
Learning to Control Differential Evolution

Operators

Mudita Sharma

PHD THESIS

UNIVERSITY OF YORK

COMPUTER SCIENCE

October 2019

2

To my family, Rakesh, Maya, Manika and Deepak

3

Abstract

Evolutionary algorithms are widely used for optimsation by researchers in academia

and industry. These algorithms have parameters, which have proven to highly deter-

mine the performance of an algorithm. For many decades, researchers have focused

on determining optimal parameter values for an algorithm. Each parameter con-

figuration has a performance value attached to it that is used to determine a good

configuration for an algorithm. Parameter values depend on the problem at hand

and are known to be set in two ways, by means of offline and online selection. Of-

fline tuning assumes that the performance value of a configuration remains same

during all generations in a run whereas online tuning assumes that the performance

value varies from one generation to another.

This thesis presents various adaptive approaches each learning from a range of

feedback received from the evolutionary algorithm. The contributions demonstrate

the benefits of utilising online and offline learning together at different levels for a

particular task. Offline selection has been utilised to tune the hyper-parameters of

proposed adaptive methods that control the parameters of evolutionary algorithm

on-the-fly. All the contributions have been presented to control the mutation strate-

gies of the differential evolution. The first contribution demonstrates an adaptive

method that is mapped as markov reward process. It aims to maximise the cu-

mulative future reward. Next chapter unifies various adaptive methods from lit-

erature that can be utilised to replicate existing methods and test new ones. The

hyper-parameters of methods in first two chapters are tuned by an offline configura-

tor, irace. Last chapter proposes four methods utilising deep reinforcement learning

model. To test the applicability of the adaptive approaches presented in the thesis,

all methods are compared to various adaptive methods from literature, variants of

differential evolution and other state-of-the-art algorithms on various single objec-

tive noiseless problems from benchmark set, BBOB.

4

Contents

List of Figures 9

List of Tables 11

List of Algorithms 12

Acknowledgements 13

Authors declaration 14

I Introduction 16

1 Introduction and Motivation 17

1.1 Thesis contributions . 19

1.2 Research aims of the thesis . 21

1.3 Thesis Structure . 22

II Background 24

2 General background 25

2.1 Optimisation . 25

2.2 Evolutionary Algorithms . 26

2.2.1 Genetic Algorithms . 27

2.2.2 Evolution Strategies . 30

2.2.3 Differential Evolution . 31

2.2.4 Artificial Bee Colony Algorithm 33

2.3 Parameter Setting . 35

2.3.1 Parameter Tuning . 37

5

2.3.2 Parameter Control . 38

2.4 Reinforcement Learning . 40

3 Adaptive Selection for Discrete Parameters 42

3.1 Adaptive Operator Selection . 43

3.1.1 Credit Assignment . 44

3.1.2 Operator Selection . 44

4 Experimental setting 49

4.1 Problem set . 50

4.2 Offline tuning of hyper-parameters . 52

4.2.1 Training set . 53

III Contributions 55

5 Recursive Probability Matching 56

5.1 Methodology . 57

5.2 Experimental Design . 60

5.2.1 Parameter tuning . 61

5.2.2 Testing phase . 63

5.3 Experiments and Results . 66

5.3.1 Comparison of AOS methods with different parameter settings 66

5.3.2 Comparison of RecPM-AOS with state-of-the-art algorithms . . 67

5.4 Summary . 70

6 Unified Framework for Adaptive Operator Selection 74

6.1 Methodology . 75

6.2 Components of the proposed framework for AOS 78

6.2.1 Offspring Metric . 78

6.2.2 Reward . 81

6.2.3 Quality . 88

6.2.4 Probability . 90

6.2.5 Selection . 92

6.3 AOS methods utilised to build the framework 94

6

6.4 Experimental Design . 100

6.4.1 Parameter tuning . 100

6.5 Testing phase . 102

6.6 Experiments and Results . 105

6.6.1 Comparison of U-AOS-FW with other tuned AOS methods . . 105

6.6.2 Comparison of U-AOS-FW with non-AOS methods 107

6.6.3 Comparison of U-AOS-FW trained on nine operators with RecPM-

AOS on four operators . 107

6.7 Summary . 115

7 Double Q-Network within Differential Evolution 116

7.1 Methodology . 118

7.1.1 DE-DDQN . 119

Training phase . 119

Online phase . 122

7.1.2 State features and reward . 122

State representation . 123

Reward definitions . 127

7.2 Experimental Design . 128

7.2.1 Training and Testing . 130

7.3 Experiments and Results . 131

7.3.1 Comparison among four proposed models 134

7.3.2 Comparison of proposed models with other algorithms 135

7.3.3 Comparison of operator selection by DE-DDQN1 and U-AOS-

FW . 136

7.4 Summary . 141

IV Conclusion and Future Work 142

8 Conclusion 143

8.1 Summary of contributions . 144

8.2 Future work . 145

7

V Appendices 147

A Mutated Artificial Bee Colony algorithm 148

A.1 Introduction . 148

A.2 Methodology . 149

A.3 Experimental results . 151

A.4 Conclusion and summary . 156

B DE-DDQN tested on CEC2005 problem set 157

B.1 Experimental design . 157

B.1.1 Training and testing . 159

B.1.2 Discussion of results . 160

B.2 Conclusion . 163

C Average run time for various algorithms 166

D Operator selection and best fitness graphs for DE-DDQN2, DE-DDQN3

and DE-DDQN4 173

Bibliography 186

8

List of Figures

2.1 Evolutionary Algorithm template . 26

2.2 Parameter setting classification . 36

2.3 Control and Information flow in offline tuning 37

2.4 Reinforcement learning architecture . 41

3.1 Adaptive Operator Selection . 44

5.1 RecPM as Markov Reward Process . 61

5.2 Function error values obtained by 13 runs of DE-RecPM-AOS 1 and

DE-F-AUC3 on function f 21 . 65

5.3 ECDFs on test set . 68

5.4 Operator application and best fitness graphs for DE-RecPM-AOS (pmin=

0.17). Op1: “rand/1”, Op2: “rand/2”, Op3: “rand-to-best/2”, Op4:

“current-to-rand/1” . 71

6.1 Adaptive Operator Selection components 76

6.2 Adaptive Operator Selection component choices 77

6.3 Unified Adaptive Operator Selection architecture 78

6.4 Component choices with their usage frequency in the literature 99

6.5 Parameter sampling frequency. FF for F, top_NP for p in pbest, θ for

theta,W for window, D for decay, γ for succ_lin_quad, Frac for frac,

ε for noise, ω for normal_factor, C for scaling_constant, α for alpha,

β for beta, ρ for intensity, c for scaling_factor, δ for decay_rate, c1 for

weight_reward, c2 for weight_old_reward, γ for discount_rate, µ for

learning_rate, εp for error_prob, eps for sel_eps 106

6.6 ECDFs on test set. F-AUC for F-AUC-MAB, UFW for U-AOS-FW,

RecPM for RecPM-AOS, AdapSS for PM-AdapSS 108

9

6.7 Operator application and best fitness graphs for U-AOS-FW (pmin=

0.04). Op1: “rand/2”, Op2: “best/1”, Op3: “current-to-best/1”, Op4:

“best/2”, Op5: “rand/1”, Op6: “rand-to-best/2”, Op7: “curr-to-rand/1”,

op8: “curr-to-pbest/1”, Op9: “curr-to-pbest/1(archived)” 111

7.1 Offline training of DE-DDQN . 120

7.2 Online process of DE-DDQN . 122

7.3 ECDFs on test set . 132

7.4 Operator application and best fitness graphs for DE-DDQN1. Op1:

“rand/2”, Op2: “best/1”, Op3: “current-to-best/1”, Op4: “best/2”,

Op5: “rand/1”, Op6: “rand-to-best/2”, Op7: “curr-to-rand/1”, op8:

“curr-to-pbest/1”, Op9: “curr-to-pbest/1(archived)” 137

B.1 Function error values obtained by 25 runs of DE-DDQN2, RecPM-

AOS and PM-AdapSS for each function on test set with dimension 10

and 30 . 164

D.1 Operator application and best fitness graphs for DE-DDQN2. Op1:

“rand/2”, Op2: “best/1”, Op3: “current-to-best/1”, Op4: “best/2”,

Op5: “rand/1”, Op6: “rand-to-best/2”, Op7: “curr-to-rand/1”, op8:

“curr-to-pbest/1”, Op9: “curr-to-pbest/1(archived)” 174

D.2 Operator application and best fitness graphs for DE-DDQN3. Op1:

“rand/2”, Op2: “best/1”, Op3: “current-to-best/1”, Op4: “best/2”,

Op5: “rand/1”, Op6: “rand-to-best/2”, Op7: “curr-to-rand/1”, op8:

“curr-to-pbest/1”, Op9: “curr-to-pbest/1(archived)” 178

D.3 Operator application and best fitness graphs for DE-DDQN4. Op1:

“rand/2”, Op2: “best/1”, Op3: “current-to-best/1”, Op4: “best/2”,

Op5: “rand/1”, Op6: “rand-to-best/2”, Op7: “curr-to-rand/1”, op8:

“curr-to-pbest/1”, Op9: “curr-to-pbest/1(archived)” 182

10

List of Tables

4.1 BBOB class and their functions . 51

4.2 Training set. f xiy denotes a function instance iy that is obtained by a

transformation of original function f x. 53

5.1 Hyper-parameter choices given to irace. An interval (a, b] represents

a set of numbers x satisfying a < x ≤ b 62

5.2 Optimal parameter configurations selected from the range shown be-

low the parameter name. The following prefix abbreviations are used:

RecPM for DE-RecPM-AOS, AdapSS for PM-AdapSS-DE and F-AUC

for DE-F-AUC. The symbol ‘-’ in the table means that the parameter

is not applicable to the AOS method. 62

6.1 Offspring Metrics (OM(g, k, op)) . 80

6.2 Reward (rg+1,op) . 83

6.3 Quality (qg+1,op) . 88

6.4 Probability (pg+1,op) . 91

6.5 Selection(op) . 93

6.6 Relevant literature . 95

6.7 Hyper-parameter choices given to irace 101

6.8 Starting configurations and the configuration returned by irace 102

7.1 Landscape state features . 124

7.2 History state features . 125

7.3 Hyper-parameter values of DE-DDQN 129

7.4 Test set for DE-DDQN. f xiy denotes a function instance iy that is

obtained by a transformation of original function f x. 131

11

A.1 Test problems . 152

A.2 Results on test problems . 154

A.3 Mean result on benchmark functions using GA, PSO, DE, ABC, qABC,

aABC and mutated ABC . 155

B.1 History state features . 158

B.2 Mean (and standard deviation in parenthesis) of function error values

obtained by 25 runs for each function on test set. Former five are

dimension 10 and last five are dimension 30. We refer DE-DDQN as

DDQN. Bold entry is the minimum mean error found by any method

for each function. 160

B.3 Average ranking of all methods. 161

B.4 Post-hoc (Li) using DE-DDQN2 as control method. 162

C.1 Average runtime aRT . 167

C.2 Average runtime aRT . 168

C.3 Average runtime aRT . 169

C.4 Average runtime aRT . 170

C.5 Average runtime aRT . 171

C.6 Average runtime aRT . 172

12

List of Algorithms

1 The working of Genetic Algorithm . 28

2 Differential Evolution algorithm . 33

3 Artificial Bee Colony algorithm . 35

4 Differential Evolution with an AOS . 63

5 AOS method formed with the component choices from the framework

coupled with DE . 104

6 DE-DDQN training algorithm . 121

7 DE-DDQN testing algorithm . 123

8 Mutated Artificial Bee Colony algorithm 150

13

Acknowledgements

I would like to thank my supervisors Dimitar Kazakov and Manuel López Ibáñez for

their constant guidance and motivation. I thank Dimitar Kazakov for giving me this

opportunity and Manuel López Ibáñez for his reviews and insightful comments on

the papers we have written together. I acknowledge their consistent support for the

full period of the PhD. I thank Susan Stepney for her advice during the progression

meetings and for reviewing this thesis.

Thanks to Alexandros Komninos for all the interesting discussions that resulted

in important contributions. I also want to thank my friends, Taghreed Alqaisi, Chai-

tanya Kaul, Marcelo Sardelich and Nils Mönning, in the Artificial Intelligence group

for providing the moral support and a friendly work environment in the Computer

Science department.

I am grateful to the Engineering and Physical Sciences Research Council (EPSRC)

for funding this project.

Finally, I want to express gratitude to my lovely parents for believing in me and

supporting throughout the PhD studies. I would never have been able to reach

where I am now without their support.

Mudita Sharma

Oct 2019, York, England

14

Authors declaration

I declare that this thesis is a presentation of original work and I am the sole author.

This work has not previously been presented for an award at this, or any other,

University. All sources are acknowledged as References.

The first paper, presented in Appendix A, resulted from the explorations in the

swarm based Artificial Bee Colony (ABC) algorithm. The following paper resulted

from this research is published at the GECCO conference (15-19 July 2017): Mu-

dita Sharma and Dimitar Kazakov. “Hybridisation of artificial bee colony algo-

rithm on four classes of real-valued optimisation functions." Proceedings of the

Genetic and Evolutionary Computation Conference Companion (GECCO 2017).

ACM, 2017, Berlin, Germany.

This research made it clear that parameter setting is a key issue that impacts

the performance of evolutionary algorithms. It has been researched for decades but

there is no general framework that can simplify the process of setting the parameters

of an algorithm. The following papers resulted from the research in the direction to

control a set of operators in the differential evolution generalising on a large set of

problems.

Mudita Sharma, Manuel López Ibáñez and Dimitar Kazakov. “Performance

Assessment of Recursive Probability Matching for Adaptive Operator Selection

in Differential Evolution." 15th Intl Conf. on Parallel Problem Solving from Na-

ture (PPSN 2018): 8-12 Sep 2018. Coimbra, Portugal.

Above paper forms the basis for the Chapter 5.

Mudita Sharma, Alexandros Komninos, Manuel López Ibáñez and Dimitar

Kazakov. “Deep Reinforcement Learning Based Parameter Control in Differen-

tial Evolution." Proceedings of the Genetic and Evolutionary Computation Con-

ference Companion (GECCO 2019). ACM, 13-17 July 2019, Prague, Czech Repub-

lic.

15

This paper forms the basis for the Appendix B and Chapter 7. The co-author,

Alexandros Komninos, contributed background knowledge of Deep Reinforcement

Learning methods and performed statistical tests.

16

Part I

Introduction

17

Chapter 1

Introduction and Motivation

Nature Inspired Algorithms (NIAs) is a class of algorithms that simulate the natural

processes present in nature. Evolutionary Algorithms (EAs) are a type of NIA, eg.

Genetic Algorithm (GA) [140] and Evolutionary Strategy (ES) [137, 146], are inspired

by the biological evolution of species. Other popular NIAs are Particle Swarm op-

timisation (PSO) [37] imitate the movement of bird flock or fish school, Ant Colony

Optimisation (ACO) [36] is based on the idea of ant foraging by pheromone com-

munication to form paths and Artificial Bee Colony (ABC) algorithm [88] simulate

bees’ foraging behaviour. These are among the efficient population based algorithms

widely used for numerical optimisation. They are consistently used by researchers

as a starting point for the design of a new algorithm to improve its performance.

The improvement in performance is a result of introduction of their variants [10,

169, 95] or their hybridisation with other algorithms sharing similar properties [106,

110, 170]; and modifying them to implement in a specific application of an area.

Evolutionary techniques have been widely used for function optimisation by

evolutionary and artificial intelligence community. EAs are derivative free algo-

rithms that have proved to be useful for a wide range of problems in different ap-

plication areas [52, 98, 79, 55, 53, 54]. They are known to guarantee near optimum

solution for a given problem. The nature of the optimisation problem considered

is usually black-box where the algorithm is unaware of the properties of the prob-

lem such as continuous, convex, uni modal, multi modal, separable, quadratic, high

dimensional, gaussian noise, and so on. NIAs consist of two classes of algorithms:

single-solution-based and population-based. As the name implies single-solution

based algorithms start with only one solution e.g. Simulated Annealing [1], hill

18 Chapter 1. Introduction and Motivation

climbing [82], (1+1)-ES [146]. Population-based algorithms (PBAs) are randomised

algorithms which start the search for the optimum solution using a set of candi-

date solutions called population such as GAs and PSO. In either case, the initial

solution(s) is improved over the course of iterations according to their exploration

and exploitation operators. PBAs have proved useful compared to single-solution

based algorithms as the set of candidate solutions sharing information about the

search space enhances their capability to find better solutions in less time. Due to

their stochastic nature, it results in jumps toward the promising part of the search

space which can help finding local or global optimal solutions. Crossover and muta-

tion are two operators commonly used by these algorithms. Crossover exploits the

neighbourhood of existing solutions (exploration) and mutation is responsible for

exploring new regions of the search space (exploitation).

Selecting the types of crossover and mutation boils down to the problem of pa-

rameter setting. These two parameters are known as discrete parameters as they

have countable number of choices, each of which have their own parameters such as

a crossover rate and mutation rate respectively. These sub-parameters have continu-

ous domain and have infinite number of choices, thus known as continuous param-

eters. The performance of an EA highly depends on the selection of the parameter

value(s) of an EA [34, 27, 32, 114]. Considering the number of parameters involved

in an EA and large number of options available for each of them, exhaustive search

(manual tuning) is no longer an efficient approach. It is time-consuming and still

does not guarantee near-optimal parameter values. There are two popular ways to

set the parameter values, parameter tuning and parameter control. Tuning meth-

ods, also known as offline learning, are used to set parameter values before running

the algorithm whereas control methods, also known as online learning, learn to de-

cide the parameter values during the run of an algorithm. Both approaches have

been explored in literature to a great extent and this is still an active area with many

open questions. Tuning is a time consuming process and does not guarantee optimal

parameter values. Different parameter values are shown to be optimal at different

stages of an EA run [13, 42]. Thus, controlling approaches can be seen as a way to

overcome the problems attached to tuning.

1.1. Thesis contributions 19

Within online parameter control, methods can either be rule based, feedback in-

formed or self-adaptive. Rule based methods include a formulae that can be gen-

eration dependent. For instance, a formulae is a mathematical definition that can

decide the value for mutation rate based on the current generation [51]. Feedback

methods learn to make a decision on a parameter depending on the performance

or feedback received from an EA [28]. Self-adaptive methods encode the parameter

in the candidate solution. It then lets the parameter to evolve with the evolution of

solutions as a result of the application of an operator [33].

Although parameter control is an effective approach to select parameter values

on-the-fly, there are no general guidelines to follow to propose an online method.

Various methods have been proposed in literature to control parameters, yet there

is no widely accepted generic approaches within an EA that can be utilised for op-

timising functions with different properties. There are many different combinations

possible from these existing methods that can be tested to boost the performance of

an evolutionary algorithm. Limited combinations have been analysed and tested on

a problem set but they come from few popular methods ignoring the components of

old methods. The directions of research for controlling the parameters are discussed

in Eiben et.al paper [101].

The context of contribution is the adaptive parameter control for parameters with

discrete number of choices. The specific evolutionary algorithm studied in this the-

sis is Differential Evolution. It has a finite number of operators that can be selected

to evolve a solution present in a population. An operator is also known as muta-

tion strategy in DE. In the next section we briefly describe the contributions made

towards the adaptive selection of an operator from a set of mutation strategies.

1.1 Thesis contributions

We present three main contributions along with two minor contributions in the field

of evolutionary computation. Chapters 5, 6 and 7 describe the main contributions

for the parameter control of operators in DE. The proposed methods are tested on

BBOB noiseless test bed. Appendix A presents the early work done during the PhD

to improve the performance of Artificial Bee Colony algorithm. Appendix B tests the

20 Chapter 1. Introduction and Motivation

applicability of an adaptive approach presented in Chapter 7 on a different CEC2005

test bed.

The first main contribution is presented in Chapter 5. It demonstrates a novel ap-

proach for discrete parameters known as Adaptive Operator Selection (AOS). Major

steps in AOS method comprise credit assignment and operator selection. Credit as-

signment assigns a reward value to each operator and based on the performance

quality, a probability is assigned to each operator. The probability of each operator

is used to make a selection of an operator in the next generation. The selection mech-

anism is invoked for each solution in the population. RecPM is a proposed Operator

Selector which is a variant of Probability Matching. They differ in the assignment of

quality to each operator. In RecPM, quality assignment is inspired by Bellman equa-

tion in Markov Reward Processes, a concept in Reinforcement Learning. It aims to

maximise the future reward for an operator. RecPM is combined with a well-known

reward definition to give an AOS method named RecPM-AOS.

There is a lot of research on selecting discrete parameters on-the-fly [86, 85, 31,

2], but there is no method that is widely accepted to control parameters in one or

many EA algorithms. These methods have a limitation to work with a particular

EA and a specific test bed. Thus, in Chapter 6 we made a step towards bringing

AOS methods at a common platform. We propose a unifying AOS framework of

online methods for parameters with discrete choices. We simplified the working of

existing AOS methods and divide each of them into a number of simplified com-

ponents. Each component comprise of a number of choices. These choices mostly

come from AOS methods in literature and we also propose new choices for these

components. The resultant framework of different components with their choices

can be utilised to combine different choices from each component to explore the

AOS search space. Due to large AOS component space, it is not possible to man-

ually tune this component space for a given set of problems. Thus, we decide to

employ a racing tuner, irace, to explore the component space as well tune the hyper-

parameters of the choices and parameters of DE. irace returns an appropriate AOS

method for an EA and the problem set. This contribution demonstrates that offline

and online setting can be utilised at different levels so as to mitigate the drawbacks

of tuning and utilising the benefits of controlling the parameters online.

1.2. Research aims of the thesis 21

The design of AOS methods limits their learning ability by including the limited

feedback information in the process. They usually learn from atmost three perfor-

mance features of the parameters. For example, it considers either success rate in

fitness improvement w.r.t median population fitness or sum of rank of raw solution

fitness or quality and diversity of fitness improvement w.r.t parent fitness. In Chap-

ter 7, we demonstrate a procedure to utilise more than three features at once to learn

to decide the parameter selection. We designed 199 features that the proposed model

can learn from. This huge amount of data coming at every step from an EA can be

easily handled by Deep Reinforcement Learning (DRL) models. DRL utilises these

features as a state representation and make an informative decision on the param-

eter to use, termed as action. Each action is followed by assigning a reward value

to the parameter utilised at that stage. Thus, state action and reward are three key

concepts utilised in DRL. The proposed method employing definitions of state, re-

ward and action to control operators in DE is named as DE-DDQN. We explore four

reward definitions and compare their performance on BBOB benchmark set.

Appendix A presents a hybrid algorithm, named as mutated Artificial Bee Colony

algorithm, with the aim to improve the performance of artificial bee colony algo-

rithm. ABC has three main phases that are responsible for maintaining exploration

and exploitation of the solution search space. Two equations are derived from the

existing equation present in the employed and onlooker bee phase in the standard

ABC algorithm. To improve the search capability of ABC algorithm, mutation rate

as in Genetic Algorithms is introduced in these search equations. The third phase,

scout bee phase, is responsible for exploration and is modified to prevent losing a

good candidate. Lastly, the known parameters and new proposed parameters of

ABC algorithm are manually tuned.

Appendix B presents experiments of DE-DDQN on CEC2005 problem set.

1.2 Research aims of the thesis

The work presented in this thesis aims to answer the following research questions:

Q1: Can AOS be mapped to an MRP (Markov Reward Process) to maximise the

future reward of operator selection?

22 Chapter 1. Introduction and Motivation

Q2: Can the different components of AOS be generalised and generate new AOS

from existing ones which improve their performance?

Q3: Can Deep Reinforcement Learning be applied to learn to decide the selection of

DE operators?

1.3 Thesis Structure

The rest of the thesis is divided into three major parts. The next part includes three

chapters that cover preliminary background and methods for adaptive selection of

operators. In particular, Chapter 2 explains the problem of single objective optimi-

sation, gives details on popular EA algorithms and popular methods in parameter

tuning and control. Chapter 3 provides detailed discussion on the methods in pa-

rameter control for discrete parameters. This chapter presents literature for both

heuristic based and Reinforcement Learning (RL) based control approaches. Chap-

ter 4 provides the preliminary information needed for the experiments in the chapter

of contributions. Thus, Part II forms a basis for understanding the baselines for com-

parison and the contributions presented in the thesis.

The third part (Part III) covers the three chapters of contribution in the context

of online selection of mutation strategies in differential evolution. Chapter 5 de-

scribes a method based on probability matching that is inspired by a concept in RL

known as Markov reward Process. The goal is to improve the performance of DE

by maximising the future cumulative reward. Chapter 6 gives a unified framework

for AOS methods. The framework is build by classifying and generalising its com-

ponent choices. A number of AOS methods can be replicated from the framework

and a large number of unique AOS designs are possible. An offline configurator is

employed at top level to select an adaptive method for a given problem bed. The last

chapter of contribution (Chapter 7) uses Deep Reinforcement Learning with many

landscape and history features to learn the adaptive selection of DE operators. It also

presents and compares four unique reward definitions with Deep RL. Each chapter

of contribution presents experiments and discussion of results on BBOB noiseless

functions.

1.3. Thesis Structure 23

We summarise the contributions in Chapter 8 and present the scope of future

work.

Last Part V of the thesis, presents four appendices. Appendix A presents an

improved swarm based algorithm, mutated ABC. The improvement is a result of

changes made in the different phases of standard ABC algorithm. Lastly, Appendix B

discusses results obtained from running DE-DDQN on CEC2005 problem set. Ap-

pendix C and Appendix D show average run time tables and operator selection with

best fitness graphs for various algorithms respectively.

24

Part II

Background

25

Chapter 2

General background

This chapter focuses on the general background on Evolutionary Algorithms (EAs),

that act as basis for the experiments and the results discussed in part III of the the-

sis (chapters of contribution). We start by introducing the optimisation problem in

the single objective scenario. It is the general problem we are trying to solve opti-

mally. Next, we describe various popular EAs, their parameters and variants. Some

of the well-known vanilla algorithms discussed are Genetic Algorithms(GAs), Dif-

ferential Evolution (DE), Evolutionary Strategy (ES) and Artificial Bee Colony (ABC)

algorithm.

This discussion is followed by different approaches to set the parameters in EAs.

Parameter setting can be approached as a parameter tuning or controlling problem.

Information flow in parameter tuning is presented followed by the classification of

parameter control- deterministic, adaptive and self-adaptive. We comment on pa-

rameter tuning issues and suggest solutions to it. A few controlling methods have

utilised a Reinforcement Learning architecture to adapt parameters in evolutionary

algorithms. Thus, we finish the chapter with a brief introduction on Reinforcement

learning architecture and its key terminologies.

2.1 Optimisation

The problem of optimisation is defined as finding the minima or maxima solution

among a set of solutions in the feasible region. A feasible region is bounded by the

bounds of the parameter space. Solutions are evaluated on an objective function

which informs the fitness of the solution. Objective can be to minimise cost, max-

imise reliability, minimise effort, minimise risk, etc. Real-world problems highly

26 Chapter 2. General background

FIGURE 2.1: Evolutionary Algorithm template

depend on optimising one (single-objective) or more (multi-objective) of these ob-

jectives [171, 20, 129, 161, 83, 81].

We focus on the single objective problem which has one objective to be optimised

within parameter boundaries that define the search space. Thus, it is free from con-

straints. This search space consists of candidate solutions x ∈ X, where each solu-

tion has a fitness or cost attached to it given by f : X → R. It is common practice to

implement and test EAs on toy problems. The simplest example is optimising the

sphere function, a unimodal function, with n-parameters. More complex functions

can be non-linear and non-smooth functions. In case of minimisation problem, task

is to find the solution with least cost x∗ s.t. f (x∗) ≤ f (x), ∀x ∈ X whereas in case

of maximisation, the algorithm looks for a solution with largest possible cost x∗ s.t.

f (x∗) ≥ f (x), ∀x ∈ X.

2.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) have proven to be useful as optimisation techniques [56].

They imitate the behaviour of Darwinian evolution in nature. Many popular EAs

follow a common template as can be seen in Figure 2.1. The initial population,

consisting of candidate solutions, is generated randomly or using some predefined

heuristic. A parent selection mechanism is employed to select parents from the cur-

rent population such as tournament, fitness proportional, uniform or best selection.

Parents reproduce to produce a set of candidate solutions known as offspring. EAs

have different ways to evolve population, usually with the help of variation opera-

tors, mutation and crossover. These operators are responsible to balance exploration

2.2. Evolutionary Algorithms 27

and exploitation in the fitness landscape. Exploration is responsible for searching

unexplored regions of the search space and exploitation searches the neighborhood

of existing solutions. Some of the solutions from the parent and offspring popula-

tion are chosen to to move to the next generation by a survival mechanism. Choices

for survival mechanism can be generational, tournament or uniform. This process

repeats while a termination criterion is not satisfied. Further in this section, we re-

view some of the popular EAs following this template. We discuss different ways to

evolve the current population and selection of the next population.

2.2.1 Genetic Algorithms

Genetic Algorithms (GAs), first proposed by Holland [140], are popular algorithms

for the application of combinatorial problems. They are based on the concept of nat-

ural selection of best chromosomes which further reproduce better offspring. They

imitate human biological process where each chromosome is made up of genes.

Genes are significant in the process of reproduction. They represent a human char-

acteristic for instance eye colour and gene value (called allele) can be represented by

the color of eye as either green or blue. Thus, both green and blue eye colour belong

to the same eye color gene. Genotype represents information on genes whereas phe-

notype is physical appearance. After reproduction, offspring carry genes of parents

to reflect their characteristics.

In GA, chromosomes/individuals are represented as a binary string. These strings

are made up of gene values each of which can be either 0 or 1. Each gene in a chro-

mosome represents a dimension of a function to be optimised. Floating-point rep-

resentation has also been investigated in literature where chromosomes are repre-

sented as a vector of real values. Floating-point representations have proved to give

faster and better results than bit strings [80]. Two or more of these chromosomes

are selected as parents using a parent selection mechanism. They undergo crossover

and mutation to form new chromosomes. Crossover and mutation operations help

maintain a good balance between exploration and exploitation and are responsible

for searching different parts of fitness landscape of an optimisation problem. Based

on a survival selection mechanism, individuals with better fitness survive to next

generation. Both survival selection and parent selection are done on the basis of the

28 Chapter 2. General background

Algorithm 1 The working of Genetic Algorithm

1: Initialise parameter values of GA: NP, S, CT, C, MT, µ, G
2: g = 0 (generation number)
3: Initialise and evaluate population P(0)
4: while stopping condition is not satisfied do
5: Select parent population from current population P(g) biasing selection to-

ward individuals with higher fitness
6: Evolve parents using crossover and mutation operators
7: Perform survival selection to form P(g+1)
8: g = g + 1

phenotype of an individual which is based on the genotype of a chromosome. In

particular, in the selection step GA performs genotype-phenotype mapping which

tells how fit an individual is relative to the other individuals in the population. A

phenotype represents a vector constituting n-real values in search space. The steps

of GA can be seen in Algorithm 1.

The first step in genetic algorithm is important as it initialises its parameters

which highly determine the performance of GA. These parameters are discussed

below one by one,

• Population Size (NP)- It determines the number of chromosomes in a pop-

ulation which can be static or dynamic throughout the run. Although large

population size discourages premature convergence, it is computationally ex-

pensive due to the large number of function evaluations per generation. On

the other hand, GA does not perform well with small population size [61] be-

cause it prevents diversity in the population. Adaptive population size has

been suggested between 10 to 160 with increments of 10 [61].

• Selection mechanism (S)- Parent selection is performed to select parents for

evolution and survival selection for the formation of next generation among

parents and offspring. For selection of a parent, binary tournament randomly

samples two parents from the current population. The one with better fitness

survives to become a parent. To form the next generation, individuals based

on fitness ranking can be selected. Other techniques are random and fitness-

proportionate selection.

2.2. Evolutionary Algorithms 29

• Type of crossover (CT)- Crossover operator (also known as recombination op-

erator) acts upon selected chromosomes to pass its genes to produce better off-

spring than parents. This can be done in many ways. One-point and two-point

crossover cut the parents at randomly chosen one and two points respectively

and exchange them to form offspring. In uniform crossover, genes are ran-

domly exchanged between two parents. Good parts in the parents can be lost

with high number of crossover points, thus two-point crossover is usually the

first choice.

• Crossover Rate (C)- It is the rate with which crossover operator is applied on

two or more chromosomes. In each generation, C · NP chromosome undergo

crossover. With high value of C, good performing genes in a chromosome can

be lost while a low value can lead to stagnation in population due to low explo-

ration. Widely accepted crossover rate varies from 0.25 to 1.0 with increments

of 0.05 [61] depending on the problem.

• Type of mutation (MT)- Mutation flips one or more bits in the offspring. In

one-point mutation, one bit is randomly flipped with mutation probability µ.

Inversion is another mutation operator where two random bit positions are

selected and all bits between these positions are reversed. It is responsible for

maintaining genetic diversity in a generation.

• Mutation rate (µ)- It can be applied at two levels- allele and chromosome level.

At allele level, µ · NP · CL alleles undergo mutation where CL is the chromo-

some length. In the case of chromosomes in a generation, any random bit in

each µ · NP chromosomes undergo bit-flip.

• Generation gap (G)- It decides the number of individuals to be replaced from

the current population. G = 0.5 indicates that half of the individuals in the

current population will be replaced by offspring. When G is set to 1.0, all the

candidates in the current population will be replaced by the offspring to form

new parent population.

30 Chapter 2. General background

2.2.2 Evolution Strategies

Traditional evolutionary strategy (ES) [137, 146] generates one offspring from one

parent, known as (1+1)-ES. A solution in ESs is represented as a vector of real val-

ues. The offspring is generated using mutation which induces some noise to the

parent, xi, using Gaussian process with mean 0 and predefined standard deviation

(or mutation step size).

xi = xi + N(0, σi) (2.1)

Each dimension value of the solution is evolved with the help of independent

Gaussian distributions. The mutation step size is adapted using 1/5-success rule [139],

which says, the ratio of successful mutations to all mutations should be 1/5. For

greater ratios increase the step-size, else decrease it. This is a simple example of

adaptation of mutation rate in (1 + 1)-ES.

(µ + λ)-ES was proposed by Rechenberg in 1973 [138] where instead of one par-

ent and offspring, it utilises a population of parents (µ) to evolve a population of

offspring (λ). The best solutions among parent and offspring population survive to

become next generation parent population of fix size µ. (µ, λ)-ES [145] is another

variant of evolution strategy where parent population in next generation is formed

by selecting candidates from λ offspring.

One of the well-known ES variant is known as Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) [64]. It is known to solve difficult non-linear, non-

convex black-box optimisation problems in continuous domain [63, 65]. It has in-

variance properties to preserve order transformations of the objective function value

and to preserve angle transformations of the search space including rotation, reflec-

tion, and translation. These properties ensure uniform behavior on classes of func-

tions and generalize on the empirical results. CMA-ES is extended to BIPOP-CMA-

ES [62]. After a first single run with default population size, it applies two interlaced

multistart regimes, each equipped with a function evaluation budget accounting for

the so far conducted function evaluations. Depending on which budget value is

smaller, a complete run of either one or the other strategy is launched [62]. Another

promising variant of ES is Natural Evolutionary Strategy (NES) [144]. It provides

an adaption mechanism to update the learning rate for step-size of distribution, by

2.2. Evolutionary Algorithms 31

ascending the gradient towards higher expected fitness.

2.2.3 Differential Evolution

Differential Evolution (DE) [132], like GA, is a population-based algorithm. As in

ES, the population in DE consists of real-valued solutions in the search space. DE

utilises vector differences for evolving solutions known as mutation strategy. It fol-

lows a nomenclature to differentiate one DE from others in their definition of mu-

tation strategy and crossover operator. The nomenclature scheme is followed to

reference the different DE variants that is of the form “DE/x/y/z”. For instance in

“DE/rand/1/bin”, “DE” means Differential Evolution, “rand” refers to the random

individuals selected to compute the mutation values, “1” is the number of pairs of

solutions chosen and lastly “bin” indicates a binomial crossover of selected individ-

uals. Another choice for z is “exp”, an exponential crossover.

The procedure of DE is shown in algorithm 2. It starts with a population of can-

didate solutions, xi generated randomly in the search space of dimension n. Thus,

each candidate in the population is represented as n-dimensional vector. DE does

not employ parent selection mechanism, that is each parent mutates with two or

more solutions from the population using a mutation strategy to create an offspring

solution ui (or often known as trial vector). A mutation strategy is a linear com-

bination of three or more parent solutions xi, where i is the index of a solution in

the current population. Some mutation strategies are good at exploration and oth-

ers at exploitation, and it is well-known that no single strategy performs best for all

problems and for all stages of a single run [50]. Many mutation strategies have been

proposed to generate offspring which differ in the solutions used as a linear combi-

nation of each other. These following mutation strategies [132] are frequently used

in the literature for optimisation problems. They have their own way to balance

exploration and exploitation in the search space:

32 Chapter 2. General background

“rand/2”: ui = xr1 + F · (xr2 − xr3 + xr4 − xr5)

“best/1”: ui = xbest + F · (xr1 − xr2)

“curr-to-best/1”: ui = xi + F · (xbest − xi + xr1 − xr2)

“best/2”: ui = xbest + F · (xr1 − xr2 + xr3 − xr4)

“rand/1”: ui = xr1 + F · (xr2 − xr3)

“rand-to-best/2”: ui = xr1 + F · (xbest − xr1 + xr2 − xr3 + xr4 − xr5)

“curr-to-rand/1”: ui = xi + F · (xr1 − xi + xr2 − xr3)

“curr-to-pbest/1”: ui = xi + F · (xpbest − xi + xr1 − xr2)

“curr-to-pbest/1(archived)”: ui = xi + F · (xpbest − xi + xr1 − xarchive)

where r1, r2, r3, r4, and r5 are randomly generated mutually exclusive indexes within

[1, NP], and NP is the population size. ui and xi are the i-th offspring and parent

solution vectors in the population respectively, xbest is the best parent in the popu-

lation. An additional numerical parameter, the crossover rate (CR ∈ [0, 1]), deter-

mines whether the mutation strategy is applied to each dimension of xi to generate

ui. At least one dimension of each xi vector is mutated (represented as jrand) in Al-

gorithm 2. F, known as scaling factor is the mutation rate that acts as a weight to

the set of pair of solutions selected to calculate the mutation value. “rand/1” and

“rand/2” combine one random vector with one and two random weighted differ-

ence vectors respectively. They are good at exploration of the search space. “best/1”

and “best/2” explore the neighborhood of the best candidate. “curr-to-pbest/1”

and “curr-to-pbest/1(archived)” [169] are modification of “curr-to-best/1”. “curr-

to-rand/1” and “rand-to-best/2” explore the neighborhood of current parent and

best parent in the current population respectively.

After the parent is evolved using a mutation strategy, the fitness of the offspring

is compared with its parent and a less fit solution among parent and offspring is

replaced by the more fit candidate. Thus, DE employs greedy selection mechanism.

Many algorithms are used for numerical benchmark optimization, but DE has

shown better performance than genetic algorithms and particle swarm optimization

for continuous problems, for instance see papers [156, 148]. A survey of develop-

ment in DE can be found in [30] and for applications of DE refer to [6, 108, 23, 29].

2.2. Evolutionary Algorithms 33

Algorithm 2 Differential Evolution algorithm

1: Initialise parameter values of DE: NP, CR, F
2: Randomly initialise and evaluate the population
3: Generation g = 0
4: while stopping condition is not satisfied do
5: for each candidate in population do
6: Uniformly select r1 6= r2 6= r3 6= r4 6= r5 6= i
7: Generate a mutated vector, ui,j
8: jrand = random[1, n]
9: if random[0, 1) < CR or j == jrand then

10: vi,j = ui,j
11: else
12: ui,j = xi,j
13: Evaluate the population ui,j
14: Greedy selection between xi and ui
15: g = g + 1

2.2.4 Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC) algorithm [88] is a population based algorithm, proposed

by Dervis Karaboga in 2005. It imitates the foraging behaviour of bees in the envi-

ronment. In ABC, the position of a food source represents a solution in the search

space and the nectar amount at a food source is the fitness of the solution. There are

three kinds of bees considered in ABC algorithm, namely employed bees, onlooker

bees and scout bees. Half of the population consists of employed bees and rest half

represents onlooker bees. The number of the employed bees is equal to the number

of solutions in the population.

Algorithm 3 shows the working of ABC algorithm. At the initial generation, all

bees (employed and onlooker bees) in a generation are randomly distributed be-

tween the lower and the upper bound dimensional limits of the function. In the

employed bee phase, each employed bee, xi is assigned a random position, vi in the

neighbourhood of its current solution. vi is generated by selecting and changing a

random dimension of xi as shown below. Other dimension values remain same in

both positions, xi and vi. This phase is responsible for increasing the population

diversity.

vi = xi + rand[−1, 1] · (xi − xk), k ∈ [1, NP], i 6= k (2.2)

34 Chapter 2. General background

where xk represents the randomly selected k-th employed bee and rand[−1, 1] is a

random number in the range −1 and 1. Each employed bee uses greedy selection

to select a position with better fitness value among xi and vi. Once the employed

bee decides its position, it dances on the dance area. Dance is a medium to share

the location and amount of honey present on that location with onlooker bees. Each

onlooker bee observe the dance of employed bees and exploit the neighbourhood

of selected employed bee position. In the onlooker bee phase, the selection of em-

ployed bee is made probabilistically (roulette-wheel selection) using the following

formulae,

Pi =
f iti

∑NP
j=1 f itj

, i ∈ [1, NP] (2.3)

where Pi and f iti denotes the selection probability and fitness of i-th employed bee

in the population respectively. The better the fitness of i-th solution the higher the

chance of getting selected by an onlooker bee. Each onlooker bee is assigned a ran-

dom position in the neighbourhood of the selected employed bee. This phase is

responsible for exploiting the existing solutions in the search space. It then greed-

ily selects a position among the current position and the position selected in the

neighbourhood of employed bee. At the end of each generation, an employed bee

becomes scout bee if its position has not been changed for a predefined number of

generations (known as limit). The scout bee abandons its position and is assigned a

random position in the search space. There can be atmost one scout bee in a genera-

tion.

ABC has used intelligent behaviour inspired by a swarm of bees to successfully

solve a range of mathematical problems [147]. ABC has been compared with DE [93]

and GA [18, 89] on a number of numerical problems. ABC has also been used for

constrained optimization problems [92] and has been applied for training neural

networks [90, 91]. It has been utilised for industrial problems, for designing IIR

filters [97] and for the leaf-constrained minimum spanning tree problem [152]. A

survey of advances in ABC and its application can be found in [96].

2.3. Parameter Setting 35

Algorithm 3 Artificial Bee Colony algorithm

1: Initialise parameter values of ABC: NP, limit
2: Randomly initialise the position of bees
3: Evaluate the fitness of each individual in the population
4: g = 0 (generation number)
5: while stopping condition is not satisfied do
6: Employed bee phase
7: for each ~xi, i = 1, . . . , NP/2 do
8: Generate a position using equation 2.2
9: Greedy selection of a position

10: Onlooker bee phase
11: for each ~xi, i = NP/2, . . . , NP do
12: Roulette-wheel selection of an employed bee using equation 2.3
13: Generate a position using equation 2.2
14: Greedy selection of a position
15: Scout bee phase
16: Scout bee assigned a random position in the search space
17: g = g + 1

2.3 Parameter Setting

Performance of evolutionary algorithms highly depend on the selection of parame-

ter values. It is challenging to find the best parameter setting of the EA in advance

due to limited knowledge about the effects of parameters on EA performance. Also,

an EA usually has more than one parameter and their collective behavior impacts

the performance of the algorithm. An EA design involves setting parameters which

can be of two types. The first type takes countably finite set of values, known as

discrete parameters. Population size is one such parameter that is common to every

population-based EA such as GA and DE. It has finite possibilities to select from

when its range is bounded. The second type of parameter is the one that takes nu-

merical values with infinite choices known as continuous parameters. For example

crossover rate in GA whose domain is real-valued in the range [0.0, 1.0]. The param-

eters space of an algorithm can be written as a combination of all parameter choices

(that is a Cartesian product). Let there be n number of discrete parameters a1, a2, ...,

an and m number of continuous parameters b1, b2,..., bm belonging to an EA. Thus,

there are a1 × a2 · · · × an × b1 × · · · × bm number of parameter choices for an algo-

rithm. Parameters can form a hierarchy for example the type of crossover in GA (a

discrete parameter) can have choices such as single point or multipoint crossover,

both of which have a continuous parameter, crossover rate, which needs to be set.

36 Chapter 2. General background

FIGURE 2.2: Parameter setting classification

Thus, selecting a parameter may involve deciding another parameter value attached

to them.

Determining an optimum value for each parameter in a given EA can be a te-

dious task as the parameter domain is generally huge. Near optimal parameter val-

ues can be set manually by hit-and-trial method. This method requires a lot of com-

putational effort and time to come up with a set of near optimum parameter values

as parameters are set before the algorithm is run and it always leaves some possi-

bility to find a better value. Thus, manual tuning of the combinations of parameters

involved in an algorithm makes it practically impossible to decide the parameter

values. Thus, it becomes important to employ a parameter selection method that

selects the near-optimal parameter values of the algorithm.

These parameters can either be tuned using offline configurators by refining op-

timal configurations after a few runs (Sequential Parameter Optimisation [17]); by

discarding the configurations if they are worst than others when there is enough

statistical evidence to reject them (Iterated Racing [115]) or can be controlled using

deterministic, self-adaptation or adaptation methods. In case of parameter tuning,

an offline approach, the parameters are tuned and trained on a problem set. Once

parameters are tuned the values do not change during the run of the algorithm on

the test set. On the contrary, in the parameter control, an online approach, there

is no training involved. The parameter values are adapted and learned on-the-fly.

Thus, setting the parameters can be classified into tuning and controlling methods

as suggested in [40]. The classification is shown in Figure 2.2.

2.3. Parameter Setting 37

FIGURE 2.3: Control and Information flow in offline tuning

2.3.1 Parameter Tuning

Parameter tuning methods have two phases, training and testing phase. These two

phases have different set of problems for training and testing. In the training phase,

different parameters are trained on the training set. The parameter configuration

returned by tuner is used in the testing phase on the test bed. This configuration re-

mains fixed during whole run of the algorithm during testing. A separate budget is

allocated to training and testing phase. Figure 2.3 shows the three layered structure

for offline setting. This structure includes design level, algorithm level and appli-

cation level described in [41]. The design layer selects the appropriate parameter

values for the algorithm present at the algorithm level according to the problem at

hand. This can be done with the help of a tuner or using an appropriate optimiser.

The algorithm layer includes an evolutionary algorithm that is chosen to optimise

the problem instance at the application layer. This information can flow hierarchi-

cally in either direction referred to as control and information flow. The problem

solving part tries to find an optimal solution for a problem that is, it iteratively gen-

erates candidate solutions from the problem space to find the optima of the problem.

The parameter tuning part tries to find optimal parameter values for the algorithm

from the parameter space.

A number of tuners following the above layered procedure are proposed in the

literature. One of the well-known class of tuners inspired by [116] are known as rac-

ing methods. This class of tuners maintain a pool of configurations by discarding

and retaining elite configurations using statistical tests to guide the search direction

38 Chapter 2. General background

in the parameter search space. F-Race [19], Interactive F-RACE (I/F-Race) [14] and

irace [115] are few tuners that fall under this category. Another method to tune pa-

rameters is to use an optimisation algorithm such as GA with the aim to find the

best combination of parameter values given the problem in-hand [61, 8, 16]. Others

include experimental design technique [27]; Local Search methods- FocusedILS [76]

and ParamILS [76]; Sequential Parameter Optimisation [17] and SMAC [75]. An in-

terested reader is referred to [41] for detail on tuning methods. A survey of manual

and automated approaches can be found in [32, 43].

Despite having many tuners available to optimise the parameter space of an

algorithm, these tuners suffer from some issues. Parameter tuning methods are

time-consuming and need a large budget. Additionally, due to the large number

of parameters and their dependence on each other it becomes difficult for parameter

tuners to explore large parameter spaces. Another problem with tuning is that static

parameter values given by tuner lead to sub-optimal parameter values. This is so be-

cause the parameter search space needs to be explored during the initial runs of an

algorithm before focusing on certain areas of search space. This can be overcome by

employing different parameters at different stages of algorithm run [153, 13, 35]. In

addition to these issues, tuners generally perform poorly in black-box setting where

the class of problem is not known in advance. Due to differences in complexity of

landscape of problem, single parameter configuration is not suitable for all kinds of

problems.

To overcome the above problems, parameter control can be an alternative ap-

proach to find the optimal configuration for different problems learned during the

run of the algorithm.

2.3.2 Parameter Control

The procedure of deciding parameter values during the run of an algorithm is termed

as parameter or online control. Control methods are important because parameter

values perform differently at different stages of the run of the algorithm and pa-

rameter values need to change according to the fitness landscape. It has shown to

overcome the drawbacks of parameter tuning by dynamically selecting the parame-

ters for the next generation [13, 31, 70, 49].

2.3. Parameter Setting 39

Online selection of parameter values can be performed in three different ways [40],

shown in Figure 2.2. Deterministic or pre-scheduled methods work by assigning pa-

rameter values according to predefined rules. They are uninformed methods as they

do not receive any feedback from the process of running an algorithm. Thus, these

methods do not generalise well on different classes of problems. One of the early al-

gorithms for deterministically setting parameter values is Simulated annealing that

adjusts the temperature based on a deterministic rule. An alternative method to

above approach is self-adaptive method. It is an efficient approach to adapt contin-

uous parameters [32]. These methods encode parameter values in the genome along

the solutions and allow them to evolve with the problem solutions [153, 12] with the

help of EA operators such as crossover and mutation. The encoded parameters in the

form of genome are converted to parameter values and good performing parame-

ter values lead to the production of good individuals. These individuals survive and

lead to the production of better individuals with the help of better parameter values.

A well-known variant of ESs, known as CMA-ES [64], uses self-adaptation of muta-

tion step size. For brief discussion on CMA-ES see section 2.2.2. Other self-adaptive

methods can be found in [107]. The class of methods that learn from the feedback

received during the run of the algorithm are known as feedback or adaptive meth-

ods [69, 163]. These methods make informative decisions that give direction to the

search of parameter values. This is done by capturing the progress of the algorithm

from the application of their current and past performance. It then assigns a value to

the parameter according to the feedback provided. 1/5 success rule in Evolutionary

Strategy is one of the first examples of control method. For details on this rule refer

to section 2.2.2. A survey on adaptive methods can be found in [4]. The literature on

adaptive methods for discrete parameter space is discussed in detail in the following

chapter.

[168] distinguishes the performance of online control of parameters at two levels,

population level or individual level. For the population level parameter control, all

individuals in a generation share the same parameter value. The parameter values

may vary during the evolutionary process, making it more suitable for the current

evolutionary state of the population. A fuzzy adaptive differential evolution algo-

rithm (FADE) [111] is a fuzzy model to adapt continuous parameters, F and CR, at

40 Chapter 2. General background

population level in DE. For individual level parameter control strategy, each individ-

ual has its own parameters, and thus the parameter values of the entire population

present some distribution characteristics in the parameter space. An adaptive DE

algorithm, JADE [169] uses the results of the last generation to count the mean of the

parameters, F and CR, of all good individuals by the Lehmer mean, which is used

to guide the distribution of parameter values for the next generation. The values of

the individual parameters are assigned according to normal distribution for CR and

Cauchy distribution for F based on the mean. Success History based DE algorithm,

SHADE [159] is an improvement upon the JADE strategy by introducing a weighted

method for the mean formula and utilising a history feature for storing the success-

ful mean of several recent generations. SAGA [71] is another algorithm that uses

both population and individual-level self-adaptive control method for population

size and mutation strength in GA.

Online methods in literature are designed to focus either on specific parameter,

multiple parameters (ensembles) or independent of any parameter [40]. Parameter

specific control methods are formulated for a particular parameter. For instance a re-

view of different methods proposed for population size in GAs can be seen in [114].

Control ensembles is another technique that combines different methods to create an

overall method to control multiple parameters [71, 12, 121]. Parameter dependent

consists of methods to control any parameter and are not specific to an parame-

ter [167, 5]. A detailed literature for these three types of control methods can be seen

in [101].

2.4 Reinforcement Learning

Reinforcement Learning (RL) is an area of machine learning to makes a sequence

of decisions. It considers an artificial agent that interacts with its environment and

learns with the experience to optimise the objective given in the form of cumulative

rewards or panelties. While interacting with the environment it collects and records

some information that is represented by a state. RL estimates the value of an action

given a state called Q-value as the expected long-term return with discount to learn

the policy. Thus, the ultimate goal is to learn the policy that predicts what action is to

2.4. Reinforcement Learning 41

FIGURE 2.4: Reinforcement learning architecture

Agent	

Environment	
St	--->	st+1	

rt	at	

be taken given the state. The general RL problem is depicted in Figure 2.4. The agent

starts at a time step 0. It starts with a given state, s0 ∈ S within its environment. At

each time step t, the agent takes an action at ∈ A, obtaining a reward rt ∈ R and

moving to a new state st+1 ∈ S.

42

Chapter 3

Adaptive Selection for Discrete

Parameters

In the previous chapter, we presented a general background on various evolutionary

algorithms and different ways to set their parameters. Choosing the right parame-

ter of an algorithm is often a key for improving the performance of the algorithm.

Parameters can be set using tuning or control methods. Adaptive methods are the

most widely used approach to set the parameter values under parameter control.

Thus, this chapter presents the literature on adaptive parameter control approach

for discrete parameter space.

Discrete parameter consist of countable number of choices. These choices can be

finite number of real or integer values or operators (Op). Adaptive Operator Selec-

tion (AOS) [59, 49] is the widely accepted term for the methods that select discrete

parameters on-the-fly. It dynamically selects, at each generation g + 1 of an algo-

rithm, an operator op at run-time from a finite set of operator choices [101]. Mathe-

matically, let there be a set of alternative operators Op where an operator op ∈ Op is

a function op : X → X that takes a number of solutions (parents) and returns one or

more solutions (offspring). X represents the set of all possible solutions in the popu-

lation. One such operator could be the mutation operator (aka mutation strategy) in

Differential Evolution (DE). It is an operator that takes two or more solutions from

the parent population to generate an offspring.

Researchers have approached adaption of parameters from two perspectives.

The first approach uses sequence of heuristics collecting information from the land-

scape during the run of an algorithm and learn to predict the parameter values.

3.1. Adaptive Operator Selection 43

The selection is based on (1) a credit or reward value that rewards recent perfor-

mance improvements attributed to the application of the operator and (2) an esti-

mated quality of the operator that accumulates historical performance or takes into

account the performance of other operators. The Second approach is to use a pa-

rameter independent method that is Reinforcement Learning (RL). RL is a powerful

optimisation technique that imitate human learning behaviour through experience.

In RL, an agent takes an action in the environment that returns the reward and the

next state. The goal is to maximize the future reward which is received when an

action (or make a decision) in an environment (EA) is taken. The reward is propor-

tional to ‘goodness’ of the action. Once an action is taken, agent reaches a new state.

This process of state action reward continues until convergence. We will review

adaptive methods falling in these two categories one by one.

3.1 Adaptive Operator Selection

AOS has been studied for many years and a lot of research has been done in the con-

text of adaptive methods to control parameter with discrete set of choices in EAs.

The history of AOS can be traced back to 1990s [31]. Since then, there have been var-

ious AOS methods proposed in literature that vary broadly in various aspects such

as amount of information to use from the past performance of the algorithm and

whether including previous quality in the quality definition is an effective approach.

Figure 3.1 shows the working of AOS [117]. The candidates in the population evolve

to produce offspring with the operator application. This can be at the population or

individual level. The impact of each operator is calculated based on their perfor-

mance. The two key components in AOS is the Credit Assignment (CA) and the

Operator Selection (OS) techniques. CA utilises the feedback provided by the EA

to calculate reward/credit of operators. Credit registry (CR) can store rewards ob-

tained in current and previous generations which are used by OS technique to make

a decision on the next operator to be used by the solutions in the population.

44 Chapter 3. Adaptive Selection for Discrete Parameters

FIGURE 3.1: Adaptive Operator Selection

3.1.1 Credit Assignment

CA defines the performance statistics that measures the impact of the application

of an operator and assigns a reward value according to the impact. Impact can be

based on direct offspring fitness[113, 78, 143, 99, 141, 21, 100], fitness improvement

w.r.t parent [78, 72, 77, 50, 47, 131, 26, 113, 15, 120, 117, 164, 49, 118, 3], fitness im-

provement w.r.t current best parent [78, 77, 31], fitness improvement w.r.t median

fitness [86, 85, 84] or relative fitness improvement [59, 127]. The reward of an opera-

tor is defined in terms of any of these impact from one or more generation obtained

by the operator application. These impacts have been considered to combine in dif-

ferent ways. CA technique assigns reward to each operator after a population has

evolved. [77, 165, 72, 78, 59, 47, 78] uses raw fitness as result of the impact calcula-

tion.

3.1.2 Operator Selection

OS estimates the quality of each operator based on the reward assigned to it at pre-

vious generations (stored in the CR). In the end, a selection technique is employed to

select an operator for evolving an parent based on the probability assigned to each

operator. The same selection technique is used to evolve all parents in a generation.

As we progress with these steps, we learn more and more about the landscape and

after a number of generations, this process moves the solutions in a particular search

direction. There are many choices for OS techniques.

ADOPP [86] is among the initial methods proposed to control two operators

(crossover and mutation) in GA. It considers the number of fitness improvements

in a population over median population fitness and assigns each operator a prob-

ability proportional to the contribution made by them. [117] made an attempt to

3.1. Adaptive Operator Selection 45

test twelve different combinations resulting from different CA and OS techniques

taken from popular AOS methods. It presents AOS coupled with Adaptive Oper-

ator Management (AOM). AOM introduces a concept where operators are unborn,

alive or dead based on their performance criteria. It decides whether an operator

is important for current stage or not. The choices are limited to type of window

and hyper-parameters of AOS methods. In the period 2010-2019, there have been a

lot of interest in parameter control methods, especially adaptive methods. A num-

ber of adaptive methods for discrete number of choices are proposed in [45]. The

hyper-parameters involved in these methods are tuned using an offline configurator

known as F-Race. It also gives a high level view of an adaptive method divided into

two steps as credit assignment and operator selection. [2] further classifies Adaptive

methods into four categories: Feedback Collection, Parameter Effect Assessment,

Parameter Quality Attribution and Parameter Value Selection. It shows methods to

perform each of these four steps in multi-objective scenario.

PM-AdapSS [59], F-AUC-MAB [49] and Compass [118] are among the popular

AOS methods in literature. PM-AdapSS considers the immediate impact/performance

of the operators in the form of relative fitness improvement. It then calculates the

reward, rg+1,op, of selected operator op at generation g + 1 as:

rg+1,op =
1

ng
succ,op

ng
succ,op

∑
i=1

fbs f · | f (xi)− f (ui,op)|
f (ui,op)

(3.1)

where ng
succ,op is the number of offspring that improved over its parent at generation

g with the application of operator op, and f (ui,op), f (xi) and fbs f are the fitness of an

offspring solution generated by selected operator op, of its parent solution and of the

best solution found so far, respectively. If there is no improvement or the operator

is not selected at generation g, the reward is assigned zero. It then uses probability

matching (PM) to map the quality of each operator to a probability value and applies

roulette-wheel selection to probabilistically choose the next operator. In particular,

the quality of each operator is calculated as:

qg+1,op = qg,op + α ·
(
rg+1,op − qg,op

)
, ∀op ∈ Op (3.2)

46 Chapter 3. Adaptive Selection for Discrete Parameters

where α is a parameter called adaptation rate. The selection probabilities for choos-

ing an operator in generation g + 1 are calculated as:

pg+1,op = pmin + (1− K · pmin)

(
qg+1,op

∑K
j=1 qg+1,j

)
(3.3)

where pmin is a minimum probability of selection.

Due to unknown bounds of fitness function, a comparison based (rank based)

assignment is proposed in [49]. It credits the operators with the sum of the ranks of

the impacts with its applications. The CA of F-AUC-MAB [49] uses a sliding win-

dow of size W to store the rank-transformed fitness obtained by the last W selected

operators that generated an improved solution. A decay factor is applied to the

ranks so that top-ranks are rewarded more strongly. The ranks in the window are

used to compute a curve of the contribution of each operator and the Area Under

the Curve (AUC) is taken as the reward value of the operator. The reward value of

each operator are stored in the CR. Instead of using ranks, [86, 84, 135, 126, 25, 134,

150] combines the number of successful and optionally unsuccessful applications of

operator in certain number of generations. The OS in F-AUC-MAB uses a multi-

arm bandit (MAB) technique called Upper Confidence Bound (UCB) [9] to calculate

quality of operator op, qg+1,op:

qg+1,op = rg+1,op + C ·

√√√√2 log ∑K
j=1 nj

nop
(3.4)

where C is a scaling factor parameter, nop is the number of applications of opera-

tor op in the last W applications that improved a solution. In the above equation,

rg+1,op introduces exploitation whereas the second term introduces exploration. The

operator selector greedily chooses the operator with the highest quality value.

On the other hand, Compass [118] takes a different approach by considering three

measures based on each operator. It calculates the quality and diversity of fitness

improvement of solutions generated in last fix number of applications. The qual-

ity and diversity coordinate is projected over a line defined by an angle, θ to give

reward to the operator. The final reward assigned to each operator is divided by

operator’s execution time and is stored in the CR. In particular, the reward of each

3.1. Adaptive Operator Selection 47

operator is normalised after adding some noise to each operators’ reward to obtain

probability. Roulette-wheel selection is used to select next operator for candidates

in next generation. Other OS techniques include weighted normalised sum [77, 78]

and weighted sum of current and previous reward [113, 165].

There are multiple AOS methods proposed in the literature based on reinforce-

ment learning (RL) techniques such as probability matching [49, 150], multi-arm ban-

dits [59]. It has been shown that RL based AOS methods perform better than static

values [102]. AOS has been approached in literature as RL which involves state, re-

ward and action. RL comes under the category of parameter independent methods

(Sec. 2.3.2) that estimates a map from states to actions (called policy), where actions

are optimal in the sense that they accumulate maximum reward in a horizon. The

horizon denotes the number of steps taken by an algorithm, typically infinite. Thus,

RL uses feedback from the EA that describes the state of the search and implement

actions as changes to parameter values. Q(λ) learning [131], SARSA [22, 39, 143]

and others [99, 141] are few of them.

AOS methods based on RL use one or more features to capture the state of the

algorithm search at each generation, select an operator to be applied and calculate

a reward from this application. Typical state features are fitness standard devia-

tion and mean fitness of population, fitness improvement from parent to offspring,

best fitness seen so far [39, 99]. Typical reward functions measure reward as the

difference between the best fitness of the parent, f g
Best, and the offspring, f g+1

Best [131,

124, 21]. This can also be seen as difference between best solutions in two consecu-

tive generations. Some researches include best offspring [141] in the denominator,

whereas others consider parent fitness with the function evaluation difference [99],

Evalsg+1− Evalsg, or computational time in the denominator [143]. It can be seen in

the following equation where C represents a scaling constant,

C ∗
f g+1
Best

f g
Best
− 1

Evalsg+1 − Evalsg (3.5)

Other reward definitions have been explored in literature. Muller et al. in their

paper [124] used temporal difference learning to control the mutation step size for

(1+1)-ES using the 1/5 rule to define state. They tested four reward types, (i) 1, 0 or

48 Chapter 3. Adaptive Selection for Discrete Parameters

-1 if the success rate increased, remained the same or decreased respectively, (ii) the

difference of the current fitness minus the fitness of the previous step, (iii) 1, 0 or -1

if the fitness improved, remained the same or deteriorated respectively and (iv) the

realised step length in the search space multiplied by the reward as defined in (iii).

Definition (iv) is concluded to be best. [100] explores four reward definition with

different AOS based RL methods proposed in literature. (i) same as equation 6.18

with offspring and parent fitness interchanged, (ii) 1 and 0 if the improvement is

made or not resp., (iii) weighted improvement of current best fitness, and (iv) raw

current best fitness. They reported (i) and (ii) as outperforming others.

Parameter control methods using an offline training phase has also been consid-

ered by researchers to collect more data about the algorithm than what is available

within a single run. For example, Kee, Airey, and Cyre [104] use two types of learn-

ing: table-based and rule-based. The learning is performed during an offline training

phase that is followed by an online execution phase where the learned tables or rules

are used for choosing parameter values. More recently, Karafotias, Smit, and Eiben

[103] train offline a feed-forward neural network with no hidden layers to control

the numerical parameter values of an evolution strategy.

49

Chapter 4

Experimental setting

The previous chapters summarise the important algorithms in the evolutionary com-

putation. We have also seen the specific techniques for optimising the parameters

by means of tuning and controlling approaches. This chapter examines the experi-

mental settings for evaluating the contributions.

The work presented in the thesis aims to improve the performance of Differen-

tial Evolution (DE) algorithm. Mutation strategy in DE is responsible to generate

new candidate solutions and thus evolve the parent population. It has been shown

that the use of single strategy in all the generations is not enough to prevent pre-

mature convergence [118]. The selection of different operators to evolve different

parents have shown to perform better than utilising single operator in a run. A max-

imum of four operators aka mutation strategies are adapted by various methods

proposed in literature to improve the search capability of DE. The adaptive algo-

rithms used to learn to adapt four strategies, rand/1, rand-to-best/2, rand/2 and

current-to-rand/1, on-the-fly can be found in [59, 135, 48]. [134, 45, 60] have also

made an attempt to adapt different set of mutation strategies in DE.

We show results of the proposed AOS methods adapting the above mentioned

four strategies. We further add five more operators to the list of the above mentioned

operators to show the improvement of employing nine over four operators in DE.

Thus, we intend to maintain population diversity and exploitation capability. We

intend to increase the robustness of DE algorithm on five different function classes

by optimising the selection of nine different operator choices. These operators are

commonly used in literature and have shown to perform good within DE. Their

mathematical formulation is shown in section 2.2.3.

50 Chapter 4. Experimental setting

In the further chapters of contribution we present three control methods. All

contributions consider individual level selection of operators rather than popula-

tion level. That means, operator selection mechanism is invoked for each parent

solution in a generation. More details on individual, component and population

level adaption can be found in [7], also discussed in section 3.1.

4.1 Problem set

We consider the single objective numerical problems w.l.o.g are to be minimised.

Most of the methods try to achieve good performance on a certain class of problems.

However, in real world optimisation problems it is hard to find the properties of the

problem at hand in advance. Thus, we treat the problem as black-box. In black-box

scenario, a method learns from the past performance of the parameter values and

decides the suitable parameter value according to the current landscape.

We use the BBOB (Black-box optimisation benchmarking) [66] problem suite to

train and test the proposed algorithms. BBOB provides an easy to use tool-chain

for benchmarking black-box optimisation algorithms for continuous domains and

to compare the performance of numerical black-box optimisation algorithms. It con-

sists of 24 noiseless continuous benchmark functions [67] shown in Table 4.1. Each

function consists of 15 different instances, totalling to 360 function instances. An

instance of a function is a rotation and/or translation of the original function lead-

ing to a different global optimum. These 24 functions are grouped in five classes,

namely, separable functions (f 01 – f 05), function with low or moderate condition-

ing (f 06 – f 09), functions with high conditioning and uni modal (f 10 – f 14), multi

modal functions with adequate global structure (f 15 – f 19) and multi modal func-

tions with weak global structure (f 20 – f 24).

4.1. Problem set 51

TABLE 4.1: BBOB class and their functions

Class name Function name

Separable functions Sphere function (f 01), Ellipsoidal Separable
function (f 02), Rastrigin Separable function
(f 03), Büche-Rastrigin function (f 04), Linear
Slope (f 05)

Function with low or
moderate conditioning

Attractive Sector function (f 06), Step Ellip-
soidal function (f 07), Rosenbrock Original
function (f 08), Rosenbrock Rotated function
(f 09)

Functions with high
conditioning and uni
modal

Ellipsoidal non-Separable function (f 10), Dis-
cus function (f 11), Bent Cigar function (f 12),
Sharp Ridge function (f 13), Different Powers
function (f 14)

Multi modal functions
with adequate global
structure

Rastrigin non-Separable function (f 15),
Weierstrass function (f 16), Schaffers f 7
function (f 17), Schaffers f 7 Moderately
Ill-conditioned function (f 18), Composite
Griewank-Rosenbrock function f 8 f 2 (f 19)

Multi modal functions
with weak global
structure

Schwefel function (f 20), Gallagher’s Gaussian
101-me Peaks function (f 21), Gallagher’s Gaus-
sian 21-hi Peaks function (f 22), Katsuura func-
tion (f 23), Lunacek bi-Rastrigin function (f 24)

52 Chapter 4. Experimental setting

4.2 Offline tuning of hyper-parameters

Although we have contributed in the domain of parameter control, the adaptive

methods in the first two chapters of contributions are combined with an offline tun-

ing method. The offline and online optimising methods are present at different lev-

els. Combining offline and online parameter setting allow us to utilise their best

properties and at the same time balance the limitations of both approaches.

All the methods proposed for the selection of DE operators involve hyper-parameters.

We have employed a well-known tuner known as irace (iterative racing) [115] to tune

the hyper-parameters of the proposed adaptive methods within DE. In addition to

tune the hyper-parameters of AOS methods, irace also tunes the other parameters of

DE algorithm. irace is a racing algorithm that saves the hassle of manual tuning and

allows for a fully specified and reproducible procedure. The input given to irace is

the range of all parameters that need tuning and a set of training function instances.

We have given irace a total budget of 104 evaluations for the tuning. irace starts tun-

ing procedure by sampling a number of candidate parameter configurations from

either a randomly initialised probability distribution or from a population of start-

ing configurations given to it. The following steps are repeated until a budget given

to irace is exhausted. The generated candidate configurations are evaluated on a se-

quence of problem instances. This process of evaluation on a sequence of instances

is known as racing. During the racing process, poor performing candidate config-

urations are discarded and elite ones survive. A race terminates once the allocated

computation budget is exhausted or the number of surviving candidate configura-

tions is below some specific number. The best candidate configurations are then

used to update the probability distribution. The distribution is biased towards good

candidate configurations and is used to generate new candidate configurations for

the next iteration.

Although all the proposed methods involve hyper-parameters, we utilise irace

to tune AOS methods presented in Chapter 5 (RecPM-AOS) and Chapter 6 (U-AOS-

FW). The method proposed in Chapter 7 (DE-DDQN) involves training a deep neu-

ral network whose weights are optimised using a gradient algorithm. An attempt

has been made to tune the other hyper-parameters of DE-DDQN using irace. The

4.2. Offline tuning of hyper-parameters 53

TABLE 4.2: Training set. f xiy denotes a function instance iy that is
obtained by a transformation of original function f x.

Function class Function instance

Separable functions f 01i01, f 01i07, f 02i09, f 02i15, f 03i10, f 03i05,
f 04i08, f 04i06, f 05i07, f 05i01

Function with low or
moderate conditioning

f 06i13, f 06i07, f 07i02, f 07i05, f 08i06, f 08i03,
f 09i10, f 09i03

Functions with high
conditioning and uni
modal

f 10i11, f 10i04, f 11i09, f 11i02, f 12i01, f 12i03,
f 13i13, f 13i12, f 14i12, f 14i11

Multi modal functions
with adequate global
structure

f 15i07, f 15i15, f 16i02, f 16i14, f 17i12, f 17i15,
f 18i09, f 18i15, f 19i01, f 19i09

Multi modal functions
with weak global
structure

f 20i10, f 20i06, f 21i05, f 21i11, f 22i01, f 22i08,
f 23i03, f 23i15, f 24i08, f 24i04

combined code of DE-DDQN with irace can be found on Github.1 In the tuning

phase, one setting of hyper-parameters takes more than a week to converge and it is

estimated for irace to take atleast six months to return a final optimal configuration.

Thus, we set the hyper-parameters of DE-DDQN as default values. We leave this

part as future work where techniques like Bayesian Optimisation [123, 154] can be

employed as a tuner for DE-DDQN.

4.2.1 Training set

The adaptive methods are proposed with the intention to generalise on different

classes of functions as described in section 4.1. To prevent over-fitting, the training

set contains two randomly selected function instances out of 15 from each of the

24 functions. Thus, training set consists of total 48 out of 360 function instances.

The 48 function instances are shown in Table 4.2. The training set is common to all

1https://github.com/mudita11/Tune-DE-DDQN/

54 Chapter 4. Experimental setting

the presented algorithms. During training, each selected function instance from the

training set is given a budget of 104 function evaluations on dimension 20.

55

Part III

Contributions

56

Chapter 5

Recursive Probability Matching

This chapter presents an adaptive operator selection (AOS) method in an attempt to

improve the performance of DE by maximising the future reward attained with the

application of an operator. It considers individual level selection of operators where

one of the operator from a set of operators, Op, is selected for each parent in a gener-

ation. The presented AOS method is based on Markov Reward Process (MRP) [73]

which consists of states, rewards and probability matrix (also known as transition

probability). MRPs can be seen as a sequence of states where goal is to maximise

the accumulated reward during the sampled sequence. Transition probability is a

matrix that defines the probability of moving from one state to another assigning

reward to each state in the process.

The AOS method presented is a variant of Probability Matching (PM) [57] named

as Recursive Probability Matching (RecPM). Probability Matching has been initially

proposed in the context of classifier system. It has later been used in EAs to map

the performance of an operator to a probability and uses roulette-wheel selection to

select an operator in the next generation [59]. PM probabilistically selects an oper-

ator according to its estimated quality. The quality of each operator is calculated as

the weighted sum of a reward value, which measures the impact of the most recent

application of the operator on solution fitness, and its historical quality. It is one of

the most successful methods for AOS that is, for the online control of parameters in

evolutionary algorithms.

In AOS, the algorithm needs to perform optimally from the current generation.

This can be done by employing a mechanism that can maximise the future perfor-

mance of the algorithm. Thus, in contrast to PM, RecPM estimates the quality of

5.1. Methodology 57

each operator according to a method inspired by MRPs from reinforcement learn-

ing [158]. MRPs employ Bellman equation which takes into account not only the

reward values but also the selection probabilities of other operators. The goal in Bell-

man equation is to maximise the future cumulative reward. By combining RecPM

with a credit assignment method based on offspring survival rate, we obtain the

RecPM-AOS method.

5.1 Methodology

We present a novel AOS method inspired by Markov Reward Processes, which is

used to predict the next state according to the expected reward given the current

state. MRP is a framework from Reinforcement Learning that works in a stochastic

environment. It assumes that the current state is independent of the whole history

given the previous state known as Markov property. A state, Sop represents the se-

lected operator op at a generation g and the corresponding reward is the immediate

reward assigned to the operator r′g+1,op, which is based on the impact of the appli-

cation of the operator on the performance of the algorithm. Next we calculate the

quality of each operator by adapting the Bellman equation [142, 158]. The Bellman

equation is widely used to calculate the expected return starting from a state. Our

motivation for using the Bellman equation is to use the historical performance of

operators to predict their quality in the next iteration, which is then mapped to their

probability of selection. Since the next operator is chosen probabilistically, we con-

sider only transitions between states and rewards, and not actions.

We use the Bellman equation to estimate the quality qg+1,op of an operator op

after its application in generation g as the expected value (E[·]) of its total sum of

58 Chapter 5. Recursive Probability Matching

discounted future rewards:

qg+1,op = E[r′g+1,op + γr′g+2,op + · · · | Opg = op] = E[
∞

∑
z=0

γzr′g+z+1,op | Opg = op] (5.1)

= E[r′g+1,op + γ
∞

∑
z=0

γzr′g+z+2,op | Opg = op] (using recursive property)

(5.2)

= rg+1,op +
K

∑
j=1

Pop,j

[
γ E

[
∞

∑
z=0

γzr′g+z+2,op | Opg+1 = j

]]
(assuming E[r′op] = rop)

(5.3)

= rg+1,op + γ
K

∑
j=1

Pop,jqg+2,j (using definition of qg+2,op in Eq. 5.1) (5.4)

where rg+1,op is the accumulated reward that stores all the past achievements for

operator op and γ is the discount rate. It indicates the importance of the reward

from the present onwards. A short-sighted algorithm assigns γ as a value of 0. That

means, we only care about the current reward. If γ = 1, that means the far-sighted

algorithms care about all the future rewards in full amount. A value of 0 consid-

ers the immediate success that does not provide information about the future and

learns from a limited information. In contrast, a value of 1 can lead the accumulated

reward value to explode. Thus, γ less than 1 ensures a finite reward value and it

becomes important to find its optimal value. In the end of the Bellman derivation, it

breaks down into two parts. Immediate reward value and discounted quality from

next state weighted with probability matrix. In the context of AOS, we do not know

the probability matrix P of size K × K, thus we decided to calculate each entry as

Pop,j = pop + pj, that is, as the sum of the selection probabilities of operators op and

j. Here K denotes the total number of operators considered for adaptation. The ra-

tionale behind the formula above is as follows: When estimating qg+1,op, operator

op competes with all other operators j ∈ Op, including itself, since the selection of

other operators in the past has impact on the current performance of the selected op-

erator. Thus, their probabilities are added and multiplied by the quality estimate of

operator j. These values are then aggregated in the end to get an overall estimate for

operator op. The quality is an estimate not because of the expected values, which are

assumed to be completely provided by the method, but because qg+2,j is not known

5.1. Methodology 59

and the current estimate at g + 1 is used instead. When considering all operators,

this forms a system of linear equations and can be re-written in the following vector

form:

Qg+1 = Rg+1 + γPQg+1 or Q = (1− γP)−1R (5.5)

where Q = [qi] and R = [ri] are the K-dimensional quality and reward vectors that

are updated at the end of each iteration g. The system of linear equations can be

solved efficiently by matrix inversion [142] when the number of operators is small.

Q is then normalised using the softmax function, which “squashes” each real value

to a K-dimensional vector in the range [0, 1] using the exponential function. Once the

quality is estimated for each operator, the probability vector p = [pi] and probability

matrix P are updated. The probability vector is updated according to equation 3.3

and used for the selection of an operator.

So far we have seen RecPM as an operator selector in AOS. It utilises the steps

of Probability Matching except for the definition of operator quality, which is es-

timated using the Bellman equation as shown above. However, to obtain an AOS

method, we still need to specify the credit assignment method that updates the re-

ward values after the application of the selected operators at time step g. We propose

to calculate the immediate reward r′g+1,op assigned to the selected operator op as the

ratio of the number of offspring that survive to the next generation g + 1 generated

with the application of operator op, denotes as Nsurv
g+1,op, to the population size NP.

We define the accumulated reward rg+1,op assigned to an operator op as the imme-

diate reward plus half the accumulated reward received in the previous generation.

Any unselected operator receives half of the accumulated reward from the previous

generation. Thus, each operator gets a fraction of last reward value, that stores its

historical performance, and the selected ones get extra reward. Equation 5.6 shows

the formulae for reward calculation where the value of 0.5 as weight assigned to rg,op

is chosen by intuition.

rg+1,i =


r′g+1,op + 0.5 · rg,op, if op is selected

0.5 · rg,i, ∀i 6= op
, where r′g+1,op =

Nsurv
g,op

NP
(5.6)

60 Chapter 5. Recursive Probability Matching

The rationale behind this credit assignment is that, if the operator is unlucky and

not getting selected for enough number of generations, it still receives some reward

based on its past performance and it has a chance of being selected in the future. This

ensures that such operator is not discarded completely and may be selected after a

certain number of generations.

As the algorithm progresses, the probability distribution of each operator is up-

dated based on previous generation performance. The quality estimate qg+1,op of an

operator op for generation g + 1 is calculated as a weighted sum shown in Eq. 3.2.

The combination of RecPM with the above credit assignment leads to a novel

AOS method named RecPM-AOS. Figure 5.1 represents the working of RecPM-AOS

mapped as markov reward process. For simplicity, the figure shows the working

when population size is 1 that is there is only one parent to evolve. A state repre-

sents the selected operator in a generation g. In a state Si, the operator application

results in the assignment of reward rg+1,si to the operator. rg+1,sj represents a dy-

namic variable that captures the usefulness of an operator in state sj depending on

its successful application in a generation. The probability to move from one state

Si in generation g to another state Sj in generation g + 1 is represented as psjsi. It

determines the selection of next state in the next generation g + 1. Thus, from a state

si there are always four possibilities to move to any of the four states including si.

RecPM-AOS is integrated within DE, named DE-RecPM-AOS, to make DE more

efficient by adaptively selecting, at run-time, a mutation strategy among the four

mutation strategies. These strategies are “rand/1”, “rand-to-best/2”, “rand/2” and

“current-to-rand/1”, shown in section 2.2.3. DE combined with RecPM-AOS has five

parameters: three belong to DE, namely, scaling factor (F), population size (NP) and

crossover rate (CR), while discount factor (γ), and minimum selection probability

(pmin) belong to RecPM-AOS.

5.2 Experimental Design

We compare the performance of proposed DE-RecPM-AOS within DE with two other

algorithms, namely DE-F-AUC [49] and PM-AdapSS-DE [59], for the online selection

of mutation strategies in DE. AOS methods learn the adaptation on four mutation

5.2. Experimental Design 61

FIGURE 5.1: RecPM as Markov Reward Process

S1	

S3	 S4	

S2	

ps2s1	

ps4s2	ps3s1	 ps2s4	

ps4s3	

ps1s3	

ps1s2	

ps3s4	

rg+1,s2			

rg+1,s1			

rg+1,s2			

rg+1,s1			

rg+1,s3			

rg+1,s4			
rg+1,s3			

rg+1,s4			

rg+1,s2			

rg+1,s3			rg+1,s4			

rg+1,s1			

rg+1,s2	

rg+1,s3	

rg+1,s1	

rg+1,s4	

strategies. More advanced DE variants are available in the literature, however, we

want to understand and analyse the impact of the various AOS methods without

possible interactions with other adaptive components of those variants. Nonethe-

less, for the sake of completeness, we also compare our results with two state-of-

the-art algorithms JaDE [169] and CMA-ES [64]. JaDE is a DE variant that uses a

mutation strategy called “current-to-pbest” and adapts the crossover probability CR

and mutation factor F using the values which proved to be useful in recent genera-

tions. CMA-ES is an evolution strategy that samples new candidate solutions from

a multivariate Gaussian distribution and adapts its mean and covariance matrix.

5.2.1 Parameter tuning

We tune the hyper-parameters of the DE-RecPM-AOS, DE-F-AUC and PM-AdapSS-

DE along with parameters of DE using the offline automatic configurator irace [115].

Table 5.1 shows the range of all parameters that need tuning. The parameter pminis

upper bounded by 0.25 (Note that if pmin is set to its maximum possible value of 0.25,

then all four operators’ probabilities will necessarily be 0.25. If the value is tuned to

a lower level, then probabilities can adapt.) because we consider four operators (K)

62 Chapter 5. Recursive Probability Matching

TABLE 5.1: Hyper-parameter choices given to irace. An interval (a, b]
represents a set of numbers x satisfying a < x ≤ b

Parameter Name Type Range Notes
DE parameters

F Real [0.1, 2.0] Mutation Rate
CR Real [0.1, 1.0] Crossover Rate
NP Integer [50, 400] Population Size

Reward Choice parameters
W Integer [1, 200] Size of window

Quality Choice parameters
C Real (0.0, 1.0) Scaling Factor
α Real (0.01, 1.0) Adaptation rate
γ Real [0.1, 1.0] Discount rate

Probability Choice parameters
pmin Real [0.0, 0.25) Minimum selection probability

TABLE 5.2: Optimal parameter configurations selected from the range
shown below the parameter name. The following prefix abbrevia-
tions are used: RecPM for DE-RecPM-AOS, AdapSS for PM-AdapSS-
DE and F-AUC for DE-F-AUC. The symbol ‘-’ in the table means that

the parameter is not applicable to the AOS method.

Algorithm
name

F NP C α pmin γ W C

RecPM1 0.47 168 0.98 - 0.17 0.75 - -
RecPM2 0.5 200 1.0 - 0.11 0.46 - -
RecPM3 0.5 200 1.0 - 0.0 0.6 - -
AdapSS1 0.51 117 0.97 0.48 0.22 - -
AdapSS2 0.5 200 1.0 0.86 0.04 - - -
AdapSS3 0.5 200 1.0 0.6 0.0 - - -
F-AUC1 0.24 96 0.55 - - - 31 0.14
F-AUC2 0.5 200 1.0 - - - 5 0.35
F-AUC3 0.5 200 1.0 - - - 50 0.5

and K ∗ pmin < 1 to prevent probability to become negative. This is given as input

to irace.

The training set consists of 48 of total 360 BBOB noiseless function instances [66],

randomly selected within each class, to avoid over-fitting. For the working of irace

and details on BBOB test suit and training set refer to Chapter 4. The AOS method

with a fix configuration is run on a selected function instance to a maximum number

of 104 · n function evaluations (FEvals), where n is the dimension of the benchmark

function. In this chapter, we focus on n = 20 for all functions.

In order to evaluate the impact of parameter tuning, we consider three param-

eter configurations of each algorithm. The first configuration is obtained by tuning

5.2. Experimental Design 63

Algorithm 4 Differential Evolution with an AOS

1: Initialise parameter values of DE (F, NP, CR) and AOS method
2: Initialise and evaluate fitness of each individual xi in the population
3: g = 0 (generation number or time step)
4: while stopping condition is not satisfied do
5: for each xi, i = 1, . . . , NP do
6: if one or more operators not yet applied then
7: k = Uniform selection among operator(s) not yet applied
8: else
9: k = Select mutation strategy based on selection method (AOS)

10: Generate offspring using selected operator k
11: Evaluate offspring population
12: Perform survival selection
13: Perform credit assignment (AOS)
14: Estimate quality for each operator (AOS)
15: Update selection value (eg. probability) for each operator (AOS)
16: g = g + 1

all parameters of DE and the AOS methods. The second configuration is obtained

by tuning only the parameters of the AOS methods, while the parameter values of

DE are taken from [48]: CR = 1.0, F = 0.5 and NP = 200. The value CR = 1.0

means that a mutation strategy is applied to each dimension of all parents, which

maximizes the impact of the mutation strategies. Finally, the third configuration (de-

fault) uses the settings suggested in [48] for DE-F-AUC and PM-AdapSS-DE, which

uses the DE settings described earlier and AOS settings tuned with a different con-

figurator, F-Race. All parameter configurations are shown in Table 5.2.

5.2.2 Testing phase

After tuning, each obtained configuration is evaluated on the remaining 312

function instances of the BBOB benchmark set. The AOS methods within DE are run

to a budget of 105 · n FEvals. The hyper-parameters of RecPM-AOS returned by irace

are kept constant during the whole run of DE algorithm while RecPM-AOS adapts

the operators of DE. The tuned RecPM-AOS within DE tested on a function instance

is shown in Algorithm 4. In the initial generation, a population of candidate solu-

tions are generated and evaluated. After this, the steps of RecPM-AOS method are

repeatedly applied until a stopping criterion is satisfied. We have used two stopping

conditions for DE either of which once satisfied, terminates the algorithm returning

64 Chapter 5. Recursive Probability Matching

the best so far fitness value. First condition is the the fix function evaluations (bud-

get) and the other is the target value, 10−8, is reached. Each parent is evaluated using

an operator selected using proportionate selection. Selection mechanism is applied

to each parent and an offspring is produced. Either parent or offspring survive to

become part of the parent population in the next generation based on the fitness

evaluation. Accumulated reward is assigned to each operator followed by quality

estimation and probability calculation. The fitness of elite solution is returned once

the algorithm is terminated.

We use plots of the Empirical Cumulative Distribution Function (ECDF) to assess

their performance (Fig. 5.3). These plots are auto-generated by BBOB benchmarking

tool. The ECDF displays the proportion of problems solved within a specified bud-

get of function evaluations (FEvals) for different targets ftarget = fopt + ∆ f , where

fopt is an the optimum function value to reach with some precision ∆ f ∈ [10−8, 102].

In the plots, FEvals is given on the x-axis and y-axis represents the fraction of prob-

lems solved. ECDF for each function is the average performance of 13 function in-

stances (one run per problem instances of function). To differentiate between dif-

ferent instances of a function we show box plots in Fig. 5.2. It is a result of average

performance of 13 runs, each on different test instance of function f 21. The algo-

rithms DE-RecPM-AOS and DE-FAUC3 in this figure are terminated when either the

optima value is reached or the difference of best fitness value with optima is less

than 10−8. The optima value of different instances of a function can be different.

A large symbol ‘×’ in Figure 5.3 shows the maximum number of function evalu-

ations given to each algorithm, in our case, 105 · n FEvals are given to each algorithm

with AOS method. Results reported after this symbol use bootstrapping to estimate

the number of evaluations to reach a specific target for a problem [38], that is not

necessarily reliable. The results denoted with best 2009 correspond to the artifi-

cial best algorithm from the BBOB-2009 workshop constructed from the data of the

algorithm with the smallest aRT (average Run Time) for each set of problems with

the same function, dimension and target. The aRT is calculated as the ratio of the

number of function evaluations for reaching the target value over successful runs

(or trials), plus the maximum number of evaluations for unsuccessful runs, divided

by the number of successful trials. Data to generate ECDF graphs for DE-F-AUC3,

5.2. Experimental Design 65

FIGURE 5.2: Function error values obtained by 13 runs of DE-RecPM-
AOS 1 and DE-F-AUC3 on function f 21

PM-AdapSS-DE3, CMA-ES and JaDE is obtained directly from the COCO website.1

The trials that reached ftarget within the specified budget are termed as successful

trials, #succ. The aRT tables are shown in Appendix C.

We expected to tune DE-F-AUC and PM-AdapSS-DE algorithms with the hope

to replicate the original results for DE-F-AUC3 and PM-AdapSS-DE3 [49, 59]. But

we could not match the results shown in these papers. Thus, we decided to use

the data available online at the COCO website and compare variants of proposed

algorithm with DE-F-AUC3 and PM-AdapSS-DE3 only. The interested reader is re-

ferred to the supplementary material [151] to find the results of tuned DE-F-AUC

and PM-AdapSS-DE algorithms. The ECDF graphs of variants of the proposed al-

gorithm with DE-F-AUC3 and PM-AdapSS3 are shown in Figure 5.3 that show the

performance of algorithms on 24 function instances and averaged performance over

the tested functions. It also shows ECDFs of five problem classes. From now on in

this chapter we only talk about the original results and not the replicated ones.

1http://coco.gforge.inria.fr/doku.php?id=algorithms-bbob

http://coco.gforge.inria.fr/doku.php?id=algorithms-bbob

66 Chapter 5. Recursive Probability Matching

5.3 Experiments and Results

In this section we present the discussion on experiments conducted on BBOB prob-

lem set. We start by pointing out the performance differences within three variants

of RecPM-AOS. These three variants differ in their hyper-parameter setting. Further

the best variant of RecPM-AOS is compared with AOS and non-AOS algorithms.

5.3.1 Comparison of AOS methods with different parameter settings

The results obtained for three variants of DE-RecPM-AOS are as expected. The pro-

posed algorithm with all tuned parameters outperformed its all other variants both

in terms of speed and percentage of problems solved. When all three AOS methods

use the default settings, it is estimated that F-AUC and RecPM-AOS solves the same

number of problems but within the given budget all algorithms solved the same

number of problems with varied speed. The case where only parameters of AOS

method are tuned in proposed algorithm shows that DE-F-AUC3 and PM-AdapSS-

DE3 solve maximum problems with almost same speed within the given budget.

But when given more FEvals, according to bootstrapping technique, DE-RecPM-

AOS2 shows the same performance as DE-F-AUC3 by solving the same number of

problems whereas PM-AdapSS-DE3 could not match the performance of other two

algorithms. The proposed method with all tuned parameters that is, parameters

of DE algorithm and of RecPM-AOS method outperformed all other algorithms by

solving 75% of the problems. This is clearly because of the properties the proposed

AOS method has. The tuned configurations of replicated algorithms: DE-F-AUC

and PM-AdapSS-DE are not better than the original results reported, which we can-

not replicate.

Summing up the above discussion, it can be said that tuning all the parame-

ters of the proposed algorithm (DE-RecPM-AOS1) outperformed all its variants, thus

tuning on training set plays an important role. It also outperformed all other AOS

methods within DE solving 75% of the total problems. Thus, historical information

preserving property in the form of reward and using Bellman equation to estimate

quality of operator led to efficient adaptability of operators. On the other hand both

F-AUC and RecPM-AOS make use of past performance of operators, we do that by

5.3. Experiments and Results 67

defining reward of each operator capturing a fraction of its last reward which re-

duces the hassle of maintaining a window of certain size. However, F-AUC and

PM-AdapSS show similar speed in solving a fixed number of problems and DE-

RecPM-AOS1 has faster convergence speed and increased percentage of problems

solved.

5.3.2 Comparison of RecPM-AOS with state-of-the-art algorithms

CMA-ES and JaDE are given a budget of 5 · 104 FEvals. When comparing different

versions of DE-RecPM-AOS with CMA-ES and JaDE, the proposed algorithm with all

tuned parameters is able to solve more functions than CMA-ES as seen in the overall

ECDF graph shown in Figure 5.3 that is, almost 10% more than the best variant of

DE-RecPM-AOS: DE-RecPM-AOS1. However, JaDE manages to solve majority of the

problems compared to other AOS methods within DE. In the initial runs, CMA-ES

has faster convergence speed than any other algorithm.

We want to understand the selection of operators that led to RecPM-AOS perform

better or worse than other algorithms in comparison. Thus, we randomly select an

instance among 13 test function instances of functions f 05, f 03 and f 07. Figure 5.4

shows graphs for instance 1 of each function 5, 3 and 7, denoted as f05 i01, f03 i01

and f07 i01 respectively. A value of pmin = 0.17 controls the level of adaptation of

operators. RecPM-AOS could not solve many problems for function 3 instance 1 but

is ranked second among all algorithms in comparison. It reaches all targets for f07

and f05 i01 with competitive speed for only the former function. Thus we selected

function instances with mixed performance. For each instance, we show two figures:

the first figure shows the selection of operators and the second figure demonstrates

the improvement of the best solution in a run. The first figure shows a series of hor-

izontal bars representing the use of different operators in different generations. An

operator can be identified with a unique color. Each bar raise to the same level indi-

cating the number of selection made in a generation. That is, a total of 168 selections

are made, equal to population size, to evolve 168 parents in each generation. For in-

stance the first horizontal bar for function 5 shows that near-proportionate use of all

four operators in the first generation and last bar represents last generation with op-

erator 3 (“rand-to-best/2”) being most selected in comparison to any other operator.

68 Chapter 5. Recursive Probability Matching

FIGURE 5.3: ECDFs on test set

f001 f002 f003

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM3

RecPM2

RecPM1

AdapSS3

F-AUC3

JaDE

CMA-ES

best 2009bbob f1, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

1 Sphere

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM3

RecPM2

RecPM1

AdapSS3

F-AUC3

JaDE

CMA-ES

best 2009bbob f2, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

2 Ellipsoid separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

AdapSS3

F-AUC3

CMA-ES

RecPM2

RecPM3

RecPM1

JaDE

best 2009bbob f3, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

3 Rastrigin separable

f004 f005 f006

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CMA-ES

AdapSS3

RecPM3

F-AUC3

RecPM2

RecPM1

best 2009

JaDEbbob f4, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

4 Skew Rastrigin-Bueche separ

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM3

RecPM1

RecPM2

AdapSS3

F-AUC3

JaDE

CMA-ES

best 2009bbob f5, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

5 Linear slope

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM2

RecPM3

RecPM1

AdapSS3

F-AUC3

JaDE

CMA-ES

best 2009bbob f6, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

6 Attractive sector

f007 f008 f009

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CMA-ES

JaDE

RecPM3

RecPM2

RecPM1

AdapSS3

F-AUC3

best 2009bbob f7, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

7 Step-ellipsoid

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM2

RecPM3

RecPM1

AdapSS3

F-AUC3

JaDE

CMA-ES

best 2009bbob f8, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

8 Rosenbrock original

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM2

RecPM1

RecPM3

AdapSS3

F-AUC3

JaDE

CMA-ES

best 2009bbob f9, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

9 Rosenbrock rotated

f010 f011 f012

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM3

RecPM2

JaDE

RecPM1

AdapSS3

F-AUC3

CMA-ES

best 2009bbob f10, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

10 Ellipsoid

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

JaDE

RecPM1

RecPM3

RecPM2

AdapSS3

F-AUC3

CMA-ES

best 2009bbob f11, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

11 Discus

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM2

RecPM1

RecPM3

AdapSS3

JaDE

F-AUC3

CMA-ES

best 2009bbob f12, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

12 Bent cigar

f013 f014 f015

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CMA-ES

RecPM2

JaDE

RecPM3

RecPM1

F-AUC3

AdapSS3

best 2009bbob f13, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

13 Sharp ridge

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

JaDE

RecPM2

RecPM1

RecPM3

AdapSS3

F-AUC3

CMA-ES

best 2009bbob f14, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

14 Sum of different powers

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

AdapSS3

RecPM3

RecPM2

JaDE

CMA-ES

F-AUC3

RecPM1

best 2009bbob f15, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

15 Rastrigin

5.3. Experiments and Results 69

FIGURE 5.3 (cont.): ECDFs on test set

f016 f017 f018

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC3

RecPM3

RecPM2

AdapSS3

JaDE

CMA-ES

RecPM1

best 2009bbob f16, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

16 Weierstrass

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CMA-ES

JaDE

RecPM3

AdapSS3

RecPM2

F-AUC3

RecPM1

best 2009bbob f17, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

17 Schaffer F7, condition 10

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CMA-ES

JaDE

F-AUC3

RecPM3

RecPM2

RecPM1

AdapSS3

best 2009bbob f18, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

18 Schaffer F7, condition 1000

f019 f020 f021

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

AdapSS3

F-AUC3

JaDE

CMA-ES

RecPM3

RecPM2

RecPM1

best 2009bbob f19, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

19 Griewank-Rosenbrock F8F2

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

AdapSS3

F-AUC3

RecPM2

RecPM3

CMA-ES

RecPM1

JaDE

best 2009bbob f20, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

20 Schwefel x*sin(x)

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC3

AdapSS3

RecPM3

RecPM1

RecPM2

JaDE

CMA-ES

best 2009bbob f21, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

21 Gallagher 101 peaks

f022 f023 f024

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

AdapSS3

RecPM1

F-AUC3

RecPM2

RecPM3

JaDE

CMA-ES

best 2009bbob f22, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

22 Gallagher 21 peaks

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM1

AdapSS3

JaDE

RecPM2

F-AUC3

RecPM3

CMA-ES

best 2009bbob f23, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

23 Katsuuras

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

RecPM2

RecPM1

RecPM3

AdapSS3

JaDE

F-AUC3

CMA-ES

best 2009bbob f24, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

24 Lunacek bi-Rastrigin

Separable Low/moderate conditioning High conditioning

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

AdapSS3

F-AUC3

CMA-ES

RecPM3

RecPM2

RecPM1

best 2009

JaDEbbob f1-f5, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CMA-ES

JaDE

RecPM2

RecPM3

RecPM1

AdapSS3

F-AUC3

best 2009bbob f6-f9, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM2

JaDE

CMA-ES

RecPM3

RecPM1

AdapSS3

F-AUC3

best 2009bbob f10-f14, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

multi modal (adequate structure)multi modal (weak structure) Overall

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CMA-ES

JaDE

AdapSS3

RecPM3

F-AUC3

RecPM2

RecPM1

best 2009bbob f15-f19, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

AdapSS3

RecPM1

RecPM2

RecPM3

F-AUC3

JaDE

CMA-ES

best 2009bbob f20-f24, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CMA-ES

AdapSS3

RecPM2

RecPM3

F-AUC3

RecPM1

JaDE

best 2009bbob f1-f24, 20-D
51 targets: 100..1e-08
13 instances

v2.3.1

70 Chapter 5. Recursive Probability Matching

The second figure for each function shows the best fitness in different generations

for a run. The operator selection graph for function 3 and function 7 looks tightly

packed in comparison to function 5 because the optimum value is not attained even

when all the budget is exhausted and the algorithm is run as long as the stopping

criterion is not satisfied. In contrast for function 5, all targets achieved in generation

18 and algorithm stops before exhausting all the budget.

RecPM-AOS chose to utilise rand-to-best/2 operator to optimise f 05i01. How-

ever, it lacked in speed with majority of the algorithm in comparison. f 05 is a lin-

ear function and RecPM-AOS reaches its optimum within the given budget and in

18 generations. rand-to-best/2 combines current and best solution making the off-

spring fall in the direction of best or current solution. Limited application of rand/1

help maintain diversity. In both f 03i01 and f 07i01, RecPM-AOS decides to select

operator rand-to-best/2 most of the times, rand/2 and rand-to-best/2 almost pro-

portionately and rand/1 is applied least. This pattern is seen throughout the gener-

ations. This selection has proved beneficial for function f 07 but not f 03. f 07 reaches

all targets exhausting all the budget. The difference in their performance could be

due to their modality. Although f 07 is non-separable with many plateaus of dif-

ferent sizes, it is uni modal with one optimum, whereas f 03 is separable and multi

modal. The use of each operator with most focus on exploiting current and best

candidates has proved helpful for f 07 to avoid premature convergence.

5.4 Summary

We presented a variant of probability matching, RecPM-AOS, as a parameter control

method that assigns the quality of an operator as an aggregated estimate of future

performances of operators and estimates reward based on progress in past genera-

tions. The proposed algorithm is a PM variant called Recursive Probability Match-

ing. The main difference between RecPM and classical PM is in the way the latter

assigns the quality to a strategy.

The proposed AOS method is applied to the online selection of mutation strate-

gies in DE on the BBOB benchmark functions. The new method is compared with

two AOS methods, namely, PM-AdapSS, which utilises probability matching with

5.4. Summary 71

FIGURE 5.4: Operator application and best fitness graphs for DE-
RecPM-AOS (pmin= 0.17). Op1: “rand/1”, Op2: “rand/2”, Op3:

“rand-to-best/2”, Op4: “current-to-rand/1”

f 05i01

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

Op4	

Op3	

Op2	

Op1	

-20	

0	

20	

40	

60	

80	

100	

120	

140	

1	 10	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f 03i01

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

Op4	

Op3	

Op2	

Op1	

-500	

-450	

-400	

-350	

-300	

-250	

-200	

-150	

-100	

-50	

0	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

72 Chapter 5. Recursive Probability Matching

FIGURE 5.4 (cont.): Operator application and best fitness graphs for
DE-RecPM-AOS (pmin= 0.17). Op1: “rand/1”, Op2: “rand/2”, Op3:

“rand-to-best/2”, Op4: “current-to-rand/1”

f 07i01

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

Op4	

Op3	

Op2	

Op1	

80	

130	

180	

230	

280	

330	

380	

430	

480	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

5.4. Summary 73

relative fitness improvement, and F-AUC, which combines the concept of area under

the curve with a multi-arm bandit algorithm. It is also compared with two non-AOS

state-of-the-art algorithms CMA-ES and JaDE. irace is used to find a good offline

settings for the proposed AOS method, which illustrates the usefulness of offline

procedures to successfully design new online adaptation methods. It is used to train

the parameters on approximately 48 of the total 360 function instances.

Experimental results show that the tuned RecPM-AOS method is the most ef-

fective at identifying the best mutation strategy to be used by DE in solving most

functions in bbob among the AOS methods. Recursive-PM within DE with tuned

parameters shows that it outperforms the other two AOS methods, DE-F-AUC and

PM-AdapSS-DE, and CMA-ES by solving 75% of the problems. The proposed algo-

rithm could not outperform JaDE, but had similar convergence rate.

74

Chapter 6

Unified Framework for Adaptive

Operator Selection

In the previous chapter, we presented a variant of Probability Matching known

as Recursive Probability Matching (RecPM-AOS). RecPM-AOS is an improved AOS

method that aims to maximise future cumulative reward with the help of the Bell-

man equation in markov reward processes. In this chapter, we extend the idea of

AOS by introducing new AOS methods in a unifying framework. This procedure

introduces a number of hyper-parameters such as the fraction of previous accumu-

lated reward (a weight) to take under consideration when designing the reward def-

inition in RecPM-AOS. We employ a tuner to select an AOS method and to tune its

hyper-parameters.

As seen in chapter 3.1, AOS has mainly two components, Credit Assignment

(CA) and Operator Selection (OS). CA involves a definition based on the fitness

achievement over a solution. The most commonly used CA technique is fitness im-

provement from parent to offspring. OS takes the information captured by CA and

estimates the quality of each operator followed by calculating its probability. This is

followed by selection and probability techniques. For comprehensive literature on

AOS, refer to chapter 3.1.

Many novel AOS methods can be designed by combining different components

of existing AOS methods. To test the efficiency of these methods as an AOS method,

this chapter presents a unified AOS framework that builds upon the existing classi-

fication of an AOS method [47]. This is done by analysing multiple AOS methods

from the literature to design a simplified framework. The AOS methods used to

6.1. Methodology 75

build the framework are originally proposed in the literature to tune the parameters

of various EAs such as genetic algorithms and differential evolution. The frame-

work consist of multiple choices for each AOS component. Some of the choices are

inspired from Reinforcement Learning utilised to adapt parameters of different EAs.

The framework can be utilised to explore different combinations of the AOS compo-

nents’ choices. As an estimate, we can generate more than 5000 novel AOS methods

from the framework. It can also be used to replicate various known AOS methods

from the literature. An AOS method is build from the framework by setting the

component choices and fixing the values of their parameters. In order to make the

framework widely applicable, choices with diverse properties are included such as

immediate progress to far-sighted progress, focusing on the clustered achievement

to the outliers, etc. In addition to this, some novel choices are added to the compo-

nents and each choice is generalised. In the process of generalisation, a number of

hyper-parameters are introduced within the choices. The framework is applicable

for the online adaptation of discrete parameters of an evolutionary algorithm.

As the framework consists of various AOS methods with their hyper-parameters,

an offline configurator is employed to select an optimal AOS method and tune its

hyper-parameters. Thus, we present a combination of the framework consisting of

online adaptive methods with an offline configurator to improve the search perfor-

mance of differential evolution (DE). Along with selecting an AOS method with its

parameters, the tuner also decides the parameters of the DE algorithm. We have

utilised the framework to find a suitable tuned AOS method to adapt nine com-

monly used mutation strategies in DE on the BBOB benchmark set. The resultant

framework is flexible enough to replace DE with any EA to tune its discrete set of

parameters.

6.1 Methodology

The following three tasks are performed to achieve a unified framework of AOS

methods combined with an offline configurator:

• We build upon the existing classification [35] by identifying the new compo-

nents to simplify the structure of AOS. AOS methods are known to have two

76 Chapter 6. Unified Framework for Adaptive Operator Selection

FIGURE 6.1: Adaptive Operator Selection components

major components, credit assignment (assigning reward to an operator) and

operator selection (assigning probability to each operator based on quality).

We have used this existing classification and further classify these components.

The classification is shown in Figure 6.1

• A simplified taxonomy is represented that consists of five components with

different heuristics as their choices. Thus, the framework consists of an in-

depth formulation of AOS components with a generalised structure. Each AOS

component with its choices is shown in Figure 6.2

• The resultant framework consists of various AOS designs, out of which one

needs to be selected to perform online tuning of parameters in an EA. Thus,

a tuner (a meta-leaner) is employed to find a near optimal configuration set-

ting or combination of choices for a given set problems. A well-known offline

configurator known as irace is used for this purpose. The selected framework

has its own parameters to be tuned which do not directly impact the problem

solution space. Thus, an offline configurator can be utilised efficiently to give

a static value for these hyper-parameters. To tune these hyper-parameters we

employ the same tuner in combination with the framework. The role of irace

is to offline select a combination of component choices given a set of problems

6.1. Methodology 77

FIGURE 6.2: Adaptive Operator Selection component choices

and tune the hyper-parameters of the selected AOS method along with the

parameters of DE.

Figure 6.3 shows the simplified training procedure of the framework using an

offline tuner irace. irace samples a configuration from the component space and its

hyper-parameter space related to the selected choices. It also samples a configura-

tion from the DE parameter space. These choices remain static while the algorithm

runs on a selected problem instance selected from a training set. During this run, the

AOS method formed by component choices selected by irace online tunes the muta-

tion strategy of DE. At the end of an EA run, the best seen fitness value is sent to the

irace in the form of cost to make an informed decision on the optimal choices given

the training set. This is done repeatedly until a budget given to irace is exhausted

and the configuration that performed best is returned. This configuration consists

of a choice from each AOS component, its tuned hyper-parameters and parameter

values of DE. This describes a single step of irace. For full working of irace refer to

Chapter 4.

78 Chapter 6. Unified Framework for Adaptive Operator Selection

FIGURE 6.3: Unified Adaptive Operator Selection architecture

6.2 Components of the proposed framework for AOS

In this section the components of the proposed framework are discussed in detail.

It consists of five components each with a number of generalised choices. The five

components are offspring metric (OM), reward (rg+1,op), quality (qg+1,op), probability

(pg+1,op) assignment and selection mechanism (opg+1). We consider individual level

control that is in a generation, an operator is selected for each parent. At the end of

the generation, OM assigns a value to each offspring according to the improvement

gained with the operator application. To prepare the selection of operators for the

population in the next generation, reward, quality and probability of each operator

are updated, according to the OM values. In the end, based on the probability values

of each operator, the selection method is used to select the operator for each parent

to produce offspring. Further we discuss each of the component choices one by one

in detail.

6.2.1 Offspring Metric

We define an OM as a function of some statistics on population fitness. The metric,

mathematically represented as (OM(g, k, op)), assigns a k-th improved value to the

i-th improved solution (offspring) xi,op generated after using operator op. If there is

no improvement, 0.0 metric value is assigned to the offspring. That implies that the

offspring (OM(g, k, op)) is as good as its parent. The value depends on the parent

fitness, the offspring fitness and other significant references shown in Table 6.1. The

table shows six offspring metrics all of which are designed to be maximised when

6.2. Components of the proposed framework for AOS 79

the objective function is a minimisation problem. That is, for an OM(g, k, op), the

higher the value of i-th offspring, the better the offspring is.

We store all OM in memory that can be of two types, generation memory and

window memory. The generation memory stores six OM values for each offspring

in each generation. These values are shown in Fig. 6.1. As the algorithm progresses,

the size of generation memory grows. A window memory of sizeW is formed using

the generation memory. Each entry in the window consists of six values resulting

from OM. The window memory stores these six metric values of an offspring only if

it improves over its parent. In other words, it stores a finite set of OM generated by

any operator. Initially, the window is filled as the offspring are generated. Once the

window is filled, the new improved offspring generated by an operator is inserted

in First In First Out (FIFO) manner such that the offspring from the window gener-

ated by the same operator to enter first is removed and new offspring metric data is

put at top of the window. If there is no application of that operator present in the

window, the worst offspring data is removed. The generation memory and window

memory are updated at the end of each generation. The data from generation mem-

ory can be utilised either for fix number of generations or for fix number of operator

applications described below:

• Dynamic number of operator applications (maxgen as a parameter): The OM

values produced by an operator in the last fix number of maxgen generation(s)

are taken into account. It is important to note that the number of applications

of each operator can vary in each generation. Thus, in maxgen number of gen-

erations the number of total applications of an operator can be different from

others.

• Fix number of operator applications (f ixappl as parameter): In this case the last

fixed number of operator applications are considered. The generation span

depends on the improved offspring in each generation and is not known in

advance.

Equation 6.1 [113, 78, 143, 99, 141, 21, 100] defines the offspring fitness. For the

minimisation problem, this metric assigns the offspring an OM as the negative of

80 Chapter 6. Unified Framework for Adaptive Operator Selection

TABLE 6.1: Offspring Metrics (OM(g, k, op))

Name Definition

Offspring fitness − f (ui,op) (6.1)

Fitness improvement w.r.t. parent max{0, f (xi)− f (ui,op)} (6.2)

Fitness improvement w.r.t. current best
parent

max{0, fbest − f (ui,op)} (6.3)

Fitness improvement w.r.t. best individ-
ual so far

max{0, fbs f − f (ui,op)} (6.4)

Fitness improvement w.r.t. median fit-
ness

max{0, fmedian − f (ui,op)} (6.5)

Relative fitness improvement
fbs f

f (ui,op)
·max{0, (f (xi)− f (ui,op))} (6.6)

the raw fitness. In case of the maximisation problem, the raw fitness value should

be considered.

The next four equations 6.2 – 6.5 define the OM as the difference between the

fitness of an offspring generated by the application of operator op and a reference

point. The reference points considered in this study are parent fitness (f (xi)) [78, 72,

77, 50, 47, 131, 26, 113, 15, 120, 117, 164, 49, 118, 3], best parent fitness (fbest) [78, 77,

31], best individual fitness so far (fbs f) and median population fitness (fmedian) [86,

85, 84]. Getting a value 0 shows that there is no significant improvement in the

offspring from a reference point. These four metrics follow the following rule: the

farther the offspring from the reference point, the higher the OM will be.

The offspring fitness improvement shown in equation 6.2 has been most widely

used in the literature showing its significance in giving useful information of an op-

erator. Among these four metrics, we propose to include the best seen candidate

as a reference point shown in equation 6.4. It is an important reference as it gives a

search direction for the exploitation in the neighborhood of the best so far candidate.

In this case, an operator that produce an offspring with higher fitness in reference to

6.2. Components of the proposed framework for AOS 81

the best so far candidate gets higher reward value compared to the operator produc-

ing offspring with relatively lower improvement.

Relative fitness improvement defined in equation 6.6 was originally proposed

in [127] and later used in [59] as part of an AOS method. It takes into account the

fitness improvement from parent to offspring along with the best so far candidate

fitness.

6.2.2 Reward

The reward given to an operator op at generation g + 1, represented as rg+1,op, gives

a measure of achievement of an operator. It goes beyond the current performance

of an operator using either generation or memory window. In a run of EA, it is a

function of one of the selected OM. The reward assigned to an operator is maximised

as the OM is designed to be maximised. That means if an operator has performed

better than another operator, then former should get higher reward compared to the

latter for any selected OM.

We present a generalised classification of the reward definitions from the litera-

ture shown in Table 6.2. They utilise an OM definition for an operator in a specifi-

cally defined manner. Some make the use of direct fitness values such as diversity

and quality, weighted fitness average and best OM; others using fitness based score

such as ranking and count of improved OM. Reward combines one or two of these

statistics, thus learning from limited amount of information available from the fit-

ness landscape.

Some authors consider rewarding ancestors of a well-performing operator [166,

15] in addition to rewarding the current operator itself; others do not consider such

a case [113]. By ancestor we mean the operators that lead to the good performance

of current operator. We decided not to include that option in the classification as [15]

suggests that it sometimes degrades the results. In the framework, any method that

involves clock time [143] is replaced by function evaluations in some cases. The

framework updates reward at the end of each generation that is contrary to the

methods that chose to update reward after a certain number of generations [134].

This implies that there is no update on AOS components for few generations be-

cause this can lead to loss of information. [117] introduces the idea of removing and

82 Chapter 6. Unified Framework for Adaptive Operator Selection

adding operators from a storage called credit registry in an AOS. We do not main-

tain such a registry in the framework with the intuition that eventually an AOS can

learn to select the optimal operator from a list of operators depending on the current

stage of an EA.

The reward choices are divided into the following five categories: fitness diver-

sity and quality, comparison based, successful operator applications, fitness sum

and best offspring. The choices under these categories share similar properties. Fit-

ness diversity and quality reward choices are made with the selected OM diversity

and quality for a fix number of applications, choices under comparison based cate-

gory involve ranking the OM from the window memory, successful operator appli-

cations comprise of the number of OM resulting from successful operator applica-

tion, choices in fitness sum simply add the raw OM values and lastly best offspring

category consists of choices formed with the best solution fitness in a generation

combined from a certain number of generations.

Fitness Diversity and Quality This category includes the diversity (standard de-

viation) and quality (average) over an OM, combined in different manner. The three

definitions consider fix number of operator applications, f ixappl, extracted from gen-

eration memory. These two statistics are represented as a coordinate (o
f ixappl
op) in two

dimensional space for each operator op shown in the equation below:

o
f ixappl
op = (div

k−(f ixappl−1)
i=k OM(g, i, op), qual

k−(f ixappl−1)
i=k OM(g, i, op)) (6.7)

The diversity div and quality qual of OM for an operator op are calculated for last

f ixappl number of applications.

Pareto Dominance (PD) on (o
f ixappl
op) shown in equation 6.8 [117] counts the num-

ber of operators that are dominated by op. It is normalised by the sum of k operators’

reward values. The best operator corresponds to the highest value of PD indicating

that it generated maximum number of offspring in last certain number of genera-

tions compared to other operators.

Pareto Rank (PR) on (o
f ixappl
op) shown in equation 6.9 [117] method counts the num-

ber of operators that dominate op. The operator with the least PR value is the best of

all operators. Operators with a PR value of 0 belong to the Pareto frontier. Both PD

6.2. Components of the proposed framework for AOS 83

TABLE 6.2: Reward (rg+1,op)

Definition Parameters

Fitness Diversity and Quality

Pareto Dominance

PD (o
f ixappl
op)

∑K
j=1 PD (o

f ixappl
j)

(6.8) f ixappl

Pareto Rank

PR (o
f ixappl
op)

∑K
j=1 PR (o

f ixappl
j)

(6.9) f ixappl

Compass Projection

|o f ixappl
op | · cos(αop)−

K
min
j=1
|o f ixappl

op | · cos(αj) (6.10)
θ,

f ixappl

Comparison (Rank)

Area Under the Curve
Area under the curve based on the rank of OM(g, k, op) (6.11) D,W

Sum of Rank

∑r(OM(g,k,op)) Dr(OM(g,k,op))(W − r(OM(g, k, op)))

∑Wr=1 Dr(OM(g,k,op))(W − r(OM(g, k, op)))
(6.12) D,W

Successful operator applications

Success Rate
g−(maxgen−1)

∑
t=g

(
(nt

succ,op)
γ
+ Frac ∗∑K

j=1 nt
succ,j

nt
succ,op + nt

f ail,op

)
+ ε (6.13)

maxgen, ε

γ,Frac

Immediate Success
ng

succ,op

NP
(6.14) -

Fitness Sum

84 Chapter 6. Unified Framework for Adaptive Operator Selection

Success Sum

∑
g−(maxgen−1)
t=g ∑

nt
succ,op

i=1 OM(t, i, op)

∑
g−(maxgen−1)
t=g nt

succ,op + nt
f ail,op

(6.15) maxgen

Normalised Success Sum Window
∑

nop
k=1 OM(t,k,op)

nop(
BestK

j=1
∑

nj
k=1 OM(t,k,j)

nj

)ω (6.16) ω,W

Normalised Success Sum Generation
g−(maxgen−1)

∑
t=g

∑
nt

succ,op
i=1 OM(t, i, op)
nt

succ,op + nt
f ail,op

(6.17) maxgen

Best offspring

Best2Gen

C ∗
Best

ng
succ,op

i=1 OM(g, i, op)− Best
ng−1

succ,op
i=1 OM(g− 1, i, op)

(Best
ng−1

succ,op
i=1 OM(g− 1, i, op))α ∗ |(ng

succ,op + ng
f ail,op)− (ng−1

succ,op + ng−1
f ail,op)|β
(6.18)

C

β, α

Normalised Best Sum

1
maxgen

∑
g−(maxgen−1)
t=g Best

nt
succ,op

i=1 OM(t, i, op)
ρ

(BestK
j=1{∑

g−(maxgen−1)
t=g Best

nt
succ,j

i=1 OM(t, i, j)})α

(6.19)
α, ρ

maxgen

and PR encourage non-dominated operators.

In equation 6.10, proposed in [118], the projection of a coordinate o
f ixappl
op is taken

on a plane represented by an angle θ (a hyper-parameter). This angle defines the

trade-off between exploration and exploitation. Thus, the mathematical formulation

of projection is given by |o f ixappl
op | · cos(αop) where,

|o f ixappl
op | =

√
(div

k−(f ixappl−1)
i=k OM(g, i, op))2 + (qual

k−(f ixappl−1)
i=k OM(g, i, op))2 (6.20)

αop = atan

qual
k−(f ixappl−1)
i=k OM(g, i, op)

div
k−(f ixappl−1)
i=k OM(g, i, op)

− θ and (6.21)

6.2. Components of the proposed framework for AOS 85

αop is the angle between the plane and the coordinate. Compass evaluates the perfor-

mance of operators by considering not only the fitness improvements from parent

to offspring, but also the way they modify the diversity of the population. This was

later combined with dynamic multi-armed bandit [120, 117] for adaptive selection

of the operators in differential evolution.

Comparison (Rank) The two definitions in this category assign a rank to each

operator in the window of sizeW according to OM values. These ranks are then de-

cayed using hyper-parameter D to prioritise the operators according to their ranks.

As ranking of OM is involved and not the direct OM values, both methods under

this category are invariant with respect to the linear scaling of the fitness function.

That is, their behavior, when applied on a given fitness function f , is exactly the

same when applied to a fitness function defined by (a · f), for any a > 0.

Area Under the Curve (AUC) 6.11 [49] plots a Receiver Operator Characteris-

tic (ROC) curve for each operator by scanning the decayed ranking of OM from a

window memory. The area is taken as a reward of each operator.

Sum of rank (SR) 6.12 [49] assigns the operators with the sum of the decayed

ranks of the OM in the window memory. This sum is normalised by the reward sum

of all operators.

Successful operator applications Under this category, the number of successful

and unsuccessful applications of each operator are considered. We design two def-

initions under this category, both using generation memory. For a particular OM

under consideration, we count the total number of non-zero values (ng
succ,op) as the

successful applications of operator op in generation g. Similarly, the number of zeros

shows the number of unimproved applications (ng
f ail,op) of operator op in genera-

tion g. These counts are recorded for a fix number of generations represented by

hyper-parameter maxgen. Thus there are maxgen number of values each representing

number of successful and unsuccessful applications coming from last maxgen gen-

erations. Mathematically, the number of successes and failures of an operator op in

generation g of population size NP is defined as follows:

ng
succ,op =

NP

∑
i=1


1, if OM(g, i, op) > 0

0, otherwise

86 Chapter 6. Unified Framework for Adaptive Operator Selection

ng
f ail,op =

NP

∑
i=1


1, if OM(g, i, op) = 0

0, otherwise

To calculate the reward of an operator, equation 6.13 [86] takes into account a

fraction (Frac) of sum of successes of all operators in a generation along with the

linear or quadratic contribution of the success of an operator (power is a parameter

represented as γ) in the same generation. This term is divided by the total number

of applications of the operator in that generation. The total number of applications

of an operator in a generation is the total number of successes and failures seen by

the operator. This fraction is aggregated for the last maxgen generations. In the end,

an error value (ε) is added that perturbs the resultant reward value. Equation 6.13

is part of the method proposed in [135, 136] and the potential choices of power for γ

come from [126, 134]. Another research comes from paper [25] that utilises a similar

choice. It proposes MAENSm method that selects a crossover operator among a

set of operators. The second term in the numerator of this choice is coming from

extension of the ADOPP algorithm in [84].

Next equation 6.14, modified from paper [150], ignores the achievements of the

operator in the past. The complete reward definition in the paper can be derived

as a combination of 6.14 and 6.27. It is a simple idea defined as the fraction of the

immediate or current success with respect to the population size. Here, current suc-

cess refers to the number of improved OM applications of an operator in the current

generation.

Fitness Sum In the previous two categories, the reward definitions have utilised

metric values for ranking and calculating successes and failures. In further cate-

gories, we will use direct values of metrics to calculate reward.

In fitness sum category, we took three definitions from literature. Equations 6.15 [77]

and 6.17 [78] sum the OM values in the last maxgen generations from the generation

window. The only difference between them is that in the former, once the OM data

from all maxgen is summed, it is divided by the number of applications in all maxgen

generations whereas in the latter this division is performed per generation. [165]

and [72] considers 6.15 for one generation (that is maxgen = 1). The only difference

is that the latter does not include the denominator part.

6.2. Components of the proposed framework for AOS 87

Equation 6.16 uses the data stored in the window memory. It simply sums the

OM values for an operator present in the window of sizeW divided by its number

of applications of the operator present in the window. As the window comprises

of successful applications, no p denotes the number of applications of op present in

the window. This definition for this choice is proposed by [59] known as Average

Absolute Reward (AAR). Average Normalised Reward (ANR) proposed in the same

research normalises AAR by the best AAR seen by any operator. Thus, we give the

normalisation as a choice decided by a hyper-parameter ω.

Best Offspring This category has definitions which consider outliers, that is, it

takes into account the OM generated by op that have given best or extreme perfor-

mance BestOM(g, i, op) in a generation g. This metric value is selected among the

successful application from op, ng
succ,op. It can easily get trapped in local optima if the

landscape is too ragged.

RL-based adaptive methods could not be part of framework fully, as their de-

sign is different from AOS in general. Refer to Chapter 7 that presents various deep

reinforcement learning models and Chapter 3 for RL literature. RL methods have

a concept to reward the operators that produce good offspring. We have included

these reward definitions in the framework that are based on the best generated off-

spring in a generation and Best2Gen 6.18 is the only reward definition inspired from

RL design. It is commonly used within the RL design to learn the selection of the

operator for each parent. It takes the difference of best seen OM by an operator in

the two consecutive generations [113, 78, 21]. The two terms in the denominator,

separated by product, are considered by one RL method but discarded by other.

Thus, to achieve a general equation we decided to include them with the decision

hyper-parameters α and β. [141, 143] consider the best seen OM produced by an op-

erator in the previous generation g− 1 along with the difference in the numerator.

A hyper-parameter C is multiplied and divided by the difference in applications of

operator in the last two generations [100, 99].

Based on the similar idea, equation 6.19 has been used in non-RL context. It uses

the best OM value seen in the last maxgen number of generations generated by an

operator [50]. Thus, it not only looks for the best candidate produced by an operator

in current and last generation but is far-sighted to combine best fitness in certain

88 Chapter 6. Unified Framework for Adaptive Operator Selection

TABLE 6.3: Quality (qg+1,op)

Definition Parameters

Weighted Sum
δ ∗ rg+1,op + (1− δ) ∗ qg,op (6.22) δ

Upper Confidence Bound

rg+1,op + C ·

√√√√ log ∑K
j=1 nj

nop
(6.23) C

Quality Identity
rg+1,op (6.24) -

Weighted Normalised sum

δ ∗max

{
qmin,

rg+1,op

∑K
j=1 rg+1,j

}
+ (1− δ) ∗ qg,op (6.25) δ, qmin

Bellman equation
(1− γP)−1Q′g+1 (6.26)

where, q′g+1,op = c1 ∗ rg+1,op + c2 ∗ rg,op (6.27)
c1, c2, γ

number of generations. The contribution of best seen value in a generation is ei-

ther linear or quadratic decided by hyper-parameter ρ in [165]. Optionally, it can

be normalised [59] by best OM value seen by any operator in last maxgen genera-

tions decided by α. α = 0, 1 corresponds to extreme absolute reward and extreme

normalised reward respectively. We extend the resultant equation by multiplying it

with 1
maxgen

[78]. Both equations in this category have a decision parameter α.

6.2.3 Quality

Assigning quality to each operator is an important task involved in AOS method. A

quality definition is dependent on current reward and can also include any of the

following: reward and quality achieved in previous generation. Thus, to calculate

quality, we keep a memory of reward and quality from the previous generation. In

the end the quality values are normalised to prevent probability to explode or go out

of range. Table 6.3 shows five choices for quality.

Weighted Sum Equation 6.22 in Table 6.3 is the weighted sum of current reward

6.2. Components of the proposed framework for AOS 89

and previous quality. This is part of Probability matching which is originally pro-

posed in [57] and later used as operator selector in AOS [113, 163, 162]. This is the

commonly used quality choice in the literature to assign the quality for the adaption

of parameters [50, 58, 47].

Weighted Normalised Sum Equation 6.25 has the same definition as equation 6.22

except that the current reward is normalised by the sum of the reward values of all

operators to bring the value in the range [0, 1]. This is obtained directly from [78]

which involves two hyper-parameters qmin and δ. This definition is lower bounded

by qmin. [77] does not consider a lower bound in the quality, that is qmin = 0 given

that the reward is positive real value. In case where a reward attained by an oper-

ator is zero, the quality becomes a fraction of previous quality. The parameter (δ)

in equations 6.22 and 6.25 plays the role to act as a weight for current/normalised

reward and previous quality.

Upper confidence Bound (UCB) is a well-known algorithm, originally proposed

in [9]. It is known to achieve a compromise between exploitation and exploration.

[28] proposes dynamic multi-armed bandit (DMAB), a selection strategy based on

UCB. To control the exploration strength, it includes a hyper-parameter C in UCB

as shown in equation 6.23. This definition has only been used for window mem-

ory where nj represents the total number of applications of j-th operator present in

the window. However, we have made this definition flexible enough such that if a

reward choice utilising generation memory is selected, nt
succ,j counts the successful

operator applications in generation t by operator j. The formulae calculating UCB

value for maxgen generations is shown below:

rg+1,op + C ·

√√√√√ log ∑K
j=1 ∑

g−(maxgen−1)
t=g nt

succ,j

∑
g−(maxgen−1)
t=g nt

succ,op

(6.28)

In the case of fitness diversity and quality reward definitions, f ixappl value for an op

is same as nop. This method is also used in [120, 50, 47, 49, 117] either within DMAB

or for comparison. UCB variants such as UCB-Tuned [9] and KUCBT [74] are not

included as part of the UCB definition to keep the formula simple.

Quality Identity Looking deeply into the AOS methods [135, 134, 26, 15, 126,

90 Chapter 6. Unified Framework for Adaptive Operator Selection

118, 117, 84, 86], we identified some existing methods have mixed the definitions of

reward and quality. There is no quality component that shares the properties with

any of the quality definitions in Table 6.3. Rather these methods could simply be

divided into AOS without quality. For instance, SaDE [135] assigns probability to

each operator according to the normalised success rate for maxgen 6.13 and there is

no quality definition involved. That is it directly maps success rate reward value

of an operator to its probability. Thus, equation 6.24 represents an identity function

that maps reward of an operator directly to its quality. In this definition, we do not

include previous reward or quality that helps to clearly distinguish the reward from

probability definition. It becomes an important choice to determine whether quality

has important role in the AOS process.

Bellman Equation Equation 6.26 [150] represents the Bellman equation where

each entry in vector Q’ is the weighted sum of the reward values of an operator from

previous generations shown in 6.27 [165]. The hyper-parameters c1 and c2 denote the

weights of these rewards. The adaptive method in [113] considers the sum of c1 and

c2 to be 1. We lift this condition and each of them can attain a value between 0 and

1. It should be noted that if hyper-parameter γ = 0 then this definition reduces to

just weighted sum of rewards otherwise the Bellman equation is used to calculate

the final quality.

6.2.4 Probability

The three probability definitions shown in Table 6.4 are used to assign probability to

each operator to get selected in the next generation. These definitions use the cur-

rent quality of operator and optionally previous probability. Each of the probability

choice is lower bounded by a minimum probability of selection pminto avoid prob-

ability of any operator becoming zero. An operator showing weak performance in

current generation can become useful in later generation. Thus, pminplays important

role in allowing an operator to get selected after a certain number of generations. [26,

77, 166] consider generation gap in updating operator probability. That means the

probability is updated after certain number of generations. However, in the current

framework we have not included this case for simplicity. Thus, we update the prob-

ability of each operator at the end of each generation. This helps the method to be

6.2. Components of the proposed framework for AOS 91

TABLE 6.4: Probability (pg+1,op)

Definition Parameters

Normalised Quality

pmin + (1− K ∗ pmin)

(
qg+1,op + εp

∑K
j=1 qg+1,j + εp

)
(6.29) pmin, εp

Biased rule{
µ ∗ pmax + (1− µ) ∗ pg,op, f or op = maxK

j=1{qg+1,j}
µ ∗ pmin + (1− µ) ∗ pg,j, ∀j 6= op

(6.30)

µ,

pmin,

pmax

Probability Identity
qg+1,op (6.31) -

up-to-date with the operator performance according to the current landscape. We

also eliminate the case where each candidate solution in the population is assigned

with the probabilities of getting selected by each operator in the population [155].

Instead, we assign probability to each operator and employ a selection mechanism

to select an operator for each offspring based on the selection probability of the op-

erator. All the probability definitions are normalised in the end to bring the sum of

the probabilities of all operators to 1.

Normalised quality shown in equation 6.29 is the most widely used probability

definition in the literature to assign the selection probability to each operator. It is

part of Probability matching (PM) originally proposed in [57]. [163, 58, 77, 162, 134,

50, 59, 150, 126, 47, 117, 50, 49, 113, 31, 86, 26] used normalised value of quality,

lower bounded by pmin. [15, 135, 84, 118, 165] used the normalised value of quality

but with pmin = 0 and the latter two papers also added an error value (εp) to this

quantity. The error value is used to prevent the quality to become 0. A generalised

form of these is shown in 6.29 with two hyper-parameters, pmin and εp. In the term

(1−K ∗ pmin), K denotes the total number of operators. The value for K ∗ pmin should

be less than 1 to avoid this term becoming negative. Thus, pmin is dependent on the

number of operators employed.

Normalised quality has a disadvantage that it allocates the probabilities to the

operators directly proportional to the quality which makes the convergence slow

92 Chapter 6. Unified Framework for Adaptive Operator Selection

and prevents the exploitation of the operator with maximum probability. To over-

come this issue, biased rule 6.30 [163] was proposed as part of the Adaptive Pursuit

algorithm. It increases the probability of selection of the operator with best qual-

ity. This is done by assigning probability to this operator as the weighted sum of

the upper bound of probability (pmax) and previous probability of the operator. To

maintain a large gap between best operator and others, biased rule assigns the latter

operators with the weighted sum of pmin and previous probability. It is interesting

to note that this definition does not directly include qualities of operators in calcu-

lating the probability of an operator. There are three hyper-parameters involved in

the biased rule probability definition, namely pmin, pmax and µ with pmin < pmax.

This definition is also utilised in [162, 50].

Probability Identity The last proposed probability definition is shown in equa-

tion 6.36. It simply maps the quality of an operator to its probability obtained in the

current generation.

6.2.5 Selection

The selection component consists of various choices that are used to select the oper-

ator for an individual in the population given the selection probability of each op-

erator. The most commonly used selection method is proportional selection which

is popular in Probability Matching technique. Adaptive Pursuit is the only method

that utilises greedy selection. In addition to proportional and greedy selection, we

present three proposed selection choices based on the combinations of greedy, pro-

portional and linear decay.

Proportional Selection also known as roulette-wheel selection is shown in equa-

tion 6.32. The normalised probability of an operator defines its chances of getting

selected proportional to its quality in the next generation. That is, the operator with

high normalised value has greater chance to get selected compared to the other op-

erators.

Greedy Selection As the name indicates, in 6.33 the operator with the maximum

probability is selected in the next generation. This choice is known to bring least

exploration in the task.

6.2. Components of the proposed framework for AOS 93

TABLE 6.5: Selection(op)

Name Definition Parameter

Proportional
pg+1,op

∑K
j=1 pg+1,j

(6.32) -

Greedy
K

max
j=1
{pg+1,j} (6.33) -

Epsilon-
Greedy

{
rand[1, K], i f uni f orm(0, 1) < eps
maxK

j=1{pg+1,j}, else
(6.34)

eps

Linear-
Annealed

{
rand[1, K], i f uni f orm(0, 1) < Annealeps(0, 1)
maxK

j=1{pg+1,j}, else
(6.35)

-

Proportional-
Greedy


pg+1,op

∑K
j=1 pg+1,j

, i f uni f orm(0, 1) < eps

maxK
j=1{pg+1,j}, else

(6.36)

eps

Epsilon-Greedy Selection Greedy selection has a drawback that it neglects the

exploration aspect which plays an important role in searching the unexplored parts

of the search space. Thus, we introduced a novel selection choice named epsilon

greedy selection 6.34. The hyper-parameter eps ensures that a random strategy

(rand[1,K]) is selected (exploration). uni f orm(0, 1) indicates a uniformly selected

number between 0 and 1.

Linear-Annealed Selection The epsilon-greedy definition in 6.35 keeps the eps

value static during the whole run of an EA. However, adapting eps can ensure a

right balance between exploration and exploitation. This is so because at different

stages of algorithm, importance of exploration and exploitation varies. The higher

the value of eps, the greater the exploration will be. Thus, we propose a linear decay

of eps where vaue of eps decreases from 1 to 0 as the algorithm progresses repre-

sented by Annealedeps(0, 1). Thus, this ensures that algorithm explores in the initial

runs and exploits towards the end.

Proportional-Greedy Selection This selection choice 6.36 is a hybrid of propor-

tional and greedy selection. If a random number between 0 and 1 is smaller than

the hyper-parameter, ε, proportional selection is performed otherwise greedy is per-

formed. Here the random operator is not selected for exploration but the one that

94 Chapter 6. Unified Framework for Adaptive Operator Selection

has shown good performance (and not necessarily the best) recently. This brings a

restricted exploration of the search space compared to the equation 6.34.

6.3 AOS methods utilised to build the framework

In the previous section we presented the proposed framework utilising various AOS

methods from literature. The component choices sharing same properties are gener-

alised with the introduction of a number of hyper-parameters. It is possible to repli-

cate many AOS methods existing in literature using the designed framework. A par-

ticular AOS method is obtained by setting the component choices along with their

hyper-parameter values. The Table 6.6 shows the AOS methods from the literature

that can be replicated from the unified framework. The table shows a method as a

combination of component choices from the framework with their hyper-parameter

values as proposed in the literature. The first column gives the method name and

the rest of the columns indicate a choice from each component setting their hyper-

parameter values as decided in their respective papers. Not all algorithms shown in

the table are given a name, thus we decide to name these algorithms such that it best

suits the description of the algorithm.

[165] proposes an AOS method, named as Dyn-GEP, in the context of Gene Ex-

pression programming (GEP). It assigns probabilities to the operators as follows:

pi(t) =
di(t)

∑n
i=1 di(t)

and di(t) = d0 + mi(t) + α ∗mi(t− 1) (6.37)

where, pi(t), di(t) and mi(t) is the probability, improvement and mean value of re-

ward assigned to an operator i at generation t respectively; α represents the forget-

ting factor; n is the number of operators and d0 is the minimum value attained by

di(t). We simplify this formula to map to each component. It assigns fitness im-

provement w.r.t. parent 6.2 as offspring metric. This method runs the algorithm 20

times and considers two rewards, best fitness value in 20 runs and mean of best value

found in each 20 runs. As per the design of the framework, instead of running the

algorithm multiple times, we run the method only once. Thus, we assign reward as

mean of fitness values 6.15 produced by the application of the operator in the current

6.3. AOS methods utilised to build the framework 95

TABLE 6.6: Relevant literature

AOS Methods OM Reward Quality Probability Selection

Hybrid 6.1 6.18 (α = β = 0,C =

1)

6.26 (c1 + c2 =

1, γ = 0)

6.29 (pmin = εp =

0)

6.32

Op-adapt 6.3 6.17 6.25 6.31 6.32

PDP 6.2 6.13 (γ = 2,

maxgen = 1,

Frac = ε = 0)

6.24 6.29 (εp =

0, pmin =
⌊ 20

K

⌋
)

6.32

ADOPP 6.5 6.13 (ε = 0,

γ = 1,maxgen = 1,

Frac = 0)

6.24 6.29 (pmin = εp =

0)

6.32

ADOPP-ext 6.5 6.13 (ε = 0,γ = 1,

maxgen = 1)

6.24 6.29 (pmin = εp =

0)

6.32

Adapt-NN 6.2 6.15 6.25 (qmin = 0) 6.29 (εp = 0) 6.32

Dyn-GEPv1 6.2 6.15 (maxgen = 1) 6.26

(c1 = 1, γ = 0)

6.29 (pmin = 0) 6.32

Dyn-GEPv2 6.2 6.19 (ρ = 3, α =

0,maxgen = 1)

6.26

(c1 = 1, γ = 0)

6.29 (pmin = 0) 6.32

SaDE 6.2 6.13 (γ = 1,Frac =

0)

6.24 6.29 (pmin =

0, εp = 0)

6.32

MMRDE 6.2 6.13 (maxgen = γ =

1,Frac = ε = 0)

6.24 6.29 (εp = 0) 6.32

Compass 6.2 6.10 6.24 6.29 (pmin = 0) 6.32

PD-PM 6.2 6.8 6.22 6.29 (εp = 0) 6.32

PR-PM 6.2 6.9 6.22 6.29 (εp = 0) 6.32

Proj-PM 6.2 6.10 6.22 6.29 (εp = 0) 6.32

F-AUC-MAB 6.2 6.11 6.23 6.29 (εp = pmin =

0)

6.33

F-SR-MAB 6.2 6.12 6.23 6.29 (εp = pmin =

0)

6.33

F-AUC-AP 6.2 6.11 6.22 6.30 6.32

96 Chapter 6. Unified Framework for Adaptive Operator Selection

F-SR-AP 6.2 6.12 6.22 6.30 6.32

F-AUC-AP 6.2 6.11 6.22 6.29 6.32

F-SR-PM 6.2 6.12 6.22 6.29 6.32

RecPM 6.2 6.14 6.26 (c1 = 1,

c2 = 0.5, γ =

0.46)

6.29 (εp =

0, pmin = 0.11)

6.32

MAENSm 6.1 6.13 (maxgen = γ =

1,Frac = ε = 0)

6.23 6.29 6.32

PM-AdapSS-

AA

6.6 6.16 (ω = 0) 6.22 6.29 (εp = 0) 6.32

PM-AdapSS-

N

6.6 6.16 (ω = 1) 6.22 6.29 (εp = 0) 6.32

PM-AdapSS-

EA

6.6 6.19 (α = 0, ρ = 1) 6.22 6.29 (εp = 0) 6.32

PM-AdapSS-

N

6.6 6.19 (α = 1, ρ = 1) 6.22 6.29 (εp = 0) 6.32

Ex-PM 6.2 6.19 (ρ = 1, α = 0) 6.22 6.29 6.32

Ex-AP 6.2 6.19 (ρ = 1, α = 0) 6.22 6.30 6.32

Ex-MAB 6.2 6.19 (ρ = 1, α = 0) 6.23 6.29 (εp = pmin =

0)

6.33

generation (not run) and best operator application in the current generation 6.19. We

consider Dyn-GEP with two versions named Dyn-GEPv1 and Dyn-GEPv2 for two

reward definitions, respectively. Dyn-GEPv1 calculates mean fitness value from cur-

rent generation (maxgen = 1) where the sum in the denominator of equation 6.15 is

the total number of application of an operator. Equation 6.19 in Dyn-GEPv2 sets

maxgen as 1 with ρ = 3 without normalisation (α = 0). These two definitions repre-

sent mi(t) in equation 6.37. The quality can be extracted from the above equation to

map to equation 6.26 where hyper-parameters γ and c1 are set as 0 and 1 respectively

and c2 represents α in the above equation. Moving to probability, it is represented by

equation 6.29 with εp set as d0 and pmin = 0. Proportional selection is used to select

6.3. AOS methods utilised to build the framework 97

operators based on the probability.

Hybrid algorithm, presented in [113], is an algorithm that picks among two elitist

algorithms. This approach is no different than AOS methods that are used to select

operators. Thus, we decided to include it in the framework as a method to select

among discrete choices. It uses raw fitness values 6.1 as offspring metric and their

difference in two consecutive generations to assign reward to each choice. As soon

as one of the algorithms is applied to evolve two individuals from the population,

reward is assigned as a choice in reward component, Best2Gen 6.18 is utilised with

the hyper-parameters C = 1, α and β = 0. It then combines current and previous

reward 6.26 of an algorithm as weighted geometric average with coefficient c1 and

c2 summing to 1. It does not consider future reward, so γ is taken as 0. Finally,

probability 6.29 and selection 6.32 definitions according to the probability matching

is used as an assignment rule to probability and selection of an algorithm for next

evolution.

ADOPP [86] is one of the early AOS methods proposed in 1995. It assigns each

operator a probability proportional to the contribution it has made in producing

an offspring better than population median. This operator receives a reward of 1.0

and assigns a decayed reward to its ancestors. However, we do not consider the

possibility of rewarding the ancestors. To avoid the probability becoming zero, an

extension of ADOPP is proposed, ADOPP-ext [84]. In ADOPP-ext, a fraction of

the sum of all operators’ reward is added to each operator’s accumulated reward.

Population-level Dynamic probabilities (PDP) [126] is a similar approach to ADOPP

where instead of offspring comparison to median population fitness, it considers

operation applications that improved fitness w.r.t parent. Other component choices

in PDP are matched with ADOPP with the variation in their hyper-parameter values.

The SaDE algorithm [135] combines adaptive control of the mutation and crossover

rate with adaptive selection of two mutation operators. As our proposed frame-

work is concerned with unifying AOS methods, we only show to replicate the AOS

method involved in SaDE from the framework. Operators are assigned proportional

to the probability of operator selection. The probability is based on the success and

failure rate in previous fix number of generation. SaDE and MMRDE [134] share the

same component choices. The only difference is that latter assigns reward based on

98 Chapter 6. Unified Framework for Adaptive Operator Selection

the applications in certain number of generations whereas the former only considers

the applications in current generation.

RecPM-AOS [150] is a recently proposed AOS method that has shown promis-

ing results explained in detail in the previous Chapter 5. It is based on the idea of

maximising the future reward utilising probability matching mechanism. Compass,

F-AUC-MAB and PM-AdapSS are among popular AOS methods that can be repli-

cated by fixing choices for each component in the framework. An overview of these

methods can be found in Chapter 3.

The usage of different component choices involved in adaptive methods vary

greatly in the literature. We attempt to analyse the trend of utilising different choices

in each component extracted from Table 6.6. The summary of choice count consid-

ered in literature is shown in Figure 6.4. It can be clearly seen that a lot of emphasis

is given on exploring novel reward choices among all components while propos-

ing an AOS method. Success rate (6.13) and normalised best sum (6.19) are among

the popular choices for reward. In other components, Fitness improvement w.r.t.

parent (6.2) is frequently used offspring metric and probability matching is a com-

mon choice by researchers that assign quality (6.22), probability (6.29) and selection

mechanism (6.32). The combinations of these popular component choices have been

explored in literature. [117] considers three reward definitions based on fitness im-

provement w.r.t. parent namely, pareto rank, pareto dominance and projection. To

form a complete AOS method, these are combined with PM. Six combinations are

tested in [49], area under the curve and sum of rank reward choices paired with dy-

namic multi-armed bandit (6.23 + 6.29 + 6.33), adaptive pursuit (6.22 + 6.30 + 6.32)

and probability matching. We have not included statistical factor in the framework,

and have only considered MAB instead of D-MAB. The papers testing other combi-

nations include [50, 59, 119].

Besides these combinations, many other novel AOS methods can be designed

using the framework. These combinations can be easily tested with differential evo-

lution using the tool available on Github 1. The framework can be utilised to control

the discrete parameters of not only DE but also any other evolutionary algorithm

that has discrete parameters.

1https://github.com/mudita11/Tune-AOS-bbob

6.3. AOS methods utilised to build the framework 99

FIGURE 6.4: Component choices with their usage frequency in the
literature

Offspring metrics Quality choice

0	

5	

10	

15	

20	

25	

Offspring	fitness	 Fitness	
improvement	
w.r.t.	parent	

Fitness	
improvement	
w.r.t.	current	
best	parent	

Fitness	
improvement	
w.r.t.	best	

individual	so	far	

Fitness	
improvement	
w.r.t.	median	

fitness	

Relative	fitness	
improvement	

0	

2	

4	

6	

8	

10	

12	

Weighted	
Sum	

Upper	
confidence	
bound	

Quality	
identity	

Weighted	
normalised	

sum	

Bellman	
equation	

Selection choice Probability choice

0	

5	

10	

15	

20	

25	

30	

Selection	choices	 Proportional	
selection	

Greedy	selection	 Epsilon-greedy	
selection	

Linear	annealed	
selection	

Proportional-greedy	
selection	

0	

5	

10	

15	

20	

25	

Probability	
choices	

Probability	
matching	

Adaptive	pursuit	 Probability	
identity	

Reward metrics

0	

1	

2	

3	

4	

5	

6	

Pareto	
Dominance	

Pareto	
Rank	

Compass	
Projection	

Area	under	
the	curve	

Sum	of	
Rank	

Success	
rate	

Immediate	
success	

Success	
sum	

Normalised	
success	
sum	

window	

Normalised	
success	
sum	

generation	

Best2Gen	 Normalised	
best	sum	

100 Chapter 6. Unified Framework for Adaptive Operator Selection

6.4 Experimental Design

As seen in the previous chapter JaDE showed competitive results compared to the

other algorithms. Thus, we decided to include the mutation strategy involved in

JaDE within the list of operators to be adapted by an AOS method. We also include

three other popular mutation strategies to increase the robustness of the framework.

In addition to the strategies adapted in the previous chapter, four other strategies in-

cluded are “curr-to-pbest/1(archived)”, “current-to-best/1”, “best/1”, “best/2”and

“curr-to-pbest/1”. Thus, in total nine strategies are adapted within DE, shown in

section 2.2.3.

6.4.1 Parameter tuning

The framework consists of 6× 12× 5× 3× 5 = 5, 400 AOS methods. These methods

have their own hyper-parameters which increase the number of unique combina-

tions possible. As the parameter space is huge, we decided to combine the frame-

work with an offline method that tunes the framework and returns a combination of

choices for a problem set. We use the offline automatic configurator irace to tune the

framework. An overview of irace can be found in Chapter 4. It is provided with a

training set and component choices along with their hyper-parameters. In addition

to tuning the framework and its hyper-parameters, it also tunes the parameters of

the DE algorithm F, NP, CR and topNP. Parameter ranges/choices given to irace are

shown in Table 6.7. The table shows the name, type (Real, Integer, categorical) and

range of each parameter tuned by irace. The real valued parameters take a two-point

float value, integer type represents integer value in the given range and categori-

cal can only select from the choices given. The budget given to irace is 104. The

candidate configuration sampled by irace is an AOS method with a set of its hyper-

parameter values and tuned DE parameters. The budget assigned to a run is 104 · n

function evaluations where n = 20 is the dimension of the function. In this chapter,

all algorithms focus on n = 20 for all functions.

The training set consists of 48 function instances of the BBOB noiseless functions

of dimension 20. Details on the BBOB benchmark set can be found in Chapter 4.

We give four AOS methods as the starting configurations to irace. Compass [118],

6.4. Experimental Design 101

TABLE 6.7: Hyper-parameter choices given to irace

Parameter Name Type Range Notes
DE parameters

F Real [0.1, 2.0] Mutation Rate
CR Real [0.1, 1.0] Crossover Rate
NP Integer [50, 400] Population Size

topNP Real [0.02, 1.0] Top p candidates
Component choices

Offspring Metric Categorical [0, 6] Type of OM
Reward Type Categorical [0, 11] Type of Reward
Quality Type Categorical [0, 4] Type of Quality

Probability Type Categorical [0, 2] Type of Probability
Selection Type Categorical [0, 4] Type of Selection

Reward Choice parameters
f ixappl Integer [10, 50] Fix number of applications
maxgen Integer [1, 50] Maximum number of generations

θ Categorical (36, 45, 54, 90) Projection angle
W Integer (20, 150) Size of window
D Real [0.0, 1.0] Decay factor
γ Categorical (1, 2) Success choice

Frac Real [0.0, 1.0] Fraction of overall success
ε Real [0.0, 1.0] Noise
ω Categorical (0, 1) Normalisation choice
C Real [0.001, 1.0] Scaling constant
α Categorical (0, 1) Decision parameter
β Categorical (0, 1) Decision parameter
ρ Categorical (1, 2, 3) Intensity

Quality Choice parameters
δ Real (0.0, 1.0) Decay rate
C Real (0.0, 1.0) Scaling Factor

qmin Real (0.01, 1.0) Minimum quality attained
c1 Real (0.0, 1.0) Memory for current reward
c2 Real (0.0, 1.0) Memory for previous reward
γ Real (0.01, 1.0) Discount rate

Probability Choice parameters
pmin Real [0.0, 1.0] Minimum selection probability
εp Real (0.0, 1.0) Noise
µ Real (0.0, 1.0) Learning rate

pmax Real (0.0, 1.0) Maximum selection probability
Selection Choice parameters

eps Real [0.0, 1.0] Random probability of selection

102 Chapter 6. Unified Framework for Adaptive Operator Selection

TABLE 6.8: Starting configurations and the configuration returned by
irace

Parameter name RecPM-
AOS

PM-
AdapSS

F-AUC-
MAB

Compass Configuration
returned by
irace (U-AOS-
FW)

DE parameters
F 0.57 0.47 0.45 0.51 0.41

CR 0.93 0.96 0.21 0.95 0.91
NP 154 329 57 163 262

p in pbest 0.05 0.07 0.73 0.64 0.02
Component choices

Offspring Metric 6.2 6.2 6.2 6.2 6.2
Reward Type 6.14 6.16 6.11 6.10 6.14
Quality Type 6.26 6.22 6.23 6.24 6.26

Probability Type 6.29 6.29 6.29 6.29 6.29
Selection Type 6.32 6.32 6.33 6.32 6.32

Reward Choice hyper-parameters
f ixappl - - - 66 -

θ - - - 90 -
W - 73 138 - -
D - - 0.47 - -
ω - 1 - - -

Quality Choice hyper-parameters
δ - 0.07 - - -
c - - 0.04 - -
c1 0.57 - - - 0.66
c2 0.96 - - - 0.45
γ 0.43 - - - 0.54

Probability Choice hyper-parameters
pmin 0.08 0.06 0.02 0.08 0.04
εp 0.26 0.53 0.72 0.55 0.22

PM-AdapSS [59] and F-AUC-MAB [49] are among popular AOS methods along with

RecPM-AOS that act as initial population for irace to explore the parameter search

space. We tune the hyper-parameters of the starting configurations along with DE

parameters using irace. The tuned AOS methods within DE are shown in Table 6.8.

6.5 Testing phase

After tuning, irace returns an AOS method along with its tuned hyper-parameter val-

ues and tuned DE parameter values given the starting configurations. The last col-

umn in 6.8 shows the configuration returned by irace, abbreviated as U-AOS-FW. The

returned configuration is a variant of RecPM-AOS described in previous Chapter 5.

6.5. Testing phase 103

RecPM-AOS assigns reward to an operator depending on the short term success of

that operator and estimates quality based on the expected quality of possible selec-

tion of operators in the past. It shares similarities with PM-AdapSS AOS method.

When comparing PM-AdapSS and RecPM-AOS, the former uses PM to select an op-

erator whereas the latter uses a variant of PM known as RecPM. Both AOS methods

use reward based on the number of improvements from parent to offspring, how-

ever, PM-AdapSS uses average relative fitness improvement as immediate reward

without using accumulated reward, whereas RecPM-AOS uses offspring survival

rate as immediate reward combined with a fraction of its previous accumulated re-

ward.

Algorithm 5 shows the working steps of AOS within DE in the testing phase.

For a given test problem, this is simply the working of DE with multiple mutation

operators where each parent is evolved with an operator using the selection method

employed in the AOS method. Testing starts by initialising and evaluating the par-

ent population. The OM values are calculated for each offspring to initialise the

generation and window memory. The probability for each operator is initialised as

1
K where K is the total number of mutation strategies. This gives every operator an

equal chance to get selected. Once the initialisation phase is over, the following steps

are repeated as long as the stopping criteria are not satisfied. The parent population

is evolved using a mutation strategy selected for each parent by selection definition

in the AOS method. The selection is performed based on the probability of each op-

erator. The memory is updated based on OM. The offspring population is evaluated

and the solution among parent and offspring with better fitness survives. This is

followed by reward, quality and probability update according to the AOS method.

Once the algorithm terminates, best fitness value is returned.

We select four tuned AOS methods within DE PM-AdapSS [59], F-AUC-MAB [49],

Compass [118] and RecPM-AOS [150]; two non-AOS DE algorithms with one muta-

tion strategy, JaDE [169] and R-SHADE [160] to compare with the returned config-

uration. PM-AdapSS and F-AUC-MAB were introduced in the context of selecting a

mutation strategy aka operator in (DE) [132]. In particular, PM-AdapSS uses proba-

bility matching as the method for operator selection, whereas F-AUC-MAB employs

104 Chapter 6. Unified Framework for Adaptive Operator Selection

Algorithm 5 AOS method formed with the component choices from the framework
coupled with DE

1: Given: Tuned CR, F and NP; Component choices from AOS framework
2: Initialise and evaluate fitness of each individual xi in the population
3: g = 0 (generation number)
4: Calculate OM(0, k, op), ∀ k
5: Initialise generation and window memory using OM(0, k, op), ∀ k
6: Initialise probability P0,op, ∀op ∈ Op
7: while stopping condition is not satisfied do
8: for each xi, i = 1, . . . , NP do
9: if one or more operators not yet applied then

10: op = Uniform selection among operator(s) not yet applied
11: else
12: op = Select a mutation strategy based on the selection choice
13: Generate offspring using selected operator op
14: Calculate OM(g, k, op)
15: Update generation and window memory using OM(g, k, op), ∀ k
16: Evaluate offspring population
17: Perform survival selection
18: Calculate reward for each operator Rg+1,op
19: Estimate quality for each operator Qg+1,op
20: Update probability for each operator Pg+1,op
21: g = g + 1

a method inspired by multi-armed bandits. Compass evaluates an operator’s im-

pact using two measures, mean fitness and population fitness diversity. It measures

how well the operator balances the exploration and exploitation. The latter two al-

gorithms employ different ways to self-adapt crossover and mutation rate in DE.

JaDE is a DE variant that adapts the crossover probability CR and mutation factor

F using the values which proved to be useful in recent generations. R-SHADE is an

improvement upon JaDE which employs a restart mechanism and uses a parameter

adaptation mechanism based on a historical record of successful parameter settings

to adapt CR and F. JaDE and R-SHADE utilise same mutation strategy “current-

to-pbest” to evolve population and it is one of the operators adapted by returned

configuration from unified framework, U-AOS-FW and other AOS methods in com-

parison.

The data for non-AOS methods is taken from the COCO website.2 As we clearly

2http://coco.gforge.inria.fr/doku.php?id=algorithms-bbob

http://coco.gforge.inria.fr/doku.php?id=algorithms-bbob

6.6. Experiments and Results 105

outperform CMA-ES in the previous chapter, we decided not to compare the re-

turned configuration with CMA-ES. The returned configuration and other six algo-

rithms from the literature are evaluated on the remaining 312 BBOB noiseless bench-

mark set on dimension 20. The budget allocated to a run is 105 · 20 function evalu-

ations. We use plots of the Empirical Cumulative Distribution Function (ECDF) to

assess their performance (Fig. 6.6). The introduction on ECDF graphs can be found

in section 5.2.1 of Chapter 5. The aRT tables are shown in Appendix C.

6.6 Experiments and Results

During tuning irace samples parameters from their individual parameter distribu-

tion. The sampling frequency of the parameters is shown in Figure 6.5. Categor-

ical parameters that take values from a set of values are shown in the figure such

as OM_choice and frac. Parameters that take floating-values such as FF and decay

sample from a probability distribution such as a normal distribution.

6.6.1 Comparison of U-AOS-FW with other tuned AOS methods

ECDF graphs on 24 functions each with 13 test instances are shown in Figure 6.6. It

also shows class-wise and overall performance on the test set. These graphs clearly

show that the configuration returned by irace, U-AOS-FW reaches all targets with

competitive speed for functions f001, f002 and f005-f014 in comparison with RecPM-

AOS, PM-AdapSS, Compass and F-AUC-MAB. Looking at the separable class Com-

pass and U-AOS-FW solves problems with the same speed solving the same number

of problems as PM-AdapSS. Although U-AOS-FW is a variant of RecPM-AOS, the

former solves more problems than the latter with faster speed. F-AUC-MAB has

shown exceptional performance in terms of speed and problems solves compared

to other AOS methods for separable class of problems. U-AOS-FW performed best

for low/moderate conditioning problems reaching all targets for all 4×13 test in-

stances falling under this category and the same performance of all AOS methods

can be seen in the case of high conditioning class of problems. F-AUC-MAB per-

formed worse on low/moderate and high conditioning class, solving the least num-

ber of problems. U-AOS-FW and RecPM-AOS excelled in the multi modal (adequate

106 Chapter 6. Unified Framework for Adaptive Operator Selection

FIGURE 6.5: Parameter sampling frequency. FF for F, top_NP for p in
pbest, θ for theta, W for window, D for decay, γ for succ_lin_quad,
Frac for frac, ε for noise, ω for normal_factor, C for scaling_constant,
α for alpha, β for beta, ρ for intensity, c for scaling_factor, δ for de-
cay_rate, c1 for weight_reward, c2 for weight_old_reward, γ for dis-

count_rate, µ for learning_rate, εp for error_prob, eps for sel_eps

FF

values

P
ro

ba
bi

lit
y

de
ns

ity

0.5 1.0 1.5 2.0

0.
0

0.
6

CR

values

P
ro

ba
bi

lit
y

de
ns

ity

0.2 0.4 0.6 0.8 1.0

0.
0

1.
5

NP

values

P
ro

ba
bi

lit
y

de
ns

ity

50 100 150 200 250 300 350 400

0.
00

0
0.

00
3

top_NP

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

0 1 2 3 4 5 6

OM_choice

values

Fr
eq

ue
nc

y

0
30

0
0 1 2 3 4 5 6 7 8 9 10 11

rew_choice

values

Fr
eq

ue
nc

y

0
30

0

0 1 2 3 4

qual_choice

values

Fr
eq

ue
nc

y

0
30

0

0 1 2

prob_choice

values

Fr
eq

ue
nc

y

0
40

0

0 1 2 3 4

select_choice

values

Fr
eq

ue
nc

y

0
30

0

fix_appl

values

P
ro

ba
bi

lit
y

de
ns

ity

20 40 60 80 100 120 140

0.
00

0
0.

00
8

max_gen

values

P
ro

ba
bi

lit
y

de
ns

ity

0 10 20 30 40 50

0.
00

0
0.

02
5

36 45 54 90 <NA>

theta

values

Fr
eq

ue
nc

y

0
60

0

window_size

values

P
ro

ba
bi

lit
y

de
ns

ity

20 40 60 80 100 120 140

0.
00

0
0.

00
8

decay

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
8

1 2 <NA>

succ_lin_quad

values

Fr
eq

ue
nc

y

0
60

0

frac

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
8

noise

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

0 1 <NA>

normal_factor

values

Fr
eq

ue
nc

y

0
60

0

scaling_constant

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

0 1 <NA>

alpha

values

Fr
eq

ue
nc

y

0
60

0

0 1 <NA>

beta

values

Fr
eq

ue
nc

y

0
60

0

1 2 3 <NA>

intensity

values

Fr
eq

ue
nc

y

0
60

0

scaling_factor

values

P
ro

ba
bi

lit
y

de
ns

ity

0 20 40 60 80 100

0.
00

0
0.

01
5

decay_rate

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
8

q_min

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

weight_reward

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

weight_old_reward

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

discount_rate

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

p_min

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0
4

8

learning_rate

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
8

error_prob

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

p_max

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
8

sel_eps

values

P
ro

ba
bi

lit
y

de
ns

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
8

6.6. Experiments and Results 107

structure) class of problems. They showed similar performance with former solving

faster than any other algorithm. U-AOS-FW came second in the multi modal (weak

structure) problems after F-AUC-MAB which solved more than 30% problems. Over-

all, U-AOS-FW solved approximately 65% of total problems which is more than the

number of problems solved by any tuned AOS method and also with faster speed

compared to any AOS method.

6.6.2 Comparison of U-AOS-FW with non-AOS methods

We compare the performance of U-AOS-FW with non-AOS methods that is CMA-ES,

JaDE and R-SHADE. The latter two are variants of DE utilising one strategy to evolve

population of candidate solutions. CMA-ES is a variant of evolutionary strategy. U-

AOS-FW outperformed the three algorithms in three classes namely multi modal

(adequate structure), low/moderate and high conditioning problems. It excelled

not only in solving maximum number of problems in these three class but also with

higher speed. Overall, U-AOS-FW solved more problems than CMA-ES and ranked

third after JaDE and R-SHADE.

6.6.3 Comparison of U-AOS-FW trained on nine operators with RecPM-

AOS on four operators

We are interested in analysing whether adding new operators in the set of oper-

ators for AOS method to choose from lead to any improvement in performance.

Thus, we made an attempt in analysing the difference in performance of U-AOS-FW

trained on nine operators to RecPM-AOS trained on four operators (RecPM1). To

analyse this, we compare the class-wise ECDF graphs of U-AOS-FW shown in Fig-

ure 6.6 and RecPM-AOS shown in Figure 5.3 from Chapter 5. There does not seem

be any difference in performance of U-AOS-FW and RecPM1 in solving separable,

multi modal (adequate), low and high conditioning class problems, that is they solve

the same number of problems. However, U-AOS-FW solves the function instances

of low/moderate conditioning and multi modal (adequate structure) with greater

speed. In solving multi modal (weak structure), U-AOS-FW outperforms RecPM1

108 Chapter 6. Unified Framework for Adaptive Operator Selection

FIGURE 6.6: ECDFs on test set. F-AUC for F-AUC-MAB, UFW for
U-AOS-FW, RecPM for RecPM-AOS, AdapSS for PM-AdapSS

f001 f002 f003

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

AdapSS
RecPM
UFW
Compass
F-AUC
JaDE
R-SHADE
CMA-ES
best 2009bbob f1, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

1 Sphere

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs
AdapSS
RecPM
UFW
Compass
JaDE
F-AUC
CMA-ES
R-SHADE
best 2009bbob f2, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

2 Ellipsoid separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM
AdapSS
UFW
Compass
CMA-ES
JaDE
F-AUC
R-SHADE
best 2009bbob f3, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

3 Rastrigin separable

f004 f005 f006

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CMA-ES
RecPM
Compass
AdapSS
UFW
F-AUC
R-SHADE
best 2009
JaDEbbob f4, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

4 Skew Rastrigin-Bueche separ

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

R-SHADE
AdapSS
F-AUC
UFW
Compass
JaDE
RecPM
CMA-ES
best 2009bbob f5, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

5 Linear slope

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
AdapSS
RecPM
UFW
Compass
JaDE
R-SHADE
CMA-ES
best 2009bbob f6, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

6 Attractive sector

f007 f008 f009

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
CMA-ES
R-SHADE
JaDE
AdapSS
RecPM
Compass
UFW
best 2009bbob f7, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

7 Step-ellipsoid

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
RecPM
AdapSS
UFW
R-SHADE
Compass
JaDE
CMA-ES
best 2009bbob f8, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

8 Rosenbrock original

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
Compass
AdapSS
UFW
R-SHADE
RecPM
JaDE
CMA-ES
best 2009bbob f9, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

9 Rosenbrock rotated

f010 f011 f012

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
R-SHADE
JaDE
Compass
UFW
RecPM
AdapSS
CMA-ES
best 2009bbob f10, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

10 Ellipsoid

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
JaDE
R-SHADE
RecPM
UFW
AdapSS
Compass
CMA-ES
best 2009bbob f11, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

11 Discus

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
AdapSS
Compass
RecPM
UFW
JaDE
R-SHADE
CMA-ES
best 2009bbob f12, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

12 Bent cigar

f013 f014 f015

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
R-SHADE
CMA-ES
JaDE
Compass
RecPM
UFW
AdapSS
best 2009bbob f13, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

13 Sharp ridge

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
R-SHADE
JaDE
UFW
Compass
RecPM
AdapSS
CMA-ES
best 2009bbob f14, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

14 Sum of different powers

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM
Compass
UFW
AdapSS
F-AUC
CMA-ES
JaDE
R-SHADE
best 2009bbob f15, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

15 Rastrigin

6.6. Experiments and Results 109

FIGURE 6.6 (cont.): ECDFs on test set. F-AUC for F-AUC-MAB, UFW
for U-AOS-FW, RecPM for RecPM-AOS, AdapSS for PM-AdapSS

f016 f017 f018

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM
Compass
AdapSS
UFW
F-AUC
JaDE
R-SHADE
CMA-ES
best 2009bbob f16, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

16 Weierstrass

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs
F-AUC
R-SHADE
CMA-ES
JaDE
UFW
RecPM
AdapSS
Compass
best 2009bbob f17, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

17 Schaffer F7, condition 10

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
R-SHADE
CMA-ES
JaDE
AdapSS
UFW
Compass
RecPM
best 2009bbob f18, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

18 Schaffer F7, condition 1000

f019 f020 f021

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

JaDE
CMA-ES
UFW
F-AUC
AdapSS
Compass
RecPM
R-SHADE
best 2009bbob f19, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

19 Griewank-Rosenbrock F8F2

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

Compass
AdapSS
RecPM
UFW
CMA-ES
R-SHADE
JaDE
best 2009
F-AUCbbob f20, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

20 Schwefel x*sin(x)

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

AdapSS
F-AUC
RecPM
Compass
UFW
JaDE
R-SHADE
CMA-ES
best 2009bbob f21, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

21 Gallagher 101 peaks

f022 f023 f024

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

UFW
Compass
RecPM
AdapSS
JaDE
R-SHADE
F-AUC
CMA-ES
best 2009bbob f22, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

22 Gallagher 21 peaks

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM
AdapSS
Compass
UFW
F-AUC
JaDE
CMA-ES
R-SHADE
best 2009bbob f23, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

23 Katsuuras

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
RecPM
Compass
UFW
AdapSS
JaDE
R-SHADE
CMA-ES
best 2009bbob f24, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

24 Lunacek bi-Rastrigin

Separable Low/moderate conditioning High conditioning

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

RecPM
AdapSS
UFW
CMA-ES
Compass
F-AUC
R-SHADE
best 2009
JaDEbbob f1-f5, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
CMA-ES
R-SHADE
JaDE
Compass
RecPM
AdapSS
UFW
best 2009bbob f6-f9, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
R-SHADE
JaDE
Compass
CMA-ES
UFW
AdapSS
RecPM
best 2009bbob f10-f14, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

multi modal (adequate structure)multi modal (weak structure) Overall

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
CMA-ES
R-SHADE
JaDE
RecPM
Compass
AdapSS
UFW
best 2009bbob f15-f19, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

Compass
UFW
AdapSS
RecPM
R-SHADE
JaDE
F-AUC
CMA-ES
best 2009bbob f20-f24, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

F-AUC
CMA-ES
RecPM
UFW
AdapSS
Compass
R-SHADE
JaDE
best 2009bbob f1-f24, 20-D

51 targets: 100..1e-08
13 instances

v2.3.1

110 Chapter 6. Unified Framework for Adaptive Operator Selection

in terms of speed and different targets. Thus, adding more operators helped solv-

ing more problems with higher speed, showing a better arrangement for exploration

and exploitation of search space.

Next we try to identify the operators that lead to differences in performance of

these two algorithms. Thus, further to analysing ECDF graphs we plan to better

understand the impact of the selected operators by comparing the graphs generated

as a result of running algorithms. We compare the performance of RecPM1 (Fig-

ure 5.4) and by U-AOS-FW (Figure 6.7) on functions f 05 and f 07 each with instance

i01. Figure 5.4 is a result of four operator applications by RecPM1 and Figure 6.7 is

a result of utilising nine different operators by U-AOS-FW in different generations.

A value of pmin = 0.04 controls the level of adaptation of operators. To distinguish

these operators, we represent them with different colors. The operators utilised by

different candidate solutions to produce offspring in a generation are represented by

a bar, all raising to the same level. For RecPM1 and U-AOS-FW, population size is

168 and 262 respectively. The second figure for a function instance shows the best

fitness seen as the generation progresses. To show the operator applications from

each class, we have included the operator selections and best fitness progress for

function instances f 04i02, f 08i10, f 13i04, f 17i02 and f 23i04, shown in Figure 6.7.

As seen in f 05i01, U-AOS-FW reaches all targets within 10 generations whereas

RecPM1 takes 18 generations. While both current-to-best/1 and best/2 operators

are good operator choices to reach the targets for linear function, the faster speed

is achieved with the utilisation of best/2 operator by most of the solutions though

the generations. Although best/2 is one of the four operators adapted by RecPM1,

its best utilised in the presence of other new operators included which take care

of premature convergence and stagnation. For function f 07i01, a uni modal non-

separable function, U-AOS-FW decided to evolve solutions in the initial genera-

tions with the employment of rand-to-best/2 operator and rand/2 during the rest

of the generations. It is clear from the graphs that U-AOS-FW reaches optimum

(92.94000000000176) with much higher speed (103 generations) than RecPM1 which

manages to find solution with fitness 94.79693005303372 in 11903 generations. Thus,

it becomes clear that adding new operators has improved the convergence speed by

significant amount.

6.6. Experiments and Results 111

FIGURE 6.7: Operator application and best fitness graphs for
U-AOS-FW (pmin= 0.04). Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f 05i01

0	

50	

100	

150	

200	

250	

300	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

0	

20	

40	

60	

80	

100	

120	

140	

1	 10	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f 07i01

0	

50	

100	

150	

200	

250	

300	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

80	

130	

180	

230	

280	

330	

1	 10	 100	

Be
st	
fit
ne

ss	

Generation	(log	scale	base	10)	

112 Chapter 6. Unified Framework for Adaptive Operator Selection

FIGURE 6.7 (cont.): Operator application and best fitness graphs
for U-AOS-FW (pmin= 0.04). Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f 04i02

0	

50	

100	

150	

200	

250	

300	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

75	
125	
175	
225	
275	
325	
375	
425	
475	
525	
575	

1	 10	 100	 1000	

Be
st	
fit
ne

ss	

Generation	(Log	scale	base	10)	

f 08i10

0	

50	

100	

150	

200	

250	

300	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-40	

4960	

9960	

14960	

19960	

24960	

1	 10	 100	 1000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base	10)	

6.6. Experiments and Results 113

FIGURE 6.7 (cont.): Operator application and best fitness graphs
for U-AOS-FW (pmin= 0.04). Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f 13i14

0	

50	

100	

150	

200	

250	

300	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-300	

-100	

100	

300	

500	

700	

1	 10	 100	 1000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base	10)	

f 17i02

0	

50	

100	

150	

200	

250	

300	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-300	

-100	

100	

300	

500	

700	

1	 10	 100	 1000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base	10)	

114 Chapter 6. Unified Framework for Adaptive Operator Selection

FIGURE 6.7 (cont.): Operator application and best fitness graphs
for U-AOS-FW (pmin= 0.04). Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f 23i04

0	

50	

100	

150	

200	

250	

300	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-221.59	

-221.39	

-221.19	

-220.99	

-220.79	

-220.59	

-220.39	

-220.19	

-219.99	

1	 10	 100	 1000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base	10)	

6.7. Summary 115

6.7 Summary

We conduct an exhaustive survey of adaptive selection of operators (AOS) in Evo-

lutionary Algorithms (EAs). We looked at the commonality among AOS methods

from the literature to combine them and we have added more components to the

framework to built upon the existing categorisation of AOS methods. The formulas

for the alternative choices of each component are presented. The goal is to select an

AOS method from a range of AOS designs given by the presented framework such

that the AOS method can learn to adaptively select the operators of differential evo-

lution algorithm. Due to the large number of AOS choices, we employed irace, an

offline tuner, to select an AOS method for the BBOB problem set. The set of opera-

tors consists of nine mutation strategies that have shown good performance in the

literature.

irace returned a variant of RecPM-AOS, U-AOS-FW. It outperformed the four

well-known irace tuned AOS methods, namely Compass, PM-AdapSS, F-AUC-MAB

and RecPM-AOS. Among the non-AOS methods, U-AOS-FW outperformed JaDE,

CMA-ES and R-SHADE in three function classes, namely low/moderate condition-

ing, high conditioning and multi modal classes. Overall, U-AOS-FW solves 5% less

problems than JaDE. In the experiments, we showed that adaptation of carefully se-

lected nine operators has improved the speed of convergence relative to a subset of

four operators.

116

Chapter 7

Double Q-Network within

Differential Evolution

So far AOS method is seen as an adaptation method learning with limited landscape

features. This information has been broadly classified and generalised in the pre-

vious chapter. In the framework, all the information captured by different reward

definitions could not be utilised at once to learn the optimal adaptation of opera-

tors. Only one reward choice is selected to convert to the probability of selection.

This chapter demonstrates that the use of different landscape features and history

features can be utilised at once to learn the adaptation of operators. These features

are represented in a state in Reinforcement Learning (RL) [158]. An introduction to

RL and literature where RL is used as a control method is shown in Chapter 3.

In RL, an agent takes an action in the environment that returns the reward and

the next state. The goal is to maximize the cumulative reward at each step. Here

step represents taking an action. RL estimates the value of an action given a state

called Q-value to learn a policy that returns an action given a state. A variety of

different techniques are used in RL to learn this policy, some of them estimating the

policy indirectly and only if certain conditions are satisfied. For instance, some of the

techniques are applicable only when the set of actions is finite. One such technique

is Q-learning, where to obtain the best action for the current state, we first need to

compute scores, known as reward, for all possible actions and then pick the one with

the highest reward, making the method applicable only when the sets of state and

action are finite.

In cases where states are continuous, a function is used to perform the mapping

Chapter 7. Double Q-Network within Differential Evolution 117

between the states and actions (as opposed to keeping an explicit map in the form

of a table). This function can be approximated by a Deep Neural network (DNN)

which is a neural network with more than one hidden layer. Deep Reinforcement

Learning (DRL) is the setting where DNN is used to approximate the function and

the weights of the network are optimized for the RL objective (to maximize the re-

ward). Deep Q-learning, a deep reinforcement learning technique, is a specific RL

setting to apply the Q-learning technique with a deep neural network as a function

approximator to learn the optimal policy. In this setting, the network itself is often

called Deep Q-network (DQN) [122], i.e. a deep neural network that approximates

a Q-function. Deep Q-learning makes use of some tricks to ensure stability of the

whole process. Double Deep Q-Network (DDQN) [68] is such a modification that re-

sults in more stable learning than the original DQN, using a trick that is applicable

to Q-learning in general.

We present DNN used as a prediction model inside DDQN, described as an AOS

method for DE. It integrates DDQN into DE as an AOS method that selects a mu-

tation strategy for each candidate solution in each generation. Thus, action here is

to select a mutation strategy out of nine operators for a parent. The efficiently in

employing DDQN as a control method lies in its capability to train DDQN offline

on large amounts of data and using a larger number of features to define the cur-

rent state. When applied as an AOS method within DE, the proposed DE-DDQN

algorithm runs many times on training benchmark problems by collecting data rep-

resented as 199 features, such as the relative fitness of the current generation, mean

and standard deviation of the population fitness, dimension of the problem, number

of function evaluations, stagnation, distance among solutions in the decision space,

etc. After this training phase, the DE-DDQN algorithm can be applied to unseen

problems. It observes the run time value of these features and predict which muta-

tion strategy should be used at each generation.

DE-DDQN also requires the choice of a suitable reward definition to facilitate

learning of a prediction model. Moreover, reward functions can be designed in dif-

ferent ways depending on the problem at hand. For example, Karafotias, Hoogen-

doorn, and Eiben [100] define and compare four per-generation reward definitions

for RL-based AOS methods. As the reward definition has a strong effect on the

118 Chapter 7. Double Q-Network within Differential Evolution

performance of DE-DDQN, four alternative reward definitions are analysed that as-

sign reward for each application of a mutation strategy. Some RL-based AOS meth-

ods calculate rewards per individual [131, 22], while others calculate it per genera-

tion [143]. We chose to calculate reward per individual (individual-level adaptation)

as it has shown to perform good in literature.

Although in this chapter we utilise DE-DDQN to control the DE operators, it is a

generic method that is applicable to control any discrete parameter in an algorithm.

Thus, it can also be utilised to control for instance, crossover type and mutation type

in GAs.

7.1 Methodology

We employ DQN, a DRL technique that extends Q-learning to continuous features

by approximating a non-linear Q-value function of the state features using a neu-

ral network (NN). The classical DQN algorithm sometimes overestimates the Q-

values of the actions, which leads to poor policies. At every step of training, the

Q-network’s values shift, and if we are using a constantly shifting set of values to

adjust our network values, then the value estimations can easily become unstable

by falling into feedback loops between the target and estimated Q-values. In order

to mitigate that risk, two networks are used during training, the primary network

and the target network. The target network is used to generate the target-Q values

that will be used to compute the loss for every action during training. The weights

of target network are fixed, and only periodically or slowly updated to the primary

Q-networks values. This second network is used to generate the target-Q values. In

this way training can proceed in a more stable manner. DDQN was proposed as a

way to overcome this limitation and enhance the stability of the Q-values.

In our model there are large number of continuous state features. Thus, we need

an implicit function approximator that maps this state to an action, as opposed to

keeping an explicit map in the form of a lookup table. The mapping from state

to action is termed as policy. In DRL, this function is approximated by a multi-

layer perceptron neural network and the weights of the network are optimized to

maximize the cumulative reward.

7.1. Methodology 119

7.1.1 DE-DDQN

When integrated with DE as an AOS method, DDQN is adapted as follows. The en-

vironment of DDQN becomes the DE algorithm performing an optimization run for

a maximum of FEmax function evaluations. A state st is a collection of features that

measure static or run time features of the problem being solved in DE environment

at step t (function evaluation). A step marks the evolution of a parent. The actions

that DDQN may take are the set of mutation strategies available (Sect. 2.2.3), and at

is the strategy selected and applied at step t. Once a mutation strategy is applied,

a reward function returns the estimated benefit (or reward) rt of applying action at,

and the DE run reaches a new state, st+1. We refer to the tuple 〈st, at, rt, st+1〉 as an

observation.

Our proposed DE-DDQN algorithm operates in two phases. In the first train-

ing phase, the two deep neural networks of DDQN are trained on observations by

running the DE-DDQN algorithm multiple times on several benchmark functions.

In the second online (or deployment) phase, the trained DDQN is used to select a

mutation strategy to be applied at each generation of DE when tackling unseen test

problems, different from those considered during the training phase. Next, we de-

scribe these two phases in detail.

Training phase

In the training phase, DDQN uses two deep neural networks (NNs), namely primary

NN and target NN. The primary NN predicts the Q-values Q(st, a; θ) that are used

to select an action a given state st at step t, while the target NN estimates the target

Q-values Q̂(st, a; θ̂) after the action a has been applied, where θ and θ̂ are the weights

of the primary and target NNs, respectively, st is the state vector of DE, and a is a

mutation strategy.

The goal of the training phase is to train the primary NN of DDQN so that it

learns to approximate the target Q̂ function. The training data is a memory of obser-

vations that is collected by running DE-DDQN several times on training benchmark

functions. Training the primary NN involves finding its weights θ through gradient

optimization.

120 Chapter 7. Double Q-Network within Differential Evolution

FIGURE 7.1: Offline training of DE-DDQN

The training process of DE-DDQN is shown in Algorithm 6, also presented in

Figure 7.1.

Training starts by running DE with random selection of mutation strategy for

a fixed number of steps (warm-up size) that generates observations to populate a

memory of capacity N, which can be different from the warm-up size (line 2). This

memory stores a fixed number of N recent observations, old ones are removed as

new ones are added. Once the warm-up phase is over, DE is executed M times,

and each run is stopped after FEmax function evaluations or the known optimum

of the training problem is reached (line 7). For each solution in the population, the

ε-greedy policy is used to select mutation strategy, i.e., with ε probability a random

mutation is selected, otherwise the mutation strategy with maximum Q-value is se-

lected. Using the current DE state st, the primary NN is responsible for generating a

Q-value per possible mutation strategy (line 12). The use of a ε-greedy policy forces

the primary NN to explore mutation strategies that may be currently predicted less

optimal. The selected mutation strategy is applied (line 13) and a new state st+1 is

achieved (line 14). A reward value rt is computed by measuring the performance

progress made at this step.

To prevent the primary NN from only learning about the immediate state of this

DE run, randomly draw mini batches of observations (line 16) from memory to per-

form a step of gradient optimization. Training the primary NN with the randomly

drawn observations helps to robustly learn to perform well in the task.

7.1. Methodology 121

Algorithm 6 DE-DDQN training algorithm
1: Initialise parameter values of DE (F, NP, CR)
2: Run DE with random selection of mutation strategy to initialise memory to capacity N
3: Initialise Q-value for each action by setting random weights θ of primary NN
4: Initialise target Q-value Q̂ for each action by setting weights θ̂ = θ of target NN
5: for run 1, . . . M do
6: t = 0
7: while t < FEmax or optimum is reached do
8: for i = 1, . . . , NP do
9: if rand(0, 1) < ε then

10: Randomly select a mutation strategy at
11: else
12: Select at = arg maxa Q(st, a; θ)
13: Generate trial vector ui for parent xi using mutation at
14: Evaluate trial vector and keep the best among xi and ui
15: Store observation (st, at, rt, st+1) in memory
16: Sample random mini batch of observations from memory
17: if run terminates then
18: rtarget = rt
19: else
20: ât+1 = arg maxa Q(st+1, a; θ)

21: rtarget = rt + γQ̂(st+1, ât+1; θ̂)
22: Perform a gradient descent step on (rtarget −Q(sj, aj; θ))2 with respect to θ

23: Every C steps set θ̂ = θ
24: t = t + 1
25: return θ (weights of primary NN)

The primary NN is used to predict the next mutation strategy ât+1 (line 20) and

its reward (line 21), without actually applying the mutation. A target reward value

rtarget is used to train the primary NN, i.e., finding the weights θ that minimise the

loss function (rtarget − Q(sj, aj; θ))2 (line 22). If the run terminates, i.e., if the budget

assigned to the problem is finished, rtarget is the same as the reward rt. Otherwise,

rtarget is estimated (line 21) as a linear combination of the current reward rt and the

predicted future reward γQ̂(st+1, ât+1), where Q̂ is the (predicted) target Q-value

and γ is the discount factor that makes the training focus more on immediate results

compared to future rewards.

Finally, the primary and target NNs are synchronised periodically by copying

the weights θ from the primary NN to the θ̂ of the target NN every fixed number

of C training steps (line 23). That is, the target NN uses an older set of weights to

compute the target Q-value, which keeps the target value rtarget from changing too

quickly. At every step of training (line 22), the Q-values generated by the primary

NN shift. If we are using a constantly shifting set of values to calculate rtarget (line 21)

and adjust the NN weights (line 22), then the target value estimations can easily

122 Chapter 7. Double Q-Network within Differential Evolution

FIGURE 7.2: Online process of DE-DDQN

become unstable by falling into feedback loops between rtarget and the (target) Q-

values used to calculate rtarget. In order to mitigate that risk, the target NN is used

to generate target Q-values (Q̂) that are used to compute rtarget, which is used in

the loss function for training the primary NN. While the primary NN is trained, the

weights of the target NN are fixed.

Online phase

Once the learning is finished, the weights of the primary NN are frozen. In the

testing phase, the mutation strategy is selected online during an optimization run

on an unseen function. The online AOS with DE is shown in the Algorithm 7, also

presented in Figure 7.2.

Since the weights of the NN are not updated in this phase, we do not maintain

a memory of observations or compute rewards. As a new state is observed st, the

Q-values per mutation strategy are calculated and a new mutation strategy is chosen

according to the greedy policy (line 7).

7.1.2 State features and reward

In this section we describe the new state features and reward definitions proposed

for the DE-DDQN method.

7.1. Methodology 123

Algorithm 7 DE-DDQN testing algorithm
1: Initialise parameter values of DE (F, NP, CR)
2: Initialise and evaluate fitness of each xi in the population
3: Initialise Q(·) for each mutation strategy with fixed weights θ
4: t = 0
5: while t < FEmax do
6: for i = 1, . . . , NP do
7: Select at = arg maxa Q(st, a; θ)
8: Generate trial vector ui for parent xi using operator at
9: Evaluate trial vector ui

10: Replace xi with the best among parent and trial vector
11: t = t + 1
12: return best solution found

State representation

The state representation needs to provide sufficient information so that the NN can

decide which action is more suitable at the current step. We propose a state vector

consisting of various features capturing properties of the landscape and the history

of operator performance. Each feature is normalised to the range [0, 1] by design in

order to abstract absolute values specific to particular problems and help generali-

sation. Features are summarised in Tables 7.1 and 7.2.

Our state needs to encode information about how the current solutions in the

population are distributed in the decision space and their differences in fitness val-

ues. The fitness of current parent f (xi) is given to the NN as a first state feature.

The next feature is the mean of the fitness of the current population. The first two

features in the state are normalised by the difference of worst and best seen so far so-

lution. The third feature calculates the standard deviation of the population fitness

values. Feature 4 measures the remaining budget of function evaluations. Feature 5

is the dimension of the function being solved. The training set includes benchmark

functions with different dimensions in the hope that the NN are able to generalise to

functions of any dimension within the training range. Feature 6, stagnation count,

calculates the number of function evaluations since the last improvement of the best

fitness found for this run (normalised by FEmax).

The next set of feature values describe the relation between the current parent

and the six solutions used by the various mutation strategies, i.e., the five random

indexes (r1, r2, r3, r4, r5) and the best parent in the population (xbest). Features 7–12

124 Chapter 7. Double Q-Network within Differential Evolution

TABLE 7.1: Landscape state features

Index Feature Notes

1
f (xi)− fbsf
fwsf − fbsf

xi denotes the i-th solution of the population
and f (xi) denotes its fitness; fbsf and fwsf de-
note the best-so-far and worst-so-far fitness
values found up to this step within a single
run

2
∑NP

j=1
f (xj)
NP − fbsf

fwsf − fbsf
NP is the population size

3
stdj=1,...,NP(f (xj))

stdmax

std(·) calculates the standard deviation and
stdmax is the value when NP/2 solutions have
fitness fwsf and the other half have fitness fbsf

4
FEmax − t

FEmax

FEmax is the maximum number of function
evaluations per run, and FEmax − t gives the
remaining number of evaluations at step t

5
dim f

dimmax

dim f is the dimension of the benchmark func-
tion f being optimised, and dimmax is the max-
imum dimension among all training functions

6
stagcount

FEmax

stagcount is the stagnation counter, i.e., the
number of function evaluations (steps) with-
out improving fbsf

7-11
dist(xi − xj)

distmax , ∀j ∈ {r1, r2, r3, r4, r5}

dist(·) is the Euclidean distance between
two solutions; distmax is the maximum dis-
tance possible, calculated between the lower
and upper bounds of the decision space;
{r1, r2, r3, r4, r5} are random indexes

12
dist(xi − xbest)

distmax
xbest is the best parent in the current popula-
tion

13-17
f (xi)− f (xj)

fwsf − fbsf
, ∀j ∈ {r1, r2, r3, r4, r5}

18
f (xi)− f (xbest)

fwsf − fbsf

19
dist(xi − xbsf)

distmax xbsf denotes the solution with fitness fbsf

7.1. Methodology 125

TABLE 7.2: History state features

Index Feature Notes

20-55 ∑
maxgen
g=1

Nsucc
m (g, op)

Ntot(g, op)

For each op and
m ∈ {1, 2, 3, 4}
and normalised
over all opera-
tors; maxgen is
the number of
recent genera-
tions recorded;
Nsucc

m (g, op) and
Ntot(g, op) are
successful and
total applications
of op accord-
ing to OMm at
generation g

56-91
∑

maxgen
g=1 ∑

Nsucc
m (g,op)

k=1 OMm(g, k, op)

∑
maxgen
g=1 Ntot(g, op)

92-127
OMbest

m (g, op)−OMbest
m (g− 1, op)

OMbest
m (g− 1, op) · |Ntot(g, op)− Ntot(g− 1, op)|

For each op and
m ∈ {1, 2, 3, 4}
and normalised
over all operators;
OMbest

m (g, op)
is the maxi-
mum value of
OMm(g, k, op) in
current genera-
tion g

128-163 ∑
maxgen
g=1 OMbest

m (g, op)

For each op and
m ∈ {1, 2, 3, 4}
and normalised
over all operators

164-199 ∑W
w=1 OMm(w, op)

For each op and
m ∈ {1, 2, 3, 4}
and normalised
over all operators;
OMm(w, op) is
the w-th value
in the window
generated by op

126 Chapter 7. Double Q-Network within Differential Evolution

measure the Euclidean distance in decision space between the current parent xi and

the six solutions. These six euclidean distances help the NN learn to select the strat-

egy that best combines these solutions. Features 13–18 use the same six solutions

to calculate the fitness difference w.r.t. f (xi). Feature 19 measures the normalised

Euclidean distance in decision space between xi and the best solution seen so far.

We use distances instead of positions to make the state representation independent

of the dimensionality of the solution space.

Describing the current population is not sufficient to select the best strategy. Re-

inforcement learning requires the state to be Markov, i.e., to include all necessary

information for selecting an action. To this end, we enhance the state with features

about the run time history. Using historical information has shown to be useful in

our previous work [150], presented in Chapter 5. In addition to the remaining bud-

get and the stagnation counter described above, we also store four metric values

OMm(g, k, op) after the application of op at generation g:

1. OM1(g, k, op) = f (xi)− f (ui), that is, the k-th fitness improvement of offspring

ui over parent xi;

2. OM2(g, k, op), the k-th fitness improvement of offspring over xbest, the best par-

ent in the current population;

3. OM3(g, k, op), the k-th fitness improvement of offspring over xbsf, the best so

far solution; and

4. OM4(g, k, op), the k-th fitness improvement of offspring over the median fitness

of the parent population.

For each OMm, the total number of fitness improvements (successes) is given by

Nsucc
m (g, op), that is, the index k is always 1 ≤ k ≤ Nsucc

m (g, op). The counter Ntot(g, op)

gives the total number of applications of op at generation g. We store this historical

information for the last maxgen number of generations.

With the information above, we compute the sum of success rates over the last

maxgen generations, where each success rate is the number of successful applications

of operator op, i.e., mutation strategy, in generation g that improve metric OMm di-

vided by the total number of applications of op in the same generation. For each

7.1. Methodology 127

metric OMm, the values for an operator are normalised by the sum of all values of

all operators. A different success rate is calculated for each combination of OMm

(m ∈ {1, 2, 3, 4}) and op (nine mutation strategies) resulting in features 20–55.

We also compute the sum of fitness improvements for each OMm divided by the

total number of applications of op over the last maxgen generations (features 56–91).

Features 92–127 are defined in terms of best fitness improvement of a mutation strat-

egy op according to metric OMm over a given generation g, that is, OMbest
m (g, op) =

maxNsucc
m (g,op)

k OMm(g, k, op). In this case, we calculate the relative difference in best

improvement of the last generation with respect to the previous one, divided by the

difference in number of applications between the last two generations (g and g− 1).

Any zero value in the denominator is ignored. The sum of best improvement seen

for combination of operator and metric is given as features 128–163. Features 164-

199 are calculated by maintaining a fixed size window W where each element is a

tuple of the four metric values OMm, m ∈ {1, 2, 3, 4} and f (ui) resulting from the ap-

plication of a mutation strategy to xi that generates ui. Initially the window is filled

with OMm values as new improved offspring are produced. Once it is full, new el-

ements replace existing ones generated by that mutation strategy according to the

First-In First-Out (FIFO) rule. If there is no element produced by that operator in the

window, the element with the worst (highest) f (ui) is replaced. Each feature is the

sum of OMm values within the window for each m and each operator. The difference

between features extracted from recent generations (128-163) and from the fixed-size

window (164-199) is that the window captures the best solutions for each operator,

and the number of solutions present per operator vary. In a sense, solutions compete

to be part of the window. Whereas when computing features from the last maxgen

generations, all successful improvements per generation are captured and there is

no competition among elements. As the most recent history is the most useful, we

use small values for last maxgen = 10 generations and window size W = 50.

Reward definitions

While we only know the true reward of a sequence of actions after a full run of

DE is completed, i.e., the best fitness found, such sparse rewards provide a very

weak signal and can slow down training. Instead, we calculate rewards after every

128 Chapter 7. Double Q-Network within Differential Evolution

action has been taken, i.e., a new offspring ui is produced from parent xi. In this

chapter, we explore four reward definitions, each one using different information

related to fitness improvement except the last one that calculates the cumulative

area of a problem instance:

R1 = max{ f (xi)− f (ui), 0} R2 =


10 if f (ui) < fbsf

1 else if f (ui) < f (xi)

0 otherwise

R3 = max{ f (xi)− f (ui)
f (ui)− foptimum

, 0} R4 = The area under the cumulative curve

R1 is the fitness difference of offspring from parent when an improvement is

seen. This definition has been used commonly in literature for parameter control [131,

22, 143]. R2 assigns a higher reward to an improvement over the best so far solution

than to an improvement over the parent. R3 is a variant of R1 relative to the differ-

ence between the offspring fitness and the optimal fitness, i.e., maximise the fitness

difference between parent and offspring and minimise fitness difference between

offspring and optimal solution. This definition can only be used when the optimum

values of the functions used for training are known in advance. Finally, R4 takes

into account the target of a function achieved by DE-DDQN. We consider 51 targets

from 10−8 to 102 given a budget. This reward definition takes into account the speed

of an algorithm. The more the targets are achieved with higher speed, the greater

the reward is. The least reward is attained when no target is reached. This can be an

indication of stagnation or premature convergence.

7.2 Experimental Design

In the implementation of DE-DDQN, the primary and target NNs are multi-layer

perceptrons. We integrate the four reward definitions R1, R2, R3 and R4 into DE-DDQN

and the resulting methods are denoted as DE-DDQN1, DE-DDQN2, DE-DDQN3

and DE-DDQN4, respectively. For each of these methods, we trained four NNs using

batch sizes 64 or 128 and 3 or 4 hidden layers, and we picked the best combination

7.2. Experimental Design 129

TABLE 7.3: Hyper-parameter values of DE-DDQN

Training and online parameters Parameter value

Scaling factor (F) 0.5
Crossover rate (CR) 1.0

Population size (NP) 100
FEmax per function 104 function evaluations

Max. generations (maxgen) 10
Window size (W) 50

Type of neural network Multi layer perceptron
Hidden layers 4
Hidden nodes 100 per hidden layer

Activation function Rectified linear (Relu) [125]
Batch size 64

Training only parameters Parameter value

Training policy ε-greedy (ε = 0.1)
Discount factor (γ) 0.99

Target network synchronised (C) every 1e3 steps
Observation memory capacity 105

Warm-up size 104

NN training algorithm Adam (learning rate: 10−4)

Online phase parameters Parameter value

Online policy Greedy

of batch size and the number of hidden layers according to the total accumulated re-

ward during the training phase. In all cases, the most successful configuration was

batch size 64 with 4 hidden layers. The rest of the parameters are not tuned but set

to default values. In the training phase, we applied ε-greedy policy with ε = 10%,

that means 10% of the actions are selected randomly and the rest according to the

highest Q-value. In the warm-up phase during training, we set the capacity of the

memory of observations larger than the warm-up size so that 90% of the memory is

filled up with observations from random actions and the rest with actions selected

by the NN. The gradient descent algorithm used to update the weights of the NN

during training is Adam [105]. Table 7.3 shows all hyper-parameter values.

130 Chapter 7. Double Q-Network within Differential Evolution

7.2.1 Training and Testing

As an experimental benchmark, we use functions from the BBOB test bed. In order to

force the NN to learn a general policy, we train on different classes of functions from

BBOB. For BBOB details refer to Chapter 4.2.1. In particular, the proposed DE-DDQN

method is first trained on 48 out of 360 function instances from five function classes

for dimension 20. Two random instances from each 24 functions are included in the

training set. Then, we run the trained DE-DDQN on a different set of 15 functions,

also for dimension 20. Three functions are selected randomly from each of the five

classes, thus a total of 15 test functions.

During training, we cycle through the 48 training problems multiple times and

keep track of the mean reward achieved in each cycle. We overwrite the weights of

the NN if the mean reward is better than what we have observed in previous cy-

cles. We found this measure of progress was better than comparing rewards after

individual runs, because different problems vary in difficulty making rewards in-

comparable. After each cycle, the 48 problems are shuffled before being used again.

This is done for DE-DDQN not able to learn in a fixed pattern and make it to learn

on problems seen in random order. The mean reward stopped improving after ap-

proximately 105 cycles (5040 problems, 5040× 204 FEs), 103 cycles (4944 problems,

4944 × 204 FEs), 102 cycles (4896 problems, 4896 × 204 FEs) and 131 cycles (6288

problems, 6288× 204 FEs) for DE-DDQN1, DE-DDQN2, DE-DDQN3, DE-DDQN4

respectively which indicated the convergence of the learning process.

Although the computational cost of the training phase is significant compared to

a single run of DE, this cost is incurred offline, i.e., one time on known benchmark

functions before solving any unseen function, and it can be significantly reduced by

means of parallelisation and GPUs. On the other hand, we conjecture that training

on even more data from different classes of functions should allow the application

of DE-DDQN to a larger range of unknown functions.

After training, the NN weights were saved and used for the testing (online)

phase.1 For testing, each DE-DDQN variant was run on each test problem shown

1The weights obtained after training are available on Github [https://github.com/mudita11/DE-DDQN-bbob/]
together with the source code, and can be used for testing on similar functions. The code may be
adapted to train or test using other benchmark suites such as CEC2014 with functions of up to
dimension 40.

7.3. Experiments and Results 131

TABLE 7.4: Test set for DE-DDQN. f xiy denotes a function instance
iy that is obtained by a transformation of original function f x.

Function class Function instance

Separable functions f 01i15, f 02i01, f 03i15, f 04i02,
f 05i01

Function with low or moderate condition-
ing

f 06i01, f 07i01, f 08i10, f 09i13

Functions with high conditioning and uni
modal

f 10i07, f 11i08, f 12i14, f 13i14,
f 14i06

Multi modal functions with adequate
global structure

f 15i11, f 16i10, f 17i02, f 18i06,
f 19i10

Multi modal functions with weak global
structure

f 20i08, f 21i10, f 22i10, f 23i04,
f 24i10

in Table 7.4 and each run was stopped when either absolute error difference from

the optimum is smaller than 10−8 or 105 × 20 function evaluations are exhausted.

ECDF graphs for each function is shown in Figure 7.3.

We compared the four presented DE-DDQN variants with three baselines: U-

AOS-FW, JaDE and R-SHADE. We do not compare the performance of proposed

algorithms with F-AUC-MAB, PM-AdapSS, Compass and RecPM-AOS as U-AOS-FW

performed better than these in the Chapter 6. The parameters of U-AOS-FW is tuned

in the same manner as described in Chapter 6 with the help of an offline configurator

irace.

7.3 Experiments and Results

We present ECDF graphs of four DE-DDQN variants and three algorithms in com-

parison. The aRT tables are shown in Appendix C.

132 Chapter 7. Double Q-Network within Differential Evolution

f001 f002 f003

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

DEDDQN4

DEDDQN3

DEDDQN1

DEDDQN2

U-AOS-FW

JaDE

R-SHADE

best 2009bbob f1, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

1 Sphere

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN2

DEDDQN1

U-AOS-FW

JaDE

R-SHADE

best 2009bbob f2, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

2 Ellipsoid separable

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

U-AOS-FW

DEDDQN2

DEDDQN3

DEDDQN1

JaDE

R-SHADE

best 2009bbob f3, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

3 Rastrigin separable

f004 f005 f006

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN1

DEDDQN3

DEDDQN4

DEDDQN2

U-AOS-FW

best 2009

JaDE

R-SHADEbbob f4, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

4 Skew Rastrigin-Bueche separ

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN3

DEDDQN2

DEDDQN4

DEDDQN1

R-SHADE

U-AOS-FW

JaDE

best 2009bbob f5, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

5 Linear slope

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN1

DEDDQN2

U-AOS-FW

JaDE

R-SHADE

best 2009bbob f6, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

6 Attractive sector

f007 f008 f009

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN3

DEDDQN4

DEDDQN2

R-SHADE

DEDDQN1

JaDE

U-AOS-FW

best 2009bbob f7, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

7 Step-ellipsoid

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN2

DEDDQN1

U-AOS-FW

JaDE

R-SHADE

best 2009bbob f8, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

8 Rosenbrock original

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN2

DEDDQN1

U-AOS-FW

JaDE

R-SHADE

best 2009bbob f9, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

9 Rosenbrock rotated

f010 f011 f012

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

R-SHADE

JaDE

DEDDQN1

U-AOS-FW

DEDDQN2

best 2009bbob f10, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

10 Ellipsoid

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN2

R-SHADE

JaDE

DEDDQN1

U-AOS-FW

best 2009bbob f11, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

11 Discus

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN2

DEDDQN1

U-AOS-FW

R-SHADE

JaDE

best 2009bbob f12, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

12 Bent cigar

f013 f014 f015

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN2

R-SHADE

DEDDQN1

JaDE

U-AOS-FW

best 2009bbob f13, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

13 Sharp ridge

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

R-SHADE

JaDE

DEDDQN1

U-AOS-FW

DEDDQN2

best 2009bbob f14, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

14 Sum of different powers

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

U-AOS-FW

DEDDQN4

DEDDQN2

DEDDQN1

DEDDQN3

R-SHADE

JaDE

best 2009bbob f15, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

15 Rastrigin

f016 f017 f018

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

U-AOS-FW

DEDDQN1

R-SHADE

JaDE

DEDDQN4

DEDDQN2

DEDDQN3

best 2009bbob f16, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

16 Weierstrass

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN2

DEDDQN3

DEDDQN4

R-SHADE

JaDE

DEDDQN1

U-AOS-FW

best 2009bbob f17, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

17 Schaffer F7, condition 10

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

R-SHADE

DEDDQN2

JaDE

DEDDQN1

U-AOS-FW

best 2009bbob f18, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

18 Schaffer F7, condition 1000

FIGURE 7.3: ECDFs on test set

7.3. Experiments and Results 133

f019 f020 f021

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

R-SHADE

JaDE

U-AOS-FW

DEDDQN4

DEDDQN3

DEDDQN2

DEDDQN1

best 2009bbob f19, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

19 Griewank-Rosenbrock F8F2

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN1

U-AOS-FW

DEDDQN3

DEDDQN4

DEDDQN2

R-SHADE

JaDE

best 2009bbob f20, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

20 Schwefel x*sin(x)

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN3

DEDDQN1

DEDDQN2

DEDDQN4

R-SHADE

U-AOS-FW

JaDE

best 2009bbob f21, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

21 Gallagher 101 peaks

f022 f023 f024

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN1

U-AOS-FW

JaDE

R-SHADE

DEDDQN2

best 2009bbob f22, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

22 Gallagher 21 peaks

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

U-AOS-FW

DEDDQN3

DEDDQN2

DEDDQN4

DEDDQN1

JaDE

R-SHADE

best 2009bbob f23, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

23 Katsuuras

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs
DEDDQN4

DEDDQN3

DEDDQN2

DEDDQN1

U-AOS-FW

JaDE

R-SHADE

best 2009bbob f24, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

24 Lunacek bi-Rastrigin

Separable Low/moderate conditioning High conditioning

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN2

DEDDQN1

U-AOS-FW

best 2009

JaDE

R-SHADEbbob f1-f5, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN2

R-SHADE

DEDDQN1

JaDE

U-AOS-FW

best 2009bbob f6-f9, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN2

R-SHADE

JaDE

DEDDQN1

U-AOS-FW

best 2009bbob f10-f14, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

multi modal (adequate structure)multi modal (weak structure) Overall

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN2

R-SHADE

JaDE

U-AOS-FW

DEDDQN1

best 2009bbob f15-f19, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN3

DEDDQN4

DEDDQN1

DEDDQN2

U-AOS-FW

JaDE

R-SHADE

best 2009bbob f20-f24, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DEDDQN4

DEDDQN3

DEDDQN2

DEDDQN1

U-AOS-FW

R-SHADE

JaDE

best 2009bbob f1-f24, 20-D
51 targets: 100..1e-08
1 instances

v2.3.1

FIGURE 7.3 (cont.): ECDFs on test set

134 Chapter 7. Double Q-Network within Differential Evolution

7.3.1 Comparison among four proposed models

DE-DDQN1 has performed better than other three variant of presented DE-DDQN

algorithm for thirteen out of 24 test instances. In particular, it reached all targets

for test instances from function f 6 to f 14. In addition to these instances, it also

reached all targets for function instances f 1, f 2, f 17 and f 18. Among other in-

stances, it could not achieve all targets but shows better or at par performance with

either of DE-DDQN2, DE-DDQN3 and DE-DDQN4 for f 3, f 5, f 15, f 19, f 21, f 23 and

f 24. DE-DDQN2 outperformed others in functions f 4, f 20 and f f 22. DE-DDQN3

showed best result for function f 16. Thus, DE-DDQN4 could not outperform any

other proposed variants of DE-DDQN. Overall, DE-DDQN1 solved 30% more tar-

gets than DE-DDQN2 which outperforms DE-DDQN2 and DE-DDQN4.

Reward definitions play an important role in deciding the action for the next

state. They should be informative enough to facilitate learning in the dynamic envi-

ronment. R1 and R2 have shown potential in deciding the operator selection for var-

ious solutions in the search space where the functions have same dimension ranges

[−5, 5]20. R1 considers the improvement of offspring over parent and can be seen

as rewarding the actions proportional to the improvements made by them. This has

been an effective definition but due to varying step-sizes, it is a slow approach. R2

is a simple definitions that assigns fix reward values and does not get affected by

the function range. It assigns ten times more reward when offspring improves over

the best so far solution than when it improves over its parent. Thus, DE-DDQN2

has shown improvement for few functions by learning to generate offspring that not

only tend to improve over the parent but also improve the best fitness seen so far.

The R2 definition encourages the generation of better offspring than the best so far

candidate and it is invariant to differences in function ranges. Although DE-DDQN1

and DE-DDQN2 has shown potential in learning adaptation, they suffer from the

known issue of generalisation. We employ RL algorithms with the aim to generalise

on functions with broad properties. However, generalisation has been highlighted

as an active issue in DRL and is under investigation [128]. The issue of overfitting

leads to the lack of generalisation. As pointed out in [24] "agents become overly spe-

cialised to the environments encountered during training" leading to the problem

7.3. Experiments and Results 135

of overfitting. This has been realised in the context of gaming environment. In the

evolutionary environments, due to lack of utilisation of deep RL methods for adap-

tation, there is no analysis in literature to deal with the issue of generalisation. Thus,

we identify this issue and take it as a future work that make a step towards miti-

gating overfitting problem by including more functions in the training set [44]. [87]

identifies that RL agents regularly overfit to a particular training distribution. This

can be seen in our environment where a DE-DDQN variant performs good on certain

functions only. As can be seen in ECDF graphs 7.3, in some cases (f 5, f 8, f 12 etc.)

DE-DDQN1 performs better than other DE-DDQN variants and for functions such

as f 20, f 6 DE-DDQN2 outperforms others. Like R1, R3 also involve raw function

values. Although R1 is less informative than R3, which considers improvement over

parent and optimum value, latter has shown poor performance. Although R3 scales

fitness improvement with distance from the optimum which partially mitigates the

effect of different ranges among functions with consistent ranges, it is ranked third

among four variants of DE-DDQN. The improvement can be small or large when

functions with different ranges are considered. As a result, R3 becomes less efficient

about choosing operators that will solve the problem within the given number of

function evaluations. It is surprising that R4 definition has been most ineffective to

learn the online selection of operators. The main idea behind designing this defi-

nition is to improve the convergence speed of the algorithm. It however could not

learn simple fitness landscapes and would need future analysis.

7.3.2 Comparison of proposed models with other algorithms

As DE-DDQN1 outperformed other DE-DDQN variants, we compare the perfor-

mance of DE-DDQN1 with other algorithms in comparison. DE-DDQN1 achieves all

targets for instances involved in low/moderate conditioning, high conditioning and

multi modal (adequate structure) classes of functions. However, it lagged in speed in

comparison to JaDE and U-AOS-FW. It outperformed all algorithms in comparison

for multi modal (adequate structure) class.

136 Chapter 7. Double Q-Network within Differential Evolution

7.3.3 Comparison of operator selection by DE-DDQN1 and U-AOS-FW

To identify the differences in the framework setting returned by irace (Chapter 6)

and the best variant of DE-DDQN (DE-DDQN1), we observe the pattern in the op-

erator selection made by DE-DDQN1 and U-AOS-FW shown in Figures 6.7 and D.3

respectively. These figures also show the evolution of best fitness in different gener-

ations for a randomly selected function instance from each class from the test bed.

The operator applications for these functions selected by DE-DDQN2, DE-DDQN3

and DE-DDQN4 are shown in appendix C.

Although both DE-DDQN1 and U-AOS-FW have utilised different operators in

different generations of the function instances, a notable selection pattern can be seen

in these figures. DE-DDQN1 adapts operators by applying one operator to evolve

all parents in a generation and switching to another operator only after a number of

generations. A total of two operators out of nine is a common choice for DE-DDQN1

in the whole run of DE. On the contrary, U-AOS-FW utilises more than one operator

in a generation, that is it employs different operators to evolve different parents in

a generation. Also, the number of applications of each operator is non-uniform in

different generations.

The graph for function instance f 23i04 makes it clear that DE-DDQN1 performed

better than U-AOS-FW because DE-DDQN1 learned to utilise different operators

in different generations whereas U-AOS-FW has uniformly applied each operator

throughout the generations. Precisely, during the initial two-third generations, DE-DDQN1

employs current-to-best/1 with other operators for perturbation and towards the

end applying operator rand/2. The function for which both algorithms have shown

same performance (f 17i02), has one aspect in common. They both utilised current-

to-pbest/1 operator for the initial one-third generations. However, during the rest

of the generations, U-AOS-FW utilised all operators uniformly and DE-DDQN1 ap-

plied only current-to-pbest/1(archived) operator. Thus, it implies that current-to-

pbest/1(archived) gave same performance as uniform selection of operators dur-

ing the last generations. For functions f 13i14, f 8i10 and f 7i01, DE-DDQN1 and

U-AOS-FW reach all targets but the former with lower speed. It can be concluded

that U-AOS-FW learned to utilise all operators to enhance the speed as DE-DDQN1

7.3. Experiments and Results 137

FIGURE 7.4: Operator application and best fitness graphs
for DE-DDQN1. Op1: “rand/2”, Op2: “best/1”, Op3:
“current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f 05i01

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-25	

25	

75	

125	

175	

225	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f 07i01

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

0	

100	

200	

300	

400	

500	

600	

700	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

138 Chapter 7. Double Q-Network within Differential Evolution

FIGURE 7.4 (cont.): Operator application and best fitness
graphs for DE-DDQN1. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f 04i02

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

160	

260	

360	

460	

560	

660	

760	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f 08i10

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-50	

4950	

9950	

14950	

19950	

24950	

29950	

34950	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

7.3. Experiments and Results 139

FIGURE 7.4 (cont.): Operator application and best fitness
graphs for DE-DDQN1. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f 13i14

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-300	

-100	

100	

300	

500	

700	

900	

1100	

1300	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f 17i02

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

15	

17	

19	

21	

23	

25	

27	

29	

1	 10	 100	 1000	

Be
st	
fit
ne

ss	
	

Generation	(log	scale	base10)	

140 Chapter 7. Double Q-Network within Differential Evolution

FIGURE 7.4 (cont.): Operator application and best fitness
graphs for DE-DDQN1. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f 23i04

0	

50	

100	

150	

200	

250	

Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-222.59	

-222.09	

-221.59	

-221.09	

-220.59	

-220.09	

-219.59	

-219.09	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

7.4. Summary 141

hardly used more than two operators for achieving different targets in these func-

tions. DE-DDQN1 performed poorly for function instance f 04i02 and f 05i01 com-

pared to U-AOS-FW due to less utilisation of different operators.

7.4 Summary

In this chapter, we proposed an AOS method based on Double Deep Q-Learning

(DDQN), a Deep Reinforcement Learning method, to control the mutation strate-

gies of Differential Evolution (DE). The application of DDQN to DE requires two

phases. First, a neural network is trained offline by collecting data about the DE

state and the benefit (reward) of applying each mutation strategy during multiple

runs of DE tackling benchmark functions. We define the DE state as the combi-

nation of 199 different features and we analyze four alternative reward functions.

Second, when DDQN is applied as a parameter controller within DE to a different

test set of benchmark functions, DDQN uses the trained neural network to predict

which mutation strategy should be applied to each parent at each generation ac-

cording to the DE state. The benchmark functions for training and testing are taken

from the BBOB benchmark set with dimension 20. We compare the results of the four

proposed DE-DDQN variants to one DE based AOS algorithm U-AOS-FW, two DE

based non-AOS algorithms.

The results show that DE-DDQN1 outperforms the other DE-DDQN variants for

all function instances in the test set. It reaches all targets for functions instances

considered in low/moderate conditioning and high conditioning classes. It showed

best performance for multi modal (adequate structure) class. It, however could not

perform overall best due to moderate performance in separable and multi modal

(weak structure) class. This is a result of overfitting that prevents the algorithm to

generalise well on large set of functions.

142

Part IV

Conclusion and Future Work

143

Chapter 8

Conclusion

Evolutionary Algorithms (EAs) are stochastic algorithms which are inspired by nat-

ural processes. These algorithms have solved various real world problems effi-

ciently. The performance depends largely on the selection of the parameters. Thus,

tuning parameters of an algorithm becomes an important task as it gives an insight

on the performance of the algorithm. The optimum parameter values for a problem

can be different for different problems. Various parameter tuners and controllers are

discussed in Chapter 2. However, adaptive mechanisms deciding the selection of

optimal parameter values at different stages of the algorithm are required for effi-

cient performance of an EA. Adaptive Operator Selection (AOS) is an approach that

controls the discrete parameters during the run of an EA. Heuristic and reinforce-

ment learning based approaches are discussed in Chapter 3.

This thesis has presented various methods for the adaptive selection of muta-

tion strategies in Differential Evolution (DE). We proposed AOS methods that se-

lect an operator for a parent on-the-fly. These AOS methods have been combined

with an offline tuner to show their applicability together. Online and offline tun-

ing are performed at different stages of the whole procedure. We have utilised an

existing offline tuner irace. irace has been efficiently utilised to tune the parameters

involved in presented AOS, while AOS adapts the operators of DE. For testing the

algorithms, we chose single objective toy problems from BBOB noiseless benchmark

set. Section 8.1 summarises various contributions presented in the thesis toward the

research questions defined in Chapter 1. Lastly, section 8.2 gives possible directions

of future work.

144 Chapter 8. Conclusion

8.1 Summary of contributions

Chapter 5 has answered the first research question to be able to efficiently utilise the

markov reward processes as an adaptive method. The proposed algorithm, RecPM-

AOS, has been utilised for the selection of four operators in DE. The goal is to max-

imise the future cumulative reward attained in each generation. As RecPM-AOS has

its own hyper-parameters, we make three sets of comparisons for the fair assess-

ment. First, the hyper-parameters of RecPM-AOS and parameters of DE are trained

on the BBOB training set using irace. Second, the hyper-parameters of RecPM-AOS

are tuned using irace and the parameters of DE are set as default. Third, all the pa-

rameters of RecPM-AOS and DE are set as default. These three set of experiments are

also performed with other popular AOS methods from the literature. The RecPM-

AOS variant with all tuned parameters outperformed all the variants of AOS meth-

ods including its other variants, showing the efficiency of employing offline tuner at

a level that does not directly impact the solutions of numerical functions.

Although many AOS methods have been proposed and their performance has

been compared with other algorithms, the field of evolutionary computation lacks

a generic framework that is widely accepted by the community. Chapter 6 achieves

the aims of the second research question where we designed a unified framework

of AOS methods that can be utilised to control the discrete parameters of any al-

gorithm. This framework builds upon the existing classification of AOS methods

by further simplifying its taxonomy. The presented framework consists of various

AOS components and their generalised choices. This framework has been utilised to

replicate existing methods and to design many new ones. We employed irace to se-

lect an AOS method from a large set of AOS designs formed by combining different

component choices present in the framework. It also tunes the hyper-parameters of

selected AOS method along with the parameters of DE. In this chapter, we included

five more strategies in the set of four strategies from Chapter 5 to analyse the role

of new added strategies in balancing exploration and exploitation. The experiments

are conducted on BBOB problem set to learn the online selection of nine operators.

irace was given a population of starting configurations and it returned a variant of

RecPM-AOS, named U-AOS-FW. U-AOS-FW outperforms RecPM-AOS trained with

8.2. Future work 145

nine and four operators. The addition of five more operators helped perturbation

of solutions throughout the generations and improved speed over four operators.

However, the aRT tables for AOS methods within DE algorithm showed that no one

algorithm has best converging speed for all functions.

Chapter 7 utilises deep reinforcement learning with the aim to learn from a large

number of state features. These features result from landscape and history informa-

tion of nine DE operator applications. This work is conducted towards achieving

the target of the third research question. Four reward definitions have been pro-

posed, out of which two showed promising results. The same approach is applied on

CEC2005 problem set in Appendix B. The testing of presented algorithm, DE-DDQN,

is conducted on two benchmark sets. One, where all functions have same dimen-

sional ranges (BBOB) and the other, that has different ranges for different functions

(CEC2005) has given a clue that one reward definition might perform better than the

other based in the inconsistency of the function ranges considered in the problem set.

This approach can be utilised for online selection of discrete parameter belonging to

any evolutionary algorithm with the aim to generalise on functions with broad set

of properties. However, overfitting on training set seems to be a common issue and

needs to be dealt with in the future.

Comparing the performance of all proposed methods, it can be concluded that

beside improving the performance of an algorithm, online control of parameters

impacts the speed of convergence. The methods which learned the optimal adaptive

behaviour achieve function targets with faster speed than those who fail to learn the

optimal adaption or end up utilising just one to two operators for the whole run.

8.2 Future work

In Chapter 6 we presented a unified framework of AOS methods. The framework

consists of a large number of AOS designs. Thus, we decided to give irace a pop-

ulation of starting configurations. irace returns different configurations each time

the starting configurations are changed. As the resultant configuration depends on

the population of starting configurations, there is need for analysis for the careful

selection of these configurations.

146 Chapter 8. Conclusion

We identify a number of possible future works in the scope of deep reinforce-

ment learning based DE-DDQN which are expected to improve the performance of

the method. DRL algorithms have a drawback that they overfit on the training prob-

lem set, thus does not generalise well on the testing set. One possible way to prevent

overfitting and improve generalisation is by including a larger training set. As men-

tioned in Chapter 4, tuning in DE-DDQN could not have been possible using irace as

it is a time-consuming process. There is a need to explore the tuners such as bayesian

optimsation for extensive tuning of state features and hyper-parameter values. This

tuning process should identify the most relevant feedback information to enclose in

a state within a feasible time frame.

There are other parameters in the DE algorithm that impacts the performance of

DE. JaDE is an efficient algorithm that controls the scaling factor (F) and crossover

rate (CR) in DE with a modified mutation strategy. One effective approach could

be to utilise the control methods from JaDE or from machine learning (specifically

reinforcement learning) within framework and DE-DDQN for controlling various

DE continuous parameters.

The proposed methods are flexible enough to be extended to control discrete

parameters of other evolutionary algorithms such as SHADE and CMA-ES. Thus, to

improve the performance of existing evolutionary algorithms, the presented control

methods can be employed to adapt discrete parameters.

147

Part V

Appendices

148

Appendix A

Mutated Artificial Bee Colony

algorithm

A.1 Introduction

Hybridisation of evolutionary algorithms (EAs) has been used by researchers to

overcome the drawbacks of population-based algorithms. One of the issue with evo-

lutionary algorithms is that they suffer from premature convergence. The Artificial

Bee Colony (ABC) [88] algorithm is one such algorithm that is good at exploitation

but lacks exploration capability. An introduction to ABC can be found in Chap-

ter 2.2.4. It is proposed by Dervis Karaboga in 2005 that is based on the imitation

of the foraging behaviour of bees. It uses intelligent behaviour of a swarm of bees

and has successfully solved a range of mathematical problems [147]. To improve

the exploitation and exploration capability of ABC, we present a novel variant of

ABC named mutated Artificial Bee Colony algorithm. To achieve this we found new

parameters of ABC and tune them manually to solve various numerical problems.

ABC search can be compared to mutation in GA and thus we employ the properties

of mutation into ABC. In addition to this, we replace the criteria to replace scout bee

in the scout bee phase. It helps to prevent abandoning good solutions from the pop-

ulation with possibility to introduce the new better ones. Thus, these steps resulted

into mutated ABC that works towards improving the search capability of ABC. The

proposed algorithm is compared with various standard EAs and popular ABC vari-

ants on four classes of numerical toy problems.

A.2. Methodology 149

Further sections are organised as follows: Section 2 discusses the proposed vari-

ant of ABC algorithm. Section 3 gives experimental results and finally, Section 5

provides conclusions.

A.2 Methodology

The standard ABC algorithm consists of three phases after initialisation phase. These

are employed bee phase, onlooker bee phase and scout bee phase. They are respon-

sible for exploitation and exploitation of the search space. Detailed working of ABC

can be found in Chapter 2.2.4. We present proposed algorithm known as mutated

artificial bee colony (mutated ABC) algorithm in this section. Its working is shown

in the Algorithm 8. The proposed algorithm starts by initialising the parameters.

The generally known parameters of ABC are population size (NP) and (limit) that

determines the number of scout bees. In addition to these, we identify new parame-

ters involved in mutated ABC which are as follows, ratio of the number of employed

bees to the number of onlooker bees (EB : OB), selection method of an employed bee

(EB) in the employed bee phase (SelectEB), selection method of an onlooker bee (OB)

in the onlooker bee phase (SelectOB) and random number generator (RNG). The

new potential position of a bee falls within a range defined by RNG. In ABC, the

EB : OB is taken as 1:1 that is the number of employed bees are same as the num-

ber of onlooker bees. SelectEB and SelectOB is the selection method used to evolve

selected employed and onlooker bees respectively. All EB and OB are selected to

evolve to produce a new candidate position (or solution) in ABC. ABC considers

RNG as rand[−1, 1] that can take a random number within −1 and 1. These pa-

rameters play an important role in the working of the algorithm. Thus, we made an

attempt to manually set the parameter values according to best suit the four class of

problems considered.

In the Initialization phase, all bees in the colony are assigned a random position

within their dimensional limits. Further steps are repeated until a termination con-

dition is satisfied. An employed bee, xi, explores two new position in the direction

of a selected k-th employed bee, xk. It is selected using binary tournament selection

mechanism. To enhance the search capability, we divide the original equation 2.2

150 Appendix A. Mutated Artificial Bee Colony algorithm

Algorithm 8 Mutated Artificial Bee Colony algorithm
1: Initialise parameter values of ABC: NP, limit, EB : OB, µp, SelectEB, SelectOB,

RNG
2: Randomly initialise the position of bees
3: Evaluate the fitness of each individual in the population
4: g = 0 (generation number)
5: while stopping condition is not satisfied do
6: for each ~xi, i = 1, . . . , NP/2 do
7: Generate two positions using equations A.1
8: Greedy selection of a position
9: for each ~xi, i = NP/2, . . . , NP do

10: Roulette-wheel selection of an employed bee using equation 2.3
11: Generate two positions using equations A.1
12: Greedy selection of a position
13: Randomly assign a position to the worst bee
14: g = g + 1

involved in the employed bee phase into two equations shown below A.1. The dif-

ference between the original and proposed equations is the difference in the RNG

parameter, one takes the RNG as rand[−1, 0] and other as rand[0,−1].

vi = xi + rand[−1, 0](xi − xk), k ∈ [1, NP], i 6= k (A.1)

v′i = xi + rand[0, 1](xi − xk), k ∈ [1, NP], i 6= k (A.2)

According to these two equations, vi and v′i is a position of xi bee which is towards

and away from the k-th bee. That is, vi and v′i fall in the opposite directions of xi.

Another difference is the introduction of mutation rate µP. These equations can

be compared to mutation in Genetic Algorithms (GAs). Like in mutation in GAs we

flip one or more bits according the mutation rate, the real values in a position vector

are changed according the introduced parameter µP. In ABC, only one randomly

selected dimension value of a bee position is changed, whereas in mutated ABC

we assign each dimension a probability of getting selected for mutation. We name

this probability as mutation rate, inspired from GAs. The assignment of a selection

probability to each dimension of a position, enhances the search capability in the

mutated ABC.

In the employed bee phase, each EB chooses the best position among xi and

positions resulting from the above two equations, vi and v′i based on their fitness. In

the onlooker bee phase, an OB exploits the neighbourhood of selected employed bee.

A.3. Experimental results 151

The selection of an employed bee is made probabilistically (that is roulette wheel

selection) from the employed bee present in the current population, as shown in

equation 2.3. The neighbourhood of the EB is exploited using equation A.1 where xi

is the selected EB and xk is the randomly selected EB. At the end of this phase each

OB attains a position that is best among its current position, vi and v′i. Thus in both

phases of mutated ABC, each bee has a choice to either attain a position towards or

away from the k-th bee and the best position is chosen according to their fitness.

An employed bee whose position has not been changed for a predefined number

of generations becomes a scout bee. The number of scout bees in a generation is

determined by parameter limit. If the value of limit parameter is set as a large value,

there is a possibility to lose an employed bee with good fitness value. If limit value

is small, it can result in slow convergence speed. In ABC, the value of limit is set as

either 0 or 1. We keep the value of limit same as in ABC, however we propose that

an EB becomes scout bee only if its fitness is greater than the population average

fitness (in case of minimisation). As a result at the end of a generation its position is

perturbed as in employed bee phase and not initialised randomly. This is different

from standard ABC where a new random position is assigned without considering

the ‘goodness’ of the current position that can lead to a new position farther away

from optima.

A.3 Experimental results

The experiments are conducted on a set of benchmark functions shown in Table A.1.

Each function belongs to one of the following class of problem: Uni modal Separa-

ble (US), Multi modal Separable (MS), Uni modal Non-separable (UN), and Multi

modal Non-separable (MN). Each problem was carried out for 30 runs and each

run consists of 500, 000 function evaluations. The population size is kept fixed to 50

(NP) in each generation leading to 500000/50 = 10, 000 generations in a run. The

fitness of a solution in the search space with values less than 10−15 is taken as 0. The

class, dimension (Dim), Interval and optimum value for all the functions is shown

in Table A.1. These specifications are matched with paper [95].

152 Appendix A. Mutated Artificial Bee Colony algorithm

TABLE A.1: Test problems

Function name Class Dim Interval Global minima (Fmin)

Sphere US 30 [-100, 100] 0

Rosenbrock UN 30 [-30, 30] 0

Rastrigin MS 30 [-5.12, 5.12] 0

Griewank MN 30 [-600, 600] 0

Schaffer MN 2 [-100, 100] 0

Dixon-Price UN 30 [-10, 10] 0

Ackley MN 30 [-32, 32] 0

Schwefel MS 30 [-500, 500] -12569.5

SixHump-CameBack MN 2 [-5, 5] -1.03163

Branin MS 2 [-5, 10] ×
[0, 15]

0.398

We set the value of EB : OB as in the original ABC algorithm that is 1:1. The

number of scout bee (limit) is atmost 1 in all runs for all experiments. Mutation

probability (µp) is set to 0.01 for all functions except for Dixon-Price (Uni modal

Non-separable) function whose mutation probability is 1.0 which means that each

dimension of an employed bee undergoes change as it needs more exploration of the

search space. This value is attained by manual tuning. SelectEB, SelectOB are kept

same as in ABC that is all bees are search for new positions in the employed and

onlooker bee phase.

We compare the performance of mutated ABC with six other algorithms: Genetic

Algorithm (GA)[140], Particle Swarm Optimisation (PSO) [37], Differential Evolu-

tion (DE) [132], ABC [88], quick ABC (qABC) [94] and adaptive and hybrid ABC

(aABC) [95]. The working of GA, DE and ABC is explained in Chapter 2. PSO is

a well-known optimisation algorithm that moves towards the optimum solution by

changing the velocity of the candidate solutions towards global best and local best

solution. qABC [94] modifies onlooker bee phase where each onlooker bee chooses

A.3. Experimental results 153

a neighbour according to the euclidean distance similarity measure rather than pro-

portionate selection. It has significant improvement over standard ABC algorithm.

[95] proposes aABC as an adaptive and hybrid ABC algorithm for the adaptive net-

work fuzzy inference system. It employs crossover rate and adaptivity coefficient in

aABC that increases the convergence speed and improves the performance of ABC.

Table A.2 shows the results obtained with the proposed algorithm. The mean,

the standard deviation, the best solution and the worst solution from 30 runs are

shown along with last column showing best results obtained with aABC. Bold en-

tries show the best results obtained by an algorithm for each function. Thus, mutated

ABC obtains best solutions for US, MS and MN class functions compared to aABC

algorithm. Near-optimal solutions are obtained for UN class of functions. Mutated

ABC finds optimal solution in all 30 runs for sphere, Rastrigin, Griewank, Schaffer

and Ackley functions. This can be said because for these functions mean lies on the

optima with 0 standard deviation.

We compare the mean values generated by each algorithm for each function

shown in Table A.3. The values for six algorithms are taken directly from paper [95]

for comparison. The results obtained by best algorithm for a function is marked in

bold. All algorithms except GA manage to find optimal solution on Sphere func-

tion, a uni modal separable function, in all runs. aABC has outperformed all algo-

rithms for the two uni modal non-separable functions, Rosenbrock and Dixon-Price,

with ABC also finding optimum solution for Dixon-Price function. Comparing re-

sults for multi modal separable functions, it can be noticed from Table A.3 that mu-

tated ABC, aABC, qABC and ABC manages to find optimum solution on Rastrigin

and Schwefel. These three algorithms could find a near-optimal solution for Branin

function unlike GA that finds the optimal solution. Considering last class which

is multi modal Non-separable includes Griewank, Schaffer, Ackley and SixHump-

CameBack, it is noticed that ABC and all its variants have shown best mean results

for Griewank function. For Schaffer function, PSO, DE, aABC and mutated ABC

have outperformed other algorithms. For Ackley function, DE, ABC along with all

variants of ABC have shown best results. Lastly, for SixHumpCameBack, GA has

outperformed all other algorithms.

154 Appendix A. Mutated Artificial Bee Colony algorithm

TABLE A.2: Results on test problems

Function
name

Mean Standard
Deviation

Worst Best-
mutated
ABC

Best aABC

Sphere 0 0 0 0 0

Rosenbrock 0.085543 0.127395 0.681654 0.001961 2.1913E-005

Rastrigin 0 0 0 0 0

Griewank 0 0 0 0 0

Schaffer 0 0 0 0 0

Dixon-
Price

0.000116504 0.000367662 0.001937097 1.44909E-08 2.2822E-015

Ackley 0 0 2.84E-14 0 2.2204E-014

Schwefel -12569.487 5.55E-12 -12569.487 -12569.487 -12569.487

SixHump-
CameBack

-1.0316284 0 -1.0316284 -1.0316284 -1.0316284

Branin 0.409121 0.020377 0.482377 0.3978949 0.398874

A.3. Experimental results 155

TABLE A.3: Mean result on benchmark functions using GA, PSO, DE,
ABC, qABC, aABC and mutated ABC

Function
name

GA PSO DE ABC qABC aABC Mutated
ABC

Sphere 1.11E+03 0 0 0 0 0 0

Rosenbrock 1.96E+05 15.088617 18.203938 0.1766957 0.1329198 0.0246333 0.085543

Rastrigin 52.92259 43.977137 11.716728 0 0 0 0

Griewank 10.63346 0.0173912 0.0014792 0 0 0 0

Schaffer 0.004239 0 0 1.04E-10 8.66E-06 0 0

Dixon-
Price

1.22E+03 0.6666667 0.6666667 0 1.15E-12 0 1.91E-02

Ackley 14.67178 0.1646224 0 0 0 0 0

Schwefel -11593.40 -6909.1359 -10.266 -12569.49 -12569.49 -12569.49 -12569.49

SixHump-
CameBack

-1.03163 -1.0316285 -1.031628 -1.0316284 -1.0316284 -1.0316284 -1.0316284

Branin 0.397887 0.3978874 0.3978874 0.3978874 0.3978874 0.3978874 0.409121

156 Appendix A. Mutated Artificial Bee Colony algorithm

A.4 Conclusion and summary

In this chapter, a novel variant of Artificial Bee Colony algorithm has been proposed

which explores new parameters of ABC and tunes few of them to enhance explo-

ration ability of ABC. The mutation operator borrowed from Genetic Algorithm has

proved useful by interpolating and extrapolating the position of bees in finding new

better solutions in their neighbourhood. Replacing ‘limit’ parameter with the av-

erage fitness of bees has been successful in perturbing position of employed bee

and finding global minima. Mutated ABC is tested on four classes of problems and

shown best results for Uni modal Separable, Multi modal Separable, Multi modal

Non-separable function and near optimal solution for Uni modal Separable Non-

separable function. The results are compared with six other population-based algo-

rithms, namely Genetic Algorithm, Particle Swarm Optimsation, Differential Evolu-

tion, standard Artificial Bee Colony algorithm and its two variants- quick Artificial

Bee Colony algorithm and adaptive Artificial Bee Colony algorithm. Overall results

show that mutated ABC is at par with aABC and better than other above-mentioned

algorithms. The novel algorithm is best suited to 3 of the 4 classes of functions under

consideration. Functions belonging to UN class have shown near optimal solution.

157

Appendix B

DE-DDQN tested on CEC2005

problem set

We present results on CEC2005 problem set using algorithm DE-DDQN presented

in Chapter 7. We train it on four operators “best/1”, “best/2”, “curr-to-best/1” and

“rand/2”, shown in section 2.2.3. Thus, there are four actions that DE-DDQN learns

to adapt while running Differential Evolution (DE) algorithm. There are 19 land-

scape features as shown in Table 7.1 and due to four actions, there are 80 history

based features shown in Table B.1. Thus, state consists of 99 features in total.

We consider three models in this chapter. DE-DDQN combined with R1, R2 and

R3 reward definitions, discussed in section 7.1.2. We name these models as DE-

DDQN1, DE-DDQN2 and DE-DDQN3. Next we discuss the results of experiments

on CEC2005 problem set.

B.1 Experimental design

The hyper-parameter setting is same as shown in Table 7.3. We compare the DE-

DDQN1, DE-DDQN2 and DE-DDQN3 with ten baselines: random selection of mu-

tation strategies (Random), four different fixed-strategy DEs (DE1-DE4), PM-AdapSS

(AdapSS) [49], F-AUC-MAB (FAUC) [59], RecPM-AOS (RecPM) [150] and the two

winners of CEC2005 competition, which are both variants of CMA-ES: LR-CMAES

(LR) [11] and IPOP-CMAES (IPOP) [10]. For details on DE-DDQN variants see

Chapter 7. Among all these alternatives, PM-AdapSS, F-AUC-MAB, RecPM-AOS are

158 Appendix B. DE-DDQN tested on CEC2005 problem set

TABLE B.1: History state features

Index Feature Notes

20-35 ∑
maxgen
g=1

Nsucc
m (g, op)

Ntot(g, op)

For each op and
m ∈ {1, 2, 3, 4} and nor-
malised over all operators;
maxgen is the number of re-
cent generations recorded;
Nsucc

m (g, op) and Ntot(g, op)
are successful and total ap-
plications of op according
to OMm at generation g

36-51
∑

maxgen
g=1 ∑

Nsucc
m (g,op)

k=1 OMm(g, k, op)

∑
maxgen
g=1 Ntot(g, op)

52-67
OMbest

m (g, op)−OMbest
m (g− 1, op)

OMbest
m (g− 1, op) · |Ntot(g, op)− Ntot(g− 1, op)|

For each op and
m ∈ {1, 2, 3, 4} and
normalised over all op-
erators; OMbest

m (g, op) is
the maximum value of
OMm(g, k, op)

68-83 ∑
maxgen
g=1 OMbest

m (g, op)
For each op and m ∈
{1, 2, 3, 4} and normalised
over all operators

84-99 ∑W
w=1 OMm(w, op)

For each op and
m ∈ {1, 2, 3, 4} and
normalised over all op-
erators; OMm(w, op) is the
w-th value in the window
generated by op

B.1. Experimental design 159

AOS methods that were proposed to adaptively select mutation strategies. The pa-

rameters of these AOS methods were previously tuned with the help of an offline

configurator irace [115] and the tuned hyper-parameter values (parameters of AOS

and not DE) have been used in the experiments. The details on irace can be found

in Chapter 4. The first eight baselines involve the DE algorithm with the following

parameter values: population size (NP = 100), scaling factor (F = 0.5) and crossover

rate (CR = 1.0). This choice for parameter F has shown good results [46]. CR as 1.0

has been chosen to see the full potential of mutation strategies to evolve each dimen-

sion of each parent. The results of LR and IPOP are taken from their original papers

from the CEC2005 competition for the comparison.

B.1.1 Training and testing

We train three models of DE-DDQN on CEC2005 benchmark suite [157]. From the

25 functions of the benchmark suite, we excluded non-deterministic functions and

functions without bounds (functions F4, F7, F17 and F25). The remaining 21 func-

tions can be divided into four classes: unimodal functions F1 – F5; basic multimodal

functions F6 – F12; expanded multimodal functions F13 – F14; and hybrid composi-

tion functions F15 – F24. We split these 21 functions into roughly 75% training and

25% testing sets, that is, 16 functions (F1, F2, F5, F6, F8, F10–F15, F19–F22 and F24)

are assigned to the training set and the rest (F3, F9, F16, F18 and F23) are assigned

to the test set. According to the above classification, the training set contains at least

two functions from each class and the test set contains at least one function from

each class except for expanded multimodal functions, as both functions of this class

are included in the training set. For each function, we consider both dimensions 10

and 30, giving a total of 32 problems for training and 10 problems for testing.

During training, we cycle through the 32 training problems multiple times and

keep track of the mean reward achieved in each cycle. The primary neural network

weights are over-written if the mean reward is better than what we have observed in

previous cycles. Once a cycle is finished, the 32 problems are shuffled before being

used again. The mean reward stopped improving after 1890 cycles (60480 problems,

6048× 105 FEs) which indicated the convergence of the learning process.

160 Appendix B. DE-DDQN tested on CEC2005 problem set

Once the training is over, NN weights are returned and used for the testing

phase.1 For testing, each DE-DDQN variant was independently run 25 times on

each test problem and each run was stopped when either absolute error difference

from the optimum is smaller than 10−8 or 104 function evaluations are exhausted.

Mean and standard deviation of the final error values achieved by each of the 25

runs are reported in Table B.2.

TABLE B.2: Mean (and standard deviation in parenthesis) of function
error values obtained by 25 runs for each function on test set. Former
five are dimension 10 and last five are dimension 30. We refer DE-
DDQN as DDQN. Bold entry is the minimum mean error found by

any method for each function.

Function Random DE1 DE2 DE3 DE4 AdapSS FAUC RecPM LR IPOP DDQN1 DDQN2 DDQN3

F3-10
2.34e+8

(1.06e+8)

2.78e+8

(1.30e+8)

2.26e+8

(1.10e+8)

2.38e+8

(1.23e+8)

2.63e+8

(1.42e+8)

3.37e+4

(3.62e+5)

3.53e+5

(1.65e+4)

3.08e+4

(2.64e+4)

4.94e-9

(1.45e-9)

5.60e-9

(1.93e-9)

3.98e+3

(1.91e+3)

7.38 e+0

(3.59e0)

2.12e+1

(1.14e+1)

F9-10
1.20e+2

(1.32e+1)

1.18e+2

(1.20e+1)

1.22e+2

(1.88e+1)

1.16e+2

(1.44e+1)

1.22e+2

(1.71e+1)

4.10e+1

(6.36e+0)

4.36e+1

(5.99e+0)

3.79e+1

(6.33e+0)

8.60e+1

(3.84e+1)

6.21e+0

(2.10e+0)

4.19e+1

(6.21e+0)

3.68e+1

(4.64e+0)

3.86e+1

(7.66e+0)

F16-10
6.46e+2

(1.02e+2)

6.50e+2

(9.65e+1)

6.31e+2

(1.15e+2)

5.91e+2

(1.07e+2)

6.33e+2

(9.97e+1)

1.90e+2

(2.21e+1)

2.05e+2

(1.41e+1)

1.89e+2

(1.25e+1)

1.49e+2

(8.01e+1)

1.11e+2

(1.66e+1)

1.93e+2

(1.24e+1)

1.79e+2

(2.05e+1)

1.88e+2

(1.41e+1)

F18-10
1.33e+3

(1.16e+2)

1.36e+3

(8.81e+1)

1.39e+3

(1.11e+2)

1.36e+3

(1.09e+2)

1.36e+3

(9.67e+1)

6.13e+2

(1.67e+2)

6.94e+2

(1.93e+2)

6.48e+2

(1.82e+2)

8.40e+2

(2.17e+2)

6.02e+2

(2.76e+2)

5.20e+2

(1.93e+2)

5.81e+2

(2.47e+2)

5.98e+2

(2.61e+2)

F23-10
1.49e+3

(5.16e+1)

1.51e+3

(6.71e+1)

1.51e+3

(6.03e+1)

1.51e+3

(5.58e+1)

1.49e+3

(4.97e+1)

6.66e+2

(1.99e+2)

7.73e+2

(2.05e+2)

6.37e+2

(1.23e+2)

1.22e+3

(5.16e+2)

9.49e+2

(3.52e+2)

6.18e+2

(1.40e+2)

6.56e+2

(1.57e+2)

6.90e+2

(1.35e+2)

F3-30
2.48e+9

(6.60e+8)

2.68e+9

(7.84e+8)

2.50e+9

(9.04e+8)

2.65e+9

(6.69e+8)

2.51e+9

(8.22e+8)

1.52e+7

(5.50e+7)

6.44e+7

(5.88e+6)

1.31e+7

(6.84e+6)

1.28e+6

(7.13e+5)

6.11e+6

(3.79e+6)

1.52e+7

(9.07e+6)

3.06e+6

(2.54e+6)

5.72e+6

(1.30e+7)

F9-30
5.33e+2

(3.09e+1)

5.27e+2

(3.40e+1)

5.42e+2

(3.73e+1)

5.19e+2

(4.53e+1)

5.41e+2

(3.43e+1)

2.54e+2

(2.69e+1)

2.88e+2

(1.72e+1)

2.53e+2

(1.26e+1)

4.19e+2

(1.02e+2)

4.78e+1

(1.15e+1)

2.73e+2

(1.97e+1)

2.39e+2

(1.52e+1)

2.73e+2

(2.24e+1)

F16-30
1.19e+3

(1.36e+2)

1.18e+3

(1.72e+2)

1.18e+3

(1.16e+2)

1.21e+3

(1.35e+2)

1.20e+3

(1.63e+2)

3.11e+2

(6.26e+1)

3.48e+2

(5.27e+1)

2.97e+2

(3.00e+1)

2.52e+2

(2.08e+2)

1.96e+2

(1.45e+2)

3.18e+2

(4.22e+1)

3.74e+2

(9.03e+1)

3.39e+2

(8.41e+1)

F18-30
1.41e+3

(5.70e+1)

1.43e+3

(4.70e+1)

1.41e+3

(6.47e+1)

1.42e+3

(4.59e+1)

1.42e+3

(5.54e+1)

9.65e+2

(5.59e+1)

1.02e+3

(2.37e+1)

9.71e+2

(2.31e+1)

9.64e+2

(1.46e+2)

9.08e+2

(2.76e+0)

1.04e+3

(2.27e+1)

9.45e+2

(1.42e+1)

9.48e+2

(3.25e+1)

F23-30
1.58e+3

(4.64e+1)

1.57e+3

(4.05e+1)

1.55e+3

(4.51e+1)

1.57e+3

(4.14e+1)

1.57e+3

(5.15e+1)

9.43e+2

(1.40e+2)

1.10e+3

(1.01e+2)

9.67e+2

(1.30e+2)

7.51e+2

(3.30e+2)

6.92e+2

(2.38e+2)

1.17e+3

(6.30e+1)

9.74e+2

(1.69e+2)

9.64e+2

(1.70e+2)

B.1.2 Discussion of results

The average rankings of each method among the 10 test problem instances are shown

in Table B.3. The differences among the 13 algorithms are significant (p < .01) ac-

cording to the non-parametric Friedman test. We conducted a post-hoc analysis us-

ing the best performing method (DE-DDQN2) among the newly proposed ones as

1The weights obtained after training are available on Github [149] together with the source code,
and can be used for testing on similar functions including expanded multimodal.

B.1. Experimental design 161

TABLE B.3: Average ranking of all methods.

Algo IPOP DDQN2 DDQN3 RecPM LR AdapSS DDQN1 FAUC

Rank 2.3 3.3 4.1 4.4 4.4 4.9 5.4 7.2

TABLE B.3 (cont.): Average ranking of all methods.

Algo Random DE3 DE2 DE4 DE1

Rank 10.5 10.8 10.8 11.4 11.5

the control method for pairwise comparisons with the other methods. The p-values

adjusted for multiple comparisons [109] are shown in Table B.4. The differences be-

tween DE-DDQN2 and the five baselines, random selection of operators and single

strategy DEs (DE1-DE4), are significant while differences with other methods are

not. The analysis makes clear that the proposed method learns to adaptively select

the strategy at different stages of a DE run.

While differences between the three reward definitions are not statistically sig-

nificant, the rankings provide some evidence that R2 performs better than the other

two definitions. R2 assigns fixed reward values and is invariant to differences in

function ranges, whereas R1 and R3 involving raw functions values may mislead

the NN when dealing with functions with different fitness ranges. Thus, R1 could

not perform best on CEC2005 problem set due to inconsistent function ranges. Com-

paring with other methods proposed in the literature shows that DE variants with a

suitable operator selection strategy can perform similarly to CMA-ES variants which

are known to be the best performing methods for this class of problems.

To further analyze the difference between DE-DDQN and other AOS methods we

provide boxplots of the results of 25 runs of DE-DDQN2, PM-AdapSS and RecPM-

AOS on each function (Fig. B.1). We observe that the overall minimum function

value found across the 25 runs is lower for DE-DDQN2 in all problems except F9-10

and F16-30. As seen in box plots, for F18 and F23 with dimension 10, DE-DDQN2

often gets stuck at local optima, but manages to find a better overall solution com-

pared to the other methods. Other methods find high variance solutions in these

cases. At the same time, the median values of solutions found are better for six out

162 Appendix B. DE-DDQN tested on CEC2005 problem set

TABLE B.4: Post-hoc (Li) using DE-DDQN2 as control method.

Comparison Statistic
Adjusted

p-value
Result

DDQN2 vs DE1 4.70819 0.00001 H0 is rejected

DDQN2 vs DE4 4.65077 0.00008 H0 is rejected

DDQN2 vs DE2 4.30627 0.00005 H0 is rejected

DDQN2 vs DE3 4.30627 0.00005 H0 is rejected

DDQN2 vs Random 4.13402 0.00010 H0 is rejected

DDQN2 vs F-AUC-MAB 2.23926 0.06630 H0 is not rejected

DDQN2 vs DDQN1 1.20576 0.39166 H0 is not rejected

DDQN2 vs PM-AdapSS 0.91867 0.50299 H0 is not rejected

DDQN2 vs RecPM-AOS 0.63159 0.59848 H0 is not rejected

DDQN2 vs LR 0.63159 0.59848 H0 is not rejected

DDQN2 vs IPOP 0.57417 0.61515 H0 is not rejected

DDQN2 vs DDQN3 0.45934 0.64599 H0 is not rejected

B.2. Conclusion 163

of ten problems. This observation suggests that incorporating restart strategies sim-

ilar to those used by IPOP-CMAES can be particularly useful for DE-DDQN and

give us a direction for future work. DE-DDQN2 performs well consistently for the

unimodal F3 with both 10 and 30 dimensions, while the other AOS methods find

relatively higher error solutions with high variance. We interpret this as an indi-

cation that DE-DDQN can identify this type of problem and apply a more suitable

AOS strategy than Rec-PM and PM-AdapSS. On the other hand, we see that for F16-

30 and F23-30, DE-DDQN2 exhibits higher variance of solutions, which suggests

that higher dimensional multimodal functions often confuse the NN, leading it to

suboptimal behaviour.

B.2 Conclusion

We presented results on CEC2005 benchmark set with DE-DDQN, a Deep-RL-based

operator selection method. It is employed to online select the mutation strategies of

DE. DE-DDQN has two phases, offline training and online evaluation phase. Dur-

ing training we collected data from DE runs using a reward metric to assess the

performance of the selected mutation action and 99 features to evaluate the state of

the DE. We employ three reward definitions, R1, R2 and R3 to reward the actions.

The features and reward values are used to optimise the weights of a neural net-

work to learn the most rewarding mutation given the DE state. The weights learned

during training are then used during the online phase to predict the mutation strat-

egy to use when solving a new problem. Experiments were run using 21 functions

from CEC2005 benchmark suite, each function was evaluated with dimensions 10

and 30. A set of 32 functions was used for training and we run the online phase

on a different test set of 10 functions. We compare the results of the three proposed

DE-DDQN variants to several baseline DE algorithms using no online selection, ran-

dom selection and other AOS methods, and also to the two winners of the CEC2005

competition.

All three proposed methods outperform all the non-AOS baselines based on

mean error seen in 25 runs on test functions. This shows that the proposed methods

164 Appendix B. DE-DDQN tested on CEC2005 problem set

FIGURE B.1: Function error values obtained by 25 runs of DE-
DDQN2, RecPM-AOS and PM-AdapSS for each function on test set

with dimension 10 and 30

F3-10 F3-30

F9-10 F9-30

F16-10 F16-30

F18-10 F18-30

B.2. Conclusion 165

FIGURE B.1 (cont.): Function error values obtained by 25 runs of DE-
DDQN2, RecPM-AOS and PM-AdapSS for each function on test set

with dimension 10 and 30

F23-10 F23-30

can learn to select the right strategy at different stages of the algorithm. Our statis-

tical analysis suggests that differences between the best proposed method and the

AOS methods from the literature are not significant, but the best performing version

of our model, DE-DDQN2, was ranked overall second after IPOP-CMAES. The R2

reward function, which assigns fixed reward values when better solutions are found,

is more helpful for learning an AOS strategy.

Our experimental results show that the DE variants using AOS completely out-

perform the DE variants using a fixed mutation strategy or a random selection. Al-

though a non-parametric post-hoc test does not find that the differences between

the CMAES algorithms and the AOS-enabled DE algorithms (including DE-DDQN)

are statistically significant, DE-DDQN is the second best approach, behind IPOP-

CMAES, in terms of mean rank.

166

Appendix C

Average run time for various

algorithms

Tables C.1 to C.6 show the aRT (average Run Time) in number of function evalua-

tions obtained by various algorithms. aRT is calculated as the ratio of the number

of function evaluations for reaching the target value over successful runs, plus the

maximum number of evaluations for unsuccessful trials, divided by the number of

successful trials, on 24 functions. The run time for a function becomes undefined

if there are no successful runs. The obtained aRT is divided by the respective best

aRT measured during BBOB-2009 in dimension 20. This aRT ratio and, in braces as

dispersion measure, the half difference between 10 and 90%-tile of bootstrapped run

lengths appear for each algorithm and target, the corresponding reference aRT in

the first row. The different target ∆ f -values are shown in the top row. #succ is the

number of trials that reached the (final) target fopt + 10−8. The median number of

conducted function evaluations is additionally given in italics, if the target in the

last column was never reached. Best results are printed in bold. Entries, succeeded

by a star, are statistically significantly better (according to the rank-sum test) when

compared to all other algorithms of the table, with p = 0.05 or p = 10−k when

the number k following the star is larger than 1, with Bonferroni correction by the

number of functions (24). A ↓ indicates the same tested against the best algorithm

from BBOB 2009. aRT shown for algorithm in Tables C.1 and C.2 are result of online

selection of four operators while other are obtained by adaptation of nine opera-

tors.

Appendix C. Average run time for various algorithms 167

TABLE C.1: Average runtime aRT

∆ fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 43 43 15/15

JaDE 48(7) 94(7) 144(9) 193(7) 241(8) 341(9) 438(12) 13/13
PM-AdapSS3 101(20) 197(10) 292(6) 379(25) 467(17) 648(26) 831(20) 13/13

CMA-ES 96(21) 187(31) 279(44) 370(53) 461(69) 640(84) 821(106) 13/13
F-AUC3 118(42) 223(63) 321(30) 412(54) 512(101) 698(58) 887(76) 13/13

RecPM-AOS1 128(38) 256(66) 430(194) 993(1513) 1324(2177) 1737(2205) 2225(2068) 12/13
RecPM-AOS2 7.5(2)?3 13(2)?3 20(2)?3 26(2)?3 33(2)?3 45(3)?3 58(2)?3 13/13
RecPM-AOS3 93(18) 180(24) 264(13) 348(26) 429(25) 595(36) 760(30) 13/13

f2 385 386 387 388 390 391 393 15/15
JaDE 28(1)?3 33(1)?3 39(1)?3 44(1)? 49(2) 61(2) 71(3) 13/13

PM-AdapSS3 52(1) 63(3) 73(4) 83(2) 93(2) 113(2) 132(3) 13/13
CMA-ES 47(6) 57(8) 67(10) 77(8) 86(13) 105(12) 123(15) 13/13
F-AUC3 72(6) 90(15) 109(45) 128(34) 148(20) 190(27) 228(131) 13/13

RecPM-AOS1 63(15) 108(39) 185(18) 212(217) 295(256) 353(216) 380(163) 13/13
RecPM-AOS2 37(4) 44(3) 45(2) 47(2) 47(2)? 48(2)?3 50(1)?3 13/13
RecPM-AOS3 48(4) 58(3) 68(7) 77(6) 86(6) 105(5) 123(4) 13/13

f3 5066 7626 7635 7637 7643 7646 7651 15/15
JaDE 6.4(0.2)?3 6.0(0.2)?3 6.8(0.2)?3 7.6(0.2)?3 8.3(0.2)?3 10(0.2)?3 11(0.1)?3 13/13

PM-AdapSS3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
CMA-ES 526(515) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC3 5023(3948) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS1 2497(2270) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
RecPM-AOS2 776(684) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/13
RecPM-AOS3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

f4 4722 7628 7666 7686 7700 7758 1.4e5 9/15
JaDE 8.1(0.2)?3 7.0(0.1)?3 8.0(0.2)?3 8.9(0.1)?3 10(0.2)?3 11(0.1)?3 0.71(8e-3)?3 13/13

PM-AdapSS3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
CMA-ES 5283(5718) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
RecPM-AOS2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/13
RecPM-AOS3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

f5 41 41 41 41 41 41 41 15/15
JaDE 42(6) 52(9) 53(6) 53(8) 53(8) 53(10) 53(6) 13/13

PM-AdapSS3 79(17) 89(16) 93(9) 93(18) 93(15) 93(20) 93(19) 13/13
CMA-ES 77(25) 92(29) 94(23) 95(20) 95(25) 95(23) 95(24) 13/13
F-AUC3 80(25) 91(24) 95(29) 95(23) 95(33) 95(31) 95(32) 13/13

RecPM-AOS1 106(64) 130(97) 136(69) 136(89) 136(86) 136(56) 136(119) 13/13
RecPM-AOS2 5.1(1)?3 6.1(1)?3 6.2(0.9)?3 6.2(1)?3 6.2(0.7)?3 6.2(0.7)?3 6.2(0.6)?3 13/13
RecPM-AOS3 43(7) 52(9) 54(11) 54(8) 54(11) 54(15) 54(10) 13/13

f6 1296 2343 3413 4255 5220 6728 8409 15/15
JaDE 9.4(0.6) 7.8(0.8) 7.3(0.6) 7.3(0.8) 7.2(0.8) 7.4(0.9) 7.4(1) 13/13

PM-AdapSS3 20(2) 16(1.0) 15(1) 14(1) 14(0.8) 14(0.6) 14(0.5) 13/13
CMA-ES 17(1) 15(1) 14(1) 14(1) 14(1) 14(0.7) 14(0.8) 13/13
F-AUC3 32(3) 44(6) 90(178) 111(235) 141(259) 163(133) 186(322) 9/13

RecPM-AOS1 67(56) 53(49) 45(42) 43(23) 40(27) 40(20) 57(11) 12/13
RecPM-AOS2 1.7(0.4)?3 1.3(0.3)?3 1.2(0.2)?3 1.2(0.1)?3 1.1(0.1)?3 1.2(0.1)?3 1.2(0.1)?3 13/13
RecPM-AOS3 19(2) 15(1) 14(0.9) 14(0.8) 14(0.6) 14(0.4) 14(0.4) 13/13

f7 1351 4274 9503 16523 16524 16524 16969 15/15
JaDE 4.9(0.7) 379(527) 1265(1263) 739(1195) 739(575) 739(1089) 719(1326) 1/13

PM-AdapSS3 5.9(0.7) 3.4(0.2) 2.1(0.1) 1.6(0.1) 1.6(0.1) 1.6(0.1) 1.7(0.1) 13/13
CMA-ES 6.2(0.7) 3.9(0.7) 2.4(0.4) 1.9(0.2) 1.9(0.4) 1.9(0.4) 1.9(0.2) 13/13
F-AUC3 7.7(2) 4.6(1) 2.9(0.6) 2.3(0.6) 2.3(0.6) 2.3(0.6) 2.3(0.5) 13/13

RecPM-AOS1 7.3(2) 4.4(0.8) 20(53) 12(61) 12(31) 12(0.6) 12(89) 12/13
RecPM-AOS2 1.3(0.1)?3 208(114) 649(472) ∞ ∞ ∞ ∞ 1e6 0/13
RecPM-AOS3 5.2(0.5) 3.1(0.5) 1.9(0.2) 1.6(0.2) 1.6(0.1) 1.6(0.2) 1.6(0.2) 13/13

f8 2039 3871 4040 4148 4219 4371 4484 15/15
JaDE 18(1) 15(0.6) 16(0.4) 17(0.5) 17(0.5) 17(0.4) 18(0.7) 13/13

PM-AdapSS3 35(8) 35(4) 37(5) 38(5) 39(5) 40(4) 40(3) 13/13
CMA-ES 43(14) 47(17) 51(19) 52(19) 53(19) 54(18) 54(18) 13/13
F-AUC3 249(762) 246(299) 391(867) 385(350) 384(593) 391(437) 449(725) 7/13

RecPM-AOS1 52(34) 82(21) 82(19) 81(12) 81(127) 82(125) 82(122) 12/13
RecPM-AOS2 3.8(0.7)?3 4.3(3)?3 4.7(1)?3 4.8(0.5)?3 4.8(0.6)?3 4.9(0.7)?3 4.9(0.8)?3 13/13
RecPM-AOS3 23(5) 21(2) 22(3) 23(3) 24(4) 25(2) 26(3) 13/13

f9 1716 3102 3277 3379 3455 3594 3727 15/15
JaDE 35(4) 30(3) 32(2) 32(1) 32(3) 33(2) 33(3) 13/13

PM-AdapSS3 37(9) 40(8) 43(7) 45(5) 45(6) 46(4) 46(4) 13/13
CMA-ES 51(23) 64(29) 71(36) 74(40) 76(41) 76(45) 76(42) 13/13
F-AUC3 246(250) 716(1307) 732(607) 741(361) 914(1319) 906(561) 1096(1111) 5/13

RecPM-AOS1 69(55) 52(11) 53(30) 53(29) 54(14) 55(11) 56(13) 13/13
RecPM-AOS2 4.5(1)?3 5.0(0.5)?3 5.4(0.7)?3 5.5(0.2)?3 5.5(0.3)?3 5.5(0.7)?3 5.5(0.3)?3 13/13
RecPM-AOS3 26(4) 25(3) 27(2) 28(2) 29(2) 30(2) 31(2) 13/13

f10 7413 8661 10735 13641 14920 17073 17476 15/15
JaDE 12(6) 14(5) 15(5) 14(4) 14(4) 15(4) 18(3) 13/13

PM-AdapSS3 2.7(0.1) 2.8(0.1) 2.6(0.2) 2.4(0.1) 2.4(0.1) 2.6(0.1) 3.0(0.1) 13/13
CMA-ES 3.6(0.4) 4.1(0.9) 4.1(2) 4.0(2) 4.1(2) 4.7(0.8) 5.7(3) 13/13
F-AUC3 3.8(1) 5.1(0.4) 5.5(7) 5.5(8) 6.1(0.5) 6.2(9) 6.8(10) 13/13

RecPM-AOS1 3.3(0.8) 4.0(0.9) 4.3(1) 4.2(3) 8.2(3) 8.6(2) 10(4) 13/13
RecPM-AOS2 1.7(0.2)?3 1.7(0.1)?3 1.6(0.2)?3 1.3(0.1)?3 1.2(0.0)?3 1.1(0.1)?3 1.1(0.0)?3 13/13
RecPM-AOS3 2.5(0.1) 2.5(0.2) 2.4(0.2) 2.1(0.1) 2.2(0.1) 2.4(0.1) 2.8(0.1) 13/13

f11 1002 2228 6278 8586 9762 12285 14831 15/15
JaDE 105(14) 52(117) 21(2) 17(2) 17(2) 16(22) 16(2) 12/13

PM-AdapSS3 8.7(0.8) 5.7(0.4) 2.6(0.2) 2.4(0.1) 2.5(0.1) 2.6(0.1) 2.7(0.1) 13/13
CMA-ES 10(0.7) 7.1(0.8) 3.5(0.4) 3.2(0.4) 3.4(0.6) 3.7(0.4) 4.4(2) 13/13
F-AUC3 8.9(2) 6.1(2) 2.9(0.7) 2.7(0.7) 2.8(0.7) 3.0(0.2) 3.1(0.8) 13/13

RecPM-AOS1 10(1) 7.1(1) 4.6(4) 6.0(0.8) 6.2(1) 6.3(3) 7.0(5) 13/13
RecPM-AOS2 11(0.9) 5.3(0.1) 2.0(0.1)?3 1.5(0.1)?3 1.4(0.0)?3 1.2(0.0)?3 1.0(0.0)?3 13/13
RecPM-AOS3 7.3(1) 5.0(0.5) 2.3(0.2) 2.1(0.3) 2.3(0.2) 2.4(0.2) 2.5(0.1) 13/13

f12 1042 1938 2740 3156 4140 12407 13827 15/15
JaDE 19(4) 20(11) 28(10) 31(10) 29(9) 13(3) 14(3) 13/13

PM-AdapSS3 29(2) 18(0.9) 20(1) 23(10) 23(10) 12(4) 13(3) 13/13
CMA-ES 32(2) 22(16) 24(10) 31(11) 32(8) 17(8) 19(3) 13/13
F-AUC3 35(10) 22(6) 27(8) 41(23) 273(618) 129(403) 129(181) 7/13

RecPM-AOS1 62(69) 50(44) 57(41) 60(47) 50(34) 20(10) 20(10) 13/13
RecPM-AOS2 2.0(0.1)?3 3.0(2)?3 3.8(2)?3 4.2(2)?3 3.8(2)?3 1.7(0.7)?3 1.8(0.6)?3 13/13
RecPM-AOS3 27(6) 20(12) 20(7) 21(10) 20(5) 9.5(2) 10(2) 13/13

168 Appendix C. Average run time for various algorithms

TABLE C.2: Average runtime aRT

∆ fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f13 652 2021 2751 3507 18749 24455 30201 15/15

JaDE 17(0.7) 14(5) 15(5) 14(4) 3.7(0.7) 4.8(1.0) 8.7(1) 13/13
PM-AdapSS3 28(1) 13(0.6) 12(0.2) 12(0.3) 2.6(0.1) 2.6(0.1) 2.6(0.1) 13/13

CMA-ES 29(5) 14(1) 14(2) 14(1) 3.2(0.4) 3.6(0.8) 4.1(1) 13/13
F-AUC3 36(7) 17(4) 16(3) 15(4) 3.5(0.8) 4.1(2) 6.7(13) 13/13

RecPM-AOS1 45(62) 34(26) 35(19) 31(18) 6.6(4) 8.1(4) 7.3(2) 13/13
RecPM-AOS2 6.1(6)?3 5.2(2)?2 4.6(2)?3 4.5(3)?3 2.1(3) 5.3(5) 9.4(9) 10/13
RecPM-AOS3 25(2) 12(1) 11(0.5) 11(0.7) 2.5(0.1) 2.5(0.1) 2.5(0.2) 13/13

f14 75 239 304 451 932 1648 15661 15/15
JaDE 18(6) 18(1) 23(2) 25(2) 20(2) 36(11) 68(119) 4/13

PM-AdapSS3 43(7) 34(2) 43(1) 40(1) 25(2) 20(3) 2.8(0.1) 13/13
CMA-ES 40(7) 34(5) 42(6) 40(4) 26(4) 24(3) 4.3(2) 13/13
F-AUC3 53(14) 45(8) 59(13) 53(11) 32(7) 26(5) 4.3(2) 13/13

RecPM-AOS1 45(19) 42(11) 52(14) 49(11) 35(21) 39(22) 5.3(4) 13/13
RecPM-AOS2 4.1(1.0)?3 3.0(0.5)?3 3.6(0.3)?3 4.3(0.6)?3 4.2(0.5)?3 6.2(0.5)?3 1.2(0.1)?3 13/13
RecPM-AOS3 33(4) 30(2) 38(5) 36(4) 23(2) 20(2) 2.8(0.3) 13/13

f15 30378 1.5e5 3.1e5 3.2e5 3.2e5 4.5e5 4.6e5 15/15
JaDE 36(7) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/13

PM-AdapSS3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
CMA-ES 202(116) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC3 413(1021) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
RecPM-AOS2 37(41) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/13
RecPM-AOS3 408(200) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

f16 1384 27265 77015 1.4e5 1.9e5 2.0e5 2.2e5 15/15
JaDE 24(5) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/13

PM-AdapSS3 1.9e4(1e4) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
CMA-ES 4288(5552) 466(439) 335(214) ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
RecPM-AOS2 1.9(0.6)?3 3.0(1)?3 ∞ ∞ ∞ ∞ ∞ 1e6 0/13
RecPM-AOS3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

f17 63 1030 4005 12242 30677 56288 80472 15/15
JaDE 8.0(3) 7.3(3) 4.4(0.8) 2.5(0.3) 1.7(0.3) 8.1(15) 19(21) 2/13

PM-AdapSS3 23(13) 13(0.7) 6.6(0.4) 3.4(0.4) 1.9(0.2) 1.8(0.2) 17(19) 7/13
CMA-ES 17(20) 12(1) 6.1(0.6) 3.2(0.3) 1.8(0.2) 1.8(0.2) 6.1(12) 11/13
F-AUC3 35(12) 16(4) 8.3(2) 4.3(0.7) 2.3(0.5) 2.2(0.3) 4.0(0.3) 10/13

RecPM-AOS1 24(14) 15(4) 8.1(2) 4.2(1) 14(17) 8.7(27) 13(31) 9/13
RecPM-AOS2 2.7(2) 0.94(0.4)?3 1.4(3) 3.8(7) 8.8(5) ∞ ∞ 1e6 0/13
RecPM-AOS3 22(14) 13(3) 6.6(0.5) 3.3(0.3) 1.9(0.1) 1.9(0.2) 6.2(19) 11/13

f18 621 3972 19561 28555 67569 1.3e5 1.5e5 15/15
JaDE 7.3(1) 4.5(1) 1.6(0.4) 9.4(6) 20(16) ∞ ∞ 1e6 0/13

PM-AdapSS3 13(2) 5.3(0.5) 1.8(0.2) 1.9(0.3) 6.4(0.0) 5.5(8) 7.1(14) 7/13
CMA-ES 10(2) 4.7(0.8) 1.8(0.2) 1.9(0.2) 3.6(0.2) 7.8(11) 7.1(7) 9/13
F-AUC3 15(5) 6.2(1) 2.2(0.5) 2.2(0.3) 3.7(0.2) 14(27) 32(24) 4/13

RecPM-AOS1 14(3) 6.2(1) 2.2(0.5) 2.4(0.7) 3.9(0.2) 14(19) 17(10) 5/13
RecPM-AOS2 1.2(0.3)?3 2.0(2) 4.6(6) 423(411) ∞ ∞ ∞ 1e6 0/13
RecPM-AOS3 11(2) 4.6(0.7) 1.7(0.2) 1.8(0.2) 3.5(0.2) 14(12) 47(38) 3/13

f19 1 1 3.4e5 4.7e6 6.2e6 6.7e6 6.7e6 15/15
JaDE 845(267) 7.7e5(4e5) ∞ ∞ ∞ ∞ ∞ 1e6 0/13

PM-AdapSS3 1891(355) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
CMA-ES 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC3 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS1 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
RecPM-AOS2 156(69) 4.9e4(4e4) ∞ ∞ ∞ ∞ ∞ 1e6 0/13
RecPM-AOS3 1305(322) 8.2e6(9e6) ∞ ∞ ∞ ∞ ∞ 2e6 0/13

f20 82 46150 3.1e6 5.5e6 5.5e6 5.6e6 5.6e6 14/15
JaDE 24(3) 1.2(0.2)?3 0.46(0.6)?3 0.74(1)?3 1.1(2)?3 ∞?3 ∞ 1e6?3 0/13

PM-AdapSS3 47(7) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
CMA-ES 50(10) 32(7) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC3 59(15) 556(466) ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS1 68(12) 556(769) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
RecPM-AOS2 5.1(2)?3 134(195) ∞ ∞ ∞ ∞ ∞ 1e6 0/13
RecPM-AOS3 41(4) 557(856) ∞ ∞ ∞ ∞ ∞ 2e6 0/13

f21 561 6541 14103 14318 14643 15567 17589 15/15
JaDE 7.4(3) 26(51) 16(11) 16(24) 15(11) 15(24) 14(15) 12/13

PM-AdapSS3 12(3) 264(306) 474(425) 467(1013) 456(683) 430(385) 380(426) 3/13
CMA-ES 309(4) 358(459) 320(425) 315(349) 308(444) 290(321) 257(370) 4/13
F-AUC3 18(16) 359(536) 228(319) 225(524) 220(546) 207(161) 184(228) 5/13

RecPM-AOS1 18(6) 690(612) 320(248) 315(908) 308(307) 290(321) 257(427) 4/13
RecPM-AOS2 5.5(9) 11(9) 6.0(5) 5.9(3) 5.8(7) 5.5(3) 4.9(3) 13/13
RecPM-AOS3 12(2) 690(459) 781(957) 769(524) 752(1263) 708(2023) 627(426) 2/13

f22 467 5580 23491 24163 24948 26847 1.3e5 12/15
JaDE 28(81) 246(462) ∞ ∞ ∞ ∞ ∞ 1e6 0/13

PM-AdapSS3 1918(2143) 4303(2778) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
CMA-ES 15(5) 576(896) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC3 376(6) 809(1075) ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS1 19(6) 809(986) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
RecPM-AOS2 4.2(8)? 48(101) 120(93) 117(90) 113(162) 105(112) 21(26) 4/13
RecPM-AOS3 795(1075) 1973(1344) ∞ ∞ ∞ ∞ ∞ 2e6 0/13

f23 3.0 1614 67457 3.7e5 4.9e5 8.1e5 8.4e5 15/15
JaDE 2.1(2) 123(61)? ∞ ∞ ∞ ∞ ∞ 1e6 0/13

PM-AdapSS3 1.6(2) 7253(1e4) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
CMA-ES 2.1(2) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC3 3.0(2) 3782(3996) 378(422) ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS1 2.7(3) 5295(4966) 192(148) ∞ ∞ ∞ ∞ 2e6 0/13
RecPM-AOS2 3.4(3) 531(613) 54(45) ∞ ∞ ∞ ∞ 1e6 0/13
RecPM-AOS3 1.7(2) 2954(3952) 381(311) ∞ ∞ ∞ ∞ 2e6 0/13

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 5.2e7 3/15
JaDE ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/13

PM-AdapSS3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
CMA-ES ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
RecPM-AOS2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/13
RecPM-AOS3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

Appendix C. Average run time for various algorithms 169

TABLE C.3: Average runtime aRT

∆ fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 43 43 15/15

U-AOS-FW 73(11) 141(8) 217(11) 294(17) 368(18) 527(21) 670(35) 13/13
R-SHADE 28(7)?3 61(10)?3 91(11)?3 122(14)?3 152(13)?3 211(17)?3 269(11)?3 13/13

RecPM-AOS 86(16) 169(14) 255(29) 345(15) 434(37) 611(38) 790(56) 13/13
PM-AdapSS 92(14) 192(16) 297(14) 400(27) 507(16) 710(17) 926(16) 13/13
F-AUC-MAB 58(7) 113(6) 164(9) 219(16) 270(32) 376(24) 480(45) 13/13
Compass 67(9) 141(10) 217(12) 291(17) 368(10) 517(12) 667(13) 13/13
JaDE 48(10) 94(9) 144(10) 193(8) 241(9) 341(10) 438(12) 13/13

f2 385 386 387 388 390 391 393 15/15
U-AOS-FW 40(3) 48(2) 57(4) 66(4) 74(5) 91(5) 107(5) 13/13
R-SHADE 18(2) 21(2) 24(2) 28(2) 31(2) 37(3) 43(3) 13/13

RecPM-AOS 45(5) 55(4) 65(3) 74(5) 83(4) 103(6) 122(6) 13/13
PM-AdapSS 55(3) 67(0.9) 78(3) 90(3) 101(3) 124(2) 147(2) 13/13
F-AUC-MAB 24(2) 30(2) 35(7) 40(7) 46(5) 56(15) 67(8) 13/13
Compass 39(1) 47(2) 55(2) 64(2) 71(2) 88(2) 104(2) 13/13
JaDE 28(1) 33(1) 39(2) 44(2) 49(2) 61(3) 71(3) 13/13

f3 5066 7626 7635 7637 7643 7646 7651 15/15
U-AOS-FW ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
R-SHADE 7.6(0.5) 7.1(0.3) 7.6(0.3) 7.9(0.2) 8.1(0.2) 8.4(0.2)?3 8.7(0.3)?3 13/13

RecPM-AOS ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
PM-AdapSS ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC-MAB 11(0.8) 8.4(0.9) 8.7(0.4) 9.0(0.8) 9.3(0.6) 10(1) 11(1) 13/13
Compass 5069(4441) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
JaDE 6.4(0.3)?3 6.0(0.2)?3 6.8(0.2)?3 7.6(0.2)? 8.3(0.1) 10(0.1) 11(0.1) 13/13

f4 4722 7628 7666 7686 7700 7758 1.4e5 9/15
U-AOS-FW 2563(3709) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
R-SHADE 9.5(0.8) 8.3(0.4) 11(5) 12(0.4) 12(11) 12(11) 0.70(0.3) 13/13

RecPM-AOS ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
PM-AdapSS 5416(3812) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC-MAB 12(2) 125(0.7) 313(587) 313(520) 312(260) 311(451) 17(25) 6/13
Compass ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
JaDE 8.1(0.3)?2 7.0(0.1)?3 8.0(0.2)?3 8.9(0.2) 10(0.1) 11(0.2) 0.71(9e-3) 13/13

f5 41 41 41 41 41 41 41 15/15
U-AOS-FW 47(8) 55(7) 56(12) 57(7) 57(9) 57(9) 57(11) 13/13
R-SHADE 114(11) 210(19) 307(25) 399(30) 488(19) 676(34) 860(45) 13/13

RecPM-AOS 33(4) 37(8) 39(7)?2 39(9)?2 39(7)?2 39(9)?2 39(8)?2 13/13
PM-AdapSS 69(9) 83(11) 85(10) 85(8) 85(22) 85(13) 85(6) 13/13
F-AUC-MAB 49(3) 59(9) 62(11) 63(10) 63(8) 63(8) 63(7) 13/13
Compass 42(7) 50(6) 51(12) 51(11) 51(7) 51(10) 51(7) 13/13
JaDE 42(6) 52(8) 53(7) 53(3) 53(5) 53(6) 53(7) 13/13

f6 1296 2343 3413 4255 5220 6728 8409 15/15
U-AOS-FW 14(2) 12(1) 11(0.6) 11(1) 11(1.0) 11(0.5) 12(0.3) 13/13
R-SHADE 4.1(0.5)?3 3.9(0.4)?3 3.8(0.5)?3 3.9(0.3)?3 3.9(0.5)?3 4.0(0.4)?3 4.1(0.4)?3 13/13

RecPM-AOS 19(2) 15(2) 14(1) 14(1) 14(0.9) 14(0.9) 14(0.8) 13/13
PM-AdapSS 18(2) 15(1) 14(0.9) 14(0.6) 14(0.4) 15(0.4) 15(0.2) 13/13
F-AUC-MAB 23(4) 23(5) 23(9) 26(8) 29(15) 39(24) 53(33) 13/13
Compass 14(1) 11(0.8) 10(0.7) 11(0.5) 10(0.5) 11(0.4) 11(0.1) 13/13
JaDE 9.4(0.8) 7.8(0.6) 7.3(0.8) 7.3(0.9) 7.2(0.9) 7.4(0.4) 7.4(0.6) 13/13

f7 1351 4274 9503 16523 16524 16524 16969 15/15
U-AOS-FW 5.2(0.6) 3.7(0.6) 2.3(0.2) 1.9(0.1) 1.9(0.1) 1.9(0.2) 1.9(0.2) 13/13
R-SHADE 2.1(0.3)?3 33(19) 76(87) ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS 6.5(1.0) 4.6(0.6) 3.0(0.3) 2.5(0.3) 2.5(0.3) 2.5(0.4) 2.6(0.4) 13/13
PM-AdapSS 6.7(0.5) 43(117) 20(0.5) 12(0.2) 12(31) 12(0.2) 12(88) 12/13
F-AUC-MAB 47(29) 1025(1075) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
Compass 5.1(0.6) 3.5(0.7) 2.2(0.4) 1.8(0.2) 1.8(0.2) 1.8(0.2) 1.9(0.2) 13/13
JaDE 4.9(1.0) 379(761) 1265(2157) 739(726) 739(1044) 739(1044) 719(368) 1/13

f8 2039 3871 4040 4148 4219 4371 4484 15/15
U-AOS-FW 22(2) 22(2) 23(2) 24(2) 24(2) 25(2) 27(1) 13/13
R-SHADE 10(0.9)?3 14(8) 15(7) 15(7) 15(7) 16(3) 16(7) 13/13

RecPM-AOS 19(4) 59(259) 59(1) 58(121) 58(1) 59(1) 60(1) 12/13
PM-AdapSS 31(5) 33(2) 36(2) 36(1) 37(2) 38(2) 39(2) 13/13
F-AUC-MAB 461(414) 3238(9429) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
Compass 20(2) 19(1) 20(2) 21(1) 22(1) 23(1) 24(0.8) 13/13
JaDE 18(0.7) 15(0.5) 16(0.4) 17(0.6) 17(0.4) 17(0.5) 18(0.7) 13/13

f9 1716 3102 3277 3379 3455 3594 3727 15/15
U-AOS-FW 31(1) 34(3) 37(3) 38(3) 39(3) 42(3) 44(3) 13/13
R-SHADE 16(4)?3 20(2)?2 22(13)?2 23(3)?2 24(2)?2 24(2)?2 24(2)?2 13/13

RecPM-AOS 25(1) 25(1) 28(1) 30(1) 31(1) 35(2) 39(2) 13/13
PM-AdapSS 44(3) 51(4) 55(3) 56(5) 57(3) 58(5) 60(5) 13/13
F-AUC-MAB 689(775) 8342(7253) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
Compass 27(2) 145(323) 141(154) 139(3) 138(290) 136(280) 134(2) 11/13
JaDE 35(3) 30(3) 32(2) 32(2) 32(1) 33(2) 33(3) 13/13

f10 7413 8661 10735 13641 14920 17073 17476 15/15
U-AOS-FW 6.4(0.7) 7.1(1) 6.8(1) 6.4(2) 6.5(1) 7.0(0.3) 8.0(2) 13/13
R-SHADE 16(6) 22(6) 25(6) 26(6) 28(7) 32(8) 40(14) 9/13

RecPM-AOS 8.0(0.7) 8.5(0.5) 8.3(0.7) 7.5(0.4) 7.9(0.5) 8.6(0.5) 10(0.4) 13/13
PM-AdapSS 5.6(0.5) 6.3(1) 6.0(1) 5.5(2) 5.7(0.8) 6.1(1) 7.0(2) 13/13
F-AUC-MAB ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
Compass 5.5(0.9) 6.3(2) 6.2(1) 6.0(1) 6.3(1) 7.1(3) 8.3(3) 13/13
JaDE 12(4) 14(7) 15(4) 14(4) 14(3) 15(3) 18(5) 13/13

f11 1002 2228 6278 8586 9762 12285 14831 15/15
U-AOS-FW 15(2) 11(0.8) 5.7(0.3) 5.4(0.3) 5.7(0.1) 6.2(0.2) 6.5(0.3) 13/13
R-SHADE 7.9(5)? 13(5) 8.0(3) 8.2(2) 10(2) 11(3) 12(4) 13/13

RecPM-AOS 23(3) 16(2) 8.0(0.4) 7.4(0.2) 7.9(0.6) 8.6(0.4) 9.0(0.6) 13/13
PM-AdapSS 15(1) 10(0.4) 5.2(0.2) 4.9(0.2) 5.2(0.2) 5.6(0.2) 5.8(0.2) 13/13
F-AUC-MAB 917(159) 942(459) 4071(8920) ∞ ∞ ∞ ∞ 2e6 0/13
Compass 13(2) 10(0.9) 4.8(0.3)? 4.4(0.3)?2 4.8(0.4)? 5.1(0.6)? 5.4(0.5)?2 13/13
JaDE 105(501) 52(117) 21(2) 17(31) 17(28) 16(41) 16(3) 12/13

f12 1042 1938 2740 3156 4140 12407 13827 15/15
U-AOS-FW 29(2) 21(4) 25(12) 32(13) 33(8) 17(4) 19(3) 13/13
R-SHADE 8.5(1)?3 17(11) 22(13) 25(12) 24(9) 12(4) 13(4) 13/13

RecPM-AOS 37(5) 31(19) 31(20) 37(15) 37(8) 18(3) 20(3) 13/13
PM-AdapSS 44(18) 40(10) 42(31) 47(29) 44(13) 20(2) 22(3) 13/13
F-AUC-MAB 1091(2590) 1500(653) 4257(6447) ∞ ∞ ∞ ∞ 2e6 0/13
Compass 29(2) 31(21) 38(19) 41(19) 38(12) 18(8) 19(6) 13/13
JaDE 19(2) 20(14) 28(13) 31(10) 29(8) 13(3) 14(3) 13/13

170 Appendix C. Average run time for various algorithms

TABLE C.4: Average runtime aRT

∆ fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f13 652 2021 2751 3507 18749 24455 30201 15/15

U-AOS-FW 25(3) 13(2) 15(1) 17(2) 4.2(0.5) 5.0(0.3) 5.6(0.5) 13/13
R-SHADE 12(7) 8.4(3) 11(2) 12(3) 3.5(1) 5.2(1) 27(22) 0/13

RecPM-AOS 31(4) 17(1) 19(2) 22(2) 5.5(0.2) 6.5(0.3) 7.2(0.5) 13/13
PM-AdapSS 32(1) 16(1) 18(1) 19(0.6) 4.4(0.2) 4.9(0.1) 5.2(0.1) 13/13
F-AUC-MAB 49(8) 504(1134) 2877(2212) ∞ ∞ ∞ ∞ 2e6 0/13
Compass 24(2) 13(0.6) 14(0.6) 15(0.6) 3.8(0.4) 4.5(0.5) 5.7(1) 13/13
JaDE 17(1) 14(6) 15(5) 14(4) 3.7(0.3) 4.8(0.9) 8.7(2) 13/13

f14 75 239 304 451 932 1648 15661 15/15
U-AOS-FW 29(10) 26(1) 35(0.9) 35(1) 26(0.7) 29(2) 5.3(0.9) 12/13
R-SHADE 8.1(2)?2 10(2)?3 13(2)?3 13(2)?3 11(2)?3 62(18) 1606(2171) 0/13

RecPM-AOS 32(4) 31(4) 40(4) 41(3) 31(1) 39(2) 6.5(0.5) 13/13
PM-AdapSS 33(9) 33(3) 45(1.0) 44(2) 30(2) 31(1) 4.9(0.2) 13/13
F-AUC-MAB 37(9) 33(3) 40(5) 91(26) 2.6e4(5e4) ∞ ∞ 2e6 0/13
Compass 23(5) 24(2) 32(2) 32(1) 23(1) 26(1.0) 7.4(0.3) 11/13
JaDE 18(8) 18(2) 23(2) 25(2) 20(0.9) 36(26) 68(88) 4/13

f15 30378 1.5e5 3.1e5 3.2e5 3.2e5 4.5e5 4.6e5 15/15
U-AOS-FW ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
R-SHADE 56(35) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
PM-AdapSS ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC-MAB ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
Compass ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
JaDE 36(22) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/13

f16 1384 27265 77015 1.4e5 1.9e5 2.0e5 2.2e5 15/15
U-AOS-FW ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
R-SHADE 27(22) 280(290) ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
PM-AdapSS ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC-MAB 944(431) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
Compass ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
JaDE 24(6) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/13

f17 63 1030 4005 12242 30677 56288 80472 15/15
U-AOS-FW 14(4) 9.4(0.7) 5.2(0.4) 2.8(0.2) 1.7(0.3) 1.7(0.1) 3.6(6) 12/13
R-SHADE 4.0(2) 3.4(0.5)?3 4.1(12)? 14(27) 51(57) ∞ ∞ 2e6 0/13

RecPM-AOS 16(11) 11(1) 6.9(0.7) 3.7(0.3) 2.1(0.2) 2.2(0.1) 2.0(0.3) 12/13
PM-AdapSS 16(9) 11(2) 6.5(0.4) 3.5(0.3) 2.0(0.1) 1.9(0.1) 6.2(12) 11/13
F-AUC-MAB 13(5) 26(14) 66(124) 182(544) 788(962) ∞ ∞ 2e6 0/13
Compass 15(12) 9.1(1) 5.1(0.6) 2.8(0.3) 1.6(0.1) 1.6(0.1) 1.4(0.1) 12/13
JaDE 8.0(6) 7.3(1) 4.4(0.7) 2.5(0.4) 1.7(2) 8.1(8) 19(20) 2/13

f18 621 3972 19561 28555 67569 1.3e5 1.5e5 15/15
U-AOS-FW 8.7(2) 4.6(0.6) 1.9(0.4) 2.1(0.3) 1.3(0.1) 3.9(8) 3.8(3) 11/13
R-SHADE 3.1(0.7)?3 2.1(1.0)?3 34(32) 910(788) ∞ ∞ ∞ 2e6 0/13

RecPM-AOS 11(2) 5.9(0.6) 2.6(0.2) 3.0(0.5) 1.8(0.2) 1.7(0.2) 1.9(0.2) 12/13
PM-AdapSS 10(0.8) 5.1(0.6) 2.2(0.3) 2.5(1) 6.7(15) 4.0(0.1) 10(14) 8/13
F-AUC-MAB 20(6) 188(54) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
Compass 8.5(1) 4.5(0.5) 1.8(0.2) 2.1(0.2) 3.7(7) 3.9(4) 5.3(7) 10/13
JaDE 7.3(1) 4.5(1) 1.6(0.4) 9.4(13) 20(21) ∞ ∞ 1e6 0/13

f19 1 1 3.4e5 4.7e6 6.2e6 6.7e6 6.7e6 15/15
U-AOS-FW 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
R-SHADE 344(84) 1.1e6(2e6) ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
PM-AdapSS 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC-MAB 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
Compass 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
JaDE 845(175) 7.7e5(4e5) ∞ ∞ ∞ ∞ ∞ 1e6 0/13

f20 82 46150 3.1e6 5.5e6 5.5e6 5.6e6 5.6e6 14/15
U-AOS-FW 36(4) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
R-SHADE 11(3)?3 1.3(0.2) ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS 44(7) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
PM-AdapSS 46(4) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC-MAB 36(6) 2.3(1) 0.16(0.2)? 0.10(0.0)?2 0.10(0.1)?2 0.10(8e-3)?2 0.10(0.2)?2 12/13
Compass 35(3) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
JaDE 24(3) 1.2(0.2) 0.46(0.3) 0.74(0.7) 1.1(1) ∞ ∞ 1e6 0/13

f21 561 6541 14103 14318 14643 15567 17589 15/15
U-AOS-FW 8.1(2) 263(229) 122(106) 120(210) 118(68) 111(161) 99(171) 7/13
R-SHADE 3.0(1)?3 6.5(9) 7.0(6) 7.0(4) 6.9(4) 6.6(16) 5.9(14) 13/13

RecPM-AOS 659(893) 689(917) 320(355) 315(559) 308(307) 290(385) 257(341) 4/13
PM-AdapSS 309(6) 1683(2523) 781(390) 769(1257) 752(1639) 708(2280) 627(398) 2/13
F-AUC-MAB 32(36) 39(53) 80(109) 121(92) 223(149) 466(390) 659(279) 2/13
Compass 305(1783) 490(764) 320(284) 315(244) 308(273) 290(578) 257(227) 4/13
JaDE 7.4(2) 26(82) 16(15) 16(41) 15(4) 15(36) 14(23) 12/13

f22 467 5580 23491 24163 24948 26847 1.3e5 12/15
U-AOS-FW 1913(1072) 1196(806) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
R-SHADE 16(2) 29(33) ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS 791(2145) 1197(1792) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
PM-AdapSS 369(3) 808(1613) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC-MAB 388(47) 216(327) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
Compass 10(4) 808(806) ∞ ∞ ∞ ∞ ∞ 2e6 0/13
JaDE 28(65) 246(403) ∞ ∞ ∞ ∞ ∞ 1e6 0/13

f23 3.0 1614 67457 3.7e5 4.9e5 8.1e5 8.4e5 15/15
U-AOS-FW 2.4(2) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
R-SHADE 2.5(2) 88(61) 11(12)?3 ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS 2.4(2) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
PM-AdapSS 1.8(3) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC-MAB 2.0(2) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
Compass 2.8(3) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
JaDE 2.1(2) 123(31) ∞ ∞ ∞ ∞ ∞ 1e6 0/13

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 5.2e7 3/15
U-AOS-FW ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
R-SHADE ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13

RecPM-AOS ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
PM-AdapSS ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
F-AUC-MAB ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
Compass ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/13
JaDE ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/13

Appendix C. Average run time for various algorithms 171

TABLE C.5: Average runtime aRT

∆ fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f1 43 43 43 43 43 43 43 15/15

DE-DDQN1 270(0) 557(0) 849(0) 1143(0) 1391(0) 1997(0) 2605(0) 1/1
DE-DDQN2 90(0) 179(0) 308(0) 411(0) 517(0) 735(0) 982(0) 1/1
DE-DDQN3 34(0) 89(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 47(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 47(0) 100(0) 149(0) 193(0) 244(0) 344(0) 431(0) 1/1

JaDE 66(0) 138(0) 205(0) 298(0) 368(0) 546(0) 677(0) 1/1
U-AOS-FW 42(0) 68(0) 101(0) 133(0) 165(0) 230(0) 287(0) 1/1

f2 385 386 387 388 390 391 393 15/15
DE-DDQN1 121(0) 154(0) 186(0) 219(0) 245(0) 312(0) 373(0) 1/1
DE-DDQN2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 29(0) 34(0) 41(0) 45(0) 50(0) 62(0) 72(0) 1/1

JaDE 44(0) 52(0) 60(0) 69(0) 77(0) 96(0) 111(0) 1/1
U-AOS-FW 16(0) 20(0) 23(0) 26(0) 29(0) 37(0) 44(0) 1/1

f3 5066 7626 7635 7637 7643 7646 7651 15/15
DE-DDQN1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 6.3(0) 5.8(0) 6.7(0) 7.4(0) 8.3(0) 10(0) 11(0) 1/1

JaDE ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
U-AOS-FW 7.7(0) 7.0(0) 7.5(0) 7.8(0) 8.0(0) 8.4(0) 8.7(0) 1/1

f4 4722 7628 7666 7686 7700 7758 1.4e5 9/15
DE-DDQN1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 7.5(0) 7.1(0) 8.0(0) 8.9(0) 10(0) 11(0) 0.71(0) 1/1

JaDE ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
U-AOS-FW 10(0) 8.5(0) 9.2(0) 10(0) 10(0) 10(0) 0.58(0) 1/1

f5 41 41 41 41 41 41 41 15/15
DE-DDQN1 5693(0) 4.2e4(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 47(0) 51(0) 51(0) 51(0) 51(0) 51(0) 51(0) 1/1

JaDE 50(0) 62(0) 62(0) 62(0) 62(0) 62(0) 62(0) 1/1
U-AOS-FW 139(0) 244(0) 329(0) 414(0) 503(0) 703(0) 862(0) 1/1

f6 1296 2343 3413 4255 5220 6728 8409 15/15
DE-DDQN1 37(0) 42(0) 46(0) 49(0) 53(0) 57(0) 60(0) 1/1
DE-DDQN2 18(0) 21(0) 19(0) 21(0) 24(0) 28(0) 30(0) 1/1
DE-DDQN3 3.4(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 10(0) 8.0(0) 7.4(0) 7.5(0) 7.3(0) 7.4(0) 7.3(0) 1/1

JaDE 14(0) 11(0) 11(0) 10(0) 11(0) 11(0) 11(0) 1/1
U-AOS-FW 3.8(0) 3.6(0) 3.8(0) 3.9(0) 3.9(0) 4.1(0) 4.3(0) 1/1

f7 1351 4274 9503 16523 16524 16524 16969 15/15
DE-DDQN1 47(0) 51(0) 25(0) 15(0) 15(0) 15(0) 15(0) 1/1
DE-DDQN2 3.8(0) 5.0(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 3.7(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 6.9(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 4.0(0) 3.4(0) 2.2(0) 13(0) 13(0) 13(0) 12(0) 1/1

JaDE 5.4(0) 3.7(0) 2.4(0) 1.8(0) 1.8(0) 1.8(0) 2.0(0) 1/1
U-AOS-FW 1.8(0) 13(0) 20(0) ∞ ∞ ∞ ∞ 2e6 0/1

f8 2039 3871 4040 4148 4219 4371 4484 15/15
DE-DDQN1 199(0) 136(0) 148(0) 163(0) 178(0) 203(0) 231(0) 1/1
DE-DDQN2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 19(0) 16(0) 17(0) 17(0) 17(0) 17(0) 18(0) 1/1

JaDE 21(0) 23(0) 24(0) 25(0) 25(0) 26(0) 27(0) 1/1
U-AOS-FW 11(0) 11(0) 12(0) 12(0) 12(0) 13(0) 14(0) 1/1

f9 1716 3102 3277 3379 3455 3594 3727 15/15
DE-DDQN1 84(0) 104(0) 109(0) 113(0) 115(0) 117(0) 119(0) 1/1
DE-DDQN2 15(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 33(0) 27(0) 29(0) 30(0) 30(0) 30(0) 30(0) 1/1

JaDE 30(0) 33(0) 36(0) 37(0) 38(0) 40(0) 42(0) 1/1
U-AOS-FW 15(0) 19(0) 21(0) 22(0) 22(0) 23(0) 23(0) 1/1

f10 7413 8661 10735 13641 14920 17073 17476 15/15
DE-DDQN1 7.7(0) 7.9(0) 7.5(0) 6.8(0) 7.1(0) 7.6(0) 8.8(0) 1/1
DE-DDQN2 3.4(0) 3.7(0) 3.5(0) 3.2(0) 3.2(0) 3.5(0) 4.0(0) 1/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 12(0) 12(0) 13(0) 14(0) 15(0) 17(0) 21(0) 1/1

JaDE 5.6(0) 6.2(0) 5.8(0) 5.3(0) 5.5(0) 6.0(0) 7.1(0) 1/1
U-AOS-FW 10(0) 20(0) 26(0) 23(0) 26(0) 33(0) 60(0) 0/1

f11 1002 2228 6278 8586 9762 12285 14831 15/15
DE-DDQN1 26(0) 17(0) 7.9(0) 7.4(0) 7.8(0) 8.0(0) 8.4(0) 1/1
DE-DDQN2 6.7(0) 4.2(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 18(0) 11(0) 6.1(0) 5.3(0) 6.2(0) 7.8(0) 8.1(0) 1/1

JaDE 16(0) 12(0) 5.8(0) 5.6(0) 5.8(0) 6.3(0) 6.6(0) 1/1
U-AOS-FW 15(0) 24(0) 14(0) 12(0) 13(0) 15(0) 17(0) 1/1

f12 1042 1938 2740 3156 4140 12407 13827 15/15
DE-DDQN1 77(0) 50(0) 45(0) 52(0) 55(0) 27(0) 29(0) 1/1
DE-DDQN2 29(0) 19(0) 16(0) 18(0) ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 16(0) 27(0) 35(0) 37(0) 34(0) 15(0) 16(0) 1/1

JaDE 26(0) 27(0) 32(0) 36(0) 36(0) 17(0) 18(0) 1/1
U-AOS-FW 8.3(0) 27(0) 34(0) 36(0) 33(0) 15(0) 16(0) 1/1

172 Appendix C. Average run time for various algorithms

TABLE C.6: Average runtime aRT

∆ fopt 1e1 1e0 1e-1 1e-2 1e-3 1e-5 1e-7 #succ
f13 652 2021 2751 3507 18749 24455 30201 15/15

DE-DDQN1 113(0) 97(0) 126(0) 138(0) 34(0) 38(0) 41(0) 1/1
DE-DDQN2 13(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 14(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 18(0) 18(0) 17(0) 17(0) 3.8(0) 4.9(0) 8.2(0) 1/1

JaDE 25(0) 14(0) 17(0) 17(0) 4.3(0) 5.2(0) 5.6(0) 1/1
U-AOS-FW 11(0) 5.1(0) 5.1(0) 13(0) 2.8(0) 5.2(0) 9.3(0) 0/1

f14 75 239 304 451 932 1648 15661 15/15
DE-DDQN1 61(0) 75(0) 108(0) 106(0) 68(0) 55(0) 7.5(0) 1/1
DE-DDQN2 21(0) 25(0) 45(0) 40(0) 26(0) 23(0) 3.3(0) 1/1
DE-DDQN3 16(0) 17(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 26(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 23(0) 19(0) 24(0) 25(0) 20(0) 24(0) 36(0) 0/1

JaDE 27(0) 22(0) 35(0) 36(0) 27(0) 28(0) 4.6(0) 1/1
U-AOS-FW 7.9(0) 8.9(0) 12(0) 12(0) 10(0) 20(0) ∞ 2e6 0/1

f15 30378 1.5e5 3.1e5 3.2e5 3.2e5 4.5e5 4.6e5 15/15
DE-DDQN1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 10(0) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/1

JaDE ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
U-AOS-FW ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1

f16 1384 27265 77015 1.4e5 1.9e5 2.0e5 2.2e5 15/15
DE-DDQN1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN2 144(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 122(0) 7.8(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 4.1(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 24(0) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/1

JaDE ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
U-AOS-FW 58(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1

f17 63 1030 4005 12242 30677 56288 80472 15/15
DE-DDQN1 11(0) 20(0) 9.2(0) 4.2(0) 2.1(0) 1.7(0) 1.5(0) 1/1
DE-DDQN2 14(0) 5.0(0) 4.4(0) ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 7.1(0) 5.9(0) 3.7(0) ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 17(0) 14(0) 7.7(0) 8.7(0) ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 3.2(0) 7.0(0) 4.4(0) 2.3(0) 1.4(0) 3.4(0) 2.6(0) 0/1

JaDE 16(0) 9.2(0) 5.0(0) 2.7(0) 1.6(0) 1.7(0) 1.5(0) 1/1
U-AOS-FW 5.7(0) 3.2(0) 2.0(0) 1.3(0) ∞ ∞ ∞ 2e6 0/1

f18 621 3972 19561 28555 67569 1.3e5 1.5e5 15/15
DE-DDQN1 22(0) 12(0) 4.7(0) 5.0(0) 2.8(0) 2.4(0) 2.7(0) 1/1
DE-DDQN2 15(0) 6.1(0) 2.9(0) ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 5.5(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 5.7(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 7.6(0) 4.2(0) 1.4(0) 15(0) ∞ ∞ ∞ 1e6 0/1

JaDE 9.1(0) 4.2(0) 1.7(0) 2.0(0) 1.3(0) 1.1(0) 1.3(0) 1/1
U-AOS-FW 3.1(0) 2.7(0) 72(0) ∞ ∞ ∞ ∞ 2e6 0/1

f19 1 1 3.4e5 4.7e6 6.2e6 6.7e6 6.7e6 15/15
DE-DDQN1 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN2 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 771(0) 4.1e5(0) ∞ ∞ ∞ ∞ ∞ 1e6 0/1

JaDE 1(0) 1(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
U-AOS-FW 333(0) 1.4e6(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1

f20 82 46150 3.1e6 5.5e6 5.5e6 5.6e6 5.6e6 14/15
DE-DDQN1 99(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN2 33(0) 0.85(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 27(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 20(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 21(0) 1.0(0) 0.16(0) ∞ ∞ ∞ ∞ 1e6 0/1

JaDE 40(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
U-AOS-FW 10(0) 1.4(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1

f21 561 6541 14103 14318 14643 15567 17589 15/15
DE-DDQN1 29(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN2 5.0(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 2.9(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 6.8(0) 1.0(0) 0.62(0) 0.73(0) 0.82(0) 0.96(0) 1.0(0) 1/1
U-AOS-FW 9.2(0) 1.2(0) 0.64(0) 0.77(0) 0.89(0) 1.1(0) 1.2(0) 1/1
U-AOS-F 2.8(0) 3.3(0) 1.6(0) 1.6(0) 1.6(0) 1.7(0) 1.6(0) 1/1

f22 467 5580 23491 24163 24948 26847 1.3e5 12/15
DE-DDQN1 28(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN2 7.9(0) 1.8(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 8.2(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 95(0) ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/1

JaDE 8.7(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
U-AOS-FW 3.7(0) 54(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1

f23 3.0 1614 67457 3.7e5 4.9e5 8.1e5 8.4e5 15/15
DE-DDQN1 1(0) 382(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN2 2.3(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 3.0(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 7.7(0) 835(0) ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB 0.67(0) 117(0) ∞ ∞ ∞ ∞ ∞ 1e6 0/1

JaDE 6.0(0) ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
U-AOS-FW 1.3(0) 41(0) 12(0) ∞ ∞ ∞ ∞ 2e6 0/1

f24 1.3e6 7.5e6 5.2e7 5.2e7 5.2e7 5.2e7 5.2e7 3/15
DE-DDQN1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN3 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
DE-DDQN4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
F-AUC-MAB ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1e6 0/1

JaDE ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1
U-AOS-FW ∞ ∞ ∞ ∞ ∞ ∞ ∞ 2e6 0/1

173

Appendix D

Operator selection and best fitness

graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4

174
Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4

FIGURE D.1: Operator application and best fitness graphs
for DE-DDQN2. Op1: “rand/2”, Op2: “best/1”, Op3:
“current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f05 i01

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

65	

85	

105	

125	

145	

165	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4
175

FIGURE D.1 (cont.): Operator application and best fitness
graphs for DE-DDQN2. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f07 i01

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

50	

100	

150	

200	

250	

300	

350	

400	

1	 10	 100	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f04 i02

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

100	

200	

300	

400	

500	

600	

700	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

176
Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4

FIGURE D.1 (cont.): Operator application and best fitness
graphs for DE-DDQN2. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f08 i10

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-900	

9100	

19100	

29100	

39100	

49100	

59100	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f013 i14

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-400	

-200	

0	

200	

400	

600	

800	

1000	

1200	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4
177

FIGURE D.1 (cont.): Operator application and best fitness
graphs for DE-DDQN2. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f17 i02

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

18	

20	

22	

24	

26	

28	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

Best	fitness	

f23 i04

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-222	

-221.5	

-221	

-220.5	

-220	

-219.5	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

178
Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4

FIGURE D.2: Operator application and best fitness graphs
for DE-DDQN3. Op1: “rand/2”, Op2: “best/1”, Op3:
“current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f05 i01

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

90	

110	

130	

150	

170	

190	

210	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f07 i01

0	

100	

200	

300	

400	

500	

600	

1	 10	 100	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4
179

FIGURE D.2 (cont.): Operator application and best fitness
graphs for DE-DDQN3. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f04 i02

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

100	
150	
200	
250	
300	
350	
400	
450	
500	
550	
600	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f08 i10

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-500	

4500	

9500	

14500	

19500	

24500	

29500	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

180
Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4

FIGURE D.2 (cont.): Operator application and best fitness
graphs for DE-DDQN3. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f13 i14

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-300	

-100	

100	

300	

500	

700	

900	

1100	

1300	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f17 i02

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

18	

19	

20	

21	

22	

23	

24	

25	

26	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation(log	scale	base10)	

Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4
181

FIGURE D.2 (cont.): Operator application and best fitness
graphs for DE-DDQN3. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f23 i04

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-222.59	

-222.09	

-221.59	

-221.09	

-220.59	

-220.09	

-219.59	

-219.09	

0	 2000	 4000	 6000	 8000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

182
Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4

FIGURE D.3: Operator application and best fitness graphs
for DE-DDQN4. Op1: “rand/2”, Op2: “best/1”, Op3:
“current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f05 i01

0	

50	

100	

150	

200	

250	
Series9	

Series8	

Series7	

Series6	

Series5	

Series4	

Series3	

Series2	

Series1	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f07 i01

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

75	

125	

175	

225	

275	

325	

375	

425	

475	

1	 10	 100	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4
183

FIGURE D.3 (cont.): Operator application and best fitness
graphs for DE-DDQN4. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f04 i02

0	

50	

100	

150	

200	

250	
Series9	

Series8	

Series7	

Series6	

Series5	

Series4	

Series3	

Series2	

Series1	

100	
150	
200	
250	
300	
350	
400	
450	
500	
550	
600	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f08 i10

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-1000	

9000	

19000	

29000	

39000	

49000	

59000	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

184
Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4

FIGURE D.3 (cont.): Operator application and best fitness
graphs for DE-DDQN4. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f13 i14

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-100	

100	

300	

500	

700	

900	

1100	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

f17 i02

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

18	

20	

22	

24	

26	

28	

30	

32	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

Appendix D. Operator selection and best fitness graphs for DE-DDQN2,

DE-DDQN3 and DE-DDQN4
185

FIGURE D.3 (cont.): Operator application and best fitness
graphs for DE-DDQN4. Op1: “rand/2”, Op2: “best/1”,
Op3: “current-to-best/1”, Op4: “best/2”, Op5: “rand/1”, Op6:
“rand-to-best/2”, Op7: “curr-to-rand/1”, op8: “curr-to-pbest/1”,

Op9: “curr-to-pbest/1(archived)”

f23 i04

0	

50	

100	

150	

200	

250	
Op9	

Op8	

Op7	

Op6	

Op5	

Op4	

Op3	

Op2	

Op1	

-222.59	

-222.09	

-221.59	

-221.09	

-220.59	

-220.09	

-219.59	

-219.09	

1	 10	 100	 1000	 10000	

Be
st	
fit
ne

ss	

Generation	(log	scale	base10)	

186

Bibliography

[1] Emile H. L. Aarts, Jan H. M. Korst, and Wil Michiels. “Simulated Annealing”.

In: Search Methodologies. Springer, 2005, pp. 187–210.

[2] Aldeida Aleti. “An adaptive approach to controlling parameters of evolu-

tionary algorithms”. In: Swinburne University of Technology (2012).

[3] Aldeida Aleti and Lars Grunske. “Test data generation with a Kalman filter-

based adaptive genetic algorithm”. In: Journal of Systems and Software 103

(2015), pp. 343–352.

[4] Aldeida Aleti and Irene Moser. “A systematic literature review of adaptive

parameter control methods for evolutionary algorithms”. In: ACM Comput.

Surv. 49.3, Article 56 (Oct. 2016), p. 35.

[5] Aldeida Aleti and Irene Moser. “Predictive parameter control”. In: Proceed-

ings of the 13th annual conference on Genetic and evolutionary computation. ACM.

2011, pp. 561–568.

[6] Jaime Alvarez-Gallegos, Carlos Villar, and Edgar Flores. “Evolutionary dy-

namic optimization of a continuously variable transmission for mechanical

efficiency maximization”. In: MICAI 2005: Advances in Artificial Intelligence

3789 (2005), pp. 1093–1102.

[7] Peter J Angeline. “Adaptive and self-adaptive evolutionary computations”.

In: Computational intelligence: a dynamic systems perspective. Citeseer. 1995.

[8] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. “A Gender-Based

Genetic Algorithm for the Automatic Configuration of Algorithms”. In: 2009,

pp. 142–157.

[9] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of

the multiarmed bandit problem”. In: 47.2-3 (2002), pp. 235–256.

BIBLIOGRAPHY 187

[10] Anne Auger and Nikolaus Hansen. “A restart CMA evolution strategy with

increasing population size”. In: IEEE CEC. Piscataway, NJ: IEEE Press, Sept.

2005, pp. 1769–1776.

[11] Anne Auger and Nikolaus Hansen. “Performance evaluation of an advanced

local search evolutionary algorithm”. In: IEEE CEC. Piscataway, NJ: IEEE

Press, Sept. 2005, pp. 1777–1784.

[12] Th Bäck, Agoston Eiben, and Nikolai van der Vaart. “An emperical study on

GAs “without parameters””. In: Parallel Problem Solving from Nature PPSN VI.

Springer. 2000, pp. 315–324.

[13] Thomas Back. “The interaction of mutation rate, selection, and self-adaptation

within a genetic algorithm”. In: Proc. 2nd Conference of Parallel Problem Solving

from Nature, 1992. Elsevier Science Publishers. 1992.

[14] Prasanna Balaprakash, Mauro Birattari, and Thomas Stützle. “Improvement

Strategies for the F-Race Algorithm: Sampling Design and Iterative Refine-

ment”. In: Hybrid Metaheuristics. Ed. by Thomas Bartz-Beielstein, María J.

Blesa, Christian Blum, Boris Naujoks, Andrea Roli, Günther Rudolph, and

M. Sampels. Vol. 4771. LNCS. Springer, 2007, pp. 108–122.

[15] Helio JC Barbosa and AM Sá. “On adaptive operator probabilities in real

coded genetic algorithms”. In: XX Intl. Conf. of the Chilean Computer Science

Society. 2000.

[16] Thomas Bartz-Beielstein. Experimental Research in Evolutionary Computation:

The New Experimentalism. Berlin, Germany: Springer, 2006.

[17] Thomas Bartz-Beielstein, C. Lasarczyk, and Mike Preuss. “Sequential Param-

eter Optimization”. In: IEEE CEC. Piscataway, NJ: IEEE Press, Sept. 2005,

pp. 773–780.

[18] Bahriye Basturk. “An artificial bee colony (ABC) algorithm for numeric func-

tion optimization”. In: IEEE Swarm Intelligence Symposium, Indianapolis, IN,

USA, 2006. 2006.

188 BIBLIOGRAPHY

[19] Mauro Birattari, Thomas Stützle, Luís Paquete, and Klaus Varrentrapp. “A

Racing Algorithm for Configuring Metaheuristics”. In: Proceedings of the Ge-

netic and Evolutionary Computation Conference, GECCO 2002. Ed. by W. B. Lang-

don et al. Morgan Kaufmann Publishers, San Francisco, CA, 2002, pp. 11–18.

[20] Aymeric Blot, Manuel López-Ibáñez, Marie-Eléonore Kessaci-Marmion, and

Laetitia Jourdan. “New Initialisation Techniques for Multi-Objective Local

Search: Application to the Bi-objective Permutation Flowshop”. In:

[21] Arina Buzdalova, Vladislav Kononov, and Maxim Buzdalov. “Selecting evo-

lutionary operators using reinforcement learning: initial explorations”. In:

Proceedings of the Companion Publication of the 2014 Annual Conference on Ge-

netic and Evolutionary Computation. ACM. 2014, pp. 1033–1036.

[22] Fei Chen, Yang Gao, Zhao-qian Chen, and Shi-fu Chen. “SCGA: Control-

ling genetic algorithms with sarsa (0)”. In: Computational Intelligence for Mod-

elling, Control and Automation, 2005 and International Conference on Intelligent

Agents, Web Technologies and Internet Commerce, International Conference on.

Vol. 1. IEEE. 2005, pp. 1177–1183.

[23] Ji-Pyng Chiou and Feng-Sheng Wang. “A hybrid method of differential evo-

lution with application to optimal control problems of a bioprocess system”.

In: Evolutionary Computation Proceedings, 1998. IEEE World Congress on Com-

putational Intelligence., The 1998 IEEE International Conference on. IEEE, 1998,

pp. 627–632.

[24] Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman.

“Quantifying generalization in reinforcement learning”. In: arXiv preprint arXiv:1812.02341

(2018).

[25] Pietro Consoli and Xin Yao. “Diversity-driven selection of multiple crossover

operators for the capacitated arc routing problem”. In: European Conference on

Evolutionary Computation in Combinatorial Optimization. Springer. 2014, pp. 97–

108.

[26] Dave Corne, Peter Ross, and Hsiao-Lan Fang. Ga research note 7: Fast practical

evolutionary timetabling. Tech. rep. Technical report, University of Edinburgh

Department of Artificial Intelligence, 1994.

BIBLIOGRAPHY 189

[27] S. P. Coy, B. L. Golden, G. C. Runger, and E. A. Wasil. “Using Experimental

Design to Find Effective Parameter Settings for Heuristics”. In: J. Heuristics

7.1 (2001), pp. 77–97.

[28] Luis DaCosta, Alvaro Fialho, Marc Schoenauer, and Michèle Sebag. “Adap-

tive operator selection with dynamic multi-armed bandits”. In: Proceedings of

the 10th annual conference on Genetic and evolutionary computation. ACM. 2008,

pp. 913–920.

[29] Swagatam Das, Ajith Abraham, and Amit Konar. “Automatic clustering us-

ing an improved differential evolution algorithm”. In: IEEE Transactions on

systems, man, and cybernetics-Part A: Systems and Humans 38.1 (2008), pp. 218–

237.

[30] Swagatam Das, Sankha Subhra Mullick, and Ponnuthurai N. Suganthan. “Re-

cent advances in differential evolution–An updated survey”. In: 27 (2016),

pp. 1–30.

[31] Lawrence Davis. “Adapting operator probabilities in genetic algorithms”. In:

Proc. 3rd International Conference on Genetic Algorithms, 1989. 1989.

[32] Kenneth De Jong. “Parameter setting in EAs: a 30 year perspective”. In: Pa-

rameter setting in evolutionary algorithms. Springer, 2007, pp. 1–18.

[33] Kalyanmoy Deb and Hans-Georg Beyer. “Self-adaptive genetic algorithms

with simulated binary crossover”. In: Evolutionary computation 9.2 (2001), pp. 197–

221.

[34] Kalyanmoy Deb and Debayan Deb. “Analysing mutation schemes for real-

parameter genetic algorithms”. In: Intern. J. Artif. Intell. Soft. Comput. 4.1 (2014),

pp. 1–28.

[35] Giacomo Di Tollo, Frédéric Lardeux, Jorge Maturana, and Frédéric Saubion.

“An experimental study of adaptive control for evolutionary algorithms”. In:

Applied Soft Computing 35 (2015), pp. 359–372.

[36] Marco Dorigo. “Optimization, Learning and Natural Algorithms”. In Italian.

PhD thesis. Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992.

190 BIBLIOGRAPHY

[37] Russell Eberhart and James Kennedy. “Particle swarm optimization”. In: Pro-

ceedings of the IEEE international conference on neural networks. Vol. 4. Citeseer.

1995, pp. 1942–1948.

[38] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC

press, 1994.

[39] AE Eiben, Mark Horvath, Wojtek Kowalczyk, and Martijn C Schut. “Rein-

forcement learning for online control of evolutionary algorithms”. In: Inter-

national Workshop on Engineering Self-Organising Applications. Springer. 2006,

pp. 151–160.

[40] Agoston E. Eiben, Robert Hinterding, and Zbigniew Michalewicz. “Param-

eter Control in Evolutionary Algorithms”. In: IEEE Trans. Evol. Comput. 3.2

(1999), pp. 124–141.

[41] Agoston E. Eiben and S. K. Smit. “Parameter Tuning for Configuring and

Analyzing Evolutionary Algorithms”. In: 1.1 (2011), pp. 19–31.

[42] Agoston E. Eiben, Zbigniew Michalewicz, Marc Schoenauer, and James E.

Smith. “Parameter Control in Evolutionary Algorithms”. In: Parameter Set-

ting in Evolutionary Algorithms. Ed. by F. Lobo, C. F. Lima, and Zbigniew

Michalewicz. Berlin, Germany: Springer, 2007, pp. 19–46.

[43] Agoston Endre Eiben and Selmar K Smit. “Evolutionary algorithm parame-

ters and methods to tune them”. In: Autonomous search. Springer, 2011, pp. 15–

36.

[44] Jesse Farebrother, Marlos C Machado, and Michael Bowling. “Generalization

and Regularization in DQN”. In: arXiv preprint arXiv:1810.00123 (2018).

[45] Álvaro Fialho. “Adaptive operator selection for optimization”. PhD thesis.

2010.

[46] Álvaro Fialho. “Adaptive operator selection for optimization”. PhD thesis.

Université Paris Sud-Paris XI, 2010.

[47] Álvaro Fialho, Marc Schoenauer, and Michèle Sebag. “Analysis of adaptive

operator selection techniques on the royal road and long k-path problems”.

BIBLIOGRAPHY 191

In: Proceedings of the 11th Annual conference on Genetic and evolutionary compu-

tation. ACM. 2009, pp. 779–786.

[48] Álvaro Fialho, Marc Schoenauer, and Michèle Sebag. “Fitness-AUC bandit

adaptive strategy selection vs. the probability matching one within differen-

tial evolution: an empirical comparison on the BBOB-2010 noiseless testbed”.

In: GECCO (Companion). Ed. by Martin Pelikan and Jürgen Branke. New York,

NY: ACM Press, 2010, pp. 1535–1542.

[49] Álvaro Fialho, Marc Schoenauer, and Michèle Sebag. “Toward comparison-

based adaptive operator selection”. In: GECCO. Ed. by Martin Pelikan and

Jürgen Branke. New York, NY: ACM Press, 2010, pp. 767–774.

[50] Álvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michèle Sebag. “Ex-

treme value based adaptive operator selection”. In: International Conference

on Parallel Problem Solving from Nature. Springer. 2008, pp. 175–184.

[51] Terence C Fogarty. “Varying the probability of mutation in the genetic algo-

rithm”. In: Proceedings of the 3rd International Conference on Genetic Algorithms.

Morgan Kaufmann Publishers Inc. 1989, pp. 104–109.

[52] Johan Fredriksson, Kristian Sandström, and Mikael Åkerholm. “Optimizing

resource usage in component-based real-time systems”. In: International Sym-

posium on Component-based Software Engineering. Springer. 2005, pp. 49–65.

[53] Guenther Fuellerer, Karl F. Doerner, Richard F. Hartl, and Manuel Iori. “Ant

colony optimization for the two-dimensional loading vehicle routing prob-

lem”. In: Comput. Oper. Res. 36.3 (2009), pp. 655–673.

[54] José García-Nieto, Ana Carolina Olivera, and Enrique Alba. In: ().

[55] Matthew S. Gibbs, Graeme C. Dandy, Holger R. Maier, and John B. Nixon.

“Calibrating genetic algorithms for water distribution system optimisation”.

In: 7th Annual Symposium on Water Distribution Systems Analysis. ASCE. May

2005.

[56] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Boston, MA, USA: Addison-Wesley, 1989.

192 BIBLIOGRAPHY

[57] David E. Goldberg. “Probability matching, the magnitude of reinforcement,

and classifier system bidding”. In: 5.4 (1990), pp. 407–425.

[58] Wenyin Gong and Zhihua Cai. “Adaptive parameter selection for strategy

adaptation in differential evolution”. In: Proceedings of the 13th annual confer-

ence companion on Genetic and evolutionary computation. ACM. 2011, pp. 111–

112.

[59] Wenyin Gong, Álvaro Fialho, and Zhihua Cai. “Adaptive strategy selection in

differential evolution”. In: GECCO. Ed. by Martin Pelikan and Jürgen Branke.

New York, NY: ACM Press, 2010, pp. 409–416.

[60] Wenyin Gong, Zhihua Cai, Charles X Ling, and Hui Li. “Enhanced differen-

tial evolution with adaptive strategies for numerical optimization”. In: IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 41.2 (2010),

pp. 397–413.

[61] J. J. Grefenstette. “Optimization of Control Parameters for Genetic Algorithms”.

In: 16.1 (1986), pp. 122–128.

[62] Nikolaus Hansen. “Benchmarking a BI-population CMA-ES on the BBOB-

2009 function testbed”. In: GECCO (Companion). Ed. by Franz Rothlauf. New

York, NY: ACM Press, 2009, pp. 2389–2396.

[63] Nikolaus Hansen and Stefan Kern. “Evaluating the CMA evolution strategy

on multimodal test functions”. In: International Conference on Parallel Problem

Solving from Nature. Springer. 2004, pp. 282–291.

[64] Nikolaus Hansen and A. Ostermeier. “Completely derandomized self-adaptation

in evolution strategies”. In: Evol. Comput. 9.2 (2001), pp. 159–195.

[65] Nikolaus Hansen and Raymond Ros. “Benchmarking a weighted negative

covariance matrix update on the BBOB-2010 noiseless testbed”. In: Proceed-

ings of the 12th annual conference companion on Genetic and evolutionary compu-

tation. ACM. 2010, pp. 1673–1680.

[66] Nikolaus Hansen, A. Auger, Olaf Mersmann, Tea Tusar, and Dimo Brockhoff.

“COCO: A platform for comparing continuous optimizers in a black-box set-

ting”. In: 1603.08785 (2016).

BIBLIOGRAPHY 193

[67] Nikolaus Hansen, S. Finck, R. Ros, and A. Auger. Real-Parameter Black-Box

Optimization Benchmarking 2009: Noiseless Functions Definitions. Tech. rep. RR-

6829. Updated February 2010. INRIA, France, 2009.

[68] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement

Learning with Double Q-Learning”. In:

[69] Francisco Herrera and Manuel Lozano. “Adaptive genetic operators based

on coevolution with fuzzy behaviors”. In: IEEE Transactions on Evolutionary

computation 5.2 (2001), pp. 149–165.

[70] Jürgen Hesser and Reinhard Männer. “Towards an optimal mutation prob-

ability for genetic algorithms”. In: International Conference on Parallel Problem

Solving from Nature. Springer. 1990, pp. 23–32.

[71] Robert Hinterding, Zbigniew Michalewicz, and T Peachey. “Self-adaptive ge-

netic algorithm for numeric functions”. In: Parallel Problem Solving from Na-

ture—PPSN IV (1996), pp. 420–429.

[72] Tzung-Pei Hong, Hong-Shung Wang, and Wei-Chou Chen. “Simultaneously

applying multiple mutation operators in genetic algorithms”. In: Journal of

heuristics 6.4 (2000), pp. 439–455.

[73] R Howard. Dynamic Probabilistic Systems: Semi-Markov and Decision Systems,

volume II. 1971.

[74] Z Hussain, P Auer, N Cesa-Bianchi, L Newnham, and J Shawe-Taylor. Explo-

ration vs. exploitation pascal challenge. 2006.

[75] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. “Sequential Model-

Based Optimization for General Algorithm Configuration”. In: Learning and

Intelligent Optimization, 5th International Conference, LION 5. Ed. by Carlos A.

Coello Coello. Vol. 6683. LNCS. Springer, 2011, pp. 507–523.

[76] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle.

“ParamILS: An Automatic Algorithm Configuration Framework”. In: J. Artif.

Intell. Res. 36 (Oct. 2009), pp. 267–306.

194 BIBLIOGRAPHY

[77] Christian Igel and Martin Kreutz. “Operator adaptation in evolutionary com-

putation and its application to structure optimization of neural networks”. In:

Neurocomputing 55.1-2 (2003), pp. 347–361.

[78] Christian Igel and Martin Kreutz. “Using fitness distributions to improve the

evolution of learning structures”. In: Evolutionary Computation, 1999. CEC 99.

Proceedings of the 1999 Congress on. Vol. 3. IEEE. 1999, pp. 1902–1909.

[79] Srikanth K. Iyer and Barkha Saxena. “Improved genetic algorithm for the per-

mutation flowshop scheduling problem”. In: Comput. Oper. Res. 31.4 (2004),

pp. 593–606.

[80] Cezary Z Janikow and Zbigniew Michalewicz. “An experimental comparison

of binary and floating point representations in genetic algorithms.” In: ICGA.

1991, pp. 31–36.

[81] M Johns, H Mahmoud, D Walker, N Ross, Edward C Keedwell, and D Savic.

“Augmented Evolutionary Intelligence: Combining Human and Evolution-

ary Design for Water Distribution Network Optimisation”. In: (2019).

[82] Alan W. Johnson and Sheldon H. Jacobson. “On the Convergence of Gener-

alized Hill Climbing Algorithms”. In: 119.1 (2002), pp. 37–57.

[83] P. W. Jowitt and G. Germanopoulos. “Optimal pump scheduling in water

supply networks”. In: 118.4 (1992), pp. 406–422.

[84] Bryant A Julstrom. “Adaptive operator probabilities in a genetic algorithm

that applies three operators”. In: Proceedings of the 1997 ACM symposium on

Applied computing. ACM. 1997, pp. 233–238.

[85] Bryant A Julstrom. “An inquiry into the behavior of adaptive operator proba-

bilities in steady-state genetic algorithms”. In: Proceedings of the Second Nordic

Workshop on Genetic Algorithms and their Applications. August, 1996, pp. 15–26.

[86] Bryant A. Julstrom. “What Have You Done for Me Lately? Adapting Operator

Probabilities in a Steady-State Genetic Algorithm”. In: ICGA. Ed. by Larry J.

Eshelman. Morgan Kaufmann Publishers, San Francisco, CA, 1995, pp. 81–

87.

BIBLIOGRAPHY 195

[87] Niels Justesen, Ruben Rodriguez Torrado, Philip Bontrager, Ahmed Khalifa,

Julian Togelius, and Sebastian Risi. “Illuminating generalization in deep re-

inforcement learning through procedural level generation”. In: arXiv preprint

arXiv:1806.10729 (2018).

[88] Dervis Karaboga. An idea based on honey bee swarm for numerical optimization.

Tech. rep. Technical report-tr06, Erciyes university, engineering faculty, com-

puter . . ., 2005.

[89] Dervis Karaboga and Bahriye Akay. “A comparative study of artificial bee

colony algorithm”. In: Applied mathematics and computation 214.1 (2009), pp. 108–

132.

[90] Dervis Karaboga and Bahriye Akay. “Artificial bee colony (ABC) algorithm

on training artificial neural networks”. In: 2007 IEEE 15th Signal Processing

and Communications Applications. IEEE. 2007, pp. 1–4.

[91] Dervis Karaboga, Bahriye Akay, and Celal Ozturk. “Artificial bee colony

(ABC) optimization algorithm for training feed-forward neural networks”.

In: International conference on modeling decisions for artificial intelligence. Springer.

2007, pp. 318–329.

[92] Dervis Karaboga and Bahriye Basturk. “Artificial bee colony (ABC) optimiza-

tion algorithm for solving constrained optimization problems”. In: Interna-

tional fuzzy systems association world congress. Springer. 2007, pp. 789–798.

[93] Dervis Karaboga and Bahriye Basturk. “On the performance of artificial bee

colony (ABC) algorithm”. In: Applied soft computing 8.1 (2008), pp. 687–697.

[94] Dervis Karaboga and Beyza Gorkemli. “A quick artificial bee colony (qABC)

algorithm and its performance on optimization problems”. In: Applied Soft

Computing 23 (2014), pp. 227–238.

[95] Dervis Karaboga and Ebubekir Kaya. “An adaptive and hybrid artificial bee

colony algorithm (aABC) for ANFIS training”. In: Applied Soft Computing 49

(2016), pp. 423–436.

196 BIBLIOGRAPHY

[96] Dervis Karaboga, Beyza Gorkemli, Celal Ozturk, and Nurhan Karaboga. “A

comprehensive survey: artificial bee colony (ABC) algorithm and applica-

tions”. In: Artificial Intelligence Review 42.1 (2014), pp. 21–57.

[97] Nurhan Karaboga. “A new design method based on artificial bee colony al-

gorithm for digital IIR filters”. In: Journal of the Franklin Institute 346.4 (2009),

pp. 328–348.

[98] NURHAN KARABOĞA and Mehmet Bahadir Cetinkaya. “A novel and ef-

ficient algorithm for adaptive filtering: artificial bee colony algorithm”. In:

Turkish Journal of Electrical Engineering & Computer Sciences 19.1 (2011), pp. 175–

190.

[99] Giorgos Karafotias, Agoston Endre Eiben, and Mark Hoogendoorn. “Generic

parameter control with reinforcement learning”. In: Proceedings of the 2014

Annual Conference on Genetic and Evolutionary Computation. ACM. 2014, pp. 1319–

1326.

[100] Giorgos Karafotias, Mark Hoogendoorn, and AE Eiben. “Evaluating reward

definitions for parameter control”. In: European Conference on the Applications

of Evolutionary Computation. Springer. 2015, pp. 667–680.

[101] Giorgos Karafotias, Mark Hoogendoorn, and Agoston E. Eiben. “Parameter

Control in Evolutionary Algorithms: Trends and Challenges”. In: IEEE Trans.

Evol. Comput. 19.2 (2015), pp. 167–187.

[102] Giorgos Karafotias, Mark Hoogendoorn, and Berend Weel. “Comparing generic

parameter controllers for EAs”. In: Foundations of Computational Intelligence

(FOCI), 2014 IEEE Symposium on. IEEE. 2014, pp. 46–53.

[103] Giorgos Karafotias, Selmar K Smit, and AE Eiben. “A generic approach to

parameter control”. In: European Conference on the Applications of Evolutionary

Computation. Springer. 2012, pp. 366–375.

[104] Eric Kee, Sarah Airey, and Walling Cyre. “An adaptive genetic algorithm”.

In: pp. 391–397.

[105] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimiza-

tion”. In: Arxiv preprint arXiv:1412.6980 [cs.LG] (2014).

BIBLIOGRAPHY 197

[106] Joshua D. Knowles. “Local-Search and Hybrid Evolutionary Algorithms for

Pareto Optimization”. PhD thesis. University of Reading, UK, 2002.

[107] Oliver Kramer. “Evolutionary self-adaptation: a survey of operators and strat-

egy parameters”. In: Evolutionary Intelligence 3.2 (2010), pp. 51–65.

[108] Jouni Lampinen. “A constraint handling approach for the differential evolu-

tion algorithm”. In: Evolutionary Computation, 2002. CEC’02. Proceedings of the

2002 Congress on. Vol. 2. IEEE, 2002, pp. 1468–1473.

[109] Jianjun David Li. “A two-step rejection procedure for testing multiple hy-

potheses”. In: Journal of Statistical Planning and Inference 138.6 (2008), pp. 1521–

1527.

[110] Tianjun Liao and Thomas Stützle. “Benchmark results for a simple hybrid

algorithm on the CEC 2013 benchmark set for real-parameter optimization”.

In: Proceedings of the 2013 Congress on Evolutionary Computation (CEC 2013).

Piscataway, NJ: IEEE Press, 2013, pp. 1938–1944.

[111] Junhong Liu and Jouni Lampinen. “A fuzzy adaptive differential evolution

algorithm”. In: Soft Computing 9.6 (2005), pp. 448–462.

[112] F. Lobo, C. F. Lima, and Zbigniew Michalewicz, eds. Parameter Setting in Evo-

lutionary Algorithms. Berlin, Germany: Springer, 2007.

[113] Fernando G Lobo and David E Goldberg. “Decision making in a hybrid ge-

netic algorithm”. In: Evolutionary Computation, 1997., IEEE International Con-

ference on. IEEE. 1997, pp. 121–125.

[114] Fernando G Lobo and Claudio F Lima. “Adaptive population sizing schemes

in genetic algorithms”. In: Parameter setting in evolutionary algorithms. Springer,

2007, pp. 185–204.

[115] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas

Stützle, and Mauro Birattari. “The irace package: Iterated Racing for Auto-

matic Algorithm Configuration”. In: (2016).

[116] O. Maron and Andrew Moore. “Hoeffding Races: Accelerating Model Selec-

tion Search for Classification and Function Approximation”. In: Advances in

Neural Information ProcessingSystems 6. Morgan Kaufmann, 1993.

198 BIBLIOGRAPHY

[117] Jorge Maturana, Frédéric Lardeux, and Frédéric Saubion. “Autonomous op-

erator management for evolutionary algorithms”. In: Journal of Heuristics 16.6

(2010), pp. 881–909.

[118] Jorge Maturana and Frédéric Saubion. “A compass to guide genetic algo-

rithms”. In: International Conference on Parallel Problem Solving from Nature.

Springer. 2008, pp. 256–265.

[119] Jorge Maturana, Alvaro Fialho, Frédéric Saubion, Marc Schoenauer, Frédéric

Lardeux, and Michele Sebag. “Adaptive operator selection and management

in evolutionary algorithms”. In: Autonomous Search. Springer, 2011, pp. 161–

189.

[120] Jorge Maturana, Álvaro Fialho, Frédéric Saubion, Marc Schoenauer, and Michèle

Sebag. “Extreme compass and dynamic multi-armed bandits for adaptive op-

erator selection”. In: Evolutionary Computation, 2009. CEC’09. IEEE Congress

on. IEEE. 2009, pp. 365–372.

[121] Brian Mc Ginley, John Maher, Colm O’Riordan, and Fearghal Morgan. “Main-

taining healthy population diversity using adaptive crossover, mutation, and

selection”. In: IEEE Transactions on Evolutionary Computation 15.5 (2011), pp. 692–

714.

[122] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-

jeland, Georg Ostrovski, et al. “Human-level control through deep reinforce-

ment learning”. In: Nature 518.7540 (2015), p. 529.

[123] Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. “The application of

Bayesian methods for seeking the extremum”. In: Towards global optimization

2.117-129 (1978), p. 2.

[124] Sibylle D Muller, Nicol N Schraudolph, and Petros D Koumoutsakos. “Step

size adaptation in evolution strategies using reinforcement learning”. In: Evo-

lutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on. Vol. 1.

IEEE. 2002, pp. 151–156.

BIBLIOGRAPHY 199

[125] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted

boltzmann machines”. In: pp. 807–814.

[126] Jens Niehaus and Wolfgang Banzhaf. “Adaption of operator probabilities

in genetic programming”. In: European Conference on Genetic Programming.

Springer. 2001, pp. 325–336.

[127] Yew Soon Ong and Andy J Keane. “Meta-Lamarckian learning in memetic al-

gorithms”. In: IEEE transactions on evolutionary computation 8.2 (2004), pp. 99–

110.

[128] Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun,

and Dawn Song. “Assessing generalization in deep reinforcement learning”.

In: arXiv preprint arXiv:1810.12282 (2018).

[129] Rebecca Parsons and Mark Johnson. “A Case Study in Experimental De-

sign Applied to Genetic Algorithms with Applications to DNA Sequence As-

sembly”. In: American Journal of Mathematical and Management Sciences 17.3-4

(1997), pp. 369–396.

[130] Martin Pelikan and Jürgen Branke, eds. Genetic and Evolutionary Computation

Conference, GECCO 2010, Proceedings, Portland, Oregon, USA, July 7-11, 2010.

New York, NY: ACM Press, 2010.

[131] James E Pettinger and Richard M Everson. “Controlling genetic algorithms

with reinforcement learning”. In: Proceedings of the 4th Annual Conference on

Genetic and Evolutionary Computation. Morgan Kaufmann Publishers Inc. 2002,

pp. 692–692.

[132] Kenneth Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution:

A Practical Approach to Global Optimization. Springer, New York, NY, 2005.

[133] Proceedings of the 2005 Congress on Evolutionary Computation (CEC 2005). Pis-

cataway, NJ: IEEE Press, Sept. 2005.

[134] Wuwen Qian, Junrui Chai, Zengguang Xu, and Ziying Zhang. “Differen-

tial evolution algorithm with multiple mutation strategies based on roulette

wheel selection”. In: Applied Intelligence (2018), pp. 1–18.

200 BIBLIOGRAPHY

[135] A Kai Qin, Vicky Ling Huang, and Ponnuthurai N Suganthan. “Differential

evolution algorithm with strategy adaptation for global numerical optimiza-

tion”. In: IEEE transactions on Evolutionary Computation 13.2 (2009), pp. 398–

417.

[136] A Kai Qin and Ponnuthurai N Suganthan. “Self-adaptive differential evo-

lution algorithm for numerical optimization”. In: Evolutionary Computation,

2005. The 2005 IEEE Congress on. Vol. 2. IEEE. 2005, pp. 1785–1791.

[137] I. Rechenberg. “Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution”. PhD thesis. Department of Process

Engineering, Technical University of Berlin, 1971.

[138] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzip-

ien der biologischen Evolution. Frommann-Holzboog, Stuttgart, Germany, 1973.

[139] Ingo Rechenberg. “Cybernetic solution path of an experimental problem”. In:

Royal Aircraft Establishment Library Translation 1122 (1965).

[140] Colin R. Reeves. “Genetic algorithms”. In: Handbook of Metaheuristics. Ed. by

Michel Gendreau and Jean-Yves Potvin. 2nd ed. Vol. 146. International Series

in Operations Research & Management Science. New York, NY: Springer,

2010. Chap. 5, pp. 109–140.

[141] Arkady Rost, Irina Petrova, and Arina Buzdalova. “Adaptive Parameter Se-

lection in Evolutionary Algorithms by Reinforcement Learning with Dynamic

Discretization of Parameter Range”. In: Proceedings of the 2016 on Genetic and

Evolutionary Computation Conference Companion. ACM. 2016, pp. 141–142.

[142] John Rust. “Structural estimation of Markov decision processes”. In: Hand-

book of Econometrics. Vol. 4. Elsevier, 1994, pp. 3081–3143.

[143] Yoshitaka Sakurai, Kouhei Takada, Takashi Kawabe, and Setsuo Tsuruta. “A

method to control parameters of evolutionary algorithms by using reinforce-

ment learning”. In: 2010 Sixth International Conference on Signal-Image Technol-

ogy and Internet Based Systems. IEEE. 2010, pp. 74–79.

BIBLIOGRAPHY 201

[144] Tom Schaul. “Comparing natural evolution strategies to bipop-cma-es on

noiseless and noisy black-box optimization testbeds”. In: Proceedings of the

14th annual conference companion on Genetic and evolutionary computation. ACM.

2012, pp. 237–244.

[145] Hans-Paul Schwefel. “Evolutionsstrategien für die numerische Optimierung”.

In: Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrate-

gie. Springer, 1977, pp. 123–176.

[146] Hans-Paul Schwefel. Numerical optimization of computer models. John Wiley &

Sons, Inc., 1981.

[147] Mudita Sharma and Satish Chandra. “Application of Artificial Bee Colony

Algorithm for numerical optimization technique”. In: 2015 IEEE International

Advance Computing Conference (IACC). IEEE. 2015, pp. 1267–1272.

[148] Mudita Sharma and Dimitar Kazakov. “Hybridisation of artificial bee colony

algorithm on four classes of real-valued optimisation functions”. In: Proceed-

ings of the Genetic and Evolutionary Computation Conference Companion. ACM.

2017, pp. 1439–1442.

[149] Mudita Sharma, Manuel López-Ibáñez, and Dimitar Kazakov. Deep Reinforce-

ment Learning Based Parameter Control in Differential Evolution: Supplementary

material. https://github.com/mudita11/DE- DDQN. 2019. DOI: 10.5281/

zenodo.2628229.

[150] Mudita Sharma, Manuel López-Ibáñez, and Dimitar Kazakov. “Performance

Assessment of Recursive Probability Matching for Adaptive Operator Se-

lection in Differential Evolution”. In: Parallel Problem Solving from Nature -

PPSN XV. Ed. by Anne Auger, Carlos M. Fonseca, N. Lourenço, P. Machado,

Luís Paquete, and Darrell Whitley. Vol. 11102. LNCS. Springer, Cham, 2018,

pp. 321–333.

[151] Mudita Sharma, Manuel López-Ibáñez, and Dimitar Kazakov. Performance

Assessment of Recursive Probability Matching for Adaptive Operator Selection in

Differential Evolution: Supplementary material. https://github.com/mudita11/

AOS-comparisons. 2018. DOI: 10.5281/zenodo.1257672.

https://github.com/mudita11/DE-DDQN
http://dx.doi.org/10.5281/zenodo.2628229
http://dx.doi.org/10.5281/zenodo.2628229
https://github.com/mudita11/AOS-comparisons
https://github.com/mudita11/AOS-comparisons
http://dx.doi.org/10.5281/zenodo.1257672

202 BIBLIOGRAPHY

[152] Alok Singh. “An artificial bee colony algorithm for the leaf-constrained min-

imum spanning tree problem”. In: Applied Soft Computing 9.2 (2009), pp. 625–

631.

[153] Jim Smith and Terence C Fogarty. “Self adaptation of mutation rates in a

steady state genetic algorithm”. In: Evolutionary Computation, 1996., Proceed-

ings of IEEE International Conference on. IEEE. 1996, pp. 318–323.

[154] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. “Practical bayesian opti-

mization of machine learning algorithms”. In: Advances in neural information

processing systems. 2012, pp. 2951–2959.

[155] Jaroslaw T Stanczak, Jan J Mulawka, and Brijesh K Verma. “Genetic algo-

rithms with adaptive probabilities of operators selection”. In: iccima. IEEE.

1999, p. 464.

[156] Rainer Storn and Kenneth Price. “Differential Evolution – A Simple and Effi-

cient Heuristic for Global Optimization over Continuous Spaces”. In: J. Glob.

Optim. 11.4 (1997), pp. 341–359.

[157] Ponnuthurai N. Suganthan, Nikolaus Hansen, J. J. Liang, Kalyanmoy Deb, Y.

P. Chen, A. Auger, and S. Tiwari. Problem definitions and evaluation criteria for

the CEC 2005 special session on real-parameter optimization. Tech. rep. Nanyang

Technological University, Singapore, 2005.

[158] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-

tion. MIT Press, Cambridge, MA, 1998.

[159] Ryoji Tanabe and Alex Fukunaga. “Success-history based parameter adapta-

tion for differential evolution”. In: 2013 IEEE congress on evolutionary compu-

tation. IEEE. 2013, pp. 71–78.

[160] Ryoji Tanabe and Alex Fukunaga. “Tuning differential evolution for cheap,

medium, and expensive computational budgets”. In: 2015 IEEE Congress on

Evolutionary Computation (CEC). IEEE. 2015, pp. 2018–2025.

BIBLIOGRAPHY 203

[161] Cristina Teixeira, José Covas, Thomas Stützle, and António Gaspar-Cunha.

“Application of Pareto Local Search and Multi-Objective Ant Colony Algo-

rithms to the Optimization of Co-Rotating Twin Screw Extruders”. In: Pro-

ceedings of the EU/MEeting 2009: Debating the future: new areas of application and

innovative approaches. Ed. by Ana Viana et al. 2009, pp. 115–120.

[162] Dirk Thierens. “Adaptive strategies for operator allocation”. In: Parameter

Setting in Evolutionary Algorithms. Ed. by F. Lobo, C. F. Lima, and Zbigniew

Michalewicz. Berlin, Germany: Springer, 2007, pp. 77–90.

[163] Dirk Thierens. “An Adaptive Pursuit Strategy for Allocating Operator Proba-

bilities”. In: Proceedings of the Genetic and Evolutionary Computation Conference,

GECCO 2005. Ed. by Hans-Georg Beyer and Una-May O’Reilly. New York,

NY: ACM Press, 2005, pp. 1539–1546.

[164] Andrew Tuson and Peter Ross. “Adapting operator settings in genetic algo-

rithms”. In: Evolutionary computation 6.2 (1998), pp. 161–184.

[165] Fatemeh Vafaee, Peter C Nelson, Chi Zhou, and Weimin Xiao. “Dynamic

adaptation of genetic operators’ probabilities”. In: Nature Inspired Cooperative

Strategies for Optimization (NICSO 2007). Springer, 2008, pp. 159–168.

[166] James M Whitacre, Tuan Q Pham, and Ruhul A Sarker. “Credit assignment in

adaptive evolutionary algorithms”. In: Proceedings of the 8th annual conference

on Genetic and evolutionary computation. ACM. 2006, pp. 1353–1360.

[167] Y-Y Wong, K-H Lee, K-S Leung, and C-W Ho. “A novel approach in param-

eter adaptation and diversity maintenance for genetic algorithms”. In: Soft

Computing-A Fusion of Foundations, Methodologies and Applications 7.8 (2003),

pp. 506–515.

[168] Jinghua Zhang and Ze Dong. “Parameter Combination Framework for the

Differential Evolution Algorithm”. In: Algorithms 12.4 (2019), p. 71.

[169] Jingqiao Zhang and Arthur C. Sanderson. “JADE: adaptive differential evolu-

tion with optional external archive”. In: IEEE Trans. Evol. Comput. 13.5 (2009),

pp. 945–958.

204 BIBLIOGRAPHY

[170] Guopu Zhu and Sam Kwong. “Gbest-guided artificial bee colony algorithm

for numerical function optimization”. In: Applied mathematics and computation

217.7 (2010), pp. 3166–3173.

[171] Eckart Zitzler. “Evolutionary Algorithms for Multiobjective Optimization:

Methods and Applications”. PhD thesis. ETH Zürich, Switzerland, 1999.

	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Authors declaration
	I Introduction
	Introduction and Motivation
	Thesis contributions
	Research aims of the thesis
	Thesis Structure

	II Background
	General background
	Optimisation
	Evolutionary Algorithms
	Genetic Algorithms
	Evolution Strategies
	Differential Evolution
	Artificial Bee Colony Algorithm

	Parameter Setting
	Parameter Tuning
	Parameter Control

	Reinforcement Learning

	Adaptive Selection for Discrete Parameters
	Adaptive Operator Selection
	Credit Assignment
	Operator Selection

	Experimental setting
	Problem set
	Offline tuning of hyper-parameters
	Training set

	III Contributions
	Recursive Probability Matching
	Methodology
	Experimental Design
	Parameter tuning
	Testing phase

	Experiments and Results
	Comparison of AOS methods with different parameter settings
	Comparison of RecPM-AOS with state-of-the-art algorithms

	Summary

	Unified Framework for Adaptive Operator Selection
	Methodology
	Components of the proposed framework for AOS
	Offspring Metric
	Reward
	Quality
	Probability
	Selection

	AOS methods utilised to build the framework
	Experimental Design
	Parameter tuning

	Testing phase
	Experiments and Results
	Comparison of U-AOS-FW with other tuned AOS methods
	Comparison of U-AOS-FW with non-AOS methods
	Comparison of U-AOS-FW trained on nine operators with RecPM-AOS on four operators

	Summary

	Double Q-Network within Differential Evolution
	Methodology
	DE-DDQN
	State features and reward

	Experimental Design
	Training and Testing

	Experiments and Results
	Comparison among four proposed models
	Comparison of proposed models with other algorithms
	Comparison of operator selection by DE-DDQN1 and U-AOS-FW

	Summary

	IV Conclusion and Future Work
	Conclusion
	Summary of contributions
	Future work

	V Appendices
	Mutated Artificial Bee Colony algorithm
	Introduction
	Methodology
	Experimental results
	Conclusion and summary

	DE-DDQN tested on cec2005 problem set
	Experimental design
	Training and testing
	Discussion of results

	Conclusion

	Average run time for various algorithms
	Operator selection and best fitness graphs for DE-DDQN2, DE-DDQN3 and DE-DDQN4
	Bibliography

