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Abstract

Single-photon avalanche photodiodes (SPADs) based on the InGaAs/InAlAs material

system are designed, fabricated, and characterised for 1550 nm light detection. The two

designed wafers reduce the electric field across the InGaAs absorber to a minimum in

order to minimise dark current. The first wafer is designed to punch-through at the

point of high breakdown probability (above breakdown voltage), while the second is

designed to punch-through just under breakdown voltage. The first wafer is found to

be unsuitable for single-photon counting due to an uncharacteristically fast rise in dark

count rate, likely caused by the onset of punch-through during breakdown. Low photon

levels are detected using diodes fabricated from the second wafer, however the diodes

were found to not fully punch-through, preventing single-photon counting. Peak laser

pulse detection probabilities at 150 K were 73, 71, and 46 % for 100, 30, and 10 photons,

respectively. At room temperature, pulse detection probabilities were 39, 35, and 30%

for the respective photon levels. This informs future SPAD designs; crucially that full

punch-through must occur before breakdown voltage.

A simulation model for the sensitivity of electron APDs (e-APDs) is developed and

applied to InAs e-APD based optical receivers. The model simulates bit-error rate

(BER), and captures the effects of inter-symbol interference (ISI), dark current, current

impulse duration, avalanche gain, and amplifier noise. With a target BER of 10−12, the

receivers’ sensitivities were -30.6, -22.7, and -19.2 dBm for 10, 25, and 40 Gb/s data rates.

The simulated InAs APDs offer improvements over existing InAlAs APDs at 10 and

25 Gb/s, however SOA-PIN based receivers outperform both types of APD for 40 Gb/s

for 1550 nm operation.

Utilising the newly developed e-APD sensitivity model, and a previously developed

sensitivity model for standard APDs, simulations are performed comparing InAs, InAlAs,

and InP based optical receivers. The simulations utilise a common parameter set where

appropriate, allowing for a direct comparison between the three avalanche materials

for high-speed operation. Simulated InAs APDs achieved the best performance for

10 Gb/s operation (-29.4 dBm for InAlAs), while the simulated InAlAs APDs were found

v



to perform better at 25 and 40 Gb/s, achieving a sensitivity of -23.5 and -21.0 dBm,

respectively. InP APDs showed sensitivities of -27.9, -22.5, and -19.9 dBm, for 10, 25, and

40 Gb/s operation, respectively. These simulations demonstrate significant performance

benefits to replacing InP with InAlAs as an APD avalanche region. Additional simulations

of InAs APDs were performed, exploring how to further optimise InAs based optical

receivers.
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Chapter 1

Introduction

Global demand for digital communication bandwidth has risen rapidly over the past

two decades. To meet this demand, new and novel techniques have to be developed to

efficiently and frequently increase capacity of communication systems. Optical fibre-based

communication systems form part of this essential infrastructure. Avalanche photodiodes

(APDs) have long been a vital component in long distance transmission of signals, being

used to detect light transmitted through optical fibres. Thanks to their high internal

gain, APDs increase the distance a signal is able to be transmitted before having to be

retransmitted, and do so in an energy efficient manner by reducing the need for external

amplifier circuitry. In particular InAlAs/InGaAs based APDs are a well established

technology for the detection of near infra-red light in the optical window wavelength

range (1310-1550 nm).

For high-speed detection, an emerging III-V based material, InAs, has been demon-

strated to be of great interest. It has high electron drift velocities, and is one of the only

materials able to be used in the fabrication of eAPDs (electron APDs), where only the

electrons undergo impact ionisation. Such characteristics make it worth investigating for

high speed optical communication applications.

APDs have evolved a great deal over the years from the discovery of the avalanche

breakdown effect in a Si-Ge p-n junction by McKay in 1954 [1]. An APD at its most basic

is a p-n junction operated in reverse bias. By operating the junction at a high reverse

bias, it exhibits a signal gain effect. Past the junction breakdown voltage, an incident

photon will cause a self-sustaining current to form, known as avalanche breakdown. This

1
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mechanism allows for large internal signal amplification, with a rapid increase of current

from the nano-amp level up to hundreds of milli-amps. Due to this, APDs are detectors

of choice for detecting weak signals where photon numbers are limited.

This chapter will explore the development of APDs from their beginnings in the 1960s,

to more recent advances. The materials used and the development of the structures of the

devices themselves will also be discussed. Reviews of single photon detection methods,

and high speed optical receivers will also be given. More detailed theory behind their

operation will be presented in chapter 2.

1.1 Development of Avalanche Breakdown

The avalanche breakdown effect in semiconductors was first noted by McKay in 1954.

He observed a pulse-type noise from breakdown events which were originating from

microplasmas in local regions of Si-Ge pn junctions, with the effect increasing with

increasing reverse bias [2]. In 1960, Batdorf et al. studied this effect in greater detail

by studying small Si p-n junctions [3]. At half the breakdown voltage they found that

these microplasmas were occurring at field inhomogeneities and lattice inhomogeneities.

By using p-n junctions without exposed edges and avoiding dislocations in the charge

region, they reduced microplasma effects allowing the devices to operate at higher reverse

biases. A more diffused, uniform light emission from the whole junction, termed a

“macroplasma”, was observed. It was shown that microplasmas didn’t have to accompany

the avalanche effect, but the presence of microplasmas does reduce the breakdown voltage

[3].

Following the observations of these microplasmas in Si p-n junctions, Haitz et al.

further studied how these microplasmas affected the breakdown voltage [1]. They targeted

small areas of microplasmas using a light spot, and measured photocurrent as a function

of reverse bias. At lower voltages the microplasmas had a negligible effect on the

multiplication. They also found that the microplasmas were being caused by defects on

the surface of the semiconductor rather than within the bulk structure. One of his key

observations however, was that the breakdown voltage was not lowered by microplasma

effects, contradicting Batdorf’s previous conclusion. The main difference was the use of a
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Figure 1.1: The guard ring diode structure used by Goetzberger et al. [4].

guard ring around the diode (figure 1.1), which eliminated most of the effects of surface

breakdown allowing for plasma-free bulk breakdown [4].

Later, K. M. Johnson demonstrated the signal-to-noise ratio (SNR) enhancing effects

of avalanche breakdown. They performed a detailed analysis of a planar Si photodiode,

characterising the SNR bandwidth and Noise Equivalent Power (NEP) in avalanche

conditions. They showed a 13 dB gain in SNR resulting from avalanche multiplication of

the signal [5].

With the rapid development in the area by experimentalists, groups sought to

theoretically model the avalanche effect to allow for a more quantitative description of the

breakdown effect. In 1972 Oldham et al. formulated equations to describe the ionisation

probability of carriers in a device [6], which referenced previous attempts by McIntyre to

theoretically describe microplasma effects [7] and avalanche noise [8]. The two coupled

differential equations, (3) and (4) in [6], could be used to model the breakdown probability

of an arbitrary junction, given that the carrier ionisation coefficients were known for the

material.

McIntyre took these equations and simplified them, providing an analytical solution for

modelling breakdown probability [9]. He also formalised the gain theory of photodiodes,
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and determined the probabilities for non-detection and false signals which provided a

way to calculate how many photons were required in a light pulse to guarantee detection.

This theory could be used to determine the effectiveness of an APD at photon counting.

The theories were confirmed experimentally by Conradi [10].

1.2 APD Materials

There are four main material systems used for fabricating APDs; silicon, germanium,

II-VI, and III-V. For completeness, the former three will be discussed briefly though this

project uses exclusively III-V alloys.

1.2.1 Silicon and Germanium

Silicon is the material of choice for most APD detection applications with wavelenghts

below 1000-1100 nm. It is the cheapest semiconductor material with a large manufacturing

base, and has many of the best properties. These include a low amount of noise, dark

current, and small capacitance [11]. It is not effective at wavelenghts above 1000 nm

due to its 1.1 eV indirect bandgap [12]. In addition, photon absoprtion in Silicon is

significantly worse as the photon wavelength approaches that of the bandgap edge due

to its indirect nature, since a phonon is required for the electron to be promoted. This is

less likely to occur as photon energy decreases. This rules it out of being useful in the

optical window of 1300 - 1580 nm, which is crucial for optical fibre communications.

Germanium is commonly employed as an absorption material for silicon based APDs.

With an indirect bandgap of 0.62 eV and a direct bandgap of 0.80 eV [13], Germanium

is able to absorb photons with wavelengths up to 1550 nm efficiently, and with reduced

efficiency up 2000 nm. However, the growth of Germanium on Silicon provides a number

of challenges to detector performance. Due to a lattice mismatch of around 4 % between

Silicon and Germanium, dislocations can form due to strain in the lattice [13]. To

overcome these issues, a SiGe buffer layer is commonly employed at the Si/Ge interface

[14]. Additionally, due to the small bandgap, Germanium introduces a significant dark

current to the device, which when coupled with the dislocations and defects generally

leads to a higher dark current than comparable III-V systems [13].
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1.2.2 Group II-VI Alloys

The most commonly used group II-VI alloy for APDs is HgCdTe (MCT). Due to

applications in the defence industry, publicly available information on MCT APDs is

more limited compared to III-V and Si/Ge APDs. MCT provides high gain, with low

excess noise characteristics, owing in part to electron only impact ionisation [15]. By

varying the concentration of Hg and Cd, the bandgap of MCT is tunable allowing for

photon detection from short-wave infrared wavelenghts (SWIR) up to long wave infrared

(LWIR) wavelengths of 30 µm [16]. MCT is also used in space applications, where a

tolerance to high levels of radiation is required [17]. Due to a weak bond between the

Hg and Te, the material is more tolerant of impacts from high-energy cosmic rays when

compared to more strongly bonded materials [17].

The weak Hg-Te bond has disdvantages however, and can lead to non-uniformity

across MCT wafers [17, 18]. At relatively low temperatures, the two disassociate which

causes Hg vacancies to form [18]. This limits the industrial manufacturing base due

to low yields, and drives up costs. Additionally, MCT suffers from high dark current

characteristics, an order of magnitude worse than those observed in comparable III-V

systems [17].

1.2.3 Group III-V Alloys

The group of III-V semiconducting alloys are a versatile alternative to germanium

for detection in the optical communication window. Since they are alloys, bandgap

engineering can be used through the mixing of different concentrations of elements from

each group, to suit the desired application. Figure 1.2 shows how mixing the different

alloys can produce new alloys with a desired bandgap [12]. Many of these alloys can

be realised with established growth methods, allowing for fine tuning of the structure.

This means that complex structures are possible, engineering unique layers into the bulk

material from multiple different lattice matched alloys all into one diode depending on

the application needed.

As demonstrated in figure 1.2, there are a range of III-V materials, many of which

are in active use. For SWIR detection, InGaAs (with composition In0.53Ga0.47As) is the

most commonly utilised absorber with a cutoff wavelength of 1.7 µm and has superior
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Figure 1.2: Bandgap engineering [12].

Figure 1.3: Comparison of absorption coefficients for Silicon, Germanium, and InGaAs
for SWIR detection [19].

absorption characteristics to Ge (see figure 1.3 for comparison). For MWIR, InAs and

InSb with cutoff wavelengths of 3.5 and 5.5 µm, respectively, are used [20]. InGaAs is

commonly combined with materials InP or InAlAs to for APDs, due to lattice matching

between these materials.
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InP and InAlAs are widely utilised as avalanche materials for weak electrical signals,

offering high gain with low dark current when compared to the more narrow bandgap

materials such as InGaAs which can also provide high gain, but will be accompanied

by high dark currents [21, 22]. InAlAs is gradually replacing InP in active use due to

superior ionisation coefficients than the latter, with a greater disparity between electron

and hole ionisation leading to reduced excess noise.

1.3 APD Wafer Structures

1.3.1 PIN Junction

The most basic structure an APD can have is the p-n junction, as in the first APD

developed in the 1960s [5]. The intrinsic region acts as both the absorber and the

multiplier, so the pin device is simple, and relatively easy to model. Although they

are cheaper to manufacture than more complex structures, it is not easy to optimise

the absorption characteristics independently of avalanche characteristics, and vice versa.

These types of APD suffer from large dark current, which limits gain values due to an

increasing dark current at higher operating voltages overpowering the signal. This occurs

due to the quantum tunneling effects of high electric fields needed for breakdown [23].

Limiting factors such as these led to the development of more advanced structures -

separate absorption-multiplication region APDs (SAMAPDs).

1.3.2 Seperate Absorption-Multiplication Region

SAMAPDs were first developed in the late 1970s by Nishida et al. who found that by

separating the absorption region from the multiplication, the APDs achieved a lower

dark current at high gains [21]. Absorbed photons generate electrons and holes in the

absorption layer, which are swept into the avalanche region where impact ionisation

occurs. The design in [21] was hampered by a build up of charge at the heterojunction

interface between regions. Campbell et al. solved this issue by growing grading layers

with an intermediate bandgap to smooth out the charge barrier at the interface [23].

Soon after, Capasso et al. showed that by tailoring the absoprtion region to have a low

electric field relative to the multiplication region, it was possible to lower dark current,
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excess noise, and operating voltage [24]. These devices were superior to the old p-n

junction APD designs in all ways except in complexity and cost.

1.4 APD Device Structures

1.4.1 Mesa

Figure 1.4: Example of a mesa nipip SAMAPD structure.

A mesa diode has an appearance like a geographical mesa, and is defined by etching

the side walls of the device down to the bottom contact layers, as shown in figure 1.4.

Mesa diode designs are commonly used for APDs made from III-V materials. This is due

to the epitaxial growth of the layers allowing for fine control of each layer’s doping, which

reduces the need for extra dopant implantation steps. This means that it is relatively

simple to create a device from a III-V wafer - isolating individual devices via etching.

This simplicity comes at a cost, however. Exposing the sidewalls of the device means

that strong electric fields form there, resulting in surface and edge breakdown which

increases dark current [25]. Additionally, the etching process can contaminate and

damage the surface of the device, further reducing device performance [26].

More complicated structures have been devised to reduce these undesirable effects.

Triple mesa InGaAs/InAlAs structures have been developed to suppress the electric field

at the edges of the multiplication medium, eliminating surface recombination current as

well as edge breakdown [27]. This requires a top contact layer with edges etched away

from the second, edge-field buffer layer, which itself is etched with edges seperated from
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the third mesa below (which contains the avalanche and absorption layers), the electric

field is mostly confined to the area defined by the top mesa. These structures, however,

incur increased growth and fabrication complexity, and therefore cost.

1.4.2 Planar

Figure 1.5: An example of a planar APD structure. The P+ implantation region is
visible in red [26].

Planar devices remove the need for etching, instead relying on localised dopant

implantation or diffusion into a wafer’s upper intrinsic region to define devices. This

creates individual devices which are electrically isolated from each other by the intrinsic

region.

Using planar fabrication it is possible to mass produce large quantities of uniform

performance devices. The elimination of the exposed edges removes the issue of edge

breakdown, allowing for higher operating voltages. This method, however, can require

more fabrication steps which increases complexity and cost. An additional issue is that

extra processing is needed to ensure there is no cross-talk between devices, since they

are not physically isolated as in the mesa case [26, 28].

1.4.3 Waveguide

A waveguide is a structure on a semiconductor chip which allows for the routing of an

optical signal along the chip to a target destination. Applications of waveguides are

numerous, including the integration of lasers, receivers, and detectors onto a single chip

in the context of optoelectronic circuitry [29]. Waveguides allow for the injection of

light from the side of the target structure. For APDs, waveguides are utilised mainly
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for high-speed detection applications, where layer widths are small, to minimise the

bandwidth limit imposed by carrier transit time. By using the waveguide to guide

the light in through the side of the structure, the available absorption length increases

without impacting detector speed.

In practice this is complicated by waveguide loss mechanisms, which include abso-

prtion, scattering, and leakage losses [29]. Absorption losses are mainly related to free

carriers. In addition, absorption due to defects within the semiconductor can cause losses

which can be exagerated in semi-insulating substrates. Dislocations in the crystal lattice

can have a similar effect.

Also, scattering losses arise primarily due to rough boundaries between eplilayers.

Leakage losses are those that result from bends in the waveguide due to a change in angle

of incidence and depends on the refractive index difference between the semicondutor

and surrounding media [29].

1.5 Few and Single Photon Detection

The detection of small amounts of photons is required for a range of important applications.

These include areas such as quantum computing [30], quantum key distribution (QKD)

[30], Raman spectroscopy, and a major recent area is light detection and ranging (LIDAR)

for use in self-driving cars [31]. APDs operated in the Geiger mode are commonly used

for such applications, though there are other devices available. This section explores

those, including Geiger-mode APDs.

1.5.1 Photomultiplier Tubes

The first photomultiplier tube (PMT) was reported by Iams and Salzberg [32] in 1935,

and allowed for the detection of the secondary emission of a photo-electron from the

incidence of photons onto a large photocathode surface. This secondary photo-electron

accelerates through a vacuum tube and passes through a cascade of dynodes which

further stimulates the secondary emission of electrons. This was the first example of a

detector capable of detecting light at a single-photon level, and the technology is still

widely used in applications where photons need to be detected over a large area. For
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example, the Super-Kamiokande (Super-K) neutrino detector was a tank filled with water

surrounded by PMTs for a combined mass of 50 000 tonnes, which would detect the

weak Cherenkov light emitted as a neutrino passed through the water tank [33].

While PMTs are effective where large areas need to be covered, they are too bulky

for use in most other applications. In addition, they require a large supply voltage in

excess of 1 kV and are fragile, best demonstrated by the cascading failure of the Super-K

detector where the implosion of one PMT resulted in the total loss of all the other 11,145

PMTs [33].

1.5.2 Superconducting Nanowires

Superconducting nanowire single-photon detectors (SNSPDs) utilise the Cooper pairs

- bonded pairs of electrons in the superconductor - which flow through the nanowire

without scattering, and therefore no resistance [34]. Cooper pairs have a binding energy

of order meV. When a photon impacts a Cooper pair with an energy greater than the

Cooper pair’s binding energy, the pair is broken and superconductivity lost. This creates

a localised hotspot, with a resistive barrier forming across the nanowire, causing a sudden

current drop which can be detected by external readout circuitry, registering a photon

count.

Niobium nitride (NbN) is the most used superconducting material for SNSPDs. This

is due to a fast response time and a high (for superconductors) critical temperatue of

16 K [35]. The detectors themselves typically consist of a meandering nanowire which is

thin (∼1-10 nm), narrow (∼100 nm), and lengths as long as 500 µm, though increased

length limits detector performance due to an increased inductance increasing the recovery

time [36].

The detection efficiency of NbN SNSPDs is relatively low, around 5 %, due to losses

from coupling light into the small nanowire structure [36]. More complex structures are

required to increase detection efficiency. Rosfjord et al. showed an NbN SNSPD with an

SPDE of 57% at a 1550 nm wavelength [37], which was achieved through the combined

use of a nanoelectrophotonic device consisting of an anti-reflection coating and an optical

cavity around the SNSPD. The record SPDE attained at 1520 nm using an SNSPD was
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by Marsili et al., who produced an amporphous tungsten silicide based SNSPD with a

maximum SPDE of 93 %, though at an operating temperature of 2 K [38].

1.5.3 Transition Edge Sensors

Transition edge sensors (TESs) are highly sensitive detectors that can resolve the number

of photons in a light pulse, down to the single photon level. Their operating principle

is similar to that of SNSPDs, with a superconducting nanowire operated under bias

below its critical temperature which is used to absorb the photons. The difference is

that a circuit external to the nanowire is used to measure the temperature change that

occurs when the superconductor transitions away from its superconducting state in the

nanowire. The amount of thermal energy generated is proportional to the number of

photons incident on the detector, allowing for the number of photons in the light pulse

to be determined. A cold bath is connected to the absorber, which rapidly cools the

detector back below its critical temperature.

TES detectors are the most sensitive single-photon detectors available, with record

SPDEs reported of 95% and 98% at 1556 nm and 850 nm wavelengths, respectively for

a titanium based TES [39]. This high SPDE comes at a great cost, with the detector

requiring advanced cooling systems to operate below 300 mK. In addition, they suffer

from high timing jitter on order of 100 ns, and require 4 µs to cool down after a detection

event [40]. This places a limit on the data rate for the detection system (to < 100 kHz).

1.5.4 Geiger Mode APDs

Geiger mode APDs - also known as single-photon avalanche photodiodes (SPADs) -

are APDs that are operated above breakdown voltage. At these voltages gain becomes

“infinite”, with any impact ionisation event causing a self-sustaining avalanche current

which can be detected by external readout circuitry. To prevent catastrophic breakdown,

where the diode is destroyed by this self-sustaining exponentially increasing current,

external quenching circuitry is essential to drop the applied reverse bias and quench the

avalanche current to a safe level.

Si based SPADs dominate the area of visible single photon detection. They offer high

SPDEs of up to 70%, with extremely low dark counts as low as 10 Hz and large detection
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areas at room temperature [41, 42]. Si SPADs are able to achieve this due to their wide

bandgap and highly developed manufacturing base which minimises crystal defects, with

the added benefit of relatively low-costs. Their limitations appear at longer wavelengths,

with a rapid fall-off in SPDE as photon energy approaches the bandgap (as discussed in

1.2.1). Red-enchanced SPADs (RE-SPADs) attempt to use relatively thick absorption

layers to improve absorption efficiency, boosting SPDE from 15 to 40 % at 800 nm at

the cost of increased timing jitter [42]. However, even RE-SPADs have sub 5% SPDE as

wavelength passes 1000 nm [42].

Ge has been used as the infrared photon absoprtion layer in a SAM structure for

Si based SPADs. These, however, suffer from high dark count rates from the Ge layer

necessitating their cooling to operate effectively, though this lowers detection efficiency

at 1550 nm due to an increased bandgap. Ge/Si SPADs have been reported with 14%

SPDE at 200 K for 1310 nm operation, though even at this temperature they suffer from

a high DCR of around 108 Hz [43]. In addition, the reported SPDE may be exagerated

due to an average of 1 photon per pulse being used. Due to the Poissonian nature of the

pulse photon distribution, some pulses would have contained more than 1 photon. 1550

nm detection has also been demonstrated using Ge/Si SPADs. They are these diodes

suffered from very poor SPDE of around (0.15% at 125 K and 6 % overbias) [44]. This

makes them unsuitable to applications such as LIDAR, which is heavily dependent on

photon detection at wavelengths in the 1000 - 1550+ nm range due to the free-space

nature. Longer wavelengths allow for higher laser powers to be used since the eye-safe

power limit increases.

III-V SPADs are ideal for this application, since the absorber can be optimised for

these wavelengths. Commercial InGaAsP/InGaAs based SPADs are available, with an

SPDE of 20 % and low dark count rates of 1 kHz when operated at 218 K, although

these suffer from a lack consistency in material quality, and afterpulsing effects at higher

frequencies due to carrier traps in the crystal lattice [45]. These APDs utilised a planar

structure, back illumination, and an anti-reflection (AR) coating in order to achieve

this. InGaAs/InP based SPADs have been used for 3D LIDAR imaging at distances of

up to 10 km using time-correlate single-photon counting, with eye-safe laser power at

1550 nm by Pawlikowska et al. [46]. The detector that they used was designed by Tosi

et al., and was operated at 225 K in a self-contained TO-8 package with a three-stage

thermo-electric cooler, based on a commercial Princeton Lightwave SPAD (no longer
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available). The highest SPDE demonstrated in an InGaAs/InP based SPADs was 55%

for 1550 nm operation, with 500 MHz count rate and 10% afterpulsing probability at

room temperature [47]. A very narrow (360 ps) gate width was used to achieve this,

allowing for high overbiases (20 %) to be reached [47].

InGaAs/InAlAs SPADs are a promising material system due to InAlAs having

superior impact ionisation properties than InP. Recent InGaAs/InAlAs SPADs have

been fabricated with SPDE of 26% for 1550 nm operation at 210 K, and 100 MHz dark

count rate using a 1.2 ns gate [48]. The SPDE was limited by a higher than expected

dark current arising from the InGaAs absorber [48]. As the InGaAs/InAlAs material

system matures, this is likely to improve.

1.5.5 Comparison

Table 1.1: Comparison of single-photon detectors.

Detector Material
Temp.
(K)

λ
(nm)

SPDE
(%)

Rate
(MHz)

DCR
(Hz)

Ref.

SNSPD
NbN 4-10 1550 5 50 - [36]
NbN 2-4 1550 67 10 - [37]
WSi 2 1550 90 10 10 [38]

TES Nb/Ti 0.3 844 98 0.05 0 [39]

SPAD

Si (RE) 295 800 40 10 25 [42]
Si (Thick) 295 650 3 3 103 [42]
Ge/Si 200 1310 14 1 109 [43]
Ge/Si 125 1550 0.15 0.1 107 [44]
InGaAs/InGaAsP 218 1550 20 0.1 107 [45]
InGaAs/InP 295 1550 55 1000 108 [47]
InGaAs/InAlAs 210 1550 26 5 108 [48]

Table 1.1 compares the various single photon detectors. Comparisons are made as

closely as possible, with normalised dark count rate used for gated SPADs. For high rate

1550 nm single photon detection, SNSPDs are clearly the best performing devices. This

performance comes at a cost, however. All the SNSPDs require cooling to below 4 K

for effective operation, which is not practical in many applications [36–38]. This fact is

more exagerated for TES detectors, which require cooling to below 0.5 K [39].

A SPAD is the only realistic detector for mobile low photon counting for applications

such as LIDAR in self-driving cars, due to the expensive and bulky liquid helium cooling

requirement for SNSPD operation. For SWIR detection, especially 1550 nm, III-V SPADs
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are the only effective SPAD material. InGaAs/InP is currently the best material system

demonstrated for this application [47].

1.6 High Speed Optical Receivers

In recent years there has been a rapid growth in telecommunication technologies and

methods in order to process and transmit the maximum amount of data possible in the

shortest time possible. A long-haul optical communication network is composed of three

main components, the electro-optic transmitter (commonly a laser-diode), the optical

fibre to carry the signal, and the receiver. A crucial component of such receivers is almost

universally transimpedance amplifiers (TIAs), with the actual photodetection component

being variable.

Figure 1.6: A basic optical communication network consisting of a laser, optical fibre,
photodiode, and TIA.

A basic optical network is shown in figure 1.6. The laser driver provides a large

current to the laser, amplifying the input signal and laser output which is coupled into

the optical fiber. All detection systems require a component that is able to transfer the

detection events from the detecting component efficiently. This is known as the front-end

preamplifier, which is commonly a TIA in high-speed optical applications [49]. After

exiting the optical fiber, the optical signal is coupled into the photodiode, the output of

which is then amplified by the TIA and converted into a voltage. This allows for further

processing of the signal by subsequent stages of the network.

1.6.1 PIN Photodiodes

The most basic photodetector consists of a pin photodiode operated at unity gain. Unity

gain operation allows for photodetection with minimum noise, since there is no excess

noise from gain mechanisms within the diode. A high-speed pin photodiode aims to
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maximise bandwidth by minimising the time it takes for a carrier generated in the

depletion region to exit the region, while also minimising the time it takes for the detector

to recover. The recovery time is dependent on the product of the parisitic junction

capacitance and the load resistor, more generally known as the RC time constant. At

the same time, high quantum efficiency (QE) requires wide depletion region. This leads

to competing factors, the bandwidth reducing with increasing width, which must be

balanced based on the target data transmission rate.

Additionally, with a higher optical power, the photodiode’s bandwidth degrades due

to carrier space charge effects arising from high current density in the junction exceeding

the saturation current density. This is offset with an increased depletion width, again at

the cost of an increased RC time constant. The balance between bandwidth and QE is a

key limitation of pin photodiodes, and determines the sensitivity (optical power required

for detection) of the detector.

Early state-of-the-art InGaAs pin photodiode - TIA based optical receivers, from the

late 1980s, demonstrated bandwidths ranging from 10-16 GHz with sensitivities of around

-19 dBm for 10 Gbps transmission at 1530 nm [50, 51]. Resonant cavity structures were

utilised to increase the QE of InGaAs based photodiodes to 50 % while maintaining a

bandwidth of 31 GHz [52].

1.6.2 Uni-Travelling-Carrier Photodiodes

Attempts to overcome space-charge limitations were made by groups utilising uni-

travelling-carrier photodiodes (UTCPDs). As the name implies, only a single carrier type,

the electron, is used in a UTCPD. This is achieved through the use of a wide-bandgap

doped layer grown between the anode and a narrow bandgap absorption region, which

blocks electron diffusion and drift [53]. The electrons are swept into a depleted carrier

collecting layer, with holes swept out as conduction current. This reduces space-charge

effects, with saturation current densities as high as 400 kA/cm2 demonstrated [53]. Peak

electrons velocity in materials used for UTCPDs are higher than that of holes, so the

UTCPD has the added benefit of an increased bandwidth since only the faster electrons

are active carriers [53]. When both holes and electrons are active, the slower of the two

carriers acts to limit bandwidth.
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High-bandwidth InGaAs UTCPDs have shown bandwidths as high as 310 GHz for

1550 nm detection. However, these devices do have very narrow absorption regions,

leading to a low responsivity of 0.07 A/W [54]. InGaAsP UTCPDs with 1.04 A/W

responsivity and 60 GHz have been demonstrated, achieved through the use of an

evanescently coupled optical waveguide (to be discussed in section 1.6.4)[55]. With their

high saturation current, UTCPDs are generally utilised for high-power, high-bandwidth

applications.

1.6.3 High-speed APDs

Due to their high internal gain, APDs offer a improved sensitivity compared to standalone

pin photodetectors since a lower optical power is needed to achieve the same output

current. This makes APDs the photodetector of choice for applications where the optical

transmission costs are significant, such as long-haul communication [56]. The gain-

bandwidth product is an important measure for high-speed APDs, taking into account

their signal gain effects in tandem with their bandwidth, and provides an important

measure for comparing them. High-speed APDs utilise the SAM structure, allowing for

the optimisation of absorption and multiplication independently. An APD’s bandwidth

is generally limited by the excess noise within the multiplication region, which increases

with gain. This is due to the impact ionisation process, where average duration increases

with gain depending on the impact ionisation coefficient ratio.

InP/InGaAs based SAMAPDs formed the majority of early high-speed APDs, with

sensitivities as low as -38.1 dBm achieved for 1 Gbps transmission at 1550 nm as early

as 1983 [57]. More recently InP/InGaAs APDs utilising waveguides have been used

for 40 Gbps with a gain bandwidth product of 114 GHz at a gain of 9, allowing for a

sensitivity of -19.0 dBm. Over the past decade InAlAs has begun to replace InP as the

multiplication material, with InGaAs/InAlAs based APDs now dominating the area in

terms of performance due to a more favourable impact ionisation coefficient ratio and

gain-bandwidth product, as demonstrated in figure 1.7.

InAlAs/InGaAs mesa SAMAPDs have demonstrated record, for APDs, sensitivities

of -21.8 dBm for 25 Gbps detection at 1310 nm, obtained through the use of a double

mesa structure to keep the electric field away from the mesa sidewalls, minimising dark

current [59]. In addition, a InAlAs/InGaAs SAMAPDs with -10.8 dBm sensitivity for
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Figure 1.7: Comparison of InAlAs and InP based APDs and their gain-bandwidth
products from [58].

50 Gbps operation was demonstrated using a similar structure, with a gain-bandwidth

product of 141 GHz [60].

1.6.4 Optical Preamplifier-PIN Detectors

It is possible to amplify the optical signal prior to detection in the photodiode. With

optical pre-amplification, a higher bandwidth photodiode can be used since the QE

requirement is relaxed due to an increase in incident optical power. This is the basis of

erbium-doped fiber amplifier (EDFA) and semiconductor-optical amplifier (SOA) based

detectors. In an EDFA, the core of the fiber acts as an amplifier at 1550 nm when

driven with a higher frequency, 1480 nm wavelength laser which stimulates the the

dopant erbium atoms into a higher energy state. From this state the stimulated emission

of photons by the signal photons causes signal gain at the signal wavelength [61]. A

UTC/EDFA based receiver has shown record -28 dBm sensitivity at 40 Gbps, though the

footprint is large and costs high which make it unsuitable for integration into long-haul

networks [62, 63].

SOA-PIN detectors integrate the optical amplification component into the semicon-

ductor itself, with a waveguide doubling as an optical amplifier. Utilising an InGaAs

active layer for optical pre-amplification, SOA-PIN-TIA receivers have been demonstrated

[64]. The SOA component exhibits high noise at frequencies below 40 GHz, which limits

performance for 25 Gbps where SOA-PIN based receivers only match the performance of

existing APD based receivers [65, 66]. These SOA-PIN based detectors however offer

advantages over current APD based detectors for 40 Gbps operation, with sensitivities

demonstrated as low as -23 dBm in a small integrated package [63]. SOA-PIN detectors

are the main competitors to APDs for next generation optical communication networks.
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1.7 Motivation

APDs are a mature technology which is perfect for application to single photon counting

- essential for any quantum network. They have found heavy application in optical

communications, especially over long distances thanks to their high gain and SNR

increasing the distance required before a signal repeater is required [67]. III-V alloy

APDs in particular are a good choice as they allow for fine-tuning of wavelength range by

varying alloy composition. The main advantage of this is that they can be tuned to work

with the near-IR wavelengths that silicon is unable to reach, mainly the optical window

around 1500-1580 nm. This is vital for long distance fibre communication. They can be

tailored to a particular specification which is important for working with the specialised

technology required for quantum computing. Separate absorption and multiplication

avalanche photodiodes (SAMAPD) take this concept to another level, reducing noise

even further by separating the multiplication region from the absorption region.

InGaAs/InAlAs based SPADs are a promising technology which offers potential

improvements over the current InGaAs/InP based SPADs due to better impact ionisation

properties and a wider band-gap, and therefore reduced tunneling current [22]. InAlAs

reaches higher breakdown probabilities at lower over bias ratios when compared to InP,

potentially allowing for higher detection probabilies at reduced dark count rates [68].

Electron APDs (e-APDs) are based on materials where only electrons undergo impact

ionisation. InAs in particular has shown promise as an effective e-APD material, with

very low excess noise characteristics and high electron drift velocities, it is a potential

candidate for high-speed optical receivers [69]. Modelling the theoretical potential of

InAs based optical receivers is of great interest, since InAs has not been explored in

this context before due to relatively high dark current [70]. Due to the unique impulse

response shape of e-APDs, existing APD-based-receiver sensitivity models are not usable,

so a new model has to be developed in order to explore the capabilties of InAs APDs in

this area.
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1.8 Thesis Organisation

The first half of this thesis is primarily focused on the design, fabrication, and characteri-

sation of single photon APDs based on the InGaAs/InAlAs material system. The later

chapters shift focus to modelling high-speed detector systems with a focus on developing

a new theoretical model for determining the sensitivity of e-APDs, and exploring the

theoretical posibility of using InAs APDs as the receiver component of a high-speed

detector. An overview of each chapter is given below.

Chapter 2 provides background theory to aid in the understanding of core topics

which include impact ionisation, breakdown probability, electric field modeling, dark cur-

rent and dark count mechanisms, Geiger-mode APD circuit quenching, APD bandwidth,

and bit error rates.

Chapter 3 introduces standard device fabrication procedures, and presents etching

trials that were performed to optimise the fabrication process for InGaAs/InAlAs SPADs.

Device characterisation techniques are explained. A double mesa fabrication trial is also

presented.

Chapter 4 - two InGaAs/InAlAs based SAM APD wafers are designed and simulated,

optimised for single-photon counting. Wafers grown based on the designs are fabricated,

characterised, and then assessed for suitability to single-photon counting.

Chapter 5 shifts focus towards sensitivity optimisation of e-APD based high-speed

optical receivers. A new sensitivity model is developed, allowing for the simulation of

e-APD based optical receivers. This model is demonstrated using simulated InAs APDs,

with the suitability of InAs based e-APDs to high-speed optical receiver applications

assessed.

Chapter 6 uses the model developed in chapter 5 and a previously developed

sensitivity model for standard APDs to compare the properties of e-APDs and APDs as

part of high-speed optical receivers. Further simulations are performed on InAs, varying

several parameters in order to explore how the sensitivity of InAs based receivers could

be improved.
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Chapter 7 concludes the thesis, and summarises the content. Future research work

is suggested for improving the SPDE of InGaAs/InAlAs based SPADs, and designs

suggested for InAs APDs optimised for high-speed detection.





Chapter 2

Background Theory

This section will discuss various theories used in the design and characterisation of APDs

in this work.

2.1 Capacitance Modelling and Punch-through

Punch-through is an event which occurs when a SAMAPD is reverse biased past a certain

voltage. It corresponds to the point where the electric field in the depletion region

“punches-through” into the absorption region. As voltage across a diode is increased, the

electric field reaches further through the depletion region until it reaches the absorption

region. If the device is being illumincated with light, there would be a clear rise in the

photo-current at this voltage because the carriers originally generated through photon

absorption in the absorption region can now drift into the multiplication region. This

point corresponds to a sudden drop in capacitance across the diode, since depletion width

has increased. An example of this is shown in figure 2.1, where at 54 V punch-through

occurs.

Capacitance for a single region is described by the equation

C =
εrε0A

wd
, (2.1)

where εr is relative perimittivity, A is diode area, and wd is depletion width. The electric

field profile within the depletion region for a given bias can be modelled using Poisson’s

23
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(a)
(b)

Figure 2.1: Example of extracting electric field data from a CV graph for a SAM
structure. The voltage is increased in 1 volt steps and the corresponding field profile

plotted.

equation, which is given by
∂E

∂x
=

qN

εrε0
, (2.2)

where E is electric field, and N is the doping in the region.

An example electric field profile for a pin structure is given in figure 2.2. The gradients

of the lines (eg.
qNq
εrε0

) are given in the figure. For example, for the electric field gradient

across the p+ region (dE/dx)p+ is described by qN1/εrε0. The area under the electric

field profile is determined by the reverse voltage. As voltage is increased, the depletion

widths x1, x2, and x3 increase dependent on the doping concentration in each region,

with the maximum width of x2 defined by the i region width. With the depletion width

of each stage of the electric field known, as well as the values of electric field, the structure

can be fitted to by adjusting N1, N2, and N3.

E1

qN1

εrε0

x1

E2
qN2

εrε0

x2 x3

− qN3

εrε0

p+ p− n+

x

Figure 2.2: An annotated electric field distribution for a depleted pin structure biased
to an arbitrary voltage, with dopings N1, N2, and N3 for the p+, p−, and n+ regions.

E1 and E2 are the electric field values at x1 and x2, respectively.
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This can be applied to a structure with m regions by using the generalised expressions

for depletion width of the first region x1, and mth region xm, which are given by

x1 =
−b+

√
b2 − 4ac

2a
(2.3)

and

xm =

∑m−1
k=1 Nkxk
Nm

, (2.4)

where

a =
N1

ε1

(
1− εmN1

ε1Nm

)
, (2.5)

b =
2N1

ε1

(
xk −

εmNkxk
εkNm

)
(2.6)

and

c =
m−1∑
k=2

(
Nkx

2
k

εk

)
+
m−2∑
k=2

(
2Nkxk
εk

(
m−1∑
l=k+1

xl

))
−
εm

(∑m−1
k=2

(
Nkxk
εk

))2

Nm
− 2V

q
, (2.7)

where Nk and εk are the doping concentration and permittivity, respectively, within the

kth region, and V is the reverse bias voltage. The total depletion width wd is given by

wd = x1 +

m−1∑
k=2

xk + xm. (2.8)

Capacitance can then be calculated using

C =
A∑m
k=1

xk
εk

, (2.9)

which can be fitted to experimental measurements.

2.2 Impact Ionisation and Breakdown Probability

Impact ionisation is the mechanism by which avalanche breakdown occurs. When an

APD is under high reverse electric field, an electron promoted into the conduction band

will gain energy from the electric field. With enough energy, the electron may ionise

another bound electron, promoting the second electron to the conduction band. When

the effect becomes self sustaining, the APD has entered avalanche breakdown.
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Several variables need to be considered in the calculation of breakdown probability

of an APD. The initial electron that is triggering the breakdown must first cause an

ionisation event. At least one of the resulting carriers needs to cause one ionisation. If

more carriers are being created than those exiting the APD, there will be an increase in

current. There is also a finite probability that carrier generation will not cease - this is

the avalanche breakdown probability. For electrons this can be described by [6]

Pe(x+∆x) = Pe(x)+α∆x [Pe(x) + Ph(x)− Pe(x)Ph(x)]︸ ︷︷ ︸
Probability that in transit from x to ∆x

ionization occurs which results in infinite descendents

−
Negative product of the first two terms︷ ︸︸ ︷

Pe(x)α∆x [Pe(x) + Ph(x)− Pe(x)Ph(x)],

which can be represented in differential form as

dPe
dx

= (1− Pe)α [Pe + Ph − PePh]

dPh
dx

= −(1− Ph)β [Pe + Ph − PePh]︸ ︷︷ ︸
Ppair

. (2.10)

α and β are the ionisation coefficients and Ppair is the probability that an electron-hole

pair generated at x will initiate an avalanche, which combines Pe and Ph together - the

probability of an electron, and the probability of a hole generated at x initiating an

avalanche, respectively. These coupled differential equations for dPe
dx and dPh

dx can be

solved using numerical integrations with boundary conditions Pe(0) = 0 and Ph(w) = 0

[6].

While equation (2.10) is valid, expressions for Pe and Ph that can be solved analytically

are desirable. This was achieved in [71], which used the approximation α = kβ so that

Pe(w) and Ph(0) are expressed in terms of k and the term
∫ w

0 (α− β)dx. This assumes k

is close to unity and not k � 1 [71]. Re-writing Ppair as Ppair = 1 − (1 − Pe)(1 − Ph),

differentiating, and integrating leads to:

dPpair

dx
= (α− β)Ppair(1− Ppair)

Ppair(x)

1− Ppair(x)
=

Ppair(0)

1− Ppair(0)
exp

[∫ x

0
(α− β)dx

]
︸ ︷︷ ︸

f(x)

. (2.11)
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Using the boundary conditions from equation 2.10 it can be seen that Ppair(w) = Pe(w)

and Ppair(0) = Ph(0), applying to (2.11) for x = w gives the ratio between Pe and Ph:

Pe(w)

1− Pe(w)
=

Ph(0)

1− Ph(0)
f(w) (2.12)

This, on its own, is not useful. Solving equation (2.11) for Ppair gives

Ppair(x) =
Ph(0)f(x)

Ph(0)f(x) + 1− Ph(0)
. (2.13)

dPh
dx from (2.10) can be re-written in integral form:

1− Ph(x) = [1− Ph(0)] exp

[∫ x

0
β(x′)Ppair(x

′)dx′
]
. (2.14)

Using Ph(w) = 0, Ph(0) is given by

− ln[1− Ph(0)] =

∫ w

0
β(x)Ppair(x)dx (2.15)

with Ppair defined in equation (2.13). This provides a single equation to determine break-

down probability, though at this point it still needs to be solved numerically. However, if

β = kα is valid, equation (2.15) can be solved analytically since df(x)/dx = (α− β)f(x)

can be integrated exactly:

− ln[1− Ph(0)] =
k

1− k
ln [Ph(0) exp[(1− k)δ] + 1− Ph(0)] , (2.16)

where δ =
∫ w

0 αdx. Equation 2.12 can then be used to relate Pe and Ph to give:

1− Ph(0) = [1− Pe(w)]k. (2.17)

Using equations (2.16) and (2.17), Ph(0) and Pe(w) can be calculated as a function of

k and δ, without needing to know the electric field distribution precisely. These are

implemented and shown in figure 2.3, which plots breakdown probability versus δ. Since

the ionisation coefficients, and hence δ, depend on electric field values, and consequently

on voltage, effectively the graph can be viewed as being a function of voltage. A sharper

gradient for both Pe and Ph means that they will reach their maximum values faster,

allowing lower operating voltages.
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Figure 2.3: Plot of the implementation of McIntyre’s 1973 breakdown probability
equations. Solid lines represent Pe values, while dashed lines represent Ph values. These

correspond to their ionisation coefficient ratio k = β/α. δ =
∫ w

0
αdx.

0

creation

+

x′

ionisation

+

−

+

x w

(a) holes

0

creation

−

x′

ionisation

−

+

−

x w

(b) electrons

Figure 2.4: Visualisation of hole and electron creation. Carriers are created at x′ and
ionise at x after travelling a distance ∆x.

While the previous equations are useful for modelling devices with a wide multiplica-

tion region, they are not able to accurately model what occurs in a device with a thin

multiplication length. Non-local effects become significant in such regions, meaning that

the carrier’s history independence is no longer valid. A new variable must be considered;

the dead space de,h.

de ≈
1

α
and dh ≈

1

β
(2.18)

d is defined as the length at which the ionisation coefficients reach 50% of their

“constant” values. Over short distances the ionisation coefficients previously discussed

are no longer valid and must be replaced with history dependent ionisation coefficients,
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defined as α(x′|x) for electrons and β(x′|x) for holes as shown in figure 2.4. A charge

carrier created x′ is expected to ionise at x. The corresponding history-dependent ionising

probability are given by

pe(x
′|x)dx = α(x′|x) exp

(
−
∫ x′

x
α(x′|x′′)dx′′

)
dx

= α(x′|x)Pse(x
′|x)dx (2.19)

pe(x
′|x)dx = β(x′|x) exp

(
−
∫ x

x′
β(x′|x′′)dx′′

)
dx

= β(x′|x)Psh(x′|x)dx (2.20)

for electrons and holes respectively. pe,h are given by the ionisation coefficients multiplied

by the newly defined term, survival probability Ps(e,h). This is the probability that a

carrier travelling from x′ to x will survive without impact ionising. These are visualised

in figure 2.5.

Figure 2.5: Spatial representation of the ionisation coefficients and their corresponding
ionisation probabilities, moving away from carrier creation point x′. The probability of
ionisation increases with distance travelled before peaking at approximately where α

and β reach their constant values αh and βh [72].

Using the history-dependent ionisation probabilities, the history-dependent breakdown

probabilities are given by

(1− Pe(x
′)) = Pse(x

′|0) +

∫ x′

0
pe(x

′|x)(1− Pe(x))2(1− Ph(x))dx, (2.21)

and

(1− Ph(x′)) = Psh(x′|w) +

∫ w

x′
ph(x′|x)(1− Ph(x))2(1− Pe(x))dx. (2.22)
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These equations can be used to simulate any avalanche photodiode, regardless of depletion

width and electric field.

2.3 Tunneling Current

Tunnelling occurs when an electron quantum tunnels through the barrier between valence

and conduction bands. As reverse voltage is increased, the band structure is bent further

with the separation barrier between the two bands reducing in thickness. This is shown

in figure 2.6. This increases the probability that a carrier will tunnel through.

Figure 2.6: Band diagrams showing increasing voltage and the effects on the tunnelling
barriers. The barrier width decreases with increased voltage.

The tunneling current for a direct bangap can be described using

Itunn =
(2m∗)0.5q3EV A

h2E0.5
g

exp

(
−

2πσT (m∗)0.5E1.5
g

qhE

)
, (2.23)

where m∗ is effective electron mass, E is electric field, V is voltage, A is diode area, Eg is

bandgap, q is elementery charge, h is Planck’s constant, and σT is the tunneling constant.

The tunneling constant is a fitting parameter that encapsulates the barrier shape, and

varies between different materials and doping distributions [73].
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2.4 Dark Counts

In an APD which is being operated above breakdown voltage in Geiger mode, a dark

count is an event which has been caused by noise rather than an incident photon. Dark

counts have three main causes; thermal noise, afterpulsing, and tunnelling.

Thermal noise results from electrons being thermally excited from the valence band

into the conduction band. This effect can be suppressed by cooling the APD to a lower

temperature, however this can negatively impact the detection efficiency and maximum

detection frequency via afterpulsing.

Afterpulsing is caused by carriers which get trapped within the trap centres of the

device. These are defects which occur throughout the device and result from impurities

during growth. After an avalanche event is detected, the circuit must be quenched to

prevent damage to the device. After the circuit is quenched, these trapped carriers remain

in the centres and limit how quickly the APD can be readied for the next detection event,

since time must be given for them to disperse. This dispersal time will increase with a

decreased temperature, so this afterpulsing effect has to be considered especially when

operating at low temperatures.

2.5 Circuit Quenching

When the APD is operated in Geiger mode, it must have a circuit quenching mechanism

to prevent a runaway avalanche effect from destroying the device. This quenching is

achieved by using an external circuit which connects to the APD. There are three forms

of quenching; passive, gated, and active.

Passive quenching uses a ballast resistor to dissipate the voltage across the APD after

a breakdown event, reducing it back down to breakdown voltage. When the residual

current from the avalanche event dissipates, the voltage rises back to the externally set

DC bias. While simple, this method has the drawback of restricting the measurement

repetition rate to around 100 ns (dependent on the size of the ballast resistor and the

capacitance of the system) , which is inadequate for many applications [74].
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Gated quenching uses short pulses, generally 10 ns or less, to bias the APD above

breakdown voltage. These pulses are of such duration that the device is brought below

breakdown voltage before damage can occur. This method is simple, however it relies on

precise knowledge of when the photons are expected to arrive.

Active quenching is significantly more complex, with two main methods available.

They both rely on having active logic to monitor the avalanche current, and act when

this crosses a certain threshold. The first superimposes a bias of opposing polarity over

the reverse bias, bringing the overall voltage below breakdown. The second uses passive

quenching via a ballast resistor to reduce the current, which raises the voltage between

the resistor and the diode. This is monitored by the logic circuit which then brings the

voltage to the quenching voltage. The logic circuit often contains circuitry to actively

recharge the APD, significantly reducing the dead time when compared to simple passive

quenching.

2.6 3 dB Bandwidth and the Gain-Bandwidth Product

The 3 dB bandwidth of an APD is defined in terms of the fourier transform of the

time domain mean impulse response function of the APD. The frequency at which the

resulting frequency domain signal reaches 3 dB less than the maximum is defined as the 3

dB bandwidth. In addition to just the bandwidth, the inherent signal gain properties of

an APD also provide an additional benefit to the bit-rate that the diode can realistically

detect. This means that for an APD, the gain-bandwidth product is a more important

measure than just the bandwidth itself, since the gain properties amplify the signal above

the noise floor that would normally arise from just the bandwidth.

Generally for a regular APD the gain-bandwidth product is a mostly unchanging

quantity. This is due to the gain-bandwidth product limitation that arrises due the

inherent random, stochastic nature of the impact ionisation process within an APD. The

theory for this limitation was extensively explored by Emmons [75].

For a given APD (k 6= 0) undergoing pure carrier injection, both the holes and the

electrons are undergoing impact ionisation. As the gain increases within the diode (with

increased reverse voltage), the overall probability that an avalanche event will be longer

increases, since as gain increases the probability of a given carrier causing an impact
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ionisation event increases. In an avalanche medium with both holes and electrons having

an equal probability to impact ionise, this provides the worst case in terms of effects

on bandwidth (k = 1). The best case scenario is where only a single type of carrier

undergoes impact ionisation (k = 0). Effects of varying k on bandwidth are plotted

in figure 2.7. A diode exhibiting k = 0 has no negative impact from increased gain,

thus overcoming the gain-bandwidth product limitation. In such a diode increased gain

only provides benefits in terms of high-speed operation. An example of such APDs are

e-APDS, where only the electrons undergo impact ionisation.

Figure 2.7: Normalised 3dB bandwidth as it changes with gain. Bandwidth reduces
with gain for APDs where k 6= 0, while stabilising for APDs where k = 0. The initial
drop for k = 0 corresponds to an increase in excess noise factor, though this never

increases above 2. Data is generated from models presented in later chapters.

2.7 Bit-error Rate

In optical communcations, the bit-error rate (BER) is the probability that for a given

detection threshold set between a “0” and a “1” bit, an incorrect measurement will be

made. For a “0” or a “1” bit the measured signal generally has a gaussian distribution.

A simplified schematic is demonstrated in figure 2.8. The mean value of the signal for

the “0” bit is defined by the noise floor set by the combined noise level of the detection

componenets in the optical receiver. The signal level of the “1” bit is defined by a

combination of the optical signal strength and gain effects within the optical receiver. A
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weaker optical signal will result in a greater overlap between the distribution of the “0”

and “1” bits, leading to a higher BER.

µ0

θ
σ0

σ1

µ1

Figure 2.8: An example of the overlap (highlighted in red) between a “0” and a “1”
bit, centered at µ0 and µ1 with standard deviation σ0 and σ1, respectively. The decision

threshold θ is selected as the level at which BER is minimised.

The detector speed also has an impact on the probability of an error. If a detector is

too slow for a given bit-rate, then “1” bits from previous detection windows can influence

the next detection windows. This can lead to an error in the event detection window

following a “1” if the proceeding bit is expected to be a “0”. This is visualised in figure

2.9. Such errors limit the bit-rate that a given detector can operate at, since the detector

will no longer be able to reset fast enough to detect reliably.

Figure 2.9: Bit-errors caused by a detector being too slow to reset after a detection
event. The signal from “1” bits from previous detection windows extends into the next.



Chapter 3

Experimental Details

This chapter will describe various experimental work that has been conducted as part of

the thesis. It includes wafer structure design, device fabrication, and characterisation of

SPADs.

3.1 Standard Mesa Fabrication Procedure

A device fabrication procedure for a basic SAMAPD will be described in this section.

The first step of a fabrication run, after cleaving the sample from the wafer, is 3-stage

cleaning. The sample is immersed in warmed n-butyl acetate, acetone, and isopropanol,

in the given order. This removes any dirt or grease from the sample. Photo-lithography

generally follows cleaning. This involves using a photo-resist spinner to evenly coat the

sample in a photoresist - a photosensitive material which reacts strongly to exposure with

certain wavelengths of light. The photoresist is exposed to UV light from a mask aligner

loaded with a mask plate. This plate is engraved with a pattern that the light from the

aligner shines through onto the sample, transferring this pattern to the photoresist on

the surface. The sample is then submerged in a developer for 1 minute, which removes

areas of photoresist that have been exposed. Figure 3.1 shows an example of a pattern

that has been transferred to a substrate.

The next step is to metallise over the pattern to form the top contacts of the device.

This is done by depositing metal on the sample, either in a metal evaporation chamber

35
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(a) Pattern design file (b) Transferred pattern

Figure 3.1: Example of a pattern (a) transferred to a sample coated with photoresist.
The part shown in the optical microscope image (b) is used to determine if the exposure
quality is good. The “fingers” (highlighted) are well defined, indicating the correct

exposure and development time.

(a) Metal deposited over substrate and
photoresist.

(b) Removal of photoresist with acetone
lifts off metal.

Figure 3.2: Lift off procedure. (a) is how the sample appears after removal from the
metallisation chamber. Placing it in acetone will lift off the metal, leaving behind a

pattern as shown in (b).

or a metal sputterer. Following metal deposition, the sample is placed in acetone to lift

off metal in areas with photoresist. The procedure is demonstrated in figure 3.2.

Following lift off, the sample is then re-patterned with a mesa etch mask. Trenches

are etched around the top contacts using either wet (acid) etching or dry (plasma) etching.

This effectively creates individually defined devices on the bulk sample. The aim is to

etch down through layers of semiconductor to reach the lower charge layer of the sample,

as well as to isolate devices.

The sample is then patterned with a lower contact mask layer, and the metallisation-

liftoff procedure is repeated. Depending on the requirements for the diodes, this can
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(a) Pre-etch (b) Post-etch

Figure 3.3: Wet etching. The profile of a mesa after wet etching depends heavily on
the etchants used. In general, the angle is not perpendicular to the substrate.

Figure 3.4: A sample after undergoing the lower contact metallisation-liftoff procedure.
Individual mesa devices with top contacts are visible, with each cell of devices surrounded

by a metal grid contact (the lower contact).

often be the final step. The resulting devices and lower contact from such a fabrication

run can be seen in figure 3.4. These diodes, ranging from 60 µm to 420 µm diameters,

are now ready for electrical characterisation, as well as packaging.

Fabrication of smaller diodes generally requires more steps than this, however. A

contact area must be approximately 100× 100 µm for devices to be reliably bonded to,
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so if a diode’s diameter doesn’t allow for such a contact then bond-pads must be used. In

order to not short-circuit the contact layers with the bond-pad tracks running down the

sidewall, it must first be passivated with a dielectric nitride layer. The thickness of this

layer is determined by the deposition temperature (and therefore breakdown voltage) of

the nitride and the required operating voltage, since it must be thick enough to prevent

breakdown between the bondpad track and the mesa sidewall.

(a) (b)

Figure 3.5: Deposition and removal of dielectric from contact areas and mesa window.

With the nitride deposited, it must be cleared away from contact areas and the mesa

window. To achieve this a nitride etch mask is patterned onto it. This is subsequently

eteched using reactive ion etching (RIE). The bondpad layer is then deposited over the

sample, linking to the mesa top contact.

3.2 Photolithography

Several photoresists and chemicals are used for the photolithography stage of fabrication.

This section explores the differences and reasoning for their use. For consistency all spin

coating is performed at 4000 RPM for 30 s, so where thickness is mentioned it is based

on these parameters.

3.2.1 BPRS200

The BPRS200 positive photoresist was widely used within the group for various stages of

fabrication, including metal contact deposition, etching, and nitride removal. With a spin

thickness of ∼2-2.5 µm, it is thick enough to be used on its own for metallisation while

not causing issues with definition of the finer metal patterns on the surface. Additionally,
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the viscosity of the photoresist provides a highly even coating when spin coated, which is

important for etching where accurate surface profiling of the photoresist is important.

The developer used is diluted MF26A:H2O (0.7:1). Unfortunately, due to issues with

securing supply of the photoresist, it is being phased out, so alternative photoresists

must be used.

3.2.2 SPR350 and Polymethylglutarimide (PMGI)

A suitable replacement for BPRS200 for etching purposes is the SPR350 photoresist. Its

low viscosity means that it spins evenly to a thickness of ∼ 1.3 µm, with minimal edge

bead buildup at the sample perimeter. The small thickness and lack of edge beads is

advantageous during mask alignment, enabling minimal seperation between the mask

plate and the semiconductor surface (crucial for defining highly detailed pattern features).

The dehydration bake time is 1 minute, and the developer solution is MF26A:H2O (0.7:1)

with post exposure development taking 1 minute.

At ∼1.3 µm thick, using SPR350 is unsuitable for metallisation, because metal lift-off

can be difficult (especially when metal has been deposited using a sputterer with a

rotating platform). There is insufficient surface area for acetone to attack and remove the

resist, leading to a need of extensive use of an ultrasonic sonicator. This is undesirable

since using a sonicator for extended periods of time damages the sample and can lift off

metal in areas where it is required.

An additional resist called polymethylglutarimide (PMGI) is required to be used in

a bi-layer stack for metallisation using SPR350 to be effective. The PMGI+SPR350

procedure is as follows:

1. Spin PMGI onto the sample

2. Bake the sample for 5 minutes at 180oC for 5 minutes

3. Spin SPR350 onto the sample

4. Bake the sample for 1 minute at 100oC

5. Expose the desired pattern

6. Develop in MF26A:H2O (0.7:1) for 1 minute
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Figure 3.6: PMGI-assisted lift-off.

After developing the resists, the SPR350 will be removed in the exposed areas as usual,

while the PMGI is attacked by the developer a greater amount. The resulting profile is

shown in figure 3.6, with the SPR350 overhanging the PMGI. Following metal deposition,

the PMGI provides a channel for the acetone to more readily remove the SPR350, greatly

easing the lift-off process and eliminating the need for sonicator action. Following removal

of the SPR350 in acetone, the sample must be submerged in MF26A developer to remove

the PMGI.

3.2.3 SPR220

SPR220 is a relative viscous photoresist, spin-coating to a thickness of approximately

5 µm. It is used in applicactions where SPR350 is found to be insufficient, mainly in

processes where the photoresist is actively etched along with the sample such as RIE/

ICP etching, or where SPR350 does not effectively coat the surface features of a sample.

Such a situation usually arises when there are many fine, deep features in excess of 4 µm

etched into the surface. The dehydration bake time for SPR220 is 1 minute 45 seconds,

and the post-exposure development time is 1 minute 10 seconds.

The high viscosity and thickness of SPR220 causes issues during spin coating and

exposure. Large edge-beads form, preventing close contact with mask plate, and hence

causing poor definition of exposed features. Removal methods include mechanical removal,

disolving in acetone using cotton buds, or exposing and developing the edge-bead areas

(the most effective, though time consuming method). In addition, the thickness that the

resist spins to can vary by several hundred nanometers across the surface, so great care

must be taken when etching and using surface profiling to account for this.
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For metallisation purposes it was found that SPR220 can effectively be used alone,

without PMGI. Indeed, for samples with deep mesas (> 4 µm) it was found to be the most

effective method for bondpad/ track deposition to the tops of mesas. PMGI+SPR350

proved to be unable to effectively coat the tops of and sides of such mesas, which led to

great difficulty during lift-off.

3.2.4 Hexamethyldisilazane

Hexamethyldisilazane (HMDS) is an adhesion promoter. It is used in processes where

there is risk of the photoresist pealing away, such as during etching. Such an effect can

be extremely detrimental to the etch profile, causing notches and rough edges to form.

This is shown and discussed in more detail in section 3.6.2. Additionally, after a sample

has been coated in silicon nitride or silicon oxide, the adhesion of photoresists during

spin-coating is reduced. It is important to always use HMDS after a sample has either

of these coatings applied, since without it the resist thickness and therefore the UV

lithography exposure duration required can be highly inconsistent.

3.3 Wet etching trials

Three different trials were conducted to etch wafer SF0935 (wafer structure details in

table 3.1), with images captured before and after the etches, including SEM of cleaved

samples for detailed etch profile observation.

3.3.1 Trial A: H2SO4:H2O2:H2O (1:8:80)

The first trial uses the sulfuric acid etch that has previously been used [48]. This was

to allow a detailed comparison with the other etching trials. The sample was etched

initially for 1 minute, after which the etch rate was characterised using a Dektak surface

profiler. This showed an etch rate of 680nm/min.

With additional etches, one of 3m30s and the final etch lasting 1m45s, the total

average etch depth was 3110nm, with a total etch time of 6m15s this means an average

etch rate 518nm/min. This indicates that the etching solution lost potency over the

duration of the etch. There was an extended period of time in-between etches while
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Doping type Material Doping density (cm−3) Thickness (nm)

N In0.53Ga0.47As 5.0E18 100.0
N In0.52Al0.48As 2.0E18 300.0

Undoped In0.52Al0.48As 1.0E15 1000.0

P In0.52Al0.48As 4.2E17 69.0

Undoped In0.52Al0.48As 1.0E14 25.0
Undoped Al0.15Ga0.32In0.53As 1.0E14 25.0
Undoped Al0.29Ga0.18In0.53As 1.0E14 25.0
Undoped In0.53Ga0.47As 1.0E14 1500.0
Undoped Al0.15Ga0.32In0.53As 1.0E14 25.0
Undoped Al0.29Ga0.18In0.53As 1.0E14 25.0
Undoped In0.52Al0.48As 1.0E14 100.0

P In0.52Al0.48As 2.0E18 100.0
P In0.53Ga0.47As 5.0E18 1000.0

- InP Substrate - -

Table 3.1: Layer profile of wafer SF0935, used for the wet etching trials. The p+ and
n+ regions are highlighted.

images were captured and the surface profiler was used. Accounting for time taken for

observations, the entire etch process took over 1 hour. This is likely to result in a less

effective etching solution.

Figure 3.7 shows the etching profiles obtained using SEM. The photoresist was present

on the sample for quantifying the undercutting effects of the etch. The etchant undercut

the photoresist by a maximum of 6.3 µm, with the etching angle appearing to depend on

the material. The top layers (1.4 µm) are mostly InAlAs, and the bottom layers mostly

InGaAs. There is a clear change of etch angle corresponding to InAlAs-InGaAs interface.

3.3.2 Trial B: H3PO4:H2O2:H2O (1:8:1)

The etchant used in this trial was expected to etch more quickly compared to trial A.

After etching for 1 minute, the samples surface profile confirmed this with an etch rate

measured of 1350 nm/min. After a second 1 minute etch the depth had increased by an

additional 1300 nm, with total etch depth of 2650 nm. This etchant would be especially

useful if thick layers of InAlAs/InGaAs need to be etched, since it is rapid and doesn’t

appear to be hindered by intermediate layers in-between.

The etch profiles seen in figures 3.8a and 3.8b also showed favourable results, indicating

a smooth, consistent etch angle independent of layer composition. Unfortunately it is not
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(a) Zoomed out side view of the etched devices. The mesas and general
undercutting of the photoresist is visible.

(b) Etching profile with undercutting and etch depth measurements. The
photoresist is overhanging the mesa where the acid has etched under it.

The halo like scattering effects are due to the photoresist.

Figure 3.7: SEM images of trial A.

clear if this profile is representative of the whole sample, as the sample shattered during

cleaving prior to measurement so only a limited amount of mesas were observable.
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(a)

(b)

Figure 3.8: SEM images of the sample from trial B.

3.3.3 Trial C: C6H8O7:H2O2 (2:1) (InGaAs) and HCl:H2O (3:1) (In-

AlAs)

Unlike the previous trials, this trial used two selective etchants. Etchant 1 - C6H8O7:H2O2

(2:1) - etched InGaAs, while etchant 2 - HCl:H2O (3:1) - etched InAlAs. This provides

greater control over the etch, as etching will essentially stop when it reaches the appro-

priate layer, reducing the risk of over-etching.
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The sample was spun with SPR350 and exposed with the mesa etch mask. The etch

was performed in several stages to determine the selectivity of the etch. The sample was

submerged in etchant 1 for 45s to remove the 100 nm InGaAs contact layer. Surface

profiling showed an average etch depth of 90 nm. This provided an opportunity to test

the selectivity of etchant 2. Etchant 2 was used for 2min15s - the time expected to etch

to the next InGaAs layer. Surface profiling after this etch showed an average etch depth

of 0, though the surface had been roughened, as shown in figure 3.9b. As expected,

etchant 2 was unable to remove the remaining 10 nm of InGaAs. The sample was placed

back in etchant 1 for 30 seconds, with surface profiling showed an average etch of 9 nm.

Finally, the sample was etched with etchant 2 for 3 minutes to etch the layers

InAlAs. An average etch depth of 1430 nm indicated that it had stopped etching at the

InAlAs/InGaAs interface. The surface roughness was observed to have reduced. The

etching was terminated here, and the sample cleaved for observation with an SEM. See

figures 3.9a and 3.9b for profiles.

The most striking feature of the SEM images is the rough surface around the mesas.

This is suspected to be the quaternary structures in-between the InAlAs and InGaAs

layers which have not been fully etched away. It seems that the selective etchants struggle

with penetrating through these layers. Additionally the selective etching has created an

overhanging InGaAs layer on top of the under-etched InAlAs layer. This has occurred

since the InAlAs has been etched for longer selectively, undercutting the unaffected

InGaAs layer on top. This could cause problems with the device performance due to

increased surface around the device edges.

3.3.4 Comparison

Trial Etchants Duration (s) Depth (nm) Rate (nm/s)

A H2SO4:H2O2:H2O (1:8:80) 375 3110 518

B H3PO4:H2O2:H2O (1:8:1) 120 2650 1325

C
C6H8O7:H2O2 (2:1) 45 90 120
HCl:H2O (3:1) 180 1430 480

Table 3.2: Comparison of etchants from the trials.

A comparison of the etches can be found in table 3.2. Etchant B proved to be the

fastest etch of the three. This means that it is a good choice for applications that do not

require a lot of etch depth accuracy. Indeed, for most wafers to be used for this project
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(a)

(b)

Figure 3.9: SEM images of the sample from trial C.

the full etch would only take 3 minutes. This means that it is better for general etching

than etchant 1 that was previously used.

For a more controled etch, A and C are more suited. They are useful if a more

complex and accurate etch process is required, such as stopping at the thin, central P

doped layer. In such a case etch C would offer slightly more control due to the slower

etch rate for InAlAs, but being selective it allows for wafers to be designed with this in

mind. Stopping layers can be engineered for etch C to ensure that over-etching does

not occur past the desired point without switching to the second compound. Currently,
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Doping type Material Doping density (cm−3) Thickness (nm)

P In0.53Ga0.47As 2.0E18 200

Undoped In0.53Ga0.47As 0 2000
Undoped In0.52Al0.48As 0 25

P In0.52Al0.48As 1.6E17 175

Undoped In0.52Al0.48As 0 1000

N In0.53Ga0.47As 5.0E18 1000

- InP Substrate - -

Table 3.3: SF0751 concessionairy wafer structure.

there is no significant advantage to etch C over etch A with the current wafers, however

designs of further wafers could take advantage of the material selectivity. Etch A is

selected as the main etchant for all further fabrication used in this work, as it offers the

best tradeoff between etch profile and control.

3.4 Anisotropic Etch Directions

Tests were performed to evaluate etch profiles of SAMAPD structures when using the

H2SO4:H2O2:H2O (1:8:80) etching solution. Such an investigation is important as it

determines which is the best direction to deposit the bond pad tracks in.

The wafer structure of the sample used in these trials is shown in table 3.3, and was

selected due to its lack of quaternery layers. An important factor to note is that the wafer

is p on n, unlike the majority of the wafers in this work so the etch profiles would be

reversed between such wafers. The trial started with the sample having a 3-stage clean,

before being patterned using HMDS+SPR350 with the deep mesa etch photolithography

mask. Care was taken to keep track of the wafer major and minor flat directions. The

etching took 7 minutes, resulting in an etch depth of 4.2 µm. The photoresist was then

removed by acetone. Finally, the sample was cleaved down the centre of the mesas along

perpendicular directions. SEM imaging of the cleaved samples captured the etch profiles

along the different directions, as shown in figure 3.10.

A summary of the etch profiles is shown in table 3.4. It is found that while the InAlAs

etch profile is largely independent of the lattice plane, InGaAs has significant difference

with etch angles ranging from 47 to 77 degrees. The 011b direction is determined to be

most suitable for bond-pad deposition, since it offers the smoothest profile - minimising
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: SEM images of mesa sidewalls in the two cleave directions. (a) and (b)
show the 011b etch direction. (c) and (d) show the 011 etch direction. (e) and (f) show

the transition of mesa sidewall from 011b to 011.

the chance of bond-pad breakage. Additionally the flatter surface means that nitride will

deposit more effectively in this direction.

An interesting observation to note about the etch profile has sharp edges within the

InGaAs layer close to the InGaAs/ InAlAs interface. While this is not expected for n

on p wafers due to the reversal of materials, for a p on n wafer the performance of the

diodes could be seriously hampered due to the electric field hotspot that is likely occur
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Material 011b 011

InGaAs 47o 77o

InAlAs 70o 65o

Table 3.4: Summary of the etch angles determined from the SEM images. Angles are
taken from the horizontal plane.

here. This suggests that this etchant would be unsuitable for fabrication of a p on n

SAMAPD.

3.5 Characterisation Techniques

After a successful fabrication run, the resulting devices must be tested and characterised

to determine their quality. There are several different characterisation steps that the

devices on a sample will go through, with some depending on the success of the previous

step. The first step in any device characterisation is a room temperature IV trace.

3.5.1 IV

The experimental set-up for measuring IV characteristics is relatively basic. The diode p

and n contacts are probed and connected to a source-measure unit (SMU). The SMU

applies a DC bias for forward and reverse bias measurements. The forward bias sweep is

generally used to verify that good connections have been made, with all diodes expected

to have the same current densities at low forward biases.

The reverse bias sweep gives valuable information on the quality of the diode. Devia-

tion from the expected “ideal” dark current indicates undesirable mechanisms causing

leakage current. These can include generation-recombination and surface effects such as

surface and edge breakdown [12]. The severity of these will influence the decision as to

whether it is worth pursuing further characterisation of the diode. The ideal I-V relation

for a diode is given by the Shockley diode equation:

I = Is(exp(V/niVT )− 1), (3.1)

where Is is the reverse saturation current, ni is the ideality factor, and VT = kT/q is the

thermal voltage. This is plotted in figure 3.11.
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(a) (b)

Figure 3.11: (a) Linear and (b) semi-log plots of the IV relation for an ideal diode
plotted with arbitrary units. The reverse saturation current is set to 3× 10−9.

Preliminary reverse breakdown voltage can be obtained from reverse IV measurement,

though this is not modelled by equation 3.1. Additionally, illuminating the diode with

white light allows for punch-through voltage to be determined.

3.5.2 Responsivity and Gain

Responsivity is measured by focusing a laser source onto the optical window of a reverse

biased diode. Prior to measurement, the power of the laser is characterised using an

optical power meter. An SMU is used to bias the diode and measure the dark current

while the laser is off, and the photocurrent generated while the diode is illuminated by

the laser. The dark current is subtracted from the photocurrent, and the result divided

by laser power to obtain the photo-response of the diode.

Gain is extracted from the data by selecting the photocurrent at the first voltage

point where the diode has fully depleted as the reference photocurrent, which is expected

to have a gain of one. All subsequent photocurrents measuremented after this point are

divided by this value, providing gain. It is important to use large diodes to ensure that

all of the laser is focused into the optical window.

For diodes with high dark current or weak photoresponse, it is necessary to use

a lock-in amplifier (LIA) for a phase-sensitive measurement. As before, the diode is

illuminated with a laser, however the laser light is passed through an optical chopper
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which modulates the laser. The LIA then measures the relative voltage drop across a

load resistor connected in series with the diode. The reference frequency from the optical

chopper is supplied to the LIA, so that the LIA only measures the optical signal at the

reference frequency. This allows it to differentiate the modulated photocurrent from the

dark currents.

3.5.3 CV

CV measurements are carried out using an LCR meter. The p and n contacts of the device

are connected to the LCR meter, which then applies a small AC voltage superimposed

onto a DC voltage which is adjusted. The device is thus reverse-biased for the capacitance

measurement.

CV data can reveal detailed information on the structure of the APD. Sudden increase

in the depletion region width is often important for a SAMAPD, since it produces a

sudden decrease in capacitance. This corresponds to the punch-through voltage, which

may be more easily observed in CV compared to IV data. Additionally, by solving

Poisson’s equation (see section 2.1) it is possible to fit the data and estimate the electric

field profile across the device, and consequently the device structure and doping levels.

This is useful as it verifies whether the structure of the device is as expected, or if there

have been issues during wafer growth.

3.5.4 Dark Count Rate

For single photon counting, the dark count rate is one of the most important characteristics

of a SPAD. Minimising this is a central aim of this project, so it is important to accurately

characterise it.

3.5.4.1 CQC Board

The experimental setup, shown schematically in figure 3.12, was used to test the DCR

packaged devices. The device is placed in the DUT circuit which contains the CQC

(designed and constructed by Dr. S. Dimler [74]).
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Figure 3.12: Experimental setup for measurements of DCR for packaged devices.

The measurement process is as follows. The temperature controller is set to maintain

the device at the desired temperature, in a range of 0-30 ◦C. It is important to wait for

temperature to stabilise, as the breakdown voltage of the device can depend heavily on

the temperature. Once stable, a DC bias is applied to the circuit which is overlayed with

a 20ns square-wave pulse of around 5 V. The output of the DUT circuit is fed through

the discriminator, where the input can be monitored using an oscilloscope.

As the DC bias is stepped up, the oscilloscope is used to monitor avalanche events,

which appear as sharp, sudden peaks above the noise floor. Once these appear, the device

is at breakdown voltage. The discriminator threshold is adjusted such that it is above

any noise. The NIM output of the discriminator is fed to a counter to measure the DCR.

The DCR is then measured as a function of bias over the breakdown voltage.

The DCR is defined as

DCR =
No dark counts

duration · τf
, (3.2)

where τ is on-time, and f is frequency. The dark count probability is

Pd =
No dark counts

f
. (3.3)
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Figure 3.13 shows examples of the signals observed during the operation of the CQC

board with a SPAD operated in gated mode. In figure 3.13a there is only the 5 V biasing

pulse (C2) applied, with no DC offset. The small transients as a result of the pulse can

be seen in channel C1 - small due to the differential amplifier component of the circuit,

with the variable capacitor adjusted to match the capacitance of the diode. Channel C4

is the gate output of the pulse generator. A demonstration of the circuit with a DC bias

applied to a combined pulse and DC reverse voltage above breakdown is shown in figure

3.13b. Channel C1 shows an avalanche breakdown event occuring and being detected by

the discriminator circuit, with the NIM output trigger appearing in channel C3. The

NIM output is input into the Canberra counter, which is able to count the number of

events that have occured within a given time period. Using this result, it is possible to

calculate the normalised dark count rate and the dark count probability using equations

3.2 and 3.3.

3.5.4.2 JANIS ST-500 Low Temperature Probe Station and LeCroy Oscil-

loscope

For low temperature measurements, the JANIS ST-500 probe station is required. The

JANIS provides an enclosed, temperature controlled vacuum chamber with probes inside

able to be manipulated externally. This allows for the measurement of multiple devices

when the chamber is evacuated and cooled down.

Due to the limited space within the chamber, it is not possible to have the differential

amplifier used in the CQC circuit close to the diode. Indeed, due to the inherent

capacitance and inductance of the chamber and cabelling itself, large transients are

generally observed when pulses are applied to a diode within the chamber. The problem

is demonstrated in figure 3.14. For a wide pulse, as in figure 3.14a, the avalanche

breakdown events mostly reach above the transients. With a reduced pulse width, shown

in figure 3.14b, breakdown events are not able to reach above the transients since they

are unable to build up enough charge. A new method of counting is required, since the

size of these transients prohibits the use of a simple threshold circuit due to the majority

of avalanche events not reaching a level higher than the transients.

A method to use a LeCroy Waverunner oscilloscope to filter and count events was

devised. Figure 3.15 shows an example of this method in operation and detecting a
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(a)

(b)

Figure 3.13: A demonstration of the biasing pulse (5 V, 10 ns), transients, and signal
from the diode. C1 is the signal monitor from the discriminator, C2 is the pulse bias
monitor, C3 is the NIM output from the discriminator, and C4 is the trigger output
from the pulse generator. (a) shows the transient resulting from the biasing pulse. It is
minimised by the differential amplifier and variable capacitor built into the CQC board.
(b) shows an observed breakdown event on C1. Note the NIM trigger signal on C3 from
the discriminator. There is a delay between events due to different signal path lengths.
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(a) (b)

Figure 3.14: Traces of breakdown events recorded from the oscilloscope, with the
transients indicated by the black line.

Figure 3.15: LeCroy filtering (see text for details).

small avalanche event. The oscilloscope is able to apply mathematical operations on

the signal from the measured channels. Before the diode is placed into the SPAD gated

operating regime (with biasing pulses taking overall reverse bias above breakdown), the

transient signal from channel C4 is recorded and stored into memory bank M1. This

stored signal is subtracted from the channel C4 signal, and a smoothing function applied

to the result to reduce the effects of noise. The resulting, filtered signal can be seen in F4.

The histogram function of the oscilloscope (not shown) is then used and set to trigger
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on channel C2 (the gate output of the pulse generator), and at a certain threshold to

trigger on F4. Thus, based on the number of events that are recorded from channel C2

and F4, the probability of an event can be determined as

P =
channel F4 counts

channel C2 counts
. (3.4)

Depending on if photons are present or not during the measurement, the dark count or

photon detection probabilities can be determined.

Due to the speed limitation of the oscilloscope, this method requires approximately 45

seconds to 1 minute to measure 1000 pulses. It is therefore only utilised when absolutely

required as here, since this greatly limits measurement accuracy at lower count rates

due to time constraints. Additionally, software was developed to control the oscilloscope

since the histograms are only able to count up to 1000 events before a reset is required.

This allowed for easier extended measurements to 10000 counts per voltage.

3.5.5 Photon Detection Efficiency

For photon detection efficiency (PDE) measurement, the CQC board can be used for

packaged devices, and the low temperature probe station for unpackaged devices. The

CQC board is enclosed in a large black box which is fitted with optics mounted on

electronic micro-positioners to couple light into the diode, and a peltier inside for

temperature stabilisation. Using the low temperature probe station allows for positioning

of a micrometer adjusted single-mode optical fiber which couples light into the chamber

from an outer fiber connection.

In both cases, a CW 1550 nm laser with a known power is used to initially align

the optics to the DUT, which is reverse biased above punch-through. For a diode with

known responsivity, it is possible to calculate the amount of the laser spot coupled into

the optical window. The loss is recorded as µcoupling (dB), calculated using

µcoupling = 10 · log10

(
Pmax ·R

Ip

)
, (3.5)

where Pmax is the maximum measured power at the end of the optical fiber, R is diode

responsivity, and Ip is measured photocurrent.
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A 1550 nm picosecond pulsed laser (Picosecond Laser Diode Systems PiL155) is

used to provide the laser pulses for photon counting measurements, triggered by the

pulse generator and synchronised with the biasing pulse. This is connected through

an Exfo FVA-3100 electrical variable optical attenuator (EVOA) (µvariable), which is

also fitted with a 25 dB fixed optical attenuator (µfixed) on the input port to protect it

from damage. With a measured average pulse energy of Epulse = 248 fJ for the pulsed

laser, and photon energy Ephoton = 1.28× 10−19 J , a total of 62.87 dB of attenuation is

required to attenuate the pulses to a single photon level, n̄ = 1. Total system attenuation

is given by

µtotal = µfixed + µvariable + µcoupling. (3.6)

Using this, the average number of photons per pulse can be calcuated using

n̄ =
Epulse

Ephoton · 10
µtotal

10

. (3.7)

µvariable is then adjusted to set n̄ to the desired level.

Synchronisation of the pulses with the biasing pulse is performed using the pulsed

laser unattenuated. With a large diode (low coupling loss) reverse biased to a high gain

region, it is possible to view the incoming laser pulse using an oscilloscope. The offset

relative to the pulse generator trigger out is recorded, and then used to delay the biasing

pulse sufficiently such that the peak of the pulse falls as the biasing pulse peaks.

Dark and pulsed laser measurements are performed back-to-back, ensuring that the

pulse detection probability is more reliable. With time, the DCR can drift, so it’s

important to measure these close together for a given voltage. In general, several different

attenuations are used to provide an understanding of how detection probability changes

with photon level. The pulse detection probability is given by

Ppde =
Number of pulsed counts

f
− Pd. (3.8)
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Doping type Material Doping density (cm−3) Thickness (nm)

N In0.53Ga0.47As 5.0E19 100
N In0.52Al0.48As 2.0E18 300

Undoped In0.52Al0.48As 1.0E14 1000

P In0.52Al0.48As 4.2E17 69

Undoped In0.52Al0.48As 2.0E15 25
Undoped Al0.15Ga0.32In0.53As 1.0E14 25
Undoped Al0.29Ga0.18In0.53As 1.0E14 25
Undoped In0.53Ga0.47As 2.0E15 1500
Undoped Al0.15Ga0.32In0.53As 1.0E14 25
Undoped Al0.29Ga0.18In0.53As 1.0E14 25
Undoped In0.52Al0.48As 2.0E15 100

P In0.52Al0.48As 2.0E18 100
P In0.53Ga0.47As 5.0E18 1000

- InP Substrate - -

Table 3.5: SF0940 wafer structure, used for simulation and fabrication of double mesa
APDs.

3.6 Double Mesa Design and Fabrication

Multi mesas are structures which are generally used to confine the electric field within a

diode to a certain area, which is defined by the top mesa area. Specially designed wafers

have in the past been used to realise these multi-mesa devices [27]. To test if there is any

benefit to utilising existing non-specially designed wafers with a double-mesa fabrication

process, simulation and fabrication of such a design was performed.

3.6.1 Design and Simulation

An APD wafer (SF0940) with relatively small punch-through voltage was selected. The

existing wafer is given in table 3.5, and is used in the electric field profile simulations

which are performed using semicondutor simulation software; TCAD Sentaurus. Several

different mesa widths were tested, with the first (top) mesa width being varied (from 5

to 20 µm) to find a suitable distance that its edge had to be from the second mesa to

provide adequate field confinement. Results of the simulations are presented in figure

3.16.

In figure 3.16a the full 2D modelled structure is shown, with electric field slices C1,

C2 and C3 taken at important locations and plotted in figure 3.16b. C1 represents the

regular field that one expects within a standard, single mesa diode with none of the
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(a) (b)

(c) (d)

Figure 3.16: Double mesa simulations using the structure given in table 3.5 with the
top mesa edge 10 µm away from the outer mesa. In all plots the diode has a reverse
bias of 70 V applied to it. (a) shows the electric field across the diode in the region of
interest, with slices C1, C2, and C3 taken at the indicated points and plotted in (b).
(c) and (d) show the effects of etching further into the avalanche region, and how the

electric field hot spot changes.

effects of electric field confinement visible. This is contrasted with the fields at C2 and

C3, with C2 showing a large peak due to the sharp edge at the double mesa interface.

C3 shows that the field is completely confined away from the second mesa edge. The

electric field hotspot at C2 means that the voltage range the APD is able to operate at

will be reduced due to edge breakdown effects, since the breakdown field will be reached

in that area earlier than the junction as a whole.

Figures 3.16c and 3.16d explore the hotpsot further, showing a zoomed in view of the

hotspot at two different etch depths into the InAlAs avalanche region of 50 nm and 5 nm

respectively. Etching further into the region distributes the hotspot over a larger area,

as well as causing a breakdown field across more of the first mesa surface. Therefore care

must be taken during fabrication of the double mesa to minimise the depth etched into

the avalanche region in order to maximise the APD performance.
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With the field confined largely to within a 2-3 µm radius of the top mesa edge, 10 µm

is chosen as the distance at which the second mesa will be defined and etched. This takes

into account possible undercutting of the photoresist during etching, with a target total

etch depth of around 4 µm possibly bringing parts of the sidewall to within 6 µm of the

top mesa edge. This leaves around 3 µm for the alignment tollerance of the second mesa

etch stage if field confinement is to be ensured.

3.6.2 Device Fabrication of Double Mesa Diodes

Fabrication was perfomed based on the standard procedure discussed in 3.1. One sample

was cleaved from the SF0940 wafer and 3-stage cleaned. A spin coating of PMGI was

applied, followed by a 5 minute bake on a hotplate at 180 oC. A layer of SPR350 was spun

on top and baked for 1 minute at 100 oC. The IIG Mesa top contact mask was exposed

in a UV mask aligner, and developed for 1 minute in MF26A photoresist developer.

Ti/Au (20/200 nm) contacts were then deposited in an evaporator. After metal lift off

in acetone, and 1 minute in MF26A developer to remove the PMGI, SPR350 was spun

on and baked for 1 minute at 100 oC. The standard mesa mask was then exposed and

developed for 1 minute.

At this stage the sample was cleaved in half before etching. The etchant used was

H2SO4:H2O2:DIW (1:8:80). One half of the sample was etched to a depth of 4 µm, to be

used as a reference sample to compare the double mesa against. The second half was

etched 450 nm (to ensure full removal of the top n layers) after which the photoresist

was stripped, and a spin coating of Hexamethyldisilazane (HMDS) adhesion promoter

and SPR350 was applied and patterned with the deep mesa etch layer. The HMDS was

crucial at this stage, as the etched mesa shapes negatively affect photoresist coating and

adhesion, which can cause serious issues during etching. The deep mesa sample was

then etched a further 3.6 µm down to the bottom contact layer for a total etch of 4 µm.

The importance of HMDS is demonstrated in figure 3.17, which shows SEM images of a

failed double mesa where HMDS was not used. The smaller mesa is visible above the

second mesa, however the outer mesa is extremely rough due to the photoresist pealing

off around the edges as the etch was performed.

The final stage of processing was the patterning of the grid contact layer onto a spin

coating of SPR220. The SPR220 was baked on a hotplate for 1 minute 40 seconds at
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Figure 3.17: SEM images of a double mesa diode fabricated without using HMDS.
Extreme undercutting of the photoresist has brought the wider mesa edge close to the

top mesa, and led to a rough sidewall.

100 oC before exposure, and developed for 1 minute 10 seconds in MF26A after exposure.

20/200 nm Ti/Au contacts were then evaporated onto the sample, and lift-off performed.

Completed devices are shown in 3.18.

3.6.3 Results of Double Mesa Fabrication

IV data of the fabricated single mesa and double mesa diodes are compared in figure

3.19. The double mesa diodes show a smaller breakdown voltage, confirming the electric

field hotspots observed in the simulations cause premature breakdown. The breakdown

was not catastrophic, and repeat measurements could be made on the same double mesa

diode. The dark current is lower in the double mesas prior to punchthrough. This

indicates that the double mesa structure is effective at reducing dark current density in

the InAlAs avalanche region by up to an order of magnitude. After punchthrough occurs

however, the dark currents are indistinguishable between the single mesa and the double

mesa diodes.

These data indicate the dominant dark current mechanisms in the InAlAs avalanche

and InGaAs absorption regions. The InAlAs dark current is likely dominated by surface

effects from the etching, since confining the electric field away from surface reduces dark

current significantly. The double mesa structure could therefore be useful to quantify the

effects of various different etches and optimise for reduced surface dark current. Dark

current in the InGaAs region is dominated by thermal generation - recombination current,
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Figure 3.18: Microscope (top row) and SEM images of successfully fabricated double
mesa diodes, coated with HMDS prior to the second etch step. For reference, the diodes
shown in the top row have diameters of 70 and 120 µm, with the 70µm diode labelled.

with negligible surface effects. This can be deduced from the lack of difference between

single mesa and double mesa dark currents.
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Figure 3.19: Comparison of IV data from fabricated single (green) and double (red)
mesa diodes.





Chapter 4

InGaAs/InAlAs Based Single

Photon Avalanche Photodiodes

In this chapter, the design, fabrication, and characterisation processes are discussed

in detail for two new APD wafers designed for SPAD operation. The wafers are then

assessed for low and single photon detection.

4.1 Mask Design

Due to a relatively large dark current density arrising from the InGaAs absorber region,

highly sensitive InGaAs/InAlAs SPAD diodes are generally less than 60 µm in diameter

to minimise dark count rate (DCR) while maximising single photon detection efficiency

(SPDE). A photolithography mask optimised for small diodes was designed for this

purpose, as well as to utilise available wafer efficiently.

The designed mask is presented in figure 4.1. The naming convention used for the

diodes is D<X> where X is the diameter of the diode in µm. The diodes with bondpads

range from diameters of 60 µm (D60) down to 20 µm (D20). They are labelled on the

mask, with effective sizes generally 10 µm smaller than indicated after wet etching 4 µm

down. In figure 4.1c the lower contact can be seen above the diode, while the top contact

bond pad is below. D100 diodes are the largest, but cannot be bonded, so are mainly

used for sample diagnostics. There are a total of 23 bondable diodes per 1260× 1360 µm

65
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(a)

(b)

(c)

Figure 4.1: Overview of the designed mask set. Dimensions of the whole mask cell are
1260× 1360 µm. Some layers are omitted for clarity. (a) shows the overall design, while
(b) shows the cell IDs. A close up of a 180× 340 µm D30 diode cell is shown in (c) with

various dimensions indicated.
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mask cell, with the cell design ensuring that individual diodes can be cleaved out without

damaging neighbours.

Incorporated into the design are various features, such as diodes with sidewall shielding

to prevent side photon injection. Due to the small diode size the possibility for failed

window lift off means that some diodes are engineered without shielding. In addition,

the diodes on the left hand column of the mask are completely covered in metal. These

are used as reference diodes during initial testing of experimental set ups to ensure light

tightness, since their DCRs can be compared against DCRs from diodes without the

metal covering.

An additional mask set called IIG Mesa is used in order to assist with wafer char-

acterisation, shown in figure 4.2. This is a modification of an existing mask set, and

contains larger diodes than those in the SPAD mask set. The device diameters are 70,

120, 220, and 440 µm, with only the larger 220 and 440 µm diodes being bondable. More

detailed overviews of the IIG SPAD and IIG Mesa mask sets are available in appendix A

and appendix B, respectively.

Figure 4.2: IIG Mesa mask set.
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4.2 Wafer Design and Considerations

Using equations presented in chapter 2, the design of wafers optimised for SPAD operation

can be performed. For InGaAs/InAlAs based SAMAPDs, the limiting factor for device

operation is generally the high dark current from the InGaAs absorption region. In

order to minimise this, it is benefitial to maximise the punch-through voltage as much as

possible, so that the electric field is kept low in the absorber. Punch-through must, of

course, be kept below the desired operating voltage. In the case of SPAD operation this

is generally breakdown voltage and several percent over, where avalanche breakdown

probability is high. The lower limit for punch-through voltage is determined by the

breakdown field of the absorber. If this is exceded before the breakdown field is reached

in the avalanche region, it is no longer a SAMAPD, and SPAD operation will be severely

hampered.

As well as punch-through, the absorption region needs to be wide enough to maximise

quantum efficiency. Making this too wide however, leads to a higher dark current since

it is a relatively narrow bandgap material, and degraded timing characteristics. The

absorption region also needs to be wide enough such that at the desired operating voltage,

the field across the region will not cause quantum tunneling.

The avalanche region is engineered to achieve high gain, while also having accept-

able timing characteristics. Since SPAD operation is generally performed with circuit

quenching, the usual excess noise considerations are not relevent.

The diodes in this work were engineered to punch through as close to breakdown

voltage as possible. This minimises the electric field along the InGaAs absorber region

with the aim of minimising dark current and any chances of breakdown events, while

maintaining a high field in the InAlAs avalanche region. Two diodes with similar

characteristics were designed using the recurrence equations (2.16) and (2.17) and electric

field modelling using Poisson’s equations (see section 2.1). In the following sections, the

design considerations are quantitatively explored in detail.
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4.2.1 Breakdown Probability Modelling

The breakdown probability for a perfect InAlAs pin diode was simulated, as to inform

the breakdown behaviour of a SAMAPD structure. Using equations (2.16) and (2.17),

Pbe and Pbh were calculated for i region widths of 0.5 µm to 1.5 µm which are shown in

figure 4.3. The InAlAs ionisation coefficients used are taken from [22].

(a) (b)

(c)

Figure 4.3: (a) and (b): Simulated avalanche breakdown probabilities for perfect
InAlAs pin structures with widths range from 0.5 µm to 1.5 µm in 0.1 µm steps. Solid
lines are Pbe and dashed lines are Pbh. (c) Breakdown voltages and fields extracted

from (a) and (b) at Pbe = 0.01.

As the i region width increases, the reverse bias required to achieve breakdown

increases. The electric field for the junction to enter breakdown is however reduced due

to carriers acquiring higher kinetic energies before exiting the junction. Depending on

the operating voltage requirement, the avalanche region width can be chosen accordingly.

However, tunneling current (discussed below) often places upper limits on operating

electric fields so there are lower limits for the avalanche region widths.



70 Chapter 4. Single Photon Avalanche Photodiodes

4.2.2 Tunneling Effects

As mentioned previously, it is essential to consider tunneling current effects when

designing the avalanche region width. For this purpose, the InAlAs avalanche region is

once more modelled as an InAlAs pin diode, for which the tunneling current density can

be calculated using equation (2.23).

(a) (b)

(c)

Figure 4.4: Modelled tunneling current densities versus (a) reverse bias and (b) reverse
electric field for InAlAs pin diodes with i region widths from 0.5 to 1.5 µm in 0.1 µm
steps. (c) Tunneling current density versus avalanche width at Vbd × 1.1 - a typical

operating voltage for a SPAD.

Figure 4.4 shows how tunneling current density increases with voltage and electric

field as a function of avalanche region width. These were simulated using Eg = 1.45 eV,

m∗ = 0.069m0, and σT = 1.26 [76]. The tunneling current as a function of electric field

is not significantly affected by the i region width, though tunneling current depends

sensitively on overbias. As avalanche width decreases, the tunneling current at avalanche

breakdown increases, since the required avalanche breakdown field itself increases.



Chapter 4. Single Photon Avalanche Photodiodes 71

(a) (b)

Figure 4.5: Modelled tunneling current densities versus (a) reverse bias and (b) reverse
electric field for InGaAs pin diodes with i region widths ranging from 0.5 µm to 1.5 µm

in 0.1 µm steps.

The absorption region’s tunneling current is also considered. The tunneling cur-

rent densities are shown in figure 4.5 for InGaAs pin diodes. Parameters used are

Eg = 0.738 eV, m∗ = 0.068m0, and σT = 1.16 [77]. Since InGaAs has a narrower

bandgap, tunneling current is more significant. Tunneling becomes significant at far

lower fields than in InAlAs, so SPAD design must minimise this field.

4.2.3 Electric Field Modelling

Since both breakdown probability and tunneling current depend on electric field, SPAD

design requires electric field profiles as a function of reverse bias. For SPAD designs

with a SAM structure, the charge sheet doping Nc and charge sheet thickness wc heavily

influence the electric field profiles. Utilising the modelled breakdown fields for pin diodes

(shown in figure 4.3c), and mapping the electric field of the pin diodes to the SAM

structure, it is possible predict the dependence of avalanche breakdown and punchthrough

behaviour across the SAM region due to Nc and wc. These are illustrated in figure 4.6.

Vbd and Vp vary linearly with Nc and wc, until Vbd drops below Vp. At this point the

entire applied reverse voltage is dropped across the avalanche region, so Vbd remains

constant with Nc or wc, with the diode behaving more like a simple pin diode.

Details of the two wafer structures designed, SF1318 and SF1319, are shown in table

4.1. Their predicted CV and electrical field characteristics are shown in figure 4.7, with

full punchthrough achieved at 76.50 and 66.50 V for SF1318 and SF1319 respectively.

Graphs combining the electric field values extracted from CV model with the breakdown
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(a) (b)

Figure 4.6: (a) demonstrates the effects of varying Nc with a fixed wc = 69 nm. (b)
demonstrates the effects of varying wc with Nc = 4.1e17 cm−3. Vp and Vbd are extracted
from the CV model. Vp,start and Vp,end represent where the absorption region starts to

deplete and fully depletes, respectively.

(a) (b)

(c) (d)

Figure 4.7: Modelled CV of the (a) SF1318 and (b) SF1319 structures as designed.
The two voltages indicated in (b) and (d) are the voltages at which the InGaAs absorber

begins to deplete and fully depletes, respectively.

probability modelling are shown in figure 4.8. Figure 4.8a demonstrates how the effective

voltage across the avalanche region changes with reverse bias as the structure begins to
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Doping Material Doping density (cm−3) Thickness (nm)

n+ In0.53Ga0.47As 5.0E19 100
n+ In0.52Al0.48As 2.0E18 300

p- In0.52Al0.48As 2.0E15 1300

p+ In0.52Al0.48As 4.1E17 (SF1319) 5.0E17 (SF1318) 69

p- In0.52Al0.48As 2.0E15 25
p- Al0.15Ga0.32In0.53As 2.0E15 25
p- Al0.29Ga0.18In0.53As 2.0E15 25
p- In0.53Ga0.47As 2.0E15 1500
p- Al0.15Ga0.32In0.53As 2.0E15 25
p- Al0.29Ga0.18In0.53As 2.0E15 25
p- In0.52Al0.48As 2.0E15 100

p+ In0.52Al0.48As 2.0E18 100
p+ In0.53Ga0.47As 5.0E18 300

- InP Substrate - -

Table 4.1: SF1318 and SF1319 wafer structures as designed (charge sheet doping is
later confirmed through CV measurements, and is different than the design).

(a) (b)

Figure 4.8: Extracting avalanche field from the predicted CV. Total reverse bias across
the SAMAPD is shown on the horizontal axes. (a) shows avalanche region voltage
extracted from CV modelling for SF1319, and how as the capacitance begins to drop, the
electric field begins to increase more slowly in the avalanche region. Gradients pre and
post-punchthrough are indicated to emphasise the voltage difference. In (b) the effective
voltages are mapped to the breakdown probabilities calculated for a w = 1.3 µm pin
diode. Orange and green highlighted areas show the voltage range across which the

SF1318 and SF1319 absorption regions are depleting, respectively.

punch-through. The breakdown of SF1318 is engineered such that the absorption region

starts to deplete as the avalanche region achieves 10% over breakdown field. SF1319 is

designed to fully punch-through before breakdown occurs, with only a small seperation

between achieving full depletion and high Pb.

The effects of temperature on electric field profiles is also considered. As the diode

is cooled, the field required for breakdown to be achieved reduces. At the same time,
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punchthrough voltage will also move slightly higher due to an increasing bandgap. With

this in mind, the SF1318 structure is designed for room temperature operation, while

SF1319 is more optimised for cooling.

4.3 Wafer Growth and Device Fabrication

MBE wafer growth for the InGaAs/InAlAs SPADs (SF1318 and SF1319) was performed

by Dr Shiyong Zhang at the EPSRC National Centre for III-V Technologies at the

University of Sheffield. Table 4.1 shows the requested wafer structures. The structures

are designed to produce nipip diodes, with additional AlGaInAs grading layers between

the InGaAs/InAlAs layers added to avoid trapping carriers at the interface band-gap dis-

continuities. The i layers were lightly p doped to ensure consistency with the surrounding

p doped layers, and prevent any undesirable pn junctions within the structure.

Several device fabrication rounds were carried out using the mask sets discussed in

section 4.1, with one mask set containing D70, D120, D220, and D440 diodes, and the

second containing the smaller D20, D25, D30, D60, and D100 diodes. Fabrication was

carried out using the standard procedure discussed in detail in section 3.1, with a brief

description given here. Samples were cleaved from the main wafer and a 3-stage clean

performed. PMGI was spun onto the samples, followed by a 5 minute bake on a hotplate

at 180oC. SPR350 was then spun on top of the PMGI layer, and baked for 1 minute

at 100oC. All spin coating was performed at 4000 RPM. Top contact layers were then

exposed using a UV mask aligner, and the photoresists developed for 1 minute in MF26A

developer. Prior to metal evaporation, the samples were exposed to a O2 plasma in an

asher to remove any remaining dirt from the contact area. The Ti/Au (20/200 nm) top

contacts were then deposited using a metal evaporation chamber. Lift off was performed

first using acetone to remove the SPR350 and metal covering, followed by the sample

being placed once more in MF26A developer to remove the PMGI layer, and then a

3-stage clean.

Following contact deposition the mesa etch layer was exposed onto a spin coating

of HMDS + SPR220, with the HMDS added to ensure optimal photoresist adhesion

during etching. Wet chemical etching was done using a solution of H2SO4:H2O2:DIW
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(a)

(b)

(c)

Figure 4.9: (a) shows an image of a D25 diode from the IIG SPAD mask after the
final fabrication step, (b) is a cross section diagram of the diodes, and (c) is an SEM

image of a D60 diode cleaved as in the cross section diagram.
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(1:8:80), etching approximately 4 µm down to the lower InGaAs p-contact. Etch depth

was verified using a Dektak surface profiler.

After stripping the etch photoresist in acetone, SPR220 was spin coated onto the

sample and the lower contact/bondpad layer exposed and a Ti/Au (20/200 nm) contact

deposited. After lift off the IIG Mesa fabrication ends, whereas the IIG SPAD fabrication

procedure continues. IIG SPAD samples proceded to have a 600 nm SiNx layer deposited

using PECVD at 100oC. This layer passivates the sidewall of the mesa diodes and provides

isolation for the bondpads from the mesa edge.

HMDS and SPR220 layers were spin-coated onto the nitride, followed by photolithog-

raphy to expose part of the nitride layer. Using RIE with a CHF4/O2 (35/5 sccm) gas

mixture at 100 W of RF power, the nitride was etched and completely removed in contact

areas and the mesa window. The final stage was the top bondpad deposition, with

the mask layer exposed onto a HMDS+SPR220 spin coating. Prior to evaporation, the

bondpad area was roughened using RIE with the previous recipe for 15 seconds to aid

with bondpad adhesion. Ti/Au (40/400 nm) bond-pads were then deposited to connect

to the top of the mesas. Examples of finished diodes are shown in figure 4.9.

4.4 Wafer Characterisation

4.4.1 IV Measurements

Room temperature IV measurements were carried out on diodes with 20 to 420 µm

diameters. Diodes were characterised before nitride deposition and after the final bond-

pad deposition stage in order to determine the effects of the nitride and bondpad.

Room temperature IV data of SF1318 are shown in figure 4.10. These show a good

consistency in breakdown voltage with most diodes breaking down sharply at the same

voltage. There is no indication of punch-through, which would be indicated by a sudden

rise in dark current before breakdown.

Room temperature IV data of SF1319 are shown in figure 4.11. The SF1319 diodes

show less consistent data compared to SF1318. Nevertheless, breakdown voltage is largely

consistent. There are more noticable increases in dark current with reverse bias than in
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SF1318 which could be indicative of surface roughness due to wet etching issues. This

effect is most pronounced in the larger diodes, with D70 diodes and smaller (those of

interest for SPAD operation) largely avoiding this issue. As with SF1318, there is no

clear indication of punch-through from the dark IV data.

Comparisons of diodes pre-nitride and post-bondpad deposition, are shown in figure

4.12. After bondpad deposition, the SF1318 IV data improved (decreased dark current)

post-bondpad deposition, whereas SF1319 diodes were degraded. This indicates that

in the SF1318 diodes the nitride suppressed negative surface effects, for example from

chemical residue. SF1319 diodes were degraded from the nitride and bondpad deposition,

though their IV characteristics largely similar to that of the SF1318 diodes post-bondpad

deposition. It seems that the effects of the nitride largely normalise diode performance.

(a) (b)

Figure 4.10: IV measurements of SF1318 diodes before nitride deposition.

(a) (b)

Figure 4.11: IV measurements of SF1319 diodes before nitride deposition.

The temperature dependence of the diodes’ IV characteristics was obtained using a

low-temperature probe station (Janis ST-500). Temperature dependent IV data of an
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(a) (b)

Figure 4.12: Current density measurements of (a) SF1318 and (b) SF1319 diodes
before (blue) and after (orange) nitride.

(a) (b)

Figure 4.13: (a) SF1318 and (b) SF1319 temperature dependent IV measurements to
determine breakdown voltage temperature dependence.

SF1318 diode and SF1319 diode are shown in figures 4.13a and 4.13b, respectively. Values

for the temperature dependences between 150 and 295 K are found to be 15.9 mV/K

and 16.6 mV/K for SF1318 and SF1319, respectively.
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4.4.2 CV Measurements

Figures 4.14 and 4.15 show the capacitance data SF1318 and SF1319 diodes respectively.

Large 420 µm and 220 µm diameter diodes are used for these measurements in order

to maximise accuracy in determining capacitance per unit area. Measuring diodes with

different sizes allows the actual device area to be extracted, since some area is lost to

etching. For both SF1318 and SF1319 the effective reduction in diameter is found to be

8 µm, which is reasonable for the etch depth of 4 µm in device fabrication.

(a) (b)

Figure 4.14: (a) CV data of SF1318 diodes with nominal diameters of 420 and 220 µm.
There is an indication of the start of punchthrough, shown in the inset. The capacitance

density data in (b) has a correction of −8 µm applied to the diameter.

(a) (b)

Figure 4.15: (a) CV data of SF1319 diodes with diameters of 420 and 220 µm. A
correction of -8 µm is applied to the diameter for the area calculation in (b).

From these data it is possible to deduce the effective dopings and layer thicknesses in

the wafers. Figures 4.14b and 4.15b overlay fittings to the measured capacitance density

versus reverse bias. The fittings yielded effective charge sheet dopings of 5.15× 1017 and

4.45× 1017 cm−3 for SF1318 and SF1319 respectively, using a 69 nm charge sheet width.
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Figure 4.16: Punch-through and breakdown probabilities predicted for SF1318 and
SF1319 based on IV and CV measurements. Orange and green highlighted areas indicate
the voltages across which the absorption regions of SF1318 and SF1319 are depleting,

with an overlapping area in the centre.

Doping Material Doping density (cm−3) Thickness (nm)

n+ In0.53Ga0.47As 5.0E19 100
n+ In0.52Al0.48As 2.0E18 300

p- In0.52Al0.48As 2.0E15 1300

p+ In0.52Al0.48As 4.45E17 (SF1319) 5.15E17 (SF1318) 69

p- In0.52Al0.48As 2.0E15 25
p- Al0.15Ga0.32In0.53As 2.0E15 25
p- Al0.29Ga0.18In0.53As 2.0E15 25
p- In0.53Ga0.47As 2.0E15 1500
p- Al0.15Ga0.32In0.53As 2.0E15 25
p- Al0.29Ga0.18In0.53As 2.0E15 25
p- In0.52Al0.48As 2.0E15 100

p+ In0.52Al0.48As 2.0E18 100
p+ In0.53Ga0.47As 5.0E18 300

- InP Substrate - -

Table 4.2: SF1318 and SF1319 wafer structures based on CV data fitting.

These are slightly higher than the charge sheet dopings in the designs in table 4.1. The

updated structure based on CV data fitting is shown in table 4.2.

Based on the SF1318 data, the diodes have not punched-through by the point of

avalanche breakdown. There is an indication at the highest voltage points that structure

may be beginning to punch-through, however practical measurement range is limited by
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degrading phase angle when the diode is close to breakdown. The fit for SF1318 assumes

that the start of punch-through is indeed around breakdown.

The absorption region of SF1319 does begin to deplete before breakdown voltage,

however it does not fully deplete which indicates that the charge sheet doping is higher

than expected, as shown by the fit. As with the SF1318 measurement the range is limited

by the phase angle diverging significantly from −90o.

It is important to note that the CV fittings are only an approximation. They assume

a uniform doping across each region which is not necessarily the case. The actual

distribution of dopants is likely to be more diffused the different regions.

Based on the IV and CV data of SF1318 and SF1319, it is possible to predict the

behaviour of Pbe and Pbh in each of the grown structures. Figure 4.16 shows how each

structure is expected to deplete and the dependence of breakdown probability on reverse

bias.

4.4.3 Responsivity

Figure 4.17: SF1318 responsivity data for two D220 diodes, including the effects of
avalanche gain.

Responsivity was measured using large diodes to ensure all of the laser spot is incident

on the mesa top. The responsivity data for two D220 SF1318 diodes is shown in figure



82 Chapter 4. Single Photon Avalanche Photodiodes

(a) (b)

Figure 4.18: Responsivity data for SF1319 obtained from two D220 diodes. (a) shows
responsivity on a linear scale while (b) shows it on a log scale to provide more clarity in
the low gain region. The responsivity shown includes gain, since it is difficult to define

a region of gain 1.

4.17. As expected from CV data, there is very little photoresponse for reverse biases

below 65 V, i.e. before the InGaAs absorber is depleted. Measurement of responsivity

beyond 66 V is not possible as the diodes begin to breakdown.

Similar responsivity measurements were carried out for SF1319 and the data from

D220 diodes are plotted in Figure 4.18. The responsivity shown does include avalanche

gain, as it is difficult to extract gain data from a diode that is still in the process of

punching-through. It is likely that there is already gain by the time that the diode

photoresponses reach 1.5 A/W, which is approximately the expected photoresponse for

when the InGaAs layer is fully depleted which further complicates determining gain.

It is clear that the diodes are able to achieve relatively high gain before breakdown.

However, the drop in capacitance in figure 4.15 is consistent with the sharp increase in

photocurrent in the responsivity data at 65 V.

4.5 DCR and Pulsed Photon Measurements

Pulsed DCR measurements were carried out. Unless otherwise stated, the experiments

were carried out at a repetition frequency of 100 kHz, with the pulse width set to 10 ns

on the pulse generator. Pulse heights were varied in measurements (often adjusted based

on the transients observed), so the data below are presented with total reverse bias or

overbias, which combines the AC and DC biases. The range of pulse heights was between

5 and 10 V, with the DC bias making up the rest of the total applied reverse bias.
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4.5.1 DCR Measurements

Figure 4.19: Pulsed DCR for SF1318 diodes.

Figure 4.20: Pulsed DCR for SF1319 diodes.

Pulsed DCR measurements were performed on SF1318 using the CQC board described

in section 3.5.4.1. The results of this are presented in figure 4.19. SF1318 diodes showed

good, clear breakdown events well above the transients.
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Figure 4.21: Comparison of DCR for SF1318 and SF1319, with D20 and D25 diodes
plotted together.

Due to smaller observed breakdown events, SF1319 DCR data was gathered using

the LeCroy oscilloscope method described in section 3.5.4.2. This limits the normalised

DCR noise floor of the measurement to around 104 Hz, so the lowest overbiases are not

measurable. Results are shown in figure 4.20. A comparison is shown in figure 4.21.

4.5.2 Afterpulsing

Figure 4.22: Double biasing pulse setup used for assessing afterpulsing.

To investigate afterpulsing, a double biasing pulse was used. The pulse is depicted

in figure 4.22, and consists of two pulses with identical height and width, but varying

pulse seperation. As seen in figure 4.23, the effects of afterpulsing are negligible after

a seperation of 50 ns, which is equivalent to a repetition frequency of 20 MHz. This
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Figure 4.23: Double pulsing DCR measurements for SF1318 and SF1319. Two 10 ns,
4 V pulses were applied with the seperation between the end of the first pulse and the
start of the second pulse indicated on the x-axis. The DC reverse bias was set to 62.2 V

and 64.0 V for SF1318 and SF1319 respectively.

is essentially the upper limit on the repetition frequency for these diodes. With all

subsequent measurements performed at repetition frequencies below 1 MHz, afterpulsing

is not expected to affect the results significantly.

4.5.3 Temperature Dependence

The temperature dependence of DCR in SF1318 and SF1319 diodes was measured using

a low-temperature probe station. The SF1318 diodes were placed in the low-temperature

probe station and cooled down to 77 K from 295 K, with DCR measurements performed

between. DCR results for a D20 diode are presented in figure 4.24. The same procedure

was repeated for SF1319 down to 150 K, with results shown in figure 4.25.

In both cases, the temperature dependence of DCR is not as expected. SF1318 does

show an improvement in DCR, though not as significant as in previous InGaAs/InAlAs

SPADs [48]. SF1319 shows no improvement in DCR with cooling when considered against

raw applied bias, however this must be considered in context of the breakdown voltage

falling within the middle of the punch-through voltage range. This is discussed further

in section 4.6.
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Figure 4.24: Temperature dependence of DCR in a D20 SF1318 diode. The measure-
ments were performed with a 1.5 ns wide 5 V pulse at a repetition frequency of 100

kHz.

Figure 4.25: Temperature dependence of DCR in a D20 SF1319 diode. The measure-
ments were performed with a 5 ns wide 10 V pulse at a repetition frequency of 100

kHz.
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4.5.4 Pulsed Laser Measurements

Pulsed laser measurements were performed in the low-temperature probe station using

the pulsed picosecond laser using the setup described in chapter 3. Due to the poor DCR

characteristics of SF1318 and lack of adequate punchthrough before DCR saturation,

pulsed measurements were performed successfully on SF1319 only. The low-temperature

probe station was used due to packaging failures during bonding of fabricated SF1319

diodes. Results of the room temperature measurements are shown in figure 4.26.

Temperature dependent photon detection measurements were also carried out. The

results for a D20 diode measured from 295 to 150 K are plotted in figure 4.27. Responsivity

was found to change with temperature due to the proximity of punch-through and

breakdown voltage, and the limited detection region. Therefore, all temperatures are

assumed to have the same coupling losses as those determined at room-temperature.

For all pulsed laser measurements, detection probability represents the probability

that a given pulse with n photons will be detected.
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(a)

(b)

(c)

Figure 4.26: The detection probability of (a) D30, (b) D25, and (c) D20 diodes for
1550 nm pulses with n photons per pulses as indicated in the legend.
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(a) (b)

(c) (d)

Figure 4.27: The detection probability of a D20 diode at (a) 295 K, (b) 250 K, (c)
200 K, (d) 150 K for different photon levels, with a 5 dB increase in attenuation between

each level.
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4.6 Discussion of Results

SF1318 diode performance is more limited than expected. SF1318 has a very limited

operating range, with DCR saturating within 1 V overbias, corresponding to only 1.5 %

overbias at room temperature. This limited voltage range is partly linked to the lack

of punch-through which means that the majority of the voltage is dropped across the

avalanche region, leading to a rapid rise in breakdown probability compared to if the

voltage was more evenly distributed across the diode structure. With the lack of full

punch-through it was expected that dark count should be low until the InGaAs absorber

depletes, however this is clearly not the case. Cooling the diodes provides only a marginal

improvement, and indeed is not desirable since breakdown moves even further from the

expected punch-through voltage.

The reduction in DCR from cooling is less than expected. This could be indicative of

tunneling, however the avalanche region was engineered to be wide enough that this is

not expected to be a significant component of dark current. A possible mechanism to

explain the rapid increase in DCR is that since the diodes only start punching-through

as breakdown is reached, dark carrier density in the InGaAs absorber is higher than if

the diode had punched-through since carriers in the region would only have diffusion

and recombination as removal mechanisms. This is different in the case of a depleted

absorber, where the carriers are free flowing and would be removed at a higher rate. In

a partially depleted structure such as SF1318, when the biasing pulse is applied, the

absorber could be partially depleting, causing a surge of dark carriers to be released into

the avalanche region which dominates the DCR, and limits the operating range.

SF1319 achieves a wider operating rang with DCR saturation occurs by 3.5 V (5%)

overbias, which is comparable to previous high-performance InGaAs/InAlAs SPADs at

room-temperature [48]. Detection probabilities for weak laser pulses are in the range of

40 % for several hundred photons, which reduces to 15 to 20 % for several photons. Single

photon measurements were not possible due to counts dropping below the backround

DCR - partially a limitation of the detection method.

Low temperature measurements of DCR in SF1319 show that there is no increase

in DCR saturation voltage. This has to be interperated carefully, since as the diode

is cooled, the breakdown voltage is decreasing. When combined with the breakdown
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being between Vp,start and Vp,end, an overbias of 1 V at a lower temperature will actually

produce a higher breakdown probability. At the same time, the punch-through effect

on DCR observed in SF1318 may be coming into effect, causing a rapid increase in the

DCR due to a surge of dark carriers from the InGaAs absorber. This effect appears

to become worse as breakdown voltage approaches Vp,start, cancelling out some of the

beneficial effects of cooling.

Room-temperature photon counting measurements show that the SF1319 diodes are

unable to operate in a single-photon regime. Due to the variability in EQE between

diodes arising from a variable amount of top contact/bond-pad, and slightly differing

fibre alignment, direct comparison between diodes is complicated. Three or four different

variable attenuations were used for measurements - 10, 15, 20, and 25 dB. The effective

photons per pulse (determined based on measured CW photocurrent) vary between

diodes, and are noted in the legend. As the photon level approaches ñ=1, the detection

probability begins to significantly drop off. With the combination of reflection losses

at the air-semiconductor interface, the lack of full absporption region depletion, and

expected Pb of around 60%, this is unsurprising.

Observations from SF1319 low temperature photon counting show mixed benefits to

cooling. The diode performance was worse when cooled to 250 K compared to 295 K,

with improvements seen at 200 and 150 K. At 250 K the degredation in detection

probability was due to a more rapid increase in DCR with overbias. This prevented the

diode from reaching higher Pb, and could be due to the effects from the diode depleting

while at breakdown voltage. Detection probability increases at 200 and 150 K when

compared to room temperature, with maximum detection probabilities of 76, 70, and

45 % for n = 100, 30, and 10, respectively, for 150 K. The large drop between n = 30

and n = 10 at 150 K could be due to only a small amount of the absorber being depleted,

limiting QE.

The lack of full depletion has compromised the expected quantum efficiency of the

diode, especially when cooled. With less of the absorber depleted, fewer photons will

reach the avalanche region. Hence only optical pulses with at least several photons could

be detected.

The measured DCR rates and PDE of SF1318 and SF1319 both compare poorly

to previous InGaAs/InAlAs SPADs developed [48]. Cooling of diodes fails to improve
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voltage range significantly, with operation at overbiases above 10 % impossible. Previous

InGaAs/InAlAs SPADs were able to operate up to operate up to 20 % overbias [48]. The

main difference between those diodes and current diodes is where punch-through and

breakdown fall in relation to each other, with previous diodes having approximately 30

V seperation between breakdown and punch-through. This further suggests that it is in

fact an effect of punching-through during the biasing pulse that hampers the operational

range, with the effect becoming more exagerated as SF1319 is cooled, reducing the

benificial effects of cooling that were previously observed [48].

4.7 Conclusion

A comprehensive methodology for designing SPADs was presented. Two different wafer

structures were designed and fabricated for low photon level detection. SF1318 diodes,

due to lack of punch-through and ability to reach overbiases where the InGaAs abosrber

would be depleted enough for reasonable collection efficiency, are found to be not suitable

for this application. SF1319 diodes are shown to be able to detect low photon levels down

to several photons. Peak laser pulse detection probabilities for n=100, 30, and 10 were

found to be 73, 71, and 46 % at 150 K, and 39, 35, and 30 % at room temperature. Since

the InGaAs absorber is close to, but not fully depleted, the collection efficiceny limits

the diodes’ ability to operate at lower photon levels, and impacts on low temperature

performance.



Chapter 5

Optimising the Sensitivity of

eAPD Based Optical Receivers

5.1 Introduction

APDs are important and highly prevelent optical detectors for use in high-speed optical

receivers for long-haul optical communication systems. They offer high internal gain,

which is the end result of the impact ionisation process taking place within them. When

used in a high-speed optical receivers as part of an APD-TIA circuit, they aid in

overcoming the post-amplifier noise, thereby increasing signal-to-noise ratio. In recent

years with the large growth in demand for high-speed and throughput data lines, there

has been great interest in developing highly sensitive 25 and 40 Gb/s receivers to reduce

bit-error rates and allow for reductions in the required optical power needed for long

distance transmission.

The sensitivity of an optical receiver is defined as the minimum optical power required

to reach a target bit-error rate (BER)- the probability of an error in bit-identification

by the receiver. In general, the performance of APD-based optical receivers is limited

by several factors which include (i) the excess noise factor; (ii) the stochastic avalanche

duration, which increases with gain and decreases the APD’s speed, and (iii) the APD’s

dark current.

Previously accurate simulation models have been made which can simulate the

behaviour of APD-based receivers to determine their sensitivity [78–80]. Within these

93
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models there is an assumption that both electrons and holes undergo impact ionisation,

which is true for the majority of avalanche materials. The avalanche build-up time in

such materials is non-deterministic. This means that the previous models cannot be

applied, without modification, to an important subclass of APDs known as electron-APDs

(e-APDs). In these diode, only a single carrier type - electrons - undergo impact ionisation,

which leads to a unique and deterministic form for the impulse response function that

must be treated carefully. Examples of materials with these properties include InAs

[69] and HgCdTe [81]. Due to these unique properties, e-APDs have the potential to be

useful within high-speed, low noise optical receivers.

In this chapter, a model is presented for application to any e-APD. The model captures

the effects intersymbol interference (ISI), tunneling current, diffusion current, generation-

recombination current, avalanche pulse duration, avalanche gain, and amplifier noise.

Calculation of sensitivity is then performed using InAs e-APDs, which demonstrates the

model and its funcionality. Previously InAs e-APDs have not been considered for such

applications due to their high dark currents, so it is important to explore if their low

excess noise and unique e-APD properties offset this limitation.

5.2 Bit-error Rate Model for APDs

This chapter is based on modifications applied to the bit-error-rate (BER) model that

was developed in [78] and [79], with significant modifications which need to be explored.

This is chiefly due to the unique e-APD impulse response which invalidates many of the

assumptions that the previously developed models make, namely the assumption of an

infinitely decaying mean impulse response.

In [78], to calculate the receiver sensitivity requires analytic expressions for the mean

and variance of the photocurrent mean impulse repsonse function, which arises from

an avalanche breakdown event (also known as the APD’s stochastic impulse response

function). To obtain these expressions, the mean impulse response is modelled using a

simplification where the duration of the event is modelled in a non-deterministic way -

explicitly, the duration is random and dependent on the impact ionisation coefficients.

Such an assumption is not true for an e-APD, where the duration of an avalanche event

is well defined since only electrons impact ionise, leading to a well defined, finite mean
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impulse duration. New expressions are required for the mean and auto correlation

functions of the mean impulse response in order to use the comprehensive framework

developed in [78] and [79].

The formulae for the mean and variance of the ISI contributions (µisi,n and σ2
isi,n) to

receiver output from the nth past bit with duration T are given by equations (A3) and

(A7) from [79]:

µisi,n = φ0

∫ T

0

∫ −nT+T

−nT
〈Ip(t− τ)〉 dτdt, (5.1)

σ2
isi,n = φ0

∫ T

0

∫ T

0

∫ −nT+T

−nT
〈Ip(µ− ξ)Ip(ν − ξ)〉 dξdµdν, (5.2)

where φ0 is a constant photon flux present between times −nT and −nT + T , while

〈Ip(t)〉 is the mean impulse response function.

For an arbitrary past bit pattern Ij of length L, the total contributions from all ISI

terms, dark current mean and variance (µdark and σ2
dark), and Johnson noise σJ , the

mean and variance for a “0” bit (µ0 and σ2
0) are given by

µ0(Ij) =
L∑
n=1

(an(Ij)µisi,n) + µdark, (5.3)

σ2
0(Ij) =

L∑
n=1

(
an(Ij)σ

2
isi,n

)
+ σ2

dark + σ2
J , (5.4)

which are equations (9) and (11) from [79]. Here ak(Ij) = 1 when the kth bit in the

pattern Ij is a “1”, and 0 otherwise. The mean and variance when the current bit is a

“1” (µ1 and σ2
1) are then obtained by adding these contributions to µisi,0 and σ2

isi,0, with

n = 0:

µ1(Ij) = µ0(Ij) + µisi,0 (5.5)

σ2
1(Ij) = σ2

0(Ij) + σ2
isi,0 (5.6)

The pattern specific BER for Ij = 1, · · · , 2L can then be calculated with

BER(Ij) =
1

4

[
erfc

(
θ − µ0(Ij)√

2σ0(Ij)

)
+ erfc

(
µ1(Ij)− θ√

2σ1(Ij)

)]
. (5.7)
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θ is the decision threshold, which is adjusted computationally to minimise the overall

BER, given by

BER =
1

2L

2L∑
j=1

BER(Ij). (5.8)

which is (14) from [79].

A crucial limitation of models [78, 79] is that the analytical expressions for the

stochastic photocurrent’s mean and variance must be known. In the process of deriving

these, approximations were made for an exponential form of the mean and autocorrelation

functions (discussed further in chapter 6). This assumes that these functions are non-

deterministic and unbounded in duration, which is not correct for an e-APD since only

the electrons impact ionise. To properly model an e-APD, the model must be modified.

5.3 Modification of the Model for eAPD-based Optical Re-

ceivers

The basis for the modifications come from the work performed by Saleh et al., who were

able to derive dead space dependent analytical expressions to describe the behaviour of

single carrier APDs [82]. Additionally, they demonstrated how e-APD properties could

offer SNR advantages over regular APDs for optical receiver applications. The mean

impulse response function derived in [82] is given by

〈Ip(t)〉 =



qve
w for 0 ≤ t ≤ τe
cq
w

(
(ve + vh)

(
eβvet − eβd

)
+ ve

c

)
for τe < t ≤ τ ′

cq
w

(
(ve + vh) eβvet − vheβv

′t − veeβd + ve
c

)
for τ ′ < t ≤ Te

cq
w vh

(
eβw − eβv′t

)
for Te < t ≤ Tf

0 otherwise.

(5.9)

The terms here are given by

1/v′ = (1/ve + 1/vh), (5.10)

τe = d/ve, (5.11)

τ ′ = d/v′, (5.12)
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Te = w/ve, (5.13)

and

Tf = w/v′. (5.14)

d is deadspace, w is avalanche width, ve and vh are electron and hole drift velocities

respectively. c and c′ are constants defined by (23) and (24) in [82], calculated using

c =
α+ β

2β(αd+ βd+ 1)
(5.15)

and

c′ =
c2(β/α+ 1)2

1 + 2β/α− (β/α)2
, (5.16)

where α is the impact ionisation coefficient for electrons, and β is derived from the scaled

Malthusian parameter, solution to the equation

2e−αd − β/α = 1. (5.17)

This impulse shape is unique to e-APDs, since each stage of the mean impulse behaviour

is known precisely. An example is plotted in figure 5.1. In addition, the following

Figure 5.1: The calculated mean impulse current for an e-APD with ve = 5×105 ms−1,
vh = 0.4× 105 ms−1, and w = 3 µm reverse biased at 18 V. The important times are

indicated, where the mean impulse changes shape.
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asymptotic expression is used;

〈Ip(t1)Ip(t2)〉 =
c′

c2
〈I(t1)〉 〈I(t2)〉 . (5.18)

This asymptotic result is valid for the case w � d. These formulae have been validated

by Jamil et al., who were able to accurately predict the behaviour of gain and excess

noise characteristics in InAs APDs over a range of avalanche widths from 500 nm [83].

An analytical expression reduces computation time, in contrast to a Random Path

Length (RPL) model, when generating the mean impulse response function [84]. As in

[79], the past bit pattern and the the present bit state is calculated. A key modification

is the use of a precise solution for L defined using

L =

⌈
Tf
T

⌉
(5.19)

where L is an integer and the brackets represent the ceiling function. Using this expression

the full bit history, for determining the mean and variance, which affects the current

detection bit can be encapsulated. Previously this was deduced through trial and error

[79].

With the full bit pattern length known, the effects of bulk dark current and tunneling

current on the current bit can be calculated precisely. Modifying equations (5.1) and

(5.2);

µdark = φdark

∫ T

0

∫ 0

−Tf
〈Ip(t− τ)〉 dτdt (5.20)

σ2
dark = φdark

∫ T

0

∫ T

0

∫ 0

−Tf
〈Ip(µ− ξ)Ip(ν − ξ)〉 dξdµdν (5.21)

where φdark is given by

φdark =
Itunn + Ibulk

q
. (5.22)

Itunn =
(2m∗)0.5q3EV A

h2E0.5
g

exp

(
−

2πσT (m∗)0.5E1.5
g

qhE

)
(5.23)

Ibulk = J0A (5.24)

Itunn and Ibulk are the tunneling current [73], and combined thermal and generation-

recombination currents [70], respectively, m∗ is the effective electron mass, E is electric

field, V is voltage, A is device area, h is planck’s constant, k is Boltzmann’s constant,
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Eg is band-gap, σT is the tunnelling parameter, J0 is bulk dark current density, and q is

elementary charge.

After substitution of (5.20) and (5.21) into (5.3) and (5.4), the pattern specific and

overall BER can be calculated. The integrals are evaluated using the QUADPACK

numerical method [85].

5.4 Model Parameters

Presented here are the parameters used to run all the simulations unless otherwise noted.

Most of the parameters used are summarised in table 5.1. The Johnson noise of the TIA

in the simulations was given by

σJ =

√
BTIAi2n
qRb

, (5.25)

where in and BTIA are the input noise current density and bandwidth of a typical

TIA at a given bit rate Rb [79]. The electron impact ionisation coefficient was used from

[69], while the holes were assumed to not impact ionise. As there is a lack of experimental

measurements of InAs electron drift velocities above 10 kV/cm (above which lie the

relevant fields required for impact ionisation), simulated values were used from Brennan

and Hess [86]. Due to a lack of data on hole drift velocities for InAs, field dependent hole

drift velocities were taken from GaAs data [87] due to similar hole mobility characteristics,

400 cm2/V s for GaAs, compared to 460 cm2/V s for InAs [12]. The fittings to these

velocities are shown in figure 5.2. In addition, the total dark current calculation is based

on experimental measurements of saturation current, tunneling current, and avalanche

gain [69, 70, 88]. A key approximation made, w � d, is valid for all simulations, with

dead-space to avalanche width ratios ranging from 0.016 to 0.037 for operational gain.

Using the modified equations from section 5.3 with these parameters, calculation of

the overall sensitivity of the e-APD-TIA system were performed for a variety of avalanche

widths and target BER ranging from 10−12 to 10−3. A constant electric field profile

across the avalanche region was assumed, with no depletion into the p and n regions. For

each given avalanche width and data rate, the field-dependent parameters were calculated

for each reverse voltage. In order to ensure that the assumptions made for the analytical
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Parameter Value Ref.

Temperature T (K) 293

Device diameter (µm) 20.0

TIA bandwidth (GHz)

10 Gb/s 8.0 [89]

25 Gb/s 16.0 [90]

40 Gb/s 35.0 [91]

TIA noise current (pA/
√

Hz)

10 Gb/s 6.5 [89]

25 Gb/s 15.0 [90]

40 Gb/s 14.0 [91]

Electron effective mass m∗ 0.023 m0 [69]

Bandgap Eg (eV) 0.356 [69]

Tunneling parameter σT 1.16 [88]

Bulk dark current density J0 (A/m2) 68.8 [70]

Table 5.1: Model parameters for InAs e-APDs.

Figure 5.2: Field-dependent electron drift velocity simulations of InAs [86], and
experimental field-dependent hole drift velocity of GaAs [87]. The lines shown are the

fittings obtained and used in the simulation of InAs.

expression of mean impulse response are valid, minimum avalanche width was limited to

1 µm.

To verify that the numerical integrator used was working correctly, the mean impulse

response was integrated over [0, Tf ] to obtain gain, and the result compared to the gain
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Figure 5.3: Verification of the integral of equation (5.9) from t = 0 to t = Tf using
QUADPACK integration, against RPL simulations for a 3.0 µm InAs APD.

Figure 5.4: Varying θ for 14, 15, and 16 V at a fixed photon flux.

obtained from a well tested RPL model [84]. These results are plotted in figure 5.3 and

show good agreement.

To accurately find BER, the overall BER needs to be minimised by finding the

optimum value for the decision threshold θ. As mentioned previously, this is done

computationally. A “sweep” is performed, and overall BER calculated at each value. The
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point before overall BER begins to increase is chosen as θ. This is process demonstrated

in figure 5.4. As voltage is increased for the simulated device, the previous value of θ is

chosen as the starting value for further sweeps, thereby speeding up the process after an

initial θ is found.

A flowchart of the general process for calculating sensitivity is shown in figure 5.5.

The process shown is the calculation of the required number of photons to achieve the

requested target BER for a given avalanche width, device radius, reverse bias, and bit

rate. The process is performed for multiple different voltages for each width. The device

is implemented as an object which contains all of the information about the diode’s state.

The device object has a bias method which, when called, applies the desired reverse

bias, after which the object recalculates all the field dependent parameters. Sensitivity

simulations are implemented as seperate functions which act on the device. In principal

the device object developed is highly portable and can easily be used with unrelated

simulations.

5.5 Simulation Results

5.5.1 Effects of Gain, Bandwidth, and Dark Current

For each e-APD avalanche width, as the reverse bias is increased, the gain, bandwidth,

and dark current characteristics will change. Figure 5.6 demonstrates this for a InAs

APD with a 3 µm avalanche width operating with a 10 Gbit/s data rate and a target

BER of 10−12. As the reverse bias voltage increases, the gain, bandwidth, and dark

current all increase. Sensitivity improves as the gain and bandwidth do, however the

dark current works to limit the beneficial effects somewhat. The major limiting factor

becomes the tunneling current which, when it becomes significant, degrades sensitivity.

This is consistent with BER simulations for other avalanche materials [79, 80], although

the effects in InAs are more drastic due to the relatively small, direct bandgap. This high

tunneling current becomes even more pronounced at smaller avalanche widths, which

means that it is not optimal to operate an InAs e-APD with avalanche widths smaller

than 1 µm.
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Start

w, r, V (→ E), Rb, target BER

ve(E) from Fig. 5.2
vh(E) from Fig. 5.2

d = Ethe/E

v′ from Eq. 5.10
τe from Eq. 5.11
Te from Eq. 5.13
Tf from Eq. 5.14
β from Eq. 5.17

c and c′ from Eq. 5.15 and 5.16
Idark and Itunn from Eq. 5.24 and 5.23

Sub. into 〈Ip(t)〉 from Eq. 5.9

Input initial n0

µ0(Ij) from Eq. 5.3
µ1(Ij) from Eq. 5.5
σ0(Ij) from Eq. 5.4
σ1(Ij) from Eq. 5.6

Input initial θ

BER(Ij) from Eq. 5.7

BER from Eq. 5.8

First run?

BER
decreasing?

no

Increase θIncrease n0 yes

yes

BER below
target?

no

Save data
yes

no

Figure 5.5: Flowchart for calculating sensitivity at a given avalanche region width w,
voltage V , bit rate Rb, and target BER. In practice this is part of a larger process in

which V , w, Rb, and target BER are also varied.
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Figure 5.6: Gain, 3 dB bandwidth, dark current, and sensitivity simulations with
w = 3.0 µm. The optimal operating voltage is at -18 V for a 10 Gb/s bit rate and

1× 10−12 BER.

An interesting observation to note is the behaviour of the 3 dB bandwidth. It can

be seen in figures 5.6 and 5.7 how the bandwidth does not decrease with gain, and

indeed actually increases slightly due to the field dependent drift velocities used. This

demonstrates a major property of e-APDs. Due to a lack of hole impact ionisation, there

is no longer a gain-bandwidth limitation as seen in two-carrier APDs. This behaviour is

as predicted by Emmons [75].

5.5.2 Sensitivity at Different Avalanche Widths and Bit Rates

As well as allowing for the optimal operating voltage and characteristics to be predicted

for a certain eAPD, it is possible to vary the avalanche region width to determine the
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Figure 5.7: Gain - bandwidth properties of three simulated InAs e-APDs. The
bandwidth is largely independent of gain, other than an initial increase due to the field

dependent drift velocities.

optimal width for operation at a given bit rate. Simulations were performed for 10, 25,

and 40 Gb/s data rates with a target BER of 10−12 for avalanche widths ranging from

1 µm to 5.5 µm. The simulations yielded minimum sensitivities of -30.60, -22.74, and

-19.17 dBm for data rates of 10, 25, and 40 Gb/s, respectively. The optimal avalanche

widths corresponding to these were 3.0, 2.3, and 1.5 µm. The sensitivity as a function of

reverse voltage is plotted in figure 5.8 for a selection of avalanche widths. It can be seen

how the optimal sensitivity moves to a higher voltage as width is increased, since the

tunneling current decreases, which allows the diode to reach a higher gain before tunneling

current becomes significant. The overall sensitivity worsens for larger avalanche widths,

since the bandwidth begins to decrease which leads to higher intersymbol interference.

The optimal sensitivities from each of these simulations are compared together in

figure 5.9 for the different bit rates. The optimal width is largely determined through

an interplay between tunneling current and bandwidth. With a reducing bandwidth

requirement, InAs is able to exploit the lack of gain-bandwidth product limiation further.

Based on these observations, e-APD avalanche width needs to be maximised (subject to

bandwidth) to maximise gain and reduce tunneling current.

The optimal widths found are larger compared to InP and InAlAs APDs [79, 80].
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Unlike these materials, the gain in an e-APD is no longer limited by the bandwidth, and

so there is no single optimum operating gain across widths, allowing for much larger

avalanche widths [79]. This demonstrates how design considerations for high speed,

highly sensitive e-APDs differ from other diodes, and is a key contribution of this work.

Figure 5.8: Sensitivity versus APD reverse bias for several avalanche widths. The
data rate is 10 Gb/s, and the target BER is 1× 10−12.

Figure 5.9: Gain-optimised sensitivity simulations for a range of different avalanche
widths, performed for 10, 25, and 40 Gb/s bit rates with a target BER of 10−12.
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5.5.3 Sensitivity with Different Target BERs

For each of the optimal widths determined for a given bit rate in the previous section,

simulations were performed with different target BER. These are of interest as depending

on the exact requirements of a detection scheme, a higher BER is acceptable. In particular,

PON schemes generally operate with a target BER of 10−3.

Results of simulations for different target BER for InAs e-APDs detecting at 1550

and 1310 nm wavelengths, with a comparison to existing high speed, high sensitivity

detectors, are plotted in figure 5.10. The previous optimum widths of 3.0, 2.3, and 1.5

µm are used for their respective BERs. Comparison receivers include InAlAs based

APDs [59, 92], Si/Ge APDs [93], and SOA-PINs [63, 94, 95].

For 1550 nm operation, InAs e-APDs perform comparably well at 10 and 25 Gb/s to

InAlAs APD based receivers [59, 92]. Extending to 40 Gb/s however, the peformance of

InAs e-APDs is worse than comparable SOA-PIN from [63, 94, 95], other than at lower

BER. Performance is better than Ge/Si APDs for 1550 nm 25 Gb/s detection (not shown

due to sensitivity being too low), which have a sensitvity of -16 dBm for 10−12 target

BER.

As seen in figure 5.10(b), for 1310 nm operation Ge/Si APD based receivers offer better

sensitivity than InAs e-APDs, while closely matching InAlAs APDs for 25 Gb/s detection.

These comparisons will change over time, as the performances of each of the respective

technologies improve. The key to improving the sensitivity of InAs e-APD based receivers

will be reducing their tunneling dark current density, which could be possible through

engineering a modifications to tunneling barrier shape, and improvements in growth

quality and fabrication to reduce bulk dark current density.
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Figure 5.10: Variable target BER versus optimum sensitivity for InAs APD-TIA
combinations for (a) 1550 nm and (b) 1310 nm wavelength operation. The data rates are
10 (blue circles, w = 3 µm), 25 (orange circles, w = 2.3 µm), and 40 Gb/s (green circles,
w = 1.5 µm). Other high speed detector systems (hollow symbols, using identical color
scheme for the different bit-rates), such as InAlAs APDs [59, 92], Ge/Si APD [93], and

SOA-PIN combinations [63, 94, 95] are included for comparison.
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5.6 Conclusion

A sensitivity model taking into account the unique avalanche characteristics of e-APDs

has been developed and presented for integrated eAPD-TIA systems. Demonstration of

the model was done through simulation of InAs e-APDs at room temperature, using their

current performance parameters. Simulations have shown optimum sensitivity values

of -30.6, -22.7, and -19.2 dBm at 10, 25, and 40 Gb/s bit-rates, respectively. Results

indicate that although InAs e-APDs can offer an improvement in sensitivity over InAlAs

APDs at 10 and 25 Gb/s, they are not able to compete with SOA-PIN-TIA combinations

at 40 Gb/s at a wavelength of 1550 nm. For 1310 nm operation, Ge/Si offer better

sensitivity at 10 and 25 Gb/s, though these systems have not been demonstrated for a

40 Gb/s bit-rate. InAs e-APDs therefore need to be developed with lower dark currents

to be competetive with existing technologies.





Chapter 6

A Comparison of InAs, InAlAs,

and InP APDs for High Speed

Optical Receiever Applications

6.1 Introduction

With the e-APD model presented in the previous chapter, and the simulations demonstrat-

ing its use for InAs based optical receivers, it is valuable to compare to other avalanche

materials and to better understand the different design considerations and potential of

these systems. This chapter investigates these differences, and compares optical receivers

based on three different material systems; InAs, InAlAs, and InP. Previous studies carried

out on these materials had differing simulation parameters, making a direct comparison

difficult [79, 80]. The same is true when comparing experimental measurements to each

other, since there are many variables differing between them, such as TIA noise and TIA

bandwidth. In addition, since previous simulations were performed, TIAs with improved

performance have been demonstrated [90, 91]. As well as this, the further miniaturisation

of commerical APDs means that modern high-speed diodes can be as small as 12 µm

in diameter [96]. It is therefore important to compare the different systems under the

exact same conditions, with a modernised common parameter set to establish theoretical

limits to their performances.
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InP based APDs are a long established method for high-speed detection, utilised

since the 1980s for 1 Gbps detection [57]. High-speed 40 Gbit/s detection with -19.0 dBm

sensitivity has been demonstrated in a InP/InGaAs based APD [97]. Due to inferior

impact ionisation coefficients, InP based APDs are being superceded by InAlAs based

APDs.

With a smaller k ratio in comparison to InP, InAlAs has lower noise and higher

bandwidth performance than InP. High-speed detection up to 50 Gbit/s was achieved

using an InAlAs APD with a sensitivity of -10.8 dBm, which is the fastest detection with

resonable optical power demonstrated in an APD [60]. In the following sections, InP and

InAlAs based APDs are simulated together with the same common parameters as InAs

in chapter 5 in order to evaluate the differences in performance. Parameters are then

varied for InAs to determine how best to improve the overall performance of InAs based

APDs.

6.2 Gaussian Approximation Model

To model the behaviour of the InP and InAlAs based optical receivers, the Guassian

approximation model developed for APDs with non-zero k ratio is used [79]. The basis for

the model was initially developed by Sun et al. and included the effects of ISI and dead

space [78]. They used a recursive method for finding the joint probability distribution

function for the APD’s stochastic gain, M , and the stochastic avalanche duration, t. In

addition, the APD’s stochastic impulse-response function was approximated in terms of

M and t. To account for the stochastic behaviour of M and t, and their influence on

the buildup-time-limited bandwidth, a new variable was introduced called shot-noise

equivalent bandwidth, defined as

Bsneq =

〈
M2/t

〉
2 〈M〉2 F

. (6.1)

Bsneq is used for calculation of the APD-amplified shot noise current, acting as a correction

factor to the usual 3dB bandwidth, B3dB. In general, due to the stochastic coupling

between M and t the shot-noise equivalent bandwidth is higher than 3dB bandwidth.

Additional parameters defined were analytical expressions for mean and variance of a “0”
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bit µ0 and σ2
0, and the mean and variance of a “1” bit, µ1, and σ2

1:

µ0 =
n0M

2κλ
(1− e−κλ), (6.2)

σ2
0 =

n0M
2

4κλ2

(1− e−κλ)4

(1− e−2κλ)
+
n0M

2F

2κλ
(1− e−κλ − κλe−κλ) + σ2

J , (6.3)

µ1 = µ0 +
n0M

κλ
(κλ− 1 + e−κλ), (6.4)

and

σ2
1 = σ2

0 +
n0M

2F

κλ
(κλ− 2 + 2e−κλ + κλe−κλ) + σ2

J , (6.5)

where κ is the bandwidth correction factor, correcting for the discrepency between Bsneq

and B3dB, and λ is the detector-speed factor, with the terms defined by

κ =
4Bsneq

2πB3dB
(6.6)

and

λ =
2πB3dB

Rb
. (6.7)

The parameters in equations (6.2) - (6.5) represent the average values over all possible

past bit patterns. Sun et al. modelled the output of the integrate-and-dump receiver

as a Gaussian random variable, which included effects of ISI [78]. Ong et al. extended

this model to account for the bit-pattern specific behaviour of the receiver mean and

variance, more accurately modelling the effects of ISI [79]. This was the basis for the

model presented in chapter 5. The mean impulse response in [79] was approximated as

exponentially decaying and infinite, given by

〈Ip(t)〉 = ae−bset (6.8)

for t > 0, where bse = 4Bsneq and a = bse 〈M〉. Applying equations 5.1 and 5.2 from

section 5.2, the ISI contribution to the receiver mean and variance is given by

µisi,n =
2n0 〈M〉 e−κλn

κλ
(cosh(κλ)− 1) (6.9)

and

σ2
isi,n =

n0 〈M〉2 F
κλ

e−κλn(e−κλ − 1)(1− κλe−κλ − e−κλ). (6.10)
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The mean and variance receiver of the receiver output caused by the ISI terms is

given by

µ0,isi(Ij) =
L∑
k=1

ak(Ij)µisi,k (6.11)

and

σ0,isi(Ij) =

L∑
k=1

ak(Ij)σ
2
isi,k (6.12)

where ak(Ij) = 0 unless the kth bit is a “1”. These equations are then combined with

the contribution from dark carriers that have been generated during the lead up to

the current detection bit. This is accounted for using equation 6.2 as the basis, with

n0 replaced with 2nd, where nd is the number of dark carriers present within the bit

detection window. The extra factor of 2 compensates for the lack of random modulation

of the dark-carrier generation. The contribution from dark carriers within the present

bit is obtained by using equation 6.4, with n0 replaced by nd. Combining these,

µ0(Ij) = µ0,isi(Ij) +
nd 〈M〉
κλ

(1− e−κλ) +
nd 〈M〉
κλ

(κλ− 1 + e−κλ)

= µ0,isi(Ij) + nd 〈M〉 .
(6.13)

A similar principal follows for the receiver variance for a “0” bit, which is given by

σ2
0(Ij) = σ0,isi(Ij) +

nd 〈M〉2 F
2κλ

(κλ− 1 + e−κλ) + σ2
J (6.14)

with the Johnson noise contribution (σJ) from the TIA also added.

When the current detection bit is a “1” bit, there is an extra contribution from the

photon flux for the duration of that bit to equations 6.11 and 6.12. This contribution is

the same as the second terms in equations 6.4 and 6.5, resulting in the expressions

µ1(Ij) = µ0(Ij) +
n0 〈M〉
κλ

(κλ− 1 + e−κλ) (6.15)

and

σ1(Ij) = σ0(Ij) +
n0 〈M〉2 F

κλ
(κλ− 2 + 2e−κλ). (6.16)

The pattern specific and overall BER values are then calculated using equations 5.7

and 5.8.
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6.3 Model Parameters

A table of the parameters used for the simulation of InP and InAlAs APDs is given in

table 6.1. InAs simulations are the same as in chapter 5. TIA parameters, temperature,

and device diameter are the same as in table 5.1. Due to a lack of reported electron and

hole drift velocities for InAlAs, the drift velocities of InP are used in the simulations.

The bulk dark current densities in InAlAs and InP are insignificant for the purpose of

sensitivity simulations, so are excluded. The simulations consist of two parts, the RPL

model [84], and the BER calculator, modified from [79]. The RPL model provides the

gain, bandwidth, and noise data, with the simulation components visualised in figure 6.1.

Utilising equations (6.13), (6.14), (6.15), and (6.16), the BER is calculated for a given n0

with equation (5.8) for a bit pattern length of L = 10 (the optimum determined in [79]).

As in chapter 5, n0 is increased until the desired target BER is achieved.

Param. InP Value InAlAs Value

α (m−1) 1.41× 108 exp

(
−
(

1.69×108

E

)1.23
)

[98] 2.10× 108 exp

(
−
(

1.62×108

E

)1.29
)

[99]

β (m−1) 2.11× 108 exp

(
−
(

1.77×108

E

)1.15
)

[98] 2.40× 108 exp

(
−
(

1.86×108

E

)1.36
)

[99]

ve (m/s) 0.68× 105 [100] 0.68× 105 ∗

vh (m/s) 0.70× 105 [100] 0.70× 105 ∗

Eth,e (eV) 2.8 [98] 3.2 [99]

Eth,h (eV) 3.0 [98] 3.5 [99]

Eg (eV) 1.344 [76] 1.450 [101]

m∗e 0.08me [76] 0.023me [101]

σtunn 1.16 [98] 1.26 [22]

Table 6.1: Parameters used to simulate InP and InAlAs APD sensitivity performance.

The modifications to the model in [79] consist of an improved method of determining

θ, which is no longer calculated using an approximation. Instead, the same method is

used as in the e-APD BER model, with θ found dynamically (see figure 5.4). This further

minimises sensitivity, and is more realistic as to how θ would be set. An additional

modification is the use of a single θ for all bit-patterns to determine total BER; ie. the

use of θ instead of θ(Ij). In [79], θ is optimised on a per pattern basis, giving a more

∗Assumed to be the same value as InP
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Figure 6.1: Block diagram of the simulation components and how they interact to
calculate sensitivity.

idealised sensitivity. With the modification given, a single θ is used across all bit patterns,

which is a more realistic method.

6.4 Results and Comparisons

This section explores the different characteristics between the three avalanche materials.

6.4.1 Bandwidth

The gain-bandwidth characteristics of the three materials are compared in figure 6.2.

The excess noise increases with gain in all three materials, which acts to limit the 3dB

bandwidth. In the case of InP and InAlAs, the excess noise is not constrained due to both

the holes and the electrons both undergoing impact ionisation. As the gain increases, the

mean impulse duration also becomes longer and so the diodes take longer to recover from

a detection event. The implication of this is that the gain bandwidth product remains

largely constant as gain increases, as seen in figure 6.2b. InAs, on the other hand, has no

such constraint since excess noise never exceeds 2. It is therefore beneficial to operate

InAs at as high a gain as possible in order to maximise the gain-bandwidth product.

These comparisons also demonstrate the impact of the ionisation coefficient ratio

different between InAlAs and InP on the gain-bandwidth product. For a given avalanche

gain and avalanche width, InAlAs will always have a higher gain-bandwidth product,

since the average avalanche duration will be shorter. However, the disadvantage of InAlAs
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(a)

(b)

Figure 6.2: A comparison of the gain-bandwidth properties of the three materials. An
avalanche width of 0.11 µm is used for InP and InAlAs, while 1.5 µm is used for InAs.
Due to the excess noise characteristics of InAs, it is able to overcome the gain-bandwidth
limitation of regular APDs. In Figure (b) the solid lines represent 3dB bandwidth, and

dashed lines represent the gain-bandwidth product.
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is that InP is able to reach a higher gain at a lower voltage, due to InP’s higher hole

ionisation coefficient. This, of course, is not the most important factor for sensitivity.

6.4.2 Optimising Width

Sensitivity simulations were performed where the width of the InP and InAlAs devices

increased, for a target BER of 10−12, and are shown in figure 6.3. The overall optimum

sensitivities from InAs simulations are also indicated for comparison. Due to the gain-

bandwidth limitation imposed by the excess noise in InP and InAlAs, the optimal widths

are far smaller than in InAs, which makes comparing on the same width scale difficult.

Optimum widths for InP are determined to be 0.14, 0.11, and 0.10 µm for 10, 25, and

40 Gbps bit rates, respectively. For InAlAs they are found to be 0.12, 0.10, and 0.09 µm.

These widths are then used to simulate the target BER dependent sensitivity.

Figure 6.3: BER simulations for InAlAs and InP at different widths for a target BER
of 1× 10−12. InAs results are also indicated at as green dots, though note that these
are actually at their respective optimum widths of 3.0, 2.3, and 1.5 µm for 10, 25, and

40 Gbps respectively.

6.4.3 Variable BER

The optimum widths from the previous simulations are taken, and simulations performed

for a changing target BER. These simulations are plotted in figure 6.4, along with the
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InAs results from section 5.5.3. Results show a similar trend as the comparison to existing

diodes in section 5.5.3. InAs is able to outperform InAlAs bit rates below 25 Gb/s,

however by 25 Gb/s InAlAs begins to match InAs performance.

Good agreement is seen with realised InAlAs based receivers at 10 Gb/s, and a

relatively close agreement at 25 Gb/s [59, 92]. The simulations suggest that InAlAs

should be able to perform effectively compared to SOA-PINs at 40 Gb/s, though this

has not been shown yet experimentally. A limitation of the current model is that the

receiver APD is simulated as a pin, while practical APD receivers would use a SAMAPD

structure with InGaAs as the absorber. This suggests that for higher bit-rates, this

simplified model may be too idealised. This is not the case for InAs simulations, since it

is able to act as both the absorber and the avalanche medium.

Figure 6.4: Comparison of the optimal sensitvities of InP, InAlAs, and InAs diodes
for different target BERs. InP w = 0.14, 0.11, and 0.10 µm. InAlAs w = 0.12, 0.10, and
0.09 µm. 10, 25, and 40 Gb/s are represented by solid, dashed, and dot-dashed lines,

respectively.

6.5 Further Optimization of InAs

It is clear InAs needs optimising to be more competetive with other APD materials. This

section explores the effects of different parameters on the sensitivity of InAs and how

sensitivity might be improved for 40 Gbps operation.



120 Chapter 6. InAs, InAlAs, and InP APDs for High Speed Receivers

6.5.1 Varying Diameter

In recent years, practical diode sizes have been reducing with advances in fabrication

and packaging technology. High-speed commercial APDs have been demonstrated, with

effective light coupling, with diameters as low as 12 µm [96]. Waveguides also provide a

way to reduce the area of a given diode, while maintaining the ability to couple the light

into the diode.

Simulations comparing the effects of varying diameter (and therefore active area)

were performed. This is a highly effective way of reducing dark current for InAs APDs.

Shown in figure 6.5 is how diode diameter affects the performance of an InAs receiver,

for diameters between 1 µm and 40 µm. There is a 0.3 dBm improvement in sensitivity

between 20 µm and 10 µm, with the improvement arising from a higher possible operating

gain due to a reduced tunneling current. Diameters below 10 µm would require special

optics or waveguide structures to be pratctical, the implementation of which would

introduce other noise and loss mechanisms, so these are provided as “ideal” values for

such a configuration.

Figure 6.5: Sensitivity simulations with a fixed avalanche width w = 1.5µm, while
varying diode diameter.
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6.5.2 Tunneling Parameter

The tunneling parameter is dependent upon the shape of the tunneling barrier. These

has been shown to change depending on the doping in the region, with a more parabolic

barrier shape being described by a larger tunneling parameter [73]. With an increased,

graded doping distribution for the avalanche region to increase the barrier parabolicity,

the amount of tunneling could be reduced. Using a range of σT values from 1.12 to 1.72,

the overall optimal sensitivity was calculated for a w = 1.5 µm InAs APD, with results

plotted in figures 6.6 and 6.7. The impact of the parameter on tunneling current is shown

in figure 6.6, with the onset of tunneling current being delayed with increased σtunn.

(a) (b)

Figure 6.6: Effects of varying σtunn for w = 1 µm on tunneling current. (a) shows
raw tunneling current, (b) shows the reverse bias at which 1 µA of tunneling current is

reached, where a significant impact on sensitivity begins to occur.

Significant improvements in sensitivity can be seen in figure 6.7, even with only

slight changes in σtunn. It is important to note that an increase in doping would have a

negative impact on other parameters, such as drift velocity, the effects of which have

not been simulated. Crucially, a band structure engineered in such a way would have

a differing electric field distribution across the junction. This would lead to a varying

drift velocity across the junction, as well as ionisation coefficients, which would affect

optimum sensitivity. It is possible that there is a middle-ground that can be found where

such a barrier shape would be benificial to sensitivity.
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Figure 6.7: Sensitivity simulations with a fixed avalanche width w = 1.5µm, while
varying σtunn.

6.5.3 Bandgap and Temperature

Another effective way of decreasing the effects of tunneling is through an increasing

bandgap. This is achievable through cooling, with the bandgap increasing to 0.42 eV

when InAs is cooled to 77 K [76]. Figure 6.8 shows how the operational voltage range

increases with increasing Eg. By the point the diode is cooled to 77 K, range increases

by around 35 % which allows it to reach higher gain before tunneling current becomes

significant. At the same time, the thermal dark current would be greatly reduced,

effectively to a level that can be excluded from sensitivity simulations.

(a) (b)

Figure 6.8: Effects of varying Eg for w = 1.5 µm on tunneling current.
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Figure 6.9: Sensitivity simulations with a fixed avalanche width w = 1.5µm.

Sensitivity calculations were performed with varying Eg and are presented in figure

6.9. All other parameters were fixed to their room temperature values. This provides an

approximation for how the diodes would benefit from cooling.

Since there are impact ionisation coefficients avaiable at 77 K [102], it is of interest

to more accurately model the sensitivity at this temperature. The e-APD properties

of InAs are confirmed to persist at low temperatures, so the model is still valid [102].

Unusually, the ionisation coefficients are actually lower for the equivalent field when

compared to those at room temperature. This means that with cooling there are two

factors at play, the beneficial effects of a increasing band-gap and a reduced Idark, and

the negative effects of reduced gain for the same voltage. Other parameters such as the

drift velocities are maintained the same. Results of these simulations are shown in figure

6.10 where a comparison is presented between the room temperature and 77 K result.

Overall the beneficial effects prevail over the reduced α, however this degrades

performance by around 0.4 dBm when compared to only adjusting bandgap as seen in

Figure 6.9. Therefore, cooling to 77 K is of minor benefit, especially when taking into

account the added complexity of maintaining the receiver at cryogenic temperatures.
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Figure 6.10: Comparison of InAs 40 Gbps sensitivity simulations at 77 K and 293 K.

6.6 Conclusion

Comparisons have been presented between InAs, InAlAs, and InP APDs. The same

parameters were used where applicable, allowing for an accurate and direct comparison

by ignoring any differences that are usually present when sensitivity is reported. InAlAs

optimum sensitivities of -29.4, -23.5, and -21.0 dBm were found for 10, 25, and 40 Gb/s

operation. For InP these were found to be -27.9, -22.5, and -19.9 dBm for the respective

bit rates. InAs is found to offer the best performance at 10 Gbps, while InAlAs is

superior at 25 and 40 Gbps. The benefits for switching to InAlAs from InP for the

avalanche region for high-speed optical receiver applications are clearly demonstrated,

with a minimum of 1 dBm sensitivity improvement shown.

The e-APD properties of InAs require a larger avalanche width to show their benefits

due to a large tunneling current caused by the small band-gap. Further calculations

were presented where different parameters were varied in order to determine how InAs’

parameters would have to change in order for it to be more competetive at 40 Gb/s.

The most realistic method for improving the sensitivity is cooling, however this is shown

to not have a significant effect due to the decreased ionisation coefficients with cooling.

The low temperatures required for improved sensitivity are not practical for data centre

applications. Increasing σtunn is shown to be a possible method, though the negative
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effects of this were not modelled. A more advanced model of the device properties and

electric field distribution within is required to accurately predict the effects of a changing

σtunn. Smaller diode sizes provide a practical way of improving sensitivity, with a 0.3

dBm improvement by switching from 20 µm diode diameter to a 10 µm diameter. Overall

it may be possible for an InAs based receiver to achieve performance levels seen in state

of the art SOA-PIN systems, however this would involve reducing device radius as well

as attempting to modify the tunneling barrier shape to reduce overall dark current.





Chapter 7

Conclusion and Future Work

7.1 Conclusion

Two wafer structures were designed, optimised for SWIR single-photon counting. Wafer

SF1318 was designed to punchthrough after breakdown voltage, and SF1319 was designed

to punchthrough just before. Due to a rapidly increasing DCR (saturating within 1 %

overbias) limiting the operating range to below the punch-through voltage, SF1318 was

found to be unsuitable for SWIR single-photon counting. The cause of this rapid rise in

DCR is thought to be due to carriers trapped in the absorption region. As the reverse bias

pulse raises total reverse bias over the breakdown voltage, the diode absorption region

partially depletes, releasing the trapped carriers into the avalanche region, saturating

count rate.

The second wafer, SF1319, performed better. However, due to an unexpectedly high

doping in the charge sheet, punch-through voltage was higher than designed. With

the absorption region not fully depleted, QE was limited and prevented single photon

counting, however pulses with several photons were detectable. For larger optical pulses

with 10s of photons, detection probability was as great as 75% at 150K, even with only

a small part of the absorption region depleted. This work shows promising results for

wafers designed to punchthrough just before target operating voltage, and also shows the

issues encountered when breakdown voltage falls below the punchthrough voltage.

A new model was developed for the calculation of sensitivity of high-speed optical

receivers based on e-APDs, and demonstrated using InAs as the e-APD component.
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This model is the first demonstration of the potential of e-APDs to be used in such

an application. Calculations showed sensitivities of -30.6, -22.7, and -19.2 dBm for 10,

25, and 40 Gb/s operation, respectively. These values compare favourably to existing

high-speed receivers, especially at 10 and 25 Gbps when compared to InAlAs APDs,

however for 40 Gbps operation SOA-PIN based receivers perform better [63, 92]. For

1310 nm optical systems, Ge/Si APDs were found to offer a better sensitivity than InAs

e-APDs [93]. To improve, InAs e-APDs with lower dark currents need to be developed.

Simulations of InAlAs and InP APD based optical receivers were peformed, and

comparisons made to the simulated InAs APD based optical receivers. The simulations

used a common parameter set where appropriate, allowing for a direct comparison of

the receivers. InAlAs optimum sensitivities were -29.4, -23.5, and -21.0 dBm for 10, 25,

and 40 Gb/s operation. InP optimum sensitivities were -27.9, -22.5, and -19.9 dBm for

the respective bit rates. InAs offers the best sensitivity for 10 Gb/s bit rates, while

InAlAs is best for 25 and 40 Gb/s. InAlAs was shown to outperform InP at all bit-rates,

demonstrating its superior gain-bandwidth properties. Further simulations of InAs APDs

showed the sensitivity improvements from reducing diode diameter, modifying bandgap

parabolicity, and increasing band-gap through cooling.

7.2 Suggestions for Future Work

Chapter 4 demonstrated the negative effects of engineering punch-through above break-

down voltage. Future wafer designs should take this into account, and ensure full

punch-through before breakdown. Engineering full punch-through to be as close to

breakdown voltage proved inconclusive, since the SF1319 diodes were not fully depleted

at breakdown. There could be a potential benefit to such a design over previous de-

signs where punch-through is significantly earlier than breakdown, especially if InGaAs

quality is poor [48]. Future wafer designs should explore this further. Structures could

be optimised to fully punch-through at the breakdown voltages expected at different

temperatures. The DCR and SPDE of these SPADs could then be compared, and the

effects of punch-through voltage in relation to breakdown voltage better understood.

To better understand the breakdown mechanisms in the InGaAs/InAlAs SAM struc-

ture, InAlAs pin SPADs could be designed and fabricated with widths matching those
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of the SAM avalanche layer. The DCR characteristics of these diodes could then be

compared together with the matching SAM SPADs. The InAlAs pin SPADs could also

then be tested for visible light detection, for which InAlAs has not yet been explored.

Simulations in chapter 5 of InAs based optical receivers at 10 Gb/s showed benefits

over existing technologies at 1550 nm [92, 93]. By selecting a TIA with known noise

and bandwidth, an InAs APD could be designed and fabricated with a width optimised

around these parameters by using the new model. With the given 10 Gb/s TIA in this

work, this width would be 3.0 µm. This would allow for the verification of the new

sensitivity model, and further the understanding of the potential of high-speed e-APD

based optical receivers.

The model for APD based optical receivers in [79] and chapter 6 only models the

sensitivity properties of the avalanche region of the APD. To provide a more accurate

model, the full SAM structure must be simulated. This would involve creating an improved

RPL component for the model which takes into account how carriers absorbed at different

positions along the absorption region would affect the bandwidth properties of the APD.

This model could also take into account losses due to insufficient absorption thickness.

With these improvements, APD based optical receivers could be more accurately simulated

at higher bit-rates.





Appendix A

Mask Set: IIG Mesa

The IIG mesa mask set was a modification of the existing mask set known internally as
newpin. Additions included an identifier for each layer, modification to etch two different
radii, AR coating, and an optical mask layer.

A.1 Mask 1

Figure A.1: IIG mesa mask plate 1

Layer Title on mask Description Data Polarity

1 Top contact Top metal on the mesa Clear

2 Standard mesa etch Define mesa area Dark

3 Deep mesa etch Define mesa area (10 µm extra radius) Dark

4 Grid contact Grid contact on etched area Clear

Table A.1: Overview of IIG mesa mask 1 layers.
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A.1.1 Frame 1: Top contact

Figure A.2: Top contact deposition layer.

A.1.2 Frame 2: Standard Mesa Etch

Figure A.3: Etching layer to define mesas.
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A.1.3 Frame 3: Deep Mesa Etch

Figure A.4: Etching layer to define mesas, designed for depths where undercutting
would reach the top contacts if using the standard etch.

A.1.4 Frame 4: Grid Contact

Figure A.5: Lower contact deposition layer.
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A.2 Mask 2

Figure A.6: IIG mesa mask plate 2

Layer Title on mask Description Data Polarity

5 SU-8 SU-8 passivation Dark

6 Window etch Etch mesa windows Clear

7 AR coating Remove nitride from contact areas Dark

8 Optical Mask Deposit metal mask over SU-8 Clear

Table A.2: Overview of IIG mesa mask 2 layers.
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A.2.1 Frame 1: SU-8

Figure A.7: Exposes SU-8, used to passivate the diodes.

A.2.2 Frame 2: Window Etch

Figure A.8: Etch the windows of the mesa diodes. For use with diodes where the top
layer absorbs too much light.
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A.2.3 Frame 3: AR Coating

Figure A.9: Remove AR coating nitride from all areas other than the mesa windows.

A.2.4 Frame 4: Optical Mask

Figure A.10: Layer to deposit a metal optical mask, used to prevent side injection
into the mesa sidewalls.



Appendix B

Mask Set: IIG SPAD

The IIG SPAD mask set was developed from scratch, optimised for small diodes and
designed to be used for single photon detection.

B.1 Mask 1

Figure B.1: IIG SPAD mask plate 1

Layer Title on mask Description Data Polarity

1 Top contact Top metal on the mesa Clear

2 Mesa etch Define mesa area Dark

3 LC pad Lower contact bond pad Clear

4 Isolation etch Etch into the SI substrate around the cells Dark

Table B.1: Overview of IIG SPAD mask 1 layers.
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B.1.1 Frame 1: Top contact

Figure B.2: Top contact deposition layer.

B.1.2 Frame 2: Standard Mesa Etch

Figure B.3: Etching layer to define mesas.
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B.1.3 Frame 3: LC Pad

Figure B.4: Lower contact bond pad deposition layer.

B.1.4 Frame 4: Isolation Etch

Figure B.5: Etching layer to isolate the diodes from each other, and to remove the
contact layer from the top bond pad area.
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B.2 Mask 2

Figure B.6: IIG SPAD mask plate 2.

Layer Title on mask Description Data Polarity

5 Nitride Etch Remove nitride from pads and device window Clear

6 SU-8 SU-8 passivation Dark

7 AR coating Remove nitride from contact areas Clear

8 Bond pad Deposit top contact bondpad and optical mask Clear

Table B.2: Overview of IIG mesa mask 2 layers.
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B.2.1 Frame 1: Nitride Etch

Figure B.7: Remove dielectric from device windows, contacts, and between diode cells.

B.2.2 Frame 2: SU-8

Figure B.8: Exposes SU-8, passivating the diode sidewalls.
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B.2.3 Frame 3: AR Coating

Figure B.9: Remove AR coating nitride from all areas other than the mesa windows.

B.2.4 Frame 4: Bond pad

Figure B.10: Deposition layer for the top contact bondpad.
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