47.838 40.430 52.944 53.462 
25 50.716 49.347 40.463 53.471 55.245 
26 51.529 50.262 40.379 54.422 56.459 
27 52.760 51.124 40.353 54.887 57.814 
28 53.272 51.635 40.437 55.830 59.214 
29 53.954 52.702 40.437 56.015 60.529 
30 54.944 53.322 40.459 56.202 61.278 
31 55.302 54.004 40.644 57.035 61.758 
32 55.900 54.592 40.800 57.716 62.160 
33 56.278 55.729 40.978 58.434 62.720 
34 56.565 55.918 41.150 58.844 63.178 
35 57.293 56.476 41.282 59.046 63.576 
36 57.878 56.807 41.485 59.196 63.967 
37 57.985 57.357 41.640 59.479 64.240 
38 58.278 57.605 42.108 59.777 64.676 
39 58.496 57.852 43.460 59.859 64.868 
40 58.779 58.390 43.642 60.064 65.137 
41 58.972 58.618 43.665 60.494 65.248 
42 59.191 58.903 43.633 60.660 65.489 
43 59.583 59.016 43.604 61.127 65.596 
44 59.724 59.149 43.630 61.061 65.614 
45 60.133 59.469 43.586 61.080 65.796 
46 60.580 59.620 43.639 61.288 66.012 
47 60.794 59.830 43.661 61.301 66.031 
48 60.877 60.144 43.636 61.376 66.049 
49 61.336 60.483 43.653 61.339 66.191 
50 61.761 60.611 43.663 61.463 66.299 
51 62.128 61.047 43.735 61.556 66.282 
52 62.214 61.450 43.829 61.644 66.276 
53 62.328 62.000 43.853 61.622 66.358 
54 62.879 62.188 43.884 61.637 66.429 
55 63.106 62.262 44.454 61.673 66.557 
56 63.215 62.376 44.438 61.930 66.584 
57 63.331 62.590 44.516 62.006 66.596 
58 63.568 63.005 44.897 62.240 66.653 
59 63.626 63.007 45.120 62.397 66.617 
60 63.732 63.315 45.113 62.689 66.750 
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61 63.923 63.541 45.183 62.769 66.765 
62 64.104 63.927 45.202 62.765 66.744 
63 64.092 64.089 45.203 62.771 66.805 
64 64.446 64.146 45.163 62.864 66.775 
65 64.589 64.263 45.208 62.974 66.818 
66 64.856 64.297 45.166 62.978 66.848 
67 64.891 64.399 45.181 63.130 66.838 
68 65.046 64.503 45.125 63.143 66.816 
69 65.167 64.537 45.229 63.281 66.884 
70 65.264 64.748 45.217 63.205 66.957 
71 65.336 64.952 45.190 63.389 66.978 
72 65.303 65.057 45.267 63.371 66.939 
73 65.384 65.184 45.366 63.409 66.959 
74 65.508 65.302 45.370 63.399 67.029 
75 65.641 65.389 45.523 63.650 67.072 
76 65.656 65.401 45.452 63.576 67.099 
77 65.830 65.446 45.534 63.785 67.080 
78 66.030 65.586 45.613 63.797 67.019 
79 65.981 65.670 45.668 63.978 67.157 
80 66.119 65.731 45.867 63.906 67.152 
81 66.187 65.980 45.868 64.075 67.118 
82 66.256 66.104 45.819 64.125 67.115 
83 66.252 66.250 45.878 64.342 67.217 
84 66.341 66.266 45.902 64.506 67.235 
85 66.357 66.375 45.938 64.503 67.205 
86 66.519 66.479 45.900 64.527 67.196 
87 66.569 66.458 45.891 64.531 67.238 
88 66.593 66.534 45.887 64.568 67.209 
89 66.781 66.559 45.837 64.588 67.227 
90 66.799 66.639 45.829 64.562 67.247 
91 66.871 66.687 45.923 64.535 67.300 
92 67.003 66.684 45.868 64.617 67.250 
93 67.040 66.714 45.863 64.586 67.282 
94 67.129 66.834 45.926 64.704 67.323 
95 67.157 66.869 45.887 64.671 67.308 
96 67.201 66.968 45.837 64.756 67.270 
97 67.221 66.881 45.793 64.771 67.285 
98 67.289 67.057 45.944 64.857 67.290 
99 67.284 67.057 45.894 64.761 67.296 

100 67.346 67.126 45.938 64.803 67.372 

Table 34. Statistics describing the performance of 5 multi-objective algorithms for 
the PK2 test problem (20 runs). LQ = lower quartile, UQ = upper quartile. 

 Hypervolume @ Experiment 60 
Statistic TSEMO BS-TSEMO NSGA-II ParEGO EIM-EGO 

Min 58.166 59.500 29.748 55.219 65.540 
LQ 63.624 62.471 41.815 59.507 66.275 

Median 64.191 63.762 45.090 63.362 66.491 
UQ 64.752 64.506 49.634 66.042 67.401 

Max 65.592 65.869 55.291 67.493 67.843 
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7.5 Chapter 4 Procedures 

7.5.1 Photochemical CSTR Cascade  

The miniature CSTR was constructed with a stainless steel base equipped with 

a polyacetal lid. The reaction chamber was cylindrical with a 2 mL volume, 

containing a PTFE coated cross stirrer bar (10 mm diameter) to provide mechanical 

mixing on a conventional stirrer plate. A convex glass lens (viewing window) and 

PTFE gasket were clamped down between the base and lid using three bolts to form 

a seal. Three injection ports were drilled into the reaction chamber, offering the 

choice of one or two flow inlets. The CSTRs were connected using Polyfon PTFE 

tubing (1/8” OD, 1/16” ID) to form a cascade with a desired number of stages, n, and 

volume, V. 

Irradiation of the reaction chambers was achieved using Engin  

LZ4-44UV00-0000 LEDs (365 nm, 2.9 W), clamped and positioned above each glass 

lens. Heat generated from the LEDs was dissipated through a combination of passive 

and convective cooling using heat sinks and CPU fans respectively. Stirring was 

achieved using a long-stage IKA RT 5 stirrer plate.  

7.5.2 Chemicals 

o-Nitrobenzaldehyde (98%, Aldrich), sodium tungstate dihydrate (≥99.0%, 

Sigma), tetra-n-butylammonium bromide (98%, Alfa Aesar), tetralin (≥97%, Fisher), 

benzophenone (≥99.0%, Fluka), 2-tert-butylanthraquinone (98%, Aldrich),  

α-tetralone (97%, Aldrich), 1,4-naphthoquinone (97%, Aldrich) and solvents (VWR) 

were purchased from suppliers and used without further purification.  

Tetra-n-butylammonium decatungstate (TBADT) was synthesised for use as a 

photocatalyst. Tetralin-1,4-dione was synthesised for characterisation purposes. 
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7.5.3 Synthesis of Tetra-n-butylammonium Decatungstate 

 

Tetra-n-butylammonium bromide (2.4 g, 7.44 mmol) and sodium tungstate 

dihydrate (5.0 g, 15.16 mmol) were each dissolved in deionised water (150 mL) in 

separate 250 mL conical flasks. The solutions were stirred vigorously and heated to 

90 °C. Concentrated HCl was added dropwise to both solutions to achieve pH 2, after 

which the solutions were combined and maintained at 90 °C for 30 minutes. The 

reaction mixture was cooled to room temperature and the precipitate collected by 

filtration. The solid was washed with water and dried in an oven at 90 °C for 1.5 

hours. After cooling to room temperature, the solid was suspended in DCM (20 mL 

per gram of solid) and stirred for 2 hours. The solid was then separated from the 

supernatant solution by filtration to yield TBADT 4.06 (2.66 g, 47%) as a white solid. 

The purity of the synthesised TBADT 4.06 was 92%, as evaluated by UV 

spectroscopy (ε323 = 1.35 × 104 M-1 cm-1). Furthermore, the UV spectrum was in good 

agreement with published data.175 

7.5.4 Synthesis of Tetralin-1,4-dione 

 

Tetralin 4.03 (27.5 mg, 0.21 mmol) and TBADT 4.06 (32.6 mg, 9.8 × 10-3 mmol) 

were dissolved in MeCN (5 mL) in a sample vial. The reaction mixture was irradiated 

under a 365 nm LED light and left to stir for 4 hours. The reaction mixture was 

concentrated in vacuo and the residue purified by column chromatography 
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(hexanes:EtOAc, 95:5) to yield an ≈15:1 mixture of tetralin-1,4-dione 4.08 (31.5 mg, 

0.20 mmol) and 1,4-naphthoquinone 4.05 (2.1 mg, 0.01 mmol).  

1H NMR (CDCl3, 500 MHz) δ 8.07-8.05 (m, 2H), 7.77-7.74 (m, 2H), 3.10 (s, 4H) 

ppm; in agreement with published data.204 

7.5.5 Residence Time Distribution 

The residence time distribution (RTD) was measured using a 1-. 3- and 5-stage 

pre-filled reactor with water pumped using a Harvard syringe pump at a flow rate 

of 4.0 mL min-1. A pulse of 10% (v/v) red food dye was injected into the second inlet 

of the first CSTR using a six-port valve. Samples were collected from the reactor 

outlet every 30 seconds and the UV-Vis absorbance (516 nm) was measured using 

an offline spectrophotometer. 

Table 35. Tracer absorbance values at different time points for a 1-, 3- and 5-stage 
CSTR. The normalised RTD function [E(θ)] was calculated by dividing the 
absorbance values by the total area under the absorbance curves.   

 Normalised RTD Function [E(θ)] 

Entry tres/min n = 1 n = 3 n = 5 
1 0.3 0.628 0.215 0.052 
2 0.8 0.274 0.686 0.215 
3 1.3 0.131 0.761 0.683 
4 1.8 0.050 0.556 0.971 
5 2.3 0.018 0.363 0.939 
6 2.8 0.009 0.206 0.799 
7 3.3 0.005 0.111 0.509 
8 3.8 0.003 0.065 0.328 
9 4.3 0.003 0.039 0.213 

10 4.8 0.002 0.023 0.154 
11 5.3 0.001 0.014 0.104 
12 5.8 0.001 0.010 0.086 

 

7.5.6 Chemical Actinometry 

The absorbed photon flux density of the reactor was determined using 

chemical actinometry. A solution of o-nitrobenzaldehyde 4.01 (1.56 g, 10.3 mmol, 

0.10 mol L-1, φ = 0.5) in methanol (100 mL) was pumped through the photochemical 

CSTR cascade (n = 2, V = 4 mL) at varying residence times, and conversion to  

o-nitrosobenzoic acid 4.02 monitored via on-line HPLC. HPLC mobile phases were 

A H2O (18.2 MΩ), B MeCN, both buffered with 0.1% TFA. The method used was 5% 

B 1 min, 5% to 95% B 18 mins, 95% B 2 mins, 95% to 5% B 0.01 min, 5% B 0.99 

min, flow rate 1.0 mL min-1, column temperature 20 °C.    
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Table 36. Time profile for the conversion of o-nitrobenzaldehyde 4.01 to  
o-nitrosobenzoic acid 4.02 in the photochemical CSTR cascade. 

Entry tres/min [o-Nitrobenzaldehyde]/M 
1 0.0 0.103 
2 0.75 0.094 
3 1.5 0.081 
4 2.5 0.074 
5 5.0 0.063 
6 7.5 0.052 
7 10 0.047 

 

7.5.7 Experimental Set-Up 

Reactor: photochemical CSTR cascade (n = 4, V = 8 mL), under ambient 

pressure. The flow of compressed air into the reactor was controlled using a 

Bronkhorst EL-FLOW prestige mass flow controller. A Zaiput SEP-10 gas-liquid 

membrane-based separator was placed downstream of the reactor, and fitted with 

a PTFE membrane (0.5 µm pore size). The permeate outlet was connected to the 

sample loop for analysis of the liquid phase. 

For the oxidation reactions, the reservoir solutions were prepared by 

dissolving the desired reagents in solvent under stirring at ambient conditions. 

Pump 1: substrate (0.04 mol L-1), photosensitiser (5-50 mol%) and biphenyl (0.0025 

mol L-1) in the desired solvent. 

HPLC mobile phases were A H2O (18.2 MΩ), B MeCN, both buffered with 0.1% 

TFA. The method used was 5% to 95% B 5 mins, 95% to 5% B 0.1 min, 5% B 1 min, 

flow rate 1.5 mL min-1, column temperature 20 °C. 

7.5.8 Full Factorial DoE 

The two-level full factorial design was constructed using Umetrics MODDE 

(ver 12.1). Polynomial response surface models of the experiments were fitted by 

including all square and interaction terms then removing terms with a p-value less 

than 0.05. The models for tetralin 4.03 and α-tetralone 4.04 were transformed 

logarithmically (ŷi = log(yi)/(100-yi))  to provide a more normal distribution. A 

square term was detected in the model for α-tetralone yield, therefore tres*tres was 

included. However, further experimentation would be required to more accurately 

define the square terms. 
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Table 37. Variables for the two-level full factorial design of experiments. 

 Variables 
Limits tres/min O2 equiv. Temp/°C 
Lower 5 0.5 30 
Upper 20 3.0 60 

 

Table 38. List of results from the two-level full factorial design of experiments, 
including three centre point replicates. 

Entry tres/min O2 equiv. Temp/°C Tetralin/% α-Tetralone/% Diketone/% 
1 5.0 3.00 60 26.7 19.3 54.0 
2 5.0 0.50 30 68.0 8.7 23.3 
3 20.0 3.00 30 12.9 21.8 65.3 
4 20.0 3.00 60 11.9 20.5 67.6 
5 12.5 1.75 45 43.3 19.9 36.7 
6 12.5 1.75 45 36.5 21.4 42.1 
7 5.0 0.50 60 79.1 6.9 14.0 
8 5.0 3.00 30 49.4 13.1 37.5 
9 20.0 0.50 60 72.4 7.6 20.0 

10 20.0 0.50 30 69.4 9.7 20.8 
11 12.5 1.75 45 38.6 20.5 40.9 

 

 

Figure 84. Summary of fit plots for tetralin 4.03, α-tetralone 4.04 and diketone 
4.08. Tetralin: R2 = 0.929, Q2 = 0.784. α-Tetralone yield: R2 = 0.927, Q2 = 0.813. 
Diketone: R2 = 0.937, Q2 = 0.796. Reproducibility is determined from the centre 
points replicates, and determines the models sensitivity towards factor effects. 
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Figure 85. Coefficient plots for the models of tetralin 4.03, α-tetralone 4.04 and 
diketone 4.08. Insignificant terms (confidence interval crosses 0) were removed 
from the saturated model one at a time. 

 

 

Figure 86. Residuals normal probability plots for tetralin 4.03, α-tetralone 4.04 and 
diketone 4.08. A straight diagonal line represents a normal distribution. 
Experiments outside of the 4 standard deviation limits represent outliers.   
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Figure 87. Plots of observed vs. experimental for the models of tetralin 4.03,  
α-tetralone 4.04 and diketone 4.08. A straight diagonal line indicates the model has 
a good fit to the experimental data. 

7.5.9 Self-Optimisation Results  

minimise[-(% of α-tetralone 4.04)] 

Table 39. Self-optimisation variables. Fixed parameters: benzophenone loading = 
50 mol%, temperature = 25 °C. 

 Variables 
Limits tres/min O2 equiv. 
Lower 2.0 1.0 
Upper 30.0 5.0 

Table 40. List of results from the hybrid self-optimisation. SNOBFIT experiments 
are highlighted in yellow, Plackett-Burman screening experiments are highlighted 
in purple and CCF experiments are highlighted in orange. The global optimum is 
highlighted in bold. 

Entry tres/min O2 equiv. Tetralin/% α-Tetralone/% Diketone/% 
1 24.8 2.69 59.4 43.3 16.2 
2 2.1 2.46 8.7 7.7 1.0 
3 13.4 4.93 41.5 33.2 8.3 
4 8.3 1.14 17.4 11.5 5.9 
5 18.5 1.37 37.2 24.6 12.6 
6 29.9 4.28 64.7 44.8 19.9 
7 6.0 4.86 57.5 48.4 9.1 
8 21.1 4.54 62.4 53.5 9.0 
9 18.9 3.58 63.7 55.9 7.8 

10 25.0 5.00 70.9 59.4 11.6 
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11 8.9 5.00 63.8 55.1 8.7 
12 24.9 3.81 67.6 54.6 13.0 
13 20.7 3.25 63.7 51.5 12.2 
14 23.7 4.76 71.0 60.5 10.5 
15 18.3 4.69 72.4 64.9 7.5 
16 9.1 5.00 60.0 51.7 8.3 
17 9.3 3.14 39.7 29.7 10.1 
18 15.0 1.37 33.9 22.7 11.2 
19 18.2 5.00 55.9 43.3 12.6 
20 6.5 5.00 55.4 47.5 7.9 
21 23.0 5.00 61.9 50.7 11.2 
22 12.9 2.47 45.8 36.7 9.1 
23 13.6 3.38 54.1 47.7 6.4 
24 18.3 3.54 60.0 50.6 9.5 
25 7.3 5.00 52.1 43.2 8.9 
26 20.7 2.36 53.3 39.5 13.7 
27 19.1 4.19 65.0 57.1 7.9 
28 24.4 4.74 73.1 60.8 12.3 
29 8.1 5.00 60.7 51.4 9.3 
30 9.3 2.14 31.1 20.8 10.2 
31 15.6 4.44 59.9 54.9 5.0 
32 18.2 3.98 64.5 56.8 7.7 
33 24.4 5.00 72.8 61.9 11.0 
34 24.2 1.70 50.8 30.2 20.5 
35 17.7 4.57 64.9 58.3 6.6 
36 24.4 5.00 71.5 61.2 10.3 
37 24.1 4.42 74.9 63.9 11.0 
38 12.6 4.13 58.2 50.4 7.9 
39 2.0 1.63 5.7 5.1 0.6 
40 2.0 4.69 10.3 7.3 3.0 
41 18.3 1.63 42.9 27.4 15.5 
42 18.3 4.69 72.4 64.9 7.5 
43 8.5 3.96 48.1 39.2 9.0 
44 8.5 4.98 46.5 34.7 11.9 
45 15.4 3.96 59.5 51.2 8.3 
46 15.4 4.98 66.5 61.9 4.7 
47 18.9 3.69 64.4 53.7 10.8 
48 18.9 3.74 64.4 53.5 10.9 
49 19.4 3.69 63.6 52.9 10.7 
50 19.4 3.74 65.6 53.7 11.8 
51 18.3 3.69 59.6 45.2 14.5 
52 18.3 4.69 68.6 63.1 5.5 
53 19.4 3.69 63.1 55.5 7.7 
54 19.4 4.69 67.7 61.2 6.5 
55 18.3 4.19 67.2 60.4 6.8 
56 19.4 4.19 67.3 58.1 9.2 
57 18.9 3.69 64.5 53.5 11.0 
58 18.9 4.69 68.6 59.7 8.9 
59 18.9 4.19 66.6 60.3 6.3 
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7.6 Chapter 5 Procedures 

7.6.1 Temperature Controlled CSTR Cascade 

The miniature CSTRs were constructed according to section 7.5.1. 

Temperature control for automated experiments was achieved using a custom-built 

aluminium heating mantle, two nickel heating elements and a Eurotherm 

temperature controller.      

The heat transfer to the CSTRs was determined using K-type thermocouple 

inserts positioned in contact with the fluid inside each reactor. To represent an 

optimisation process, a toluene/water mixture was pumped through the reactor 

whilst it was heated at 20 levels between 50 and 110 °C. The temperature of the fluid 

inside each reactor was continuously monitored (every second) using a PICO logger, 

and compared to the temperature recorded for the heating mantle. The optimisation 

procedure was modified for the inclusion of time delays to account for the heat 

transfer characteristics. A very good linear fit was observed between the average 

temperature of the CSTRs and the set temperature of the heating mantle, enabling 

the average process temperature to be easily determined.   

Table 41. Thermocouple temperature recordings highlighting the heat transfer 
characteristics between the heating mantle and the fluid inside the CSTRs. 

 Steady State Temp/°C 
Entry Mantle Temp/°C CSTR 1 CSTR 2 CSTR 3 CSTR 4 Average 

1 52.6 49.4 49.1 49.9 50.1 49.6 
2 55.7 52.5 51.8 52.6 52.9 52.4 
3 57.2 53.2 53.1 54.1 54.4 53.7 
4 61.4 57.5 56.9 58.2 56.5 57.3 
5 63.0 58.5 58.3 59.6 58.9 58.8 
6 66.0 60.2 60.8 62.3 61.8 61.3 
7 68.5 63.9 62.9 64.6 64.0 63.9 
8 71.4 66.0 65.5 67.3 66.8 66.4 
9 74.8 69.1 68.5 70.5 70.0 69.5 

10 77.1 71.8 70.6 72.6 72.0 71.7 
11 81.3 75.1 74.2 76.3 75.9 75.4 
12 84.5 77.1 77.1 79.3 78.9 78.1 
13 88.9 80.4 81.0 83.3 83.1 81.9 
14 89.8 82.7 81.8 84.1 83.8 83.1 
15 94.3 86.6 85.7 88.2 87.9 87.1 
16 95.2 86.2 86.4 89.0 88.8 87.6 
17 98.3 91.1 89.2 91.9 91.6 91.0 
18 102.3 93.8 92.7 95.5 95.3 94.3 
19 104.7 95.6 94.9 97.8 97.7 96.5 
20 108.1 97.6 97.9 100.8 100.8 99.3 
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Figure 88. Linear fit between average temperature of the solution inside the CSTRs 
and the set temperature of the heating mantle. 

7.6.2 In-Line Separation of Structurally Similar Impurities 

7.6.2.1 Chemicals 

α-Methylbenzylamine (99%, Aldrich), (R)-(+)-N-benzyl-α-methylbenzylamine 

(98%, Sigma), 70% nitric acid (laboratory grade, Fisher) and toluene (HPLC grade, 

VWR) were purchased from suppliers and used without further purification.   

7.6.2.2 Experimental Set-Up 

Reactor: CSTR cascade (n = 2, V = 4 mL), under ambient pressure. A Zaiput  

SEP-10 liquid-liquid membrane-based separator was placed downstream of the 

reactor, and fitted with a PTFE membrane (0.5 µm pore size). The permeate outlet 

was connected to the sample loop for analysis of the organic phase. 

Reservoir solutions were prepared by dissolving the desired reagents in 

solvent under stirring at ambient conditions. Pump 1: nitric acid (70%, 18.1 mL, 0.57 

mol L-1) in water (481.9 mL). Pump 2: water. Pump 3: α-methylbenzylamine 5.07 

(33.3 mL, 0.26 mol, 0.5158 mol L-1), N-benzyl-α-methylbenzylamine 5.08 (3.30 mL, 

15.8 mmol, 0.0315 mol L-1) and biphenyl (1.96 g, 12.7 mmol, 0.0254 mol L-1) in 

toluene (463.5 mL). Reservoir solutions were replenished when required. 
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HPLC mobile phases were A H2O (18.2 MΩ), B MeCN, both buffered with 0.1% 

TFA. Method: 35% B 0.7 min, 35% to 90% B 2.5 mins, 90% to 35% B 0.1 min, 35% 

B 1 min, flow rate 1.50 mL min-1, column temperature 20 °C. 

7.6.2.3 Self-Optimisation Results 

minimise[-(Δamines(org))] 

Table 42. Self-optimisation variables. ν = volumetric flow rate, org = organic, aq = 
aqueous. 

 Variables 
Limits pH ν(org):ν(aq) 

Lower 0.36 0.80 
Upper 0.88 2.00 

Table 43. List of results from the SNOBFIT self-optimisation. The identified 
optimum is highlighted in bold.  

Entry pH ν(org):ν(aq) α-Me-BA(org)/% N-Bn-α-Me-BA(org)/% Δamine(org)/% 

1 0.870 1.142 73.1 91.9 18.8 
2 0.421 1.025 19.8 94.4 74.6 
3 0.806 1.979 87.6 92.7 5.1 
4 0.670 1.684 72.5 91.6 19.1 
5 0.603 1.006 47.4 93.4 45.9 
6 0.537 1.502 58.7 92.1 33.4 
7 0.463 1.999 59.6 91.9 32.3 
8 0.770 1.108 65.4 92.0 26.6 
9 0.873 1.817 84.9 92.0 7.1 

10 0.747 1.767 79.4 92.4 13.0 
11 0.693 1.156 61.5 91.8 30.3 
12 0.824 1.469 78.8 92.1 13.3 
13 0.578 1.000 45.3 93.9 48.6 
14 0.794 1.278 72.2 91.3 19.1 
15 0.420 1.000 8.9 99.3 90.4 
16 0.420 1.253 26.7 92.7 66.0 
17 0.420 1.503 40.6 92.0 51.4 
18 0.507 1.037 36.3 96.2 59.9 
19 0.652 1.751 73.2 91.6 18.4 
20 0.421 1.000 12.6 97.9 85.3 
21 0.506 1.000 30.9 92.1 61.2 
22 0.449 0.800 7.8 16.6 8.8 
23 0.794 0.971 63.8 92.2 28.4 
24 0.578 0.800 30.0 92.5 62.5 
25 0.358 0.986 4.7 15.3 10.7 
26 0.358 1.127 3.2 16.4 13.3 
27 0.507 1.212 42.1 94.6 52.5 
28 0.380 0.954 7.3 14.6 7.3 
29 0.794 0.971 62.8 93.1 30.3 
30 0.482 1.245 43.0 91.9 48.9 
31 0.794 0.971 68.3 92.2 23.9 
32 0.358 0.905 13.0 19.3 6.3 
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33 0.390 1.038 11.1 27.2 16.0 
34 0.472 0.964 29.3 96.6 67.3 
35 0.764 0.971 61.7 92.3 30.6 
36 0.475 0.800 10.5 74.9 74.3 
37 0.402 1.004 8.4 89.0 80.6 
38 0.459 1.105 39.8 79.6 39.8 
39 0.456 1.111 34.9 91.7 46.9 
40 0.794 0.971 63.6 81.2 17.6 
41 0.456 1.117 27.9 81.8 53.9 
42 0.413 0.943 5.3 84.1 78.8 
43 0.407 0.964 2.4 10.5 8.1 
44 0.483 1.035 28.5 82.3 53.9 
45 0.444 1.296 36.3 85.2 48.9 
46 0.794 0.971 64.5 89.6 25.1 
47 0.407 1.020 8.8 91.9 83.1 
48 0.421 1.165 24.9 91.5 66.6 
49 0.794 0.971 64.4 91.7 27.3 
50 0.411 1.015 14.5 92.0 77.4 
51 0.426 0.800 2.4 10.6 8.2 
52 0.415 0.995 7.2 93.6 86.4 
53 0.794 0.971 68.5 98.0 29.5 
54 0.502 0.800 20.9 98.2 77.3 
55 0.414 1.033 17.2 94.4 77.2 
56 0.382 1.310 37.3 94.3 57.0 
57 0.414 1.032 18.8 94.0 75.2 
58 0.402 1.200 30.4 91.2 60.7 
59 0.794 0.971 64.3 89.4 25.1 
60 0.468 1.035 31.4 95.1 63.7 
61 0.794 0.971 63.9 92.0 28.1 

 

7.6.3 Synthesis of Secondary Amines via Direct N-Alkylation 

7.6.3.1 Chemicals 

α-Methylbenzylamine (99%, Aldrich), diisopropylethylamine (>99%, 

Fluorochem), benzyl bromide (>99%, Fluorochem),  

(R)-(+)-N-benzyl-α-methylbenzylamine (98%, Sigma), 70% nitric acid (laboratory 

grade, Fisher), toluene (HPLC grade, VWR) and chloroform (HPLC grade, VWR) were 

purchased from suppliers and used without further purification. A standard of  

N,N-diisopropylethylamine hydrobromide was synthesised for HPLC calibration. 
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7.6.3.2 Synthesis of N,N-Diisopropylethylamine Hydrobromide 

 

To a round-bottomed flask, diisopropylethylamine (2.00 g, 15.5 mmol) and 

hydrobromic acid (48%, 2.60 g) was added in water (40 mL). The reaction mixture 

was left to stir for 30 minutes at room temperature, then concentrated in vacuo. The 

resultant white solid was dried in an oven at 150 °C over the weekend to yield  

N,N-diisopropylethylamine hydrobromide 5.11 (2.17 g, 67%).  

1H NMR (D2O, 500 MHz) δ 3.77 (hept, J = 6.7 Hz, 2H), 3.25 (q, J = 7.4 Hz, 2H), 

1.39 (dd, J = 7.0, 2.4 Hz, 15H) ppm; m/z (ESI+) C8H20N+ [M]+, calculated 130.16, found 

130.16.  

7.6.3.3 Experimental Set-Up 

Reactor: Cambridge Reactor Design Polar Bear Flow Synthesiser, fitted with 4 

mL Polyfon PTFE tubing (1/16” OD, 1/32” ID), and maintained under 250 psi  

back-pressure. The reaction mixture was quenched with a stream of HNO3(aq) in a 

CSTR (V = 2 mL). A Zaiput SEP-10 liquid-liquid membrane-based separator was 

placed downstream of the CSTR, and fitted with a PTFE membrane (0.5 µm pore 

size). The permeate outlet was connected to the sample loop for analysis of the 

organic phase.  

Reservoir solutions were prepared by dissolving the desired reagents in 

solvent under stirring at ambient conditions. Pump 1: α-methylbenzylamine 5.07 

(12.9 mL, 0.10 mol, 0.400 mol L-1), diisopropylethylamine (17.4 mL, 0.10 mol, 0.400 

mol L-1) and biphenyl (1.54 g, 10 mmol, 0.040 mol L-1) in chloroform (219.7 mL). 

Pump 2: benzyl bromide 5.09 (16.6 mL, 0.14 mol, 0.400 mol L-1) in chloroform 

(333.4 mL). Pump 3: nitric acid (70%, 12.7 mL, 0.400 mol L-1) in water (487.3 mL). 

Pump 4: water. Reservoir solutions were replenished when required. 

HPLC mobile phases were A H2O (18.2 MΩ), B MeCN, both buffered with 0.1% 

TFA. Method: 10% to 90% B 3.5 mins, 90% to 10% B 0.5 min, 10% B 1 min, flow 

rate 1.75 mLmin-1, column temperature 20 °C. 



202 

 

7.6.3.4 Self-Optimisation Results 

minimise[-(purity)] 

Table 44. Self-optimisation variables. Fixed parameters: benzyl bromide 
equivalents = 1, [α-methylbenzylamine] = 0.2 M. ν = volumetric flow rate. 

 Variables 
Limits tres/min Temp/°C pH ν(aq):ν(org) 

Lower 6.6 30 0.57 0.25 
Upper 10.0 130 1.00 2.26 

Table 45. List of results from the SNOBFIT self-optimisation. The identified 
optimum is highlighted in bold. 

Entry tres/min Temp/°C pH ν(aq):ν(org) Yield/% Purity/% 
1 8.2 30.0 0.673 0.644 2.3 1.1 
2 9.0 63.4 0.953 1.231 13.3 7.1 
3 7.1 97.2 0.839 1.163 37.2 22.7 
4 7.4 129.9 0.897 0.968 52.2 26.7 
5 8.2 38.4 0.759 0.610 3.6 1.8 
6 6.7 46.8 0.868 1.156 4.5 2.2 
7 8.1 80.4 0.911 1.333 23.7 14.5 
8 9.1 113.4 0.919 2.257 45.0 28.7 
9 8.0 55.1 0.887 1.190 8.7 4.5 

10 9.5 72.0 0.620 0.572 20.1 10.6 
11 6.9 105.3 0.912 0.862 44.8 40.6 
12 9.5 63.4 0.797 0.597 8.8 6.4 
13 6.7 114.1 0.910 1.224 48.8 40.9 
14 8.3 46.7 0.898 1.484 5.5 3.3 
15 9.3 55.7 0.883 2.078 9.6 7.3 
16 7.8 69.8 0.790 1.451 15.0 12.6 
17 6.7 92.8 1.000 0.767 29.1 19.3 
18 8.3 46.7 0.898 1.484 6.0 3.8 
19 6.7 93.4 0.915 1.238 33.1 24.1 
20 6.7 101.3 0.908 1.617 42.6 40.4 
21 7.1 121.8 0.901 1.705 51.1 30.7 
22 9.1 129.1 0.751 0.590 63.3 50.7 
23 8.3 46.7 0.898 1.484 6.2 3.2 
24 8.6 81.3 0.724 1.369 29.1 24.3 
25 8.3 107.9 0.892 1.346 53.0 42.7 
26 10.0 130.0 0.702 1.511 58.2 30.6 
27 8.3 46.7 0.898 1.484 6.4 3.8 
28 8.0 58.3 0.765 1.390 10.4 6.8 
29 7.7 121.3 0.574 0.288 63.6 55.3 
30 8.0 121.7 0.574 0.621 62.3 35.5 
31 10.0 130.0 0.755 0.569 65.0 45.4 
32 8.3 46.7 0.898 1.484 6.5 3.5 
33 8.6 81.3 0.836 1.771 30.6 27.2 
34 6.7 109.7 0.910 1.567 49.3 38.1 
35 8.3 130.0 0.718 0.433 65.9 51.5 
36 7.7 130.0 0.707 0.392 66.5 51.8 
37 8.3 46.7 0.898 1.484 6.8 3.5 
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38 7.7 125.3 0.765 0.448 65.3 56.6 
39 8.0 125.8 0.765 0.465 65.8 53.4 
40 8.3 130.0 0.754 1.116 60.6 32.4 
41 8.3 46.7 0.898 1.484 6.7 3.4 
42 10.0 127.2 0.726 0.628 64.9 40.8 
43 6.9 127.7 0.753 0.390 66.5 56.8 
44 8.5 130.0 0.759 0.579 66.1 44.2 
45 8.3 46.7 0.898 1.484 7.1 4.2 
46 6.9 123.0 0.741 0.759 16.2 15.8 
47 7.3 123.7 0.755 0.526 65.1 53.0 
48 6.7 125.4 0.574 0.250 65.8 53.6 
49 10.0 128.4 0.750 0.945 62.1 33.9 
50 8.3 46.7 0.898 1.484 6.6 3.8 
51 6.9 127.2 0.772 0.408 62.8 71.0 
52 7.7 129.2 0.739 0.422 65.9 56.9 
53 8.0 129.2 0.742 0.442 66.8 50.8 

 

7.6.4 Biphasic Claisen-Schmidt Condensation 

7.6.4.1 Chemicals 

Benzaldehyde (>98.0%, Fluorochem), acetone (laboratory grade, VWR), 

sodium hydroxide pellets (≥97.0%, Fisher), benzylideneacetone (≥98%, Sigma), 

dibenzylideneacetone (98%, Sigma) and toluene (HPLC grade, VWR) were 

purchased from suppliers and used without further purification. 

7.6.4.2 Experimental Set-Up 

Reactor: CSTR cascade (n = 4, V = 8 mL), maintained under 40 psi  

back-pressure. A Zaiput SEP-10 liquid-liquid membrane-based separator was 

placed downstream of the BPR, and fitted with a PTFE membrane (0.5 µm pore size). 

The permeate outlet was connected to the sample loop for analysis of the organic 

phase.  

Reservoir solutions were prepared by dissolving the desired reagents in 

solvent under stirring at ambient conditions. Pump 1: benzaldehyde 5.12 (25.5 mL, 

0.25 mol, 0.50 mol L-1) in toluene (500 mL). Pump 2: acetone 5.13 (neat). Pump 3: 

sodium hydroxide (4.0 g, 0.10 mol, 0.10 mol L-1) in deionised water (1 L). Reservoir 

solutions were replenished when required. 

HPLC mobile phases were A H2O (18.2 MΩ), B MeCN, both buffered with 0.1% 

TFA. The method used was 10% to 90% B 3.5 mins, 90% to 10% B 0.5 min, 10% B 

1 min, flow rate 1.75 mL min-1, column temperature 20 °C. 
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7.6.4.3 Self-Optimisation Results 

minimise[-ln(purity), -ln(STY), -ln(RME)] 

Table 46. Self-optimisation variables, directly input in terms of flow rates and 
ratios. P = pump, ν = volumetric flow rate, aq = aqueous, org = organic. 

 Variables 
Limits P1/mL min-1 P2:P1 ν(aq):ν(org) Temp/°C 

Lower 0.2 0.5 0.5 50.0 
Upper 0.4 1.1 1.2 110.0 

Table 47. List of results from the TSEMO self-optimisation. The first 20 experiments 
are a LHC design in ascending order of temperature. The non-dominated solutions 
are highlighted in bold. 

Entry P1/mL min-1 P2:P1 ν(aq):ν(org) T/°C Purity/% 
STY/ 

kg m-3 h-1 
RME 

1 0.252 1.085 0.772 52.6 38.1 35.73 1.18 
2 0.212 0.704 0.900 55.7 22.6 20.66 1.13 
3 0.346 0.773 0.725 57.2 15.7 20.69 0.70 
4 0.290 0.528 0.785 61.4 14.9 16.43 0.91 
5 0.222 1.048 1.134 63.0 40.6 48.88 1.57 
6 0.396 0.675 1.036 66.0 19.8 40.23 1.14 
7 0.231 0.586 1.005 68.5 27.4 31.31 1.76 
8 0.382 0.644 0.658 71.4 21.5 32.23 1.22 
9 0.312 0.875 0.680 74.8 37.8 47.55 1.64 

10 0.268 0.910 0.540 77.1 38.7 37.83 1.59 
11 0.321 0.977 0.500 81.3 45.6 53.56 1.81 
12 0.378 0.545 0.923 84.5 33.2 59.31 2.26 
13 0.336 0.750 1.102 88.9 49.3 105.04 3.09 
14 0.202 0.925 1.165 89.8 62.3 77.11 3.02 
15 0.301 1.022 0.607 94.3 64.9 92.02 2.97 
16 0.367 0.827 0.832 95.2 55.3 104.24 2.95 
17 0.286 0.716 0.605 98.3 57.9 70.27 3.32 
18 0.243 1.006 0.868 102.3 78.2 108.60 3.79 
19 0.272 0.844 0.969 104.7 73.1 117.19 4.08 
20 0.356 0.608 1.066 108.1 61.1 130.10 4.45 
21 0.211 0.853 1.200 101.2 72.3 141.73 5.64 
22 0.200 1.032 1.157 105.5 81.0 142.82 5.12 
23 0.257 0.931 0.690 108.8 74.8 125.84 4.93 
24 0.348 1.100 0.669 104.7 67.8 145.56 3.65 
25 0.36 0.707 0.938 105.2 54.9 137.90 4.34 
26 0.317 1.100 0.646 106.4 78.8 156.99 4.38 
27 0.315 1.100 0.801 108.0 71.3 155.49 3.99 
28 0.200 0.500 0.742 104.6 60.4 67.49 5.80 
29 0.233 0.618 0.892 106.5 49.3 71.75 4.04 
30 0.375 0.967 1.161 108.6 66.0 207.84 4.22 
31 0.200 0.500 0.973 109.7 53.8 70.30 5.34 
32 0.394 1.035 0.823 106.1 66.1 188.46 4.05 
33 0.400 1.041 1.050 110.0 70.3 222.47 4.16 
34 0.303 0.909 1.123 110.0 76.2 186.25 5.04 
35 0.338 0.904 0.872 110.0 57.4 131.62 3.64 
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36 0.247 1.100 1.056 108.3 84.5 170.71 4.90 
37 0.303 1.100 1.159 108.3 78.6 212.89 4.74 
38 0.255 1.100 0.962 108.4 70.5 133.48 3.89 
39 0.332 1.099 1.082 109.7 69.8 148.96 3.14 
40 0.200 1.044 0.676 94.6 64.7 64.54 2.95 
41 0.288 1.028 1.199 106.6 71.7 176.35 4.32 
42 0.297 0.918 1.024 108.4 71.4 170.87 4.90 
43 0.312 0.970 1.200 110.0 74.0 194.61 4.65 
44 0.220 1.068 1.200 96.7 77.7 150.18 4.65 
45 0.263 1.041 1.059 98.8 75.7 172.65 4.89 
46 0.395 1.075 1.159 101.6 68.6 214.49 3.74 
47 0.380 0.665 1.200 110.0 56.9 155.69 4.32 
48 0.204 0.771 1.200 104.6 76.3 115.03 5.20 
49 0.203 0.918 1.200 106.2 84.6 142.65 5.51 
50 0.200 0.918 1.200 107.1 84.1 141.74 5.56 
51 0.309 0.871 1.167 109.4 76.7 190.44 5.15 
52 0.333 0.662 1.197 105.0 64.5 179.95 5.73 
53 0.400 0.802 1.200 105.3 66.0 204.67 4.55 
54 0.397 0.806 1.176 105.7 66.3 206.09 4.64 
55 0.320 0.778 1.157 107.4 71.2 175.54 5.11 
56 0.273 1.100 1.043 102.8 79.5 186.00 4.86 
57 0.228 0.839 1.189 106.1 78.3 146.61 5.51 
58 0.400 1.070 1.200 107.4 76.1 259.95 4.42 
59 0.334 0.787 1.190 110.0 73.8 197.75 5.38 
60 0.206 0.819 1.197 106.1 79.7 127.38 5.40 
61 0.317 0.796 1.200 109.9 74.4 205.72 5.81 
62 0.223 0.962 1.102 110.0 83.9 138.80 4.89 
63 0.277 1.085 1.200 110.0 84.1 218.61 5.29 
64 0.400 0.720 1.128 101.9 58.9 167.44 4.25 
65 0.200 1.100 1.200 105.2 86.3 165.68 5.48 
66 0.230 0.813 1.196 107.7 79.9 161.51 6.17 
67 0.249 0.842 1.194 107.8 78.0 153.93 5.27 
68 0.386 0.615 1.129 101.4 53.8 157.36 4.77 
69 0.385 0.589 1.165 102.9 55.1 161.91 5.03 
70 0.400 0.663 1.064 103.3 58.7 174.60 4.92 
71 0.207 0.889 1.159 110.0 83.4 149.60 5.95 
72 0.379 0.751 1.124 101.0 55.1 157.33 4.06 
73 0.348 0.736 1.183 101.9 62.8 171.31 4.77 
74 0.400 0.707 1.183 102.7 59.6 190.87 4.80 
75 0.385 0.823 1.128 110.0 69.3 212.01 4.94 
76 0.388 1.064 1.200 99.2 68.3 219.99 3.87 
77 0.400 0.910 1.200 106.6 71.1 239.33 4.73 
78 0.241 0.849 1.199 110.0 71.1 134.60 4.71 
79 0.234 0.850 1.200 110.0 70.0 134.57 4.84 
80 0.209 0.500 0.916 93.7 54.3 66.06 4.94 
81 0.248 0.838 1.172 104.0 75.2 155.22 5.41 
82 0.225 0.945 1.190 104.9 82.8 166.14 5.66 
83 0.371 0.848 1.200 105.2 68.9 210.47 4.79 
84 0.317 0.994 1.138 96.3 68.5 175.12 4.14 
85 0.363 0.751 1.200 108.1 69.0 185.59 4.83 
86 0.204 0.945 1.120 108.1 84.5 127.34 4.94 
87 0.200 0.926 1.033 108.7 84.9 137.70 5.80 
88 0.369 0.993 1.100 98.3 67.4 188.71 3.90 
89 0.393 1.030 1.026 98.4 67.8 195.95 3.81 
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90 0.309 0.922 1.067 103.4 73.3 174.32 4.69 
91 0.220 0.885 0.906 105.2 77.5 119.80 5.10 
92 0.207 0.970 0.897 102.9 80.2 119.20 4.97 
93 0.209 1.094 0.754 108.3 87.4 112.25 4.48 
94 0.380 1.072 1.190 110.0 79.3 246.78 4.42 
95 0.389 1.100 1.200 110.0 79.3 254.88 4.34 
96 0.216 0.500 0.572 97.3 49.8 50.25 4.43 
97 0.219 0.560 0.500 98.5 51.1 51.78 4.27 
98 0.215 0.583 1.200 105.3 70.7 108.75 6.01 
99 0.259 1.002 1.061 110.0 83.7 167.63 4.99 

100 0.382 1.018 0.904 88.9 56.4 127.44 2.74 
101 0.206 0.500 1.200 98.4 61.9 88.92 5.88 
102 0.241 0.500 1.200 105.0 65.6 118.13 6.67 
103 0.222 0.974 1.132 107.2 84.3 154.40 5.33 
104 0.200 1.100 0.500 105.8 85.2 90.41 4.39 
105 0.237 0.822 1.115 108.0 83.4 159.22 6.07 
106 0.200 1.071 0.540 110.0 87.9 97.86 4.74 
107 0.206 0.500 1.200 110.0 78.8 108.34 7.16 
108 0.335 1.100 1.200 82.4 61.4 164.96 3.26 
109 0.323 0.500 1.200 99.9 61.1 144.17 6.08 

 

 

 

Figure 89. Multi-objective self-optimisation results for purity with respect to 

benzylideneacetone 5.14. ☆ = maximum purity. 
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Figure 90. Multi-objective self-optimisation results for STY with respect to 

benzylideneacetone 5.14. ☆ = maximum STY. 

 

 

Figure 91. Multi-objective self-optimisation results for RME with respect to 

benzylideneacetone 5.14. ☆ = maximum RME. 



208 

 

References 

1. O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, New Delhi, 
2004. 

2. G. F. Froment, K. B. Bischoff and J. D. Wilde, Chemical Reactor Analysis and 
Design, John Wiley & Sons, New Jersey, 2011. 

3. H. S. Fogler, Elements of Chemical Reaction Engineering, John Wiley & Sons, 
New Delhi, 2004. 

4. P. V. Danckwerts, Chem. Eng. Sci., 1953, 2, 1-13. 

5. G. Taylor, Proc. R. Soc. London, 1953, 219, 186-203. 

6. R. Aris, Proc. R. Soc. London, 1955, 235, 67-77. 

7. A. Cholette, J. Blanchet and L. Cloutier, Can. J. Chem. Eng., 1960, 1, 1-18. 

8. J. Coulson and J. F. Richardson, Coulson and Richardson's Chemical 
Engineering, Butterworth-Heinemann, Oxford, 7th edn., 2017. 

9. D. J. Lamberto, M. M. Alvarez and F. J. Muzzio, Chem. Eng. Sci., 1999, 54,  
919-942. 

10. K. D. Nagy, B. Shen, T. F. Jamison and K. F. Jensen, Org. Process Res. Dev., 2012, 
16, 976-981. 

11. P. Rys, Angew. Chem. Int. Ed., 1977, 16, 807-817. 

12. E. L. Paul, V. A. Atiemo-Obeng and S. M. Kresta, Handbook of Industrial Mixing: 
Science and Practice, John Wiley & Sons, New Jersey, 2004. 

13. C. Yang, A. R. Teixeira, Y. Shi, S. C. Born, H. Lin, Y. L. Song, B. Martin, B. 
Schenkel, M. P. Lachegurabi and K. F. Jensen, Green Chem., 2018, 20, 886-893. 

14. M. B. Plutschack, B. Pieber, K. Gilmore and P. H. Seeberger, Chem. Rev., 2017, 
117, 11796-11893. 

15. A. Günther, M. Jhunjhunwala, M. Thalmann, M. A. Schmidt and K. F. Jensen, 
Langmuir, 2005, 21, 1547-1555. 

16. T. Gustafsson, H. Sörensen and F. Pontén, Org. Process Res. Dev., 2012, 16, 
925-929. 

17. Y. Lu, K. P. Cole, J. W. Fennell, T. D. Maloney, D. Mitchell, R. Subbiah and B. 
Ramadas, Org. Process Res. Dev., 2018, 22, 409-419. 

18. P. Knapkiewicz, K. Skowerski, D. E. Jaskόlska, M. Barbasiewicz and T. K. 
Olszewski, Org. Process Res. Dev., 2012, 16, 1430-1435. 

19. J.-i. Yoshida, Y. Takahashi and A. Nagaki, Chem. Commun., 2013, 49,  
9896-9904. 

20. A. Nagaki, M. Togai, S. Suga, N. Aoki, K. Mae and J.-i. Yoshida, J. Am. Chem. Soc., 
2005, 127, 11666-11675. 

21. H. Kim, A. Nagaki and J.-i. Yoshida, Nat. Commun., 2011, 2. 

22. B. Gutmann, J. Flow Chem., 2017, 7, 1-3. 

23. S. G. Newman and K. F. Jensen, Green Chem., 2013, 15, 1456-1472. 



209 

 

24. B. Gutmann, D. Cantillo and C. O. Kappe, Angew. Chem. Int. Ed., 2015, 54,  
6688-6728. 

25. S. G. Newman, L. Gu, C. Lesniak, G. Victor, F. Meschke, L. Abahmane and K. F. 
Jensen, Green Chem., 2014, 16, 176-180. 

26. B. Gutmann, J.-P. Roduit, D. Roberge and C. O. Kappe, Angew. Chem. Int. Ed., 
2010, 49, 7101-7105. 

27. Z. P. Demko and K. B. Sharpless, J. Org. Chem., 2001, 66, 7945-7950. 

28. C. A. Shukla and A. A. Kulkarni, Beilstein J. Org. Chem., 2017, 13, 960-987. 

29. P. Sagmeister, J. D. Williams, C. A. Hone and C. O. Kappe, React. Chem. Eng., 
2019, DOI: 10.1039/C9RE00087A. 

30. D. L. Browne, S. Wright, B. J. Deadman, S. Dunnage, I. R. Baxendale, R. M. 
Turner and S. V. Ley, Rapid Commun. Mass Spectrom., 2012, 26, 1999-2010. 

31. A. B. Santanilla, E. L. Regalado, T. Pereira, M. Shevlin, K. Bateman, L.-C. 
Campeau, J. Schneeweis, S. Berritt, Z.-C. Shi, P. Nantermet, Y. Liu, R. Helmy, C. 
J. Welch, P. Vachal, I. W. Davies, T. Cernak and S. D. Dreher, Science, 2015, 347, 
49-53. 

32. D. Perera, J. W. Tucker, S. Brahmbhatt, C. J. Helal, A. Chong, W. Farrell, P. 
Richardson and N. W. Sach, Science, 2018, 359, 429-434. 

33. A. Günther and K. F. Jensen, Lab Chip, 2006, 6, 1487-1503. 

34. H. Lange, C. F. Carter, M. D. Hopkin, A. Burke, J. G. Goode, I. R. Baxendale and 
S. V. Ley, Chem. Sci., 2011, 2, 765-769. 

35. D. X. Hu, M. O'Brien and S. V. Ley, Org. Lett., 2012, 14, 4246-4249. 

36. P. L. Heider, S. C. Born, S. Basak, B. Benyahia, R. Lakerveld, H. Zhang, R. Hogan, 
L. Buchbinder, A. Wolfe, S. Mascia, J. M. B. Evans, T. F. Jamison and K. F. Jensen, 
Org. Process Res. Dev., 2014, 18, 402-409. 

37. V. Czitrom, Am. Stat., 1999, 53, 126-131. 

38. A. Sugimoto, T. Fukuyama, T. Rahman and I. Ryu, Tetrahedron Lett., 2009, 50, 
6364-6367. 

39. R. Leardi, Anal. Chim. Acta, 2009, 652, 161-172. 

40. G. E. P. Box, W. G. Hunter and J. S. Hunter, Statistics for Experimenters, Wiley, 
New York, 1978. 

41. D. C. Montgomery, Design and Analysis of Experiments, Wiley, Singapore, 8th 
edn., 2013. 

42. S. A. Raw, B. A. Taylor and S. Tomasi, Org. Process Res. Dev., 2011, 15,  
688-692. 

43. B. J. Reizman and K. F. Jensen, Acc. Chem. Res., 2016, 49, 1786-1796. 

44. V. Sans and L. Cronin, Chem. Soc. Rev., 2016, 45, 2032-2043. 

45. D. C. Fabry, E. Sugiono and M. Rueping, React. Chem. Eng., 2016, 1, 129-133. 

46. N. Holmes, G. R. Akien, A. J. Blacker, R. L. Woodward, R. E. Meadows and R. A. 
Bourne, React. Chem. Eng., 2016, 1, 366-371. 



210 

 

47. D. Cortés-Borda, E. Wimmer, B. Gouilleux, E. Barré, N. Oger, L. Goulamaly, L. 
Peault, B. Charrier, C. Truchet, P. Giraudeau, M. Rodriguez-Zubiri, E. L. 
Grognec and F.-X. Felpin, J. Org. Chem., 2018, 83, 14286-14299. 

48. D. E. Fitzpatrick, T. Maujean, A. C. Evans and S. V. Ley, Angew. Chem. Int. Ed., 
2018, 57, 15128-15132. 

49. B. J. Reizman, Y.-M. Wang, S. L. Buchwald and K. F. Jensen, React. Chem. Eng., 
2016, 1, 658-666. 

50. A. D. Clayton, J. A. Manson, C. J. Taylor, T. W. Chamberlain, B. A. Taylor, G. 
Clemens and R. A. Bourne, React. Chem. Eng., 2019, DOI: 
10.1039/c9re00209j. 

51. S. Krishnadasan, R. J. C. Brown, A. J. deMello and J. C. deMello, Lab Chip, 2007, 
7, 1434-1441. 

52. S. Krishnadasan, A. Yashina, A. J. DeMello and J. C. DeMello, in Advances in 
Chemical Engineering, ed. J. C. Schouten, Academic Press, 2010, pp. 195-231. 

53. J. P. McMullen, M. T. Stone, S. L. Buchwald and K. F. Jensen, Angew. Chem. Int. 
Ed., 2010, 49, 7076-7080. 

54. J. P. McMullen and K. F. Jensen, Org. Process Res. Dev., 2010, 14, 1169-1176. 

55. A. J. Parrott, R. A. Bourne, G. R. Akien, D. J. Irvine and M. Poliakoff, Angew. 
Chem. Int. Ed., 2011, 50, 3788-3792. 

56. R. A. Bourne, R. A. Skilton, A. J. Parrott, D. J. Irvine and M. Poliakoff, Org. 
Process Res. Dev., 2011, 15, 932-938. 

57. J. S. Moore and K. F. Jensen, Org. Process Res. Dev., 2012, 16, 1409-1415. 

58. D. N. Jumbam, R. A. Skilton, A. J. Parrott, R. A. Bourne and M. Poliakoff, J. Flow 
Chem., 2012, 1, 24-27. 

59. R. A. Skilton, A. J. Parrott, M. W. George, M. Poliakoff and R. A. Bourne, Appl. 
Spectrosc., 2013, 67, 1127-1131. 

60. Z. Amara, E. S. Streng, R. A. Skilton, J. Jin, M. W. George and M. Poliakoff, Eur. 
J. Org. Chem., 2015, 28, 6141-6145. 

61. V. Sans, L. Porwol, V. Dragone and L. Cronin, Chem. Sci., 2015, 6, 1258-1264. 

62. B. J. Reizman and K. F. Jensen, Chem. Commun., 2015, 51, 13290-13293. 

63. C. Houben, N. Peremezhney, A. Zubov, J. Kosek and A. A. Lapkin, Org. Process 
Res. Dev., 2015, 19, 1049-1053. 

64. N. Holmes, G. R. Akien, R. J. D. Savage, C. Stanetty, I. R. Baxendale, A. J. Blacker, 
B. A. Taylor, R. L. Woodward, R. E. Meadows and R. A. Bourne, React. Chem. 
Eng., 2016, 1, 96-100. 

65. D. Cortés-Borda, K. V. Kutonova, C. Jamet, M. E. Trusova, F. Zammattio, C. 
Truchet, M. Rodriguez-Zubiri and F.-X. Felpin, Org. Process Res. Dev., 2016, 20, 
1979-1987. 

66. D. E. Fitzpatrick, C. Battilocchio and S. V. Ley, Org. Process Res. Dev., 2016, 20, 
386-394. 

67. B. E. Walker, J. H. Bannock, A. M. Nightingale and J. C. deMello, React. Chem. 
Eng., 2017, 2, 785-798. 



211 

 

68. M. I. Jeraal, N. Holmes, G. R. Akien and R. A. Bourne, Tetrahedron, 2018, 74, 
3158-3164. 

69. A. M. Schweidtmann, A. D. Clayton, N. Holmes, E. Bradford, R. A. Bourne and 
A. A. Lapkin, Chem. Eng. J., 2018, 352, 277-282. 

70. A.-C. Bédard, A. Adamo, K. C. Aroh, M. G. Russell, A. A. Bedermann, J. Torosian, 
B. Yue, K. F. Jensen and T. F. Jamison, Science, 2018, 361, 1220-1225. 

71. L. M. Baumgartner, C. W. Coley, B. J. Reizman, K. W. Gao and K. F. Jensen, React. 
Chem. Eng., 2018, 3, 301-311. 

72. N. Cherkasov, Y. Bai, A. J. Expόsito and E. V. Rebrov, React. Chem. Eng., 2018, 
3, 769-780. 

73. H.-W. Hsieh, C. W. Coley, L. M. Baumgartner, K. F. Jensen and R. I. Robinson, 
Org. Process Res. Dev., 2018, 22, 542-550. 

74. K. Poscharny, D. C. Fabry, S. Heddrich, E. Sugiono, M. A. Liauw and M. Rueping, 
Tetrahedron, 2018, 74, 3171-3175. 

75. M. Rubens, J. H. Vrijsen, J. Laun and T. Junkers, Angew. Chem. Int. Ed., 2019, 
58, 3183-3187. 

76. W. Spendley, G. R. Hext and F. R. Himsworth, Technometrics, 1962, 4,  
441-461. 

77. J. A. Nelder and R. Mead, Comput. J., 1965, 7, 308-313. 

78. M. W. Routh, P. A. Swartz and M. B. Denton, Anal. Chem., 1977, 49, 1422-1428. 

79. K. J. Beers, Numerical Methods for Chemical Engineering: Applications in 
MATLAB, Cambridge University Press, New York, 2007. 

80. P. Y. Papalambros and D. J. Wilde, Principles of Optimal Design, Cambridge 
University Press, New York, 2000. 

81. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine 
Learning, Addison-Wesley Pub. Co., Reading, MA, 1989. 

82. J. E. Kreutz, A. Shukhaev, W. Du, S. Druskin, O. Daugulis and R. F. Ismagilov, J. 
Am. Chem. Soc., 2010, 132, 3128-3132. 

83. W. Huyer and A. Neumaier, ACM Trans. Math. Softw., 2008, 35, 1-25. 

84. N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan and P. K. Tucker, 
Prog. Aerosp. Sci., 2005, 41, 1-28. 

85. E. Brochu, V. M. Cora and N. d. Freitas, pre-print, 2010, arXiv:1012.2599. 

86. C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine 
Learning, MIT Press, Cambridge, Massachusetts, 2006. 

87. B. Shahriari, K. Swersky, Z. Wang, R. P. Adams and N. d. Freitas, Proc. IEEE, 
2016, 104, 148-175. 

88. D. J. Russo, B. Roy, A. Kazerouni, I. Osband and Z. Wen, Found. Trends Mach. 
Learn., 2018, 11, 1-96. 

89. G. J. Janz and S. C. Wait, J. Chem. Phys., 1955, 23, 1550-1551. 

90. B. M. Trost, Science, 1991, 254, 1471-1477. 

91. R. A. Sheldon, Green Chem., 2007, 9, 1273-1283. 



212 

 

92. D. J. C. Constable, A. D. Curzons and V. L. Cunningham, Green Chem., 2002, 4, 
521-527. 

93. A. Konak, D. W. Coit and A. E. Smith, Reliab. Eng. Syst. Safe., 2006, 91,  
992-1007. 

94. K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, IEEE Trans. Evol. Comput., 
2002, 6, 182-197. 

95. N. Peremezhney, E. Hines, A. Lapkin and C. Connaughton, Eng. Optimiz., 2014, 
46, 1593-1607. 

96. E. Bradford, A. M. Schweidtmann and A. Lapkin, J. Glob. Optim., 2018, 71,  
407-438. 

97. V. R. Joseph and Y. Hung, Statistica Sinica, 2008, 18, 171-186. 

98. A. Auger, J. Bader, D. Brockhoff and E. Zitzler, Theor. Comput. Sci., 2012, 425, 
75-103. 

99. J. S. Carey, D. Laffan, C. Thomson and M. T. Williams, Org. Biomol. Chem., 2006, 
4, 2337-2347. 

100. R. N. Salvatore, C. H. Yoon and K. W. Jung, Tetrahedron, 2001, 57, 7785-7811. 

101. J. L. Moore, S. M. Taylor and V. A. Soloshonok, Arkivoc, 2005, 6, 287-292. 

102. D. R. Jones, M. Schonlau and W. J. Welch, J. Glob. Optim., 1998, 13, 455-492. 

103. C. Jiménez-González, P. Poechlauer, Q. B. Broxterman, B.-S. Yang, D. a. Ende, J. 
Baird, C. Bertsch, R. E. Hannah, P. Dell'Orco, H. Noorman, S. Yee, R. Reintjens, 
A. Wells, V. Massonneau and J. Manley, Org. Process Res. Dev., 2011, 15,  
900-911. 

104. C. C. Carmona-Vargas, L. d. C. Alves, T. J. Brocksom and K. T. d. Oliveira, React. 
Chem. Eng., 2017, 2, 366-374. 

105. N. C. Neyt and D. L. Riley, React. Chem. Eng., 2018, 3, 17-24. 

106. R. P. Dhanya, A. Herath, D. J. Sheffler and N. D. P. Cosford, Tetrahedron, 2018, 
74, 3165-3170. 

107. D. R. Snead and T. F. Jamison, Angew. Chem. Int. Ed., 2015, 54, 983-987. 

108. P. R. D. Murray, D. L. Browne, J. C. Pastre, C. Butters, D. Guthrie and S. V. Ley, 
Org. Process Res. Dev., 2013, 17, 1192-1208. 

109. M. D. Hopkin, I. R. Baxendale and S. V. Ley, Chem. Commun., 2010, 46,  
2450-2452. 

110. Alzheimer's-Association, Alzheimer's Dement., 2016, 12, 459-509. 

111. R. Yan and R. Vassar, Lancet Neurol., 2014, 13, 319-329. 

112. D. Oehlrich, H. Prokopcova and H. J. M. Gijsen, Bioorg. Med. Chem. Lett., 2014, 
24, 2033-2045. 

113. ALZFORUM, Therapeutics: Lanabecestat, 
https://www.alzforum.org/therapeutics/azd3293, (accessed 24 May, 
2019). 

114. S. Eketjäll, J. Janson, K. Kaspersson, A. Bogstedt, F. Jeppsson, J. Fälting, S. B. 
Haeberlein, A. R. Kugler, R. C. Alexander and G. Cebers, J. Alzheimer's Dis., 
2016, 50, 1109-1123. 

https://www.alzforum.org/therapeutics/azd3293


213 

 

115. G. Cebers, R. C. Alexander, S. B. Haeberlein, D. Han, R. Goldwater, L. 
Ereshefsky, T. Olsson, N. Ye, L. Rosen, M. Russell, J. Maltby, S. Eketjäll and A. 
R. Kugler, J. Alzheimer's Dis., 2017, 55, 1039-1053. 

116. N. Ye, S. A. Monk, P. Daga, D. M. Bender, L. B. Rosen, J. Mullen, M. C. Minkwitz 
and A. R. Kugler, Clin. Pharmacol. Drug Dev., 2018, 7, 233-243. 

117. G. Csjernyik, S. Karlstroem, A. Kers, K. Kolmodin, M. Nyloef, L. Oehberg, L. 
Rakos, L. Sandberg, F. Sehgelmeble, P. Soederman, B.-M. Swahn and B. Von, 
WO 2012/087237 A1, 2012. 

118. I. W. Ashworth, A. D. Campbell, J. H. Cherryman, J. Clark, A. Crampton, E. G. B. 
Eden-Rump, M. Evans, M. F. Jones, S. McKeever-Abbas, R. E. Meadows, K. 
Skilling, D. T. E. Whittaker, R. L. Woodward and P. A. Inglesby, Org. Process 
Res. Dev., 2018, 22, 1801-1808. 

119. R. Chinchilla and C. Nájera, Chem. Rev., 2007, 107, 874-922. 

120. D. Znidar, C. A. Hone, P. Inglesby, A. Boyd and C. O. Kappe, Org. Process Res. 
Dev., 2017, 21, 878-884. 

121. A. John, S. Modak, M. Madasu, M. Katari and P. Ghosh, Polyhedron, 2013, 64, 
20-29. 

122. F. Barrios-Landeros and J. F. Hartwig, J. Am. Chem. Soc., 2005, 127,  
6944-6945. 

123. S. Mirjalili and A. Lewis, Inf. Sci., 2015, 300, 158-192. 

124. J. Vojtesek and P. Dostal, presented in part at the International Conference 
Cybernetics and Informatics, 2010. 

125. J. W. Lee, Z. Horváth, A. G. O'Brien, P. H. Seeberger and A. Seidel-Morgenstern, 
Chem. Eng. J., 2014, 251, 355-370. 

126. S. A. Hashemi and F. Z. Ashtiani, Food Bioprod. Process., 2010, 88, 181-187. 

127. J. S. Moore and K. F. Jensen, Angew. Chem. Int. Ed., 2014, 53, 470-473. 

128. J. A. Manson, Mathematical Modelling of Titanium Dioxide Nanoparticle 
Synthesis in a Spinning Disk Reactor, MEng Dissertation, Newcastle 
University, 2017. 

129. C. A. Hone, Evolution of kinetic motifs through rate-based experimental 
design in flow reactors, Ph.D Thesis, University of Leeds, 2016. 

130. K. Bringmann, T. Friedrich, C. Igel and T. Voβ, Artif. Intell., 2013, 204, 22-29. 

131. Simone, MATLAB File Exchange, Hypervolume approximation, 
https://uk.mathworks.com/matlabcentral/fileexchange/50517 
-hypervolume-approximation, (accessed 13 June, 2019). 

132. Simone, MATLAB File Exchange, Pareto filtering, 
https://uk.mathworks.com/matlabcentral/fileexchange/50477-pareto 
-filtering, (accessed 13 June, 2019). 

133. J. Knowles, IEEE Trans. Evol. Comput., 2006, 10, 50-66. 

134. D. Zhan, Y. Cheng and J. Liu, IEEE Trans. Evol. Comput., 2017, 21, 956-975. 

135. Y. Tian, R. Cheng, X. Zhang and Y. Jin, IEEE Comput. Intell. Mag., 2017, 12,  
73-87. 



214 

 

136. Y. Tian and S. Peng, GitHub, BIMK/PlatEMO: Evolutionary multi-objective 
optimization platform, https://github.com/BIMK/PlatEMO, (accessed 13 
June, 2019). 

137. R. Porta, M. Benaglia and A. Puglisi, Org. Process Res. Dev., 2015, 20, 2-25. 

138. N. Hoffmann, Chem. Rev., 2008, 108, 1052-1103. 

139. N. Hoffmann, Photochem. Photobiol. Sci., 2012, 11, 1613-1641. 

140. C. Schweitzer and R. Schmidt, Chem. Rev., 2003, 103, 1685-1757. 

141. A. A. Ghogare and A. Greer, Chem. Rev., 2016, 116, 9994-10034. 

142. C. Michelin and N. Hoffmann, ACS Catal., 2018, 8, 12046-12055. 

143. M. C. DeRosa and R. J. Crutchley, Coord. Chem. Rev., 2002, 233-234, 351-371. 

144. C. Tanielian, R. Mechin, R. Seghrouchni and C. Schweitzer, Photochem. 
Photobiol., 2000, 71, 12-19. 

145. S. Lacombe and T. Pigot, Catal. Sci. Technol., 2016, 6, 1571-1592. 

146. V. Balzani, G. Bergamini and P. Ceroni, Angew. Chem. Int. Ed., 2015, 54,  
11320-11337. 

147. H. Sterckx, B. Morel and B. U. W. Maes, Angew. Chem. Int. Ed., 2019, 58,  
7946-7970. 

148. D. Cambié, C. Bottecchia, N. J. W. Straathof, V. Hessel and T. Noël, Chem. Rev., 
2016, 116, 10276-10341. 

149. K. Gilmore and P. H. Seeberger, Chem. Rec., 2014, 14, 410-418. 

150. Y. Su, K. Kuijpers, V. Hessel and T. Noël, React. Chem. Eng., 2016, 1, 73-81. 

151. A. Gavriilidis, A. Constantinou, K. Hellgardt, M. Hii, G. J. Hutchings, G. L. Brett, 
S. Kuhn and S. P. Marsden, React. Chem. Eng., 2016, 1, 595-612. 

152. C. A. Hone and C. O. Kappe, Topics Curr. Chem., 2019, 377:2. 

153. K. C. Harper, E. G. Moschetta, S. V. Bordawekar and S. J. Wittenberger, ACS 
Cent. Sci., 2019, 5, 109-115. 

154. M. R. Chapman, M. H. T. Kwan, G. King, K. E. Jolley, M. Hussain, S. Hussain, I. E. 
Salama, C. G. Niño, L. A. Thompson, M. E. Bayana, A. D. Clayton, B. N. Nguyen, 
N. J. Turner, N. Kapur and A. J. Blacker, Org. Process Res. Dev., 2017, 21,  
1294-1301. 

155. Y. Mo, H. Lin and K. F. Jensen, Chem. Eng. J., 2018, 335, 936-944. 

156. Y. Mo and K. F. Jensen, React. Chem. Eng., 2016, 1, 501-507. 

157. L. D. Elliott, J. P. Knowles, C. S. Stacey, D. J. Klauber and K. I. Booker-Milburn, 
React. Chem. Eng., 2018, 3, 86-93. 

158. A. Albini and M. Fagnoni, Handbook of Synthetic Photochemistry, Wiley-VCH, 
Weinheim, 2009. 

159. Asynt, fReactor Complete Kit, https://www.asynt.com/product/freactor-
complete-kit/, (accessed 1 July, 2019). 

160. K. L. Willett and R. A. Hites, J. Chem. Ed., 2000, 77, 900-902. 

161. Y. Ji, D. A. DiRocco, C. M. Hong, M. K. Wismer and M. Reibarkh, Org. Lett., 2018, 
20, 2156-2159. 

https://github.com/BIMK/PlatEMO
https://www.asynt.com/product/freactor-complete-kit/
https://www.asynt.com/product/freactor-complete-kit/


215 

 

162. T. Aillet, K. Loubiere, O. Dechy-Cabaret and L. Prat, Int. J. Chem. React. Eng., 
2014, 12, 257-269. 

163. M. A. Cismesia and T. P. Yoon, Chem. Sci., 2015, 6, 5426-5434. 

164. Y. Su, V. Hessel and T. Noël, AIChE J., 2015, 61, 2215-2227. 

165. M. C. White, Science, 2012, 335, 807-809. 

166. R. R. Karimov and J. F. Hartwig, Angew. Chem. Int. Ed., 2017, 57, 4234-4241. 

167. D. Holtmann, M. W. Fraaije, I. W. C. E. Arends, D. J. Opperman and F. Hollmann, 
Chem. Commun., 2014, 50, 13180-13200. 

168. Y. Kawamata, M. Yan, Z. Liu, D.-H. Bao, J. Chen, J. T. Starr and P. S. Baran, J. Am. 
Chem. Soc., 2017, 139, 7448-7451. 

169. L. Capaldo and D. Ravelli, Eur. J. Org. Chem., 2017, 2056-2071. 

170. M. D. Tzirakis, I. N. Lykakis and M. Orfanopoulos, Chem. Soc. Rev., 2009, 38, 
2609-2621. 

171. G. Laudadio, S. Govaerts, Y. Wang, D. Ravelli, H. F. Koolman, M. Fagnoni, S. W. 
Djuric and T. Noël, Angew. Chem. Int. Ed., 2018, 57, 4078-4082. 

172. R. K. Henderson, C. Jiménez-González, D. J. C. Constable, S. R. Alston, G. G. A. 
Inglis, G. Fisher, J. Sherwood, S. P. Binks and A. D. Curzons, Green Chem., 2011, 
13, 854-862. 

173. Merck, Tetra-n-butylammonium decatungstate, 
https://www.sigmaaldrich.com/catalog/product/aldrich/900432?lang=en
&region=GB, (accessed 10 July, 2019). 

174. T. Yamase and T. Usami, J. Chem. Soc., Dalton Trans., 1988, 183-190. 

175. S. Protti, D. Ravelli, M. Fagnoni and A. Albini, Chem. Commun., 2009, 0,  
7351-7353. 

176. A. M. Cardarelli, M. Fagnoni, M. Mella and A. Albini, J. Org. Chem., 2001, 66, 
7320-7327. 

177. A. Adamo, P. L. Heider, N. Weeranoppanant and K. F. Jensen, Ind. Eng. Chem. 
Res., 2013, 52, 10802-10808. 

178. Zaiput Flow Technologies, Liquid-Liquid/Gas-Liquid Separators, 
https://www.zaiput.com/product/liquid-liquid-gas-separators/, (accessed 
11 July, 2019). 

179. M. Martan, J. Manassen and D. Vofsi, Tetrahedron, 1970, 26, 3815-3827. 

180. D. Dondi, A. M. Cardarelli, M. Fagnoni and A. Albini, Tetrahedron, 2006, 62, 
5527-5535. 

181. E. Du, J. Li, S. Zhou, M. Li, X. Liu and H. Li, Water, 2018, 10, 1238-1260. 

182. R. L. Plackett and J. P. Burman, Biometrika, 1946, 33, 305-325. 

183. D. Webb and T. F. Jamison, Chem. Sci., 2010, 1, 675-680. 

184. J. Britton and C. L. Raston, Chem. Soc. Rev., 2017, 46, 1250-1271. 

185. A. Adamo, R. L. Beingessner, M. Behnam, J. Chen, T. F. Jamison, K. F. Jensen,  
J.-C. M. Monbaliu, A. S. Myerson, E. M. Revalor, D. R. Snead, T. Stelzer, N. 
Weeranoppanant, S. Y. Wong and P. Zhang, Science, 2016, 352, 61-67. 

https://www.sigmaaldrich.com/catalog/product/aldrich/900432?lang=en&region=GB
https://www.sigmaaldrich.com/catalog/product/aldrich/900432?lang=en&region=GB
https://www.zaiput.com/product/liquid-liquid-gas-separators/


216 

 

186. J. Imbrogno, L. Rogers, D. A. Thomas and K. F. Jensen, Chem. Commun., 2018, 
54, 70-73. 

187. C. C. Tzschucke, C. Markert, W. Bannwarth, S. Roller, A. Hebel and R. Haag, 
Angew. Chem. Int. Ed., 2002, 41, 3964-4000. 

188. S. V. Ley, R. J. Ingham, M. O'Brien and D. L. Browne, Beilstein J. Org. Chem., 
2013, 9, 1051-1072. 

189. M. O'Brien, P. Koos, D. L. Browne and S. V. Ley, Org. Biomol. Chem., 2012, 10, 
7031-7036. 

190. J. G. Kralj, H. R. Sahoo and K. F. Jensen, Lab Chip, 2007, 7, 256-263. 

191. A. E. Cervera-Padrell, S. T. Morthensen, D. J. Lewandowski, T. Skovby, S. Kiil 
and K. V. Gernaey, Org. Process Res. Dev., 2012, 16, 888-900. 

192. R. Lebl, D. Cantillo and C. O. Kappe, React. Chem. Eng., 2019, 4, 738-746. 

193. S. Glöckner, D. N. Tran, R. J. Ingham, S. Fenner, Z. E. Wilson, C. Battilocchio and 
S. V. Ley, Org. Biomol. Chem., 2015, 13, 207-214. 

194. T. A. Hamlin, G. M. L. Lazarus, C. B. Kelly and N. E. Leadbeater, Org. Process 
Res. Dev., 2014, 18, 1253-1258. 

195. N. Weeranoppanant, A. Adamo, G. Saparbaiuly, E. Rose, C. Fleury, B. Schenkel 
and K. F. Jensen, Ind. Eng. Chem. Res., 2017, 56, 4095-4103. 

196. C. Dai, D. R. Snead, P. Zhang and T. F. Jamison, J. Flow Chem., 2015, 5, 133-138. 

197. J. Clegg, J. F. Dawson, S. J. Porter and M. H. Barley, presented in part at the 
IEEE Congress on Evolutionary Computation, Edinburgh, 2005. 

198. A. M. Hyde, S. L. Zultanski, J. H. Waldman, Y.-L. Zhong, M. Shevlin and F. Peng, 
Org. Process Res. Dev., 2017, 21, 1355-1370. 

199. S. Mandal, S. Mandal, S. K. Ghosh, A. Ghosh, R. Saha, S. Banerjee and B. Saha, 
Synth. Commun., 2016, 46, 1327-1342. 

200. C. Hui, F. Pu and J. Xu, Chem. Eur. J., 2017, 23, 4023-4036. 

201. M. M. Heravi, T. Ahmadi, M. Ghavidel, B. Heidari and H. Hamidi, RSC Adv., 
2015, 5, 101999-102075. 

202. A. F. M. M. Rahman, R. Ali, Y. Jahng and A. A. Kadi, Molecules, 2012, 17,  
571-583. 

203. Y. Miki, K. Hirano, T. Satoh and M. Miura, Angew. Chem. Int. Ed., 2013, 52, 
10830-10834. 

204. Y. Wang, Y. Kuang and Y. Wang, Chem. Commun., 2015, 51, 5852-5855. 

 


