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Abstract

Coordination is fundamental component of autonomy when a system is defined by multiple

mobile agents. For unmanned aerial systems (UAS), challenges originate from their low-

level systems, such as their flight dynamics, which are often complex. The thesis begins

by examining these low-level dynamics in an analysis of several well known UAS using

a novel symbolic component-based framework. It is shown how this approach is used

effectively to define key model and performance properties necessary of UAS trajectory

control. This is demonstrated initially under the context of linear quadratic regulation

(LQR) and model predictive control (MPC) of a quadcopter.

The symbolic framework is later extended in the proposal of a novel UAS platform,

referred to as the “Polycopter” for its morphing nature. This dual-tilt axis system has

unique authority over is thrust vector, in addition to an ability to actively augment its sta-

bility and aerodynamic characteristics. This presents several opportunities in exploitative

control design.

With an approach to low-level UAS modelling and control proposed, the focus of the

thesis shifts to investigate the challenges associated with local trajectory generation for the

purpose of multi-agent collision avoidance. This begins with a novel survey of the state-

of-the-art geometric approaches with respect to performance, scalability and tolerance

to uncertainty. From this survey, the interval avoidance (IA) method is proposed, to

incorporate trajectory uncertainty in the geometric derivation of escape trajectories. The

method is shown to be more effective in ensuring safe separation in several of the presented

conditions, however performance is shown to deteriorate in denser conflicts.

Finally, it is shown how by re-framing the IA problem, three dimensional (3D)

collision avoidance is achieved. The novel 3D IA method is shown to out perform the

original method in three conflict cases by maintaining separation under the effects of

uncertainty and in scenarios with multiple obstacles. The performance, scalability and

uncertainty tolerance of each presented method is then examined in a set of scenarios

resembling typical coordinated UAS operations in an exhaustive Monte-Carlo analysis.
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Chapter 1

Introduction

Over the last two decades numerous technological advances in the field of aerial robotics

have meant that unmanned systems are now being considered for applications in almost

every sector. This is partly due to increase in public interest in such systems, but also

the availability of inexpensive yet highly sophisticated hardware. It is clear that with

the continued advent of increasingly powerful compact devices coupled with widely avail-

able open-source software, the applications for unmanned aerial vehicles (UAV) and the

broader classification of unmanned aerial systems (UAS) are set to expand [175].

Today such systems predominantly fall into two classifications i) remotely piloted

aircraft (RPA) and ii) autonomous aerial vehicles (AAV); based on the systems interaction

with the operator and their corresponding level of sophistication [175]. Within these

classifications the term autonomy can be used to describe multiple levels of capability as

seen in Figure 1.1; with more complex systems supporting advanced levels of coordination,

failure tolerance and adaptive behaviour [248,249].

For both RPA and AAV systems, the ability to command a pose of trajectory is

fundamental for basic locomotion. To achieve this there is a prerequisite understanding

of the system’s flight dynamics before an effective control strategy can be introduced.

This type of low-level control is often not a trivial task. A result of the manoeuvrability

of UAVs and increasing degrees of freedom, the dynamics are often complex, nonlinear

and unstable. For this reason, effective approaches that provide a standard for analysing

various UAS topologies and dynamics are becoming increasingly necessary. This is a

subject that is addressed as part of these works, in the proposal of a novel framework for

UAS modelling and control design.

A distinction is therefore drawn between the low-level control necessary for loco-

motion, and the higher-level control associated with autonomous behaviour. While both
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Figure 1.1: Categorisation of several well known unmanned aerial systems (UAS) based on their

functionality and level of autonomy. Coordination refers to several control levels, low level control

1 & 2, with more sophisticated group behaviour defined as levels 5 and above. Fundamental

operations such as collision avoidance and adaptive re-planning are defined as levels 3 & 4 [248,

249].

are implicit in the operation of AAVs, there exists a another set of challenges once control

over the vehicles dynamics can be assumed. These challenges are associated with estab-

lishing a critical level of autonomy required for versatile and reliable operation of the

AAV with limited interaction with a human operator. Some of the factors contributing to

this critical level of autonomy are reliable mechanisms for automatic collision avoidance,

failure tolerance, communication and coordination with other systems and AAVs.

An example where a critical level of autonomy must be achieved is in the utilisation

of swarms of AAVs as multi-agent systems (MAS). Here the system is comprised of many

collaborating physical systems with some overarching objective defined by a common

schema. In such systems low-level control of the individual agent is often assumed and

tasks such as group coordination, collision avoidance and adaptive failure handling become

integral to the MAS. This is because in such scenarios it becomes favourable to interact

with the MAS at a supervisory level; as meaningful control of each individual is difficult

if not impossible. There is therefore a reliance on a critical level of autonomy to be able

to manage low-level operations, communication and decisions. The shift in responsibility

then enables the supervisor to focus on the mission objectives whilst operations such as

command interpretation, collision avoidance and agent coordination become behaviour

inherent to the MAS [5,8, 175].

Once low-level control can be assumed, one of the distinct components limiting

the autonomy of MAS and coordinated UAV systems is reliable and automatic collision
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avoidance. In this thesis, the challenges and requirements for modern UAS operating in a

modern airspace are examined from the perspective of collision avoidance within coordin-

ated UAV systems. As part of the investigation, reference is frequently made to existing

standards and methods applied to conventional air-traffic control. This is due to the fact

that many of the challenges faced in the coordination of multiple UAVs(MASs) can, in a

broader sense, be considered analogous to those faced by modern air-traffic control. The

assumption in such cases is that trajectory information is available unilaterally across an

established network [104,123].

In the event that communication is not unilateral, or cannot be guaranteed, then

modern AAVs are required to have sense, detect and avoid (SDA) mechanisms in place

in order to be able to operate alongside conventional manned aircraft [11, 225, 228]. His-

torically, the SDA approach has been presented in the context of conventional, manned,

air-traffic as a basis for local conflict negotiation. Interest in this area originally stems

from the redundancy of any a dedicated air traffic management (ATM) service in favour

of conflict resolution occurring on a peer to peer basis. This concept is widely cited in

the literature as the free flight principle [77, 106, 204, 229]. The need for more sophistic-

ated automation tools for handling aerial conflicts due to increasing air-traffic is already

highlighted in [123,184] without reference to the emerging body of unmanned air-traffic.

Its clear from the challenges faced by modern UAS that to both i) contribute towards

achieving a critical level of autonomy through the design of a reliable collision avoidance

method ii) meet the requirements for safe operation in a mixed airspace, a reliable SDA

procedure is required. This is the focus of the later chapters of these works. The use of

SDA based avoidance in coordinated UAS is well established in the literature and naturally

rely on sophisticated sensing methods to provide obstacle information that cannot be

otherwise communicated or inferred. While SDA methods make no assumptions about

the communication capabilities of the obstacle, they present several opportunities for

approaches that can handle multiple obstacles and the uncertainty associated with realistic

sensing conditions.

1.1 Challenges & Opportunities

The potential for MAS and collaborative systems over conventional UAS (such as RPAs)

is extensive and well documented. Coordination of multiple agents allows for more op-

timal coverage in search and rescue missions, optimality in the distribution of mobile
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sensor networks, capacity in transport and reliability through redundancy to name a few.

In addition, collaborative systems bring about new opportunities for systems in the areas

of multi-tasking and delegation, or in the completion of tasks that cannot be negotiated

without collaboration. With their benefits however, comes numerous challenges to over-

come in ensuring reliable communication, scalability, effective coordination and safety

assurance. Ensuring safety in multi-agent systems is a complex task, referring not just

to the safe operation of the system but also with respect to non-cooperative entities such

as foreign aircraft, bystanders and obstacles that may be unable to communicate their

intent.

One of the most fundamental tasks necessary in establishing a basic level of safety

in collaborative systems is effective collision prevention, both at a level of coordination

and in response to unforeseen changes. It is therefore clear that effective SDA algorithms

able to tolerate real-world sensor conditions demonstrate an immediate opportunity to

enhance the autonomy of swarming AAVs and UAS.

1.2 Thesis Outline

The thesis structure is outlined below:

Chapter 1 begins by introducing the motivation and context for the research

presented in this thesis. Some emphasis is also given to some of the challenges faced

in the enhancement autonomy within coordinated UAS. The structure of the document

is also outlined in addition to the key contributions and publications associated with the

thesis.

Chapter 2 presents a comprehensive review of the techniques currently applied in

the coordination of unmanned aerial systems. It begins by introducing common control

topologies in relation to the various UAV and UAS subsystems. Established axes con-

ventions, notation and principles used to describe UAS are then presented for the reader.

Focus then shifts to the discuss many of the control techniques currently being applied in

the context of UAS control. Classical control notions are introduced in relation to more

modern techniques for establishing stability, trajectory control and more sophisticated

techniques for adaptive behaviour and failure tolerance in modern unmanned systems.

Chapter 3 begins with an introduction to OpenMAS ; an open-source multi-agent

simulator developed as part of these works. Here, the mathematical representation of UAS

pose in both 2D and 3D space is presented in relation to flight-path notation, collision

events, and other fundamental procedures. An overview of the structural representation of
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agents, technical assumptions is given in addition to a description of techniques employed

to emulate data received from on-board sensors.

The chapter then moves onto the proposed symbolic framework for the generation of

analytic UAS and mirco aerial vehicle (MAV) descriptions. It is demonstrated how using

this framework several known MAV configurations may be characterised by defining their

symbolic representation. Additionally it is shown how this technique may be incorporated

into preliminary controller design by defining key control and stability parameters without

numeric parameterisation. This principle can be seen initially applied to quadcopter

configurations; in which stability is demonstrated using both linear quadratic regulator

(LQR) and model predictive control (MPC) methodologies. To further demonstrate the

technique, the symbolic representation of tricopter and deltacopter MAV configurations

are presented. These more sophisticated MAV descriptions are then presented to highlight

further opportunities for future work.

Chapter 4 introduces a novel MAV design based on the symbolic framework intro-

duced previously. This new topology, referred to as the “Polycopter”, presents a number

interesting motion characteristics due to the active morphing airframe and it’s three in-

dependently vectored nacelles. The chapter initially presents some of the background lit-

erature surrounding morphing aerial systems and their distinction from traditional MAV

topologies. The opportunities these systems present are then discussed with reference to

the flight characteristics of the Polycopter.

The chapter then presents derivations of the proposed systems dynamics under

two conditions. The first presents a reduced form of the systems dynamics under the

assumptions that the deflections of the nacelles are small; and so the inertial characteristics

of the system are largely unchanging. This is shown to be synonymous to several existing

dual-tilt axis systems where only the rotor-disk is actuated. This assumption is then

challenged by considering each of the nacelle assemblies as serial-link kinematic chains

in order to better represent the system through larger control-surface deflections. The

chapter concludes with closing remarks about the numerous opportunities the system

presents for adaptive and bio-mimetic control that may be able to take advantage of the

MAV’s versatility in future work.

Chapter 5 presents a review of literature surrounding collision avoidance in the

context of unmanned aerial systems. Here several fundamental principles and concepts are

introduced, in addition to some common assumptions within the multi-agent literature. A

review of established methods to collision avoidance is presented based on their description

of the conflict problem. An emphasis on geometric techniques can also be seen in light of

5



the contributions of this thesis.

Chapter 6 begins by forming an analogy between UAV conflict resolution within

a defined altitude and planar collision avoidance in a multi-agent system. The repres-

entation of local sensor models, dynamic assumptions and conventions are introduced.

Here, several popular geometric methods, known to the literature, are demonstrated and

discussed in the form of a comparative study. The algorithms are assessed with respect

to several key performance parameters in a series of presented conflict scenarios. Fi-

nally, the resilience of each algorithm is compared through the introduction of imperfect

sensor assumptions. The results of a comprehensive Monte-Carlo analysis comparing the

performance of each algorithm in these conditions is then presented.

The results from this analysis are used to provide context for the proposed interval

avoidance method. The algorithm is presented and discussed in relation to other geometric

methods. The performance of the algorithm is demonstrated and compared to the state

of the art methods introduced previously with reference to associated works.

Chapter 7 builds on some of the principles proposed in Chapter 6 in order to define

optimal avoidance regions in 3D space. The chapter begins by introducing an adapted

sensor model used to observe the relative motion of obstacles in 3D space. Based on the

respective sensor uncertainties, it is shown how it is possible to abstract the avoidance

problem to consider a set of possible conflict planes. A geometric method is then presented

that allows a 3D region to be defined that encloses the corresponding optimal avoidance

manoeuvres. Using some of the concepts demonstrated previously, it is then shown how

simultaneous avoidance of multiple obstacles can be achieved through a prioritised inter-

section of the optimal regions.

The performance of the proposed algorithm is then demonstrated in three key scen-

arios representing typical and problematic aerial encounters. The agents are then tasked

with assuring collision avoidance under representative sensor conditions. A comprehens-

ive Monte-Carlo analysis of these scenarios is then used to demonstrate the algorithms

ability to maintain safe separation in both singular and multi-agent conflicts.

Chapter 8 then concludes the thesis with a synopsis of the technical findings,

methods and results presented previously. Speculation is then given toward future research

opportunities given some the key outcomes of the thesis.
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1.3 Research Contributions

In this section the significant contributions of the thesis are presented in relation to each

of the thesis chapters and the authors associated publications listed in Section 1.4.

Chapter 3 - A symbolic framework for the parameterised modelling and control of

UAV’s.

• Proposes a symbolic framework for modelling and control of MAV’s. Defining differ-

ent configurations as symbolic profiles is shown to facilitate investigation of generic

analytical forms for the purposes of control and stability without numerical para-

meterisation.

• The concept is initially applied to a quadcopter style UAV. It is then demonstrated

how using this approach, symbolic linearised forms can be obtained to define key

parameters for LQR and MPC control. A comparison of the applied controllers

demonstrates that the model behaviour is as expect and sufficient for preliminary

control design.

• The concept of symbolic profiles is demonstrated further in the construction of

analytical representations of the Tricopter and Deltacopter style MAV systems.

Chapter 4 - The contributions of this chapter centre on the Polycopter UAS

concept, dynamical model and preliminary control design.

• The novel concept of the Polycopter is introduced for the first time using the frame-

work introduced in Chapter 3. By being able to actively orientate each nacelle

through two degrees of freedom (DOF), the Polycopter is able to maintain a fixed

body orientation through complex manoeuvres due to it’s enhanced authority over

the centre of thrust. As the nacelles represent a significant proportion of airframe

mass, their actuation gives the Polycopter a unique ability to modify it’s flight and

stability characteristics by augmenting it’s centre of mass. The Polycopter’s proper-

ties are presented as a novel platform for preliminary controller design for morphing

aerial systems.

• The open-loop dynamic behaviour of the Polycopter is derived analytically under

the assumption of “small nacelle deflections”. Here the formulation is shown to be

analogous to some of the constant inertia, dual tilt-axis systems in the literature

with additional authority over the thrust vector.
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• Based on the limited ability of first formulation to capture the morphology of the

Polycopter, a second model formulation based on the principle of kinematic chains

is proposed. A recursive Newton-Euler (RNE) method is used to characterise the

motion of each component in the airframe, including the variable attitude nacelles.

It is shown how using this approach, a platform for the design of intelligent control

strategies may be achieved.

Chapter 6 - The concept of interval avoidance (IA) applied to the resolution of

planar conflicts in communication denied environments.

• A novel technical review of established geometric collision avoidance approaches

is presented, emphasising several key performance parameters in addition to their

tolerance to corrupt measurement sources.

• A statistical validation is presented examining the hybrid-reciprocal velocity obstacle

(HRVO) and optimal reciprocal collision avoidance (ORCA) algorithms in different

sensor conditions.

• The interval avoidance algorithm is presented for the first time in the context of

an SDA scenario occurring between UAVs at a constant altitude. This approach

demonstrates how the principles of interval analysis may be used to generate op-

timal avoidance trajectories in the presence of corrupt sensor measurements without

linearisation or approximation.

• Utilising fundamental principles of interval analysis, it is demonstrated how the IA

algorithm can be extended to allow the simultaneous avoidance of multiple obstacles.

This is shown to be possible through the construction of proximity-prioritised tra-

jectory interval sets.

Chapter 7 - Extension of the interval avoidance method to a generalised case for

conflict resolution in 3D aerial encounters.

• The proposed IA concept is reinvented outside of the planar assumptions in Chapter 6

to facilitate conflict resolution in 3D airspace. This is demonstrated to be possible

by abstracting the interval problem introduced previously to set of possible conflict

planes within a defined interval. Using this technique, the obstacle measurement in-

tervals are used to define a 3D geometric region containing the appropriate optimal

avoidance manoeuvres.
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• It is shown how under the notation of interval analysis, the new 3D IA concept

may again be extended to define a 3D resolution volume describing trajectories that

satisfy multiple obstacle constraints simultaneously.

• A statistical analysis of the proposed method demonstrates the algorithms ability

to assure safe separation in an array of typical aerial encounters in the presence of

corrupt sensor measurements.

1.4 Publications

The authors publications associated with the topics of thesis are outlined below:

Peer reviewed journal publications

1. J.A. Douthwaite, S. Zhao, L.S. Mihaylova, “Velocity Obstacle Approaches for Multi-

Agent Collision Avoidance”, Unmanned Systems, 2019.

Peer reviewed conference proceedings

1. J.A. Douthwaite, S. Zhao, L.S. Mihaylova, “A Comparative Study of velocity obstacle

approaches for multi-agent systems”, Proceedings from the 12th UKACC Interna-

tional Conference on Control, Sheffield, UK, September 2018, pages 1-8.

2. J.A. Douthwaite, A. De Freitas, L.S. Mihaylova, “An Interval Approach to Multiple

Unmanned Aerial Vehicle Collision Avoidance”, Proceedings of the 11th Symposium

Sensor Data Fusion: Trends, Solutions, and Applications, Bonn, Germany, Septem-

ber 2017, pages 1-8.

3. J.A. Douthwaite, L.S. Mihaylova, S.M. Veres, “Enhancing Autonomy in VTOL

aircraft Based on Symbolic Computation Algorithms”, In Towards Autonomous

Robotic Systems (TAROS-16), Sheffield, UK, August 2016, pages 99-110.

Workshops

1. J.A. Douthwaite, A. De Freitas, L.S. Mihaylova, “An Interval Approach to Multiple

UAV Collision Avoidance”, Proceedings from the 10th Summer Workshop on In-

terval Methods and 3rd International Symposium on Set Membership Applications,

Reliability and Theory (SWIMSMART 2017), Manchester, UK, June 2017, pages

63-64.
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Chapter 2

Literature Review - Coordination

of Unmanned Systems

This chapter provides a review of the background literature surrounding modelling and

control techniques currently being applied in the coordination and control of unmanned

aerial systems (UAS) and micro Aerial Vehicles (MAVs). Networks of coordinated UAS

are at the forefront of modern technology with numerous civil, industrial and military

entities backing research into their integration in existing infrastructure and legislation [4,

8,123,193,217]. Within Modern UAS, control systems exist at every level; applied in the

form of trajectory maintenance, formation control as well as systems for higher level

autonomy. It is because of the breadth of literature available, the following section draws

up work explicitly in the domains of trajectory control and coordination of unmanned

systems. Associated surveys on the topic of unmanned and terrestrial aircraft control

can be found in [8, 37, 39, 47, 95, 168, 228, 234]. In Section 2.1 the OpenMAS simulation

environment developed as part of these works is introduced. Due to breadth of UAS

configurations in the literature, sizes and capabilities, a generalised schema was conceived

to allow the simulation of mixed agent groups with varying decision making topologies and

physical dynamics. After this, focus shifts to examine the hierarchical control structure

adopted to represent the behaviour of decision making agents in Section 2.2 along with

some basic kinematic assumptions. The simulation definition of flight plans, waypoints

and associated logic is given in Section 2.2.2.
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Figure 2.1: A depiction of a typical MAV application scenario, including the definition of obstacles,

agents and waypoints in the context of this thesis.

2.1 OpenMAS - An Open-source Multi-Agent Simulator

As part of these works the open-source multi-agent simulator (OpenMAS) was developed.

OpenMAS is an three-dimensional (3D) object-orientated Matlab R© software package for

the simulation of multi-agent systems with sophisticated and diverse characteristics. En-

tities (i.e. agents, obstacles or waypoints) are represented as an object with unique (or

inherited) capabilities, decision logic or dynamics. Representing all entities in the simu-

lation through this layer of abstraction then allows objects to be parameterised for the

simulation of small-scale systems or larger, conventional air-traffic operations without any

loss of generality.

2.1.1 Object Representation

In this thesis, the term “scenario” is used to characterise a unique set of environmental con-

ditions and object configurations that define a given simulation instance. The object con-

figuration is defined as an index containing specific agents Ai, obstacles Oi and waypoints

Wi that represent a given scenario (see Figure 2.1). All objects are represented in shared

3D Cartesian space by their position χxyz
i = [χxi , χ

y
i , χ

z
i ]
T , velocity χ̇xyz

i = [χ̇xi , χ̇
y
i , χ̇

z
i ]
T

and it’s quaternion pose χ q
i = qi = [q0, q1, q2, q3]T in the inertial frame. The objects
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Figure 2.2: Transformation between agent i’s body axes and the inertial reference frame [66].

state at any given step k (or time tk) within the inertial east-north up (ENU) coordinate

system is then defined as χk,i = [χxyz
k,i , χ̇

xyz
k,i ,χ

q
k,i]

T . Given a quaternion pose χ q
k,i the

rotation matrix Rk,i ∈ SO(3) transforming motion within the frame of i into the inertial

frame is defined by Equation (2.1) [75]. The relation between the two axes can be seen

in Figure 2.2.

Rk,i = R(qk,i) =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

 (2.1)

Here Rk,i has the properties such that Rk,i(Rk,i)
T = I3×3.

The motion of the object i expressed in inertial coordinates can therefore be ex-

pressed as χ̇xyz
i,k = Rk,ivi,k, where vi,k = [u, v, w]T are the linear velocities of object i in

it’s own frame of reference. The object’s quaternion representation at tk+1 can similarly

be updated from the object’s rates about it’s body axes ωi,k, by representing them as rota-

tions about the inertial axes Rk,i ·ωi,k = [ωx, ωy, ωz]T . The attitude update procedure for

object i is then the result of the integration of it’s quaternion pose (see Equation (2.2)).

qk+1,i = qk,i +
∆t

2


σk −ωx −ωy −ωz

ωx σk ωz −ωy

ωy −ωz σk ωx

ωz ωy −ωx σk

 · qk,i (2.2)
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where σk defines the normalising diagonal component at step k;

σk = 1− (q2
0 + q2

1 + q2
2 + q2

3) (2.3)

The equivalent rotations of the objects field of view (FOV) in the inertial ENU coordin-

ate frame may also be calculated from their relation to the quaternion pose χ q
k,i (see

Equations (2.4-2.6):

Φi = tan−1

(
2(q0q1 + q2q3)

1− 2(q2
1 + q2

2)

)
(2.4)

Θi = sin−1 (2(q0q2 − q3q1)) (2.5)

Ψi = tan−1

(
2(q0q3 + q1q2)

1− 2(q2
2 + q2

3)

)
(2.6)

The inertial state trajectory χi is then recorded over the prescribed time interval tk ∈

[t0, tmax] as a result of each objects defined update procedure. Abstraction of χi from

the i’s dynamic states xi allows the object’s dynamical representation to be specified

externally; in accordance to specific object(agent) configurations (i.e. unique constraints,

capabilities, axis conventions etc.) [63]. The representation of an i’s orientation as a unit

quaternion ensures that it’s trajectory can be accurately represented through complex

manoeuvres, whilst preventing anomalies such as gimbal-lock from occurring (see associ-

ated literature [50, 74, 75]). The high level expression for the evolution of χi can then be

expressed in Equation (2.7) in terms of the linear and angular rates about it’s local body

axes.

χk+1,i = fi(χk,i,vk+1,i,ωk+1,i,∆t) (2.7)

Here, ∆t defines the simulation sample period. An overview of the OpenMAS simulation

procedure can be seen summarised in Figure 2.3. For more information and the original

source code please see [66].

2.1.2 Collision Definition & Detection

Objects operate within a shared 3D space in which the chance of collision between two

objects exists. In general, collisions between two objects are characterised by the inter-

section of their designated collider geometries. These geometries allow approximations

to be made about the objects physical geometry, which may be complex or concave, for

purposes of efficient collision evaluation. As objects i and j enter a collision scenario, their
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Figure 2.3: A system representation of the open-source multi-agent simulator (OpenMAS) envir-

onment developed as part of these works [66].

15



collider geometries are then used to evaluate whether a collision has occurred at time tk.

In these works agents, such as UAS and other unmanned aerial vehicles (UAVs),

are assigned spherical collider geometries depicting the minimum allowable Euclidean

separation in the inertial frame. This condition is defined as ||χxyzi − χxyzj ||< (ri +

rj) − ι, where ||x|| defines the Euclidean norm of x and ι is a condition tolerance to

eliminate ambiguity between collisions and narrow-misses caused by the nature of discrete

simulation. Spherical collision geometries are also used in the generation of waypoint

achieved events with a defined radius representing their tolerance for the position of i.

The use of radial collision constraints is well established within the collision avoidance

community [27,63,65,250].

Collision events that occur between with other objects, such as obstacles, are eval-

uated through sequential axis-aligned bounding box (AABB) and object aligned bounding

box (OBB) checks once the initial radial separation condition is violated. The dimensions

of the AABB and OBB geometries characterising object i are parameterised by the ex-

tents of the physical geometry of i; specified in body axis coordinates, given relative to

it’s origin [270].

2.1.3 Sensor Representation

Agents are defined as objects with the unique capability of making observations of their

surroundings (Oj , Aj and Wi). Agents are assumed able to observe the trajectory of a

second object j using an on-board system. This system is assumed to make measurements

within a dedicated coordinate frame, positioned on the agent’s geometry. For simplicity

however, the coordinate system of the “sensor” is assumed to be aligned with the body

axis of the agent and positioned at it’s origin. The apparent trajectory of object j in the

frame of i can therefore be represented conveniently in terms of their representation χi

and χj in the inertial frame via Equations (2.8) and (2.9).

pj = RT
i (χxyz

j − χxyz
i ) +wp (2.8)

vj = RT
i (χ̇xyz

j − χ̇xyz
i ) +wv (2.9)

Here the terms wp = N (03×1, I3×3 · σ2
p) and wv = N (03×1, I3×3 · σ2

v) introduce the

sensors representative noise, assumed Gaussian with a variance of σp and mean of zero.

Sensors such as cameras, LIDARS and RADARS, implement a spherical based coordinate

system in sampling the position of object j [55,212]. The equivalent spherical-coordinate

representation can be calculated directly from it’s relative position to the sensor λj (seen
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in Equation (2.10)).

dj = ||λj ||= ||pj − pi,sensor|| (2.10)

θj = sin−1

(
λzj
dj

)
(2.11)

ψj = tan−1

(
λyj
λxj

)
(2.12)

Here use of ||λj || constitutes the Euclidean norm1 of the vector λj . The measurement

variables dj , θj and ψj represent the apparent range, elevation and heading of object

j respectively, in the coordinates of i’s sensor positioned at pi,sensor in the body axes.

Objects that are more geometrically complex, such as polygons, are expressed in the

frame of i by a similar process (for more information see [66]).

It is assumed that the agent’s interpretation of the world is confined to a specified

range, representing the effective range of their sensory system. Generally, agent i is

considered able to observe object j if their Euclidean separation satisfies ||χxyz
k,j −χ

xyz
k,i ||≤

rdetectioni where rdetectioni is used to parameterise the maximum effective range of i’s sensory

system.

2.2 Unmanned Aerial Systems

Modern unmanned systems vary greatly in their level of sophistication. In the context of

these works, UAS are considered to be intelligent agents Ai with defined sensory capab-

ilities, hierarchical decision procedures and physical dynamics. The decision procedure,

while specific to a given system, is generally considered to utilise information gained at

tk on the systems current state xk,i and the state of it’s surroundings.

2.2.1 Flight Management & Control

The flight management system (FMS), is the general term given to the system responsible

for managing mission objectives, auxiliary functions and aircraft trajectory. Full-scale sys-

tems, such as the Global Hawk RQ-4 [178] are highly complex, with numerous subsystems

responsible for dedicated hardware. These correspond to engine management facilities,

health monitoring as well as communication and broadcast systems specifically for integ-

ration into existing airspace infrastructure. Conversely, the FMS on-board the average

commercially available MAV is now integrated into a single printed circuit board (PCB).

Developments in this area stem from the growing popularity of single board computers
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Figure 2.4: An outline of the digital structure of modern UAS, with dedicated sensing, decision

processes and plant dynamics .

and accessible development platforms such as the Raspberry PiR© and ArduinoR© [71,167].

The sophistication of a UAVs FMS ultimately dictates the level of autonomy achiev-

able on-board the system; facilitating complex tasks such as adaptive path planning,

failure tolerance and collision avoidance all of which are considered steps towards more

adaptive and autonomous aircraft. More specifically, the FMS is responsible for flow of in-

formation between the aircraft’s various subsystems (see Figure 2.4). As a generalisation,

the associated hardware and software subsystems constituting the FMS can be grouped

into hierarchical layers:

• Sensory layer - Responsible for the sampling of the UAV’s sensory systems. Typ-

ically, UAS are equipped with an inertial measurement unit (IMU) containing a

three-axis accelerometer, gyroscope and magnetometer. Together these sensors al-

low a system to estimate the current pose of the aircraft in 3D space. Modern

UAS now also implement GPS receivers, barometers and airspeed indicators (e.g.

optical flow or pitot tubes), to allow the estimation of the aircraft’s position, alti-

tude and speed respectively. Other sensors may provide facilities for command
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interpretation and communications, measure system health (e.g. battery voltage,

CPU temperature, engine speeds..) as well as the state of the system’s actuators.

More sophisticated systems with higher sensing capabilities are able to make ob-

servations on the state of the environment [42]. Common examples of this include

monoscopic(stereoscopic) cameras, RADAR and LIDAR, which either actively or

passively sample changes in the environment (see Section 6.1) [212].

Information received from the system’s IMU, health and auxiliary sensors are filtered

and merged through a defined sensor fusion algorithm (typically a extended Kalman

filter (EKF)) to formulate a new estimate of system and the state of entities in the

environment. In certain cases, agents with sophisticated target tracking algorithms

may also utilise object recognition and classification algorithms to attach additional

data to known data features [55,234].

• Decision layer - The design of the system’s decision layer varies significantly

between applications and operational scale. Often cited as the system’s auto-pilot,

the decision layer is responsible for the resolution of the aircraft’s trajectory from an

enhanced understanding of the environment [9,234]. More specifically, sophisticated

“decision” layers may contain procedures for re-evaluating mission progress (in the

form of waypoint and objective updates), recognising conflicts with obstacles and

compute an appropriate escape trajectory [204]. In addition to this, the decision

layer is responsible for interacting with mission orientated subsystems and dedicated

hardware.

• Control/Actuation layer - Once a viable trajectory is generated it is passed to

an actuation layer to be enacted. The flight control system (FCS) is often cited

as the system responsible for generating inertial accelerations to achieve a desired

flight-path [42, 95, 178]. In reality this the FCS may also be a distinct system (or

series of subsystems) representing motor drivers, electronic speed controllers, servos

and other actuator state regulators. Nowadays, these subsystems can be integrated

directly into a single “flight controller” board in some commercial UAVs at little

added cost.

Control signals received from the FCS by the systems actuators, generate acceler-

ations about the aircraft’s body axes in order to adjust the aircraft’s course. The

accelerations are then the result of the dynamical interactions between the aircraft’s

physical dynamics, aerodynamics and dynamics of the state of it’s various actuators

(e.g ailerons, rudder, rotor speeds) [225].
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In these works, the structure seen in Figure 2.4 represents the agent’s procedure as they

progress through the environment and the state of obstacles, agents and waypoints are

observed. Recent articles on the integration requirements for modern UAS can be found

in [5, 37,93,126].

2.2.2 Waypoints & Mission Planning

Objectives representing the task assigned to the UAV Ai are given in the form of an inten-

ded “flight-path”. A flight-path is defined by a vector of waypoints Wi ∈ [W1,W2, ...,Wn]

that can be observed by UAV Ai at time tk. In each case, each waypoint in Wi defines

the desired state χi,wp of Ai at time tk,wp within the inertial frame, namely; it’s desired

position, velocity or attitude [107,225,228].

Upon initialisation of a given scenario, UAVs are designated a flight path repres-

enting the task to be accomplished (e.g. transportation, patrolling etc.). waypoints Wi

assigned to agent i are only observable by agent i, and given a defined priority dictating

the order in which they are to be completed. UAVs moving through the environment

may encounter waypoints in the field and may choose to redefine the flight-path accord-

ingly. Representation of a UAV’s flight path as a series of waypoints is also representative

of flight-aids typically associated with the navigation of conventional aircraft with oper-

ational airspace. UAVs operating in a managed airspace utilise systems such as GPS,

non-directional beacons (NDB) and other supplementary flight aids as part of their area

navigation (RNAV) equipment. Such systems are necessary to allow navigation in a highly

sophisticated network of segregated traffic channels and geographic constraints.

2.2.3 Dynamic Representation

At any one time tk the state of agent Ai in the inertial frame χk,i can be expressed as a

function of it’s dynamical state representation χk+1,i = gi(χk,i,xk,i). Here gi represents

the transformations introduced in Equations (2.1) and (2.2). The evolution of the agent

i’s dynamical states xk,i is dictated by the systems dynamic contributions, namely; it’s

aerodynamics, inertial, actuator physics and propulsion dynamics. The nature of these

interactions are distinctly configuration-dependant and can expressed generally by the

dynamical function xk+1,i = di(xk,i,uk,i) + wx. Here di represents a set of differential

equations in x, describing the dynamical configuration of Ai. The agent’s input vector uk,i

defines the vector of control parameters received from the FCS at time tk. The parameter

wx = N (03×1, I3×3σ
2
x) defines a state noise term with zero mean, with variance σx.
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Figure 2.5: A depiction of the FCS axes of control and definition of it’s Euler heading angles

η = [φi, θi, ψi] as deflections in roll, pitch and yaw respectively.

The motion of a UAS is assumed to be handled by an on-board FCS. The struc-

ture of the FCS is typically hierarchical in modern unmanned systems, with controllers

responsible for altitude, attitude rates and speed control. In these works, a dedicated con-

trol convention is assigned within the FCS to allow aircraft dynamics to be specified in

the conventional aerospace North-East-Down (NED) coordinate system. The description

of the FCS rotation convention is given in Figure 2.5.

Under the NED convention, the orientation of the airframe is represented by se-

quential deflections in roll, pitch and yaw as φi, θi, ψi respectively. Together, these angles

represent the aircraft’s Euler rotations φi, θi and ψi about it’s control axes xx, xy and xz

respectively [51,85]. The coordinates of the CG xi,cg of the UAS, propulsive systems and

moments of inertia are assumed measured relative to the body axis origin. Typically, the

CG is assumed aligned with the body axis origin such that xi,cg = [0, 0, 0]T . In this section

it has been described how the dynamical representation a given UAS may be defined by

assigning it’s corresponding descriptor function xk+1,i = di(ẋk,i,xk,i,uk,i,wk,i). This ap-

proach to abstraction allows us to consider arbitrary UAS configurations with a multitude

of constraints, controllers and assumptions. In Chapter 3 an accompanying approach to

assembling UAS dynamical descriptors is introduced; using a symbolic approach to model

synthesis.

2.3 A Review of the State of the Art

2.3.1 Classical Control

Proportional, integral, differential (PID) control are long established control methods

within the field of automatic control [57]. The popularity of PID control stems from it’s
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relative simplicity and effectiveness in a wide range of systems. This makes them an ideal

benchmark with which to compare other control mechanisms. The study of unmanned

aerial systems is no different, in that PID controllers are regularly cited as the go-to

mechanism for the control of various flight systems and off-the-shelf controllers [42,122].

PID controllers are typically confined to single input single output (SISO) systems,

or made relevant via a decoupling process [234]. Examples of PID being applied directly

to one-dimensional control include altitude control [34, 62] and heading control in [34,

62, 72, 220, 256]. More complex examples of PID control can be found in the context of

stabilisation and trajectory control. Here, feedback is typically provided by dedicated PID

controllers assigned to each of the UAVs degree of freedom (DOF) or motion about each

body axis [32, 34, 58, 59, 72, 127, 220, 234]. Feedback linearisation techniques are applied

in [58] in order to reduce more sophisticated MAV configurations so that PID control of

select aircraft axes can be achieved. In such use cases, the method is shown to be able to

stabilise the system within a reasonable settling time and steady-state error as part of a

preliminary control investigation.

Due to the popularity of PID control, there are a number of existing PID hybrids

citing the use of gain scheduling in [127, 132, 194, 234] and fuzzy-logic in [21, 132] as a

mechanism of scheduled responses to changes in the aircraft’s flight window. Additionally,

efforts have been made to improve the robustness and performance of the traditional PID

controller without the added complexity of optimisation. The Kestral autopilot [179] is

an example of cascaded PID with both feedback and feed-forward techniques applied as

a commercially available product. The robust deadbeat controller, as an adaptation of

traditional PID control, is proposed as a method of controlling higher order plants. Kada

et al in [127] demonstrates the general PID control formulation. The technique of Model

Order Reduction is applied to a complex, fixed wing UAV system in order to derive the

variable feedback functions [223].

2.3.2 Linear Quadratic Gaussian/Regulative Control

The field of optimal control is well established in the literature and also within the con-

trol of terrestrial flight systems. Linear quadratic Gaussian (LQG) control and Linear

quadratic regulation (LQR) are concepts derived originally from optimal control theory

and applied to linear systems. A state-feedback matrix is calculated from the solution

to the algebriac Riccatti equation, composed of the state and input penalisations and a

representation of the linear systems. The solution is typically found numerically via a

quadratic cost function [32]. For further information on LQG/LQR control, see [6,13,64].
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This approach is shown to be effective for attitude stabilisation for MAVs in [15,

32,64,118]. Recent examples of the LQR methods applied in highly dynamic manoeuvres

can be seen in [83]. Typically, applications of linear control are limited by the assumption

of a narrow operating window. However, the author proposes a continued linearisation

process to allow the system to dynamically adjust the LQR state feedback in accordance

to it’s current state. In addition to this, the aircraft’s attitude is represented as a unit

quaternion to avoid singularities known to occur through more aggressive manoeuvres.

2.3.3 Back-stepping Control

Back-stepping, originally proposed by Koktovic in his paper [135], is a form of linear

control that has also seen increasing interest in the field of UAV coordination. Under this

regime, a control input is devised that will act to stabilise the system in accordance to

it’s Lyapunov stability conditions. The term back-stepping then refers to a retrospective

control signal, that is applied to the input in the form of differential feedback [108]. In the

literature, there have been numerous applications of back-stepping control in the context

of UAV coordination. In the works of Bouabdallah and Siegwart [33], [34], the application

of non-linear integral back-stepping can be seen applied to both the attitude and altitude

systems of a micro quadcopter. The experiment is evaluated in both simulation and

practically on board their prototype the OS4 quadcopter. The stability of the derived

back-stepping approach is compared to that of a Sliding Control mechanism in [33], but

is also evaluated as a mechanism for attitude, position and altitude control of the OS4

in [34].

A comparison is formed between the back-stepping control regime and a derived

model-predictive control (MPC) method in [152]. Here the performance of the back-

stepping controller is shown to be comparable to modern predictive methods, by achieving

the same rate of convergence and overshoot, at a reduced computational cost. It is also

shown to be much more demanding on the system actuators; unable to consider constraints

and enact large and rapid corrections in some conditions. The concept of adaptive back-

stepping control is outlined in [79, 149], as a mechanism of altering the internal process

to modify the aircraft’s flight envelope. This method achieves a robust control regime to

variety non-modelled, non-linear, effects by enforcing an operative envelope via defined

constraints. The authors of [79] present a control command filter in order to provide

intermediate inputs to the back stepping controller. The effect of the adaptive back-

stepping regime is shown to demonstrate a tighter tracking of the reference trajectory

and increased resilience to disturbances.
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Back-stepping is applied directly to trajectory tracking of a team of multiple agents

in [198]. The controller is framed as a 2D trajectory tracking problem under a back-

stepping control regime. The same concept is adapted to the 3D case in [253], except

the back-stepping control laws are supplemented by a potential-based collision avoidance

algorithm. The proposed system is shown to be effective at maintaining the desired

formation in the presented conditions.

2.3.4 Model-Predictive Control

MPC is a well established form of optimal control typically associated with industrial

applications and more recently in the control of UAVs [8, 122]. A model describing the

systems behaviour is used to predict performance over a defined horizon. Based on known

system parameters and operational constraints, a cost function is optimised to determine

the optimal control inputs to be implemented [155]. In the literature there are examples

of MPC being applied at all levels of a UAVs control hierarchy, with significant advances

being made in centralised, decentralised and distributed approaches in recent years [155,

169,262].

Centralised approaches to MPC UAV coordination typically consider a system de-

scribing the complete UAV squadron. In [68,202], a centralised controller is used to main-

tain the relative separation of agents in the squadron and minimise distance from target

region. In [201], the author compares previous centralised MPC control to a reduced de-

centralised formulation. The author demonstrates comparatively similar behaviour, with

computational performance and scalability whilst guaranteeing constraint satisfaction (no

collisions). A similar sentiment is made in [221] in the development of several extended-

Kalman filter based control architectures. Although the centralised formulation yielded a

lower overall cost, the computation time was significantly higher than approaches adopting

other topologies.

The decentralised and distributed approach to MPC UAV coordination is well doc-

umented in the literature [43, 47, 69, 98, 201, 272]. Moving away from the assumption of

a centralised topology brings new challenges; the need for reconfigurable communication

topologies is stressed in [98]. In [69], the author demonstrates the relationship between

the input update time and the stability of the formation controller. Nonlinear and hetero-

geneous subsystem dynamics are considered under the notion of compatibility constraints

which are shown able to guarantee formation convergence in their presented conditions.

In [43], a neighbourhood is considered with assigned priorities to its members. Here, the

problem is formulated locally and considers non-linear agent motion in relation to a virtual
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formation reference point. Using their proposed cost function, collision avoidance between

members is shown to be guaranteed in ideal conditions. In [272], a similar assertion is

made in the systems convergence towards a “regular lattice” formation. This is achieved

using a decentralised cost function penalising the distance from known neighbours. While

shown to converge on the desired formation with collision avoidance explicitly guaran-

teed in their lemma, computation time and therefore feasibility is not considered. A dual

mode MPC method is applied to the formation control of a team of robots in [257]. To

guarantee formation stability, the controller must alternate between their MPC controller

and a second input-output feedback linearisation controller targeting a terminal system

state.

Within the literature, MPC is also widely applied in the context of UAV trajectory

tracking. These methods are typically associated with systems where linear and tradi-

tional methods are insufficient to control a highly unstable or non-linear plant. Joelinato

et al in [121] demonstrates how multiple linear approximations can be used to transition

between flight conditions on-board an autonomous helicopter. The abstraction of linear

behaviour is shown only to work under strict stability constraints, but as a result is able

to produce feasible computation times. In [151] non-linear MPC is employed towards a

similar goal using predictions of high-order state variables in the design of a closed-form

MPC algorithm. More recently, MPC has been applied to the control of quadcopter style

aircraft also. In [152] and [64] linear MPC is demonstrated to sufficiently stabilise a

quadcopter around a hover condition in order to track a trajectory under a single layer

control regime. The performance of the presented approach is then compared to tradi-

tional PID and LQR control whereby it is shown to yield less aggressive and smoother

control responses.

Recent development towards “fast” MPC have also made the use of MPC in systems

with fast dynamics more feasible. In [139] the flat outputs of the non-linear helicopter

system are identified and a linear time variant (LTV) approximation is introduced for

state prediction. In more recent articles [129,170] non-linear MPC attitude control is cited

in conjunction with higher level optimal control strategies for sophisticated trajectory

tracking. Their approach utilises geometric trajectory integration in combination with

an optimal position controller to design inputs to a low level MPC controller tracking

a target thrust vector. In this article tolerance to component failure is demonstrated; a

point also addressed in the formation of an adaptive UAV MPC controller in [39].

The theme of exploiting highly dynamic UAVs through non-linear MPC techniques

is also demonstrated in [159] in the design of a non-linear MPC controller for guidance
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in deep stall conditions. Learning-based MPC is a field that has seen increasing interest

in the robotics community. Online learning of system parameters combine sophisticated

statistical learning techniques with classical control theory. In [17], a learning MPC con-

troller is extended from a robust-tube MPC controller to incorporate statistical updates

describing the plants un-modelled dynamics. Later in [18,35] this method is shown to be

able to improve performance by updating the model live and demonstrating convergence

toward the true dynamical representation if sufficiently excited.

2.3.5 Fuzzy Logic and Gain Scheduling

The fuzzy-logic and gain-scheduled control approaches are historically popular adaptive

techniques that have since been applied to various aspects of UAS coordination. Fuzzy

logic based control is frequently seen in conjunction with gain scheduling and other clas-

sical control approaches in the literature. Both techniques attempt to address highly

non-linear problems through the creation of discrete operating states, with both methods

emphasising the creation of smooth transitions between them as control solution. Interest

in fuzzy-logic within classical control applications stems from it’s use of established rule

sets, as apposed to conventional quantified approaches to signal control. These rules are

defined as fuzzy conditional statements which, through the use of linguistic variables,

allow constraints to be literal and descriptive [21,190,214,267,268].

Instances of adaptive flight controllers using gain scheduling and fuzzy logic can

be found regularly in the literature. In [247] gain-scheduling is applied in the context of

robust altitude control of a UAV. The presented controller is able to generate adaptive alti-

tude feedback in response to changing airspeed. This is achieved by transitioning between

discrete operating conditions and associated aerodynamic profiles. Fuzzy gain-scheduling

is used in the augmentation of a conventional “sliding-mode” control-based attitude con-

troller in [265]. Here a fuzzy logic system is introduced to manage the sliding-mode control

(SMC) gains in order to reduce chatter between operating states and incorporate paramet-

ric uncertainties. The resulting system is shown to have increased tolerance to external

disturbances in their presented conditions.

These approaches to adaptive flight control can also be seen in the context of fault

tolerance in [12, 70, 210]. In the first paper, a fuzzy-based rule set is used as a high-level

tuning regime for a PID-based attitude controller. The system is shown able to dynam-

ically adjust the PID gains in response to both symmetric and asymmetric reductions in

lift generation. A similar approach is presented in the control of a quadcopter in [12],

comparing the performance of a gain-scheduled PID controller against a “model reference
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adaptive control” strategy. Both methods are shown to respond to loss of thrust from a

control surface and return to the desired trajectory. However the MRAC method is shown

to be more effective with respect to ease of use and mean trajectory error.

2.3.6 Biologically-Inspired Methods

The concept of mimicking nature for the purposes of control and navigation has been

around for decades within the robotics community. In [156, 263] genetic algorithms are

applied in the context of UAV navigation. In [156] this is motivated by maximising the

information gained on a known target. The coefficients of the value function are revised,

subject to a concurrent genetic algorithm. This is achieved by valuing the equivalent

cost of alternative trajectories based on the information gained in their surveillance task.

Coordination of UAVs through cluttered environments is addressed in 2D [263] and later

in 3D considering fluctuations in terrain in [173].

A more literal example of biological emulation can be found in [3]. Here a UAV’s

trajectory is adjusted based on an automatic terrain following system mimicking the retina

of an eye. Assuming contrasting features could be identified, altitude feedback could be

achieved with only a small number of pixels. A similar study extends this concept for

the speed control of a UAV using a low complexity optical sensor [205, 206]. The UAV

is shown to respond to a change in relative elevation and maintain a set speed. A more

recent example of generating guidance signals from visual stimuli can be found in [237].

An optical flow sensor is used to track the relative movement of object features. A virtual

force is computed from the relative motion of the environment based on the displacement

and size of features reactively.

The advancement of small, yet powerful computing systems has lead to an increase

in interest of neural net based navigation of UAVs [42,90,145]. In [145] a neural network is

used to compute an input response to attitude error. A three layer neural network is used

to approximate a non-linear attitude controller for a fixed wing aircraft. A higher-level

adaptive layer is used to adjust the neural weightings within a bounded range and pro-

ducing significantly tighter error tracking. This principle is extended in the development

of an adaptive flight controller for a quadcopter UAV in [146]. The author presents a

feedback function that modifies the coefficients of a neural network based on the systems

Lyapunov stability. The results are compared to a traditional state-feedback controller,

in which their controller demonstrates increased resilience to disturbance in a trajectory

tracking exercise.
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2.3.7 Other Methods

Other techniques that do not explicitly belong to the aforementioned categories are also

known within the context of these works. Consensus algorithms as a mechanism for UAV

coordination are also known to the literature. In [24], it is shown how a centralised control

regime may be extended to decentralised regime through a proposed optimisation pro-

cess. The cooperation of agents within a system is rewarded with respect to the presented

decision variables, coordination is also parameterised by a cost penalising trajectory in-

coherence. In [232], the concept of connectivity robustness is used to create connectivity

constraints in mobile robotic networks. This is achieved by optimising a cost function

parameterising the systems connectivity and maximal flow of information between nodes.

The method is however not extended to sets where the movement of the nodes is inhibited

by obstacles. Using methods from information theory, a dual mode control approach is

developed in [10] using a learning Markov decision process (MDP). A receding horizon

control approach is used to control the plant dynamics within discrete MDP states, with

a higher level entropy-based learning objective acting to reduce uncertainty of the system.

2.4 Summary

A review of the associated methods for the modelling and control of UAS has shown the

field to be highly active. Development in this area has seen the emergence of a breadth of

UAV design topologies with unique opportunities where conventional configurations may

be challenged. The information presented in Section 2.3 can be seen collated in Table 2.2

as a summary of the contributions of the literature. The terminology used to describe the

different aspects of modern FCSs are also given in Table 2.1.

It is clear by observing Table 2.2 that while there have been numerous examples

of different control methodologies applied in the context of UAS coordination, they have

also been applied in response to differing control objectives. Each of these objectives in

turn contributing to the overall autonomy of the coordinated UAS by providing utility

at different levels of autonomy. Many of the challenges associated with classical control

techniques stem from the non-linearities and cross-coupling present in the dynamics of

most UAS. This is exacerbated further when considering highly agile systems or systems

with morphing capabilities. As a result, multiple cascaded control mechanisms are often

seen necessary in order to achieve even low-level functionality. One of the most promising

and versatile forms of control utilise an understanding of the systems dynamics in the

online calculation of their feedback signal. Examples of this type of control are found
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Control Objective Symbol Control Locality Symbol

Altitude Al Local Only L
Attitude At Centralised C
Full-trajectory T Decentralised De
Multi-Vehicle/Formation F Distributed Di
Collision Avoidance CA

Table 2.1: The terminology used in Table 2.2 to define the control objectives of the presented

methods and their utility towards autonomous UAS.

in LQR and MPC based FCS design; as two distinct branches of optimal control theory.

Model based controllers are also seen most commonly associated with multi-objective

control (see Table 2.2) due to their ability to consider low-level and high-level behaviours

simultaneously using a model of the system.

An observation made clear by the literature is that the assumptions about the

vehicle dynamics, modelling approaches and DOF considered in UAS controller design

differ widely. With the applications and capabilities of UAS only set to expand, it ap-

pears that developments towards effective modelling strategies and formalities for de-

scribing UAS are still immature. The opportunity to propose a novel mechanism for

formally describing the dynamics of variable UAS topologies is evident and represents a

path to enhancing model-based control and simulation. The use of symbolic variables in

the representation of UAS topologies allows them to be expressed as a sequence abstract

components. Considering the aggregate reaction between each symbolic component al-

lows the behaviour of the system to be characterised without parameterisation or loss of

generality. This presents some interesting opportunities for enhancing autonomy through

model-based FCS design whilst maintaining a level of generality to make the approach

applicable for more complex UAV configurations. Developments into this symbolic mod-

elling framework are described in the following chapter.
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Table 2.2: An in-exhaustive comparison of the breath of methods applied to FCS design and their utility as an aspect of autonomy within modern UAS. The UAS

vehicle model, approach to dynamic modelling and degrees of freedom are also given with reference to the FCS’s control objective. The table of symbols of this

are given in Table 2.1 [37,49,168,169,278].

Approach Name
Vehicle

Dynamics

Modelling

Approach

Control

Objective

Considered

DOF

Control

Locality

Autonomy

Level

Classic/PID Methods

PID with Back-Stepping [32,62] Quadcopter Newtonian Al 6 L Low

Adaptive key-frame manoeuvring [154,157] Quadcopter Newtonian Al,At,T 6 L Medium

Gain-Scheduled/fuzzy PID [132] Hybrid Newtonian At 6 L Low

LQR/LQG Control

PID vs. LQR [15,32] Quadcopter Euler-Lagrange At 3 L Low

LQR stabilisation/trajectory tracking [83] Quadcopter Newtonian Al,At,T 6 L Medium

UKF Enhanced hover LQR [118] Helicopter Newtonian Al,At 6 L Low

Model-Predictive Control

Linear MPC vs PID Tracking/Stabilisation [152] Quadcopter Euler-Lagrange Al,At,T 6 L Medium

Multi-Model Linear MPC [121] Helicopter Newtonian Al,At 6 L Low

NMPC Formation Flight [43,221] 3D Dublin’s Car - T,F,CA 5 C,De High

Explicit Closed-Loop NMPC [151] Helicopter Newtonian Al,At,T 6 L Medium

Distributed Linear MPC [98] Single Integrator - T,F,CA 3 Di High
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Approach Name
Vehicle

Dynamics

Modelling

Approach

Control

Objective

Considered

DOF

Control

Locality

Autonomy

Level

Backstepping

Adaptive Constraints via Back-stepping [79] Fixed-Wing Newtonian Al,At 6 L Low

Backstepping and Parameter Adaptation [198] 3D Dublin’s Car - T 5 L Medium

Artificial Fields and Backstepping [253] Quadcopter Newtonian Al,At,T,F 6 C,De High

Fuzzy/Gain Scheduling

Adaptive Gain-Scheduling / Sliding Mode [214,265] Quadcopter Newtonian Al,At 6 L Low

Robust Gain-Scheduling [247] Fixed-wing Newtonian Al 1 L Low

Adaptive Model, Gain-Scheduled PID [116] Quadcopter Newtonian At 6 L Low

Biologically Inspired

Learned Altitude Control via NN [90] Helicopter Newtonian Al 6 L Low

Adaptive Backstepping and NN [145] Fixed-wing Newtonian Al,At 6 L Low

Evolutionary GA planning [173,181] Single Integrator - T 3 L,C Medium

Parameter Learning by Adaptive NN [146] Helicopter - Al,At,T 5 L Medium

NN based stabilsation and tuning [273] Quadcopter Euler-Lagrange Al,At,T 6 L Low

Other

Formation Constraint Optimisation [24] Fixed-wing - T,F 3 C,De High

Connectivity Robustness [232] Single Integrator - T,F 3 C,De High

Information-based learning for dual control [10] Single Integrator MDP T 2 C,De Medium
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Chapter 3

Symbolic Modelling & Control

In the literature, the generation of dynamic behaviours is typically achieved through the

application of Newtonian physics or Euler-Lagrange. Here it is shown how these prin-

ciples may be abstracted to form a generalised approach to describing unmanned aerial

systems (UAS) using symbolic approach to model synthesis (see Figure 3.1). High fidelity

models of an UAS or unmanned aerial vehicles (UAVs) flight characteristics is vital in the

design of effective control algorithms, as often the behaviour is complex and non-linear.

As a result, it is often necessary to apply linearisation methods (e.g. small perturbation

theory, feedback linearisation) or assume known operating conditions to reduce the sys-

tem before conventional control techniques can be applied. In Section 3.1 the Newtonian

rigid-body representation is introduced as the basis for describing primitive UAS com-

ponents. It is then shown in Section 3.2, how these components may be generalised to

described their interactions with other component groups and sub-assemblies. By attrib-

uting these influences symbolically to the overall system behaviour, the approach is shown

able to generate parametric descriptions of several known UAS configurations as shown

in Figure 3.1. This is demonstrated through the formation of their non-linear equations

of motion that characterise the system.

The approach is initially applied to an F450 quadcopter where it is shown how

key control parameters can be defined symbolically for the purpose of linear quadratic

regulation (LQR) and model predictive control (MPC). Demonstration on more complex

systems can then be seen in the definition of a parameter-less tricopter and deltacopter

systems.
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Figure 3.1: The symbolic modelling approach to describing various unmanned aerial systems

(UAS) where the interactions between distinct groups (e.g. propulsion, aerodynamics.. ) are

defined as symbolic components and force centres. This generic approach is used in the assembly

of the characteristic dynamics of several popular UAS configurations as part of these works.

3.1 Rigid Body Analysis

The airframe of an micro aerial vehicle (MAV) is assumed able move to freely in 3D

Cartesian space; with six degrees of freedom (DOF) describing the translations and ro-

tations of the body in the NED coordinate axes. We define it’s linear and angular body

axis rates to be v = [u, v, w]T and ω = [p, q, r]T respectively. The airframe mass and

inertia tensor are given the symbolic parameters mb and Ib ∈ R3×3 respectively. Newtons

equations describing the motion of a generic rigid-body can then be written:

mb(v̇ + ω × v) = f (3.1)

Ibω̇ + ω × (Ibω) = τ (3.2)

In Equation (3.1) the linear and angular body accelerations are denoted v̇ and ω̇ re-

spectively. The vectors f and τ are then parameters describing the forces and torques

acting on the body due to external influences [64]. To be able to express the dynamics

of a rigid body as a 6DOF system more conveniently, it may be rewritten as a matrix

expression of the form shown in Equation (3.3). We define the coefficient matrices using

the relationship x × y = −y × x. Here S(x) denotes the skew-symmetric operation of
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vector x.  mbI3x3 03x3

03x3 Ib

 v̇

ω̇

+

 mbS(ω) 03×3

03×3 −S(Ibω)

 v

ω

 =

 f
τ

 (3.3)

Which may also be expressed as:

Mẍ+ Cẋ =

 f
τ

 = ν (3.4)

Here the matrices M and C parameterise the body’s inertial, Coriolis and centripetal

contributions respectively in terms of a local generalised coordinate vector ẋ = [v,ω]T .

Using these equations it is then possible to describe the acceleration of the body i in the

frame of i via some rearrangement in Equation 3.4 [64]:

ẍ = M−1 (ν −Cẋ) (3.5)

The assumption of a rigid-body fuselage is ubiquitous within the UAV community; and is

typically sufficient in the modelling of smaller systems such as MAVs where the effects of

aeroelasticity are minimal. By assuming the motion of the UAV is measured relative to

it’s local coordinate axes, we are able to construct a local representation of the fuselage

motion by assigning the relationship ẋ = [u, v, w, p, q, r]T = [ẋ, ẏ, ż, φ̇, θ̇, ψ̇]T .

3.2 Attributing Influences

The inertial behaviour of aircraft fuselage has been defined symbolically. The forces

and torques contributing to dynamical behaviour of the UAV from further sources may

grouped in accordance to their frames of reference. Influences acting within the inertial

frame and body frame influences are then parameterised by the symbolic vectors ν g ∈

R6×1 and ν b ∈ R6×1 respectively. The relationship between the two may then be defined

by the transformation between the fixed inertial frame Og, and the airframe body Ob.

This may be expressed in terms of the body’s Euler rotations ψ, θ and ψ about the x, y
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and z inertial axes respectively:

Rx(φ) =


1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

 (3.6)

Ry(θ) =


cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 (3.7)

Rz(ψ) =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (3.8)

In this thesis the pose of a given aircraft is described using the standard aerospace

convention [74, 75]. Here, the pose of the fuselage is defined by the rotation sequence

R(φ, θ, ψ) = Rx(ψ)Ry(θ)Rz(φ) resulting in Expression (3.9):

R(φ, θ, ψ) =


c(θ)c(ψ) c(θ)s(ψ) −s(θ)

s(φ)s(θ)c(ψ)− c(φ)s(ψ) c(φ)c(ψ) + s(φ)s(θ)s(ψ) s(φ)c(θ)

s(φ)s(ψ) + c(φ)s(θ)c(ψ) c(φ)s(θ)s(ψ)− s(φ)c(ψ) c(φ)c(θ)

 (3.9)

Here c(θ) and s(θ) represent the sin and cos operations of angle θ respectively. For clarity,

Rg
b = R(φ, θ, ψ) ∈ SO(3) defines a special orthonormal group with properties such that

I = (Rb
g)
TRb

g and Rg
b = (Rb

g)
T . The term R̃b

g = diag(Rb
g,R

b
g) is also defined to represent

the diagonal concatenation of Rb
g. The net forces and torques acting within the body axes

can be expressed as the sum of the forces, grouped as contributions from specific UAS

design parameters in Equation (3.10):

ν = ν prop + ν gyro + R̃g
b (ν aero + ν grav) (3.10)

Here ν prop, ν gyro and ν aero represent configurational parameters describing the propulsion

system and aerodynamic properties of the UAS. Contributions due to drag are neglected

in these works and so it is assumed that ν aero = 06×1 in the calculation of ν. The

gravitational force acting on the airframe ν grav is introduced as constant acceleration in
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a) b)

Figure 3.2: a) The F450 quadcopter platform and its axis-aligned coordinate axes used to provide

numeric context for the symbolic modelling process. b) An exploded view of the F450’s components

contributing to the inertial parameters of the body and rotor assemblies.

the inertial frame, parameterised by it’s mass mb in Equation (3.11).

ν grav = mb


0

0

g

03×1

 (3.11)

From Equations (3.5) and (3.10) it’s clear we are able to define UAS configurations by

specifying symbolic definitions for it’s method of propulsion ν prop and it’s aerodynamic

description ν aero.

3.3 Rotor Dynamics

The term “multicopter” is given to an MAV configuration that is composed of multiple

propulsive groups using rotors as their means of propulsion. These groups typically consist

of a series of electro-mechanical components; such as an electronic speed controller (ESC),

brush-less motor and the rotor blade assembly. Occasionally this may include supporting

actuators for blade manipulation (see Section (3.6)). In these works, the term “nacelle”

is used to refer to static elements of these propulsive groups as a sub-assembly within the

MAV’s airframe that includes the supporting arm (gantry) separating it from the central

fuselage.

In the literature, blade element theory is frequently cited as the method used to

define a relationship between the rotor’s rotational speed Ωi and the associated thrust

fri . This relationship is commonly assumed to be that fri ∝∼ Ω2 around the hover condi-

tion [19, 34, 64, 175]. This relationship is known to be an approximation of the complex
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Figure 3.3: An analysis of the rotational speed Ω and the associated static thrust f across the

servo pulse-width modulation (PWM) set-point range taken from the F450 quadcopter. The region

frequently cited as proportional is indicated.

aerodynamics interactions of the blade and so a experimental verification is necessary.

Figures 3.2(a) and 3.2(b) present the F450 quadcopter; the system used to experiment-

ally validate the rotor model and provide the numeric parameterisation necessary for

controller evaluation. The results from an examination of the F450’s static and dynamic

thrust properties are shown in Figures 3.3 and 3.4. Here, this assumption can be seen to

be valid if the system is assumed to be operating within the indicated operational window.

In this case, this assumption is viable for representing a quadcopter operating around the

straight and level (S&L) condition in still air as is consistent with the literature [64].

It is implied by this assumption that the aircraft is in a near-hover scenario; such

that the air is static with a mean velocity of zero. The blade itself is modelled as a

symmetrical rigid-body with mass mri and interia Iri given by Expression (3.12). It is

assumed to be connected with it’s associated nacelle at it’s centre of gravity pr,cg. In other

works, this assumption is challenged by investigating phenomena such as blade-flapping

in [188,273], but is not considered in this thesis. The aerodynamic effects and disturbance

38



Figure 3.4: The temporal response of the F450’s propulsion group to a step input of 750rad/s

which represents the largest possible control input. A first order response can be seen fitted to

the mean result of three samples.

rejection capabilities of non-planar nacelle configurations is also investigated in [182].

Iri =


Ixxr 0 0

0 Iyyr 0

0 0 Izzr

 (3.12)

The rotor thrust fri is characterised in local axes by it’s thrust coefficient, cross-

sectional area, radius, rotational speed and the ambient air density as Ct, a, r, Ωi and ρ

respectively. The resulting force in the frame of rotor assembly can be written as a function

of the rotor geometry and ambient aerodynamic properties as seen in Equation (3.13).

fri =


fxri

fyri

fzri

 =


0

0

−1

 · ρCta (rΩi)
2 =


0

0

−1

 · kpΩ2
i (3.13)

The aerodynamic coefficients seen in Equation (3.13) are grouped under the thrust

constant kp for convenience. The aerodynamic force resisting the motion of blade i,

generates a reaction torque τri at the motors hub referred to as the hub force [32, 167].

The magnitude of the force is proportional to the rotors angular velocity Ωr1:4 similar to
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the relationship seen in Equation (3.13). This torque, again expressed in the frame of

the rotor assembly, is written in terms of a known hub force coefficient Ch, a rotation

direction parameter κi and the constants defining the blades geometry in (3.14).

τri =


τxri

τyri

τ zri

 =


0

0

κi

 · ρCha(rΩi)
2 =


0

0

κi

 · khΩ2
i (3.14)

The forces fri , τri are assumed to be specified in the coordinates of rotor assembly

i. In addition to the static thrust properties, the propulsion groups used in multicopter

systems have an associated rise-time ts to achieve the set-point angular velocity Ωi. This

relationship was found experimentally to be of first order for propulsive groups of the F450

as shown in Figure 3.4. The associated continuous-time transfer function representing this

relationship can then be seen in Equation (3.15).

R(s) =
kt

1 + tss
=

0.0529

1 + 0.108s
(3.15)

Conventionally the propulsive groups used by multicopters are homogeneous in that their

thrust characteristics are assumed to be identical for nacelles i = 1 : n. The presented

behaviour is later used in the validation of the proposed control strategies of a F450

quadcopter.

3.4 Quadcopter Dynamics

The quadcopter MAV has become a popular platform for research in aerial robotics due to

their comparative design simplicity, as well as their capabilities in a wide range of envir-

onments. Interest in the use of multi-rotors, as a more general field, has seen a significant

rise in use cases such as search and rescue, ordinance surveying, wild-life protection and

aerial cinematography in recent years. The mass distribution of the quadcopter airframe

is known to be symmetric (i.e. Ib = diag(I)) with it’s body axes aligned with the Euler

rotational axes. Each group generates a thrust vector fr1:4 that acts at distance l from the

CG pcg (see Figure 3.5). Quadcopters are characterised by their four identical nacelles

and rotor assemblies in fixed alignment with the body XY plane. Due to the symmetric

nature of the quadcopter, pcg is assumed aligned with the body axis origin.

The rotor frame is said to be aligned with the frame of the nacelle arm, whose x-axis
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Figure 3.5: A description of the body and inertial axis notations applied to an ARdrone quadcopter

as an Xflyer configuration. The four rotor rotational rates Ω1:4 in relation to the thrust of each

rotor f1:4 at distance l from the airframe CG.

extends along the length of arm i. The transformation between the frame of rotor i and

nacelle i can be written simply as Rni = I3×3 such that fni = I3×3 · fri ∴ fri ≡ fni .

The forces acting in the frame of rotor i can therefore be expressed in body axes via the

transformation seen in Equation (3.16). Here λi defines the configuration angle between

the x body axis and the x axis of nacelle i:

Rλi =


cos(λi) −sin(λi) 0

sin(λi) cos(λi) 0

0 0 1

 (3.16)

The forces generated by each rotor act at a defined arm distance l from the origin pcg.

Given Equation (3.16), the resulting influences of rotor i can be expressed as Equa-

tions (3.17) and (3.18).

fprop =


fxprop

fyprop

fzprop

 =
4∑
i=1

(Rλifri) (3.17)

τprop =


τxprop

τyprop

τ zprop

 =

4∑
i=1

Rλi (τri + l× fri) (3.18)

The resultant thrust induced force f and torque τ are seen above expressed as the sum

of the contributions from the differential rotor thrusts and hub forces of rotors 1 to 4.
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MAV systems with physically rotating components also contribute angular momentum

to the system under the Newtonian approach. We model this contribution as a source

of gyroscopic precession τgyro =∈ R3×1. For a quadcopter style MAV with four identical

rotors rotating in the same plane, the torque induced by the angular momentum of the

four identical rotors can then be expressed as Equation (3.19).

τgyro =


τxgyro

τygyro

τ zgyro

 = Ir

4∑
i=1

ω ×


0

0

κi

Ωi

 (3.19)

The contributions of the MAV’s propulsion system can now be expressed in terms of their

symbolic vectors νprop = [fprop, τprop]
T and νgyro = [0, 0, 0, τgyro]

T . Here l = [l, 0, 0]T

defines a vector scaled by the arm length l aligned with the body axis x vector. Repres-

enting the quadcopter plant through a sequence of transformations Rλ allows the position

of each nacelle and rotor to be generalised. The configuration vector λi ∈ {λ1, λ2, ....λn}

describing each nacelle position in the body axes is dependant on the chosen control con-

figuration for most multicopters. Conventionally, this is either axis-aligned or orientated

as an X-flyer [101,273].

3.4.1 Axis-Aligned Configuration

The axis-aligned nacelle arrangement was popular initially due to it’s comparative simpli-

city over the Xflyer [64]. Under this convention, the nacelles are positioned in alignment

with the body axis vectors as seen in Figure 3.6. With each nacelle position aligned

with the body axis vectors, the resultant torques act exclusively about the x, y and z

axes. The axis-aligned plant representation is then defined by assigning their respective

configuration angles λ1 = 0 rad, λ2 = π
2 rad, λ3 = π rad and λ4 = 3

2π rad in Equa-

tions (3.16)-(3.18). Substitution of the resulting symbolic forces νprop = [fprop, τprop]
T

and νgyro = [0, 0, 0, τgyro]
T into Equation (3.10) yields the non-linear equations of motion
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Figure 3.6: A depiction of the axis-aligned and X-flyer control configurations for a quadcopter

MAV, their respective nacelle positions and rotation directions [101,273].

of an axis-aligned quadcopter configuration shown in Equation (3.20).

ẋ =



ẍ

ÿ

z̈

ϕ̈

θ̈

ψ̈


=



ẏ ψ̇ − ż θ̇ − g sin (θ)

ż ϕ̇− ẋ ψ̇ + g cos (θ) sin (ϕ)

ẋ θ̇ − ẏ ϕ̇+ g cos (ϕ) cos (θ)− kp
mb

(Ω1
2 + Ω2

2 + Ω3
2 + Ω4

2)

Iyyb −I
zz
b

Ixxb
θ̇ ψ̇ + Ixxr

Ixxb
θ̇(Ω1 − Ω2 + Ω3 − Ω4)− kp l

Ixxb
(Ω2

2 − Ω4
2)

Izzb −I
xx
b

Iyyb
ϕ̇ ψ̇ − Iyyr

Iyyb
ϕ̇(Ω1 − Ω2 + Ω3 − Ω4) +

kp l
Iyyb

(Ω2
1 − Ω2

3)

Ixxb −I
yy
b

Izzb
ϕ̇ θ̇ − kh

Izzb
(Ω1

2 − Ω2
2 + Ω3

2 − Ω4
2)


(3.20)

The dynamic behaviour of the axis-aligned quadcopter can be seen expressed in it’s body

axes as a function of it’s Euler states x, it’s rotor speeds Ωr,1:4, it’s design parameters and

gravity.

3.4.2 X-flyer Configuration

The “X-flyer” configuration; defined by the alternative positioning of it’s nacelles has

recently become favoured in the MAV community. This is because, this configuration

displaces the Quadcopter’s nacelles to prevent obscuring the view of on-board sensors

or gimbal assemblies in applications such as cinematography or first-person-view (FPV)

racing [101,273]. The representation of the X-flyer thrust centres in the body axes, can be

attained through the substitution of the configuration angles λ1 = 1
4π rad, λ2 = 3

4π rad,

λ3 = 5
4π rad and λ4 = 7

4π rad into Equations (3.16)-(3.18).

The resultant influences of the X-flyer’s propulsion system can then be represented
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by the symbolic input vectors νprop = [fprop, τprop]
T and νgyro = [0, 0, 0, τgyro]

T . Evalu-

ating the propulsion contributions under this convention yields the non-linear equations

of the motion of a generic “X-flyer” quadcopter seen in Equation (3.21).

ẋ =



ẍ

ÿ

z̈

ϕ̈

θ̈

ψ̈


=



ẏ ψ̇ − ż θ̇ − g sin (θ)

ż ϕ̇− ẋ ψ̇ + g cos (θ) sin (ϕ)

ẋ θ̇ − ẏ ϕ̇+ g cos (ϕ) cos (θ)− kp
mb

(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

Iyyb −I
zz
b

Ixxb
θ̇ ψ̇ + Ixxr

Ixxb
θ̇(Ω1 − Ω2 + Ω3 − Ω4)−

√
2 kp l

2 Ixxb
(Ω1

2 + Ω2
2 − Ω3

2 − Ω4
2)

Izzb −I
xx
b

Iyyb
ϕ̇ ψ̇ − Iyyr

Iyyb
ϕ̇(Ω1 − Ω2 + Ω3 − Ω4) +

√
2 kp l

2 Iyyb
(Ω1

2 − Ω2
2 − Ω3

2 + Ω4
2)

Ixxb −I
yy
b

Izzb
ϕ̇ θ̇ − kh

Izzb
(Ω1

2 − Ω2
2 + Ω3

2 − Ω4
2)


(3.21)

Expressions (3.21) and (3.20) define the continuous dynamical progression of each quad-

copter system over a defined sample period ∆t. In both cases the generalised systems are

described algebraically without linearisation or parameterisation.

3.4.3 Controller Design

To allow the application of linear control theory, small perturbation theory can be applied

to the non-linear system descriptions seen in Equations (3.20) and (3.21) in order to

generate a linearised symbolic representation of the model. In associated works [64]

this is demonstrated by parameterising the model presented in Equation (3.20) with the

numerics of an “F450” quadcopter MAV. The MAV’s state space description (3.22) is

presented as follows:

ẋ = Ax+ Bu+w (3.22)

y = Cx+ Du (3.23)

Here, x = [x, y, z, ψ, θ, φ, ẋ, ẏ, ż, ψ̇, θ̇, φ̇]T defines the systems state at time t. The systems

input vector is defined as squared velocities of the four rotors u = [Ω2
1,Ω

2
2,Ω

2
3,Ω

2
4]T . The

“aligned” quadcopter plant matrix A and input matrix B, are given in Equations (3.25)

and (3.24) respectively. The observation matrix is denoted C = I12x12, feed-forward mat-

rix D = 012x4. Finally, the term w = N (012×1, diag{I3×3σ
2
p, I3×3σ

2
Θ, I3×3σ

2
v , I3×3σ

2
ω}T )

is introduced as a source of state noise.

44



B =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

− kp
mb

− kp
mb

− kp
mb

− kp
mb

Ixxr
2 Ixxb Ω1

θ̇
(
− Ixxr

2 Ixxb Ω2

)
θ̇ − kp l

Ixxb

Ixxr
2 Ixxb Ω3

θ̇
(
− Ixxr

2 Ixxb Ω4

)
θ̇ +

kp l
Ixxb(

− Iyyr
2 Iyyb Ω1

)
ϕ̇+

kp l
Iyyb

Iyyr
2 Iyyb Ω2

ϕ̇
(
− Iyyr

2 Iyyb Ω3

)
ϕ̇− kp l

Iyyb

Iyyr
2 Iyyb Ω4

ϕ̇

− kh
Izzb

kh
Izzb

− kh
Izzb

kh
Izzb


(3.24)

Here the hover condition is selected as the operating point for which a linear stability

controller can be designed. In such conditions, it can be assumed that the airframe is near

S&L. It may be assumed that the initial attitude angles φ, θ ≈ 0 and axis rates are small;

ẋ, ẏ, ż, φ̇, θ̇, ψ̇ ≈ 0. For a quadcopter, it may also be assumed that the rotors speeds are

near equal; Ω1 ≈ Ω2 ≈ Ω3 ≈ Ω4. Equally, by retaining the symbolic definitions of A and

B, the state-space representation may be redefined dynamically upon new measurements

of the axis rates and rotor set-point speeds.
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A =



0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 −g cos (θ) 0 0 ψ̇ −θ̇ 0 −ż ẏ

0 0 0 g cos (ϕ) cos (θ) −g sin (ϕ) sin (θ) 0 −ψ̇ 0 ϕ̇ ż 0 −ẋ

0 0 0 −g cos (θ) sin (ϕ) −g cos (ϕ) sin (θ) 0 θ̇ −ϕ̇ 0 −ẏ ẋ 0

0 0 0 0 0 0 0 0 0 0
Iyyb −I

zz
b

Ixxb
ψ̇ + Ixxr Ω1−Ixxr Ω2+Ixxr Ω3−Ixxr Ω4

Ixxb

Iyyb −I
zz
b

Ixxb
θ̇

0 0 0 0 0 0 0 0 0
Izzb −I

xx
b

Iyyb
ψ̇ − Iyyr Ω1−Iyyr Ω2+Iyyr Ω3−Iyyr Ω4

Iyyb
0

Izzb −I
xx
b

Iyyb
ϕ̇

0 0 0 0 0 0 0 0 0
Ixxb −I

yy
b

Izzb
θ̇

Ixxb −I
yy
b

Izzb
ϕ̇ 0


(3.25)
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3.4.4 Linear Quadratic Regulation

The LQR controller is a classical approach to control often cited in the context of UAV

control. The LQR cost function presented in Equation (3.26) parameterises the state error

ek = rk −xk, input magnitude uk and their penalisation matrices Q and R respectively.

Here we do not penalise the terminal state.

Vk = min

∫ [
eTk Qek + uTk Ruk

]
∆t (3.26)

For the solution to the optimal control problem to be positive (i.e Vk ≥ 0) it implies that

Q and R must be positive definite. The performance of the controller Vk is optimised

through the selection of u subject to the systems linear dynamics seen in Equation (3.22)

and the state constraints defined by the matrix Riccati equation:

ATP + PA−PBR−1BTP + Q = 0 (3.27)

The solution P to Equation (3.27) then defines the feedback matrix:

K = R−1BTP. (3.28)

The resulting state feedback is applied to the system in the form:

uk = −Kek (3.29)

The feedback gain K is then used to instigate a response proportional to the error feedback

ek in the MAVs dynamic expressions in Equation (3.20).

3.4.5 Model Predictive Control

MPC is another form of optimal control that utilises the predicted performance of the

system over a defined horizon, in order to compute the optimal instantaneous control

inputs. Using the linearised model seen in Equation (3.22), we are able to formulate a

prediction at time tk of how the systems output will evolve over a defined time horizon.

This is achieved by predicting the evolution of the systems states and actuator contribu-

tions over a defined horizon hi [155]. The state prediction matrices F and input prediction
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matrices G are formulated in Equation (3.30):

F =



A

A2

A3

:

Ahi


,G =


B 0 . . . 0

AB B . . . :

: :
. . . :

Ahi−1B Ahi−2B · · · B

 (3.30)

The resultant system outputs at each discrete horizon step can similarly be written as z̃k.

Here the notation x̃ denotes the horizon-concatenated vector of x:

z̃k = C̃ [Fxk + Gũk] (3.31)

We assume that at a given reference point rk there exists a steady state xk with an

associated steady-state input uk. It is then possible to define the input required to

maintain the reference through the dynamic relation seen in Equation (3.32):

 I12×12 −A −B

C D

 xk
uk

 =

 012x1

rk

 (3.32)

Solving Equation (3.32) for a given reference output rk allows the steady state xk and

input deviation uk to be determined. Calculation of this value allows the absolute input

to be defined as a difference between the reference control and the control signal generated

by the controller. The predicted error over the horizon is defined as ẽk = r̃k − z̃k. Similar

to Section 3.4.4, penalisation of the tracking error, control weightings and terminal error

are introduced through the weighting matrices Q, R and N respectively. The associated

penalisations over the complete horizon are are therefore represented by the concatenated

matrices Q̃ and R̃.

Q̃ =


Q 0 . . . 0

0 Q . . . :

: :
. . . :

0 . . . . . . N

 , R̃ =


R 0 . . . 0

0 R . . . :

: :
. . . :

0 . . . . . . R

 (3.33)

To be able to determine the optimal control inputs under the regime of linear MPC, the

problem must be formulated as a convex cost function. This cost function is derived

in terms of the total predicted error ẽk over each discrete horizon step, the aforemen-
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tioned penalisations Q,R and N and the exerted control efforts uk as seen in Equa-

tion (3.34) [139,155]:

Vk =

hi∑
k=1

(
||(rk − zk)||2Q + ||uk||2R

)
+ ||(rk − zk)||2N (3.34)

Here ||uk|| is used to describe the Euclidean norm of the input. Substituting the horizon

prediction matrix expressions allows Equation (3.34) to be redefined as quadratic coeffi-

cients of the control input uk. The terminal cost matrix N can be seen neglected, with

no value assigned to a terminal angular rate:

Vk = ũTk [ΘT Q̃Θ + R̃]ũk − 2ũT
k ΘT Q̃ẽk + ẽTk Q̃ẽk (3.35)

where:

Θ = C̃G (3.36)

If we define H = ΘT Q̃Θ + R̃ and G = −2ΘT Q̃ẽk, the cost function takes the quadratic

form:

Vk = ũT
k Hũk + ũT

k G + ẽTk Q̃ẽk (3.37)

The optimal control sequence then occurs where equation (3.37) is minimal, subject to the

MAV’s dynamics. This optimisation operation was computed directly using the Matlab R©

function quadprog. The first of the optimal control inputs is then selected at tk and applied

to the non-linear plant model seen in Expression (3.20). One of the principle advantages

of MPC based control is the inclusion of constraints. A series of design constraints were

therefore introduced to represent the performance limits of the quadcopter aircraft:

−1rad/s ≥ φ, θ ≤ 1rad/s (3.38)

0rad/s ≥ Ω1:4 ≤ 580rad/s (3.39)

A regime was applied to ensure the MAV remains within a defined set of maximum

deflection rates to aid in maintaining stability (3.38). The above input conditions (3.39)

were then selected to represent the physical limits of the actuators and enforce operation

within the linear region identified in Figure 3.3.
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Symbol Value Units Symbol Value Units

r 1.268× 10−1 m mb 1.224 kg
a 1.400× 10−3 m2 Ixxb 0.279× 10−1 kgm2

ρ 1.225 kgm−3 Iyyb 0.549× 10−1 kgm2

Ct 0.531 − Izzb 0.281× 10−1 kgm2

Ch 4.243× 10−3 − Ixxr 9.880× 10−6 kgm2

g 9.807 ms−2 Iyyr 9.692× 10−5 kgm2

l 3.223× 10−1 m Izzr 9.059× 10−5 kgm2

Table 3.1: The design parameters representing the F450 Quadcopter orientated in a ‘aligned’

control configuration.

3.4.6 Performance Evaluation

In the evaluation of the effectiveness of the two presented control techniques it becomes ne-

cessary to parameterise the symbolic quadcopter descriptions in order to generate numeric

expressions equivalent to Equation (3.20) and (3.22). This was achieved by substituting

the parameters seen in Table 3.1 resembling the F450 quadcopter in a S&L condition. The

designed MPC algorithm is evaluated by observing the systems transient response to a

step input. The results are then directly compared to the response of the LQR, subject to

the same inputs. Both preliminary attitude controllers are designed to obtain a reference

roll, pitch and yaw rate φ̇, θ̇ and ψ̇, of the MAV respectively.

Initially, the tracking error and input weighting matrices Q and R of the LQR

controller were used to formulate a comparison between the two controllers. Each LQR

gain was then tuned heuristically until a critically damped step response was observed.

The relative settling times, overshoot and sensitivity to noise could then be compared

in Figure 3.7. The step response of both the LQR and MPC control regimes are shown

in Figure 3.7. Both controllers can be seen to effectively stabilise the system about

the desired axis rate of 0.5rad/s. Some minor steady-state error can be seen in the

LQR output as a result of the Gaussian noise added to the system via the wk term in

Equation (3.22). In the literature, integral action (or integral feedback) is often cited as

an established technique for removing steady state error under LQR and LQG control

regimes. This is however beyond the scope of these works; wherein linear control is

demonstrated on the proposed symbolic model formulation. As expected the formulated

MPC controller can also be seen to achieve the desired attitude rates in the presented

conditions. From the traces it was then possible to observe the mean settling times of the

two controllers over a one hundred Monte-Carlo iterations.

As seen in Table 3.2, the LQR and MPC algorithms demonstrate similar perform-

ance in the presence of the Gaussian noise signal. The MPC controller is however shown

50



Figure 3.7: The F450’s response to a step input of 0.5rad/s about each rotational axis using the

presented linear MPC and LQR control regimes. Here both methods are shown to achieve the

desired reference signal in the presence of additional corruption signals. Here the MPC approach

is shown to track the reference more tightly with lower steady-state error.

Controller Roll axis t(s) Pitch axis t(s) Yaw axis t(s)

LQR 0.100 0.220 0.110
MPC 0.090 0.200 0.050

Table 3.2: A comparison of the temporal response of the linear LQR/MPC controllers with respect

to mean settling times following an initial one hundred Monte-Carlo iterations. The LQR and MPC

controllers are shown to behave similarly, with the MPC producing marginally lower settling times.

This is expected as both methods are variants on linear optimal control.
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Figure 3.8: The propulsion convention of a Tricopter style UAS. Nacelles one and three are

mounted statically to the fuselage while nacelle two is able to be vectored relative to −xb using a

mounted actuator (shown in blue).

to yield a settling time marginally slower than the LQR, with reduced overshoot or steady

state error. The optimal inputs of the MPC are also computed by anticipating the be-

haviour of the system over a defined horizon, considering the limitations of the physical

system which the LQR cannot do directly. This allows the algorithm to plan the inputs

around the possibility of the VTOL system reaching actuator saturation or a limit on the

physical output.

3.5 Tricopter Dynamics

By extending the symbolic method presented in Section 3.4, it is possible to formulate the

dynamic descriptions of a wide range of UAS topologies. In this section we examine the

Tricopter configuration which utilises a three propulsive group model with and additional

actuator. Similar to the quadcopter, the tricopter is symmetric in the body axes. Each

rotor is positioned at vertical and horizontal distances l1 and l2 from the centre of gravity

pcg respectively as shown in Figure 3.8. It can therefore assumed that the inertia matrix

Ib is symmetrical with mass distribution of the rigid fuselage structure assumed fixed.
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3.5.1 Thrust Vectoring

One of the defining properties of the tricopter is the servo-actuated mechanism used to

drive rotor 2 through angle δ2. The collective thrust from rotors 1 and 3, in addition to the

vectored thrust of rotor 2 allow the UAS to manoeuvre in 3D space. The rotor defection

δ2 input is necessary for balancing the net angular momentum from the three rotor speeds

Ω1:3 with a horizontal thrust component. This thrust component is the projection of f2

on the body axes XY plane. This results in a higher degree of yaw authority as this

projection allows for a maximum available torque higher than conventional quadcopter

systems.

With the rotor assumption presented in Section 3.3, the forces and torques acting

within the frame of rotor i are characterised as fi and τi respectively. Using the prin-

ciples introduced in Section 3.4, we can define a symbolic expression relating the force

in the frame of the rotor to the acceleration of the CG by procedurally describing their

transformation to the body axes. The propulsive groups of rotors 1 and 3 are assumed

to be fixed and aligned with the nacelle initially. Expressing their rotation relative to the

nacelle axes naturally takes the form Rn1 = Rn3 = I3×3. Nacelle 2 however has a second

control input that rotates the rotor through δ2. The rotation is said to occur about l2

where l2 ‖ −xb as seen in Figure 3.8. We may define the position of the rotors deflection

δ2 relative to the nacelle by defining the transformation Rδ:

Rn2 = Rδ2 =


1 0 0

0 cos(δ2) −sin(δ2)

0 sin(δ2) cos(δ2)

 (3.40)

With the transformation of the rotor relative to the nacelle coordinate frame expressed

in Equation (3.40), the forces and torques acting in nacelle coordinates can be written:

fni =


fxni

fyni

fzni

 = Rnifri (3.41)

τni =


τxni

τyni

τ zni

 = Rniτri (3.42)

In considering the forces induced by rotor 2, Equations (3.41) and (3.42) describe the

change in body axis projections of fri and τri as a result of the deflection δ.
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The configuration matrix introduced Equation (3.16) is again invoked to describe

the orientation of the nacelle frame relative to the body axes. The transform describes the

clockwise rotation though the three nacelle configuration angles λ1 = 1
3π rad, λ2 = π rad

and λ3 = 5
3π rad. The expression profiling the propulsive components of the complete

tricopter configuration can then be seen written as Equations (3.43) and (3.44).

fprop = Rλ1Rn1fr1 + Rλ2Rδ2fr2 + Rλ3Rn3fr3

=
3∑
i=1

(Rλifni)
(3.43)

τprop = Rλ1(τn1 + (l1 + l2)×Rn1fr1)

+ Rλ2(τn2 + (l1 + l2)×Rδ2fr2)

+ Rλ3(τn3 + (l1 + l2)×Rn3fr3)

=
3∑
i=1

(Rλi(τni + (l1 + l2)× fni))

(3.44)

The rotational components of the tricopter also introduce a gyroscopic torque as a result

of their perturbation from their level position. The gyroscopic torques of each nacelle

may be expressed in the body axis as Equation (3.45):

τgyro =


τxgyro

τygyro

τ zgyro

 = Ir

3∑
i=1

(ω × ωi) (3.45)

where;

ω1 = Rλ1


0

0

κ1

Ωr1 (3.46)

ω2 = Rλ2Rδ2


0

0

κ2

Ωr2 (3.47)

ω3 = Rλ3


0

0

κ3

Ωr3 (3.48)

Here, Equations (3.46) to (3.48) express the rotational speed of rotor Ωri in relation to
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the body axis rates ω. Summation of the gyroscopic and propulsive influences allows us

to define the symbolic input vectors νprop = [fprop, τprop]
T and νgyro = [0, 0, 0, τgyro]

T

as the body axis representation of the propulsive mechanism of the tricopter. If it is

assumed that fuselage again behaves like a rigid body, substituting these symbolic vectors

into Equation (3.1) yields the generalised non-linear equations of motion for the tricopter

style MAV written as Equation (3.49):

ẋ =



ẍ

ÿ

z̈

ϕ̈

θ̈

ψ̈


=



ẏ ψ̇ − ż θ̇ − g sin (θ)

ż ϕ̇− ẋ ψ̇ + g cos (θ) sin (ϕ)− kp
mb

(Ω2
2 sin (δ2))

ẋ θ̇ − ẏ ϕ̇+ g cos (ϕ) cos (θ)− kp
mb

(Ω2
1 + Ω3

2 + Ω2
2 cos (δ2))

Iyyb −I
zz
b

Ixxb
θ̇ ψ̇ + Ixxr

Ixxb
(Ω1 + Ω3 − Ω2 cos (δ2)) θ̇ + Ixxr

Ixxb
(Ω2 sin (δ2)) ψ̇ −

√
3 kp l

2 Ixxb
(Ω1

2 − Ω3
2)

Izzb −I
xx
b

Iyyb
ϕ̇ ψ̇ + Iyyr

Iyyb
(Ω1 + Ω3 − Ω2 cos (δ2)) ϕ̇+ 1

Iyyb
(kh sin (δ2)− kp l cos (δ2)) Ω2

2 +
kp l

2 Iyyb
(Ω1

2 + Ω3
2)

Ixxb −I
yy
b

Izzb
ϕ̇ θ̇ − Izzr

Izzb
(Ω2 sin (δ2)) ϕ̇− kh

Izzb
(Ω1

2 + Ω3
2 − Ω2

2 cos (δ2))− kp l
Izzb

(Ω2
2 sin (δ2))


(3.49)

With the non-linear description of a tricopter style MAV defined, control methodologies

similar to that seen in Section (3.4.3) may also be applied. Investigation into appropriate

control methodologies for the tricopter style model will be subject of future work.

3.6 Deltacopter Dynamics

The delta style UAS, or deltacopter, is similar to the tricopter configuration introduced in

the previous section. The deltacopter is well established in the literature as an example

of MAV configurations that builds on the underacted nature of quadcopter and helicopter

style aircraft, to enable more sophisticated pose control [110, 153, 208]. The deltacopter

is an over-actuated MAV configuration that allows full control over the aircraft’s position

and orientation in 3D space. This is achieved by the independent actuation nacelles i

through a given tilt angle δi as seen in Figure (3.9).

Similar to the tricopter configuration introduced in Section 3.5, the positions of

the three nacelles are defined radially to pcg at vertical and horizontal distances l1 and l2

respectively. The exception however is that each rotor can be deflected through angle δi by

an actuator aligned with each nacelle axis xni (see Figure 3.9). The system description

again builds on the definitions of fri and τri initially introduced in Section 3.3. The

projections of rotor i on nacelle i may be defined by generalising Equation (3.40) to rotor
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Figure 3.9: A depiction of a Deltacopter style UAS, with it’s three vectored nacelles. The thrust

projection from each rotor in the body axes is controlled via a dedicated servo; actuating the

nacelle about it’s local x-axis (shown in blue).

i as shown in Equation (3.50):

Rni = Rδi =


1 0 0

0 cos(δi) −sin(δi)

0 sin(δi) cos(δi)

 (3.50)

The resulting forces acting with the frame of nacelle i must then be expressed in

the body axes by invoking the configuration transform Rλi introduced in Equation (3.16).

Given that the nacelles are aligned with the tricopter, the configuration angles λi are

equivalent.

In these works the symbolic approach has been demonstrated on the conventional

three rotor deltacopter [153]. The procedure can be extended trivially to define four rotor

deltacopter variants as seen in [180, 208] by introducing a fourth rotor and adopting the

configuration vector given in Section 3.4. The expression relating the body axis forces and

torques can then be written as the sum of the contributions from each vectoring nacelle
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as seen in Equations (3.51) and (3.52).

fprop =


fxprop

fyprop

fzprop

 =
3∑
i=1

(RλiRδifri) (3.51)

τprop =


τxprop

τyprop

τ zprop

 =

3∑
i=1

Rλi (Rδiτri + (l1 + l2)×Rδifri)) (3.52)

The tilt angle transformation Rδi defines the projection of the rotor thrust fi onto the

nacelle frame. The configuration matrix Rλi given in Equation (3.16) again describes

the rotation from each nacelle frame to the body axes. The propulsive characteristics

of the deltacopter can therefore be expressed analytically as fprop and τprop [153, 180].

The actuation of the rotors through the tilt angle δi induces a reaction torque on the

airframe similar to vectored nacelle in Section 3.5. Rewriting Equation (3.45) to describe

the reaction torque induced by the motion of each rotor yields Equation (3.53):

τgyro =


τxgyro

τygyro

τ zgyro

 = Ir

3∑
i=1

ω ×
RλiRδi


0

0

κi

Ωri


 (3.53)

With the contributions from each nacelle defined within the body axes, the resulting

symbolic vectors νprop = [fprop, τprop]
T and νgyro = [0, 0, 0, τgyro]

T now represent the

propulsive characteristics of a deltacopter MAV. By introducing the rigid-body fuselage

assumptions, the non-linear dynamics defining the body axis accelerations of a deltacopter

MAV are then presented as Equation (3.54).

The thrust interactions from the three vectoring nacelles can clearly be seen as a

function of their respective deflection angles δi in Equation (3.54). The body axis torques

are then presented in terms of the contributions from the thrust of the rotor kp, their

aerodynamic resistance kh and the gyroscopic interaction induced by the deflection of

rotor i from it’s current instantaneous orientation.
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ẋ =



ẍ

ÿ

z̈

ϕ̈

θ̈

ψ̈


=



ẏ ψ̇ − ż θ̇ − g sin (θ)−
√

3 kp
2mb

(Ω1
2 sin (δ1)− Ω3

2 sin (δ3))

ż ϕ̇− ẋ ψ̇ + g cos (θ) sin (ϕ) +
kp

2mb
(Ω1

2 sin (δ1) + Ω3
2 sin (δ3)−mb Ω2

2 sin (δ2))

ẋ θ̇ − ẏ ϕ̇+ g cos (ϕ) cos (θ)− kp
mb

(
Ω1

2 cos (δ1) + Ω2
2 cos (δ2) + Ω3

2 cos (δ3)
)

Iyyb − Izzb
Ixxb

θ̇ ψ̇ + Ixxr
Ixxb

(Ω1 cos (δ1)− Ω2 cos (δ2) + Ω3 cos (δ3))θ̇ + Ixxr
2 Ixxb

(Ω1 sin (δ1) + 2 Ω2 sin (δ2) + Ω3 sin (δ3)) ψ̇

−
√

3
2 Ixxb

(
kh
(
sin (δ1) Ω1

2 − sin (δ3) Ω3
2
)

+ kp l
(
Ω1

2 cos (δ1)− Ω3
2 cos (δ3)

))
Izzb −I

xx
b

Iyyb
ϕ̇ψ̇ − Iyyr

Iyyb
(Ω1 cos (δ1)− Ω2 cos (δ2) + Ω3 cos (δ3))ϕ̇+

√
3 Iyyr

2 Iyyb
(Ω1 sin (δ1)− Ω3 sin (δ3)) ψ̇

+ 1
2 Iyyb

(
kh
(
Ω1

2 sin (δ1) + 2 Ω2
2 sin (δ2) + Ω3

2 sin (δ3)
)

+ kp l
(
Ω1

2 cos (δ1)− 2 Ω2
2 cos (δ2) + Ω3

2 cos (δ3)
))

Ixxb −I
yy
b

Izzb
ϕ̇θ̇ − Izzr

2 Izzb
(Ω1 sin (δ1) + 2 Ω2 sin (δ2) + Ω3 sin (δ3)) ϕ̇+

√
3 Izzr

2 Izzb
(Ω3 sin (δ3)− Ω1 sin (δ1)) θ̇

+ 1
Izzb

(
kh
(
Ω2

2 cos (δ2)− Ω1
2 cos (δ1)− Ω3

2 cos (δ3)
)

+ kp l
(
Ω1

2 sin (δ1) + Ω2
2 sin (δ2) + Ω3

2 sin (δ3)
))



(3.54)
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3.7 Conclusions

In this chapter the key concepts and principles for the dynamic representation of multi-

copter style UAS are introduced. A symbolic framework for the analysis and control of

MAVs is then proposed. By deriving several popular MAV configurations from first prin-

ciples, it is shown how parameter-less representations of each systems may be defined for

the purposes of control and stability analysis. It is also demonstrated how the approach

can be used as a basis for preliminary control design by symbolically defining key model

parameters [64].

The presented “aligned” quadcopter model is used as a basis for a preliminary

control investigation in which two linear techniques are demonstrated. To contextualise

the analysis to a specific MAV system, experimental data gathered from a real F540

quadcopter is introduced. A comparison of the model’s performance under the LQR and

MPC control approaches is presented; in which control over the vehicles attitude rates is

demonstrated in noisy conditions. The MPC controller is shown able to track the desired

trajectory more tightly whilst adhering to state and input constraints.

Using the principles presented, the dynamic behaviour of the quadcopter is formu-

lated and examined for the purpose of control analysis. It is then shown how the symbolic

definitions of the tricopter and deltacopter MAV configurations can be defined similarly.

Here the non-linear body axis representations can be seen presented as opportunities for

future work in MAV control design. Previously in Chapter 2 the kinematic representation

of objects with arbitrary dynamics is introduced for simulation in OpenMAS [66]. The

presented symbolic approach to generating parameter-less dynamic descriptor functions

is used to define UAV configurations for the simulation of multi-agent systems in later

chapters.

The generalised dynamic description of a tricopter and deltacopter MAV are derived

without parameterisation or reduction. While the aerodynamic interactions are neglected

in these works, their inclusion would be a clear next step toward synthesising higher fidelity

models for the purpose of control design. It is shown how more complex systems such

as the deltacopter, with greater degrees of freedom, may be also be modelled effectively

through the use of symbolic representation. The principles introduced here are also used

to provide context for Chapter 4, where they are extended further in the formation of the

novel Polycopter MAV configuration presented as part of these works.
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Chapter 4

The Polycopter

In this chapter several of the concepts introduced in Chapter 3 are extended in the pro-

posal of a new type of unmanned aerial system. This system, referred to as the Polycopter,

is able to actively deflect a set of nacelle sub-assemblies positioned radially around it’s

body through two degrees of freedom(DOF). The Polycopteris named according to the

versatility gained by combining ideal thrust vector control with active stability augment-

ation due to the systems agility to control its centre of gravity(CG). With each nacelle

actuated through 2DOF the system is naturally over-actuated. This presents some inter-

esting opportunities, as well as challenges, as strategies for exploitative control design are

investigated.

4.1 Background

The notion of “morphing” aerial systems is a concept that has been gaining momentum

in the last decade. This is partly due to the rising interest in reconfigurable and dynamic

aerial systems as new applications for unmanned systems are introduced. Traditionally,

morphing systems are defined to have two or more operational conditions. Transition

between these conditions may be subtle, which may act to “trim” the aircraft. In other

cases the transition may be more significant, as a transition is made through discrete

propulsive mechanisms. In the literature, there are two distinct groups of morphing sys-

tems namely; i) static - systems varying a collective thrust by reorientation of a static air-

frame or ii) dynamic - systems that use additional actuators to manipulate local propulsive

groups.

Examples of effective pose control using static rotor topologies can be found in [36,

71,100], where the use of more rotors is often necessary. Hybrid unmanned aerial systems

(UAS) and unmanned aerial vehicles (UAVs) are more commonly adopting principles of
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aerial morphism; in systems such as Google’s “Project Wing” which aims to combine

the VTOL capabilities of conventional multicopters with the operational range of fixed-

wing aircraft [236]. In the last decade, there have been several demonstrations of the

potential of dynamic morphism. Several of the designs stem for the principles of active

augmentation of the rotor disk as presented in Sections 3.5 and 3.6. Examples of complex

pose control using the “delta” style configuration can be found in [153,180,208]. Here the

ability for the aircraft to freely orientate it’s fuselage in 3D space is shown by augmenting

the attitude of their radial nacelles through one degree of freedom (DOF).

More recent derivatives of these systems can be see to deflect the rotor disk through

2DOF to achieve further authority over the pose of the aircraft’s airframe. The additional

DOF enhances the authority over the fuselage attitude by means of thrust vectoring.

This allows the translational mechanics of the system to be decoupled from the pose

of the aircraft and allow it to be maintained through various manoeuvres. The use of

a dual-axis disk tilting mechanism can be seen in [28, 31, 78, 158, 177, 213, 218, 280]. A

more recent example of this concept being extended further, to include design topologies

with a greater number of actuated rotor assemblies, can be found in [28]. The concept

introduced in [19], is most relevant to the works of this thesis by introducing the concept

of vehicle limb transformation. The proposed quadcopter system, is able to augment the

radial position of it’s nacelles in the body XY plane by way of servo mechanism whilst

augmenting the length of each nacelle arm using a prismatic joint. While the investigation

is preliminary, the aircraft is shown to augment the position of it’s centre of thrust to

facilitate thrust compensation in the event of component failure.

Another avenue of investigation in aerial morphism is the concept of multi-linked

systems. Through the introduction of systems such as “Dragon” in [274] and the system

proposed by Zhao et al. in [275], new territory has seen increasing interest from the

aerial robotics community. Here, it is demonstrated that active aerial morphism can be

used to achieve unparalleled levels of aerial dexterity and even achieve complex tasks

such as grasping. This presents a number of challenges from a control perspective, as it

implies an intrinsic understanding of the system’s dynamics, which are often highly non-

linear, configuration-dependent and time-variant. As a result, often sophisticated control

regimes and control allocation strategies are typically required for meaningful control over

the dexterous system UAS [274,275].
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4.2 Motivation

The growing body of research into morphing body and unconventional UAS topologies has

shown there are numerous opportunities yet to be explored. Systems that are highly man-

oeuvrable and adaptable have immense potential in scenarios that demand they operate

in the presence of component failure, confined spaces or hazardous changing environ-

ments. Many of these challenges are typical in applications such as search and rescue,

exploration and surveillance operations, just to name a few. A common theme between

morphing UAS is versatility. This may apply to the physical capabilities of the UAS; for

grasping in [275], enhanced pose control [110,274] or performance optimisation in different

conditions [19,236].

4.2.1 Aerial Morphology

Conventional multicopters, typically consist of several propulsive groups situated in a

common plane. While this simplifies the dynamics of the aircraft, systems like the delta-

copter and the dual tilt-axis systems introduced in Section 4.1 demonstrate that there are

numerous advantages for systems that are able to vector the thrust independently of the

main bodies orientation. In the works of Otsuka et al. in [182], it is also suggested that

there is a relationship between the relative pitch (or cant) of a rotor disk and the resulting

pitch up moment exerted on the body for a given angle of attack (AoA). This suggests

that there is an inherent advantage for systems with active control over the cant angle of

a given rotor disk so that it’s AoA can be modified with respect to incoming airflow. This

is highly useful for the purposes of “trimming” aircraft to a new flight condition, but also

in the precise manipulation of the lift (and drag) generated at a given rotor speed [182].

Not unlike conventional rotary-wing systems, multicopters face numerous challenges

due to the “down wash” created by their propulsive groups (see Figure 4.1). Turbulence

induced by the momentum exchange from the rotors with the ambient airflow has the

potential to create complex and potentially hazardous disruptions to it’s flight path and

to that of nearby vehicles. In addition, poor management of the airflow can often lead to a

distinct loss of stability, power and aerodynamic efficiency of the rotors [241,242,266]. The

challenges here are compounded for systems with multiple rotors, within close proximity

to the ground or ceiling (in the ground/ceiling effect) or to other vehicles, where flow

re-circulation becomes an issue [241,242].

The concept of active airflow management has yet to be explored within the field

of UAS technology as control authority is often inadequate. This presents a number
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Figure 4.1: The Eurocopter AS350 engaging in a conventional landing flare manoeuvre [92].

of opportunities for systems that are able to dynamically manipulate their flow field

for enhanced stability, disturbance rejection and control in complex scenarios [182]. An

example of this type of control is most notably observed in the “flaring” of helicopters

as seen Figure 4.1. Here, in order to reduce the approach velocity towards contact with

the ground, an aggressive pitch input is used to manipulate the centre of pressure of

the propulsion system. As a result, the fuselage is inclined and the pilot is able to

symmetrically distribute disturbances below the vehicle as it descends [266].

In light of these challenges, unmanned systems with thrust vectoring or gimballed

rotor assemblies are favourable in enhancing the control resolution where manoeuvrability

is limited. In addition to this, systems with greater authority over the attitude of the

fuselage, as well as the centre of pressure, present an opportunity to design the down-wash

generated by the propulsion system for more efficient and robust trajectory control [241,

242,266].

4.2.2 Biomimicry

The level of precise control of the aerodynamic forces generated by lifting bodies is widely

observed in nature and in the complex anatomy of avians as seen in Figure 4.2. Avians

are capable of adjusting the relative attitude and mean chord length of each lifting body

in order to vector the associated aerodynamic forces. The geometry of the wings, with

some exceptions, is both proportional to mass of the avian and the lifting capacity. The

precision however originates from the morphology of their wings and tail as control surfaces

in order to generate, or bleed off, excess lift (drag) and modify their approach trajectory
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Figure 4.2: A depiction of a dove’s ability to actively adjust the dihedral (anhedral) angle of it’s

lift (drag) generating surfaces independently of their body. Their precise control (trimming) of

their respective aerodynamic moments is achieved by adjusting the effective angle of attack (AoA)

and chord length of their wings [89,182,245].

and speed. Further information on the aerodynamic properties of avian wings can be

found in [239,245].

This level of dexterity is vital where precise control of the avian’s approach angle

is necessary such as hunting, perching or landing. Manoeuvring and stability are both

critically important for avians across their various kinematic gaits. Their natural ability to

adjust the dihedral (anhedral) angles of their wings during flight allows them to transition

for stability in gliding conditions, but then also facilitate aggressive turns through acute

control over their CG and lifting forces [239,245].

The potential for robotic systems to be able to better emulate the morphology of

avian flight is clear. micro aerial vehicles (MAVs) that are able to dynamically adjust

their flight characteristics represent a number of opportunities for contribution to the

field of aerial robotics. In the following sections a novel morphing MAV configuration

is presented referred to as the “Polycopter”. This configuration is defined by a series of

actuated nacelle assemblies to mimic the versatility of avian control surfaces in complex

manoeuvres. The manipulation of these nacelles effectively allows active control over the

centre of gravity of the airframe in relation to the centres of lift of it’s three radial rotor

assemblies.
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Figure 4.3: A depiction of the proposed Polycopterconcept as a logical extension of the Tricopter

and Deltacopter configurations. The relative pitch (δi) and roll (ηi) is actively adjusted using a

servo assembly positioned at the base of the nacelle. As a result, the thrust fi from rotor i is

vectored independently of the body orientation.

4.3 Overview

The name “Polycopter” UAS stems from the versatility gained by combining active control

over the system’s centre of gravity and complete thrust vector authority. This is achieved

by taking advantage of the Polycopter’s morphing airframe, which is defined by a central

body and a set of actively driven nacelle sub-assemblies. In addition to the tilt angle

δi, analogous to the deflection angle presented in Sections 3.5 and 3.6, the Polycopteris

able to pitch each nacelle assembly through angle ηi. The pose of each nacelle is actively

maintained by a 2DOF actuator positioned at the nacelle joint as seen in Figure 4.3.

The fact that the Polycopteris able to define the time variant configuration its na-

celles independently provides three principle advantages, namely; i) their instantaneous

pose dictates the mass distribution of the airframe and therefore its flight stability charac-

teristics, ii) Their active vectoring relative to the body acts to decouple the translational

and rotational forces from the pose of the central body and iii) the nacelle thrust is

commanded by a combination of three actuators presenting an opportunity for higher

precision control and trimming.

Together these characteristics present a unique opportunity for unparalleled ver-

satility in conventionally difficult scenarios and environments. A classical example of a

challenging scenario that is initially introduced in Section 4.2.1 is manoeuvring within the
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Figure 4.4: The concept of active airflow management used to adjust the flow field around the

rotor disks without moving the centre of pressure or fuselage orientation in 3D space. Utilising this

premise, the versacopter can reorient its nacelles for aerodynamic optimisation in conventionally

complex scenarios such as the ceiling/ground effect.

ground(ceiling) effect. Due to the static nature of conventional UAS designs, re-circulation

is often a factor leading to instability, unreliability and the need for more intelligent con-

trol design. It is however shown in Figure 4.4, how the Polycopter’s unique range of

motion can be used to optimise airflow above, or beneath, the airframe in such conditions

without modifying the body pose. This is achieved by optimising the nacelle configura-

tion in accordance to the desired trajectory and some higher-level objective emphasising

air-flow management, stability or failure tolerance.

The same nacelle motion providing universal authority over the thrust vector from

rotor i relative to the body, the Polycopteris able to mimic a number of properties dis-

cussed in Section 4.2.1 and 4.2.2 by transitioning between multiple dynamic gaits. Due

to the over-actuated nature of the system, numerous opportunities exist for the design of

controllers optimising nacelle configurations for various flight performance metrics (such

as speed, precision or efficiency) can be devised. These are however beyond the scope of

this thesis.

In the follow sections, the dynamics of the Polycoptersystem are investigated under

two initial assumptions. A component-based overview of the airframe is presented in

Figure 4.5 in which their frames of reference and symbolic parameters are presented. The

mass of the central body mb is assumed positioned at the body axis origin Ob where

it’s mass distribution is described by Ib. The position of the coordinate system Oni

defining nacelle joint i is positioned as vertical and horizontal distances l1 and l2 from Ob
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Figure 4.5: The component frames of reference that defined the PolycopterUAS, in which the

orientation or the body Ob, nacelles Oni
and rotors Ori are described. The geometric positions of

the component masses mb, mni and mri is shown in relation to the body axis origin Ob.

respectively. The mass of the nacelle assembly mn is positioned at horizontal distance l3

from Oni with it’s mass distribution described by In. The position of the rotor frame Ori

is at horizontal and vertical distances l4 and l5 from the nacelle centre of mass mn. The

mass of rotor mr is assumed aligned with the origin of Ori , with inertia tensor Ir. The

distance l5 defines the vertical offset of the rotor plane from the nacelle mass due to the

electro-mechanical propulsive components introduced in Section 3.3.

4.4 Assuming Small Nacelle Deflections

In this section, the dynamics of the Polycopterare presented for the first time. Due to the

morphing nature of the airframe and nacelle assemblies, the inertial interactions of the

nacelles present a challenge from a control perspective. Initially, a derivation of the system

is proposed that assumes that the perturbations made to the nacelle angles ηi and δi are

small, such that Ib can be said to be static and time-invariant. Under this assumption,

the dynamics of the vehicle are synonymous with the dual tilt-axis systems discussed in

the literature (see Section 4.2). This assumption is examined further in Section 4.5.

The dynamics of the airframe are defined by the force interactions between each

of the components as a result of the nacelle deflections and changing airframe geometry.
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The gyroscopic effects of perturbing rotor assembly i, are modelled by considering the

rotor disks as sources of momentum as presented in Chapter 3. In the following sections,

it is shown how by considering the interactions between the various components of the

airframe, a simplified dynamic description of the Polycoptermay be formed by examining

the forces exerted by rotor i on the body Ob.

4.4.1 Rotor Interactions

In the literature, the assumption is frequently made that the airframe mass is defined by

mb. The mass of the rotational components of each nacelle is assumed to be negligible with

respect to the airframe (i.e. mr � mb). Building on the initial rotor model introduced in

Section 3.3, the rotational rate of the rotor ωri in frame Ori is defined exclusively about

the local ẑ axis in Equation (4.1):

ωri =


ωxri

ωyri

ωzri

 =


0

0

κi

Ωri (4.1)

The aerodynamic forces fri , τri acting within Ori , induced by the shape of rotor i, are

expressed proportional to it’s angular rate ωri in Equations (4.2) to (4.3).

fri =


fxri

fyri

fzri

 = kpω
2
ri (4.2)

τri =


τxri

τyri

τ zri

 = khω
2
ri (4.3)

4.4.2 Nacelle Interactions

The rotor is modelled as a component within nacelle assembly i with reference axes Ori .

For simplicity, it is assumed that the axes of the nacelle Oni are aligned with the rotor

such that Rr
n = I3×3. The angular velocity of the rotor i is then expressed in Oni by the
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Figure 4.6: Left) The position of the centre of thrust x′ct as a result of the nacelle deflections ηi

and ηj . Right) The movement of the centre of thrust xct to x′ct as a result of nacelle deflection δi .

Collectively, these unique motion characteristics allow the emulation of that seen in Figure 4.2.

transform (4.4).

ωni =


ωxni

ωyni

ωzni

 = Rr
niωji (4.4)

The forces fni and torques τni acting within Oni as a result of the propulsive forces are

then written as Equations (4.5) and (4.6):

fni =


fxni

fyni

fzni

 = Rr
nifri (4.5)

τni =


τxni

τyni

τ zni

 = Rr
niτri + (l3 + l4 + l5)× fni (4.6)

Here l3 = [l3, 0, 0]T , l4 = [l4, 0, 0]T are geometric parameters describing the horizontal

length of nacelle i and l5 = [0, 0,−l5]T defines the vertical offset of frame Ori from Oni .

4.4.3 Joint Interactions

The motion of nacelle i is measured relative to frame Oji ; assigned to define the actuation

axes of servo i. The servo positioned at joint i actuates nacelle i through deflections ηi

and δi in order to modify the projection of fi as seen in Figure 4.6. The corresponding
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transformation of the nacelle Rn
ji

as a result of the deflection angles, assuming that the

actuators are fast-acting, is expressed as Equation (4.7).

Rn
ji = Ry(ηi)R

x(δi) =


cos(ηi) 0 sin(ηi)

0 1 0

− sin(ηi) 0 cos(ηi)




1 0 0

0 cos(δi) − sin(δi)

0 sin(δi) cos(δi)

 (4.7)

Given the instantaneous position of nacelle i, the rotational rate of the rotor is defined in

the axes of the nacelle joint Oji in (4.8):

ωji = Rn
jiωni (4.8)

The resultant forces fji and torques τji acting at nacelle joint Oji are defined in Equa-

tions (4.9) and (4.10).

fji = Rn
j fni (4.9)

τji = Rn
j τni (4.10)

As seen in Figure 4.6, Oni and Oji are co-situated at the joint and so τji is a direct

transform of τni from the nacelle Oni .

4.4.4 Body Interactions

Finally, before the interaction of each jointed nacelle may be considered, their contribu-

tions must be transformed to the body axes Ob. In Chapter 3, a configuration angle λi

is used to describe the radial position of joint i in relation to the body axes Ob. This

transformation is expressed as a vector rotation around the body z-axis as seen in Equa-

tion (4.11):

Rj
bi

= Rz(λi) =


cos(λi) − sin(λi) 0

sin(λi) cos(λi) 0

0 0 1

 (4.11)

The position of each nacelle joint is assumed defined by the constant configuration angle

λi; describing it’s angular position relative to the body x axis. An example of a morphing

MAV where the lateral position of nacelle i is actuated can be found in [19]. Similar to

the systems introduced in Section 3.5 and 3.6, radial position of nacelle joints 1 : 3 are

constant and are equidistributed about the body z axis as λ1 = 1
3π rad, λ2 = π rad and
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λ3 = 5
3π rad.

With the constant configuration transform Rj
bi

defined, the net forces and torques

due to the propulsive components of the nacelles may be written as Equations (4.12) and

(4.13):

fprop =
3∑
i=1

(
Rj
bi
f ji

)
(4.12)

τprop =
3∑
i=1

Rj
bi

(
τ ji + (l1 + l2)× f ji

)
(4.13)

Here l1 = [0, 0,−l1]T and l2 = [l2, 0, 0]T define the vertical and horizontal offset of Oni

from Ob respectively; where Ob is assumed aligned with the centre of mass mb of the

central body. The torque induced on the airframe as a result of modifying the orientation

of nacelles 1 to 3 is therefore also written as Equation (4.14):

τgyro = Ir

3∑
i=1

(
ωb × (Rj

bi
ωni)

)
(4.14)

The resulting generalised forces, assuming small nacelle deflections may then be expressed

as the profile vectors νprop = [fTprop, τ
T ]T and νgyro = [0, 0, 0, τTgyro]

T as demonstrated in

Chapter 3. The body of the fuselage is assumed to behave as a rigid-body under the

influence of νprop and νgyro. Invoking Equation (3.10) here in Equation (4.15), the net

influences acting on the body are defined in terms of the symbolic sources:

ν = ν prop + ν gyro + R̃g
b (ν aero + ν grav) (4.15)

In this preliminary investigation, the forces due to the aerodynamics of the airframe and

rotors are neglected under the assumption that the vehicle is operating near to a hover

state. If it is assumed that the nacelle deflections are small( ηi and δi are near zero) then

Ib may be considered constant. The resulting equations of motion of the Polycoptersystem

are then defined by the interaction of the forces within Ob as seen in Equations (4.16) and

(4.17):

 mbI3x3 03x3

03x3 Ib

 v̇

ω̇

+

 mbS(ω) 03×3

03×3 −S(Ibω)

 v

ω

 = ν (4.16)
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Which may also be expressed as:

ẍ = M−1 (ν −Cẋ) (4.17)

The accelerations of the body ẍ can then be seen defined in terms of the Coriolis and

centripetal forces C, inertial coefficients M and symbolic vector ν profiling the propulsion

system of the Polycopter. The motion of the airframe is defined within the body axes

Ob. If it is assumed, that the axes of rotation of airframe are aligned with Euler axes of

rotation the relation can be defined v = [u, v, w]T = [ẋ, ẏ, ż]T and ω = [φ̇, θ̇, ψ̇]T . We can

then define non-linear behaviour of the Polycoptersystem to be Equation (4.18):

ẍ = d(ẋ,x,u) (4.18)

Here, the system state is defined to be the kinematic states of the airframe x = [x, y, z, φ, θ, ψ]

with inputs u = [δ1, δ2, δ3, η1, η2, η3,Ω1,Ω2,Ω3]T defining the sequence of nacelle deflec-

tions η1:3, δ1:3 and rotor speeds Ω1:3.

4.5 Assuming Massive Nacelles

In Section 4.4 the Polycopteris initially introduced under the assumption of small nacelle

deflection angles. While this assumption is sufficient in describing the inertial interac-

tions of the assembly in a near-hover scenario, it becomes unrepresentative as the nacelle

deflections move away from straight and level (S&L) (i.e ηi, δi > 5◦) and the effects of

greater nacelle deflections must be considered.

To consider the changing inertia of the airframe, as a result of the nacelle deflections,

is to represent the true morphing nature of the Polycopter. Each nacelle assembly is

assumed to be identical as discussed in Section 4.3, whose pose relative to the central

body is time-variant and actuated by a torque applied at joint Oji as seen in Figure 4.6.

The representation of the inertial interaction of the vectoring nacelles is important to the

modelling of the Polycopter, as it is here that many novel behaviours are introduced (see

Section 4.2).

In the following sections the author presents a parallel formulation of the Polycopterdynamics,

generalised to include the inertial interactions of the actuated nacelle assemblies. This

is presented in the form of a component analysis, where a recursive newton-euler (RNE)

method is introduced to procedurally describe the interactions between each airframe

component.
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Figure 4.7: left) The geometric positions of the component masses mb, mni
and mri are shown.

right) A depiction of the Polycoptercoordinate axes where the orientation of Ob, Oji , Oni
and Ori

are defined as the component frames of the body, joint i nacelle i and rotor i respectively.

4.5.1 Recursive Newton-Euler Method

The Polycopterairframe is composed of a central body and three actuated nacelle sub-

assemblies; through which the propulsive forces are vectored. Each sub-assembly consists

of i) a nacelle structure, with mass mni and inertia Ini ii) the static electro-mechanical

components such as the speed controller and brush-less motor stator and iii) the actuated

rotor assembly Ori with mass mr. The series of transformations defining the relationship

between the body frame Ob and the rotor frame Ori are described in Figure 4.7 with

reference to their inertial and geometric parameters of the 15DOF system.

It is assumed that servo mechanism i actuates the pose of nacelle i as seen in

Figures 4.6 and 4.7 by applying a torque τni = [τx, τy, 0]T about joint axes Oji . Each

nacelle dynamically interacts with the central body of the fuselage through joint i and

contributes to acceleration of the airframe.

This contribution is calculated within Ob by considering each nacelle as a serial-link

system or kinematic chain. The overall expression for dynamic interactions of the nacelles

(and their associated propulsive groups) is written as their sum in Equation (4.19) [99,222].

ν = [fb, τb, τ
x
n , τ

y
n , τr]

T = νb + νn1 + νn2 + νn3 + νext (4.19)

Here, ν ∈ R15×1 defines the symbolic forces and torques acting with respect to each of

the system’s degree of freedom. Here τb = [τxb , τ
y
b , τ

z
b ]T and fb = [fxb , f

y
b , f

z
b ]T define the

net body axis torques and forces respectively. The contributions from each sub-assembly,

being the body and nacelles ni ∈ n1, ..n3 are then defined as νb and νni respectively. The

vectors defining the torques acting about the x and y axes of the nacelle joint are defined
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Property Symbol Body Joint Nacelle Rotor

Mass (kg) m mb 0 mn mr

Inertia (kgm2) I Ib I3x3 In Ir
Rotation (rad) R I3×3 Rb

j Rj
n Rn

r

Joint offset (m) rij [0, 0, 0]T Rλi(l1 + l2) l3 + l4 l5
CG offset (m) ric [0, 0, 0]T [0, 0, 0]T −l4 [0, 0, 0]T

Table 4.1: The geometric and inertial constant properties of the Polycopterassociated with each

component’s coordinate frame. Here rij defines the vector separation between frame i and j

respectively.

as τ xn = [τxn1
, τxn2

, τxn3
]T and τ yn = [τyn1 , τ

y
n2 , τ

y
n3 ]T respectively. The torque acting within the

frame of the rotor Or,i are defined in the vector τr = [τr1 , τr2 , τr3 ]T . Finally, νext ∈ R15x1

is used to characterise external sources of disturbance or noise.

The recursive Newton-Euler (RNE) method, traditionally applied in the context of

serial manipulators, is introduced here to sequentially define the kinematic and dynamic

parameters of the nacelle assemblies. Each component is represented by a component

frame (see Figure 4.5); in which the geometry and inertial parameters of that component

are defined. These parameters are explicitly stated in Table 4.1.

4.5.2 Joint Interactions

To begin defining a description of the Polycopterairframe, the problem is posed from

the perspective of the body Ob. Previously, the influences on the acceleration of the

airframe have been attributed to propulsive and gyroscopic sources; as νprop and νgyro

respectively (see Section 4.4.4). Under the RNE convention however, these influences may

be considered simultaneously in the symbolic representation of the force vector of nacelle

i as νni .

The position of nacelle joint Oji is defined relatively to Ob and is assumed to be

fixed. While the mass of the joint is assumed to be considered within mb, the kinematic

definition of the joint as a result of the motion of the body must therefore be defined.
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The transformation between Ob and Oji as Rb
ji

is written in Equation (4.20):

Rb
ji = Rz(λi) =


cos(λi) − sin(λi) 0

sin(λi) cos(λi) 0

0 0 1

 (4.20)

ωji = Rb
jiωb (4.21)

ω̇ji = Rb
jiω̇b (4.22)

ṗji = Rb
ji ṗb + ωji × rbj (4.23)

p̈cji = Rb
ji p̈b + ωji × rjc + ωji × (ωji × rjc) (4.24)

Here ωji and ω̇ji define the angular velocity and acceleration of joint Oji , ṗji and p̈ji

are it’s linear velocity and acceleration respectively. The separation between between the

body and joint is also defined be the vector rbj . With the kinematics of the joint Oji in

relation to the central body Ob defined, the kinematic parameters of Oji are related to

the torques and forces enacted at Ob by the fixed transform:

fb = Rji
b fji (4.25)

τb = −fb × rjb + Rji
b τji (4.26)

Here, the resultant torque and forces acting on Ob are defined in vectors fb and τb re-

spectively; in terms of the fuselage geometric separation of joint Oji from Ob as rbj .

4.5.3 Nacelle Interactions

With the kinematics of joint i defined, their relationship with the nacelle kinematics can

be similarly defined. The nacelle is modelled as a rigid-body with mass mn and inertia

In; connected with the body of the Polycopterat Oji . Given the nature of the 2DOF

servo mechanism, the transformation of Oni relative to Oji may be written in terms of

the current nacelle deflection parameters δi and ηi as seen in Equation (4.27):

Rji
ni = Ry(ηi)R

x(δi)

=


cos(ηi) 0 sin(ηi)

0 1 0

− sin(ηi) 0 cos(ηi)




1 0 0

0 cos(δi) − sin(δi)

0 sin(δi) cos(δi)

 (4.27)
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Given the new orientation of the nacelle Rji
ni , the definition of the linear and angular axis

rates of Oni and mass mn may be defined in Equations (4.28)-(4.32).

ωni = Rji
ni

ωji +


δ̇i

η̇i

0


 (4.28)

ω̇ni = Rji
ni

ω̇ji +


δ̈i

η̈i

0

+ ωni ×


δ̇i

η̇i

0


 (4.29)

ṗni = Rji
ni ṗji + ωni × rjn (4.30)

p̈ni = Rji
ni p̈ji + ωni × rjn + ωni × (ωni × rjn) (4.31)

p̈cni = p̈ni + ω̇ni × rnc + ωni × (ωni × rnc ) (4.32)

Here ωni and ω̇ni define the angular velocity and acceleration of Oni ; ṗni and p̈ni it’s

linear velocity and acceleration; and p̈cni the linear acceleration of mn. The vector rjn

defines the separation between Oni and Oji ; r
j
c is the separation between Oni and the

position of mn.

fji = Rni
ji
fn +mjp̈

n
c (4.33)

τji = −fji × (rnj + rnc )

+ Rni
ji
τni

+ (Rni
ji
fni)× rnc

(4.34)

Here, the forces and torques acting at the joint are defined as fji and τji respectively.

The resulting influences are then due to the torques τni and force fni transmitted from

nacelle i. The joint is assumed statically mounted to the body of the Polycopterso that

it’s mass is considered within mb and Ib. As Oni and Oji are co-situated rjn ≡ [0, 0, 0]T

resulting in Expression (4.34) [99,222].

4.5.4 Rotor Interactions

Finally, rotor i is modelled as a tertiary rigid-body within the nacelle assembly. The

propulsive force generated by the rotor is determined by the rate of the rotation of rigid-

rotor i, which is proportional to the torque exerted on rotor i by the nacelle motor. The

rotation of Ori is parameterised by γi, with it’s velocity and acceleration defined as γ̇i

and γ̈i respectively. The kinematic relationship between frame Ori from Oni is defined by
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Equations (4.35)-(4.40):

Rni
ri =


cos(γi) − sin(γi) 0

sin(γi) cos(γi) 0

0 0 1

 (4.35)

ωri = Rni
ri (ωni + γ̇iẑi) (4.36)

ω̇ri = Rni
ri (ω̇ni + γ̈iẑi + (ωni × γ̇ri)) (4.37)

ṗri = Rni
ri ṗni + ωri × rnr (4.38)

p̈ri = Rni
ri p̈ni + ωri × rrn + ωri × (ωri × rrn) (4.39)

p̈cri = p̈ri + ω̇ri × rnr + ωri × (ωri × rrc) (4.40)

Here ωri and ω̇ri define the angular velocity and acceleration of Ori respectively; ṗri and

p̈ri it’s linear velocity and acceleration; and p̈cri the linear acceleration of the centre of

mass. The vector rnr defines the position of Ori in Oni and rrc defines the position of mr

in Ori . The unit vector ẑri is then the rotor actuation axis defined in Ori [222].

The forces fni and torques τni acting within frame Oni can be expressed in Equa-

tions (4.41) and (4.42). Here the influences of rotor i (fri and τri) are expressed within

Oni via the transformation Rri
ni .

fni = Rri
nifri +mnp̈

n
c (4.41)

τni = −fni × (rjn + rnc ))

+ Rri
niτri

+ (Rri
nifri)× r

r
c

+ Inω̇ni + ωni × (Inωni)

(4.42)

The position of rotor i within Oni is defined as rnr . rnc defines the CG position of nacelle

i within Oni . In and mn are the nacelle inertial parameters [99,222].

4.5.5 Rotor Dynamics

Similar to the rotor model introduced in Chapter 3, rotor i is assumed to rotate about it’s

local z axis, with it’s mass mr positioned at origin Ori with symmetrical mass distribution

described by Ir. In addition to the inertial and Coriolis forces induced by the motion of

Ori , the aerodynamic forces produced by the form of rotor i are shown proportional to it’s

angular rate ωri = [0, 0, γ̇i] [19, 64, 175]. Incorporating the rotor assumptions introduced
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previously, the force and corresponding reaction (hub) torque may be written proportional

to the rotational rate of the rotor body in Equations (4.43) and (4.44):

fri =


fxri

fyri

fzri

 = mrp̈
r
ci + ·kpω2

ri (4.43)

τri =


τxri

τyri

τ zri

 = −fri × rnr + Irω̇ri + ωri × (Irωri) + khω
2
ri (4.44)

Here, kh and kp again define the hub force and thrust constants of the rotor assembly

respectively. The vector rnr defines the separation between the centre of the rotor and

the nacelle joint. The parameters ω and ω̇ and p̈rci then define the angular velocity and

acceleration of Ori , and the linear acceleration of rotor CG respectively.

Together, Equations (4.43) and (4.44) define the forces acting within the frame of

the final link of the nacelle kinematic chain (or “effector”). The aerodynamic load, in

addition to the inertial forces the rotor exerts on the nacelle, may then be propagated

backward to define the interaction of the nacelle with the body of Polycopter.

4.5.6 Formalisation

The interaction between each of the Polycoptersub-assemblies is now characterised relative

to the body origin Ob. Unlike the assumption presented in Section 4.4, the state of the

system xk is defined by the instantaneous 6DOF pose of the body, of the nacelles, and

their associated rotor state at time tk. The system inputs uk are then a concatenated

vector of the servo and rotor torques as τδ and τη, and τγ respectively:

xk = [pT ,ΘT , δT ,ηT ,γT ]T

= [x, y, z, φ, θ, ψ, δ1, δ2, δ3, η1, η2, η3, γ1, γ2, γ3]T
(4.45)

uk = [τTδ , τ
T
η , τ

T
γ ]T

= [τδ1 , τδ2 , τδ3 , τη1 , τη2 , τη3 , τγ1 , τγ2 , τγ3 ]T
(4.46)

Here p and Θ define the instantaneous position and pose of the Polycopterin the body

frame; δ and η are vectors defining the nacelle roll and pitch deflections respectively; and

γ defines the angular position of the rotors.

To be able to express the evolution of the Polycopter’s state x over time, it must
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be written in a form that is easily integrated in OpenMAS [66]. This function is referred

to as the “dynamic descriptor” function d, which characterises the system change across

it’s “n”DOF over time. The relationship between xk and uk and the state update ẍk for

the Polycoptermust then be expressed in the form of Equation (4.47):

ẍk = d(ẋk,xk,uk,wk) (4.47)

Herewk = N (015×1, I15×15σ) defines the state noise vector, where σ = [σ2
p, σ

2
Θ, σ

2
δ , σ

2
η, σ

2
γ ]T

denotes the standard deviation vector of the state-specific noise signal. To be able to define

Equation (4.47), Equation (4.19) must be expressed in terms of the system accelerations

ẍk in each DOF. This is achieved by expressing the system’s equations of motion in the

general form of Equation (4.48) [222]:

M(x)ẍ+ C(x, ẋ)ẋ+ g(x) + J(u) = ν (4.48)

Here, M, C and R are the system’s inertial, Coriolis and centripetal, and potential

coefficient matrices respectively. This expression is synonymous to the general form used

to describe the rigid-body characteristics in Section 3.1. Expressing the system in terms of

the accelerations in each DOF, Equation (4.48) is rewritten in the form of Equation (4.49):

ẍ = M(x)−1 (ν − (C(x, ẋ)ẋ+ g(x) + J(u))) (4.49)

Here M is a symmetric positive-definite matrix defined by the partial derivative of the

system definition in Equation (4.19) with respect to the system’s accelerations ẋ across

each DOF. Similarly, J(u) defines the system’s input Jacobian, defined by considering the

partial derivatives with respect to each of the system’s inputs u. Finally, the gravitation

vector g(x) is defined by the system’s gravitational coefficients, which is dependant on

the instantaneous configuration of the system.

The forces acting on the Polycopterand nacelle assemblies due to the Coriolis and

centripetal forces are characterised by it’s Coriolis matrix C = C(ẋ,x). In classical mech-

anics this matrix its components are attributed to the Coriolis and centripetal forces and

are expressed as coefficients of the form ẋiẋj and ẋ2
i respectively. C = C(ẋ,x) is defined

by it’s relation to the system’s mass matrix M = M(x) via it’s corresponding Chris-

toffel Symbol [16]. The relationship between element Cij(ẋ,x) and the corresponding
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Christoffel symbol Γijk is given in Equation (4.50):

Cij(x, ẋ) =
n∑
k=1

Γijkẋk =
1

2

n∑
k=1

(
δMij

δxk
+
δMik

δxj
−
δMkj

δxi

)
ẋk (4.50)

With each of the terms in Equations (4.48) and (4.49) defined, the dynamic model of the

Polycopteris given in a form that can be integrated easily. Equation (4.47 now captures

the time-variant pose of the body, as well as the instantaneous configuration of each na-

celle so that the morphology of the system may be characterised over time. Following

the proposition of the Polycoptermodel, a preliminary investigation into viable control

techniques can now be undertaken with the model in it’s current form. This is how-

ever the focus of future work towards the design of effective control mechanisms for the

Polycopterstyle UAS.

4.6 Conclusions

In this chapter, the novel concept of the Polycopter is proposed for the first time. Using the

principles of symbolic modelling presented in Chapter 3, two formulations of the vehicle’s

dynamics are presented under two assumed conditions i) small nacelle deflection angles

and ii) massive nacelles.

The chapter begins by introducing the motivation behind morphing aerial systems

and their advantages over traditional unmanned systems. From the associated literature it

is shown, morphing (hybrid) systems have the potential for extended flight time, enhanced

manoeuvrability and failure tolerance by being able adapt to new operating conditions. In

addition, aircraft with heightened control over their lifting capabilities present numerous

opportunities for bio-mimetic systems where the emulation of multiple kinematic gaits is

novel. This heightened level of control over the aerodynamic forces creates the opportunity

to design the flight characteristics of the vehicle in flight.

This motivation is used to provide context for the design of the Polycopter; which

utilises actuated nacelle assemblies to vector the thrust produced by it’s three rotors.

Each nacelle is actuated through 2DOF by a linkage positioned on the central body

to create a morphing airframe. Unlike previous systems, the position of these joints

gives the Polycopterunique authority over the centre of mass of the airframe and it’s

stability properties as the effective anhedral and dihedral angles are modified. Initially, a

formulation of the system is proposed under the assumption that the nacelle deflections

are small; such that the inertia of the system remains near constant. This formulation
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is shown to be principally similar to many of the dual tilt-axis UAS proposed in the

literature, which typically assume that only the rotor disk is deflected . It is clear however

from the first formulation that the morphology of the system is not captured effectively

under this assumption, despite demonstrating the thrust vectoring capabilities of the

system.

By re-examining the dynamics of the Polycopter, an alternative formulation of the

system is proposed by modelling each nacelle sub-assembly as a sequence of rigid-bodies in

a kinematic chain. Here it is shown how the interactions between each of the components

may be considered in sequence through the an RNE based analysis. As a result, the

dynamic interactions within each component frame is defined in order to characterise

the effect of the thrust and orientation of the nacelle on the accelerations of the overall

airframe. This formulation of the system is effectively able to describe the state evolution

of the Polycopteras a 15DOF system by describing the instantaneous transformation of

it’s three nacelles.

The presented models are shown to provide parallel descriptions of the Polycopterconcept

under two different assumptions and associated control regimes. The system is distinctly

over-actuated and presents a number of opportunities in terms of control strategy design

and adaptive control. In the literature, feedback linearisation has been applied in the

context of over-actuated UAS and will be the subject of future work. Further investig-

ation into control regimes that are able to take advantage of the versatility of this UAS

configuration will also be considered moving forwards.
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Chapter 5

Literature Review - Collision

Avoidance

Collision avoidance is a fundamental aspect of coordination in systems defined by multiple

kinematic agents. multi-agent systems (MAS) operating as a collective, or swarm, are gen-

erally capable of reaching higher levels of performance, reliability and redundancy when

compared to their individual agent members. However enhancing the level of autonomy

in such systems so that an acceptable level of safety can be assured is a complex task. The

emphasis on safety in this area can be seen comparable to that of conventional manned

operations and is a challenge that limits the technology as a whole.

This is because amongst the difficulties in coordinating systems composed of mul-

tiple physical agents, there are significant challenges in communication, path planning

and collision avoidance. These challenges are particularly prevalent in systems composed

of micro aerial vehicles (MAVs) and other unmanned aerial systems (UASs) derivatives,

as they are also subject to regulation if they are to operate inside public airspace.

5.1 A Modern Airspace

Autonomous collision avoidance in the air-traffic domain is a field of research that has

seen increasing interest over the last three decades. This has primarily been fuelled by

increasing conventional air-traffic, and thus the need for automation, but now also by the

integration of unmanned services. The National Air Traffic System (NATS) of America

and their program NextGen, in addition EUROCONTROL and their initiative Single

European Sky are part of the reform attempting to both increase unilateral capacity, and

heighten support for new technologies [73, 80, 161, 192]. Other research bodies, such as
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the National Aeronautical and Space Agency (NASA) [217] with their software Automatic

Ground Collision Avoidance System (GCAS) in conjunction with the United States Air-

Force Research Laboratory (AFRL) [160] and the Defence Advanced Research Projects

Agency (DARPA) [4,178] are some of those also sponsoring research in this field.

One of the principle functions of conventional air traffic management (ATM) ser-

vices is to provide real-time avoidance information from a designated ground station in

order to maintain safe separation between flight paths. This can be seen as collision avoid-

ance at a supervisory level; synonymous to a centralised avoidance regime. Ultimately

this serves to reduce the chance of a collision scenario occurring initially, as information

provided by the ATM alongside other systems such as traffic collision avoidance system

(TCAS) is then used to support the pilot’s own knowledge of the vehicle’s safety [11,109].

Today, unmanned systems are heavily reliant on information communicated to them

about their surroundings, especially in scenarios when there is a collision possibility. Uni-

lateral use of existing protocols such as automatic dependent surveillance broadcast (ADS-

B) are being assessed as a platform for cross compatibility in an increasingly diverse and

automated airspace [53,73,107,126,178,217]. Such initiatives aim to make telemetry data

widely available to neighbouring aircraft for purposes such as conflict detection and resol-

ution and will be a requirement in the United States from 2020 [53]. Ensuring backward

compatibility with systems without such capabilities, or scenarios where communication

is denied, still pose significant design challenges to upcoming systems [45,109]. Legislation

supporting the viability of the free-flight concept can be found as extensions of the visual

flight rules (VFR) in [77,128,130,174,204]

5.2 Cooperation and Non-Cooperation

Quantification of an unmanned system’s ability to cooperate in the event of a collision

scenario is becoming a critical part of its integration into the modern airspace [63, 93,

141, 184, 271]. The Federal Aviation Authority (FAA) states in their right-of-way rule

(14 CFR 91.113) that any flight-worthy aircraft must be able to detect a conflicting

trajectory craft and instigate a corrective manoeuvre once the separation becomes less

than 150m [178]. In [141] a target level of safety (TLOS), synonymous to the equivalent

level of safety (ELOS) in [178], is proposed as a measure of a system’s ability to minimise

risk of collision with respect to the equivalent human pilot. Capability is described through

the hierarchical layers seen in Figure 5.1, with systems that are capable of interacting at

all levels being considered equally capable to an equivalent manned aircraft [11,93].
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Figure 5.1: The target levels of safety (TLOS) for unmanned systems operating in public air-

space [141]. While the majority of conflicts are handled at TLOS level 1 and 2 (airspace structural

design), SDA mechanisms typically operate between TLOS 4 and 5 at the point of visual confirm-

ation. This is focus of this thesis.

It is clear from Figure 5.1, that UAS operating in environments with civil aircraft

must have systems in place to engage in collision avoidance not only by means of obeying

the rules of the air, but act reactively to plan and orchestrate avoidance manoeuvres as

a last resort. Requirements of this kind are often grouped into two distinct areas i) co-

operative; responding to obstacle trajectory data communicated directly between aircraft

(or ATM) or ii) non-cooperative; where obstacle trajectory data must be sourced from

an appropriate system on board the aircraft [109]. Modern aircraft operating in civilian

airspace must be capable of both cooperative and non-cooperative avoidance before a

maximal TLOS can be achieved [141,142].

Examples of the types of sensors currently being explored for increasing autonomy

in manned and unmanned systems can be seen in Table 5.1. The complexity of the prob-

lem becomes more obvious when the possibility of transponding and non-transponding

obstacles is also considered [56, 93, 109]. This essentially discerns between obstacles that

actively transmit their trajectory data for the purpose of avoidance and those where the

data must be determined by a local sensor system. There are several potential scenarios

where obstacles are non-transponding; the obstacle is incapable, the systems are operating

in a communication denied environment, or the obstacle is adversarial (see Section 5.3).

At the maximal TLOS, modern UAS are assumed able to assemble a description

of an obstacle’s trajectory that is adequate for collision avoidance, by combining commu-

nicated data when possible with data acquired locally. In Table 5.1, methods currently

being used to provide this information are given with respect to their modality, the type

of information provided and the processing required to attain a viable obstacle trajectory.
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Protocol Cooperation Modality Information Object Trajectory

TCAS/ACAS Cooperative Active Range & Altitude Derived

ADS-B Cooperative Active Position, Altitude & Velocity Provided

MMW RADAR Non-Cooperative Active Range & Bearing Derived

SAR Non-Cooperative Active Range & Bearing Derived

Acoustic Non-Cooperative Active Azimuth & Elevation Derived

Laser/LIDAR Non-Cooperative Active Range, Azimuth & Elevation Derived

Optical Non-Cooperative Passive Azimuth & Elevation Derived

Thermal/Infrared Non-Cooperative Passive Azimuth & Elevation Derived

Table 5.1: Classifications of modern sensor systems used in sense detect and avoid (SDA) operations and their modality as cooperative and non-cooperative

mechanisms. The nature of the measurements made by the device determines whether the object’s trajectory is sensed directly or must be derived computation-

ally [53,56,77,93,107,109,178,197,212].
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The need for encompassing both non-transponding and transponding obstacle types

becomes more apparent when considering the applications of UASs with respect to tra-

ditional aircraft; where obstacles such as trees and buildings must be considered along-

side conventional air-traffic. It is therefore clear from Table 5.1 that a combination of

sensing mechanisms is required to ensure an adequate level of integration with modern

air-traffic communication systems and protocols. The need for parallel cooperative and

non-cooperative systems is also seen in the literature [5,55,93,109,141,143,225]. Restric-

tions imposed on the maximum take off weight (MTOW) of a UAS may mean however,

that hardware size and weight ultimately determine if the TLOS is achievable for a given

UAS classification.

In considering collision avoidance in a MAS composed of collaborating UASs, an

analogy can be drawn to the requirements of assuring safety in large scale automated

ATMs [5, 47, 123, 137, 225]. This is because many of the challenges facing collaborat-

ive aerial systems are synonymous with traditional ATM and conflict resolution proto-

cols [142,211]. These protocols and algorithms are irrespective of the agent’s classification

or function in the airspace. Cooperative collision avoidance in the context of MASs can

therefore be seen analogous to correction information received by a unanimous ATM sys-

tem. It therefore stands to reason that for smaller scale systems to attain their maximum

TLOS, they must have the innate ability to sense, detect and avoid (SDA).

5.3 Adversarial Attacks

In the consideration of both cooperative and non-cooperative obstacles, the potential for

adversarial obstacles must be discussed. An adversarial attack is defined an a malicious

act to disrupt or inhibit the function of the MAS. An adversarial obstacle however, is

defined in these works as an object with an objective of inducing a collision between itself

and the agent.

Adversarial behaviour in collision avoidance typically occurs in robotics and aerospace

scenarios where the obstacle is an interceptor (i.e a UAV or missile) [105, 113, 150, 278].

In the literature, adversarial obstacles (UAVs) have been used to form the basis for ad-

versarial control. Examples of this can be seen in in [49,150,186,191]. In [186] the robotic

herding of UAVs is demonstrated through specific placement of adversarial agents. The

result is shown to effectively restrict the motion of a second team of agents which are seek

to avoid collision. In the woks of Zengin and Dogan in [269] a probabilistic approach is

used to model an adversarial scenario. A cost function is proposed to quantify placement

87



of UAVs around the target in formation in terms of threat from an adversarial obstacles.

The cost function is used to create a cooperation strategy that both minimises the total

threat exposure of the UAV team and the mean deviation in target separation throughout

the presented pursuit scenario.

Another example for adversarial agent consideration is presented by representing an

unknown hazard that seeks to inhibit the function of the system as an adversarial agent.

In the works of Schwager and Kumar in [216], these obstacle are defined as unknown

threats to the system with an uncertainty in their risk(effect) and must be avoided as the

environment is explored. In [46] and [264], both authors focus on maintaining network

connectivity and performance in the presence of adversarial agents. This is presented in

the form of an adversarial game with an alternating-play algorithm. This aims to maximise

the connectivity of the networked system whilst mitigating the adversarial agents attempts

to block connection and cause information loss.

Adversarial obstacles represent another challenge to the reliability of collision avoid-

ance systems for modern UAS. This is primarily because their behaviour may act against

many of the assumptions made in Section 5.2. Depending on the complexity of the agent,

identification of an adversary from obstacles that are simply non-cooperative presents

another set of challenges. While consideration of adversarial agents is a component con-

tributing to the dependable safety of a systems, it is not addressed as part of these works.

5.4 Sense, Detect and Avoid

The principle of sense, detect and avoid has seen substantial interest in the last decade

as a means of ensuring an acceptable TLOS in upcoming autonomous systems. Similarly,

more recent efforts to increase the safety of manned operations have sought to combine

modern sensing technology and SDA principles, with existing flight deck systems (such

as TCAS and ADS-B) [107]. Many of these approaches to automating collision avoidance

using information communicated, or acquired locally, are cited in the literature under

the principles of free-flight [136, 137, 162, 185, 226]. This ideology, albeit conceived in the

nineties, has promising grounds in the future of a diverse and automated airspace [73]. The

need for alternative systems for handling increasing air traffic is cited in [128]. Feasibility

studies for free-flight base air-traffic topologies are historically based on terrestrial air

traffic in [56, 106, 128, 185, 204]. However with the increasing sophistication of civilian

and military unmanned systems, the free-flight concept is re-examined as a means for

developing automated mechanisms for handling collision avoidance in the context of a
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diverse airspace in [77,93,104,107,123,141,178,185,192].

For the majority of conventional airspace operations SDA algorithms aim to assist

in the generation of emergency avoidance trajectories, in the event that TLOS 1-4 (Figure

5.1) have failed to prevent the conflict. Principally, SDA algorithms are fundamental to

replicating a pilot’s ability to interpret an evolving scenario and respond to unforeseen

behaviour [93]. This is often referred to as reflexive avoidance in the literature [63, 225].

This is critical in situations where the behaviour of conflicting aircraft may contradict

communicated information, received telemetry, or established protocols. It is this premise

that not only makes the SDA algorithms desirable for reflexive collision prevention, but

also for their independence on external sources.

Today collision avoidance in unmanned systems is predominantly achieved at the

level of mission design and path planning; by designating airspace occupancy (synonym-

ous to TLOS one and two) [141]. Control over the airspace however, particularly at

ground level, may mean that this is unfeasible. This is especially apparent in the use of

smaller systems such as MAVs; which today, are being designed for use in a vast array of

environments from search and rescue to elaborate light displays [63,209].

In the literature, a system’s capacity for SDA based avoidance is limited by the

reliability and accuracy of the data that can be acquired by local hardware. In scenarios

such as search and rescue, or collaborative systems, autonomous MAVs are now required

to manoeuvre through unknown environments and respond to situational changes in real-

time. This implies that obstacle trajectory data must also be acquired in real time; filtered

and fused with data from other sensors to best estimate the states of identified obstacles.

Fundamental to this is the computational power to process the obstacle’s trajectory and

compute it’s own resolution trajectory accordingly [95, 209, 212]. Hybrid systems often

utilise communicated data as a method of providing dead reckoning for obstacle traject-

ory estimations. These methods seek to benefit from the apparent strengths of both

cooperative and non-cooperative based SDA approaches [5, 141].

Given the dependence of SDA approaches on local hardware, such systems are of-

ten cited in conjunction with higher-level path planning algorithms capable of avoidance

at TLOS three and four [96, 126]. Hierarchical approaches may present a method of

encoding predictability through procedural collision avoidance whilst simultaneously en-

hancing a system’s capability to respond dynamically to changing environments as the

risk of collision increases. It is likely that, if proven successful in the UAS industry, many

developments in the field of SDA technology will be directly applicable to the next gener-

ation of manned aircraft support tools; such as TCAS, ADS-B derivatives, and intelligent
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traffic management tools. The need for significant developments in the verification of such

systems is cited in [109,147,178,212].

Emerging unmanned aerial systems today are facing the strict requirements of be-

ing able to interlace with existing air-traffic infrastructure on a macro scale to increase

awareness and the safety of nearby aircraft. On a micro scale, systems must be able to

assure an equivalent level of safety in negotiating dynamic time-varying environments,

obstacles or communication loss [123,225]. The importance of such systems to be able to

operate in real-time, with low-latency, is clear when the implications of collision pose a

risk to people, other vehicles in operation, or the environment.

5.5 A Review of the State of the Art

With the breath of use cases for MAVs and UAS in the civilian sector, there has been

substantial development in the autonomy of aerial systems. As a result of this, interest in

more sophisticated systems for handling fundamental interactions such as collision avoid-

ance is increasing. MAVs are well suited for applications in close, cluttered environments

involving many agents. Collaborative tasks such as construction, package delivery and

object manipulation make collision avoidance essential in the development of the techno-

logy.

In the literature surrounding multi-agent and collaborative robotic systems there

have been numerous methods proposed for handling collision avoidance. However depend-

ence on, or inference of, a low latency omnipresent network is often cited. In this section,

several of the key approaches to MAV collision avoidance are presented along with relev-

ant concepts from the autonomous air-traffic domain. An emphasis is also made towards

techniques for handling more stochastic environments in which such networks cannot be

guaranteed.

5.5.1 Potential Field Approaches

Stigmergic or “potential” field based coordination techniques are one of the more widely

used approaches to inherit collision avoidance within the MAS community. Typically, a

game field is assigned wherein all agents, obstacles and goals are given a charge or cost

metric [103, 131]. Goal locations are assigned a metric, force or potential to differentiate

them from other agents in order to exemplify attractive behaviour. Assigning identical

charges to obstacles and agents are also shown to shown to create repulsive behaviour

in [41, 54]. The resultant force acting on the agent is then used to infer it’s optimal
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trajectory at the next time step or over a defined horizon. This allows trajectories to

be evaluated quickly using conventional gradient descent methods. The approach is well

summarised in [5, 21,91,103], outlining some of the issues regarding local minima inherit

in these methods.

An example of the application of stigmergic fields applied in the air-traffic domain

can be seen in the works of Tomlin et al [136]. Trajectories are calculated as a result of the

current global obstacle configuration. The navigation function model initially proposed

by Rimon and Koditschek [203], demonstrates how geometric functions can be used to

manipulate field lines to represent complex obstacle structures. The representation of the

obstacles does not consider the possibility of (zero velocity) local minima occurring; a

feature common to many potential field methods.

A more recent example of complex obstacle avoidance applied in the context of

MAVs can be found in [172]. A quadcopter MAV is shown to acquire obstacle data locally,

with a mounted LIDAR, ultrasonic rangefinder and stereoscopic camera to navigate a

cluttered environment [212]. The cumulative force acting on the agent is the weighted

sum of the goal influence and obstacle influences as they are observed within a bounded

3D horizon. A motion model is presented to predict the cost of a set proposed trajectories

based on the terminal cost at the horizon [54,172]. The work conducted in [41] proposes

the introduction of a gyroscopic force, inspired from the navigation function model study

[203]. The perspective of the problem is also moved to the local domain by representing

agent knowledge of obstacles through a detection shell. Obstacle forces and manoeuvre

trajectories are then calculated directly from sensed data, presenting an alternative to

the methods highlighted in [112, 138]. The gyroscopic force is appended to the agent

force summation in order to calculate the control inputs from the total influence [172].

These forces correspond to the goal orientated potential force, a damping force and the

gyroscopic forces respectively. The derivation of their force expression is described in

more detail in [41] alongside the novel concept of “braking” force - a virtual force used as

a mechanism for regulating the distance between the agent and the nearest obstacle.

Paul et al. introduces a similar method of 3D coordination and collision avoidance

applied to unmanned aerial vehicles (UAVs) in [188]. Although the work was limited to

simulation, the author describes a technique of using 3D potential fields to orientate a

virtual UAV relative to a leader UAV using time variant potential fields. The author’s

formulation of the resultant force can be seen as the sum of the influences on the vir-

tual leader, the inter-vehicle forces, collision and obstacle avoidance forces. Using this

technique, successful separation is shown to be maintained in their presented example
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assuming that communication is present. The effects of communication delay, or limited

data availability are not however discussed.

The works of Suzuki and Uchiyama in 2009, demonstrate an application of a decent-

ralised structure in the proposal of bifurcating potential fields [240]. The study outlines the

coordination and intrinsic collision avoidance of a team of helicopters in formation flight

using transitioning local potential fields similar to that seen in [188]. The author proposes

two virtual forces; repulsive and steering based influences. Their proposed steering po-

tential function, together with an exponential repulsive force, function to ensure safe sep-

aration during a formation flight. Using this approach the author successfully simulated

both linear and orbital manoeuvres by manipulating the local potential field [103,240].

The advantage of many of these presented methods is their comparative simplicity

and limited requirement for obstacle knowledge. As a result, use of potential fields is well

documented in the multi-agent community. The principle disadvantage of this approach

is the appearance of local minima due to the inability to describe the complete array of

available escape trajectories. In such cases, a supplementary approach may be necessary

to move the system out of deadlock (a static freeze) and modify the associated fields.

5.5.2 Protocol & Rule-Based Approaches

Another more established mechanism for collision avoidance within aerial systems, air-

traffic literature and MASs is the concept of protocol-based conflict resolution. This

category of collision avoidance involves the construction of predefined responses to beha-

viour of a second approaching obstacle. Typically the established protocols, or rules, are

unilateral across all active agents. In the context of air-traffic management, many local-

ised negotiation techniques have been proposed under the free-flight concept (introduced

in Section 5.1).

In [77], the extended flight rules (EFR) are proposed as an iteration on the con-

ventional visual flight rules (VFR) for the purpose of autonomous system integration.

The premise of the EFR is that the agent’s responsive behaviour is characterised by

the obstacle’s approach vector, position and priority in accordance a series of predefined

rules. Conventionally, protocol-based algorithms assume unilateral adoption of the avoid-

ance protocol to prevent contradictory behaviour. While simple to implement, in the

event the obstacle’s behaviour cannot be correctly compartmentalised into a known re-

gime, then the behaviour of the agent becomes ambiguous and unsafe. This is especially

relevant when there is uncertainty in the obstacle’s trajectory, or if the agent is exposed

to unforeseen events or behaviours.
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In the works of Tomlin and Hwang [111, 112], they define the concepts of an exact

conflict and inexact conflict as a means of protocol design. These scenarios characterise

collision events where all agents are mutually convergent, or only a subset of involved

agents converge respectively. The prospect of an exact conflict occurring for agent num-

bers greater than three is known to be unrealistic but aids in generalising an approach

that considers it’s possibility. The airspace is partitioned into segments for which the

worst-case conflict is computed in addition to the necessary safe heading change which

results in the theoretical minimum deviation from the desired trajectories. Rules for de-

termining the minimum heading change for each agent are presented for either case, with

the author demonstrating both robustness to trajectory uncertainty and tolerance for

asynchronous agent participation in the macroscopic manoeuvre. Despite the described

method being effective at ensuring safe separation at the time of collision, the resulting

trajectories are sub-optimal with respect to the resultant course deviation and heading

change. The author uses this algorithm to propose a new “augmented ADS-B” protocol;

appending the conflict resolution centre, position and velocity and heading of each aircraft

involved. The limitation of the algorithm proposed by Tomlin and Hwang is the issue of

communication between cooperative and non-cooperative groups. While a protocol that

propagates the required conflict data to all receiving aircraft would be valid, the presence

of an apparent non-cooperative aircraft would create an unsafe operating environment.

Many of these concerns are discussed in [227]; in which a hybrid system is pro-

posed to handle both cooperative and non-cooperative elements in a multi-agent context-

through the use of a rule-based mechanism. Conventionally, protocol-based algorithms

assume unilateral adoption of the avoidance protocol to prevent contradictory behaviour.

The mechanism is proposed as an initial layer of a negotiation protocol. This infers a

layer of established procedures be enacted within all transponding agents, while the non-

cooperative agents attempt to infer the optimal negotiated path by drawing on a hybrid,

game theory based element. Although the proposed system is shown to support a di-

versity of subscribing and non-subscribing aircraft, the resulting protocol is shown to be

difficult to compute in real time, with heavy dependence on network communication and

available hardware.

A probability-based alert protocol system is also proposed in [137] for the charac-

terisation of collision scenarios under the free-flight principle. The mechanism involves

the determination of appropriate avoidance manoeuvre via a layered alert system as the

probability of collision exceeds threshold values. The author considers numerous sources

of uncertainty in the trajectory measurement of the agent and the obstacle. A probability
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for the obstacle entering the agent’s protected zone is then assigned, and is reevalu-

ated through an iterative Monte-Carlo process. A conflict is confirmed when probability

thresholds are violated in both the lateral and longitudinal dimensions and used to initiate

an established response manoeuvre. The presented method is shown to mitigate conflicts

between two agents within a 95% confidence interval, however is only shown in the context

of a two agent collision. Look-up tables of known flight data are also used with linear

interpolation to determine the contours of probability, suggesting such systems may be

susceptible to novel obstacle behaviour. The proposed manoeuvres are also cited not to

consider properties such as increased fuel burn and course deviation.

5.5.3 Game Theoretical Approaches

Game theory is a concept that was originally created in the field of mathematical econom-

ics in the early 1930s to describe strategies in cooperative, non-cooperative and adversarial

economics. More recently game theory has found applications in other fields, including

computer science and robotics. Furthermore it has been developed along side optimal

control theory in search for more sophisticated control methodologies for the aerospace

industry. In the 1950s, game theory and game-based decision making was applied in the

analysis of dynamical systems represented by differential equations, this approach was

later given the more general name dynamic games [22].

The literature highlights three distinct game theoretic approaches used in collision

avoidance namely i) cooperative, ii) non-cooperative and iii) adversarial games. Under

the cooperative regime, conflict scenarios are typically analysed in order to encourage

mutual benefit; non-collision. It is often assumed that information describing the intended

trajectory of the second party is communicated, either directly by the agent or through

some central air-traffic controller. Coalition(or independence) values are typically assigned

to a set of defined actions so that their associated utility reflects both its impact on the

agent and the cooperator.

In non-cooperative regimes, the cost of a specific actions is evaluated based on a

one-sided analysis of the conflict scenario. Here, communication with a central controller,

or other agents, is assumed denied. The utility instead reflects the likely actions taken

by the second party based on a representative model and information provided by local

sensing mechanisms. As a result the non-cooperative approach emphasises the benefit to

the agent, rather than the obstacle, in the calculation of the escape trajectory [22,44,114].

The third case, referred to as adversarial collision avoidance, focuses on cases where

the obstacle is an aggressor that aims to induce a collision with the agent. The agent,
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seeking to avoid collision, typically adopts a minimax strategy minimising the worst-

case utility of the set of actions available to both the agent and aggressor. While not the

emphasis of this thesis, adversarial avoidance is a concept well established in the aerospace

industry.

From the types of dynamic games, dynamic game theory (the expression of dynam-

ics through differentials) lends itself most to the problem of collision avoidance. This

is because, for vehicles moving in three dimensional space there exists a continuum of

possible actions that cannot be resolved in discrete or Boolean form. Such games can also

be described in the discrete or continuous time domain, corresponding to a continuum of

game cycle iterations (ut, u1, u2..u∞), referred to as levels of play. Whether the games

are discrete or continuous then determines whether the decisions are formulated from a

dynamical difference or a differential equation respectively, which describes the evolution

of the scenario [22, 44, 105, 168, 246]. In [114, 140] the concept of a differential game is

presented in the context of a pursuit-evader collision avoidance scenario. The proposed

strategy is based on a Taylor series approximation of the value function gradient over

a discrete grid in the agent’s kinematic state-space. By calculating numerous optimal

trajectories through the state-spaces, a switching logic is used to move between the op-

timal path conditions in order to refine the avoidance of an incoming vehicle. Similarly

in [23], the concept of dynamic games is applied in the context of an alerting mechanism

in a two aircraft conflict scenario. Using a primitive model of the agent’s kinematics, a

conflict region is defined indicating a likelihood of collision with the conflicting aircraft

as the computational solution to their proposed value function. The concept of infinite

differential games is explored in the context of UAV coordination and collision avoidance

in [248]. The author constructs a formation control mechanism through the analogy of a

pursuit-evader game [105, 164, 252]. The controller then acts to maintain the evader sep-

aration. The principle of the approach aims to minimise the final system control vector

whilst maximising the final vector of desired points. The author determines the Retro-

grade Path Equations in order to define the trajectories necessary to meet the optimal

solution. The resultant strategy takes the form of a value function that penalises devi-

ation from a desired position, as a function of the author’s linear drag assumption and the

time step. Ten agents are used in the evaluation of the proposed strategies in [248], where

some degree of instability can be seen in both providing collision avoidance and coordin-

ation. The author comments on this; citing the simple Bang Bang control regime used

to enact the trajectories. A more sophisticated control mechanism would likely improve

performance and limit the observed overshoot. A noticeable limitation of the method
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proposed is the potential non-existence of a solution to the retrograde path equations.

In such cases approximations or reductive assumptions may be necessary to modify the

agent’s dynamics to ensure a valid solution exists.

A more recent branch of dynamic game theory, termed “Hybrid Game Theory”

(HGT), facilitates the modelling and coordination of continuous dynamic systems with

discrete logical elements [246]. This is done through the presentation of a “Hybrid Time

Trajectory”; defined as a continuous sequence of trajectory intervals where discrete actions

take place instantaneously. The author utilises the hybrid control structure to ingrain a

series of trajectory acceptance conditions, designed to reflect safety constraints on the

system’s states through defining safe and unsafe state subsets [164]. The authors demon-

strate the application of HGT using an avoidance scenario containing two aircraft with

dual cruise and avoid modes. The application of the HGT demonstrates how a logical

transition between modes can be integrated into a continuous game strategy in order to

preserve aircraft separation [246].

An advantage of the game-theoretic principle is that it allows the inherent repres-

entation of many agent and vehicle constraints. The cost representation often allows the

consideration of aspects such as, actuator dynamics, asymmetrical performance, or fuel

consumption. Effective, scalable conflict representations is often cited as a drawback of

this method as it’s application on-board small-scale decentralised systems quickly becomes

infeasible.

5.5.4 Multi-Agent Approaches

Within the multi-agent literature and computer science, there exists several methods of

collision avoidance based on multi-agent communication and negotiations. Some of these

approaches take inspiration from the works of Reynolds in [199] in the proposition of the

“boids” model; mimicking the social behaviour of birds. This approach proposes the use

of three principles of separation, alignment and cohesion. The sophisticated emergent

behaviour in swarms resulting from these simple principles is though to have contributed

to many of the collision avoidance methods relating to large multi-agent systems.

Multi-agent methods are otherwise well documented within the context of the air

traffic domain in [226, 227, 254, 255, 260], but only more recently the reflexive sense and

avoid problem. Typically, agents enter a negotiation by presenting proposed solutions to

the collision scenario based on their optimal path. A global utility function is applied to

the proposals to assess the most viable solution. This can be seen in distributed agent-

to-agent negotiation mechanism proposed in [279]. Here, the author devises a monotonic
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concession protocol as a mechanism for selecting a pair of avoidance trajectories from a

collective set assembled by the agent set. The author is able to define a horizon within

which the negotiations take place, designated as twenty minutes, to emulate the effects of

reduced range on the cooperative system.

Another approach that takes inspiration for the game theory mechanisms is the

principle of “satisfication” applied in [14,104,124,224]. This approach encourages a more

social approach to traditional game theory in which the agents optimise their trajectory

based on it’s own objective parameters. Instead, priorities are allocated to the agent set

and assessed in accordance to their “selectability” and “rejectability”. These measures

provide a means of assessing a proposed solution in terms of the mutual intentions of

the agents, their priorities and the costs incurred. These solutions are evaluated centrally

and subgroups are devised that favour solutions with highest reject-ability or select-ability

based on their possible trajectory changes. While this concept is known in the air-traffic

domain, some progress has been made towards the free-flight application (synonymous

to the SDA problem) in [104, 204]. Due to the assumption of fixed flight lanes in these

scenarios, it is widely assumed that avoidance is occurring at a fixed altitude (within a

2D plane) within a system of homogeneously communicating and cooperating aircraft.

The concept of a MAS is presented in the form of a aircraft/airspace system by

Wangermann and Stengel in [255], similar to that of [104] except under the domain of

a traditional ATM system. This system is collectively referred to as multi-aircraft agent

system [204, 226] which expresses the airspace as several agent types; aircraft, operators

and traffic management units. In this system, avoidance negotiations are peer-to-peer;

negotiated directly between two agents. Despite the assumption of comparatively simple

aircraft dynamics, the demonstrated structure is shown to be applicable to localised con-

flict resolution. In [125] the multi-aircraft system concept is furthered through a virtual

currency/token system that facilitates transactions between avoidance agents in a selfish

manner. Although Jonker et al. presents the concept through a tactical airport planning

system, the economics/trust based swarm negotiation presents an alternative approach to

assessing proposed trajectory reassignments in the SDA problem.

Several of the presented multi-agent methods are demonstrated to be promising

approaches to conflict resolution. The assumption of a universal communication method

is often made to allow the brokering of tokens or consensus broadcasts. While this is

often the case in high-altitude TCAS operations, it is not valid when considering mixed

airspaces where communication cannot be assumed and obstacles may be inert.
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5.5.5 Geometric Approaches

Geometric approaches to SDA avoidance are centred around the use of geometric obstacle

and conflict descriptions to generate an appropriate avoidance trajectory. One concept

based on the principle of the collision cone (CC) is the velocity obstacle (VO), which

has seen increasing attention in the multi-agent and intelligent robotics community for

it’s efficiency and intuitive nature. Originally proposed in [82], constraints on the agent’s

velocity are formulated using known obstacle geometries as they move through the agent’s

field of view. From this constraint set, a region containing all collision trajectories is

constructed from the obstacle’s characteristic radius and translated into the velocity space.

The resulting region constrains the agent’s choice of velocities at the next time step [65,

219,259]. Similarly, a multi-obstacle scenario can be represented through the union of their

VO. The compound region then demonstrates where a selected velocity would induce a

collision with either obstacle [219,259].

In [261] a similar VO method is used to define velocity constraints whose union over a

time define the permissible velocities for the agent using an iterative planner. The current

method is defined using the Dublin’s car model for a car-like robot, whose dynamics are

used in the formulation of these sets. The complex description of the boundary regions

make the approach largely unfeasible in small systems despite it’s reduced dependence on

accurate sensor data.

While the VO is shown to be valid for static obstacles and obstacles moving with

constant velocity, the reciprocal velocity obstacle (RVO) was later proposed to negate

oscillatory behaviour between intelligent agents [215]. This is achieved by mediating the

VO constraint in accordance to the approach trajectory of the second agent by averaging

their velocities. While resulting in smoother trajectories, the direction of pass is not

explicitly agreed- giving way to a phenomena known as reciprocal dance. In such cases,

agents fail to resolve headings that reduce the chance of collision at the next time step.

As the first agent determines that passing the second agent on the right would be most

optimal, the opposing option (to pass on the left) becomes the most feasible for the second

agent. This combination only acts to perpetuate the collision encounter to the next time

step. Although the RVO method is shown to improve the generation of smooth avoidance

trajectories, it cannot guarantee it theoretically [27].

The VO principle was later expanded upon in the works by Berg et al. [25, 27]; by

furthering the concept with the consideration of obstacle accelerations in the acceleration-

velocity obstacle (AVO). The kinematic velocity obstacles (KVO) presented in [258] demon-

98



strate how additional agent kinematic assumptions and constraints can be incorporated

into the approximation of the escape velocity search volume. This is achieved using

a simple kinematic representation of the system to augment the shape of the velocity

obstacle. The study of reciprocal collision avoidance also brings to light the reciprocal

nature of decision-making within a homogeneous multi-agent system [87, 219]. This phe-

nomenon is considered by parameterising agent responsibility for the avoidance manoeuvre

in order to redefine the AVO set as the “Reciprocal” Velocity Obstacle (RVO). Car-like

agents are used in this study however; for which the method and it’s scalability is as-

sessed. An advancement on the RVO problem has been proposed to negate the causes of

reciprocal dance by augmenting the VO and RVO regions to define the hybrid-reciprocal

velocity obstacle (HRVO). The HRVO alters the apex of VO regions in order to exemplify

different behaviours depending on the relative motion of the obstacle. This is shown to

effectively establish direction of pass in [27,65], and greater resilience to obstacle traject-

ory uncertainty. This method is also shown to demonstrate a greater ability to resolve

escape trajectories, however the non-linearity of the constraint set is known to result in

abrupt and inefficient course corrections.

One of the most recent derivatives of the VO concept, termed optimal reciprocal col-

lision avoidance (ORCA), bases it’s constraint formulation on linear obstacle definitions.

The result is a distinctly linear and smoother response to obstacle motion when compared

to previous VO derivatives in [65,259]. The agent’s minimum trajectory correction is com-

puted from the obstacle geometry as the change necessary to move the agent onto a plane

(line) of feasibility. Resolving feasible trajectories from geometric constraints often results

in multiple proposed solutions in the literature and is subject to strategy [82]. The agent’s

velocity is typically selected from a region of feasibility to determine the agent’s trajectory

over the proceeding time step. The ORCA algorithm is shown to have a distinct advant-

age over other geometric algorithms in [65, 259] due to it’s linear constraint formulation.

Although these approaches have been widely used in multi-agent systems such as pedes-

trian modelling and small robotic systems, they face challenges in symmetric scenarios

where a phenomenon known as deadlock can occur. Otherwise, numerous search methods

are known to have been proposed for determining optimal trajectories from geometric

constraint sets; global and heuristic methods are cited in [82], region reductive methods

in [25], avoidance parameter optimisation [229, 259], genetic algorithms [156, 234] and

dimensional decomposition in [38].

A similar collision cone based cost function optimisation method is proposed in

the works of Daniels et al. [54]. The authors present a hybrid concept of a geometric
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obstacle description with a simulated annealing optimisation procedure to determine an

appropriate aircraft trajectory. The cost function penalises the UAV separations and

adjusts the agent headings for both cohesive motion and ensure the trajectory does not

violate the conical constraints. The results of this study show potential despite only being

proposed as a method of reducing near-misses. However globalised approaches are shown

to struggle with larger agent populations.

5.5.6 Optimisation & Hybrid Approaches

With respect to the collision avoidance problem, optimisation is also cited as a technique

for ensuring aircraft safe separation. Generally speaking, these approaches attempt to ex-

press the collision avoidance scenario in terms of observed obstacle trajectory parameters,

an agent kinematic model and a series of constraints (objectives) to maintain. A cur-

rent example of this procedure is TCAS, which preforms an optimisation across potential

climb/descent flight paths to determine the option with the least control effort to achieve

the safety constraint. Although the TCAS recommendation is far from optimal in that

no consideration is made for the objectives of each agent, safety of both aircraft can be

assured using basic assumptions and limited situational knowledge [5, 76].

Fox et al. in [86], introduces the concept of a “dynamic window” to search for viable

avoidance velocities. The dynamic window cost function relates the agent’s trajectory cost

in terms of it’s heading, obstacle separation, and speed subject to scalar weightings. Their

approach aims to reduce the computational cost of the optimisation method by reducing

the search to the vehicle’s linear and angular velocity. The author also defines a region

of admissible velocities assembled from a) the trajectories that do not intersect with the

obstacle and b) the available breaking velocities to avoid interception. This is achieved

by introducing a parameterised expression representing the robot’s braking acceleration.

Finally, the dynamic window is introduced to unify the robot’s acceleration limits with

the feasible region. The resulting dynamic window is then discretised and searched by

maximising their objective function. The resulting velocities are then implemented for

the next time step [82,86,229].

Another more recent concept relevant to UAV collision avoidance, is outlined in

the works of Sislak et al. in [226, 229]. This paper explores the application of trajectory

optimisation from the perspective of a centralised and decentralised airspace optimisation

problem. The author defines a common objective function describing the global utility

of the aircraft configuration. In this approach, the local cost functions are derived to

reward compliance towards this global utility, seen by the summation of each agent’s cost,
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providing a cost of the global configuration [84,144,229]. The costs of loss of separation are

defined as violations made on the separation requirements across the prediction horizon

and summed for all agents. The deviation costs are attributed to the sum of the Euclidean

separations between the optimal position (waypoint) and the position at the end of each

agent’s prediction horizon. Control actions are selected based on the cost optimisation

through a simulated annealing process.

Dynamic programming, or the dynamic decision problem, is introduced in the con-

text of collision avoidance in [107] as an extensions of Bellman’s principle of optimal-

ity [231]. Here, the author presents an algorithm for planning an obstacle avoidance

manoeuvre through a discrete decision space that converges on a target location. The

process of dynamic programming is inherently efficient due its recursive nature and the

propagation of optimal sub-trajectories (sub-structures) through memoization by retain-

ing costs of prior sub-trajectories.

The authors present a cost function that considers a set of possible actions for each

agent as a result of the current system state to determine the current reward value. The

potential trajectories, are optimised based on their implied pay-offs over a defined hori-

zon as a result of proposed actions. A “discount” factor is used to reduce the cost of

the actions towards the horizon where the trajectory is less certain. A series of trans-

ition models are then used to evaluate the trajectory costs over the horizon citing the

Bellman equation [231]. This allows a trajectory to be optimised based on the current

state evaluation, in addition to the performance over the proceeding horizon via known

transition models. An application of this method to the traffic avoidance are outlined

in [29,107,119,120,134]. The formulation of the value functions and transmission models

are multi-dimensional and can be expanded to infer the evolution of other performance

parameters also. While the global avoidance scenario is considered in [29, 134], the as-

sumption that each aircraft has unilateral knowledge is not representative of real world

scenarios.

5.5.7 Biologically Inspired Approaches

Biologically inspired algorithms and systems have been a long-standing interest to the ro-

botics community, with numerous techniques being adopted in a wide range of fields [233].

In the context of coordination of unmanned systems, there are several cited works that

draw upon biological analogies for the purpose of guidance and obstacle avoidance; see [88,

133,195,196,233]. A good example of this is the conception of a visual field based model,

termed the “angular velocity detector unit”, that emulates the in-flight behaviour of a
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honeybee [52]. This neuron-based model infers the relative motion of neighbouring sur-

faces in the visual field by observing the apparent change in spatial frequency of surface

features. The difference between left/right stimuli and their proposed controller is shown

to be sufficient to both imitate electro-physiological data of a bee, and facilitate collision

avoidance in their corridor example. The algorithm uses limited environmental data to

avoid collision, however further development is needed for more sophisticated obstacle

topologies.

Direct applications of neural networks (NN) to collision avoidance in autonomous

systems can be found in [97, 171, 235, 238]. Durand et al. in [171] demonstrates how the

approach bearing and distance data is used to define an appropriate heading change using

a single layer NN. The concept is demonstrated in a typical two agent aerial conflict. The

size of the neural network is however related to the number of obstacles and resultant

increase in complexity in the presence of more obstacles demonstrates it’s feasibility is

limited to a single obstacle. Delahaye et al. in [60] highlights the importance of the ability

to gain altitude as an option for aerial vehicles. It stands to reason that a parallel NN based

approach could be proposed to assess trajectory changes in the vertical dimension also,

in order to portray the full landscape of trajectories available to modern UAV systems.

Several articles examine the possibility of hybrid systems involving NNs with inde-

pendent genetic algorithms (GAs) as a means of assessing the fitness of a population of

candidate trajectories [171,244]. GAs themselves have seen a rise in interest more recently

for the purpose of UAV trajectory management. The principle is outlined well in [60,171],

involving a population of candidate solutions that are assessed in accordance to a defined

fitness function. A sample of the fittest solutions is taken forward and mutated via a

set of classical operations to form the basis of the next population. This process is ap-

plied in the generation of trajectories for autonomous vehicles in [200] and collision free

Cartesian path generation for manipulators in [2, 20]. The concept of “tournaments” be-

ing held between populations using a hybrid simulated annealing approach as a method

of assessing fitness can be found in [1, 97,226,235,263].

Delahaye et al. in [60], presents genetic algorithms in both the context of air-traffic

collision prevention, but also for air-space partition design. This premise is formed from

their proposed GA algorithm which proposes a lateral “sharing” process in addition to

inter-generational tournament (via simulated annealing) to aid in the convergence and

avoiding local minima. The proposed method assesses the proposed trajectory against an

ideal trajectory subject to linearised separation constraints. The chromosome solutions

are then assessed based on the implied terminal distance from the flight path, increase
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in flight time and the summed control effort. While this method is able to represent the

scenario through an appropriate model and constraint set, convergence on a solution is

inherently slow due to the approach to the selection process. It is worth highlighting that

the dynamics of an air traffic avoidance scenario are considerably slower than the sense

and avoid problem.

5.6 Summary

It is clear from challenges posed by applications for coordinated unmanned systems that a

hybrid systems composed of cooperative and non-cooperative methods of collision avoid-

ance are highly desirable. A reliable non-cooperative approach is shown to be a funda-

mental component in establishing the autonomy necessary for independence in unknown

environments where reliable communication cannot be guaranteed. Recent developments

in sensing, tracking and object classification have made the possibility of decentralised

and non-cooperative approaches more tangible for small-scale UAS.

In Table 5.2, a high level summary of the methods presented in Section 5.5 is

provided. Here, each method is compared qualitatively and quantitatively with respect to

several key parameters that define the nature of the avoidance problem addressed. While it

is clear that several promising algorithms supporting an advancement towards dependable

SDA exist in the literature, their tolerance to uncertainty in dynamic environments is

below that necessary for establishing effective level of autonomy [107,142].

One of the most promising areas of research identified in this review utilises a purely

geometric description of the conflict (see Table 5.2). This minimalist approach has seen

increasing interest recently in the form of the proposed HRVO and ORCA methods; due to

their scalability and effectiveness in cluttered environments. In associated works [65,67], it

is shown how their scalability quickly deteriorates in communication denied environments

where the agents must instead rely on more realistic trajectory measurements. There

is therefore a need to develop scalable obstacle avoidance approaches for coordinated

systems that are both able to handle highly dynamic environments, but also tolerate the

measurement uncertainty brought about the sourcing of trajectory data from local sensor

arrays.
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Table 5.2: A comparison of the contributions from the literature most relevant to the objectives of these works. Here, the key parameters indicating the source

of obstacle trajectory data and nature of the avoidance problem are given. A qualitative assessment of each method’s scalability, a consideration for trajectory

uncertainty is also presented [5, 95,138].

Approach Name Vehicle Model Dimensions
Obstacle

Number

Obstacle

Data Source
Scalability

Uncertainty

Consideration

Protocol-based

Finite Information Horizon [112] Point 2 Open Local High No

Separation Assurance baseline [130] Point 2 Open Local(ADS-B) High No

Conflict resolution protocol selection [30] Dynamic 3 Pairwise Global Medium No

Localised conflict probability [183] Point 3 Pairwise Global Medium Yes

Geometry-based

Collision cone clustering [54] Point 2 Open Global High No

Prediction-free reachable sets [261] Point 2 Open Local Medium No

Generalised Velocity Obstacle [26,259] Point, Simple Car 2 Open Global High No

Hybrid-Reciprocal Velocity Obstacle [27] Differential Drive 2 Open Global Medium No

Optimal Reciprocal Avoidance [148,251] Point 2 Open Global High No

Non-linear Velocity Obstacle [219] Point 2 Open Global Medium No

3D velocity obstacles [38,48] Point 3 Pairwise Global Low No
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Approach Name Vehicle Model Dimensions
Obstacle

Number

Obstacle

Data Source
Scalability

Uncertainty

Consideration

Potential Field-based

COSMOS artificial potential field [131] Dynamic 3 Open Global High No

Predictive Potential Field [172] Dynamic 2 Open Global High No

3D Bifurcating Fields [240] Dynamic 3 Open Global High No

Game Theory-based

Hybrid optimal control/game theory [246] Point, Dynamic 2 Pairwise Sensed Low No

Differential game trajectory control [248] Point 3 Open Global Medium No

Reachable set continuous dynamic games [164] Dynamic 3 Pairwise Global Low Yes

Probabilistic pursuit-evasion game [252] Dynamic 2 Open Sensed Medium No

Optimisation-based

Dynamic velocity window [86] Simple Car, Dynamic 2 Open Sensed Medium No

Dynamic programming [107] Dynamic 3 Open Local(ADS-B) Medium No

Probability collective optimisation [189,229] Point 2 Open Global Low No

Biologically inspired

ATC through Genetic Algorithms [60] Dynamic 2 Pairwise Global Low No

NN Occupancy Grid [97] Dynamic 2 Open Sensed Low Yes

NN learned by supporting GA [171,244] Point 2 Pairwise Local Low No
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Chapter 6

Geometric Obstacle Avoidance

The notion of sense detect and avoidance (SDA) is well established within the literature.

One of the most promising, and intuitive, branches of SDA techniques are those based

entirely on deductions from the obstacle’s geometry and pose. In associated works [65–67],

several of the most popular methods of geometric avoidance are presented in the form of a

technical review. Some of the challenges these algorithms face are used to provide context

for the method interval avoidance (IA), presented initially in [63]. In this section, each

of these geometric algorithms are presented, in addition to the assumptions and findings

of these associated works.

6.1 Problem Description

Consider the scenario where two micro aerial vehicles (MAVs), or agents referred to as i

and j, are moving at constant altitude defined by a plane XY . The velocities of the two

MAVs are denoted as vi ∈ R2×1 and vj ∈ R2×1 respectively and are assumed to be moving

in accordance to some global objective. The agents are defined to have a characteristic

radius ri and rj which is assumed to contain the physical extents of i and j respectively

(see Figures 6.1(a) and 6.1(b)). From the perspective of i, j is an obstacle to be avoided.

If both agent trajectories are maintained, a collision may occur at a certain time in the

future.

6.1.1 Sensor Model

It is assumed that an obstacle’s position and width can be measured by the MAV’s on-

board camera and range-finder [172]. The pixel location of the obstacle provides meas-

urements of the relative heading angle ψ̃j = N (ψj , σ
2
c ) ∈ [−π, π] and angular width

α̃j = N (αj , σ
2
c ) ∈ [−π, π]. The range-finder is assumed able make instantaneous prox-
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a) b)

Figure 6.1: a) Agent i observing the trajectory of agent j and it’s planar position and velocity

pj and vj respectively. b) Definition of the angular width measurement αj characterising the

obstacle’s radius rj .

imity measurements d̃j = N (dj , σ
2
r ) ∈ [0, dmax]. Each sensor is known to have it’s own

uncertainties σc and σr that corrupts the measurements and is assumed to be Gaussian

with a zero mean. More information about sensor emulation in OpenMAS can be found

in Section 2.1.3 and in associated works [66].

The sensor measurement transformation is defined in Equation (6.1) in order to

express pj in the coordinate axes of i relative to the body axes origin Ob. The obstacle’s

equivalent Cartesian position pk,j at the time step tk, given the sensor’s relative position

pi,sensor and orientation Ri,sensor, can then be written:

pk,j =

 pxk,j

pyk,j

 = RT
i,sensor ·

 cos(ψ̃k,j) − sin(ψ̃k,j)

sin(ψ̃k,j) cos(ψ̃k,j)

 · d̃k,j
− pi,sensor (6.1)

The obstacle’s Cartesian velocity is then calculated from the obstacle’s change in position

vk,j = 1
∆t(pk,j − pk−1,j) where ∆t = tk − tk−1. The measurement of obstacle j’s angular

width αj at tk can similarly be used to determine the obstacle’s representative radius

rj . This is calculated from the geometric parameters shown in Figure 6.1(b) and the

relationship:

sin

(
1

2
α̃k,j

)
=

rk,j

d̃k,j + rk,j

d̃k,j · sin
(

1

2
α̃k,j

)
=

(
1− sin

(
1

2
α̃k,j

))
· rk,j

rk,j =
sin
(

1
2 α̃k,j

)
1− sin

(
1
2 α̃k,j

) · d̃k,j
(6.2)
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From Equations (6.1) and (6.2) the current knowledge of i regarding j is represented by

it’s position, velocity and radius; pk,j , vk,j and rk,j respectively in it’s local coordinate

axes. Agents are assumed able to observe all obstacles within a defined radius dnei and

retain memory of pk−1,j .

6.1.2 Neighbourhood Consideration

In the multi-agent literature the concept of a neighbourhood is often employed to limit

the visibility of the population. The function of a neighbourhood is shown to be critical in

limiting the number of constraints, and therefore complexity, of the problem in [250,259].

High numbers of constraints are typical in a cluttered environment and as a result, the

solution space may become saturated leading to deadlock events [67].

In some cases it may be useful to draw distinction between the sensoral horizon dmax

and a local neighbourhood dnei. This may simply be to create dependent behaviours for

surveillance or monitoring but also for collision avoidance when dnei is reached. In these

works it is assumed that each agent begins collecting data when the object enters dmax, but

will not instigate an avoidance response until it enters a local neighbourhood dnei [66,67].

However, it is often assumed that dnei = dmax in the SDA literature, as by definition a

response is to be generated immediately in such encounters.

6.1.3 Flight Paths and Objectives

It is assumed that all agents are operating towards some common objective in a com-

munal airspace. In these works, flight paths are defined as a sequence of waypoints

Wi ∈ [W1,W2, ...,Wn] between which collisions may occur [278]. OpenMAS innately

assigns each waypoint a 3D global state χi,wp with a designated a priority indicating

the order in which they must be achieved [66]. This is intended to emulate a set of

non-directional beacons (NDB) positioned within the airspace similar to conventional air-

traffic scenarios. For agents operating within a defined plane, the planar projection of Wi

is used to define pi,wp in the axes of agent i:

pxyi,wp = pi,wp −
pi,wp · nxy

||nxy||2
nxy (6.3)

Here nxy denotes the planar normal aligned with the agent’s z axis. Once the waypoint

condition is satisfied (see Section 2.1.2), the target waypoint Wi is immediately reallocated

as the agent moves into the next segment of the objective. The preferred velocity of agent

109



i, in terms of it’s nominal speed vpref, is then determined by Equation 6.4.

vi,pref =
pi,wp − pi
||pi,wp − pi||

· vpref (6.4)

For the purposes of evaluation, it is important to ensure that a collision will exist without

intervention. In such cases, the flight path of agent i is designed to induce collision

by specific placement of it’s waypoints.In accordance with the SDA concept, the global

position of the target waypoint is presented locally to the agent by transforming into it’s

body axes via Equation (6.1). Here Ri defines the rotation matrix of agent i. At all times

the position of agent i’s waypoint pi,wp is assumed observable to agent i from it’s current

position pi [278]. The agent’s preferred velocity of vi,pref is then defined in Equation (6.4);

as a vector directed toward the target waypoint position pi,wp.

6.2 Implementation of the State of the Art

With an agent able to track the motion of obstacles through their local visual field, each

agent is tasked with computing viable trajectories to avoid collision. In the literature,

there are numerous techniques for defining viable trajectories based on constraints formed

geometrically. One of the most popular examples of this is the velocity obstacle which

is discussed alongside several similar techniques in [65, 67] as part of a comprehensive

technical survey of the state of the art.

6.2.1 The Velocity Obstacle

The velocity obstacle (VO) concept is based on the geometric assembly of the collision cone

(CC); initially presented in [82]. Obstacles are observed in the agent’s local horizontal

plane (XY) with their planar cross-section centred at pj as seen in Figure 6.2. Here,

the collision cone for obstacle j is defined as CCj from the geometric properties of the

obstacle’s relative position pj , configuration radius rc and velocity vj [65, 67].

Velocities that will bring about a collision with obstacle j are then represented in

the velocity space by translating CCj by vj via the Minkowski sum: VOj = CCj ⊕ vj .

In the consideration of multiple obstacles, the union of multiple VO1:n is taken. Agent

velocities are therefore considered valid if vk+1,i 6∈ VOk = ∪nj=1VOk,j [82]. Velocities

satisfying this constraint describe a collision free trajectory for agent i in the presence of

obstacles VOj=1:n for time tk.

In practice, oscillatory trajectories are often observed in instances where two agents

110



Figure 6.2: The VOj (blue) from the initial CCj (grey) corresponding to obstacle j. Here the

VOj is defined in the configuration space of i, in terms of the relative position pj of obstacle j,

configuration radius rc = ri + rj and velocity vj .

Figure 6.3: The construction of RVOj (red) from its apex positioned at the average of vi and vj .

Its relation to the original collision cone CCj and VOj is also expressed geometrically.
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attempt to resolve a conflict with one another using the VO method. This often propagates

until the point of collision occurs; as the two agents repeatedly resolve velocities vi,k+1

that imply a new conflict at tk+1. Obstacles that are static, or moving with constant

velocity can otherwise be handled using the VO approach [26].

6.2.2 The Reciprocal Velocity Obstacle

An iteration of the conventional VO method known as the reciprocal velocity obstacle

(RVO) attempts to consider the reciprocal motion of the second decision making agent j

in order to produce smoother avoidance trajectories [26]. The agent generates a VO with

an apex augmented by the average of the two object velocities vk+1,i 6∈ CCj⊕(vk,i+vk,j)/2.

This can be seen in the placement of the RVO apex in Figure 6.3. This concept effectively

allows the agent to mediate it’s correction trajectory vk+1,i in accordance with vj . At time

tk, the RVO represents the region of velocities that are the average of both the velocity

of agent i and the velocity of obstacle j.

The RVO is shown to eliminate the VO oscillation mentioned in Section 6.2.1, and

the resultant resolution trajectories are seen to be smoother [26]. While this is the case,

agent i and obstacle j do not explicitly agree on which sides they will approach each other.

This can lead to scenarios where agents will mirror the trajectories of their respective

obstacles in an attempt to avoid them. The oscillations induced by this behaviour, distinct

from those of the VO, are often referred to as a reciprocal dance [65, 67].

6.2.3 The Hybrid Reciprocal Velocity Obstacle

An advancement on the VO problem has been proposed to negate the causes of reciprocal

dance by augmenting the VO and RVO regions. The hybrid-reciprocal velocity obstacle

(HVRO), shown in Figure 6.4, alters the apex of the HRVO in order to create differential

behaviour depending on the relative motion of the obstacle vj .

The centre-line of VOj and RVOj are co-linear in nature, therefore if the obstacle

is moving right, the agent should resolve a trajectory vi,k+1 to pass the obstacle on

the left and vice-versa. Failure to do so brings about the phenomena of the reciprocal

dance. Although the method is shown to improve the generation of smooth avoidance

trajectories, it cannot guarantee it theoretically [27]. In the example given in Figure 6.4,

directional bias is established by adjusting the apex of the HRVOj to be the intersection

of the leading edge of RVOj the trailing edge of VOj (i.e. HRVOj = CCj ⊕ vHRVO. The

resulting constraint set imposed upon agent i at time tk is then written vi,k+1 6∈ HRVOk =

∪nj=1HRVOi,k [27].
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Figure 6.4: The definition of the HVRO (green) as the extension of the VO, RVO and CC (grey)

concept. The geometry of the HRVO is defined by relative position and velocity of obstacle j.

The HRVO’s apex position vHRVO is defined in accordance to the direction of vi and encodes an

appropriate direction of pass for obstacle j using from components of the VO an RVO.

a)

]

b)

Figure 6.5: a) The geometric description of the truncated VO of obstacle j (shown in yellow)

defined by the truncation parameter τ , relative position (pj) and configuration radius rc = ri+rj .

b) The assembled ORCA line ORCAτ
j (grey half-plane) and associated velocity correction u as a

result of obstacle j are shown.
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Typically the RVO and HRVO are only necessary in the computation of inter-agent

avoidance trajectories. The global VO set for agent i can instead be written as the union

of the reciprocal variants (RVO or HRVO) for surrounding agents Aj and the VO for

obstacles Oj : vi,k 6∈ HRVOk =
⋃n
Aj=1 HRVOAj ∪

⋃n
Oj=1 VOOj [65, 67].

6.2.4 Optimal Reciprocal Collision Avoidance

A more recent technique that employs the concepts of the RVO technique is referred

to as optimal reciprocal collision avoidance (ORCA). The ORCA approach is described

well in [250], demonstrating how the ORCA velocity obstacle is formulated for a given

reciprocally collision avoiding agent pair i and j. The resultant trajectory is not only

smooth but, for small time steps, can be seen as continuous in the velocity space. The

truncation parameter τ represents the time window for which a collision free trajectory

should be guaranteed, i.e the agent can move at it’s new velocity for τ seconds.

If it is assumed that vi and vj are those that will bring about a collision in the future,

then u is the vector to the point closest to the boundary of VOj : u = (arg minv∈δVOτ ||v−

(vi − vj)||) − (vi − vj) (see Figure 6.5(b)). Here ||v|| denotes the Euclidean norm of v .

Using the “outward” facing normal n of the boundary at the point (vi − vj) +u and the

assumption that the responsibility that the avoidance is shared equally, the formulation for

the ORCAj constraint can be written as ORCAτ
k = v|v− (vi+

1
2u).n ≥ 0. The geometric

representation of v is given in Figure 6.5(b) and Figure 6.5(a). Here it is represented as

a “half-plane” with normal n, with the initial point at p = vi + 1
2u [250].

The ORCA lines themselves allow the scenario to be described using only linear

constraints. In addition, representation of the RVO as half-planes allows for simplification

of the constraint set by eliminating those already covered by other ORCA lines, whilst

guaranteeing continuously smooth agent trajectories [65,67].

6.2.5 Trajectory Selection

With the constraint sets defined in Sections (6.2.1-6.2.4), an applicable avoidance velocity

must be determined to be implemented at tk+1. The definition of optimality is known

to be subject to strategy in the literature [82] and is typically associated with “control

effort”. This selection criteria is represented, considering the minimum deviation from a

desired trajectory vi,pref; subject to the union of the VOk set. In such cases the optimal

velocity can then be expressed as v∗i = arg minv 6∈V O(||v − vi,pref||). In the proceeding

Sections the clear path method is used to extract candidate escape trajectories from each

constraint set. [67, 102,250].

114



6.3 Agent Dynamics & Control

The SDA problem is initially posed such that motion of the agents(MAVs) Ai=1:n is

restricted to a common plane. In previous sections it is demonstrated how viable avoidance

trajectories are attained, given the set of obstacles Oj=1:n observed at time tk. How the

commanded velocity vi,pref is typically achieved is subject to the dynamics of the individual

agent. The representation of object dynamics and their integration with OpenMAS are

discussed in more detail in Section 2.2.3 and in accompanying works [66].

6.3.1 Euler Heading

It is assumed that the agent is enacting control inputs in response to observations made

locally. As result of a new commanded velocity vi,pref, agent i computes its required

forward speed vi = ||vi|| and angular rate ωi,k = 1
∆t(ψi,pref − ψi,k). The equivalent Euler

heading ψi,pref is defined by vector decomposition of vi,pref in Equation (6.5 and 6.6):

µ =det(n̂x,vi,pref) (6.5)

ψi,pref =
µ

||µ||
cos−1

(
n̂x · vi,pref

||n̂x||

)
(6.6)

Here n̂x defines a unit vector along the local x-axis of agent i. The parameter µ is the

determinant of a square matrix composed of vectors n̂x and vi,pref.

6.3.2 Single Integrator Systems

Within the collision avoidance and multi-agent systems literature, the use of single in-

tegrator models to approximate agent behaviour is widely cited [67, 276–278]. A system

is said to be a single integrator when uk,i = ẋk,i. In this chapter, the single integ-

rator is derived from the planar pose agent i at tk where xk,i = [xk,i, yk,i, ψk,i]
T and

uk,i = [ẋi, ẏi, ωi]
T . The discrete representation of a system under this assumption then

takes the form xk+1,i = xk,i + ∆t · uk,i.

In practice vi and ωi are bounded between some defined maximum in order to

represent actuator constraints (see Table 6.1). Characterising agent behaviour in this

way allows for the agent’s true dynamics to abstracted to descriptor function ẋk,i =

d(xk,i,uk,i,wk,i) as seen in Section 2.2.3. An high-level overview of the computation

loop of agent i can be seen shown in Algorithm 1. In each of the studies presented in

Section 6.4, a selected geometric avoidance method is used to compute the VO constraint

set.
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Algorithm 1: A high-level overview of several of the popular geometric methods
for collision avoidance. The agent generates a constraint set corresponding to the
to each obstacle Oj=1:n using the methods introduced. Once resolved, the feasible
velocity is passed to agent controller to determine the agent’s state update xk+1,i.

Data: xk,i,Wj ,Oj

Result: ẋk,i,vpref

// Read the agent’s local state.

1 pi,vi, ri = GetAgentState()
// Measure the new obstacle states.

2 Wj ,Oj = ReadSensorBuffer()
// Calculate waypoint(desired) trajectory.

3 vpref = GetWaypointPath(Wi)
4 for j=1:length(Oj) do

// Get the obstacle states.

5 pj ,vj , rj = GetObstacleTrajectory(Oj)
// Compute constraint representation

6 VOj = ComputeVOConstraint(pi,vi, ri,pj ,vj , rj)
// Store constraint region

7 end
// Parse the avoidance trajectory

8 vpref = ComputeSelectionStrategy(vpref,VOj)
// Compute the inputs

9 ωi,k, vi,k = CalculateControlInputs(vpref)
// Pass the inputs to the controller

10 ẋk,i = AgentController(xk,i,ωi,k, vi,k)
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Parameter Value Unit’s

Maximum speed (vmax) 4 m · s−1

Preferred speed (vpref ) 2 m · s−1

Maximum yaw rate (ψ̇max) 0.25 rad · s−1

Agent critical radius (ri) 0.5 m
Neighbour horizon (dnei) 15 m
Camera standard deviation (σα) 5.208× 10−5 rad
Range-finder standard deviation (σr) 0.5 m
Airspeed standard deviation (σs) 0.5 m · s−1

Position standard deviation (σp) 0.5 m
Agent orbital radius 10 m
waypoint orbital radius 20 m
Cycles 1000 -
Sampling rate (∆t) 0.25 s
Waypoint & collision tolerance (ι) 1× 10−3 m

Table 6.1: The assumptions and agent parameters used in the following example scenarios, in-

cluding the sensor uncertainties used in the representative sensing condition.

6.4 Performance Evaluation

In this section the presented methods are compared in a series of conflicts representing

real-world scenarios. The agent population is initialised with the parameters defined

in Table 6.1, representing a concentric multi-agent collision. Concentric scenarios are

well established within the collision avoidance literature as they represent the worst case

scenario for a multi-agent conflict [27,63,67,94,111,112,117,250]. This is due to the fact

that in this condition all agents are initialised with a zero miss-distance that ensures a

collision will occur without intervention. By distributing the agent set radially about the

collision centre, a scalable mechanism for evaluating the effectiveness of the presented

algorithms is established.

6.4.1 Experimental Conditions

Agents are designated a target waypoint at the antipodal position of a concentric circle

with a radius of 20m. The agents are tasked with crossing the circle to reach their waypoint

positions pi,wp whilst ensuring their separation does not violate the collision condition.

In addition to this, measurements made by each agent at time tk are are assumed to be

corrupted by the noise parameters given in Table 6.1. These are applied in order to better

represent sensor-derived measurement uncertainty of both the agent and the obstacle’s

trajectory. In Figure 6.6(a) the agents are initialised at their origins (circles) and move

through the collision centre to reach their respective waypoints (triangles). Events such as

collisions or waypoint incidence are said to occur in accordance to the conditions specified
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in Section 2.1.2. The agent and scenario parameters used in the following examples are

otherwise explicitly stated in Table 6.1.

6.4.2 Performance Evaluation

The selected algorithms presented in Section 6.2 are validated over several scenarios with

increasing agent populations. Of these scenarios the ten agent scenario is presented and

discussed to highlight and contrast the performance of each algorithm. Figure 6.6(a)

demonstrates the trajectories generated by the VO algorithm. When compared to the

RVO in Figure 6.6(b) the trajectory adjustments can be seen to be abrupt, with greater

oscillation throughout, until all conflicts are resolved.

The compensation for obstacle movement is clearly seen in Figure 6.6(b) under the

RVO method as the trajectories are shown more gradual with fewer instances of harsh

correction. Oscillation in the form of reciprocal dance can still be observed however as the

direction of pass is resolved. In comparing the RVO trajectories to those of the HRVO in

Figure 6.6(c), there is a clear reduction in the oscillation as the agents initially determine

their direction of pass. The HRVO directional bias can also be observed from the agent

trajectories, indicated by the emergent spiral behaviour around the conflict centre.

The representation of the VO as ORCA constraints is shown to produce trajectories

similar to that of the HRVO in Figure 6.6(c). The linearity of the constraints however is

shown to create smooth trajectories throughout the conflict scenario, resulting in smaller

overall course deviations. The selected algorithms were demonstrated in scenarios with

two, five, ten and twenty agents and their performance measured over one thousand Monte

Carlo independent iterations. In addition to this, two sensor conditions were observed;

A) Ideal Sensing: the agents are given perfect knowledge of the surrounding obstacles

B) Representative Sensing: the agents adopt more realistic sensor properties, which are

defined in Table 6.1.

The mean behaviour of the presented approaches are shown in Table 6.2, where a

clear difference can be seen between the ideal and representative sensing conditions during

the ten agent example scenario. Under the assumptions of ideal obstacle telemetry, the

compensative nature of the RVO is shown to reduce the mean number of collisions to 3.140.

This is a significant reduction from the mean of 9.203 collisions in the same scenario using

the original VO method. The encoding of directional information in the formation of the

HRVO is shown to result in a greater ability to maintain safe separation when compared to

the VO and RVO methods in Table 6.2. This is reflected in the number of collisions being

reduced further to an average of 0.053 collisions. The lowest mean collisions however, was
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a) b)

c) d)

Figure 6.6: a) The resulting trajectories of ten agents using VO-based reactive avoidance in a

concentric collision scenario. The oscillations due to obstacle compensative motion can be clearly

observed as the agents progress towards the collision centre. b) The ten agent concentric scenario

applying the RVO-based avoidance method. Abrupt trajectory changes can be observed, with

distinct oscillations as novel agent j enter the visual horizon of agent i. c) The ten agent concentric

scenario repeated with the HRVO obstacle generation method applied. Trajectory oscillations can

be observed initially, however as the direction of pass is resolved linearity can be observed. d) The

same ten agent scenario repeated under the ORCA obstacle generation method. The resultant

trajectories appear as smoother, more gradual adjustments than the previous methods.
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Algorithm
Condition

Mean
Collisions

Mean
Minimum

Separation (m)

Mean
Computation

Time (ms)

Condition A
VO 9.203 0.581 2.000
RVO 3.140 0.831 2.100
HRVO 0.053 0.996 2.400
ORCA 0.038 1.000 0.460

Condition B
VO 7.749 0.624 2.000
RVO 9.380 0.577 2.100
HRVO 2.878 0.836 2.600
ORCA 6.881 0.757 0.463

Table 6.2: The performance of the presented algorithms in the same ten agent scenario. In condi-

tion A, the benchmark performance of the VO derivatives can be seen when sensing capabilities

are assumed ideal. In condition B, where realistic sensor conditions are assumed, the performance

of all methods with exception of the VO method is shown to reduce. The most resilient methods

are shown to be the HRVO and ORCA algorithms with the HRVO being the most effective at min-

imising collision in the presented scenarios. Each value represents the mean across one thousand

independent Monte Carlo iterations.

found using the ORCA method; averaging 0.038 collisions over the one thousand cycle

analysis.

Observing the behaviour of the algorithms in the presence of sensor uncertainty

demonstrated a mean increase in computation time of 0.051ms. This can be seen more

clearly in Figure 6.7. A disadvantage of the RVO method is shown here by a factor of

three increase in the mean number of collisions across one thousand iterations. This may

be due the aggravation of the reciprocal corrections (reciprocal dance) by the uncertainty

in obstacle trajectory. Similar behaviour can also be observed for the ORCA algorithm, as

the sensor uncertainty is shown to significantly reduce it’s effectiveness under this regime.

The mean minimum separation achieved by the ORCA approach was shown to be the

closest to the 1m boundary condition. This suggests a clear benefit of the ORCA method

- it’s consistency in achieving safe separation in ideal conditions. Although, consider-

ing uncertainty resulted in a mean increase of 4.003 collisions over the HRVO approach

that demonstrated similar performance in condition A. Studying Figure 6.7, a square

relationship can be observed between the agent population and the mean algorithm com-

putation time for the VO, RVO and HRVO methods. The ORCA approach however, with

it’s linear representation of the constraint set, is shown to yield computation times that

scale linearly with increasing agent numbers. The relationship between the performance

reduction rate rORCA = 3.4 × 10−5s/n is shown to be distinctly lower than the other

presented approaches. The ORCA algorithm therefore has a clear advantage when con-
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Figure 6.7: A comparison of the mean computation times in sensing conditions A and B. A) with

ideal obstacle knowledge is assumed, each method is shown scale more effectively with increasing

number. B) When the obstacle data is subject to interference, the computation time of each

method is shown to increase with respect to condition A, but also in the presence of an increasing

agent population.

sidering scalability for larger multi-agent systems, albeit more susceptible to uncertainty

than the HRVO. All analyses were completed using an Intel Core i7-6600HQ quad-core

(@2.8GHz) CPU. Code for the presented algorithms and scenarios are available on Git-

hub [65]. The relation between the agent density and the number of collisions is shown in

Figure 6.8. As expected, the addition of obstacle uncertainty is shown to generally induce

a higher rate of collision across the presented methods. This is with the exception of the

original VO method; where the method is shown to be more effective with uncertainty.

Methods considering both the velocity of i and j in the design of their constraints are

shown to be more adversely affected by sensor noise. The HRVO and ORCA methods are

shown to be the most effective methods of avoiding collision despite the ORCA method

demonstrating higher sensitivity to sensor uncertainty than the HRVO approach.

6.4.3 A Problem of Symmetry

In collision scenarios involving more than two agents, there exists a problem of symmetry.

While unlikely to occur in real systems, the situation may occur where an agent is presen-

ted with a constraint set that is symmetric about the forward direction vi, as seen in

Figure 6.9. The agent will naturally choose a velocity minimising the separation with

the waypoint Wi under the strategy imposed in Section 6.2.5. Any velocity that acts
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Figure 6.8: A comparison of the mean rate of collision with respect to increasing agent number

for VO, RVO, HRVO and ORCA geometric methods. In condition A, ideal obstacle knowledge is

assumed. In condition B Obstacle and agent trajectory data is subject to measurement corruption.

The effectiveness of all methods can be seen reduced in condition B, with the HRVO and ORCA

methods shown to be the most resilient with respect to increasing agent number.

Figure 6.9: A depiction of the scenario where the symmetry of the constraint set will induce a

dead/live-lock scenario. The agents preferred velocity vpref dictates the optimal trajectory toward

the goal location Wi. Due to the symmetry of the constraint set RV Oj and RV Oj+1 (shown in

red), agent i will naturally resolve a trajectory that will reduce its velocity as it enters further into

the deadlock.

122



Figure 6.10: A depiction of a deadlock scenario occurring in a symmetrical avoidance scenario

between agents 1 and 2. Neither agent is able to resolve a direction of pass without the candidate

velocity being less optimal than the current trajectory locking the agents in 3D space. A secondary

protocol is necessary to override the trajectory and temporarily select a sub-optimal solution to

instigate a direction of pass.

to alleviate the situation is considered less optimal than the current preferred velocity.

Unless a provision is made to allow the agent to violate a constraint momentarily, such as

in [27,250], the agent’s behaviour will remain fixed. In the literature, such a condition is

termed deadlock or livelock based on whether the agents are terminally static or mobile

as seen in Figures 6.10 and 6.11.

Such situations may also occur where density of the constraint sets mutually pre-

vents any agent from progressing to their target positions. In such scenarios a higher

level strategy must be applied to intelligently preserve a collision-free trajectory by ma-

nipulating the constraint set or designing a new desired velocity vi, pref. As part of the

Monte Carlo analysis, the initial positions of the agents are perturbed by a noise signal

χxyi, 0 = N (χxyi , I2×2 · σ2
p) where σp is defined in Table 6.1. This process also aids in the

prevention of the phenomena described in Section 6.4.3 by ensuring that the scenario is

asymmetrical.

6.5 Interval Avoidance

Representing obstacles using deterministic geometric expressions naturally introduces

problems when data describing the trajectory of the obstacle, or the agent, becomes un-
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Figure 6.11: A livelock scenario occurring between two agents, holding the agents in a fixed

configuration until a secondary process breaks the symmetrical behaviour. Unlike the deadlock

scenario, the agents main in a fixed configuration despite them both continuing to move through

the environment.

reliable. This is typical of scenarios where SDA algorithms are implemented on on-board

physical systems relying on additional filters and conditioning to achieve smooth obstacle

signals. Utilising some of the aspects of interval analysis it is possible to propagate all

sources of measurement uncertainty, numerical errors and represent them within an inter-

val to allow further optimisation or reduction. In this section the interval avoidance (IA)

approach is introduced. It is able to handle parameter uncertainty without linearisation

or approximation in order to best estimate a region of optimal obstacle avoidance [63].

6.5.1 Interval Analysis

The concept of interval analysis as a tool for describing uncertainty was initially in-

troduced to estimate computer rounding errors, and later extended to guarantee state

estimation [7,115,207]. The premise of intervals dictates that a state cannot be observed

directly: instead belonging to an interval x ∈ [x] where [x] = [x, x] [166,207]. It is assumed

in these works that the unmanned aerial vehicle (UAV) has the capability of measuring

an obstacle’s state x using an on-board array of sensors. An interval may then be defined

that encapsulates the measurement x̃ in addition to the uncertainty derived from the reli-

ability of the sensor which is assumed normally distributed with standard deviation σx. In

these works a 3σx interval centred about the measurement [x] = [x̃− 3σx, x̃+ 3σx] is used
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a) b)

Figure 6.12: a) Agent i observing obstacle j with uncertainty. The obstacles proximity, heading

and radius are observed to be within uncertainty intervals [d̃j ], [ψ̃j ] and [rj ] respectively. Agent

radius ri is assumed known. b) The obstacle’s radius interval [rj ] may be calculated from the

angular width and proximity intervals [α̃j ] and [d̃j ] respectively. The agent velocity interval [vj ]

is then calculated by repeated sampling the angular position of j.

in order obtain a ninety-seven percentile description of the possible values of x [63, 115].

6.5.2 Interval Sensing

In Section 6.1.1 the model adopted for the observation of obstacle j by agent i is presented

given the various errors associated with the sensing system. The true measurements of

the proximity of j, relative heading and angular width are assumed to belong to the

defined intervals [d̃j ] = [d̃j − 3σr, d̃j + 3σr], [ψ̃j ] = [ψ̃j − 3σc, ψ̃j + 3σc] respectively as

Figures 6.12(a) and 6.12(b) describe.

The relationship between the Cartesian position of j and its spherical measurements

d̃j , ψ̃j and α̃j is initially defined in Equation (6.1). From this it can be deduced that the

corresponding region bounding all possible Cartesian obstacle positions [pj ] = [pxj , p
y
j , p

z
j ]
T

in the axes of i may be expressed as Equation (6.7.

[pk,j ] =

 [pxk,j][
pyk,j

]
 =

 cos([ψ̃k,j)] − sin([ψ̃k,j ])

sin([ψ̃k,j)] cos([ψ̃k,j ])

 · [d̃k,j ]− pi,sensor (6.7)

Using the relationship defined in Equation (6.2) the interval describing the minimal and

maximal radii of j is propagated. This relationship incorporates the uncertainty the
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angular extents of j as [αj ] = [α̃j − 3σc, α̃j + 3σc] and proximity [d̃j ]. Calculation of the

radii interval can then be written as Equation (6.8).

[rj ] = [rj , rj ] =
sin
(

1
2 [αj ]

)
1− sin

(
1
2 [α̃j ]

) · [d̃j ] (6.8)

As with the deterministic sensor model shown in Section 6.1.1, it is otherwise assumed that

agent i has no other prior knowledge of obstacle j. The velocity interval [vk,j ] for obstacle

j is calculated via the discrete differencing of the known position intervals [pk,j ] and

[pk−1,j ] over the time samples ∆t. It follows that the components of the interval vectors

[pk,j ], [vk,j ] and [rk,j ] represent the Gaussian uncertainty in the geometric parameters of

j. Equally, it is assumed that agent i measures it’s own true position and velocity using

the same assumptions in order to propagate the uncertainty intervals [pk,i] = [pk,i −

3σp,pk,i + 3σp] and [vi] = [vk,i − 3σv,vk,i + 3σv] respectively. This is under the premise

that these measurements are obtained locally using on-board sensors and with their own

sources of measurement uncertainty parameterised by their standard deviations σp and

σv respectively.

6.5.3 Discerning the Likelihood of Collision

It has been demonstrated how the intervals in obstacle j’s relative position [pj ], relative

velocity [vj ] and defining radius [rj ] are defined from geometric obstacle deductions. Based

on j’s trajectory intervals, an estimate of the current miss interval [rm] can be formulated

containing all projected geometric separations at the time of closest approach [τ ] (see

Figure 6.13). Similarly, a region enveloping all the projected points of minimal separation

can be defined and is referred to as the closest approach interval [rca].

It can then be said that given [vj ], the true time to collision between i and j belongs

to the interval τ ∈ [τ ] where the obstacle will pass through the region defined by [rca].

From Figure 6.13, it can also be said that if vj ∈ [vj ] and rm ∈ [rm] then a perpendicular

miss distance rm exists for all possible values of vj . This may be expressed in terms of the

inner product of the two interval vectors as [vj ] · [rm] = 0. Using the geometric obstacle

configuration the planar miss interval [rm] is then defined from the relationship between

[vj ] and the position interval [pj ] in Expressions (6.9) and (6.10).

[r̂m] =

 0 1

−1 0

 [v̂j ] (6.9)

[rm] = det([pj ], [v̂j ]) · [r̂m] (6.10)
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Figure 6.13: The miss interval [rm] defined geometrically, in the configuration space of i. The

shaded regions define the set of vectors belonging to each interval. Here [rsafe] defines the un-

certainty in the required obstacle separation. The definition of the time closest approach interval

[τ ], and point of closest approach [rca], may be seen geometrically constructed from the obstacle’s

relative position [pj ], velocity [vj ] and [rm].

Taking further advantage of the orthogonality of the member vectors of [rm] in Equa-

tion (6.10), the range of prospective times until collision naturally takes the form of the

interval [τ ]. The physical meaning of this property is described geometrically in Fig-

ure (6.13), is defined in Equation (6.11) and assumes vj ∈ [vj ] remains constant for ∆t:

[rm] = [pj ] + [vj ] · [τ ]

[vj ] · [rm] = [pj ] · [vj ] + ([vj ] · [vj ])[τ ]

([vj ] · [vj ])[τ ] = [vj ] · [rm]− [pj ] · [vj ]

[τ ] = − [pj ] · [vj ]
[vj ] · [vj ]

(6.11)

From Equation (6.11) it can be inferred that if the bounds of [τ ] are both positive (i.e τ >

0, τ) then a collision is likely to occur and the avoidance routine is necessary. Ambiguity

does however occur when 0 ∈ [τ ] as this implies the uncertainty in the obstacle trajectory

means there exists both a possibility of collision and that no collision may occur. To

assure the safety of the vehicle, it is clear that if a possibility of collision exists then the

UAV should act to avoid the threat. This condition is represented simply in interval terms

as sign of the supremum τ . The avoidance routine should therefore be executed when

τ ≥ 0 is met.
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6.5.4 Safe Separation

The notion of collision events, object classifications and representations in OpenMAS are

initially presented in Section 2.1.2 and associated works [66]. A collision event is said to

occur between two agents when i and j violate the condition (ri + rj) ≥ ||pj ||. Here ri

and rj represent the radii characterising the physical geometry of i and j respectively. ri

is assumed to be a constant known to agent j, while rj ∈ [rj ] is subject to measurement

uncertainty as seen in Equation (6.8). By inclusion of an obstacle safety factor sf , the

minimum safe separation [rsafe] is defined by Equation (6.12).

[rsafe] = ri + sf · [rj ] (6.12)

[rres] = [rsafe]− ||[rm]||> 0 (6.13)

Relating Equation (6.12) to the miss interval [rm], the term [rres] is defined in Equa-

tion (6.13) [187] to describe a resolution interval. A conflict between i and j then exists

when rres ≤ 0 by indicating that separation is insufficient at t = tk + τ .

6.5.5 Optimal Resolution Intervals

In the event that τ > 0, an manoeuvre must be designed to avert collision with the

obstacle. In these works, an avoidance trajectory is said to be optimal when its selection

represents a min-max relationship of the control effort (deviation from current course) and

the rate of increasing separation from the obstacle. This can be seen shown in Figure 6.13,

by the velocity that maximises the miss interval [rm] at the time of closest approach τ to

minimise the risk of collision (see Equation (6.15)). The optimal direction of avoidance

can be represented as the minimal solution to the following Hamiltonian (6.14).

Ha = −rm · vj − (||a||·τ) · rm) · âi (6.14)

min
a
J = −1

2
||rm||2 (6.15)

Here the relationship between rm and the correction acceleration a is represented as a

cost function. Examining Equation (6.14), it can be deduced that H is minimal when

a · rm = 0 ∴ a ‖ rm. It can therefore be said that acceleration a is optimal when ai ‖ rm

and the manoeuvre optimally increases the separation between i and j [163,187]. We can

therefore define the set of optimal accelerations geometrically to be such that [â] ≡ [r̂m].
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Figure 6.14: The definition of the shared resolution intervals [rvsi,vsj ] (blue) as a result of the

uncertainty in the miss interval [rm] (yellow). The optimal region [Ui,j ] (dark blue) then describes

the set of candidate velocities which consider the obstacle trajectory uncertainty. Selection of a

velocity from [Ui,j ] is then subject to strategy.

6.5.6 Vector Sharing

The magnitude of the interval correction vector required to avoid the obstacle is determ-

ined through the process of vector sharing (VS) [187]. We assume that if j is able, it

would act to prevent collision with i by enlarging [rm]. Based on the uncertainty in both

agent’s trajectories it is possible to define an expression for the shared separation interval

(6.16).

[rvsi] =
|[vj ]|

|[vi]|+|[vj ]|
· [rres] · [r̂m] (6.16)

Equation (6.16) describes the distribution of i’s correction velocity [vvsi] proportional

to [vi] and [vj ], scaled by resolution magnitude [rres]. The physical meaning of [vvsi]

is shown in Figure 6.14, where the agent with the larger velocity takes responsibility

for a larger correction interval vector [rvsi] in the optimal direction r̂m. We aim to

define the interval containing the optimal heading vector U∗i ∈ [Ui] given the obstacle’s

trajectory uncertainty. The interval itself can be assembled geometrically by extrapolating

the agent’s current velocity to the time of closest approach τ (see Figure 6.14). The

resulting avoidance heading interval [Ui] for the agent can then be seen expressed in
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a) b)

Figure 6.15: a) A multi-agent collision scenario from the perspective of i, observing obstacle’s j

and j + 1 moving with velocities [vj ] and [vj+1] respectively. The mutual avoidance region [U∗i ]

can be seen defined as the intersection of the optimal correction intervals [U∗j ] and [U∗j+1] (shaded

green). b) Extraction of the mutual avoidance heading interval [ψ∗] from the planar projection

of the interval [U∗]. This shown to be equivalent to the intersection of the heading intervals [ψj ]

and [ψj+1] (shaded green).

Equation (6.17).

[Ui] = [vi] · [τ ] + [rvsi] (6.17)

The avoidance interval [Ui] defines a region enveloping the resolution vector necessary to

optimally avoid obstacle j. The relative heading angle intervals [ψi] can now be assembled

geometrically from the interval [Ui].

6.5.7 Multiple Obstacle Consideration

In the event that there is a collision likelihood for multiple obstacles (τi > 0), an interval

must be defined containing the globally valid avoidance trajectories [U∗]. Under the

principle of interval analysis we are able to consider multiple obstacles by defining their

intersection as seen Figures 6.15(a) and 6.15(b).

The global optimal region [U∗i ] is defined such that [U∗i ] = [U∗i ]∩ [Uj ]j=1:n where n

is the number of obstacles. Scenarios may exist where there can be no intersection between

avoidance headings (i.e [U1] /∈ [U2]). In such cases a strategy must be applied in order

ensure a valid trajectory interval is always available. An immediate solution is to prioritise

the avoidance trajectory set based on obstacle proximity Pi=1:n = 1
||p

i=1:n
|| . Here Pi=1:n is

calculated from the lower bound of the interval containing the possible proximity of the
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obstacle. This ensures that in the worst case, optimal avoidance of the closest obstacle is

to be prioritised [115]. The complete algorithm is summarised in Algorithm (2)

Algorithm 2: Calculation of the global optimal resolution region [U∗] from the
observed obstacle set Oj=1:n. The optimal heading and speed intervals [ψ] and [vi]
respectively are then passed to the low-level controller.

Data: Wj ,Oj , n
Result: [vi],[ψ

∗]
// Read the agent’s local state.

1 [pi], [vi], ri = GetAgentState()
// Measure the new obstacle states.

2 [Wj ,Oj ,n] = ReadSensorBuffer()
// Calculate waypoint(desired) trajectory.

3 [vpref] = GetWaypointPath(Wi)
// Calculate priorities

4 Pj = GetProximities(Oj)
// Prioritise the obstacles.

5 Oj = sort(Oj ,Pj , descending)
6 for j=1:n do

// Get the obstacle states.

7 [pj ], [vj ], [rj ] = GetObstacleTrajectory(Oj)
// Compute optimal avoidance trajectory.

8 [Ui]j = ComputeOptimalRegion([pi], [vi], ri, [pj ], [vj ], [rj ])
// Store candidate region

9 end
10 j = 1
11 while j ≤ n do

// Recursively compute the intersection.

12 [U∗] = intersect([U∗],[Ui]j)
13 j++

14 end
// Actuation limit’s intersection.

15 [U∗] = ApplyAcuatorConstraints([U∗])
// Evaluate the control intervals.

16 [v∗i ], [ψ
∗
i ] = ComputeControlInputs([vpref ],[U∗])

The agent first makes a measurement of it’s own state intervals [pi] and [vi] in ac-

cordance to Algorithm 2. The agent samples it’s immediate (||dj ||< dmax) environment

using it’s on-board sensors and attains measurements of each obstacle’s position [pj,1:n],

velocity [vj,1:n] and characteristic radius [rj,1:n]. Based on the obstacle’s priority (i.e.

proximity) the optimal avoidance region is stored in a vector of candidate velocity inter-

vals. The mutual avoidance region [U∗i ] is then found through successive intersections

of [U1,U2, ...,Un]. The resulting interval represents the velocity region that will act to

maximise the separation with the obstacle set and decrease collision likelihood.
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Initial Condition Position (m) Velocity (ms−1) Heading (rad)

MAV 1 (alpha001) [-10.00,0.00] [ 2.00,0.00] 0.00
MAV 2 (beta001) [ 10.00,0.00] [-20.0,0.00] 1.57

Table 6.3: The initialisation conditions of the two MAVs in example one representing an direct

collision scenario.

6.5.8 Trajectory Selection

Once the target velocity interval [U∗i ] is defined it must be evaluated against the velocity

constraints of agent i. The attainable velocities of i are a result of the accelerations that

can be generated by the system at time tk. These are intrinsic to the dynamical behaviour

of agent i, represented by the function [ai,max] = d(xk,i, [ui,max]).

The inclusion of acceleration constraints can be represented under the notion of

intervals by assigning the maximal accelerations to an interval [ai,max] ∈ R2×1. The

viable velocity region can then be found by intersecting the target velocity region with

the velocities that can be actuated by the system [vi,pref] = [U∗i ]∩ ([vi]+∆t · [ai,max]). At

tk+1, agent i must enact a single control input vi,pref ∈ [vi,pref] to mitigate the collision at

t = tk + τ . In associated works [63], the vector central to vi,pref = mid([vi,pref]) is taken

as the “best” estimate of the true avoidance trajectory. The corresponding control inputs

φk,i and vk,i can then be resolved using the methods described in Section 6.3.1.

6.6 Performance Evaluation

In this section, the proposed IA algorithm is demonstrated in parallel to the state of the

art geometric approaches in a series of representative scenarios. The evaluation paramet-

ers and sensing conditions presented in Section 6.4.1 are applied again in the following

scenarios.

6.6.1 Direct Collision

The most challenging scenario for SDA algorithms classically is a direct collision [63,204].

Here, the geometric angle of approach is such that the initial miss distance is minimal

and the resolution interval is maximal [rres] = ri + [rj ]. In addition, due to the fact

that the trajectories of the two agents are parallel initially (i.e. vi ‖ vj) the direction of

pass becomes ambiguous (see Section 6.2). The initial conditions for the direct collision

scenario are given in Table 6.3.

The trajectories generated by the IA method in the direct collision scenario are seen

in Figure 6.16. Here, the agents are operating under the imperfect sensing conditions
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Figure 6.16: A planar view of the direct conflict scenario whereby the IA method is shown to

negotiate imminent collision between agents 1 and 2. Here each agent is tasked with proceeding

from their initial position (circles) in order to each their associated waypoint (triangles). Both

agents can be seen to successfully enlarge their separation as they move towards each other in the

presence of the presented sensing conditions.

presented in Table 6.1. The agents can be seen to negotiate the direct conflict by actively

extending the miss interval [rm] before the point of closest approach rmin is reached.

This can be seen in Figure 6.18; by the adjusted heading ψ and forward speed vx as

soon as the neighbourhood condition of 15m is satisfied. The algorithm is shown to

extend the miss interval until no opportunity for collision exists. This is clearly indicated

by the momentary increase in acceleration at t = 3.25s as the trajectory toward the

agent’s allocated waypoint becomes available. As a result, a conservative 2.2m minimum

separation seen at the time of closest approach in Figure 6.17. The performance of

several geometric approaches introduced in Chapter 5 are presented here for comparison

in this conflict scenario. Using the assumptions and parameters presented in Table 6.1,

a one thousand cycle Monte-Carlo analysis was used to statistically evaluate the mean

performance of each method under the presented conditions.

The performance of the algorithms with respect to several key parameters are

presented in Table 6.4. Here, it is clear from the mean number of collisions that the

IA algorithm is unique in it’s ability to generate safe separation under the presented

sensing conditions. This may be due to the interval representation of the trajectory of j
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Figure 6.17: The separation maintained by the IA algorithm as agents 1 and 2 through the direct

collision scenario. The agents are shown to generate a minimum separation of 2.5m at the point

of closest approach (t = 5.25s) under the presented sensing conditions.

Figure 6.18: The input trajectories of agents i and j throughout the direct collision planar en-

counter. The IA algorithm is shown to generate a right-hand direction pass indicated by the

heading changes ψ̇. both agents are shown to accelerate in order to achieve the optimal avoidance

trajectories and once after waypoint trajectory becomes unimpeded.
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Approach
Mean

Collisions
Mean

waypoints
Minimum

Separation (m)
Computation

Time (ms)

VO 0.8560 2.0000 1.0095 0.1200
RVO 0.9000 2.0000 0.9658 0.1300
HRVO 0.6460 2.0000 1.0214 0.1300
ORCA 0.4840 2.0000 1.0711 0.1900
Vector Sharing 0.7460 2.0000 1.0240 0.2500
Interval Avoidance (IA) 0.0000 1.9940 2.6305 1.0300

Table 6.4: The statistical results of one thousand cycle Monte-Carlo analysis on the direct collision

scenario under representative sensing conditions. A comparison of the common VO derivatives,

the classical Vector Sharing method and the proposed IA method is given.

when it is parallel with i’s (i.e. vi ‖ vj). As the obstacle approaches the condition, all

trajectories around and including this condition are expressed simultaneously due to the

associated sensor uncertainty. In the unlikely event of perfect symmetry, a trajectory may

instead be selected from the extents of the optimal region vi,k+1 = [U ]j ∨ [U ]j , assuring

inherent “pass on the right” or “left” behaviour respectively.

The mean minimum separation suggests that the approach is inherently more “con-

servative” in the allowable miss distance. This behaviour is defined by the collision like-

lihood interval [τ ], which includes the trajectory uncertainty of both the obstacle and

agent. As a result i will continue to extend the miss interval until [τ ] < 0 is satisfied.

It is also clear from Table 6.4 that the mean computation time for the IA algorithm is

considerably longer than other associated methods in the same conditions. This suggests

that while able to generate safe separation effectively, the mean time to compute the

avoidance trajectories may result in the algorithm being less scalable in more densely

cluttered environments.

6.6.2 Four-Agent Intersection

In the next scenario, a four way flight path intersection is presented as a re-framing of the

direct collision scenario as a multi-agent conflict. Here each agent is tasked with negoti-

ating a flight path conflict with three other agents on route to their assigned waypoint.

The initialisation conditions for the four agents are given in Table 6.5. This scenario is

analogous to concentric collision scenario with low agent population, where initial condi-

tions of the agents are such that a collision will occur unless an alternative trajectory is

generated (see Figure 6.19) [27,65,251].

As described in Table 6.6, the IA method is distinct in it’s ability to avoid col-

lisions by maintaining safe separation throughout each independent Monte-Carlo run.

An example of the separations maintained through the point of closest approach is also

135



Initial Condition Position (m) Velocity (ms−1) Heading (rad)

MAV 1 (alpha001) [-10.00,0.00] [2.00, 0.00] 0.00
MAV 2 (beta001) [0.00,10.00] [0.00,-2.00] 0.79
MAV 3 (gamma001) [10.00,0.00] [-2.00,0.00] 1.57
MAV 4 (delta001) [0.00,-10.00] [0.00, 2.00] 2.36

Table 6.5: The initialisation conditions of the four MAVs in example two representing a four agent

intersection scenario.

Figure 6.19: A depiction of the IA algorithm resolving a four-agent planar intersection example.

Each agent is assigned an antipodal waypoint that requires the agent to move through the conflict

centre. Each agent is shown to compute a trajectory that successfully mitigates collision with each

of the other agents.

Approach
Mean

Collisions
Mean

waypoints
Minimum

Separation (m)
Computation

Time (ms)

VO 2.2040 4.0000 0.8710 0.3400
RVO 1.7730 4.0000 0.8810 0.3300
HRVO 1.5500 4.0000 0.8606 0.3000
ORCA 1.0880 4.0000 0.9868 0.2800
Vector Sharing 3.9300 4.0000 0.3543 0.1400
Interval Avoidance (IA) 0.0000 3.9514 3.6708 2.7300

Table 6.6: The statistical results of a one thousand cycle Monte-Carlo analysis of the four agent

intersection scenario under representative sensing conditions. A comparison of the common VO

derivatives, the classical Vector Sharing method and the proposed IA method is given.
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Figure 6.20: A comparison of the inter-agent separations during the four-agent intersection scen-

ario. Here, each relationship represents the separation of agent j (shown in brackets) with respect

to agent i. Throughout the collision the IA algorithm is able to maintain a minimum separation

of 1.5m

given in Figure 6.20. The performance of each of the VO derivatives is shown to vary

as expected; with the original VO methods mean collision rate being higher than that of

more recent VO methods. The most competitive method is the ORCA method, where the

measurement uncertainty induced 1.0880 collisions on average in the intersection scenario.

The vector sharing approach, while only presented as a single agent avoidance method

in [187], is shown here to be least effective in tolerating both measurement uncertainty

and simultaneous avoidance of multiple obstacles.

6.6.3 Concentric Collision

In [94, 106, 251] the authors consider a scenario where many agents are set to collide at

the same point in 2D space. Here we consider ten agents approaching the collision con-

centrically, with collision ensured by the antipodal positioning of their waypoint (seen

in Figure 6.21). Similar to Section 6.4.2, this scenario is presented to demonstrate the

performance of the IA algorithm with respect to several state of the art geometric meth-

ods for collision avoidance. The problem posed by this example examines the proposed

method’s ability to handle complex, cluttered environments where the collision is implied.

The initialisation conditions for the ten agents are presented in Table 6.7.

A statistical comparison of performance of each avoidance approach is shown in
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Initial Condition Position (m) Velocity (ms−1) Heading (rad)

MAV 1 (alpha001) [-10.00,0.00] [ 2.00, 0.00] 0.00
MAV 2 (beta001) [-8.09, 5.88] [ 1.61,-1.18] 0.63
MAV 3 (gamma001) [-3.09, 9.51] [ 0.62,-1.90] 1.26
MAV 4 (delta001) [ 3.09, 9.51] [-0.62,-1.90] 1.89
MAV 5 (epsilon001) [ 8.09, 5.88] [-1.62,-1.18] 2.51
MAV 6 (zeta001) [10.00, 0.00] [-2.00, 0.00] 3.14
MAV 7 (eta001) [ 8.09,-5.88] [-1.62, 1.18] -2.51
MAV 8 (theta001) [ 3.09,-9.51] [-0.62, 1.18] -1.89
MAV 9 (iota001) [-3.09,-9.51] [ 0.62, 1.90] -1.26
MAV 10 (kappa001) [-8.09,-5.88] [ 1.62, 1.18] -0.63

Table 6.7: The initialisation conditions of the third example scenario involving ten MAVs in a

concentric collision.

Figure 6.21: A plan view of the planar concentric collision scenario involving ten interval avoidance

(IA) agents. Here the agents are tasked with computing appropriate escape trajectories as a result

of obstacle configuration within it’s local neighbourhood dnei. It is assumed that each agent is

unable to communicate and that all measurements are subject to distortion.
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Figure 6.22: A depiction of the ten inter-agent separations that were closest to collision through

the ten agent concentric collision scenario. Here, each relationship represents the separation of

agent j (shown in brackets) with respect to agent i. At t = 5.75s agents 1 and 2 are shown to

collide as the method is unable to determine a region of mutual avoidance that satisfies every

member of the conflict.

Algorithm
Mean

Collisions
Mean

waypoints

Mean
Minimum

Separation (m)

Mean
Computation

Time (ms)

VO 3.4090 10.0000 0.3487 0.7900
RVO 1.9960 10.0000 0.4710 1.0400
HRVO 2.0000 10.0000 0.3515 0.8700
ORCA 1.9800 10.0000 0.7983 0.5800
Interval Avoidance (IA) 3.9400 10.0000 0.5683 6.2600

Table 6.8: The statistical results of a one thousand cycle Monte-Carlo analysis of a ten agent

concentric collision scenario are presented. Under presented sensing conditions, the ORCA method

is shown to yield the lowest mean collisions as indicated by the largest mean minimum separation.

The IA algorithm is shown to be competitive in the minimum separation, but is unable to preserve

the collision boundary in the presence of this of nine obstacles.
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Table 6.8. Here, the IA approach is competitive in it’s ability to negate collision when

compared to other methods for multiple obstacle avoidance. That said, it is clear that

the performance of the IA algorithm is decreased in the presence of highly cluttered

environments; indicated by an increased mean collision rate of 39.4% across the one

thousand Monte-Carlo cycles. An example of this can be seen in Figure 6.22, where

the collision boundary is violated at t = 5.75s as the algorithm fails to main separation

between agents 1 and 2.

Under the convention of the presented VO derivatives, the trajectory selection is

made from the velocity constraints representing the obstacle trajectories at time tk. The

formulation of U∗i under the IA approach however, does not explicitly state that the

trajectories selected from the optimal region will increase separation with all obstacles;

only a prioritised subset. It is therefore possible for agents to select a trajectory from U∗i

that may act to avoid obstacles in their nearest proximity, but increase the likelihood of

collision with obstacles where no intersection is found. While this is shown to be effective

in earlier examples, the formulation of the optimal region is shown here to be unable to

guarantee that the vi,k+1 will optimally increase separation with large obstacle sets. This

is also supported by the lower mean minimum separation distance of 0.5683m.

Under the presented sensor assumptions, it is demonstrated how without additional

filtration steps, none of the approaches are able to guarantee collision free trajectories in

the presented conflict scenario. More recent VO derivatives however; such as the HRVO

and ORCA methods, are shown to be more effective in maintaining separation than the

earlier VO and RVO techniques. Examining the computational times given in Table 6.8,

we can see that the VO derivatives scale more effectively with increasing obstacle numbers

than the proposed IA method. The most computationally efficient method being the

ORCA algorithm, where the mean minimum separation was also closest to the collision

condition of 1m despite the sensor distortion.

6.6.4 Scalability Analysis

In the context of multi-agent collision avoidance, the scalability of routines for low-level

operations such as collision avoidance is paramount. In support of data presented in

Table 6.8 a scalability analysis of the IA method was conducted to examine the algorithm’s

performance through increasing agent populations.

As initially speculated in Section 6.6.3, the performance of the IA method is shown

to deteriorate in collision scenarios involving more than six obstacles. This is indicated

by the increasing mean number of collisions beyond n = 6 in Figure 6.23. Observing
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Figure 6.23: The effect on increasing agent number on the IA algorithm’s ability to maintain safe

separation in the presented concentric collision scenario. The IA method is shown to be effective in

maintaining separation for small (up to six agent) conflicts, however beyond this the performance

begins deteriorate.

the temporal analysis seen in Figures 6.24 and 6.25, it can be seen that the number of

obstacles is strongly correlated with an increase in computation time. A comparison of the

mean computation times to the preliminary analysis of the VO derivatives demonstrates

that the IA algorithm scales similarly to the VO, RVO and HRVO methods. This said,

the higher computational load of the IA algorithm indicates it is not as scalable for more

cluttered environments despite it’s better performance in maintaining safe separation for

lower obstacle numbers.

6.7 Conclusions

In this chapter several established geometric approaches to collision avoidance are presen-

ted in the form of a technical review. The methodology of each approach is presented and

discussed. A quantitative analysis is also presented, examining the effects of increasing

both agent number and sensor uncertainty on the ability for each method to safely avoid

collision.

In the preliminary analysis of the collision cone derivatives, uncertainty in obstacle

trajectory is shown to increase the mean computation time of all the proposed approaches

without compensative measures. Of the VO methods, the HRVO and ORCA approaches

are shown to be more effective in negotiating obstacle cluttered environments whilst en-
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Figure 6.24: A comparison between the mean computation times of the interval avoidance method

with the increase of agent population. The errors bars demonstrate the variation between mean-

minimum and mean-maximum computation time of each method. Heres, the interval method

is shown to scale less effectively when compared to conventional VO derivatives. The ORCA

algorithm is shown to be the most efficient with respect to increasing obstacle number.

Figure 6.25: A depiction of the effect of increasing agent population in the presented concentric

scenario on the mean computational time-series. Here the change in mean response time is seen to

peak as the agents resolve their initial heading direction and plateau as the agents move through

the conflict centre.
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during uncertainty in obstacle trajectory. The ORCA method is also shown to generate

both smoother resolution trajectories than the other presented methods despite low tol-

erance to obstacle uncertainty. The HRVO is shown to be statistically competitive with

the ORCA in likelihood of collision, with higher tolerance to obstacle uncertainty. The

benefit of the ORCA approach can clearly be seen in it’s scalability; yielding computation

times distinctly lower than the other methods.

The presented analysis of the state of the art is used to provide context for the

proposed IA method. It is shown how corrupted trajectory measurements taken from

local sensors may be used to propagate a region describing the set of trajectories needed

to optimally avoid an obstacle. It is also shown how by considering the intersection of

multiple optimal regions, avoidance of multiple objects can be achieved simultaneously.

The proposed method is presented in a series of representative conflict scenarios where

it is evaluated with respect to several key performance parameters. The IA algorithm is

shown to be effective in avoiding collision in the presence of corrupt sensor measurements

and multiple obstacles. This is evidenced by a one thousand cycle Monte-Carlo analysis

of two presented scenarios whereby no collisions occurred.

A similar analysis of several popular geometric approaches demonstrated the IA

method has a distinct advantage in lower obstacle numbers where trajectory uncertainty

is present. Simulation of the IA method in scenarios with higher obstacle numbers demon-

strated a reduction in performance. This is shown be a result of the strategy applied to

the trajectory selection from optimal region and shall be the focus of future work in mul-

tiple obstacle avoidance. A statistical comparison of the methods demonstrated that the

IA method, while more effective in less cluttered scenarios, is less scalable than the VO

problem formulation. This is later supported by a scalability analysis of the algorithm

which examines it’s performance over increasing agent populations.

The representation of obstacle trajectory uncertainty intervals presents some inter-

esting opportunities in dynamic, non-cooperative and uncertain conflict scenarios. It is

clear that further investigation into the design of optimal regions as a result of higher

obstacle numbers is needed. In these works, inter-agent avoidance is emphasised as the

main cause of conflict in scenarios analogous to swarm operations and conventional air-

traffic control. To be applicable to MAVs operating at low altitude, effective representa-

tion of more complex obstacle structures will also be the subject of future work. Finally,

the IA method is initially presented under the assumption that the vehicles are restricted

to a defined plane. The question of how the approach may be abstracted to facilitate

avoidance in 3D space can then be seen as the subject of Chapter 7.
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Chapter 7

Interval Avoidance in Three

Dimensions

Up until now the motion of the micro aerial vehicles (MAVs) has been confined to a

common plane under the assumption that avoidance is occurring at a set altitude. In

this chapter we extend the Interval Avoidance (IA) method introduced in Chapter 6

to facilitate avoidance in three dimensions (3D). An adapted sensor model is presented

alongside our algorithm to identify the optimal avoidance region from the measurement

uncertainty. The performance of the algorithm is then examined in several proposed

scenarios representative of typical MAV operations.

7.1 Sensor Model

Consider the scenario where agents i and j, are moving through three dimensional (3D)

Cartesian space with global velocities vi ∈ R3×1 and vj ∈ R3×1 and positions pi ∈ R3×1

and pj ∈ R3×1 respectively. Similar to the assumptions given in Section 6.1.1, we assume

the physical geometry of either agent can be contained within a spherical volume defined

by representative radii ri and rj respectively (see Figure 7.1).

The sensor model facilitating the collection of obstacle trajectory data is initially

introduced in Section 6.1.1 and is later adapted for the propagation of uncertainty intervals

in Section 6.5.2. To represent obstacles in 3D space, the assumption of a camera and range-

finder sensor is extended to include a relative elevation measurement θ̃j = N (θj , σ
2
c ) ∈

[−π, π] at time tk. This is assumed possible using the same on-board camera and range-

finder [63,172] utilising the vertical pixel position.

Reintroducing the sensor confidence assumptions from Section 6.5.2, we present the
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Figure 7.1: The position pi,sensor of the sensor model in the frame of i used in the detection of the

relative heading, elevation, proximity and angular extents of j as ψ̃j , θ̃j , d̃j and α̃j respectively.

The spherical volumes constraining the physical geometry of i and j can be seen defined by ri and

rj . The obstacle’s relative Cartesian position and velocity, pj and vj respectively, are calculated

from its spherical position at time tk.

measurements as bounded uncertainty intervals in relative elevation [θ̃j ] = [θ̃j − 3σc, θ̃j +

3σc], heading [ψ̃j ] = [ψ̃j − 3σc, ψ̃j + 3σr], range [d̃j ] = [d̃j − 3σr, d̃j + 3σr] and angular

extents [α̃j ] = [α̃j − 3σc, α̃j + 3σc]. The obstacle’s equivalent Cartesian position pk,j at

time step tk, given the sensor’s relative position pi,sensor and orientation Ri,sensor in the

body frame, is then given in Equation (7.1):

[pk,j ] =


[
pxk,j

]
[
pyk,j

]
[
pzk,j

]
 = RT

i,sensor




cos([ψ̃k,j)] · cos([θ̃k,j ])

sin([ψ̃k,j)] · cos([θ̃k,j ])

sin([θ̃k,j)]

 · [d̃k,j ]
− pi,sensor (7.1)

In practice we assign the sensors relative pose to be aligned with the body axes of i

for simplicity and so Ri,sensor = I ∈ R3×3 and pi,sensor = [0, 0, 0]T . The obstacle’s

Cartesian velocity is again inferred by the discrete differencing of the obstacle’s position

vk,j = 1
∆t(pk,j − pk−1,j) where ∆t = tk − tk−1. The angular width αj at tk can similarly

be used to propagate an interval describing the obstacle’s radius rk,j ∈ [rk,j ] = [rk,j , rk,j ]

using Equation (6.8), calculated from the geometric parameters shown in Figure 7.1.
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Figure 7.2: A depiction of a 3D collision scenario between agents i and j. The interval avoidance

problem is framed across the conflict planes described by [nc]. The optimal region [Ui] for agent i

is shown propagated from a region containing the set of possible miss vectors [rm] and uncertainty

in the required correction vectors [rvsi] .

7.2 Definition of an Arbitrary Conflict Plane

Collectively, the i’s current knowledge of obstacle j can be expressed as intervals encap-

sulating it’s true position, velocity and radius; [pk,j ], [vk,j ] and [rk,j ] respectively at time

tk [63]. In Section 6.5.3, the position and velocity of j are represented in a common plane

(XY ) in which an avoidance manoeuvre must be resolved. From Figure 7.2 we can see

that the definition of the miss interval [rm] can be abstracted to a set of “conflict” planes

defined by the inner product of the interval vectors [nc] = [pj ] × [vj ] where [nc] is the

vector interval containing the uncertainty in the true normal vector nc.

In Section 6.5.3, the miss interval [rm] is related perpendicularly to [vj ] such that

[vj ] · [rm] = 0. The cross product of the planar normal and the velocity uncertainty, [nc]

and [vj ] respectively, can then be said to describe the 3D miss interval [rm] uncertainty

as shown in Expression (7.2).

[rm] = [v̂j ]× ([pj ]× [v̂j ]) (7.2)

Given our uncertainty in the true trajectory of j, [rm] naturally describes a region of

possible miss distances [rca] in the set of planes described by [nc] as a result of the

relative velocities [vj ]. A 3D representation of the interval problem and the definition of

[rm] can be seen in Figure 7.2. We know from the geometric relationship between [rm]

and [τ ] (see Figure 6.13), that Equation (6.11) may again be applied to [nc] to define our

uncertainty interval in the time to closest approach [τ ] = −([pj ] · [vj ])/([vj ] · [vj ]) using

our 3D description.

147



7.3 Constraining Planar Separation

It is known from the definition of the resolution interval [rres] ∈ R1 in Section 6.5.4 that

Equation (6.13) poses a constraint on the radial separation of i and j. This property is

characterised by our uncertainty in the miss distance ||[rm]|| given [rj ], [vj ] and [pj ] at

time tk. We know that geometrically pi is common to nc∀[nc] as seen in Figure 7.2. Given

that the constraint is radial to pi then all values of ||[rm]|| must satisfy Equation (6.13)

to guarantee separation across [nc]. The resulting expression for our uncertainty in the

required resolution magnitude again takes the form of [rres] = [rsafe]− ||[rm]|| given the

definition of [rm] in Equation (7.2).

7.4 Shared Resolution Volumes

With the velocity of i and j known to belong to the defined measurement intervals [vi]

and [vj ] we aim to construct a geometric region describing the optimal trajectory of i to

avoid collision with j. In these works, it is assumed that agent j is also an intelligent

agent that will act to avoid i as originally stated in Section 6.5.6. It is assumed that there

is no communication between i and j, and so magnitude of ak,i is subject to strategy.

We know from the relationship between [rm] and âi in Section 6.5.5 that the optimal

direction of pass is identified by the condition rm ‖ âi. By their relation to [rm], the

associated accelerations [ai] inherently describe a manoeuvre within the conflict plane.

Application of Equation (6.16) to the 3D definition of [r̂m] then allows us to construct a

3D region [rvsi] that is scaled in accordance to the principle of vector sharing (VS) [187]

and our uncertainty in the resolution magnitude [rres] (see Figure 7.2). The resulting

region [Ui] enclosing the optimal position of i at τ is then assembled geometrically as

[Ui] = [vi] · [τ ] + [rvsi] where [rvsi] contains the set of necessary corrections applied by i.

It is demonstrated how multiple obstacles may be considered in planar avoidance in

Chapter 6 by defining a region of avoidance that is common to obstacles j = 1 : n. This

relationship is defined by the prioritised intersection of their optimal avoidance regions

[U∗] = [U∗i ] ∩ [Uj ]j=1:n as presented in Section 6.5.7. Given that [U∗] now describes a

region that would optimally increases separation with subset of Oj=1:n, we then define

it’s centre U∗ = mid([U∗]) as the best estimate of the required correction manoeuvre for

actuation.
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Figure 7.3: Definition of the local sensory axes east-north-up (ENU) of agent i and it’s corres-

ponding control NED control axes (xc assumed aligned with the inertial axes. Here φ, θ and ψ

denote deflection about the local xxc ,xyc and xzc axes respectively.

7.5 Agent Dynamics & Control

In the previous sections we demonstrate how we obtain a region of viable avoidance [U∗]

trajectories given the set of obstacles Oj=1:n observed at time tk. Using the sensor model

proposed in Section 7.1, we define the best estimate in the desired waypoint heading as

vpref = mid([vi,pref]), from the observable waypoint set Wi ∈Wk=1:n. The overview of the

behaviour of agent i can also be seen in Algorithm 2.

It is shown in Figure 7.1 that these observations are made within a coordinate

system defined by Ri,sensor, with origin pi,sensor, that is assigned to the sensor. Similar

assumptions may also be necessary to allow us to represent the trajectory within the axes

of an on-board flight controller.

7.5.1 Axes Conventions

Depending on the control methodology applied on board of agent i, it may be necessary

to express the trajectory interval vi,pref in a secondary control axes. A common example

of this is the standard north-east-down (NED) convention typically used in the aerospace

sector and can be seen in our affiliated works [63,64]. The relation between the two axes

conventions can be seen in Figure 7.3 where distinction is made between the different

coordinate frames for the body and control, sub-scripted by b and c respectively.

R b→c =


1 0 0

0 cos(π2 ) −sin(π2 )

0 sin(π2 ) cos(π2 )

 (7.3)
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The agent’s target vector vpref may then be mapped into the aircraft’s dynamical axes

by the constant matrix transformation Rb
c given in Equation (7.3). In the event that

the sensor coordinate frame and control coordinate frames align then intuitively becomes

Rb
c = I3×3.

7.5.2 Euler Heading Generation

Using Equation (7.3) we are able to express the target velocity vi,pref as a vector within

the control axes of agent i. In this thesis, the pose of agent i is described by the Euler pose

η at time tk in accordance to state convention established in Chapter 3. It is therefore

necessary to express vi,pref in terms of a relative angular projections. These arguments

can be seen calculated from vi,pref in Equations (7.4)-(7.7); as projections on the body

axes XY and XZ planes.

vV = v̂pref −
(
v̂pref · n̂xz

||n̂xz||2

)
· v̂pref (7.4)

vH = v̂pref −
(
v̂pref] · n̂xy

||n̂xy||2

)
· v̂pref (7.5)

θ = tan−1

(
vV
||vH ||

)
(7.6)

ψ = sign (vpref × vH) · cos−1

(
vH · vpref

||vH ||

)
(7.7)

Here we define the vectors n̂xy = [0, 0, 1]T and n̂xz = [0, 1, 0]T to be the normals to planes

XY and XZ respectively. The direction of rotation is found by determining the sign of

the rotation axis vpref × vH .

7.5.3 3D Single Integrator Systems

In the literature [63, 251], a common representation of the state evolution of agent i

is a single integrator. We introduce this assumption to the planar pose of agent i in

Section 6.3.2. It is demonstrated how more sophisticated agent descriptions may be

formed in Chapters 3 and 4. In the form of a state vector, a 6DOF single integrator

system is proposed for simplicity, defined by the same state (7.8):

xk,i =

 pk,i
ηk,i

 =
[
xk,i yk,i zk,i φk,i θk,i ψk,i

]T
(7.8)

To be able to represent a generic holonomic MAV moving through 3D space, i’s state is

said to describe its instantaneous position and Euler pose xk,i = [pk,i,ηk,i]
T at time tk.
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Parameter Velocity Bounds Parameter Acceleration Bounds

φ̇ φ̇ ∈ [φ̇min, φ̇max] φ̈ φ̈ ∈ [φ̈min, φ̈max]

θ̇ θ̇ ∈ [θ̇min, θ̇max] θ̈ θ̈ ∈ [θ̈min, θ̈max]

ψ̇ ψ̇ ∈ [ψ̇min, ψ̇max] ψ̈ ψ̈ ∈ [ψ̈min, ψ̈max]
vx vx ∈ [vxmin, v

x
max] ax ax ∈ [axmin, a

x
max]

Table 7.1: The representative kinematic constraints for a six degree of freedom holonomic MAV

with input actuation limits. Here the first and second order kinematic states x are bound between

defined minimums and maximum absolute values, xmin and xmax) respectively, in order to rep-

resent actuator saturation.

The discrete representation of the system can then be written as Equation (7.9) and is

analogous to the one introduced in Section (6.3.2).

 xk+1,i

ẋk+1,i

 =

 I6×6 ∆t · I6×6

06×6 I6×6

 xk,i
uk,i

+

 06×1

wk,i

 (7.9)

Herewk,i = N (06×1, I6×6·σ2
q ) defines the state noise vector, where σq denotes the standard

deviation of the state-specific noise signal.

7.5.4 Dynamical Constraints

Constraints on the physical capabilities of agent i are applied by defining the maximal

allowable inputs. Under the convention of a single integrator, these changes are synonym-

ous to the agent’s state differentials [63,66]. This is done to emulate the saturation of the

agent’s control inputs whilst being consistent with the Euler state assumptions presen-

ted in Section 7.5.3. The representative actuator constraints on the states of agent i are

therefore presented in Table 7.1. To represent a system that is kinetically holonomic in

the proceeding examples, the limits are defined such that qmin = −qmax where q is a

kinematic state in Table 7.1.

7.6 Performance Evaluation

In [63], the 3D IA concept is applied to full scale unmanned aerial vehicle (UAV) opera-

tions. Within the context of this thesis, agents are assumed to be MAVs (≤ 25kg) operat-

ing in close proximity (≤ 25m) to one another moving at constant speed and straight and

level(S&L). In this section the proposed algorithm is presented in several representative

conflict scenarios.

151



Parameter Value Units

Sensor Range 15 m
Camera Standard Deviation (σc) 5.208× 10−5 rad
Range-finder standard deviation (σr) 0.1 m
Airspeed standard deviation (σv) 0.5 m · s−1

Position standard deviation (σp) 0.5 m
Measurement confidence 3 -
Sampling frequency 4 Hz
Neighbour horizon (dnei) 15 m
Maximum speed (vmax) 4 m · s−1

Maximum turn rate (φ̇max, θ̇max, ψ̇max) 0.25 rad · s−1

Preferred speed (vpref) 2 m · s−1

Characteristic radius (ri) 0.5 m
Event tolerance(ι) 1× 10−3 m

Table 7.2: The environmental simulation parameters used in the proceeding example scenarios

and performance evaluations.

7.6.1 Experimental Conditions

The agents are assumed to have sensing capabilities sufficient to observe other agents and

obstacles in the environment in accordance to the conditions presented in Table 7.2. The

geometry of the MAVs are represented by a characteristic radius of ri,j = 0.5m with a

nominal cruise speed of 2m/s ≈ 4.5mph. A simulation time step of ∆t = 0.2s is chosen

as the repetition frequency of existing Laser Obstacle Avoidance Marconi (LOAM) sensor

devices [37,209].

The agents are initialised with no prior knowledge of their surroundings other than

the location of their assigned waypoints Wi. Events such as collisions or waypoint incid-

ence are said to occur when the following condition is violated ||~pi−~pi,wp||< (ri+ri,wp)−ι,

where the parameter ι is a condition tolerance that aims to eliminate ambiguity between

collisions and narrow-misses caused by the nature of discrete simulation. The agent and

scenario parameters are otherwise explicitly stated in Table 7.2.

7.6.2 Overlapping Flight Paths

The proposed IA algorithm is initially demonstrated in the context of a typical flight path

conflict between two MAVs operating at the same altitude. The flight paths themselves

are assumed to be finite segments of some unspecified global objective or coordinated task

that necessitates their close proximity. A similar scenario representing a UAV conflict is

presented in [63,187]. The initial conditions for this scenario are given in Table 7.3.

Both agents are initialised within sensor range and tasked with moving from their

initial positions (circles) and proceed towards their target waypoint (triangles) whilst
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Initial Condition Position (m) Velocity (ms−1) Euler Pose (rad)

MAV 1 (alpha001) [-10.00,0.00,0.00] [2.00, 0.00,0.00] [0.00,0.00,0.00]
MAV 2 (beta001) [ -7.07,7.07,0.00] [1.41,-1.41,0.00] [0.00,0.00,0.79]

Table 7.3: The initialisation conditions of the two MAVs in example one representing an overlap-

ping flight path scenario.

Figure 7.4: An isometric view of the conflicting flight path example where two agents are engaged

in a collision scenario defined in a common plane. Agent 1 can be seen to immediately climb in

order to pass behind agent 2. Agent 2 initially resolves a climb trajectory also before returning to

S&L in response to agent 1.

avoiding collision (see Figure 7.4). The position of the waypoints W1 and W2, assigned to

agents 1 and 2 respectively, ensure that a collision will occur unless the agent trajectories

are corrected. Once agent 1 detects agent 2 it begins to evaluate the optimal avoidance

region [Uj,k] for the current time step tk. It is assumed the dynamics of the agent are fast

acting (see Section 7.5.3) and so the trajectory changes are actuated immediately subject

to the kinematic constraints introduced in Section 7.5.4.

In Figures 7.4 and 7.6 the agents are shown to resolve the conflict without collision

by maintaining a minimum separation of 4.5m at the point of closest approach rca. The

corresponding control inputs shown in Figure 7.5, indicate that the trajectory correction

occurs immediately upon detection. Control oscillation can be observed to occur until
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Figure 7.5: The control inputs corresponding to agents 1 and 2 over the course of the overlapping

flight path scenario. Here both agents are shown to oscillate initially before the direction of pass

is resolved. The agents make smaller adjustments to their 3D headings up to the point of closest

approach rca before briefly accelerating as the waypoint trajectory becomes available.

the direction of pass is resolved, whereby agent 1 moves behind agent 2. This can be

seen reflected in the mirrored pitch and yaw responses of the two agents for t ≤ 4.2s.

Once collision condition τ j < 0 is satisfied, the two agents can then be seen reorienting

themselves toward their designated waypoint and revert to their nominal cruise condition.

7.6.3 Direct Collision Scenario

Consider agents 1 and 2 to be on contradicting flight paths with a collision guaranteed

by the placement of their assigned waypoints Wi and Wj . Such a scenario is designed to

represent the “worst case” for reflexive collision avoidance algorithms due to the parallel

nature of vi and vj . This is described by the initial condition vi×vj = 0 ∴ ||[rm]|| ≈ 0 [63].

This condition naturally states that the direction of pass in this scenario is ambiguous,

but also requires a maximal change in trajectory [rres] = [rsafe] (see Section 6.5.6). The

initial configuration for this scenario is given in Table 7.4.

Agent 1 evaluates the collision projection interval [τj ] based on the sequential meas-

urements of agent 2 and vice-versa. Due to the uncertainty in the measurements of agent

2, the avoidance routine is executed when any convergent behaviour 0 ≥ τ j exists between

the agents. The uncertainty in the measured position of agent 2 is used in our method to
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Figure 7.6: The separations maintained between agents 1 and 2 during the overlapping flight

path example scenario. The micro-adjustments of both agents as they approach rca can again

be observed to increase as their proximity reduces. At t = 3.6s the agents determine there is no

chance of collision and immediately proceed towards their goals.

Initial Condition Position (m) Velocity (ms−1) Euler Pose (rad)

MAV 1 (alpha001) [-10.00,0.00,0.00] [ 2.00,0.00,0.00] [0.00,0.00,0.00]
MAV 2 (beta001) [ 10.00,0.00,0.00] [-2.00,0.00,0.00] [0.00,0.00,1.57]

Table 7.4: Initial conditions of agents 1 and 2 in the second example where both agents are

on parallel contradictory flight paths. Each agent is positioned with opposing headings, centred

around the global origin with a radius 10m, with an initial velocity of 2m · s−1.
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Figure 7.7: Example trajectories of two MAVs negotiating a conflict with geometrically opposing

flight paths at the same altitude. The agents are shown to proceed from their initial position

(circles) and proceed to their assigned waypoints (triangles). Here both MAVs can be seen to

resolve a direction of pass using their uncertainty in obstacle trajectory and continue to enlarge

their separation until there is no opportunity for collision in the future.

excite the change in trajectory of the two agents. This helps to disambiguate the direction

of pass since ||rm||6= 0. Once the direction of pass is established, [Ui] acts to extend the

miss interval [rm] until the collision condition rca = ||rm||> rsafe is satisfied.

In Figure 7.7 the two agents are shown to move from their initial positions and

proceed to their assigned waypoints. Both agents are shown to successfully generate a

non-zero miss distance ||[rm]|| from initially co-linear trajectories. Due to the uncertainty

in the trajectory measurements introduced in Section 7.1, adjustments to the trajectory

of agents 1 and 2 can be seen up until the time of closest approach t = 4.25s. Here,

the algorithm is shown to be able to exceed the minimal separation condition shown in

Figure 7.8, with a value of 1.9m. It can be deduced from Figure 7.9 that once rsafe

has been generated, it is maintained through the point of closest approach rca. This is

ensured by the convergence condition τ j > 0 that if convergent behaviour can exist then

the agent will select from a new optimal region [Uk,j ].
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Figure 7.8: The input trajectories of agents 1 and 2 during the conflicting flight path example.

Both agents can be seen to oscillate as the direction of pass is resolved, with fewer adjustments

made as resolution trajectory is found. As rca is reached, both agents accelerate onto their

unimpeded waypoint trajectory.

Figure 7.9: The separation between agents 1 and 2 through the conflicting flight path example.

Despite the initial zero miss distance condition, the IA algorithm can be seen to generate a

separation of 1.9m at the point of closest approach.
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Initial Condition Position (m) Velocity (ms−1) Euler Pose (rad)

MAV 1 (alpha001) [-10.00,0.00,0.00] [ 2.00, 0.00,0.00] [0.00,0.00, 0.00]
MAV 2 (beta001) [ 5.00, 8.66,0.00] [-1.00,-1.73,0.00] [0.00,0.00, 2.09]
MAV 3 (gamma001) [ 5.00,-8.66,0.00] [-1.00,1.73,0.00] [0.00,0.00,-2.09]

Table 7.5: The initial conditions for three agents defining the concentric collision scenario, centred

around the origin with a radius of 10m and an initial agent velocity of 2ms−1.

7.6.4 Multi-agent Concentric Conflict

In Section 6.5.7 it is shown how the representation of the geometric constraints as intervals

allows us to consider multiple obstacles [63, 66]. To demonstrate this, we introduce a

scenario where three agents are involved in the concentric encounter defined by the initial

conditions in Table 7.5. Similar to the scenarios presented in [63, 111], agents 1 to 3

proceed from their initial positions toward their antipodal waypoint position W1:3 (shown

in Figure 7.10). By the position of the waypoints, a collision mutual to all agents is

ensured. Each agent is assumed to be able to observe the trajectory of the other agents in

accordance to the sensor model presented in Section 7.1 once within a defined range dnei.

Once initialised, each agent is then tasked with computing a mutual avoidance trajectory

in the presence of the two other agents.

It is clear from Figure 7.12 that each agent was successful in mitigating collision

with their respective aggressors. This is demonstrated by a minimal separation of 3m

at t = 5.6s between agents 2 and 3 whereby the agents revert to their nominal cruise

conditions. Some oscillation can again be seen initially as the agents resolve their direction

of pass and change from the combined optimal avoidance volume [U∗]. This is also

reflected in the agent control inputs (see Figure 7.11) where the agents are seen to exert

significant changes in pitch and yaw rate, θ̇ and ψ̇, to keep their heading within the

optimal region.

7.6.5 Scalability Analysis

A statistical analysis of the presented scenarios was undertaken to assess the algorithm’s

performance in a one thousand iteration Monte-Carlo simulation. In each scenario presen-

ted in Sections 7.6.2 to 7.6.4, the global positions and velocities of each object is perturbed

by the noise signals pi,0 = N (pi, I3×3 · σ2
p) and vi,0 = N (vi, I3×3 · σ2

v) respectively. The

event and temporal statistics observed over one thousand Monte Carlo independent runs

are presented in Table 7.6.

Observing Table 7.6, we see that interval avoidance approach was able to attain safe

separation in each of the presented cases emulating typical UAV encounters. The mean
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Figure 7.10: An isometric view of a concentric collision scenario involving three agents operating

at the same altitude. Each agent quickly resolves a direction of pass and begins to generate a

non-zero miss distance with the other agents. The agents can be seen to oscillate as the shape of

the mutual avoidance region is altered as the priority of the obstacle is re-evaluated.

Mean Data
Overlapping
Flight Paths

Direct
Collision

Concentric
Conflict

Agents 2.000 2.000 3.000
Collisions 0.000 0.000 0.000
Waypoints 1.982 1.988 2.964
Minimum Separation (m) 1.775 1.839 3.050
Maximum Separation (m) 29.103 29.182 25.873
Mean Computation Time (ms) 0.950 1.030 1.990
Minimum Computation Time (ms) 0.025 0.026 0.031
Maximum Computation Time (ms) 2.820 3.440 5.130

Table 7.6: A comparison of the mean data from a 1000 cycle Monte-Carlo analysis for the three

presented scenarios. The event, separation and computational time statistics in the scenarios are

presented in which. Here the 3D IA algorithm is shown able to be effective in avoiding collision in

each scenario, generating a minimum of 1.775m separation under the effects of obstacle and agent

trajectory uncertainty.
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Figure 7.11: The input trajectories of agents 1 to 3 during the three agent concentric collision

scenario. The agents are again shown to make a series of adjustments in order to maintain a

trajectory within the region of mutual avoidance. As the agents are no longer confined to a plane,

the agents are able to command a heading and pitch rate simultaneously in order to increase their

respective miss-distances more quickly.

Figure 7.12: The separations maintained between the three agents during the 3D concentric

collision scenario. A minimum separation of 3m between agents 2 and 3 can be seen at the

time of closest approach t = 5.6s.
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number of waypoints is shown to be on average less than the number of total waypoints

in each condition. This suggests that in some cases the resolved avoidance trajectory,

prevented the waypoint from being achieved within the fixed 60s time period.

The mean minimum separation is shown to well exceed the collision boundary of

ri + rj = 1m in each of the cases. In the most geometrically complex case, the direct

collision scenario, the separation generated is 184% of the required safe distance. The

mean computation times are shown to be similar between both the flight path conflict

and direct collision scenarios. It is clear that the minimal miss distance condition in the

direct collision scenario is the cause of a marginal increase in each of the timing parameters.

This demonstrates that on average a greater number of computational cycles is necessary

to resolve the conflict. The most significant separation can be seen in the multi-agent

scenario, where the mean maintained separation was 3.050m. The compromise seems to

be when considering the computation times, which is seen to increase by a factor of 1.9

with the addition of a secondary obstacle. Further investigation may be necessary to

illustrate the effects of increasing obstacle number on the algorithm’s computation time.

Similar to the analysis presented in Section 6.6.4, the performance of the 3D IA

algorithm is statistically evaluated with respect to increasing agent population under the

conditions presented in Section 7.6. The performance of the two IA derivatives can be seen

compared with respect to mean collision rate and mean computation time in Figures 7.13

and 7.14 respectively. Examining the effects of increasing agent number on the mean rate

of collision in Figure 7.13, it is clear that the addition of the third dimension allows the 3D

method to be more effective in maintaining safe separation in multi-agent conflicts with

a greater number of agents. As seen in Chapter 6, the 2D IA method was demonstrated

to be effective in mitigating collision in scenarios with up to n = 6 agents. Here however,

it is demonstrated that the 2D method begins break down in scenarios with higher agent

numbers but more significantly when the encounters are symmetrical (indicated by the

higher collision rates on even numbers). In the same conditions however, the 3D method

is shown to perform more predictably than the 2D IA approach as the number of agents

exceeds n = 6. From this point the mean rate of collision is observed to be lower than the

2D IA method up until a population of n = 10 is reached. Here both methods are shown

to be unable to determine avoidance trajectories that satisfy the complete obstacle set in

order maintain safe separation.

Observing the relationship between computational time and agent number in Fig-

ure 7.14, its clear that the time required to compute the 3D IA approach scales similarly

to the 2D IA approach. The effect of considering the third dimension is shown to result
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Figure 7.13: A comparison of the mean rates of collision between the 2D(green) and 3D(blue) IA

derivatives over 1000 Monte-Carlo cycles. The error bars indicate the variation between mean-

minimum and mean-maximum computation times. Here, the availability of the third dimension

is shown to allow the IA method to continue to avoid collision in scenarios with a greater number

of agents. In addition to this, the Behaviour predictability extends beyond 6 agents, although

collisions become more likely once ten agents are involved in the conflict.

in an increase in computational overhead for each novel obstacle. This is seconded by the

variability in computation time; described by the error-bars in Figure 7.14. The increase

in computational cost is also shown to increase the margin between the mean minimum

and maximum computation times as the cost of resolving an avoidance solution for any

one obstacle is marginally higher. The 3D IA approach is shown to be effective in conflict

scenarios involving more agents than the approach presented in Chapter 6, whilst also

encompassing the effects of sensor corruption and trajectory uncertainty. The addition

of the third dimension is however shown to extend the performance ceiling of the 2D IA

method to n = 9. This is achieved by making use of trajectories outside of the XY plane,

which also allows the solution space to better represent the array of trajectories available

to modern UAS and UAVs.

7.7 Conclusions

In this chapter we extend the concept of an interval-geometric approach to reflexive avoid-

ance to facilitate avoidance in 3D. It has been shown how the approach incorporates

obstacle trajectory uncertainty and sensor confidence in the generation of optimal avoid-

ance trajectories in both the singular and multiple agent cases. The proposed method
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Figure 7.14: A comparison of the variation in mean computation times between the 2D and 3D

IA algorithms with respect to increasing agent population. The addition of the third dimension

is shown to result in a increase in computation time that scales similarly to the 2D IA approach.

is presented initially under the assumption that the MAVs behave as a 6DOF single

integrator, as a reduced representation of the complex descriptions in Chapter 3.

Kinematic constraints are introduced to limit the MAV’s performance window by

emulating saturation of the aircraft’s actuators. Such constraints confine the achievable

body axis rates in order to better represent the dynamic limitations of a physical system

without further assumptions on the propulsive mechanism.

The proposed 3D interval avoidance method is demonstrated in three representative

aerial conflicts: a typical flight path conflict, a direct collision and a three agent concentric

collision. In each case, the proposed method is shown to maintain an inter-agent proximity

well over the required safe separation. This is done so under the assumption of corrupted

measurement devices, which are assumed derived from a camera and range-finder local to

the agent with their respective measurement uncertainties. The resulting avoidance tra-

jectories are therefore determined without filtration, prediction or prior agent knowledge.

The results of the preliminary analysis are seconded by a 1000 cycle Monte-Carlo

analysis in Section 7.6.5. Here, the proposed algorithm performed consistently in main-

taining safe separation across each of the presented scenarios. Although infrequent, the

presented analysis demonstrated the possibility of agents being unable to obtain their

designated waypoints in their prescribed time. Investigation into the selection of optimal

trajectories from the solution region is therefore a clear next step in the development of
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the IA algorithm.

A comparison between the 2D and 3D IA approaches is given as part of the stat-

istical analysis in which the performance of 2D IA approach is shown to be significantly

improved by the algorithms ability to select trajectories in 3D. The expanded solution

space is also shown to make the behaviour of the 3D IA method more predictable bey-

ond six-agent conflicts. The performance of method however is shown to deteriorate in

collisions involving closer to ten agents where trajectories cannot be found that satisfy

the complete obstacle set, whilst also tolerating uncertainty in their geometric paramet-

ers. Examining the computational scalability of the 3D method with respect to the 2D

method, a minor increase in computation time can be observed in response to increasing

obstacle number. The consideration of each obstacle and its trajectory in 3D is shown

to result in computation times that are otherwise comparable to the 2D method and

scale similarly. The increased cost of computing the avoidance region for each obstacle is

also reflected in the increased variability in computation time, which is also shown to be

correlated to the number of obstacles.

As scalability is a well established concern in decentralised systems, the presented

analyses of the 2D and 3D IA methods demonstrates that there is still work to be done

in improving the performance of the approach for further use in multi-agent conflicts.

As the current implementation is based on the INTLAB toolbox for Matlab [207], an

immediate opportunity exists for increasing efficiency for collision avoidance through the

development a c++ toolbox to support parallelisation. Similarly, the current agent as-

sumptions were shown to be sufficient for a preliminary demonstration of the presented

method. Continued development in this area, building on the works of Chapters 3 and

4, may be used to demonstrate the effectiveness of the algorithm in the context of more

realistic MAV descriptions.
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Chapter 8

Conclusions

In this thesis, several of the challenges related to modelling and control of multiple un-

manned aerial systems (UAS) are presented. In this thesis there were two principle aims.

The first was to enhance and formalise the approach to assembling UAS dynamic beha-

viours through the use of symbolic parameters. The challenges here stem from the variety

of systems, number of propulsive groups and the techniques used to achieved low-level

control.

The second aim is orientated towards higher-level autonomous behaviour; focus-

ing on the challenges of implementing non-cooperative collision avoidance on real-world

coordinated systems. Collision scenarios are often ambiguous and complex when there

are multiple kinematic obstacles, limited samples available, and trajectory measurements

are distorted. In addition to this, phenomena such as dead(live) lock present additional

challenges that any autonomous system must address.

In Chapter 3, a symbolic framework for the derivation of non-linear dynamical

behaviours is presented. It is shown how using this technique it is possible to assemble

generalise UAS descriptions for the purpose of control and stability analysis. It is shown

how, without parameterisation, symbolic representations of key control parameters such

as the associated state space model, stability conditions and more can be defined without

the assumption of a known operating point. To demonstrate the application of symbolic

model definitions for linear control design, a linearisation condition is selected and applied

in the context of a Quadcopter system in a straight and level (S&L) hover scenario (see

Section 3.4.3). Under this assumption it is then shown how symbolic applications of

linear quadratic regulation (LQR) and model predictive control (MPC) techniques may

be applied to achieve control over the aircraft’s attitude rates.

Utilising the symbolic description of the Quadcopter’s plant, it is also speculated
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how symbolic prediction matrices may be used to define more interesting control paramet-

ers. The possibility of time-variant/adaptive models is discussed for active adjustment

of model assumptions and linearisation conditions across the prediction horizon. Fol-

lowing the demonstration of the proposed framework using the “aligned” and “Xflyer”

Quadcopter configurations, the concept is applied to several other known configurations

representing the state-of-the-art. This includes the derivation of the non-linear dynam-

ics of two other thrust vectoring MAVs known as the Tricopter and the over-actuated

Deltacopter or “Delta” configuration.

The dynamic interactions of vectoring components of these two configurations are

used to provide context for the novel UAS referred to as the “Polycopter” in Chapter 4.

This unique UAS topology presents a number of interesting motion characteristics due to

the way the thrust from it’s three radial nacelles may be vectored independently. Unlike

previous systems, the Polycopteris morphic in that it actively servos the relative pitch and

roll of it’s three nacelle assemblies to augment it’s centre of gravity. This presents a number

of opportunities for inherent control over the vehicle’s stability properties, disturbance

rejection and authority in complex manoeuvres.

In these works, two derivations of the dynamics of the Polycopterare presented

for the first time. The first demonstrates a reduced model under the assumptions of

“small nacelle angles” where the inertia of the airframe may be assumed constant and

time invariant. This is synonymous to systems where only the rotor-disk is deflected.

The second derivation examines the complex interactions of the Polycopterby considering

the nacelle assemblies as serial-link kinematic chains. Here, a recursive Newton-Euler

method is introduced to define the nacelles as a sequence of accelerating rigid-bodies.

The resulting interaction of the nacelles with the body is presented in relation to the

thrust produced from their respective rotors to allow a more accurate description of the

thrust vectoring properties of the Polycopterto be formed. These preliminary models are

presented and discussed in light of the interesting opportunities highlighted for enhanced

disturbance rejection, aerodynamic stability refinement and adaptive control.

In Chapter 6, focus is shifted to examine the challenges surrounding sense detect

and avoidance (SDA) collision avoidance in coordinated unmanned aerial vehicles (UAVs)

operating at a fixed altitude. A technical review of several popular approaches to non-

cooperative collision avoidance is presented. The results from this analysis highlight the

need for reliable yet scalable techniques in the presence of trajectory uncertainty and

multi-agent conflicts. A comparative analysis of the established velocity obstacle (VO),

reciprocal velocity obstacle (RVO), hybrid-reciprocal velocity obstacle (HRVO) and op-
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timal reciprocal collision avoidance (ORCA) techniques is presented. The performance

of the methods are compared with respect to increasing agent populations, collision rate,

computational time and tolerance to obstacle trajectory uncertainty. Of the VO derivat-

ives, the analysis showed that both the HRVO and ORCA algorithms are most effective in

the presented conditions; the ORCA algorithm benefiting from it’s linear representation

of the constraint set and the HRVO algorithm demonstrating an increased tolerance to

sensor corruption.

The comparative analysis of the state-of-the-art is used to provide context for the

proposed IA algorithm. The formulation of the planar conflict scenario using interval

geometry is presented. Here it is demonstrated how a planar region containing the optimal

avoidance trajectories may be propagated from the collective obstacle and agent sensor

uncertainties. Using some of the unique properties of intervals, it is shown how avoidance

of multiple obstacles can be achieved by collating sets of optimal regions and, using

their intersection, defining a region of mutual avoidance. The intersection is computed

sequentially based on obstacle proximity initially, however it is postulated how strategy

might be applied to encode different resolution behaviour.

An analysis of the performance of the proposed interval avoidance (IA) method

is then presented in several typical planar encounters with reference to current meth-

ods. It is shown by way of a one thousand cycle Monte-Carlo analysis that, under the

assumptions of corrupt sensor measurements, the IA algorithm is able to maintain safe

separation for collisions involving multiple agents. The scalability of many of the selected

geometric approaches is examined alongside the IA method under the presented sensor

conditions. Here it is shown that the IA algorithm is more effective in avoiding collision

in conflicts involving up to six agents. Hereafter, the performance of the current IA for-

mulation is shown to deteriorate as the scenarios become more complex. Examination

of the computational statistics of the presented algorithms demonstrated that many of

the VO derivatives are more computationally scalable, despite their inability to tolerate

trajectory distortion.

An interesting feature of the IA method is identified in the analysis of the algorithm’s

performance. It is shown that by exploiting the representation of the trajectory uncer-

tainty intervals, problematic conditions such as dead lock or direction of pass ambiguity

may be handled intrinsically. In each case, the optimal region is shown to define a set of

possible trajectories, to which default behaviour protocols may be applied.

In Chapter 7 the IA algorithm is developed further to facilitate collision avoidance

in 3D space. The chapter begins by defining an 3D interval sensor model taking meas-
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urements from an on-board camera and rangefinder. It is then shown from this sensor

model how trajectory intervals may be propagated in 3D using knowledge of the sensor’s

noise characteristics without filtration or predictive techniques. The avoidance problem

demonstrated in Chapter 6 is then re-framed to allow the representation of the IA problem

about a set of arbitrary conflict planes. These planes are shown geometrically to represent

the set of IA problems solved simultaneously through the use of geometric intervals. As

the trajectories are contained within 3D regions, the solution of IA problem naturally

takes the form of a 3D region describing the set optimal avoidance trajectories for any

given obstacle. Finally, it is shown how these regions may be combined using principles

from Chapter 6 to allow regions of mutual avoidance to be defined in scenarios involving

multiple obstacles.

The performance of the 3D IA method is examined in a series of representative

conflict scenarios. The results of each scenario are presented in the form of a one thou-

sand cycle Monte-Carlo analysis where the agent separation, computational and collision

statistics were observed. In each case, the 3D IA implementation is shown to successfully

avoid collision with the obstacle set in the presence of both agent and obstacle trajectory

uncertainty. A comparison formed between the 3D and 2D IA methods demonstrated

that the 3D algorithm is able to maintain separation with a higher number of obstacles.

This is shown due to the larger search space described by the 3D interval of candidate

velocities, which is also shown to make the behaviour of the 3D IA method more predict-

able. This is most evident in conflict scenarios beyond six agents, which is demonstrated

to be the limit of 2D IA method in Chapter 6. Continued analysis of the scalability of the

current 3D IA implementation did however later show the performance of the method to

be limited to conflicts with less than ten agents.

An examination of the mean computational time demonstrates near identical in the

presented scalability analyses; with a minor additional cost of computation per neigh-

bouring obstacle. This increase in cost is also reflected in the variability of the 3D IA

algorithms computation time, which is shown to be correlated with the number of con-

sidered obstacles. The implementation of the IA methods using the Intlab toolbox for

Matlab R© may however may present further opportunity for enhancing their scalability.

168



8.1 Direction of Future Research

Establishing an effective level of autonomy in coordinated aerial systems remains a com-

plex task. Following the works presented in this thesis, a number of opportunities have

been identified as avenues for future research. Below a non-exhaustive list is presented,

grouped by the focus areas of this thesis:

Symbolic Modelling

• The generation of dynamic behaviours using symbolic UAS descriptions is a concept

that is initially presented in these works in Chapter 3. Further work in this area

would likely see the refinement of symbolic component descriptions, as the mechanics

behind many aspects of aerial morphism are investigated.

• Based on the assumptions made in Section 3.3, there exists an opportunity to further

develop the fidelity of the symbolic process. Future work may examine more precise

propulsive models and rotor descriptions, introducing phenomena such as blade-

flapping in [273] or motor electro-dynamic behaviour in [61,176].

• In Section 3.4.3 it is shown how symbolic descriptions of UAVs may be used to

generate key control parameters. Utilising the representation of the UAV’s dy-

namics, there exists an opportunity to develop procedures for more sophisticated

techniques, such as feedback linearisation [100, 165] and plant representations for

non-linear predictive control methods or identification of unique model properties

such as differential flatness [40,81].

• The concept of the Polycopteris introduced for the first time in Chapter 4. Because

of this, there are numerous opportunities in examining the unique aerodynamic and

stability characteristics of the system brought about the vehicles ability to augment

it’s CG position.

• The uniqueness of the configuration presents some interesting avenues for controller

designs that are able to exploit the over-actuated nature of the Polycopter. Aven-

ues in which conventional multicopter designs struggle represent immediate points

of interest namely: fuselage pose control, disturbance rejection, aerodynamic op-

timisation and active stability augmentation.

• Due to it’s ability to thrust vector each nacelle, examination of the Polycopterunder

the effects of the “ground” and “ceiling” present some immediate opportunities for
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airflow management in complex and turbulent situations. An enhanced ability to

modify the centre of thrust in landing or perching [243] exercises are also postulated

to be exciting potential area of research with this concept.

Interval Avoidance (IA & 3DIA)

• Due to the popularity of presented VO derivatives, representation of complex obstacle

descriptions is well established. In this thesis, the presented scenarios are in “open”

air; analogous to air-traffic encounters. To better represent the capabilities of micro

aerial vehicles (MAV)s operating at low altitude, interval representations of more

complex obstacles, such as doorways and walls would be an immediate avenue for

research.

• It is shown in the presented analysis in Section 6.5 that by utilising some of the

properties of intervals, use of the supremum and infimum of this region allows specific

behaviour to be applied to a given dimension. There is an opportunity to investigate

further strategies for extracting escape velocities from the optimal region. This may

allow protocols for more complex, cluttered, scenarios.

• In Section 6.6.4 the performance of the IA algorithm relative to the VO derivatives is

shown. It is clear from the temporal statistics of the IA algorithm that optimisation

is needed. The current implementation of the IA and 3D IA methods is based

on the Intlab toolbox for Matlab R© [207], which is known to be inefficient. This

toolbox is originally intended for the estimation of rounding errors through the

use of intervals, and is optimised for these operations. Development of a parallel

toolbox implementing the IA method would support future work on interval based

avoidance.

• The performance of the 2D IA algorithm is presented in context of the several of the

state of the art geometric approaches to collision avoidance and compared to the 3D

IA approach in Chapter 7. To enhance the evaluation of the 3D IA method, further

investigation should be done into recent developments in 3D geometric avoidance

such as the 3D-RVO tools presented in [230]. Such a comparison would provide

a greater context for the analysis of the 3D IA approach, it’s performance and its

scalability in multi-agent conflicts.

• In Section 2.2.3 the concept of abstracting agent behaviours to “dynamic descriptors”

is introduced for heterogeneous swarm simulation in OpenMAS [66]. This is initially

used to facilitate the assumption of single integrator dynamics in Chapters 6 and 7
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as the IA algorithm is proposed. While this assumption is well established in the lit-

erature, introduction of more complex system dynamics, similar to those Chapters 3

and 4, would better represent many of the challenges in coordinated UAV systems.

Validation of the IA algorithm in higher fidelity scenarios would therefore better

assess the applicably of the approach on board real-world systems.
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