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Abstract

Neurodegenerative diseases causing dementia are known to affect a person’s speech and

language. There is an increasing emphasis on earlier diagnosis of neurodegenerative disorders

as evolving treatments are likely to be more effective before irreversible changes have occurred

in the brain. The incorporation of novel methods based on the automatic analysis of speech sig-

nals may provide more information about a person’s ability to interact, which could contribute

to the diagnostic process.

This thesis demonstrates that purely acoustic features, extracted from recordings of patients’

answers to a neurologist’s questions in a specialist memory clinic can support the initial dis-

tinction between patients presenting with cognitive concerns attributable to progressive neu-

rodegenerative disorders (ND) or Functional Memory Disorder (FMD, i.e., subjective memory

concerns unassociated with objective cognitive deficits or a risk of progression). The thesis

also shows that the acoustic features extracted from speech recordings for patients describing a

picture can be used to construct a non-invasive and simple tool to infer early signs of dementia

of Alzheimer’s Disease (AD). This is further developed to firstly, identify patients with mild

cognitive impairments and secondly to show a capability to assist the doctors in monitoring the

progression of AD by predicting the MMSE scores in a longitudinal dataset.

Further, novel acoustic features are introduced in this thesis that correlate with mood dis-

orders such as major depression and bipolar. Combing the newly extracted features with state

of the art features, led to developing a language-agnostic screening system for depression and

bipolar disease. Finally, the results obtained show the discriminative power of purely acoustic

approaches that could be integrated into diagnostic pathways for patients presenting with mem-

ory concerns or mood disorders. These approaches are computationally less demanding than

methods focusing on linguistic elements of speech and language that require automatic speech

recognition and understanding.

ii



Contents

Acknowledgements i

Abstract ii

List of Figures ix

List of Tables xi

List of Publications xiv

List of Abbreviations xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Dementia and depression, symptoms and current diagnostic practices 10

2.1 Dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Dementia progression and effect on language . . . . . . . . . . . . . . 11

2.1.2 Other conditions lead to memory defects . . . . . . . . . . . . . . . . 13

2.1.3 Dementia diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3.1 Cognitive tools . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17



2.2.1 Clinical depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Diagnosing depression . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2.1 Depression evaluation tools . . . . . . . . . . . . . . . . . . 19

2.2.3 Depression objective markers . . . . . . . . . . . . . . . . . . . . . . 23

2.2.3.1 Physiological and biological markers . . . . . . . . . . . . . 23

2.2.3.2 Behavioural markers . . . . . . . . . . . . . . . . . . . . . . 24

2.2.4 Depression and speech . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Advantages of an automatic screening tool . . . . . . . . . . . . . . . . . . . . 25

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Automatic approaches to extracting clinically useful information from a person’s

speech and language 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Dementia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Dementia detection using linguistic features . . . . . . . . . . . . . . . 28

3.2.1.1 Linguistic approach applied to DementiaBank dataset . . . . 30

3.2.2 Dementia detection using acoustic features . . . . . . . . . . . . . . . 32

3.2.3 Dementia detection using a combination of both linguistic and acoustic

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3.1 Linguistic and acoustic models applied to DementiaBank dataset 36

3.3 Depression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Depression evaluation using Audio/Video Emotion Challenge (AVEC)

corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1.1 Depression evaluation using AVEC-2013 dataset. . . . . . . 40

3.3.1.2 Depression evaluation using AVEC-2014 dataset . . . . . . . 42

3.3.1.3 Depression evaluation using AVEC-2016 dataset . . . . . . . 45

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Detecting early signs of dementia 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



4.3 Proposed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Features extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2.1 Phonation and voice quality features . . . . . . . . . . . . . 52

4.3.2.2 Speech and silent statistics . . . . . . . . . . . . . . . . . . 53

4.3.2.3 Spectral features . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.4 Validation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Longitudinal detecting and predicting the severity of AD 62

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Proposed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Features extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2.1 Statistical descriptive features . . . . . . . . . . . . . . . . . 64

5.3.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.4 Validation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Detection early signs of neurodegenerative cognitive declines 78

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.2 Diagnosis Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.3 Memory clinic instructions . . . . . . . . . . . . . . . . . . . . . . . . 81

v



6.3 Proposed system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.2.1 Speech and silent features . . . . . . . . . . . . . . . . . . . 82

6.3.2.2 Phonation and voice quality features . . . . . . . . . . . . . 83

6.3.2.3 Spectral features . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3.2.4 Statistical descriptive features . . . . . . . . . . . . . . . . . 83

6.3.3 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.4 Validation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Depression assessment using acoustic features 92

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1.1.1 AVEC-2013 . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.1.1.2 AVEC-2014 . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1.1.3 AVEC-2016-DAIC-WOZ . . . . . . . . . . . . . . . . . . . 95

7.2 Proposed system models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.1 Feature pre-processing and extraction . . . . . . . . . . . . . . . . . . 96

7.2.1.1 Formants features . . . . . . . . . . . . . . . . . . . . . . . 98

7.2.1.2 New speech activity behaviour features . . . . . . . . . . . . 98

7.2.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.2.1 AVEC2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.2.2 AVEC2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.2.3 DAIC-WOZ . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.3.1 AVEC-2013 . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.3.2 AVEC2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

vi



7.2.3.3 AVEC-2016 . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2.3.4 Language agnostic depression evaluation . . . . . . . . . . . 123

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8 Automatic screening system for bipolar disorder 130

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.3.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.4 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9 Conclusions and future work 145

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.1.1 The feasibility of developing an automatic, low cost and simple system

to aid the doctors in identifying early signs of dementia? . . . . . . . . 147

9.1.2 The feasibility of designing low cost and simple system that assists the

doctors in predicting the severity of dementia and monitor its progression?148

9.1.3 The possibility of developing an objective tool that can be used to iden-

tify depression and estimate its severity? . . . . . . . . . . . . . . . . . 149

9.1.4 The feasibility of developing an objective tool for screening bipolar dis-

order? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.2.1 Evaluate the dementia detection system with other datasets . . . . . . . 151

9.2.2 Improve the proposed MMSE monitoring system . . . . . . . . . . . . 151

9.2.3 Extracting other type of features . . . . . . . . . . . . . . . . . . . . . 151

9.2.4 Developing unified mental and mood disorders detection system . . . . 152

9.2.5 Test the proposed models with datasets with different languages . . . . 152

vii



Bibliography 153

viii



List of Figures

1.1 Projected prevalence of dementia in the UK up to 2051 adopted from [1] . . . . 2

4.1 The “Cookie Theft Picture” from the Boston Diagnostic Aphasia Examination

[2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Proposed dementia detection system. . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Speech sample before (A) and after (B) the pre-processing step . . . . . . . . . 52

5.1 Proposed system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Predicting MMSE1 - CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Predicting MMSE2 - CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Predicting MMSE3 - CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Predicting MMSE2 from Model build using MMSE1 . . . . . . . . . . . . . . 74

5.6 Predicting MMSE3 from Model build using MMSE2 . . . . . . . . . . . . . . 75

5.7 Predicting MMSE3 from Model build using MMSE1+MMSE2 . . . . . . . . . 76

6.1 Nested k-fold cross validation with K=5. . . . . . . . . . . . . . . . . . . . . . 85

7.1 Proposed system for depression assessment . . . . . . . . . . . . . . . . . . . 97

7.2 Praat text grid for voice and silent segments . . . . . . . . . . . . . . . . . . . 99

7.3 AVEC-2013 the distributions of the new most significance features based on the

t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.4 AVEC-2014 the distributions of the new most significance features based on the

t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 AVEC-2016 the distributions of the new most significance features based on the

t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ix



7.6 AVEC-2013 results comparison with model built using only the new features . 118

7.7 AVEC-2014 results comparison with model built using only the new features . 121

7.8 AVEC-2016 results comparison with model built using only the new features . 124

7.9 All proposed models GBR performances . . . . . . . . . . . . . . . . . . . . . 124

7.10 All proposed models GBC performances . . . . . . . . . . . . . . . . . . . . . 125

8.1 Proposed system pipeline for detecting bipolar states . . . . . . . . . . . . . . 133

8.2 AVEC-2018 the distributions of the new most significance features based on the

t-test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.3 AVEC 2018-Bipolar YMRS scores estimation, the actual vs predicted for the

development set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

x



List of Tables

2.1 Depression common symptoms. . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Summary of studies that proposed dementia detection systems. . . . . . . . . . 37

3.2 Summary of studies that used depressed speech Databases. . . . . . . . . . . . 46

4.1 DementiaBank data set demographic information. . . . . . . . . . . . . . . . . 50

4.2 Summary of all features extracted in this chapter. . . . . . . . . . . . . . . . . 53

4.3 Top ranked features using the wrapper and the statistical U-test. U represents

Mann-Whitney u-test and P∗ << 0.05 . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Shows the performance under different running configurations. . . . . . . . . . 58

5.1 Three visits dataset demographic information. . . . . . . . . . . . . . . . . . . 64

5.2 List of all acoustic features used in the proposed system. . . . . . . . . . . . . 65

5.3 Three visits dataset MMSE and their future MMSE scores estimation . . . . . . 68

5.4 Classification accuracies for three scenarios and visits original. . . . . . . . . . 69

5.5 Classification accuracies for three scenarios and visits using SMOT (balanced

groups) dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Participants’ details and test scores. ACE-R: Addenbrooke’s Cognitive Examination-

Revised; MMSE: Mini-mental state examination; PHQ9: Patient Health Questionnaire-

9; GAD-7: Generalised Anxiety Assessment 7. Unpaired T-test was used. =B∗ =

not significant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Details of the clinical session times expressed in minutes. STD: Standard devi-

ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Acoustic features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xi



6.4 Top (22) selected features using the wrapper, embedded and their statistical U-

test. U: Mann-Whitney u-tests. Sample size =1==2=15. . . . . . . . . . . . . . 84

6.5 First scenario classification accuracies under different feature subsets and clas-

sifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Extra classification metrics for the first scenario and for the same classifiers that

used (wrapper and embedded) features selection approach. . . . . . . . . . . . 87

6.7 Classification accuracies for the second scenario (augmented dataset). . . . . . 90

7.1 Depression datasets details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Final set of acoustic features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.3 AVEC-2013 t-test statistical significance. STD: Standard deviation, VAR: Vari-

ance, DF: Degree of freedom,class(0) n=26, class(1) n =24. . . . . . . . . . . 109

7.4 AVEC-2014 t-test statistical significance. Class(0) n=52, class(1) n =48 . . . . 112

7.5 DAIC-WOZ t-test significance features. Class(0) n=77, class(1) n =30. . . . . 113

7.6 AVEC-2013 ranked features . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.7 AVEC-2013 full results comparison with baseline. . . . . . . . . . . . . . . . . 117

7.8 AVEC-2014 ranked features . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.9 AVEC-2014 comparison with baseline results. . . . . . . . . . . . . . . . . . . 120

7.10 Depression evaluation with AVEC-2014 corpus comparison to the literature. . . 120

7.11 AVEC-2016 ranked features . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.12 DAIC-WOZ PHQ prediction performance. . . . . . . . . . . . . . . . . . . . . 123

7.13 DAIC-WOZ depression classification performance. . . . . . . . . . . . . . . . 123

7.14 Depression evaluation with DAIC-WOZ corpus comparison to the literature. . . 123

7.15 Proposed models performances compared to the literature. . . . . . . . . . . . 126

8.1 Bipolar-AVEC 2018 dataset demographic information. . . . . . . . . . . . . . 131

8.2 Bipolar-AVEC 2018 dataset sessions and classes informations. . . . . . . . . . 132

8.3 Final set of acoustic features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.4 AVEC-2018 ANOVA statistical significance test. . . . . . . . . . . . . . . . . 135

8.5 AVEC-2018 most significant features . . . . . . . . . . . . . . . . . . . . . . . 138

8.6 Bipolar evaluation results compared to the literature. . . . . . . . . . . . . . . 139

xii



8.7 Bipolar-AVEC 2018 PHQ prediction performance. . . . . . . . . . . . . . . . 139

xiii



List of Publications
Journal papers

• Al-Hameed S, Benaissa M, Christensen H, Mirheidari B, Blackburn D, et al. (2019) A

new diagnostic approach for the identification of patients with neurodegenerative cogni-

tive complaints. PLOS ONE 14(5): e0217388.https://doi.org/10.1371/journal.pone.0217388.

Conference Papers

• Al-Hameed S, Benaissa M, Christensen H. Simple and robust audio-based detection of

biomarkers for Alzheimer’s disease. In7th Workshop on Speech and Language Processing

for Assistive Technologies (SLPAT) 2016 (pp. 32-36).

• Al-Hameed S, Benaissa M, Christensen H. Detecting and predicting alzheimer’s disease

severity in longitudinal acoustic data. InProceedings of the International Conference on

Bioinformatics Research and Applications 2017 2017 Dec 8 (pp. 57-61). ACM.

In preparation Journals

• Al-Hameed S, Benaissa M, Christensen H. Towards the language-agnostic depression

assessment tool.

• Al-Hameed S, Benaissa M, Christensen H. Predicting Bipolar states using acoustic char-

acteristics.

xiv



List of Abbreviations

ACE Addenbrooke’s Cognitive Examination

AD Alzhiemer’s Disease

ANN Artificial Neural Network

ASR Automatic Speech Recognition

AUC Area Under Receiver Operating

BDI Beck DepressionIndex

BDNF Brain Derived Neurotropic Factor

BNT Boston Naming Test

bvFTD behavioural variant frontotemporal dementia

CSF Cerebro Spinal Fluid

CT Com-puted Tomography

DCNN Deep Convolutional Neural Network

DF Degree of Freedom

DLB Dementia with Lewy bodies

DPD Pseudo-Dementia

DSM Statistical Manual of Mental Disorders

xv



EEG Electroencephalogram

EER Equal Error Rate

FFT Fast Fourier Transform

FLD Frontal Lobe Dementia

FMD Functional Memory Disorder

FNR False negative rate

FN False Negatives

FPR False positive rate

FP False Positives

FS Feature Selection

GABA Gamma Amino Butyric Acid

GAD-7 Generalized Anxiety Disorder 7

GMM-UBM Gaussian Mixture with the Universal Background

GMM Gaussian Mixture Model

HAMD Hamilton Rating Scale for Depression

HC Healthy Control

HNR Harmonic to Noise Ratio

LDA Linear Discriminant Analysis

MAE Mean Absolute Error

MARSD Montgomery – Åsberg Depression Rating Scale

MCI Mild Cognitive Impairment

xvi



MFCC Mel Frequency Cepstral Coefficients

MHH Motion History Histogram

MMSE Mini-Mental State Examination

MoCA Montreal Cognitive Assessment

MRI agnetic Res-onance Imaging

ND Neurodegenerative Diseases

nfPPA Progressive non-fluent Aphasia

NHR Noise to Harmonic Ratio

PET Positron EmissionTomography

PHQ-9 Patient Health Questionnaire-9

PPV Positive predictive value

QIDS Quick Inventory of Depressive Symptomatology

RBF Radial basis Function

ReLU Rectified Linear Unit

RFE Recursive Feature Elimination

RMSE Root Mean Square Error

ROC Receiver Operating Characterstic

SAS Zung Self-Rating Anxiety Scale

SCD Subjective Cognitive Decline

SDS Zung Self-Rating Depression Scale

SD Semantic Dementia

xvii



SE Spectral Entropy

SGD Stochastic Gradient Descent

SMOT Minority Over Sampling Technique

SMO Sequential Multiple Optimisation

SPECT Single Photon Emission Computed Tomography

SRO Spectral Roll-Off

SSC Spectral Subband Centroids

SS Spectral Spread

STD Standard Deviation

SVM Support Vector Machine

SVR Support Vector Regression

TNR True Negative Rate

TN True Negatives

TPR True Positive Rate

TP True Positives

UAR Unweighted Average Recall

VD Vascular Dementia

WAIS Wechsler Adult Intelligence Scale

WMS Wechsler Memory Scale

WVR word Vector Representations

ZCR Zero Crossing Rate

xviii



Chapter 1

Introduction

Dementia and depression are the two most common causes of mental disorders affecting human

life. The onset of Alzheimer’s dementia (AD) and the development of depression share similar

physical diseases and environmental factors. Undefined illnesses such as general fatigue and

headache are recognised as warning symptoms in the very early stage of AD, these symptoms

are shared with the pathology of depression. It is believed that symptoms of depression before

the loss of cognition serve as a risk factor to the development of AD [3].

Dementia is a general term used to describe a set of symptoms that may include loss or

decline in memory and other cognitive abilities. Although dementia is regularly spotted in older

people, it is not an outcome of ageing [4]. Dementia starts typically with memory problems but

also may involve difficulties in planning, performing daily tasks, struggle in communication

and changes in personality, mood, and judgement [5]. It is essential to mention that sometimes,

depression can be confused with the early signs of dementia, and a considerable number of

people with dementia are also depressed [6]. However, dementia symptoms worsen over time

and as the disease progresses to the final stage, people with dementia lose the ability to speak and

even forget to eat and drink. As a result, demented people require 24-hour care and monitoring.

In recent years, the number of people living with dementia has increased significantly. In 2015,

the Alzheimer association organisation published a report for Alzheimer’s disease facts and

figures for the United States. The report revealed two majors public health issues; first, it

indicated that between 2000 and 2013, there was a rapid increase of 71% in death statistics

among the elderly caused by AD disease. Secondly, the cost estimate in 2014 for dementia
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Figure 1.1 Projected prevalence of dementia in the UK up to 2051 adopted from [1]

diseases care is more than $217 billion per year. Also, the report stated that there are 5.3 million

Americans having dementia, and this number was predicted to triple by 2050 with a massive

impact on the government economy [7]. While in the UK, there are about 850,000 patients

suffering from dementia with overall care cost exceeding £26.3 billion per year, and the number

of patients is expected to grow to more than 2 million by 2051 [8] see Fig 1.1. Furthermore,

the dementia prevalence around the world estimated at 44.3 million people with a cost at $604

billion per year, and this number is predicted to reach 152 million within the next 30 years [9].

The two common causes of dementia are Alzheimer’s Disease (AD) (represents over 60 % of

all cases) and Vascular Dementia (VD) (20%) [10, 11].

Depression ranges in severity from mild, short episodes of sadness to severe, persistent

depression [12]. Clinical depression is a psychiatric mood disorder, resulting from a sudden

stressful event affecting an individual’s life. This leads to a continuous feeling of sadness, neg-

ativity, and makes it hard to handle everyday responsibilities. According to the World Health

Organisation [13], depression is the leading cause of disability worldwide, and currently, there

are more than 300 million people of different ages suffering from depression. In the UK, there

are 2.69 million people (4.5% of the total population) diagnosed with depressive disorder [14].

The annual estimation cost for depression in the UK ranges between £7-£9 billion and that

includes expenditures of preventive treatment, medical treatment, rehabilitation and care mea-

sures [15, 16]. While in the United States, the number of depressed people reported at 17.49
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million (5.9% of the total population) [14], with total depression treatment cost around $71

billion [17]. Depression often triggers suicidal thoughts to end one’s life [18, 19], and over

800,000 people worldwide die every year from committing suicide [20]. It has been confirmed

that at least 50% of those who committed a suicide validate the condition of clinical diagnosis

of depressive disorders [21, 22]. Extreme depression affecting not only the brain but also the

heart, and therefore increases the risk for a range of medical conditions such as; cardiovascular

disease, AD, vascular dementia, cancer, and stroke [19, 23, 24].

Speech and language characteristics are influenced in both disorders; early dementia affects

para-linguistic and prosodic features (for example pitch, loudness, duration, silence, hesitations,

and spectral aspects); furthermore, demented people start to forget words (loss of vocabulary)

increase the use of filler words and at later stages of dementia, semantics impoverishment and

other language defects can clearly be identify [4, 25, 26]. Depression, is characterised with a

variety of clinical profiles; well-known symptoms include functional impairments, continuous

low mood or sadness and moving or speaking more slowly than usual [27]; thus speech fea-

tures that characterise mood, emotional state, and voice quality of the depressed person are all

affected.

1.1 Motivation
The lack of a cure for dementia demands an early detection of the condition. The existing

treatments are effective, particularly in the prior stages of the condition, especially before the

occurrence of the irreversible changes in the brain. Hence, earlier diagnosis can improve quality

of life and slow down the progress of the disease.

The early identification of patients with neurodegenerative disorders is a challenging task

due to a lack of accurate predictive bio-markers suitable for routine screening or stratification.

Bio-markers capable of identifying patients at high risk of developing the commonest cause of

progressive cognitive decline, AD, pre-symptomatically exist but are either expensive and only

available in very few centers (e.g. amyloid Positron Emission Tomography) that expose people

to radiation or are invasive (e.g. amyloid and tau testing in the cerebrospinal fluid) and not

suitable for for screening at the interface between primary and specialist care patients.

Tools for screening for AD exist, but currently do not work sufficiently well. For instance,
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the Dementia-Detection (DemTect) or the Montreal Cognitive Assessment (MoCA) are a one-

page screening tools that can be administered by a trained examiner in 10 minutes. However,

both produce learning effects which limit the number of possible administrations [28]. In ad-

dition, current cut-offs have poor specificity and have not been tested in people with functional

memory disorder (who general practitioners may consider referring to specialist services be-

cause of their cognitive complaints) [29].

Concurrently, depression diagnosis, and treatment is determined on the subjective assess-

ment of a wide range of profiles that characterise multiple endophenotypes. Although there

were several biological markers associated with depression, for example, genetic abnormali-

ties [30], low serotonin levels [31] and neurotransmitter dysfunction [32], to date, no specific

biomarker has been identified. Therefore, the lack of an objective criterion hampers the efforts

of clinical services for either depression or suicidality. This risks optimal patient care, twisting

an already high burden on health, social, and economical utilities.

The current diagnostic tool for both depression and suicidality is based on assessments by

interviews, for example, Hamilton Rating Scale for Depression and Suicide Probability Scales.

These methods measuring the severity of symptoms and behaviours observed in both conditions

quantified by the test scores. Using this method of assessment is not straightforward; the given

scores are sensitive to the patients’ ability to express their symptoms, moods, and cognitions

honestly and willingly. Consequently, collecting diagnostic clues is a time-consuming proce-

dure and involves a significant amount of clinical training, experience, and qualification to reach

satisfactory results.

While bio-markers for both illnesses remain questionable, recent significant advances have

been achieved in utilising affective computing and social signal processing as a screening tool,

for example, using automatic speech and language analysis models to detect the changes in

voice’s characteristic that correlate with dementia or depression.

The speech analysis approach is a affordable, non-invasive and can be deployed remotely,

which can be a candidate to be used as an objective detection tool. Furthermore, non-verbal

para-linguistic base approach more likely to be useful when utilised in the primary health care

in coordination with current tools, based on the fact that clinicians cannot capture the changes

in the characteristics of speech signals due to the effect of both disorders.
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In this regard, the work presented here explores a solution for an automatic detection and

screening tool, that is based on the analysis of a person’s voice.

1.2 Objectives
To address the limitations presented in the previous section, this thesis is concerned with the

following research questions:

1. The feasibility of developing an automatic, low cost and simple system to aid the doctors

in identifying early signs of dementia?

2. The feasibility of designing an affordable and simple system that assists the doctors in

predicting the severity of dementia and monitor its progression?

3. The possibility of developing an objective tool that can be used to identify depression and

estimate its severity?

4. The feasibility of developing an objective tool for screening bipolar disorder?

5. What sort of audio features and machine learning models that can be used in designing

such systems? What type of features that have the potential to develop these tools with

language-agnostic capability?

The research is focused on the exploration of signal processing and machine learning tech-

niques for elicitation of clinically useful information from speech signals. Therefore the aims

have been set to:

• Extract acoustic features that capture irregularities in a person’s voice attributable to the

presence of dementia or other related diseases such as FMD.

• Investigate different approaches that eliminate undesirable acoustic variability.

• Investigate how background noise can affect the quality of extracted features.

• Develop a system that can be used to monitor AD progression.

• Develop a new acoustic-based system that can analyse patients-doctors conversations to

infer dementia related symptomology.
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• Derive new acoustic features useful in detecting a depression state.

• Develop an objective language-agnostic depression screening tool.

• Develop an automatic screening tool for bipolar disorder.

1.3 Thesis contributions
1. Simple and robust audio-based detecting of biomarkers for Alzheimer’s disease (AD).

Many dementia screening methods rely on relatively computationally heavy processing

involving speech recognition and the use of natural language processing techniques to

achieve some degree of speech understanding at the linguistic level [33–36]. This makes

them unsuitable as low cost home-based solution and means they are expensive to port

to new languages. The proposed alternative solution investigates audio-only processing

to address this challenge. The method is solely based on acoustic features and therefore

would only require simple readily available audio technology that can be adapted to suit

patient requirement either in terms of being portable or/and wearable. This system was

evaluated using speech recordings from the DementiaBank corpus for subjects perform-

ing the Cookie theft Picture description task. The complete system is presented in chapter

4.

2. Detecting and predicting Alzheimer’s disease severity in longitudinal acoustic data.

This method investigates the deteriorating speech signal of people suffering from AD. The

aim is to firstly predict a common clinical examination score used for dementia (MMSE)

using acoustic information extracted from people describing a picture a common demen-

tia assessment task. Secondly, the aim was to develop a diagnostic tool able to distinguish

people with AD from people with Mild Cognitive Impairment (MCI) and healthy control

(HC). This is done on a longitudinal dataset (DementiaBank) allowing us to study the nat-

ural deterioration happening across a total of three visits. A total of 811 acoustic features

were extracted and used to build two machine learning models: a regression model capa-

ble of predicting MMSE scores for each visit with an average mean absolute error of 3.1,

and a classification model with an average cross-visit accuracy ranging between 89.2%
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and 92.4% when doing pairwise classification between the AD, MCI and HC classes.

This work is presented in chapter (5).

3. A new diagnostic approach for the identification of patients with neurodegenerative

cognitive complaints.

Neurodegenerative diseases causing dementia are known to affect a person’s speech and

language. Part of the expert assessment in memory clinics therefore routinely focuses

on detecting such features. The current outpatient procedures examining patients’ ver-

bal and interactional abilities mainly focus on verbal recall, word fluency, and compre-

hension. By capturing neurodegeneration-associated characteristics in a person’s voice,

the incorporation of novel methods based on the automatic analysis of speech signals

may provide more information about a person’s ability to interact which could contribute

to the diagnostic process. This project demonstrated that purely acoustic features, ex-

tracted from recordings of patients’ answers to a neurologist’s questions in a specialist

memory clinic can support the initial distinction between patients presenting with cogni-

tive concerns attributable to progressive neurodegenerative disorders (ND) or Functional

Memory Disorder (FMD, i.e., subjective memory concerns unassociated with objective

cognitive deficits or a risk of progression). The discriminative power of purely acous-

tic approaches could be integrated into diagnostic pathways for patients presenting with

memory concerns and are computationally less demanding than methods focusing on lin-

guistic elements of speech and language that require automatic speech recognition and

understanding. This work is presented in Chapter 6.

4. Language independent characteristics aid in depression evaluation

This work presents a new approach to the assessment and evaluation of depression, util-

ising temporal speech characteristics. The frequency and duration of voice segments and

pauses were intensively used as identification markers in a variety of mental disorders;

however, the newly derived features provide extra depth and capture a speech behaviour

useful in discriminating depressive voices. Fusing these features with state of the art

acoustic measures improve the model performance. The proposed approach evaluated

using three depression data-sets and two spoken languages (German and English). Out-
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performing the baseline challenge results and comparable to more complex modalities

that combined both speech and video features. The complete system is presented in chap-

ter 7.

5. Automatic screening system for bipolar disorder

This work investigates the use of the newly extracted features that were developed in

chapter 7, and evaluate their usefulness in estimating the severity of bipolar disorder.

The proposed system was tested using AVEC-2018 dataset, which is the only publicly

available dataset for patients suffering from bipolar conditions. The proposed system had

shown effectiveness of predicting the three states of bipolar i.e. remission, hypo-mania

and mania with an unweighted average recall of 66% and 53.7% for development and

test partitions respectively, theses results were higher than the baseline audio and video

modalities. This work showed the usefulness of the new extracted features in predicting

bipolar states, also the proposed system is less complex compared to other modalities

that required an ensemble complex approach for this type of tasks. Finally, the acoustic

features used to develop this system, have the potential to be language independent thus

the proposed system can be used in different languages. This system is illustrated in

chapter 8.

1.4 Thesis outline
The rest of the thesis is organised as follows:

Chapter 2 Overview of both dementia and depression disorders, symptoms, their influence

on speech characteristics and the current diagnostic practices.

Chapter 3 Review of the literature for studies that used automatic approaches to extracting

clinically useful information from aperson’s speech and language , part one concerning the

recent studies that aimed to develop automatic screening/diagnostic tools for dementia diseases

and other related disorders. Whereas part two reviews recent studies focused on developing

objective tools for the detection of depression and/or estimate its severity.

Chapter 4 Describe the proposed acoustic only system that classify AD patients from

healthy subjects. In this chapter, details for each unit of the proposed system were described

with performance comparison to other models from the literature.
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Chapter 5 Present acoustic based system to predict and detect the severity of Alzheimer

disease in longitudinal dataset. The details for this system were presented along side the dataset

that used to report the results. Also, the proposed system compared to other modalities from the

literature.

Chapter 6 Describe the new proposed approach which evaluates people conversations with

doctors at the memory clinic, as this system designed to capture dementia-related symptom

through the analysis of the patient’s voice. Finally, this model compared with a more sophisti-

cated approach that used a combination of three types of features to produce a similar perfor-

mance.

Chapter 7 Present the proposed depression screening system. The system evaluated using

German and English datasets. Also, this chapter introduces the newly developed speech activity

features. Finally, the system performance compared to other studies from the literature.

Chapter 8 Introduce an automatic system for screening Bipolar disorder. This system built

using a combined features from the newly developed set and from the state of the art acous-

tic features. The proposed method evaluated using the AVEC-2018 Bipolar dataset spoken in

Turkish. Finally the system performance also compared to other studies from the literature.

Chapter 9 Includes the summary with conclusions and the further direction.
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Chapter 2

Dementia and depression, symptoms and

current diagnostic practices

2.1 Dementia
Dementia is a brain disease result from the damages affects the brain neurons’ synapses; it’s

a progressive and irreversible disease, characterised by losing the cognitive functionality. Peo-

ple with dementia and over the time suffer from loss of memory, a decline in the understand-

ing, problem-solving, poor judgment, weak communication skills [37], unexpected changes in

moods, apathy, depression and limited motor control. At the severe stage, the patient loses the

ability to speak and can’t perform the simple life dependent functions, for instance, swallowing

and eventually causes death [38].

Dementia normally targets elder people at age (60-65) and over [39]. There are many dis-

eases that cause dementia, for example, Vascular Dementia (VD), Dementia with Lewy bodies

(DLB), Frontal Lobe Dementia (FLD)and Parkinson Disease; however, the most common cause

of dementia is Alzheimer disease (AD) which represents 60-80 % of dementias [7, 10].

AD caused by two tiny deposits known as Tangles & Plaques accumulated in the brain

neuron’s synapsis result in destroying the connections between the neuron cells, which contain

the memories, sensation and the motor ability, thus the most common symptom of AD are

progressive memory impairment which affects the visuospatial and executive functions as well

as the individual’s behaviour [40, 41].

10



Chapter 2 – Dementia and depression, symptoms and current diagnostic practices

The second commonest form of dementia, in the UK is VD, estimated at 20% of all de-

mentia. VD is general term describes several conditions result from damages to brain’s blood

circulation. The damages may cause by small blood clots obstructing oxygen supply to brain

cells, blocked arteries, and exploding of blood vessels in the brain. VD symptoms depends on

which part of the brain is affected, and that may include: communications, language, reading,

and writing. Although issues with memory may not be instantaneously presented, depends on

the damaged part, it may appear afterward [42].

DLB is another progressive condition of dementia accounting at least (10-15)% it influenced

movement and motor control. DLB caused by clusters of an abnormal protein called (Lewy

bodies) accumulated in different parts of the brain. As a result, DLB has a variety of symptoms

including sleep disturbances, hallucination, susceptible to fall, problems with swallowing, and

tremors. However, memory is frequently less affected compared to other forms of dementia

[43]. FLD is a disease result from loss of the nerve cells and pathways in both parts of the brain

known as frontal and temporal lobes. The damage to the brain is associated with clustering of

abnormal protein prevent communications between brain cells. FLD subtypes are; behavioural

variant frontotemporal dementia (bvFTD), and Primary Progressive Aphasia which consists of

Semantic Dementia (SD) and Progressive non-fluent Aphasia (nfPPA). FLD symptoms may

include: changes in personality and behaviour, empathy, problems with decision making and

concentration, identifying people or objects, apathy, speech and language problems [44]

2.1.1 Dementia progression and effect on language
It is believed that dementia may start more than a decade before it diagnosed; however, it is

challenging to recognise the subtle changes were effects in the brain, in the cerebrospinal fluid

(CSF), and the blood may begin; thus, the absence of the distinctive symptoms prevent the

diagnosis at this crustal stage [45].

There are three stages of dementia which are clinically identified, early, middle, and late

stages. The early-stage is known as "mild dementia" where patients’ memory and cognitive

capacities slightly reduced. Also, a subtle language deficit can be observed, such as difficulties

in naming or finding the right word, troubles following a flow of conversation. Other mild

declines could occur and may interfere with activities of daily living, including problems with

organisations, planning, and visuospatial abilities. Patients will be aware of these changes as
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they developed, and as a result, depression, and anxiety symptoms also expected [46, 47]. These

features can be subtle and may not be easily detectable. Specialist assessment is therefore

valuable.

The next stage is the moderate stage; as dementia progresses, more symptoms may arise.

Mood changes will be noticeable, and patients might suffer from fear, confusion, and increase

memory loss. Communication and language become more challenging, and the patient may

lose track of his/her thoughts, understanding what others said, and naming difficulties further

progressed [47]. In the late (severe) stage of dementia, patients’ memory will significantly

deteriorate, their recent memories may completely forgotten, and often they unable to identify or

confuse with family members. Patients also experience difficulties in maintaining concentration

for a long time, increased disorientation (they will be confused with the place where they are,

and with limited knowledge of the time). Communication at this stage, greatly affected, patients

may not understand what has been said to them and often reply with incomprehensible words.

Patients will use other methods to show their feelings and communicate their needs, for instance,

behaviour, gestures, sounds and facial expressions [48].

Dementia is the most challenging medical condition in the 21BC century as there is still

no cure and no treatment that delay or prevent its progression. However, several medications

exist that help with dementia symptoms. For example, Donepezil and Rivastigmine inhibitors

useful in term of enhancing the connections between the brain cells. These inhibitors boost the

Acetylcholine level in the brain, which is vital neurotransmitter tends to diminish in demented

subjected [49]. Memantine is another medication prescribed for those who in the moderate and

severe AD stages. It is believed that Memantine can improve the dysfunctioned of glutamatergic

neurotransmission (an excitatory neurotransmitter in the human nervous system) [50]. Other

conditions can affect dementia symptoms, and that includes depression, high blood pressure

and stroke.

In severe dementia stage, several behaviours were expected, such as aggression, illusions,

anxiety, and loss of interest. Other treatments exist to help with these conditions, for instance,

the cognitive stimulation therapies works at the early stage of the dementia, whereas the cogni-

tive rehabilitation could help patients in mild to moderate dementia [51].

Various aspects of speech and language skills have been proven to be affected during the
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course of dementia. Subtle changes in the acoustic characteristics of the speech might occur

in the early stage of dementia; these include, voice pitch, formants, shimmer, jitter, HNR [52]

and spectral properties [34]. Speaking behaviour is shown to be affected as well, for instance,

low speech rate, increase the number and duration of pauses and hesitations [53, 54]. Speaking

behaviour is shown to be affected as well, for instance, low speech rate, increase the number

and duration of pauses and hesitations [53, 54]. These effects might reflect the difficulties in

finding the appropriate word (lexical deficits) or due to an increase in cognitive load (were the

cognition already declined) or due to complications in planning for the next sentence. The

linguistic characteristics reportedly to be affected as well [55].

2.1.2 Other conditions lead to memory defects
There is evidence showing that not all memory complaints caused by dementia; there are sev-

eral conditions were patients share similar symptoms of memory problems to that caused by

dementia [29]. These conditions have better chances to be cured comparing to those caused by

neurodegenerative diseases (ND). However, identifying the actual cause is a challenging task

due to the overlapping symptoms and the lack of accurate predictive biomarkers suitable for

routine screening or stratification.

The mild cognitive impairment (MCI) frequently referred to as an early course of dementia;

however, less than 15% of MCI patients develop to AD condition [45]. Whereas the majority

of MCI conditions due to several factors, for example, drug use or issues caused by depression,

all of which can be controlled; thus, symptoms can be improved [29].

In contrast to MCI, Subjective Cognitive Decline (SCD) is clinically referred to as an early

form of dementia, although most of the patients referred to a memory clinic have subjective

memory complaints and not SCD [29]. The subjective complaints may be increased due to self-

awareness and education about the risk factors and symptoms linked to all forms of dementia

diseases. Further, there are several psychological or pathological issues may attribute to these

non-progressive subjective complaints [29].

Probably the most common cause of memory problems is known as Functional Memory

Disorder (FMD). FMD is a clinical condition where patients have memory problems are not

caused by an organic defect rather caused by a stressful event or due to psychological issues.

FDM differ from SCD, as their complaints are pragmatic and not established on subjective bases
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[56]. Furthermore, depression and similar to FMD can also lead to a non-progressive cognitive

disorder. Although FMD and depression are associated with each other, one condition can cause

another; however, a few percentages of FMD are depressed.

Finally, there is a group of patients that suffer from depression but do not have dementia, and

these patients suffer from what is known as Pseudo-Dementia (DPD). DPD is condition were

patients and especially the elder ones showing signs correlated with dementia, for example,

lack of interest, attention, and frequently they answer with I do not know [57]. Furthermore,

insomnia, lack of understanding, fatigue, sadness also frequent in DPD.

2.1.3 Dementia diagnosis
The current procedure for dementia diagnosis can be lengthy and complicated. The process in-

cludes a variety of steps that required examinations and specific tests. First, a standard checkup

will take place to investigate if there are co-morbid diseases that can cause similar symptoms,

for example, congestive heart failure. Next, a series of cognitive tests will be performed, in

which memory, orientation, attention, language and executive function will be evaluated. At

this point, further neuralological test may be necessary such as gate and/or cranial nerve exam-

inations [58].

In addition to the procedure mentioned above, researchers have found several biological

markers can assess the diagnosis process, and these include Cerebro Spinal Fluid (CSF), Com-

puted Tomography (CT) scans, blood tests, Electroencephalogram (EEG), Positron Emission

Tomography (PET), Single Photon Emission Computed Tomography (SPECT), Magnetic Res-

onance Imaging (MRI) etc. These tests can be cumbersome and costly as PET and also exposes

patients to a high dose of radiation [59].

Furthermore, the neurologists take into consideration diverse of behavioural changes which

might be observed during the diagnosis process such as walking, sleeping patterns and com-

munication skills. For this purpose, a variety of tests exists to help to examine the individual’s

speech and language capabilities. When people visit a memory clinic, the assessment typically

begins with a conversation with a specialist during which patients are asked a series of ques-

tions about their memory problems (known as a history-taking phase) then several screening

procedures might follow. Most of the time this is done using pen and paper to mark each part

of the test [60].
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2.1.3.1 Cognitive tools

The existing tools for the cognitive test were designed to measure the patient’s responses in a

range of cognitive domains including place and time orientation, memory, language, visuospa-

tial abilities, verbal fluency etc. Depends on which test has been used, the examiner and after

completing the scores for each part, will compare the patient’s final score with the test cut-off

to estimate the patient’s status (demented or no, and which stage he or she probably in). Be-

low sections will briefly describe the most common tools that currently used. However, these

tools have limitations, for example, how sensitive (true positive rate) or specific (true negative

rate) they can produce, and other factors might influence the decision such as patient-level of

education.

A. Minimal Mental Status Examination

The Mini-Mental State Examination (MMSE) is widely employed in clinical and research set-

tings to assess cognitive impairment with (5-10) minutes administration time, developed by

Folstein et al. [61]. It is also used to screen for dementia and to estimate the severity and pro-

gression of cognitive impairment. The tool can be deployed to monitor the cognitive changes

longitudinally for an individual. MMSE measures the severity of cognitive impairment in five

categories: attention, registration, language, orientation, and memory. The MMSE test consists

of 11 questions with a top score of 30 points (a score over 25 considered a healthy cognitive

state). The score below 10 reflecting a severe cognitive impairment, while a score between

(10-20) indicate a moderate impairment and a score between (20-25) might considered mild

cognitive impairment. Although MMSE test is widely used as a standard clinical screening

procedure, it has several disadvantages; it is sensitive against age and years of education. An-

thony et al. [62] suggest to use extra screening tools when testing patients who are more than

60 years old and have less than an 8-grade education. Also, it lacks sensitivity in the events of

the progressive changes that occur to AD patients. Furthermore MMSE criticised for the low

success rate to differentiate mild AD from healthy patients.

B. Montreal Cognitive Assessment

The Montreal Cognitive Assessment (MoCA) is another tool extensively used for evaluating

cognitive impairment [63]. It was founded in 1996 by Ziad Nasreddine in Montreal, Quebec and
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required 10 minutes administration time. The top score is 30 similar to MMSE, but the cut off

for normal state is 26. MoCA examines a variety of cognitive areas, including memory recall,

visuospatial capabilities, language assessment, and orientation. MoCA have a higher success

rate of detecting MCI compared to MMSE; however, its specificity is inadequate. Although

it is available in 46 different languages, yet, it has several cut-offs that suggested to adopt the

language and cultural differences [64].

C. Addenbrooke Cognitive Examination

The Addenbrooke’s Cognitive Examination (ACE) [65] mainly implemented to increase the

screening performance of the MMSE; also, it tries to address the neuropsychological omis-

sions. ACE targets five cognitive domains: memory, visuospatial abilities, language, verbal

fluency, and orientation/attention. It has a top score of 100, with suggested cut-off scores of 83

and 88, the higher scores mean better cognitive state. ACE and its following versions (Adden-

brooke’s Cognitive Examination-Revised, ACE-R[66] and Addenbrooke’s Cognitive Examina-

tion III, ACE-III) [67] are neuropsychological tests utilised to discriminate cognitive decline in

conditions such as dementia. Although ACE may have better sensitivity compared to MMSE,

however, it demands extra time and an expert such as neurologist to administer the test.

D. Boston Naming Test

The Boston Naming Test (BNT) created in 1983 by Edith Kaplan, Harold Goodglass and Sandra

Weintraub [2]. It is a neuropsychological test, which examine the confrontational word retrieval

in individuals with various conditions including dementia diseases, aphasia, and other language

defects cased by stroke. The test consists of naming 60 pictures that sequentially displayed

to the patients. The examiner will evaluate the patient’s responses using special codes, and

in the event of patient failure to name a picture, the examiner may give a clue to help the

patient. In the end, all responses will be processed, and the final score will be produced. The

BNT depends on the individual performance generated from the successive items, and some

pictures may not capture a monotonic growth in psychometric difficulty, some are insufficient

to discriminate individuals at different stages of naming ability; also, multiple items provide

redundant psychometric information [68].
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E. Wechsler Adult Intelligence Scale

The Wechsler Adult Intelligence Scale (WAIS) is one of the most used tests to measure in-

telligence quotient (IQ) and cognitive ability in adults. The most recent used version of the

test is the (WAIS-IV) released in 2008 [69]. This version includes ten cores subtests and five

supplemental subtests. The four main indexes of the test are: Working Memory Index (WMI),

Processing Speed Index (PSI), Perceptual Reasoning Index (PRI), and Verbal Comprehension

Index (VCI).

F. Wechsler Memory Scale

The Wechsler Memory Scale (WMS) is a neuropsychological test developed to evaluate various

memory functions [70]. The current version is the 4Cℎ edition (WMS-IV) created in 2009 [71],

and which was planned to be used with the WAIS-IV. WMS-IV contains seven subtests: Gen-

eral Cognitive Screener, Symbol Span, Design Memory, Spatial Addition, Visual Reproduction

(I and II), Logical Memory (I and II), and Verbal Paired Associates (I and II). The individ-

ual’s performance is generated as five Index Scores: Auditory Memory, Visual Memory, Visual

Working Memory, Immediate Memory, and Delayed Memory.

2.2 Depression
Depression is a psychiatric disorder characterised with a diversity of symptoms: including

continues feeling of sadness, negativity, lose concentration, difficulty in thinking, sleep dis-

turbances, increase/decrease in weight, and people with depression often had the feeling of

hopelessness, dejection, and sometimes suicidal thoughts [72]. Diagnosing depression is not

a straight forward problem due to the variety of clinical profiles associated with depression.

Evidence had been shown that individuals could have the same diagnosis in spite of having

different symptoms [73]. The current standard tools for diagnosis depression are in the forms

of questionnaires, which at risk of providing disappointing results. The false positives and false

negatives might occur due to several factors related to subjective bias. To increase the perfor-

mance of the existing diagnostic methods, objective assessment tools based on physiological,

behavioural, and biological markers urgently needed [74].

The objective markers could have a variety of possible benefits lead to enhance the cur-

rent diagnostic systems, for example the concept of a new therapeutic apparatus that provide
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Table 2.1 Depression common symptoms.

Depressed Mood and /or Markedly diminished interest or pleasure
In combination with four of Psychomotor :

∗ Psychomotor retardation or agitation

∗ Diminished ability to think/concentrate or increased indecisiveness
∗ Fatigue or loss of energy
∗ Insomnia or hypersomnia
∗ Significant weight loss or weight gain
∗ Feelings of worthlessness or excessive / inappropriate guilt
∗ Recurrent thoughts of death or recurrent suicidal ideation

instant evaluation, or directly contact the health services in the scenario of extreme depressive

episodes. Furthermore, simply and remotely monitoring of depression conditions will be highly

appreciated whether by a primary or the secondary health services providers [75].

Based on the fact that clinicians based their assessment of depression using symptoms re-

lated to the changes affecting an individual’s lifestyle for example the behavioural changes,

feelings,etc. Conversations with clinicians expressed those. Therefore speech has the potential

as a prominent objective diagnostic tool. Research into this direction requires understanding

how the current diagnostic procedures works, what other sorts of physiological, biological, and

behavioural markers used to aid the diagnostic system. Speech production mechanism influ-

enced by many factors, mapping the aforementioned depression’s markers that alter speech

characteristics to depression markers is a key to achieve our goal.

2.2.1 Clinical depression

clinical depression or major depression disorder is cased by variety of factors that impair the

functionality of the cortical, sub-cortical, and limbic systems. Although those factors may not

yet characterised, they possible to be linked with genetic amenability and surroundings condi-

tions such as stress and emotional shock [76–78]. According to Statistical Manual of Mental

Disorders (DSM), depression is diagnosed when an individual suffers from either depressed

mood (DM) or anhedonia (loss of interest or pleasure) associated with at least four or more

symptoms listed in Table 2.1 and for at least two weeks period [79].

The DSM is extensively used manual in the diagnostic of mental disorders, and its current
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fifth version published by the American Psychiatric Association in 2013. DSM was imple-

mented to provide standard criteria for discriminating disorders based on perceived symptoms.

It is, however, been criticized for the increased homogeneous groups compared to the previous

versions (more disorders listed and some disorders were divided into subgroups or subtypes).

Additionally, it is more challenging to reach a diagnosis in DSM due to its way of defining the

boundaries between the groups and subgroups and therefore making diagnosis dependent on

subjective biases where a valid patient examination should not take place to reach a diagnosis

[80].

2.2.2 Diagnosing depression

Depression diagnosis in primary care settings is a challenging task. Applying the DSM crite-

ria of depression (Table 2.1), Østergaard et al. [73] estimated that there is a large number of

different profiles of depression; this variety adds an extra level of complexity while attempting

to relate the clinical profile of a depressed individual into an objective level [81]. Also, the

diagnosis might even harder for the clinicians due to the increased rate of individuals seeking

aid in primary care, the considerable amount of time it takes to obtain a diagnosis, physical

signs concealing their underlying cause, increasing the risk of misclassification, and some de-

pressed patients may not willingly be able to reveal emotional symptoms such as sadness or

hopelessness [82].

Depression tools for screening patients exist, whether inform of clinical-led or self-evaluation

questionnaires; they aim to measure the severity of symptoms through a scoring mechanism.

This mechanism is sensitive to all underlying depression symptoms, make it vulnerable to sub-

jective bias due to some symptoms; for example, low mood is not physically measurable. This

bias risk required extra training in clinicians-led to achieve satisfactory results [83, 84]. More-

over, in order to reach the full potential of these evaluation systems, the patients have to be able

to express their symptoms of feelings, moods, and cognitions willingly and honestly, which it

might not be the case always due to the impaired motivations, and outlook from the first place.

2.2.2.1 Depression evaluation tools

The screening tools used in the depression speech databases which used in this study are the

Hamilton Rating Scale for Depression (HAMD) [85], or self-evaluations such as the Beck De-

19



Chapter 2 – Dementia and depression, symptoms and current diagnostic practices

pression Index (BDI) [86] or the Quick Inventory of Depressive Symptomatology (QIDS) [87].

These tools represent the gold standard in rating the severity of depression symptoms. The

resulting score indicates the level of depression’s severity, and this score generated differently

across these tools, different weighing methodologies and variety of symptoms they tend to

cover. However, they share several common symptoms including; suicide thoughts, loss in in-

terest/pleasure, increased feelings of guilt, changes in appetite, increased fatigue, changes in

sleeping patterns, increased depressed mood and increased agitation.

A. Hamilton Rating Scale for Depression

Hamilton Rating Scale for Depression (HAMD) is considered to be the gold standard tool for

assessing depression severity. First it was introduced in 1960 [85], and then was revised couple

of times in 1966 [88], 1967 [89], 1969 [90], 1980 [91]. It is a multiple item questioner created to

screen adult for depression, and measure the severity of their condition by investigating various

aspects of the individual’s day to day feelings of guilt, mood, suicide thoughts, anxiety, somatic

symptoms, agitation or retardation, and insomnia. HAMD consists of 21 questions and required

administration time between (20-30) minutes. Each question has 3-5 outcomes depend on the

severity of the perceived response. The test has five evaluation levels; normal (0-7), mild (8-

13), moderate (14-18), severe (19-22), and very severe (≥23). The HAMD has been frequently

criticised for its inability to rank patients in terms of their severity status. [92, 93].

B. Beck Depression Index

The Beck Depression Index (BDI) is one of the most extensively used self-assessment tools of

depression [86]. It encompassed 21 multiple items, that emphasis on the somatic symptom, and

essential cognitive noticed in depression alongside the negatives on self-evaluations such as self-

criticisms and self dislikes. Each item marked as 0, 1, 2, or 3 estimated based on how the patient

interprets the severity of a specific symptom over the last week. The top score is 63, and it has

four scales of depression: severe (≥30), moderate (19-29), mild (10-18), and minimal (0-9).

The tool considered to be convenient to use (short self-assessment, no need for clinicians) and

reliable [94]; however, the patient’s reading ability and learning effects influenced its reliability

[95].
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C. Quick Inventory of Depressive symptomatology

The Quick Inventory of Depressive Symptomatology (QIDS) is a brief self-reported test for

measuring the severity of depression, and it takes 5-10 minutes to complete [87]. It was de-

veloped based on a previous lengthy test (takes 20-30 minutes administration time) known as

the 30-question Inventory of Depressive Symptomatology (IDS) [96]. There are two existing

versions of QIDS, the self-report (QIDS-SR16) and clinician-rated (QIDS-C16). Both versions

have scores range from 0 to 27, the final score is accumulated based on the patients’ responses

to the 16 different items. Those items summarised into nine questions, and each question can

be scored between 0 and 3. The nine evaluation categories are: interest, sleep disturbance (ini-

tial, middle, and late insomnia or hypersomnia), sad mood, psychomotor, agitation/retardation,

energy/fatigue, self-criticism, suicidal thoughts, concentration, and changes in appetite/weight.

The test has five evaluation levels: very sever (≥21), sever (16-20), moderate (11-15), mild

(6-10), and normal (0-5). QIDS considered to be a reliable tool for depression assessment,

however, it more frequently placed patients into the highest level of severity compared to other

measures, and that requires medications and treatments which may not be needed at the first

time [97]

D. Montgomery – Åsberg Depression Rating Scale

The Montgomery – Åsberg Depression Rating Scale (MARSD) was created in 1979 as a sup-

plement to HAMD scale [98]. It is a ten questions tool used by psychiatrists to estimate the

severity of depression in individuals suffers from depressive episodes associated with mood

disorder [99]. MARSD expected to have higher sensitivity than HAMD in the events of the

changes that occur due to the antidepressants and other forms of treatment. The score can be

any value between 0 to 60, and a higher value means more severe depression. The ten questions

measure various symptoms which are: reduced sleep, inner tension, concentration difficulties,

pessimistic ideation, reported sadness, apparent sadness, suicidal thoughts, inability to feel, las-

situde, and decreased appetite. Each question can have score ranges from 0 to 6, and the total

score indicates one out of four levels of depression the normal (0-6), mild 7 to 19, moderate

(20-34) and severe depression >34. The MARSD takes 20-30 minutes to complete.
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E. Zung Self-Rating Depression Scale

The Zung Self-Rating Depression Scale (SDS) implemented in 1965 to examine the severity of

depression for patients suffering from depressive disorder [100]. It has 20 items and takes 5 to

10 minutes of administration time. Each question can be scored from 1 up to 4, and final raw

scores range from 20 to 80, which need to be converted into depression severity index (multi-

plied by 1.25 and divided by 100). The index has four levels; normal (20-44), mild depression

(45-59), moderately depressed (60-69), and ≥70 for severely depressed. While SDS is proven

to be a reliable test, it was reported that the test might have an unsatisfactory correlation with

age. The non-depressed individuals whose age is less than 19 years, and older adults above 65

years of age their scores lean to fall in the depression category [101].

F. Zung Self-Rating Anxiety Scale

The Zung Self-Rating Anxiety Scale (SAS) is a self-evaluation test used to estimate anxiety

levels [102]. The test designed to assess four aspects of an individual symptom’s: motor, central

nervous system, automatic and cognitive. The responses are evaluated in one or two weeks

before the test. The answers are scored between 0 to 4 based on the following choices: "a little

of the time", "some of the time", "good part of the time", "most of the time". The final score

is a sum for all replies from the twenty questions, and this raw value scaled into anxiety index

score, which ranges from 20 to 80. The normal range (20-44), mild to moderate (45-59), the

severe anxiety (60-74), and extreme severity is ≥75. Although the SAS is a brief test can be

completed in 5 minutes, it criticised for not showing adequate discrimination ability between

depression and anxiety [103].

G. Patient Health Questionnaire-9

The Patient Health Questionnaire-9 (PHQ-9) is test used to measure the severity of depression

[104] with top score of 27, score over 20 indicate sever depression, 15 to 19 score is a moder-

ately sever depression, a score between 10 to 14 is mild depression, 5 to 9 score is moderate,

while score up to 4 is the normal or no depression. The test is self administered with 9 questions,

each question score ranges from 0 to 3. PHQ-9 target emotion, feeling, interest and satisfaction

in individuals.
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H. Generalised Anxiety Assessment-7

Generalized Anxiety Disorder 7 (GAD-7) is a self-reported questionnaire for examining and

measuring the severity of generalized anxiety disorder (GAD). The GAD-7 test top score is

21, and each one the seven questions can be scored between 0 and 3. A Score of more than

15 means severe anxiety, score range from 6 up to 14 is moderate-severe anxiety while mild

anxiety score between 0 up to 5 [105].

2.2.3 Depression objective markers
Using behavioural signals or measurable biomarkers in the diagnosis process is not yet entirely

adopted in psychiatry utilities. However, research in these directions becomes attractive among

the researchers. It is still a challenging task to find a specific objective marker given the vast

diversity of symptoms associated with depression [73]. Combining potential speech signal signs

with other behavioural and physiological markers could be one way to achieve desirable results.

Therefore, it is important to briefly review the recent research into the related behavioural,

physiological and biological markers.

2.2.3.1 Physiological and biological markers

Defining depression-related psychological and biological markers is the core of research to-

wards an objective assessment tool. It has been reported that several biological markers as-

sociated with depression, for example, genetic abnormalities [30], low serotonin levels [31]

and neurotransmitter dysfunction [32]. However, to date, no particular biomarker has been

identified. This limitation might be due to the variety of symptoms, absence of strong rela-

tions between genes and depression pathologies [106]. The low level of molecular serotonin is

considered to be the best biomarker for depression indication [106]. However, several reports

showed that healthy subjects from a family with mental illnesses [107], or subjects suffer from

aggressive behaviour [108], or suicidal subjects [109], might as well suffer from low serotonin.

Therefore, low serotonin is not entirely a depression specific marker.

Depression could be investigated through neuroimaging, as it found that several interactions

provide useful information for this purpose: the interactions between the cortical and limbic

system linked with onset depression [110, 111], interactions between the gene responsible for

brain-derived neurotropic factor (BDNF) and recurrent of the stressful event have been associ-
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ated with risks of anxiety and depression disorders [30], the reduced activity of neurotransmitter

gamma-amino butyric acid (GABA) correlated with the risk of having depression [112], addi-

tionally, GABA transmission linked with progressed stress activity [113].

The motor co-ordination controlled by the basal ganglia (area in the brain) is connected to

the prefrontal cortex and limbic system, which means basal ganglia affected through the course

of depression [114]. Depression also mapped to the size of hippocampal [115]. Frodl et al.

[116] reported that 60 patients suffering from depression have small hippocampal compared to

matched healthy subjects. The authors also liked between the BDNF gene and the small volume

of hippocampal; this could mean the gene abnormalities is a marker for developing depression.

Additional biomarkers linked to depression are; cytokines which is a protein molecule [117],

insulin and serum molecule [118], and level of salivary cortisol, a steroid hormones [119]. while

Phsiological markers encompass: dysregulation of cardiovascular [120], galvanic skin reactions

[121] , saccadic eye motions [122], and sleep distrubances [123].

2.2.3.2 Behavioural markers

Despite that, the current diagnosis tools of depression are not focusing on adopting non-verbal

communication and other behavioural markers, recent studies showed that these markers could

be useful in discrimination depression symptoms, for example using eye gaze and eye movment

[124], facial landmark tracking [125, 126], and hand gesture or movement [127].

2.2.4 Depression and speech
Emil Kraepalin [128] the most contributor to modern psychiatry, characterised depressed pa-

tient speak with longer pauses and hesitations, slowly and with low volume, and sometimes

whispering. Depression influence speech, and this effect clinically often described as follows:

reduced in speech rate and verbal activity, short utterances, and long silent pauses [74, 129].

Speech is the most available source of information and what is more that makes it an attrac-

tive candidate as an assessment tool is that; it is a noninvasive and non-intrusive approach, it

can be remotely deployed and cheaply measured. The human brain controls speech production,

and it is a sophisticated process; thus, it could be affected by subtle cognitive and psychological

changes. Therefore the potential changes might be reflected in altering the speech acoustics’s

characteristics [130]. Under depression, both cognitive and psychological changes occur, and
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it expected to affect the controlling mechanism behind the speech production process. This

alteration to the acoustics presumably measurable and possible to consider as an objective as-

sessment approach.

2.3 Advantages of an automatic screening tool
Both dementia and depression diagnosis is not a straightforward process. Dementia symptoms

are overlapping with a variety of conditions including (FMD, SCD), normal ageing and even

depression, and all of that can produce either misdiagnosis (false positive) or under-diagnosis

(false negative). Similarly, identifying depression states can be influenced by subjective bias

and/or honesty and accuracy of patients expressing their symptoms. Besides, the tools that can

be used to recognise individuals more-likely of developing dementia are invasive, expensive,

and some tests expose people to radiation. Whereas other cognitive tests are non-invasive and

cheap, yet their sensitivity and specificity somewhat sub-optimal and performed using papers

and pen, also they produce learning effects which limit the number of possible administrations.

As a result, developing a cheap, non-invasive and non-intrusive, automatic, and objective

tool that can be used frequently without learning effects, remotely applicable, reliable, and

easily administrated is on high demand by healthcare providers. This tool can bring tranquillity

for those at low risk of developing dementia, and at the same time to speed up the process of

providing the right medications to those who most likely demented.

2.4 Summary
Dementia and depression are the two most common causes of mental disorders affecting human-

life. Dementia is a brain disease result from the damages affects the brain neurons’ synapses,

it’s a progressive and irreversible disease, characterised by losing the cognitive functionality.

The most common cause of dementia is AD which represents 60-80 % of dementias. There

are three distinctive stages of dementia: early, middle, and late stages. Dementia symptoms

includes loss of memory, decline in cognitive abilities and mood changes and these become

more disturbances as the disease progression. Depression symptoms on the other hand, includes

aggressive behaviour and suicidal thoughts.

Various aspects of speech and language features are affected during the course of dementia
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and under depression condition. Subtle changes in the acoustic characteristics of the speech

might occur in the early stage of dementia; these include, voice pitch, formants, shimmer, jitter,

HNR. Speaking behaviour is shown to be affected as well, for instance, low speech rate, an

increase in number and duration of pauses and hesitations these also characterised in depres-

sive voices. These effects might reflect the difficulties in finding the appropriate word (lexical

deficits). The linguistic characteristics reportedly to be affected.

There are other diseases or conditions, such as FMD can cause similar behaviours as in

dementia, however, these conditions can be cured. Therefore it is highly desirable to accu-

rately discriminate FMD conditions from other ND diseases. It is believed that dementia may

start more than a decade before it diagnosed; however, it is challenging to recognise the subtle

changes due to the lack of accurate biomarkers. The current dementia diagnostic tools includes

(CSF, CT and PET), sleep and gate examinations in addition to cognitive screening tools such as

MMSE and MoCA. These tools either invasive, costly, or have lack of frequent usage. Whereas,

the screening tools for depression includes PHQ, BDI and HAMD, these tools heavily rely on

the patient’s honesty to express their symptoms and the examiner ability to interpret the ob-

served symptoms, so subjective bias may influence the evaluation decision. Thus, it is highly

desirable to find simple, reliable and cheap approach can be used as diagnostic tool.

The study investigate the use of acoustic only approach to design simple and cheap tools

that can help the doctors in detection/screening dementia, depression and bipolar.
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Chapter 3

Automatic approaches to extracting

clinically useful information from a

person’s speech and language

3.1 Introduction

This chapter presents a literature review of some of the most extensively used methods for

processing speech signals to extract clinically useful information. The search will focus on the

automatic systems that recently developed to overcome the limitations of the tools and tests that

currently use in diagnosing dementia and depression. More specifically, this work will explore;

first, the types of features used, how these features extracted, and in which context and type of

disease they were investigating. Secondly, to describe the machine learning algorithms used to

build these automatic systems, and how have these models been evaluated, which metrics were

used to report the results and what datasets have been used. Finally, to identify the gaps and

limitations in these studies.

The rest of the chapter is organised as follow section 3.2 provides literature for the recent

studies aimed for the detection of the early signs of dementia. Section 3.3 describes the latest

studies that proposed automatic screening systems for depression. The last section is the chapter

summary.
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3.2 Dementia
Several studies have suggested that analysis of speech and language may offer valuable clues

to detect behaviour bio-markers of dementia and Mild Cognitive Impairments (MCI) [5, 45,

131]. The Speech production starts in the left hemisphere of the brain [37]; and it is a complex

process involving various cognitive domains, such as attention, planning, and memory, besides

the language itself. As a result, a subtle decline in speech capabilities has been spotted for a

long time (years) before dementia is diagnosed [132–137].

Automated speech and language analysis methods are potentially powerful tools, especially

when using machine learning algorithms capabilities to evaluate the features extracted from

the speech. Many studies have already applied machine learning approaches to identify text

and/or speech samples from individuals with cognitive impairment [54, 138–144]. However,

the significant obstruction in this domain of research is the shortage of high-quality, clinically-

validated data needed to train such machine learning models.

Numerous studies have explored the relationship between cognitive decline and various

aspects of speech and language. The following will review the findings regarding the use of

different speech-based tasks and other cognitive tasks, and conversations to detect signs of

dementia diseases and other cognitive disorders.

3.2.1 Dementia detection using linguistic features

Several studies investigated language based features, Bucks et al. [53] explored how AD deficits

the speech and language compared to normal people. They collected speech samples from the

interviews (continued for between 20 and 45 minutes) with 16 participants (8 controls, 8 with

moderate and severe AD). Several lexical features were extracted from the manually transcribed

audio recording. The feature set includes noun, pronoun, adjective and verb rates, Brunet’s in-

dex, Honore’s statistic, and the semantic cohesion, those features widely used in measuring the

speech quality, flow and fluency. All the features were analysed using principal component and

linear discriminant analysis. The binary classification result was 87.5% using the leave-one-out

cross-validation method. The authors showed that people with AD suffer from word-finding,

low verbal rate, and difficulty to construct longer phrases in contrast to the control groups.

Thomas et al. [138] suggested lexical based approach to identify and rate AD. The analysis

28



Chapter 3 – Automatic approaches to extracting clinically useful information from a person’s
speech and language

applied to speech recordings collected from 95 patients and their caregivers, all participated in

a study supervised by the Atlantic Canada Alzheimer’s disease Investigation of Expectations

(ACADIE). The ACADIE investigated the effect of donepezil hydrochloride treatment con-

sumed by the patients for 12 weeks. The follow-up assessments administered at 12, 24, 36, and

52 weeks. The patient’s MMSE scores were showing mild, moderate, and severe AD [145]. The

author used two interviews recorded with examiners for each patient at week 12. Thomas et al.

used a manually transcribed text files for the recordings. The extracted feature set included the

rate of adjective, noun, verb and pronoun, type-token ratio, Brunet index, Honors statistics, and

clause like semantic unit features. Four classification scenarios were implemented. The maxi-

mum accuracies reached highest at 69.6%, 50.0%, 94.5%, and 75.3%, when doing (normal or

mild AD) vs. (moderate or severe) AD, (normal vs. mild vs. moderate vs. severe AD), (normal

vs. severe AD), and (normal vs. mild AD) respectively. Roark et al. [54] found that the complex

linguistic measures and pause statistic features provide useful discriminative markers which can

be used to differentiate between MCI and HC group members. The authors used SVM classi-

fier to measure the area Under Receiver Operating (ROC) curves as a classification accuracy,

achieving a maximum ROC measurement of 0.86 when selecting 32 (language and speech) fea-

tures combined with neurologist test scores. Ahmed et al. [146] investigated the deterioration

of language characteristics during the course of the disease for 15 subjects AD confirmed post-

mortem. The analysis applied to speech samples recorded while the patient was performing

the Cookie Theft picture description task. The study reported subtle language defects observed

during the preceding stages of AD (mild and moderate cognitive impairments), however, as the

disease progression to AD stage, the linguistic measures including lexical content, semantic and

syntactic complexity clearly altered through the consecutive clinical stages of the disease. As-

gari et al. [143] conducted linguistic analysis to differentiate between two groups of subjects,

first group represent cognitively intact subjects(n=27, age=78.9, and MMSE=28.7), and second

group of patients having MCI diagnosis (n=14, age=83.4, MMSE=26.9). Both groups inter-

viewed in standardized pre-selected topics, the conversations were recorded and transcribed for

linguistics feature investigation. They used the Linguistic Inquiry and Word Count (LIWC)

based features with a size of 68-word subcategories, for example, filler words, nonfluencies

(’um,’ ’er’), job-description words such as "Boss," "employee," etc. SVM and random forest
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classification algorithms trained under five-folds cross-validation method, and used to report the

results. The highest classification accuracy was 76.2% achieved by non-linear SVM with radial

basis function compared to 74.4% for the random forest classifier.

3.2.1.1 Linguistic approach applied to DementiaBank dataset

All previously mentioned studies used their own datasets and these are not publicly accessi-

ble, thus it is hard to compare the performance of this study with their modalities. However,

many studies proposed systems for the same task and used the DementiaBank corpus [147] to

report the results. The DementiaBank is the only publicly accessible dataset for dementia and

relate diseases. Using language based modalities, Orimaye et al. [33] proposed a diagnostic

method to identify people with AD using nine syntactic and eleven lexical features extracted

from transcribed audio files from the DementiaBank dataset. They used a sample size of 242

files for both healthy older people and people with AD. They explored four different machine

learning classification algorithms, achieving a 74% classification accuracy using a support vec-

tor machine (SVM) classifier with 10 folds cross-validation. The recent work by Orimaye et al.

[148] used only 99 transcripts from the first visit by those with probable AD conditions, and

matched it with 99 from the HC. The authors used the same feature set from the old work [33]

and added N-gram (bigrams and trigrams) based features. They used the Sequential Multiple

Optimisation (SMO) with RBF kernel model to test the accuracy. The authors used the Area

Under ROC curve (AUC) to report the performance. The max AUC reported was 0.93 using the

combined top 1000 features. Zhou et al. [149] utilised ASR Word Error Rate features for the

detection of AD subjects, they experimented on the DementiaBank dataset which contains 167

AD participants provided 240 speech samples, and 233 additional recordings belong to 97 HC

subjects. They only used lexical features generated from the ASR output and used to train the

SVM classifier. The study struggled to provide a reliable accuracy due to the challenges of the

noisy recordings, and the best WER obtained was 38.24%, this study shows that performance

of such models strongly relays on the efficiency of the ASR. Hernandez et al. [36] used speech

recordings from the DementiaBank dataset, with total of 517 samples divided into three groups

(AD =257, HC = 217, and MCI =43). The authors used manually transcribed text files to extract

a set of linguistic features. They include part of speech distribution variables such as frequency

and ratio of nouns, verbs, conjunctions, vocabulary richness features, etc. Also, they extracted
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several statistic features applied to the Mel Frequency Cepstral Coefficients (MFCCs). With a

total of 105 linguistic and acoustic features used as input to train SVM and Random Forest (RF)

algorithms. The ten-fold cross-validation approach used to report the results. The correlation-

based approach was adapted as a feature selection method. They selected only features that

have a high correlation value with respect to the class. The SVM algorithm performed better

than RF in a binary classification task ,i.e., identifying HC subjects from AD groups, with an

accuracy of 79.0% compared to 75.00%. However, when classifying HC subjects from both

(AD and MCI), RF outperformed the SVM and achieved an accuracy of 77.0% compared to

75.0%.

Further language approaches, Ammar et al. [150] proposed linguistic-based approach to

diagnose AD from HC subjects. Using the manually transcribed text files the TalkBank CHAT

(Codes for the Human Analysis of Transcripts) protocol [151], a total of 28 syntactic, semantic

and pragmatic features extracted from the DementiaBank speech recordings. These features

include the total number of nouns, verbs, adverbs, adjective, utterances, and the number of past

and present participles, prepositions, conjunctions, pronouns, and error words, type token-ratio,

etc. With the help of KNN-classifier based wrapper feature selection method, 11 most informa-

tive features were selected and used to train an SVM classifier. The 10-folds cross-validation

procedure achieved precision at 0.79%. Klumpp et al. [152] used the same 499 transcrip-

tions from the DementiaBank dataset, to construct an Artificial Neural Network (ANN) model

to distinguish between ADs and HCs. They used the bag of words parameters and estimated

546 values that measured the occurrence of stemmed words following and using the Stanford

CoreNLP Toolkit [153]. The fully connected feed-forward ANN designed to have one input

layers followed by a hidden layer both having 546 nodes, while the output layer consists of two

nodes representing the two classes. The authors feed the ANN using a batch of 20 samples and

adopted 80% dropout of the values between the layers as a precaution to the over-fitting issue.

All nodes configured to have Rectified Linear Unit (ReLU) activation function. ANN’s best

classification score was 84.4%. Mirheidari et al. [154] investigated word vector representations

(WVR) features to classify between HC and AD. The model tested with samples obtained from

the DementiaBank dataset. The authors compared two deep neural networks models that were

built using WVR based features. The first model was built using the manual transcripts, and the
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second by using an ASR. The highest score achieved by the model that used the manual tran-

scripts with a classification accuracy of 75.6% compared to 62.3% that used ASR. Fritsch et al.

[155] proposed neural network language model to diagnose AD group from HC subjects. The

model was built using statistical measures applied to a set of linguistic parameters. The authors

based their analysis using statistical N-grams language models that means the probability for

a sequence is defined by the product of the probabilities of the words that form the sequence.

The model trained and tested with DementiaBank dataset, with a total of 499 samples comes

from 168 ADs (having 255 recordings), and the rest(244) belong to the 98 HC participants. The

authors used leave-one-speaker out cross-validation to test their model. The best classification

result reported was 85.6% in distinguishing between the two groups. They also reported a high

correlation between the MMSE scores and their features, both Pearson and Spearman’s rank

correlations were 0.656 and 0.771, respectively.

3.2.2 Dementia detection using acoustic features
The following studies proposed automatic systems based on acoustic features for this task,

Lopez-de-Ipena et al. [156] investigated using features called Emotional Temperature derived

from the speech along with acoustic features from 20 healthy subjects and 20 people who have

dementia. This was done in an attempt to evaluate the importance of the emotions encapsulated

in spontaneous speech, and they showed promising results when attempting to differentiate dif-

ferent stages of the disease. Later same group, Lopez-de-Ipena et al.[157, 158] examined a

combination of linear and nonlinear acoustic features derived from a spontaneous speech in a

multi-lingual dataset of 70 participants. The features were used to build a machine learning

model designed to capture the irregularities affecting speech caused by AD. Melan et al. [52]

used speech recordings from 30 AD patients (mean MMSE score = 18.07, mean age = 78.66

years, mean years of education = 6.27) and 33 HC subjects (mean MMSE=27.97, mean age =

74.06, mean years of education = 7.30). The recordings were collected while the participants

were reading two Spanish sentences that appeared on the screen. The authors extracted a set

of acoustic features using Praat software[159]. The features included total duration, phonation

time, Noise to Harmonic Ratios(NHR), speech and articulation time, F0 statistics, pulses, pe-

riods, mean periods, and various measures for the frequency (jitter) and amplitude (shimmer)

fluctuations. The statistical analysis applied to the feature sets shows a significant difference
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between AD and HC in five features; the percentage of voice breaks, the number of periods,

and voice breaks and NHR. These important features used by the discriminant function and ob-

tained 84.8% classification accuracy. However, the accuracy dropped to 83.3% when applying

a cross-validation procedure.

Whereas several studies proposed modalities for the identification of MCI condition, König

et al. [144] used recordings from three groups of subjects identified as AD (mean Mini-Mental

State Examination (MMSE) score 19), healthy elderly controls (HC) (mean MMSE 29) and

(MCI, mean MMSE 26). The participants were instructed to carry out four short vocal cog-

nitive tasks. For each task, a number of acoustic features were extracted and used to train a

support vector machine (SVM) classifier. Three different identification scenarios were tested:

HC vs MCI, HC vs AD and MCI vs AD with reported classification accuracies of 79% ±5%,

87% ± 3% and 80% ±5% respectively. Toth et al. [160] proposed a speech-based method for

the early diagnosis of AD. The approach was evaluated using German speech recordings from

84 participants performing three tasks: immediate and delayed recall, in addition to sponta-

neous speech. The mean MMSE scores for the MCI (n=48) participants was 26.9 while the HC

(n=36) group had mean MMSE scores of 29.1. After watching two short films, the participants

were instructed to talk about the contents of these movies, once immediately after the end of

the first movie, and secondly, after a 1-minute delay or a distraction for the last one. The spon-

taneous speech task involved recordings of the participants describing their previous day. From

participants’ speech prompted by these tasks, Toth et al. extracted a set of acoustic features

measuring the number and average length of silent pauses and filled pauses, as well as rates for

both speech and articulation. These features were used to build three classifiers to differentiate

between MCI and HC. The best accuracy was achieved with a Random Forest classifier with

an F1 score of 78.8%. Satt et al. [161] conducted experiment on 89 participants diagnosed as

(19 healthy adults, 43 with MCI, 27 with AD). The subjects were instructed to complete four

vocal tasks describe a picture while looking at it, repeat a sentence and syllables, and look at

a picture and then describe it from memory. Total of 25 vocal features were extracted for ex-

ample the mean relative sentence duration, mean verbal reaction time, statistics of pauses and

speech segments, the total number of the tokens uttered, mean number of errors per token av-

erage. With the use of single-tailed p- values, features that corresponding to the lowest value

33



Chapter 3 – Automatic approaches to extracting clinically useful information from a person’s
speech and language

considered to be significant and therefore selected in estimating the classifier performance. The

SVM classifier trained using 4-folds cross-validation method, and the reported results were in

terms of Equal Error Rate EER. They used three configurations to test their method; control vs.

MCI, control vs. AD and MCI vs AD, and the EER results were 17.00%, 15.5%, and 18.00%

respectively.

3.2.3 Dementia detection using a combination of both linguistic and acous-

tic features

Using more demanding approaches, several studies had utilised both linguistic elements and

acoustic features, Jarrold et al. [139] distinguished between different types of dementia by

combining lexical and acoustic feature profiles extracted from spontaneous speech. The fea-

tures were collected from 9 controls and 39 patients who had been diagnosed with different

dementia sub-types: frontotemporal degeneration (mean MMSE 24), primary progressive non-

fluent aphasia (mean MMSE 22), semantic dementia (mean MMSE 17) and AD (mean MMSE

18). The acoustic features included phoneme duration, speech rate, mean and standard deviation

(STD) of the duration of consonants, vowels and pauses as well as the mean and STD for voice

and voiceless duration segments. For the lexical features profile, they extracted the frequency

occurrence of 14 different part of speech features (verbs, pronouns, nouns, function words, etc.).

The feature-based profiles were derived from structured interviews and used as input to a ma-

chine learning algorithm. Classification accuracy of 88% was achieved by using a multi-layer

perceptron as a binary classifier to differentiate between the AD and HC groups exclusively,

while the classification accuracy dropped to 61% when all participants (with different types

and severity of ND) were included. Weiner et al.[162] built a Linear Discriminant Analysis

(LDA) classifier to perform a multi-class experiment on longitudinally collected speech sam-

ples. The dataset recordings were a collection of biographic interviews and cognitive tests of 74

participants administered by psychiatrists during the course of three separate visits. Follow-up

cognitive tests demonstrated that some participants changed from the healthy cognition group

into the Aging-Associated Cognitive Decline (AACD) and AD groups. A total of 98 speech

samples were analysed (HC n=80, AACD n=13, and AD n= 5). A set of acoustic features were

extracted using manually transcribed files and voice activity detector software. These features

34



Chapter 3 – Automatic approaches to extracting clinically useful information from a person’s
speech and language

included the mean of silent segments, speech and silence durations, silence to speech ratio, si-

lence count ratio, word and phoneme rates, and silence to word ratio. Using these variables, the

LDA model achieved a classification accuracy of 85.7% between the three patient classes. Later

the same authors Weiner et al.[163] added Automatic Speech Recognition (ASR) based features

to their system. They also compared the performance of the automatic ASR based features to

the manually transcribed conversations. Using both ASR types, they extracted several features

such as perplexity feature, lexical richness, acoustic, ASR’s word error rate, etc. The best re-

sult obtained was 0.623 using automatic ASR, reported as unweighted average recall (UAR). A

year later, Weiner et al.[164] used Gaussian- acoustic-only model, and for the same data, the

UAR dropped to 0.493, on the other hand, and when they used 241 interviews (collected from

218 participants), the model performance increased to 0.645 UAR when using only 12.5mins of

the total conversations time. Sirts et al. [35] explored linguistics based features called propo-

sitional idea and semantic idea densities combined with other clustered features called LIWC

[165] to distinguish AD patients from HC subjects. The authors used speech recordings from

two datasets the DementiaBank and a dataset, recorded at Neuroscience Research Australia

(NeuRA), contains interviews of autobiographical memory for both AD patients and HC sub-

jects. The logistic regression classifier’s results reported using F1-scores achieving 72.7, 78.4

for DementiaBank and NeurRA3 respectively, but when the clustered features trained using

both datasets and added to the rest of features, the F1-scores increased respectively to 75.0

and 84.0. Gosztolya et al. [166] examined the fusion of two SVM models to perform binary,

and multi-class classification to classify between three subgroups of subjects HC(n=25), MCI

(n=25) and AD(n=25,mean MMSE scores 29, 27 and 23 respectively). The first model was

built using a set of acoustic features which had been extracted using ASR software (articulation

rates, utterance length, silent and filled pauses, a ratio of pause and speech). The second model

was built using linguistic features extracted from manually annotated transcripts and included

the number and rate of adjectives, nouns, verbs, pronouns, conjunctions, uncertain words, con-

tent words and function words. These features were extracted from recordings of Hungarian

spontaneous speech. The accuracy of the fused model varied between 80% for both HC vs.

MCI and MCI vs. AD and 86% for HC vs. AD, while the accuracy for the multi-class task, i.e.

HC vs. MCI vs. AD was 81%.
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3.2.3.1 Linguistic and acoustic models applied to DementiaBank dataset

The majority of studies used language based models and only few studies fused both linguistic

and acoustic features, for example, Fraser et al. [34] studied the potential of using linguistic fea-

tures to identify Alzheimer’s disease. They used speech recordings along with their manually

transcribed files derived from the DementiaBank data set. They chose 240 speech recordings

belonging to a group of 167 people identified as probably or possibly having AD and 233 sam-

ples from 97 subjects with no memory complaint. In total, a set of 370 acoustic, lexical and

semantic features were extracted, and they then applied two machine learning classification al-

gorithms and obtained accuracy of 81% in distinguishing between HC subjects and AD patients

using the top 25 ranked features. Later same group Fraser et al. [167] investigated multilingual

linguistic-based features to classify between MCI and HC groups. The features set consist of

cluster features (such as cosine distance between the centroid of all words that are members

in that cluster), density and efficiency for information, idea, nouns, and verbs. The analysis

applied to three datasets: Gothenburg [168], Karolinska, and the DementiaBank datasets. Total

of 67 speech recordings utilized from Gothenburg (31 MCI and 36 HC) representing Swedish

participants performing the Cookie Theft Picture description task. The Karolinska dataset [169]

having only 96 HC subjects divided into two groups based on their age ranges (20-64) and (65-

88). Both HC groups directed to produce a written description of what was happening in the

Cookie Theft picture while having the picture in front of them. From DementiaBank two sets

of samples designed, first set having (19 MCI and 19 HC) and the second set only have 78 HC

subjects. The authors used a linear SVM algorithm to perform the classification task under the

leave-one-out method. From the three datasets, different combinations were explored and used

for training and testing. Best classification accuracies achieved was 0.63% and 0.72% when

training the SVM using all samples from the all detests together but test only with the English

and Swedish respectively.

Finally, predicting severity of AD through predicting the MMSE scores, Yancheva et al.

[170] used a combination of acoustic and manually extracted linguistic features derived from the

DementiaBank dataset, to predict MMSE scores. Total of 210 acoustic features included such

as the mean and the mean of the mean for the first 42 MFCC coefficients and their skewness

and kurtosis, pauses, word to pause ratio, the variance and average of the pitch and first three
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Table 3.1 Summary of studies that proposed dementia detection systems.

Study Dataset Task Evaluation metric Accuracy

Buck et al.[53]
HC=8
AD=8 HC vs AD Accuracy 87.5%

Thomas et al.[138] 95 subjects
(HC+ mild AD) vs

(moderate + sever AD) Accuracy 69%

Asgari et al. [143]
HC = 27

MCI = 14 HC vs MCI Accuracy 76.2%

Melan et al. [52]
HC = 33
AD = 30 HC vs AD Accuracy 84.4%

Koing et al. [144]
HC =15

MCI = 23
AD =26

HC vs MCI
HC vs AD

MCI vs AD
Accuracy

79%
87%
80%

Toth et al. [151]
HC =36

MCI = 48 HC vs MCI F1_score 78.8%

Satt et al. [152]
HC =19

MCI = 43
AD =27

HC vs MCI
HC vs AD

MCI vs AD
Equal error rate

0.17
0.15
0.18

Jarold et al. [139]
HC = 9

AD = 39 HC vs AD Accuracy 88%

Weiner et al. [153]
HC = 80
AD = 18 HC vs AD Accuracy 85.7%

Gosztoyla et al. [157]
HC =19

MCI = 43
AD =27

HC vs MCI
HC vs AD

MCI vs AD
AD vs MCI vs HC

Accuracy

80%
86%
80%

81%
Orimary et al. [33] DementiaBank HC vs AD Accuracy 74%
Ammar et al. [161] DementiaBank HC vs AD Precision 0.79
Klumpp et al. [163] DementiaBank HC vs AD Accuracy 84.4%
Mirheidari et al. [165] DementiaBank HC vs AD Accuracy 75.6%
Fritsch et al. [166] DementiaBank HC vs AD Accuracy 85.6%
Fraser et al. [34] DementiaBank HC vs AD Accuracy 81%

formants, shimmer, jitter, linear predictive coefficients, autocorrelation, zero-crossing rate.

The lexicosyntactic had a total of 182 features such as word type proportion, subordinate to

coordinate phrases, type-to-token, mean length of utterance and ratio and Honoré’s statistic.

Finally, the semantic features included 85 variables. The authors used three feature selection

approaches to find the most salient features, and these methods were the Spearman-rank correla-

tion of features with MMSE scores, a t-test and the minimum redundancy-maximum-relevance.

They achieved MAE of 3.8 when utilizing all samples with only 40 out of 477 features that were

selected using the Spearman correlation method. The MAE improved to 2.9 for the scenario
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when only samples from patients who participated in more than three visits. In spite of the

respectable results, their approach was based on the manually annotated texts, and it is unclear

how the system behaves when adopting ASR in favour of a fully automated system.

The following chapters 4 and 5 will introduce the proposed systems and also compare the

results with previously mentioned studies listed in Table 3.1 and specifically that used the De-

mentiabank.

3.3 Depression
Several studies also reported the use of speech-based systems for detecting mental illnesses.

Depression disorder, for example, has been found to influence the prosodic, articulatory and

acoustic features of a person’s voice and language [171, 172]. The following are recent studies

that proposed automated systems for the detection of depression disorder using speech, video

and ensemble modalities.

The following studies used their own depression datasets, and therefore it is also difficult

to compare between the proposed systems results and their approaches. However, there might

be similar findings regarding depression investigation, which could be advantageous to health-

care providers when incorporating such systems to aid in depression diagnosis. These studies

includes Moor et al. [173] applied statistical ANOVA test to build a classifier using quadratic

discriminant analysis. This investigation demonstrated the suitability of glottal features for dis-

tinguishing between depressed subjects (n=15) and healthy controls(n=18). Although the study

achieved maximum accuracies of 96% for female speakers and 91% for male speakers, run-

ning under leave-one-out cross-validation, the authors indicate that because of the small sample

size (only 33 samples), these results might not generalise to a larger dataset. Low et al. [174]

obtained classification accuracy varying between 70.3% to 77.8% for the binary male-gender,

and between 67.1% to 74.7% for female-gender base tasks using speech samples from 139 ado-

lescents performing a problem-solving task. The study showed that Gaussian mixture model

(GMM) classification accuracy improved when combining features related to voice quality and

Teager energy operator and spectral. Thus the authors, recommend adopting fusion at features

level will likely improve the accuracy. Ooi et al. [175] used audio recordings from 30 ado-

lescents, performed a discussion with their families regarding two topics event planning and
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problem-solving. Fifteen samples labeled as having no depression symptoms, while the rest

have either major depressive disorder or another form of mood disorder. Total of 50 features

was extracted and representing four types Glottal, prosodic, Teager energy operator (TEO), and

spectral features. The authors used GMM classifier with weighted fusion accuracies, resulting

from a different type of feature space, that reached a maximum value at 73%. Cummins et

al. [171] compared the performance of two types of acoustic features MFCC and formants in

classifying between depressed (n=23) and healthy (n=24) individuals. The analysis applied to

speech recordings, collected while participants performing sentence reading task at Black Dog

Institute. GMM classifier built with MFCC group of features achieved a higher classification

accuracy of 77% compared to 74% when formant-based variables used. However, combining

both types of features, GMM accuracy improved to 79%. Yang et al. [176] proposed model-

based vocal prosodic features to estimate the severity of depression. The author used speech

recordings from 49 patients participated in seven weeks of followup clinical trials for depression

treatment. The average and coefficient of variation applied to the fundamental vocal frequency

and switching pauses features which initially derived from the recordings. The Hierarchical

linear modeling approach used to report the result, scoring 69% classification accuracy between

low, mild, and moderate to severe groups. The study highlighted that switching pauses have

more discriminating power as depression severity increases

Further study, Alghowinem et al.[177] used SVM classifier with leave-one-out cross-validation

technique to differentiate between two groups of participants, HC group with 30 subjects and

a depressed group having 30 patients. The participants were first interviewed, and during the

conversation, a set of 8 open-topic questions used and later, participants instructed to read 20

sentences that have both positive and negative meaning. The author used speech recordings

from the two tasks and extracted several features related to pitch, MFCC, energy, intensity, for-

mants, and voice quality. The study reported that model constructed with features extracted

using part of conversations provide better discrimination performance compared to a model

built with features from the reading task. The SVM results reported as the weighted average

recall, first model scores ranged from 60.0% to 78.3% compared to the second model scores

ranged from 50.0% to 75.8%. Finally, France et al. [178] used speech recordings from three

groups of participants labelled as health control (n=34), patient with high risks of suicide (n=43)
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and patients with major depression (n=42). The recordings from early sessions with a therapist,

and after the therapy sessions were also included in the study. Various acoustic features derived

from the recordings such as pitch and amplitude of modulation statistics, power spectral density,

and formants and their bandwidth. The authors used a linear discriminant classifier to report the

results. Four classification procedures were investigated control vs. major depression, control

vs. suicidal, major depression vs. suicidal, and all classes achieved accuracies of 82.0%, 80.0%,

81.0%, and 75.0% respectively.

3.3.1 Depression evaluation using Audio/Video Emotion Challenge (AVEC)

corpus.
The only accessible depression datasets are the Audio/video Emotion Challenge corpus (AVEC).

These datasets will be described in chapter 7. In both datasets the AVEC-2013 and AVEC-2014,

the challenge was to predict the severity of depression by predicting the Beck Depression In-

ventory (BDI) scores.

3.3.1.1 Depression evaluation using AVEC-2013 dataset.

Several studies found in the literature that used AVEC-2013, including a study by Williamson et

al.[179] proposed GMM-based model for multivariate regression to predict the severity of the

depression. The study used speech recordings from AVEC-2013 challenge, in which 340 video

and audio recordings collected from 292 participants performing human-computer interaction

tasks. The author used samples from the reading task only and used formants and MFCC based

features (already provided with the dataset) in the experiment. With a multi-variant technique

and principal component analysis, feature size reduced and fed to GMM regressor. The model

obtained mean absolute error, and root mean square error of 5.75 and 7.4, respectively when

using both feature types to predict the clinical depression scores, only evaluated with short time

clipped from the reading passage from the development set only. Meng et al. [180] Utilised

Motion History Histogram (MHH) to extract features from AVEC-2013 recordings. Both vo-

cal and visual dynamics were used to capture changes in facial and vocal characteristics due

to the effect of depression. The Partial Least Square (PLS) regression model used to evaluate

the proposed approach in predicting the depression scores for both development and test sets.

The authors investigated different modalities, including audio, video, and ensemble configu-
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ration. The audio model built using MHH applied to the 2268 audio features which supplied

alongside with dataset. The video model constructed using MHH dynamics to capture temporal

visual motion activities. HMM generate M gray-scale images for the video, which reflect the

level of motion in the video, and then monitor the changes in the gray value occurred for each

pixel for a duration of four consecutive frames. While the ensemble model used both audio and

video modalities, Meng et al. used technique known as the linear opinion pool [181] to gen-

erate the decision rule. The PLS perform best when using the ensemble model achieved Mean

Absolute error (MAE) and Root Mean Square Error (RMSE) of 6.94, 8.54 and 8.72,10.96 for

development and test set respectively while the audio model only evaluated with development

set and obtained MAE =9.78 and RMSE =11.54. The study obtained decent BDI scores pre-

diction. However, it heavily relies on the provided set of features. Further, the decision fusion

between the two modalities may generate bias as the authors did not report if the cut-off was

the same for both development and testing sets. Cummins et al. [182] applied multi-models

Gaussian Mixture with the universal background (GMM-UBM) combined with Support Vec-

tor Regression (SVR) algorithm to predict BDI scores for the AVEC-2013 corpus. The audio

model contains MFCC coefficients and their delta and delta-delta derivatives, while the visual

model constructed using features extracted from facial landmark tracking dynamics. The en-

semble model has been built by concatenating audio and visual elements. Different kernels

also investigated during the GMM-UBM models training and evaluations processes, such as the

Kullback-Leibler (capture similarity between utterances) and the GMM-UBM Mean Interval

Kernel (applied a covariance-based weighting scheme). Cummins et al. used cross-validation

method for training and evaluation process. First, the model trained with the training set and

then evaluated using five fold cross-validation, and the reported performance was the average

of RMSE value cross all the folds. The best-reported RMSE scores were 10.44 and 10.17 for

development and test sets, respectively. Both results outperformed the baseline challenge; how-

ever, the test configuration may generate a bias, the cross-validation folds mixed the training

with test data. Further, the model tuning parameters were optimised during the cross-validation

phase. a year later Cummins et al. [183] investigate the variability of acoustic volumes com-

bined with Gaussian mixture model as indicator to speaker’s level of depression and with same

AVEC-2013 dataset, both development and test RMSE scores improved to 7.4 and 9.49 respec-
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tively. Kaya et al. [184] investigated the effect of applying three features selection techniques

to improve the prediction of BDI depression scores. The authors used the pre-extracted audio-

video features from the AVEC-2013 challenge to evaluate the proposed approach. They used

Weka [185] tool to run the analysis. Among the three methods, the filter based-technique known

as the "CFS" (Weka library that use the correlation between the features and the class to rank

the variables) had performed better than the minimum redundant maximum relevant (mRMR)

and the mutual information methods. The best-feature size selected was between 387 and 467

out of 2268. The SVR was used, and the best MAE and RMSE scores were 7.84 and 10.22,

respectively. The authors didn’t report the development results to see if the model performance

is stable with a relatively large number of variables. Kachele et al. [186] Incorporated adaptive

fusion method to improve the identification ability of the weak learner algorithm, which lead to

in force the recognition of depression states. They extracted several audio-based features such

as MFCC, rate of the glottal closure, skewness of glottal pulse and glottal harmonic method as

well as video features such as appearance descriptors, and these features were derived from the

AVEC-2013 dataset. Kachele et al. used Kalman filter technique to eliminate the uncertainty

regarding the decisions created by the SVR algorithms, thus reduce the probability of false posi-

tives. A Multi-layer perceptron algorithm was constructed with three layers, the first one having

20 neurons with sigmoid output function, the second layer having five hidden layers( each hav-

ing the same configuration as in the first one), while the last layer consists of 30 neurons. All

modalities (audio and video) were evaluated individually and combined, the best results were

with ensemble method achieved MAE and RMSE of (8.3,9.94) and (8.72,10.96) for the devel-

opment and test sets respectively, while the audio scores (9.35,11.40) on the development and

(10.35,14.12) on the test, and finally the video model obtained (7.03, 8.82) for the development

and (8.97,10.82) for the test. Although the ensemble approach achieved better results, the audio

model performs poorly in both test and that may due to the limited and the types of acoustics

were employed in the construction process.

3.3.1.2 Depression evaluation using AVEC-2014 dataset

The following studies utilised the AVEC-2014, Simantiraki et al. [187] presented speech-based

approach for the assessment of depression. The author utilised features called phase distortion

deviation to capture irregularities affecting the phase component of the speech signal, which
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may be presented due to depression. The SVM classification algorithm used to test the model

performance with AVEC-2014 dataset, and the results reported using the area under the receiver

operating characteristic ROC curve. Features were extracted in addition to the voice pitch from

both AVEC tasks reading and spontaneous speech. The two tasks evaluated individually and

combined, and the best performance achieved was using both tasks and reached AUC 0.79 and

0.87 for female and male speakers, respectively. These results obtained for the development set

only, and we don’t know how the model will generalise to the test set of the same data. Further,

it unclear how the proposed model will perform when a gender-independent scenario is evalu-

ated. Mitra et al. [188] build two models namely multi-layer neural network and support vector

models to predict the severity of depression (i.e. depression scores), the models were based

on a combination of speech production, perception, acoustic phonetics, and prosody features

extracted from AVEC-2014 dataset. The authors fused the two models to achieve MAE = 5.87

and RMSE = 7.37 in predicting depression scores for the development set. Pampouchidou et

al. [189] combined facial and speech features extracted using open face and COVAREP tools

respectively, to classify between depressed/non-depressed subjects, the method applied on the

AVEC-2014 dataset achieving classification accuracy of 66% with weighted F1-score of 0.72,

weighted precision of 0.94, and recall of 0.59 for gender based depression classification. The

authors reported the results with development set only, and the best results achieve was based on

the gender dependent. Morales et al.[190] compared the performance of two regression models

that used to predict the Beck Depression Inventory-II (BDI-II) scores for AVEC-2014 corpus.

The first regression model was build using speech based features. These features were sta-

tistical functions (percentage of frames loudness contour is above: minimum+25%, 50%, and

90% of the range, interquartile ranges, 1% percentile, standard deviation, kurtosis, arithmetic

mean, root quadratic mean, minimum, maximum, skewness, quartiles, 99% percentile, per-

centile range 1%−99%) applied to features measuring the F0, loudness contours, and voicing

probability (which obtained using OpenSmile toolkit [191]), also this model included features

related to the speech rate: average pause time, total duration, total speech time, average phone

duration, total pause time, average syllable duration, and syllable rate. While the second model

was built using text-based features consist of content features estimated using LIWC [192] dic-

tionary. LIWC parameters incorporating: positive vs. negative emotion words, words referenc-
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ing society,/friends/family, pronouns may capture inclusive language (we, us) vs exclusive style

(they, them, you), and words referencing how the person is feeling (sleep, depressed, worried),

another features also included related to part of speech tag n-grams and text-based speech-rate

features using the Stanford Paresr toolkit [193]. The authors reported the performance in terms

of mean absolute error (MAE) and root mean square error (RMSE), the first model had slightly

better performance (MAE = 8.59, RMSE = 10.7) compared to the second model (MAE = 8.99,

RMSE = 10.75). Morales et al.also investigated the effect of combining the two feature sets to

build which improved the performance to MAE = 7.56, RMSE = 9.21 using Sequential Minimal

Optimisation (SMO) regression model.

Further Sidorov et al. [194] investigated the audio, video, and a combination of both modal-

ities to measure the level of depression severity in the AVEC-2014 development set. The perfor-

mance evaluated using SVR algorithm. The authors used the provided audio features to build

the audio model. While for video features they used eMax face analysis toolbox [195] to extract

the common dynamic appearance descriptor known as "LGBP-TOP". The ensemble approach

achieved the best prediction with RMSE = 9.6 and MAE = 7.6 for the reading task and 8.9, 7.2

for the free-form task, respectively. However, this method not evaluated with the test set, so the

model generalisation is not fully demonstrated. Pérez et al. [196] proposed Gaussian "meta"

approach to assess depression severity, the method aggregates the output generated from diffi-

dent modalities. These models constructed using audio, video, and silence video-audio feature

extracted from AVEC-2014 dataset. The authors used Weka tool [185] to perform the "re-

lief" feature selection approach and test the performance with the development set. The meta

Gaussian regression ensemble model obtained MAE = 8.99 and RMSE = 10.82 compared to

an audio-based model with MAE=9.35 and RMSE=11.9. Although this approach performed

better than the baseline, it is not evaluated with the test set, and yet the audio based approach

performance is somewhat sub-optimal.

Using both AVEC-2013 and AVEC-2014, Zhu et al. [197] applied deep convolutional neu-

tral networks (DCNN) approach to encode facial appearance and dynamics to estimate the level

of depression severity. Combining both the appearance and the dynamics modalities and ob-

tained highest MAE and RMSE of 7.58, 9.82 for AVEC-2013, and 7.47, 9.55 for AVEC-2014

respectively. Using deep neural network to extract features from the facial raw dynamics and
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base the assessment on the output is a data-driven methodology, it is unclear which features

characterising depression severity and how they behave compared to normal subject.

3.3.1.3 Depression evaluation using AVEC-2016 dataset

Using the AVEC-2016 (DAIC-WOZ) dataset, Yang et al. [198] presented multi-modal depres-

sion assessment framework consists of fusion a deep convolutional neural network (DCNN)

and deep neural network (DNN) models. The proposed system used input from video, text,

and audio features extracted from DAIC-WOZ dataset. Theses features include word to vec-

tor, 2D face landmarks, while audio descriptive extracted using OpenSmile [191]) software

with 238 low features related to voicing and spectral energy dynamics. The fused system, both

DCNN and DNN evaluated using MAE and RMSE. The performance on the development set

was higher with MAE= 3.98 and RMSE= 4.65 and lowered on the test set with 5.16 and 5.97

respectively. In spite of achieving respective results, the complexity of such a model is high

compare to model-based only on audio features and perform better. Williamson et al.[199]

suggest that fusion facial, vocal articulation, and language contents modalities will improve the

performance of predicting and classifying depression symptoms. The author extracted a vari-

ety of features including spectral, semantic context derived from specific questions related to

depression status, filled pauses, stop word elimination, facial action unit features, the 16 delta

MFCC coefficients, and loudness statistics. The Gaussian staircase model utilised to report the

results, the ensemble approach achieved mean F1-score of 0.81, RMSE = 5.31, and MAE =

4.18 for the development set. This method produced acceptable results yet relying on a com-

plex set of features evaluated with DAIC-WOZ development set only. Al Hanai et al. [200]

utilised a neural network model known as the bi-directional Long Short-Term Memory (LSTM)

to identify depression symptomology and predicting its severity.

The approach evaluated with DAIC-WOZ recordings, and a total of 279 audio dynamics

applied to the audio features that provided with the dataset. The author added additional of

100 text features, both types of features used to train two LSTM models. The best perfor-

mance in predicting depression scores was the fused model achieved F1=0.43, precision = 0.43,

recall=0.43, MAE= 4.97, and RMSE=6.27, while best model in classification depression/non-

depression was F1=0.77, precision = 0.71, recall=0.83, MAE= 5.10, and RMSE=6.37. The pro-

posed approach has fluctuated performances between the best in predicting depression severity
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Table 3.2 Summary of studies that used depressed speech Databases.

Study Dataset Task Accuracy Dev. set Test set
MAE RMSE MAE RMSE

Moor et al. [173] 33 subjects Classification
96% female
91% male n/a n/a n/a n/a

low et al.[174] 139 subjects Classification
77.8% female
74.7% male n/a n/a n/a n/a

Ooi et al.[175] 30 subjects Classification 73 % n/a n/a n/a n/a
Cummins et al. [171] 47 subjects Classification 77 % n/a n/a n/a n/a
Yang et al. [176] 49 subjects Classification 69 % n/a n/a n/a n/a
Alghwinem et al. [177] 60 subjects Classification 78.3 % n/a n/a n/a n/a
France et al. [178] 119 subjects Classification 82 % n/a n/a n/a n/a
Meng et al. [180] AVEC2013 Regression n/a 6.94 8.54 8.72 10.96
Kaya et al. [184] AVEC2013 Regression n/a n/a n/a 7.84 10.22
Zhu et al. [197] AVEC2013 Regression n/a n/a n/a 7.58 9.82
Cummins et al. [182] AVEC2013 Regression n/a n/a 10.44 n/a 10.17
Kachele et al. [186] AVEC2013 Regression n/a 7.03 8.82 8.72 10.96
Williamson et al. [179] AVEC2013 Regression n/a n/a n/a 5.57 7.4
Morales et al. [190] AVEC2014 Regression n/a 7.56 9.21 n/a n/a
Zhu et al. [197] AVEC2014 Regression n/a 7.47 9.55 n/a n/a
Simantirkai et al. [187] AVEC2014 Regression n/a 7.2 8.9 n/a n/a
Perez et al. [196] AVEC2014 Regression n/a 9.35 11.9 n/a n/a
Mitra et al. [188] AVEC2014 Regression n/a 5.87 7.37 n/a n/a
Yang et al. [198] AVEC2016 Regression n/a 3.98 4.65 5.16 5,97
Al Hanai et al. [200] AVEC2016 Regression n/a 4.97 6.27 n/a n/a
Williamson et al. [199] AVEC2016 Regression n/a 4.18 5.31 n/a n/a

and best in discriminating depressed vs. no depressed subjects. Therefore the optimum model

is not achieved yet. Furthermore, these results only evaluated with the development set, so

it is still unclear how the system will perform if tested with the test set. Finally, Ma et al.

[201] used combination of CNN and LSTM deep neural network approach for discrimination

of depressed/non-depressed speech recording. The analysis applied to DAIC-WOZ dataset. The

MFCC with 40 coefficients and their Mel-filter bank energies were extracted from the speech

recordings. The author introduces a random sampling technique to train the model with balance

samples; this method incorporated to overcome the problem of unbalanced classes as well as

uneven speech recording length. The author claims this method will eliminate the bias asso-

ciated with unbalanced classes, the best result achieved was F1= 0.52 (0.70 non-depressed),

precision = 0.35(1.00) and recall = 1.00(0.54). Although this technique may reduce the bias in

the performance; however, it leads to discarding information may be valuable in the evaluation.

Further, the results still sub-optimal and still skewed towards depressed class (precision = 0.35)
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and only evaluated with the development set.

Table 3.2 provides a summery for literature regrading depression assessment studies.

3.4 Summary
In this chapter several studies have been reviewed, and the objective of these studies was

to develop automatic systems to aid in detecting the early signs of dementia, cognitive re-

lated diseases and depression disorders. These studies have used variety of features includ-

ing linguistics features which extracted either by using ASR or based on manual annotated

texts [33, 34, 36, 150, 167, 170, 200]; such as verbs, pronouns, nouns, function words, error

words, type token-ratio, total number of words, Brunet index, Honors statistics, statistics of

adverbs, prepositions, etc. While, other studies used acoustic features for building their mod-

els [176, 178, 187, 201] for example, MFCCs, shimmer, jitter, voice breaks, HNR, formants,

pauses, zero crossing rate, spectral energy dynamics, etc. Further, video based features were

also used such as head pose, eye gaze, facial action unit, appearance descriptors, etc, and other

adopted ensemble approaches that combined both audio and video features [180, 189, 194].

Identifying the most informative features, researchers used different techniques, for example,

RFE, Spearman’s rank correlation, CFS, statistical t-test, mRMR, mutual information, etc.

Various machine learning classification and regression algorithms were utilised by these

studies for constructing the desired automated systems, such as, SVM, random forest, CNN,

SGD, KNN, CNN and LSTM deep neural network, SVR, GMM regressor, etc. Also, variety of

validation approaches were used such leave-one-out and k-fold cross validation to report more

generalised results.

Several limitations were found in these studies, for example, validated using few samples

[53, 139, 146, 156] or with unbalanced dataset [138, 143, 161, 162]. These limitations and gaps

will be discussed in following chapters 4, 5, 6, 7 and 8 when the proposed systems introduced

and the results were compared.
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Chapter 4

Detecting early signs of dementia

4.1 Introduction

This chapter demonstrates the feasibility of developing a simple and robust automatic system

based solely on acoustic features to identify Alzheimer’s disease (AD) with the objective of

ultimately developing a low-cost home monitoring system for detecting early signs of AD.

As mentioned before in chapter 2 section 2.1.3, there is no powerful tool that gives a reliable

diagnosis of dementia; rather, the patient has to go through a series of cognitive tests conducted

by a professional neurologist for assessments. This process can be very challenging for the

patient and involves a certain amount of anxiety and stress. Especially in the case of the early

stage detection, complementary tests include the analysis of samples of cerebrospinal fluid taken

from the brain and a magnetic resonance brain imaging test [5]. Such methods are invasive,

bring discomfort to the patients, are relatively costly and require a significant amount of effort

and time. Finding lightweight, noninvasive diagnostic and/or screening tools, that can be used

in the comfort of peoples’ homes and inform this process, is therefore of interest. This could be

in the form of wearable sensors or incorporated in existing intelligent home technology. This

work describes a relatively simple audio-based tool for detecting biomarkers of dementia in a

person’s speech, this work will be evaluated using DementiaBank dataset [147].

The rest of the chapter is organised as follow: section 4.2 describes the DementiaBank

corpus and provide details about the patients, demographic information and performed task.

Section 4.3 is the methodology section that introduces the proposed system pipeline and pro-
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vides a description for each component. After that, the performance of the proposed system

presented in the results section 4.4. Section 4.5 is the discussion section, in which the results

were discussed and compared to other studies from the literature. The last section 4.6 s the

summary and conclusions.

4.2 Dataset
The DementiaBank data set is a free access large existing database for Alzheimer’s and related

dementia diseases collected during longitudinal study conducted by the University of Pittsburgh

School of Medicine and as part of Alzheimer Research program [202]. A verbal description of

the Boston Cookie Theft picture (see Fig 4.1) was recorded from people with different types of

dementia (such as probable or possible AD, vascular dementia,etc.) with an age span from 49 to

90 years as well as from elderly HC subjects with an age range from 46 to 81 years[151]. The

speech samples were transcribed using the CHAT transcription format Mac Whinney [203].

Figure 4.1 The “Cookie Theft Picture” from the Boston Diagnostic Aphasia Examination [2].
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Table 4.1 DementiaBank data set demographic information.

Group HC AD
Diagnostic lables Healthy probable and possible AD
No. participants 97 167
No. of samples used 233 240
Age 64.5 71.8
Education (years) 14 12
Sex(M/F) 39/58 56/111
MMSE 29.1 18.7

The Cookie Theft picture which it is a part of the Boston Diagnostic Aphasia Examination

[2], and it is mainly utilised for capturing narrative speech from the speakers in order to diagnose

the different types of language and communication disorders. In the picture the woman is drying

plates and not paying attention to the overflowing sink, also, there are a boy and a girl trying

to steal cookies from a cookie jar placed in a kitchen cupboard. The boy is using a stool and

about to fall down. During the interviews, patients were given the picture and were told to

discuss everything they could see happening in the picture. The descriptions were recorded on

a yearly basis, the first visit date varied between subjects from (1983-1988), the last 7Cℎ visit

was recorded in 1996 by very few participants. Table 4.1 shows the demographic information

for both AD and HC groups used in this experiment. The AD group contains 240 speech

recordings for patients having either probable AD or possible AD diagnosis, while HC group

have 233 speech samples.

4.3 Proposed system
The general pipline for the proposed system is shown in Fig 4.2, and it consists of preprocessing,

feature extraction, and machine learning units. The following sections will provide details

regarding each components.

4.3.1 Pre-Processing
The first step of the pre-processing is background noise reduction, the speech recordings of De-

mentiaBank dataset contains a high level of background noise. Effective de-noising is important

to enable accurate features extraction. Therefore, the spectral noise gating method applied to

eliminate the noise without sacrificing the quality of the desired speech recording. Fig 4.3 shows
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Figure 4.2 Proposed dementia detection system.

the effect of the denoising process. This process carried out using the Audacity software [204].

The spectral noise gating works by defining a threshold (power level); the signal passes when

the power is higher (i.e., utterance) or attenuates (i.e., background noise) when the power is

lower than the threshold, however this process was done manually to identify the noise thresh-

old and for each speech sample because the noise profile varies between the recordings. The

quality of the denoised recordings was inspected to ensure the readability of the audio record-

ings. This method showed an efficient suppression of the noise that helped in the voice activity

detection task and eventually improving the system performance.

4.3.2 Features extraction

The focus of the study was on extracting only the acoustic features and investigating the effec-

tiveness of these features in detecting dementia at its early stages. This eliminates the need for

manually transcribed files or indeed the problems around achieving reliable speech recognition

results, especially in challenging far-field acoustic conditions.

Table 4.2 summarises the 263 features extracted in this chapter as as follows:
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Figure 4.3 Speech sample before (A) and after (B) the pre-processing step

4.3.2.1 Phonation and voice quality features

Phonation and voice quality features were included because previous studies found them to

be predictive of AD diagnoses. Meilán et al.[52] and Lopez-de-Ipena et al.[205] achieved

accuracies of 84.8% and 96.9% respectively when classifing between AD and HC subjects using

these acoustic characteristics. This group of features includes the fundamental frequency (F0)

and its related variances (shimmer and jitter). The F0 is a measurement of vocal fold oscillations

[206] that are known to be nearly periodic in healthy voices, but less so in voice pathologies

[207, 208]. Jitter(;>20;) describes the frequency alteration from cycle to cycle, while the shimmer

(;>20;) measures the amplitude fluctuations of the consecutive cycles. [159] provides further

details of these parameters.

The voice quality parameters included; the harmonic-to-noise ratio (HNR) which measures

how much energy there is in the periodic part of the signal compared to its non-periodic part;

and noise-to-harmonic ratio (NHR) which measures the amplitude of the noise generated due

to incomplete closure of the vocal folds during the production of the speech relative to tonal

components [209]. Additional features included the; number of voice breaks (distances be-

tween pulses greater than 16 milliseconds); degree of voice breaks (ratio of the breaks’ total
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Table 4.2 Summary of all features extracted in this chapter.

# Features set Description

1 Phonation and voice quality

The total verbal time
Pitch variation features (mean, median, STD, Min and Max)
Mean periods and STD periods
Fraction of locally unvoiced frames and degree of voice breaks
Jitter: (local, local-absolute, the relative average perturbation
(rap), five-point perturbation quotient (ppq5) and the average absolute
difference (ddp).
Shimmer: (local, local-dB, three-point amplitude perturbation (apq3),
five-point amplitude perturbation quotient (apq5), eleven-point amplitude
perturbation quotient (apq11) and the average absolute difference (dda).
Mean of autocorrelation
Mean noise-to-harmonics ratio
Mean harmonics-to-noise ratio

2 Speech and silent statistics

Max, mean, median and STD of speech
segment length >=0.4 sec
No. of pauses (pause length of >=1ms are considered)
Total speech & silent durations for the segments >= 0.4 sec
Max, mean, median and STD of silent
segment length >=0.4 sec
Total silent length >=0.4 sec. including the pauses
Number of speech and silent segments>=0.4 sec.
Mean and STD of pauses and total duration of the pauses

3 Spectral features
26 Spectral centroid coefficients
26 Filter bank energy coefficients
First 42 MFCC coefficients and their skewness, kurtosis, mean with kurtosis and
skewness of the mean

Total 263

duration to the total duration of the analysed signal), these features were extracted using Praat

tool [159]). These features were inspired by the work presented by Meilán et al. [52]. The au-

thors showed that the same features proven to be useful in identifying AD patients from healthy

control people.

4.3.2.2 Speech and silent statistics

The second group of features were derived by applying machine classification algorithms to

identify speech/non-speech segments. This is done by windowing the audio files into 25ms

frames with 10ms overlapping window. For each frame apply the short time energy, zero cross-

ing rate and the correlation coefficients. These three measures with labelled frames are used

to train and build a voice activity detection (VAD) classifier using predefined frame samples

randomly selected from the data. Next, the VAD was used to label each frame for the rest of

the audio files. The results from the VAD classifier gives the duration statistics for speech/silent
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regions with the amount of pauses presented in the recordings. These features were intensively

used in previous studies and proven to be of great importance in detecting dementia related

signs [54, 131, 144, 161, 210].

4.3.2.3 Spectral features

Speech production involves the movement of articulators including the tongue, jaws, lips, and

other speech organs. The position of the tongue plays a key role in creating resonances in the

mouth. Although speech articulation is relatively preserved in the commonest types of AD,

it is conceivable that AD could have measurable effects on the coordinated activity of speech

articulators and thereby spectral features. Mel frequency cepstral coefficients (MFCCs) [211]

were extracted to capture the spectral content of the speech signal. The hypothesise is that

patients in the AD group might be characterised by lower spectral coefficients valued than

those in the HC group. The MFCCs aims to compute the energy variations between frequency

bands of a speech signal. MFCCs have become widely used in speaker verification, speech

recognition and for the extraction of paralinguistic information since they were proposed by

Davis and Mermelstein back in 1980. The MFCC computed following the method explained

in [212], in which, each 25ms frame is converted into the frequency domain using the fast

Fourier transform (FFT) before the power spectrum is estimated by taking the absolute value

of the complex FFT and squaring the result. Next, the Mel triangular filter-banks are applied

and calculated by converting the frequencies into the Mel scale and summing the energy for

each filter. By taking the logarithm of all filter-bank energies, result in obtaining second set of

features, namely the logarithmic energy of the Mel filters (Fbanks; 26 features).

The last set of SF features were the spectral sub-band centroids (SSCs). SSCs aims to locate

the spectrum centre of mass and found to be valuable in measuring the cognitive load le et al.

[213]. Therefore SSCs could be useful in this study, and a total of the first 26 coefficients were

included, SSCs are extracted by dividing the energy in each filter-bank (i.e., 26 filter-banks as

estimated previously) by the total energies of all filter-banks [214, 215]. The spectral features

were only applied to the participants utterances in the recordings (i.e., excluding the silences

and the instructor utterances). The final representation of these features includes: the first 42

MFCC coefficients and their skewness, kurtosis, means and kurtosis and skewness of the means)

in addition to the first 26 coefficients for Fbank and SSCs.
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4.3.3 Feature selection

Features must be explored and examined in order to achieve maximum performance. Feature

selection techniques identifies the most significant ones and discard redundant, and the ones

that reduce the model performance. Feature selection may also decrease the risk of over-fitting

[216, 217]. Three approaches were used to determine the importance of the features. The first

is known as the wrapper. The wrapper method was used based on an SVM evaluator known as

the recursive feature elimination (RFE) technique [218], in which, the features are eliminated

sequentially and the model performance estimated each time until all features have been ex-

cluded. The feature that has the maximum negative impact on the result is considered to be the

most important one. Likewise, the rest of the features are then ranked. The second approach is

known as the ensemble based on features importance technique used in the case of tree-based

classifiers (i.e., random forest, Adaboost, and Bagging based on the tree). The feature impor-

tance approach gives a score that indicates how valuable each feature was in the construction of

the boosted decision trees within the model. The feature that frequently used to make critical

decisions with decision trees will poses higher relative importance. This importance is com-

puted explicitly for each feature in the dataset, allowing attributes to be ranked and compared

to each other. The importance is calculated for a single decision tree by the amount that each

feature split point improves the performance measure, weighted by the number of observations

the node is accountable for. The feature importances are then averaged over all of the decision

trees inside the model.

The last method is to conduct statistical analysis and examine all variables. The null hy-

pothesis assumes there is no significant difference between the means of the two classes for a

specific variable. The assumption is that the features that reject the null hypothesis will be se-

lected and ignore those features that accept it. The SPSS software [219] was utilised to perform

Mann-Whitney u-test appropriate for non-parametric data because the Shapiro-Wilk normality

test [220] suggested that these features were not normally distributed. Table 4.3 lists the top

ranked features using the wrapper and the statistical U-test (0.05 significance level) at 95%

confidence interval.
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Table 4.3 Top ranked features using the wrapper and the statistical U-test. U represents Mann-
Whitney u-test and P∗ << 0.05

# Classifier-wrapper rank Weight Statistical rank U P
1. Mean-MFCC2 82.241 Mean-MFCC20 16122 0.00*
2. Kurtosis -MFCC30 81.606 Skewness-MFCC14 16843 0.00*
3. Mean-MFCC30 81.606 Mean silent seg. 17223 0.00*
4. Skewness- MFCC2 80.972 Mean-Fbank10 17304 0.00*
5. Mean-MFCC16 80.126 Mean-MFCC2 17337 0.00*
6. Mean-Fbank 22 79.069 Mean-MFCC14 17657 0.00*
7. Spectral centroid -C14 79.069 STD of silent seg. 17772 0.00*
8. Mean-MFCC30 77.801 Mean pauses time 17772 0.00*
9. Kurtosis -MFCC16 77.589 Kurtosis -MFCC30 17919 0.00*
10. Mean-Fbank 2 77.589 Spectral centroid -C14 18235 0.00*
11. Mean-Fbank 24 77.167 Skewness- MFCC2 18576 0.00*
12. Mean-MFCC1 76.532 Mean-Fbank 22 18715 0.00*
13. Mean-Fbank15 76.052 Skewness- MFCC32 18735 0.00*
14. Kurtosis -MFCC2 73.995 Spectral centroid -C20 18929 0.00*
15. Mean-Fbank 20 72.304 Fraction of locally unvoiced frames 18932 0.00*
16. Mean-Fbank 13 65.961 Skewness- MFCC24 19004 0.00*
17. No. of silent segments 61.522 Total silent length 19102 0.00*
18. Fraction of locally unvoiced frames 59.830 STD of pauses 19102 0.00*
19. Minimum silent segments length 57.928 Mean-Fbank2 19140 0.00*
20. Median pitch 49.48 Kurtosis -MFCC16 19654 0.00*
21. - - Mean-Fbank24 19900 0.00*
22. - - No.of pauses >= 1sec 22134 0.00*
23. - - Mean silent seg. 24044 0.0082
24. - - Total No. of silent seg. >= 0.4sec. 24056 0.0086
25. - - Total Pause time 24056 0.0086
26. - - Median pitch 24305 0.014

4.3.4 Validation Scheme

In the machine learning community, cross-validation is widely used to ensure an effective

method of model selection to achieve, a robust performance evaluation and prevent over-fitting

[221]. The K-fold cross-validation with k = 10, was utilised to partition the data into ten equal

parts called “folds”. The model was trained using nine out of ten folds and tested with the

remaining 10Cℎ fold. This step was repeated k=10 times until all folds had been used in the

training and testing process. This however, did not generate the validation set directly. In-

stead, the nested k-fold cross-validation method adopted, which uses two k-fold loops namely

the outer and the inner loops. The outer loop generates the testing (1/10 data) and the training

(9/10 data) folds, while the inner loop takes all the training folds combined (coming from the
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outer loop) and generates the validation and training folds. Feature selection and the model’s

hyper-parameter tuning were explored and the model with the best features and best parameters

was tested using the test folds. This process runs through all the loops and the final model

result is reported as the average of the best model’s scores across the outer test folds. Impor-

tantly, each fold generated had to contain a balanced number of samples between the two classes

for the nested k-folds cross-validation in order not to skew the output towards one class. The

Stratified-KFold from Scikit learn library was used to perform this task [218]. The StratifiedK-

Fold which is a special type of kfolds that maintain approximately the same number of samples

for each targeted class in the generated folds(i.e. the training, validation and test sets). Although

this is a minor issue in this experiment due to the fact that the number of samples in both AD

and HC classes does not differ significantly (AD n=240 and HC n=233), it was used to ensure

the best possible approach for this kind of problems.

One important step also used and before training any models, which is the feature normali-

sation. This preprocessing step was executed at the training phase (training data) and excluded

from the validation and test phases. Different methods can be used for feature normalisation,

and in this work, a method expressed in equation Eq 6.1 was used, which is known as the

standard scalar, and for a training sample x is given by:

(C0=3 (-) = G − `
f

(4.1)

Where ` and f is the mean and standard deviation of the training samples respectively.

4.4 Results
The results obtained using the capability and accuracy of the automated machine learning al-

gorithms, which helped to evaluate the potential of the acoustic features to distinguish between

AD patients and HC subjects. Four different machine learning classification algorithms were

used including: Bayesian Networks (BN), Trees-Random Forest (RF), AdaboostM1 (AB) and

Meta- Bagging (MB). These classifiers were utilised to achieve the final results in four differ-

ent configurations resulting from using pre-processing or not, and using the full (263) or the

reduced features sets, also the sensitivity and specificity were estimated for the highest scores

achieved (i.e., for the 2=3 and the 4Cℎ configurations). Table 4.4 lists the accuracies obtained for
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Table 4.4 Shows the performance under different running configurations.

# Machine Learning Algorithm
1BC Configuration:
263 features

2=3 Configuration:
Top 22 features

3A3 Configuration:
Top 26 based on U-test

4Cℎ Configuration:Pre-processing
with top 20 features

Accuracy % Accuracy % Accuracy % Accuracy %
1. Bayes Net 80.3 91.75 90.06 94.71
2. Meta-Bagging 81.8 92.38 88.7 92.6
3. Random forest 82.8 91.96 91.75 92.8
4. AdaBoost M1 79.9 85.83 86.6 91.75

the four different configurations. The highest classification accuracy achieved was 94.71% us-

ing the (BN) classifier, running under the fourth configuration followed by configuration three

with 93.66% using (BN) classifier, while configurations two and one score 92.38% and 82.8 %

using (MB) and (RF) classifiers respectively. By adopting a pre-processing step and extracting

fewer, better quality features for the classifiers, the highest accuracy was achieved. The sen-

sitivity and specificity for the 2nd configuration was 92.00%. Only 19 patients from 240 and

17 HC subjects from 233 were incorrectly classified, but when comparing with the 4th config-

uration, only 7 AD patients were incorrectly classified making the sensitivity level at 97.00%.

However the specificity of the 4th configuration was slightly reduced to 91.00% (only 21 HC

were misclassified)

4.5 Discussion
Speech and language impairment serves as strong evidence for Alzheimer’s disease detection

[170]. For the same data set (based on short speech recordings from a picture description

task.), but using only acoustic features, higher accuracy results were obtained, in distinguishing

between HC subjects and AD patients, than those reported in the most recent state of the art

[34].

The results show that acoustic features carry valuable information. The Median pitch and

the fraction of locally unvoiced frames were the only informative variables from the first group

of features. This is on the contrary to what has been reported in the previous study by Melan

et al. [52]. Meilan et al. shows that HNR, shimmer and jitter were significant in identifying

AD patients, this contrast between the findings might be due to the differences between the per-

formed tasks (picture description vs reading) or due to the recording environment and devices.

Pauses and number of silent segments are more prevalent in AD patients as they tend to shorten

the speech segments in contrast to HC subjects. This is because the AD patients, and when
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cognitive load increased, either they lost interest in the subject or they find that talking requires

much effort and concentration.

The statistical analysis also indicates those variables have significant mean difference be-

tween AD and HC classes, for example, the total verbal time (66.0 sec for AD compared to HC

55.9 sec), the silent (AD= 38.5 sec vs HC =25.4sec), also, the number, mean and total pauses,

(AD = 21.28 sec, 1.88, 37.7 sec compared to 18.46 sec, 1.39, 24.1 sec for HC) respectively,

on the other hand, HC subjects produced more utterances, longer speech segments, have higher

utterance ratio to the total time of 30.4, 4.2 sec, 0.5 respectively compared to AD of 27.5, 3.6

sec, 0.39 respectively, these findings were similar to Singh et al. [53] and Roark et al. [54] stud-

ies, both reported that the average time of both pauses and speech are useful in discriminating

healthy control participants from mild cognitive impairment and AD patients.

Other notable features were the MFCC dynamics, although they are well-known as stan-

dards in speech recognition systems, capture important separation between the two groups as

they relate to the articulators (libs and tongue) control ability, that is decreased in AD patients

[222], both Fraser et al. and Yancheva et al. [34, 170] reported that skewness and kurtosis of

MFCC coefficients were included during the feature selection process; thus they contain valu-

able information for identifying AD. In addition to MFCCs, both filter bank and spectral based

features were informative, therefore selected in both feature selection methods.

The noise reduction procedure played a significant role in improving the accuracy; first, it

helped to identify the utterances more efficiently compared to the unprocessed data because the

proposed method is not relying on the transcripts to determine the participant’s turns. Secondly,

it helped to extract more accurate and robust features; for example, the HNR and NHR features

aim to measure how much information and noise ratios presented in the voice segments. As a

result, models built with de-noised data achieved higher accuracy.

Comparing this system to other modalities from the literature which used the same dataset,

Orimaye et al. [33] used linguistic features extracted from the manual annotated text files,

and they reported 74% classification accuracy using a support vector machine (SVM) classifier

with 10 folds cross-validation, later Orimaye et al. [148], used only 99 samples from the first

visit from both AD and HC participants, and with use of n-gram features with 1000 variables,

they achieved an area under receiver operating characteristics of 0.93. Other study by Sirts
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et al. [35] which also used linguistic elements including the propositional idea and semantic

idea densities features, the study achieved F1-score of 75%. Further, Ammar et al. [150]

reported SVM precision of 0.79% using syntactic, semantic and pragmatic features. Another

linguistic approach developed by Klumpp et al. [152], their model used bag of words based

features to construct an artificial neural network model. The authors reported classification

score of 84.4%. Whereas Mirheidari et al. [154] used ward vector representations derived from

using first manual annotated files and second based on automatic speech recognition (ASR)

annotation, and the best result was based on the first model with accuracy of 75.6% compared

to 62.3% form using the ASR. Furthermore, a study conducted by Fraser et al. [34], in which

the authors extracted a set of 370 acoustic, lexical and semantic features, the best classification

accuracy was 81% in distinguishing between HC and AD groups. In all of these studies, the

proposed system presented in this chapter, outperformed their modalites and by using simpler

and automatic approach. Also, these studies were based on the manual annotations, and such

systems may not be applicable for real-time scenario. Furthermore, Mirheidari et al. [154]

showed that when ASR used in an automated screening system, the performance reduced, while

other studies did not report how their models will behave when ASR replace the manually

annotated texts.

Finally, the only study have been found which solely based on acoustic features is pre-

sented by Luz et al. [223]. Luz et al. aimed for simple design to longitudinal monitor of AD

progression. The authors used 214 samples from AD and 184 from HC group. They extract

paralinguistic features including speech rate, pauses and vocalisation timing variables. Luz et

al. used Bayesian classifier to report the results with 10-fold cross validation method. The

authors reported an overall accuracy of 68% without using feature selection technique which

might improved their results.

4.6 Summary
In this study, the experimental results demonstrated the efficacy of set of acoustic features ex-

tracted directly from speech recordings for individuals preforming short vocal task. Higher

accuracy results were obtained in distinguishing between HC subjects and AD patients, than

those reported in the most recent state of the art [34].
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Furthermore, the acoustic features derived automatically from the speech recordings with-

out the addition of any lexical or syntactic features that rely on complex speech recognition

technology as in [224]. This chapter proposed a simple high accuracy automated method that

can be used in the clinic and/or at home to guide the diagnosing and/or screening of dementia by

using just speech. The proposed method also robust and very capable of identifying dementia

patients from healthy individuals even in the presence of significant background noise. These

facts support the proposition for using only acoustic features as an objective tools for automatic

detection and/or screening of AD at a low cost and within the home environment.
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Chapter 5

Longitudinal detecting and predicting the

severity of AD

5.1 Introduction

The current clinical procedure (as mentioned previously in chapter 2 section 2.1.3) for diagnos-

ing dementia is based on cognitive tests of which the Mini Mental State Examination (MMSE)

test is the most commonly used. It measures the severity of cognitive impairment in five cat-

egories: attention, registration, language, orientation and memory. The MMSE test consist of

11 questions with a top score of 30 points (considered a normal cognitive state) and where a

score of 0 reflecting a major cognitive decline [61]. Although this method is widely used as

a standard clinical screening procedure, it is performed using pen and paper and the test also

relies on the presence of experienced neurologists. Using the MMSE unified cognitive scale in

automatic screening models would be highly useful for clinicians, in terms of providing faster

assessment and supporting consistent diagnosis by the non-experts.

Based on the evidence found in studies [146, 225] which reported a decline in speech and

language characteristics due to AD. Therefore the work in this chapter hypothesis that using

features extracted from speech recordings of patients suffer from AD might be used to develop

a system is capable of predicting scores similar to MMSE. This work proposing an automatic

speech analysis method applied in the context of AD screening and diagnosis. The proposed

regression model will predict the MMSE scores from speech recordings both within a single
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clinical visit and for future recordings. This would potentially mean that following an initial

MMSE test with associated speech recording, for subsequent assessments, the MMSE score

could be predicted from a new speech sample alone. That is, the patient can avoid having to

do the potentially stressful MMSE tests. Ultimately, this might enable clinicians to monitor the

deterioration of a patient in between scheduled visits to a clinical setting as a speech recording

(done at home) could provide an estimated MMSE score.

This work also extend the functionality for the system that introduced in the previous chapter

4, and the new model will classify patients from their speech recordings as Alzheimer’s disease

(AD), healthy control (HC) individuals or patients with Mild Cognitive Impairment (MCI). A

key novelty of this work is that only acoustic features (including a new class of spectral features)

are used, which has the benefit of avoiding the cost and the complexity of employing automatic

speech recognition technology and higher level spoken language understanding.

The rest of the chapter is organised as follow: Section 5.2 describes the longitudinal dataset

derived from DementiaBank corpus. Section 5.3 illustrates the methodology and describe the

proposed system and its units. While section 5.4 presents the results for a number of scenarios

developed to demonstrate the efficacy of this system. Section 5.5 shows the discussion, while

section 5.6 summarises this work.

5.2 Dataset
The DementiaBank data set is already described in the previous chapter 4, section 4.2. However,

in this work, only longitudinal evaluation will be performed, Table 5.1 shows the demographic

information for only participants who completed three visits. Only 16 AD patients successfully

follow up three visits; thus the proposed dementia severity evaluation system will be evaluated

using these AD samples in the three visits. Further, in the same table, a detailed for other

longitudinal groups, namely HC and MCI, were listed. The three groups will be used to develop

a classification system, and this system will be evaluated for each visit samples.

5.3 Proposed system
The same pipline introduced in chapter 4 section 4.3 will be used in this work, however, this time

two models will be evaluated using machine learning classification and regression algorithms,
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Table 5.1 Three visits dataset demographic information.

Variables All subjects
(N=64)

AD
(N=16)

MCI
(N=6)

HC
(N=42)

Female 37 8 2 27
Male 27 8 4 15
Age (Mean)
(STD)

66.76
8.8

73.93
9.27

70.8
4.7

63.45
7.0

Education
(years)

14.6
3.17

23.25
3.5

28.0
1.15

29.16
1.02

MMSE 1
27.57
3.2

22.62
3.4

28.0
1.15

29.11
0.98

MMSE 2
27.0
3.7

20.81
3.9

27.3
1.79

29.11
0.98

MMSE 3
26.0
5.8

17.43
4.6

27.8
1.93

29.12
1.34

thus the updates pipline illustrated in Fig 5.1. This system have the same preprocessing and

feature extraction units as in the system introduced in chapter 4 (Fig 4.2). The following sections

will explain each unit.

5.3.1 Pre-Processing
This unit will have the same functionality as described previously in chapter 4 section 4.3.1.

5.3.2 Features extraction
This work will use the same phonation and voice quality features as described in chapter 4

section 4.3.2. However, the spectral features expanded to include new features and as follows:

5.3.2.1 Statistical descriptive features

This group of features extracted by applying the common statistic functions to the spectral

feature group and as follows: For the spectral features (SF) which includes 42 values of the

Mel Frequency Cepstral Coefficients (MFCC), the logarithmic measures for the first 26 filter

bank energies (FBANK energy coefficients) and the Spectral Sub-band Centroid (SSC) with

26 coefficients. A total of 658 (noted as SSF1) features were extracted including seven statis-

tics measures: the standard deviation (STD), mean, max, min, median, skewness, and kurtosis

applied to (SF). Also, second level of the same seven statistics (excluding the median) were ap-

plied to the SSF1, which added extra 126 features. As a result the total feature vector increased
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Figure 5.1 Proposed system.

to 812.

Table 5.2 List of all acoustic features used in the proposed system.

Features Type Number of features
Fundamental frequency (F0) related measures Phonation and voice quality 5
(median, mean, STD, min and max)
Harmonic-to-noise ratio (HNR) Phonation and voice quality 1
Number of pulses Phonation and voice quality 1
Number, mean and STD of periods Phonation and voice quality 3
Noise-to-harmonic ratio (NHR) Phonation and voice quality 1
Shimmer scales Phonation and voice quality 6
Jitter scales Phonation and voice quality) 5
Autocorrelation Phonation and voice quality 1
Fraction of locally unvoiced frames Phonation and voice quality 1
Number of voice breaks Phonation and voice quality 1
Degree of voice breaks Phonation and voice quality 1
Number of responses Speech and silence 1
Average responses time Speech and silence 1
Mel frequency cepstral coefficients (MFCC) Spectral features: 42 features (extended to 336)
Filter bank energy coefficient (Fbank) Spectral features: 26 features (extended to 224)
Spectral subband centroid (SSC) Spectral features: 26 features (extended to 224)
Total 812
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5.3.3 Feature selection

In this work a similar approach adopted, which was described earlier in chapter 4 section 4.3.3,

however, this time the the Support Vector Machine (SVM) was used as an evaluator classifier be-

cause it performed well in selecting the significant features, this wrapper method implemented

using Recursive Feature Elimination (RFE) Scikit-learn libraries [218].

5.3.4 Validation scheme

Three scenarios are considered in the classification of the three groups (AD, MCI and HC),

namely: (HC vs AD), (HC vs MCI) and (AD vs MCI). It is more realistic to run the three

classification scenarios separately for each one of the three visits. To do that, two machine

learning classification algorithms were used for the evaluation: the SVM and linear via the

Stochastic Gradient Descent (SGD) optimisation method, and both running in nested leave-

one-out cross-validation (LOOCV) approach. This approach means that there are two LOOCV

loops. The first loop (outer loop) will divide the dataset into n folds and reserve one sample for

the test and trains the model with (n-1) samples. The second loop (inner loop) will partition the

(n-1 samples generated from the outer loop) again into training set having ((n-1) -1) samples

and the remaining one sample as a validation set. Feature selection is deployed during the inner

LOOCV loop, and the nominated features will be evaluated with the validation sample. The

classifier hyperparameters will be selected during the inner loop. The best model with the best

parameters will be tested in the remaining sample from the outer loop. The final classification

accuracy represents the average scores for all outer testing folds. The LOOCV was selected

instead of the K-fold because the number of samples is few 64 per visit compared to 473 for

work performed in chapter 4. The classification procedure is done separately for each visit. In

each visit, there is only one speech recording per patient, for example in visit one, there are 42

HC subjects having 42 speech recording, 16 AD patients provided 16 speech recordings and 6

MCI patients having six recordings. Therefore LOOCV will not deal with multiple samples for

each participant when generating the training and testing folds.

The main objective of this work is to predict the MMSE clinical scores for the AD patients

only, the reason behind that is the AD patient’s are more likely to experience rapid decline in

cognitive level (mild, moderate and sever AD status). This decline is expected to be in a shorter
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time compared to HC and MCI individuals. That is seen very clearly from the three visit’s

MMSE scores. In this task, the random forest regression algorithm was selected and running

under the same procedure as for the classification task (i.e. the feature selection and LOOCV

method). Since three visits for the AD group were derived from the DementiaBank, therefore

multiple scenarios were designed: predicting the MMSE within each visit (MMSE1, MMSE2

and MMSE3 respectively), and in addition, also to predict the MMSE evaluation across the

visits using the model built by visit 1 samples to predict the MMSE score for visit 2, and

likewise predicting from visit 2 to visit 3. Finally, to investigate the effect of combining visit

1 and 2 speech samples to predict MMSE scores for visit 3. The last three configurations will

test the system capability in predicting a future MMSE scores. This approach will benefit the

clinicians and healthcare providers terms of cost saving and reduce the need for the experts

that perform such longitudinal investigation. Since there were three visits available MMSE1,

MMSE2 and MMSE3. The difference between the scores will be used to assign the regression

labels, also these values will be adjusted by the time which the MMSE evaluation is conducted,

the following equations (5.1) and (5.2) will be used to produce the future MMSE scores and as

listed in Table 5.3:

Δ ""(� = �DAA4=C ""(� − #4GC ""(� (5.1)

�DCDA4 ""(� = �DAA4=C ""(� −
(
Δ ""(� ∗ )

365

)
(5.2)

Where) represent the period between the current MMSE visit date and the next MMSE visit

date, and ) is estimated in days. When visit dates were not specified) will be assigned the value

of 365 days (the common period between the visits as observed in the dataset’s demographic

sheet).

5.4 Results
The results reported in terms of the average classification accuracy for all visits for all the

classification scenarios. Tables 5.4 and 5.5 summarises the results. To create balance between

the classes, the Synthetic Minority Over-sampling Technique (SMOT) [226] was utilised, and
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Table 5.3 Three visits dataset MMSE and their future MMSE scores estimation

ID MMSE1 Visit1 Future MMSE2 MMSE2 Visit2 future MMSE3 MMSE3 Visit3
010 20 09/08/1983 21.09 21 10/09/1984 26.08 26 16/09/1985
051 26 30/11/1983 23.07 23 20/11/1984 18.53 19 02/01/1986
057 27 07/12/1983 24.49 24 07/10/1984 20.81 13 21/01/1985
058 23 04/01/1984 22.02 22 26/12/1984 17.67 17 07/11/1985
076 25 24/02/1984 21.19 20 28/11/1984 20.00 20 N/A
091 19 15/03/1984 17.14 17 17/02/1985 17.00 17 09/05/1986
094 27 13/03/1984 23.01 24 11/07/1985 24.00 24 N/A
134 24 10/08/1984 22.74 23 14/11/1985 6.00 6 N/A
157 19 25/07/1984 16.64 17 29/09/1985 9.00 9 N/A
164 24 13/07/1984 24.00 24 06/08/1985 18.90 19 13/08/1986
181 20 14/09/1984 16.46 17 19/11/1985 17.00 17 N/A
212 25 05/02/1985 18.54 19 05/03/1986 10.86 17 29/03/1990
213 16 04/12/1984 14.98 15 11/12/1985 15.00 15 N/A
252 22 24/04/1985 23.15 23 19/06/1986 16.95 17 22/06/1987
270 23 18/06/1985 21.95 22 06/07/1986 19.65 20 08/09/1987
282 22 12/07/1985 22.00 22 29/09/1986 22.96 23 16/09/1987

similarly all the classification scenarios were evaluated and compared to the results from the

original unbalance samples.

SMOT use K-Nearest Neighbour algorithm to create samples for the minority class. Table

5.5 showing the performance of the classifiers and the three balanced group samples when using

SMOT. Classifying between AD and HC (scenario 1) the average classification accuracies were

93.4%, 97.0% and 91.4% respectively. In comparison, the classification accuracies for the

unbalanced data were all lower at 88.5%, 94.8% and 85.3% for SVM which was all equal or

higher than using SGD. The accuracy goes up for the second visit which is likely to be an

indication that by the second visit, all AD patients had progressed which would make the task

of distinguishing them from the HC group easier. The lower accuracy for the third visit is

caused by two subjects who were initially (visits 1 and 2) labelled as HC and MCI but who

by the third visit had developed AD. So, they will be less severe than the other subjects. For

the other scenarios (HC vs MCI and AD vs MCI), the classification accuracies also range at a

similar level above 93% with the SVM outperforming SGD for most tasks.

Whereas the MMSE clinical scores prediction. for this particular task and based on the

proposed regression model, the expectation is to have a better performance in the following

visits. The results are presented in terms of the mean absolute error (MAE). The prediction

within the visits, Figures 5.2, 5.3 and 5.4 shows the actual vs the predicted MMSE scores.

The first three evaluation scenarios the MAE were 3.1, 2.6, and 3.7 for MMSE1, MMSE2 and
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Table 5.4 Classification accuracies for three scenarios and visits original.

Scenario Visit Classifier Accuracy
% F1_score Precision Recall Confusion

Matrex
37 5

SVM 86.2
0.86

(0.90/0.76)
0.86

(0.92/0.72)
0.86

(0.88/0.81) 3 13
40 2

1
SGD 91.3 0.91

(0.94/0.83)
0.91

(0.93/0.86)
0.91

(0.95/0.81) 3 13
41 1

SVM 94.8 0.94
(0.96/0.90)

0.94
(0.95/0.93)

0.94
(0.97/0.87) 2 14

41 1
2

SGD 94.8 0.94
(0.96/0.90)

0.94
(0.95/0.93)

0.94
(0.97/0.87) 2 14

36 6
SVM 84.4

0.84
(0.88/0.74)

0.85
(0.92/0.68)

0.84
(0.85/0.81) 3 13

36 6

HC vs AD
HC (n=42)
AD (n=16)

3
SGD 86.2 0.86

(0.90/0.77)
0.87

(0.94/0.70)
0.86

(0.85/0.87) 2 14
41 1

SVM 91.6
0.90

(0.95/0.60)
0.90

(0.93/0.75)
0.91

(0.97/0.50) 3 3
41 1

1
SGD 93.7 0.93

(0.96/0.72)
0.93

(0.95/0.80)
0.93

(0.95/0.66) 2 4
40 2

SVM 91.6 0.91
(0.95/0.66)

0.91
(0.95/0.66)

0.91
(0.95/0.66) 2 4

41 1
2

SGD 91.6 0.90
(0.95/0.6)

0.90
(0.93/0.75)

0.91
(0.97/0.5) 3 3

39 3
SVM 91.6

0.92
(0.95/0.71)

0.93
(0.97/0.62)

0.91
(0.92/0.83) 1 5

41 1

HC vs MCI
HC (n=42)
MCI (n=6)

3
SGD 95.8 0.95

(0.97/0.83)
0.95

(0.97/0.83)
0.95

(0.97/0.83) 1 5
16 0

SVM 95.4 0.95
(0.96/0.90)

0.95
(0.94/1.0)

0.95
(1.0/0.83) 1 5

16 0
1

SGD 90.9
0.90

(0.94/0.80)
0.91

(0.88/1.0)
0.90

(1.0/0.66) 2 4
16 0

SVM 90.9 0.90
(0.94/0.80)

0.91
(0.88/1.0)

0.90
(1.0/0.66) 2 4

14 2
2

SGD 90.9 0.91
(0.93/0.85)

0.93
(1.0/0.75)

0.90
(0.87/1.0) 0 6

16 0
SVM 95.4

0.91
(0.93/0.85)

0.93
(1.0/0.75)

0.90
(0.87/1.0) 1 5

15 1

AD vs MCI
AD (n=16)
MCI (n=6)

3
SGD 96.4 0.95

(0.96/0.92)
0.96

(1.0/0.85)
0.95

(0.93/1.0) 0 6

MMSE3, respectively. In visit 2, the error in prediction reduced compare to visit1. While

MAE for visit 3 unexpectedly increased to 3.7 which again is likely to be caused by the two

re-assigned subjects. In addition, Figures 5.5, 5.6 and 5.7 demonstrate the performance of the
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Table 5.5 Classification accuracies for three scenarios and visits using SMOT (balanced groups)
dataset.

Scenario Visit Accuracy
% F1_score Precision Recall Confusion

Matrex
40 2

SVM 94 0.94
(0.94/0.93)

0.94
(0.93/0.95)

0.94
(0.95/0.92) 3 39

39 3

HC vs AD
HC (n=42)
AD(n=42)

1
SGD 92.8

0.92
(0.92/0.92)

0.92
(0.92/0.92)

0.92
(0.92/0.92) 3 39

42 0
SVM 97.6 0.97

(0.97/0.97)
0.97

(1.0/0.95)
0.97

(1.0/0.95) 2 40
41 1

HC vs AD
HC(n=42)
AD(n=42)

2
SGD 96.4

0.96
(0.96/0.96)

0.96
(0.95/0.97)

0.96
(0.97/0.95) 2 40

37 4
SVM 91.4 0.91

(0.91/0.91)
0.91

(0.92/0.90)
0.91

(0.90/0.92) 3 38
37 4

HC vs AD
HC(n=41)
AD(n=41)

3
SGD 91.4 0.91

(0.91/0.91)
0.91

(0.92/0.90)
0.91

(0.90/0.92) 3 38
41 1

SVM 95.2
0.95

(0.95/0.95)
0.95

(0.93/0.97)
0.95

(0.97/0.92) 3 39
42 0

HC vs MCI
HC(n=42)

MCI(n=42)
1

SGD 96.4 0.98
(0.98/0.98)

0.98
(0.97/1.0)

0.98
(1.0/0.97) 1 41

41 1
SVM 98.8 0.98

(0.98/0.98)
0.98

(1.0/0.97)
0.98

(0.97/1.0) 0 42
41 1

HC vs MCI
HC(n=42)

MCI(n=42)
2

SGD 97.6
0.97

(0.97/0.97)
0.97

(0.97/0.97)
0.97

(0.97/0.97) 1 41
40 1

SVM 96.3
0.96

(0.96/0.96)
0.96

(0.95/0.97)
0.96

(0.97/0.95) 2 39
40 1

HC vs MCI
HC(n=41)

MCI(n=41)
3

SGD 97.5 0.97
(0.97/0.97)

0.97
(0.97/0.97)

0.97
(0.97/0.97) 1 40

15 1
SVM 96.8 0.96

(0.96/0.96)
0.97

(1.0/0.94)
0.96

(0.93/1.0) 0 16
15 1

AD vs MCI
AD(n=16)
MCI(n=16)

1
SGD 96.8 0.96

(0.96/0.96)
0.97

(1.0/0.94)
0.96

(0.93/1.0) 0 16
14 2

SVM 93.7 0.93
(0.93/0.94)

0.94
(1.0/0.88)

0.93
(0.87/1.0) 0 16

15 1

AD vs MCI
AD(n=16)
MCI(n=16)

2
SGD 93.7 0.93

(0.93/0.93)
0.93

(0.93/0.93)
0.93

(0.93/0.93) 1 15
17 1

SVM 97.2 0.97
(0.97/0.97)

0.97
(1.0/0.94)

0.97
(0.94/1.0) 0 18

17 1

AD vs MCI
AD (n=18)
MCI (n=18)

3
SGD 97.2 0.97

(0.97/0.97)
0.97

(1.0/0.94)
0.97

(0.94/1.0) 0 18

proposed cross-visits regression models, and showing the actual vs the predicted MMSE scores.

The model that was built using visit1 samples was able to predict MMSE2 scores with a better
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Actual 20 19 20 16 23 19 27 24 23 25 22 27 24 26 22 25

Predicated 20.4 23.6 23.8 24.1 23.41 23.84 22.25 20.9 23.94 22.31 23.95 22.47 22.79 21.19 21.78 20
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Figure 5.2 Predicting MMSE1 - CV

MAE (1.18 compared to 2.6) for the visit 2 results. This might due to the close range of MMSE1

and MMSE 2 scores explains this improvement. Figure 5.6 and 5.7 also shows improvement in

the performances at 2.25 and 2.18 compared to 3.7 (Fig 5.4) when estimating MMSE3 based

on visit 2 data, and estimating MMSE3 using samples from both visit 1 and 2 respectively.

5.5 Discussion

This work aimed for longitudinal monitoring and predicting the disease severity; therefore,

only 42 HC, 16 AD and 6 MCI participants were selected for those participants who returned

for three visits. This selection created unbalance classes issue. Therefore SMOT technique

was adopted to address this limitation. For AD class SMOT generated addational 26 synthetic

samples to match the HC group, and similarly, for MCI it added 36 and ten samples to match HC

and AD samples respectively. This technique not only address the performance in unbalanced
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Actual 17 17 21 15 22 17 24 23 22 20 22 24 24 23 23 19

Predicated 21.39 23.13 22.27 21.49 19.56 19.68 21.1 19.34 20.73 21.51 21.12 20.61 20.88 21.59 32.06 20.79
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Figure 5.3 Predicting MMSE2 - CV

classes but also improve the accuracies for all scenarios, and for the three visits, for example,

classifying HC vs AD, with unbalanced configuration, the results were 91.3%, 94.8% and 86.2%

compared to 94.0%, 97.6% and 91.4% for the first, second and third visits respectively.

Predicting MMSE clinical scores is performed for AD class only because the proposed

model aimed to monitors AD condition, also the MCI group have few samples (only six par-

ticipants). The expected performance in predicting MMSE scores for AD will be increased,

i.e. MMSE prediction MAE error will be decreased longitudinally with visits, however, visit

three unexpectedly was higher MAE of 3.7 compared to 3.12 and 2.6 for 1BC and 2=3 visits re-

spectively, the unexpected behaviour may caused by the sharp drop in MMSE scores for some

samples, for example, two patients scores were 23 and 24 at the 2=3 visit and decreased re-

spectively to 6 and 13 for 3A3 visit. Moreover, the result from other scenarios that designed to

estimate the next MMSE visit scores based on the current visits, the best model obtained MAE
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Actual 17 17 26 15 17 9 24 6 20 20 23 13 19 19 17 17

Predicated 17.93 18.98 17.33 19.73 18.4 14.62 17.65 16.96 15.58 21.01 18.55 16.19 17.82 16.23 16.81 18.54
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Figure 5.4 Predicting MMSE3 - CV

of 1.18 when built using first visit’s data to predict second visit MMSE. The improvement on

estimating the future MMSE3 scores using the two scenarios (i.e., from visit2 and combined

visit2 and 3 samples) may due to the fact that ) was assumed to be equal to 365 days, which

means the assigned expected MMSE score will be the same as the current value, for exam-

ple, the sample with ID 075 Table 5.3, the estimated future MMSE3 score at 20 which is the

same MMSE2 value. This is the case for 6 out of the 16 samples that missing visit3 examina-

tion date. Another attributable factor to this improvement was several samples have identical

MMSE scores for subsequent visits, for example, samples 076, 091 etc. see Table 5.3 this make

it an easy job for the classifier to correctly predict their MMSE scores.

Comparing the proposed system to other studies from the literature. There were no studies

performed a longitudinal classification task that used DementiaBank dataset. However, in terms

of predicting MMSE, Yancheva et al. [170] conducted similar longitudinal AD severity inves-
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Actual 21 23 24 22 20 17 24 23 17 24 17 19 15 23 22 22

Predicted 19.115 22.585 22.585 22.585 19.115 18.237 22.585 22.585 19.115 24.245 16.55 24.245 18.237 21.975 22.585 21.975
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Figure 5.5 Predicting MMSE2 from Model build using MMSE1

tigation. They achieved MAE of 3.8 using the whole dataset, 2.9 for all samples attended more

than three visits, 3.4 for all samples complete two visits, and 4.4 for all samples who did one

visit. Yancheva et al. showed that longitudinal improvement on MMSE estimation despite that

fact that some samples have increased in MMSE compared to the next visit, for example, sam-

ple 010 whos MMSE scores increased from 20 at visit1 to 21 at visit2 and later to 26 for visit3.

Whereas the proposed system achieved MAE of 3.12, 2.6 and 3.7 for only 16 samples attended

three visits, the system addresses the sharp drop in MMSE scores between the subsequent vis-

its which explain the unexpected decreased in the performance for visit3. Furthermore, the

proposed future MMSE estimation system further improved the performance with a limitation

result from missing the examination date for some samples.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Actual 26 19 13 17 20 17 24 6 9 19 17 17 15 17 20 23

Predicted 24.349 19.277 17.336 17.493 24.349 17.493 19.277 17.493 10.216 19.277 17.336 17.493 10.216 17.336 17.336 24.349
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Figure 5.6 Predicting MMSE3 from Model build using MMSE2

5.6 Summary
The proposed system achieved a promising results in estimating the MMSE scores. The results

manifest the assumption of using speech features extracted from audio recordings for patients

performing short vocal task to estimate the severity of AD. Several configurations were im-

plemented to investigate the efficacy of the proposed system. These were designed based on

longitudinal samples derived from the DementiaBank dataset. Predicting MMSE scores ap-

plied for only 16 out of 196 samples collected from patients who completed three visits. SMOT

technique was introduced to address the unbalanced classes (AD n = 16, HC n = 42 and MCI n

= 6) for the classification task, and SMOT also improved the classfication accuracy for all visits

for all scenarios (AD vs HC, AD vs MCI and MCI vs HC). The nested LOOCV method was

utilised instead of the k-folds due to the small sample size which in this case the recommended

validation method [221]. The proposed extended spectral features were informative in both
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Actual 26 19 13 17 20 17 24 6 9 19 17 17 15 17 20 23

Predicted 22.734 22.734 12.703 17.999 17.999 17.999 22.734 17.999 12.703 17.999 16.548 17.999 12.703 16.548 16.548 22.734
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Figure 5.7 Predicting MMSE3 from Model build using MMSE1+MMSE2

tasks; predicting MMSE and discriminating between the three conditions.

In this chapter, two machine-learning models solely based on acoustic features were devel-

oped. The first model aims to distinguish between three groups of subjects representing three

different cognitive levels: HC, MCI and people with AD condition. Using balanced datasets,

the average cross visit SVM’s accuracies were 94.3%, 96.7% and 95.9% when classifying HC

vs AD, HC vs MCI and AD vs MCI respectively. The second model, presented new approaches

for predicting the MMSE clinical scores, with average cross visit predictions MAE of 3.1. Fur-

thermore, an investigated carried out to the contrasts in the results for the proposed MMSE pre-

diction model. The acoustic features which used, were derived automatically from the speech

recordings without the addition of any lexical or syntactic features that rely on complex speech

recognition technology as in [170] . Finally, The finding and simplicity of the proposed models

suggest that such methods can be used in the clinic and/or at home to guide the diagnosing
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and/or screening of dementia by using just speech.
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Chapter 6

Detection early signs of neurodegenerative

cognitive declines

6.1 Introduction

There has been a large increase in referrals from primary care of people with memory com-

plaints to secondary care memory services, resulting in considerable pressure to diagnostic

pathways [227]. The drive to seek early diagnostic clarification has led to an over 600% increase

in referrals to secondary care memory clinics in the UK over the last ten years and generated

considerable pressure on diagnostic pathways [227]. Although these dramatic changes have

increased the number of patients in whom Neurodegenerative Disorders (ND) have been iden-

tified, a large proportion of the patients now referred to specialist memory clinics actually have

Functional (non-progressive) Memory Disorder (FMD) concerns without objective evidence of

cognitive deficits. Therefore, improvements to stratification and screening procedures would be

highly desirable and could enable better targeting of limited health care resources [5].

When people visit a memory clinic, the assessment typically begins with a conversation with

a specialist during which patients are asked a series of questions about their memory problems.

This interaction provides important insights into the cognitive state of the patient. The clinician

will note whether patient or accompanying others respond to questions, whether answers are

quick and expansive or short and incomplete. Thus cheap, noninvasive and reliable stratifica-

tion and screening tools which are fully automated, scalable, can be repeated and are remotely
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applicable are urgently required[5].

Recently, Mirheidari et al. [55, 228, 229] proposed an automatic method for the differentia-

tion between patients with cognitive complaints due to ND or FMD inspired by diagnostic fea-

tures initially described using the qualitative methodology of Conversation Analysis [60, 230].

In their work, a set of linguistic, acoustic and visual-conceptual features were extracted and

used to train a number of classifiers. The highest classification accuracy of 97% was achieved

using a linear support vector model. This work propose an automatic method to discriminate

ND from FMD based solely on acoustic analysis of the same conversations used in [55]. The

approach presented here differs from the approach pursued in the previous studies by Mirheidari

et al. both in terms of complexity and in terms of the acoustic characteristics used. Here the sys-

tem explore an acoustics-only approach based on data directly extracted from patients’ speech

signal. The prior study relied on more complex features (including features based on the con-

tributions of clinicians and carers to the interaction) and required automatic speech recognition,

natural language processing and natural language understanding.

6.2 Dataset

6.2.1 Participants
The dataset used in this experiment was recorded as part of a study conducted in the neurology-

led memory clinic at the Royal Hallamshire Hospital in Sheffield, United Kingdom. Participants

were recruited between October 2012 and October 2014 and the initial consultations between

the neurologists and patients in the memory clinic were video and audio recorded. The study

was approved by NRES Committee Yorkshire & The Humber - South Yorkshire. All partici-

pants were sent an information sheet prior to taking part in the study and given an opportunity

to ask questions. They all gave written informed consent to participate and were informed that

they could withdraw from the study at any time. Patients consented to their data being used

for additional analyses by the research team but not to recordings of their interactions being

made publicly available. All patients were referred because of memory complaints by General

practitioner or other hospital consultant. Participants were encouraged to bring a companion

such as carer or family member (if available) along to their appointment. Further details about

the participant selection procedure have been provided previously[55]. At the clinic, patients
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Table 6.1 Participants’ details and test scores. ACE-R: Addenbrooke’s Cognitive Examination-
Revised; MMSE: Mini-mental state examination; PHQ9: Patient Health Questionnaire-9;
GAD-7: Generalised Anxiety Assessment 7. Unpaired T-test was used. =B∗ = not significant

FMD(n=15) ND(n=15) Cut off Max score P-value
Age 57.8± 2.0 63.7 ± 2.3 N/A N/A p =0.06
Female 60% 53% ns∗

ACE-R 93.0 ± 1.4 58 ± 5.21 88 100 p < 0.0001
MMSE 28.9 ± 0.2 18.8 ± 2.0 26.3 30 p < 0.0001
PHQ9 5.6 ± 1.0 5.3 ± 2.0 5 27 ns
GAD7 4.7 ± 1.2 4.8 ± 1.5 5 21 ns
History taking part in minutes range (10.1-32.3) range(7.3-29.0)

underwent a clinical assessment by a neurologist specialising in the diagnosis and treatment

of memory disorders. In addition, all underwent the Addenbrooke’s Cognitive Examination-

Revised (ACE-R) cognitive assessment [231]. Neurologists also screened patients for clinical

evidence of depression. Patients thought to be depressed clinically or patients with PHQ-9

[104] scores indicating a high risk of clinical depression were excluded from this study [55].

All participants also completed the Generalised Anxiety Disorder (GAD7) questionnaire [105]

although high levels of anxiety were not considered an exclusion criterion. The final diagnoses

of ND or FMD were formulated by Consultant Neurologists specialised in the treatment of cog-

nitive disorders and also took account of brain Magnetic Resonance Imaging (MRI) findings

and the result of a detailed separate neuropsychological assessment including the MMSE [61];

tests of abstract reasoning [232]; tests of attention and executive function [233]; category and

letter fluency; naming by confrontation and language comprehension[234]; and tests of short

and long-term memory (verbal and non-verbal) [235]. Table 6.1 gives an overview of partic-

pants’ details and test scores. The ND group consisted of 10 cases of AD, 2 amnestic MCI, 2

BvFTD and one vascular dementia.

6.2.2 Diagnosis Process

Diagnoses of FMD were based on the criteria formulated by Schmidtke et al. [56] (although the

proposed maximum age cut-off proposed by Schmidtke et al. was not applied). The participants

in the ND group received the following neurological diagnoses: amnestic MCI as described by

Petersen et al.[236], behavioral variant frontotemporal dementia as defined by Rascovsky et al.

[237], and Alzheimer’s disease diagnosis according to the NINCDS-ADRDA criteria [238].
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Table 6.2 Details of the clinical session times expressed in minutes. STD: Standard deviation.

Clinical session Conversation Patient contribution
(Conversation +verbal fluency test) part only to the conversation

Mean time ± STD FMD 34.3 ± 9.9 17.9± 8.5 11.5± 6.3
ND 39.2 ± 8.0 19.4± 7.0 6.2± 4.5

Range time FMD (22.3 - 52.4) (10.1 - 32.3) (5.3 - 26.5)
ND (24.7 - 57.0) (7.3 - 29.0) (1.1 - 15.5)

Percentage FMD Not applicable 50.9 % 63.0 %
ND Not applicable 49.79 % 32.4 %

6.2.3 Memory clinic instructions
The neurologists, whose conversational activities elicited the dataset used in this study, fol-

lowed a communication guide (developed on the basis of previously observed routine practice).

Doctor-patient encounters began with a history-taking phase, which was followed by a brief

cognitive examination (e.g. ACE-R), Table 6.2 provides timing details for the clinical sessions,

history taking and percentage of the patients’ contribution. Neurologists were encouraged to

ask open questions to prompt conversation from the person with memory complaints. Exam-

ples of these questions includes the following: “When did your memory last let you down?”,

“Who is the most concerned about your memory – you or somebody else?”, “Tell me a bit about

yourself, where did you go to school?”, “What did you do after you left school?”, “Who looks

after your finances?”, “Do you smoke, have you ever smoked in the past?”, “Why have you

come to clinic today and what are your expectations?”.

6.3 Proposed system
The system is intended as an early stratification tool for patients presenting with progressive

ND-related cognitive problems based solely on diagnostic acoustic features in patients’ speech.

The proposed system pipline is similar to the system introduced in chapter 4 Fig 4.2, and it

consists of three main stages: pre-processing, feature extraction and machine learning based

classification.

6.3.1 Pre-processing
The clinical sessions were recorded using a “ZOOM H2N” portable digital recorder. The device

was placed on the table between patient and doctor (within 1 m of neurologist, patient and

81



Chapter 6 – Detection early signs of neurodegenerative cognitive declines

accompanying person). The device produced audio files in “MP3” format with a sampling

frequency of 44.1 kHz. The speech recordings were first converted to “wav” format and down

sampled to 16kHz, and then inspected for background noise which may affect the quality of the

extracted features. Similar denoising approach described earlier in chapter 4 section 4.3.1, was

adopted and uses the Audacity(R) software [204] for both the audio conversion and denoising

process. Before extracting any features from the recordings, the segments of the conversations

containing the patient’s utterances (i.e. exclude those by the neurologist and any companions)

were identified and isolated. For this work, the manually extracted turns were used as marked

in the transcribed text files associated with the audio recordings.

6.3.2 Feature extraction

This work aimed to explore the potential of using only acoustic features to differentiate between

FMD and ND. The authors of [55] applied a limited set of acoustic features inspired by the pre-

vious qualitative Conversation Analysis (mainly statistics of speech and silence). In the present

study, a broader set of acoustic features were used. These features can be grouped into speech

and silent features, phonation and voice quality features, and spectral features. Below, each

main acoustic feature type is described in detail (see Table 6.3 for a summary of all features).

6.3.2.1 Speech and silent features

The frequency and duration of pauses have previously been reported to be of great value in the

detection of dementia by means of speech analysis. In particular, it has been found that the

speech of people with dementia is disrupted by more pauses compared to that of healthy people

[54, 131, 144, 161, 210]. Based on this, ND patients expected to produce more and longer

pauses, with shorter and fewer utterance periods compared to those with FMD. A silent segment

of ≥ 0.25 seconds as a pause and a minimum voice segment of 0.5 seconds as a speech segment

were considered. The Praat software [159] was used to identify pauses and speech segments in

the recordings. A total of 14 features were used in the study including the max, mean and STD

of the pauses and speech segments, the ratios of both max pause and speech segments and total

time, the ratio of max speech and max pause segment. The last three features were the mean,

STD, and variance of speech segments ≥ 0.8 seconds (i.e., excluding the filler words).
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Table 6.3 Acoustic features.

Features Type Number of features
Speech and silent statistics Speech and silent features 14
Fundamental frequency (F0) related measures Phonation and voice quality 3
Harmonic-to-noise ratio (HNR) Phonation and voice quality 3
Noise-to-harmonic ratio (NHR) Phonation and voice quality 3
Shimmer(;>20;) Phonation and voice quality 3
Jitter(;>20;) Phonation and voice quality 3
Number of voice breaks Phonation and voice quality 3
Degree of voice breaks Phonation and voice quality 3
Average response time Phonation and voice quality 1
Mel frequency cepstral coefficients (MFCC) Spectral features (extended to 5)
Filter bank energy coefficient (Fbank) Spectral features (extended to 5)
Spectral Subband Centroid (SSC) Spectral features (extended to 5)
Total 51

6.3.2.2 Phonation and voice quality features

This group of features is the same as described and extracted earlier in chapter 4; however, in

this experiment, the mean, STD and variances were applied and used.

6.3.2.3 Spectral features

This group of features also were the same as described and extracted previously in chapter 4.

6.3.2.4 Statistical descriptive features

The dataset used in this study comprised of the part of routine outpatient encounters in which

the doctor took the patient’s history, the interactions lasted 18 minutes on average (see Table 6.2

). The duration of the recordings allowed for the use of long-term features based on statistics

calculated for this part of the conversation. Since the spectral coefficients are generated for

each frame of all utterances, we first estimated their mean per utterance, and then we weighted

them by dividing the averaged coefficients by the utterance time, and that produced the averaged

weighted spectral coefficients (AWSC). The motivation behind that is the ND subjects are likely

to provide fewer responses compared to FMD, so we believe that incorporating time factor will

improve the predictive ability of the spectral features and hence increases the system accuracy.

The statistical descriptive features are the mean, STD, min, max and the variance applied to

each subgroup of the AWSC (i.e., MFFCs, Fbanks, and SSCs) resulting in adding an extra 15

features which makes the total number of features used in this experiment 51.
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Table 6.4 Top (22) selected features using the wrapper, embedded and their statistical U-test.
U: Mann-Whitney u-tests. Sample size =1==2=15.

Rank Features U P Rank Features U P
1 Mean time of all speech segments excluding filler words 17.0 0.00007 12 Mean response time 42.0 0.004
2 Ratio of max speech segment to the max pause time 19.0 0.0001 13 VAR degree of voice breaks 44.0 0.004
3 STD of total speech segments time excluding filler words 19.0 0.0001 14 STD of number of voice breaks 44.5 0.004
4 STD of the speech segments time 20.0 0.0001 15 Mean degree of voice breaks 45.5 0.005
5 VAR of total speech segments time excluding filler words 20.0 0.0001 16 Mean of Fbank coefficients 49.0 0.008
6 Ratio of max pause time to the total turn time 24.0 0.0002 17 Min of Fbank coefficients 49.5 0.009
7 Ratio of total pauses time to the total turn time 24.5 0.0002 18 VAR of SSC coefficients 52.5 0.01
8 Ratio of total speech segments time to the total turn time 26.0 0.0003 19 STD of SSC coefficients 59.5 0.02
9 VAR of number of voice breaks 26.0 0.0003 20 STD of MFCC coefficients 60.0 0.03
10 Ratio of total No. of pauses to the total turn time 27.0 0.0003 21 VAR of Fbank coefficients 60.5 0.03
11 Mean number of voice breaks 30.0 0.0006 22 Mean of MFCC coefficients 63.0 0.04

6.3.3 Feature selection
Feature selection (FS) as explained previously in chapters 4 and 5 is the process of selecting a

subset of original features in order to optimally reduce the feature space according to a certain

evaluation criterion [216, 217].

In general, there are three feature selection techniques namely the filter, wrapper and em-

bedded [216, 217, 239]. The filter approach uses a specific ranking criterium (for example the

Pearson correlation coefficient) to generate scores for each feature. The main advantages of

the filter method are the low computational cost and speed compared to the wrapper approach;

however, the feature ranking is done independently of the model’s predictive ability, and that

often leads to a loss of performance. The wrapper technique is computationally more expensive

and slower compared to the filter approach. However, the wrapper usually results in improved

performance because it utilises the model’s ability to rank and select the best subset of fea-

tures. Further, the wrapper method applies a learning algorithm known as the evaluator, and a

search technique to find the combination achieving maximum model performance. The embed-

ded method, on the other hand, executes the feature selection as part of the learning procedure,

for instance, tree classifiers have a built-in feature importance identification capability and can

therefore select the best subset of features.

A wrapper method was used based on an SVM evaluator known as the recursive feature

elimination (RFE) technique [218], in which, the features are eliminated sequentially and the

model performance estimated each time until all features have been excluded. The feature that

has the maximum negative impact on the result is considered to be the most important one.

Likewise, the rest of the features are then ranked. When using tree classifiers (random forest
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Figure 6.1 Nested k-fold cross validation with K=5.

and Adaboost) the built-in feature selection was utilised.

Another way of selecting features is by performing a statistical analysis, which measures

the significance level of the mean difference between the FMD/ND classes. The null hypothesis

assumes that there is no significant difference between the means for a particular feature and

hence, that feature should be ignored. On the other hand, features that reject the null hypothesis

are selected. For this task, the SPSS software [219] was utilised to perform Mann-Whitney

u-tests appropriate for non-parametric data. Table 6.4 shows the best subset of features selected

using both RFE and the embedded approaches as well as the corresponding p-values (below the

0.05 significance level) at a 95% confidence interval.

6.3.4 Validation Scheme
The same nested k-fold cross validation which explained earlier in chapter 4 section 4.3.4,

however the number of fold k=5, Fig 6.1 shows the design of the nested 5-fold cross-validation.

Feature selection and the model’s hyper-parameter tuning were explored and the model with the

best features and best parameters was tested using the test folds.

This work also explores another scenario, in which increase the sample size from 30 to

230 samples by partitioning each recording into 1-minute segment lengths, and extracted all
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features as mentioned in the previous sections. In this way the results were evaluated using a

larger dataset, however, the balance between the two classes was lost due to the fact that the

talk captured from conversations in the FMD group was longer compared to that from the ND

group (i.e. 60% of the 230 samples were from the FMD group). The same principle of nested

cross-validation was used as explained before in Fig 6.1, but changed from the k-fold method

to a leave one group out cross validation (LOGOUT). The LOGOUT method guarantees that

the group of samples that belong to one patient will always be in the same fold, for example,

all segments from recording number 1 will be in the training data. The rational for selecting

LOGOUT instead of the tradition LOO because the latter will not guarantee that the speech

segments for one patients will be in one fold (i.e. a high probability that group of segments

which belong to one patient will spread in all folds) and that will generate a bias in the model

performance. LOGOUT also differed from the k-fold in generating the partitions. In LOGOUT

the training data will be (G-1), and the test data will be the last remaining (G), (G) is the number

of groups ( 30 in this case), this will loop again but now 30 times instead of five as in k-fold.

The feature selection, model hyper-parameter tuning, the best model selection procedure, and

the reported results remained the same as those calculated by the procedure outlined earlier. In

this work the feature normalisation process was utilised using the following equation.

(C0=3 (-) = G − `
f

(6.1)

Where ` and f is the mean and standard deviation of the training samples respectively.

6.4 Results
The results of the study suggest that machine learning models based on the analyses of the

acoustic data from patients with cognitive complaints are capable of detecting differences be-

tween the two classes, ND and FMD, in keeping with prior research [144, 157, 158, 240, 241].

The discriminating potential of acoustic features was explored using five different classification

algorithms (SVM, random forest, Adaboost, multi-layer perceptron, and SGD) and tested our

findings using the validation procedure described above. The best models’ results are listed

in Tables 6.5 and 6.7 These were obtained using both scenarios: the original dataset with 30

samples and the augmented dataset with 230 samples.
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Table 6.5 First scenario classification accuracies under different feature subsets and classifiers.

Classifier Accuracy using Accuracy with No. of selected Accuracy using features with No. of selected
All features (51) feature selection features significance statistical P-value features

Linear SVM 93.0 ± 0.16 % 97.0 ± 0.13 % 9 97.0 ± 0.13 % 11
Random forest 90.0 ± 0.27 % 97.0 ± 0.13 % 11 97.0 ± 0.13 % 15
Adaboost 85.0 ± 0.40 % 93.0 ± 0.16 % 11 90.0 ± 0.24 % 21
MLP 93.0 ± 0.16 % 97.0 ± 0.13 % 20 97.0 ± 0.13 % 22
Linear via SGD 90.0 ± 0.16 % 97.0 ± 0.13 % 14 97.0 ± 0.13 % 21
Mean 90.2 % 96.2 % 13 95.6 % 18

The average results for all models improved regardless of feature selection method and for

both Tables 6.5 and 6.7. All models scored 97% accuracy except Adaboost which reached a

maximum at 93% when the original dataset of 30 recording samples was used. The number

of features used for each model is smaller when the wrapper and embedded approaches are

used compared to the statistical ranking approach, for example the SVM wrapper model needed

only 9 out of 20 ranked features from Table 6.4 compared to 11 features when the ranking is

performed based on statistical significance. This differences between the two feature selection

approaches were expected because both methods utilised the classifier scores to identify the best

set of features maximising the performance while the analytical approach, on the other hand,

included an un-optimised set of features for the models to reach their maximum accuracies.

Table 6.7 shows the models’ results when evaluated using the second scenario dataset. Both the

SVM and SGD models score 92.0%, on average the five models achieved 90% which is less

compared to 96.2% average results for the first scenario. The difference between the results

was expected because the five models of the second scenario were evaluated on much more

Table 6.6 Extra classification metrics for the first scenario and for the same classifiers that used
(wrapper and embedded) features selection approach.

Classifier Accuracy % F1_score Precision Recall Confusion Matrex
14 1Linear SVM 97.0 0.966

(0.966/0.966)
0.968

(1.0/0.937)
0.966

(0.933/1.0) 0 15
15 0Random Forest 97.0 0.966

(0.966/0.966)
0.966

(0.933/1.0)
0.968

(1.0/0.937) 1 14
14 1Adaboost 93.0

0.933
(0.933/0.933)

0.933
(0.933/0.933)

0.933
(0.933/0.933) 1 14

14 1MLP 97.0 0.966
(0.966/0.966)

0.968
(1.0/0.937)

0.966
(0.933/1.0) 0 15

14 1Linear via SGD 97.0 0.966
(0.966/0.966)

0.968
(1.0/0.937)

0.966
(0.933/1.0) 0 15
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data samples, so the models’ error percentage is likely to increase, however, this result may be

considered more realistic and generalised thus perform better in future deployment.

6.5 Discussion
This study has shown that automatic speech analysis technology focusing and acoustic features

in their speech could be a valuable complementary method in the diagnostic pathway of pa-

tients presenting with cognitive concerns. The work aimed to build a machine learning model

that learns from our data and is able to predict the cognitive status of patients referred to a spe-

cialist memory clinic. In this study a binary classification was used; FMD or ND. The highest

classification accuracy reached 97% which was achieved by four machine learning diagnostic

models: SVM, random forest, multi-layer perceptron, and SGD. These features include ratios

and statistics of pauses and utterances, which aligns with the literature. ND patients’ speech

has previously been found to be characterised by an increased number and duration of pauses

as well as a reduction in the number of utterances which may be caused by difficulty in word

finding (lexical retrieval)[210]. Similarly Singh et al. [53] and Roark et al. [54] reported that

the mean time of both pauses and speech are useful in discriminating healthy subjects from

MCI and AD patients. Other features of discriminating value in our study included the number

and degree of voice breaks, which aligns with findings also previously reported by Meilán et al.

[52].

Further, the importance of the spectral features including the average of Fbank and MFCC

coefficients and the standard deviation of MFCC and SSC coefficients. These features measure

the energy variations between frequency bands of a speech signal. As such they are harder

to interpret in the context of detecting neurodegenerative cognitive decline. However, these

features also capture some articulatory information expressed by lower resonance in the vocal

tract, a prominent finding in ND patients (Fraser et al. [34] and in our previous works in

[240, 241]). Some of the acoustic features we examined in this study were excluded from the

discriminatory models finally created because they did not differe significantly between the

two groups. These features include the fundamental frequency, shimmer, jitter and harmonic

to noise ratio which appears to be in contrast to what have been stated in [52]. This may

be because these features examine characteristics of the speech not strongly affected by FMD

88



Chapter 6 – Detection early signs of neurodegenerative cognitive declines

and ND, unlike in Parkinson’s disease, where dysphonia is a common and key clinical feature

[209, 222].

Comparing this model to that used in the previous study using the same dataset [55], the

currently proposed method, based exclusively on acoustic findings, is computationally much

less demanding than an analysis based on a combination of acoustic, lexical, semantic and

visual-conceptual features. Furthermore, the previous classification approach included input

features from the neurologist, and from accompanying persons whereas the present study only

uses utterances from patients themselves. Although only patients’ contributions and the analysis

of acoustic signals were used in the present study, the overall classification accuracy improved

to that achieved using the more complex approach (proposed 96.2% vs 95.0% [55])

The sensitivity and specificity of the proposed system were 93.75% and 100% respectively.

This compares well with other dementia screening modalities, for example, electroencephalog-

raphy (EEG) tests which may be relatively cheap, noninvasive and widely available, but are still

rather cumbersome, and, more importantly, only have a sensitivity of 70% for the detection of

early Alzheimer’s disease [242]. Positron Emission Tomography (PET), although associated

with much higher sensitivity and specificity (both at 86.0%) is invasive, requires the injection

of a radioactive tracer via a peripheral cannula, means that patients have to be fasting for four

hours before the test and is very costly [243]. Single photon Emission Computed Tomogra-

phy (SPECT) is another diagnostic tool capable of demonstrating changes early in the course

of neurodegenerative disorders with high sensitivity (86.0%) and specificity (96.0%), but is as

cumbersome and costly as PET and also exposes patients to a high dose of radiation [59]

How does the proposed method compare to currently available approaches for screening at

the interface between primary and specialist care? The test most commonly used world wide

is the Mini Mental State Examination (MMSE). It takes and average of 10 minutes to admin-

ister. Although the MMSE has high sensitivity (87.3%) and specificity (89.2%) scores it is not

sufficiently sensitive in the early stages of dementia. What is more, it is influenced by patients’

level of education [62]. The ACE-R requires 12-20 minutes to administer and performs at a

similar level (sensitivity 94.0% and specificity 89.0%), however, it does not provide feedback

on why a particular diagnosis may have been made [66]. The clock drawing test (CDT), despite

taking only 2-3minutes to complete and having impressive screening performance (sensitivity
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Table 6.7 Classification accuracies for the second scenario (augmented dataset).

Classifier Accuracy using Accuracy with
All features(51 ± STD) feature selection ± STD

Linear SVM 87.0 ± 0.12 % 92.0 ± 0.18 %
Random forest 84.0 ± 0.23 % 88.0 ± 0.28 %
Adaboost 81.0 ± 0.26 % 87.0 ± 0.29 %
MLP 86.0 ± 0.26 % 91.0 ± 0.14 %
Linear via SGD 87.0 ± 0.11 % 92.0 ± 0.16 %
Mean 85.0 % 90.0 %

92.8% and specificity 93.5%), is not frequently used as it does not test memory as such, which

especially limits its usefulness in AD. What is more, the scoring may be tricky due to having 8

different assessment settings. The test is also not suitable for people with illiterate patients who

can’t perform paper and pencil tests [244]

Importantly, all tools described above are the state of the art in dementia screening and cur-

rently utilised worldwide. In contrast, this approach has, so far, only been tested on a small

dataset, so its performance should not be generalised unless been validated with very large

dataset. Having said that, the study highlight the significance of an acoustic-only based ap-

proach as a promising low cost diagnostic aid in assessment pathways of patients presenting

with cognitive problems. In view of the relatively low hardware (microphone) and computa-

tional complexity this system could easily be deployed in settings other than memory clinics.

This may be desirable from a patients’ perspective and more cost-effective from the perspective

of health care providers. Moreover, whereas the application of a system based on semantic

understanding is limited to the language(s) it was trained to interpret, the present system, using

acoustic features only, is much less dependent on the particular language used by a patient and

should therefore be more widely generalisable.

There are several limitations to this study. Firstly the data set is relatively small with only 15

cases in each group. However, larger dataset model evaluated, and the resulting difference was

only a 5% decrease in performance. However, the size difference between the two scenarios

was more > 750% (30 samples compared to 230) i.e. for each 100% increment in size the per-

formance decreased by 0.67% which shows that the proposed approach did not deviate badly.

Also the high accuracy of this model reflects the difference between the two groups; notably the
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ND group were mostly in the moderate stages of ND, with a mean MMSE of 18.8(+/−2.0). Fur-

thermore, this approach was based on manually annotated files that identified the patients’ turns

in standardised conversations, however, this limitation can be overcome by using an automatic

speaker diarization software which is capable of providing information about who is speaking

and when. Further work is required including evaluating our model’s performance with spon-

taneous conversations and with the use of speaker diarization software to fully automate the

proposed system.

6.6 Summary
The results of this study lead to several conclusions. First, a relatively small number of extracted

acoustical features are shown to be of great importance in the differentiation between ND and

FMD. These features are likely related to changes in the neurobiology associated with a given

neurodegenerative cognitive disorder, reflected in the acoustic output. Secondly, the proposed

approach can be easily deployed at clinics and during standard clinical encounters. This will

require only minimal effort on the part of the examiner and mean a much quicker diagnosis for

the examinee. Finally, despite the limitations of this study, the findings show that acoustic-only

features offer a potential low-cost, simple and alternative to more complex features requiring

automatic speech recognition, part-of-speech parsing, and understanding of speech in the au-

tomated screening or stratification of patients with cognitive complaints. Hence it has great

potential for use early in pathways that assess people with cognitive complaints.
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Chapter 7

Depression assessment using acoustic

features

7.1 Introduction

This chapter demonstrate the ability of newly developed acoustic features to detect person’s

level of depression. The proposed features will be used to build two machine learning systems.

This work also show how these systems can be improved when fusing the new features with

the state of the art acoustic features, which was previously used in detecting dementia (listed in

Table 6.1). Typically Gradient boosting classifier (GBC) or Gradient boosting regressor (GBR)

is then trained to operate on the acoustic feature space. The testing undertaken in this chapter

aims to gain insights into the usefulness of the acoustic ability for predicting depression score.

Several challenges arise when building systems capable of classifying or predicting depres-

sion level in speaker’s recording. One challenge is the lack to samples for each speaker at dif-

ferent levels of depression. Another problem is the diversity of recordings length (ranges from

several seconds to 27 minutes), and the speech tasks (spontaneous and read, vocal exercises,

and the recordings do not always contain all the tasks). Hence the expected phonetic variability

inside and between files is large. This variation potentially affects the classification and predic-

tion models and makes it a challenge to achieve satisfactory results. Therefore the new features

derived based on the temporal speech characteristics will be investigated to eliminate such limi-

tations. These features aim to capture utterance behaviour and thus under depression symptoms
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Table 7.1 Depression datasets details

# Dataset Language Total
subjects

No. of
samples Task Evaluation

method
Data
partitions

No. of
subjects

Class 0
No. samples

Class 1
No. samples

Mean sessions
in seconds

1 AVEC-2013 German 129 150 Multi
BDI
Class 0 ≤ 13
Class 1 otherwise

Training 42 26 24 845.68
Development 43 26 24 845.24
Testing 44 25 25 842.82

2 AVEC-2014 German 127 300
Q/A and
reading

BDI
Class 0 ≤ 13
Class 1 otherwise

Training 42 52 48 52.6
Development 43 52 48 45.12
Testing 42 50 50 56.8

3 AVEC-2016 English 186 186 Conversation
PHQ
Class 0 <10
Class 1 otherwise

Training 107 77 30 433.43
Development 32 22 10 490.83
Testing 47 33 14 511.72

this behaviour could be identified, furthermore, incorporating the weighting scheme (explained

in chapter 6 section 6.3.2.4) while extracting the acoustic features will minimise the effect of

this unwanted variation. The analysis in this chapter will include a statistical investigation into

the acoustic space, feature significance exploration and results comparison.

7.1.1 Datasets
The experimental results in this chapter were based on using three commonly published depres-

sion datasets. The first dataset is known as the Audio/Visual Emotion Challenge and Workshop

(AVEC) 2013, herein called AVEC-2013. The following data is the Audio/Visual Emotion

Challenge for the year 2014 noted as AVEC-2014, and the third dataset is the DAIC-WOZ

corpus. These datasets are the only publicly accessible depression speech corpus; also, the

challenge proposed by the owners is to pursuit an optimum solution for building objective eval-

uation models. The available benchmark results allow the researchers to compare their results

with the baseline. The following sections will provide details for the datasets used. Also Table

7.1 provides general information regarding the datasets’ partitions.

7.1.1.1 AVEC-2013

The AVEC-2013 depression data challenge was designed to seek competition among researchers

to build robust machine learning depression-assessment models by utilising the video and audio

recordings. The baseline results were provided in the form of Mean Absolute Error (MAE)

and Root Mean Square Error (RMSE) for both video and audio modalities see Table 7.7 [245].

The dataset encompass a total of 150 video and audio recordings and were available in the

form of three partitions training, development and testing, and each part contains a total of 50

recordings. The data collected using headset connected to the built-in sound-card of a laptop

at 44.1 KHz sampling frequency with 16 bit encoding. The recording length ranges between
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50 and 20 minutes (mean = 25 minutes), and the sessions are recorded in a number of quiet

settings. All participants in AVEC-2013 are native German speakers, with an age range of 18

to 63 years(mean 31.5 years, and a standard deviation of 12.3 years) [245]. The participants

were instructed to accomplish several tasks such as vocal exercises (counting 1 to 10 ), sponta-

neous free form (FF) speech (e.g. talking loud during task solving, and narrating a story from

their past), and read tasks (NW) (e.g. Northwind Passages from the novel Homo Faber by Max

Frisch) [246]. The depression scores are obtained using the BDI depression inventory, and the

average BDI score was 15.1 for the training partition, 14.8 for the development, and 14.5 for

the test partition (standard deviations = 12.3, 11.8,and 11.4 respectively). BDI were provided as

a single value for each file in the training, development and test partitions. Following the com-

mon practice stated in the BDI regulations [86], this work adopts a depressive symptomatology

with a cut-off of 13/14 points on the BDI scale and this cut-off a fairly balanced distribution

of speakers with (= = 96) (labelled as class 1, BDI > 13) and without major depressive symp-

tomatology (= = 104) (labelled as class 0, BDI ≤ 13).

7.1.1.2 AVEC-2014

This data is a subset of the previous AVEC-2013 challenge corpus, and it has a total of 150

videos of task-based depression data. The tasks were recorded in the form of virtual agent-

human interactions and using a close-talk microphone and a webcam. Each recording contains

a task performed by one speaker. A total of 84 participants were included in the dataset, and in

some cases, participants had provided more than one sample [246]. The recording sessions were

carried out in a rate between one and four times with two weeks break between the sessions.

The sessions last between 50 and 20 minutes, with mean = 25minutes while the total recording

time for the whole data was 240 hours. The mean age of the participants was 31.5 and ranged

between 18 to 63 years, with a standard deviation of 12.3 years. The sessions recorded in quiet

environments. Only two out of 14 recorded tasks were provided and for each part of the three

partitions (train, develop and test) contains 100 recordings, and these recordings were 50/50

divided into two tasks. The sessions last between (6 seconds to 4 minutes and 8 seconds)[246].

The two selected tasks were as follows:

• Northwind - Participants, read loudly a passage of the story “Die Sonne und der Wind”

(The North Wind and the Sun), expressed in the German language. Here and after this task will

94



Chapter 7 – Depression assessment using acoustic features

be referred as "NW".

• Freeform - Participants answer to one of several questions such as: “What was your best

gift, and why?”, “What is your favourite dish?”, “Discuss a sad childhood memory”, and same

in the German language. Here and after will be refer to this task as "FF".

Similar to AVEC-2013, the depression labels for the dataset were provided using BDI evalu-

ation tool and the same dpression levels cut-offs were adopted, however, the baseline challenge

performances listed in Table

7.1.1.3 AVEC-2016-DAIC-WOZ

This dataset includes clinical interactions constructed to assess the diagnostic of physiological

distress disorders such as anxiety, depression, and post-traumatic stress disorder (PTSD). These

interviews were obtained to build a computer agent that examines people and distinguishes ver-

bal and nonverbal signs of mental illness [247]. The data collected combine video and audio

recordings, and comprehensive questionnaire responses; this part of the corpus comprises the

Wizard-of-Oz interviews, administered by an animated virtual interviewer named "Ellie", man-

aged by a human interviewer in a different room. The DAIC-WOZ data was recorded by a

close-talking microphone, Kinect, and camera, data already annotated and transcribed to help

extract different types of features, such as verbal and non-verbal [247]. A total of 189 English

native speakers participated in this study providing 187 speech recordings (some sessions dis-

carded due to technical errors) and the recording sessions were between 5-20 minutes long,

while the actual conversations time as explored in the experiment ranges from 1.02 to 21.22

minutes. The conversations were semi-structured, starting with standard questions to help es-

tablish a friendly environment during the session; later, the questions were directed specifically

towards symptoms and issues linked to anxiety, depression, and PTSD. Bellow is a discourse

sample between the virtual agent "Ellie" and a participant [247]:

Wizard-of-Oz conversation sample:

• Ellie: "Who’s someone that’s been a positive influence in your life?"
• Participant: "Uh my father".
• Ellie: "Can you tell me about that?"
• Participant: "Yeah, he is a uh."
• Participant: "He’s a very he’s a man of few words."
• Participant: "And uh he’s very calm."
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• Participant: "Slow to anger."
• Participant: "And um very warm very loving man."
• Participant: "Responsible."
• Participant: "And uh he’s a gentleman has a great sense of style and he’s a great cook".
• Ellie: "Uh huh."
• Ellie: "What are you most proud of in your life?"

The data labelled with a depression level score for each recording, and it is obtained using

the standard self-evaluation Patient Health Questionnaire (PHQ). Binary classes also given: 1

for depressed (PHQ ≥ 10 ) and 0 normal or no depression (PHQ < 10). Variety of features

also provided including video features such as facial landmarks, eyes, and head pose gaze di-

rections, position, and orientation of the head, and a histogram of oriented gradients. While

audio features include spectral (MFCC, and phase distortion), prosodic(F0, and voicing), and

other voice quality measures.

7.2 Proposed system models
The general pipline for the proposed models is illustrated in Fig 7.1, both classification and

regression models have the same backbone which starts with pre-processing and feature extrac-

tion steps, also they share the same training methodology and evaluation scenarios which will

be explained in the following sections.

7.2.1 Feature pre-processing and extraction

Wide range of acoustic features proven to have a discriminating ability when utilised as di-

agnosis tool in variety of conditions including depression [99, 171, 174–177, 180, 188, 194],

Parkinson’s disease [207, 209, 211, 222], dementia [139, 144, 156, 160, 161, 166, 170, 208],

autism [248–251], etc., and the previous works demonstrated that spectral, temporal and voice

quality features were useful in diagnosing AD [240, 241] and discriminating FMD from ND

conditions [252] thus the features which previously extracted in chapters 4, 5 and 6 (listed in

Table 4.2) and combined with the newly developed features will be used in this experiment.

Furthermore, additional set of spectral features will also be used and these include:

* Spectral roll-off (SRO): is the frequency following to which a specific cutoff ratio of the

magnitude allocation of the spectrum is allocated. The equation for SRO is given by:
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Figure 7.1 Proposed system for depression assessment

('$ =
I

100

 −1∑
:=0
|(8 (:) | (7.1)

where I is ranges between (80-90%), and in this work I is set to 85% (the default value

[253]).

* Spectral entropy (SE): It measures the entropy for subframes’ normalised spectral energies

[253] computed as follows: first, is to normalise the power spectral density %8 (:) so it can be

viewed as probability density function given by:

?8 =
%8 (:)∑8
0 %8 (:)

(7.2)

Then, the SE is estimated using the following formula for an entropy:

(� = −
=∑
8=1

?8 ln ?8 (7.3)

* Spectral flux (SF): estimate how the spectral vary between two consecutive frames and
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is estimated as the squared difference between the normalised magnitudes of the spectra of the

two successive short-term windows [254], estimated using :

(�8,8−1 =

#∑
:=1
( ?8 (:) − ?8−1(:) )2 (7.4)

* Spectral spread (SS): Is a measurement of average deviation of the spectrum from the

spectral centroid [253] using the following equation:

(( =

√√ ∑02
:=01( 5 (:) − ((�8)2 ∗ ((:)∑02

:=01
((:)

(7.5)

where 5 (:) represent the frequency in �I equivalent to bin : , ((:) is the spectral value at

bin k, 01 and 02 are the band boundaries, in bins, over which to estimate the spectral spread.

((� is the spectral centroid.

7.2.1.1 Formants features

Formants are the most significant elements in the speech spectrum and accommodate substantial

amounts of information on the resonance characteristics of the vocal tract. In the source-filter

model of speech production, the vocal tract is represented as a time-invariant all-pole linear

filter whose poles somewhat equivalent to vocal tract formants. The linear predictive analysis

of this filter is the most used method for computing formants and their bandwidths [255]. In this

experiment, the formants contour were extrated using Praat Boresma et al. [159] software, and

included only the first two formants �1 and �2 and their bandwidths �1, �2 and intensity �1 and

�2 respectively. The selection of these features was inspired by several studies [171, 178, 179],

who reported the effectiveness of these features in the task of detecting depression condition.

7.2.1.2 New speech activity behaviour features

The newly developed features were motivated by the fact that temporal characteristics are in-

fluenced under certain conditions; for example, in depression condition, the patient reported

producing shorter utterances and longer pauses [74, 128, 129]. However, these features fre-

quently explored using the standard functions such as the mean, maximum, STD, skewness,

kurtosis etc.[180], and sometimes it is difficult with just these features to reliably conclude a

disease-related behaviour especially when the patients and healthy subjects share a close range
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Figure 7.2 Praat text grid for voice and silent segments

of symptoms or conditions. Therefore it is highly desirable to find variables that can be used to

infer behaviour associated with specific disease such as depression.

The new features extracted based on the average of both voiced and silent segments and as

follows:

First by using Praat text grid silences, all voice and silent segments time (in msec) were

identified in the recordings as illustrated in Fig 7.2. The result are two vectors, the first one

contains voice segments time ®+ =[E1,E2,...,E# ] for all E segments ≥ 0.5 msec, and the second

vector is for pauses segments time ®% =[?1,?2,...,?"] for all ? pause segments ≥ 0.25 msec,

where # , " are the total number of voice and pause segments respectively. Then from these

vectors, several variables were computed:

The average of voice segments times estimated:

"40=_+ =
∑#
8=1+8

#
(7.6)
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Maximum voice segments time:

"0G_+ = "0G ®+ (7.7)

The standard deviation of voice segments time:

()�_+ =

√√√
1
#

#∑
8=1
(+8 − "40=_+)2 (7.8)

The variance of voice segments time:

+�'_+ =
1
#

#∑
8=1
(+8 − "40=_+)2 (7.9)

The total voice segments time:

)C8<4_+ =
#∑
8=1
+8 (7.10)

The total number of voice segments:

#>_+ = # (7.11)

The ratio of maximum voice time to the total voice segments time:

+<0G' =
"0G_+
)C8<4_+

(7.12)

The average of pause segments times:

"40=_% =
∑"
8=1 %8

"
(7.13)

Maximum pause segments time:

"0G_% = "0G ®% (7.14)

The standard deviation of pause segments time:

()�_% =

√√√
1
"

"∑
8=1
(%8 − "40=_%)2 (7.15)
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The variance of pause segments time:

+�'_% =
1
"

"∑
8=1
(%8 − "40=_%)2 (7.16)

The total voice segments time:

)C8<4_% =
"∑
8=1

%8 (7.17)

The total number of pause segments:

#>_% = " (7.18)

The ratio of maximum pause time to the total pause segments time:

%<0G' =
"0G_%
)C8<4_%

(7.19)

The total voice and pause segments time:

)C8<4_+% = )C8<4_+ + )C8<4_% (7.20)

)#>_+% = #>_+ + #>_% (7.21)

"40=_+% = "40=_+ + "40=_% (7.22)

%<0G') (+%) =
"0G_%
)C8<4_+%

(7.23)

+<0G') (+%) =
"0G_+
)C8<4_+%

(7.24)

From the two vectors ®+ , ®% six new vectors were created, and five functions (mean, STD,

VAR, total time and the total number of segments) were applied to the new vectors (estimated

similarly using previous equations). Thus the new vectors and their new features expressed as

follows:

1. Active voice vector ®�+ =[E1,E2,...,E �] for all voice segments + > Mean_V

®�+ features = ""40=_�+", "()�_�+", "+�'_�+", ")C8<4_�+" and "#>_�+ = �"
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2. Passive pause vector ®%% =[%1,%2,...,%�] for all pause segments % > Mean_P

®%% features = ""40=_%%", "()�_%%", "+�'_%%",")C8<4_%%" and "#>_%% = �"

3. Passive voice vector ®%+ =[E1,E2,...,E ] for all voice segments + < Mean_V

®%+ features = ""40=_%+", "()�_%+", "+�'_%+",")C8<4_%+" and "#>_%+ =  "

4. Active pause vector ®�% =[%1,%2,...,%!] for all pause segments % < Mean_P

®�% features = ""40=_�%", "()�_�%", "+�'_�%",")C8<4_�%" and "#>_�% = !"

5. Cross voice vector ®�+ =[E1,E2,...,E'] for all voice segments + > Mean_P

®�+ features = ""40=_�+", "()�_�+", "+�'_�+", ")C8<4_�+" and "#>_�+ = '"

6. Cross pause vector ®�% =[%1,%2,...,%(] for all pause segments % > Mean_V

®�% features = ""40=_�%", "()�_�%", "+�'_�%", ")C8<4_�%" and "#>_�% = ("

This work hypothesise that the new vectors and their features will be superior to the common

functions which were used in the literature to describe voice and pauses such as the mean of

pauses. Because these common features may not characterise specific behaviour for example

in case of a small number of voice segments but larger in time may have similar average to a

larger number of voice segments but shorter in time. Therefore the new features will provide

deep insight into the aspects of these segments, which might make them more informative in

terms of discriminating between healthy and depressed people due to the facts mentioned by

Emil Kraepalin [128] that depressed people speak with longer pauses and hesitations, slowly

and with low volume, and sometimes whispering. The new features will provide details of how

active the person is when speaking, for example, this system expect that with ""40=_�+" for

normal subjects will have higher value compared to people suffer from depression. ""40=_�+"

measures the average of all voice segments produced by subjects and were larger than his mean

of utterance i.e. ""40=_+". Whereas ")C8<4_�+" measure how much amount of time that

someone had spoken above his ""40=_+".

In contrast to ®�+ the ®%% the higher values of these vector features will infer that someone

is speaking with larger pauses. Thus patients with depression expected to have higher values

compared to normal subjects.
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Features belong to vector ®%+ assumed low values in depressed voices compared to normal,

the opposite of that, features from ®�%, low values means less pauses time which are expected

for normal and higher values in depression condition.

More interesting features belong to the last two vectors ®�+ and ®�%. Features belong to

®�+ measure all voice segments time that are above the mean time of all pauses, for example,

")C8<4_�+" compute the total time for all voice segments generated by subject and were greater

than his average pause time. The values from these features expected to be larger for normal

subjects compared to patients suffer from depression. The reverse of that is ®�% vector features,

which tell if someone is speaking with more pauses than his average of utterances.

Based on these features, extra statistical and ratio functions can be derived, which may also

contribute in discriminating depressed voices, for example:

'=>_�+ =
#>_�+
#>_+

(7.25)

')8<4_�+ =
#>_�+
)C8<4_+

(7.26)

'<40=_�+ =
"40=_+
"40=_�+

(7.27)

'E0A_�+ =
+�'_+
+�'_�+

(7.28)

"40=38 5 _�+ =| "40=_�+ − "40=_+ | (7.29)

()�38 5 _�+ =| ()�_�+ − ()�_+ | (7.30)

+�'38 5 _�+ =| +�'_�+ −+�'_+ | (7.31)

'(<40=,=>)_�+ =
'<40=_�+
'=>_+

(7.32)

'=>_%% =
#>_%%
#>_%

(7.33)

'<40=_%% =
"40=_%
"40=_%%

(7.34)

'E0A_%% =
+�'_%
+�'_%%

(7.35)
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"40=38 5 _%% =| "40=_%% − "40=_% | (7.36)

()�38 5 _%% =| ()�_%% − ()�_% | (7.37)

+�'38 5 _%% =| +�'_%% −+�'_% | (7.38)

'(<40=,=>)_%% =
'<40=_%%
'=>_%%

(7.39)

'<40=_(�+, %%) =
"40=_�+
"40=_%%

(7.40)

"40=38 5 _(�+, %%) =| "40=_�+ − "40=_%% | (7.41)

)<40=C8<4_(�+, %%) = "40=_�+ + "40=_%% (7.42)

'<40=(�+,%%)_(+%) =
)<40=C8<4_(�+, %%)

)C8<4_+%
(7.43)

)#>_(�+, %%) = #>_�+ + #>_%% (7.44)

#>38 5 _(�+, %%) =| #>_�+ − #>_%% | (7.45)

'#>_(�+, %%) =
#>_�+
#>_%%

(7.46)

)C8<4_(�+, %%) = )C8<4_�+ + )C8<4_%% (7.47)

)38 5 _(�+, %%) =| )C8<4_�+ − )C8<4_%% | (7.48)

'C8<4_(�+, %%) =
)C8<4_�+
)C8<4_%%

(7.49)

') (�+,%%)_(+%) =
)C8<4_(�+, %%)
)C8<4_+%

(7.50)

'(C8<4,#>)_(�+, %%) =
)C8<4_(�+, %%)
)#>_(�+, %%)

(7.51)

'()_<40=,#>_38 5 )_(�+, %%) =
)<40=C8<4_(�+, %%)
#>38 5 _(�+, %%)

(7.52)
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'()_<40=,'_#>)_(�+, %%) =
)<40=C8<4_(�+, %%)

'#>_(�+, %%)
(7.53)

'()_38 5 ,#>_38 5 )_(�+, %%) =
)38 5 _(�+, %%)
#>38 5 _(�+, %%)

(7.54)

'()_38 5 ,'_#>)_(�+, %%) =
)38 5 _(�+, %%)
'#>_(�+, %%)

(7.55)

'('_C8<4,#>_38 5 )_(�+, %%) =
'C8<4_(�+, %%)
#>38 5 _(�+, %%)

(7.56)

'('_C8<4,'_#>)_(�+, %%) =
'C8<4_(�+, %%)
'#>_(�+, %%)

(7.57)

'=>_�+ =
#>_�+
#>_+

(7.58)

'<40=_�+ =
"40=_+
"40=_�+

(7.59)

'E0A_�+ =
+�'_+
+�'_�+

(7.60)

"40=38 5 _�+ =| "40=_�+ − "40=_+ | (7.61)

()�38 5 _�+ =| ()�_�+ − ()�_+ | (7.62)

+�'38 5 _�+ =| +�'_�+ −+�'_+ | (7.63)

'(<40=,=>)_�+ =
'<40=_�+
'=>_+

(7.64)

'(<40=,=>)_�+ =
'<40=_�+
'=>_�+

(7.65)

'=>_�% =
#>_�%
#>_%

(7.66)

'<40=_�% =
"40=_%
"40=_�%

(7.67)

'E0A_�% =
+�'_%
+�'_�%

(7.68)

"40=38 5 _�% =| "40=_�% − "40=_% | (7.69)
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()�38 5 _�% =| ()�_�% − ()�_% | (7.70)

+�'38 5 _�% =| +�'_�% −+�'_% | (7.71)

'(<40=,=>)_�% =
'<40=_�%
'=>_%%

(7.72)

'<40=_(�+,�%) =
"40=_�+
"40=_�%

(7.73)

"40=38 5 _(�+,�%) =| "40=_�+ − "40=_�% | (7.74)

)<40=C8<4_(�+,�%) = "40=_�+ + "40=_�% (7.75)

'<40=(�+,�%)_(+%) =
)<40=C8<4_(�+,�%)

)C8<4_+%
(7.76)

)#>_(�+,�%) = #>_�+ + #>_�% (7.77)

#>38 5 _(�+,�%) =| #>_�+ − #>_�% | (7.78)

'#>_(�+,�%) =
#>_�+
#>_�%

(7.79)

)C8<4_(�+,�%) = )C8<4_�+ + )C8<4_�% (7.80)

)38 5 _(�+,�%) =| )C8<4_�+ − )C8<4_�% | (7.81)

'C8<4_(�+,�%) =
)C8<4_�+
)C8<4_�%

(7.82)

') (�+,�%)_(+%) =
)C8<4_(�+,�%)
)C8<4_+%

(7.83)

'(C8<4,#>)_(�+,�%) =
)C8<4_(�+,�%)
)#>_(�+,�%)

(7.84)

'()_<40=,#>_38 5 )_(�+,�%) =
)<40=C8<4_(�+, %%)
#>38 5 _(�+,�%)

(7.85)

'()_<40=,'_#>)_(�+,�%) =
)<40=C8<4_(�+,�%)

'#>_(�+,�%)
(7.86)

'()_38 5 ,#>_38 5 )_(�+,�%) =
)38 5 _(�+,�%)
#>38 5 _(�+,�%)

(7.87)

'()_38 5 ,'_#>)_(�+,�%) =
)38 5 _(�+,�%)
'#>_(�+,�%)

(7.88)
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'('_C8<4,#>_38 5 )_(�+,�%) =
'C8<4_(�+, %%)
#>38 5 _(�+,�%)

(7.89)

'('_C8<4,'_#>)_(�+,�%) =
'C8<4_(�+,�%)
'#>_(�+,�%)

(7.90)

'#>(�%,�+)_(+%) =
#>_�% + #>_�+

)#>_+%
(7.91)

') (�%,�+)_(+%) =
)C8<4_�% + )C8<4_�+

"40=_+%
(7.92)

'"40=(�%,�+)_(+%) =
"40=_�% + "40=_�+

)C8<4_+%
(7.93)

'#>(%+,%%)_(+%) =
#>_%+ + #>_%%

)#>_+%
(7.94)

') (%+,%%)_(+%) =
)C8<4_%+ + )C8<4_%%

"40=_+%
(7.95)

'"40=(%+,%%)_(+%) =
"40=_%+ + "40=_%%

)C8<4_+%
(7.96)

'=>_(�%, %%) =
#>_�%
#>_%%

(7.97)

'<40=_(�%, %%) =
"40=_�%
"40=_%%

(7.98)

'C8<4_(�%, %%) =
)C8<4_�%
)C8<4_%%

(7.99)

'=>_(%+, �+) =
#>_%+
#>_�+

(7.100)

'<40=_(%+, �+) =
"40=_%+
"40=_�+

(7.101)

'C8<4_(%+, �+) =
)C8<4_%+
)C8<4_�+

(7.102)

'C8<4_(�+, �%) =
)C8<4_�+
)C8<4_�%

(7.103)
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Table 7.2 Final set of acoustic features.

Features Functions No. of features
Pitch Mean,var,std 3
Harmonic-to-noise ratio Mean,var,std 3
Noise-to-harmonic ratio Mean,var,std 3
Shimmer (six scales) Mean,var,std 18
Jitter (five scales) Mean,var,std 15
Number of voice breaks Mean,var,std 3
Fractions of locally unvoiced frames Mean,var,std 3
Degree of voice breaks Mean,var,std 3
Number of voice breaks Mean,var,std 3
Number of periods Mean,var,std 3
Auto_correlation Mean,var,std 3
Number of pulses Mean,var,std 3
MFCC Min,max,skewness,kurtosis,mean,var,std 7
Fbank) Min,max,skewness,kurtosis,mean,var,std 7
SSC Min,max,skewness,kurtosis,mean,var,std 7
Intensity Mean,var,std 3
F1(Hz) Mean,var,std 3
Intensity at F1 Mean,var,std 3
B1(Hz) bandwidth_F1 Mean,var,std 3
F2(Hz) Mean,var,std 3
Intensity at F2 Mean,var,std 3
B2(Hz) bandwidth_F2 Mean,var,std 3
ZCR Mean,var,std 3
Energy Mean,var,std 3
Energy_entropy Mean,var,std 3
Spectral_centroid Mean,var,std 3
Spectral_spread Mean,var,std 3
Spectral_flux Mean,var,std 3
Spectral_rolloff Mean,var,std 3
Spectral_entropy Mean,var,std 3
New developed features Mean,var,std, ratio, difference 99
Total 228

'C8<4_(%%, %+) =
)C8<4_%%
)C8<4_%+

(7.104)

These features are an additional measurement of speaking behaviour tend to capture depres-

sion effect on speech and they will be investigated in the following sections for their usefulness

in detecting depression.

In addition to the above mentioned features, also features from the previous chapters 5 and

6 will be included. Table 7.2 list all features used in our proposed depression evaluation system.
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Table 7.3 AVEC-2013 t-test statistical significance. STD: Standard deviation, VAR: Variance,
DF: Degree of freedom,class(0) n=26, class(1) n =24.

Rank Features t-test DF P-Value
1 Mean-mean-harmonics-to-noise-ratio 3.663 48 0.001
2 Mean-minimum-pitch 3.492 48 0.001
3 Mean-mean-pitch 3.249 48 0.002
4 Mean-median-pitch 3.244 48 0.002
5 Mean-mean-autocorrelation 3.045 48 0.004
6 VAR_spectral_spread 2.82 48 0.007
7 STD_spectral_spread 2.808 48 0.007
8 Mean_Pitch 2.755 48 0.008
9 Mean-turn-length 2.675 48 0.01
10 Mean_B1Hz -2.649 48 0.011
11 Mean-maximum-pitch 2.622 48 0.012
12 R"40=(�%,�+)_(+%) -2.608 48 0.012
13 VAR-mean-period -2.443 48 0.018
14 R<40=(�+,�%)_(+%) -2.417 48 0.02
15 STD-mean-period -2.3 48 0.026
16 STD_FBANK -2.271 48 0.028
17 STD-turn-length 2.263 48 0.028
18 VAR_FBANK -2.255 48 0.029
19 R) (�%,�+)_(+%) 2.216 48 0.031
20 T#>_(�+,�%) 2.13 48 0.038
21 R(C8<4,#>)_(�+,�%) -2.055 48 0.045
22 STD_B1Hz -2.05 48 0.046
23 R(<40=,=>)_%% 2.027 48 0.048
24 RC8<4_(�%, %%) 2.027 48 0.048

7.2.2 Statistical analysis

7.2.2.1 AVEC2013

Table 7.3 list the results of the independent sample t-test, and only for features that have a 95%

significance level in mean differences between healthy and depressed participants. The com-

parison shows that seven variables from the newly derived set have significant mean difference

and Fig 7.3 shows the distribution of these features cross the two compared groups. The feature

"R"40=(�%,�+)_(+%)" which is the ratio of sum of the mean time of both active voice and active

pause segments to the total recording time.

This indicate if some one speaking more than his average and he/she produce pauses less

than his/her average, then he/she will likely to be normal and not depressed. According to this
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Figure 7.3 AVEC-2013 the distributions of the new most significance features based on the
t-test.

variable, the average value for the normal group was 0.6 compared to 0.5 for depressed group.

The "R<40=(�+,�%)_(+%)" measures the ratio of the sum for the mean for both cross voice

and cross pause segments to the total time. This means if someone produce more pauses than

his average utterances and speaks more than his average pauses is likely to be depressed. The

mean value for the depressed class was 0.03 while the mean for normal subjects was 0.008.

The third significant feature is "R) (�%,�+)_(+%)", which estimate the ratio of the sum for

both total times for active voice and active pause segments time to the mean of both voices

and pauses time. The high value for this feature indicate normal state, it describes that the

individual utterances above his mean speech combined with his pauses time below his average

pauses time. The normal group ratio was 161.9 compared to 130.6 for the patients group.

The fourth important feature was "T#>_(�+,�%)" this is the total number of all cross pause

and cross voice segments. The higher value in this dataset indicate depression state. For this
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feature, the average number of segments for the depressed group was 3.86 compared to 3.13

for normal subjects. However, the R(C8<4,#>)_(�+,�%) feature, which is dividing the total time

for cross voices and cross pauses segments time by "T#>_(�+,�%)" will indicate the opposite,

larger number means no depression. The healthy subjects average value was 191.3 compared to

151.1 for patients class.

The "R(<40=,=>)_%%" feature compute the ratio of average passive pauses time to the number

of passive pauses segments. Larger value may refer as depression condition. The average value

for this feature was 0.007 for the normal class, and 0.011 for depressed patients.

The last significant feature is "RC8<4_(�%, %%)" compute the ratio of the total time for active

pause segments to the total time for passive voice segments. The high value was for the healthy

subjects at 1.6 compared to 1.5 for the patients group, this might reflect shorter pauses even

though voice segments may no be the dominant segments.

This statistical results indicate that these features have useful information and could be used

in characterising behaviour in speech associated with depression. However, this needs further

investigation when performing the feature selection step in the model evaluation, as this step

will select features based on their contribution to the classification accuracy, thus other features

maybe selected and/or overlapped compared to the two approaches.

7.2.2.2 AVEC2014

The t-test results for the AVEC-2014 were listed in Table 7.4. Although more samples are

available in AVEC-2014 compare to AVEC-2013, only two variables from the newly developed

features had a significance mean difference, whereas in AVEC-2013 seven from the new feature

set had statistical mean significance. Fig 7.4 shows the distribution of these new features with

significance value. This may due to the fact that the AVEC-2014 verbal tasks were shorter in

times (mean=52.6 sec) compared to AVEC-2013 (mean= 845.6), thus shorter speech may not

provide enough time for the new features to capture a behaviour. The "Mean38 5 _�+" feature

measure the absolute difference between the mean of active voice segments time and the av-

erage voice segments time. Larger value indicate the subject is an active speaker and produce

much larger utterances compare to his average voice segments. The normal group have average

value of 0.49 compared to 0.34 for depression patients. The last feature is "R<40=_�%" which

compute the ratio of mean pause time to the average cross pauses time. This variable estimate if
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Table 7.4 AVEC-2014 t-test statistical significance. Class(0) n=52, class(1) n =48

Rank Features t-test DF P-Value
1 VAR_spectral_spread -3.26 98 0.002
2 STD_spectral_spread -3.12 95.8 0.002
3 STD_FBANK 2.53 75.7 0.013
4 Mean_F2Hz 2.47 98 0.015
5 Mean_number_of_pulses -2.29 98 0.024
6 Mean_number_of_periods -2.28 98 0.024
7 VAR_BANK 2.56 98 0.026
8 std_F1Hz 2.2 97.7 0.03
9 Mean_B1Hz 2.05 97.9 0.042
10 Mean38 5 _�+ -2.01 84.9 0.047
11 R<40=_�% -2.02 61.16 0.047
12 Mean_maximum_pitch -1.99 98 0.049

someone had mean pause time higher than value. This value represents the mean of only pauses

that are above his average voice segments, this person probably have no depression. The mean

for normal group was 0.37 and 0.16 for patients group.

7.2.2.3 DAIC-WOZ

The t-test features’s significance for the DAIC-WOZ dataset are listed in Table 7.5, and only

twelves features that have a significance mean difference between normal/depressed subjects.

Similar to AVEC-2013, seven features (58% from the whole list) were from the new derived

feature set. Fig 7.5 shows the distribution of the new seven features cross the normal and

depressed classes.

The first significant feature is RE0A_%% which is estimate the ratio of variance time for

mean pause segments to the variance of passive pause segment times. Class 0 have smaller

mean of 0.77 compare to patients group mean ratio of 0.99. The second "VAR38 5 _%%" and

the third feature "STD38 5 _%%" measuring the absolute difference value between the variance

and the standard deviation respectively for pauses and passive pause segments time. In contrast

to the first feature, higher values were for the normal group at 0.46, 0.18 respectively for the

second and third features compared to 0.12,0.09 for the patients. The forth and the fifth signif-

icant features are "R(<40=,=>)_%%" and "RC8<4_(�%, %%)" which both were also significant in

AVEC-2013 datsets, the normal group have mean value of 1.89,0.89 for the "R(<40=,=>)_%%"

and "RC8<4_(�%, %%)" respectively, whereas patients group have mean values of 1.78 fourth
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Figure 7.4 AVEC-2014 the distributions of the new most significance features based on the
t-test.

Table 7.5 DAIC-WOZ t-test significance features. Class(0) n=77, class(1) n =30.

Rank Features t-test DF P-Value
1 Mean-Number-of-voice-breaks 3.061 102.105 0.003
2 RE0A_%% -2.668 105 0.009
3 VAR38 5 _%% 2.398 89.359 0.019
4 Mean-Number-of-pulses 2.353 96.361 0.021
5 Mean-Number-of-periods 2.324 95.945 0.022
6 STD38 5 _%% 2.315 104.938 0.023
7 Kort_FBANK -2.331 37.410 0.025
8 R(<40=,=>)_%% 2.207 105 0.029
9 RC8<4_(�%, %%) 2.207 105 0.029
10 RE0A_�+ -2.098 105 0.038
11 R=>_(�%, %%) 2.084 98.104 0.040
12 STD- Number- of- voice-breaks 2.030 73.969 0.046
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Figure 7.5 AVEC-2016 the distributions of the new most significance features based on the
t-test.
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and 0.78 fifth features.

The "RE0A_�+" is the sixth important features. It is the ratio of time variance for voice seg-

ments to variance of cross voice segments time. Normal subjects mean value was 0.9 compared

to 1.15 for depression patients. The last significant feature from the new developed variable is

"R=>_(�%, %%)". This feature estimate the ratio of the total number of active pause segments

to the total number of passive pause segments. Higher value found in healthy group with mean

of 2.1 compared to 1.8 for depression patients.

7.2.3 Results

7.2.3.1 AVEC-2013

Two approaches were adopted to perform the depression evaluation task. The first approach is

an audio-based regression model aims to predict the clinical test scores associated with each

speaker’s recording, and the second model is an audio-based classifier that identifies those

speakers that suffer from depression from others with minimal or no depression. The three

data partitions from the AVEC-2013 were used to build the two models. The model is fitted

with samples from the training set and evaluated two times. Firstly, against samples from the

development set and secondly, with recordings from the test set and this scenario was iterated

several times. Each time model is optimised with a set of parameters known as the tuning pa-

rameters. Until exhausting all those variables, the best configuration of tuning variables which

provide the maximum performance is selected. The GBC and GBR algorithms [256] were used

to build the two approaches, and the built-in feature importance was utilised to help select the

most informative features. Table 7.6 lists the most informative features.

The performances of the classification and regression models listed in Table 7.7. The pro-

posed model outperformed both modalities of the baseline performances in predicting BDI-

scores. The baseline audio model have (MAE, RMSE) of (8.6, 10.7), and (10.3, 14.1) estimated

for the development and test sets respectively, while the proposed model predicting (MAE,

RMSE) errors at (6.6, 8.9) Fig and (6.8, 8.7) for the development and test sets respectively. The

proposed model performance was also better than the baseline video model which have (MAE,

RMSE) of (8.7,10.7), and (10.8,13.1) for development and test sets respectively. Another design

also tested, in which the the samples for both training and development sets were concatenated
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Table 7.6 AVEC-2013 ranked features

Rank Significant features Weight Rank Significant features Weight
1 Mean -Mean_HNR 0.024368 29 RT(PV,PP)_(V P) 0.005889
2 Mean -Median pitch 0.017486 30 STD -Jitter (local_absolute) 0.005824
3 Mean -Mean pitch 0.015462 31 Mean -Jitter (ppq5) 0.005682
4 Mean_Pitch 0.014202 32 No_P 0.005358
5 Mean -Minimum pitch 0.013474 33 var_spectral_spread 0.00534
6 Mean -Mean autocorrelation 0.012871 34 T_(No)_(AV,PP) 0.005325
7 T_No_(CV,CP) 0.010908 35 std_spectral_rolloff 0.005269
8 Mean turn length 0.00988 36 VAR_V 0.004964
9 R_(Mean(AP,AV)_(VP) 0.009055 37 Var -Mean_ HNR 0.004919

10 STD -Minimum pitch 0.008613 38 T_(time}_(CV,CP) 0.004911
11 STD -Median pitch 0.008543 39 No_V 0.00491
12 STD turn length 0.008277 40 R_(R_time,R_No)_(CV,CP) 0.004907
13 Var -Mean period 0.008213 41 var_spectral_entropy 0.004906
14 std_FBANK 0.007783 42 VAR_(dif)_PP 0.004835
15 Var -Minimum pitch 0.007493 43 No_AP 0.004734
16 Var turn length 0.007415 44 Mean_(dif)_PP 0.004634
17 std_spectral_entropy 0.007176 45 R_(time,No)_(CV,CP) 0.004626
18 std_spectral_spread 0.007105 46 Mean_B1(Hz) 0.004618
19 Mean -Jitter (local) 0.007049 47 STD -Mean autocorrelation 0.004507
20 R_mean(AV,PP)_(V P) 0.007008 48 Mean -Mean _NHR 0.004499
21 Var -Median pitch 0.007002 49 Var -Mean autocorrelation 0.004423
22 STD -Mean period 0.006922 50 Mean_energy_entropy 0.004331
23 VAR -Mean NHR 0.006835 51 Mean_P 0.004323
24 P_(max)R_T(VP) 0.006618 52 Var -Number of pulses 0.004285
25 No_PP 0.006398 53 R_(time)_(AP,PP) 0.004259
26 T_(time)_AP 0.006397 54 VAR_PP 0.004246
27 STD -Shimmer (apq5) 0.006186 55 Min_SSC 0.004184

28 Var_FBANK 0.006183 56
Mean -Fraction of locally
unvoiced frames 0.004159

and used to fit the model. Likewise, the model optimised and evaluated as explained above, a

better results were achieved, as the model (MAE, RMSE) prediction errors dropped to 6.2 and

8.4, respectively. This improvement was expected, due to the fact that model trained with larger

samples 100 vs 50 compared to the previous configuration, so the model learned more from the

extra number of samples and therefore performed better.

Using only the new developed features was also investigate, and the results of the proposed

model are shown in Fig 7.6. The results were also better than both of the baseline models, the

MAE= 7.4, RMSE=10.1 for the development, and MAE=7.8 and RMSE= 10.06 for the test set,

this indicate that these features have considerable impact on the performance of the model.
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Table 7.7 AVEC-2013 full results comparison with baseline.

Method Modality Train test Test set MAE RMSE ACC.% F1_Score Precision Recall Confusion Matrix
Audio Train Dev 8.66 10.75 N/A N/A N/A N/A N/A
Video Train Dev 8.74 10.72 N/A N/A N/A N/A N/A
Audio Train Test 10.35 14.12 N/A N/A N/A N/A N/A

Baseline [245]

Video Train Test 10.88 13.16 N/A N/A N/A N/A N/A
Williamson [179] Audio Train Test 5.75 7.4 N/A N/A N/A N/A N/A

Audio Train Dev 9.7 11.5 N/A N/A N/A N/A N/A
Audio-Video Train Dev 6.94 8.54 N/A N/A N/A N/A N/AMeng [180]
Audio-Video Train Test 8.72 10.96 N/A N/A N/A N/A N/A
Audio Train Dev N/A 10.44 N/A N/A N/A N/A N/A

Cummins [182]
Audio Train Test N/A 10.17 N/A N/A N/A N/A N/A
Audio Train Dev N/A 7.4 N/A N/A N/A N/A N/A

Cummins [183]
Audio Train Test N/A 9.49 N/A N/A N/A N/A N/A

Zhu [197] Video Train Test 7.58 9.82 N/A N/A N/A N/A N/A
Kaya [184] Audio-Video Tain Test 7.84 10.22 N/A N/A N/A N/A N/A

Audio Train Dev 9.35 11.4 N/A N/A N/A N/A N/A
Video Train Dev 7.03 8.82 N/A N/A N/A N/A N/A
Audio-Video Train Dev 8.3 9.94 N/A N/A N/A N/A N/A
Audio Train Test 10.35 14.12 N/A N/A N/A N/A N/A
Video Train Test 8.97 10.82 N/A N/A N/A N/A N/A

Kachele [186]

Audio-Video Train Test 8.72 10.96 N/A N/A N/A N/A N/A
21 5Audio Train Dev 6.6 8.9 84

0.84
(0.84/0.84)

0.84
(0.88/0.81)

0.84
(0.81/0.88) 3 21

20 5Audio Train Test 6.8 8.7 82
0.82

(0.82/0.82)
0.82

(0.83/0.81)
0.82

(0.84/0.80) 4 21
24 1

Proposed

Audio Train+Dev. Test 6.2 8.4 86
0.86

(0.87/0.84)
0.88

(0.80/0.95)
0.86

(0.96/0.76) 6 19

The second model that was proposed is a binary classification procedure, in which the aim

was to discriminate participant’s class, either class 0 (i.e. no/or minimal depression) or 1 de-

pressed condition. Unfortunately, there were no baseline performances for this task as the aim

of the challenge was BDI scores prediction. The proposed classification model achieved accu-

racy of 84% and 82% computed for the development and test sets respectively; however, this

accuracy increased to 86% when fitting the model with a combination of training and devel-

opment data. Further, other evaluation metrics scores were estimated, including the F1_scores,

precision and recall per each class and as well as weighted average score, and listed in Table

7.7. The sensitivity and specificity also computed for the three configurations (test vs develop-

ment, test and both combined) and obtained scores of (84%,87%), (80%, 84%) and (96%, 76%)

respectively. Finally the confusion matrix was estimated (the values in blue refer to the correct

normal class prediction, the values in green are the correct depression class prediction, while

the red values represents all missed classification)

7.2.3.2 AVEC2014

Similar to AVEC-2013, the the same evaluation approach was used to compute the performance

of the two models classification and regression and Table 7.8 shows the most significant fea-
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Figure 7.6 AVEC-2013 results comparison with model built using only the new features

tures. However, with this dataset there are two short-verbal tasks the NW and the FF, and base

on that, several approaches were investigated includes using them as separate or combined to

build and evaluated the proposed models. This approach will also shows which verbal task is

more informative in detection and estimating depression severity. The results listed in Table

7.9.

The baseline results for the audio model were MAE=8.9, RMSE=11.52 for the develop-

ment set and MAE=10.03, RMSE=12.56 for the test set. The proposed model achieved better

results, the MAE, RMSE were 7.1,9.4 for the development set and 7.1,9.4 for the test set. In

fact the developed model even achieved better results than the baseline video and combined

audio-video modalities except for the combined development model which were better than

the proposed model with MAE, RMSE scores at 6.68,8.34 respectively. However, training and

testing using the NW and FF tasks separately, the developed model outperformed all baseline

modalities including the combined audio-video, the NW task model achieved better scores at

6.5,8.7 (MAE,RMSE) for the development and 5.8,8.2 for the test, while FF task-base model

scores were 6.8,97 and 6.5,9.8 for the development and test sets respectively. A slightly better

results were produced when combined both the training and development samples and evaluate

the model performance, in this case the model achieved MAE = 7.26 and RMSE = 9.85, this

improvement because the model trained with 200 samples instead of 100 samples from just the
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Table 7.8 AVEC-2014 ranked features

Rank Significant features Weight Rank Significant features Weight
1 Mean_B1(Hz) 0.000913 34 Skew_MFCC 0.000239
2 Mean_energy_entropy 0.000804 35 Mean_spectral_spread 0.000239
3 Mean_T_intensity 0.000788 36 Mean_F1(Hz) 0.000238
4 Mean -Mean period 0.000787 37 STD -Shimmer (local_ dB) 0.000234
5 Mean_MFCC 0.000774 38 STD_SSC 0.000229
6 Mean_SSC 0.000752 39 No_(dif)_(AV,PP) 0.000215
7 R(mean,no)_CV 0.000618 40 STD -Standard deviation 0.000205
8 STD_I2 0.0006 41 Mean_energy 0.000199
9 R_(R_time,No_dif)_(CV,CP) 0.000596 42 Kort_MFCC 0.000198
10 Mean_I1 0.000583 43 VAR -Mean NHR 0.000197
11 R_(var)_AV 0.000573 44 VAR_MFCC 0.000195
12 VAR -Standard deviation of period 0.000562 45 Mean_P 0.000192
13 VAR_FBANK 0.000488 46 VAR -Standard deviation 0.000186
14 STD_T_intensity 0.000472 47 STD_spectral_flux 0.000179
15 Mean -Shimmer (apq5) 0.000449 48 Mean -Degree of voice breaks 0.000178
16 STD_FBANK 0.000449 49 VAR_spectral_entropy 0.000166
17 Mean_Pitch 0.000426 50 VAR_spectral_flux 0.000165
18 Mean -Mean autocorrelation 0.000409 51 STD_(dif)_PP 0.000161
19 STD -Shimmer (apq5) 0.000402 52 Skew_FBANK 0.00016
20 VAR_B2(Hz) 0.000399 53 Kort_FBANK 0.000159
21 Min_SSC 0.000396 54 Mean_AP 0.000159
22 VAR_T_intensity 0.000391 55 VAR -Mean period 0.000158
23 Mean_spectral_flux 0.000342 56 STD_MFCC 0.000149
24 STD -Standard deviation of period 0.000312 57 Mean_spectral_rolloff 0.000149
25 VAR -Shimmer (apq5) 0.000308 58 T_(No)_(CV,CP) 0.00014
26 Mean_F2(Hz) 0.000305 59 VAR_Pitch 0.000131
27 VAR -Degree of voice breaks 0.000296 60 STD_B2(Hz) 0.000126
28 VAR_SSC 0.000288 61 VAR_P 0.000126
29 STD -Mean NHR 0.000277 62 No_CV 0.000126
30 STD -Degree of voice breaks 0.000268 63 STD -Mean_HNR 0.000125
31 Mean -Shimmer (local_ dB) 0.00026 64 R_mean(AV,PP)_(V P) 0.000125
32 Mean -Fraction of locally unvoiced frames 0.000251 65 R_(No)_(CV,CP) 0.000125
33 Mean_B2(Hz) 0.000242 66 Kort_SSC 0.000124

67 R_(time)_(PV,AV) 0.000124

train set. Likewise in AVEC-2013, the performance of the proposed model also computed using

only features from the new developed set, the results are shown in Fig 7.7. The results were

better than the baseline models for the test set, the MAE= 7.8, RMSE=10.2, and only better

in the development for the audio model at MAE=7.9 and RMSE=10.1 and these were lower

compared to the the video baseline results. This evidence also showing the usefulness of these

features in terms of depression evaluation.

In terms of binary classification approach normal vs. depressed, the models accuracies were

82% and 77% for the development and test sets respectively. Similarly, the better results also

was with NW task base model with an accuracy of 84% (for the development) and 90% (for
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Table 7.9 AVEC-2014 comparison with baseline results.

Method Modality Train
Set

Test
Set MAE RMSE Acc. % F1_Score Precision Recall Conf.

Matrix

Audio Train
(NW+FF)

Dev.
(NW+FF) 8.93 11.52 N/A N/A N/A N/A N/A

Video
Train

(NW+FF)
Dev.

(NW+FF) 7.57 9.31 N/A N/A N/A N/A N/A

Audio-Video
Train

(NW+FF)
Dev.

(NW+FF) 6.68 8.34 N/A N/A N/A N/A N/A

Audio Train
(NW+FF)

Test
(NW+FF) 10.03 12.56 N/A N/A N/A N/A N/A

Video
Train

(NW+FF)
Test

(NW+FF) 8.85 10.85 N/A N/A N/A N/A N/A
Baseline
[246]

Audio-Video
Train

(NW+FF)
Test

(NW+FF) 7.89 9.89 N/A N/A N/A N/A N/A

24 2
Audio

Train
NW

Dev.
NW

6.5 8.7 84
0.84

(0.86/0.82)
0.85

(0.8/0.9)
0.84

(0.92/0.75) 6 8
25 0

Audio
Train
NW

Test
NW

5.8 8.2 90
0.9

(0.9/0.8)
0.92

(0.83/1.0)
0.9

(1.0/0.8) 5 20
19 7

Audio
Train

FF
Dev.
FF

6.8 9.7 82
0.82

(0.81/0.83)
0.83

(0.9/0.76)
0.82

(0.73/0.92) 2 22
20 5

Audio
Train

FF
Test
FF

6.5 9.8 80
0.80

(0.8/0.8)
0.80

(0.8/0.8)
0.80

(0.8/0.8) 5 20
43 5Audio Train

(NW+FF)
Dev.

(NW+FF)
7.1 9.4 82 0.82

(0.80/0.84)
0.83

(0.88/0.78)
0.82

(0.73/0.90) 18 34
40 10Audio Train

(NW+FF)
Test

(NW+FF)
7.1 9.1 77 0.77

(0.78/0.76)
0.77

(0.75/0.79)
0.77

(0.80/0.74) 13 37
19 6

Audio
Train+Dev.

(NW)
Test

(NW)
6.1 8.6 84

0.8
(0.83/0.86)

0.85
(0.90/0.80)

0.84
(0.76/0.92) 2 24

15 10
Audio

Train+Dev.
(FF)

Test
(FF)

6.9 9.7 78
0.77

(0.73/0.81)
0.82

(0.94/0.70)
0.78

(0.60/0.96) 1 24
34 16

Proposed

Audio Train+Dev.
(NW+FF)

Test
(NW+FF)

7.26 9.85 77 0.77
(0.75/0.79)

0.78
(0.83/0.73)

0.77
(0.68/0.86) 7 43

Table 7.10 Depression evaluation with AVEC-2014 corpus comparison to the literature.

Author MAE RMSE Accuracy F1_score Precision Recall

Baseline [246] Audio

Video

Dev 8.93
Test 10.03

Dev. 11.52
Test. 12.56 N/A N/A N/A N/A

Dev 7.57
Test 8.85

Dev 9.31
Test 10.85 N/A N/A N/A N/A

Mitra [188] Dev 5.87 Dev 7.37 N/A N/A N/A N/A
Pampouchidou [189] N/A N/A Dev 66.0 0.72 (weighted) 0.94 (weighted) 0.59 (weighted)

Morales [190] Dev 7.56 Dev 9.21 N/A N/A N/A N/A
Zhu [197] Test 7.47 Test 9.55 N/A N/A N/A N/A

Simantirakiet [187] Dev1: Free-from
Dev2: Northwind

Dev1 7.2
Dev2 7.6

Dev1 8.9
Dev2 9.6 N/A N/A N/A N/A

Pérez [196] Meta-model
Audio-model

Dev 8.99
Dev 9.35

Dev 10.82
Dev 11.9 N/A N/A N/A N/A

Proposed approach Dev 7.25
Test 7.1

Dev 9.4
Test 9.4

Dev 82.0
Test 80.0

Dev 0.82 (0.73/0.90)
Test 0.80 (0.80/0.80)

Dev 0.83 (0.88/0.78)
Test 0.80 (0.80/0.80)

Dev 0.82 (0.73/0.90
Test .80 (0.80/0.80)

the test) compared to 82%(development) and 80%(test) for the FF task model. However, there

were no baseline classification scores were reported.

7.2.3.3 AVEC-2016

In the AVEC-2016 the baseline results were provided in terms of MAE and RMSE for predicting

PHQ scores and F1-score, precision and recall for the classification task between healthy and
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Figure 7.7 AVEC-2014 results comparison with model built using only the new features

depressed patients. Likewise in AVEC-2013 and AVEC-2014, similar approach was adopted

for taring and testing a model with the three partitions. Table 7.11 presents the top ranked

features as selected by the feature importance process. With this dataset the two proposed

models (regression and classification) were superior to the baseline results. Tables 7.12 list

PHQ prediction performance, 7.13 shows the classification scores and Table 7.14 compares the

results with baseline.

The baseline for audio model that predict PHQ scores achieved (MAE, RMSE) of 5.36, 6.74

and 5.72, 7.78 for the development and test sets respectively, while the proposed model scores

3.6, 5.0 and 4.0, 5.3 which means lower error in predicting PHQ for both development and

test parts. These results were also better than the baseline video (development =5.88, 7.13 and

test=6.12, 6.97) and ensemble (development=5.52, 6.62 and test=5.66, 7.05) modalities.

Using only features from the new developed set, the results are shown in Fig 7.9. The results

were also better than both of the baseline models, the MAE= 4.0, RMSE=5.2 for the develop-

ment, and MAE=4.3 and RMSE= 5.6 for the test set, and as reported earlier these features plays

a major role in improving the performance of the proposed depression evaluation system. The

classification performance were also higher than the baseline and for all modalities. The re-

call metric for the baseline audio were (development, test) (0.85, 0.88), video = (0.42, 0.77)

and ensemble = (0.42, 0.77) compared to the proposed audio model obtained recall of 0.91 for
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Table 7.11 AVEC-2016 ranked features

Rank Significant features Weight Rank Significant features Weight
1 R_VAR_PP 0.013023 37 Mean -Standard deviation of period 0.00461
2 Kort_FBANK 0.009923 38 Mean -Mean period 0.004605
3 Skew_FBANK 0.008672 39 VAR -Jitter (ppq5) 0.004605
4 Mean -Number of voice breaks 0.0085 40 Max_SSC 0.004469
5 VAR -Number of voice breaks 0.007001 41 VAR -Maxmimum pitch 0.00446
6 R_time_(AP,PP) 0.006959 42 STD_energy_entropy 0.004448
7 R_no_(AP,PP) 0.00633 43 VAR_energy_entropy 0.004396
8 R_(mean,no)_PP 0.006214 44 STD -Number of pulses 0.004395
9 VAR -Number of pulses 0.006058 45 T_time_PV 0.004372

10 R_no_(PV,AV) 0.006033 46 VAR_F1(Hz) 0.004371
11 R_(T_dif,No_dif)_(AV,PP) 0.005932 47 STD -Shimmer (dda) 0.004346
12 Mean -Mean HNR 0.005673 48 STD -Jitter (ddp) 0.004345
13 VAR -Number of periods 0.005667 49 R_(time,No)_(AV,PP) 0.004337
14 Mean -Minimum pitch 0.005661 50 VAR_B2(Hz) 0.004282
15 Kort_MFCC 0.005621 51 T_time_(CV,CP) 0.004236
16 STD -Number of voice breaks 0.005594 52 VAR_SSC 0.00422
17 STD -Median pitch 0.005535 53 Mean -Number of periods 0.004184
18 STD -Minimum pitch 0.005422 54 R_no_PP 0.004166
19 VAR -Jitter (ddp) 0.005353 55 STD -Mean_HNR 0.004155
20 VAR -Median pitch 0.005345 56 STD -Jitter (rap) 0.004134
21 VAR -Minimum pitch 0.005283 57 VAR -Mean_HNR 0.004134
22 Mean -Number of pulses 0.005258 58 R_No(AP,AV)_(VP) 0.00409
23 Mean -Mean NHR 0.005257 59 STD_dif_AV 0.004058
24 VAR -Jitter (local) 0.005248 60 Mean_SSC 0.003942
25 R_Mean(AP,AV)_(VP) 0.005218 61 P_maxR_T(VP) 0.003905
26 STD -Number of periods 0.005172 62 Mean -Mean pitch 0.00387
27 Min_MFCC 0.005079 63 STD -Shimmer (apq3) 0.003852
28 Mean_F1(Hz) 0.004979 64 VAR -Jitter (rap) 0.003842
29 STD_F1(Hz) 0.004951 65 VAR -Shimmer (dda) 0.003836
30 STD -Maxmimum pitch 0.004913 66 No_dif_(AV,PP) 0.003794
31 Mean_Pitch 0.00487 67 STD turn length 0.003777
32 VAR turn length 0.004808 68 R_VAR_CP 0.003766
33 \Mean_spectral_spread 0.004728 69 Mean -Jitter (local_absolute) 0.003735
34 Mean -Degree of voice breaks 0.004699 70 Skew_MFCC 0.003733
35 No_CV 0.004656 71 R_(T_dif,R_No)_(CV,CP) 0.00373
36 R_VAR_AV 0.004639 72 VAR_B1(Hz) 0.00371

the development and 0.87 for the test set. The classification accuracy were also promising at

90.9% for development and 87.2% for the test. Models developed with this dataset have better

performances compared to the models built using the AVEC-2013 and AVEC-2014, this may

due to the nature of the task which in AVEC-2016 was more demanding and required additional

interactions (semi-structured conversation) compared to the normal (AVEC-2013) and shorter

tasks(AVEC-2014).
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Table 7.12 DAIC-WOZ PHQ prediction performance.

Training set Test set MAE RMSE
Training Development 3.6 5.0
Training Test 4.0 5.3
Training + Development Test 4.1 5.2

Table 7.13 DAIC-WOZ depression classification performance.

Training
set

Testing
set

Accuracy
(%) F1_Score Precision Recall Confusion

matrix
22 0

Training Development 90.91
0.90

(0.94 /0.84 )
0.92

(0.88 /1.00 )
0.91

(1.00 /0.73 ) 3 8
32 1

Training Test 87.2
0.87

(0.91 /0.75 )
0.88

(0.86 /0.90 )
0.87

(0.97 /0.64 ) 5 9
32 1Training +

Development
Test 85.1

0.84
(0.90/0.70)

0.86
(0.84 /0.89 )

0.85
(0.97 /0.57 ) 6 8

Table 7.14 Depression evaluation with DAIC-WOZ corpus comparison to the literature.

Author MAE RMSE Accuracy F1_score Precision Recall

Base line [247] Audio

Video

Ensemble

Dev 5.36
Test 5.72

Dev. 6.74
Test. 7.78 N/A

Dev 0.46 (0.68 normal)
Test 0.41 (0.58)

Dev 0.31 (0.93 normal)
Test 0.26 (0.94)

Dev 0.85 (0.54 normal)
Test 0.88 (0.42)

Dev 5.88
Test 6.12

Dev 7.13
Test 6.97 N/A

Dev 0.50 (0.86 normal)
Test 0.58 (0.85)

Dev 0.60 (0.86 normal)
Test 0.46 (0.93)

Dev 0.42 (0.92 normal)
Test 0.77 (0.79)

Dev 5.52
Test 5.66

Dev 6.62
Test 7.05 N/A

Dev 0.50 (0.89 normal)
Test 0.58 (0.85)

Dev 0.60 (0.86 normal)
Test 0.46 (0.93)

Dev 0.42 (0.92 normal)
Test 0.77 (0.79)

Yang [198]
Dev 3.98
Test 5.16

Dev. 4.65
Test. 5.97 N/A N/A N/A N/A

Al Hanai [200]
test only with development

Dev 4.97
Dev 5.10

Dev 6.27
Dev 6.37 N/A

Dev 0.43
Dev 0.77

Dev 0.43
Dev 0.71

Dev 0.43
Dev 0.83

Ma [201]
development set only N/A N/A N/A

0.52 (depressed)
0.70 (normal)

0.35
1.00

1.00
0.54

Williamson [199]
development set only 4.18 5.31 mean (0.81) N/A N/A

Proposed approach
Dev 3.6
Test 4.0

Dev 5.0
Test 5.3

Dev 90.91
Test 87.2

Dev 0.90 (0.94/0.84)
Test 0.87 (0.91/0.75)

Dev 0.92 (0.88/1.00)
Test 0.88 (0.86/0.90)

Dev 0.91 (1.00/0.73)
Test 0.87 (0.97/0.64)

7.2.3.4 Language agnostic depression evaluation

To investigate the feasibility of developing a cross-language depression screening tool, and

by using the previously proposed models, two scenarios will be examined. The first scenario

"SCE-1" will merge all training and development partitions from AVEC-2013, AVEC-2014 and

AVEC-2016 into one training part noted as "COM-TR". Then COM-TR is used for building

GBC, and GBR models and these models will be evaluated using the three left test parts. The

second scenario "SCE-2" will combine all the test sets from all three datasets into one testing

part "COM-TS" and used "COM-TR" as a training test. Fig. 7.9 shows the results for both

scenarios compared to the previous models in estimating depression severity. There were im-
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Figure 7.8 AVEC-2016 results comparison with model built using only the new features
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Figure 7.9 All proposed models GBR performances

provements in computing the (MAE, RMSE) for the SCE-1, they both optimised to (5.9, 8)

and (3.8, 5) compared to (6.8, 8.7) and (4, 5.3) from the previous AVEC-2013 and AVEC-2016

models respectively. However, there were no improvements in the AVEC-2014, as the MAE

remained the same at 7.1, and RMSE was slightly worsened at 9.5 in SCE-1 compared to 9.4.

While MAE and RMSE for SCE-2 were 6.9 and 8.9 respectively.
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Figure 7.10 All proposed models GBC performances

In terms of GBC performance, in SCE-1 Fig 7.10 shows the classification performances for

all the proposed models. This time the SCE-1 depression classification accuracies were 90%,

81% and 87% compared to 82%, 77% and 87% for the AVEC-2013, AVEC-2014 and AVEC-

2016 respectively. Only for AVEC-2016 dataset, the accuracy were similar compared to the

previous model. While in SCE-2 the accuracy was 80%.

7.3 Discussion
The results from these experiments were promising and support the hypothesis of using only

acoustic features to identify depression and estimate and its severity. The newly derived features

improved the results as they appear to be of significant values in capturing speech behaviours

associated with depression. Table 7.6 list the 56 most important features for AVEC-2013 cor-

pus. These features were selected by the Gradient boosting algorithm using the built-in feature

importance, this process performed during the model training with the train set. In this list, there

were 20 features from the newly developed variables, and as expected earlier, four of which had

overlapped with the features from Table 7.3 of statistically significant features.

Comparing the results to other studies from the literature (listed in Table 7.15). The pro-

posed model outperformed the study conducted by Meng et al. [180], the authors used audio,

and ensemble approaches and their best results (MAE, RMSE) were 6.94, 8.54 and 8.72, 10.96
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Table 7.15 Proposed models performances compared to the literature.

Study Dataset Dev. set Test set
MAE RMSE MAE RMSE

Meng et al. [180]

AVEC2013

6.94 8.54 8.72 10.96
Kaya et al. [184] n/a n/a 7.84 10.22
Zhu et al. [197] n/a n/a 7.58 9.82
Cummins et al. [182] n/a 10.44 n/a 10.17
Kachele et al. [186] 7.03 8.82 8.72 10.96
Williamson et al. [179] n/a n/a 5.57 7.4
Proposed1 6.6 8.9 6.8 8.7
Morales et al. [190]

AVEC2014

7.56 9.21 n/a n/a
Zhu et al. [197] 7.47 9.55 n/a n/a
Simantirkai et al. [187] 7.2 8.9 n/a n/a
Perez et al. [196] 9.35 11.9 n/a n/a
Mitra et al. [188] 5.87 7.37 n/a n/a
Proposed2 7.25 9.4 7.1 9.4
Yang et al. [198]

AVEC2016

3.98 4.65 5.16 5,97
Al Hanai et al. [200] 4.97 6.27 n/a n/a
Williamson et al. [199] 4.18 5.31 n/a n/a
Proposed3 3.6 5.0 4.0 5.3

for the development and test set respectively. Although the best scores were obtained with a

complex approach that fused both audio and video features, yet the proposed model achieved

better performances using a simpler model. The proposed model was also better compared to

both Kaya et al. [184] and Zhu et al. [197] studies, despite of the large audio-video feature set

used by [184] they reported MAE=7.84 and RMSE=10.22 for the test only, whereas [197] used

video-based model and achieved MAE=7.58 and RMSE=9.82 and the results reported for the

test set only. These two studies did not report results on the development set; thus, it is difficult

to conclude if their model’s performances were stables on both sets.

Cummins et al. [182] used ensemble audio-video approach to perform depression evaluation

on AVEC-2013. They used only RMSE as evaluation metric, and they reported RMSE of 10.44

and 10.17 for development and test sets respectively, which later were improved to 7.4 and 9.49

respectively [183], only this time they used audio-based model. Even with these improvements,

the proposed model still managed to provide better results. Other study conducted by Kachele

et al. [186], they evaluated several approaches using separate audio, video and ensemble ap-

proaches to test their models. The best result on the development set was with the video model
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with (MAE, RMSE) scores of 7.03, 8.82, while the ensemble approach achieved best scores on

the test with MAE=8.72 and RMSE=10.96. Despite their complex MLP design algorithm and

their adoption of Kalman filter to improve the SVR performance, the proposed system reported

better "�� = 6.6, '"(� = 8.9 for the development set and "�� = 6.8, '"(� = 8.7 for

test set, and these were further improved for the test set to "�� = 6.2 and '"(� = 8.4 when

train the model using both training and development samples. However, the only study that

had better results than the proposed model was the study conducted by Williamson et al.[179],

they reported MAE= 5.75 and RMSE= 7.4 on the test set only. Their audio model was built

using parts from the reading task only. These parts were clipped and used to extract the acoustic

features. They also removed longer pauses > 0.75 seconds from the clipped segments aiming

to reduce the variability of low-frequency dynamics in the formants and delta-MFCC feature

extraction process. This method is evaluated using the test set only, also removing longer pauses

with > 0.75 seconds may not be generalised to other datasets or other tasks than the reading.

comparing the AVEC-2014 results to others, the proposed model performed better most of

the time see Table 7.10. Comparing to Pampouchidou et al. [189] study, they conducted binary

classification, they reported results with development set only. The accuracy, and the weighted

metrics for F1_score, precision and recall were 66%, 0.72, 0.94 and 0.59 respectively, whereas

the developed model obtained much better results (in similar order) 82%, 0.82, 0.83 and 0.82

for the development set, and 80%, 0.80, 0.80 and 0.80 for the test set, with no large difference

in the results of the two sets, which means that the proposed system is stable and more likely

will be generalised to other dataset. The studies from Morales et al.[190] and Zhu et al. [197]

performed single set test, as the first reported MAE=7.56 and RMSE= 9.21 for the development

set only, whereas the latter reported MAE = 7.47 and RMSE =9.55. Other study reported on the

development set but evaluated each task separately, Simantiraki et al. [187] achieved MAE=

7.2, RMSE= 8.9 for "FF" task and MAE=7.6, RMSE=9.6 for "NW" compared to the proposed

model with same tasks, this model achieved better results, for FF the model obtained (MAE,

RMSE) 6.8, 9.7 and 6.5, 8.7 for the "NW" task. Further study by Pérez et al. [196] reported best

results with ensemble approach, combining both the audio and video features. The development

set results were MAE= 8.99 and RMSE= 10.82 compared to audio model of MAE=9.35 and

RMSE= 11.9. The proposed model achieved (MAE, RMSE) of 7.25, 9.4 and 7.1, 9.4 for the
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development and test set respectively which were better than the previous studies, however, the

study by Mitra et al. [188] reported MAE= 5.87 and RMSE= 7.37 for the development set only

thus there results with test set were unknown.

The last comparison with literature is with the proposed model developed using the AVEC-

2016 corpus see Table 7.14. Yang et al. [198] reported respectable results with AVEC-2016,

and reported MAE= 3.98, RMSE = 4.65 for the development and MAE= 5.16, RMSE= 5.97

for the test, however, their system far more complex than the proposed model. Al Hanai et al.

[200] combined several ensemble approaches, the highest MAE and RMSE were 4.97 and 6.27

respectively, while the best classification scores were 0.77, 0.71, 0.83 as an weighted average

for F1_score, precision and recall respectively. Their approach had fluctuated in performances

between the best in predicting depression severity and best in discriminating depressed vs no

normal subjects. Therefore the optimum model is not achieved yet. Furthermore, these results

only evaluated with the development set, so it is still unclear how the system will perform if

tested with the test set. More study by Ma et al. [201] which performed binary classification

with the development set only, they reported the results using F1_score, precision and recall for

each class (depressed,normal). They achieved results in similar order (0.52,0.70), (0.35,1.00)

and (1.00,0.54), although they were able to correctly classify all depressed subjects, they mis-

classified almost half of the normal group which have the majority in the class distributions

(depressed = 11 patients and 22 normal). The last study compared to the proposed model was

conducted by Williamson et al.[199] who used wide range of different features type including,

linguistics, acoustic and facial features. Their ensemble model achieved MAE=4.18, RMSE=

5.31, and an average F1_score of 0.81 for the development set. In this comparison the proposed

model obtained higher scores in terms of the predicting PHQ scores or in the binary classifica-

tion task. The model achieved MAE, RMSE, accuracy, f_score, precision and recall of 3.6, 5.0,

90.91%, 0.90, 0.92, 0.91 for the development set and 4.0, 5.3, 87%, 0.87, 0.88, and 0.87 for the

test set in similar order.

7.4 Summary
This chapter demonstrated that acoustic features could be used to detect depression symptoms

and estimate their severity. Using the three common depression datasets spoken in two different
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languages German and English with various tasks and recording environments, the results us-

ing the proposed models were promising and outperformed the baseline and most of the studies

reported in the literature search. The novel features were developed based on temporal pause

and voice segments. The significance of these features were tested, and found that some of

them have a statistical significance in the mean difference between the normal group and de-

pressed patients. Several elements from the new set, also selected because of their importance

in building and evaluating the model. The performance using the new features was estimated,

and they were informative in predicting BDI and PHQ scores with better MAE and RMSE than

the baseline scores in the three datasets. Further, the performed task was found to have a strong

influence on the model performance, for example, the "NW" from the AVEC-2014 have better

discriminate accuracy with MAE= 5.8 and accuracy of 90% than the "FF" with MAE= 6.5 and

accuracy of 80%. Finally, the proposed language-agnostic model further improve the results

in both regression and classification tasks, this means that the newly developed features have

the potential to be used as an objective depression evaluation tool, and these features can be

extracted at low cost platforms.
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Chapter 8

Automatic screening system for bipolar

disorder

8.1 Introduction
Bipolar disease is one type of psychiatric mood disorders, and globally affecting 60 million

people according to the World Health Organisation (WHO) [13]. Patients with bipolar disorder

frequently experience episodes of depression and mania also undergo transitions to a normal

state within these episodes. In a manic state, patients become easily irritated, speaking loudly,

experience decreased sleep, and also become hyperactive [257].

The early and accurate diagnosis of the disease means early access to the treatment, which

leads to an improved quality of life for bipolar patients. The standard tools for screening bipolar

suffer from subjective bias as they rely on a self-evaluation process and on clinicians who in-

terpret the observed symptoms and the patient’s responses to the test questions. Thus automatic

bipolar screening tools performed on objective measures will be of great benefits to the patients,

as this disorder is persistent and requires continuous treatment and monitoring.

The work in this chapter proposes an audio-based approach for detecting the severity of

bipolar states. The efficacy of the proposed system is evaluated using the AVEC-2018 bipolar

corpus, which is the only accessible dataset that contains audio and video recording for struc-

tured interviews of patients suffering from bipolar disease. The rest of the chapter is organised

as follows: First the AVEC-2018 bipolar corpus is described and details are presented about the
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Table 8.1 Bipolar-AVEC 2018 dataset demographic information.

# Male Female
Participants 23 11
Age range (18-52) (23-48)
Age mean 33.37 36.27
Total recordings 107 57

patients, demographic information, performed tasks and the recording procedure. Next is the

methodology section, which introduces the proposed system pipeline followed by a statistical

analysis applied to the new proposed features to see whether they possess any significance level

which can be used to infer bipolar symptomology. After this section, the results were presented

and followed by the discussion section; the results section shows how the proposed system per-

formed using the development and test sets samples. While in the discussion, the unbalance

classes issue is investigated and addressed. The results are also compared to other studies from

the literature.

8.2 Dataset

The dataset consists of short video clips for a semi structured interviews [258]. A total of six

recording sessions were administered for most of the subjects and the last session made after

the discharge on the third month of the hospitalisation. In each recording session, the subjects

performed a number of tasks, for example, describing happy and sad memories, counting up

to thirty, express the reason behind visiting the hospital. The Young Mania Rating Scale [259]

was used to label the recordings into three groups; Remission, Hypo-mania and Mania. Table

8.1 show the demographic information for the dataset used in this experiment. A total of 218

video and audio files were available, the files were organised into three groups namely: training,

development and testing. The owner of the dataset kept the labels for the testing group hidden

from the public, so only the training with 104 recordings and the development group with 60

recording were used, see Table 8.2 for more details about the recording sessions and distribution

of subjects between the classes.
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Table 8.2 Bipolar-AVEC 2018 dataset sessions and classes informations.

Partition No. of recordings No. of subjects Average session in seconds
Training 104 22 243.5

1
Class (1) 25 17 155.71
Class (2) 38 19 264.79
Class (3) 41 20 277.3

Development 60 12 178.74

2
Class (1) (1) 10 153.46
Class (2) (2) 9 176.12
Class (3) (3) 11 202.94

Legends:
Class(1): Remission: YMRS ≤ 7.
Class(2): Hypo-mania: 7 < YMRS ≤ 20.
Class(3): Mania: YMRS > 20.

8.3 Methodology
The same proposed system pipeline described in chapter 7 is adopted here, only this time, the

task is more challenging. The proposed audio system will test whether a multi-class classifica-

tion task is achievable regarding bipolar states identifications. Fig 8.1 shows the design pipeline

for the proposed system used in this chapter.

8.3.1 Feature extraction
The effects of bipolar disorder and its severity on the acoustic features had already been reported

in several studies. For example, the disease causes an increase in the median of f0 [260] and the

average of F1 and F2 [261]. Further, it is reported that in the depressive state, a higher number of

longer pauses were noticed than in hypo-mania conditions [260]. The speech pauses increases

with the increase in the severity of the symptoms [262]. These changes are also clinically-

known, and evaluated by the psychomotor retardation part in the Hamilton rating scale [91] or

YMRS scale [259] as in speech rate evaluation part.

The spectral features were also affected, for example, MFCC coefficients, spectral centroid,

spectrum spectral energy, spectral roll-off, spectral flux, slop and entropy [199, 263]. Therefore

and based on this evidence, the same feature set that was proposed in chapter 7 see Table 8.3

will be used, and also, the newly developed set of features will be investigated to explore their
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Figure 8.1 Proposed system pipeline for detecting bipolar states

usefulness in dealing with bipolar states classification and YMRS scores prediction.

8.4 Statistical analysis
For this dataset and since there are three compared groups, the ANOVA statistical test was used.

Also, the Bonferroni correction test was utilised to resolve for an inflated probability of Type I

error (false positive, i.e. rejecting the null hypothesis when it is actually true). Table 8.4 lists

the most significant features according to the ANOVA test and only for features that pass the

Bonferroni post-hoc test. This means only the features that have a significant mean difference

between the three groups were listed, in this way, no feature will be reported even if it has a

significant mean difference between just two groups.

The ANOVA test result showed that there are thirteen features with significant mean differ-

ence and seven of which were from the newly derived features. Fig 8.2 shows the distributions

of these new significant features. The "Mean_CV" is the average of all speech segments time

that were above the mean of all pause segments time. The average variables were 3.06, 2.55 and

2.16 for class1,2 and 3, respectively. This indicates that as bipolar state become more severe,
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Table 8.3 Final set of acoustic features.

Features Functions No. of features
Pitch Mean,var,std 3
Harmonic-to-noise ratio Mean,var,std 3
Noise-to-harmonic ratio Mean,var,std 3
Shimmer (six scales) Mean,var,std 18
Jitter (five scales) Mean,var,std 15
Number of voice breaks Mean,var,std 3
Fractions of locally unvoiced frames Mean,var,std 3
Degree of voice breaks Mean,var,std 3
Number of voice breaks Mean,var,std 3
Number of periods Mean,var,std 3
Auto_correlation Mean,var,std 3
Number of pulses Mean,var,std 3
MFCC Min,max,skewness,kurtosis,mean,var,std 7
Fbank) Min,max,skewness,kurtosis,mean,var,std 7
SSC Min,max,skewness,kurtosis,mean,var,std 7
Intensity Mean,var,std 3
F1(Hz) Mean,var,std 3
Intensity at F1 Mean,var,std 3
B1(Hz) bandwidth_F1 Mean,var,std 3
F2(Hz) Mean,var,std 3
Intensity at F2 Mean,var,std 3
B2(Hz) bandwidth_F2 Mean,var,std 3
ZCR Mean,var,std 3
Energy Mean,var,std 3
Energy_entropy Mean,var,std 3
Spectral_centroid Mean,var,std 3
Spectral_spread Mean,var,std 3
Spectral_flux Mean,var,std 3
Spectral_rolloff Mean,var,std 3
Spectral_entropy Mean,var,std 3
New developed features Mean,var,std, ratio, difference 99
Total 228

the speech of active voices will be reduced. The second feature is the "R<40=_CP" which also

was significant in the AVEC-2014 statistical test. This evidence shows that between different

datasets and different spoken languages this newly developed feature associated with the sever-

ity of the disease, similar to AVEC-2014, the large value here suggests lower severity bipolar

condition. The mean for the three groups were 1.2, 0.68 and 0.58 for class 1,2 and 3 respec-

tively. Next is "R<40=_AV" which is the ratio of the average time for voice segments to the

average time of all active voices. A larger value means less active voice segments were pro-
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Table 8.4 AVEC-2018 ANOVA statistical significance test.

Rank Features DF F-test P-Value
1 "40=_�+ 101 10.481 0.000073
2 STD_F1Hz 101 9.617 0.000
3 VAR_F1Hz 101 8.130 0.001
4 Max_FBANK 101 7.934 0.001
5 Mean_FBANK 101 7.745 0.001
6 '<40=_�% 101 7.005 0.001417
7 '<40=_�+ 101 5.652 0.005
8 '=>_�+ 101 5.514 0.005
9 Min_FBANK 101 5.456 0.006

10 "40=_�+ 101 5.313 0.006
11 VAR-number-of-voice-breaks 101 5.184 0.007
12 %<0G'_) (+%) 101 5.048 0.008137
13 '=>_(%+, �+) 101 4.617 0.012056

Legends: STD: Standard deviation, VAR: Variance, DF: Degree of freedom,
F-test: F-statistic score for ANOVA, class(1) n=25, class(2) n =38, Class(3) n=41.

duced by the individual, and interestingly this was the value for Mani group with the mean of

0.6 and slightly lower at 0.59 for Hypo-mania patients while lowest at 0.54 for the Remission

group.

The fourth important variable was "'=>_�+" which is the ratio of the number of active voice

segments to the total voice segments time. According to this feature, a larger value indicates

severe condition; the mean of the three classes were 0.19, 0.2, and 0.24. The fifth new infor-

mative element is "Mean_AV". This measure the average of active voice segments time and

larger value may refer to an active speaker, thus a lower bipolar condition. Class0 have mean =

3.4, class 1 = 3.2 and class 3 = 2.6. Further, "P<0GR_T(VP)" measures the ratio of max pause

segment time to the total of all voice and pause segments time. The mean value were 0.054,

0.035 and 0.032 for class 1,2 and 3 respectively. The last significant feature was "R=>_(PV,AV)"

which is the ratio of the total number of passive voice segments to the total number of active

voice segments. This behaviour also confirms that in sever bipolar states, this variable will

have a lower value. This feature had mean values of 2.15, 1.77 and 1.72 for class 1, 2 and 3

respectively.
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Figure 8.2 AVEC-2018 the distributions of the new most significance features based on the
t-test.
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8.5 Results
The task for the AVEC-2018 challenge was to predict the three states of the bipolar condition,

i.e. remission, hypo-mania and mania. The owner of the dataset kept the labels for the test set

hidden from the public. Each team who participated in the challenge will have to send the test

set class prediction to the AVEC-2018 team [258], and they will send back the results in terms

of the unweighted average recall (UAR) Only five attempts were allowed for each team.

The Gradient Boosting Classifier (GBC) and Gradient Boosting Regression (GBR) algo-

rithms were used to evaluate the proposed acoustic system for detecting bipolar conditions. The

model trained using the training partition, and the feature importance technique was used to

define which features are crucial during the training phase. Table 8.5 shows the list of 67 most

significant features ranked by their importance weight. There were 36 of which (displayed in

bold) were from the new extracted feature set, which points out the value of these features in

capturing bipolar symptoms. Further, five from these new variables already showed signifi-

cant value as per the ANOVA statistical test Table 8.4, another evidence which highlights the

importance of these features.

The results are listed in Table 8.6. In the first attempt "Propose−1", the UAR for the develop-

ment set was far better than all baseline modality results, the model achieved 71.6% compared to

55.03% for audio, 55.2% video and 63.49% for the ensemble approach. However, the proposed

model performed poorly with the test set and had UAR of 42.59% compared to 50%, 46.3% and

57.41% for the audio, video and ensemble, respectively. This fluctuation in model performance

due to over-fitting on the development partition. Also, another challenge was the unbalance

class distribution for the samples in the training set (Class 0 =25, class 1=38 and 41 for class

3). In the second attempt and to address the unbalanced training data and to provide a more

generalised model can perform well in both partitions. A total of 38 samples randomly were

moved from the training to the development set taking into consideration of moving samples

from the classes with the majority. The new training set now has 66 samples with a distribution

of 21, 24, and 21 for class 1, 2 and 3 respectively, while the development set increased to 98

samples distributed into class1 =22, class 2 = 35 and 41 for class3. Further, the 35 samples that

moved were from 8 subjects, and no samples from a unique subject are overlapped between

the two sets. This is done to avoid the bias in the model training, which might be reflected on
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Table 8.5 AVEC-2018 most significant features

Rank Significant features Weight Rank Significant features Weight
1 Kort_SSC 0.009763 35 R()<40=, #>38 5 )_(CV,CP) 0.004585
2 Skew_SSC 0.009072 36 Mean_T_intensity 0.004496
3 Max_SSC 0.008808 37 VAR_CV 0.004487
4 STD_F1(Hz) 0.008605 38 TC8<4_PP 0.004435
5 Mean -mean-auto-correlation 0.008165 39 R#>_(AV, PP) 0.004425
6 Mean_FBANK 0.00791 40 R<40=(�+,�%)_(VP) 0.00441
7 R(mean,no)_AV 0.007828 41 TC8<4_AV 0.004358
8 Mean_CV 0.007715 42 TC8<4_(CV,CP) 0.004332
9 R"40=(�%,�+)_(VP) 0.007337 43 Mean_V 0.004315

10 Mean_I1 0.006544 44 R<0GR_T(VP) 0.004307
11 TC8<4_CV 0.006542 45 No_AV 0.0043
12 TC8<4_PV 0.006452 46 T#>_(CV,CP) 0.004287
13 R(T38 5 , No38 5 )_(CV,CP) 0.006424 47 T38 5 _(CV,CP) 0.00423
14 VAR_F1(Hz) 0.006201 48 Mean−Shimmer (dda) 0.004211
15 R() 38 5 , No38 5 )_(AV,PP) 0.00616 49 STD −Jitter (ddp) 0.004199
16 STD−Jitter (local_absolute) 0.006096 50 STD_AV 0.004198
17 Min_FBANK 0.006074 51 VAR_AV 0.004115
18 Mean -mean harmonics-to-noise ratio 0.005888 52 R<40=_AV 0.004058
19 STD_I1 0.005875 53 R(C8<4,#>)_(CV, CP) 0.004031
20 Max_FBANK 0.005754 54 STD_spectral_spread 0.003937
21 R) (�%,�+)_(VP) 0.005636 55 R<40=(�+,�%)_(VP) 0.003926
22 Min_SSC 0.005628 56 STD -Number of voice breaks 0.003883
23 VAR_I1 0.005566 57 R()_<40=,#>_38 5 )_(CV,CP) 0.00379
24 T<40=_time_(AV,PP) 0.005521 58 No38 5 _(AV,PP) 0.003741
25 Mean -Shimmer (local) 0.005422 59 Max_MFCC 0.003733
26 Mean_AV 0.005121 60 VAR -Jitter (ddp) 0.003718
27 R=>_AV 0.005084 61 STD -Jitter (local) 0.003704
28 R)8<4_AV 0.005063 62 STD -Standard deviation 0.003675
29 No_CV 0.004965 63 R<40=_CP 0.003658
30 Mean -Shimmer (apq5) 0.004896 64 STD -Minimum pitch 0.003653
31 Tmean_time_(CV,CP) 0.004839 65 R(C8<4,#>)_(AV,PP) 0.00364
32 R('_C8<4,#>_38 5 )_(CV,CP) 0.004717 66 VAR -Jitter (rap) 0.003607
33 Min_MFCC 0.004698 67 Mean_F2(Hz) 0.003601
34 Mean_AP 0.004675
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Table 8.6 Bipolar evaluation results compared to the literature.

Author Model Partition % UAR

Baseline [259]

Audio Development 55.03
Video Development 55.2
Ensemble Development 63.49
Audio Test 50
Video Test 46.3
Ensemble Test 57.41

Du [264] Ensemble Development 65.1

Xing [267]
Ensemble Development 86.77
Ensemble Test 57.41

Yang [272]
Ensemble Development 71.41
Ensemble Test 57.41

Syed [263] Ensemble Test 57.41

Proposed-1
Audio Development 71.6
Audio Test 42.59

Proposed-2
Audio Development 66
Audio Test 53.7

Table 8.7 Bipolar-AVEC 2018 PHQ prediction performance.

Training set Test set MAE RMSE
Training Development 5.7 7.2

increasing performance with development set but lead to diminishing the scores on the test set.

Although the results from this scenario "Propose−2" had reduced the UAR for the develop-

ment set from 71.6% to 66%, it increased the test scores from 42.59% to 53.7%, even with the

development decreased performance, it still managed to outperform all development baseline

modalities. The improvement on the test set also was better compared to the baseline audio

(50%) and video (46.3%) modalities but yet still lower than the ensemble with 57.41%. Ad-

ditionally, YMRS scores estimation was performed for the development set, and the result are

listed in Table 8.7 and in Fig 8.3 which shows the actual vs predicted scores. The proposed

model achieved MAE= 5.7 and RMSE= 7.2; however, there were no baseline results for this

task, yet these results optimistically respectable results when compared to chapter 7 results,

they were better than the AVEC-2013 (MAE= 6.6, RMSE= 8.9), and AVEC-2014 (MAE= 7.1,

RMSE= 9.4) but lower than AVEC-2016 (MAE= 3.6, RMSE = 5.0).
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8.6 Discussion

This experiment aimed to build an automatic bipolar conditions screening tool using audio

features. The results from the ANOVA statistical significance test and the feature importance

ranking method showed that the new set of features were informative in this task. The top 36

selected features associated with bipolar symptomology, for example, "Mean_CV", measures

the average of cross voice segments, which attempts to describe the speaking activity by mea-

suring the average of all voice segments that were above the means of pauses time; a higher

value indicates an active speaking pattern, and in this dataset a highest Mean_CV of 3.0 sec-

onds was for the remission group, a less than 2.5 seconds value for hypo-mania and a lowest

Mean_CV at 2.1 was for the mania patients. Another important variable from the new set is

the "Mean_AV" which describes the average of active voice segments spoken by the subject.

This feature characterises the speaking behaviour, where larger active indicates larger voice seg-

ments were produced compared to the mean of the utterance and smaller indicates less activity

speaking pattern. For class remission, which is a low bipolar state, the Mean_AV for this class

was 3.4 seconds higher than class hypo-mania more severe condition, therefore, reduced active

speech at Mean_AV of 3.2 seconds. That even higher compared to class mania, the lowest state
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Figure 8.3 AVEC 2018-Bipolar YMRS scores estimation, the actual vs predicted for the devel-
opment set
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with decreased speech activity at lowest Mean_AV of 2.6 seconds. This implies for the rest of

the new significant features. It is also evident that low speech rate, longer pauses and reduced

in voice segments size were linked to severe mood disturbances [74, 129]. However, the new

features provide more in-depth details to the speaking behaviour than the common functions,

for example, a large number of small voice segments would probably have the same average of

less number of voice segments with larger voice chunks; thus the average is probably useless

in this case. On the other hand, the new feature set can characterise this behaviour in more

details, for instance, the "Mean_CV" compare the average of these voice segments to the mean

of pauses. The "Mean_Av" which estimate only the mean of the active voice segments, further,

the "R)8<4_AV" computes the ratio of the active voice segments to the total number of all voice

segments, and so on for the rest the new variables.

Although the results on the test set were lower than the baseline by a small margin, the

proposed model is simpler, based only on audio features compared to the more complex audio-

video system. The optimised results with "Propose−2" over "Propose−1" was first due to bal-

ancing the samples between the training classes, this means that the GB-CLF algorithm more-

likely is constructed in such way to possess an even class prediction probability for all of the

three classes and for each attempt. This approach will lead to better performance on the test set,

whether it has balance or imbalance classes. Also, this design will eliminate the need for ad-

justing the class probability threshold towards the class with the majority of samples. Changing

the class probability may lead to improve the performance for example on the development set,

however, this will not guarantee better performance on a test set, because the adjustments that

were made on one set probably will not fit other data. Secondly, the model improved using a

larger developed set; thus, a more generalised approach is more likely to perform better on the

test set.

How this model compares to other studies is shown in the same Table 8.7. The proposed

system had a better result only compared to Du et al. [264] study, who applied InceptLSTM,

which is a type of a deep neural network approach to identify the three states of bipolar disorder.

Their system combined both capabilities of CNN and LSTM and tested on the AVEC-2018

dataset. They introduced another method called the severity-sensitivity loss to improve the

cost of reducing the distances for the samples within the same class and increasing the gaps
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between the classes themselves thus improve the performance of their proposed model . Du et

al. evaluated three SVM models, the first one developed using MFCCs and its related features,

the second model was trained using eGaMAPS features[265] while the last SVM built using

DeepSpectum variables [266]. The reported results indicate that InceptLSTM model is better

compared to the three SMV models in terms of detecting the bipolar conditions. The best model

achieved a UAR of 65%. This result was generated from the development set, and it is unclear

how the model will perform on the test data.

Comparing to Xing et al. [267], who adopted an approach inspired by Gone et al. [268]

system, as the latter developed automatic depression screening system. The system combined

several features from audio, video and linguistic. Gone et al. reported that the proposed system

performed well when ordering the extracted features to match the content of the spoken lan-

guage. Xing et al. used Google Cloud Platform (GCP) to transcribe the AVEC-2018 recordings,

later the authors assorted their sets of features into three groups natural, positive and negative

based on the valence of the utterances. Xing et al. extracted a large set of features including

MFCC and eGeMAPS from the audio. From SALAT toolkit [269], they added a set of linguistic

features. From the video, they extracted the MHH histogram based on action units, and finally,

they used the Faceplusplus toolkit [270] to add Ekman’s seven emotions variables. The authors

used ANOVA statistical significance as a feature selection procedure. The proposed system was

evaluated using eXtreme Gradient Boosting (XGBoost) algorithm [271] achieving outstanding

UAR of 86.77% for the development set; however, the performance decreased to 57.41% when

predicted the test partition. This sharp drop suggests an overfitting issue; this means that the

model constructed with a set of variables such as tuning parameters and a group of features that

maximises the performance with development samples. Thus when the model tested with new

samples from the test set, these same variables failed to provide a similar result, because of the

variation of the samples between the two sets. The proposed model had weak generalisation

property; therefore, its reliability is questionable.

Another study by Yang et al. [272] introduce arousal features for the task of automatic

bipolar severity estimation. They showed that when applying a histogram to arousal features

provide useful information for discriminating bipolar states. Due to missing the arousal points

in AVEC-2018 dataset, the authors developed LSTM-RNN model using the dataset from the
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AVEC-2015 to predict the arousal scores for each of AVEC-2018 recordings by concatenating

all scores using histograms to create a unified global representation for the arousal ratings for all

samples. The authors extracted several audio features using Opensmile [191], visual elements,

including facial action units, and body motion using Openpose toolkit[273]. Due to the large

number of extracted features, Yang et al. used SVM classifier, correlation-based feature reduc-

tion procedure [274] and brute force forward search algorithm [275] to optimise their feature

set. The final evaluation model built utilising fusion-based approach for both the random forest

classifier and DNN. They reported UAR of 71.4% for the development and also dropped to

57.41% for the test set. Despite using several modalities developed with a number of classifiers,

they only manage to match the baseline results.

Finally, the study by Syed et al. [263], in their experiment, they proposed features called

"turbulence-features" to capture the variations of the fundamental frequency (F0) contour as

they hypothesis that these features will be useful in estimating the severity of bipolar states.

They used COVAREV toolkit [276] to extract the F0 using different window lengths of 0.5,

1.0 and 2.0 seconds and with overlapping of 0.2, 0.4 and 0.8 seconds respectively. The tur-

bulence features represent the ratio of the maximum absolute value for the signal and its root

mean square value. Then they applied statistical functions including 1010, 2510, 5010 and 7510

and the mean trimmed with 5%. They used the Opensmile toolkit [191] to add number of par-

alinguistic and prosodic features to their audio modality. They also extracted features aims to

capture the emotional and movement changes might occur due to the severity of bipolar states.

These variables extracted using OpenFace toolkit [277], including 3−D head-pose, the vertical

and horizontal eye-gaze angel and six facial action units. Finally, they introduced the Greedy

Ensembles of Weighted Extreme Learning Machines (GEWELMs) as their evaluation model.

GEWELMs developed using an arbitrary number of Weighted Extreme Learning Machines

[278] WELM algorithm. Later they selected only the 9010 percentile of all WELMs tested with

on the development set but were higher than an unspecified threshold. The best UAR result they

achieved using the AVEC-2018 test partition was 57.41%. The proposed approach is considered

costly in terms of the number and type of features it needs to be able to perform. Even with this

level of complexity, they only manage to match the baseline result. Further, they did not report

the UAR on the development to see whether their model had suffered from the over-fitting issue
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or not.

8.7 Summary
In this chapter, a simple audio system for the task of classifying the severity symptoms of bipolar

disease was proposed, i.e. to identifies each recording from the AVEC-2018 corpus into one of

the three classes: remission, hypo-mania and mania. Also the YMRS scores prediction model

was proposed based on audio modality, the results were compared to the PHQ and PDI scores

prediction models from the previous chapter.

The developed "speech activity behaviour" features were used in the proposed model, and

they have proven to be informative as per the ANOVA statistical test results and in the feature

importance selection procedure.

This system was able to outperform the results of the baseline audio and video modalities.

The issue of the unbalanced data classes was investigated and its effects on the performance

behaviour in both of the development and test sets was illustrated. To this end, the proposed

balancing to the dataset in the training partitions by removing samples from the classes with the

majority of samples and add them to the development set had yielded better performance with

the test. This design means the system is more likely to be generalised to other data.
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Conclusions and future work

9.1 Conclusions

This thesis investigated an audio-based detection of early signs of dementia and mood disor-

ders. To this end, a simple approach solely based on acoustic features had been proposed and

showing robustness in identifying dementia of Alzheimer disease, later this system was further

developed and had demonstrated the ability of longitudinal monitoring for AD. Another ap-

proach was designed to extract useful information from patients conversations, and this aided

in discriminating symptoms of functional memory disorder from other patients having neu-

rodegenerative diseases. Furthermore, depression and bipolar disorders audio-based screening

proposals were introduced and showed potential for the use as language-agnostic models.

Recent reports had shown that both dementia and mood disorders are causing a considerable

rate of disability not only in developed countries but also worldwide. In the UK, dementia is

affecting more than 850,000 people with overall care cost exceeding £26.3 billion per year, and

the number of patients expected to be more than 2 million by 2051 [8]. While there are 2.69

million people (4.5% of the total population) diagnosed with depressive disorder [14] with an

annual cost ranges between £7-£9 billion [15, 16].

Dementia is a group of symptoms in which there is a decline in memory, reasoning, judge-

ment, behaviour and the ability to execute daily activities. Dementia also affects the speech

and language performance; although subtle changes may be observed prior to the early stage,

however, with disease progression, patients will suffer from difficulties in communication and
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expressing their needs. As a result, patients will isolate themselves from the surrounding peo-

ple, and others will develop depression and show aggressive behaviours; eventually, dementia

leads to death. Whereas depression is a psychiatric mood disorder caused by a sudden stressful

event affecting an individual’s life, for example, losing a beloved one, losing jobs etc. This dis-

order leads to a continuous feeling of sadness, negativity, and makes it hard to handle everyday

responsibilities. Depression often triggers suicidal thoughts to end one’s life [18, 19]. It has

been confirmed that at least 400000 people die every year from committing suicide, and those

fulfil the clinical diagnosis of depressive disorders [21, 22].

In regards to dementia, there is no cure; however, several disease modification treatments

exist that help in slowing down disease progression. These drugs are effective when consumed

as early as possible, and before the irreversible brain damages occur. Diagnosing dementia at

the earlier stage is a challenging task, due to the overlapping symptoms that concerning memory

issues with similar ones from other disorders, for example, the functional memory disorders,

depression, or even from the normal ageing process. The current tools used to identify those

patients with a higher risk of developing dementia are either costly; for example, Positron Emis-

sion Tomography (PET) or invasive, for example, the CerebroSpinal Fluid (CSF). Further, the

cognitive test batteries that currently used for screening patients use the traditional pen and

papers, established based on the English language, showing learning effects which limits the

number of possible administration, and lack sensitivity or specificity. Similarly, depression di-

agnosis tools and tests based on interviews assessment, for example, Hamilton Rating Scale

for Depression and suicide probability scales, both methods measuring the severity of symp-

toms and behaviours observed in both conditions thus the patients will obtain a test score range

based on the perceived symptoms. Using this method of assessment is not straightforward; the

given scores are sensitive to the patient’s ability to express their symptoms, moods, and cog-

nitions honestly and willingly. Consequently, collecting diagnostic clues is a time-consuming

procedure and involves a significant amount of clinical training, experience, and certification to

induce satisfactory results.

As a result, developing a cheap, non-invasive and non-intrusive, automatic, and objective

tool that can be used frequently without learning effects, remotely applicable, reliable, and

easily administrated is on high demand by healthcare providers. This tool can bring tranquillity
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for those at low risk of developing dementia, and at the same time to speed up the process of

providing the right medications to those who most likely demented. Further, where most of tests

founded based on the English language, translating it to other languages may not work very well

due to culture differences, level of educations, etc. Therefore language-agnostic screening or

testing systems are also importantly needed.

Based on that, this thesis has adapted the latest speech signal processing and machine learn-

ing techniques to develop and propose a simple systems for detecting early signs of dementia,

monitoring its progression, and screening for depression and bipolar disorders. To this end, the

thesis attempted to find answers to number of research questions which were listed in chapter

1.

9.1.1 The feasibility of developing an automatic, low cost and simple sys-

tem to aid the doctors in identifying early signs of dementia?

The first research question was how feasible it is to develop a simple and automatic system to

detect early signs of dementia diseases. To answer this question first is to select what type of

model that fulfil the simplicity, robustness and low-cost targets of the research question. The

literature search suggests that audio modality is a better fit for the research question require-

ments than video or the ensemble approach. The video-based approach required good quality

hardware for recording video clips for the patients/participants that are needed for the analysis

purpose. These devices normally more expensive than audio acquisition hardware besides the

audio model is less intrusive in terms of maintaining patient’s privacy.

Secondly, chapter 4 introduced the pipeline of an audio-based system that proposed to de-

tect early signs dementia of Alzheimer Disease (AD). The system consist of prepossessing and

feature extraction unit, then features were used to train number of well known machine learning

classification algorithms. This system developed using the dementiabank dataset, in which par-

ticipants performed the Cookie Theft Picture description task. Using acoustic features extracted

from the short audio recordings, the proposed system achieved promising classification accu-

racy of 94.7% when classifying between AD patients and healthy control participants (HC),

with sensitivity and specificity of 97% and 91% respectively. This finding answered the first

research question and was reported in [240].
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Finally, chapter 6 described a novel automatic dementia detection system developed with

collaboration from neurologists at Royal Hallamshire hospital in Sheffield. This study demon-

strated that purely acoustic features, extracted from recordings of patients’ answers to a neurolo-

gist’s questions in a specialist memory clinic can support the initial distinction between patients

presenting with cognitive concerns attributable to progressive neurodegenerative disorders (ND)

or Functional Memory Disorder (FMD, i.e., subjective memory concerns unassociated with ob-

jective cognitive deficits or a risk of progression). The study involved 15 FMD and 15 ND

patients where a total of 51 acoustic features were extracted from the recordings. Using three

types of feature selection approaches the recursive feature elimination, feature importance and

Mann-Whitney u-tests, result in reducing the number of informative features to 22. This sys-

tem had showed very promising result with an accuracy ranged between 93% and 97% with an

average of 96.2% for five different classifiers SVM, Random forest, Adaboost, multilayer per-

ceptron and stochastic gradient descent. Further, another validation scheme was developed to

simulate the behaviour of the system when testing with larger dataset, as the data augmentation

scenario showed that there was 5% decline in performance when increasing number of samples

from 30 to 230 (i.e., more than 750% increment) and for each 100% increment in size the per-

formance decreased by 0.67% which shows that the proposed approach did not deviate badly,

and the classification accuracy ranged between 87% and 92%. The findings from the work also

been published in [252] and contributed to answer the first and the last research question,

9.1.2 The feasibility of designing low cost and simple system that assists

the doctors in predicting the severity of dementia and monitor its

progression?

To answer this question first is to define a common test used in measuring the severity of de-

mentia symptoms, for example, MMSE scores. Secondly, a hypothesis needs to be fulfilled, in

which if there is a system that is capable of replicating the MMSE scores using audio modal-

ity generated from patients suffer from (AD), then this system manifests the assumption and

therefore provide the answer to this question. Chapter 5 described a system that showed re-

spectable results in predicting MMSE scores. The system was developed using DementiaBank

dataset, with different evaluation scenarios to illustrate the effectiveness of this system not only
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in predicting the current MMSE scores but also an estimation for future scores. By using three

visits from DementiaBank, the proposed system predicted the longitudinal MMSE scores with

MAE of 3.1, 2.6, and 3.7 for visit1, 2 and 3 respectively. Other scenarios were tested including

predicting a future MMSE for a visit3 using visit2 dataset, and the system achieved MAE of

2.25, while, the last model proposed achieved MAE of 2.18 when combing both visit1 and 2

samples to predict visit3 MMSE scores. In chapter 5 and using the speech recordings from the

same dataset, but only this time increased the task complexity. The previous task only clas-

sified between AD and HC, and know included participants from Mild cognitive impairment

MCI. With this new level of complexity the system maintained outstanding results, as for visit1

comparing between AD vs HC, HC vs MCI, and AD vs MCI the accuracy were 91.2%, 93.7%

and 95% respectively, this also was optimised and by using the synthetic minority oversampling

technique (SMOT) these results improved to 94%, 96.5% and 96.6% respectively. Although the

SMOT method only used to overcome the unbalanced samples between the compared classes,

it improved the performance of the proposed system. The finding of this work were published

in [241] addressing the second and last research questions.

9.1.3 The possibility of developing an objective tool that can be used to

identify depression and estimate its severity?

Chapter 7 illustrated novel features developed based on the temporal voice and pause segments

features. The new activity features proven to be effective in capturing speech behaviour asso-

ciated with depression disorder, both in statistical tests and in the feature selection step when

the proposed models were constructed. These approaches were developed using three publicly

available depression datasets knows as AVEC-2013, AVEC-2014 and AVEC-2016 audio/video

challenges. The first two datasets were spoken in Germany while the last one collected from na-

tive English participants. Using only the speech activity features the proposed depression eval-

uation models outperformed the baseline challenge results with MAE of 7.4 and 7.8 compared

to AVEC-2013 of 8.66 and 10.35 for the development and test sets respectively, and proposed

MAE of 7.9 and 7.8 compared to AVEC-2014 with MAE of 7.5 and 10.03 for both development

and test respectively, and finally MAE proposed of 4.0 and 4.3 compared to AVEC-2016 of 5.36

and 5.72 for development and test parts respectively. Combining the newly developed features
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with state of the art spectral and voice quality features result in increasing the performance of

the proposed models. The MAE (development, test) improved to (6.6, 6.8) for AVEC-2013,

(7.1) for AVEC-2014 and (3.6, 4.0) for AVEC-2016. Based on these results, the new set of

features demonstrated their ability in predicting the severity of depression when predicting the

BDI and PHQ depression scores with better results compared to the baseline audio modalities

and for all of the three datasets. In the same work, a depression language-agnostic system was

constructed. This system combined samples from the training and development partitions and

used them to train the proposed language-independent depression evaluation system, and only

the test sets kept separated for the evaluation purpose. The results from using this design im-

proved the MAE for AVEC-2013 and AVEC-2016 from 6.8 to 5.9 and 4.0 to 3.8 respectively;

however, the result for the AVEC-2014 was 7.1 which is the same compared to the previous

model. Even with the latter result, the improvement in AVEC-2013 and AVEC-2016 demon-

strated the feasibility of using the newly developed speech activity features as an automatic and

language agnostic depression assessment system. The results in this chapter provide the answer

for the third and last research questions and are being prepared for a journal publication.

9.1.4 The feasibility of developing an objective tool for screening bipolar

disorder?

Chapter 8 introduced an automatic screening system for bipolar states severity estimation. The

model developed using the same set of features that were created in chapter 7. The proposed

system tested with AVEC-2018 bipolar challenge dataset. In which three partitions were pro-

vided, training with 104, development with 60 and test set with 54 audio/video recordings. Both

the training and development samples were labelled into three classes class1: remission, class2:

hypo-mania and class3: mania using the young mania rating scales YMRS, however, the owner

of the dataset kept the labels for the test set hidden from the public. This challenge will show

how feasible is to develop bipolar screening tools to aid the clinicians in diagnosis. Several

models were trained, and the best model was selected and achieved unweighted average recall

UAR of 71.4% with the development set. This model was used to predict the labels for the test

set, and the received result (from the dataset owners) showed and overfitting issue, as the test

UAR was 42.59%. The problem with this dataset was the unbalance distribution of samples be-
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tween the classes. To overcome this limitation and to produce a more generalised model that can

perform similarly in both sets, a reduction on training set performed by moving samples from

the class with the majority of samples to the development set. Although this method reduced the

training size and the UAR on the development set to 66%, it improved the test set result to UAR

of 53.7%, which outperformed both baseline audio and video modalities that have UAR of 50%

and 46.3% respectively. This result again showing the usefulness of the newly proposed activ-

ity features in capturing not only depression behaviours but also discriminate the three severity

levels of bipolar disease. This work answered the fourth and last research questions and will be

reported in a journal paper.

.

9.2 Future work

9.2.1 Evaluate the dementia detection system with other datasets

Merhidari et al. [229] developed an avatar based system to screen patients at high risk of

developing dementia. This experiment was conducted with group of patients participated in a

study administered by the Royal Hallamshire hospital. The system proposed in chapter 6 will be

evaluated with this dataset, and the result will be compared to Merhidari [229]. Future directions

should also investigate larger numbers of participants with MCI who are in the earlier stages of

AD [279] and aim to correlate noninvasively collected disease markers into an established tool

for patients with cognitive concerns [280].

9.2.2 Improve the proposed MMSE monitoring system

The proposed system illustrated in chapter 5 that provides longitudinal MMSE scores monitor-

ing needs to be improved. The system assumes a linear relationship between the AD progression

and the changes in MMSE scores, while in the sever AD stage the expected MMSE scores will

be rapidly decreased.

9.2.3 Extracting other type of features

There are extra acoustic features not investigated in this study due to time limits, for example,

the Teager Energy Operator (TEO) which characterise the resonances in vocal tract produced
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by a nonlinear airflow in the cavity. TEO reported to be informative in detecting depression

condition [12]; thus, it and other features might improve the performance.

9.2.4 Developing unified mental and mood disorders detection system
Based on the fact that there are overlapping symptoms between dementia and depression, the

future direction will investigate the feasibility of developing unified dementia and depression

screening tool, using the newly developed activity features and the models from this study. First

is to create proper training, development and test partitions from all datasets used in this study

including the DementiaBank, Royall Hallamshire and all AVEC challenge datasets. Secondly,

is to develop a system capable of classifying between eight classes AD, MCI, HC, FMD, de-

pression, remission, hypo-mania and mania. Also, to design a system to predict the scores of

MMSE, BDI, PHQ, and YRMS for all dataset. Furthermore, to investigate how the clinicians

could best utilise the proposed systems, what sort of audio-data acquisition devices are suitable

for longitudinal monitoring.

9.2.5 Test the proposed models with datasets with different languages
In Iraq, the current tools and screening procedures for dementia and depression were either

old or very limited and expensive; in fact, many patients travel to other countries to obtain a

diagnosis for such conditions. Therefore, future work will be introducing the proposed systems

to the doctors and planning for the possibility of utilising them in their screening procedure. The

analysis will show how these systems performed using the Arabic language; also, the variety of

conditions will allow the development of new models.
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