
THE UNIVERSITY OF SHEFFIELD

DOCTORAL THESIS

The Acceleration of Polynomial Methods for Blind Image
Deconvolution Using Graphical Processing Units (GPUs)

Adam Petterson

A thesis submitted in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

The University of Sheffield

Faculty of Engineering

Department of Computer Science

October 2019





Abstract

Image processing has become an integral part of many areas of study. Unfortunately, the

process of capturing images can often result in undesirable blurring and noise, and thus can

make processing the resulting images problematic. Methods are therefore required that

attempt to remove blurring. The main body of work in this field is in Bayesian methods

for image deblurring, with many algorithms aimed at solving this problem relying on the

Fourier transform. The Fourier transform results in the amplification of noise in the image,

which can lead to many of the same problems as blurring.

Winkler presented a method of blind image deconvolution (BID) without the Fourier

transform, which treated the rows and columns of the blurred image as the coefficients

of univariate polynomials [1]. By treating the rows and columns of the image in this

way, the problem of computing the blurring function becomes a problem of computing the

greatest common divisor (GCD) of these polynomials. The computation of the GCD of

two polynomials is ill posed, as any noise in the polynomials causes them to be coprime.

Thus an approximate GCD (AGCD) must be computed instead.

The computation of an AGCD is a computationally expensive process, resulting in

the BID algorithm being expensive. The research presented in this thesis investigates

the fundamental mathematical processes underpinning such an algorithm, and presents

multiple methods through which this algorithm can be accelerated using a GPU. This

acceleration results in an implementation that is 30 times faster than a CPU parallel

approach. The process of accelerating the BID algorithm in this way required a first of its

kind GPU accelerated algorithm for the computation of an AGCD, with multiple novel

techniques utilised to achieve this acceleration.
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Chapter 1

Introduction

Blurring in images is an important problem across many different fields. When an image is

blurred, the blurring function used acts as a low pass filter, obscuring high frequency areas

of an image. This means that detail in the blurred image is lost, and edges of features with

in the image become less defined. Due to this degradation, blurring presents a significant

barrier for many image processing techniques, such as feature selection and recognition.

The removal of this blur is therefore an important area of research.

Blurring can be considered to be the convolution of an exact image F , with a blurring

function H, also known as a point spread function (PSF), to result in a degraded image

G,

G = F ⊗H.

Removing blur from these images can therefore be seen as a deconvolution problem,

where the exact image must be separated from the PSF. An example of this convolution

can be seen in Figure 1.1.

Figure 1.1: Example of image blurring

Many existing techniques for image deconvolution make assumptions about the PSF,

in order to deconvolve it from the exact image. These assumptions can include prior

1
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knowledge of the size of the PSF, or even of the exact form of the PSF. Unfortunately, in

many real world scenarios, it is not possible to know exact details about the PSF, and thus

these solutions are not effective in most realistic scenarios. Image deconvolution where

these assumptions are not made is known as blind image deconvolution (BID), which is

one of the most challenging problems in image processing.

Deconvolution can be particularly problematic when blurring is accompanied by noise,

which can be amplified by many deblurring algorithms, or in some cases even prevent

deblurring algorithm from working at all. Unfortunately, in most real world scenarios,

noise is inevitable. Noise can be introduced to an image in the PSF iteslf, or after the

convolution. A more accurate representation of convolution could therefore be described

with

G = F ⊗ (H+N1) +N2.

where N1 is additive noise present in the PSF, and N2 is equal to the additive noise

in the resulting blurred image.

In the presence of this noise, BID becomes an ill posed problem. The convolution and

deconvolution of images will be discussed further in Chapter 2.

There are many existing methods of performing image deconvolution, including Bayes-

ian methods [2, 3, 4, 5, 6], zero sheet separation [7], machine learning approaches [8, 9, 10,

11], and greatest common divisor (GCD) methods [12, 13, 14, 15]. These approaches are

discussed further in Chapter 2. A common technique utilised in many of these methods,

both blind and non-blind, is that of the Fourier transform. A major side effect of the use

of a Fourier transform is the amplification of noise in the image, which leads to images

being less clear, and can also interfere with image processing techniques. It is due to this

that a method to perform blind image deconvolution without using the Fourier transform

is desirable.

One method of achieving blind image deconvolution without the Fourier transform

was presented by Winkler in his 2016 paper [1], where polynomial methods were used.

This technique provided impressive results, with low errors compared to many other con-

temporary techniques. However, it is also computationally expensive. This algorithm is

considered in detail in Chapter 4. Modifications to the original algorithm are also described

in Chapter 4, that will improve the runtime and reliability of these computations.

Parallel programming can offer solutions to accelerate computationally expensive prob-

lems. In this thesis the BID algorithm presented by Winkler is investigated, and general-

purpose computing on graphics processing units (GPGPU) is considered for the invest-

igation into how the algorithm can be accelerated by utilising a graphics processing unit

(GPU). By utilising GPGPU methods the runtime of the algorithm can be significantly

reduced. To utilise GPUs effectively, parallelism must be found at a low level within the al-

gorithm, and a significant amount of care must be taken to ensure the work is adequately

balanced across the GPU. The use of GPUs will be discussed in Chapter 5, including
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factors that must be considered to ensure the efficiency of the implemented algorithms.

Key to the approach proposed by Winkler is to consider the horizontal and vertical

elements of a PSF to be the GCD of two polynomials, the coefficients of which are taken

from the pixel values of rows and columns of the blurred image. Unfortunately, due to

noise introduced in many imaging systems, finding an exact GCD of the polynomials is

ill posed, as the polynomials are coprime and therefore have no common divisors. When

the polynomials are coprime an approximate greatest common divisor (AGCD) must be

computed instead. An AGCD is a form of GCD in which the coefficients can be per-

turbed within a given threshold, such that an exact divisor can be found for each of the

polynomials.

Computing the AGCD is the most computationally expensive part of the BID al-

gorithm by a large margin. This is due to the need for many large matrix operations,

which can involve thousands of operations each. It is therefore a good candidate for ac-

celeration by utilising the massive parallelism available on a GPU. While the focus of this

thesis is on accelerating the BID algorithm, the AGCD algorithm that is accelerated to

this end has potential applications in other fields. Two examples of such fields are control

theory [16], and the computation of multiple roots of a polynomial [17, 18, 19]. The fast

computation of an AGCD is thus motivated not just by image deconvolution, but also has

more general applications.

The two most expensive computations, as part of the AGCD algorithm, are considered

for acceleration in this thesis. The first section to be accelerated is the computation of

a degree of an AGCD. In the algorithm proposed by Winkler the degree computation

represents the majority of the overall compute time of the BID algorithm. Chapters 6 and

7 will consider the acceleration of this algorithm, and a GPU accelerated implementation

will be proposed that demonstrates computation of the degree at speeds of up to 132 times

faster than the serial implementation.

The second section to be considered is that of structured non-linear total least norm

(SNTLN) [20], which is the method through which the coefficients of the AGCD are com-

puted. The BID algorithm presented by Winkler utilised a modified form of the SNTLN

method [21], in which an optimal column of a subresultant matrix must be computed

to perform the remainder of this operation. This modification will be described Chapter

4. Chapter 8 proposes a GPU accelerated form of this computation, using the GPU to

compute this optimal column. This accelerated algorithm demonstrated runtime improve-

ments of up to 543 times faster than the serial implementation for the computation of the

optimal column.

The result of the advancements described in this thesis is a GPU accelerated algorithm

which performs BID faster, and more reliably, than the original BID algorithm. Chapter 9

presents the improvements made to the overall algorithm, with runtimes demonstrated to

be up to 30 times faster than the central processing unit (CPU) parallel implementation

when tested on high end hardware, despite many features of the algorithm not yet having

been accelerated.
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As this thesis covers a number of different areas the literature survey has been split

into sections within chapters that cover these areas. Chapter 2 will discuss the literature

for image deconvolution methods, including parallel implementations, while Chapter 3 will

discuss both the literature of AGCD computation and of parallel QR factorisation.

This thesis will be organised into the following chapters:

Chapter 1 This chapter gives an introduction to the subject of the research presented

in this thesis, provides the motivations behind this work, and provides a overview of

the chapters of the thesis.

Chapter 2 This chapter describes the process through which images are blurred, and

deblurred, from a high level, as well as some of the key challenges faced by deblurring

algorithms. Several existing methods for image deconvolution are discussed, with a

section describing how some of these algorithms could be parallelised.

Chapter 3 This chapter discusses the mathematics crucial to the computation of poly-

nomial GCDs and AGCDs. Two resultant matrices that are of particular interest

to this computation are defined, these being Sylvester and Bézout matrices. Two

matrix decompositions that are useful for this computation are also discussed, with

particular attention paid to the QR decomposition, which is central to the algorithm

that is explored in this thesis. Methods of computing the AGCD from the literature

are explored, as well as parallel methods for the computation of the QR decomposi-

tion.

Chapter 4 This chapter gives an overview of the BID algorithm proposed by Winkler,

which uses polynomial AGCDs. The algorithm will be described in detail, with

focus on the sections of the algorithm that will be parallelised in this research. This

chapter will also detail some of the modifications made to this algorithm to improve

its performance and reliability. A simple CPU parallel algorithm will be introduced

that can be compared to the GPU accelerated algorithm in Chapters 6, 7, 8 and 9.

Chapter 5 This chapter introduces the concept of parallel computing, with a focus GP-

GPU techniques. Important hardware and software aspects of utilising GPUs to

accelerate algorithms will be discussed.

Chapter 6 This chapter discusses how degree computation was achieved on the GPU.

The algorithm will be detailed, with focus on the computations within the algorithm

where parallelism was found. The implementation of this algorithm on the GPU,

and the challenges that had to be overcome to achieve this, will be discussed. Finally

the results of this section will be detailed, with comparisons made against CPU serial

and parallel implementations of the same computation.

Chapter 7 This chapter details an alternate approach to the degree computation, using a

significantly lower amount of memory than the original implementation. This imple-

mentation offers a significantly greater amount of scalability, and shorter runtimes,
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than the algorithm described in chapter 6. This will again be compared against the

CPU implementations, and also against the implementation proposed in Chapter 6.

Chapter 8 This chapter details the GPU implementation of sections within the coefficient

computation of the AGCD, with focus on a section of the modified SNTLN technique

proposed by Winkler and Hasan in [12]. The runtime and reliability of this algorithm

will again be tested against CPU serial and parallel implementations.

Chapter 9 This chapter applies the work from the previous chapters to the full image

deconvolution algorithm. The accelerated algorithm is compared against the best

performing CPU implementation. All the improvements described throughout this

thesis will be tested, including tests for reliability and runtime improvements. Large

images are also tested, to investigate how well the algorithm scales.

Chapter 10 The final chapter gives an overview of the key findings of this thesis, and

some of the most important results detailed in the other chapters. This chapter will

also suggest areas which could be of interest for further studies.





Chapter 2

Image Blurring and Deblurring

Images and image processing have become important parts of everyday life, with applica-

tions in many fields. Unfortunately, in the process of capturing an image, the exact image

may be degraded in two significant ways: blurring, where exact information from points

in the image are spread over neighbouring pixels, and noise, where pixel values may be

perturbed to be greater or less than the exact value that is desired. This thesis concen-

trates on the removal of blur, but it aims to do so in the presence of noise. The presence of

noise is almost inevitable in most real world scenarios, and causes a number of problems

for image deconvolution algorithms.

Section 2.1 will give an overview of image blurring, including the mathematics of

convolution, and how that relates to blurring in images, as well as the effects blurring can

have on images. Section 2.2 will provide a survey of existing deconvolution methods, both

blind and non blind. These will be described at a high level, with common issues that are

encountered by these algorithms discussed. This section will also investigate how these

image deconvolution algorithms can be parallelised.

2.1 Convolution and the Point Spread Function

Convolution is a mathematical function that involves the combination of two signals to

result in a single signal. This is performed by measuring how much overlap occurs when

one signal passes over the other signal [22]. When two signals are convolved the dimensions

of the resulting signal become larger, due to the overlap of the edges of the two signals.

Additionally, when one of the signals being convolved acts as a low pass filter, such as

a Gaussian distribution, any high frequency features that may have been present in the

original signal may be smoothed out and lost in the resulting signal.

For example, consider the signals shown in Figure 2.1. Figure 2.1a shows a high

frequency signal a, when convolved with signal b, shown in Figure 2.1b, results in signal

c, shown in Figure 2.1c. As can be seen in this example signal a has a width of 9, signal

b has a width of 5, and the resulting signal c has a width of 13. Additionally, it is clear

that the high frequency elements of signal a have been lost in signal c, as they have been

7
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(a) Signal a (b) Signal b

(c) Signal c

Figure 2.1: Example of signal convolution where a⊗ b = c

smoothed out when convolved with the low frequency signal b which is acting as a low

pass filter.

2.1.1 The Mathematics of Convolution

When applied to two polynomials, as opposed to two signals, convolution is the equivalent

of the product of the two polynomials. Consider the polynomials defined below, f(x), of

degree m and g(x), of degree n,

f(x) =
m∑
i=0

aix
i, g(x) =

n∑
j=0

bjx
j .

The convolution, or product, of these polynomials results in the polynomial h(x),

h(x) =
m∑
i=0

n∑
j=0

ak−jbjx
k.

The computation to calculate the kth coefficient of the convolution of f(x) and g(x),

or the kth element of signal c above, can be defined with

ck =
k∑

j=0

ak−jbj . (2.1)

In Equation 2.1, when considering signals with limited bounds, if the index required
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(a) Signal A (b) Signal B

(c) Signal C

Figure 2.2: Example of 2 dimensional convolution where A⊗B = C

from signal a or b is outside of these bounds the value returned will be zero.

The concept of convolution can be expanded into two dimensions. Take for example the

2-dimensional signals A and B shown in Figure 2.2. Signal A is random noise of dimension

50 × 50, with values ranging between 0 and 1. Signal B is a Gaussian distribution of

dimension 10 × 10, with a peak of 0.033. This Gaussian signal acts as a low pass filter.

Similarly to the convolution example in Figure 2.1 it can be seen that the high frequency

elements of signal A have been lost when convolved with B to result in C. Note that the

dimensions of the resulting signal C have been expanded in the same way as occurred in

Figure 2.1, with the dimensions of the new signal being 60× 60.

Blurring in images is often modelled as a discrete 2-dimensional convolution of a 2-

dimensional signal. The exact image F is convolved with a signal H to give the convolved

image G.

G = F ⊗H. (2.2)

When the signal H acts as a low pass filter the image becomes blurred, and the signal

H is known as a PSF or blurring function.

While Equation 2.2 is sufficient for modelling blur in a artificial scenario, the majority
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of imaging situations in the real world would not be as clean, and noise can be introduced to

the image. This noise is introduced at two points. Firstly, in the process of deconvolution,

where the noise is introduced to the PSF (N1), or after the convolution, where noise is

added to the resulting image (N2). Therefore a more accurate equation to represent the

blurring caused in a realistic scenario would be

G = F ⊗ (H+N1) +N2.

Treating blurring as convolution of polynomials, the signals F and H can be modelled

as bivariate polynomials F (x, y), of degree m in x and n in y, and H(x, y) of degree p in

x and q in y [12].

F (x, y) =
m∑
i=0

n∑
j=0

f(i, j)xm−iyn−j ,

H(x, y) =

p∑
k=0

q∑
l=0

h(k, l)xp−kyq−l.

The product, or convolution, of these polynomials results in the bivariate polynomial

G(x, y),

G(x, y) =

m∑
i=0

n∑
j=0

p∑
k=0

q∑
l=0

f(i, j)h(k, l)xm+p−(i+k)yn+q−(j+l).

Substituting s = i+ k and t = j + l into this equation gives

G(x, y) =
m∑
i=0

n∑
j=0

p+i∑
s=i

q+j∑
t=j

f(i, j)h(s− i, t− j)xm+p−syn+q−t.

Therefore the coefficients of the resulting bivariate polynomial, or the elements of a

discrete 2-dimensional signal, such as an image, can be defined as

g1(s, t) =

m∑
i=0

n∑
j=0

f(i, j)h(s− i, t− j). (2.3)

Equation 2.3 represents the computation of convolution using a spatially invariant

PSF. This means that the blurring function, in this case H(x, y), does not change as a

function of the position in the image. It therefore follows that when modelling blurring as

convolution a spatially invariant PSF is implied.

Equation 2.3 is able to describe every form of 2-dimensional, spatially invariant PSF.

However, deconvolving a PSF modelled as a bivariate polynomial is a significant challenge.

A subset of these PSFs can be separated into vertical and horizontal elements, which can

be treated independently [1]. This means that the vertical element and the horizontal

element of a separable PSF can be computed separately, and deconvolved from the image

independently.
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A separable PSF can be defined mathematically as

H(x, y) =

p∑
k=0

q∑
l=0

hrx
p−khcy

q−l,

= hr(x)hc(y).

Therefore, as the horizontal and vertical elements of H(x, y) can be split into hr(x)

and hc(y), this PSF can be applied to an image by the convolution of hr(x) with all

polynomials representing rows in the image, and then hc(y) can be convolved with all

of the columns in the result of the previous convolution. The resulting image would be

the same as if the bivariate polynomial had been convolved with a bivariate polynomial

representing the image directly. It then follows that the horizontal and vertical elements

of this convolution can be deconvolved individually, which is a simpler problem.

It was previously noted that when a signal with high frequency elements is convolved

with another signal, such as a Gaussian, then the high frequency elements are lost. When

applied to imaging the PSF will act as a low pass filter, leading to high frequency com-

ponents in the image being lost, and only low frequency components remaining. This

defines the process of blurring, where areas of detail in the image are lost. The process of

deblurring is the restoration of high frequency components within the image, and when

treating the blur as a convolution, this is known as image deconvolution.

2.1.2 Effects of Image Convolution

In section 2.1.1, the mathematics of PSFs were defined. In this section, the effects of

different PSFs on images that they are applied to will be investigated, including non-

separable and spatially variant PSFs, and where these forms of PSF can be observed in

real world scenarios.

Some examples of artificially generated PSFs can be seen in Figure 2.3. Figure 2.3a

shows a Gaussian PSF. Gaussian PSFs are often used in image processing to simulate

defocus blur, which can be caused by the incorrect aperture or focal length settings on a

camera. Figure 2.3b represents an artificially generated example of what a PSF may look

like from camera shake, causing motion blur.

Figure 2.4 shows an exact image in greyscale that is to be blurred. In Figure 2.5 we

see the results of blurring this image with the two blurring functions in Figure 2.3. Both

of the blurred images exhibit a clear loss of detail, which can particularly be seen in the

shadows on the windmill, and the trees at the bottom of the image.

Additionally, a black area is seen around the blurred images. This boundary area

occurs for the same reason that in the simple 1-dimensional convolution example seen

previously results in a larger signal than the two input signals. However, this feature does

not occur in most real world situations, though some image processing techniques assume

its presence.
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(a) Gaussian blurring function (b) Motion blur PSF

Figure 2.3: Examples of blurring functions

Figure 2.4: Original exact image

2.1.3 The Boundary Area

As was discussed previously, artificially blurred images such as those in Figure 2.5 show

a black border around the images, where the image fades to black. The presence of this

boundary area is due to the pixels outside of the dimensions of the exact image being

regarded to be equal to be zero. This area is, for obvious reasons, not present in a

naturally blurred image.

The fact that this boundary area is present is a problem for GCD methods for image

deconvolution, which rely on having complete polynomials on which the GCD must be

computed. Thus the boundary area must be extrapolated instead. This can be performed

with window functions, which can taper the edges of the images in order to simulate this

border area.

Some examples of windowing functions that can be used are the Hamming window,

a sine curve where only positive entries are considered, and a squared sine curve. The
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(a) Gaussian blurred image (b) Motion blurred image

Figure 2.5: Exact image from Figure 2.4 blurred with Gaussian and motion PSFs shown
in Figure 2.3

(a) Hamming window (b) Squared sine window

Figure 2.6: Example of two functions that could be used to taper the edges of images

limit on the potential windowing functions is that they must be monotonically decreasing,

such that the edge appears to be a smooth fade to black, as the weighted sum in the

boundary area will be considering an increasing number of zero entries. Figure 2.6 shows

two examples of window functions that can be used to taper the edge of an image.

As the GCD and its degree are not known in BID this presents a significant problem

for GCD BID methods. Tapering the edges of the image would require knowledge at

the very least of the size of the PSF. Simply repeating attempts at computing the GCD

with multiple widths of taper is not desirable, due to the computational expense. Thus

a method of estimating this width would be required. This is a problem that is as yet

unsolved in the literature.
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2.1.4 Separable and Non-Separable PSFs

The terms seperable and non-seperable refer to whether a PSF can or cannot be split into

vertical and horizontal components, as described previously in this section. The Gaussian

PSF in Figure 2.3a is an example of a separable PSF. A 2-dimensional Gaussian can be

separated into two, 1-dimensional, Gaussian PSFs. When the horizontal element is applied

to the rows of the exact image, then the vertical component is applied to the columns of the

horizontally blurred image, the resulting image is identical to that of an image convolved

with the 2-dimensional Gaussian.

Non-separable PSFs, however, provide a greater challenge, as the row and column

components cannot be treated as independent. The motion blur PSF in Figure 2.3b is an

example of an non-separable PSF. It is only possible to fully describe this PSF in the same

way as with the Gaussian when analysis and computations are performed in the Fourier

domain.

2.1.5 Spatial variance

A spatially variant PSF is a PSF that varies across the image. One key example of this is

defocus blurring. This is often done purposefully, for artistic effect, which is known as the

bokeh effect, though it can also be a caused by an incorrectly set aperture on the camera

for the subject matter. The effect this has is a greater amount of blurring the further

away an object is from the focal range that the camera is set up for.

Figure 2.7: Photo of parrots demonstrating the spatially variant bokeh effect

Figure 2.7 demonstrates the bokeh effect. In this photo the heads of both parrots are

completely in focus. However, the feet of the parrot have a low level of blurring, the wooden

railing has a moderate amount of blurring, and finally the foliage in the background is

heavily blurred.
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Other examples of spatially variant blurs involve motion blurs, where a subject in the

image moves, and heat distortion, where movement of warm air causes distortion when an

image is captured through it. The spatial variance problem represents one of the greatest

challenges in image restoration.

2.1.6 Common Artifacts in Deconvolved Images

Many commonly used deconvolution techniques cause various forms of artifacts in the

deconvolved images that are not present in the exact image. Most significantly noise can

be introduced or amplified, and ringing can occur around edges in the image. This section

will discuss some of these artifacts, and describe the causes.

2.1.6.1 Ringing

Ringing is a form of artifact present in images deconvolved by the Fourier transform.

The Fourier transform is used to attempt to restore high frequency components of the

image, and thus can cause repetition in some elements of the image. Ringing artifacts

show repetition and ghosting around edges of elements of the image, where there is a large

difference in the pixel values of the elements in an image. It is often also very apparent

around the edges of the image, where there is a sharp gradient between the pixel values at

the edge of the image, and the values outside of the image bounds. Figure 2.8 shows both

of these forms of ringing, particularly at the edges of the photo, and around the subject

of the photo.

Figure 2.8: Image showing ringing artifacts in an image deconvolved by Lucy Richardson
deconvolution

The ringing at the edges of the images can be mitigated to some extent by tapering
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the edges of the image, for example with the use of the edgetaper function in Mat-

lab. Tapering the edges in this way simulates the boundary conditions that would exist

if the image had been convolved artificially, as was described in Section 2.1.3. Unfortu-

nately tapering requires prior knowledge of the PSF, and can not be used in blind image

deconvolution.

2.1.6.2 Noise

Deconvolution techniques that use the Fourier transform also create problems with noise.

As previously discussed, the purpose of the Fourier transform in image deconvolution is

to reintroduce high frequency elements that have been smoothed out by convolution, by

transforming the image into the frequency domain. Unfortunately, through this process,

low amplitude noise that may have been present in the original image may be significantly

amplified by the Fourier transform.

2.2 Existing Techniques and Literature Survey

This section will discuss a selection of the various techniques used in image deconvolution,

from the methods available in Matlab to some more recent techniques from the literature.

The majority of these techniques use the Fourier transform, which, as discussed in Section

2.1.6, results in an image with artifacts, and struggles to cope with even minor levels

of noise in the input image. This section will also discuss methods in which the spatial

variance problem have been tackled, and parallel image deconvolution algorithms.

As was discussed previously, a major distinction between forms of deconvolution al-

gorithm is whether the algorithm is blind. Non-blind algorithms assume prior knowledge

of the PSF, and simply attempt to deconvolve the provided PSF from the input image.

Blind algorithms on the other hand prove to be a much greater challenge, as before de-

convolution can occur the PSF must be estimated. The methods provided in Matlab, as

will be discussed, are non-blind. However, the methods discussed from the literature are

primarily blind.

2.2.1 Matlab functions

Matlab provides four functions for performing image deconvolution in the Image Pro-

cessing Toolbox. These functions all provide spatially invariant deconvolution, though

they do allow for non-separable PSFs. None of these techniques provide truly blind image

deconvolution, though some make fewer assumptions about the PSF than others.

These methods in Matlab have all been tested using the exact image in Figure 2.4,

blurred with a Gaussian PSF of width 15, and with added noise. This is shown in Figure

2.9.

The first of the Matlab functions tested is deconvlucy [23]. This function uses

the Lucy Richardson method for deconvolution, which is a Bayesian approach that was
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Figure 2.9: Blurred and noisy image

Figure 2.10: Figure 2.9 restored with the Lucy Richardson deconvolution function available
in Matlab
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independently described by Richardson in 1972 [2], and Lucy in 1974 [3]. The result of

this algorithm on the blurred image in Figure 2.9 is shown in Figure 2.10. This algorithm

attempts to maximise the likelihood that the resulting image, when convolved with the

PSF, results in the blurred image. This method is non-blind, and requires full knowledge

of the PSF beforehand. The result of this restoration, while it does restore some clarity

to the edges of the fields and the windmill, exhibits both forms of artifacts discussed in

Section 2.1.6. Though the ringing around elements in the image is minor, it is noticeable

around the edge of the image, and the noise has become amplified and less defined than

in the blurred image.

(a) Wiener filter (b) Regularised filter

Figure 2.11: Figure 2.9 restored using the two filtering methods available in Matlab

The next two functions, deconvwnr [24] and deconvreg [25], use filters to attempt

to deconvolve the image, respectively Weiner and regularised filters. Both functions require

the exact PSF to be known, and also a value representing the amount of noise in the image,

and thus neither option is blind. Figure 2.11 shows the results of these functions. Both

implementations show a significant improvement in the amount of noise present when

compared to the degraded image, with very little ringing present. The image restored

with the Wiener filter is shown in Figure 2.11a. This image shows that the Wiener filter

restored the details of the image reasonably well. However, the regularised filter approach

in Figure 2.11b still shows a significant amount of blurring around the edges of features,

and many details are still unrecognisable.

The final function, deconvblind [26] provides a semi-blind deconvolution method,

in which aspects of the PSF, such as the degree, are assumed to be known. The algorithm

uses maximum likelihood to estimate a PSF, and deconvolve this PSF from the blurred

image. While the PSF can be estimated by the algorithm the function requires an initial

matrix, to act as a starting point for the algorithm. This matrix can either be an estimate

of the PSF, or a matrix of ones, in which case the algorithm will attempt to estimate the

PSF. Even if no estimate is given, providing the algorithm with an initial matrix in which
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Figure 2.12: Figure 2.9 restored with the blind deconvolution algorithm available in Mat-
lab

to store the PSF is enough to make this method non-blind, as this provides the function

with prior knowledge of the width of the PSF, which in most cases will not be known.

Figure 2.12 provides the results of this function. The result shows very high levels of noise

and relatively extreme levels of ringing. The details of the image are even less distinct

than in the blurred image.

2.2.2 Blind Image Deconvolution Algorithms

This section will give an overview of a variety of BID algorithms from the literature, with

a focus on four of main approaches to image deconvolution. Those being zero sheet sep-

aration, Bayesian approaches, machine learning approaches, and polynomial approaches.

2.2.2.1 Zero Sheet Separation

Zero sheet separation is a method of blind image deconvolution first proposed by Lane

and Bates in 1987 [7]. In this method a single image, or any signal with more than 1

dimension, can be deconvolved from multiple PSFs without any complementary images,

or prior knowledge of the PSF. This paper was significant at the time it was written, as it

provided evidence that blind image deconvolution was possible based on a single image.

This method relies on analytic properties of the Z-transform, which transforms signals

into the frequency domain. Zeros in the Z-transform of a component of the convolution,

that being a PSF when related to images, are usually continuous and lie on a 2K − 2

dimensional hyper surface, where K is the dimension of the aforementioned component.

These hyper-surfaces can be separated to calculate the components of the convolution.

Zero sheet separation makes several assumptions about the image, most prominently this

algorithm relies on there being no noise in the imaging system [27]. This is unlikely to be
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the case in most real world situations.

2.2.2.2 Bayesian Approaches

Bayesian approaches to image deconvolution take a probabilistic approach to computing

and deconvolving the PSF. While a Bayesian method was discussed previously, that being

the Lucy Richardson algorithm [2, 3], this technique was for non-blind deconvolution.

Blind image deconvolution with Bayesian methods can be performed as either a max-

imum likelihood (ML) or a maximum a posteriori (MAP) problem, in which the probab-

ility of the exact image given the PSF, or the PSF given the exact image are maximised

respectively [4].

Katsaggelos and Lay in their 1991 paper proposed a maximum likelihood approach

using an iterative expectation-maximisation algorithm to estimate the unknown PSF [5],

with no prior knowledge of the noise. Likas and Galatsanos in their 2004 paper pro-

posed a method using variations approximation, a generalisation of the aforementioned

expectation-maximisation algorithm [6]. This approach was found to be computationally

efficient, even for large images, while retaining all of the advantages of previous Bayesian

methods.

More recently the focus of research in the area of Bayesian BID has been on multi-

frame deconvolution, requiring multiple blurred images of the same subject, unlike the

single frame deconvolution considered in this thesis.

2.2.2.3 Machine Learning Approaches

Recently, much attention in the field of BID has focused on machine learning methods.

Machine learning involves the creation of models from sets of training data by using

algorithms and statistics. These models can then be used to infer properties about a

previously unseen situation, which can be used to solve problems [28]. In the case of

deconvolution, the machine learning methods can infer properties about the PSF of an

unseen image, based on sets of training data of previously seen images with known PSFs

[29].

Panchapakesan, Sheppard, Marcellin and Hunt presented a vector quantiser encoder

distortion method for estimating the PSF [8]. The method involved using codebooks

trained from example images to estimate the most likely PSF, that being the one that

provided the least encoder distortion, from a finite set of candidate PSFs. Nakagaki and

Katsaggelos take a similar approach in their 2003 paper [9].

More recently focus has been on neural networks, particularly convolutional neural

networks and deep neural networks, though these have primarily been non-blind methods

[10, 11]. Sun et al presented a blind method for deconvolving a spatially variant motion

blur [30]. This will be discussed further in Section 2.2.3.
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2.2.2.4 Polynomial Approaches

The primary focus of this thesis is on the method proposed by Winkler in his 2016 paper

[1], though this is not the only research into polynomial approaches. This section will detail

some of these methods, highlighting their strengths, weaknesses, and how they differ from

the method investigated in this thesis.

The method proposed by Winkler aims to provide blind image deconvolution for a

separable PSF without the Fourier transform. This method treats rows and columns of

the blurred image as polynomials, and the PSF as two GCDs, and thus the vertical and

horizontal components of a separable PSF can be found by treating its computation as

the computation of the GCD. Due to noise in the image the GCD cannot be computed,

and thus an AGCD must be computed instead. This method can be split into several

steps, firstly the degree of an AGCD in each dimension must be computed, representing

the height and width of the PSF. The computation of the degree essentially becomes a

rank estimation problem, which is computed using QR decomposition, and QR updates

computed in sequence. Once the degree has been computed the coefficients are calculated

using structured matrix methods. The resulting 1-dimensional PSFs are then deconvolved

from the blurred image using least squares problems. This method will be discussed in

detail in Chapter 4. An extension to this algorithm is discussed in [12], that considers the

computation of a non-separable PSF when two images convolved with the same blurring

function are available. This method is computationally expensive, with longer runtimes

than many other contemporary methods. It is this problem that this thesis seeks to

address.

Another method for polynomial deconvolution was presented by Li, Yang, and Zhi in

their 2010 paper [13], which concentrates on execution speed and generalisation. When

multiple blurred images with a shared common image are available, the GCD of the z-

transform of these images should be the exact image. The method proposed uses GCD

algorithms to compute the exact image and the blurring function. The authors claim to

have successfully recovered true images when the SNR is greater than or equal to 50dB.

Liang and Pillai presented a method of polynomial deconvolution for pairs of blurred

images with a common exact image and different PSFs [14, 15]. The method presented

used a Sylvester based AGCD algorithm, similar to that proposed by Winkler’s method.

Instead of using an AGCD algorithm to find the PSF however, the exact image is treated

as an AGCD of the two blurred images. This method uses the Fourier transformation to

deconvolve the image, and therefore will likely have issues with noise amplification and

other artifacts.

2.2.3 Solutions to the Spatial Variance Problem

As discussed previously in this chapter, many existing techniques for image deconvolution

consider only spatially invariant PSFs. Solving the spatial variance problem has been the

subject of a considerable amount of research. In this section some of these methods will
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be discussed. Spatial variance, as discussed in Section 2.1.5, refers to the PSF varying

as a function of the location of the pixel in the image. This is present in many forms of

real-world forms of blur, such as out of focus blurring.

The most common solution to the spatial variance problem covered in recent research

involves splitting the image into sections with a common PSF, then deconvolving these

sections of the image independently. One method, presented by Deshpande and Patnaik

[31] in 2014 involved splitting the image into square subimages in order to deconvolve a

spatially variant motion blur. Due to the use of traditional frequency domain techniques,

using the Fourier transform, the results of this deconvolution result in a high number of

the artifacts discussed in Section 2.1.6. This is particularly apparent around the edges of

the subimages, which feature significant ringing. Windowing was used in the computation

of individual images, aiming to prevent the ringing, then a low pass filter was applied

to attempt to remove the remaining artefacts. This algorithm relies on the assumption

that a PSF, while spatially variant, is spatially invariant in the in individual subimages.

This is not the case in a natural spatially variant motion blur, as the blur will vary across

individual pixels. While the results were claimed to be successful on real world images,

only results for artificially blurred images that meet this assumption were shown.

Zhang, Wang, Jiang, Wang, and Gao presented a method in their 2016 paper [32] of

deconvolving spatially variant defocus blur. In defocus blurring, as discussed in Section

2.1.5, the PSF varies as a function of distance from the camera. The method presented

in this paper uses edge data, and Kth nearest neighbour techniques to estimate areas of

the image likely to be a similar distance away from the camera. This results in irregular

shapes in which the pixels are likely to be a roughly uniform distance from the camera.

These shapes can be deconvolved under the assumption that they have the same PSF.

This implementation is likely to fall into difficulty with images with extreme perspective

changes, as this may have continuous areas that are the same colour with different levels

of blur, which could result in the edge data creating an area of the image with drastically

different levels of blurring.

Temerinac-Ott, Ronneberger, Nitschke, Driever and Burkhardt in their 2011 conference

paper [33] presented a different method for computing a spatially variant PSF for single

plane illumination microscopy. The method used was to capture images from multiple

angles of an object, then, by breaking each image into segments, and inspecting overlapping

segments of the image, to create a composite PSF. This was then then deconvolved these

spatially variant PSFs using the Lucy Richardson algorithm. While this implementation

is not suitable for all forms of imagery, it does provide insight into alternative methods

attempting to solve the spatial variance problem.

Sun, Cao, Xu and Ponce proposed a deep learning approach to solving the spatial

variance problem for smooth motion blurs [30]. Unlike other methods described in this

section the implementation here assumed motion smoothness, as opposed to the segmented

images where the segments have uniform PSFs discussed in the rest of this section. This

algorithm provided impressive results, avoiding some of the noise present in comparable
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algorithms.

2.2.4 Parallel Image Deconvolution

Image processing is a natural fit for large scale parallelisation such as that provided by

GPUs, as it often requires performing the same operation on a number of pixels simul-

taneously, or large scale matrix operations. While Chapter 5 will give an introduction to

GPU hardware and programming techniques, this section will give an overview of some of

the current implementations of deconvolution on GPUs, and other parallel systems.

As discussed throughout this chapter, the Fourier transform is prevalent in most meth-

ods for deconvolution, both blind and non-blind. The implementation of the Fourier trans-

form on a GPU is a well researched problem [34, 35, 36], with speedups provided by these

algorithms between 2 and 80 times faster than contemporary Fourier transform libraries.

Due to this, many of the methods discussed throughout this chapter can be accelerated.

Additionally, many of the machine learning implementations presented use GPUs and

other large scale parallelism in the training of their models [11]. In this section however,

focus will be on specific deconvolution implementations on GPUs.

Domanski, Valloton, and Wang in their 2009 conference paper [37], implemented a Lucy

Richardson deconvolution method on a GPU, using a GPU accelerated Fourier transform.

As was noted in Section 2.2.1 the Lucy Richardson method is non-blind. This implement-

ation achieved a speedup of 4.2-8.5 times faster than that of a CPU method using a well

optimised fast Fourier transform method.

Matson et al. in their 2009 paper [38] presented a parallel method for blind deconvolu-

tion of images of space objects through atmospheric distortion. While not implemented on

a GPU, this algorithm was designed for cluster computing, which relies on a large number

of computers linked together, where processes can be distributed to different CPUs within

the cluster. This was an multi-frame approach, meaning the algorithm used a series of

images to estimate an exact image, as opposed to attempting to deconvolve an individual

image as is investigated in this thesis. Execution time of this algorithm ranged from

around 1 second to several hundred seconds, dependent on the number of processors used,

and the size of the images, which was the main limiting factor in terms of execution time.

In 2011 Klosowski and Krishnan presented a method of non-blind image deconvolu-

tion on GPUs [39]. This was an accelerated implementation of the method presented

by Krishnan and Fergus in 2009 [40]. This method takes a regularisation approach using

hyper-Laplacian image priors, with an assumption that all of the properties of the blurring

function are known. Polynomial root finding in the Fourier domain is used to solve optim-

isation problems that arise through this approach. This method gained much attention

due to its relative efficiency for the results generated. Klowski and Krishnan tested the

original CPU implementation against their GPU implementation. The GPU used was an

NVIDIA GTX 260, which was tested against an Intel Xeon E5506. The results detailed in

their paper suggest deconvolution was accomplished over 27 times faster on the GPU than

the CPU, though it was noted that there were some performance limitations caused by
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the CUDA fast Fourier transform library that was used. While the size of the image that

could be processed was limited at the time of publication, due to the small amount of GPU

memory available in the GTX 260, this limitation would not be as severe on more modern

hardware, due to significantly increased memory availability. While this is a non-blind

method of deconvolution it is worth noting the acceleration gained on what is now dated

hardware. It is possible that this implementation could be used to compliment the PSF

estimation methods presented in this thesis.

Goto, Otake and Hurano in their 2017 paper [41] presented a method of GPU acceler-

ated BID algorithm for the deconvolution of motion blurs. Firstly a patch was selected,

that enabled the algorithm to process a smaller section of the image to attempt to find

the PSF. This patch was selected by finding areas with optimal edge data, found with

Laplacian and Sobel filters. The patch was used to estimate the PSF, which is then

deconvolved from the image using the Krishnan and Fergus implementation that was de-

scribed previously. This method was tested on an NVIDIA GTX Titan GPU, against an

Intel Xeon E5-2360 CPU. The implementation showed speedups of 2.58 times compared

to a GPU, with an image of resolution 1920 × 1080 taking 3.2 seconds to deconvolve. It

was noted that the deconvolution of the estimated PSF was 10 times faster than the CPU

implementation.

While the work discussed in this section provided parallel approaches to various dif-

ferent algorithms it is noteworthy that at the time of writing no existing research could

be found on the parallelisation of polynomial methods of blind image deconvolution, on

which this thesis focuses.

2.3 Conclusion

In this chapter, a brief overview was given to understand the problem of image deconvolu-

tion, how it can be modelled computationally, and some of the approaches that have been

harnessed to attempt to solve it. The approach of Winkler was briefly discussed in Section

2.2.2.4. It is this approach that the advancements presented in this thesis will be based

on, and it will be discussed throughout the rest of this thesis. Before this can happen,

however, it is necessary to get a much more in depth understanding of this algorithm, and

profile it to see where improvements can be made. This shall be the scope of the next

chapter.



Chapter 3

Greatest Common Divisors and

Approximate Greatest Common

Divisors

Chapter 2 provided an overview of the literature surrounding BID algorithms. One of

the methods of performing BID discussed in this chapter was to treat the pixel values of

the image as coefficients of a polynomial, and the blurring function as the GCD of these

polynomials. It was noted that the problem of finding the GCD of these polynomials

is ill-posed, due to noise in the image causing the polynomials to be coprime. In this

situation an AGCD must be computed instead. The method of BID investigated in this

thesis, proposed by Winkler, makes use of AGCDs, and thus this Chapter will discuss

GCDs and AGCDs in detail.

Section 3.1 will discuss the mathematics involved in the computation GCDs and

AGCDs, including two forms of resultant matrix that can be used for this purpose. Section

3.2 will provide a survey of the literature surrounding methods used to compute AGCDs.

Section 3.3 will give a detailed overview of QR decomposition and QR updates, computa-

tions which are central to the AGCD method used in Winkler’s BID algorithm. Finally,

Section 3.4 will provide a survey of parallel QR implementations from the literature.

3.1 The Mathematics of GCDs and AGCDs

The GCD of two or more polynomials is a polynomial of the greatest degree possible that

is a factor, and can be deconvolved from, all of the source polynomials. The computation

of polynomial GCDs has been the subject of a significant amount of research. However,

as was discussed previously, when noise is present in images, or other signals in which a

GCD must be found, the exact GCD cannot be computed. Instead, an AGCD must be

computed.

Consider the coprime univariate polynomials u(x) and v(x). When both of these

polynomials are convolved with a third polynomial d(x), this will result in the polynomials

25
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f(x) and g(x), this is the same as polynomial multiplication.

f(x) = u(x)d(x),

g(x) = v(x)d(x).

The GCD of f(x) and g(x) in this case would be d(x).

The computation of the GCD of two or more polynomials has applications in multiple

fields. While in this thesis the main focus is on their use in image deconvolution [1, 42, 14,

15, 13], some further examples include control theory [43, 16] and polynomial root finding

[17, 18, 19].

In the exact case discussed above, the coefficients of f(x) and g(x) must be free of any

errors. Unfortunately, many practical problems cannot be solved by finding the GCD, as

noise present in the convolved signals, or in the convolution process itself, would result in

a high likelihood of the polynomials f(x) and g(x) being coprime. Thus the problem of

computing the GCD in these cases is ill posed.

While it is not possible to compute the GCD in the inexact case, it is still possible to

deconvolve these polynomials by finding an AGCD instead. An AGCD takes the form of

a polynomial that, while the degree remains constant, the coefficients can be perturbed

within a specified threshold and can be deconvolved from the inexact polynomials f(x) and

g(x). This deconvolution will result in polynomials roughly equal to the exact polynomials

u(x) and v(x).

When applied to the convolution of an image with a separable PSF, such as in the BID

algorithm proposed by Winkler, two rows, or two columns, are selected at random from

the original image. As was discussed in Chapter 2, convolution of an image is performed

in the same way as convolution of polynomials, with the pixel values of the selected rows

and columns considered to be the coefficients of polynomials.

For the purposes of image deconvolution, it is always the case that the degrees of the

two polynomials, m and n, are equal. However, when applying this AGCD algorithm in

situations other than image deconvolution, this will not always be true. For the purpose

of generality, this section will consider the possibility that they are not equal, though it

will be assumed that m ≥ n.

3.1.1 The Sylvester Resultant Matrix

The Sylvester matrix is frequently used for the computation of an AGCD of two univariate

polynomials. In this section the properties of the Sylvester matrix that make it useful for

this computation will be explained.

The Sylvester matrix S(f, g) is formed from two Toeplitz matrices T (f) and T (g),

where f and g are the coefficients of the matrices f(x) and g(x) respectively.
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f = [f0, f1, . . . , fm−1, fm] , g = [g0, g1, . . . , gn−1, gn] .

Toeplitz matrices T (f) and T (g) are constructed for these vectors.

T (f) =



f0

f1
. . .

...
. . . f0

fm−1
... f1

fm
. . .

...
. . . fm−1

fm


, T (g) =



g0

g1
. . .

...
. . . g0

gn−1
... g1

gn
. . .

...
. . . gn−1

gn


.

These Toeplitz matrices are then concatenated to compute the Sylvester matrix,

S(f, g) = [T (f), T (g)],

=



f0 g0

f1
. . . g1

. . .
...

. . . f0
...

. . . g0

fm−1
... f1 gn−1

... g1

fm
. . .

... gn
. . .

...
. . . fm−1

. . . gn−1

fm gn.


.

The main property of S(f, g) that is of interest for GCD degree computation is the

rank. When the polynomials f(x) and g(x) have a GCD of degree p the rank of this matrix

will be equal to m+n−p, and thus p can be easily computed from the rank loss. However,

in the presence of noise, f(x) and g(x) become coprime, and S(f, g) will be of full rank. In

this case further analysis will be required in order to approximate the rank of S(f, g). The

singular value decomposition (SVD) and the QR decomposition are frequently used for this

purpose. The QR decomposition of the Sylvester matrix constructed from polynomials

with an exact GCD results in a matrix in which the last non-zero row will contain the

coefficients of the GCD.

Due to these properties the computation of an AGCD can be treated as a problem of

computing a low rank estimate of the Sylvester matrix, in which the coefficients of the

AGCD appear on the last non-zero row of its QR decomposition.
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3.1.2 The Bézout Resultant Matrix

An alternative to the Sylvester matrix for GCD computations is the Bézout matrix. The

main advantage of the Bézout matrix over the Sylvester matrix is that it is significantly

smaller, and thus less expensive to process. While the Sylvester matrix is of dimension

(m + n)× (m + n), the Bézout matrix is of dimension max(m,n)×max(m,n), where m

and n are the degrees of the polynomials used to construct each matrix. This smaller

matrix means that processing the Bézout matrix involves significantly fewer operations

than the Sylvester matrix. Additionally the Bézout matrix is symmetric. This means that

complexity is reduced even further by processing only a half of the entries of the matrix.

The Bézout matrix B(f, g) is constructed from the polynomials f(x) and g(x), where

the vectors f and g are the coefficients of these polynomials respectively.

f = [f0, f1, . . . , fm−1, fm] , g = [g0, g1, . . . , gn−1, gn] .

The entries bij of the Bézout matrix can be computed with

bij =

mij∑
k=0

fi+k+1gj−k − fj−kgi+k+1, (3.1)

where mij = min(i,max(m,n)− 1− j).
As discussed the Bézout matrix is both smaller than the Sylvester matrix and sym-

metric. This can lead to significantly faster computation of the GCD. Adding to this the

Sylvester matrix often requires preprocessing of the vectors, which will be described in

Section 4.2.1.2. The Bézout matrix does not require this step due to how the coefficients

of the matrices are combined.

While the processing of a Bézout matrix can be fast, this comes at the cost of robustness

of algorithms using it, particularly when considering inexact polynomials. When an entry

bij is computed using figj − fjgi, where figj ≈ fjgi, then issues may arise due to round

off and precision errors, leading to bij appearing to equal zero when this is not necessarily

the case.

Similarly to the Sylvester matrix, the rank of the Bézout matrix can be used to compute

the degree of an exact GCD, and the last non-zero row of the QR decomposition of this

matrix will give the coefficients of the GCD.

Example

Consider for example the polynomials f(x) and g(x),

f(x) = 4 + 2x+ 7x2,

g(x) = 3 + 6x+ 4x2.
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The vectors f and g represent the coefficients of these polynomials,

f =
[
4 2 7

]
,

g =
[
3 6 4

]
.

The structure of a 3 × 3 Bézout matrix, constructed using Equation 3.1, is shown

below.

B(f, g) =



f1g0 − f0g1 f2g0 − f0g2 f3g0 − f0g3(
f1g1 − f1g1+
f2g0 − f0g2

) (
f2g1 − f1g2+
f3g0 − f0g3

) (
f3g1 − f1g3+
f4g0 − f0g4

)
f1g2 − f2g1+f2g1 − f1g2+
f3g0 − g0f3


f2g2 − f2g2+f3g1 − f1g3+
f4g0 − g0f4


f3g2 − f2g3+f4g1 − f1g4+
f5g0 − g0f5




.

Several of the expressions in this matrix can be cancelled out to simplify computation.

Every expression fjgi − figj where i = j will equal zero so can be removed, for example

in b0,1. Every expression where i or j is greater than m or n will result in zero, so

can also be removed, for example in b1,2. Finally, as is seen only in b0,2, the expression

f1g2 − f2g1 + f2g1 − f1g2 will result in zero, so this can also be removed. This results in

the simpler structure shown below.

B(f, g) =

f1g0 − f0g1 f2g0 − f0g2 0

f2g0 − f0g2 f2g1 − f1g2 0

0 0 0

 .
Constructing this matrix using f and g results in the matrix

B(f, g) =

2× 3− 4× 6 7× 3− 4× 4 0

7× 3− 4× 4 7× 6− 2× 4 0

0 0 0

 ,

=

−18 5 0

5 34 0

0 0 0

 .
3.1.3 QR and Singular Value Decomposition

The SVD involves the decomposition of an m × n matrix A into three factors1. U , an

m × m orthogonal matrix, Σ, an m × n rectangular matrix in which the only non-zero

1For the purposes of this section m and n are not defined by the degrees of polynomials. As should be
obvious from the context, m and n here refer to the dimensions of the matrix being decomposed.
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entries are non-negative and lie on the principal diagonal, and V , an n × n orthogonal

matrix matrix.

A = UΣV.

For the purposes of finding the degree of a GCD the matrix Σ is of interest. The

diagonal values of this matrix are known as the singular values of A. A notable feature of

this matrix is that the rank of Σ is equal to the rank of the original matrix A.

Σ =



σ1

σ2
. . .

σm−1

σm


.

As noted the only non-zero values of this matrix are along the diagonal. Consider a

Sylvester matrix, constructed using the method above using polynomials with an exact

GCD of degree p. When this matrix is split into its factors using SVD, the last p entries

on the diagonal of Σ will equal zero. Thus, the degree of the GCD is equal to m minus

the rank of Σ.

When an AGCD is required, rather than a GCD, these entries will no longer be equal

to zero, due to the polynomials being coprime. Thus Σ will be of full rank. While the last

p singular values will now be non-zero, they will, with high likelihood, be smaller than the

other singular values. Thus the rank estimation of Σ, and therefore A, can be computed

by the use of thresholding to detect the smaller singular values.

While the SVD is frequently used for GCD computations, it encounters problems

in some situations. Particularly where rounding errors may indicate that matrices are

singular, when theoretically they should not be [44]. It also requires that a threshold is

set with which to detect the small values of Σ.

The QR decomposition can be used for this function instead of the SVD [45, 21]. This

form of decomposition was shown to be more resistant to the round off problems of the

SVD, and the method proposed by Winkler in [21] does not require a threshold to be

specified. The complexity for both of these decompositions performed on square matrices

is O(n3).

The QR decomposition splits the original m × n matrix A into two factors. Those

factors being an m×m orthogonal factor Q and an m× n upper triangular factor R.

A = QR.

Similarly to the SVD, only the upper triangular factor R is of interest when computing

a degree. As was the case with Σ in the SVD, the rank of R is equal to the rank of A, as

the entries of the last p rows will equal zero.
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R =



r1,1 r1,2 · · · r1,n−1 r1,n

r2,2 · · · r2,n−1 r2,n
. . .

...
...

rm−1,n−1 rm−1,n

rm,n


.

Consider the matrix R that was computed from the Sylvester matrix constructed

using polynomials of degrees m and n, with a GCD of degree p. In this case the matrix

is square, as it is assumed that m = n. The entries on the final p rows of the upper

triangular section of this matrix will be equal to zero, just like the SVD. The degree p of

the GCD will therefore be equal to n minus the rank of R. However, just like with the

SVD, when the polynomials are coprime these entries will no longer equal zero, and the

matrix will be of full rank. The algorithm proposed by Winkler demonstrates a method

to compute the rank of the Sylvester matrix without a threshold needing to be specified.

The coefficients of the GCD of the polynomials f(x) and g(x) can be found on the

last non-zero row of the upper triangular factor of the Sylvester matrix S(f, g) [43, 12].

Though when the polynomials are coprime, and an AGCD is required to be computed,

there is more complexity to the coefficient computation, as a low rank estimate of the

Sylvester matrix must be computed.

The QR decomposition, as the decomposition that is of primary interest in this thesis,

will be explored further in Section 3.3.

3.1.4 Sylvester Subresultant Matrices

The method proposed by Winkler uses subresultant matrices constructed from the original

Sylvester matrix S1. While the exact use for these subresultant matrices will be discussed

in Section 4.1, this section will define the subresultant matrices, and discuss a method

with which to efficiently compute the QR decomposition of all subresultant matrices.

Each subresultant matrix S2...n is computed from Sk−1, with S1 being the original

Sylvester matrix S(f, g). Take for example the matrix S1, constructed using the method

shown in Section 3.1.1, using polynomials of degree 4.

S1 =



f0 g0

f1 f0 g1 g0

f2 f1 f0 g2 g1 g0

f3 f2 f1 f0 g3 g2 g1 g0

f4 f3 f2 f1 g4 g3 g2 g1

f4 f3 f2 g4 g3 g2

f4 f3 g4 g3

f4 g4


.

Using this matrix, the first subresultant matrix, S2, can be computed. This is per-
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formed by removing two columns and one row from S1. The last column of the left section,

consisting of the Toeplitz matrix T (f), and the last column of the right section, consisting

of the Toeplitz matrix T (g), are removed. Additionally, the last row of the matrix will be

removed, which after the column deletions will have no non-zero entries.

S2 =



f0 g0

f1 f0 g1 g0

f2 f1 f0 g2 g1 g0

f3 f2 f1 g3 g2 g1

f4 f3 f2 g4 g3 g2

f4 f3 g4 g3

f4 g4


.

By removing the last columns from each section of S2, as well as the last row, the

second subresultant matrix S3 is found. Continuing this pattern will compute the rest of

the subresultant matrices.

S3 =



f0 g0

f1 f0 g1 g0

f2 f1 g2 g1

f3 f2 g3 g2

f4 f3 g4 g3

f4 g4


, S4 =


f0 g0

f1 g1

f2 g2

f3 g3

f4 g4

 .

When the polynomials that were used to construct the Sylvester matrix have a GCD,

the index k of the first rank deficient subresultant matrix Sk is equal to the degree of the

GCD. When an AGCD must be computed instead, the subresultant matrices, much like

the Sylvester matrix, will be of full rank. Finding either the SVD or QR decomposition

of all of the subresultant matrices allows for tests to be run to compute the matrices that

are closer to being rank deficient.

Winkler investigated both the SVD and QR decomposition of the subresultant matrices

for the estimation of the rank. It would be possible to compute the QR decomposition, or

the SVD, of every subresultant matrix in order to compute the rank. However, this would

be computationally expensive, and result in a large quantity of redundant computation.

Another advantage of the QR decomposition is the ability to perform QR updates

when columns, or rows, are added or removed from S1. QR updates can be used to

amend the original upper triangular factor R1, to compute the matrices R2...n without full

recomputation of the QR decomposition. By performing QR updates, and computing the

factors of Sk from Sk−1, the complexity of the algorithm can be reduced from O(n3) to

O(n2). While SVD update algorithms do exist [46], these are less ubiquitous, and often

have problems with numerical stability. Various forms of the QR decomposition, and QR

updates, will be discussed further in Chapter 3.
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3.2 Literature Survey of AGCD Computation Methods

While this thesis will focus on the AGCD algorithm presented by Winkler, this is not the

only method for performing AGCD computation. This section will give an overview of

methods from the literature for computing AGCDs, which are sometimes referred to in

the literature as ε-GCDs.

3.2.1 Euclid’s algorithm

In 1985 Schönhage presented a method with which to compute a so called quasi-GCD of

polynomials [47]. The idea presented of a quasi-GCD is related, but differs to the concept

of an AGCD discussed in this thesis. In a situation where a quasi-GCD can be computed

the coefficients of the input polynomials are exact, but only known to a limited precision.

However, in an AGCD the exact values of the coefficients of the input polynomials may

have been perturbed by noise. This method used an adaptation of Euclid’s algorithm for

the computation of GCDs. Euclud’s algorithm was also used in Noda and Sasiki’s method

[48], and Hribernig and Stetter’s method [49] which found clusters of roots of polynomials.

While these algorithms were significant at the time of publication, they have been

largely superseded by structured matrix methods, and will not be described in detail in

this thesis.

3.2.2 Matrix Methods

More recently focus has been on matrix methods for the computation of AGCDs. Two

matrices are of particular interest when considering this computation: the Sylvester mat-

rix, described in Section 3.1.1, and the Bézout matrix, described in Section 3.1.2.

Corless, Gianni, Trager, and Watt proposed a method of using the SVD of a Sylvester

resultant matrix to compute an AGCD [50]. The Sylvester matrix is constructed in the

same way as was described in Section 3.1.1, from polynomials f(x) of degree m and g(x)

of degree n. The singular values σ1...m+n are computed, and the maximum value of k is

found such that σk is above a specified error threshold and σk+1 is below this threshold.

This value of k can be used to find the degree of an AGCD. Corless et al. suggested four

different methods with which the coefficients of an AGCD could be computed after the

degree is computed. It is important to note that this algorithm requires the error present

in the input polynomials to be known. If this is not the case Corless et al. suggest some

methods in which an AGCD can still be computed, or negative results be returned.

Corless, Watt, and Zhi [51] proposed a QR method using structured linear total least

norm (STLN) [52]. This method was shown to successfully compute AGCDs from input

polynomials with degrees of up to 1020. This method, similar to that presented in [50],

requires a tolerance level to be input alongside the polynomials such that an AGCD can be

computed within that tolerance. This means that the method requires prior knowledge of

the amount of error in the input polynomials. The algorithm starts by preprocessing the

polynomials, scaling them by their 2-norms and ensuring the leading coefficient is positive.
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The Sylvester matrix S is then formed with the two normalised polynomials f(x) and g(x),

and it is split into the orthogonal and upper triangular factors through QR decomposition.

Submatrices Rk of dimension (k+ 1)× (k+ 1) are extracted from the bottom right of the

matrix for k = 0, . . . ,m+ n− 1. Each of these submatrices are tested by computing their

norms, and finding the value of k such that the norm of Rk is greater than or equal to the

specified error threshold, and the norm of Rk−1 is less than the threshold. The top row of

Rk will give the coefficients of an AGCD. The polynomials f(x) and g(x) are divided by

the computed AGCD, and are tested to ensure they are coprime.

Zarowski, Ma, and Fairman also presented a QR method [53], which proposed manipu-

lation of the Sylvester matrix to form a smaller problem size, to achieve a faster algorithm.

The manipulation of the matrix resulted in an n × n upper triangular matrix when con-

sidering polynomials of equal length, while the method of using the QR decomposition

of the full Sylvester matrix requires processing a 2n × 2n matrix. While the algorithm

proposed had similar complexity to that of the SVD algorithm presented by Corless, it was

discussed that the constant factor in the time complexity of QR decomposition is lower

than that of the SVD, and by decreasing the problem size the complexity of the algorithm

is also reduced. This method would be difficult to adapt to the processing of subresult-

ant matrices, as are discussed in this thesis, as the manipulation of the Sylvester matrix

makes it computationally expensive to construct subresultant matrices in the smaller form

proposed in this paper.

Bini and Boito proposed another method using Gaussian elimination on Sylvester and

Bézout matrices, considering the displacement structure properties of these matrices [54].

The method involved transforming the Sylvester or Bézout matrix into a Cauchy-like

matrix, and using Gaussian elimination on this to estimate the coefficients of a divisor of

degree k, where k is arbitrarily decided. Optimisation is used to attempt to minimise the

error of this divisor. If a divisor is found within specified bounds a degree of k+1 is tested,

and this step is repeated until a divisor cannot be computed within the specified bounds.

The last divisor found will be the actual result of an AGCD. If the first value of k does not

return a divisor within the error limits then the process is repeated for k−1 until a divisor

is found. This paper presented results for polynomial degrees of up to 500, and provided

examples in which this algorithm could resolve AGCDs when the QR algorithm proposed

by Corless et al. failed due to incorrect estimation of the degree. It should be noted that

this implementation still requires a threshold to be set based on the noise in the inputs

for an AGCD, and the repeated process of computation of divisors and optimisation is

particularly expensive.

Li, Yang, and Zhi proposed a method of computing an AGCD by finding a low rank

estimate of a Sylvester matrix by using the Schur algorithm and STLN [13]. While not

naming them as such this method also used subresultant matrices, which shall be used

in this thesis, and are described in Section 3.1.4. This method uses STLN to attempt to

compute a divisor within a specified threshold for each potential degree k, and iterating

through possible values of k until an AGCD is reached that satisfies the stated tolerance.
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This research focused on the speed of execution, and the proposed algorithm achieved

quadratic complexity.

Zeng proposed a method of computing an AGCD using an iterative algorithm using

QR updates [45]. This method uses Sylvester subresultant matrices, as was described in

Section 3.1.4. The algorithm iterates over subresultant matrices, starting at the original

subresultant matrix, and computing the QR decomposition of each in sequence. For each

subresultant matrix a divisor is attempted to be computed, moving over the potential

degree values until a AGCD is computed that is below the specified threshold. The results

shown in this paper demonstrated that this algorithm is able to find AGCDs in polynomials

of up to 2000, suggesting a significant increase in the reliability of the computation of an

AGCD from the use of subresultant matrices.

Winkler and Allan proposed using the QR decomposition of Sylvester subresultant

matrices using STLN to solve the optimisation problem to find an AGCD [55]. This

method first computes the degree, through QR decomposition of Sylvester subresultant

matrices to compute the rank loss, and then uses STLN to compute a low rank estimate

of the Sylvester matrix to compute the coefficients. Winkler and Hasan extended this

research with the use of SNTLN [20], as opposed to STLN that had been used previously

[21], to compute a low rank estimation of the Sylvester matrix and thus compute an

AGCD. This was taken further by making the SNTLN method more robust in [56]. The

work presented by Winkler et al. differs to that proposed previously. These methods

separate out the degree computation from the computation of the coefficients, similarly to

the work presented by Corless et al., but they also consider subresultant matrices, which

have been shown to compute AGCDs more effectively than reliance on a single Sylvester

or Bézout matrix. This work will be explained in detail in Section 4.1.

While processing subresultant matrices was shown to provide more robust algorithms,

the process of analysing multiple large matrices, as is required by such an algorithm, is

computationally expensive. While the research presented by Winkler et al. and Zeng

attempted to solve this by using QR update algorithms, the computational expense is an

issue that still must be addressed.

3.3 The QR Decomposition and QR Updates

QR decomposition, as was discussed in Section 3.1, is the process through which a matrix

A is split into its factors, an orthogonal matrix Q and an upper triangular matrix R.

A = QR.

This decomposition is central to the computation of an AGCD in several of the al-

gorithms discussed in Section 3.2, and is central to the algorithm investigated in this

thesis. This section will therefore give an overview of this decomposition.

When a column or row is deleted from, or added to, the original matrix A, the Q
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and R matrices can be updated to reflect this change. This is significantly more efficient

than recomputation of the full decomposition, and gives the QR decomposition significant

advantages when compared to the SVD. It should be noted that the complexity of a QR

update is quadratic, and generally considered efficient. However, the scale of the matrices

that are required to be processed for polynomials of high degree can make this process

computationally expensive.

3.3.1 Full Decomposition

QR decomposition is the process through which a matrix A is split into its factors, Q, an

orthogonal matrix, and R, an upper triangular matrix. This section will discuss the three

main methods through which QR factorisation can be computed.

3.3.1.1 Givens Rotations

Givens rotations are the simplest method of computing the QR decomposition. In this

method Givens rotations are used to introduce a single 0 at a time to the original matrix

A to result in the upper triangular component R [57].

Consider a 5x5 matrix A:

A =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

 .

The Givens rotation begins at the bottom left corner of A. Firstly a Givens matrix G

is calculated from the values a51 and a41. G is constructed from the values γ and σ, which

are calculated with the equations below.

τ =
a51
a41

, γ =
1√

1 + τ2
, σ = γτ.

The Givens matrix G, with elements gi,j , where i and j are the row and column indices

respectively, can now be constructed. Starting with an identity matrix, the dimensions of

which are equal to that of A, the values for γ and σ are substituted into this matrix in

positions related to the indices of the rows in A on which the rotation is taking place. In

the matrix G, gxx and gyy will equal γ, gxy will equal σ and gyx will equal −σ, where x is

equal to the index of the first row being considered, in this case 4, and y is equal to the

index of the second row, in this case 5.

Thus the full rotation matrix for the first step will be
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G1 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 γ σ

0 0 0 −σ γ

 .

The matrix product of G1 and A will give the first step of computing R. This in

progress matrix will be known here as R̃1.

R1 = G1A.

As only the last two rows of the Givens matrix differ from the identity matrix, only

the last two rows of R̃1 will have changed from A in the matrix product of G1 and A. The

entry on the bottom column of the last row of R̃1 will equal zero.

As the remainder of the Givens matrix has the same properties as the identity matrix,

only two rows of A will actually be affected by the product of it and G1. Due to this, a more

compact form of the Givens matrix can be used, and applied just to the necessary rows of

the matrix. The result of the matrix product with the compact matrix does not differ to

that in the matrix product with the full matrix. It is, however, useful computationally, as

the full matrix product is not required to be computed. The compact form of this matrix

is shown below.

G1 =

[
γ σ

−σ γ

]
.

By computing a matrix product of this compact form and the submatrix of A consisting

only of rows 4 and 5, the result is a submatrix of R̃1, the first step in computing R. This

submatrix can be substituted into rows 4 and 5 of A to give R̃1.

The further rotations will be performed sequentially, moving up the rows of R̃i. The

second rotation will be performed using the third and fourth rows of R̃1 to compute R̃2.

This continues with the second and third rows of R̃2 to compute R̃3, and finally the first

and second rows of R̃3 to give R̃4. This will leave the entry on the first row as the only

non-zero value of the first column.

Once the first column has only zeros below the principal diagonal, the process is then

repeated for the second column. Progressively introducing zeros up this column until all

entries below the principal diagonal are zero. This process is repeated for all columns

of R̃i, where i is the index of the iteration. In each case, starting at the last row, and

progressively performing rotations to introduce zeros in each column. The order of these

operations is shown below, with • representing non-zero values in R, and the values below

the diagonal representing the iteration in which a zero was introduced through Givens

rotation into that position.
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
• • • • •
4 • • • •
3 7 • • •
2 6 9 • •
1 5 8 10 •


Once this process has been completed for all columns in R̃i, the result will be the upper

triangular matrix R.

The matrix Q can be computed by successively calculating the matrix product of the

transpose of the Givens matrices. This can be done at the time each Givens matrix is

computed, but is sometimes simply performed after R has been fully computed. The

equation for this is shown below.

Q =

Tn−1∏
i=0

GT
i ,

where n is the number of rows in the original matrix A, and Tn−1 is the (n − 1)th

triangular number, which is computed with

Tn =
(n− 1)(n− 2)

2
.

Example

For this example, a random 3 × 3 matrix was generated in Matlab. The full version of

each Givens matrix will be shown here for clarity and mathematical completeness.

A =

0.8147 0.9143 0.2785

0.9058 0.6324 0.5469

0.1270 0.0975 0.5975

 .
The initial step in the first rotation is to calculate σ and γ from the first entries of the

second and third rows.

τ =
a31
a21

=
0.1270

0.9058
= 0.1402,

γ =
1√

1 + τ2
=

1√
1 + 0.14022

= 0.9903,

σ = γτ = 0.9903× 0.1402 = 0.1388.

Now the Givens matrix can be constructed.
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G1 =

1 0 0

0 γ σ

0 −σ γ

 ,

=

1 0 0

0 0.9903 0.1388

0 −0.1388 0.9903

 .
This rotation can then be applied to the original matrix to give R̃1.

R̃1 =

1 0 0

0 0.9903 0.1388

0 −0.1388 0.9903


0.8147 0.9143 0.2785

0.9058 0.6324 0.5469

0.1270 0.0975 0.5975

 ,

=

0.8147 0.9143 0.2785

0.9147 0.6398 0.6745

0 0.0088 0.8723

 .
The second Givens matrix will be constructed from the first and second rows, using

entries from the first column.

τ =
r̂21
r̂11

=
0.9147

0.8147
= 1.1227,

γ =
1√

1 + τ2
=

1√
1 + 0.12272

= 0.6651,

σ = γτ = 0.6651× 1.1227 = 0.7467.

G2 =

 0.6651 0.7467 0

−0.7467 0.6651 0

0 0 1

 .
This rotation is applied to R̃1 to give R̃2.

R̃2 =

 0.6651 0.7467 0

−0.7467 0.6651 0

0 0 1


0.8147 0.9143 0.2785

0.9147 0.6398 0.6745

0 0.0088 0.8723

 ,

=

1.2248 1.0852 0.6889

0 −0.2565 0.2407

0 0.0088 0.8723

 .
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As there are now no non-zero values below the principal diagonal of R in the first

column, work must begin on the second column. This starts with the construction of the

Givens matrix.

τ =
r̂32
r̂22

=
0.0088

−0.2565
= −0.0343,

γ =
1√

1 + τ2
=

1√
1 + (−0.0343)2

= 0.9994,

σ = γτ = −0.0343× 0.9994 = −0.0343.

G3 =

1 0 0

0 0.9994 −0.0343

0 0.0343 0.9994

 .
Applying this rotation to R̃2 provides the final form of R.

R =

1 0 0

0 0.9994 −0.0343

0 0.0343 0.9994


1.2248 1.0852 0.6889

0 −0.2565 0.2407

0 0.0088 0.8723

 ,

=

1.2248 1.0852 0.6889

0 −0.2567 0.2106

0 0 0.8800

 .
All entries below the principal diagonal of R are now equal to zero, and all of the Givens

matrices have been computed. The orthogonal matrix Q can therefore be computed by

sequentially calculating the matrix product of the transpose of each Givens matrix.

Q = (GT
1G

T
2 )GT

3 =

0.6651 −0.7463 −0.0256

0.7395 0.6631 −0.1162

0.1037 0.0583 0.9929

 .
3.3.1.2 Householder Reflections

Householder reflections, also called Householder transformations, are a method designed

to reduce the number of operations required to compute the QR decomposition when

compared to Givens rotations. This is accomplished by introducing zeros to entire columns

of the upper triangular matrix R per matrix product computation [58].

Considering the same matrix A from Section 3.3.1.1



Chapter 3. Greatest Common Divisors and Approximate Greatest Common Divisors 41

A =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

 .

Each reflection is calculated from its respective column from A, using the entries from

the principal diagonal to the last row in every column. This column vector shall be called

ci, where i is the index of the column being processed. A Householder matrix Hi, is

constructed by first taking the Euclidean norm of this column. This is added to the first

value of ci to compute the vector vi,

vi =


ci1 + ‖ci‖2

ci2
...

cin

 .
The vector vi is then used to create a Householder transformation by calculating

Hi = I − cvivTi ,

where c = 2/vTi vi and I is the identity matrix with the same dimensions as A.

The product of the Householder matrix and the original matrix A is computed, which

gives the first stage of the computation of R, with all the necessary zeros introduced to the

first column. The state of this matrix after the first transformation has been completed

will be referred to here as R̃1. Once this computation has been completed a new vector

v2 can be computed, using entries from the second column, below the principle diagonal,

of R̃1. This is used to construct a Householder matrix H2, and the product of this with

R̃1 gives the matrix R̃2. Continuing in this pattern for n− 1 reflections will compute the

final upper triangular matrix R.

The product of the transpose of successive Householder matrices Hi will give the final

result for Q, similar to the method used with Givens rotations.

Q =
n−1∏
i=0

HT
i .

Householder reflections provide for a significantly more efficient computation of the

full QR decomposition than Givens rotations, while maintaining the numerical stability.

Givens rotations are approximately twice as expensive as Householder reflections [59].

Example

This example shall use the same matrix A as used in the Givens rotation example.
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A =

0.8147 0.9143 0.2785

0.9058 0.6324 0.5469

0.1270 0.0975 0.5975

 .
The first transformation shall be performed on the first column of A which will here

be referred to as a1.

a1 =

0.8147

0.9058

0.1270

 , ‖a1‖2 = 1.2249.

v1 =

0.8147 + 1.2249

0.9058

0.1270

 =

2.0396

0.9058

0.1270

 .
The Householder transformation will be calculated from this vector.

c =
2

vT1 v1
= 0.4003,

H1 = I − cv1vT1 ,

=

1 0 0

0 1 0

0 0 1

− 0.4003


2.0396

0.9058

0.1270

[2.0396 0.9058 0.1270
] ,

=

−0.6651 −0.7395 −0.1037

−0.7395 0.6716 −0.0460

−0.1037 −0.0460 0.9935

 .
Applying this to the original matrix gives the first matrix in the computation of R,

here known as R̃1

R̃1 =

−0.6651 −0.7395 −0.1037

−0.7395 0.6716 −0.0460

−0.1037 −0.0460 0.9935


0.8147 0.9143 0.2785

0.9058 0.6324 0.5469

0.1270 0.0975 0.5975

 ,

=

−1.2249 −1.0853 −0.6889

0 −0.2552 0.1173

0 −0.0269 0.8973

 .
The process is now repeated for the second column from the principal diagonal down

to the last row.
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a2 =

[
−0.2552

−0.0269

]
, ‖a2‖2 = 0.2566.

To preserve the 3× 3 structure of the upper triangular matrix, zero can be prepended

to the start of v2.

v2 =

 0

−0.2552 + 0.5566

−0.0269

 =

 0

0.0014

−0.0269

 ,
c =

2

vT2 v2
= 2757.4,

H2 = I − cv1vT1 ,

=

1 0 0

0 1 0

0 0 1

− 2757.4


 0

0.0014

−0.0269

[0 0.0014 −0.0269
] ,

=

1 0 0

0 0.9945 0.1048

0 0.1048 −0.9945

 .
The product of H2 and R̃1 gives the final value for R.

R =

1 0 0

0 0.9945 0.1048

0 0.1048 −0.9945


−1.2249 −1.0853 −0.6889

0 −0.2552 0.1173

0 −0.0269 0.8973

 ,

=

−1.2249 −1.0853 −0.6889

0 −0.2566 0.2107

0 0 −0.8801

 .
To compute Q, the formula described previously is used. Starting with the transpose

of the first Householder matrix H1, the progressive product of the transpose of each

Householder matrix Hi computed. Once the product of the final matrix Hn−1 is computed

the resulting orthogonal matrix Q will have been computed.

In this simple example only two transformations were required, and so the matrix Q

can be computed by
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Q = HT
1 H

T
2 ,

=

−0.6651 −0.7395 −0.1037

−0.7395 0.6716 −0.0460

−0.1037 −0.0460 0.9935


1 0 0

0 0.9945 0.1048

0 0.1048 −0.9945

 ,

=

−0.6651 −0.7463 0.0256

−0.7395 0.6631 0.1161

−0.1037 0.0584 −0.9929

 .
3.3.1.3 Gram-Schmidt Orthogonalisation

In Gram-Schmidt orthogonalisation either the orthogonal matrix Q, or the upper trian-

gular matrix R, can be computed initially, and whichever is computed can be used to find

the other. For this section the matrix Q will be computed first. Firstly, the orthonormal

basis is computed using all the columns of A, those being referred to as ai where i = 1 . . . n

and n is the number of columns in the matrix. These vectors are used to compute the

column vectors that make up the orthogonal matrix Q [60].

The main disadvantage of Gram-Schmidt orthogonalisation is a lack of stability when

compared to Householder and Givens methods. While modified and stabilised versions

of the Gram-Schmidt orthogonalisation have been developed, these are still not as stable

as the Householder and Givens methods. The main advantage, however, is that when

only a partial orthogonalisation is necessary, where only certain columns of Q, or rows

of R are required, the Gram-Schmidt process is able to compute only these columns

or rows individually. Both Householder and Givens methods on the other hand need to

progressively compute rows of R and columns of Q in sequence. This makes Gram-Schmidt

suitable for certain iterative algorithms, where stability is not a major concern.

Example

Consider the same 3× 3 matrix A from Section 3.3.1.1.

A =

0.8147 0.9134 0.2785

0.9058 0.6324 0.5469

0.1270 0.0975 0.9575

 .
Firstly the orthonormal basis needs to be calculated. The matrix is separated into

three column vectors, a1 being the first column, a2 being the second and a3 being the

third.

The vectors that make up the orthonormal basis are calculated sequentially. The

projection of each vector onto the previously calculated vector is subtracted from the

original vector. This gives the vectors q̃1, q̃2, and q̃3. Dividing each of these vectors by

its norm gives the vectors q1, q2, and q3 which together form the matrix Q. The matrix
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product of the transpose of Q and the matrix A gives the upper triangular matrix R.

The vector q̃1 is equal to a1, and thus q1 is simply a1 divided by its norm, ensuring

the resulting vector has a norm of 1.

q1 =
a1
‖a1‖

=

0.6651

0.7395

0.1037

 .
The vector q̃2 is calculated using the following formula.

q̃2 = a2 − (aT2 q1)q1,

=

0.9134

0.6324

0.0975

−

0.9134

0.6324

0.0975


0.8147

0.9058

0.1270



0.8147

0.9058

0.1270

 =

 0.1915

−0.1702

−0.0150

 .
And again, to ensure the vector has a norm of 1, q̃2 is divided by its norm to give

q2 =

 0.7463

−0.6631

−0.0583

 .
Finally, to calculate q̃3,

q̃3 = a3 − (aT3 q1)q1 − (aT3 q2)q2 =

−0.0225

−0.1022

0.8738

 .
And again, dividing q̃3 by its norm results in

q3 =

−0.0256

−0.1162

0.9926

 .
The matrix Q is constructed by combining these column vectors,

Q =

0.6651 0.7463 −0.0256

0.7395 −0.6631 −0.1162

0.1037 −0.0583 0.9926

 .
Finally, to compute R, the equation A = QR can be rearranged to give R = QTA.

Thus the factor R is calculated.
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R =

0.6651 0.7463 −0.0256

0.7395 −0.6631 −0.1162

0.1037 −0.0583 0.9926


T 0.8147 0.9134 0.2785

0.9058 0.6324 0.5469

0.1270 0.0975 0.9575

 ,

=

1.2249 1.0853 0.6889

0 0.2566 −0.2106

0 0 0.8800

 .
Computationally there are two implementations of Gram-Schmidt. These are com-

monly known as Classical Gram-Schmidt and Modified Gram-Schmidt. When implement-

ing Classical Gram-Schmidt rounding errors can cause instability in the results, leading

to a non-orthogonal Q. The modified Gram-Schmidt algorithm addresses some of these

problems by performing computations on computed values, as opposed to stored values,

thus minimising the error. Most implemented algorithms are based on the modified Gram-

Schmidt. As was discussed at the beginning of this section, Gram Schmidt can also be

used to compute R before Q, by performing the Gram Schmidt process on the rows, as

opposed to the columns used in this example.

3.3.2 QR Column Deletions

One of the features of QR decomposition is the ability to update the Q and R matrices

upon changes to the original matrix A. These changes can be in four forms: column

deletion, column insertion, row deletion, and row insertion. QR updates are also known

as reorthogonalisation. The fact that the QR decomposition can be updated gives the QR

decomposition an advantage over SVD. This is due to the fact that the complexity of a

QR update is quadratic, while the full QR decomposition and SVD are both cubic.

This section will discuss various techniques of performing QR column deletion, as this

is the only form of update that is necessary in this thesis.

3.3.2.1 Givens Rotations

Givens rotations provide a relatively simple update algorithm for column deletions, follow-

ing largely the same pattern as the original full decomposition [58]. Consider the matrix

A which has the upper triangular factor R. Columns 2 and 3 are removed from A to give

the matrix B.

A =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

 , B =


a11 a14 a15

a21 a24 a25

a31 a34 a35

a41 a44 a45

a51 a54 a55

 .

As these columns have been removed, the upper triangular factor of A, RA, is not a
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factor of B. The aim of the update algorithm is to compute the new upper triangular

matrix RB, which is a factor of B, from RA. The same columns as were removed from A

to construct B are removed from RA to give RB. In this case these columns are 2 and 3.

This in-progress upper triangular matrix will be known as R̃B1.

RA =


r11 r12 r13 r14 r15

0 r22 r23 r24 r25

0 0 r33 r34 r35

0 0 0 r44 r45

0 0 0 0 r55

 , RB1 =


r11 r14 r15

0 r24 r25

0 r34 r35

0 r44 r45

0 0 r55

 .

Note that in the matrix RB1 there are non-zero entries below the principal diagonal.

Similarly to the full decomposition performed with the Givens rotation as described in

Section 3.3.1.1, the Givens rotations will start from the left most column of RB1 and move

right across the matrix.

The first column of RB1 contains no non-zero entries below the principal diagonal,

and therefore requires no update. The second column has two values below the principal

diagonal, which means two rotations are required. For the first rotation, a Givens matrix

can be constructed from the values r44 and r34 of column 2. Similarly to in the full

decomposition Givens rotations are performed starting with the first column with non-

zero entries below the principal diagonal, moving up each column in sequence.

Once the four necessary rotations have taken place, RB will have been computed.

RB =


r11 r14 r15

0 rB22 rB23

0 0 rB33

0 0 0

0 0 0

 .

Note that only the values rBxy have changed, and the values on the top row remain

the same as in the original matrix RA1. Only entries to the right of the deleted column

will change, and only rows below the principal diagonal of the column prior to the deleted

column will change. In this case, this means that the first row of RB remains the same

from RA, with the exception of the removed columns. It is also worth noting that deletion

of the last column of a matrix will require no Givens rotations in order to update the

matrix, and simply removing the column will suffice.

Again, similarly to the full decomposition, the updated orthogonal matrix QB for

the matrix B can be computed by applying the inverse of each rotation in order to the

original orthogonal matrix QA. The dimensions of the Q matrices stay constant, therefore

no columns or rows need to be removed.
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3.3.2.2 Householder Reflections

QR column deletion through Householder reflections are performed in the same way as in

the full decomposition when using Householder reflections [58]. Using the same A and B

matrices as in Section 3.3.2.1 the first column of RB1 needs no update, and thus the first

reflection will be applied using entries from the second column.

The vector v2 can be computed from the second column of RB1, using the entries below

the principal diagonal. Moving right along the columns of the matrix, and progressively

computing and applying the Householder reflection to the in progress R matrix. This will

result in the updated matrix RB.

The orthogonal matrix QB can be computed from QA, by applying the computed

Householder reflections to QA in the same way that they are applied in the full decom-

position.

Householder reflections for updates have similar benefits over Givens updates that were

discussed in Section 3.3.1.2, but when processing single column deletions this advantage is

not present, as the Householder transformation and Givens rotation will essentially reduce

to the same computation with deletions of this size.

3.3.2.3 Gram Schmidt

The Gram Schmidt algorithm is not well suited for updating algorithms, and thus is not

widely used. Daniel, Gragg, Kaufman, and Stewart, in their 1976 paper [61], investigated

the use of both Givens rotations and Gram Schmidt reorthogonalisation to update a

matrix after each of the four types of Givens update. The approach used here for column

deletions, that are the prime focus of this thesis, is simply reorthogonalisation through

Givens rotations, as was described in Section 3.3.2.1. Thus Gram Schmidt will not be

considered for the task of QR updating in this thesis.

3.4 Literature Survey of Parallel QR Factorisation Methods

This section will discuss low-level methods of parallelising the methods for the computation

of a QR decomposition, and also for computing QR updates discussed previously in this

chapter. While some of these techniques were not originally designed with GPU hardware

in mind, the techniques in question could still have potential implications for how the

computations can be parallelised on a GPU.

3.4.1 Parallelisation of QR Decomposition

QR decomposition presents a difficult problem for parallelisation. While all forms of QR

decomposition require large matrix operations, that are relatively trivial to parallelise,

all forms of QR decomposition are iterative processes. Therefore the ordering of the

operations is important for parallelisation. Despite this difficulty, the parallelisation of

QR decompositions has been a widely researched topic, with attempts having been made
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to parallelise the three main methods of full decomposition described in Chapter 4, as well

as parallelising the update algorithms.

3.4.1.1 Givens Rotations

The earliest example of parallelisation of QR deconvolution is the Sameh and Kuck

method, proposed in their 1978 paper [62]. This method uses an iterative pattern, which

gradually gains more parallelism over the course of the iterations. In the first iteration

only one rotation occurs, on the last two rows of the matrix.

A =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

 .

Starting with the matrix A, rotations will be performed, introducing a zero to the

matrix starting in the bottom left corner. The first rotation will be on the last two rows,

as highlighted. This will give the first stage in the computation of R, R̃1.

R̃1 =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

r̃41 r̃42 r̃43 r̃44 r̃45

0 r̃52 r̃53 r̃54 r̃55

 .

The second iteration will again perform a single rotation, moving one row up from the

previous iteration, introducing another 0 in the first column.

R̃2 =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

r̃31 r̃32 r̃33 r̃34 r̃35

0 r̃42 r̃43 r̃44 r̃45

0 r̃52 r̃53 r̃54 r̃55

 .

In the third iteration multiple rotations can be performed in parallel. Values for the

last two rows have been calculated, the entries in the first column of these rows both equal

zero. This means that the rotation starting from the second column can be performed.

Therefore, the third rotation on the first column, and the first rotation on the second

column, can be performed simultaneously.
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R̃3 =


a11 a12 a13 a14 a15

r̃21 r̃22 r̃23 r̃24 r̃25

0 r̃32 r̃33 r̃34 r̃35

0 r̃42 r̃43 r̃44 r̃45

0 0 r̃53 r̃54 r̃55

 .

In the fourth iteration two rotations are run simultaneously again, introducing two

more zeros, in this iteration the final entries of the top row of R .

R̃4 =


r11 r12 r13 r14 r15

0 r̃22 r̃23 r̃24 r̃25

0 r̃32 r̃33 r̃34 r̃35

0 0 r̃43 r̃44 r̃45

0 0 r̃53 r̃54 r̃55

 .

In the fifth iteration the rotations on the first column are complete. However, rotations

can now begin on the third column, as the last two entries of the second column are equal

to zero. This pattern continues for the next three iterations, until the matrix is upper

triangular in form.

R̃5 =


r11 r12 r13 r14 r15

0 r22 r23 r24 r25

0 0 r̃33 r̃34 r̃35

0 0 r̃43 r̃44 r̃45

0 0 0 r̃54 r̃55

 ,

R̃6 =


r11 r12 r13 r14 r15

0 r22 r23 r24 r25

0 0 r33 r34 r35

0 0 0 r̃44 r̃45

0 0 0 r̃54 r̃55

 ,

R =


r11 r12 r13 r14 r15

0 r22 r23 r24 r25

0 0 r33 r34 r35

0 0 0 r44 r45

0 0 0 0 r55

 .

After the seventh iteration, the final upper triangular matrix R has been computed,

with all entries below the principal diagonal being equal to zero.

While this small 5× 5 matrix only resulted in only two Givens rotations at maximum

able to be computed simultaneously, this increases with larger matrices. Take for example

the 8× 8 matrix shown below. In this matrix the numbers show the iteration in which a
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Givens rotation can introduce a zero in its position, with the rest of the entries represented

by • showing spaces in the final matrix that will be populated by non-zero values.

• • • • • • • •
7 • • • • • • •
6 8 • • • • • •
5 7 9 • • • • •
4 6 8 10 • • • •
3 5 7 9 11 • • •
2 4 6 8 10 12 • •
1 3 5 7 9 11 13 •


The final R matrix takes 2n − 1 iterations to complete, with the maximum number

of simultaneous rotations being bn/2c. The orthogonal matrix Q can be computed in the

same number of iterations, with the same rotation on both Q and R occurring in the same

iteration.

McGraw-Herdeg implemented the Sameh and Kuck method on a GPU in 2007. He

used an NVIDIA GTX 8800 [63]. While this GPU is not very powerful compared to

modern GPUs, the implementation achieved a speedup of 2.6 times compared to leading

CPU implementations at the time. More recently Marcellino and Nevarra presented a

method of computing the SVD on the GPU using QR decomposition through the Sameh

and Kuck method [64]. They reported a speedup of up to 50 times when compared to a

CPU implementation.

Further optimisations

While the Sameh and Kuck method maximises the number of Givens rotations that can be

computed simultaneously, there are other methods of providing further parallelism. The

simplest of these methods is to parallelise the matrix products involved in the rotations.

A more involved solution was proposed by Hofmann and Kontoghiorghes in their 2006

paper [65]. In this implementation partially computed rows were used in the computation

of rows above and below, in a pattern they called pipelining. The pipelined algorithm

achieved greater levels of parallelism compared to the original Sameh and Kuck algorithm,

as well as presenting an alternative parallel implementation for situations where fewer

processors are available. The resulting algorithm is capable of solving QR decompositions

on tall and skinny matrices in half the time of the original Sameh and Kuck algorithm.

3.4.1.2 Householder Reflections

The most widely used form of parallel Householder reflections are blocked Householder

reflections, originally proposed by Rotella and Zabettakis in their 1999 paper [66].

The method proposed an extension of the original Householder transformation, in

which the original matrix A is split into submatrices, which can be processed in paral-
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lel. Kerr, Campbell and Richards presented an implementation of blocked Householder

matrices on GPUs [67], and achieved speedups of up to 5 times faster than high perform-

ance CPU libraries at the time.

3.4.1.3 Gram Schmidt

The Gram Schmidt method, in addition to the numerical instability reported in Section

3.3.2.3, is not well suited to parallelisation, particularly on a GPU, as it would require a

significant amount of thread synchronisation [67].

3.4.1.4 Parallel QR updates

Andrew and Dingle investigated methods of implementing QR updates on GPUs [68]. This

paper was the first to implement QR updates on a GPU. While this paper investigated

all forms of parallel deletions, the only form of update of interest in this thesis is the QR

column deletion. Andrew and Dingle tested both Householder and Givens methods of

QR updates. Their findings suggested that for column deletions where large numbers of

columns are removed at a time, the blocked Householder methods were significantly faster.

However, when fewer columns are removed the advantage of the blocked Householder

implementation has over the Givens implementation is reduced. This is expected, as when

single columns are removed the matrix computations required of the Householder and

Givens methods reduce to the same computation.

3.5 Conclusion

This chapter gave a background into the mathematics necessary to compute AGCDs, as

well as an overview of techniques used for this computation in the literature. As was

noted in Section 3.2, the algorithm presented by Winkler et al., which was used in the

BID algorithm presented in [1], provides state of the art results for this computation.

Unfortunately these results also come at significant computational expense.

Reducing the runtime of this algorithm would be of benefit to this algorithm, but to do

so the algorithm must be explored in greater detail. While Section 3.4 gave an overview of

techniques in the literature for the parallelisation of the QR methods discussed in Section

3.3. To understand how these methods could be applied to the BID algorithm proposed

by Winkler it is necessary to investigate this algorithm in more detail. Therefore, in the

next chapter, a more detailed analysis of this algorithm shall be provided.



Chapter 4

Polynomial Blind Image

Deconvolution

This chapter will discuss in detail the polynomial method of blind image deconvolution

proposed by Winkler [1]. The main premise of this algorithm is to consider the rows and

columns of the blurred image as polynomials, with the pixel values being the coefficients.

The vertical and horizontal elements of a separable PSF convolved with this blurred image

can then be considered to be a GCD of these polynomials. Unfortunately, when the

blurred image contains noise, an exact GCD cannot be computed. Thus an AGCD must

be computed instead, as was described in Chapter 3. In an AGCD the coefficients must

be perturbed slightly to account for noise in the coefficients of the input polynomials.

Section 4.1 will provide an overview of the BID algorithm from a high level, discussing

the sections of the AGCD computation, and how these fit into the overall BID algorithm.

Section 4.2 will discuss how the degree is computed using the Sylvester matrix and QR

decomposition that were discussed in Chapter 3. This section will also discuss a change

made to the degree computation to aid with reliability. Section 4.3 will provide a brief

overview of how the coefficients are computed with the AGCD algorithm. Section 4.4 will

provide three sample results from the deconvolution algorithm. Section 4.5 will discuss

how the BID algorithm can be parallelised on a CPU. Finally, Section 4.6 will discuss the

profiling results of the serial implementation, and identify the section of this algorithm

that acceleration would benefit most.

4.1 Algorithm Overview

The most significant section of the BID algorithm proposed by Winkler is the computation

of an AGCD. This section will give an overview of the AGCD computation. The compu-

tation of an AGCD in the algorithm proposed by Winkler can be broken down into two

parts, the computation of a degree of an AGCD, and the computation of the coefficients.

The computation of the degree is the main focus of this thesis, as degree computation is

the most computationally expensive part of the algorithm, as will be shown in Section 4.6.

53
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Therefore this chapter will focus more on understanding this section, which is explained

in detail in Winkler and Hasan’s 2012 paper [21]. The degree computation can be further

broken down into several sections. Firstly, the Sylvester matrix S1 is constructed from the

polynomials in question, f(y) and g(y), then the upper triangular factor of this Sylvester

matrix R1 is computed through QR decomposition. Then the upper triangular factors

of all subresultant matrices of the Sylvester matrix R2...n must be computed. This is a

computationally expensive process of progressive QR column deletions from the original

upper triangular matrix R1.

After each upper triangular factor of a subresultant matrix has been computed, it

must be tested to estimate its rank. Two tests are performed, each of these tests will

estimate the rank of the Sylvester matrix S1. The first is to find ratio of the minimum and

maximum values for the diagonals of each matrix R1...n, and the second is to find the ratio

of the minimum and maximum row norm values of each matrix R1...n. The gradient is

computed across all ratios in both tests, and the index of the minimum gradient provides

an estimate of the rank of the Sylvester matrix, and thus the degree.

The process of computing an estimate of the degree, from the selection of the rows (or

columns) to the computation of the minimum gradient, is repeated an unspecified number

of times for different pairs of polynomials. These pairs of polynomials that are used to

compute a single estimate of the degree will henceforth be referred to as trials. Computing

multiple trials allows the computation of the degree to be more robust, with the modal

value from all trials representing the final degree.

The coefficient computation, while discussed in less detail than the degree in this thesis,

will still be optimised and accelerated in Chapter 8. The first stage of computing the coef-

ficients is to select a pair of rows (or columns) with which to compute the coefficients, the

original method proposed by Winkler suggests that this trial should be selected from the

set of pairs of polynomials that returned the correct degree during the degree computa-

tion, and suggested that the first of these trials would suffice. Experimentally an improved

method was found for the selection of the trial, that provides more reliable results. This

improved method shall be discussed in Section 4.3.

Winkler’s work has considered two different coefficient computation methods, firstly

using the Sylvester matrix, and secondly using approximate polynomial factorisation. In

this thesis the focus will be on the Sylvester method. After a pair of polynomials are

selected, they are scaled and normalised in the same way as during the degree computation,

and the pth Sylvester subresultant matrix Sp(f, g) is formed, where p is equal to the degree

computed previously.

The problem of computing the optimal coefficients of the AGCD is a non-linear optim-

isation problem. The method employed by Winkler is that of SNTLN [20], an extension

of STLN [52]. This is an iterative method, through which a low rank estimation of the

Sylvester matrix, and thus the coefficients of the AGCD, can be computed.

The algorithm presented by Winkler [69] uses a modified form of the SNTLN [20]. The

modifications made by Winkler and Hasan involve the computation of an optimal column
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of the subresultant matrix Sp(f, g). This optimal column is defined as the column co, for

which the residual of an approximate linear algebraic equation is minimised when column

co is moved to the left side of the matrix [69]. This modification was made to ensure

the computation of an AGCD of the polynomials f(x) and g(x) provided the correct

result, even if the Toeplitz matrices that were used to construct the Sylvester matrix were

swapped. This is not the case in the original SNTLN method. This modification, while

improving the robustness of SNTLN, is computationally expensive, and therefore will be

the focus of the acceleration and optimisation investigated in Chapter 8.

After AGCDs have been computed for both the rows and the columns, these need to be

deconvolved from the original image. This is described in [12], and will not be considered

for optimisation in this thesis, as it does not take a significant amount of time to compute,

so will not be covered in detail here.

4.2 Degree Computation

The most computationally expensive section of the algorithm, as will be shown in section

4.6, is the computation of the degree of an AGCD. In the algorithm proposed by Winkler,

this is performed by computing a numerical rank of the Sylvester matrix constructed from

two polynomials. This section will discuss this algorithm in detail.

4.2.1 Algorithm

This section will describe the original implementation of the degree computation in Wink-

ler’s 2012 paper [21]. While the overall algorithm remains very similar to the original

proposed version, several modifications were made for the purpose of efficiency. These

changes will be highlighted in this section. The algorithm can be broken down into mul-

tiple stages, thus this section is divided into subsections discussing each of these stages.

Figure 4.1 shows an overview of the algorithm, from a high level.

4.2.1.1 Selection of Rows or Columns

As the PSF is assumed to be separable, rows and columns are to be considered separately.

The first step in computing the degree is to select row (or column) vectors from the pixel

values of the original image. While it would be possible to get an estimate for the degree

from a single pair of vectors, the degree of the AGCD cannot be computed with certainty,

particularly when high levels of noise are present. Therefore multiple pairs of row or

column vectors are used, and the modal degree estimation from these vectors is found, to

give a final estimate for the degree. While the number of trials can be scaled arbitrarily,

experimentally it was shown that 20 to 25 trials generally produced good results, even at

high levels of noise.

Selecting values from the edge area of the convolved image, as described in Chapter

2, could potentially lead to problems. These pixels are influenced by their proximity to
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Input image of m× n pixels

Set number of trials t
Initialise counter for trials i = 1

Extract two arbitrary rows of

input image, consider the pixel

values of these rows to be the

coefficients of polynomials

f(y) and g(y) of degree n − 1

Construct S1(f, g) us-

ing f(x) and g(x)

Compute the upper triangu-

lar matrix R1 from S1(f, g)

using QR decomposition

Initialise counter for the

subresultant matrices k = 2

Compute Rk matrix from

Rk−1 using QR deletion

Compute the rank

of Sk(f, g) using Rk

If k ≤ n
Increment subresultant

counter
k = k + 1

Find the minimum rank of Sk(f, g)

to give the degree of the AGCD

If i ≤ t Increment trial counter
i = i+ 1

Compute modal degree

Output degree

True

False

True

False

Figure 4.1: Flowchart showing the serial process of the degree estimation algorithm
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the border, and thus appear darker than the remainder of the image. Due to this they do

not contain enough information to compute the degree, therefore the vectors should be

selected from a central portion of the image.

It is unfortunately impossible to know the width of the border area, without first

knowing the degree of the AGCD. Therefore bounds must be placed on the rows and

columns eligible for selection such that the border area is likely to be avoided. However,

enough of the rows and columns must remain to be able to extract the required number

of columns and rows for the number of trials. In this implementation the central third

of both the rows and columns are assumed to be outside of the edge area, as when the

border area is inside these regions the image is likely to be too blurred to be deconvolved

anyway. Therefore, only this section will be used to select columns.

Figure 4.2 shows a large image split into thirds in both dimensions. Rows outside of

the central sections of these the two lines in each dimension will not be considered.

Figure 4.2: Blurred image with red lines to show the areas excluded from consideration
when selecting rows and columns

An extra precaution against problematic rows or columns was included in this imple-

mentation. It was found that when a trial of two vectors resulted in the incorrect degree

being estimated that usually only one of these rows was the source of the problem, and

attempting the trial with that row and any other row often also resulted in an incorrect

estimation. In order to avoid this the algorithm was modified, such that any row or column

may only be selected once.
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4.2.1.2 Preprocessing of the Vectors

The last section described the extraction of two vectors, f and g, from an image. From

these vectors an estimate of the degree must be computed. These vectors are likely to be

unbalanced, and thus require normalisation and scaling in order to be balanced, avoiding

issues in the computation.

In this section the preprocessing that must be performed on the vectors will be de-

scribed. Firstly, the vectors are normalised to minimise the difference between values in the

two vectors, then one of the vectors will be scaled by a constant to minimise the difference

in additive error between the vectors [21]. In [21] several examples are given of situations

in which the algorithm fails without these prepossessing techniques. While Winkler’s pa-

per goes into detail on the mathematical justification of these preprocessing algorithms,

the work presented in this thesis does not modify these preprocessing algorithms, and so

only the final form of these operations are discussed.

Normalisation

Winkler considered several methods to perform normalisation [21]. Normalisation by the 1

and 2 norms, normalisation by the leading coefficient, and normalisation by the geometric

mean of the polynomial. Ultimately it was decided that using the geometric mean was

the optimal approach. This approach was chosen for three reasons. Firstly, normalisation

by the geometric mean considers all coefficients ŝi of the polynomial ŝ(x) when computing

the normalised polynomial s̄(x), while the other methods only consider a single coefficient,

this means that this form of normalisation is better suited when there are large differences

between the values of the coefficients in the provided polynomials. Secondly, unlike the

other methods, the geometric mean retains the uniform probability distribution of the

relative error of ŝ(x). Finally the paper showed that when the coefficients of ŝ(x) vary

wildly the relative errors of s̄(x) could only be computed reliably when ŝ(x) has been

normalised by the geometric mean.

The normalisation method used is therefore the geometric mean, which is defined as

s̄i =
ŝi(∏m

j=0 ŝj

) 1
m+1

, i = 0 . . .m.

Thus the polynomials f(x) and g(x) are redefined by their geometric means. The

non-normalised coefficients of these polynomials are f̂i and ĝi respectively, with their

normalised coefficients being f̄i and ḡi



Chapter 4. Polynomial Blind Image Deconvolution 59

f(x)=

m∑
i=0

f̄ix
m−i , f̄i=

f̂i(∏m
j=0 f̂j

) 1
m+1

,

g(x) =
n∑

i=0

ḡix
n−i , ḡi =

ĝi(∏n
j=0 ĝj

) 1
n+1

.

Scaling g(x) by an Arbitrary Constant

After normalisation, due to the two polynomials being scaled differently, the component-

wise error between the two polynomials is no longer equal, and thus one of the polynomials

should be adjusted to account for this.

After the normalisation presented above, the updated componentwise error of the

polynomial f(x) will be (
m

m+ 1

)
ε,

and the error of g(x) will be (
n

n+ 1

)
ε.

Therefore, to correct this difference in the error, g(x) should be scaled by a variable α.

α =
βm(n+ 1)

n(m+ 1)
,

where β is an independent variable, the scale of which is determined through a lin-

ear programming problem, in which the difference between the maximum and minimum

absolute entries of f(x) and αg(x) is minimised.

4.2.1.3 Computation of the Upper Triangular Factors

The normalised vectors described in Section 4.2.1.2 can be used to construct the Sylvester

matrix S1, as is shown in Chapter 3. With the Sylvester matrix S1 constructed, the upper

triangular factors of the Sylvester matrix, and the subresultant matrices, can be computed.

R1 is first computed as a full QR decomposition of S1. The upper triangular factors R2...n

of the subresultant matrices S2...n must then be computed from R1. The computation of

these factors is the most computationally expensive part of the degree computation.

In the case of the exact polynomials the degree of the GCD can be found by in-

vestigating each of the subresultant matrices, and finding the first rank deficient matrix

[19]. Unfortunately, in the case where the polynomials are inexact, all of the subresultant

matrices will be of full rank, and thus the rank must be approximated instead.

As was stated previously, the upper triangular factor Rk, of Sk, shares the rank of Sk.

However, the properties of Rk make it easier to compute an approximate rank than those
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from the subresultant matrix, and thus in this section the upper triangular matrices R2...n

are computed, to be used in the rank estimation computations that will be described in

Section 4.2.1.4.

Chapter 3 showed how the subresultant matrices S2...n are constructed. While the rank

of these matrices is of interest, it is not necessary to actually construct these matrices in

the algorithm. As was discussed is the previous chapter it would be possible to compute a

decomposition of every subresultant matrix, though computational complexity can be re-

duced by performing QR updates to calculate the upper triangular factor of these matrices

instead.

As was discussed in Chapter 3, when the last columns of each Toeplitz submatrix of

Sk are removed, the entries in the last row of the remaining columns of the matrix will

always be equal to zero, and thus will have no impact on the rank calculation. This means

that, for the purposes of computing the rank of the upper triangular R matrix, the row

deletion described previously is not required. This is of great benefit when optimising the

code, as while QR row deletions require both Q and R matrices to compute the updated

upper triangular matrix R, this is not the case with column deletions. In a QR column

deletion only the original upper triangular matrix R is required to compute the updated

upper triangular matrix. For the purposes of this algorithm this means that the upper

triangular matrix of Rk can be computed from Rk−1, without needing to consider the Q

matrices. This optimisation halves the number of matrix operations required to perform

the updates, as well as bypassing the row deletions entirely.

4.2.1.4 Testing the Upper Triangular Factors

After all the upper triangular factors R1...n have been computed, an estimation of the

rank for the Sylvester matrix S1(f, g) must be computed. Due to the presence of noise in

the polynomials, the rank computation cannot be exact, as the upper triangular matrices

R1...p will be of full rank. However, if an AGCD can be computed, there will be near-zero

values in the lower rows of R1...p, and these matrices will be closer to rank deficient than

Rp+1...n.

Two tests are used to estimate the rank of Sk(f, g) using the computed upper trian-

gular factor Rk. In his 2012 paper Winkler found that these tests, while heuristic, were

demonstrated to obtain reliable results over many examples.

The tests are computed in a very similar way, with one considering the row norms

of each subresultant matrix, and the other considering the diagonals of each subresultant

matrix.

In this section ak,i will represent either the diagonal, or the row norm, for the ith row

of kth subresultant matrix. In the first of these tests, which considers the diagonals of Rk,

ak,i = |rk,i,i| where rk,i,i is the entry on the ith row of the principal diagonal of Rk. In

the second test, which considers the 2-norms of these rows ak,i = ‖rk,i‖2 where rk,i is the

entire ith row of Rk.
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With ak,i defined for both tests the computation to perform these tests can be de-

scribed. First a ratio is computed for the maximum and minimum values for ak,i, for each

upper triangular factor Rk.

tk =
maxi(ak,i)

mini(ak,i)
.

The gradient between the values of tk is computed for adjacent values of k. The index

at which the gradient is at its minimum will provide the estimate of the rank, and thus

the degree, for this test. The degree will be known as p.

p = arg max
k=1...n−1

(
tk
tk+1

)
.

These two tests provide two estimates for the degree of the AGCD for each trial. The

modal value across all trials provides the final estimate for the degree.

4.2.2 Improving Reliability of Degree Results

It is possible, by making a reasonable assumption about the size of the PSF, to improve

both reliability of the degree estimation results, and the speed of the computations. By

assuming that the PSF is smaller than an arbitrary size, a correct estimate of the degree

can be computed more reliably. This is a reasonable assumption when considering image

deconvolution, as when the PSF is too large it would be difficult to discern any details in

the image, and the deconvolution would be likely to be unsuccessful. An additional benefit

of this is a decrease in the number of operations required, as many of the subresultant

matrices would no longer be required, and thus their upper triangular factors need not be

computed.

(a) Example of ratios that give an correct degree
estimation

(b) Example of gradients that give an correct
degree estimation

Figure 4.3: Example results from a single trial resulting in correct degree estimation

Figure 4.3 shows an example of a trial that results in the correct degree being computed.

Figure 4.3a shows the ratios computed between the minimum and maximum row norm
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values for each value of k on a log scale. Figure 4.3b shows the gradients between row

norm ratios for successive values of k. In this case the exact image was 256 wide, with

PSF of degree 24. Note that the degree computed, signalled by the green line, shows a

clear drop compared to other ratios, and the gradient shows a very prominent trough for

k = 24. This is the desired outcome. However, note that the high values of k also exhibit

a sharp drop at the end of the graph. This drop for higher values of k can often increase

as the noise increases, and can result in an incorrect estimation.

(a) Example of ratios that give an incorrect de-
gree estimation

(b) Example of gradients that give an incorrect
degree estimation

Figure 4.4: Example results from a single trial resulting in incorrect degree estimation

Figure 4.4 shows two graphs from an example of a trial which produced an incorrect

degree. Figure 4.4a shows the ratios of the row norms of the image on a log scale, while

Figure 4.4b shows the gradients as was explained for Figure 4.3b. While a clear drop can

be seen when k = 24 (marked with a green dashed line) in the ratios in Figure 4.4a, and

confirmed by the low gradient shown in Figure 4.4b, a more significant drop can be seen

when k > 275, and the gradient graph shows a significantly lower gradient for these higher

values of k than that shown at k = 24. This results in an incorrect degree estimation. In

this case that result is at k = 278 (marked with a red dashed line) with the gradients only

being lower than the expected result when k = 278 and k = 277. This is not always the

case, as some trials return results with significantly lower gradients for lower values of k.

For the purposes of this image deconvolution algorithm it is sufficient to place a limit

on the expected AGCD degree of 50% of the convolved image size, as when the degree

is greater than this limit it is unlikely to result in successful deconvolution of the image,

even if an AGCD degree is correctly identified. This limit can be seen in the graphs in

Figure 4.4 as black dashed lines.

The code provided by Winkler approached this problem by ignoring any computed

degrees that produced results above a specified limit. While this approach works in most

cases, it can lead to degree estimations being made with less confidence, as the modal

value is computed from a set of values that is smaller than the set of computed trials, as

values above the specified limit are ignored. In extreme cases this was found to cause the
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deblurring to fail, due to all the values produced by the trials being outside the expected

range.

An improved approach, as discussed earlier in this section, is to simply not compute

the upper triangular factors of the subresultant matrices outside of this range. This results

in a more robust approach, as when excluding the upper values of k more trials will return

the desired result.

To demonstrate this, two real world images, one of size 256 × 256 and one of size

512 × 512, were convolved with PSFs of sizes 25 × 25 and 49 × 49 respectively. Noise

uniformly distributed between a lower bound of 1× 10−5 and an upper bound of 1× 10−4

was added to the PSF. Noise uniformly distributed between a lower bound of 1×10−7 and

upper bound 1× 10−6 was added to the convolved image. The equation detailing this is

G = F ⊗ (H+N1) +N2,

where G is the blurred image, F is the exact image, H is the exact PSF to be convolved

with the image, N1 is the additive noise introduced to H, and N2 is additive noise added

to the convolved image.

For the purposes of these results, the method of simply ignoring any value outside of the

range will be known as the original method, and the new method of avoiding computation

of results beyond the limit will be known as the reduced method. Each image was subject

to 24 trials on both the columns and the rows. The successful results from both rows and

columns were combined to provide an overall percentage of the trials that were successful.

Tables 4.1 and 4.2 show the rate of successful degree computation of the original and

reduced algorithms, under the two levels of noise described above. In these tables the

success rates of the degree computed from the row norms and the diagonals are separated,

to show the improvement this method has on both tests.

256× 256 512× 512
Row norms Diagonals Row norms Diagonals

Original 85.4% 91.7% 0% 8.3%
Reduced 97.9% 97.9% 97.9% 97.9%

Table 4.1: The percentage of trials identifying the correct degree for lower levels of noise

The results in Table 4.1 show that both the original and the reduced versions of the

algorithm provided reasonable results for the smaller image. However, the larger image

yielded very poor results in the original implementation, while the reduced implementation

still performed well.

When the additive noise introduced to both the PSF and convolved image is increased

by a factor of 10, the difference between the two algorithms becomes significantly more

apparent. The results in Table 4.2 show that the original method did not provide any

successful trials. The reduced method provided reasonable results for both image sizes,

though at a reduced success rate for the larger image.
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256× 256 512× 512
Row norms Diagonals Row norms Diagonals

Original 0% 0% 0% 0%
Reduced 91.7% 89.6% 66.7% 66.7%

Table 4.2: The percentage of trials identifying the correct degree for higher levels of noise

4.3 Computation of the Coefficients

Section 4.1 gave a brief overview of the coefficient computation method. This section

will give a more detailed explanation of this algorithm, with focus on the most expensive

section, that being the computation of an optimal column as part of the modified SNTLN

method.

In a situation with exact polynomials the matrix S1 will be rank deficient, and the last

non-zero row of the upper triangular factor R1, found through QR decomposition, will

provide the coefficients of the GCD. When coprime polynomials are considered instead

S1, and thus R1, will be of full rank, and thus the coefficients of the AGCD cannot be

retrieved in the same way.

The method of SNTLN [20] is used by Winkler and Hasan to solve this problem [69, 21].

The aim of this work was to attempt to find a structured, low rank estimation of S1, and

thus find an approximation of the coefficients.

Before the Sylvester matrix can be constructed, the polynomials must be preprocessed.

This is performed in the same way as in the computation of the degree, described in Section

4.2. To simplify the notation it will be assumed that the polynomials f(x) and g(x) have

already been processed in this way.

Consider the exact polynomials f̂(x) and ĝ(x) with a GCD d(x) of degree p, such that

when f̂(x) and ĝ(x) are divided by d(x) they produced u(x) and v(x) respectively.

d(x) =
f̂(x)

u(x)
=
ĝ(x)

v(x)
.

It follows from this matrix that there exists a polynomial w(x) such that

w(x) = v(x)f̂(x) = u(x)ĝ(x).

Therefore, when considering the vector form of these polynomials, where u is the vector

of the coefficients of u(x),

w = Cpv = Dpu,

where Cp and Dp are the Toeplitz matrices of f̂ and ĝ respectively, that make up the

pth subresultant matrix described in Section 3.1.4.

This equation can be rearranged to give
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[
Cp Dp

] [ vp

−up

]
= 0. (4.1)

As described in Section 3.1.4, the matrix [CpDp] = Sp(f̂ , ĝ). This Sylvester matrix will

be denoted in this chapter in the shorter form, Sp.

The equation above can be transformed by moving a column of Sp to the right side of

the equation.

Ay = c, (4.2)

where c is the column removed from Sp, A is the remaining columns of the Sylvester

matrix Sp after the column is removed, and y is the combined column vector of v and −u
as shown in Equation 4.1.

When considering the inexact case, with polynomials f(x) and g(x), the coefficients

must be perturbed slightly to form a AGCD. The subresultant matrix Sp is perturbed by

the matrix B(α, θ, z), also denoted as B.

B =



z0θ
m αzmθ

n

z1θ
m−1 . . . αz1θ

n−1 . . .
...

. . . z0θ
m

...
. . . αzmθ

n

zm−1θ
... z1θ

m−1 αzm+n−1θ
... αzm+1θ

n−1

zm
. . .

... αzm+n
. . .

...
. . . zm−1θ

. . . αzm+n−1θ

zm αzm+n.


,

where α and θ are variables initialised in the preprocessing, and z is a vector of length

m+ n.

Similarly to how Sp was split into the column c and A, B must be split into the vectors

h and E. Sp, and therefore A and c, can also be considered by the variables α and θ, as

these were used in the preprocessing of the polynomials.

Thus equation 4.2 for the inexact polynomials becomes

(Ap(α, θ) + Ek(α, θ, z))y = cp(α, θ) + hp(α, θ, z).

The approximate solution to this equation is found with a minimisation problem, with

regards to the variables α, θ, y and z. The solution to this yields a low rank estimation of

the Sylvester matrix, which can be used to compute the coefficients of the AGCD. This
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minimisation problem was not considered in detail for acceleration in this thesis, so shall

not be discussed in detail here.

Equation 4.2 showed a column from the subresultant matrix Sp being moved to the

right side of the equation. While typically in SNTLN it was thought that the first column

of the matrix should be moved, as examples showed that moving the last column led to

errors, Winkler and Hasan noted that this approach was not robust [21]. This was because

it often led to the solution found for the Sylvester matrix S(f, g) being different to that

of the Sylvester matrix S(g, f). This is not desirable when computing the AGCD of two

polynomials, as the AGCD should be the same in both situations.

Winkler and Hasan demonstrated that when computing the residual of the equation

Apx ≈ cp for each column, the last element has a residual of several orders of magnitude

higher than the other columns.

Winkler and Hasan instead proposed the selection of a different column of the Sylvester

matrix to move to the right of the equation, specifying that all columns must be considered

as candidates to be moved. This column is called the optimal column, and the computation

of the optimal column is second only to the degree computation in terms of computational

expense in the BID algorithm.

4.3.1 Computation of an optimal column

The optimal column is defined as the column with which the residual of the approximate

linear algebraic equation is minimised when moving the selected column cp,o to the right

of the remaining columns in the matrix Sp(f, g) [12]. The computation of this optimal

column will be broken down in this section, and can be seen in full in the flow chart in

Figure 4.5.

The first step of the computation of the optimal column is to compute the QR factor-

isation of the matrix Sp(f, g) to create the matrices Qp and Rp.

The algorithm then takes on an iterative approach, for each column in Sp(f, g) QR

column deletion is used to compute the updated factors after the removal of this column,

resulting in an updated matrix Qp,t where t is the current column being tested.

Note that while the computation of the updated upper triangular matrix is required

in order to compute Qp,t, as was discussed in Chapter 3, it is not necessary beyond this,

and thus Rp,t can be discarded.

Column t is now extracted from Sp(f, g). This column will be known as ct. The

product of QT
k,t and ct is computed, giving the column vector at.

at = QT
p,tct.

From the resulting vector the norm of the last p entries provides the residual r,

rt =
∥∥at,(n−d)...n∥∥2 .
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Input Sylvester matrix Sk of width m, and AGCD of degree d

Compute Q and R through QR decomposition of Sk

Initialise i as 1
Initialise residuals array of length m

Compute updated Qi after deletion of column i

Extract column i of Sk, store as ci

Compute Q′ici and store result as p

Compute the norm of the last d elements of p
Store result in residuals array

If i ≤ m Increment i by 1

Find index of minimum value of residuals array
This is the optimal column

Output result

False

True

Figure 4.5: Flowchart showing the serial process of the optimal column algorithm
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This process is repeated for all m + n − 2d columns, and the value of t in which the

residual is minimised represents the column index of optimal column o.

o = min
t

(rt) , t = 1 . . . (m+ n).

4.3.2 Optimisations and Improvements

The method of computing the residual described above can be optimised by removing

unnecessary computations. It should be noted that the matrix Sk(f, g), and its QR de-

composition, were previously computed in Section 4.2. While it would be possible to retain

these matrices, and thus remove the need for their computation, the degree of the AGCD

is not known at this time, and thus the matrix Sk(f, g), and its factors computed from QR

decomposition, Qk and Rk, would need to be retained until the degree is computed. This

would place a large burden on the memory, for minimal gain, as this would be trivial to

recompute. In systems where a large amount of memory is available however, this would

be an easy optimisation to apply.

At a lower level there exist unnecessary computations within the QR update algorithm.

While the method discussed thus far computes the entire QR update, it is in fact possible

to reduce the number of operations required in this update, as only the last p columns of

Qp will effect the value of the residual. While this section only provided a brief overview

of this optimisation, it will be explored in further detail in Chapter 8.

4.4 Image Deconvolution Results

This section will discuss and present a sample of the results produced by the BID al-

gorithm, from the perspective of both relative error and qualitative analysis of the result-

ing images. Winkler presented a sample of results of his algorithm in his 2016 paper [1]

in which he presented the BID algorithm.

The images were compared to the exact image to compute the error measure. The

images are normalised against each other, and the norm of the difference between all the

pixel values with their equivalents in the exact image was computed. A relative error of

5.55 × 10−3 was observed for the proposed algorithm, compared to the relative errors of

the Matlab methods, in which the PSF was specified in all cases, which ranged from

between 0.340 to 0.124.

Each exact image F was convolved with a Gaussian PSF, H, of the stated degree in

each case. Uniformly distributed noise, N1, was added to the PSF, with stated upper and

lower bounds. Uniformly distributed noise N2 was also added to the convolved image,

again with stated upper and lower bounds, resulting in the degraded image G.

G = F ⊗ (H+N1) +N2.
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4.4.1 Test 1

In this first test an image of a wind turbine, of dimensions 256× 256, will be used. This

image has been degraded with the following properties:

• Exact image size: 256× 256

• Gaussian PSF dimensions: 25× 25

• PSF noise:

– Upper bound: 1× 10−4

– Lower bound: 1× 10−5

• Additive noise:

– Upper bound: 1× 10−6

– Lower bound: 1× 10−7

(a) Exact image (b) Blurred noisy image (c) Restored image

Figure 4.6: Exact, blurred, and restored images for Test 1

It is clear, from the images shown in Figure 4.6, that the algorithm was successful

in deconvolving the image. The main differentiating feature between the exact image in

Figure 4.6a and the restored image in Figure 4.6c is the presence of some level of noise

in the restored image. This is largely due to the additive noise that was introduced to

the image. As the algorithm only attempts to deconvolve the image, and not denoise it,

this noise will remain. It is worth noting that this is at a low level when compared to

many results from algorithms that use the Fourier transform. The actual relative error

that was produced by this deconvolution when compared to the exact image is 0.059, an

improvement from the relative error in the blurred image of 0.109.

4.4.2 Test 2

The second test used an image of a fishing boat. This is a typical test image for image

processing algorithms. This image has been degraded with the following properties:
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• Exact image size: 512× 512

• Gaussian PSF dimensions: 49× 49

• PSF noise:

– Upper bound: 1× 10−6

– Lower bound: 1× 10−7

• Additive noise:

– Upper bound: 1× 10−7

– Lower bound: 1× 10−8

(a) Exact image (b) Blurred noisy image (c) Restored image

Figure 4.7: Exact, blurred, and restored images for Test 2

In this test, the results of which are shown in Figure 4.7, there is a well restored image,

with the only differentiating factor being noise. The larger image and PSF in this test

meant that a lower amount of noise was required for a successful deconvolution. However,

the relative errors do not differ significantly from those in Test 1, with a relative error

between the exact and restored images of 0.023, compared to a relative error between the

exact and blurred images of 0.200.

4.4.3 Test 3

The final test used an image of tree bark which is another typical test image. This image

has been degraded with the following properties:

• Exact image size: 256× 256

• Gaussian PSF dimensions: 49× 49

• PSF noise:

– Upper bound: 1× 10−6
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– Lower bound: 1× 10−7

• Additive noise:

– Upper bound: 1× 10−7

– Lower bound: 1× 10−8

(a) Exact image (b) Blurred noisy image (c) Restored image

Figure 4.8: Exact, blurred, and restored images for Test 3

The results of this test, shown in Figure 4.8, show a heavily blurred image, caused by

a significantly larger PSF relative to the size of the exact image than in Test 1, though

with lower noise. The results again show a successfully deconvolved image. The relative

errors in this case are 0.010 when comparing the restored image to the exact image, and

0.462 when comparing the blurred image to the exact image.

4.5 Simple CPU Parallelisation

While the focus of this thesis is on GPU parallelisation, a simple parallelisation of the

original Matlab version on a CPU is also possible. This version can give a baseline for

any GPU implementations to be tested against.

As described in Section 4.1, the degree computation algorithm is run as a series of

trials. These trials can easily be run in parallel across the cores of a CPU, providing a

simple method of parallelisation on a CPU. In this parallel implementation the tasks to

parallelise are well balanced, with each trial being exactly the same in terms of overall

number of computations.

Similarly, during the computation of the coefficients described in Section 4.3, the com-

putation of an optimal column can be parallelised across the cores of the CPU. Each core

processes a single QR column deletion and the product of the column and the matrix

required for this section. While this section will not lead to as balanced an implementa-

tion as that for the degree computation, as some QR deletions will require less work than

others, modern CPUs have efficient task schedulers, which will ensure cores are utilised

effectively.
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Figure 4.9: Comparison of CPU serial and parallel implementations

One issue with CPU parallelisation in Matlab is the need to initialise a parallel pool.

This initialisation step can take a significant amount of time, and when dealing with

images of smaller sizes, leading to polynomials of smaller degrees, can cause a parallel

implementation to run slower than the serial implementation. This can be seen on the

graph in Figure 4.9, which shows a comparison of the runtimes of the serial and parallel

implementations of the degree computation on a log scale. These results were gathered

on an Intel i7 6850k CPU, with the work in the parallel implementation spread across all

6 cores. In this graph the line showing the parallel implementation starts above that of

the serial implementation. The parallel implementation quickly speeds up relative to the

serial implementation, however, as the amount of time spent initialising the parallel pool

relative to the overall runtime is less significant with larger degrees.

Further results with the CPU parallel implementations can be found in Chapters 6, 8

and 9.

4.6 Profiling and Parallelism Potential

To optimise an algorithm it is necessary to understand the current bottlenecks of the

algorithm. In order to investigate this the code must be profiled. This can be accomplished

by using the Matlab profiler.

Figure 4.10 shows the timed results output from the Matlab profiler for one execution

of the algorithm, processing a 256 × 256 image convolved with a 25 × 25 Gaussian PSF,

with 24 trials for the rows and 24 trials for the columns. The test was run on a single core

of an Intel i7 6850K with a clock speed of up to 4GHz.

In Figure 4.10 the bars representing time taken by each function are split into two
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Figure 4.10: Results of profiling the serial implementation of the image deconvolution
algorithm

sections. The dark blue bar represents the self time. That being the time taken doing

fundamental processing tasks, such as basic arithmetic and control flow within that func-

tion, without considering the time spent in child functions. The cyan section of this bar

represents the time taken executing the child functions. The combined bars show the total

time spent in each function. The times in seconds of the total time and self time of these

functions are shown to the right of the bars.

Starting from the top of this figure, RunStandaloneWithImgAndPSF is the main

test function, which takes input of an image and a PSF, blurs the image, and attempts

deconvolution using the Deblur function, which can be seen on the next line. The

Deblur function is where the full deconvolution happens, including computing the de-

gree of the AGCD, calculating its coefficients, and deconvolving the computed AGCDs

from the blurred image. The next three functions, DegreesRowColumnStandalone,

degAGCD and CalculateRank QR No Q Update all appear to have similar runtimes,

and all have very little self time, due to the fact that they call each other, in sequence,

with little processing to do aside from this.

The next function on the list, called from CalculateRank QR No Q Update, is

where the first significant portion of self time is found. The function qrDeleteColR-

Only performs the QR column deletions discussed in Section 4.2.1.3. While this function

is primarily self time, there is still a section of the function that is not accounted for in

this self time. This remaining time is made up of the function planerot, which, as can

be seen on its row of the graph is purely self time. This function performs Givens plane

rotation to compute the Givens matrix to apply to the upper triangular matrix, which is

pure arithmetic that can easily be combined with the rest of the QR deletion.
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Note that while qrDeleteColROnly is the most significant part of its parent function

(CalculateRank QR No Q Update), there is a significant section of this function not

accounted for in the self time or the time of CalculateRank QR No Q Update. This

time is taken executing TestR, which can be seen further down the chart. This function

involves performing the two tests described in Section 4.2.1.4 on the computed triangular

factors to estimate the rank of each matrix, and thus compute the degree. As will be

discussed in Chapter 5, copying data to and from a GPU adds overhead to the computation

and must be avoided. If the computation of the upper triangular factors is moved to the

GPU, and not the tests, this would require all of the subresultant matrices for every test

to be copied back to the main system memory. Thus this section is best computed on the

GPU as well.

Together, the computation and testing of the upper triangular factors of the subres-

ultant matrices represent over half of the overall runtime of the serial algorithm, and thus

these are the first algorithms that should be accelerated.

Unfortunately the Matlab profiler does not provide clear results when processing CPU

parallel implementations, grouping all parallel for loops as a single function. This makes

the results difficult to interpret, and due to this the profiling of the CPU implementation

described in Section 4.5 is unable to be assessed in this way.

4.7 Conclusion

This chapter described a reliable method for computation of an AGCD of multiple pairs of

univariate, coprime polynomials. This was performed as part of a BID algorithm which,

as was seen by the results shown in Section 4.4, provides very promising results. How-

ever, as has been discussed, this method is computationally expensive, and thus requires

optimisation for certain practical applications.

The profiling in Section 4.6 showed that the main bottleneck in performance for this

algorithm is in the degree computation, particularly in the QR column deletions. Therefore

this is where the focus should be when it comes to optimising this algorithm. However,

before the algorithm can be accelerated on a GPU, an understanding must be gained

on how to properly utilise such devices. The next chapter will therefore discuss parallel

programming, and how GPUs can be effectively utilised.



Chapter 5

Introduction to Parallel and GPU

Computing

The primary aim of this research is to find methods of optimising and accelerating the blind

image deconvolution algorithm presented by Winkler [1]. As was described in Chapter

4, the part of the algorithm with the highest computational expense is the QR column

deletions, as part of the degree computation of an AGCD of a set of pairs of polynomials.

QR methods of AGCD computation can involve large scale matrix operations, which

have the potential to take advantage of the massive parallelism available on GPU hardware.

This chapter will provide an introduction to GPU hardware, and the software that utilises

it, and explain the best practices for ensuring efficient use of the hardware.

Section 5.1 will give an overview of types of parallelism, and how these relate to specific

forms of hardware. Section 5.2 will give a more detailed description of the hardware and

software aspects of GPUs, and how they can be utilised effectively.

5.1 Parallel Computing and Accelerators

Parallel computing involves splitting the work that needs to be computed into jobs, which

can be run independently from each other. This means the computer can take advantage

of the availability of multiple processors, or multiple cores, to process work more quickly.

5.1.1 Data Parallel vs Task Parallel

Two key paradigms in parallel computing are task parallelism and data parallelism. Task

parallelism is the most common form of parallelism, and is found in the task management

of every modern operating system. Task parallelism relies on the work being split into

groups known as tasks, which can be completely unrelated to each other. The tasks are

then assigned to a processor, or a core within a processor, to be computed. This means

that unrelated tasks can be running at the same time. Multi-core CPUs are task parallel

processors.

75
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Data parallelism involves parallelism across data, running the same instructions on

many pieces of data simultaneously. This type of parallelism is well suited to GPUs,

where many cores can be utilised to process many data points simultaneously.

Parallel processors can be split into several categories. Three of these categories,

that describe the flexibility of the parallelism available, are simultaneous multi-threading

(SMT), single instruction multiple data (SIMD), and single instruction multiple threads

(SIMT). SMT is used to describe task parallelism, where operations run independently

across multiple processors, providing for the greatest amount of flexibility in operation.

SIMD is used to describe data parallelism, where the same operation is run across all

cores simultaneously, and different branches of the code can be run in sequence. SIMT

is a hybrid of these approaches, where each processor has multiple threads, which can

be swapped in and out, with the operations in each thread running in lockstep. While

SMT offers the greatest flexibility in programming, handling branching code well, SIMD

provides the greatest performance when the task is suited to it. Even though SIMT does

differ from SIMD, the best performance on a GPU can often be achieved by treating the

GPU as a SIMD device, and avoiding divergence [70].

5.1.2 Types of Parallel Coprocessors

In recent years there has been interest in using coprocessors in order to accelerate certain

computations, moving these computations off the main CPU of a computer and onto

specialist hardware. The most dominant forms of parallel coprocessors are GPUs, and

massively parallel CPU based accelerators, known as many integrated core (MIC), such

as the Intel Xeon Phi line of products.

The MIC products have many similarities to GPU technology, including dedicated

memory, and a combination of SMT and SIMD approaches. However, they have the

advantage of using the same x86 instruction set as the majority of desktop and server

CPUs. This makes their usage more flexible than GPUs, allowing for a greater level

of branching within the code, and often requiring fewer alterations to the code. GPU

technology, on the other hand, is more ubiquitous, as for many years they have been used

for computer graphics intensive processes, such as video gaming. This also means there

is a wide range of devices available at different budgets. The computational advantage a

particular type of accelerator provides is dependent on the situation in which it is placed,

though most situations where the MIC has advantage over the GPU this difference is slight

[71, 72].

Due to the ubiquity and maturity of GPUs, and their significant advantages when it

comes to data parallel programming problems, the GPU was selected as the means with

which to accelerate this algorithm. GPU hardware and technologies will be discussed in

detail in the next section.
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5.2 Introduction to GPU Hardware and GPGPU Concepts

This section will explain the basics of the structure of GPUs, and how the architecture

necessitates a different approach to algorithmic design and implementation.

While a CPU has a small number of powerful cores, a GPU has a larger number of

weaker, specialised cores. A typical modern CPU is likely to have between 4 and 16 cores,

while modern GPUs, even at a consumer level, can have over one thousand cores. These

cores are significantly less powerful than those in a CPU, but by utilising all the cores to

simultaneously perform cohesive operations, such as large matrix operations, significant

speedups can be achieved.

While finding enough parallelism to sufficiently occupy the device is a significant part of

GPU programming, this is not the only factor that should be considered. The architectural

structure of GPUs necessitates careful memory management and work distribution.

The GPU implementations presented in this thesis were all developed in NVIDIA’s

proprietary CUDA (Compute Unified Device Architecture) platform, written in the C

programming language. Therefore discussion about the techniques used in this section,

and the thesis as a whole, will be from this perspective. While there are other platforms

and libraries for GPGPU, such as the open source OpenCL, which works on a wider range

of GPUs, these generally lack many of the cutting edge features of CUDA, and do not

perform as well.

5.2.1 Grids, Blocks, Threads and Warps

Work is distributed across the cores of the GPUs at several levels [73, 74]. At the lowest

level are threads. Threads are organised into blocks, which in turn are organised into a

grid. When calling a GPU kernel the program must specify the number and size of blocks.

In modern GPUs blocks can have up to 1024 threads, with up to 2.815× 1014 blocks in a

grid. This hierarchy of grids, blocks, and threads is seen in Figure 5.1.

When distributing threads to cores, the GPU assigns groups of threads to a warp. A

warp is a group of 32 threads that will execute the same instruction simultaneously. When

the code branches, via an if statement, the branches will be executed sequentially, leaving

threads that are not entering that branch of code idling. It is due to this that branching

tends to be computationally expensive on GPUs, and it is best for threads that follow the

same branch to be processed in contiguous threads. Due to the warps being groups of 32

threads it is best for the block size to be a multiple of this, as otherwise cores will be left

idling.

5.2.2 Race Conditions and Synchronisation

Race conditions occur when one thread will modify a value that another thread needs to

read from, and order of operations is not enforced. Due to the uncertainty in order of

operations present in parallel computing this can cause issues. Threads inside a block can

be synchronised, meaning that all threads, or a subset of the threads, wait until they reach
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Figure 5.1: The hierachy of grids, blocks and threads

the same point. Additionally in newer GPUs using the Pascal and Volta architectures,

the entire grid can be synchronised [75]. Synchronisation, especially above block level, can

significantly impact performance, and should be kept to a minimum.

5.2.3 Memory Usage

While work performed on a CPU can use the main system memory (also known as host

memory) directly, a GPU requires any data to be processed to be stored in its own memory.

This section will discuss the various forms of GPU memory that are relevant to this thesis

[73, 76].

The main part of a GPUs memory is known as global memory. Transferring data

between host and global memory takes time, so the amount of data transferred should be

minimised. The amount of global memory varies between GPUs. Modern, high-end GPUs

typically have between 4GB and 24GB of global memory. While this memory makes up

the largest part of the GPUs dedicated memory it is also the slowest to access.

In addition to global memory, the GPU also has access to a small amount of shared

memory. Shared memory is significantly faster to access than global memory, but is very

limited. Modern GPUs have 48KB available. When shared memory is requested, every

block gets a portion of the shared memory, though requesting too much shared memory

can limit the number of blocks that can be processed simultaneously, due to the shared

memory limits. For example if a block required 25KB of shared memory only a single

block would be able to run at a time, as there is not enough shared memory to execute

two blocks simultaneously. Each block can only access memory locations for the portion



Chapter 5. Introduction to Parallel and GPU Computing 79

of shared memory allocated to it.

Finally, while not explicitly managed in the code, care must be taken with registers.

In larger, more complex kernels, it is possible for the GPU to run out of registers, which

are required for caching data while it is processed. If too many registers are requested by

the kernel the occupancy of the device can be limited, until eventually the kernel simply

cannot be executed. While the compiler manages what gets stored in registers, in complex

kernels unnecessary variables should be kept to a minimum. The user can specify the

maximum number of threads in a block, and the minimum number of blocks to be run on

each multi-processor, using the launch bounds arguments for the kernel [77]. These

parameters allow the number of registers required by the kernel to be limited. This can

affect the performance of the kernel, as more variables will be moved to memory rather

than stored in registers. The increased latency of storing these variables in memory can

often be offset by the increased occupancy. Due to this uncertainty, the optimal values for

these arguments may need to be found experimentally.

As well as being aware of the memory limitations, and the different types of memory,

it is also important to consider memory access patterns when developing algorithms for

GPUs. Due to the latency of reading from and writing to global memory, it is important

to make good use of the memory bandwidth. Modern GPUs, when retrieving data from

global memory, will access continuous sections of data of 128 bytes, and it is not possible to

extract multiple smaller segments instead of these continuous sections. This means that,

if the data needed by a warp is spread out between many data segments, the GPU will

have to read a significant amount more data than if all the data were grouped in a single

segment. It is therefore important for threads to access contiguous memory locations

where possible. This memory access is known as coalesced memory access. Failure to

access memory this way, with data spread across multiple segments of memory, is known

as strided memory access, and can result in significant slowdown of the program.

Figure 5.2 shows the difference between strided and coalesced memory access patterns.

In the strided example, the required memory locations are spread across two segments of

memory. In the coalesced example, this is all concentrated into a single segment. While

both examples require the same amount of data from memory, the strided access results in

twice the amount of data being retrieved. Note that there is only a stride of one between

required memory locations in this example. As the stride increases more data will be

required to be read.

When accessing shared memory, one needs to be aware of memory bank conflicts.

Shared memory is split into banks, with successive words within shared memory belonging

to different banks. When reading from shared memory complete words are retrieved. Bank

conflicts occur when threads from the same warp request different values from the same

bank in the same request. If this occurs then the data will be retrieved from that bank

sequentially, slowing down the entire warp. It is important to note that if the same word

is requested by multiple threads in the same warp, then the value will only be read once.

This value will then be broadcast to all threads. Additionally, given that the access latency
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Figure 5.2: The difference between strided and coalesced global memory access

for shared memory is significantly lower than that of global memory, it is often still better

to use shared memory, if bank conflicts cannot be avoided, than to use global memory.

Figure 5.3: Efficient shared memory usage

Figure 5.3 shows two efficient uses of shared memory. For the sake of clarity only 8 of

the 32 threads, and 8 of the 32 memory banks, have been shown. In the first diagram every

thread reads from a different memory bank, meaning all values can be read simultaneously.

The second diagram shows all threads reading from the same value from the same memory

bank. In this case the value will be read, and then broadcast to all threads, meaning that

the read is still performed efficiently.

Figure 5.4 shows two inefficient uses of shared memory. In both cases the threads

are reading from the same memory bank as other threads. This will lead to sequential

reads from memory. As data is not being retrieved from many of the memory banks this

results in a significant amount of unused bandwidth, and thus an increased runtime from

serialised memory accesses.
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Figure 5.4: Poor shared memory usage

5.2.4 Warp Shuffling

Warp shuffling is a technique introduced in the NVIDIA Kepler architecture [74, 78]. This

technique makes use of register swapping to allow threads to access registers of threads in

the same block. This helps to reduce memory latency, as threads can read directly from

these registers, rather than reading the values from memory.

One common usage of shuffle commands is in reduction algorithms, such as the prefix

sum. In these algorithms an iterative approach allows the registers of threads to be read

by the next thread in sequence, and allows for rapid amalgamation of data.

The main disadvantages of this technique are that many algorithms that make use of it

require a significant amount of shared memory, which could limit the number of blocks that

can be processed simultaneously. Additionally, registers can only be exchanged within the

same block, which means that reductions of data above the maximum block size, currently

1024, must be batched, or split across multiple blocks.

5.3 Conclusion

This chapter gave an overview of how GPUs work, and how they are best utilised. While

there is no existing research into accelerating the implementation of the computation of an

AGCD, it is possible to infer from the parallel QR implementations discussed in Chapter

3. The next chapter will discuss how the GPU can be effectively utilised to accelerate the

degree computation discussed in Chapter 4, implementing the parallel QR techniques seen

in Chapter 3.





Chapter 6

GPU Acceleration of the

Computation of the Degree of an

AGCD

The most computationally expensive part of the algorithm described in Chapter 4 is

the computation of the degree of an AGCD. Due to this computational expense, the

computation of the degree of the AGCD was the first part of the BID algorithm considered

for acceleration. This chapter will discuss optimisations and accelerations that can be

made to this algorithm.

As discussed in Chapter 3, the computation of the degree reduces to a rank estimation

problem, with the rank loss of the Sylvester matrix being equal to the degree of an AGCD.

The algorithm adapted for this research was that of Winkler and Hasan, in their 2012

paper [21]. In this paper, two methods for computation of the degree of an AGCD were

considered, using the QR decomposition and the SVD. This paper found that, while both

methods computed the degree accurately, the QR algorithm had significant advantages

with regards to computational complexity, due to algorithms providing an efficient method

with which to update a QR decomposition after alterations are made to the original matrix.

Thus the QR algorithm proposed by Winkler and Hasan is the approach that will be

investigated in this research.

Throughout this chapter, as this is primarily an algorithm for computing an AGCD of

polynomials, the degree of these polynomials will be discussed, as opposed to the width

of the image. The degree of a polynomial in the BID algorithm is equal to the length of

the row or column of pixels minus one.

Section 6.1 will describe the algorithm used to compute the degree of the AGCD. The

primary focus in this section will be on the computation of the upper triangular factors

of the subresultant matrices, as this is where the main algorithmic challenge lies. Section

6.2 presents an implementation of the algorithm described in Section 6.1. This section

will describe how all of the kernels of the GPU accelerated implementation were designed,

including pseudocode. Section 6.3 shows the results from this section, testing the algorithm
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for both reliability and runtime, and comparing it against CPU implementations. Section

6.4 highlights the issues that this implementation has, and suggests ways in which the

algorithm could be improved. Section 6.5 presents the tests that were performed on the

algorithm with the reduced number of subresultant matrices, as originally described in

Chapter 4.

6.1 Algorithm design

This section will discuss the design choices made when developing the algorithm to be

implemented on a GPU. While certain hardware constraints must be taken into consider-

ation to ensure the algorithm can perform efficiently on a GPU, the constraints considered

in this section will primarily be high level, with more intricate details regarding the imple-

mentation of the algorithm on the specific hardware discussed in Section 6.2. This section

will be split into two subsections. The first of these will focus on the algorithm for the

computation of the upper triangular factors of the subresultant matrices. The second will

focus on the two tests to compute the degree from the upper triangular factors, as was

discussed in Chapter 4.

6.1.1 Computation of the Upper Triangular Factor of the Subresultant

Matrices

The first step in computing the degree is the computation of the upper triangular factors

of the subresultant matrices, these being matrices R from the QR decomposition. As was

discussed in the profiling section of Chapter 4, computing these upper triangular matrices

involves a large number of QR updates. In Chapter 3 several methods of QR update were

investigated, and parallel implementations of these methods were discussed. In this section

a parallel algorithm will be investigated that can be applied on the GPU to accelerate the

computation of the upper triangular factors.

6.1.1.1 Update Method

Chapter 3 discussed various methods for updating the original orthogonal and upper tri-

angular matrices Q and R to reflect a column deletion from the original matrix A. Given

the numerical instability of the Gram-Schmidt algorithm, and the difficulty in applying

it to QR updates as is required here, the Gram-Schmidt algorithm shall not be further

considered for this implementation.

Therefore the choice of update method is between Givens rotations and Householder

reflections. As discussed in Chapter 4, in each iteration of the QR update algorithm two

non-contiguous columns are deleted from the Sylvester subresultant matrix Sk, to give

the subresultant matrix Sk+1. These subresultant matrices can be separated into their

orthogonal and upper triangular factors through QR decomposition such that Sk = QkRk.
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As was discussed in Chapter 4 the full decomposition of every subresultant matrix is

unnecessary, and instead QR updates can be used to compute from Rk from Rk−1.

For each triangular factor R2...n, the column removed from index m+ n− 2k + 2 (the

last column of the matrix) will require no update, as was described in chapter 3. Therefore

the only significant computations necessary will be the deletion of the column at m−k+1,

which will require an update on the last half of the remaining columns of the matrix.

Householder and Givens update algorithms can both be used in this instance, and both

result in the exact same computations for a QR update once the respective matrices have

been constructed. Due to this, the difference between the update methods is relatively

minor. Givens updates were selected due to the relative simplicity of constructing the

Givens matrix compared to the Householder matrix.

6.1.1.2 Parallel Pattern

The implementation described in this chapter utilises a modified version of the Sameh and

Kuck method, described in Chapter 3. Sameh and Kuck presented the first parallel pattern

for QR decomposition using Givens rotations in their 1978 paper [62]. This algorithm was

shown to provide speedups when implemented on a GPU in [63, 68, 64]. This section will

describe how this algorithm is similar to the iterative approach utilised in the computation

of the upper triangular factors of the subresultant matrices.

The Sameh and Kuck method presented in Chapter 3 was designed for the computation

of a full QR decomposition, whereas the implementation presented in this research will

involve a series of QR deletions. Thus the Sameh and Kuck algorithm needed to be

modified to suit the purposes of this algorithm.

To understand how the algorithm was modified, it is important to examine the oper-

ations that are required to be computed, and how they can fit together into one coherent

algorithm.

In this example, the upper triangular factor of the kth subresultant matrix Sk will be

denoted as Rk. Consider the upper triangular matrix R1 below,

R1 =



r1,1,1 r1,1,2 r1,1,3 r1,1,4 r1,1,5 r1,1,6 r1,1,7 r1,1,8 r1,1,9 r1,1,10

r1,2,2 r1,2,3 r1,2,4 r1,2,5 r1,2,6 r1,2,7 r1,2,8 r1,2,9 r1,2,10

r1,3,3 r1,3,4 r1,3,5 r1,3,6 r1,3,7 r1,3,8 r1,3,9 r1,3,10

r1,4,4 r1,4,5 r1,4,6 r1,4,7 r1,4,8 r1,4,9 r1,4,10

r1,5,5 r1,5,6 r1,5,7 r1,5,8 r1,5,9 r1,5,10

r1,6,6 r1,6,7 r1,6,8 r1,6,9 r1,6,10

r1,7,7 r1,7,8 r1,7,9 r1,7,10

r1,8,8 r1,8,9 r1,8,10

r1,9,9 r1,9,10

r1,10,10



.
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The computation of all matrices R2...n will be computed from this original upper tri-

angular matrix R1. To compute R2 from R1 the 5th and 10th columns will be deleted from

R1. The matrix with these columns removed, but not yet updated, will be referred to as

R̃2.

R̃2 =



r1,1,1 r1,1,2 r1,1,3 r1,1,4 r1,1,6 r1,1,7 r1,1,8 r1,1,9

r1,2,2 r1,2,3 r1,2,4 r1,2,6 r1,2,7 r1,2,8 r1,2,9

r1,3,3 r1,3,4 r1,3,6 r1,3,7 r1,3,8 r1,3,9

r1,4,4 r1,4,6 r1,4,7 r1,4,8 r1,4,9

r1,5,6 r1,5,7 r1,5,8 r1,5,9

r1,6,6 r1,6,7 r1,6,8 r1,6,9

r1,7,7 r1,7,8 r1,7,9

r1,8,8 r1,8,9

r1,9,9


.

Removing columns 4, 5, 9 and 10 from R1 gives the matrix R̃3

R̃3 =



r1,1,1 r1,1,2 r1,1,3 r1,1,6 r1,1,7 r1,1,8

r1,2,2 r1,2,3 r1,2,6 r1,2,7 r1,2,8

r1,3,3 r1,3,6 r1,3,7 r1,3,8

r1,4,6 r1,4,7 r1,4,8

r1,5,6 r1,5,7 r1,5,8

r1,6,6 r1,6,7 r1,6,8

r1,7,7 r1,7,8

r1,8,8


,

and continuing this pattern results in the last two matrices.

R̃4 =



r1,1,1 r1,1,2 r1,1,6 r1,1,7

r1,2,2 r1,2,6 r1,2,7

r1,3,6 r1,3,7

r1,4,6 r1,4,7

r1,5,6 r1,5,7

r1,6,6 r1,6,7

r1,7,7


, R̃5 =



r1,1,1 r1,1,6

r1,2,6

r1,3,6

r1,4,6

r1,5,6

r1,6,6


.

The first Givens rotation in every case will introduce a zero to the first column with

non-zero entries below the diagonal, using the last two non-zero entries in this column,

and the entire rows on which these entries reside. The aforementioned two entries are

used to construct the Givens matrix, which is then applied to the entirety of the two rows.

This process is described in detail in Chapter 3. Note that in all cases R2...5 the entries

required for this update are identical, these values being r1,5,6 and r1,6,6. This means that

the same rotation matrix will be applied to all of the upper triangular factors R̃2...5.

The submatrix on which the first rotation will be applied for R2 is shown below.
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Marked on this submatrix are the submatrices on which the first rotation must be applied

for R3, shown in red, R4, shown in blue, and R5, shown in green.

r1,5,6 r1,5,7 r1,5,8 r1,5,9
r1,6,6 r1,6,7 r1,6,8 r1,6,9

 
(6.1)

It is therefore apparent that in computing the first rotation for R2, the rotations for

R3...5 are also computed, and are contained in a submatrix of the result. In the second

iteration the rotations diverge. The rotation performed for R2 is independent, whereas

the result of the rotation for R3 will contain the results of the rotations for R4 and R5.

In the third iteration the rotations performed for R2 and R3 will be independent, and the

result of the rotation for R4 will contain the result for R5. In the final iteration all of the

rotations will be independent.

This can be seen as a modification of the Sameh and Kuck method by the order in

which these computations take place. In the matrices below, the symbol • represents a

value that is unchanged, and the symbol ∼ represents a non-zero value that has been

changed by the Givens rotations. The entries ic represent the zeros that are introduced by

each Givens rotation, in a similar way to that shown when describing the Sameh and Kuck

method in Chapter 3. In these entries i is the iteration in which the rotation occurs, and c

represents the specific computation within that iteration. Note that in each computation

ic, the first matrix in which each unique computation occurs requires the full result, with

the subsequent matrices using a submatrix of this result as is shown in Equation 6.1.

R̃2 =



• • • • • • • •
• • • • • • •
• • • • • •
• • • • •
∼ ∼ ∼ ∼
11 ∼ ∼ ∼

21 ∼ ∼
31 ∼

41


, R̃3 =



• • • • • •
• • • • •
• • • •
∼ ∼ ∼
22 ∼ ∼
11 32 ∼

21 42

31


,

R̃4 =



• • • •
• • •
∼ ∼
33 ∼
22 43

11 32

21


, R̃5 =



• •
∼
44

33

22

11


.

Many duplicates can be seen for the computations, with the last non-zero diagonal in
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all matrices performing similar computations to those present the last diagonal of matrix

R̃2. The results for each of the matrices R̃3...5 being a submatrix of the result for R̃2. The

computations on the second to last diagonals of R̃4 and R̃5 are the same as those on the

second to last diagonal of R̃3. The same is true of the third to last diagonals of R̃4 and

R̃5, and the only unique computations are those where i = 4, which is the final iteration.

These identical operations mean that simultaneously processing all of the deletions for all

of the matrices would be computationally wasteful. Instead an iterative scheme where

values are copied from partially completed matrices would be more efficient.

Figure 6.1 gives an overview of this algorithm. In iteration 1 of this algorithm a single

Givens rotation is computed, that being computation 11 using the notation from the

matrices shown above. Values from this operation can then be used in both of the Givens

rotations in the second iteration. In the third iteration values can be copied from the

rotations in the previous iterations and passed on to the matrix Rk+1. This can continue

until all values are computed.

Example

This example uses the vectors f and g defined below. These vectors represent the coef-

ficients of polynomials with an AGCD of degree 2. These were formed by randomly

generating vectors of length 4 to represent the coefficients of polynomials of degree 3, and

another vector of length 3 represents a GCD of degree 2. The vectors representing the

polynomial coefficients were convolved with the GCD, and random noise was added to

ensure the polynomials represented by these vectors are coprime.

f = [0.2859, 0.0643, 0.4355, 0.2200, 0.5833, 0.1864, 0.2441],

g = [0.0003, 0.1959, 0.2221, 0.3568, 0.4812, 0.1926, 0.2054].

Forming a Sylvester matrix with these vectors, and computing the upper triangular

factor through QR decomposition, gives the 12× 12 upper triangular matrix R1 shown in

Matrix 1. This will be used to compute the upper triangular factors of S2...n.

For each triangular matrix Rk, only entries in the lower right section of this matrix,

containing the last n rows of the last n columns, will have changed from those in R1.

The submatrices consisting of this lower right section will be denoted as Řk. While these

matrices are incomplete they will be represented as Řk,i where i represents the iteration.

The last n rows of the last n columns of R1 will be copied to form the submatrix Ř1,

Ř1 =



0.3095 0.7416 −0.6115 −0.2081 −5.6988 −12.9799

0 0.6583 0.7763 −0.1310 −3.0065 −14.0045

0 0 0.2002 0.2093 −1.0077 0.1921

0 0 0 0.9568 −0.9891 −2.7582

0 0 0 0 −0.0002 0.0005

0 0 0 0 0 0.0002


.
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Iteration 1

The first iteration will compute the first Givens rotation for Ř2. To preform this rotation

rows must be extracted from R1 and Ř1. While it would be possible to extract both of these

rows from R1, as Ř1 is a submatrix of R1, it is useful to keep the pattern of extractions

consistent throughout the algorithm. The matrices on which the Givens rotations will be

performed will be denoted as Mk,i, where i is the number of the iteration in which that

matrix is relevant. In this case, the first row of M2,1 will be taken from the 6th row of R1,

from column 7 to column 11. The second row will be taken from the entries of the top

row of Ř1, excluding the last entry.

M2,1 =

[
0.9422 −0.1825 −0.0545 −6.5186 −18.1315

0.3095 0.7416 −0.6115 −0.2081 −5.6988

]
.

Performing a Givens rotation on this matrix will provide the first row of the first

updated factor Ř2, and provisional values for the second row. Provisional values will be

denoted as ṙ, whereas values yet to be computed will be denoted as ·.

Ř2,1 =


0.9917 0.0580 −0.2426 −6.2580 −19.0044

0 ˙0.7616 ˙−0.5640 ˙1.8365 ˙0.2441

0 0 · · ·
0 0 0 · ·
0 0 0 0 ·

 .

Iteration 2

In the second iteration the algorithm will continue processing the rows of Ř2, and thus

the matrix M2,2 on which to apply the givens rotation must be constructed. The first row

of M2,2 will consist of the provisional entries for Ř2 computed in the last iteration, that

being row 2 of Ř2,1. The second row of M1,2 will be extracted from the values on row 2 of

Ř1.

M2,2 =

[
0.7616 −0.5640 1.8365 0.2441

0.6583 0.7763 −0.1310 −3.0065

]
.

A Givens rotation is performed on M2,2, and the values substituted back in to Ř2,1 to

give Ř2,2.

Ř2,2 =


0.9917 0.0580 −0.2426 −6.2580 −19.0044

0 1.0067 0.0810 1.3037 −1.7815

0 0 ˙0.9562 ˙−1.3001 ˙−2.4341

0 0 0 · ·
0 0 0 0 ·

 .

In the previous iteration final values were computed for the first row of Ř2, and thus all
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Figure 6.1: The structure of the matrix computations in this algorithm
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Matrix 1: The matrix R1 for use in the example in Section 6.1.1.2
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values required for the first Givens rotation of Ř3 are now available. The first computation

of Ř3 can therefore be run in parallel with those for Ř2 in this iteration. The matrix M3,2

is constructed using row 5 from the original matrix R1, and the first row of Ř2,1, the final

entries of which were computed in the last iteration.

M3,2 =

[
−0.1825 −0.0545 −6.5190 −18.1331

0.9917 0.0580 −0.2426 −6.2580

]
.

Performing a Givens rotation on M3,2 gives the final values for the first row of Ř3 and

provisional values for the second row.

Ř3,2 =


1.0084 0.0669 0.9412 −2.8729

0 ˙0.0431 ˙6.4553 ˙18.9662

0 0 · ·
0 0 0 ·

 .

Iteration 3

In the third iteration enough values have been computed to perform three Givens rotations

simultaneously, continuing the computation of Ř2 and Ř3, and starting the computation

of Ř4.

The values necessary for the next rotation of Ř2 are retrieved from row 3 of Ř1, and

the preliminary values from Ř2,2, in the same pattern as in the previous iterations.

M2,3 =

[
0.9562 −1.3001 −2.4341

0.2002 0.2093 −1.0077

]
.

A Givens rotation is performed on M2,3, and the result is inserted into Ř2,2 to give

Ř2,3,

Ř2,3 =


0.9917 0.0580 −0.2426 −6.2580 −19.0044

0 1.0067 0.0810 1.3037 −1.7815

0 0 0.9769 −1.2296 −2.5889

0 0 0 ˙0.4713 ˙−0.4876

0 0 0 0 ·

 .

M3,3 is constructed by using the preliminary values from the first row of Ř3,2 and from

the final values computed in iteration 2 from the second row of Ř2,2,

M3,3 =

[
0.0431 6.4553 18.9662

1.0067 0.0810 1.3037

]
.

The result of the Givens rotation on M3,3 is inserted into Ř3,2 to give Ř3,3,
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Ř3,3 =


1.0084 0.0669 0.9412 −2.8729

0 1.0076 0.3572 2.1142

0 0 ˙−6.4459 ˙−18.8931

0 0 0 ·

 .
As the first values have been computed for Ř3 in the previous iteration, computation

can start on Ř4. As with the first computations for Ř2 and Ř3, the upper row of M4,3

must be extracted from the original matrix R1, this time from the 4th row, and the second

row will be taken from the final values from Ř3,2.

M4,3 =

[
−0.0545 −6.5197 −18.1358

1.0084 0.0669 0.9412

]
.

The Givens rotation is performed and the result is used to start the construction of

Ř4 with the matrix Ř4,3 shown below.

Ř4,3 =

1.0098 0.4185 1.9182

0 ˙6.5066 ˙18.0587

0 0 ·

 .
Iteration 4

In this iteration, computation continues in the same pattern for R2...4, and a rotation can

be performed for Ř5.

As with previous iterations, matrices are constructed for k = 2 . . . i. In each case the

preliminary values from Řk,i−1 are used for the first row, and the final values from Řk−1,i−1

are used for the second row.

M2,4 =

[
0.4713 −0.4876

0.9568 −0.9891

]
,

M3,4 =

[
−6.4459 −18.8931

0.9769 −1.2296

]
,

M4,4 =

[
6.5066 18.0587

1.0076 0.3572

]
.

The exception to this is M5,4, as no provisional entries have been computed for R5 at

this point. M5,4 will use values from the third row of R1 for the first row, and the first

row of Ř4,3 will be used for the second row,

M5,4 =

[
−6.5197 −18.1357

1.0098 0.4185

]
.

A Givens rotation is performed on each of these matrices, and the values inserted into
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Řk,3 to give the matrices Řk,4.

Ř2,4 =


0.9917 0.0580 −0.2426 −6.2580 −19.0044

0 1.0067 0.0810 1.3037 −1.7815

0 0 0.9769 −1.2296 −2.5889

0 0 0 1.0666 −1.1027

0 0 0 0 ˙0.0004

 ,

Ř3,4 =


1.0084 0.0669 0.9412 −2.8729

0 1.0076 0.3572 2.1142

0 0 6.5195 18.4955

0 0 0 ˙4.0467

 ,

Ř4,4 =

1.0098 0.4185 1.9182

0 6.5841 17.9006

0 0 ˙−2.4106

 ,

Ř5,4 =

[
6.5974 17.9861

0 ˙2.3623

]
.

Iteration 5

In the final iteration the last entry will be computed for each triangular factor, including

the only entry of Ř6.

The matrices Mk,5 are constructed using the same method as previous iterations.

M2,5 =

[
0.0004

−0.0002

]
,

M3,5 =

[
4.0467

1.0666

]
,

M4,5 =

[
−2.4106

6.5195

]
,

M5,5 =

[
2.3623

6.5841

]
,

M6,5 =

[
−18.6954

6.5974

]
.

Givens rotations are performed on the matrices above to give the final entry for the

last row of each triangular matrix, leaving the final forms for all the triangular factors of

the subresultant matrices.
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Ř2 =


0.9917 0.0580 −0.2426 −6.2580 −19.0044

0 1.0067 0.0810 1.3037 −1.7815

0 0 0.9769 −1.2296 −2.5889

0 0 0 1.0666 −1.1027

0 0 0 0 0.0004

 ,

Ř3 =


1.0084 0.0669 0.9412 −2.8729

0 1.0076 0.3572 2.1142

0 0 6.5195 18.4955

0 0 0 4.1849

 ,

Ř4 =

1.0098 0.4185 1.9182

0 6.5841 17.9006

0 0 6.9509

 ,
Ř5 =

[
6.5974 17.9861

0 6.9950

]
,

Ř6 =
[
19.8253

]
.

6.1.2 Computation of Rank and Degree Estimation

While the computation of the upper triangular factors of the subresultant matrices re-

quires a detailed algorithmic design in order to maximise the amount of parallelism, the

parallelism potential of the tests used to estimate the degree of the AGCD described in

Chapter 4 is more apparent.

The most computationally expensive part of these tests is that of the squaring and

summation of all entries of the rows of every matrix to compute the row norms. This

is a reduction algorithm, and can be performed efficiently in parallel with methods such

as the warp shuffle prefix sum described in Chapter 5. The sums of all the rows of all

the matrices can be computed simultaneously, and thus there is a significant amount of

parallel potential.

Compared to the computation of the row norms, the computation of the minimum and

maximum diagonal entries, and the minimum and maximum of the computed row norms,

is relatively trivial. This could also be parallelised as a reduction algorithm, and again

the computations on different triangular matrices can be performed simultaneously.

As the parallel potential of these algorithms is more apparent, these computations

present more of an implementation problem than an algorithmic problem. Therefore the

detail of how this section is implemented will be discussed in Section 6.2.3.
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6.2 Implementation

This section will discuss the implementation of the algorithm presented in Section 6.1,

starting with a discussion of how all of the subresultant matrices can be stored efficiently.

This is necessary in order to make good use of the limited GPU memory. The imple-

mentation of an algorithm on a GPU is approached as a iterative process of development,

profiling and optimisation. To reflect this, the implementation will be discussed in terms

of an initial implementation, and improvements that were made to the initial implementa-

tion, to achieve a final optimised version. While the profiling that took place at each stage

of optimisation will not be discussed, the profiling performed on the final implementation

will be presented at the end of this section.

6.2.1 Efficient Storage of Upper Triangular Matrices

As discussed in Chapter 5, one of the challenges of implementing algorithms on a GPU is

ensuring efficient utilisation of the device memory. It is therefore important to minimise

the amount of memory each matrix takes up on the GPU. As the matrices being used

have a predictable shape, with only zeros below the diagonal, the easiest way to minimise

this footprint is to not store these zeros. Instead, each triangular matrix should be stored

as a vector, with the zeros removed.

Additionally, as discussed in Chapter 3, when performing a QR column deletion only

the entries on or below the principal diagonal at the point where the column is removed

will change. This can be seen in Figure 6.1 where only values in the lower n−k−1 rows of

each triangular factor have Givens rotations performed on them. While the entries above

this point are still necessary for the computation of the rank, and thus the computation

of the degree, the values of these entries can simply be extracted from the original upper

triangular matrices when necessary.

Due to the method of storing triangular matrices, an efficient method of referencing

the indices of these matrices is required. Therefore the mathematics of triangular num-

bers arises several times. The following sections will define the formulae for computing

triangular numbers themselves, and the triangular root.

6.2.1.1 Triangular Numbers to Compute Matrix Indices

Triangular numbers can be used to provide the size of an efficiently stored upper triangular

matrix, and are therefore useful at various stages of this algorithm. It is therefore necessary

to gain an understanding of the mathematics of triangular numbers to understand how

the efficiently stored matrices are utilised.

A triangular number tn is the count of objects arranged into an equilateral triangle,

with n elements on each side [79].

Figure 6.2 shows the first 6 triangular numbers, and how the width n relates to the

number of elements tn. From this it is easy to see the application in referencing indices

of triangular matrices, where the non-zero elements are not stored. An upper triangular
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t1 = 1 t2 = 3 t3 = 6 t4 = 10 t5 = 15 t6 = 21

Figure 6.2: Diagram showing the progression of triangular numbers

matrix with n columns will have tn non-zero elements. This can be seen in matrices M1...6

below. Each of these matrices Mn has n columns, with tn non-zero elements, similar to

Figure 6.2.

M1 =
[
•
]
,M2 =

[
• •
0 •

]
,M3 =

• • •0 • •
0 0 •

 ,M4 =


• • • •
0 • • •
0 0 • •
0 0 0 •

 ,

M5 =


• • • • •
0 • • • •
0 0 • • •
0 0 0 • •
0 0 0 0 •

 ,M6 =



• • • • • •
0 • • • • •
0 0 • • • •
0 0 0 • • •
0 0 0 0 • •
0 0 0 0 0 •


.

Thus the computation of triangular numbers is the count of the number of elements

above the diagonal in a square matrix.

Tn = n+ (n− 1) + (n− 2) + (n− 3) . . . 1

=
n(n+ 1)

2
.

Triangular numbers can also provide the indices for a row in an efficiently stored upper

triangular matrix. Given an n× n upper triangular matrix, the index of the ith row can

be computed with Tn − Tn−(i−1).
Take for example upper triangular matrix M6 below. The non-zero entries of this

matrix are denoted by their index within the efficiently stored vector form of the triangular

matrix, starting at 0.
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M6 =



0 1 2 3 4 5

6 7 8 9 10

11 12 13 14

15 16 17

18 19

20


.

Consider the computation of the index of the start of the 4th row of M6. In this case

n = 6 and i = 4.

T6 =
6× 7

2
= 21,

T6−(4−1) = T3 =
3× 4

2
= 6.

Thus with the two triangular numbers computed the index of this row can be computed.

T6 − T3 = 15.

As can be seen in M6, the first entry on the 4th row is at the 15th index, therefore the

correct index has been computed.

6.2.1.2 Triangular Roots

It is sometimes necessary to determine what row a given index within the efficiently stored

matrix is on, or to identify if the index is located at one of the ends of its row. As was

described in Section 6.2.1.1, triangular numbers can be used to find the index of a row.

The inverse of this can be computed with a triangular root [80], where n must be computed

from Tn.

The triangular root of an arbitrary integer a can be computed using the formula from

[80]

n =

√
8a+ 1− 1

2
.

If this formula results in an integer the number is triangular. The floor of the result

from this computation can be used to find the row on which an index lies.

It is also possible to check whether an arbitrary number a is triangular or not, and

thus whether it lies at the end of a row. If, and only if, 8a + 1 is square then a − 1 is a

triangular number.

6.2.2 Computation of the Upper Triangular Factors

Section 6.1.1 discussed where parallelisation can be found within the process of computing

all upper triangular factors of the subresultant matrices. The algorithm discussed in that
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section provides a significant amount of parallelisation, which makes it suitable to be

implemented on a GPU. This section will detail how the algorithm was implemented on a

GPU, and challenges that were overcome to this end.

6.2.2.1 Initial Implementation

As with many complex CUDA implementations, the first step is to get a simple, non-

optimal, version of the algorithm working on a GPU. Thus the initial implementation did

not account for efficient memory access patterns, and did not use any load balancing or

advanced techniques. Therefore this initial implementation was not expected to perform

well, and instead just served as a starting point on which to improve through an iterative

process of optimisation.

A basic kernel was developed that took the original upper triangular matrix R1 and

distributed the columns of the matrix product of each Givens rotation across threads in a

block, with different blocks processing different trials. Due to the lack of load balancing

and work distribution, this meant that the original implementation was limited to images

with a width of 1024, the maximum size of a block. Additionally, every thread recomputed

the entries of the relevant Givens matrix, leading to a lot of unnecessary computation. The

memory access pattern also had problems with strided memory access, which was the cause

of the most significant slowdown in the original implementation.

As mentioned previously, a significant part of implementing any algorithm on a GPU

is that of optimisation. This is an iterative process of profiling, identifying bottlenecks

in performance, and addressing those bottlenecks. The following sections will detail some

of the changes made through this process of iterative optimisation to reach a final imple-

mentation that was thoroughly tested to check its reliability and runtime.

6.2.2.2 Load Balancing

Processing of triangular matrices can lead to inherently unbalanced algorithms, as the

number of non-zero elements is different on each row. This presents a significant problem

when processing these matrices on a GPU, where the number of blocks and threads alloc-

ated to a task is decided before compilation and, unless dynamic parallelism is used by

nesting kernel calls, does not change while the kernel is executing. Dynamic parallelism

was decided to not be a good fit for this problem, as the number of nested kernel calls

that would be required would lead to a large amount of overhead. Instead, a novel load

balancing technique was used.

The aim of the load balancing technique is to minimise the amount of time that threads

spend idling, to ensure that the work can be done in as few iterations as possible. This

technique assigns all units of work a unique work index, and batches the work such that

all batches, except for the final batch, will have no idle threads. As discussed in Section

6.2.2.3 the computations should be arranged so that operations on the same matrix occur

in sequential threads.



100

1 // n is the degree of the polynomials
2 // i is the iteration of the algorithm
3
4 numPerMatrix← (n/2)-i
5 totalWork← i*numPerMatrix
6 batches← ceil(totalWork / blockSize)
7
8 for batch← 0 to batches
9 workUnit← blockSize * batch + threadID

10 if (workUnit < totalWork)
11 matrixIndex← workUnit % numPerMatrix
12 columnIndex← workUnit / numPerMatrix
13 //DO WORK

Listing 1: Pseudocode showing the computation of the work index and how the load
balancing is executed

Listing 1 shows the pseudocode for performing this load balancing technique. Lines

4-6 show the initial set up, where the width of the matrix product for each matrix is

computed, as well as the total work, and how many batches to split the work in to. Line

9 shows how the work unit index is computed, and Line 10 performs a check to ensure

no processing is done for the work units beyond the total amount of work. Finally, Lines

11-13 show the work for each index taking place.

Figure 6.3 shows how work is distributed, both before and after the load balancing,

when processing a Sylvester matrix of width 18. Note that when using the load balancing

technique the only idle threads that occur are those in the final iteration. By utilising

threads that would otherwise be idle, the load balancing technique allows the algorithm

to better utilise the device, and complete the computation in fewer iterations.

6.2.2.3 Avoiding Strided Memory

Strided memory, as discussed in Chapter 5, is where threads in the same warp access data

in non-adjacent memory locations. This results in the necessary data reads being spread

across multiple memory units, which is sub-optimal as it means that memory bandwidth

will be wasted extracting unnecessary data, and more overall memory accesses are required.

It is therefore important that memory access, wherever possible, is coalesced.

In the initial implementation, memory access was strided, as contiguous threads worked

on different values for k, and thus different triangular matrices. The original method was

developed this way to make it simpler to compute the entries of the Givens matrices inside

the main loop of the program without repeating this computation, and without leading to

an unbalanced workload. However, this caused the memory access of the matrix product

computations, for which the majority of the memory accesses take place, to be strided.

Section 6.2.2.2 describes a method of load balancing the algorithm, the matrix index

and column index in Listing 1 shows the method for computing the indices for performing

the matrix product computations in a coalesced form. This does however raise the issue of

where to compute the entries of the Givens matrices. Initially these were just performed

when they were needed by every thread, but to avoid unnecessary work the Givens matrices
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Figure 6.3: Diagram demonstrating how work is balanced before and after load balancing
is applied

were instead computed in the first n work units of every iteration. While this does increase

the amount of pointer arithmetic needed, as work units will need different rows for the

computation of the Givens matrices, it also reduces the overall number of operations while

still maintaining the balance of the implementation. This can be seen in Listing 2.

6.2.2.4 Batching

As discussed in Chapter 5, GPUs have their own dedicated memory. Unfortunately, given

this memory is limited, this can place limitations on the amount of data that can be pro-

cessed in a single kernel call in this implementation. When the degrees of the polynomials

being processed are sufficiently large it is no longer possible to process all trials in the

same kernel call, and instead they must be copied to the GPU in batches. When the

polynomials to be processed reach a certain degree they will not be able to be processed

at all by this implementation of the algorithm, as there will not be enough memory on

the device to process even a single trial.

Figure 6.4 shows how the device memory used by this implementation of the algorithm

scales for a single trial with increasing polynomial degrees. Three well known models of

NVIDIA GPU are listed, along with their memory capacity. These GPUs are marked

on the curve at the maximum degree of polynomial that they can process, assuming the

polynomial degrees are equal. These degrees are only theoretical maximums, as actual
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Figure 6.4: Graph showing theoretical GPU memory usage of computing a single trial of
an AGCD computation on the GPU

GPU memory available will potentially be lower. This is due to memory overheads intro-

duced by programs such as Matlab. The curve is cubic, which could be problematic if

the algorithm is required to process polynomials of high degree, or use a limited amount

of GPU memory. This problem will be discussed further and addressed in Chapter 7.

6.2.2.5 Final Implementation

The preceding sections described how the initial implementation was improved in various

ways. The pseudocode for the final implementation of the computation of Ř2...n is provided

in Listing 2, and a brief overview of the code will be provided in this section. While in the

rest of this thesis the value of k, the index of the subresultant matrices, starts at 1, with

R1 being the upper triangular factor of the Sylvester matrix, in the pseudocode the value

of k starts at 0. While not standard notation this change makes indexing the matrices in

the code more concise and legible.

The kernel in Listing 2 computes one set of triangular factors per block, with different

trials being computed in different blocks. The outer loop drives the iterative nature of

the algorithm. As this counter increases, the implementation moves through the steps

described in Section 6.2.2.2. This gives each thread in every batch a unique index, which

can be used to perform the computation for the corresponding operation. Once the work

unit index has been computed, the main body of the implementation can be broken down

into two parts. Firstly the computation of the Givens matrices for this iteration, and

secondly performing the Givens rotations with the computed Givens matrices.

The Givens matrices are computed first, on lines 18 to 30, to avoid unnecessary recom-

putation during the matrix products. This is performed in the first batch when the block
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width is greater than or equal to n, but will overflow when this is not the case. Contiguous

work units are used to compute the entries of Givens matrices for contiguous values of k.

A check is made on line 18 so that only the correct number of threads are used to

compute the entries of the Givens matrices. This ensures that in the first iteration only

a single Givens rotation is computed, while the other threads idle, but this increases on

each iteration. When the number of threads in the block is less than the number of Givens

matrices that need to be computed, this process must be batched. This occurs in the same

loop as the processing of the Givens rotations. Because the Givens matrix computation

and the rotations are performed in the same order, this means that there will never be a

computation where the Givens matrix is required before the batch that computes it.

The values that make up each Givens matrix are stored in an array of structures in

shared memory. Threads must be synchronised after this section to avoid any rotations

being computed before the relevant Givens matrices are computed.

The second part of the main body, where the Givens rotation is performed, splits the

work into columns. This happens on lines 34 to 50. Each work unit processes a single

column of the matrix product, and stores this in the memory structure of the respective

triangular factor. Again, threads must be synchronised after this computation to prevent

race conditions.

An important part of both the computation of the Givens matrices and computation of

the matrix product is finding the correct rows from which to extract the values, as shown

in lines 22 to 26 and 42 to 46. This is due to the method in which the triangular factors

are stored, as described in Section 6.2.1. Each matrix on which the Givens rotations are

applied consists of two rows. The first row to be retrieved differs depending on whether

there has been a previous rotation for Rk. When pass = k the first row of this matrix will

be extracted from the original upper triangular matrix R1. When pass > k then the first

row will be retrieved from the preliminary values in the preceding iteration, which will

have been stored in the memory locations for Rk. The second row will always be retrieved

from the final values computed in the preceding iteration that are stored in Rk−1.

6.2.3 Estimating the Degree

As discussed in Section 6.1.2, the implementation of the degree estimation, through the

two tests described in Chapter 4, is primarily an implementation problem. This section

will discuss the implementation of these algorithms. Much of the challenge of this imple-

mentation comes from the storage method that was selected for the triangular matrices,

as was discussed in Section 6.2.1.

Each factor of the subresultant matrices Rk will be considered as an upper section R̂k,

consisting of the first m rows, and a lower section Řk, consisting of the last n rows. The

previous section considered the computation of the matrices Ř2...n, and these are stored

in their own memory structures. The entries of the upper section of each factor, R̂2...n,

therefore need to be extracted from entries of the upper m rows of the original factor

R1. The submatrices Řk and R̂k therefore require very different access patterns for the
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1 // m is the degree of the larger polynomial
2 // n is the degree of the smaller polynomial
3 // R1 is the original R matrix for this block stored in upper triangular form
4 // Mats is an array of arrays where the triangular form of the lower right quarter
5 // of all upper triangular factors of the subresultant matrices for this block
6 // will be stored
7 // G_SM is an array of structures containing the Givens values c and s stored in
8 // shared memory
9

10 gpu_parallel_for threadID← 0 to blockWidth
11 for pass← 0 to n
12 totalWork← pass * (n - pass)
13 numBatches← ceil(totalWork / blockWidth)
14 for batch← 0 to numBatches
15 wu← blockWidth * batch + threadID
16
17 //Calculate Givens values
18 if (wu < pass)
19 k← wu + 1
20 rowIndex← pass-k
21
22 if (rowIndex = 0)
23 val1← R1[trangle(2*n) - triangle(n-k) + k]
24 else
25 val1← Mats[k][triangle(n-k) - triangle(n-k-rowIndex)]
26 val2← Mats[k-1][triangle(n-(k-1)) - triangle(n-(k-1)-rowIndex)]
27
28 na← sqrt(val1*val1 + val2*val2)
29 G_SM[wu].c← val1/na
30 G_SM[wu].s← val2/na
31
32 synchroniseThreads
33
34 //Perform Givens rotations
35 if (wu < totalWork)
36 k← wu / (n - pass) + 1
37 i← wu % (n - pass)
38
39 rowIndex← pass-k
40 rowWidth← n/2-k
41
42 if (rowIndex = 0)
43 val1← R1[triangle(2*n) - triangle(n-k) + k + i]
44 else
45 val1← Mats[k][triangle(n-k) - triangle(n-k-rowIndex) + i]
46 val2← Mats[k-1][triangle(n-(k-1)) - triangle(n-(k-1)-rowIndex) + i]
47
48 Mats[k][triangle(n-k)-triangle(n-k-(rowIndex))]←

val1*G_SM[k-1].c + val2*G_SM[k-1].s
49 if (rowIndex < rowWidth-1) and (i != 0)
50 Mats[k][triangle(n-k)-triangle(n-k-(rowIndex+1))]←

val1*-G_SM[k-1].-s + val2*G_SM[k-1].c
51
52 synchroniseThreads

Listing 2: Pseudocode for computing the triangular factor of the subresultant matrices
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computation of the row norms, and thus it is best to split this section into multiple kernels.

Due to the simplicity of the task, the computation of the minimum and maximum

values of the diagonals, and the corresponding ratio, can occur in a single kernel. The

computation of the upper and lower row norms will be split into two kernels, as there is

greater complexity in these computations. The computation of the minimum and max-

imum norms, and the corresponding ratio, occurs in a separate kernel. The gradients

for both sets of ratios can then be computed in another kernel. Once gradients have

been computed the minimum gradient will simply be found on the CPU. As the kernels

presented in this section are relatively simple implementations, when compared to the

computation of the upper triangular factors of the subresultant matrices, they required

less optimisation. Therefore the sections describing these kernels will simply discuss the

final implementations.

6.2.3.1 Computing the Diagonal Ratios

A simple kernel was designed to compute the minimum and maximum diagonals for both

the upper and lower sections of each triangular factor. While the presented approach is not

optimal, the runtime is not particularly significant when compared to other sections of the

implementation. Therefore it was not considered high priority for further optimisation.

The pseudocode for this kernel is shown in Listing 3. This kernel uses a single block

to process each trial, with blocks processing multiple trials simultaneously.

The kernel uses the same load balancing method described in Section 6.2.2.2, with

the work units representing different values of k, thus parallelising the values of k across

threads.

At the start of each iteration the first thread extracts the first entry of the row with row

index equal to the iteration number, and stores it in shared memory for efficient access.

This requires the threads to be synchronised before and after. This is seen on lines 21 to

26.

Following a check on line 28 to make sure the index of the work unit has not passed

the end of the matrix, each thread, of index k, then compares an entry on the diagonal of

Rk, and the value retrieved from the diagonal of the R1, against the stored minimum and

maximum for the respective value of k. This is shown on lines 32 to 41.

Once the end of the main loop has been reached, the values of the minimum and

maximum diagonals for each matrix Rk will have been computed. The ratios must now

be computed, which is performed in the next loop. This is a simple case of batching and

parallelising the ratio computations across threads as seen on lines 45 to 48.

6.2.3.2 Computing the Minimum and Maximum Squared Row Norms of R̂k

One of the tests described in Chapter 4 used the ratio of the row norms of the upper

triangular factors of the subresultant matrices. To compute the 2-norm, as is used here,

all values must be squared, summed, and the square root of this sum must be computed.
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1 // mats is the array of triangular factors of the subresultant matrices
2 // for this block
3 // r1 is the original upper triangular factor
4 // tempLower is the diagonal value extracted from the original upper
5 // triangular factor, stored in shared memory
6 // sharedMin is an array of current minimum values found for all
7 // triangular factors, stored in shared memory
8 // sharedMax is an array of current maximum values found for all
9 // triangular factors, stored in shared memory

10 // diagRatios is an array to store the diagonal ratios of all triangular
11 // factors
12 // triRowIndex(width, row) is a function that returns the row index of an
13 // upper triangular matrix with specified width
14
15 gpu_parallel_for idx← 0 to blockSize
16 for pass← 0 to n
17 totalWork← n-pass
18 for batch← 0 to ceil(totalWork / blockWidth)
19 wu← batch * blockWidth + threadID
20
21 synchroniseThreads
22
23 if wu = 0
24 tempUpper← abs(r1[triRowIndex(n*2, pass)])
25
26 synchroniseThreads
27
28 if wu<totalWork
29 mat← mats[wu]
30 temp← abs(mat[triRowIndex(n-wu, wu)])
31
32 if pass = 0
33 sharedMin[wu]← temp
34 sharedMax[wu]← temp
35 else
36 sharedMin[wu]← min(temp,sharedMin[wu])
37 sharedMax[wu]← max(temp,sharedMax[wu])
38
39 if wu ≥ pass
40 sharedMin[wu]← min(tempUpper,sharedMin[wu])
41 sharedMax[wu]← max(tempUpper,sharedMax[wu])
42
43 synchroniseThreads
44
45 for batch← 0 to < ceil(halfN / blockWidth)
46 wu← batch * blockWidth + threadID
47 if wu < halfN
48 diagRatios[wu]← sharedMax[wu] / sharedMin[wu]

Listing 3: Pseudocode for computing the ratio of diagonal values for all upper triangular
factors of the subresultant matrices
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However, as the maximum and minimum entries are required to be found for all triangular

factors, the square root can occur after the maximum and minimum values have been

identified. Leaving the computation of the square root until the relevant values are found

leads to a more efficient algorithm, as fewer operations are required. Therefore this kernel,

and its equivalent for the matrices Řk, will compute the squared row norms, rather than

the row norms.

The kernel for the computation of the squared row norms of Řk will compute this from

the original upper triangular factor R1. All the values that are required are in the upper

half of this matrix R̂1, shown below.

R̂1 =


r1,1,1 r1,1,2 r1,1,3 r1,1,4 r1,1,5 r1,1,6 r1,1,7 r1,1,8 r1,1,9 r1,1,10

r1,2,2 r1,2,3 r1,2,4 r1,2,5 r1,2,6 r1,2,7 r1,2,8 r1,2,9 r1,2,10

r1,3,3 r1,3,4 r1,3,5 r1,3,6 r1,3,7 r1,3,8 r1,3,9 r1,3,10

r1,4,4 r1,4,5 r1,4,6 r1,4,7 r1,4,8 r1,4,9 r1,4,10

r1,5,5 r1,5,6 r1,5,7 r1,5,8 r1,5,9 r1,5,10

 . (6.2)

The matrix R̂1 shown above has been split into two sections. In R2 the last column

in each of these sections will have been removed in the process of the column deletions.

Additionally, the final row of R̂1 will have been modified through Givens rotation to form

the first row of Ř2. Therefore R̂2 will be formed from R̂1, excluding the aforementioned

columns and row. In R3 the last two columns in each section are removed, and the final

two rows will have been modified by Givens rotations and thus be a part of Ř3, and so

on for all values of k. It follows that the sum for each row of the upper matrices can be

computed by the sum of entries of the first n− (k− 1) columns of each side of the matrix,

and for each matrix, for n− (k − 1) rows.

This process can be described with the following equation.

‖rk,j,∗‖2 =
m−k∑
i=j

r21,j,i +
m+n−k∑
i=m+1

r21,j,i,

for k = 1, . . . , n− 1, and j = 1, . . . ,m− k.

This can be accomplished in parallel on a GPU by performing prefix sums on each row

of both the left and right sections, then adding the results of the prefix sums of each side

together.

Listing 4 provides pseudocode for this computation. This is separated into two sections,

each acting on half of the matrix R̂k. The processing of the right section occurs first, as

seen on lines 13 to 31, with the processing for the left section occuring on lines 33 to 52.

Unlike the other kernels that are presented in this chapter, this kernel does not dis-

tribute trials across blocks. Instead the blocks process different rows of the same trial,

with different trials processed in sequence. This is to assist with balancing.

To this end the first step in the main loop of both of these sections is to compute the
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row that will be acted on by the current iteration. The row is alternated on every other

iteration, on even numbered iterations each block b will process the row of index b, and

on odd iterations it will process the row of index n − b − 1. This is shown on lines 14 to

17 and 34 to 37. Alternating the rows in this way aids in balancing out the inherently

unbalanced task of summing the upper triangular left half of the matrix, and storing the

necessary upper triangular portion of both sides of the matrix.

Both sections perform a warp shuffle prefix sum of the squared values, shown on lines

26 and 47. The operation of warp shuffling was described in Chapter 5. The right side

of R̂1 is processed first, with the upper triangular segment of the results from this section

of the matrix being stored in the upper triangular portion of the submatrix that was

summed. The results of the left section are then added to the results stored in this upper

triangular section. The checks on lines 28 to 31 and 49 to 52 manage the output, to ensure

only the correct memory locations are written to.

The result of this processing is an upper triangular matrix in which the cth column

represents the squared row sums of the matrix R̂n−c. The matrix below demonstrates

this for a situation where R1 is of width 10. In this matrix rk,i represents row i of the

triangular factor Rk.
‖r5,1‖22 ‖r4,1‖22 ‖r3,1‖22 ‖r2,1‖22 ‖r1,1‖22

‖r4,2‖22 ‖r3,2‖22 ‖r2,2‖22 ‖r1,2‖22
‖r3,3‖22 ‖r2,3‖22 ‖r1,3‖22

‖r2,4‖22 ‖r1,4‖22
‖r1,1‖22



Example

This example will use the matrix R1 shown in Matrix 1. The upper part of this matrix R̂1

will further be split, with R̂1L being the left side of this matrix, and R̂1R being the right

side. This is split as was shown in Equation 6.2.

R̂1L =



−18.1874 −2.2196 −4.6050 −1.0025 −0.9800 −0.1301

0 −18.0515 −1.6701 −4.5164 −0.8896 −0.9713

0 0 −17.5153 −1.6105 −4.4392 −0.9142

0 0 0 −17.5153 −1.6111 −4.4397

0 0 0 0 −17.5137 −1.6082

0 0 0 0 0 −17.5125


,
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1 // blockID is the block ID.
2 // n is half the width of the original upper triangular matrix R1
3 // allR1 is a matrix of all the original upper triangular matrices.
4 // scan_SM is the shared memory array used by the warp shuffle prefix sum
5 // function. The results of the prefix sum are stored at the beginning of
6 // this array.
7 // toAdd_SM is the shared memory location in which the running total is stored
8 // prefixSum is a function to perform a warp shuffle prefix sum, taking in
9 // the width of the sum and the value for the thread.

10
11 gpu_parallel_for threadID← 0 to blockSize
12 //Right submatrix
13 for pass← 0 to num
14 if (pass%2 = 0)
15 row← blockID
16 else
17 row← n-blockID-1
18 R1← allR1[pass]
19 rowPtr← R1+(triangle(2*n)-triangle(2*n-row))+(n-row)
20 toAdd_SM← 0
21 synchroniseThreads
22 batches← ceil(n/blockDim.x)
23 for batch← 0 to batches
24 width← (batches-batch = 1) ? n % blockDim.x : blockID
25 index← (batch*blockID)+threadID
26 scan_SM← prefixSum(width, rowPtr[index]*rowPtr[index])
27 synchroniseThreads
28 if ((index ≥ row) and (index < n))
29 rowPtr[index]← scan_SM[threadID]+toAdd_SM
30 synchroniseThreads
31 if (batch<batches-1) and (threadID=0) toAdd_SM+= scan_SM[blockSize-1
32 //Left submatrix
33 for pass← 0 to num
34 if (pass%2 = 0)
35 row← blockID
36 else
37 row← n-blockID-1
38 R1← allR1[pass]
39 rowPtr← R1+(triangle(2*n)-triangle(2*n-row))
40 toAdd_SM← 0
41 synchroniseThreads
42 batches← ceil(n/blockDim.x)
43 for batch← 0 to batches
44 width← (batches-batch = 1) ? m-row % blockDim.x : blockID
45 index← (batch*blockID)+threadID
46 value← index<width ? rowPtr[index] : 0
47 scan_SM← prefixSum(width, value*value)
48 synchroniseThreads
49 if ((index < n-row) and (index > 2*n))
50 rowPtr[index+n]← rowPtr[index+n] + scanShared[threadID]+toAdd_SM;
51 synchroniseThreads
52 if (batch<batches-1) and (threadID=0) toAdd_SM+= scan_SM[blockSize-1]

Listing 4: Pseudocode for computing the minimum and maximum squared row norms of
R̂k
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R̂1R =



−4.0187 −4.9968 −1.3858 −1.0327 −0.1584 −0.0667

−18.6954 −3.4346 −4.8640 −1.2693 −1.0210 −0.1514

−6.5197 −18.1357 −3.3448 −4.7960 −1.3000 −1.0403

−0.0545 −6.5197 −18.1358 −3.3456 −4.7967 −1.3005

−0.1825 −0.0545 −6.5190 −18.1331 −3.3418 −4.7943

0.9422 −0.1825 −0.0545 −6.5186 −18.1315 −3.3404


.

Starting with R̂1R, a prefix sum of the squared elements in every row is computed.

While all elements of every row are used in the prefix sum, only the upper triangular

portion of the result of the sum is required. This is shown in the matrix below, which will

be known as Ṙ1R.

Ṙ1R =



16.1499 41.1180 43.0384 44.1049 44.1300 44.1344

361.3145 384.9730 386.5841 387.6265 387.6494

382.5978 405.5994 407.2894 408.3716

382.6097 405.6181 407.3094

382.5106 405.4959

383.3257


.

The entries of the left side of the matrix, R̂1L, are squared and summed in the same

way.

Ṙ1L =



330.7815 335.7081 356.9142 357.9192 358.8796 358.8965

325.8567 328.6459 349.0438 349.8351 350.7786

306.7857 309.3794 329.0859 329.9217

306.7857 309.3814 329.0923

306.7297 309.3160

306.6877


.

By adding these matrices together Ṙ1L + Ṙ1R results in the squared row sums of every

matrix R̂1...n. This is shown in the table below.

k 6 5 4 3 2 1

Row 1 346.9315 376.8261 399.9526 402.0240 403.0095 403.0309

Row 2 687.1711 713.6188 735.6278 737.4617 738.4280

Row 3 689.3835 714.9788 736.3753 738.2933

Row 4 689.3955 714.9994 736.4017

Row 5 689.2403 714.8119

Row 6 690.0134
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6.2.3.3 Computing the Squared Row Norms of Řk

The implementation for the computation of the squared row norms of R1...n uses warp

shuffle prefix sums, similar to those used in the previous section. Similarly to the other

kernels described in this chapter, with exception to the kernel for the computation of the

squared row norms of R̂k, this kernel will parallelise the trials in different blocks, with

each block computing all the norms for a single trial.

As this was the second most computationally expensive part of the computation of

the degree, multiple implementations were considered and tested. While the row sums

can be computed efficiently with a warp shuffle prefix sum, it becomes a more challenging

problem when considering how to balance the multiple sums of different widths required

by this algorithm.

The pseudocode for the final implementation selected is shown in Listing 5. In this

implementation a prefix sum of the entire matrix is computed. Computing the sum of the

whole matrix, rather than individual rows, helps to balance the algorithm, avoiding the

problem of rows of unequal lengths.

Due to the sum of the whole matrix being computed, it is necessary to compute the

prefix sum starting at the bottom row of every matrix and working upwards. Values in

the bottom rows of the matrices tend to be significantly smaller than those on the upper

rows, as was explained in Chapter 3. Therefore, due to the limitations of floating point

numbers, the values of the sums of the lower rows would be lost in precision errors if

they were added to the sum of the significantly larger values on the upper rows. The

computation of the index and retrieval of the correct value can be seen on Lines 23 and

24, with the warp shuffle algorithm being called on Line 25.

Once the sum has been computed, final squared row norms are then computed by ex-

tracting the entries at the end of each row, using a triangular root calculation as discussed

in Section 6.2.1. The values extracted from the sum for each row can then be subtracted

from the row sum of the previous row in the matrix to find the final row sum. This final

row sum is then stored at the end of the respective row in the subresultant matrix. This

process is shown on Lines 26 to 33, with the result being written back to the matrix on

Lines 34 to 39.

Example

For this example only a single matrix, Ř1 from the matrix R1 shown in Matrix 1, will be

used. In the actual implementation the same process shown here will be repeated for all

matrices Ř1...n.
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1 // n is the degree of the polynomial of lower degree.
2 // Mats is an array of the lower right corners of the triangular factors
3 // stored in triangular form in 2D arrays.
4 // scan_SM is the shared memory array used by the warp shuffle prefix sum
5 // function. The results of the prefix sum are stored at the beginning of
6 // this array.
7 // Sums_SM stores the results for the sum of each row in shared memory.
8 // toAdd_SM is the shared memory location in which the running total is stored.
9 // prefixSum is the function that performs a warp shuffle prefix sum. It includes

10 // the width of the sum and the value for that thread.
11 // triRoot is a function that returns the triangular root of a number. It
12 // returns -1 if a triangular root does not exist.
13
14 gpu_parallel_for idx← 0 to blockSize
15 for k← 0 to n
16 if (idx = 0)
17 toAdd_SM← 0
18 synchronise threads
19 width← triangle(n-k)
20 batches← ceil(width/blockSize)
21 for batch← 0 to batches
22 wu← (batch*blockSize) + idx
23 index← width - wu-1
24 value← wu<width ? mats[k][index] : 0
25 scan_SM← prefixSum(blockSize, value*value)
26 if (wu<width)
27 root← triangularRoot(wu+1)
28 if (root != -1)
29 Sums_SM[root-1]← scan_SM[idx] + toAdd_SM
30 synchronise threads
31 if ((batch != batches-1) and (idx = 0))
32 toAdd_SM← toAdd_SM + scan_SM[blockSize-1]
33 synchronise threads
34 for batch← 0 to ceil((n-k)/blockSize)
35 wu← batch*blockSize + idx
36 if (wu<n-k)
37 row← n-k-wu-1
38 value← (wu != 0) ? Sums_SM[wu]-Sums_SM[wu-1] : Sums_SM[wu]
39 Mats[k][triangle(n-k)-triangle(n-k-(row+1)+(n-k-1)]← val

Listing 5: Pseudocode for computing the minimum and maximum squared row norms of
Řk
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Ř1 =



0.3095 0.7416 −0.6115 −0.2081 −5.6988 −12.9799

0 0.6583 0.7763 −0.1310 −3.0065 −14.0045

0 0 0.2002 0.2093 −1.0077 0.1921

0 0 0 0.9568 −0.9891 −2.7582

0 0 0 0 −0.0002 0.0005

0 0 0 0 0 0.0002


.

The entries of this matrix are squared, this results in the matrix Ř◦21 .

Ř◦21 =



0.0958 0.5500 0.3739 0.0433 32.4763 168.4778

0 0.4334 0.6026 0.0172 9.0390 196.1260

0 0 0.0401 0.0438 1.0155 0.0369

0 0 0 0.9155 0.9783 7.6077

0 0 0 0 4.0× 10−8 2.5× 10−7

0 0 0 0 0 4.0× 10−8


.

A prefix sum is performed from the bottom of this matrix up to the top, moving right

across each row. Only the non-zero elements will be considered. This will result in the

matrix Ṙ1.

Ṙ1 =



216.9517 217.5017 217.8756 217.9189 250.3952 418.8730

11.0711 11.6737 11.6909 20.7299 216.8559

9.5415 9.5853 10.6008 10.6377

0.9155 1.8938 9.5015

8.0× 10−8 3.3× 10−7

4.0× 10−8


.

The final row sums for Ř1, ṙi, where i is the row number, are computed by subtracting

ri+1 from ri.

ṙ1 = 418.8730− 216.8559 = 202.0171,

ṙ2 = 216.8559− 10.6337 = 206.2222,

ṙ3 = 10.6337− 9.5015 = 1.1322,

ṙ4 = 9.5015− 3.3× 107 = 9.5015,

ṙ5 = 3.3× 10−7 − 4.0× 10−8 = 2.9× 10−7,

ṙ6 = 4.0× 10−8.

This process is repeated for all matrices Řk, to compute the squared row sums of every

row of every upper triangular factor.
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6.2.3.4 Computing the Ratios of the Row Norms

Sections 6.2.3.2 and 6.2.3.3 provided implementations for computing the squared row

norms of each of the upper and lower portions of every triangular factor. The results

from these kernels can now be used to compute the ratios of the row sums.

Listing 6 shows the pseudocode of this computation, which is very similar to that of the

diagonal ratios shown in Section 6.2.3.1. Each block computes the ratios for a single trial.

Each thread is responsible for an individual triangular matrix, moving down the columns

to find the minimum and maximums of the rows. A single value from the upper matrix

and a single value from the lower matrix are compared to stored values each iteration.

The comparisons of minimum and maximum values are seen on Lines 13 to 34. Once all

maximums and minimums have been computed the final ratios of the square roots of the

minimum and maximum values is performed. The ratios can then be found by dividing

the maximum value by the minimum value for every matrix, as is seen on Lines 36 to 38.

Similarly to the implementation presented in 6.2.3.1, this is not a well balanced ap-

proach. However, as the overall runtime is extremely low, it was not seen as a priority to

further optimise this kernel.

6.2.3.5 Computing the Gradients

The final task to be completed on the GPU in this implementation is the computation of

the gradients. The pseudocode for this can be seen in Listing 7. This is a very simple

kernel. Trials are distributed to different blocks, and the ratios for each value of k within

that trial processed by threads within the block. This kernel can be used for the gradients

from both the diagonals and the row norms.

6.2.3.6 Computing the Degree

Once the final gradients have been computed, the gradients are copied back to host

memory. Finding the index of the minimum gradient, and the modal minimum index,

is performed on the CPU.

While it would be possible to speed up these operations on a GPU, the benefit of this

would only be minor. The amount of data that needs to be copied back to the host at

this point is very small, and comparatively few computations need to occur to find the

minimum. Therefore it was not considered to be worth the development time to consider

these sections for acceleration.

6.2.4 Profiling the Final GPU Implementation and Establishing Launch

Parameters

The final profiling results give an overview of how efficiently the implementation is utilising

the GPU. This section will discuss the profiling results for the final algorithm for five

different degrees of polynomial when processing 25 trials.



Chapter 6. GPU Acceleration of the Computation of the Degree of an AGCD 115

1 // minMaxArray is an array of structures containing minimum and maximum
2 // values, stored in shared memory
3 // ratios is an array to store the computed ratios of each subresultant
4 // matrix
5 // triRowIndex(width, row) is a function to compute the index of a row
6 // in a triangular matrix with the specified width and row
7
8 gpu_parallel_for 0 to blockWidth
9 for batch← 0 to ceil(n / blockWidth)

10 wu← (batch * blockWidth) + threadID
11 index← (n-1)-wu
12 for row← 0 to n
13 if (wu<n) {
14 mm← minMaxArray[index]
15 rowIndex← orig + triRowIndex(n*2, row) + (n - row)
16 if row = 0
17 mm.min← rowPtr[wu]
18 mm.max← mm.min
19 else if wu ≥ row
20 mm.min← min(orig[rowIndex + wu], mm.min)
21 mm.max← max(orig[rowIndex + wu], mm.max)
22
23 if (wu ≥ row) {
24 mat← mats[n-1-wu]
25 rowIndex2← triRowIndex(wu+1, row+1)-1
26
27 mm.min← min(mat[rowPtr2], mm.min)
28 mm.max← max(mat[rowPtr2], mm.max)
29
30 synchroniseThreads
31
32 if (wu<n) minMaxArray[index]← mm
33
34 synchroniseThreads
35
36 if wu < n
37 MinMax mm← minMaxArray[index]
38 ratios[wu]← sqrt(mm.max) / sqrt(mm.min)

Listing 6: Pseudocode for computing the ratios of the row norms for all upper triangular
factors of the subresultant matrices

1 // numGrads is the number of gradients to be computed (number of ratios -1)
2 // gradients is an array in which to store the gradients for this block
3 // ratios is an array from which to get the ratios for this block
4
5 gpu_parallel_for 0 to blockWidth
6 batches← ceil(numGrads / blockWidth)
7 for batch← 0 to batches
8 wu← batch * blockWidth + threadID
9 if (wu ≥ numGrads) break

10 if wu<numGrads
11 k← wu % numGrads
12 gradients[k]← log10(ratios[k+1]) - log10(ratios[k])

Listing 7: Pseudocode for computing the gradients
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Profiling was performed using an NVIDIA GTX 780 GPU, with 3GB of memory. The

polynomial degrees tested were 250, 500, 750, 1000 and 1250. This was a wide enough

range to test the batching in the algorithm from a single batch, at degree 250, to batches

consisting of only a single trial at a degree of 1250.

Figure 6.5: Time spent in each kernel of the GPU implementation

Figure 6.5 shows a pie chart of time spent in each kernel of the implementation. The

relative runtimes were very similar for all polynomial degrees, with the computation of

the matrices Ř2...n and the squared row sums of Ř1...n both taking significantly more time

than the other kernels. The total runtimes of these two kernels ranged from 96.7% for

polynomial degrees of 250, to 99.3% for polynomial degrees of 1250. Due to the discrepancy

between the runtimes of the two most expensive kernels and the rest of the kernels, this

section will focus on profiling the two expensive kernels.

While the kernels developed here all require a predetermined grid size, the load bal-

ancing described in Section 6.2.2.2 means that the block sizes can be scaled arbitrarily.

Blocks can contain a maximum of 1024 threads. Typically block sizes of multiples of 32 are

ideal, as warps will process 32 threads at a time. Therefore experiments were conducted

using blocks of various multiples of 32. It was found that for polynomials of most degrees,

setting the block size to be 1024 resulted in the greatest performance, but for polynomials

of low degree this was excessive, and leads to a significant number of idle threads. The

best compromise was found to be the width of R1, rounded to the nearest multiple of 32

and capped at 1024.

The theoretical device occupancy available in both major kernels is 50%. The limiting

factor here is the number of registers required per thread. By default the kernel for the

computation of Ř2...n requires 54 registers per thread, while the kernel for the squared

row norms requires 42 registers per thread. It is possible to force the compiler to limit

the number of registers used per thread, either with the maxrregcount argument of the
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compiler, or with the launch bounds modifier in the code.

Theoretical occupancy only improves beyond 50% at the block sizes required when

the registers per thread are reduced to 32. The trade off with limiting registers in this

way means that local variables will instead be stored in memory, leading to increased

latency when accessing them. When limiting the kernels to 32 registers the runtime of

the computation of Ř2...n is significantly slower in all cases, and while the squared row

sum kernel does see improvements at polynomials of lower degrees, performance decreases

for polynomials of higher degree. Due to this the number of registers were kept at their

default values for both kernels.

With these launch parameters it was found that actual device occupancy achieved was

50% for higher degrees, and only reducing to 48.7% for the lower degrees.

6.3 Results

The implementation discussed in this chapter presents the first GPU accelerated algorithm

and implementation for the computation of the degree of the AGCD. All tests in this

section were performed on a system with a 6 core Intel i7 6850k CPU and an NVIDIA

Titan V GPU with 12GB of GPU memory. All tests were run 10 times and an average

taken of these results to give the final results. The standard deviation in all cases was less

than 10% of the mean, typically being less than 4% of the mean.

6.3.1 Reliability testing

The results of the algorithm were tested against that of the original Matlab implement-

ation. Each implementation was tested with a variety of polynomials of equal degree, the

coefficients of which were generated with the Matlab rand command, and convolved

with a GCD, with added noise to ensure the polynomials were coprime. The results were

checked at each stage of the algorithm to ensure all results from the GPU implementation

were equal for all values to the results from the CPU implementation. This was the case

for all polynomials tested, at every stage of the computation.

Table 6.1 shows the algorithms reliability for various levels of noise. It should be noted

that in this table the algorithms used were the full computations, investigating every

subresultant matrix, as opposed to the reduced computations as described in Chapter 4.

These results were gathered through random vectors generated in Matlab. A GCD was

constructed, with a degree of roughly 10% that of the polynomials. Random vectors were

generated for the polynomials, and these were convolved with the GCD. Random noise of

the levels specified in the table was generated and added to the convolved polynomials.

The algorithm was run over 25 pairs of polynomials with the same GCD to receive the

estimate for the number of successful trials, and this entire process was repeated 10 times

to receive the final results presented here. In all cases these results were identical to those

of the serial algorithm.
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SNR (dB) 120 100 80

n = 500 92.8% 76.0% 30.0%

n = 1000 94.0% 71.6% 11.2%

n = 1500 80.0% 38.4% 3.2%

n = 2000 75.2% 35.2% 0.0%

Table 6.1: Rate of successful trials for varying polynomial degrees and noise levels

The results show that for polynomials with degrees of up to 2000, when the signal

to noise ratio (SNR) is as high as 120 dB, the degree could be reliably computed in all

cases. When the noise in increased to an SNR of 100 dB the degree is computed less

reliably. However, even at degrees of 1500 and 2000 the degree could still be computed

reliably 30-35% of the time, which is likely enough to identify the degree given enough

trials. When the SNR decreases to 80 dB, only the polynomials of degree 500 are likely to

return the correct degree, with the other results providing poor reliability for the degree

computation.

6.3.2 Runtime testing

The runtime results showed a significant improvement in terms of performance over the

CPU implementations, though some issues did arise due to the necessary batching dis-

cussed in 6.2.2.4, and the large amount of memory required to store matrices.

6.3.2.1 Scalability testing

Figure 6.6: Runtimes of the GPU method for increasing polynomial degrees and varying
numbers of trials

Figure 6.6 shows the runtimes for increasing degrees of the convolved polynomials,

those being the rows or columns of the inexact image, and varying numbers of trials. The

curve for each number of trials is relatively smooth between degrees of 250 and 1500. At
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a degree of 1750 the implementation starts to encounter performance issues. This is due

to the batching technique described in Section 6.2.2.4. At this degree only the data for a

single trial can be stored on the GPU memory at a time. This results in a greater overhead

from the number of kernel calls and memory operations, as well as under-utilisation of the

device, which results in worse performance. As the polynomial degrees increase again

to 2000, there is a decrease in the gradient of the curve, suggesting an improvement of

the scaling of the algorithm. This is due to the utilisation of the device being improved

compared to degrees of 1750. While for both of these degrees only a single trial can be

performed per kernel call, the increased number of operations required for each Givens

rotation for a degree of 2000 results in greater overall device utilisation.

6.3.2.2 Runtime comparisons

Figure 6.7: Runtimes of the GPU implementation compared CPU methods for increasing
polynomial trials

Figure 6.7 shows the comparative performance between the CPU methods, both serial

and parallel, and the GPU method. This is shown on a log scale to make the comparison

of the scalability of the algorithms more obvious, and to allow the runtimes of the GPU

algorithm to be more apparent. For these tests convolved polynomials of degree 1000 were

used, and tested with an increasing number of trials. Similar performance issues to those

observed in Figure 6.6 can be seen here, with the most obvious irregularities being at 10

and 25 trials. This is for the same reason as described previously, as the batching process

described in 6.2.2.4 takes effect, causing extra overhead, and potentially causing overall

device utilisation to decrease.
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Figure 6.8: Runtime improvement of the GPU method compared to the CPU methods for
increasing numbers of trials

Figure 6.8 shows the actual speedup of the GPU method, compared to that of the CPU

methods, with relation to the results shown in Figure 6.7. The graph here shows a fairly

constant improvement across all numbers of trials. This is to be expected, as the number

of operations scales linearly with the number of trials. Compared to the serial algorithm

speedups ranging between 44.97 to 53.38 times were observed, with speedups compared

to the CPU parallel implementation ranging between 14.32 and 18.48 times. It should

be noted that the polynomial degree of 1000 is the degree at which runtime improvement

of the GPU implementation over the serial implementation is at a maximum, as will be

shown in Figure 6.10, though similar results with regards to scaling can be observed for all

degrees. This is due to the relationship between the number of trials and overall number

of operations being linear, and all three implementations are shown to scale relatively

linearly in relation to this.

Figure 6.9 shows the runtimes of the three implementations for increasing polyno-

mial degrees. For these tests the number of trials was fixed at 25. While it may seem

counter-intuitive that the CPU parallel implementation is initially slower than the serial

implementation, this is due to the overhead of the parallel pool creation in Matlab, as

was discussed in Chapter 4. This takes approximately the same amount of time regard-

less of the problem size, so this will have the largest relative impact on the performance

when the runtime is at its lowest, thus the impact is seen most clearly at lower degrees.

Due to this overhead, the CPU parallel algorithm appears to scale better than the other

implementations. This is due to the overhead becoming less significant relative to the
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Figure 6.9: Runtimes of the GPU implementation compared CPU methods for increasing
polynomial degrees

overall runtime of the implementation. The same performance issues discussed previously

can be seen at a degree of 1750. As discussed this is due to the GPU only being able to

run a single polynomial in each batch, as at a degree of 1750 there is not enough space in

memory for the more than one trial at a time.

Figure 6.10 shows the relative improvement of the GPU implementation compared to

the CPU implementations, with regards to the runtimes for the increasing polynomial

degrees shown in Figure 6.9. The most notable feature of this graph is the inconsistency

of the speedup of the GPU implementation compared to the CPU serial implementation.

The low performance when the polynomial degrees are larger can be explained with the

batching discussed previously. The relative improvement in performance for degrees of

2000 when compared to those of 1750 was discussed in relation to Figure 6.6. While both

of these polynomial degrees can only be processed a single trial at a time by the GPU, the

computations of the test where the polynomial degrees are 2000 better utilise the GPU.

The decreased performance for lower degrees can be explained by the better utilisation of

the GPU for larger degrees, as more computation is required.

Compared to the CPU parallel implementation the speedup decreases as the polyno-

mial degree increases. This is due to the overhead of the parallel pool initialisation, as the

runtime for this remains constant for all degrees.
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Figure 6.10: Runtime improvement of the GPU method compared to the CPU methods
for increasing numbers of polynomial degrees

6.4 Issues and Potential Improvements

While Section 6.3 shows a GPU implementation that has significant performance improve-

ments compared to the CPU methods, some issues were highlighted. The most significant

of which is the memory usage of such an implementation.

Figure 6.11 shows the number of trials that can be run in a single kernel call on

GPUs with different amounts of memory. While using a GPU with a larger amount of

memory does allow for polynomials of larger degrees, and helps to demonstrate where there

are performance issues, the cubic nature of the memory scaling, as described in Section

6.2.2.4, demonstrates why this is potentially unsustainable. An implementation using less

memory would be desirable, as it would gain performance increases from avoiding the need

for batching computations, as well as the ability to process large polynomials on GPUs

with limited memory.

6.5 The Reduced Algorithm

Chapter 4 discussed a reduced form of the algorithm, where only the first half of the

triangular factors are computed. This section will discuss this reduced algorithm when

applied on a GPU, and test it against the full algorithm.



Chapter 6. GPU Acceleration of the Computation of the Degree of an AGCD 123

Figure 6.11: The number of trials that can be executed in a single kernel call by GPUs
with different amounts of memory

6.5.1 Implementation

The implementation of this modification is relatively straightforward. The only changes

that must be made are to the memory allocation and indexing, where reduced memory

is needed for nearly all constructs within the algorithm, and adjustments to the load

balancing and work distribution sections of the algorithms, to ensure the correct number

of matrices are computed.

6.5.2 Results

The reduced version of the algorithm was tested with the same parameters as were used in

the runtime testing described in Section 6.3.2.2. The degrees provided by these algorithms

show the exact same increase in reliability as described in Chapter 4. As results are exactly

the same, as expected, this section will instead concentrate on the runtime comparisons

against the full GPU implementation.

Figure 6.12 shows the runtimes for both implementations on the GPU for increasing

numbers of trials. Unexpectedly, the full implementation shows better performance at

lower degrees than the reduced implementation for lower numbers of trials, and maintains

a very close runtime to the reduced implementation for degrees of 1000. Comparatively the

improvement in runtime between the two CPU implementations shown in Figure 6.13 is

more significant. While the difference between the runtimes in the GPU implementations
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Figure 6.12: Runtimes of the GPU original and reduced implementations for an increasing
number of trials

was expected to be less significant than those of the CPU implementations, this shows

closer runtimes than were expected. This is likely due to the increased complexity of

indexing values in the GPU reduced implementation, and the balance of the workload in

the reduced algorithm being worse.

When comparing the results for increasing polynomial degrees of the original and re-

duced algorithms, as shown in Figure 6.14, the difference is more significant than that

shown in the results in Figure 6.12. While the two implementations have very similar run-

times they start to separate at a degree of around 1000, with the reduced algorithm having

a slight, but noticeable, advantage over the original implementation. When compared to

the CPU implementation runtimes shown in Figure 6.15, the improvements of the GPU

reduced algorithm are more slight than those in the CPU reduced algorithm.

While the improvements in reliability shown by the reduced algorithm in Chapter

4 are still present, the runtime improvements of this method when applied on GPUs in

the reduced implementation are less significant. The reduced implementation does provide

better performance than the original implementation. However, the improvements in both

memory usage and performance are very slight. It may therefore be better to concentrate

on developing a more general form of the algorithm, from which the gradient results can

be limited after computation as is required by the specific situation.

6.6 Conclusion

The implementation demonstrated in this chapter provides a significant improvement over

current CPU implementations of this algorithm. Unfortunately the scalability of this
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Figure 6.13: Runtimes of the CPU original and reduced implementations for an increasing
number of trials

algorithm is somewhat limited by the need to store numerous large matrices in a limited

amount of memory. This scalability will cause issues when there is need to estimate the

degree of an AGCD of polynomials of very large degree on GPUs with a limited amount

of memory.

The next chapter will investigate a method with which the high memory requirements

described in this chapter can be overcome, and thus gaining improvements to both runtime

and scalability of the degree computation algorithm.
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Figure 6.14: Runtimes of the GPU original and reduced implementations for increasing
polynomial degrees

Figure 6.15: Runtimes of the GPU original and reduced implementations for increasing
polynomial degrees



Chapter 7

A Low GPU Memory Approach to

Degree Computation

Chapter 6 proposed an efficient GPU parallel implementation of the degree computation

algorithm. While this implementation provided significant improvements to the runtime of

the computation of the degree of an AGCD, it also suffers from scalability issues caused by

the need for a large amount of GPU memory. This is due to the processing of numerous

large matrices. This high memory usage leads to a limit in scalability, and, in some

situations, a limit in the utilisation of the device. Due to this, it is beneficial to investigate

methods in which a low memory version of this algorithm could be implemented, providing

improved scalability and performance.

This chapter discusses a low memory implementation of the algorithm described in

Chapter 6, which enables computations on polynomials of higher degrees, and eliminating

the need to split the processing of trials into batches. This resulted in an implementation

that is both more scalable and faster than the original algorithm proposed in Chapter 6.

Section 7.1 will discuss the changes made to the algorithm presented in Chapter 6 to

reduce the memory footprint. Section 7.2 will discuss how these changes were implemented

in the low memory implementation, including pseudocode. This implementation will be

profiled, similar to the profiling that occurred in Chapter 6. Section 7.3 will compare the

memory usage of this implementation to that of the implementation presented in Chapter

6, and the effect this has on the scalability of the algorithm. Section 7.4 will then test

the performance of the low memory implementation to evaluate the modifications to the

algorithm for reliability, runtime and scalability.

7.1 Algorithm Changes

The issue of high memory usage in the original algorithm arises from the large number of

triangular matrices that must be stored. The entirety of each upper triangular factor is

required for the tests described in Chapter 4 to compute the rank of the corresponding

subresultant matrices, and thus to compute the degree of the AGCD.

127
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When developing a kernel for a GPU it is generally recommended for the function to be

focused, as this will minimise register usage so device occupancy can be maximised. Due

to this, in the implementation discussed in Chapter 6, the algorithm was split into several

kernels. This led to an efficient algorithm in all ways other than memory utilisation, which

in turn led to performance issues.

To solve this problem it is possible to perform the tests for computing the rank, de-

scribed in Chapter 4, into the kernel for the computation of the upper triangular matrices.

This means that the minimums and maximums of both the sum of the squared entries

on each row and diagonal values from each row can be computed straight after the final

rows have been computed in each iteration. Once these values have been processed the

computed rows can simply be discarded.

Unfortunately this does lead to some complications, primarily that of increased shared

memory usage. This can cause some limitations in the number of blocks that can be

processed simultaneously, which can lead to decreased occupancy. Despite these limits

however, the performance impact of such a complex kernel was found to not be as signi-

ficant as the impact caused by the batching used in Chapter 6.

The original kernel for the QR column deletions described in Chapter 6 takes input

of the original upper triangular matrix R1, and outputs the submatrices Ř2...n containing

the last n rows of R2...n. These matrices can then be analysed using the tests in Chapter 4

to compute the degree estimation. Storing these subresultant matrices is the main cause

of the high memory usage in the original GPU implementation.

The algorithm presented in this chapter will instead process the rows of these sub-

matrices as they are computed. This means that the QR deletion kernel presented in

this chapter will instead output the minimum and maximum row norms and diagonals of

the matrices Ř2...n. The computation of the squared row norms of the upper half of the

triangular factors R̂1...n does still need to be processed in a separate kernel, as do the final

computations of the ratios and gradients.

7.1.1 Example

For this example the matrix R1 from Matrix 1, defined in Chapter 6, will be used. This

enables direct comparisons to be drawn with the example in Chapter 6. This entire

matrix will be stored on the GPU, and is the only full matrix that will ever be stored in

this implementation.

Iteration 1

The first step of this iteration is the computation of the squared row norm of the first row

of R1, extracted from the full matrix. The ith row of Řk will be denoted as rk,i.

r1,1 =
[
0.3095 0.7416 −0.6115 −0.2081 −5.6988 −12.9799

]
.

Squaring and summing this vector will give the squared row norm for this row.
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‖r1,1‖22 = 202.0171.

The absolute diagonal of this row |r1,1,1| and the norm computed above will be stored

as the current minimum and maximum of the diagonals and row norms respectively. The

table below shows the current values for these minimum and maximum values.

k 1 2 3 4 5 6

min(|rk,i|) 0.3095

max(|rk,i|) 0.3095

min(‖rk,i‖22) 202.0171

max(‖rk,i‖22) 202.0171

Once this row has been tested the first rotation for the matrix Ř2 will be computed.

As with the previous algorithm, the matrix Mk,j represents the matrix constructed for the

rotation on the kth factor, and the jth iteration of the algorithm.

In the first iteration the matrix M2,1 will be computed from rows 6 and 7 from R1.

M2,1 =

[
0.9422 −0.1825 −0.0545 −6.5186 −18.1315

0.3095 0.7416 −0.6115 −0.2081 −5.6988

]
.

Performing a givens rotation on this matrix results in the matrix R̄2,1.

R̄2,1 =

[
0.9917 0.0580 −0.2426 −6.2580 −19.0044

0 0.7616 −0.5640 1.8365 0.2441

]
.

The first row of this matrix consists of final values for Ř2, and the second row consists

of values that require further processing.

Iteration 2

In iteration 2 the second row of Ř1 and the first row of Ř2 will be assessed to find the

diagonal and squared row norm values.

The second row of Ř1 will be extracted from R1,

r1,2 =
[
0.6583 0.7763 −0.1310 −3.0065 −14.0045

]
,

and the first row of Ř2 will be extracted from R̄2,1, using the final values on the first

row computed in the previous iteration.

r2,1 =
[
0.9917 0.0580 −0.2426 −6.2580 −19.0044

]
.

The squared row norms of each of these matrices is computed
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‖r1,2‖22 = 206.2182,

‖r2,1‖22 = 401.3755.

The absolute diagonal and squared row norm of r1,2 will be compared to the stored

minimum and maximums, and the absolute values for r2,1 will be stored as the minimums

and maximums.

k 1 2 3 4 5 6

min(|rk,i|) 0.3095 0.9917

max(|rk,i|) 0.6583 0.9917

min(‖rk,i‖22) 202.0171 401.3755

max(‖rk,i‖22) 206.2182 401.3755

Once these rows have been assessed the algorithm continues with the next Givens

rotations of Ř2 and Ř3.

The matrix M2,2 will be constructed using the second row of R̄2,1 and row 7 of R1,

M2,2 =

[
0.7616 −0.5640 1.8365 0.2441

0.6583 0.7763 −0.1310 −3.0065

]
,

and the matrix M3,2 will be constructed from row 5 of R1 and the first row of R̄2,1,

M3,2 =

[
−0.1825 −0.0545 −6.5190 −18.1331

0.9917 0.0580 −0.2426 −6.2580

]
.

Performing Givens rotations on these matrices will give the matrices R̄2,2 and R̄3,2

respectively.

R̄2,2 =

[
1.0067 0.0810 1.3037 −1.7815

0 0.9562 −1.3001 −2.4341

]
,

R̄3,2 =

[
1.0084 0.0669 0.9412 −2.8729

0 0.0431 6.4553 18.9662

]
.

Note that at this point the matrix R̄2,1 is no longer necessary, so R̄2,2 can be stored in

the same memory structure.

Iteration 3

The row norms of the third row of Ř1, the second row of Ř2, and the first row of Ř1 must

now be computed. The row vector r1,3 is extracted from R1, and the vectors r2,2 and r3,1

will be extracted from their respective R̄k,2 matrices.
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r1,3 =
[
0.2002 0.2093 −1.0077 0.1921

]
,

r2,2 =
[
1.0067 0.0810 1.3037 −1.7815

]
,

r3,1 =
[
1.0084 0.0669 0.9412 −2.8729

]
.

The squared norms of these vectors are computed,

‖r1,3‖22 = 1.1362,

‖r2,2‖22 = 5.8934,

‖r3,1‖22 = 10.1608.

These norms, and the respective diagonals, are compared against the stored minimums

and maximums, with those for k = 3 simply being stored, as there is nothing to compare

them against.

k 1 2 3 4 5 6

min(|rk,i|) 0.2002 0.9917 1.0084

max(|rk,i|) 0.6583 1.0067 1.0084

min(‖rk,i‖22) 1.1362 5.8934 10.1608

max(‖rk,i‖22) 206.2182 401.3755 10.1608

The next three Givens rotations can now be computed. Firstly the matrices on which

the Givens rotations are applied are constructed,

M2,3 =

[
0.9562 −1.3001 −2.4341

0.2002 0.2093 −1.0077

]
,

M3,3 =

[
0.0431 6.4553 18.9662

1.0067 0.0810 1.3037

]
,

M4,3 =

[
−0.0545 −6.5197 −18.1358

1.0084 0.0669 0.9412

]
.

Performing Givens rotations on each of these matrices results in the matrices R̄2...4,3,
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R̄2,3 =

[
0.9769 −1.2296 −2.5889

0 0.4713 −0.4876

]
,

R̄3,3 =

[
1.0076 0.3572 2.1142

0 −6.4459 −18.8931

]
,

R̄4,3 =

[
1.0098 0.4185 1.9182

0 6.5066 18.0587

]
.

Again, at this point the entries of the matrices R̄2,2 and R̄3,2 are no longer required,

and thus the matrices computed here can be written into the same memory locations.

Further iterations

This process will continue for the next three iterations. In each iteration the row sums of

the final entries of the jth row of Ř1, and the first row of the matrices R̄2...j+1,j , will be

tested to find the minimum and maximum diagonals and squared row norms. Then the

Matrices Mk,j will be constructed, a Givens rotation will be performed on them, and the

matrices R̄k,j will be computed. These matrices can be stored in the memory locations

for R̄k,j−1.

A final step is required once the matrices R̄k,6 have been computed in iteration 6. In the

final step the squared row norms and diagonals of the final rows of Řk must be calculated,

and these will be compared against the stored values. Once this step is complete the final

minimums and maximums of Řk will have been computed as is shown below.

k 1 2 3 4 5 6

min(|rk,i|) 0.0002 4× 10−4 1.0076 1.0098 6.5974 19.8253

max(|rk,i|) 0.9568 1.0067 6.5195 6.9509 6.9950 19.8253

min(‖rk,i‖22) 4× 10−8 1.6× 10−7 5.6127 4.8743 48.9300 393.0425

max(‖rk,i‖22) 206.2182 401.3755 384.5874 363.7819 367.0255 393.0425

7.2 Implementation

The algorithmic changes discussed in Section 7.1 mean that the implementation discussed

in Chapter 6 must be modified. In this section these changes will be described.

7.2.1 New Memory Structure

The original implementation, described in Chapter 6, allocated memory for all matrices

Ř2...n, which were then computed in the QR update kernel. These matrices were then

analysed to compute the minimum and maximum values from these stored matrices.
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As was established in Chapter 6, each Givens rotation performed on the triangular

matrix Rk makes use of two rows. The first row will either come from the work in progress

rows computed for Rk in the previous iteration, or a row from R1 if it is the first Givens

rotation performed for that particular value of k. The second row is extracted from the

final values of Rk−1 that had been computed in the previous iteration. This rotation then

provides a final row and a work in process row that can be used in the next iteration.

Each iteration must therefore store a final row and a work in process row for each

matrix Ř2...n. While it would be possible to store each of these sets of rows in an array

of size (n/2)2, by moving the pointers of each row after each iteration, this would lead to

unnecessary complexity in the handling of pointers. Because this method uses so little

memory, redundant memory locations are no longer a major concern. Therefore each of

the sets of rows can be stored in a triangular matrix, with the nth row of this matrix

storing the row values for Řn. This means that each matrix has the correct width of row

storage for it’s maximum row width, and that the row pointers do not need to change

between iterations. In addition to the row storage there must be memory locations to

store n minimum and maximum values for both diagonals and row norms, as well as the

computed ratios.

In the first implementation of this new method it was noted that the large number of

structures that need to be defined, and memory allocated for, were causing a significant

amount of overhead when compared to the implementation described in Chapter 6. This

was addressed by allocating the memory used in several chunks, for example all of the

structures for storing the rows of the computations in all blocks are allocated together.

The pointers of individual memory structures within these chunks were found using pointer

arithmetic. By reducing the number of GPU memory calls in this way, the overhead caused

by the increased number of structures was drastically reduced.

7.2.2 Kernel Changes

As discussed in Section 7.1, the main change in this implementation is moving the compu-

tation of the row norms into the same kernel as the upper triangular factor computations.

In each iteration of the kernel, the row sum is processed first, with the first iteration

computing the squared row norm of the first row of Ř1 using a row prefix sum. The final

result of this sum is stored in the minimum and maximum memory locations for Ř1. The

kernel then moves on to process the first rotation for Ř2, storing the two rows generated

by this rotation.

In the second iteration the square row norms for the second row of Ř1 and the first row

of Ř2 are computed. The result for Ř1 being compared against the stored minimum and

maximum values, and the result for Ř2 being stored as both the minimum and maximum

values for this Ř2. Once the row sums have been computed the first row of Ř3 and the

next rows of Ř1 and Ř2 are computed.

Additionally, while the squared row norms of Ř1...n are computed, the minimum and

maximum diagonal values can be computed at the same time. This is accomplished by
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simply testing these values against a stored minimum and maximum at the same time as

the computed squared row sums are checked against their stored minimum and maximum.

This pattern continues, with each iteration analysing the final rows computed in the

previous iteration, and comparing the row sums to the stored minimum and maximum

values, before moving on to compute the next work in progress and final rows.

Both the prefix sum to compute the squared row norms and the storage of the Givens

matrices use shared memory, which can cause an issue with high shared memory usage.

This will reduce the number of blocks that can be processed simultaneously for large

problems. However, neither section requires the contents of shared memory to persist

between iterations. To mitigate the amount of shared memory needed, the same shared

memory locations are used for both sections of the kernel, simply overwriting the data

used in the previous step.

Due to the length of this kernel, the pseudocode has been split into several sections.

Listing 8 shows the overall structure of the kernel, including the outer loop and compu-

tation of values that will be used throughout. Line 33 refers to the pseudocode in Listing

9. Line 38 refers to the pseudocode listed in Listing 10. Listing 8 also defines the values

used commonly in all sections. Similarly to Chapter 6, the value of k will start at 0 in the

pseudocode, which will make the indexing of the relevant matrices and rows simpler.

Listing 8 shows the relatively simple overall structure of the low memory implement-

ation. The number of iterations in the main loop of the kernel is increased by 1 when

compared to the QR deletion kernel presented in Chapter 6. This is to allow for the

computation of the row norms of Ř1 to be processed in the first iteration, and this is why

the computation of the squared row sums occurs first. The check before the QR deletion

section of the kernel enables the final iteration to simply calculate the row sums of the

previous iteration without needing to compute more Givens rotations.

Listing 9 shows the code for finding the minimum and maximum squared row norms

and diagonal values from Ř1...n. Firstly, the code gets batched to allow for load balancing

as is seen on Line 7. This is performed in the same way as the implementations shown

in Chapter 6. If k = 1 (or 0 in the pseudocode) the value must be extracted from the

original upper triangular matrix, as shown in the example in Chapter 6, otherwise the

rows to be summed are the final rows computed in the Givens rotations in the previous

iteration. The selection of the relevant rows is seen on Lines 14 to 19. A warp shuffle

prefix sum is then performed on the squares of the entries of all of these rows, saving the

running sum to shared memory to allow the sums to be batched, as is seen on Lines 26

to 33. Once this sum has been performed, the first work unit for each value of k checks

the diagonal value against the stored minimum and maximum values, and replaces these

as necessary. The final work unit for each value of k also does the same with the squared

row sums, subtracting the sum of Rk−1 from the sum of Rk before performing the check.

These checks can be seen on Lines 36 to 51.

The execution of the Givens rotations remains very similar to the method presented

in Chapter 6. The pseudocode for this is shown in Listing 10. First the load balancing
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1 // R1 is an array storing the original upper triangular matrix
2 // in triangular form
3 // n is the width of R1
4 // finalRows is an array storing the values from the final rows
5 // of each triangular factor after each Givens Rotation
6 // wipRows is an array storing the values from the work in progress
7 // rows of each triangular factor after each Givens Rotation
8 // diagsMax stores the maximum diagonal values found for the lower
9 // section of the triangular factors

10 // diagsMin stores the minimum diagonal values found for the lower
11 // section of the triangular factors
12 // normsMaxstores the maximum squared norm values found for the
13 // lower section of the triangular factors
14 // normsMin stores the minimum squared norm values found for the
15 // lower section of the triangular factors
16 // sharedG is an array in shared memory that stores the values that
17 // make up the Givens matrices
18 // scanShared is an array in shared memory (with the same pointer as
19 // sharedG) that is used during the warp shuffle prefix sum
20 // toAdd is a single location in shared memory that stores the running
21 // sum to allow batching the warp shuffle algorithm
22 // warpShufflePrefixSum(width, value, scanShared) is a function that
23 // performs a warp shuffle prefix sum with specified with, using
24 // the provided value in that thread and the given shared memory
25 // getTriMatrixIndex(width, row) is a function that retrieves the index
26 // of a particular row in a triangular matrix with specified width
27
28
29 gpu_parallel_for thread← 0 to blockWidth
30 for pass← 1 to n + 1
31 newFinalWidth← n - pass
32 oldFinalWidth← n - pass + 1
33
34 minMaxRowSumsAndDiagonals
35
36 synchroniseThreads
37
38 if (pass < n)
39 performGivensRotations

Listing 8: Pseudocode showing the overall structure of the new kernel
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1 // FIND MIN AND MAX ROW ROW SUMS AND DIAGS
2 totalVals← oldFinalWidth * pass
3 batches← ceil(totalVals / blockWidth)
4
5 if (threadID = 0) toAdd← 0
6
7 for batch← 0 to batches
8 width← (batches - batch = 1) ? totalVals%blockWidth : blockWidth
9 wu← batch*blockWidth + threadID

10 k← wu/oldFinalWidth
11 i← wu%oldFinalWidth
12
13 //Get relevant row
14 if (k=0)
15 tempFinal← R1
16 tempFinalIndex← getTriMatrixIndex(origN, n+pass-1)
17 else
18 tempFinal← finalRows
19 tempFinalIndex← getTriMatrixIndex(n, k)
20
21 if (wu<totalVals) tempVal← tempFinal[tempFinalIndex + i]
22 else tempVal← 0
23
24 //Compute Prefix sum and output to SM
25 synchroniseThreads
26 warpShufflePrefixSum(width, tempVal*tempVal, scanShared)
27 synchroniseThreads
28 if (wu<totalVals) {
29 if (i = 0) tempDiags[k]← abs(tempVal)
30 if (i = oldFinalWidth-1) tempSums[k]← scanShared[threadID] + toAdd
31 }
32 synchroniseThreads
33 if ((batch != batches-1) && (threadID=0)) *toAdd+= scanShared[blockWidth-1]
34
35 //Find min and max values
36 for batch← 0 to ceil(n/blockWidth)
37 k← batch * blockWidth + threadID
38 sum← tempSums[k]
39 if (k>0) sum -← tempSums[k-1]
40
41 if (k < n)
42 if (k = pass-1)
43 diagsMax[k]← tempDiags[k]
44 diagsMin[k]← tempDiags[k]
45 normsMax[k]← sum
46 normsMin[k]← sum
47 else
48 diagsMax[k]← max(diagsMax[k], tempDiags[k])
49 diagsMin[k]← min(diagsMin[k], tempDiags[k])
50 normsMax[k]← max(normsMax[k], sum)
51 normsMin[k]← min(normsMin[k], sum)

Listing 9: Pseudocode showing the process of computing the minimum and maximum
squared row norms and diagonals in the new kernel
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technique is used again, batching the computations and providing a unique work index

for each computation. The first work units in every iteration will compute the entries of

the Givens matrices for this iteration. After synchronising the threads the rotations are

then performed on the relevant rows, firstly by finding the relevant rows and entries for

the Givens matrix, and then performing the matrix product.

The main difference in the computation of the QR deletion, compared to that from

Chapter 6, is the selection of rows on which the Givens rotation is performed. The new

row computations can be seen on Lines 32 to 46. Note that in this implementation the

structures for the final and work in progress rows are used, with the code selecting a specific

row from these structures, rather than requesting the index of the matrix. Additionally,

the selection of the second row on which to perform the givens matrix is no longer constant

for all values of k, and for the first triangular factor R1 this must instead be extracted

from the original matrix R1. This is because the full triangular factors are no longer stored

for all of the subresultant matrices, and so the first factor must be treated differently, as

this is stored in its full form.

7.2.3 GPU Profiling and and Establishing Launch Parameters

Similarly to the implementation proposed in Chapter 6, this implementation was thor-

oughly profiled at various stages of development to test its performance. The final profiling

results are discussed in this section.

In the profiling performed in Chapter 6, it was shown that the execution time of the

implementation was primarily split between two kernels. Here those kernels were combined

into one, resulting in the low memory implementation spending 97.7% of the runtime in

the primary kernel at a polynomial degree of 250, and 99.5% of the runtime in the primary

kernel at a degree of 1250.

When the default launch parameters are used this kernel requires 85 registers per

thread. Using the default launch parameters limits the theoretical device occupancy to

only 25%, and the block size to 512. As was discussed in Chapter 6, the use of registers can

be lowered using launch bounds . The usage of this feature requires the maximum

block size and the minimum number of multiprocessors for the kernel to be specified. By

requesting a maximum block size of 1024, with a minimum multiprocessor count of 1,

the kernel restricts the registers per thread to 64. This means the kernel can achieve a

theoretical occupancy of 50%. While not ideal, this is the same occupancy as achieved in

the implementation in Chapter 6.

While restrictions with the launch bounds feature in the previous implementation

caused a significant decrease in performance in most cases, the opposite is true for this

implementation. Even for polynomial degrees as low as 250, restricting the registers in

this way reduces the duration of the primary kernel from roughly 92ms down to roughly

57ms. An improvement from 545ms down to 457ms was seen at a polynomial degree of

500. Due to the size of the blocks required, polynomials of degrees greater than those

discussed here would not launch before the bounds had been set.
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1 // COMPUTE GIVENS VALUES
2 totalWork← newFinalWidth * pass
3 maxWorkPerThread← ceil(totalWork / blockWidth)
4 for batch← 0 to maxWorkPerThread
5 wu← (batch * blockWidth) + threadID
6 if (wu < totalWork)
7 if (batch < ceil(n / blockWidth))
8 if (wu < pass)
9 tempK← pass-wu

10 tempRowIndex← pass-tempK
11
12 if (tempRowIndex = 0)
13 x← orig[getTriMatrixIndex(origN, (n-tempK)) + tempK]
14 else
15 x← wipRow[getTriMatrixIndex(tempK, n-1)]
16
17 if (tempK = 1)
18 y← orig[getTriMatrixIndex(origN, n+pass-1)]
19 else
20 y← finalRows[getTriMatrixIndex(tempK-1, n)]
21
22 na← sqrt(x*x+y*y)
23 sharedG[pass-1-wu].c←x/na
24 sharedG[pass-1-wu].s←y/na
25 synchroniseThreads
26
27 k← pass - (wu / newFinalWidth)
28 i← wu % newFinalWidth
29 rowIndex← pass-k
30 fullRow← n - k
31
32 //RETRIEVE RELEVENT GIVENS VALUES
33 if (wu < totalWork)
34 if (rowIndex=0)
35 row1← orig
36 index1← getTriMatrixIndex(origN, n-k) + k
37 else
38 row1← wipRow
39 index1← getTriMatrixIndex, k, n-1)
40
41 if (k=1)
42 row2← orig
43 index2← getTriMatrixIndex(origN, n+pass-1)
44 else
45 row2← finalRow
46 index2← getTriMatrixIndex(k-1, n)
47
48 c← sharedG[k-1].c
49 s← sharedG[k-1].s
50 temp1← row1[index1]
51 temp2← row2[index2]
52 synchroniseThreads
53 //COMPUTE AND WRITE NEW VALUES
54 if (wu < totalWork)
55 rowIndex1← getTriMatrixIndex(k, n)
56 finalRow[rowIndex + i]← temp1 * c + temp2 * s
57 if ((rowIndex < fullRow-1) && (i != 0))
58 rowIndex2← getTriMatrixIndex(k, n-1)
59 wipRow[rowIndex2 + i - 1]← temp1 * -s + temp2 * c
60 synchroniseThreads

Listing 10: Pseudocode showing the process of performing Givens Rotations in the new
kernel
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The achieved occupancy of the kernel ranges from 48.7% for the lower polynomial

degrees, to 50% for higher degrees.

7.3 Memory Usage

As discussed throughout this chapter, the main aim of this implementation was to reduce

the memory usage of the GPU implementation discussed in Chapter 6. In the original

implementation, single trials of the AGCD algorithm could take up the entire memory of

the device when the degree of the polynomial is sufficiently large. Figure 7.1 is included

in this chapter for easy reference, it is identical to Figure 6.4. As can be seen from this

figure, when the polynomials are of degree 2128 the algorithm already uses more memory

than is available on the high end NVIDIA Titan V, which has 12GB of GPU memory.

Most commercial GPUs at the time of writing have memory between 4GB and 8GB.

Figure 7.1: GPU memory usage of the original method from Chapter 6

The results shown in Chapter 6 showed that when the polynomials convolved with an

AGCD were of high degree the results returned by the full computation can be unreliable.

However, it may still be desired to attempt the computation on degrees beyond 2000,

when little noise is present, or when some degrees of AGCD can be ruled out.

The issue of memory usage in the implementation in Chatper 6 is not just a problem

when processing polynomials of very high degrees. The results in Chapter 6 show the issues

for polynomials of intermediate degree. When the computation needs to be batched, the

overall performance of the implementation suffers. There are multiple causes of these

performance issues. Firstly, batching causes the kernel and memory calls to be sent to

the GPU in multiple batches. While no extra data is copied to the GPU, and no extra

computation is performed, the additional kernel and memory calls required will cause a

significant amount of extra overhead. Secondly, when the work is split this could lead to

non-optimal utilisation of the device, leading to more idle cores and an overall less efficient
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implementation.

Figure 7.2: GPU memory usage of the low memory method

The solutions described in this chapter provide significantly improved memory util-

isation, which will in turn lead to better device utilisation overall. Figure 7.2 shows the

memory needed for a single trial for polynomials of degrees up to 2500. It should be

noted that this is a theoretical maximum, and a real world application may require more

GPU memory than is shown here, as some applications, such as Matlab, add overhead

to the GPU memory. The results here show that even at a polynomial degree of 2500,

this algorithm would only require around 0.17GB of memory, compared to roughly 20GB

in the previous implementation.

Figure 7.3: Comparison of the memory usage between the two methods

Figure 7.3 shows a comparison between the implementation from Chapter 6 and the
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implementation from this chapter on a log scale. This graph shows that both algorithms

scale their memory usage similarly, but the original method uses over 100 times more

memory than the implementation presented in this chapter.

The limiting factor of the low memory implementation of the algorithm presented in

this chapter is no longer that of the global GPU memory, but of shared memory. Current

NVIDIA GPUs have a shared memory limit of 48kB. This means that the total number of

double precision values that can be stored simultaneously in shared memory is 6144. The

kernel in this implementation requiring the most shared memory is that of the primary

kernel, where the computation and analysis of Ř1...n is performed. In this kernel, while

space is saved by reusing the same shared memory locations for both the prefix sum and

the entries of the Givens matrices, the total shared memory required by this kernel is still

very high.

In the current implementation the total number of double precision values required

is equal to the total shared memory needed for the block size, plus 2n entries to store

temporary sums and diagonals found, plus an extra value for storing the running total of

the batched prefix sum. Therefore the total number of double precision entries required

a, for a matrix of width n is

a = s+ 2n+ 1,

where s is the memory required for each batch of the prefix sum,

s = q +
q

32
, q = min(n, 1024).

This limits the degree n of the polynomials being processed (assuming polynomials of

equal degree) to 2543. This limit is already higher than that of the algorithm presented in

the previous implementation, and could still be improved further. By moving some of the

shared memory locations into global memory, particularly those in which the temporary

diagonals and row sums are stored, the shared memory usage could be reduced. However,

this would also impact performance, as global memory has higher memory latency than

shared memory. This modification could be made if images larger than this limit in either

dimension are required to be processed.

7.4 Results

The memory utilisation improvements discussed in Section 7.3 provide significant improve-

ments to the computational performance of the algorithm, with significant benefits to both

runtime and scalability when compared to the method presented in Chapter 6.

As with Section 6.3, the results here will be broken down into two sections. Section

7.4.1 will briefly discuss the reliability testing, where the algorithm is checked to ensure

the exact same results are offered by this implementation as the original GPU and CPU

versions. This section is brief, as it was found that the algorithm performed identically in
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this regard to all previous implementations. Section 7.4.2 will discuss the runtime testing,

where the runtime is compared to the CPU and GPU methods, and scalability is tested.

All tests in this section were performed on a system with a 6 core Intel i7 6850k CPU

and an NVIDIA Titan V GPU. All tests were run 10 times and an average taken of these

results to give the final results. The standard deviation in all cases was less than 11% of

the mean, typically being less than 6% of the mean.

7.4.1 Reliability Testing

Similarly to the testing described in Chapter 6, the algorithm was tested for reliability.

The results at each stage of the execution were examined, and the results checked for

consistency against existing algorithms. At all stages of the algorithm the results of the

low memory implementation were exactly the same as those from the CPU and original

GPU methods.

Using the same polynomials as were tested in Chapter 6 provided the same results as

the implementation in this chapter. Thus, for more information about the reliability of

this implementation Table 6.1 can be referenced.

The reduced form of the algorithm, presented in Chapter 4 and tested in Chapter 6,

was not implemented with the new low memory techniques. The reasons behind this were

explained in Chapter 6. However, the reliability advantages of such an algorithm can still

be gained by limiting the size of AGCDs being considered, and only considering gradients

up to a set point. This algorithm is therefore still able to achieve the reliability shown in

Tables 4.1 and 4.2 of Chapter 4.

7.4.2 Runtime Testing

This section will test the runtime of the new method, and compare it against the CPU and

original GPU versions. To test the scalability of this implementation the tests will measure

the runtime of varying degrees of the convolved polynomials and of varying numbers of

trials.

Figure 7.4 shows the runtimes of the implementation presented in this chapter, com-

pared to that presented in Chapter 6. The original method times are shown with dotted

lines, while the method from this chapter are shown with solid lines. The tests with the

same numbers of trials are shown in the same colour. When the degree of the convolved

polynomials is as low as 250 there is very little difference in the performance between the

implementations, but as the degree increases the improvement appears more apparent.

For polynomials of degrees between 250 and 1250 both methods scale relatively consist-

ently, though notable runtime improvements from the low memory implementation over

the previous implementation can already be observed. After this point, the low memory

algorithm continues to scale well, while the original implementation begins to encounter

performance issues. This, as discussed in Chapter 6, was largely due to the batching

method implemented, which enabled the processing of large polynomials by processing



Chapter 7. A Low GPU Memory Approach to Degree Computation 143

Figure 7.4: Runtimes of the low memory implementation for increasing polynomial de-
grees and various numbers of trials, with runtimes from the original implementation for
comparison

batches of trials in sequence. This batching occurs at the expense of device utilisation,

and increased overheads. By reducing the memory of each individual trial, and thus

reducing the need for batching, the low memory implementation allows for a greater num-

ber of trials to be processed in the same kernel call. This allows the algorithm to scale

significantly more consistently for all degrees of polynomial tested.

Figure 7.5 shows how the algorithm performs across an increasing number of trials

for polynomials of degree 1000. This was shown on a log scale, to make it easier to see

the GPU implementations in comparison to the CPU implementations. The performance

issues caused by the batching are clearly visible on the line representing the original GPU

method, while the low memory version has a smooth curve much more similar to that

of the CPU implementations. The low memory implementation does appear to only be

marginally faster than the original GPU method here, and that is due to the choice of a

polynomial degree of 1000. Batching at this degree in the original GPU method provides

for a smoother curve, as the smaller problem sizes for individual trials, compared to larger

degrees, allows for greater device utilisation.

Figure 7.6 shows the relative speedup of the low memory implementation across varying

numbers of trials when compared to the CPU implementations and the original GPU

implementation. The speedup against the GPU and CPU parallel implementations is

relatively consistent for all numbers of trials, which is to be expected as it was shown in

Section 6.3 that the degree of the convolved polynomials affects runtime more than the

number of trials. There is a significant increase in the speedup when compared to the
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Figure 7.5: Runtimes of the low memory GPU method compared to the original GPU
method, and the CPU methods for increasing numbers of trials

Figure 7.6: Runtime improvement of the low memory GPU method compared to the
original GPU method, and the CPU methods for increasing numbers of trials
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serial implementation, with the low memory implementation being 57.45 times faster at 5

trials, and eventually levelling off to being between 90 to 95 times faster when 35 or more

trials are processed. This increase in relative performance is due to the utilisation of the

device being better when more data is able to be processed simultaneously.

Figure 7.7: Runtimes of the low memory GPU method compared to the original GPU
method, and the CPU methods for increasing polynomial degrees

Figure 7.7 shows the runtimes of 25 trials for polynomials of increasing degree on a

log scale. The improvement from the removal of batching is clearly visible here, as the

original and low memory methods start off being very close together, but, as the batching

causes the original method to encounter performance issues, the low memory version keeps

a curve very similar to that of the CPU implementations.

Figure 7.8 shows the speedup of the low memory implementation over the original

GPU and CPU implementations for increasing polynomial degrees. There is only a mod-

est improvement in performance over the GPU implementation in Chapter 6, between 1.01

times at a degree of 250, to 4.77 times at a degree of 2000. However, the trend here does

appear to be an increase in relative performance when compared to all three other imple-

mentations. This increase starts to level off at degrees of 1750-2000, though performance

is still improving for greater numbers of trials. This suggests that the algorithm not only

scales better than other algorithms, but will also continue to at least scale in line with

them at higher degrees.

Comparing this to the speedup for the original GPU method, shown in Figure 6.8, it

can be seen that, while the original GPU implementation had quite inconsistent speedups

against the CPU parallel version, here the speedup is consistently increasing as the number
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Figure 7.8: Runtime improvement of the low memory GPU method compared to the
original GPU method, and the CPU methods for increasing numbers of polynomial degrees

of trials increases. Even when the speedup is at its lowest, at a degree of 500, a speedup

of 18.38 times is still present. The high speedup that can be seen before this point at

a degree of 250 can be explained, as was discussed in Chapter 6, as the initial overhead

from the parallel pool creation. The overhead of the parallel pool initialisation remains

constant for all degrees, and thus the impact is larger relative to the overall runtime when

the overall runtime is lower.

7.4.3 Testing on Limited Hardware

While the results shown in this section so far have exceeded the original implementation

presented in Chapter 6, the low memory implementation proposed in this chapter has

benefits outside of runtime performance. The results shown prior to this point have made

use of a high end NVIDIA Titan V GPU with a large 12GB of memory. However, the

low memory footprint of the new algorithm allows even low end or dated consumer GPUs

to take advantage of the accelerated algorithm. This section will test how the algorithm

performs when testing on such hardware.

The implementation was tested on a system with an NVIDIA GTX 780 GPU with

3GB of GPU memory, and an Intel 4790k CPU. While these were high end consumer level

components at the time of release, they are now somewhat dated, and more comparable

to newer low to mid level hardware available today. The Titan V on the other hand

is a recent, high end, professional level GPU. While the Titan V, released in 2017, has

5120 CUDA cores with a maximum clock speed of 1455 MHz, the GTX 780, released in
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2013, has only 2304 CUDA cores with a maximum clock speed of 900 MHz. While these

specifications do not give the full picture of the difference in expected performance of the

two GPUs, they do give an idea of the difference between the two devices.

The same tests performed in Section 7.4.2 were again performed on the system with

the GTX 780. As the rest of these results will show, the low memory implementation

performed well, even on the more limited hardware, still managing to outperform the CPU

parallel implementation by a significant margin. These tests demonstrate that while the

best GPU performance comes from high end GPUs, even a less powerful, more affordable

GPU can provide significant benefits over a purely CPU implementation.

Figure 7.9: Runtimes of the low memory GPU method on an NVIDIA GTX 780 compared
to the NVIDIA Titan V and CPU serial implementation for increasing numbers of trials

Figure 7.9 shows the runtimes of the low memory method on the more limited hardware

of the NVIDIA GTX 780. The CPU method has been included in this graph as a point of

comparison. Even on less powerful hardware, it is shown that the low memory implement-

ation scales well in this regard, and is much closer to the runtimes of the implementation

on the Titan V than the more modern high end CPU.

The same remains true when increasing the polynomial degree. The two GPUs have

almost identical runtimes when processing polynomials of lower degrees, due to under-

utilisation of the high end Titan V. The two curves start to separate, with both levelling

off so the devices are scaling similarly, with the GTX 780 taking roughly 1.74 times longer

than the Titan V. It is also clear that the memory issues of the implementation described in

Chapter 6 have been solved. The inconsistencies seen in the curves in the implementation

presented in Chapter 6, due to the need for batching, are not present here, even with the

significantly reduced memory capacity of the GTX 780.
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Figure 7.10: Runtimes of the low memory GPU method on an NVIDIA GTX 780 com-
pared to the NVIDIA Titan V and CPU parallel implementation for increasing polynomial
degrees

7.5 Profiling of the Accelerated Blind Image Deconvolution

Algorithm

The algorithm proposed in this chapter provides a fast method of computing the degree

of the AGCD, as was used in the BID algorithm described in Chapter 4. Given the extent

that this algorithm has been accelerated, it is now worth going back to the original profiling

of the full blind image deconvolution algorithm, with the new degree computation method,

and seeing where further optimisations can be made.

The profiling in this section was performed using the same image and PSF as were

used in Chapter 4. The same CPU, an Intel i7 6850K, was used, alongside an NVIDIA

Titan V.

Figure 7.11 shows the new profiling results of the full deconvolution algorithm after

acceleration of the degree computation. When compared to the profiling in Figure 4.10

of Chapter 4, it is clear that the acceleration was successful. The new implementation

reduces the runtime of the overall program from 42.45 seconds to 13.50 seconds. The degree

computation algorithm, shown here in the function DegreesRowColumnStandalone-

CudaLowMem is reduced to 2.82 seconds, with the CUDA function itself taking only 0.12

seconds.

With this acceleration it becomes clear that the next most expensive section of the

algorithm is that of the optimal column selection, as part of the AGCD coefficient com-

putation. The largest proportion of self time remaining is that in qrdelete, which is

called from the above function CalculateOptimalColumn. The next most expensive
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Figure 7.11: Results of profiling the Matlab implementation of the image deconvolution
algorithm using the low memory GPU degree computation

algorithms below this involve linear programming, for which parallel methods have been

widely researched, and construction of the Sylvester matrix, which does not present a

significant research challenge.

Since the optimal column selection takes a significant amount of the remaining runtime,

and requires a novel solution, it should be the next focus for acceleration.

7.6 Conclusion

The low memory degree computation described in this chapter represents a significant

improvement over the original algorithm proposed in Chapter 6. With the changes de-

scribed the new implementation is able to process the computation of the degree of an

AGCD faster than the original GPU implementation, and the improved scalability allows

for polynomials of higher degrees to be processed on hardware with limited amounts of

memory.

Section 7.5 shows the updated profile of the Matlab implementation after this ac-

celeration is integrated into the serial implementation. The speedups demonstrated here

are a significant improvement over the original implementation, though other sections of

the deconvolution must still be optimised. The next chapter will discuss the optimisation

and acceleration of the computation of the optimal column to be used in the structured

matrix methods involved in the computation of the coefficients of the AGCD.





Chapter 8

GPU Acceleration of the

Computation of the Coefficients of

an AGCD

Chapters 6 and 7 proposed an accelerated method for the computation of a degree of an

AGCD. While the results in these chapters did show a significant improvement in the

runtime of the overall algorithm, there still exist sections of the BID algorithm in which

optimisations can be made. The most significant section of the remaining runtime of the

BID algorithm is the computation of an optimal column for use in the modified SNTLN

method proposed by Winkler and Hasan [56]. This will be used to compute the coefficients

of the AGCD, as was originally discussed in Chapter 4. In this chapter, the optimal column

computation, and how this can be accelerated using GPUs, will be discussed.

Section 8.1 will give an overview of the algorithm, including areas within the algorithm

that optimisations were investigated to reduce unnecessary computation. Section 8.2 will

discuss the details of implementing the algorithm discussed in Section 8.1, including the

pseudocode of the algorithm, and the final profile of the implemented algorithm. Section

8.3 will detail how the implementation was tested, for both the runtime improvements and

to ensure reliability, and testing the algorithm on lower end hardware.

8.1 Algorithm

The algorithm with which the AGCD coefficients are computed was discussed briefly in

Chapter 4. In this section the algorithm will be discussed in more detail, and optimisations

that can be made to this algorithm will be discussed. The aim of this computation is to find

the optimal column co of the pth subresultant matrix Sp(f, g), with which the coefficients

will be computed. The subresultant matrix Sp(f, g) is constructed using the polynomials

f(x) and g(x), of degrees m and n respectively, where p is the degree of the AGCD. The

construction of these matrices was discussed in Chapter 3.

In the degree computation there were multiple trials of different pairs of polynomials

151
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f(x) and g(x), each selected from the rows, or columns, of the input image. In this al-

gorithm only one pair of polynomials is considered. The original BID algorithm, presented

by Winkler, selected the polynomials from the first trial in which the degree computation

provided the modal value for the degree of the AGCD, as this gives a reasonable chance of

finding a low rank estimation of Sp assuming that the computed degree is correct. While

this provides good results, the selection of these polynomials can be improved.

It is proposed in this thesis that the pair of polynomials used should be those that

returned the minimum combined gradients from the tests described in Chapter 4. Lower

gradients would suggest that the entries in the lower rows of Rk are closer to zero, and

thus the subresultant matrix Sk(f, g) is closer to being rank deficient.

As was discussed in Chapter 4, the optimal column is column cp from the Sylvester

matrix Sp in which the residual of the approximate equation Apx ≈ cp is minimised. This

section will give an overview of how that residual is computed.

8.1.1 Algorithm Overview

Starting with the Sylvester subresultant matrix Sp, each column ct must be tested, where

t = 1 . . . w and w = m + n − 2p, the width of the subresultant matrix Sp. This test

involves the use of QR decomposition to find the orthogonal factor Qp,t, of the matrix

Sp,t, which is the subresultant matrix Sp with column t removed. Similarly to the degree

computation, performing the full QR decomposition of each matrix Sp,t is unnecessary for

the computation of the residual. This can instead be computed through QR deletions of

each column from the factors Qp and Rp of the subresultant matrix Sp,

Sp = QpRp.

The computation of the factors Qp,t and Rp,t can then be achieved through QR deletion

of column t from the factors Qp and Rp, to give the factors Qp,t and Rp,t of the matrix Sp,t,

for all values of t. The process of performing QR column deletion is discussed in Chapter

3. As discussed in that chapter, when removing a single column from the original QR

decomposition, the QR updates via Householder reflections and Givens rotations reduce

to the same computation. Thus there are no performance benefits in this case of using

Householder transformations, and Givens rotations shall be used instead.

Sp,t = Qp,tRp,t , t = 1 . . . w,

All of these QR deletions can be performed in parallel, and all computations within

these deletions that occur on the same row of Rp,t, or column of Qp,t, can also be performed

in parallel. This is a significant amount of work with potential parallelism. Unfortunately

this leads to an unbalanced workload, as fewer rotations are needed to update the factors

of Sp for greater values of t. Additionally, on each iteration for each matrix, the matrix

products of the rotations will decrease in size. Methods to balance this workload will be

discussed in Section 8.2.
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Unlike the degree computation, in which the orthogonal matrix Q can be discarded,

the orthogonal factors Qp,t are needed for the computation of the residual, and therefore

the factor Qp is required to compute Qp,t. Additionally, the upper triangular factor Rp is

required for the computation of Qp,t, and thus both factors are required in this algorithm.

Once the computation of all orthogonal matrices Qp,t is complete, the product of the

transpose of each of the orthogonal factors Qp,t and the tth column of Sp, ct, is computed.

The resulting vector will be known as ht.

ht = QT
p,tct.

The residual of this matrix is computed through the norm of the last p elements of ht,

denoted as ht,(w−p)...w. The optimal column is computed by finding the column which has

the minimum residual associated to it.

rt =
∥∥ht,(w−(p−1))...w∥∥2 .

The index o, of the optimal column co, can be computed by finding the value of t in

with the lowest residual rt.

o = arg min
t

(rt) , t = 1 . . . (m+ n− 2d).

8.1.2 Optimisations

Section 8.1.1 gave an overview of the optimal column calculation from a high level, con-

sidering the overall computations that must be completed. This section will discuss the

areas of this computation in which optimisations can be made to reduce unnecessary

computations.

The main optimisation that can be made to this algorithm is by reducing the portion

of the product of QT
p,t and cp,t that must be computed. It was noted that only the norm

of the final p entries of the vector ht are required to compute the residual.

In the matrix product shown below the blue highlighted area of ht represents the values

that are needed in order to compute the residual for this value of k. The green highlighted

area represents the values of QT
p,t that are required to compute these values.

ht = QT
p,tcp,t,



hp,1

hp,2
...

hp,m−(p−1)
...

hp,m


=



q1,1 q2,1 . . . qm,1

q1,2 q2,2 . . . qm,2

...
...

...
...

q1,m−(p−1) q2,m−(p−1) . . . qm,m−(p−1)
...

...
...

...

q1,m q2,m . . . qm,m





ct,1

ct,2
...
...
...

ct,m


.
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By removing the non-highlighted area of QT
p,t, a significant part of each matrix product

can be avoided. The new equation is shown below. The reduced forms of ht and Qp,t used

for this computation will be henceforth known as ȟt and Q̌t. And thus the computation

of ȟt is

ȟt = Q̌T
p,tcp,t,


hp,m−p

...

hp,m

 =


q1,m−p q2,m−p . . . qm,m−p

...
...

...
...

q1,m q2,m . . . qm,m





ct,1

ct,2
...
...
...

ct,m


.

Therefore column o is computed with

o = arg min
t

(
∥∥ȟt∥∥2) , t = 1 . . . (m+ n− 2p).

While only the last p columns of each matrix Qp,t are required for the computation of

the residual, the full update must still be computed. During the QR update the rotations

are applied to the columns of the orthogonal matrix Q, on two columns at a time. Se-

quential rotations are performed on overlapping pairs of columns. This means that, even

if only the last p columns are needed from the updated orthogonal matrix, the full update

must still be computed.

The subresultant matrix St(f, g) is of dimension (w + p − 1) × w, and its factors Qt

and Rt are of dimensions (w+ p− 1)× (w+ p− 1) and (w+ p− 1)×w respectively. Take,

for example, the matrix S3(f, g) constructed from the polynomials f(x) and g(x), which

are of degree 6, and have a GCD of degree p = 3. This subresultant matrix is split into

its factors, Q3 and R3.

S3(f, g) =



f0 0 0 0 g0 0 0 0

f1 f0 0 0 g1 g0 0 0

f2 f1 f0 0 g2 g1 g0 0

f3 f2 f1 f0 g3 g2 g1 g0

f4 f3 f2 f1 g4 g3 g2 g1

f5 f4 f3 f2 g5 g4 g3 g2

f6 f5 f4 f3 g6 g5 g4 g3

0 f6 f5 f4 0 g6 g5 g4

0 0 f6 f5 0 0 g6 g5

0 0 0 f6 0 0 0 g6



,
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Q3 =



q1,1 q1,2 q1,3 q1,4 q1,5 q1,6 q1,7 q1,8 q1,9 q1,10

q2,1 q2,2 q2,3 q2,4 q2,5 q2,6 q2,7 q2,8 q2,9 q2,10

q3,1 q3,2 q3,3 q3,4 q3,5 q3,6 q3,7 q3,8 q3,9 q3,10

q4,1 q4,2 q4,3 q4,4 q4,5 q4,6 q4,7 q4,8 q4,9 q4,10

q5,1 q5,2 q5,3 q5,4 q5,5 q5,6 q5,7 q5,8 q5,9 q5,10

q6,1 q6,2 q6,3 q6,4 q6,5 q6,6 q6,7 q6,8 q6,9 q6,10

q7,1 q7,2 q7,3 q7,4 q7,5 q7,6 q7,7 q7,8 q7,9 q7,10

q8,1 q8,2 q8,3 q8,4 q8,5 q8,6 q8,7 q8,8 q8,9 q8,10

q9,1 q9,2 q9,3 q9,4 q9,5 q9,6 q9,7 q9,8 q9,9 q9,10

q10,1 q10,2 q10,3 q10,4 q10,5 q10,6 q10,7 q10,8 q10,9 q10,10



,

R3 =



r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7 r1,8

0 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7 r2,8

0 0 r3,3 r3,4 r3,5 r3,6 r3,7 r3,8

0 0 0 r4,4 r4,5 r4,6 r4,7 r4,8

0 0 0 0 r5,5 r5,6 r5,7 r5,8

0 0 0 0 0 r6,6 r6,7 r6,8

0 0 0 0 0 0 r7,7 r7,8

0 0 0 0 0 0 0 r8,8

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



.

Note that the last two rows of R3 are zero. This means that no QR updates will occur

on these rows to compute the updated decomposition. The last rows on which a Givens

rotation must be performed to are w − 1 and w, in this case these are rows seven and

eight, introducing the final zero on row eight.

R3,t =



r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7

0 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7

0 0 r3,3 r3,4 r3,5 r3,6 r3,7

0 0 0 r4,4 r4,5 r4,6 r4,7

0 0 0 0 r5,5 r5,6 r5,7

0 0 0 0 0 r6,6 r6,7

0 0 0 0 0 0 r7,7

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



.

When computing the updated orthogonal matrix, in this case Qp,t, the transpose of

the Givens matrix for each rotation will be applied to columns of Qp with the same indices
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of the rows the rotation was applied to in Rp. In this case the rotation that was applied to

rows seven and eight in R3 will be applied to columns seven and eight of Q3 to compute

Q3,t.

This means that, when t = 1, and the first column of S3 is deleted, giving S3,1, and

the factor Q3,1, the first 8 columns of Q3,1 will have changed from the values in Q3.

Q3,1 =

q1,1 q1,2 q1,3 q1,4 q1,5 q1,6 q1,7 q1,8 q1,9 q1,10
q2,1 q2,2 q2,3 q2,4 q2,5 q2,6 q2,7 q2,8 q2,9 q2,10
q3,1 q3,2 q3,3 q3,4 q3,5 q3,6 q3,7 q3,8 q3,9 q3,10
q4,1 q4,2 q4,3 q4,4 q4,5 q4,6 q4,7 q4,8 q4,9 q4,10
q5,1 q5,2 q5,3 q5,4 q5,5 q5,6 q5,7 q5,8 q5,9 q5,10
q6,1 q6,2 q6,3 q6,4 q6,5 q6,6 q6,7 q6,8 q6,9 q6,10
q7,1 q7,2 q7,3 q7,4 q7,5 q7,6 q7,7 q7,8 q7,9 q7,10
q8,1 q8,2 q8,3 q8,4 q8,5 q8,6 q8,7 q8,8 q8,9 q8,10
q9,1 q9,2 q9,3 q9,4 q9,5 q9,6 q9,7 q9,8 q9,9 q9,10
q10,1 q10,2 q10,3 q10,4 q10,5 q10,6 q10,7 q10,8 q10,9 q10,10





.

In the above matrix the values boxed in red will have changed from the matrix Q3,

while the entries boxed in blue are those required for the computation of the residual.

Note that only one column exists in the overlap between the two boxed areas, that being

column eight in this case. More generally the index of this column is w, the second column

of the last rotation in the update algorithm. The same is true for all values of t, with

column w being the only column necessary for the computation of the residual that will

have changed in the updated matrices.

As this is the only column that will have changed and is necessary for the computation

of the residual, only a single column needs to be stored for each updated orthogonal

matrix. Entries for the columns (w+ 1) . . . (w+ p− 1) can be extracted from the original

orthogonal matrix Q3. Additionally, only the second row of each rotation performed on

Q3 is required to compute the next rotation, and the required column is computed in the

second column of the last rotation. Thus, the computations for the first column of each

rotation are unnecessary. Through avoiding this computation the number of operations

required to compute the necessary column is almost halved.

The product of the matrix Q3,t and the column ct can then be computed in a series

of warp shuffle row sums, computing each entry of the residual vector in sequence. These

entries can be squared and added to a running sum to compute the squared norm of the

residual. As the aim is to find the minimum of the norms, the squared norm will suffice,

and the square root is not required.

8.1.3 Example

This section will give an example of the computation with the optimisations described in

Section 8.1.2.

The normalised vectors f and g on which this example will be based are shown below.
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The polynomials, of which these vectors represent the coefficients, have degrees of m =

n = 4, and have an AGCD of degree p = 2.

f = [0.3156, 1.1968, 2.7722, 2.4429, 0.3910],

g = [0.3717, 1.2175, 2.7722, 1.8053, 0.3156].

The Sylvester matrix Sp(f, g) is constructed,

Sp(f, g) =



0.3156 0.3717

1.1968 0.3156 1.2175 0.3717

2.7722 1.1968 0.3156 2.7722 1.2175 0.3717

2.4429 2.7722 1.1968 1.8053 2.7722 1.2175

0.3910 2.4429 2.7722 0.3156 1.8053 2.7722

0.3910 2.4429 0.3156 1.8053

0.3910 0.3156


,

and the QR decomposition of this matrix is computed,

Qp =



−0.0806 −0.0899 −0.0756 0.1273 0.0089 −0.0613 0.9796

−0.3056 −0.2203 −0.1243 0.1392 0.0132 −0.8980 −0.1293

−0.7079 −0.3321 −0.1907 0.3913 −0.0064 0.4277 −0.1275

−0.6238 0.3646 0.3012 −0.6161 0.0055 −0.0263 0.0838

−0.0998 0.8233 −0.0880 0.5460 −0.0361 −0.0696 −0.0144

0 0.1496 −0.9016 −0.3533 0.1960 0.0376 −0.0094

0 0 −0.1765 −0.0938 −0.9798 −0.0055 0.0071


,

Rp =



−3.9163 −2.9167 −1.2467 −3.5219 −2.8848 −1.2993

0 2.6135 2.9793 −0.3042 2.0580 2.8728

0 0 −2.2151 −0.1922 0.1132 −1.6314

0 0 0 0.3617 −0.3056 0.2416

0 0 0 0 0.0089 −0.0513

0 0 0 0 0 −0.0001

0 0 0 0 0 0


.

The updated factors of Sp(f, g) must now be computed, after each column is removed.

As was discussed in Section 8.1.2 only the last column that is changed in Qp,t must be

retained.

The first step in computing the update for Qp,1 is to remove the first column from Rp

to give R̃p,1.
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R̃p,1 =



−2.9167 −1.2467 −3.5219 −2.8848 −1.2993

2.6135 2.9793 −0.3042 2.0580 2.8728

0 −2.2151 −0.1922 0.1132 −1.6314

0 0 0.3617 −0.3056 0.2416

0 0 0 0.0089 −0.0513

0 0 0 0 −0.0001

0 0 0 0 0


.

The first Givens matrix G1 is computed from the first elements in the first two columns

of R̃p,1. The process for this is discussed in Chapter 3.

G1 =

[
−0.7448 0.6673

−0.6673 −0.7448

]
.

This rotation is then applied to R̃p,1. As was discussed in the previous section, only the

result on the bottom row of the rotation on the upper triangular factor must be computed.

The updated row of R̃p,1 is computed, ignoring the top row of the matrix product. The

entries of the result of this matrix product that do not need to be computed are denoted

here as •.

[
−0.7448 0.6673

−0.6673 −0.7448

][
−2.9167 −1.2467 −3.5219 −2.8848 −1.2993

2.6135 2.9793 −0.3042 2.0580 2.8728

]
=[

• • • • •
0 −1.3869 2.5768 0.3924 −1.2725

]
.

The result of this matrix product and the next row of R̃p,1, in this case row 3, are used

to compute the next row of the upper triangular factor. Firstly the Givens matrix G2 is

computed from the first non-zero elements in these rows.

G2 =

[
−0.5307 −0.8476

0.8476 −0.5307

]
.

This matrix is then used in the computation of the next row, again ignoring the upper

row of the matrix product.

[
−0.5307 −0.8476

0.8476 −0.5307

][
−1.3869 2.5768 0.3924 −1.2725

−2.2151 −0.1922 0.1132 −1.6314

]
=[

• • • •
0 2.2860 0.2726 −0.2127

]
.

This process repeats, resulting in the next Givens matrix G3.
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G3 =

[
0.9877 0.1563

−0.1563 0.9877

]
.

And the next row from the matrix product,

[
0.9877 0.1563

−0.1563 0.9877

][
2.2860 0.2726 −0.2127

0.3617 −0.3056 0.2416

]
=

[
• • •
0 −0.3444 0.2718

]
.

The process repeats again resulting in G4.

G4 =

[
−0.9997 0.0257

−0.0257 −0.9997

]
.

[
−0.9997 0.0257

−0.0257 −0.9997

][
−0.3444 0.2718

0.0089 −0.0513

]
=

[
• •
0 0.0443

]
.

As was noted in Section 8.1, the upper triangular factor is not needed to compute

the residual. Therefore, in the last iteration, only the Givens matrix, and not the matrix

product, needs to be computed.

G5 =

[
1.0000 −0.0015

0.0015 1.0000

]
.

With all of the Givens matrices now computed, work can begin on applying the Givens

rotations to the columns of Qp to compute the necessary column of the updated matrix,

which will be the first column of Q̌p,1. The first of these rotations is computed by finding

the matrix product of the first two columns of Qp with the transpose of the matrix G1.

As with the computations for the upper triangular matrices, only half of the result of the

matrix product is required. In this case only the second column of the result is computed.

−0.0806 −0.0899

−0.3056 −0.2203

−0.7079 −0.3321

−0.6238 0.3646

−0.0998 0.8233

0 0.1496

0 0



[
−0.7448 −0.6673

0.6673 −0.7448

]
=



• 0.1207

• 0.3680

• 0.7197

• 0.1447

• −0.5465

• −0.1114

• 0


.

The next product is computed from the matrix consisting of the computed column in

the previous iteration and the next column of Qp, in this case this is the third column.
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

0.1425 0.1273

0.3779 0.1392

0.7112 0.3913

−0.0371 −0.6161

−0.4165 0.5460

0.3840 −0.3533

0.0937 −0.0938



[
−0.5307 0.8476

−0.8476 −0.5307

]
=



• 0.1425

• 0.3779

• 0.7112

• −0.0371

• −0.4165

• 0.3840

• 0.0937


.

This pattern continues until all Givens rotations have been applied.

0.1207 −0.0756

0.3680 −0.1243

0.7197 −0.1907

0.1447 0.3012

−0.5465 −0.0880

−0.1114 −0.9016

0 −0.1765



[
0.9877 −0.1563

0.1563 0.9877

]
=



• 0.1035

• 0.0784

• 0.2754

• −0.6027

• 0.6044

• −0.4090

• −0.1073


,



0.1035 0.0089

0.0784 0.0132

0.2754 −0.0064

−0.6027 0.0055

0.6044 −0.0361

−0.4090 0.1960

−0.1073 −0.9798



[
−0.9997 −0.0257

0.0257 −0.9997

]
=



• −0.0116

• −0.0152

• −0.0006

• 0.0100

• 0.0206

• −0.1854

• 0.9822


,

In the final computation the necessary column of Qp,1 is computed, which will be the

first column of Q̌p,1.

−0.0116 −0.0613

−0.0152 −0.8980

−0.0006 0.4277

0.0100 −0.0263

0.0206 −0.0696

−0.1854 0.0376

0.9822 −0.0055



[
1.0000 −0.0015

0.0015 1.0000

]
=



• −0.0613

• −0.8980

• 0.4277

• −0.0263

• −0.0696

• 0.0373

• −0.0040


.

This column will be known as qt.
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qt =



−0.0613

−0.8980

0.4277

−0.0263

−0.0696

00373

−0.0040


.

The full matrix Q̌p,t is constructed using this column vector and the last p−1 columns

of Qp. In this case this submatrix of Qp only consists of a single column.

Q̌p,t =



−0.0613 0.9796

−0.8980 −0.1293

0.4277 −0.1275

−0.0263 0.0838

−0.0696 −0.0144

0.0373 −0.0094

−0.0040 0.0071


.

The product of the transpose of Q̌p,t and column ct is computed, giving the vector ȟ1.

ȟ1 =

[
−0.0613 −0.8980 0.4277 −0.0263 −0.0696 0.0373 −0.0040

0.9796 −0.1293 −0.1275 0.0838 −0.0144 −0.0094 0.0071

]


−0.0806

−0.3056

−0.7079

−0.6238

−0.0998

0

0


,

=

[
0.1343× 10−4

0

]
.

The norm of h1 is computed, giving the residual rt,

rt = ‖ht‖2 ,

r1 = 0.1343× 10−4.

This process is repeated for every column in Sp, to give the final values of the residuals

rt where t = 1 . . . (m+ n− d). In this case this results in 6 residuals.
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r1 = 0.1343× 10−4,

r2 = 0.1573× 10−4,

r3 = 0.8272× 10−4,

r4 = 0.1582× 10−4,

r5 = 0.1154× 10−4,

r6 = 0.6676× 10−4.

The optimal column index o is equal to the value of t with the minimum residual. In

this case this r5 is the minimum residual, therefore o = 5.

8.2 Implementation

With these optimisations to the algorithm it is still important to devise an efficient im-

plementation that makes use of the GPU. The implementation presented in this section

takes the form of three kernels. Some of the techniques used and developed in previous

methods, such as the load balancing, were used again here. Inspiration was also taken

from the low memory structures described in Chapter 7.

This implementation splits the algorithm into three kernels. To keep the kernels simple

it was decided to split the QR update into two separate kernels. The first of these kernels

processes the computation of the Givens matrices through the computation of the upper

triangular matrix Rp,t after the QR updates. While the matrix Rp,t is unnecessary for the

computation of the residuals, these computations are necessary in order to compute all

of the Givens matrices required for the computation of the updated orthogonal matrices

Qp,t, as was shown in Section 8.1.3.

The second kernel computes the necessary column from the orthogonal matrix Qp,t,

with the entries of the Givens matrices computed in the previous kernel. As discussed in

Section 8.1.1 this is only required to output a single column of the updated orthogonal

matrix, as the remainder of these columns can be extracted from the original orthogonal

matrix Qp.

The final kernel computes the residual of the product of Qp,t and the column ct. Each

entry of the vector is computed in sequence, the result is squared, and added to a running

sum to compute the squared residual.

8.2.1 Computing the Givens Matrices

The first kernel, the pseudocode of which is shown in Listing 11, involves the computation

of the Givens matrices that are required to compute the updated orthogonal factor. To

aid balance this was split into a separate kernel from the computation of the orthogonal

matrix. The computation of the Givens matrices is performed in a very similar way to
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1 // R1 is the original upper triangular matrix R1 stored in triangular form
2 // rWidth is the width of the original R1 matrix
3 // givensVals is a two dimensional array of structures for storing the Givens
4 // values necessary for all updates arranged by value of k then by row.
5 // GV creates a structure to store the entries of the givens matrix
6 // allWipR is a two dimensional array in which work in progress rows of the
7 // each updated matrix are stored
8 // getTriMatrixIndex(width, row) is a function to get the index of a specified
9 // row of a matrix with the specified width

10
11 gpu_parallel_for 0 to blockWidth
12 t← blockID
13
14 for i← t to rWidth-1
15 iWidth← rWidth-1-i
16 totalWork← iWidth
17 batches← ceil(totalWork / blockWidth)
18 for batch← 0 to batches
19 wu← batch*blockWidth + threadID
20 if (wu ≤ i)
21 row← i-t
22
23 if (row=0)
24 x← R1[getTriMatrixIndex(rWidth, row+t)+2]
25 else
26 x← allWipR[t][1]
27 y← R1[getTriMatrixIndex(rWidth, row+t+1)]
28
29 na← sqrt(x*x+y*y)
30
31 c← x/na
32 s← y/na
33 givensVals[t][row]← GV(c,s)
34
35 synchroniseThreads
36
37 col← wu
38 if (wu < totalWork) && (i < rWidth-1)
39 row← i - t
40 v← givensVals[t][row]
41
42 if (row = 0)
43 val1← R1[getTriMatrixIndex(rWidth, row+t) + col + 1]
44 else
45 val1← allWipR[t][col + 1]
46 val2← R1[getTriMatrixIndex(rWidth, row+1+t) + col]
47
48 synchroniseThreads
49
50 if (wu < totalWork) && (i < rWidth-1)
51 allWipR[t][col]← val1 * -v.s + val2 * v.c
52
53 synchroniseThreads

Listing 11: Pseudocode showing the computation of the entries of the necessary Givens
matrices
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the method of computing the upper triangular matrix in Chapter 7. The computation is

batched, with computations on the same row of Rp,t happening in the same iteration, which

can be seen on Lines 14 to 18. Each column deletion is computed in a separate block, with

the rows of the update computed in sequence in each block. This leads to an unbalanced

workload between blocks. However, to follow the scheme used in the implementations

discussed in Chapters 6 and 7 would have meant that all of the computation would occur

in a single block. This was found to limit the utilisation of the device by a greater amount

than the unbalanced workload.

Each batch begins with the computation of the Givens entries on Lines 19 to 35. This

happens in much the same way as in the implementation in Chapter 7. Once these are

computed, the program moves on to applying the rotation to the affected rows, which

occurs on Lines 37 to 51. Unlike the computation of the upper triangular matrix in

Chapter 7, only a single row is required to be stored by this kernel. This row will be used

to compute the entries of the Givens matrices in the next iteration, as the entries of the

upper triangular matrix are not required beyond the computation of the entries of the

Givens matrices. This means that the upper row of each matrix product does not need to

be computed, and the lower row of each product does not need to be retained after the

next row has been computed. This nearly halves the number of operations required for

the matrix products, and drastically reduces the amount of memory needed to compute

the entries of the Givens matrices.

8.2.2 Computing Column w of the Orthogonal Matrices

The second kernel, the pseudocode of which is shown in Listing 12, uses the entries of

the Givens matrices computed in the previous kernel, and applies the rotations to the

orthogonal matrix Qp to compute the updated orthogonal matrices Qp,t. As was dis-

cussed in Section 8.1.2, only the column at index w is required to be computed in this

implementation.

Similarly to the previous kernel, the computation for each column deletion occurs in a

separate block. This leads to a balanced workload within the block, and thus a minimal

number of idle threads. The kernel batches the computation on Lines 17 to 20, finds the

relevant Q matrices on Lines 21 to 30, and applies the relevant rotation from the Givens

matrix entries computed in the previous kernel on Line 32. Also similarly to the previous

kernel, only the second column of each matrix product needs to be computed. This is

because the second column will be used in the next rotation, while the first column is not

needed for any further computations. In the final iteration the entries of the second column

are retained, as this is column w that is required for the computation of the residuals.

It is important to note that the upper triangular matrix used here is input into the

algorithm in column major form. This is because the computations occur across the

columns of the orthogonal matrices, and thus storing in column major form allows the

memory access to be coalesced, while the upper triangular matrices are stored in row

major form for the same reason. If these matrices are in different forms than is required
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1 // Q1 is the original orthogonal matrix
2 // QWidth is the width of Q1
3 // allQCols is a 2 dimensional array that stores work in progress columns of the
4 // all the updated orthogonal matrices, the final values in these arrays
5 // will represent the necessary column for the residual computation
6 // degree is the previously computed degree of the AGCD
7 // allGivensVals is a 2 dimensional array storing all the Givens values needed
8 // to compute all the updated rows of Q
9

10 gpu_parallel_for 0 to blockWidth
11 t← blockID
12
13 givensVals← allGivensVals[t];
14 qCol← allQCols[t];
15
16 for col← t to qWidth - degree
17 batches← ceil(qWidth/blockWidth)
18 givensIndex← col - t
19 for batch← 0 to batches
20 wu← blockWidth * batch + threadID
21 if (wu < qWidth)
22 row← wu
23 v← givensVals[givensIndex]
24
25 if (col ≤ t)
26 val1← Q1[qWidth*col + row]
27 else
28 val1← qCol[row]
29
30 val2← Q1[qWidth * (col+1) + row]
31
32 qCol[row]← val1 * -v.s + val2 * v.c
33 synchroniseThreads

Listing 12: Pseudocode showing the computation of the necessary columns of the updated
Q matrices
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before being input this just requires a transpose operation. The overhead of performing

these operations is negligible compared to the runtime reduction from the efficient memory

access.

8.2.3 Computing the Residuals

The pseudocode for the final kernel is shown in Listing 13. This kernel computes both the

matrix product of Q̌p,t with ȟt, and the squared norms of the results of these products.

The kernel returns the residual rt for each value of t. Similarly to the other kernels, each

block works on the computation for an individual value of t.

The outer loop, initiated on Line 21, iterates over the columns of each orthogonal

matrix, and Lines 25 to 31 show this computation being batched.

As was discussed previously in this chapter, only a single column will have been stored

for each orthogonal matrix. This means that in the first iteration each block will use

column w, computed for Qp,t, and all successive iterations will use columns retrieved from

the original orthogonal matrix Qp. The only exception is for the last column w, for which

no update needs to be computed, and thus all columns are retrieved from the orthogonal

matrix Qp. This can be seen on Lines 33 to 38.

The column ct is retrieved from the subresultant matrix Sp on Line 39. The subresult-

ant matrix, much like the orthogonal matrix, is input in column major format to ensure

memory access is coalesced. The products of the relevant entries of these columns are

summed, using a warp shuffle prefix sum algorithm on Lines 41 to 45. This prefix sum

computes the sum of the product of a row from Q̌T
p,t and the column ct, to give a final value

for a single entry of the column vector ȟt. The prefix sum is batched in case the columns

have more entries than the maximum block size. The sum computed for the column vec-

tor ȟt is squared and added to the running sum for this column vector on Lines 48 to 52.

Once all p iterations are complete the squared residuals will have been computed, and a

minimum of these residuals can be found.

8.2.4 Finding the Minimum Residual

Once the squared residuals have been computed, they are copied back to host memory,

where processing to find the minimum residual can occur on the CPU. Similarly to the

final steps of the degree computation, it would be possible to compute the minimum on

the GPU. However, minimal computation remains at this point, and only a small amount

of data needs to be copied back to host memory. Due to this there is unlikely to be a

significant speed improvement by completing this computation to the GPU.

8.2.5 GPU profiling

In this section the final profiling results of this implementation will be discussed. The pie

chart in Figure 8.1 shows the amount of time spent in each of the kernels described in the

preceding sections. It is clear that the computation of the entries of the Givens matrices
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1 // Q1 is the original orthogonal matrix
2 // allQCols is a 2 dimensional array in which the necessary columns of the
3 // orthogonal matrix required for the computation of the residual
4 // are stored
5 // qWidth is the width of Q1
6 // degree is the previously computed degree of the AGCD
7 // rWidth is the width of R1
8 // Sp is the Sylvester matrix from which Q1 and R1 were computed
9 // residualSqSums is an array of the residuals computed from the final columns

10 // of the updated Qs
11 // scanShared is the shared memory used for the prefix sum
12 // toAdd is a shared memory location where the running sum of all the prefix
13 // sums is stored to allow them to be batched
14 // warpShufflePrefixSum(width, value, shared) is the warp shuffle prefix sum
15 // algorithm taking in the width of the sum, a single value per thread,
16 // and the shared memory used for the sum
17
18 gpu_parallel_for 0 to blockWidth
19 int t← blockID
20
21 for col← 0 to degree
22 if (threadID=0) toAdd← 0
23 synchroniseThreads
24
25 batches← ceil(qWidth / blockWidth)
26 for batch← 0 to batches
27 if (batches - batch = 1)
28 width← qWidth % blockWidth
29 else
30 width← blockWidth
31 wu← batch * blockWidth + threadID
32
33 if ((col=0) && (t<rWidth-1)) {
34 qVal← allQCols[t][wu]
35 }
36 else {
37 qVal← Q1[((qWidth - degree) + col) * qWidth + wu]
38 }
39 sVal← Sp[t * qWidth + wu]
40
41 val← 0
42 if (wu<qWidth)
43 val← kthCol[wu] * qCol[wu]
44
45 blockPrefixSum(width, val, scanShared)
46
47 if (wu = qWidth - 1)
48 outVal← toAdd[0] + scanShared[threadID]
49 if (col=0)
50 residualSqSums[blockID]← outVal * outVal
51 else
52 residualSqSums[blockID]+= outVal * outVal
53
54 synchroniseThreads
55 if (threadID = blockWidth - 1) toAdd+= scanShared[blockWidth - 1]
56 synchroniseThreads

Listing 13: Pseudocode showing the computation of residuals of the updated Q matrices
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takes the majority of the execution time. This is expected, due to the unbalanced nature

of the kernel, and the fact that both Givens matrices and the updated upper triangular

factors must be computed, while the kernel for the computation of the updated orthogonal

matrix uses the Givens matrices computed previously.

Figure 8.1: Pie chart showing the percentage of time spent in each kernel

The kernel for the computation of the entries of the Givens matrices, as discussed,

takes a significant amount of time to compute relative to the other kernels. This was to be

expected, due to the increased workload compared to the computation of the updating of

orthogonal matrices, and the unbalanced workload. The main limiting factor, however, is

the occupancy. An occupancy of only 50% was achieved. The limiting factor in this case

was, similarly to the kernels in the previous chapters, the register usage. The kernel uses

62 registers per thread. This amount means that it is not worth limiting the number of

threads in the block, as this would mean a significant number of variables would have to

be stored in memory, which would impact performance. The kernel also sees low compute

throughput. This is unfortunately due to the unbalanced nature of the algorithm. Further

research would be required here to find a way to improve balance in this algorithm.

The computation of the updated orthogonal matrices is a well balanced kernel. This,

combined with the register count of only 32 per thread, allows the kernel to achieve an

occupancy of 99.9%, with significantly higher compute throughput compared to that of

the computation of the Givens matrices. This implies that this kernel is well optimised,

and not needing any further consideration regarding its optimisation.

The final kernel achieves a high occupancy of 79%. Considering that this kernel makes

up only a small amount of the overall runtime it was not considered a priority for further

optimisation.
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8.3 Results

Similarly to Chapters 6 and 7, the tests in this section cover two areas. Firstly the

reliability is tested, where the code was assessed to ensure that it provided the exact same

result as that of the serial implementation at every stage of the computation. Secondly

the runtime was investigated, to test how significant the improvement over CPU serial

and parallel implementations is. The optimisations described in Section 8.1.2 were also

applied to the CPU implementations.

8.3.1 Reliability testing

In the degree computation the results provided by the algorithm could be tested against

a known degree, and against the output of the serial algorithm. In this situation however,

the optimal column is not known during the construction of the test data, and thus the

algorithm cannot be tested against a prior known value. Instead the algorithm was tested

against the original serial implementation, and a serial implementation that makes use of

the optimisations described in Section 8.1.2, to ensure the same results are reached. The

algorithm was inspected at every stage, the computation of the Givens matrix entries, the

computation of the matrices Qp,t, the computation of the product, and the final residuals.

The algorithm was thoroughly tested with polynomials of a wide range of degrees,

and AGCDs of a wide range of degrees. The output from each kernel was examined.

In all tested cases the algorithm provided the exact same result as both of the serial

implementations. However, as will be seen in Chapter 9, when the degree of the AGCD is

high, and the noise is also high, the computation of the coefficients is less reliable.

8.3.2 Runtime testing

The GPU implementation was compared against the CPU serial and parallel implementa-

tions to test its runtime, and the amount of speedup that was gained by parallelising this

algorithm. All three implementations were timed from before the polynomials were norm-

alised, until an optimal column index was computed. While the results in Chapters 6 and

7 included the overhead of the initialisation of the parallel pool in the times for the CPU

parallel implementation, they were not included in this case. It is a reasonable assumption

that if an optimal column is to be computed using a CPU parallel implementation, then

the parallel pool would have already been initialised as part of the degree computation. It

was therefore decided that it was unnecessary to include this overhead in the times shown

here.

All results, as with the results shown in the previous chapters, were computed on a

system with a 6 core Intel i7 6850k CPU, and an NVIDIA Titan V GPU. The CPU parallel

implementation parallelised the computation of the residual for each column, including the

column deletion, the matrix product and the computation of the norm, across all 6 cores

of the CPU.
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The tests for all algorithms considered degrees of the polynomials convolved with the

AGCDs from 200 up to 2000, at increments of 200. The degree of the AGCD in each case

was equal to roughly 10% of the convolved polynomial degree. The vectors tested were

generated using the Matlab rand command, and noise was added after the convolution.

Ten sets of vectors of these degrees were generated in each test, and the time taken for

each set was averaged to give the final runtimes as are presented here.

Figure 8.2: Runtimes of the GPU method and the CPU serial and parallel methods

Figure 8.2 shows the runtimes of the GPU implementation against that of the CPU

serial and parallel implementations on a log scale. It is immediately clear that the GPU im-

plementation is significantly faster than the CPU implementations, with runtimes staying

between one and two orders of magnitude below even the CPU parallel implementation.

It is noticeable that the CPU serial implementation has a significant increase in runtime

at a degree of 1200. Profiling of this algorithm did not reveal the reason behind this

increase, and the CPU parallel implementation does not have such an increase. The CPU

parallel runtimes before this point were between 2.41 and 3.81 times faster than the serial

implementation, and after this point the runtimes were between 4.97 and 5.78 times faster

than the serial implementation. Given the CPU on which the algorithm was tested has

6 physical cores, the runtimes for degrees between 1200 and 2000 are more in line with

what was expected, and it is a reasonable assumption that the algorithm would continue

to scale in this way. Before this point the lower than expected runtimes could potentially

be explained by underlying optimisations within Matlab for smaller computations.

The CPU parallel and GPU implementations, on the other hand, scale relatively con-

sistently for increasing degrees, demonstrating the scalability of this algorithm. For de-

grees as large as 2000, the GPU implementation takes only 1.68 seconds, while the CPU

implementations took 912.21 seconds and 163.85 seconds for the serial and parallel imple-

mentations respectively.
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Figure 8.3: Speedup of the GPU method over those of the CPU serial and parallel methods

Figure 8.3 shows the speedup of the GPU implementation against the CPU imple-

mentations. The most obvious feature here is the large increase in the speedup against

the CPU serial implementation at a degree of 1200, as was described during the discussion

of the runtimes. The cause of this increase is unknown, as was discussed previously.

At the lower end of the convolved degrees the improvements over the CPU imple-

mentations were only modest. At a degree of 200 runtimes of 20.20 and 8.25 times faster

were recorded for the CPU serial and parallel implementations respectively. This scales

smoothly until the 1000 mark, as previously discussed, where the runtimes compared

against the CPU serial and parallel implementations were 192.01 and 53.85 times faster

respectively. After this point the CPU serial implementation starts to take longer, and the

runtime improvement of the GPU implementation against the CPU serial implementation

increases to 375.59 times faster at a degree of 1200. The rate of improvement then levels

off again, and at the highest degree tested, 2000, the runtimes were 542.68 and 97.47 times

faster than the CPU serial and parallel implementations respectively.

The most notable thing about these runtimes is that, without exception, higher de-

grees lead to a higher relative improvement for the GPU accelerated implementation.

This suggests that the algorithm would continue to scale well, and provide even greater

improvements with regards to runtime if the degree is increased further.

8.3.3 Testing on Limited Hardware

This implementation, similar to that in Chapter 7, does not use much of the GPU memory.

This means that the algorithm would be able to be used on lower end hardware. To test

this the algorithm was run on a system with a 4 core Intel i7 4790k CPU, and an NVIDIA

GTX 780 GPU, with 3GB of GPU memory. This GPU was compared against the NVIDIA

Titan V used in the other tests in Chapter 7.
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Figure 8.4: Runtime of the GTX 780 against the Titan V, as well as the CPU parallel
implementation as a comparison

Figure 8.4 shows the runtimes of the implementation on these two GPUs, with the

CPU parallel implementation as a comparison. The difference in runtime between the two

GPUs is significantly less than the difference between the slower GPU, the GTX 780, and

the CPU parallel implementation. The GPUs have similar runtimes at the lower end of

the polynomial degrees, with runtimes of 0.033 and 0.031 seconds for the Titan V and the

GTX 780 respectively. The low difference between these runtimes can be explained by

the poor utilisation of the Titan V for a computation this small. As the degree increases

the difference between the runtimes provided by the GPUs becomes more apparent. At a

degree of 800 the difference starts to level off, and for degrees between 800 and 2000 the

Titan V stays between 3.10 and 3.61 times faster than the GTX 780.

Despite this difference in runtimes, running the implementation on a GTX 780 is

still significantly faster than the CPU parallel implementation. The runtime of the GPU

implementation, even when implemented on a dated GPU, starts at 7.90 times faster

than the CPU parallel implementation. This runtime continues to scale well, with the

relative runtimes continuing to improve up to the maximum degree tested, where the

GPU algorithm was 27.03 times faster. This implies, similar to the tests using the Titan

V, that the algorithm would continue to scale well for all degrees.

8.4 Conclusion

This chapter demonstrated the acceleration of the computation of an optimal column of

a subresultant matrix as part of a modified SNTLN method, in order to calculate the

coefficients of an AGCD. The optimisations and acceleration discussed in this chapter

significantly reduce the runtime of the computation of the coefficients, by concentrating

on the most expensive part of this algorithm that required a novel solution. With the
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optimisations and acceleration proposed in this chapter, and those from Chapters 6 and 7,

the BID algorithm originally discussed in Chapter 4 has been significantly accelerated, and

the scalability and low memory usage of this algorithm suggests that even larger images

could be processed efficiently.

The next chapter will take the accelerated implementations presented in these chapters,

and the improvements discussed in Chapter 4, and investigate the improvement that these

have made, both in terms of runtime and reliability, to the original BID algorithm.





Chapter 9

Full Image Deconvolution and

Results

Chapters 6, 7, and 8 have shown how aspects of the BID algorithm presented in Chapter

4 have been optimised by using a GPU. While each of these chapters has discussed the

impact these optimisations have had on the degree and coefficient algorithms, they have not

discussed the impact these optimisations have had overall. Additionally, the improvements

made to the degree estimation algorithm in Chapter 4, primarily by reducing the range of

gradients that the algorithm will consider, have not been demonstrated within the context

of the image deconvolution algorithm.

This chapter will investigate these improvements and optimisations, to give an idea of

the overall impact the research presented in this thesis has had on the BID algorithm in

its entirety.

After deconvolution, it was found that the processed images appeared significantly

darker than the input images, this is due to the convolved images being darker around

the border area. To correct for this, the ratio between the norms of the blurred image,

excluding the border area, and the deconvolved image was found. This ratio was used to

scale the pixel values of the output images so that they appear to be the correct brightness.

9.1 Standard Test Images

For this section, eight standard test images were selected to test the algorithm. These

images were tested at two resolutions, 256 × 256 and 512 × 512. These images were

convolved with a PSF of dimensions 25 × 25 for the smaller images, and 51 × 51 for the

larger images. The images were converted to double matrices, with values scaled between 0

and 1, and random, uniformly distributed noise with an SNR of roughly 120dB was added

to both the PSF before convolution, and the blurred image after convolution. All of these

images were tested with the best performing GPU accelerated implementation, using the

implementations from Chapters 7 and 8, and the best performing CPU implementations,

those being the CPU parallel implementations discussed in Chapter 4.
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While the algorithms are performing the exact same computations, the method with

which the trials are parallelised means that the two implementations may select differ-

ent rows and columns from the convolved images. This means that the results of the

deconvolution in the two implementations may differ.

The results of the tests performed in this section are analysed from both qualitative

and quantitative perspectives. The qualitative analysis will discuss how the images look,

and the clarity of detail to the human eye. The quantitative approach is to compute a

numerical measure of the error in the deconvolved image compared to the exact image,

and compare this to the error in the blurred image again compared to the exact image.

The convolved image will have the border area trimmed so it is the same size as the exact

image, and therefore provide a more accurate comparison.

9.1.1 Error Computation

To compute the error e between an exact image I and another image A the images must

first be normalised. The pixel values of A are scaled by the norm of I, and the pixel values

of I are scaled by the norm of A.

Ĩ =
I
‖A‖2

, Ã =
A
‖I‖2

.

The pixel values of the image Ã are then subtracted from the pixel values of Ĩ to give

the difference between the two images.

E = Ã − Ĩ.

The error relative to the original image is then computed by finding the ratio between

the Frobenius norm of E and the Frobenius norm of the normalised exact image Ĩ.

e =
‖E‖F∥∥∥Ĩ∥∥∥

F

.

9.1.2 Error and Runtime Results

Eight standard test images were used as the subjects of these tests. The exact forms of

these images are shown in Figure 9.1.

Due to the relative size of these images and the PSFs with which they were convolved,

the degraded images at both sizes look very similar. Therefore only the larger blurred

images will be shown here. Figure 9.2 shows the convolved images. The black boundary

areas, discussed in Chapter 2, are shown in these images. These boundary areas are

necessary for the deconvolution to be successful in the current implementation.

Figure 9.3 shows the runtime and error results of the deconvolution of the smaller

256 × 256 images using the CPU parallel algorithm, and Figure 9.4 shows the same im-

ages deconvolved using the GPU accelerated algorithm. The results of the deconvolutions
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9.1: The eight exact images used in this experiment



178

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9.2: Blurred images from Figure 9.1
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9.3: 256× 256 images restored on the CPU
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9.4: 256× 256 images restored with the GPU
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CPU GPU

Image
Blurred

error Time (s)
Deconvolved

error Time (s)
Deconvolved

error

a 0.2113 34.85 0.0590 1.49 0.0597
b 0.1782 34.56 0.0619 1.49 0.0609
c 0.1667 34.86 0.0614 1.52 0.0615
d 0.2204 34.82 0.0563 1.47 0.0567
e 0.2024 34.95 0.0577 1.52 0.0588
f 0.1894 34.87 0.0600 1.52 0.0608
g 0.2088 34.86 0.0589 1.49 0.0597
h 0.2052 34.90 0.0593 1.48 0.0605

Table 9.1: Time taken and error before and after the deconvolution on the CPU and GPU
for the 256× 256 images

demonstrate that at this level of noise, with the PSF sizes specified, the image deconvo-

lution is consistently successful for all tests. Both implementations appear to give very

similar results, such that it is hard to identify the difference between the output of the two

implementations by looking at them. Both implementations result in deconvolved images

in which the only difference from the exact image appears to be the presence of noise,

which, as was described in Chapter 4, is a result of the noise being added to the convolved

image.

Table 9.1 shows the results of the deconvolutions for both implementations. The

average error for the blurred images across all of these tests is equal to 0.1978. The

average errors in the deconvolved images from the CPU and GPU algorithms are 0.0593

and 0.0598 respectively. These show a significant decrease in the error present in the

deconvolved images, with both algorithms, as expected, providing similar decreases in the

error present in the images.

The GPU implementation shows a significant decrease in runtime compared to the CPU

parallel implementation, from an average of 34.83 seconds per image down to an average

of 1.49 seconds per image. This decrease demonstrates that the acceleration has been

successful. While the majority of the algorithm, including the linear programming sections,

remains identical between the two implementations, the AGCD degree computation and

the computation of an optimal column have been accelerated. These two sections now

make up only a very small amount of the runtime of the GPU accelerated BID algorithm,

with the majority of the remaining runtime consisting of linear programming and least

squares equality problems.

Figures 9.5 and 9.6 show the blurred images and deconvolution results of the larger

512 × 512 images. Chapter 4 discussed that the effect of increasing the degree of the

AGCD. While there was a decrease in the reliability of the computation of the degree

at high convolved degrees, this only had a significant impact with high levels of noise.

This is still the case here, with the degree being reliably computed, however the coefficient

computation struggles to maintain reliability for larger PSFs. This is seen in the increased
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9.5: 512× 512 images restored on the CPU
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 9.6: 512× 512 images restored with the GPU
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CPU GPU

Image
Blurred

error Time (s)
Deconvolved

error Time (s)
Deconvolved

error

a 0.2165 180.38 0.2735 5.78 0.2586
b 0.1794 162.67 0.2874 5.48 0.2571
c 0.1712 163.21 0.2860 5.57 0.2848
d 0.2298 162.71 0.2567 24.69 0.2524
e 0.2165 162.97 0.2709 5.55 0.2734
f 0.2066 162.47 0.2807 5.53 0.2810
g 0.2149 162.43 0.2772 5.66 0.2753
h 0.2165 162.47 0.2720 25.00 0.2540

Table 9.2: Time taken and error before and after the deconvolution on the CPU and GPU
for the 512× 512 images

presence of noise in both sets of results compared to those of the original images.

Table 9.2 shows the results for runtimes and errors from these two sets of images. The

errors in both cases appear larger than the errors caused by the blurring. The average error

of the blurred images in this case was 0.2064, while the average errors in the deconvolved

images are 0.2756 and 0.2671 for the CPU and GPU accelerated algorithms respectively.

Despite this increase in error the images appear be restored compared to the blurred

image. The increase in error is likely due to the increase in noise present in the images,

compared to the smaller images, due to the algorithm not coping as well with the larger

PSF size.

The average runtime for the CPU implementation is 164.19 seconds, while the GPU

accelerated implementation is 10.41 seconds. This is a significant decrease in time provided

by the GPU acceleration. It is notable that image (a) in the CPU implementation, and

images (d) and (h) in the GPU accelerated implementation, take roughly 19 seconds more

than the other images. In these cases the algorithm struggles to compute the coefficients

of the AGCD to be within the threshold of permutations for the source polynomials. This

results in the least squares equality function taking a significant amount of time longer

than would otherwise be required. When this is not the case the average time of the CPU

parallel algorithm is 162.70 seconds for the CPU implementation, and 5.59 seconds for the

GPU accelerated algorithm.

When the degree of the AGCD is increased further, the deconvolution typically fails.

While the degree is typically still estimated correctly, the computation of the coefficients

fails. This often results in the output of a black image or only noise, with no visible trace

of the exact image, when the deconvolution is attempted.

9.1.3 Reliability Improvements

Chapter 4 detailed two methods in which the computation was improved over the original

method. These improvements provided more reliable computation, in the first case for the

AGCD degree computation, in the second case for the AGCD coefficient computation. The
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tests discussed in the previous section were attempted without each of these improvements,

and the results of these tests will be discussed here.

9.1.3.1 Degree Computation Improvements

The AGCD degree computation, detailed in Chapter 4, considered a reduced set of the

subresultant matrices, to be able to compute the degree of the AGCD more reliably, and

with more confidence.

When considering all subresultant matrices for the computation of the degree, decon-

volution of the smaller images in the tests above were still successful. However, when the

image size and PSF size were increased the computed degree was incorrect in at least one

of the dimensions of the PSF in all situations. While some trials for most convolved images

returned the correct degree, the modal result of the trials returned the incorrect degree.

When the computed degree is incorrect by even a small amount this results in a failed

deconvolution. With the reduced degree estimation the degree was computed correctly in

all tests.

9.1.3.2 Coefficient Computation Improvements

Chapters 4 and 8 detailed the selection of the trials from the degree computation that

would be taken forward to be used for the SNTLN algorithm. In the original imple-

mentation the first of these trials which returned the correct degree was selected. It was

suggested that the selection of the trial to be used in the algorithm for the computation of

the coefficients could be improved, by using the gradients computed for each trial during

the degree computation. The solution used was to find trials that, where possible, the

tests using both the norms and diagonals returned the correct degree, and of these that

have the minimum combined gradient.

Figure 9.7: Failed deconvolution from incorrect trial selection
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The tests detailed previously in this section were attempted for both cases. When

using the original implementation the correct coefficients were identified for all of the

smaller images. When considering the larger images the deconvolution was successful in

several cases, however there were multiple images in which the coefficients were incorrectly

computed, and the deconvolution was unsuccessful. An example of this is shown in Figure

9.7, where image (d) from 9.2 was deconvolved to result in the image shown here. It was

found that by selecting the trial using the method proposed here the images on which

deconvolution had previously failed were successfully deconvolved.

9.2 Large Images

The runtime and reliability improvements presented in this thesis make processing larger

images feasible. While there are limitations in the current GPU implementations that

restrict the size of the image due to shared memory, the processing of images as large

as 2000 × 2000 is still possible. In this section the GPU accelerated algorithm will be

tested on a large image, to investigate the noise level and AGCD degree that can be

present for a successful deconvolution to occur on an image of this size. While section

9.1 demonstrated the algorithm being used on a variety of images, the tests presented in

this section demonstrate the effect of the algorithm on a single image, which was selected

for the variety in high frequency and low frequency features present in this image. The

images will be tested with a variety of PSF dimensions and noise levels to investigate how

the noise and size of the PSF will effect the result.

Figure 9.8: 2000× 2000 image that will be used for the tests in this section

The image shown in Figure 9.8 will be blurred with Gaussian PSFs of dimensions

25 × 25, 51 × 51, 75 × 75, and 101 × 101. Additionally, the image will be tested at three

levels of noise. In this section these noise levels will be referred to as low, medium, and
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high levels of noise. Each of these noise distributions will add noise of specified upper and

lower bounds to the PSF, and to the convolved image, with the noise uniformly distributed

between the specified bounds. The low level of noise is defined as having an SNR of roughly

80dB. Medium level of noise is defined as having an SNR of roughly 100dB. Finally high

levels of noise are defined as having an SNR of roughly 120dB, which is the same level as

noise as was used in Section 9.1.

All tests in this section were performed using the same 6 core Intel i7 6850k CPU, and

an NVIDIA Titan V GPU as were used to test the algorithm in the previous chapters. To

give a baseline for the runtime of the algorithm, the deconvolution of a PSF of size 25×25

was performed using the CPU parallel implementation, which performed the deconvolution

in 5662.29 seconds.

PSF Size Time (s)
Blurred

error
Deconvolved

error

25× 25 174.16 0.2267 0.0109
51× 51 197.91 0.2737 0.0419
75× 75 182.06 0.2759 0.0320

101× 101 187.57 0.2789 0.5989

Table 9.3: Time taken and errors for the deconvolution of large images at low levels of
noise

Figures 9.9, 9.10, 9.11, and 9.12 show the blurred images and the deconvolution results

when a low level of noise is added. Table 9.3 gives the runtimes and error measures for

these deconvolutions. The images appear less blurred than those in Section 9.1, as the

size of the PSF is lower relative to the size of the image. Despite this, it is apparent that

many of the high frequency areas of the image have been lost, even for small PSFs. This

is most obvious in the tiles on the roof of the building, and the trees in the background of

the image.

The first three images were successfully deconvolved, with only a small amount of

noise differentiating the results from the exact images in Figure 9.1. This is reflected in

the error measures shown in Table 9.3, where the error has been reduced by an order of

magnitude in all cases. The final image, however, shows a large amount of noise. This is

due to the coefficient computation struggling to cope with the large PSF, even at this low

level of noise. Despite the large amount of noise that is present in the deconvolved image

it is clear that some of the high frequency components have been restored, with the most

obvious change being around the leaves at the top of the image.

Figures 9.13, 9.14, and 9.15 show the blurred images and results of the deconvolution

for a medium level of noise, with Table 9.4 giving the numerical values of runtime and

error. When testing the algorithm on large images, with low levels of noise, the results

for four sizes of PSF were shown. In this case the 101 × 101 PSF did not result in a

successful deconvolution, as the degree of the AGCD was not correctly estimated. All

three of these images demonstrate a successful deconvolution, with a reduction in the
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(a) Blurred image (b) Restored image

Figure 9.9: The blurred and deconvolved images for a PSF of dimensions 25×25 with low
levels of noise

(a) Blurred image (b) Restored image

Figure 9.10: The blurred and deconvolved images for a PSF of dimensions 51 × 51 with
low levels of noise



Chapter 9. Full Image Deconvolution and Results 189

(a) Blurred image (b) Restored image

Figure 9.11: The blurred and deconvolved images for a PSF of dimensions 75 × 75 with
low levels of noise

(a) Blurred image (b) Restored image

Figure 9.12: The blurred and deconvolved images for a PSF of dimensions 101× 101 with
low levels of noise
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(a) Blurred image (b) Restored image

Figure 9.13: The blurred and deconvolved images for a PSF of dimensions 25 × 25 with
medium levels of noise

(a) Blurred image (b) Restored image

Figure 9.14: The blurred and deconvolved images for a PSF of dimensions 51 × 51 with
medium levels of noise
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PSF Size Time (s)
Blurred

error
Deconvolved

error

25× 25 174.04 0.2511 0.0193
51× 51 179.86 0.2656 0.0299
75× 75 182.08 0.2759 0.2217

Table 9.4: Time taken and errors for the deconvolution of large images at low levels of
noise

level of error present for all PSFs. The PSF of size 75 × 75 did result in a high level of

noise, though not as high as was present in the deconvolution of the 101× 101 PSF image

of the low noise tests. Similarly to the low noise tests, the first two PSFs reduced the

error by an order of magnitude when deconvolved. However, the last image shows only

a small reduction in error compared to the blurred image, though it does appear to be

deconvolved successfully in Figure 9.15. This is due to the presence of noise added by the

deconvolution.

PSF Size Time (s)
Blurred

error
Deconvolved

error

25× 25 174.38 0.2511 0.0211
51× 51 179.67 0.2656 0.6085

Table 9.5: Time taken and errors for the deconvolution of large images at low levels of
noise

Figures 9.16 and 9.17, and Table 9.5 show the results for the deconvolution at high

levels of noise. Increasing the noise again resulted in the 75 × 75 PSF being too large to

deconvolve, and thus only two results are shown here. The smaller PSF was successfully

deconvolved, with the error again being an order of magnitude lower than the blurred

image. The larger PSF, however, resulted in a similar deconvolution to the 101 × 101

PSF of the low noise tests. While it is apparent that the edges within the image have

been sharpened, and high frequency features restored, a large amount of noise has been

added to the image during the deconvolution. This is reflected in the error measure for

this image, which is significantly higher than the error of the blurred image.

The tests on larger images demonstrated that the BID algorithm can perform well at

low levels of noise. However, when either the noise increases too much, or the PSF is too

large, the computation of the coefficients starts to produce worse results. Increasing the

size of the PSF and noise level further causes the computation of the degree of the AGCD

to fail in at least one dimension, which results in the deconvolution failing.

The algorithm took an average of 181.30 seconds to run. This is an runtime improve-

ment of 31 times faster than the CPU parallel implementation. This could be improved

further by investigating other parts of the algorithm that could benefit from parallelism,

as will be described further in Chapter 10.
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(a) Blurred image (b) Restored image

Figure 9.15: The blurred and deconvolved images for a PSF of dimensions 75 × 75 with
medium levels of noise

(a) Blurred image (b) Restored image

Figure 9.16: The blurred and deconvolved images for a PSF of dimensions 25 × 25 with
high levels of noise
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9.3 Conclusion

This chapter demonstrated how the algorithms can be applied in the full BID algorithm.

Section 9.1 showed the algorithm being applied to a number of images with a high level

of noise added. While a significant amount of noise is present when deconvolving images

with a large PSF, the deconvolution was successful in that the images were clearer than

before the deconvolution. Section 9.2 demonstrated how reliable the algorithm was when

processing large images. As the results in this section showed, the algorithm can success-

fully deconvolve very large images, provided the size of the PSF, or the noise present in

the image, are low enough.

This chapter represents a culmination of the work in all previous chapters, and demon-

strated the effectiveness of accelerating the BID algorithm using GPUs. The final chapter

will discuss the key findings presented in this thesis, and provide insights on directions the

research presented here could be taken further.
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(a) Blurred image (b) Restored image

Figure 9.17: The blurred and deconvolved images for a PSF of dimensions 51 × 51 with
high levels of noise
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Conclusion

This thesis has presented a significantly accelerated algorithm for the computation of an

AGCD as part of the BID algorithm presented in Chapter 4. Throughout this work a

number of advancements and findings were made. This chapter will discuss the findings

made throughout this thesis, and the potential avenues for future research.

10.1 Key Findings

This section will outline the key findings of this thesis, and discuss the impact they have

on the overall algorithm. The findings have been split into several sections. These sections

will be the findings that could be applied to the original algorithm, those necessary for the

acceleration of the computation of the degree, those necessary for the optimisation of the

coefficient computation, and finally those related to how the algorithm has been improved

as a whole through this acceleration.

10.1.1 Changes to the Original Algorithm

Chapter 4 presented the original image deconvolution algorithm, first proposed by Winkler

[12]. In addition to describing the method of blind image deconvolution that the work

in this thesis is based on, modifications to this algorithm were proposed to improve the

reliability of the computation of the AGCD.

Prevention of selection of the same rows or columns for degree trials The

computation of the degree of the AGCD involved sampling an arbitrary number

of row and column vectors from the image. By avoiding selecting the same rows

or columns of pixels from an image wherever possible, the algorithm avoided

encountering problematic rows more than once. This led to more trials producing

the correct result for the degree estimation, and could potentially mean that fewer

trials are required for the degree computation.

Improved runtime and reliability of degree computation by reducing the

number of subresultant matrices considered The original BID algorithm,

195
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proposed by Winkler and described in Chapter 4, computed the degree of an

AGCD based on all subresultant matrices. While this provided reliable results

in many cases, increases in noise and the degrees of the convolved polynomials

led to a rapid falloff in the reliability of the algorithm. Winkler noted that

by limiting the considered modes to a predetermined range, such as half of the

degree of the convolved polynomial, the algorithm could be made more reliable.

In Chapter 4 a reduced implementation was considered, where only half of the

subresultant matrices were considered, thus assuming the degree of the PSF is

less than half of the overall image. By making this assumption, and limiting

the degrees that each trial could return, decisions on the degree can be made

with more confidence, as more trials return the expected answer. Performance

improvements were also observed, though these were only modest improvements,

as the subresultant matrices eliminated were the smaller matrices, and thus did

not take as long to process anyway.

Removing unnecessary computation of the row deletion for each upper tri-

angular factor The original implementation of the computation of the degree

of an AGCD required the deletion of two columns and a row of from each subres-

ultant matrix Sk in order to compute the subresultant matrix Sk+1. This row

deleted from Sk also meant performing a row deletion on the QR factors of Sk

to compute the factors of Sk+1. It was noted in Chapter 4 that the removal

of this row was mathematically unnecessary when considering only the rank of

Sk+1, and its upper triangular factor Rk+1. In both of these matrices the re-

moval of the two columns from Sk would result in the bottom row of Sk+1 having

no non-zero entries, and therefore the bottom row of Rk+1 would also have no

non-zero entries. Therefore these rows would have no effect on the rank. By

removing the need to compute this row deletion the need to compute the ortho-

gonal factors Q1...n is removed entirely, and thus the computation of the upper

triangular factors can be made significantly more efficient.

Removing unnecessary computation in the optimal column algorithm Chap-

ter 7 described multiple methods in which the optimal column computation, as

part of the modified SNTLN algorithm, could be accelerated. While some of

these optimisations were specific to parallelisation, two in particular were able to

be applied to the serial implementation. The first of these is the reduction of the

QR update algorithm, in which only a single column of each rotation needs to

be computed, almost halving the number of operations in the matrix products.

Additionally, in the matrix product required to compute the residual, a reduced

matrix product can be computed instead. This significantly reduces the number

of operations needed for this computation.
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10.1.2 Parallelisation of the Degree Computation

The main focus of this thesis has been on accelerating the computation of the degree of an

AGCD. This was shown in Chapters 6 and 7. The results in Chapter 6 showed significant

improvements in the overall runtime of the degree computation, though suggested potential

issues with scalability due to the limits in memory on the GPU. Chapter 7 improved on

this implementation by drastically reducing the memory needed for each trial. This led to

significant improvements in performance and scalability, and made it possible to process

polynomials of high degree, even on hardware with a limited amount of GPU memory.

Fast processing of triangular factors of subresultant matrices for degree com-

putation on a GPU The implementation proposed in Chapter 6 showed prom-

ising results for the performance improvements of a GPU algorithm for the com-

putation of the degree of a AGCD. While runtime was improved over the CPU

parallel implementation for all polynomial degrees, and therefore all sizes of im-

age, the algorithm did show some scaling problems as the memory operations and

kernel calls had to be batched. When the degree of the convolved polynomials

is high enough the polynomials could not be processed, due to running out of

memory. This was the first attempt at parallelising the degree computation on

a GPU, and the runtime improvements gained here could still be considered a

success, despite the issues with scaling. The algorithm presented in Chapter 6

showed an improvement of up to 57 times faster than the CPU serial implement-

ation, and up to 25 times faster than the CPU parallel implementation, though

these results were inconsistent due to the batching algorithm.

An efficient memory structure for storing and referencing triangular matrices

Chapter 6 presented a method for efficiently storing and referencing the rows of

triangular matrices. This was required due to the limited memory provided by

GPUs. As there are no non-zero elements below the principal diagonal, only the

entries on and above the principal diagonal are stored. Triangular numbers and

triangular roots can then be used to reference the rows of the matrices. While the

use of efficiently stored matrices increased the complexity of retrieving entries of

the matrices, the use of these memory structures enabled the algorithm to scale

better on GPUs with a limited amount of memory.

Novel method of load balancing The algorithm implemented in Chapter 6 has an

inherently unbalanced workload. As a result a load balancing method was neces-

sary in order to efficiently process the computations. The method implemented

was very successful at batching the work, and keeping idle threads to a minimum.

Due to how effective this method was it was successfully utilised in most kernels

developed for this thesis.

Minimal runtimes improvements from reducing the number of subresultant

matrices As discussed in Section 10.1.1, reducing the number of subresultant
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matrices in the algorithm introduced in Chapter 4 improved both reliability and

runtime of the degree computation algorithm. This was again demonstrated on a

GPU in Chapter 6. While the improvements in the reliability of the degree com-

putation remained, the improvement to the runtime of the algorithm by excluding

the smaller subresultant matrices was minimal. This was due to the decreased

amount of work on the GPU, and the work being less balanced for such an im-

plementation. As a result, when developing the low memory implementation the

reduced algorithm was not considered. Instead a more general approach was

decided upon, where all subresultant matrices were computed, and an arbitrary

limit can be set on the gradients to be considered after the computation.

Use of warp shuffle prefix sums for balanced computation of row norms of

triangular matrices The necessity to compute the row norms of all subres-

ultant matrices meant a method needed to be developed to efficiently compute

a number of unbalanced prefix sums. The efficient memory structures designed

for the storage of upper triangular matrices meant that the computation of these

norms was split into two kernels, and separate methods of balancing the prefix

sums for each were developed. The first implementation parallelised the rows

across blocks, with threads alternating between a row from the upper half of the

matrix and a row from the bottom half in each iteration. This meant that over

the course of the iterations the blocks ended up balancing. The other implement-

ation computed the sums of the entire matrix, then subtracted the sum at the

end of rows from that of previous row in the sum. This meant that the work was

balanced within the sum itself. Both of these techniques proved to be effective

at balancing the inherently unbalanced row sums.

Efficient utilisation of GPU memory for the computation of the degree of

an AGCD The implementation proposed in Chapter 7 demonstrated a new,

memory efficient, method of computing the degree of an AGCD using GPUs.

This new implementation moved the computation of the row sums into the same

kernel as the upper triangular factor computation. This led to a more complex

kernel, leading to issues with increased shared memory and register usage, but

resulted in improvements to the overall scalability of the algorithm.

Low memory implementation showed significant improvements in execution

time over the previous implementation The low memory implementation

described in Chapter 7 provided significant improvements to the runtime over

the previous iteration. While there were multiple contributing factors to this

improvement, the most significant reason was removing the need to batch the

trials, thus reducing the overhead of the extra kernel and GPU memory calls, as

well as being able to process more data simultaneously. The results in Chapter 7

demonstrated that this algorithm performed up to 5 times faster than the original

GPU implementation, with runtimes 133 and 31 times faster than the CPU serial

and parallel implementations respectively.
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10.1.3 Parallelisation of the Computation of the Coefficients

Chapter 8 demonstrated an efficient method of computing the most expensive part of the

modified SNTLN algorithm presented by Winkler in [21]. This implementation considered

the computation of an optimal column as part of the modified SNTLN algorithm. This

algorithm, drawing on inspiration from the algorithm described in Chapter 7, successfully

parallelised the algorithm for the computation of the optimal column.

Reduction in the number of operations Chapter 8 presented a reduced algorithm,

in which only one of the two rows, or columns, of the matrix products for the

Givens rotations needs to be computed. This represents a significant optimisation

over the original implementation, and helps minimise the runtime of both the

CPU and GPU implementations.

Runtime improvements over the original algorithm The implementation presen-

ted in Chapter 8 demonstrated significant runtime improvements over the CPU

parallel implementation. The implementation of this algorithm led to speedups

of up to 97 times faster than the CPU parallel algorithm being observed.

Efficient use of memory The algorithm presented in Chapter 8 uses a similar

memory structure to that seen in Chapter 7. The algorithm scales well, with

efficient use of global and shared memory meaning that this will continue to be

the case for polynomials of very large degrees.

10.1.4 Overall Improvements to the Blind Image Deconvolution Al-

gorithm

Chapter 9 demonstrates the application of the research presented throughout this thesis

to the BID algorithm proposed by Winkler. This gives insight into the performance and

reliability improvements that were achieved by this algorithm.

A significant improvement in runtime over CPU implementations of the BID

algorithm The GPU accelerated algorithm was tested against the CPU par-

allel implementation, The GPU algorithm in most cases was around 30 times

faster than the CPU parallel implementation, demonstrating a significant de-

crease in runtime. The most computationally expensive sections of the remain-

ing algorithm were those of the least squares equality and linear programming

problems, which could be accelerated to decrease this runtime even further.

Improvements to the reliability of degree computation The improvements to

the original BID algorithm described in Chapter 4, with regards to the number

of subresultant matrices being considered, and the selection of a trial with which

to compute the coefficients, were demonstrated to have a notable affect on the

reliability of the image deconvolution. The increase in reliability in the degree

computation algorithm allowed for deconvolution to be attempted at higher levels



200

of noise, and for larger PSFs. The improvements made to the selection of a trial

for the optimal column algorithm meant the computation of the coefficients was

more robust, leading to a more reliable deconvolution.

10.2 Future Research Opportunities

The findings of this thesis demonstrate how the GPU acceleration of this BID algorithm

provides a significant decrease in the runtime, and the improvements proposed in Chapter

4 demonstrated improvements to the reliability of the algorithm. Despite these improve-

ments there is still further research that could improve the runtime or reliability of this

algorithm. Additionally, the application of the accelerated AGCD algorithms have fo-

cussed on the BID algorithm. Research could be undertaken into how this accelerated

algorithm could be applied in other scenarios.

This section outlines some areas in which further research could be beneficial. These

areas have been split into two sections. The first section will detail research that could

be undertaken to improve the runtime performance of this algorithm, while the second

section details how these accelerated algorithms could be applied in situations beyond the

current BID algorithm.

10.2.1 Further Improvements to the GPU Algorithms

While the algorithm has been significantly accelerated, there are potential avenues through

which the runtime could be reduced even further. This may be necessary when processing

very large images, or videos, when greater time constraints are in place.

Further acceleration of the BID algorithm The acceleration presented in this

thesis focused on two key areas of the algorithm in which the majority of the

runtime was spent. These being the computation of the degree, and the optimal

column computation as part of SNTLN. While these two sections now take sig-

nificantly less time, other areas of the algorithm have not been modified. Some

areas such as linear programming already have heavily optimised libraries avail-

able on GPUs. It would be desirable to implement these sections on a GPU as

well, to further accelerate the overall algorithm.

Introducing pipelining into the QR update algorithm Pipelining, in relation

to the parallelisation of the QR decomposition using Givens rotations, was dis-

cussed in Chapter 5. This technique involved the processing of partial rows, thus

enabling further parallelisation of the decomposition. This could potentially be

implemented into both accelerated sections of the AGCD algorithm. Research

into how this could be integrated could potentially speed up the already accel-

erated sections of the algorithm even further, particularly for large images and

polynomial degrees.
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Reducing the complexity of the data structures The algorithm for the degree

computation used efficient memory structures to store the triangular matrices,

due to the shortage of GPU memory. Unfortunately this led to an increase

in the number of operations that must be computed, as triangular numbers and

triangular roots must frequently be computed. The implementation introduced in

Chapter 7 presented a low memory implementation. As the algorithm is no longer

limited by the amount of GPU memory, simpler data structures could potentially

be used. This would avoid the need for such complex indexing computations, and

could potentially lead to improved performance.

Investigate the effect of moving more data into global memory The algorithm

presented in Chapter 7 is limited by the amount of shared memory available per

block. While the amount of shared memory available may increase in future

hardware, it would be desirable for this limit to be reduced, in order for polyno-

mials of greater degree to be processed. By moving some of the data from shared

memory to global memory this limit can be reduced, though there will be a im-

pact on the performance. The extent of this performance impact for polynomials

of higher degrees should be investigated.

Utilisation of multiple GPUs The degree computation split the computation into

several trials, which, for most kernels, were computed into separate blocks. This

separation would allow the implementation to easily be distributed to multiple

GPUs. The effect of this, and the improvement of the scaling from splitting the

computation between multiple devices, could be investigated.

Removing unnecessary computations in the optimal column algorithm The

computation of the optimal column in Chapter 8 demonstrated several methods

to eliminate unnecessary work. This could be extended further in the compu-

tation of the matrix product and squared residual. A significant proportion of

elements in every column of the subresultant matrices will be zero, and the pos-

ition of the non-zero elements is easily calculable given the column index. This

means that the matrix product can be reduced further. This would also lead to

fewer elements in the resulting vector, and therefore fewer operations to compute

the squared norm. The impact this reduction could have on the algorithm could

be investigated.

A Gram-Schmidt optimal column implementation As was discussed in Chapter

3, one of the advantages of the Gram-Schmidt orthogonalisation is the ability to

compute a single column of the orthogonal matrix. This could potentially be of

use in the optimal column computation, as only a single column of the required

submatrix of each updated orthogonal matrix differs from the original matrix.

While the Gram-Schmidt method has issues with numerical stability it would

be worth investigating if this would harm the reliability of the results, and if a

Gram-Schmidt method could provide performance improvements over the Givens

method currently used.
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10.2.2 Applications of the Algorithm

This thesis focused on the computation of the AGCD as part of a polynomial BID al-

gorithm for an image with a separable PSF. The AGCD algorithm, however, could be

used more generally. This section will focus on the potential applications of this algorithm

in other situations.

Application to bivariate polynomials The algorithm accelerated in this thesis can

only be applied to separable PSFs. Winkler suggested an extension of this al-

gorithm to a non-separable PSF by investigating bivariate polynomials in the

Fourier domain. It would be desirable to extend the implementations here to

accelerate these computations as well. Therefore, a key area for further invest-

igation would be to research how the algorithms developed through this thesis

could be modified to accelerate such an algorithm.

Application of the accelerated AGCD algorithm in other fields As was noted

in Chapter 1, the computation of an AGCD is not unique to BID algorithms,

and can be found in a number of other fields, such as control theory [16] and the

computation of multiple roots of a polynomials [17, 18, 19]. An area for further

investigation would be how the algorithm presented here could be harnessed in

these scenarios, and the benefit such implementations would have.

10.3 Conclusion

This chapter has given an overview of the key findings, and areas for further research that

were identified throughout this thesis. The algorithm implemented, while being the first

such implementation to parallelise polynomial methods of BID, is also the first accelerated

algorithm for the computation of an AGCD. This acceleration led to a significantly faster

blind deconvolution of a blurred image, while retaining the accuracy and low error that

the original algorithm presented by Winkler was notable for.

The key findings described in Section 10.1 describe a number of novel features of this

research, that could potentially be implemented in other algorithms. Additionally the

acceleration of the AGCD algorithm could also have potential implications beyond the

act of image restoration. This research has therefore been successful in accelerating not

only the BID algorithm, but aspects of the implementations presented in throughout this

chapter could have applications in a wide variety of topics.
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