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Abstract

Quantified Boolean formulas (QBF), which form the canonical PSPACE-complete de-

cision problem, are a decidable fragment of first-order logic. Any problem that can

be solved within a polynomial-size space can be encoded succinctly as a QBF, includ-

ing many concrete problems in computer science from domains such as verification,

synthesis and planning. Automated solvers for QBF are now reaching the point of

industrial applicability.

In this thesis, we focus on dependency awareness, a dedicated solving paradigm

for QBF. We show that dependency schemes can be envisaged in terms of dependency

quantified Boolean formulas (DQBF), exposing strong connections between these two

previously disparate entities. By introducing new lower-bound techniques for QBF

proof systems, we study the relative strengths of models of dependency-aware solving,

including the proposal of new, stronger models.

Proof Complexity. Using the strategy extraction paradigm, we introduce new

lower-bound techniques that apply to resolution-based QBF proof systems. In par-

ticular, we use the technique to prove exponential lower bounds for a new family of

QBFs called the equality formulas. Our technique also affords considerably simpler,

more intuitive proofs of some existing QBF proof-size lower bounds.

Models of solving. We apply our lower bound techniques to show new separations

for QBF proof systems parametrised by dependency schemes. We also propose new

models of dynamic dependency-aware solving and prove that they are exponentially

stronger than the existing static models. Finally, we introduce Merge Resolution, a

proof system modelling CDCL-style solving for DQBF, which is the first of its kind.
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Chapter 1

Introduction

In this thesis, we contribute to the theory of QBF solving by studying the relative

strengths of associated proof systems. We introduce new lower-bound techniques for

existing systems, and propose some new systems that model generalised and novel

solving techniques.

1.1 Proof complexity and solving

None of this would be possible were it not for the strong connection between logic

and computation. The strong connection allows us to build a bridge between theory

and practice: on the theory side we have proof complexity, which studies the lengths

of proofs in formal systems of logic; on the practical side we have the automation of

decision procedures for formal languages, an endeavour referred to as solving. In the

last two decades, solving has seen some quite remarkable advances [70], with proof

complexity employed as its analytical toolkit [44].

Proof complexity

A working mathematician tasked with proving a conjecture has a number of worries.

First and foremost, is the conjecture correct? Even if it is correct, is it provable?

And even if it is provable, is there a proof which is sufficiently short that I might

reasonably be expected to find it?

The last question is not so easy to answer, especially where ‘hard problems’ are

concerned. Working mathematicians are well aware of one truth: the length of proof

varies depending on the choice of theory. As undergraduates, for example, we encoun-

tered real integrals that were much easier to evaluate using techniques from complex

analysis. And so, when it comes to hard problems, the working mathematician has a
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choice: to try and construct a long and complex proof within an existing theory, or

to develop a new theory, aiming to construct a short and simple one.

Proof complexity is a branch of mathematics which deals formally with these

questions of proof size. The central problem is to determine the length of the shortest

proof of a given theorem, in a given theory of formal logic. The main idea is to

compare the strengths of theories, whereby stronger theories have shorter proofs.

A seminal work in proof complexity is the 1979 paper from Cook and Reckhow,

which introduced the abstract definition of a proof system:

Definition ([21]). A proof system for a language L over an alphabet Σ is a poly-time

computable function from Σ∗ onto L.

Cook and Reckhow had discovered that the proof complexity of propositional logic,

one of the most basic logics consisting only of Boolean variables and connectives, was

related to an open problem in computational complexity:

Theorem ([21]). There exists a polynomially bounded proof system for the language

of unsatisfiable propositional formulas if, and only if, NP = coNP.

A proof system is said to be polynomially bounded when every theorem has a short

proof, where a proof is ‘short’ when its length is only polynomially larger than the

theorem statement, for some fixed polynomial that does not depend on the theorem.

There is no Fundamental Theorem of Proof Complexity, but this result is a good

candidate. It tells us that superpolynomial proof-size lower bounds are a valid ap-

proach towards the separation of complexity classes. This is quite remarkable; there

is no obvious connection between lengths of proofs and consumption of computational

resources, but the theorem of Cook and Reckhow establishes a firm correspondence

in the spirit of the strong connection between logic and computation.

The following forty-five years saw a great deal of interest surrounding superpoly-

nomial proof-size lower bounds in propositional logic, a prolonged effort which eventu-

ally culminated in the development of a range of lower-bound techniques [56, 18]. As

yet, proof complexity theorists have not been able to separate NP from coNP. How-

ever, their lower-bound techniques became very relevant to the emerging advances in

solving.
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Solving

A solver is a piece of computer software that automatically solves a decidable problem.

The user encodes the problem in the solver’s input format, invokes the solver on the

instance, and waits for a solution. Depending on the difficulty of the problem, the

solver may provide a solution immediately, require five minutes or a couple of days,

or work away in the background for as long as the user is willing to wait before

terminating the process. Provided the solver is correct and capable of solving every

problem instance, the process will eventually terminate and provide a solution.

For example, the satisfiability problem (SAT) is to determine whether a formula

from propositional logic has a satisfying assignment. Many problems from theoretical

and applied computer science, as well as pure mathematics, can be encoded in propo-

sitional logic, whereby solving the problem is reduced to solving a SAT instance. So a

scientist, faced with solving a problem by hand, can instead encode it in propositional

logic, and hope to solve it quickly using a SAT solver.

Nowadays, SAT solving serves a host of concrete applications in computer science.

To cite only a few examples, it has been employed to formally verify software [31],

synthesise circuit designs from specification [17], and to help solve long-standing open

problems in number theory [30]. The rise of SAT implementations as universal,

efficient, automatic problem solvers is arguably one of the most notable developments

in the history of computer science. Authors heralding the ‘SAT revolution’ have done

so in earnest [70].

Why are efficient SAT solvers considered such an important breakthrough? In

part, this is due to the Cook-Levin Theorem.

Theorem ([20, 37]). The SAT problem is NP-complete.

There are two messages to be drawn here. First, every decision problem solvable

in nondeterministic polynomial time can be encoded succinctly as a SAT instance,

meaning that SAT is a universal language for a wide variety of problems. Second,

SAT is the classical, prototypically hard problem, and if P 6= NP, as the average

computational complexity theorist appears to believe, then it is not efficiently soluble.

As a result, the practical progress in computationally hard problems, fostered by

solving, appears to defy our theoretical intution about the difficulty of the problems

we are trying to solve.

Another reason for the excitement surrounding SAT is what lies beyond. Progress

towards even harder decision problems is already underway. Figure 1.1 depicts two

notable cases: QBF, a fragment of first-order logic which is PSPACE-complete, and

5



SAT

QBF

DQBF

First-order Logic

SAT propositional logic NP
established efficient

technology

QBF
propositional logic with

totally ordered quantification
PSPACE

reaching industrial
applicability

DQBF
propositional logic with

partially ordered quantification
NEXP in its infancy

Figure 1.1: Some logical decision problems in increasing order of complexity.

DQBF, an even larger fragment which is NEXP-complete. Decision procedures for

these languages, whose formidable complexities were seemingly unapproachable be-

fore SAT, are being seriously developed for industrial applications. Perhaps this does

indeed signify the dawn of a new age in the mechanical solution of hard problems.

A bridge between theory and practice

The relationship between proof complexity and solving boils down to the following

notion.

Notion. Every decision procedure implicitly defines a proof system for the language.

Imagine a decision procedure defined in some computational model, say as a Tur-

ing machine [68]. The trace of the procedure on some input details the complete
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configuration of the machine at each time step, until termination. Given that the

transition function of the machine is finite, and the basic operations simple, the fact

that the trace encodes a correctly executed computation can be verified efficiently,

with respect to the size of the trace. Hence the function that maps valid traces to

the input string, and invalid traces to some fixed member of the language, is a proof

system, as defined by Cook and Reckhow.

The notion itself is quite useful; it allows us to envisage the computational frame-

work in terms of logic and proof complexity. We have already seen (by the Cook-

Levin Theorem) that problem instances can be encoded as equivalent logical formulas.

Moreover, as depicted in Figure 1.2, a solver can be identified with a proof system

and its computation with a proof.

This is where complexity enters: a lower bound on proof size guarantees a lower

bound on solver running time. More precisely, a superpolynomial proof size lower

bound for a family of logical formulas guarantees that the instances cannot be solved

efficiently; it specifies a hard problem for the solver.

If this were all that could be said about proof complexity and solving, it wouldn’t

be much. The ‘proof system’ implicitly defined by a solver is nothing other than its

source code, and the size of the shortest proof is a redefinition of its running time. The

real value of proof complexity is due to the fact that state-of-the-art solvers implicitly

define proof systems which are fragments of well-known, well-analysed proof systems.

Whereas the value of upper-bounds breaks down when the implicit proof system is

weaker (the existence of short proofs in a stronger proof system does not guarantee fast

termination), the value of lower-bounds remains concrete. Lower-bound techniques

developed by proof complexity theorists identify hard problems for state-of-the-art

solvers.

Case study: Resolution and SAT

The most productive period for SAT solving began in 1996, with the advent of a

solving technique called conflict-driven clause learning (CDCL) [60]. CDCL, which

is based on the DPLL algorithm [22] (named after Davis, Putnam, Logemann and

Loveland), implemented a number of innovations which significantly reduced solving

times.

Before CDCL, SAT solvers were optimised implementations of a 1960s algorithm.

After CDCL, they were efficient technologies, orders of magnitude quicker than their

predecessors and capable of solving problems that were previously considered in-

tractable. As it happens, proof complexity provides a compelling explanation for the
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(z2)

logical
formula
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proof
system

(z̄1 ∨ z̄2) (z̄1 ∨ z2)

(z̄1) (z1)

⊥

proof

c problem.cnf

p cnf 2 3

-1 -2 0
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2 0

problem
instance

// solver.c

// a SAT solver

main() {
..read input;

..while (not solved) {

....keep solving;

..}

..return result;

}

solver

$ solver problem.cnf

solving ‘problem.cnf’

assigning variables ..

propagating ..

analysing conflict ..

verdict: UNSAT

computation

Figure 1.2: A bridge between theory and practice.
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experimental gains. This is due to the fact that DPLL and CDCL, when run on

unsatisfiable instances, essentially conduct a proof search.

The proof system in question is Resolution [52], a calculus that proves the un-

satisfiability of propositional formulas. Superpolynomial lower bounds for Resolution

were among the first major results in proof complexity [67], and it has received a

great deal of attention ever since. Several lower-bound techniques have been devel-

oped, and the relative proof complexities of many fragments of Resolution are now

well understood [56, 18, 44].

The most important fragments are Resolution itself, also referred to as General

Resolution, and Tree-Like Resolution, the fragment whose derivations have the struc-

ture of trees. It is now known that DPLL conducts proof search in Tree-like Resolu-

tion [4], whereas CDCL conducts proof search in General Resolution [59]. Further-

more, General Resolution is exponentially stronger : there are unsatisfiable formulas

(so-called ‘pebbling formulas’) that require exponential-size tree-like proofs, but ad-

mit polynomial-size proofs in general [4].

This is a point on which it is important to be precise. The non-existence of short

tree-like proofs means that DPLL provably requires exponential time to solve the

pebbling formulas. The existence of short general proofs does not mean that CDCL

will solve the pebbling formulas efficiently, since the short proofs may be difficult to

find. Nonetheless, it has the potential to do so, whereas DPLL does not.

Let us look at this the other way round for a moment. Suppose we are proof

complexity theorists who have studied Resolution, but now we want to get our hands

dirty: we want to implement proof search. First we devise an algorithm that searches

the simpler tree-like proofs, which happens to be DPLL. Thereafter we modify the

algorithm to search the shorter general proofs, and we come up with CDCL. Although

we had no theoretical proof that our modified algorithm would efficiently find shorter

proofs, we see a significant improvement.

This is the main message, the essence of the relationship between proof complexity

and solving, and the theme of this thesis: Solving is proof search, proof systems

model solving, and proof complexity calibrates the strength of models. We can look

for better models by identifying and overcoming the underlying reasons for proof-size

lower bounds.
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1.2 Quantified Boolean formulas

In this thesis, we are interested in the proof complexity of models of QBF solving.

We will introduce new lower-bound techniques to calibrate the strengths of existing

models. Moreover, by identifying and overcoming the underlying reasons for hardness,

we propose new models of solving that can potentially foster improved proof search.

A quantified Boolean formula (QBF) is a sentence from propositional logic in

which all variables are quantified in a total order preceding the proposition. A typical,

simple example would be the formula

∃x∀u∃z · (¬x ∨ ¬u ∨ z) ∧ (x ∨ u ∨ z) ∧ (¬z) .

In fact, we’ll meet with this formula quite frequently throughout the thesis. It is the

first instance of a family of hard QBFs called the equality family.

This particular QBF is false. Reading from left to right, it is typically interpreted

as ‘there exists a 0/1 value for x such that, for each 0/1 value for u there exists a 0/1

value for z such that the formula

(¬x ∨ ¬u ∨ z) ∧ (x ∨ u ∨ z) ∨ (¬z)

evaluates to 1,’ where the logical connectives ‘¬’, ‘∧’ and ‘∨’ take their usual defini-

tions. Taking the time to consider all 0/1 values, we would determine that this is not

the case, and that there exists no such value for x. So the sentence, interpreted in

the natural way, is not true.

The problem of determining whether or not a quantified Boolean formula is true

is complete for the complexity class PSPACE. Thus, any problem that can be decided

in polynomial space can be encoded as a polynomial-size sequence of QBFs. Since

NP ⊆ PSPACE (and the average complexity theorist believes the inclusion is strict),

QBFs potentially provide more succinct and natural encodings of problems compared

to propositional logic.

Indeed, like SAT, QBF reductions have been employed for formal verification [5]

and synthesis [39], but also to further application domains such as automated plan-

ning [51], ontological reasoning [36], and fault correction [64]. In fact, the authors

of [24] found that the QBF workflow actually outperformed SAT on a particular class

of synthesis problems. It appears fair to say that QBF solving has reached the point

of industrial applicability.

10



expansion reduction

IRM-calc

IR-calc

∀Exp+Res

LDQU-Res

LDQ-Res QU-Res

Q-Res

A B
A and B are
incomparable
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Figure 1.3: Simluation order of seven major QBF proof systems.

QBF proof systems

Research into QBF proof complexity began in 1995 [35]. Since then numerous proof

systems have been proposed, many of them based on existing propositional proof sys-

tems. Given that state-of-the-art SAT solvers correspond to fragments of Resolution,

it is not surprising that almost all of the proof systems pertintent to QBF solving are

based on Resolution.

Figure 1.3 (reproduced from [15]) depicts seven resolution-based QBF proof sys-

tems along with their simulation order. A formal definition of simulation is given in

Chapter 2. For now, one proof system p-simulates another if proofs in the latter can

be translated efficiently into proofs in the former; two proof systems are incomparable

if neither p-simlutates the other.

What is really unique to each system is the handling of universal quantification,
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which falls into one of two brackets: universal expansion and universal reduction. The

division of QBF proof systems into these two brackets is analogous to the situation in

solving, where universal expansion and universal reduction are two major paradigms.

Interestingly, the performance of expansion and reduction-based solvers on benchmark

sets are often markedly different [42].

Universal expansion

The expansion-based QBF proof systems ∀Exp+Res, IR-calc and IRM-calc are shown

on the left-hand side of Figure 1.3.

The idea behind the universal expansion paradigm is quite simple. The universal

quantification is handled by a translation to propositional logic, whereby universal

variables are ‘expanded out’. The resulting formula is a fully existentially quantified

QBF, which is true if, and only if, the propositional part is satisfiable.

An expansion-based QBF solver, such as RAReQs [33], typically tries to expand

out the universal variables in the most economical way, and then calls a SAT solver.

The corresponding proof system is ∀Exp+Res. The stronger system IR-calc is related

to the solver iDQ [25]. The strongest of the expansion systems, IRM-calc, is not known

to correspond to a QBF solver.

Universal reduction

The universal reduction systems are shown on the right-hand side of Figure 1.3.

Universal reduction is a fundamentally different approach to solving QBFs. CDCL

is augmented with new propagation rules to handle universal quantification during the

search process. The resulting decision procedure is called Quantified Conflict-Driven

Constraint Learning (QCDCL). Solvers based on QCDCL include DepQBF [41] and

Qute [46].

Universal reduction in QCDCL is underpinned by the proof system Q-Res [35].

A more sophisticated form of reduction [72] is underpinned by the stronger system

LDQ-Res [2]. The other two systems QU-Res and LDQU-Res are not known to corre-

spond to particular solvers.

Dependency schemes

One of the first challenges identified for QBF solving concerns the allowable order

of variable assignments [40]. In standard QCDCL, the freedom to assign variables is

limited according to the total order imposed by the quantifier prefix.
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The prenexed quantifier prefix of a QBF introduces dependencies between vari-

ables. For example, consider an existential variable x quantified after a universal

variable u. Reading the prefix left to right, the value of the variable x witnessing the

existential quantification is allowed to depend on the value of u.

Standard QCDCL solvers must respect variable dependencies during search, inso-

far as a variable cannot be assigned before any of the variables on which it depends.

This carries a drawback, namely, reduced impact of so-called decision heuristics,

routines which determine the order of variable assignments in a solver. Given that

decision heuristics play a major role in the success of CDCL [58, 57, 38, 43], the

drawback for QBF is significant.

At the same time, coercing the order of assignment to respect the prefix is fre-

quently needlessly restrictive [40]. Solvers can often turn a blind eye to many of the

dependencies implied by the quantifier prefix [46], boosting the utility of the decision

heuristic.

Dependency awareness, first implemented in the solver DepQBF [41], is a QBF-

specific paradigm that attempts to maximise the impact of decision heuristics. By

computing a dependency scheme before the search process begins, the total order

of the prefix is supplanted by a partial order that better approximates the variable

dependencies of the instance, granting the solver greater freedom regarding variable

assignments. Despite the additional computational cost incurred, empirical results

demonstrate improved solving on many benchmark instances [40].

Dependency schemes themselves are tractable algorithms that identify dependency

information. From the plethora of schemes that have been proposed in the literature,

two have emerged as the principal ones: the standard dependency scheme (Dstd [54])

and the reflexive resolution path dependency scheme (Drrs [63]). A solid theoretical

model for dependency awareness was proposed in the form of the calculus Q(D)-Res

[63], a parametrisation of Q-Res by the dependency scheme D.

Dependency schemes are closely related to DQBF, although this was not recog-

nised at the outset (see [54]). In fact, the whole paradigm of dependency-aware solving

can be recast in terms of DQBF, taking the form of a detour into a larger fragment

of first-order logic. The formal recognition, and the clarification of the relationship

between dependency schemes and dependency quantified Boolean formulas, is one of

the contributions of the thesis.
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Figure 1.4: Simulation order of our four main QBF proof systems.

1.3 Contributions

In this thesis, we focus on the four resolution-based QBF proof systems shown in

Figure 1.4. From the point of view of QBF solving, these are the most important

ones of the seven from Figure 1.3.

Technical contributions of the thesis appear in Parts II and III. Part II focuses

on lower-bound techniques, whereas Part III focuses on their application to new and

existing models of QBF solving.

Convention for results in this thesis. Results taken from the literature are always

referenced, the citation appearing in parenthesis immediately before the statement of

the result. Folklore results are indicated similarly. All results appearing in this thesis

without a citation, and not designated as folklore, are original contributions of the

thesis.

Part II: Lower-bound Techniques

In Part II we introduce new semantic techniques and prove some new lower bounds for

QBF proof systems, while providing shorter, intuitive proofs of known lower bounds.

• Chapter 4: We completely characterise lower bounds in ∀Exp+Res (Theo-

rem 4.13) by means of a semantically-grounded lower-bound technique. We

prove new exponential lower bounds for the equality family (Corollary 4.15),

and the interleaved equality family (Corollary 4.17).
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• Chapter 5: Exploiting strategy extraction, we lift the lower-bound technique

to Q-Res for formulas of bounded quantifier alternation (Corollary 5.17). As an

application, we prove a new exponential lower bound for the equality formulas

(Theorem 5.18).

• Chapter 6: Appealing further to strategy extraction, we lift the lower-bound

technique to unbounded quantifier alternation in the stronger system IR-calc

(Theorem 6.18). We provide an alternative, semantically-grounded proof of

the lower bound for the Kleine Büning et al. family (Theorem 6.20) that first

appeared in [14].

• Chapter 7: We introduce the squared equality family (Definition 7.7) and

prove that they require exponential-size refutations in a particular fragment of

LDQ-Res called deferred LDQ-Res (Theorem 7.11).

Part III: Models of Solving

Part III explores the wider context of dependency schemes and DQBF. We use the

lower-bound techniques from Part II to separate existing proof systems parametrised

by dependency schemes. We also propose some new models of solving and separate

them from the existing ones.

• Chapter 8: We propose the expansion-reduction hypothesis (Idea 8.5) as a

credible explanation for the issues associated with lifting QBF proof systems to

DQBF.

• Chapter 9: Utilising DQBF, we propose a new interpretation for dependency

schemes, and show that it accomodates (and simplifies) the existing theory.

• Chapter 10: Parametrising the expansion systems by dependency schemes, we

introduce two new models of dependency-aware QBF solving (Definitions 10.6

and 10.16). We show that they are exponentially stronger than the base systems

when the dependency scheme is Drrs (Theorems 10.13 and 10.20).

• Chapter 11: We show that the parametrisation of Q-Res by Drrs also gives

exponentially shorter proofs (Theorem 11.7). We go on to introduce a new

model of dynamic dependency-aware QBF solving (Definition 11.10), and show

that this promotes a further exponential speedup over the existing static system

(Theorem 11.17).
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• Chapter 12: Following the expansion-reduction hypothesis, we investigate re-

duction systems in the context of DQBF. We propose a new solving model called

Merge Resolution (Definition 12.10), a natural extension of LDQ-Res, which has

strategy extraction built in. We show that it p-simulates deferred LDQ-Res

on QBFs (Theorem 12.19), and is even exponentially stronger thanks to short

proofs of the squared equality family (Theorem 12.21).
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Chapter 2

Propositional Logic

In this chapter, we cover the background material on propositional logic, which forms

the technical foundation for the rest of the thesis. Our preferred syntax, conjunctive

normal form, is covered in Section 2.1, the corresponding semantics follow in Sec-

tion 2.2. Section 2.3 focuses on Resolution, arguably the most famous propositional

proof system. The abstract theory of proof systems due to Cook and Reckhow is

covered in Section 2.4.

2.1 Syntax

The two most fundamental objects in the object language for propositional logic are

the domain of discourse and the universe.

Definition 2.1 (domain of discourse). The domain of discourse is the set of symbols

{0, 1}.

The domain of discourse is denoted ‘D’. The particular symbols chosen as the

elements of D are unimportant. One can think of D as the set {0, 1} or {f, t} or

{♦,♥} as one pleases; they are merely symbols in an object language, and no relations

or operations are defined on them.

Definition 2.2 (universe). The universe is a countably infinite set of symbols.

The universe is denoted ‘U’. The elements of the universe are called variables.

One could think of the universe concretely as the set of natural numbers. In practice,

it is better to use lower-case roman letters as our variable symbols, with subscripts

and superscripts where convenient. By a set of variables we mean a subset of U, and

usually a finite subset. The only infinite set of variables we will encounter is U itself.
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Conjunctive normal form

A conjunctive normal form formula is traditionally defined as a conjunction of dis-

junctions of literals, where a literal is a variable or its negation. The following would

be a typical example:

(z1 ∨ ¬z2) ∧ (¬z1) ∧ (z1 ∨ z2 ∨ ¬z3)

Nowadays it has become commonplace for authors to use a different notation for

CNFs: each disjunct is written as a set of literals, the conjunction as a set of sets,

and negation denoted with an overline:

{{z1, z̄2}, {z̄1}, {z1, z2, z̄3}}

We use the more convenient set-theoretic notation throughout.

Notice that the explicit binary connectives ‘∧’ and ‘∨’ disappear, and are now

represented implicitly as a set hierarchy. It also makes sense to do away with ‘¬’ as

a unary connective, and instead to define a set of literals, which is essentially two

distinct copies of U.

For each variable z ∈ U we introduce two symbols:

• The negative literal symbol ‘z̄’;

• The positive literal symbol ‘z’, which is identical the the variable symbol itself.

We say that z̄ has negative polarity and z has positive polarity. These symbols form

the countable set

L := {z̄ : z ∈ U} ∪ {z : z ∈ U} .

Definition 2.3 (literal, clause, CNF). A literal is an element of the set L, a clause

is a finite set of literals, and a CNF is a finite set of clauses.

The complement of a literal a in L is

ã :=

{
z if a = z̄ ,

z̄ if a = z ,

and we say that a and ã are complementary.

The set of all clauses is denoted ‘C’. A clause is called tautological if it includes a

pair {z̄, z} of complementary literals. The empty clause, i.e. the empty set, is denoted

‘∅’. We say that a clause C subsumes another clause D when C ⊆ D.
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The set of all CNFs is denoted ‘F’. Like the empty clause, the empty CNF is just

the empty set, denoted ‘∅’. There is never any ambiguity here, and it is always clear

from the context which is meant. The size of a CNF, denoted ‘|F |’, is its cardinality,

i.e. the number of clauses it contains.

It will be frequently useful to identify the variable corresponding to a literal, the

variables appearing in a clause, or those appearing in a formula. For each variable z,

and each literal a in {z̄, z}, the variable of a is

var(a) := z .

The variables of a clause are the elements of the set

vars(C) := {var(a) : a ∈ C} ,

and the variables of a formula are the elements of the set

vars(F ) :=
⋃
C∈F vars(C) .

Substitution

Substitution is merely the process of replacing one symbol for another. More precisely,

a variable symbol is replaced either by another variable symbol, or a symbol from

the domain of discourse. We define a substitution as a mapping that details what

replaces what.

Definition 2.4. A substitution is a function from a variable set Z into U ∪ D.

When one applies a substitution to a formula in the traditional sense, it is normal

to remove the symbol 0 from disjunctions and the symbol 1 from conjunctions, as

this preserves the truth values defined by those connectives. Therefore substitution

is not exactly a straight swap – there is a little bit of tidying up to be done.

The same thing happens when we apply substitutions to CNFs in set notation,

we perform a swap followed by some tidying. We describe the effect of an arbitrary

substitution s on literals, then on clauses, and finally on CNFs.

Given a variable z in the domain of s, the application of s to the negative literal

z̄ is

z̄[s] :=


x̄ if s(z) = x ∈ U ,
1 if s(z) = 0 ,

0 if s(z) = 1 ,
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and the application to the positive literal z is

z[s] := s(z) .

For any variable z that is not in the domain of s, application of the substitution has

no effect on either literal:

z̄[s] := z̄ and z[s] := z .

Applying s to a clause C is defined as follows:

C[s] :=

{
L if a[s] = 1 for some literal a in C ,

{a[s] : a ∈ C} \ {0} otherwise .

The choice of the symbol L will be discussed in the next subsection.

The application of s to a CNF F is

F [s] := {C[s] : C ∈ F} \ {L} .

2.2 Semantics

Assignments and satisfiability

Assignments are special kinds of substitutions, namely those which map into the

domain of discourse. Hence, they replace variable symbols with constant symbols.

Definition 2.5. An assignment is a function from a variable set Z into D.

By an assignment to Z we mean an assignment whose domain is Z. The set of

all assignments to Z is denoted ‘〈Z〉’. An assignment to a subset of Z is called a

partial assignment to Z. The set of all partial assignments to Z is denoted ‘〈〈Z〉〉’.
The domain of an assignment σ is denoted ‘vars(σ)’.

An assignment can be specified explicity as a function, for example

α : {z1, z2, z3} → D
z1 7→ 0
z2 7→ 1
z3 7→ 0 .

However, it is also conventional to represent assignments as sets of literals, where the

negative literal z̄ represents the assignment z 7→ 0 and the positive literal z represents

the assignment z 7→ 1. Hence we could also specify the assignment α by writing

α := {z̄1, z2, z̄3} .
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We will use both forms throughout the thesis. It is always clear from the context

whether a set of literals represents a clause or an assignment.

The negation of an assignment is the clause consisting of the complementary

literals. For example, the negation of α is the clause {z1, z̄2, z3}.
Given an assignment σ to a set of variables Z, and a variable z in Z, the comple-

mentary assignment for σ with respect to z, denoted ‘comp(σ, z)’ is the assignment

obtained from σ by flipping the value of z; that is

comp(σ, z) : Z → D

z′ 7→


0 if z′ = z and σ(z) = 1 ,

1 if z′ = z and σ(z) = 0 ,

σ(z′) if z′ 6= z .

Given a subset Z ′ of Z, the assignment obtained from σ by restricting the domain to

Z ′ is denoted ‘σ�Z′ ’.

Given a second assignment τ , the completion of σ by τ is the assignment

σ � τ := σ ∪ τ�vars(τ)\vars(σ) ,

that is, the assignment obtained from σ by adding τ wherever σ is undefined.

Now we introduce some terminology pertaining to the application of the arbitrary

assignment σ. First, literals. We say that σ falsifies the literal a when a[σ] is 0, and

satisfies it when a[σ] is 1.

We say that σ falsifies a clause when it falsifies all of its literals, and satisfies it

when it satisfies at least one of its literals. It is easy to see that

σ falsifies C ⇔ C[σ] = ∅ and σ satisfies C ⇔ C[σ] = L . (2.1)

We use the symbol L to represent a satisfied clause because it is the closest thing we

have to the opposite of the falsified clause ∅, namely its set complement.

An assignment is said to falsify a CNF when it falsifies at least one of its clauses,

and to satisfy a CNF when it satisfies all of its clauses. Therefore

σ falsifies F ⇔ ∅ ∈ F [σ] and σ satisfies F ⇔ F [σ] = ∅ . (2.2)

It is easy to check that a total assignment to a CNF, i.e. an assignment to vars(F ),

either satisfies F or falsifies F , and not both. If F has a satisfying assignment we call

it satisfiable, otherwise we call it unsatisfiable.

Now, the satisfaction of a clause represents a kind of disjunction of the satisfaction

of its literals. This explains why occurrences of 0, left behind by falsified literals, are
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discarded. Also, the satisfaction of a CNF represents a kind of conjunction of the

satisfaction of its clauses, and this also explains why occurrences of L, left behind

by satsified clauses, are discarded. Indeed, in a clear sense, our definition of the

application of a substitution, along with (2.1) and (2.2), really define the truth tables

of the logical connectives ∧, ∨ and ¬, which are absent from our object language.

Semantic entailment

We define the entailment relation on F× F as follows.

F � G ⇔ every assignment in 〈vars(F ∪G)〉 satisfying F also satisfies G .

When F � G holds, we say that F entails G. Note that, if F indeed entails G, then

it entails any subset of G. Every CNF entails the empty CNF.

It is also easy to see that that an unsatisfiable CNF entails all other CNFs. More-

over, a CNF is unsatisfiable if, and only if, it entails {∅}.

Complexity

Under a suitable encoding as binary strings, the set of satisfiable formulas forms

the canonical NP-complete language SAT [20, 37]. This is the famous Cook-Levin

Theorem [20, 37]. The set of unsatisfiable formulas forms the canonical coNP-complete

language UNSAT.

2.3 Resolution

Resolution [52] is a logical system (proof system, calculus) employed to identify unsat-

isfiable CNFs. It is often referred to as a ‘refutational’ system, by which it is meant

that the system refutes the satisfiability of the given formula. Intense research into

Resolution began in the mid 1990s, fuelled by advances in satisfiability testing. In-

deed, the calculus is closely linked with the DPLL and CDCL algorithms – we return

to this topic later in the section.

The Resolution proof system

At the centre of the Resolution proof system is a binary inference rule, whose an-

tecedent is called a resolvent. Given a literal p and two clauses C1 and C2 with

p ∈ C1 and p̃ ∈ C2, the resolvent of C1 and C2 over pivot literal p is

res(C1, C2, p) :=
(
C1 \ {p}

)
∪
(
C2 \ {p̃}

)
.
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Axiom: C C is a clause in F

Resolution: Cr Cs
C

C is a resolvent of Cr and Cs

Weakening: . C1

L
C1

C
. C1 subsumes C

Figure 2.1: The rules of Resolution as logical inferences. The input CNF is F .

and the pivot variable is var(p). Any clause C that satisfies C = res(C1, C2, a) for

some literal a is referred to as ‘a resolvent of C1 and C2’.

In essence, a Resolution refutation is just a sequence of resolvents, beginning

from some CNF, and ending at the empty clause. In practice, and in this thesis in

particular, a more general presentation with a weakening rule is preferred.

Definition 2.6 (Resolution derivation). A Resolution derivation from a CNF F is a

sequence C1, . . . , Ck in which at least one of the following holds for each i ∈ [k]:

A Axiom: Ci is a clause in F ;

R Resolution: Ci is resolvent of Cr and Cs, for some r, s < i;

W Weakening: Ci is L, or is subsumed by Cr for some r < i.

The final clause of a derivation is called its conclusion. A Resolution derivation

from F whose conclusion is empty is called a refutation of F . The size of a derivation

is the number of clauses.

The three rules of Resolution, viewed as logical inferences with antecedents and

consequents, are depicted in Figure 2.1.

Example 2.7. Consider the following Resolution derivation π := C1, . . . , C7 from the

formula F := {{x, y}, {x, ȳ}, {x̄, z}, {x̄, z̄}}.

A C1 := {x, y} axiom
A C2 := {x, ȳ} axiom
A C3 := {x̄, z} axiom
A C4 := {x̄, z̄} axiom
R C5 := {x} resolution, i.e. C5 = res(C1, C2, y)
R C6 := {x̄} resolution, i.e. C6 = res(C3, C4, z)
R C7 := ∅ resolution, i.e. C7 = res(C5, C6, x)
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Clauses C1, . . . , C4 belong to F and are introduced as axioms. The remaining clauses

are derived by resolution. Since the conclusion C7 is the empty clause, π is a refutation

of F . The size of π is 7. It is readily verified that F is indeed unsatisfiable. �

Unlike Example 2.7, our definition of Resolution derivation does not state the

choice of rules and antecedents used; they are implicit and, as a result, ambiguous. We

could of course make this information explicit, writing it on the side of the derivation

as in Example 2.7, but this is rather cumbersome. On the other hand, an unambiguous

account of the choice of rules and antecedents is often useful, in particular for proof

by mathematical induction.

For that reason, we simply assume that an arbitrary but fixed choice of inference

rules and antecedents is associated with any given refutation; that is, in any refutation

π := C1, . . . , Ck, each Ci is the consequent of the application of exactly one inference

rule whose antecedents are well-defined.

Soundness

We proceed to show that Resolution is both sound and complete for unsatisfiable for-

mulas; that is, a formula has a Resolution refutation if, and only if, it is unsatisfiable.

To say that Resolution is ‘sound’ is to say that only unsatisfiable formulas have

refutations. This is very easy to prove, and comes down to semantic entailment. In

fact, in a derivation every clause Ci is an ‘implicant’ of the input CNF F in the sense

that F � F ∪ {Ci}. Since the conclusion Ck is the empty clause, every assignment to

vars(F ) falsifies F ∪ {Ck}, and therefore falsifies F as well.

Fact 2.8. A formula is unsatisfiable if it has a Resolution refutation.

Proof. Let π := C1, . . . , Ck be a Resolution derivation of a formula F . By induction

on i ∈ [k], we prove that F � {Ci}. For the base case i = 1, C1 was introduced

by hypothesis and therefore belongs to F , hence F � {C1} holds trivially. For the

inductive step, we let i ≥ 2, and consider two cases:

A If Ci was introduced by hypothesis the inductive step is identical to the base

case.

R If Ci was derived by resolution, then Ci is the resolvent of Cr and Cs over pivot

literal p for some r, s < i. Let σ be an assignment to vars(F ) satisfying F .

By the inductive hypothesis, σ satisfies Cr and Cs. Aiming for contradiction,

suppose that σ falsifies Ci. If σ falsifies p then it also falsifies Cr (which subsumes

Ci ∪ {p}). On the other hand, if σ falsifies p̃ then it also falsifies Cs (which
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subsumes Ci ∪ {p̃}). In either case, we reach a contradiction, since σ satisfies

both Cr and Cs by the inductive hypothesis.

W If Ci was derived by weakening, there are two subcases. First, if Ci = L,

the inductive step follows trivially, since L is satisfied by every assignment by

definition. Second, if Ci is subsumed by Cr with r < i, then {Cr} � {Ci}, so

F � {Cr} � {Ci} by the inductive hypothesis.

Completeness

To say that Resolution is ‘complete’ is to say that every unsatisfiable formula has a

refutation. This is also very easy to prove, by means of a simple construction.

Fact 2.9. A formula has a Resolution refutation if it is unsatisfiable.

Proof. Let F be an unsatisfiable CNF over variables Z := {z1, . . . , zn}, and let

α1, . . . , α2n define the natural lexicographic ordering of the assignments to Z, as in

σ1 := z1 7→ 0, . . . , zn−2 7→ 0, zn−1 7→ 0, zn 7→ 0 ≈ 0 · · · 000 ,
σ2 := z1 7→ 0, . . . , zn−2 7→ 0, zn−1 7→ 0, zn 7→ 1 ≈ 0 · · · 001 ,
σ3 := z1 7→ 0, . . . , zn−2 7→ 0, zn−1 7→ 1, zn 7→ 0 ≈ 0 · · · 010 ,
σ4 := z1 7→ 0, . . . , zn−2 7→ 0, zn−1 7→ 1, zn 7→ 1 ≈ 0 · · · 011 ,
...

...
...

...
...

σ2n := z1 7→ 1, . . . , zn−2 7→ 1, zn−1 7→ 1, zn 7→ 1 ≈ 1 · · · 111 .

Letting ‘◦’ denote concatenation of sequences, let π := πn◦· · ·◦π0 be the sequence

in which each

πi := Ci
1, . . . , C

i
2i ,

and the clauses Ci
j are defined recursively as follows:

• for j in [2n], Cn
j is the largest clause falsifed by σj;

• for i in [n] and j in [2i−1], Ci−1
j := res(Ci

2j−1, C
i
2j, zi).

It is easy to see that each clause in πn can be derived from a clause in F by

weakening, and it is readily verified by downward induction on i in {n, . . . , 0} that

each clause in π can be derived from preceding clauses by resolution. Moreover, it is

easy to see that the conclusion C0
1 is the empty clause. Thus

seq(F ) ◦ π

is a Resolution refutation of F , where seq(F ) denotes the clauses of F written in an

arbitrary sequence.
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{x, y} {x, ȳ} {x̄, z} {x̄, z̄}

{x} {x̄}

∅

A A A A

R R

R

Figure 2.2: Depiction of the tree-like refutation from Example 2.7.

Tree-like and DAG-like derivations

A Resolution derivation can be viewed as a directed acyclic graph (DAG) in which

nodes are clauses and edges are inferences. More precisely, given a Resolution deriva-

tion π := C1, . . . , Ck, construct a graph Gπ := (V,E) as follows.

• For each clause Ci add a vertex vi, labelled with Ci, to V .

• For each clause Ci, and each antecedent Cr of Ci, add an edge (vr, vi) to E.

The graph Gπ is called the underlying dag for π.

Figure 2.2 depicts the underlying DAG for the Resolution refutation in Exam-

ple 2.7. In this case, the DAG happens to be a tree. Derivations such as this one, for

which the underlying DAG is a tree, are called tree-like derivations.

Informally, and more intuitively, a derivation is tree-like when each clause is an

antecedent of at most one inference. The restriction of Resolution to tree-like deriva-

tions is known as Tree-like Resolution. When a comparison with the tree-like version

is to be emphasised, Resolution proper is often referred to as General Resolution.

2.4 Abstract Proof Systems

We will work with concrete proof systems throughout this thesis. Nonetheless, an

overview of the abstract theory of proof complexity is essential.

Abstract versus concrete definitions

The following definition is the central one for proof complexity. By a language, we

mean a subset of {0, 1}∗.

Definition 2.10 (proof system [21]). A proof system for a language L over an al-

phabet Σ is a polynomial-time computable function from Σ∗ onto L.
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Intuitively, one can interpret the strings over the alphabet Σ as the proofs of the

system. Formally, given a proof system P for L over Σ, a string π ∈ Σ∗ for which

P(π) = x is called a P-proof of x ∈ L. In this sense, Definition 2.10 captures three

important features of a proof system:

• Soundness : there exists no P-proof of a string not in L, in other words the

codomain of P is L;

• Completeness : there exists a P-proof of every string in L, in other words the

range of P is L;

• Polynomial-time checkability : P-proofs can be checked efficiently, in other words

P is polynomial-time computable.

The abstract formalisation of these features, however, is not ideal in the concrete

setting. Hence, in practice we recognise that the systems with which we are concerned

can be made to fit Definition 2.10, but we refrain from doing so exactly.

Let us illustrate this point with Resolution. To define Resolution as a function

from the set of Resolution refutations into UNSAT is of course possible. Instead,

we prefer to define formally the derivation, and nothing more; the derivation is the

central object of study. We show that Resolution refutations indeed give rise to a

proof system for the language UNSAT, consistent with the abstract definition, by

proving three things:

• Soundness : there exists no Resolution refutation of a satisfiable formula;

• Completeness : every unsatisfiable formula has a Resolution refutation;

• Polynomial-time checkability : Given a derivation π from a CNF F , it can be

decided algorithmically in time polynomial in |F |+|π| whether π is a Resolution

refutation of F .

Of course, these are the same three features that we extracted from the abstract

definition, translated into the concrete nomenclature of Resolution. In fact, we have

already done most of the work towards proving that all three features are present.

Theorem 2.11. Resolution is a proof system for UNSAT.

Proof. Soundness and completeness were established with Facts 2.8 and 2.9. To

establish polynomial-time checkability, let π := C1, . . . , Ck be a Resolution derivation

from a CNF F .
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Observe that given three clauses Ca, Cb, Ci, one can determine in time

O((|Ca|+ |Cb|) · |Ci|) = O(|π|2)

whether Ci is a resolvent of Ca and Cb, simply by checking whether

Ca \ Ci = {p} and Cb \ Ci = {p̃}

for some literal p. For a fixed clause Ci, there are not more than k2 distinct pairs of

earlier clauses, therefore it can be decided in time O(|π|4) whether or not Ci can be

derived by resolution.

Whether a clause Ci can be introduced by hypothesis can clearly be determined

in time O(|F |2). Weakening steps can be removed in linear time. Hence, by checking

each clause in turn, we can verify that the sequence π is indeed a Resolution refutation

in time O(|F |+ |π|4).

Remark 2.12. From a technical standpoint, one might take exception to the fact that

an abstract proof system is a total function from Σ∗, whereas Resolution refutations

are sequences of clauses. This exception, however, is easily dealt with. One could

simply fix an encoding for sequences of clauses on some alphabet; strings that do not

encode a sequence of clauses would be considered refutations of a fixed formula. �

Polynomial bounding

A proof system P is said to be polynomially bounded if the following holds for some

polynomial p:

for each x ∈ L, there exists a P-proof π of x with |π| ≤ p(|x|).

The following theorem, due to [21], proves a fundamental connection between proof

complexity and separation of complexity classes.

Theorem 2.13 ([21]). There exists a polynomially bounded proof system for UNSAT

if, and only if, NP = coNP.

Example 2.14. Resolution is not polynomially bounded [67]. To prove this, it suffices

to identify a formula family {Fn}n∈N that does not have Resolution refutations of size

O(|Fn|c) for any constant c. In fact, there are several well-known examples of such

formula families [29, 69, 19]. �
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Simulation

The collection of all proof systems for a fixed language forms a hierarchy in terms of a

natural relation called p-simulation. The relation is very similar to that of reduction

between languages in computational complexity. Moreover, it admits an analogous

notion of degree whereby all proof systems of comparable strength form a single

equivalence class. Here, ‘comparable’ is qualified as ‘up to a polynomial proof-size

increase’.

Formally, given two proof systems P1,P2 for the same language over alphabets

Σ1,Σ2, by ‘P1 p-simulates P2’ (written P2 ≤p P1) we mean that there exists a

polynomial-time computable function f : Σ∗2 → Σ∗1 satisfying P1(h(π)) = P2(π) for

each π ∈ Σ∗2.

If P1 and P2 p-simulate one another, then they are said to be p-equivalent, written

P1 ≡p P2. If P1 p-simulates P2 but P2 does not p-simulate P1, then we say that

P1 is strictly p-simulates P2, written P2 <p P1. Finally, if neither one of P1 and P2

simulates the other, then they are said to be incomparable.

Example 2.15. General Resolution trivially p-simulates Tree-like Resolution. On the

other hand, Tree-like Resolution does not simulate General Resolution. As we men-

tioned in Section 2.3, there exist formulas that have linear-size Resolution refutations,

but do not have polynomial-size tree-like Resolution refutations.

Therefore we can say that Tree-like Resolution and General Resolution are not

p-equivalent, and that the latter is strictly stronger than the former. �
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Chapter 3

Quantified Boolean Formulas

In the final chapter of Part I, we cover the essential background for quantified Boolean

formulas, a formalism that generalises propositional logic with existential and univer-

sal quantification. We cover syntax in Section 3.1, followed by semantics in Sec-

tion 3.2. In Section 3.3, we introduce three prominent ‘hand-crafted’ families of

quantified Boolean formulas. Finally in Section 1.2, we take a brief look at the wider

landscape of QBF proof complexity, before homing in on the four systems with which

we deal in detail.

3.1 Syntax

The syntax of quantified Boolean formulas is an extension of conjunctive normal form.

The only additions to the object language are the quantification symbols ‘∃’ and ‘∀’.

General form

We deal exclusively with quantified Boolean formulas in so-called prenex conjunctive

normal form. In short, this means that all of the variables appearing in a CNF are

first quantified either existentially (∃) or universally (∀).

Definition 3.1 (QBF). A quantified Boolean formula (QBF) is of the form

∀U1∃X1 · · · ∀Ud∃Xd · F ,

where U1, X1, . . . , Ud, Xd are pairwise disjoint sets of Boolean variables, and F is a

CNF for which

vars(F ) ⊆
⋃
i∈[d]

(Ui ∪Xi) .
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The set of all QBFs is denoted ‘Q’.

We typically write a QBF as Q := P · F , and we call

P := ∀U1∃X1 · · · ∀Ud∃Xd

the quantifier prefix of Q, and F the matrix of Q. We refer to the variable sets Ui

and Xi as the universal and existential blocks of Q respectively. A block may be an

empty set. For example, putting U1 as the empty set mimics the situation in which

the first block is existential. The quantifier depth of Q is the number of universal

blocks.

For ease of reading, we may write the blocks of a prefix as individually quantified

variables, rather than as sets. For example, the prefix ∀U1∃X1, with U1 := {u1, u2}
and X1 := {x1, x2}, may be written ∀u1∀u2∃x1∃x2. This is merely a typographic

convenience; there is no implied order of quantification between the variables in a

single block.

In the case where d = 0, the matrix contains no variables, and the QBF reduces

to either the empty CNF ∅, or the CNF {∅} containing only the empty clause.

When we refer to the universal or existential variables of Q, we mean the elements

of the sets

vars∀(Q) :=
⋃
i∈[d]

Ui and vars∃(Q) :=
⋃
i∈[d]

Xi ,

or the sets themselves. Unless we specify otherwise, we assume that there are m

universal variables ui indexed from 1 to m, as in

U = {u1, . . . , um} ,

and n existential variables xi indexed from 1 to n,

X = {x1, . . . , xn} .

By a ‘total existential assignment ’ to Q, we mean a total assignment to vars∃(Q),

and by a ‘total universal assignment ’ we mean a total assignment to vars∀(Q)

Applying assignments

The application of an assignment σ to a QBF Q is

Q[σ] := P [σ] · F [σ] ,

where the prefix P [σ] is obtained from P by deleting the variables in vars(σ), then

removing any empty blocks and their associated quantifiers.

32



3.2 Semantics

A description of QBF semantics must distinguish true formulas from false ones. Some

authors choose to define semantics inductively on the syntactic structure (e.g. [32]).

We prefer the alternative, equivalent definition based on models and countermodels

(e.g. [50]).

Models

For a general QBF Q, the dependency set for an existential variable is the set of

universal variables that are quantified earlier in the prefix. For example, given an

existential xi that belongs to block Xj, the dependency set for xi in Q is

Si := {u ∈ vars∀(Q) : u is in Uk and k < j} .

For our general QBF, the naming of the existential dependency sets S1, . . . , Sn is

bound to the indexing of the existential variables x1, . . . , xn.

A set of existential dependency functions for Q is a set of mappings f := {fi}i∈[n],

where each individual function has the signature

fi : 〈Si〉 → 〈{xi}〉 .

When a set of existential dependency functions f satisfies the following property,

we call it a model for Q.

Definition 3.2 (model). We call a set of existential dependency functions {fi}i∈[n]

a model for a QBF Q when, for each µ in 〈vars∀(Q)〉, the assignment

µ ∪ {fi(µ�Si
)}i∈[n]

satisfies the matrix.

Example 3.3. The QBF

∀u1∃x1 · {{x̄1, ū1}, {x1, u1}}

has the model {f1}, whose dependency function is

f1 : 〈{u1}〉 → 〈{x1}〉
{ū1} 7→ {x1}
{u1} 7→ {x̄1} .

We can verify that this is indeed a model, by checking that µ ∪ f1(µ) satisfies the

matrix for each assignment µ to u1; that is, by noting that both assignments {ū1, x1}
and {u1, x̄1} are satisfying. �
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It is often useful to treat the existential assignment {fi(µ�Si
)}i∈[n] as a whole. For

that reason, we commit an abuse of notation: we also treat the symbol f as the

function

f : 〈vars∀(Q)〉 → 〈vars∃(Q)〉
µ 7→ {fi(µ�Si

)}i∈[n] ,

whereby f(µ) becomes an alias for {fi(µ�Si
)}i∈[n]. We note two things:

(a) f(µ) and f(ν) agree on xi whenever µ and ν agree on Si;

(b) f is a model if, and only if, µ ∪ f(µ) always satisfies the matrix.

Truth, falsity and semantic entailment

Models are the basic objects that witness the truth value of a QBF. We call a QBF

true when it has a model, and false when it does not. We use the phrases ‘f is a

model for Q’ and ‘f models Q’ synonymously.

Models also form the basis of semantic entailment for QBFs, the analogue of

semantic entailment for CNFs (Subsection 2.2). We define the entailment relation on

Q×Q as follows.

Q � R ⇔ every model for Q also models R.

When F � G holds, we say that F entails G. We only consider entailment between

QBFs which have the same prefix.

Countermodels

A QBF is true when, and only when, it has a model, and hence it is false when no

model exists. However, we can also witness falsity by the existence of a countermodel,

the natural dual.

We consider again our general QBF Q. The dependency set for a universal variable

ui from block Uj is

Hi := {x ∈ vars∃(Q) : x is in Xk and k < j} .

The naming of the universal dependency sets H1, . . . , Hm is bound to the indexing of

the universal variables u1, . . . , um.

A set of universal dependency functions for a QBF is a set of mappings h :=

{hi}i∈[m], where each individual function has the signature

hi : 〈Hi〉 → 〈{ui}〉 .
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Definition 3.4 (countermodel). We call a set of universal dependency functions

{hi}i∈[m] a countermodel for a QBF Q when, for each ε in 〈vars∃(Q)〉, the assignment

ε ∪ {hi(ε�Hi
)}i∈[m]

falsifies the matrix of Q.

Example 3.5. The QBF

∃x1∀u1 · {{ū1, x̄1}, {u1, x1}} .

has the countermodel {h1}, where the dependency function h1 is defined by

h1 : 〈{x1}〉 → 〈{u1}〉
{x̄1} 7→ {ū1}
{x1} 7→ {u1} .

To verify that this is indeed a countermodel, we need to check that ε ∪ h1(ε) falsifies

the matrix for each assignment ε to x1. This is clear; {x̄1, ū1} falsifies the second

clause, and {x1, u1} falsifies the first. �

We also commit a dual abuse of notation: we treat the symbol h as the function

h : 〈vars∃(Q)〉 → 〈vars∀(Q)〉
µ 7→ {hi(ε�Hi

)}i∈[m] ,

whereby h(ε) becomes an alias for {hi(ε�Hi
)}i∈[m]. We emphasize

(a) h(ε) and h(δ) agree on ui whenever ε and δ agree on Hi;

(b) h is a countermodel if, and only if, ε ∪ h(ε) always falsifies the matrix.

Applying assignments to dependency functions

In certain situations, we can preserve the models or countermodels of a QBF under

application of assignments. For this, we need to know how to apply assignments to

models and countermodels, or more generally, to sets of dependency functions.

Let σ be a partial assignment to a QBF Q, with universal part σ∀ and existential

part σ∃. To apply σ to a set of existential dependency functions f , we discard the

dependency functions for the variables in vars(σ∃), and apply σ∀ to those remaining.

Formally,

f [σ] := {fi[σ] : xi ∈ X \ vars(σ∃)} ,
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where
fi[σ] : 〈Si \ vars(σ∀)〉 → 〈{ui}〉

µ 7→ fi(µ ∪ (σ∀�Si
)) .

Likewise, the application of σ to a set of universal dependency functions h is

defined as

h[σ] := {hi[σ] : ui ∈ U \ vars(σ∀)} ,

where
hi[σ] : 〈Hi \ vars(σ∃)〉 → 〈{xi}〉

ε 7→ fi(ε ∪ (σ∃�Hi
)) .

The following lemma tells us some of the cases where models and countermodels

are preserved by assignment.

Lemma 3.6. Let Q be a QBF, let f and h be sets of existential and universal depen-

dency functions, and let σ be partial assignment to Q.

(a) If fi is identically σ�{xi} for each existential xi in vars(σ∃), then

f models Q ⇒ f [σ] models Q[σ] .

(b) If hi is identically σ�{ui} for each universal ui in vars(σ∀), then

h countermodels Q ⇒ h[σ] countermodels Q[σ] .

Proof. Let σ∀ and σ∃ be the universal and existential subassignments of σ, and let F

be the matrix of Q.

(a) Let µ be a total universal assignment to Q[σ], and suppose that f models Q.

Then,

σ∀ ∪ µ ∪ f(σ∀ ∪ µ)

satisfies F . Since fi is identically σ�{xi} for each xi in vars(σ∃), we have

f(σ∀ ∪ µ) = σ∃ ∪ {fi((σ∀ ∪ µ)�Si
) : xi /∈ vars(σ∃)}

= σ∃ ∪ {fi[σ](µ�Si
) : xi /∈ vars(σ∃)} ,

and it follows that µ ∪ f [σ](µ) satisfies F [σ]. Thus f [σ] models Q[σ].

(b) The proof is dual to that of (a). Let ε be a total existential assignment to Q[σ],

and suppose that h countermodels Q. Then,

σ∃ ∪ ε ∪ h(σ∃ ∪ ε)
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falsifies F . Since hi is identically σ�{ui} for each ui in vars(σ∀), we have

h(σ∃ ∪ ε) = σ∀ ∪ {hi((σ∃ ∪ ε)�Hi
) : ui /∈ vars(σ∀)}

= σ∀ ∪ {hi[σ](ε�Hi
) : ui /∈ vars(σ∀)} ,

and it follows that ε∪ h[σ](ε) falsifies F [σ]. Thus h[σ] countermodels Q[σ].

Lemma 3.7. Let Q be a QBF whose first block is Z, let f be a set of existential

dependency functions, and let h be a set of universal dependency functions.

(a) If Z is universal, then

f models Q ⇔ for all µ in 〈Z〉, f [µ] models Q[µ] ,
h countermodels Q ⇔ for some µ in 〈Z〉, h[µ] countermodels Q[µ] .

(b) If Z is existential, then

f models Q ⇔ for some ε in 〈Z〉, f [ε] models Q[ε] ,
h countermodels Q ⇔ for all ε in 〈Z〉, h[ε] countermodels Q[ε] .

Proof. The forward directions for all statements follow from Lemma 3.6. The reverse

directions follow directly from the definitions of model and countermodel (Defini-

tions 3.2 and 3.4).

The folklore theorem

It is convenient that we can witness the falsity of a QBF by showing that a counter-

model exists, since it usually easier to construct a countermodel than to prove the

nonexistence of a model. Moreover, it fosters a pleasant duality between models and

countermodels as witnesses of truth and falsity.

That this duality holds is easy to intuit, could probably be taken for granted, and

is something of a folklore result [45]. However, the result becomes rather important

for us in Part III (in the broader context of DQBF), and for that reason, we formally

state and prove it.

Theorem 3.8 (Folklore Theorem). A QBF is false if, and only if, it has a counter-

model.

Proof. Let Q be a QBF. We prove the fact by induction on the quantifier depth of

Q.

First, the base case d = 0. The matrix of a QBF with no blocks is either the empty

CNF, or the CNF containing only the empty clause. In the former case, the matrix is
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a tautology, Q is modelled by the empty set of functions and no countermodel exists.

In the latter case, the matrix is unsatisfiable, Q is countermodeled by the empty set

of functions and no model exists.

Now, for the inductive step, let d ≥ 1, and let Q be of the form

∀U1∃X1 · · · ∀Ud∃Xd · F .

For the “only if” direction, suppose that Q has a countermodel h. By Lemma 3.7,

there exists some µ0 in 〈U1〉 such that, for all ε in 〈X1〉, h[µ0 ∪ ε] countermodels

Q[µ0 ∪ ε]. Hence Q[µ0 ∪ ε], which has quantifier depth d− 1, does not have a model,

by the inductive hypothesis. Now, if we suppose that Q has a model f , we reach a

contradiction, since by Lemma 3.7, there exists some ε0 in 〈X1〉 such that f [µ0 ∪ ε0]

models Q[µ0 ∪ ε0].

For the “if” direction, suppose that Q is false, and let f be an arbitrary set of

existential dependency functions for Q. By Lemma 3.7, there exists some µ0 in 〈U1〉
such that, for all ε in 〈X1〉, f [µ0 ∪ ε] does not model Q[µ0 ∪ ε]. Moreover, every set

of existential dependency sets for Q[µ0 ∪ ε] can be obtained from some set for Q by

applying the assignment µ0 ∪ ε. Hence Q[µ0 ∪ ε] does not have a model, so it must

have a countermodel, by the inductive hypothesis.

Aiming for contradiction, suppose that Q does not have a countermodel, and let

h be an arbitrary set of universal dependency functions for Q. By Lemma 3.7, there

exists some ε in 〈X1〉 such that h[µ0 ∪ ε0] does not countermodel Q[µ0 ∪ ε0]. Every

set of universal dependency sets for Q[µ0 ∪ ε0] can be obtained from some set for Q

by applying the assignment µ0 ∪ ε0. We reach a contradiction, since this implies that

Q[µ0 ∪ ε0] does not have a countermodel.

The evaluation game

Models and countermodels for QBFs have an equivalent description, given in terms

of winning strategies in a two-player evaluation game.

The game is contested between two adversaries conventionally named (with some

imagination) the existential (∃) and universal (∀) players. At the outset, the board

consists of a QBF Q. The players take turns to choose assignments to the blocks

of Q, in the order of the prefix, beginning with the leftmost block. Naturally, ∃ is

responsible for the assignment of existential blocks, and ∀ for the universal ones.

The game ends when the assignment to the final block is made. At this point,

the players have constructed a total assignment, which either satisfies or falsifies the
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matrix. In the former case the existential player wins, in the latter, the universal

does.

Now, given a model f , the existential player can win the evaluation game by

force. She simply plugs the assignments chosen by her opponent into the individual

functions fi to obtain the correct moves. By definition of model, this strategy always

yields an assignment that satisfies the matrix, however her opponent plays.

So a model encodes a winning strategy for the existential player in the evaluation

game. It is also clear intuitively that a winning strategy for the existential player

defines a model. Similarly, countermodels are equivalent to winning strategies for the

universal player.

Thus, we can use winning strategies to witness the truth values: A QBF is true

if, and only if, it has a winning existential strategy, and is false if, and only if, it has

a winning universal strategy.

Complexity

Under a suitable encoding as binary strings, the set of true QBFs forms the canonical

PSPACE-complete language TQBF [65]. Since PSPACE = coPSPACE, the set of false

QBFs also forms a canonical PSPACE-complete language FQBF.

3.3 Formula Familes

A QBF family is an object that associates each natural number with a QBF. One

can view this as a countable sequence of QBFs, but formally we choose to define it

as a function from N into Q. The image under a natural number n is referred to as

the nth instance of the family.

We say that a QBF family is d-bounded when every instance has quantifier depth

at most d, and has unbounded quantifier depth when it is not d-bounded for any d.

Follwing the standard method of proof complexity, we employ QBF families to

demonstrate that QBF proof systems are not polynomially bounded; that is, we show

that the size of the shortest refutation of the nth instance grows superpolynomially

in n. Such a result, which we refer to as a proof-size lower bound, is always required

whenever one wishes to show constructively that a p-simulation between two systems

does not exist. Analogous to the separation of complexity classes (where one must

show the absence of reductions), proof-size lower bounds generally comprise the most

difficult part of any such argument.
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Many of our proof complexity results will be demonstrated by one of three ‘hand-

crafted’ QBF families.

The equality family

The first of our three families is the simplest, and arguably the simplest example of

a QBF family which requires large proofs in a non-trivial QBF proof system.

Definition 3.9 (equality family). The equality family is the QBF family EQ whose

nth instance is

EQn := ∃x1 · · ·xn∀u1 · · ·un∃z1 · · · zn · eqn ,

where the CNF eqn consists of the clauses

{x̄i, ūi, zi} , for i in [n] ,
{xi, ui, zi} , for i in [n] ,
{z̄1, . . . , z̄n} .

Note that every instance of EQ has a single universal block, and quantifier depth

1, so EQ is 1-bounded.

It is easy to see that the nth equality formula is false, because the universal player

has the following winning strategy: set each universal variable ui to the same value

as the existential player sets xi. Employing this strategy leaves the existential player

needing to satisfying all n unit clauses {zi}, whereupon the clause containing the full

set of negative zi literals must be falsified.

It is also not so hard to see that the winning strategy for the universal player is

unique – any deviation from it allows the existential player to win. Hence, given the

equivalence between strategies and countermodels, EQn has a unique countermodel.

We will also have cause to use the equality family with a modified prefix.

Definition 3.10 (interleaved equality family). The interleaved equality family is the

QBF family EQ′ whose nth instance is

EQ′n := ∃x1∀u1∃z1 · · · ∃xn∀un∃zn · eqn .

Note that the quantifier depth of the nth instance of the interleaved equality family

is n, so EQ′ is not d-bounded for any d; that is, EQ′ has unbounded quantifier depth.

The interleaved equality formulas remain false, but the countermodel is no longer

unique.
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The parity family

Our second QBF family is also 1-bounded with a unique countermodel per instance.

Definition 3.11 (parity family [14]). The parity family is the QBF family PA whose

nth instance is

PAn := ∃x1 · · ·xn∀u∃z1 · · · zn · pan ,

where the CNF pan consists of the clauses

{x1, z̄1} ,
{x̄1, z1} ,
{xi+1, zi, zi+1} , for i in [n− 1] ,
{x̄i+1, z̄i, zi+1} , for i in [n− 1] ,
{xi+1, z̄i, z̄i+1} , for i in [n− 1] ,
{x̄i+1, zi, z̄i+1} , for i in [n− 1] ,
{u, z̄n} ,
{ū, zn} .

In a nutshell, the parity family encodes the notion that both values of the universal

variable u are equal to the parity of the xi, which is of course false. Accordingly, the

unique winning strategy for the universal player is to set u not equal to the parity of

the xi.

The Kleine Büning et al. family

Our final QBF family is arguably the most famous, being the first QBF family for

which a non-trivial proof-size lower bound was shown.

Definition 3.12 (Kleine Büning et al. family [35]). The Kleine Büning et al. family

is the QBF family KB whose nth instance is

KBn := ∃x1y1∀u1 · · · ∃xnyn∀un∃z1 · · · zn · kbn ,

where kbn is the CNF consisting of the clauses

{x̄1, ȳ1} ,
{xi, ūi, x̄i+1, ȳi+1} , for i in [n− 1] ,
{yi, ui, x̄i+1, ȳi+1} , for i in [n− 1] ,
{xn, ūn, z̄1, . . . , z̄n} ,
{yn, un, z̄1, . . . , z̄n} ,
{ui, zi} , for i in [n] ,
{ūi, zi} , for i in [n] .
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Note that KB has unbounded quantifier depth.

Each instance of KB is a false QBF. One can verify that the universal dependency

functions {hi}i∈[n] defined by

hi : {〈Hi〉} → 〈{ui}〉

ε 7→

{
ui if ε(xi) = 0

ūi otherwise

form a countermodel for KBn.
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Part II

Lower-bound Techniques
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Chapter 4

Universal Expansion

IR-calc

∀Exp+Res

LDQ-Res

Q-Res

Universal expansion is one of two major paradigms in QBF solving, the other

being universal reduction. In expansion, the aim is to implement a translation from

QBF back to propositional logic, in which universal variables are ‘expanded out’.

The result is a fully existentially quantified QBF, which, as we have seen, is merely

a propositional CNF.

Expansion-based solvers such as RAReQs [33] work by implementing this reduc-

tion to propositional logic, and passing the result to a SAT solver. In practice, the

expansion is carried out piecemeal and multiple SAT calls are made.

A characterisation of expansion lower bounds

In this chapter, we recall ∀Exp+Res [34], the basic theoretical model underpinning

expansion-based solving, and we propose a semantic technique for proving proof-size

lower bounds.

The technique emerges from a corresponding semantic translation from QBF into

propositional logic. Studying the semantics of the translation allows us to determine

the size increase of the formula due to the expansion. Moreover, the size increase can
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be phrased in terms of a measure defined on the countermodels of the QBF, that we

call countermodel size.

The main theorem of this chapter (Theorem 4.13) tells us that lower bounds on

countermodel size translate directly into ∀Exp+Res proof-size lower bounds. It also

tells us that any ∀Exp+Res lower bound either comes from a countermodel-size lower

bound or a lower bound from propositional Resolution. Thus we completely charac-

terise hardness in ∀Exp+Res as either semantic (large countermodels) or propositional

(Resolution hardness).

Organisation of the chapter

In Section 4.1, we explain the universal expansion paradigm. In Section 4.2, we

describe the proof system ∀Exp+Res, followed by a lower-bound technique and a

characterisation of hardness in Section 4.3.

4.1 The universal expansion paradigm

Given our goal of proving semantically-grounded lower bounds, we will present uni-

versal expansion with an emphasis on semantics. The reader will find the presenta-

tion significantly different from the original [34] and subsequent presentations [14].

However, it should be emphasised that this is merely a change of presentation. The

proposal of the solving paradigm and the associated proof system originates from [34].

Universal expansion, in the simplest sense, is a method for removing universally

quantified variables entirely from QBFs. The process produces a fully existentially

quantified QBF, which is usually written simply as a CNF, without the existential

quantification. The important point is that the expanded CNF is satisfiable if, and

only if, the original QBF is true.

To illustrate, consider a QBF

∃x0∀u1∃x1∀u2∃x2 · φ(x0, u1, x1, u2, x2) .

The universal expansion of this QBF is the CNF

φ(x0, 0, x
0
1, 0, x

00
2 ) ∪ φ(x0, 0, x

0
1, 1, x

01
2 ) ∪ φ(x0, 1, x

1
1, 0, x

10
2 ) ∪ φ(x0, 1, x

1
1, 1, x

11
2 ) ,

consisting of four substitution instances of the QBF matrix φ. In each one, the

universal variables u1 and u2 are substituted by constants 0 and 1 (i.e. they are

assigned) so that each substitution instance corresponds to some total assignment to

the universals.
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The existential variables are not assigned, instead they are replaced by new vari-

ables. These new variables are named in such a way that the dependencies of the

original existentials are recorded in the superscript. For example, the new variables x0
1

and x1
1 record the dependency of the existential x1 on the universal u1, which is quan-

tified earlier. Notice that x1 is replaced by x0
1 in the two subformulas φ(x0, 0, x

0
1, 0, x

00
2 )

and φ(x0, 0, x
0
1, 1, x

01
2 ) in which u1 takes the value 0. In the other two subformulas, in

which u1 is assigned 1, x1 is replaced by x1
1.

Similarly, the new variables x00
2 , x

01
2 , x

10
2 , x

11
2 record the dependency of x2 on both

u1 and u2. Each one replaces x2 in the subformulas corresponding to the appropriate

assignment to u1 and u2.

With more clarity, and less comfort, one can write the appropriate universal as-

signments explicitly into the superscripts:

φ(x∅0, 0, x
{ū1}
1 , 0, x

{ū1,ū2}
2 ) ∪ φ(x∅0, 0, x

{ū1}
1 , 1, x

{ū1,u2}
2 ) ∪

φ(x∅0, 1, x
{u1}
1 , 0, x

{u1,ū2}
2 ) ∪ φ(x∅0, 1, x

{u1}
1 , 1, x

{u1,u2}
2 ) .

Superscripts formatted in this way are called annotations, and variables that hold

them are called annotated variables. The annotation is always a total assignment to

the dependency set of the original existential variable. An existential in the leftmost

block, like x0, always receives the empty annotation, since its dependency set is empty.

The annotation in the superscript of an annotated literal can get quite large. For

this reason, we often write annotated literals xσ and x̄σ as pairs (x, σ) and (x̄, σ).

The explicit use of assignments as annotations yields a neat and tidy form of the

universal expansion of a QBF, namely, the union over all universal assignments µ of

the application of the substitution

µ ∪ {xi 7→ (xi, µ�Si
) : i ∈ [n]}

to the matrix.

Example 4.1. The first instance PA1 of the parity family is the QBF whose prefix is

∃x1∀u∃z1 and whose matrix is the CNF

pa1 := {{x̄1, z1}, {x1, z̄1}, {ū, z1}, {u, z̄1}} .

The expansion of PA1 is the union of the two CNFs

pa1[{u 7→ 0, x1 7→ x∅1, z1 7→ z
{ū}
1 }] = {{x̄∅1, z

{ū}
1 }, {x∅1, z̄

{ū}
1 }, {z̄

{ū}
1 }} .

pa1[{u 7→ 1, x1 7→ x∅1, z1 7→ z
{u}
1 }] = {{x̄∅1, z

{u}
1 }, {x∅1, z̄

{u}
1 }, {z

{u}
1 }} .

PA1 is false, and it can be verified that its expansion is unsatisfiable, as every assign-

ment to the variables {x∅1, z
{ū}
1 , z

{u}
1 } falsifies some clause in the expansion. �
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Partial expansions

In practice, we don’t always consider the whole expansion of a QBF. Merely writ-

ing out the full expansion can take exponential time, as the number of substitution

instances is exponential in the number of universal variables.

However, there are many cases in which the expansion is unsatisfiable, but not

minimally unsatisfiable. In these cases, there exists a smaller set of substitution

instances whose union is unsatisfiable.

To avoid an inherent, unnecessary size increase, we define the partial expansion

of a QBF with respect to an arbitrary set of total universal assignments.

Definition 4.2 (partial expansion). Let Q := P · F be a QBF with universal variables

U and existential dependency sets S1, . . . , Sn. The partial expansion of Q with respect

to a set of universal assignments Γ ⊆ 〈U〉 is the CNF

exp(Q,Γ) :=
⋃
µ∈Γ

F [µ ∪ {xi 7→ x
µ�Si
i : i ∈ [n]}] .

The total expansion of Q is

exp(Q) := exp(Q, 〈U〉)

4.1.1 Expansion semantics

We have mentioned that a QBF is true if, and only if, the total expansion is unsatisfi-

able. Actually, a much stronger statement can be made, and a much tighter semantic

relationship exists between the semantics of QBF and propositional logic: There is

a natural map between satisfying assignments for the expansion and models of the

QBF.

In fact, there exists a one-one correspondence between assignments to the expan-

sion of a QBF and the set consisting of all possible sets of dependency functions,

that maps to a model if, and only if, the assignment satisfies the expansion. The

correspondence is witnessed by an operation that we call contraction.

Definition 4.3 (contraction). Given a total assignment σ to the expansion of a QBF

Q with dependency sets S1, . . . , Sn, the contraction of σ is the set of dependency

functions {fi}i∈[n] defined by

fi : 〈Si〉 → 〈xi〉
µ 7→ {xi 7→ σ(xµi )} .
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We first show that contraction maps satisfying assignments to models, and falsi-

fying assignments to dependency functions which are not models.

Lemma 4.4. A total assignment to the expansion of a QBF Q is satisfying if, and

only if, its contraction models Q.

Proof. Let σ be a total assignment to the expansion of Q := P · F , and let f :=

{fi}i∈[n] be its contraction.

For the “if” direction, suppose that {fi}i∈[n] models Q. Aiming for contradiction,

suppose that σ falsifies the expansion of Q. Then there exists a clause C in F and a

universal assignment µ such that σ falsifies

C[µ ∪ {xi 7→ x
µ�Si
i : i ∈ [n]}] .

Since fi(µ�Si
)(xi) = σ(x

µ�Si
i ), the assignment

µ ∪ {fi(µ�Si
) : i ∈ [n]}

falsifies C. But this is a contradiction, since it implies that f does not model Q.

Now for the “only if” direction. Suppose that σ satisfies the expansion of Q.

Aiming for contradiction, suppose that f does not model Q. Then there exists a

clause C in F and a universal assignment µ such that

µ ∪ {fi(µ�Si
) : i ∈ [n]}

falsifies C. Since σ(x
µ�Si
i ) = fi(µ�Si

)(xi), σ falsifies the clause

C[µ ∪ {xi 7→ x
µ�Si
i : i ∈ [n]}] ,

which belongs to the expansion of Q. But this is a contradiction, since it implies that

σ does not satisfy the expansion.

We claimed that contraction is a one-one correspondence, and to prove this we

still need to show that every set of dependency functions is the contraction of some

assignment to the expansion. This is easy to see: a set of dependency functions

{fi}i∈[n] is the contraction of the assignment⋃
µ∈〈U〉

{xµ�Si
i 7→ fi(µ�Si

) : i ∈ [n]} .

Fact 4.5. Each set of dependency functions for a QBF is the contraction of some

total assignment to its expansion.
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Lemma 4.4 and Fact 4.5 together imply the following.

Corollary 4.6 ([34]). A QBF is true if, and only if, its total expansion is satisfiable.

This corollary is the reason why universal expansion is a viable approach to QBF

solving. We note that it was not stated or proved in [34] in the same fashion as we

have proved it here, rather, it is a direct consequence of [34, Thm. 1, p. 29].

4.2 The proof system ∀Exp+Res

We jump straight in and define the system. Our presentation of the expansion

paradigm in the previous section gives rise to a very straightforward definition.

Definition 4.7 (∀Exp+Res [34]). A ∀Exp+Res refutation of a QBF Q is a Resolution

refutation of the total expansion of Q.

Remark. The original presentation of ∀Exp+Res was based on expansion trees [34].

Our definition follows more closely the subsequent presentation from [14], but differs

in that the initial annotations are defined by the expansion, rather than in the axiom

rule [14, Fig. 3, p. 79].

Example 4.8. Figure 4.1 shows a ∀Exp+Res refutation of PA1, that is, a Resolution

refutation of its expansion, namely the CNF

{{x̄∅1, z
{ū}
1 }, {x∅1, z̄

{ū}
1 }, {z̄

{ū}
1 }, {x̄∅1, z

{u}
1 }, {x∅1, z̄

{u}
1 }, {z

{u}
1 }} .

In this case, the expansion is not minimally unsatisfiable, and only four of the six

clauses need to be introduced as axioms. The grey clauses sitting above the axioms,

connected by dotted lines, show the clauses of PA1 to which the axioms correspond.

�

As in the foregoing example, a Resolution refutation of a CNF F does not neces-

sarily include every clause in F as an axiom, only some unsatisfiable subset. In the

same way, a refutation of a partial expansion of a QBF, which uses only a subset of

the total expansion for axioms, is, by definition, still a Resolution refutation of the

total expansion. As a result, even if the total expansion of a QBF family grows rapidly

with n, ∀Exp+Res may still be able to produce short proofs of small, unsatisfiable

partial expansions.

Having proved Corollary 4.6, it is very easy to show that ∀Exp+Res is a refutational

QBF proof system.
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{x̄1, ū, z1} {z̄1} {x1, u, z̄1} {z1}

{x̄∅1, z
{ū}
1 } {z̄{ū}1 } {x∅1, z̄

{u}
1 } {z{u}1 }

{x̄∅1} {x∅1}

∅

A A A A

R R

R

Figure 4.1: A ∀Exp+Res refutation of PA1.

Theorem 4.9 ([34]). ∀Exp+Res is a proof system for the language FQBF.

Proof. Soundness. If a QBF Q has an ∀Exp+Res refutation, then its total expansion

is unsatisfiable, by the soundness of Res. Hence Q is false, by Corollary 4.6. Com-

pleteness. If Q is false, its total expansion is unsatisfiable by Corollary 4.6, and has

a Resolution refutation by completeness of Res. Checkability. It can be checked effi-

ciently whether a clause belongs to the complete expansion of a QBF. So checkability

of ∀Exp+Res follows from that of Res.

4.3 A lower-bound technique for expansion

Now we turn to the task of demonstrating proof-size lower bounds in ∀Exp+Res. We

present a technique based on an observation that relates the satisfiability of a partial

expansion to the countermodel set of the QBF. We turn to this observation first.

4.3.1 Partial expansions and countermodel range

In ∀Exp+Res we refute false QBFs, which have no models and whose expansions are

unsatisfiable, and the axioms of a refutation are an unsatisfiable subset of the total

expansion. Thus, an obvious factor in the size of ∀Exp+Res refutations is the size of

the smallest unsatisfiable subset of the expansion. In turn, this is related to the size

of the smallest unsatisfiable partial expansion.

Now, in Subsection 4.1.1, we showed that the satisfiability of the total expansion

can be determined by finding a model for the QBF. In fact, as we show now, the un-

satisfiability of a partial expansion can be determined by looking at the countermodels

of the QBF. This is the relationship at the centre of our technique.
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To make the relationship clear, we need to define the range of a countermodel.

Definition 4.10 (countermodel range). The range of a countermodel h for a QBF

Q is the set of total universal assignments

rng(Q) := {h(ε) : ε ∈ 〈vars∃(Q)〉} .

The range of a countermodel is exactly its range when viewed as a single function.

It can also be understood as the set of total assignments played by the universal

player in the corresponding evaluation game strategy.

The next result characterises the satisfiability of a partial expansion based on the

ranges of the countermodels.

Lemma 4.11. Given a QBF Q and a set of universal dependency functions h,

exp(Q, rng(h)) is unsatisfiable ⇔ h countermodels Q .

Proof. Let Γ be the range of h := {hi}i∈[m], and let Q := P · F , where the prefix P is

of the form

∀U1∃X1 · · · ∀Ud∃Xd .

The proof is by induction on the quantifier depth d of Q. The base case d = 0 is

trivial, since in that case we must have Q = {∅}.
For the inductive step, let d ≥ 1. We denote the variables in the first univer-

sal block by U1 = {u1, . . . , uj}, and those in the first existential block by X1 =

{x1, . . . , xk}. All the functions h1, . . . , hj are constant, so we define the assignment

to U1 that replicates them, namely

µ1 := {hi(∅) : 1 ≤ i ≤ j} .

Note that the projection of every assignment in Γ to U1 is µ1.

Now, the only annotated copies of variables in X1 that belong to vars(exp(Q,Γ))

are the members of the set

Xµ1
1 := {xµ1i : 1 ≤ i ≤ k} .

For each α in 〈X1〉, we define an assignment to Xµ1
1 , namely

αµ1 : Xµ1
1 → D
xµ1i 7→ α(xi) .
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It is easy to see that

exp(Q,Γ)[αµ1 ] = exp(Q[µ1 ∪ α],Γ′) . (4.1)

Further, for each α in 〈X1〉, we define a set of universal dependency functions for

Q[µ1 ∪ α], namely hα := {hαi }j<i≤m, where

hαi : 〈Hi \X1〉 → 〈{ui}〉
ε 7→ hi(α ∪ ε) .

The range of hα, denoted Γα, is obtained from Γ by deleting µ1 from every assignment.

For the “⇒” direction, suppose that exp(Q,Γ) is unsatisfiable. By (4.1),

exp(Q[µ1 ∪ α],Γ′)

is unsatisfiable. Since the quantifier depth of Q[µ1 ∪ α] is d− 1, it is countermodelled

by hα, by the inductive hypothesis.

Now we can show that h countermodels Q. Let ε := α ∪ β be an arbitrary

extension of α to a total existential assignment to Q, where α and β are disjoint.

Since hα countermodels Q[µ1 ∪ α], the assignment

β ∪ {hαi (β�Hi\X1
) : j < i ≤ m}

falsifies F [µ1 ∪ α]. Hence the assignment

ε ∪ {hi(ε�Hi
) : i ∈ [m]} = α ∪ β ∪ µ1 ∪ {hαi (β�Hi\X1

) : j < i ≤ m}

falsifies F .

For the “⇐” direction, suppose that h countermodels Q. Aiming for contradiction,

suppose that exp(Q,Γ) is satisfied by some assignment σ. In contrast to the other

direction, we consider the particular α defined by

α : X1 → D
xi 7→ σ(xµ1i ) .

It is easy to see that σ extends αµ1 , therefore

exp(Q[µ1 ∪ α],Γ′)

is satisfiable, by (4.1)

Once more, we take an arbitrary extension ε := α ∪ β of α to the existential

variables of Q. By definition of countermodel, the assignment

ε ∪ {hi(ε�Hi
) : i ∈ [m]}
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falsifies F , so the assignment

β ∪ {hαi (β�Hi\X1
) : j < i ≤ m}

falsifies F [µ1 ∪ α]. Therefore hα countermodels Q[µ1 ∪ α]. But this leads to a con-

tradition, since it implies that

exp(Q[µ1 ∪ α],Γ′)

is unsatisfiable, by the inductive hypothesis.

4.3.2 A tight characterisation of lower bounds

Now we use Lemma 4.11 to characterise the reasons for hardness in ∀Exp+Res. Essen-

tially, the characterisation is based on one fairly obvious consequence of the lemma:

the minimal number of axioms in a refutation is bounded below by the minimal

cardinality of the range of a countermodel.

First some terminology.

Definition 4.12 (countermodel size). The size of a countermodel is the cardinality

of its range.

We say that a QBF family requires countermodels of size t(n) when, for each

natural number n, the size of every countermodel for the nth instance is at least t(n).

A countermodel family for a QBF family is a function from the natural numbers that

maps each n to a countermodel for the nth instance.

Theorem 4.13 (Characterisation of hardness in ∀Exp+Res). A QBF family Q re-

quires ∀Exp+Res refutations of size t(n) if, and only if, either

(a) Q requires countermodels of size t(n), or

(b) for each countermodel family H, the CNF family

F : N → F
n 7→ exp(Q(n), rng(H(n)))

requires Resolution refutations of size t(n).

Proof. First, the “if” direction. Suppose that condition (a) holds. By Lemma 4.11,

the smallest unsatisfiable subsets of total expansions of Q are of size t(n). Hence

∀Exp+Res refutations of Q contain at least t(n) axioms. On the other hand, suppose
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that condition (b) holds. Again by Lemma 4.11, all unsatisfiable partial expansions

of Q require Resolution refutations of size t(n), and the same goes for the total

expansions.

Now for the “only if” direction. Suppose that Q requires ∀Exp+Res refutations

of size t(n). If condition (a) holds, we’re done, so we assume it doesn’t. For each

countermodel family H, the CNF family

n 7→ exp(Q(n), rng(H(n)))

requires Resolution refutations of size t(n), for otherwise, by Lemma 4.11, the total

expansions of Q would not require Resolution refutations of size t(n). Therefore

condition (b) holds.

Theorem 4.13 characterises precisely the reasons for lower bounds in ∀Exp+Res.

It tells us that every lower bound is either due to a countermodel-size lower bound,

or due to a Resolution proof-size lower bound, or both.

We are mostly concerned with superpolynomial proof-size lower bounds, i.e. the

case where a QBF family requires refutations of size Ω(nc) for each constant c. Here,

we can apply Theorem 4.13 with T (n) = nc for each c. This tells us that the lower

bound is either

(a) due to the fact that the family does not have polynomial-size countermodels, or

(b) due to the fact that all expansions corresponding to polynomial-size counter-

models require superpolynomial-size Resolution refutations.

4.3.3 Concrete exponential lower bounds

Now we apply Theorem 4.13 to prove exponential proof-size lower bounds for three

of our handcrafted families.

The equality family

We first prove that the equality family requires countermodels of exponential size. In

fact, as we already mentioned, the countermodels for these formulas are unique.

Theorem 4.14. EQ requires countermodels of size 2n.

Proof. We claim that, for each n, the unique countermodel for EQ(n) is {hi}i∈[n],

where
hi : 〈{x1, . . . , xn}〉 → 〈{ui}〉

ε 7→ ui 7→ ε(xi) .
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To see that h is indeed a countermodel, let ε be a total existential assignment to

EQ(n), and let δ be its projection to {x1, . . . , xn}. Noting that hi(δ) merely assigns

ui the same value as δ assigns xi, it is easy to see that applying the assignment

δ ∪ {hi(δ) : i ∈ [n]}

to eqn gives the CNF

{{zi} : i ∈ [n]} ∪ {{z̄1, . . . , z̄n}} ,

which is clearly unsatisfiable, so

ε ∪ {hi(ε�Si
) : i ∈ [n]}

falsifies eqn.

To see that h is unique, let h′ be some set of universal dependency functions for

which, for some δ in 〈{x1, . . . , xn}〉 and some i in [n],

hi(δ)(ui) 6= δ(xi) .

Assuming without loss of generality that i = n, applying the assignment

δ ∪ {hi(δ) : i ∈ [n]}

to eqn gives

{{zi} : i ∈ [n− 1]} ∪ {{z̄1, . . . , z̄n}} ,

which is satisfied by the assignment δ′ to {z1, . . . , zn} which maps zi to 0 when, and

only when, i = n. Hence, taking ε as δ ∪ δ′, F is satisfied by

δ ∪ {hi(δ) : i ∈ [n]} ,

so h′ is not a countermodel.

It is easy to see that the range of h is 〈{u1, . . . , un}〉, therefore its size is 2n.

We now apply the lower-bound characterisation for ∀Exp+Res (Theorem 4.13) to

obtain an exponential proof-size lower bound.

Corollary 4.15. EQ requires ∀Exp+Res refutations of size 2n.
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The interleaved equality family

By a similar method, we can prove an exponential proof-size lower bound for the in-

terleaved equality family. Unlike EQn, EQ′n does not have a unique countermodel, but

the range of any countermodel is nonetheless the set of total universal assignments.

Theorem 4.16. EQ′ requires countermodels of size 2n.

Proof. We show that the range of any countermodel for EQ′n is 〈{u1, . . . , un}〉, and

the theorem follows.

Let h be a countermodel for EQ′n, and let µ be an arbitrary total assignment to

the universal variables. We prove that µ = h(ε), where

ε(xi) :=

{
0 if µ(ui) = 0

1 if µ(ui) = 1
, for i ∈ [n] ,

ε(zi) := 1 , for i ∈ [n] .

Aiming for contradiction, let j be the least integer for which h(ε)�{uj} does not

equal µ�{uj}, and let Hj be the dependency set for uj. Observe that EQ′n[ε�Hj
] is the

QBF with prefix

∃zj∃xj+1∀uj+1∃zj+1 · · · ∃xn∀un∃zn

and matrix consisting of the clauses

{a, zj} ,
{x̄i, ūi, zi} , for j + 1 ≤ i ≤ n ,
{xi, ui, z̄i} , for j + 1 ≤ i ≤ n ,
{z̄j, . . . , z̄n} ,

where a is the literal represented by the assignment h(ε)�{uj}. Note that the matrix

is satisfied by the assignment

h(ε)�{uj} ∪ {z̄j, zj+1, . . . , zn} .

Now, let δ be any total existential assignment that extends

ε�Hj
∪ {z̄j, zj+1, . . . , zn} .

Since ε and δ agree on Hj, the assignments h(ε)�{µj} and h(δ)�{µj} are identical. It

follows that the assignment δ ∪ h(δ) satisfies eqn, contradicting the fact that h is a

countermodel for EQ′n.

Once again the proof-size lower bound follows by application of Theorem 4.13.

Corollary 4.17. EQ′ requires ∀Exp+Res refutations of size 2n.
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The Kleine Büning et al. family

Finally we apply the technique to prove an exponential proof-size lower bound for

the family KB.

Theorem 4.18. KB requires countermodels of size 2n.

Proof. In this case, the proof follows similar lines to the proof of Theorem 4.16 for

the interleaved equality family. To make things more interesting, we give a proof

in terms of winning strategies in the evaluation game, an equivalent description of

countermodels (see Subsection 3.2). This gives rise to a less formal, yet more intuitive

proof.

Aiming for contradiction, suppose that h is a countermodel for KBn, and that

some universal assignment µ does not belong to its range. Hence, in the corresponding

evaluation game strategy, the universal player does not play the total assignment µ.

Suppose that the existential player plays the variables x1, y1, . . . , xn, yn according

to the assignment ε, defined by

ε(xi) :=

{
0 if µ(ui) = 1

1 if µ(ui) = 0
, for i ∈ [n] ,

ε(yi) :=

{
1 if µ(ui) = 1

0 if µ(ui) = 0
, for i ∈ [n] .

The final assignment made by the universal player is to the variable un, which occurs

directly after the existential player assigns yn. Since µ does not belong to the range

of h, there exists a least integer j such that the universal player sets uj not equal to

µ(uj).

Now, let δ be the the restriction of ε to {x1, y1, . . . , xj, yj}, let ν be the restriction

of µ to {u1, . . . , uj}. We consider two cases.

(a) Suppose that j < n. Observe that the matrix of KBn[δ ∪ ν] consists of the

clauses
{xi, ūi, x̄i+1, ȳi+1} , for j + 1 ≤ i ≤ n− 1 ,
{yi, ui, x̄i+1, ȳi+1} , for j + 1 ≤ i ≤ n− 1 ,
{xn, ūn, z̄1, . . . , z̄n} ,
{yn, un, z̄1, . . . , z̄n} ,
{zi} , for i in [j] ,
{ui, zi} , for j + 1 ≤ i ≤ n ,
{ūi, zi} , for j + 1 ≤ i ≤ n .
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This CNF shows the state of the game according to the winning universal strat-

egy h as the existential player comes to assign the variable xj+1, and it can

be satisfied by assigning all existential variables positively. It follows that the

existential player can win the game from this point, but this contradicts the

fact that h is a winning strategy, which must never give the existential player

an opportunity to win.

(b) Suppose on the other hand that i = n. Then the matrix of KBn[δ ∪ ν] consists

of the n unit clauses {zi}. This also contradicts the fact that h is a winning

strategy, since the existential player can win the game from here by assigning

each zi positively.

Corollary 4.19. KB requires ∀Exp+Res refutations of size 2n.
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Chapter 5

Universal Reduction

IR-calc

∀Exp+Res

LDQ-Res

Q-Res

Now it’s time to take a closer look at the main alternative to universal expansion:

universal reduction. Universal reduction was first introduced as a logically correct

rule of inference in the QBF proof system Q-Res [35], highlighted in the figure above.

Later, it was used as a propagation technique in QBF solvers based on CDCL [27,

72, 40].

Universal reduction constitutes a fundamentally different way to deal with uni-

versal quantification. Whereas the expansion paradigm is based on an immediate

translation to propositional logic, reduction operates squarely in the realm of quanti-

fied Boolean logic, and exploits inferences which are logically correct in terms of QBF

models.

Strategy-size lower bounds for reduction

In this chapter, we investigate how our lower-bound technique for expansion carries

over to Q-Res. We find that the technique does not lift straight away to Q-Res. There

exist formulas which require large (exponential-size) countermodels, yet admit short

(linear-size) Q-Res refutations.

61



In fact, this situation can only occur when the quantifier depth of the family is

unbounded. Indeed, we find that strategy size does give rise to Q-Res proof-size lower

bounds when quantifier depth is bounded above by a constant. In particular, this

allows us to prove an exponential lower bound for the equality family.

To prove the main result (Theorem 5.16), we must venture into strategy extraction,

a well-known notion for practitioners and theoreticians alike. The main message

of strategy extraction is that refutations represent countermodels, or equivalently,

winning strategies for the universal player in the evaluation game.

Organisation of the chapter

We recall Q-Res in Section 5.1, followed by a description of strategy extraction in

Section 5.2. In Section 5.3, we present the lower-bound technique for Q-Res, and

obtain a concrete lower bound for the equality family.

5.1 The proof system Q-Res

Q-Resolution is arguably the most natural quantified version of propositional Resolu-

tion. It is obtained from Resolution by adding a single inference rule, called universal

reduction, which allows universal literals to be deleted under certain conditions.

Universal reduction is based on the notion of a ‘trailing’ literal. Given a prefix P ,

we say that a universal literal a belonging to a clause C is trailing in C with respect

to P when var(a) does not belong to any of the dependency sets for the existential

variables in C. Trailing literals are always universal.

For example, with respect to the prefix ∀u1∃x1∀u2∃x2, we have

(a) ū2 is trailing in {ū1, x1, ū2},

(b) both ū1 and u2 are trailing in {ū1, u2},

(c) no literals are trailing in {ū1, ū2, x̄2}.

We emphasise that all literals are trailing in a clause containing no existential vari-

ables, as in (b) above.

Definition 5.1 (Q-Res [35]). A Q-Res derivation from a QBF Q := P · F is a se-

quence C1, . . . , Ck of non-tautological clauses in which at least one of the following

holds for each i ∈ [k]:

A Axiom: Ci is a clause in F ;
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{x̄1, ū1, z1} {z̄1} {x1, u1, z1}

{x̄1, ū1} {x1, u1}

{x̄1} {x1}

∅

A A A

R R

U U

R

Figure 5.1: A Q-Res refutation of EQ1.

R Resolution: Ci = res(Cr, Cs, p), for some r, s < i and existential literal p;

U Reduction: Ci = Cr \ {a}, for some r < i, where a is universal and trailing in

Cr with respect to P ;

W Weakening: Ci is L, or is subsumed by Cr for some r < i.

A Q-Res derivation from Q whose conclusion is empty is called a refutation of Q.

As usual, the size of a derivation is the number of clauses.

Example 5.2. A Q-Res refutation of the first instance of the equality family is shown

in Figure 5.1. The universal reduction steps are marked ‘U’. Note that, with respect

to the prefix of EQ1, namely ∃x1∀u1∃z1, the literal ū1 is trailing in {x̄1, ū1} and the

literal u1 is trailing in {x1, u1} �

At first, it may seem strange that tautological clauses, which are harmless in

propositional logic, are explicitly forbidden in Q-Res. The next example demonstrates

why this is necessary.

Example 5.3. We consider again the true QBF from Example 3.3, namely

∀u1∃x1 · {{ū1, x̄1}, {u1, x1}} .

If we were to allow tautological clauses in Q-Res, we could resolve the clauses in the

matrix to obtain {ū1, u1}, and then apply universal reduction to obtain the empty

clause. Thus, we would have a refutation of a true QBF, and an unsound proof

system. �
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Instead of the deletion of trailing literals, universal reduction can be construed

as the assignment of trailing literals. Of course, we would always choose to assign

a universal literal so as to falsify it, since satisfying it returns L, which is useless in

a refutation. Moreover, assigning the variable of a complementary pair of universal

literals would also always return L. Hence, this arguably makes for a better definition,

since we would no longer need to disallow tautologies.

However, for better or for worse, universal reduction is conventionally the deletion

of trailing literals, so we stick to this convention, and disallow tautologies.

Soundness and completeness

Now we turn to the task of proving that Q-Res is indeed a refutational QBF proof

system.

We deal with soundness first. Our soundness proof can be thought of as the

quantified version of the soundness proof for Resolution (Fact 2.8). This time we prove

that the input QBF semantically entails every derived clause, when considered as a

QBF under its prefix. We emphasise that we are no longer talking about entailment

in propositional logic, rather entailment in quantified Boolean logic, based on QBF

models.

Lemma 5.4 ([35]). A QBF is false if it has a Q-Res refutation.

Proof. Let π := C1, . . . , Ck be a Q-Res refutation of a QBF Q := P · F . For each j

in [k], let Fj = {C1, . . . , Cj}.
Aiming for contradiction, suppose that Q has a model f := {fi}i∈[n]. We prove

by induction on j in [k] that f models P · Fj. Hence at step j = k, we reach a

contradiction, since Fk contains the empty clause Ck.

The base case j = 1 is trivial, since C1 is an axiom, and belongs to F .

For the inductive step, let 2 ≤ j ≤ k, suppose that f is a model for P · Fj−1, and

let µ be a total assignment to the universal variables of Q. We consider four cases,

depending on how Cj was derived. In each case we show that

σ := µ ∪ {fi(µ�Si
)}i∈[n]

satisfies Cj, and hence f is a model for P · Fj−1 ∪ {Cj} = P · Fj.

A If Cj is an axiom, the inductive step is identical to the base case.
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R Suppose that Cj = res(Cr, Cs, p) for some r, s < j, and some existential literal p.

Then, since both Cr and Cs are in Fj−1, σ satisfies both of them, by the inductive

hypothesis. Hence σ satisfies Cj by the logical correctness of propositional

Resolution.

U Suppose that Cj = Cr \ {a}, for some r < j, where a is trailing in Cr with

respect to P . Aiming for contradiction, suppose that σ falsifies Ci.

We consider the assignment

ν := comp(µ, var(a)) .

By definition of trailing literal, var(a) does not belong to the dependency set

of any existential variable in Cr. It follows that {fi(ν�Si
)}i∈[n] falsifies all the

existential literals in Cr.

As σ satisfies Cr by the inductive hypothesis, µ must satisfy a, therefore ν

falsifies a. Then ν, which agrees with µ on all universal variables except var(a),

must falsify the universal literals in Cr. But then the assignment

ν ∪ {fi(ν�Si
)}i∈[n]

falsifies Cr, contradicting the inductive hypothesis.

W Suppose that Cj = L, or is subsumed by Cr with r ≤ j. In the former case, σ

satisfies Cj trivially. In the latter case, σ satisfies Cr by the inductive hypothesis,

and therefore satisfies the larger clause Cj.

For completeness, we construct a canonical refutation based on a countermodel

for the input QBF.

Lemma 5.5 ([35]). Every false QBF has a Q-Res refutation.

Proof. Let

∀U1∃X1 · · · ∀Ud∃Xd · F

be a false QBF with countermodel h. We prove the lemma by induction on the

quantifier depth d of Q.

The base case d = 0 is trivial since, by definition of countermodel, F contains

the empty clause, and the sequence consisting of the empty clause itself is a Q-Res

refutation of Q.

65



For the inductive step, let d ≥ 1. Consider the assignment to U1 defined by

µ := {hj(∅) : uj ∈ U1} ,

and the assignment set defined by

A := {µ ∪ ε : ε ∈ 〈X1〉} .

The assignment set A has two important properties.

(a) The negation of every assignment in A can be derived from Q in Q-Res.

(b) In a Q-Res derivation from Q, the empty clause can be derived from the nega-

tions of the assignments in A.

We prove the lemma by showing these two properties in turn.

(a) Let ε be an assignment to X1 and let C be the negation of µ∪ ε. Now, Q[µ ∪ ε]
has quantifier depth d− 1, and is false by Lemma 3.6, therefore it has a Q-Res

refutation

C1, . . . , Ck

by the inductive hypothesis.

Now, if Ci is an axiom, it belongs to F [µ ∪ ε], and Ci ∪ C is subsumed by

some clause in F . Moreover, no universal variable in Q[µ ∪ ε] belongs to the

dependency set of any existential in C.

Letting ‘seq(F )’ denote the clauses of F written as a sequence and ‘◦’ denote

concatenation of sequences, it follows that

seq(F ) ◦ C1 ∪ C, . . . , Ck ∪ C ,

is a valid Q-Res derivation from F , since the uniform addition of C cannot

invalidate any reduction steps. Moreover, Ck ∪ C = C, since Ck is the empty

clause.

(b) It is easy to see that the negations of the assignments in 〈X1〉 form an unsatis-

fiable set of clauses, which have a Resolution refutation

D1, . . . , Dk

by the completeness of Resolution. Hence, putting E as the negation of µ, the

sequence

D1 ∪ E, . . . , Dk ∪ E
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is a derivation of E from the negations of the assignments in A. Moreover, since

E contains no existential literals, every literal in E is trailing, and the empty

clause can be derived from it by reduction.

So, we only need to show checkability, and we have proved that Q-Res is indeed a

refutational QBF proof system. Given the simple nature of universal reduction, this

is almost trivial.

Theorem 5.6. Q-Res is a proof system for the language FQBF.

Proof. Soundness and completeness. Established by Lemmata 5.4 and 5.5. Checka-

bility. Universal reduction steps can clearly be checked efficiently, so the checkability

of Q-Res follows from that of Resolution.

5.2 Strategy extraction

Now we turn to strategy extraction, a QBF specific paradigm which underpins our

lower-bound technique for Q-Res.

Overview

Strategy extraction originated in QBF solving, where many practical applications re-

quire not only the truth value of the instance, but also the certifying model or coun-

termodel. Many QBF solvers (such as DepQBF [41], CAQE [49] and RAReQs [33])

have support for outputting these witnesses. QCDCL solvers, which correspond to

reduction-based proof systems, essentially build the witness as the solver works its

way through the search space. Hence, on false QBFs, the trace of the solver houses a

countermodel in a fairly natural way.

Analogously, strategy extraction in theoretical models of solving refers to the idea

that a QBF refutation represents a countermodel, much in the same way that a CNF

represents a Boolean function. To compute a Boolean function from a CNF, we would

take an element of the domain, which is a total assignment to the variables, and apply

it to the formula. We output 1 if the resulting CNF is the empty set of clauses, and

0 otherwise, in which case it contains the empty clause.

Similarly, in QBF proof systems that have strategy extraction, we can define an

algorithm which, given a refutation, computes a countermodel. More precisely, we

can define a polynomial-time computable function which takes a refutation and a

total existential assignment ε, and returns a total universal assignment µ, for which

ε ∪ µ always falsifies the matrix of the refuted QBF.
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Relation to existing literature

The main result of this section is Theorem 5.12 [28], which proves constructively

that Q-Res has strategy extraction. The reader may wonder why we need a whole

section to reprove an existing result. The answer is that our presentation of the result

differs significantly from [28]. Our handling of the details leads to an original lower-

bound technique, and this merits (and even requires) a complete, formal treatment

of strategy extraction in Q-Res.

A lower-bound technique for Q-Res, also based on strategy extraction, has already

been proposed. In [12], Beyersdorff, Bonacina and Chew developed a technique lifting

circuit lower bounds to proof-size lower bounds in ‘P+∀red’ QBF proof systems, of

which QU-Res (Figure 1.3) is an example. Our construction and proof differs from [12],

which uses decision lists as an intermediate computational model, and ultimately

builds countermodels as AC0 circuits. We do not use any auxiliary computational

models; we rather compute the extracted strategy directly from the refutation, as

described above. Moreover, our technique establishes lower bounds that cannot be

proved using the technique of Beyersdorff et al. (EQ), and vice versa (PA).

The relation between the two techniques, both of which are based on strategy

extraction, but which appear to prove entirely different lower bounds, is an interesting

moot point to which we return in Chapter 13.

Organisation of the section

Our first goal in this section is to define the ‘extracted strategy’ (Definition 5.11),

that is, we must define an algorithm which maps existential assignments to univer-

sal assignments, based on a refutation. Our second goal is to prove that it really

works (Theorem 5.12). Inevitably this entails the application of existential assign-

ments to refutations (Subsection 5.2.1), but we must also ensure that we work with

weakening-free refutations (Subsection 5.2.2) that are also ‘conclusion-unique’ (Sub-

section 5.2.3). After dealing with these three small tasks, we present the extracted

strategy in Subsection 5.2.4.

5.2.1 Closure under existential assignments

As the first of three small tasks preceding the definition of the extracted strategy,

we show that Q-Res is ‘closed under existential assignments’. By this we mean that

the application of an existential assignment to a refutation returns a refutation of
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the input QBF under the same assignment. We first define the application of an

existential assignment, and then prove the result.

Definition 5.7. The application of an existential assignment ε to a Q-Res refutation

π := C1, . . . , Ck returns the sequence

π[ε] := C1[ε], . . . , Ck[ε] .

Resolution refutations are ‘closed’ under existential assignments in the precise

sense of the following fact.

Fact 5.8 ([28]). If π is a Q-Res refutation of a QBF Q, and ε is a partial assignment

to vars∃(Q), then π[ε] is a Q-Res refutation of Q[ε].

Proof. Let π := C1, . . . , Ck. We show by induction on i ∈ [k] that each clause Ci[ε] is

a valid Q-Res inference in π[ε]. Observe that, if ε satisfies Ci, then Ci[ε] is L and can

be derived by weakening. Hence, we can assume from now on that ε does not satisfy

Ci.

For the base case i = 1, observe that C1 is derived by axiom, so C1 belongs to F .

Then C1[ε] belongs to F [ε], so C1[ε] can be derived by axiom.

For the inductive step, let i ≥ 2. We consider four cases.

A If Ci was derived by hypothesis, the inductive step is identical to the base case.

R If Ci was derived by resolution from Cr and Cs over the existential pivot literal

p, we consider three further cases.

(i) If ε satisfies the pivot literal p, then Ci[ε] is subsumed by Cs[ε], and can

therefore be derived by weakening.

(ii) If ε falsifies p, then Ci[ε] is subsumed by Cr[ε], and can be derived similarly

by weakening.

(iii) If ε neither satisfies nor falsifies p, then, since ε satisfies neither Cr nor Cs,

Ci[ε] can be derived by resolution from Cr[ε] and Cs[ε] over pivot literal p.

U If Ci was derived by reduction, say by removing the trailing literal a from Cr,

then ε does not satisfy Cr, and Ci[ε] can be derived by reduction from Cr[ε] by

removing the same trailing literal.

W If Ci was derived by weakening from Cr, then ε does not satisfy Cr, which

subsumes Ci. It is easy to see that Cr[ε] subsumes Ci[ε], so the latter can be

derived by weakening.
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5.2.2 Removing weakening steps

Weakening steps are a hindrance for strategy extraction, but unfortunately the appli-

cation of an existential assignment may introduce them, even if the original refutation

is weakening-free. For our second task, we need to show that weakening steps can be

removed algorithmically from Q-Res refutation with no size increase.

Fact 5.9 (folklore). Weakening inferences can be removed algorithmically from Q-Res

refutations with no increase in size, while preserving the refutation.

Proof. Let π := C1, . . . , Ck be a Q-Res refutation of a QBF Q := P · F
Since L cannot be an antecedent of any inference in π, and the conclusion Ck

is not L, deleting instances of L preserves the refutation. Therefore we can assume

without loss of generality that L does not occur in π.

Now, we transform π into a weakening-free refutation π′ := C ′1, . . . , C
′
k by process-

ing the clauses Ci in order, as follows:

A if Ci was introduced as an axiom, then define C ′i := Ci ;

R if Ci was derived by resolution from Cr and Cs over pivot p, then define

C ′i :=


C ′r if p /∈ C ′r ,
C ′s if p ∈ C ′r and p̃ /∈ C ′s ,
res(C ′r, C

′
s, p) if p ∈ C ′r and p̃ ∈ C ′s ;

U If Ci was derived by reduction, say by removing the trailing literal a from Cr,

then define C ′i := C ′r \ {a}.

W If Ci was derived by weakening from Cr, then define C ′i := C ′r.

To conclude, we show by induction on i ∈ [k] that C ′i is a subset of Ci, and is the

consequent of a valid non-weakening inference in π′. The base case i = 1 is established

trivially, since C ′1 = C1 is a clause in F . For the inductive step, let i ≥ 2. We consider

four cases.

A If Ci was introduced as an axiom, the inductive step is identical to the base

case.

R If Ci was derived by resolution we consider three further cases.

(i) If p /∈ C ′r, then C ′i = C ′r subsumes Ci, and can be derived by a non-

weakening inference by the inductive hypothesis.
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(ii) If p ∈ C ′r and p̃ /∈ C ′s , then C ′i = C ′s subsumes Ci, and can be derived by

a non-weakening inference by the inductive hypothesis.

(iii) If p ∈ C ′r and p̃ ∈ C ′s, then C ′i = res(C ′r, C
′
s, p). So C ′i is a valid resolution

inference in π′, and

C ′i = (C ′r \ {p}) ∪ (C ′s \ {p̃}) ⊆ (Cr \ {p}) ∪ (Cs \ {p̃}) = Ci

holds by the inductive hypothesis.

U If Ci was derived by reduction, then C ′r is a subset of Cr by the inductive

hypothesis. If a /∈ C ′r, then C ′i = C ′r is a subset of Ci, and can be derived by a

non-weakening inference, by the inductive hypothesis. Otherwise, C ′i = C ′r \{a}
is a subset of Ci by the inductive hypothesis, and can be derived by reduction.

W If Ci was derived by weakening, then Ci is a subsumed by Cr, and

C ′i = C ′r ⊆ Cr ⊆ Ci ,

by the inductive hypothesis. Moreover, C ′i = C ′r is a valid non-weakening infer-

ence, by the inductive hypothesis.

5.2.3 Tidy refutations

As our third and final task, we show that weakening-free refutations that have a

unique conclusion have a particular property. The property concerns the appearance

of universal literals, and is crucial for strategy extraction.

We call a Q-Res derivation conclusion-unique when there is exactly one clause in

the sequence which is not the antecedent of an inference. For example, the refutation

in Figure 5.1 is conclusion-unique, as every clause is the antecedent of a resolution

or reduction step, with the exception of the empty clause. If we remove the empty

clause, the derivation is no longer conclusion-unique, because now neither clause {x̄1}
nor {x1} is the antecedent of an inference.

We call a refutation tidy when it is both conclusion-unique and weakening-free.

The crucial property of tidy refutations is that complementary literals in first-block

universal variables never occur.

Fact 5.10 (folklore). For each QBF Q whose first block is universal, and each tidy

Q-Res derivation π from Q, first-block variables appear in at most one polarity in π.
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Proof. Let Q be a QBF whose first block is universal, and let C1, . . . , Ck be a tidy

derivation from Q. We prove the result by induction on k in N.

The base case k = 1 is trivial, since C1 is a non-tautological clause from the matrix

of the input QBF.

For the inductive step, let k ≥ 2. Since π is tidy, Ck cannot be an axiom. We

consider two cases, based on how the conclusion Ck was derived.

R Suppose that Ck was derived by resolution from Cr and Cs over pivot literal p.

Aiming for contradiction, suppose that complementary literals in some universal

variable u in the first block of Q appear in π.

By the inductive hypothesis, u appears in exactly one polarity in πr, say nega-

tively, and appears positively in πs. Since Ck was derived by resolution over an

existential pivot, and is not a tautology, variable u is absent from at least one

of Cr and Cs, say Cr. This implies that ū is reduced from some clause Ct in πr.

Note that Ct contains no existential variables. Since πr is tidy, and resolution

is only allowed over existential pivots, it is easy to see that Cr contains no

existential variables. But this contradicts the fact that Ck = res(Cr, Cs, p).

U Suppose that Ck was derived by reduction from Cr. Now, if r 6= k− 1, we reach

a contradiction, since then Ck−1 is not the antecedent of any inference step, and

π is not conclusion-unique. Hence r = k − 1, and the subderivation of Cr is

C1, . . . , Ck−1. By the inductive hypothesis, each first-block variable appears in

at most one polarity in C1, . . . , Ck−1, and therefore also in C1, . . . , Ck.

5.2.4 The extracted strategy

We are now ready to show how to extract strategies from Q-Res refutations.

Fact 5.9 tells us that we can remove weakening steps algorithmically from Q-Res

refutations. Therefore, we can algorithmically transform an arbitrary refutation π

into a tidy refutation tidy(π), by taking the subderivation of the first occurrence of

the empty clause and removing any weakening steps.

We use π[[ε]] as a shorthand for tidy(π[ε]). We emphasise that this merely repre-

sents the standard substitution operation, followed by some neatening-up which gives

us a weakening-free, conclusion-unique refutation.

The following definition, which formally describes the extracted strategy, is a

simplified adaptation of the algorithm in [28].
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Definition 5.11 (extracted strategy [28]). Given a Q-Res refutation π of a QBF

Q, the extracted strategy for π is the set of universal dependency functions {hj}j∈[m]

defined by

hj : 〈Hj〉 → 〈{uj}〉

ε 7→

{
{uj} if ūj appears in π[[ε�{x1}]] · · ·[[ε�{xnj }

]]

ūj otherwise .

where Hj = {x1, . . . , xnj
}.

Note that Fact 5.10 guarantees that the extracted strategy is well-defined. Now

we prove that the extracted strategy is indeed a countermodel.

Theorem 5.12 ([28]). The extracted strategy for a Q-Res refutation of a QBF Q is

a countermodel for Q.

Proof. Let {hj}j∈[m] be the extracted strategy for a refutation π of Q := P · F , and

let the existential variables of Q be indexed x1, . . . , xn.

Take an arbitrary total existential assignment ε to Q. By the closure of Q-Res

under existential assignments (Fact 5.8),

π[[ε�{x1}]] · · ·[[ε�{xn}]] is a refutation of Q[ε�{x1}] · · ·[ε�{xn}] = Q[ε] .

Now, Q[ε] is a fully universally quantified QBF. By Fact 5.10, the definition of ex-

tracted strategy (Definition 5.11), and the fact that restriction of a refutation cannot

introduce new literals, the first clause of this refutation is falsified by {hj(ε�Hj
)}j∈[m].

Since the first clause is introduced as an axiom, it belongs to F [ε]. Therefore

ε ∪ {hj(ε�Hj
)}j∈[m]

falsifies some clause in F .

Two proofs of soundness

Theorem 5.12 actually constitutes an alternative proof of soundness for Q-Res. In

our original proof of soundness (Theorem 5.4) we showed that a QBF with a Q-Res

refutation has no model, and is therefore false by definition. This time we proved

that a QBF with a Q-Res refutation has a countermodel, and is therefore false by the

Folklore Theorem (Theorem 3.8).
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5.3 Lower bounds in Q-Res

In this section, we show how to use strategy extraction to prove Q-Res lower bounds

based on countermodel size. The technique works only for QBFs whose quantifier

depth is bounded above by a constant, but this is already good enough to prove an

exponential lower bound for the equality formulas.

5.3.1 Unbounded quantifier depth and strategy size

We first show that the lower-bound technique for ∀Exp+Res does not lift to Q-Res

on unbounded formula families. In particular, the interleaved equality family EQ′

requires countermodels of exponential size (Theorem 4.16), but admits Q-Res refuta-

tions of linear size.

Lemma 5.13. The formula family EQ′ admits linear-size Q-Res refutations.

Proof. Let n be a natural number. We claim that, for each i in [n], in a Q-Res

derivation from EQ′n, all of the clauses in the CNF eqi−1 can be derived from those

of eqi in a constant number of steps. Moreover, it is easy to see that the QBF

∃x1∀u1∃z1 · · · ∃xn∀un∃zn · eq1

is false, and hence has a constant-size Q-Res refutation. It follows that EQ′ admits

linear-size Q-Res refutations.

Now for the claim. In fact, the only clause in eqi−1 that cannot be introduced as

an axiom from EQ′n is {z̄1, . . . , z̄i−1}. A constant-size Q-Res derivation of this clause

from eqi, with the respect to the prefix of EQ′n, is shown in Figure 5.2.

This upper bound, along with the ∀Exp+Res lower bound (Corollary 4.17), shows

that the interleaved equality family exponentially separates Q-Res from ∀Exp+Res.

Indeed, EQ′ can be seen as a simplified version of the original separating formulas [34,

(2), p. 38].

5.3.2 A lower-bound technique for bounded depth

We present a lower-bound argument based largely on the following observation.

Fact 5.14. In a tidy refutation from a QBF whose first block is universal, all first

block literals appearing in the derivation appear together in a single clause.
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{z̄1, . . . , z̄i}{xi, ui, zi} {x̄i, ūi, zi}

({z̄1, . . . , z̄i−1, xi, ui} ({z̄1, . . . , z̄i−1, x̄i, ūi}

({z̄1, . . . , z̄i−1, xi} ({z̄1, . . . , z̄i−1, x̄i}

{z̄1, . . . , z̄i−1}

Figure 5.2: Portion of a linear size Q-Res refutation of EQ′n.

Proof. Let π := C1, . . . , Ck be a tidy refutation of a QBF whose first block U1 is

universal. Let Cr := {a1, . . . ar} be the first clause in π from which a first-block

literal is reduced.

Since π is a tidy refutation, every universal literal occurring in it is reduced some-

where. Moreover, the subsequence Cr, . . . , Ck consists of the r reduction steps that

remove the literals of Cr one by one. Hence all the first-block literals appear in Cr.

We also need to the use the fact that the universal subclauses appearing after the

application of an existential assignment were also present beforehand.

Fact 5.15. Given a Q-Res refutation π of a QBF, an assignment ε to a single exis-

tential variable, and a clause C in π[[ε]], there exists a clause in π whose universal

subclause is the same as that of C.

Proof. Putting ε := x̄, the application of an existential assignment (Definition 5.7)

replaces each clause C in π with either L or C \{x}. It is easy to see that the removal

of weakening steps (proof of Fact 5.9) removes all occurrences of L and replaces each

remaining clause D with a subset of D, while preserving the universal literals.

We are now ready to state and prove the central theorem of our lower-bound

technique for Q-Res.

Theorem 5.16. If a QBF with quantifier depth d has a Q-Res refutation of size k,

then it has a countermodel of size kd.

Proof. Let π be a refutation of a QBF

Q := ∀U1∃X1 · · · ∀Ud∃Xd · F
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of size k. We show that the extracted strategy h := {hj}j∈[m] for π has size at most

kd.

In fact, for each i in [d] and each total existential assignment ε to Q, we show that

the negation of the assignment

φ(ε, Ui) := {hj(ε�Hj
) : uj ∈ Ui}

is equal to

{a ∈ Cε : var(a) ∈ Ui} � {uj : uj ∈ Ui} .

for some clause Cε appearing in π. In other words, the projection to Ui of each

element in the range of the extracted strategy is the negation of the projection to Ui

of some clause in the refutation, padded with positive literals.

It follows that the assignment set

{φ(ε, Ui) : ε ∈ 〈vars∃(Q)〉}

has cardinality at most k. As each assignment in the range of h is equal to⋃
i∈[d]

φ(ε, Ui)

for some ε, the size of the extracted strategy is at most kd.

So, let i be an integer in [d] and ε a total existential assignment. For each uj in

Ui, the dependency set for uj is

X1 ∪ · · · ∪Xi−1 = {x1, . . . , xni
} ,

for some integer ni; and looking at the definition of the extracted strategy, we see

that hj(ε�Hj
) = {uj} if, and only if, ūj appears in the sequence

πi := π[[ε�{x1}]] · · ·[[ε�{xni}
]] .

By Fact 5.8, πi is a tidy Q-Res refutation of Q[δ], a QBF whose first block is Ui.

Hence, by Fact 5.14, there is some clause Cε in πi which satisfies the following for

each uj in Ui:

ūj appears in πi ⇒ ūj ∈ Cε .

Hence, by Fact 5.15, the same condition is satisfied by some clause Dε appearing

in π. It follows that the negation of φ(ε, Ui) is the clause

{a ∈ Dε : var(a) ∈ Uj} � {uj : uj ∈ Ui} .
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The contrapositive statement of Theorem 5.16 describes Q-Res proof-size lower

bounds in terms of countermodel size, with the strength of the lower bound decreasing

with increasing quantifier depth.

Corollary 5.17. If a d-bounded family of false QBFs requires countermodels of size

t(n), then it requires Q-Res refutations of size d
√
t(n).

Recall that a QBF family is d-bounded if every instance has at most d universal

blocks.

5.3.3 Application and limitations

We can use our technique to prove that the equality formulas are hard for Q-Res.

Since EQ is a 1-bounded family requiring countermodels of size 2n (Theorem 4.14),

applying Corollary 5.17 gives the following result.

Theorem 5.18. EQ requires Q-Res refutations of size 2n.

The technique also establishes the hardness of a large class of random QBFs in

Q-Res [8].

But what about the family KB? Corollary 5.17 doesn’t offer much for this family,

because their quantifier depth is unbounded. However, these formulas are hard for

Q-Res, and our technique is not too far from showing it. In the next chapter, we

refine the method to work with families of unbounded quantifier depth, and we even

do so in the context of the stronger system IR-calc.
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Chapter 6

Universal Instantiation

IR-calc

∀Exp+Res

LDQ-Res

Q-Res

Quantified Boolean formulas are a decidable fragment of first-order logic. As such,

solving techniques and proof systems from first-order logic are always applicable to

QBF, often in a simplified form. Arguably the clearest example of a dedicated first-

order paradigm that has found its way into QBF solving and proof complexity is

universal instantiation.

Universal instantiation is a treatment of universal quantification that originates

from first-order resolution, which in turn was the inspiration for the QBF proof system

IR-calc [13], highlighted in the figure above. Like ∀Exp+Res, IR-calc is an expansion-

based system that operates on annotated clauses.

The most prominent feature of IR-calc is that it simulates both ∀Exp+Res and

Q-Res, and thus unifies to some extent the two major QBF paradigms, expansion

and reduction. This means that lower bounds for IR-calc are already lower bounds

for both ∀Exp+Res and Q-Res. However, since neither calculus simulates IR-calc, we

should expect instantiation lower bounds to be harder to come by.

79



A lower bound technique for IR-calc

Our goal in this chapter is to extend our Q-Res technique (Corollary 5.17) to obtain

proof-size lower bounds in IR-calc. Moreover, we want to overcome the inherent

restriction to bounded quantifier depth.

It turns out that we can reuse the methodology of the previous chapter, provided

we introduce a refined notion of countermodel, and a stricter measure called weight.

Our main result is Theorem 6.19, which states that minimum countermodel weight is

an IR-calc proof-size lower bound, regardless of quantifier depth. With these modifi-

cations, our technique is applicable to QBF families with unbounded quantifier depth,

in particular, the Kleine Büning family. Our method provides a much simpler, more

intuitive proof of hardness compared to the original (cf. [14]).

Organisation of the chapter

In Section 6.1, we give a high-level description of the main features of instantiation,

followed by the formal presentation of IR-calc in Section 6.2. We revisit strategy

extraction in Section 6.3, introduce refined countermodels, and define the weight

measure. In Section 6.4, we present the improved lower-bound technique, and apply

it to the KB family.

6.1 Instantiation versus expansion

Universal instantiation differs from expansion in three major ways. First, annotations

are partial assignments to the dependency set of the underlying existential variable,

as opposed to total assignments in ∀Exp+Res. Second, the allowable axiom clauses do

not come from the total expansion, but from a rather different form of expansion of the

input QBF, which exploits the use of partial annotations. Thirdly, the instantiation

rule allows partial annotations to be enlarged over the course of the refutation.

Partial assignments as annotations

The first major difference between IR-calc and ∀Exp+Res lies in the size of the anno-

tations. In ∀Exp+Res, every annotation is a total assignment to the dependency set

of the underlying variable. In IR-calc, the annotations are partial assignments.

This means that set of annotated variables on which IR-calc operates is much

larger. More precisely, the variable set available in an IR-calc derivation from a QBF
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Q is

Z IR
Q := {xµi : xi ∈ vars∃(Q), µ ∈ 〈〈Si〉〉} ,

whereas the variables appearing in ∀Exp+Res derivations are the variables of the total

expansion, all of which belong to the subset

{xµi ∈ Z IR
Q : µ ∈ 〈Si〉} .

The weak expansion of a QBF

The second major difference is the axiom rule. Axiom clauses in IR-calc are not

taken from the total expansion of the QBF. Instead, they belong to a rather differ-

ent CNF that we call the weak expansion. In the weak expansion, only individual

variable assignments which actually falsify universal literals make their way into the

annotations.

Definition 6.1 (weak expansion). Let Q := P · F be a QBF with existential depen-

dency sets S1, . . . , Sn. The weak expansion of Q is the CNF{
C[µC ∪ {xi 7→ (xi, µC�Si

)}i∈[n]]
}
C∈F ,

where µC is the negation of the universal subclause of C.

Example 6.2. Consider again the first instance of the equality family

∃x1∀u1∃z1 · {{x̄1, ū1, z1}, {x1, u1, z1}, {z̄1}} .

The weak expansion is the CNF

{{x̄∅1, z
{u1}
1 }, {x∅1, z

{ū1}
1 }, {z̄∅1}}

Notice that the literal in the unit clause {z̄1} receives the empty annotation, since the

universal subclause is empty. In contrast, in the expansion of EQ1 (Definition 4.2),

it is always annotated with some assignment to u1, which belongs to the dependency

set for z1.

Even though EQ1 is false, its weak expansion is satisfiable. It is satisfied, for

example, by the partial assignment {x1 7→ 0, z
{ū1}
1 7→ 1, z∅1 7→ 0}. �
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Instantiation and completion

The third major difference between IR-calc and ∀Exp+Res is instantiation itself.

Instantiation is a means of extending annotations. As we will see, its purpose is to

unify the annotations of prospective pivot literals, which, being partial assignments,

may be consistent but not equal. In order for a resolution step to be valid, the pivot

literals must be complementary, meaning that their annotations must match exactly.

It is perhaps worth emphasising that literals whose annotations do not match are

literals in distinct variables.

The instantiation of an annotated clause C by a universal assignment µ with

respect to a prefix P is the clause

inst(C, µ, P ) := C[{(xi, ν) 7→ (xi, ν � µ�Si
) : (xi, ν) ∈ vars(C)}] ,

where, as usual, Si is the dependency set for the existential variable xi.

As illustrated in the following example, due to the definition of completion, in-

stantiation never overwrites the assignments in annotations, it only extends them.

Example 6.3. With respect to the prefix ∀u1∃x1∀u2∃x2, the instantiation of the an-

notated clause

C := {(x1, {∅}), (x2, {u1})}

by the universal assignment µ := {ū1, ū2} is the annotated clause

inst(C, µ, P ) := {(x1, {ū1}), (x2, {u1, ū2})}

Notice that {u1} �µ = {u1, ū2}, so the literal (x2, {u1}) in C, which is already an-

notated with the positive assignment to u1, does not have that assignment overwritten

by the complementary assignment, which appears in µ. The individual assignments

in the annotations of the consequent clause are always preserved in this way by an

instantiation. �

6.2 The proof system IR-calc

We are now ready to set out the definition.

Definition 6.4 (IR-calc [13]). An IR-calc derivation from a QBF Q := P · F is a

sequence C1, . . . , Ck clauses in which at least one of the following holds for each i ∈ [k]:

A Axiom: Ci is a clause in the weak expansion of Q;
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{z̄1}

{x̄1, ū1, z1} {x1, u1, z1}{z̄∅1}

{x̄∅1, z
{u1}
1 } {z̄{u1}1 } {z̄{ū1}1 } {x∅1, z

{ū1}
1 }

{x̄∅1} {x∅1}

∅

A

A I I A

R R

R

Figure 6.1: An IR-calc refutation of EQ1.

R Resolution: Ci = res(Cr, Cs, p), for some r, s < i and existential literal p;

I Instantiation: Ci = inst(Cr, µ, P ), for some r < i and universal assignment µ;

W Weakening: Ci is L, or is subsumed by Cr for some r < i.

As usual, the final clause of a derivation is called its conclusion, and a derivation

whose conclusion is the empty clause is called a refutation.

The set of download clauses of a derivation π is the unique subset G of the matrix

for which the axioms of π are the weak expansion of P · G. More precisely, the

download clauses are the subset of axioms C satisfying

C = D[µD ∪ {xi 7→ (xi, µC�Si
)}i∈[n]] ,

for some clause D in F , where µD is the negation of the universal subclause of D.

Example 6.5. Figure 6.1 shows an IR-calc refutation of the first instance of the equality

family. The unit clause {z̄∅1}, which belongs to the weak expansion of EQ1, is intro-

duced as an axiom and subsequently instantiated in both possible ways, i.e. by the

assignments {u1} and {ū1}. The download clauses, which in this case form the com-

plete matrix of the input QBF, are depicted connected to the corresponding axioms

with dotted lines. �
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Soundness

We can prove that IR-calc is sound via a translation into ∀Exp+Res, which we al-

ready know is a sound refutational QBF proof system. Since ∀Exp+Res does not

simulate IR-calc, any such translation must incur a superpolynomial proof-size infla-

tion. However, when soundness is all we seek, the complexity of the translation is

irrelevant.

Lemma 6.6 ([13]). A QBF is false if it has an IR-calc refutation.

Proof. Let π := C1, . . . , Ck be an IR-calc refutation of a QBF Q := P · F .

By induction on i ∈ [k], we show that, for each total universal assignment µ

in 〈vars∀(Q)〉, there exists a ∀Exp+Res derivation of inst(Ci, µ, P ) from Q. Since

instantiation has no effect on the empty clause, at the final step i = k, we show that

there exists an ∀Exp+Res refutation of Q. So Q is false by the soundness of ∀Exp+Res

(Theorem 4.9).

Now, let µ be an arbitrary total universal assignment. For the base case i = 1, C1

is a clause in the weak expansion of Q. It is easy to see that inst(C1, µ, P ) is a clause

in the total expansion of Q, which can be introduced as an axiom in an ∀Exp+Res

derivation from Q. For the inductive step, let i ≥ 2. We consider four cases.

A If Ci was introduced as an axiom, the inductive step is identical to the base

case.

R Suppose that Ci was derived by resolution from Cr and Cs over the existential

pivot literal pν . It is easy to see that

inst(Ci, µ, P ) = res(inst(Cr, µ, P ), inst(Cs, µ, P ), (p, ν � µ)) .

Since both inst(Cr, µ, P ) and inst(Cs, µ, P ) can be derived in ∀Exp+Res by the

inductive hypothesis, inst(Ci, µ, P ) can be derived from them by resolution.

I If Cj was derived by instantiation, say by applying the assignment ν to Cr, then

inst(Ci, µ, P ), which is equal to inst(Cr, ν � µ, P ), can be derived in ∀Exp+Res,

by the inductive hypothesis.

W If Cj was derived by weakening from Cr, then inst(Cr, µ, P ) can be derived in

∀Exp+Res by the inductive hypothesis, so

inst(Ci, µ, P ) = inst(Cr, µ, P ) ∪ inst(Ci \ Cr, µ, P )

can be derived from it by weakening.
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Theorem 6.7 ([13]). IR-calc is a proof system for the language FQBF.

Proof. Soundness. Established by Lemma 6.6. Completeness. Follows from the

completeness of ∀Exp+Res which is trivially p-simulated by IR-calc. To see this, it is

enough to observe that every clause in the total expansion of a QBF can be derived

from some clause in the weak expansion by a single instantiation. Checkability. It

can be checked efficiently whether a clause belongs to the weak expansion of a QBF.

Moreover, instantiation can also be checked efficiently, so checkability of IR-calc follows

from that of Res.

6.3 Extracting strategies from IR-calc refutations

Now we turn to the task of extracting strategies from IR-calc refutations, which, as

in the previous chapter, forms the basis of our lower-bound technique. Extraction of

strategies from IR-calc refutations was already shown in [13], along similar lines as for

Q-Res [28]. We also follow the same approach, but once again we handle the details

slightly differently, and for that reason we include all the details.

6.3.1 Existential assignments and tidy refutations

Much of the technical details here follow similar lines to those of the previous chapter,

but, due to the use of annotated literals, are sufficiently different to merit full proofs.

We deal first with the application of existential assignments.

Closure under existential assignments

Due to the nature of annotated clauses, applying existential assignments to IR-calc

refutations is not as straightforward as in Q-Res.

What we want to show is the analogue of Fact 5.8, namely that IR-calc is closed

under existential assignments. However, when we come to apply the existential as-

signment, we notice that the variables appearing in the annotated clauses are com-

pletely disjoint from those of the input QBF. To deal with this, we must translate the

assignment to the QBF into a corresponding assignment to the annotated variables.

Definition 6.8. Given a QBF Q and a partial existential assignment ε, the applica-

tion of ε to an IR-calc refutation π := C1, . . . , Ck of Q returns the sequence

π[ε] := C1[δ], . . . , Ck[δ] ,
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where δ is the assignment to the variable set

Z IR
ε := {xµi : xi ∈ vars(ε), µ ∈ 〈〈Si〉〉}

defined by
δ : Z IR

ε → D
xµi 7→ ε(xi) .

This assignment translation, which basically just ignores the annotations, indeed

gives rise to the closure we seek.

Fact 6.9 ([13]). Given an IR-calc refutation of a QBF Q and a partial existential

assignment ε, π[ε] is an IR-calc refutation of Q[ε].

Proof. Let π := C1, . . . , Ck, and let δ be the assignment given in Definition 6.8. We

show by induction on i ∈ [k] that each clause Ci[δ] is a valid Q-Res inference in π[ε].

Observe that, if δ satisfies Ci, then Ci[δ] is L and can be derived by weakening.

Hence, we can assume from now on that δ does not satisfy Ci.

For the base case i = 1, C1 is introduced as an axiom and belongs to the weak

expansion of F . It is easy to verify that C1[δ] belongs to the weak expansion of F [ε],

so C1[δ] can be introduced as an axiom.

For the inductive step, let i ≥ 2. We consider four cases.

A If Ci was introduced as an axiom, the inductive step is identical to the base

case.

R If Ci was derived by resolution from Cr and Cs over the existential pivot literal

pµ, we consider three further cases.

(i) If δ satisfies the pivot literal pµ, then Ci[δ] is subsumed by Cs[δ], and can

therefore be derived by weakening.

(ii) If δ falsifies pµ, then Ci[ε] is subsumed by Cr[δ], and can be derived similarly

by weakening.

(iii) If δ neither satisfies nor falsifies pµ, then, since δ satisfies neither Cr nor Cs,

Ci[δ] can be derived by resolution from Cr[δ] and Cs[δ] over pivot literal

pµ.

I If Ci was derived by instantiation, say by applying the assignment ν to Cr, then

δ does not satisfy Cr, and Ci[δ] can be derived by instantation, applying the

same assignment ν to Cr[δ].
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W If Ci was derived by weakening from Cr, then δ does not satisfy Cr, which

subsumes Ci. It is easy to see that Cr[δ] subsumes Ci[δ], so the latter can be

derived by weakening.

Removing weakening steps

Removing weakening steps algorithmically from IR-calc refutations is very similar to

the corresponding process for Q-Res. In fact, we only need extend the construction

to handle instantiation steps, and this is quite straightforward.

Fact 6.10 (folklore). Weakening inferences can be removed algorithmically from

IR-calc refutations with no increase in size, while preserving the refutation.

Proof. Let π := C1, . . . , Ck be a Q-Res refutation of a QBF Q := P · F .

Since L cannot be an antecedent of any inference in π, and the conclusion Ck

is not L, deleting instances of L preserves the refutation. Therefore we can assume

without loss of generality that L does not occur in π.

Now, we transform π into a weakening-free refutation π′ := C ′1, . . . , C
′
k by process-

ing the clauses Ci in order, as follows:

A if Ci was introduced as an axiom, then define C ′i := Ci ;

R if Ci was derived by resolution from Cr and Cs over pivot pµ, then define

C ′i :=


C ′r if pµ /∈ C ′r ,
C ′s if pµ ∈ C ′r and p̃µ /∈ C ′s ,
res(C ′r, C

′
s, p

µ) if pµ ∈ C ′r and p̃µ ∈ C ′s ;

I If Ci was derived by instantiation, say by applying the assignment ν to Cr, then

define C ′i := inst(C ′r, ν, P ).

W If Ci was derived by weakening from Cr, then define C ′i := C ′r.

It is clear that the size of π′ is equal to that of π, and that any annotation

appearing in π′ also appears in π. Hence, to conclude, we show by induction on i in

[k] that C ′i is a subset of Ci, and is the consequent of a valid non-weakening inference

in π′. The base case i = 1 is established trivially, since C ′1 = C1 is a clause in the

weak expansion of Q. For the inductive step, let i ≥ 2. We consider four cases.

A If Ci was introduced as an axiom, the inductive step is identical to the base

case.
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R If Ci was derived by resolution we consider three further cases.

(i) If pµ /∈ C ′r, then C ′i = C ′r subsumes Ci, and can be derived by a non-

weakening inference by the inductive hypothesis.

(ii) If pµ ∈ C ′r and p̃µ /∈ C ′s , then C ′i = C ′s subsumes Ci, and can be derived

by a non-weakening inference by the inductive hypothesis.

(iii) If pµ ∈ C ′r and p̃µ ∈ C ′s, then C ′i = res(C ′r, C
′
s, p

µ). So C ′i is a valid

resolution inference in π′, and

C ′i = (C ′r \ {pµ}) ∪ (C ′s \ {p̃µ}) ⊆ (Cr \ {pµ}) ∪ (Cs \ {p̃µ}) = Ci

holds by the inductive hypothesis.

I If Ci was derived by instantiation, then C ′r is a subset of Cr by the inductive

hypothesis. Moreover, C ′i = inst(C ′r, ν, P ) is trivially a valid inference in π′.

W If Ci was derived by weakening, then Ci is a subsumed by Cr, and

C ′i = C ′r ⊆ Cr ⊆ Ci ,

by the inductive hypothesis. Moreover, C ′i = C ′r is a valid non-weakening infer-

ence, by the inductive hypothesis.

Tidy refutations

Similar to the nomenclature of the previous chapter, we call an IR-calc refutation

conclusion-unique when there is exactly one clause in the sequence which is not the

antecedent of an inference. We call a refutation tidy when it is both conclusion-unique

and weakening-free.

Further, we call a refutation non-trivial when at least one of its clauses is non-

empty. It is easy to see that a tidy non-trivial refutation has at least one application of

resolution, and therefore has at least three clauses. In a non-trivial IR-calc refutation,

we call the annotation of the final pivot variable the final annotation.

Example 6.11. The refutation in Figure 6.1 is non-trivial, and its final annotation is

the empty assignment. �

In tidy IR-calc refutations, first block universal variables behave in a particular

way, analogous to Q-Res, insofar as they appear in at most one polarity amongst the

annotations. In fact, first-block universal literals accumulate as the proof progresses,
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and in non-trivial tidy refutations, all such literals can be found together in the final

annotation.

Later on, when we come to strategy extraction, the important first-block assign-

ments will actually be those that appear in the annotations of axiom clauses (those

introduced by instantiation can essentially be ignored) and – for non-trivial refuta-

tions – these are exactly the complements of those appearing in the download clauses.

Fact 6.12 ([13]). Let π be a tidy IR-calc refutation of a QBF whose first block U

is universal, and let µ be the set of literals in variables from U whose complements

appear in the download clauses. If π is non-trivial, then the final annotation includes

µ.

Proof. Let π := C1, . . . , Ck be the refutation. For each i in [k], we let µi be the set of

literals in variables from U appearing in the download clauses for the subderivation

of Ci.

By induction on i in [k], we show that there exists an assignment νi for which

(a) µi ⊆ νi, and

(b) for each annotation ζ appearing in Ci, ζ�U = νi.

Since π is tidy, the final annotation appears in both Ck−2 and Ck−1, and the combined

download clauses of their subderivations are the download clauses for π. Hence the

final annotation includes µ.

For the base case i = 1, C1 is an axiom. Since every variable in U belongs to the

dependency set of every existential variable, the restriction to U of every annotation

in C1 is µ1. Hence putting ν1 := µ1 satisfies conditions (a) and (b).

For the inductive step, let i ≥ 2. Since π is tidy, Ci is not the consequent of a

weakening step. So, we consider three cases.

A If Ci was introduced as an axiom, the inductive step is identical to the base

case.

R Suppose that Ci was derived by resolution from Cr and Cs over pivot literal

pζ0 . By the inductive hypothesis, there exist assignments νr and νs satisfying

conditions (a) and (b) with respect to r and s. Since ζ0 appears as an annotation

in both Cr and Cs, we must have νr = νs. Thus, setting νi := νr satisfies both

conditions (a) and (b) with respect to i.
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I Suppose that Ci was derived by instantiation from Cr and the universal assign-

ment θ. By the inductive hypothesis, there exists an assignment νr satisfying

conditions (a) and (b) with respect to r. It is easy to verify that the assignment

νi := νr � θ satisfies both conditions with respect to i.

Fact 6.12 is essentially the analogue of Facts 5.10 and 5.14 for Q-Res refutations.

An immediate corollary is that the first-block universal literals from the download

clauses contain no complementary pairs, and therefore form a partial assignment to

the first block.

Corollary 6.13. Given a tidy IR-calc refutation π of a QBF whose first block U

is universal, complementary literals in variables in U do not appear amongst the

download clauses of π.

6.3.2 Refined countermodels

We are working towards extending the lower bound technique for Q-Res (Chapter 5)

to IR-calc, in such a way that we can prove lower bounds for formula families of

unbounded quantifier depth. For this, it turns out that we need to refine our definition

of countermodel.

The refinement is based on two observations. Given a countermodel h for a QBF

∀U1∃X1 · · · ∀Ud∃Xd · F ,

and some total existential assignment ε,

(a) the assignment h(ε) does not depend on ε�Xd
, and

(b) the assignment ε ∪ h(ε) may falsify the matrix even when h(ε) is restricted to

a partial universal assignment.

Definition 6.14 (refined countermodel). A refined countermodel for a QBF

∀U1∃X1 · · · ∀Ud∃Xd · F

is a function with signature

h : 〈vars∃(Q) \Xd〉 → 〈〈vars∀(Q)〉〉

satisfying the following conditions for each ε, δ in 〈vars∃(Q) \Xd〉:

(a) F [ε ∪ h(ε)] is unsatisfiable;

(b) for each j in [d] and each universal variable u in Uj,

ε and δ agree on X1 ∪ · · · ∪Xj−1 ⇒ h(ε) and h(δ) do not disagree on uj .
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Weight of a refined countermodel

A set of assignments is called pairwise-inconsistent when every pair of assignments

disagrees on at least one variable. The weight of a refined countermodel is the maximal

cardinality of a pairwise-inconsistent subset of its range.

We emphasise that, in contrast to countermodels, the range of a refined counter-

model is a set of partial universal assignments, so non-identical elements of the range

are not necessarily inconsistent.

Example 6.15. The first instance of the interleaved equality family, namely

∃x1∀u1∃x1 · {{x̄1, ū1, z1}, {x1, u1, z1}, {z̄1}}

has the unique refined countermodel

〈{x1}〉 → 〈〈{u1}〉〉
{x̄1} 7→ {ū1}
{x1} 7→ {u1} ,

whose weight is 2, since the domain itself consists of two inconsistent assignments.

In this case, each element of the range of the refined countermodel is actually a total

universal assignment.

As a further example demonstrating the use of partial assignments, the reader can

verify that the second instance, namely

∃x1∀u1∃z1∃x2∀u2∃z2 · {{x̄1, ū1, z1}, {x1, u1, z1}, {x̄2, ū2, z2}, {x2, u2, z2}, {z̄1, z̄1}}

has the following (non-unique) refined countermodel:

〈{x1, y1, x2}〉 → 〈〈{u1, u2}〉〉
{x̄1, z̄1, x̄2} 7→ {ū1}
{x̄1, z̄1, x2} 7→ {ū1}
{x̄1, z1, x̄2} 7→ {ū2}
{x̄1, z1, x2} 7→ {u2}
{x1, z̄1, x̄2} 7→ {u1}
{x1, z̄1, x2} 7→ {u1}
{x1, z1, x̄2} 7→ {ū2}
{x1, z1, x2} 7→ {u2} .

The only pairwise-inconsistent susbsets of the range of this countermodel are

{{ū1}, {u1}} and {{ū2}, {u2}} ,

and hence its weight is also 2. Since EQ′ requires exponential-size countermodels

(Theorem 4.16), this example demonstrates that a QBF can have a refined counter-

model whose weight is less than the minimal countermodel size. �
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Relation to countermodels

Like regular countermodels, refined countermodels also witness the falsity of a QBF.

In fact, it is fairly easy to translate between the two.

For example, consider an arbitrary false QBF

∀U1∃X1 · · · ∀Ud∃Xd · F

with existential variables {x1, . . . , xn}. Given a countermodel h for Q, any function

defined by
〈vars∃(Q) \Xd〉 → 〈〈vars∀(Q)〉〉

ε 7→ h(ε ∪ α) ,

where α is an arbitrary total assignment to Xd, is a refined countermodel for Q.

On the other hand, given a refined countermodel h′ for Q, it is easy to see that

the set of universal dependency functions {hi}i∈[n] defined by

hi : 〈Hi〉 → 〈{ui}〉

δ 7→

{
(h′(δ � β))�{ui} if ui ∈ vars(h(δ � β))

{ūi} otherwise .
.

where β is the total existential assignment that is identically 0, forms a countermodel

for Q.

6.3.3 The extracted strategy

Now we show how to extract a refined countermodel from an IR-calc refutation. We

first define the extracted strategy, and then prove that it is indeed a refined counter-

model.

Definition 6.16 (extracted strategy). Given an IR-calc refutation π of a QBF

∀U1∃X1 · · · ∀Ud∃Xd · F ,

the extracted strategy for π is the function

h : 〈vars∃(Q) \Xd〉 → 〈〈vars∀(Q)〉〉
ε 7→ µε

where µε is the set of universal literals whose complements appear in the download

clauses of

π[[ε�X1
]] · · ·[[ε�Xd−1

]] .
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Theorem 6.17. The extracted strategy for an IR-calc refutation is a refined counter-

model for the input QBF.

Proof. Let π be an IR-calc refutation of a QBF Q. We show that the extracted

strategy
h : 〈vars∃(Q) \Xd〉 → 〈〈vars∀(Q)〉〉

ε 7→ µε

satisfies both conditions for a refined countermodel (Definition 6.14).

Let ε and δ be arbitrary assignments in 〈vars∃(Q) \Xd〉.

(a) By Facts 6.9 and 6.10,

πε := π[[ε�X1
]] · · ·[[ε�Xd−1

]]

is an IR-calc refutation of

∀(U1 ∪ · · · ∪ Ud)∃Xd · F [ε] ,

which is a false QBF, by the soundness of IR-calc (Lemma 6.6).

Let G be the download clauses of πε. By definition of extracted strategy (Def-

inition 6.16), µε contains the complement of each universal literal occurring in

G. It is easy to see, therefore, that the false QBF

∀(U1 ∪ · · · ∪ Ud)∃Xd ·G

has a model if G[µε] is satisfiable, and hence it is unsatisfiable. It follows

immediately that F [ε ∪ µε] is unsatisfiable.

(b) Let j ∈ [d] and u ∈ Uj, and suppose that ε and δ agree on X1 ∪ · · · ∪Xj−1. By

Facts 6.9 and 6.10,

π′ε := π[[ε�X1
]] · · ·[[ε�Xj−1

]]

is an IR-calc refutation of

Q[[ε�X1
]] · · ·[[ε�Xj−1

]] .

Now, by Corollary 6.13, u appears in at most one polarity in the download

clauses for π′ε. Note that the download clauses of both πε and

πδ := π[[δ�X1
]] · · ·[[δ�Xd−1

]]

are obtained from the download clauses of π′ε by the application of existential

assignments, so u appears in at most one polarity amongst their combined

download clauses. Therefore h(ε) and h(δ) do not disagree on u, by definition

of the extracted strategy (Definition 6.16).
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6.4 Lower bounds in IR-calc

We are now ready to show that IR-calc proof size is related to weight. More pre-

cisely, the minimal refined countermodel weight is an IR-calc proof-size lower bound

(Theorem 6.18). Thereafter we reprove the exponential IR-calc lower bound for the

Kleine Büning family, by showing that it requires refined countermodels of exponen-

tial weight.

6.4.1 Extending the technique to unbounded quantifier depth

Our lower-bound technique for IR-calc rests on the following theorem.

Theorem 6.18. If a QBF has an IR-calc refutation of size k, then it has a refined

countermodel of weight k.

Proof. Let π be an IR-calc refutation of a QBF

Q := ∀U1∃X1 · · · ∀Ud∃Xd · F ,

and let k be the size of π. First, we observe that trailing literals can be removed from

a QBF while preserving its weak expansion, and therefore its set of IR-calc refutations.

Hence, we may assume without loss of generality that the clauses in the matrix of Q

contain no trailing literals.

Let s be the size of the extracted strategy h for π. We show that s is at most k.

We hence prove the result, since the extracted strategy is a refined countermodel by

Theorem 6.17.

We claim that every assignment in the range of h appears as a subset of an annota-

tion in π. As the range of h contains a subset of s pairwise-inconsistent assignments,

π contains at least s annotations, and, therefore, at least as many literals. Thus

s ≤ k.

It remains to prove the claim. We take an arbitrary assignment µ = h(ε) in the

range of h. By definition of the extracted strategy (Definition 6.16), µ is the set of

universal literals whose complements appear in the download clauses for

πε := π[[ε�X1
]] · · ·[[ε�Xd−1

]] ,

which is a refutation of the QBF

Qε := ∀(U1 ∪ · · · ∪ Ud)∃Xd · F [ε] .

We consider two cases
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(a) Suppose that |πε| = 1. Then πε is the sequence consisting of the empty clause

only, and has exactly one download clause, which is the negation of µ. It follows

that π has a download clause D which, for some restriction δ of ε, is the negation

of δ ∪ µ. Since D contains no trailing literals, µ appears as a subset of some

annotation appearing in the axiom corresponding to D.

(b) On the other hand, suppose that |πε| > 1. Since Qε has a single universal

block, µ appears as a subset of the final annotation in πε, by Fact 6.12. Since

neither the application of existential assignments nor the removal of weakening

steps enlarge the annotation set of a refutation, µ appears as a subset of an

annotation in π.

An immediate corollary of Theorem 6.18 is the following.

Corollary 6.19. If a family of false QBFs requires refined countermodels of size t(n),

then it requires Q-Res refutations of size t(n).

6.4.2 Application to the Kleine Büning family

Finally, we apply the technique to KB. We first show that the family requires refined

countermodels of exponential size.

Theorem 6.20. KB requires refined countermodels of size 2n.

Proof. Let n be a natural number, and Let

h : 〈{x1, y1, . . . , xn, yn}〉 → 〈〈{u1, . . . , un}〉〉

be a refined countermodel for EQn. We show that rng(h) = 〈{u1, . . . , un}〉, which is

itself a set of 2n pairwise-inconsistent assignments. It follows that the size of h is 2n.

Let µ be an arbitrary total universal assignment, and let ε be the assignment in

the domain of h defined by

ε(xi) :=

{
0 if µ(ui) = 1

1 if µ(ui) = 0
, for i ∈ [n] ,

ε(yi) :=

{
1 if µ(ui) = 1

0 if µ(ui) = 0
, for i ∈ [n] .

We complete the proof by showing that µ = h(ε).
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Now, kbn[ε] is the CNF consisting of the clauses

{an, z̄1, . . . , z̄n} ,
{ui, zi} , for i in [n] ,
{ūi, zi} , for i in [n] ,

where an is the unique literal in the variable un falsified by µ. It is easy to see that

a partial universal assignment leaves kbn[ε] unsatisfiable only if it is a total universal

assignment falsifying an. Therefore h(ε) belongs to 〈{u1, . . . , un}〉 and agrees with µ

on un, by definition of refined countermodel (Definition 6.14), condition (a).

Finally, we show that h(ε)(ui) = µ(ui) for each i in [n − 1]. To see this, let

i ∈ [n− 1], and consider the assignment in the domain of h specified by

δi(xj) :=

{
ε(xj) if j < i

1 otherwise ,

δi(yj) :=

{
ε(yj) if j < i

1 otherwise .

Now, kbn[δi] is the CNF consisting of the clauses

{ai} ,
{ui, zi} , for i in [n] ,
{ūi, zi} , for i in [n] ,

where ai is the unique literal in the variable ui falsified by µ. Similar to the above,

a partial universal assignment leaves kbn[δi] unsatisfiable only if it falsifies ai. Hence

h(δi) agrees with µ on ui, by definition of refined countermodel (Definition 6.14),

condition (a). Since ε and δ agree on the dependency set for ui, namely

{x1, y1, . . . , xi−1, yi−1} ,

h(ε) agrees with µ on ui, by definition of refined countermodel (Definition 6.14),

condition (b).

The exponential proof-size lower bound follows immediately.

Theorem 6.21 ([13]). KB requires IR-calc refutations of size 2n.
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Chapter 7

Universal Merging

IR-calc

∀Exp+Res

LDQ-Res

Q-Res

The concept of universal merging originated in the learning mechanism of the

QDCDL solver Quaffle [72]. Notwithstanding the difficulties posed by tautological

clauses in Q-Res, the authors of Quaffle realised that certain tautological clauses are

in fact harmless. They devised a learning scheme based on so-called ‘long-distance’

resolution, which works with tautologies in a non-trivial way. Zhang and Malik didn’t

give a semantic account of these tautological clauses, and nor were they expected to

– they were mainly interested in efficient solving.

A decade later, a theoretical model for solvers like Quaffle was proposed in the

shape of the QBF proof system LDQ-Res [2], highlighted above. The system oper-

ates rather like Q-Res, except that tautological clauses may be derived under safe

conditions. It was subsequently shown that LDQ-Res is exponentially stronger than

Q-Res [23], corroborating the practical appeal of the approach.

Deferred universal reduction

The addition of long-distance resolution gives rise to an interesting normal form for

refutations, first introduced by Bjørner, Janota, and Klieber to model their solver

GhostQ [16]. In this normal form, all universal reduction steps are carried out at the
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end of the refutation, after all the resolution steps. Such structured refutations form

the fragment that we call deferred LDQ-Res (it is elsewhere referred to as ‘reductionless

LDQ-Res’ [11] and ‘Qw’ [16]).

In this chapter, we prove that deferred LDQ-Res is complete. Whereas our lower-

bound techniques do not seem to be applicable to LDQ-Res, we are able prove an

exponential proof-size lower bound in deferred LDQ-Res with a creative modification

of the equality formulas.

Organisation of the chapter

We recall LDQ-Res in Section 7.1, and prove that the deferred fragment is complete

in Section 7.2. Hardness of the squared equality family is proved in Section 7.3.

7.1 The proof system LDQ-Res

The rules of LDQ-Res are almost identical to those of Q-Res. The only difference is

that the ban on tautological clauses is lifted, and a new side condition appears in the

resolution rule.

Definition 7.1 (LDQ-Res [2]). A long-distance Q-Resolution (LDQ-Res) derivation

from a QBF Q := P · F is a sequence C1, . . . , Ck of clauses in which at least one of

the following holds for each i ∈ [k]:

A Axiom: Ci is a clause in F ;

L Long-distance resolution: Ci = res(Cr, Cs, p), for some r, s < i and existen-

tial literal p, var(p) = x is existential, and, for each universal u in vars(Cr ∪ Cs),

{u, ū} ⊆ Ci ⇒ u is not in the dependency set for x

U Reduction: Ci = Cr \ {a}, for some r < i, where a is universal and trailing in

Cr with respect to P ;

W Weakening: Ci is L, or is subsumed by Cr for some r < i.

It is conventional to write pairs of complementary universal literals ū and u as a

single merged literal
∗
u. For example, the clause {x̄, ū, u} can be written {x̄, ∗u}.

Example 7.2. Figure 7.1 shows an LDQ-Res refutation of EQ1. Notice that the merged

literal
∗
u1, which represents the pair of literals ū1 and u1, is depicted as being reduced

in a single step. Formally this requires two reduction steps, one for each literal. �
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{x̄1, ū1, z1} {x1, u1, z1}

{∗u1, z1} {z̄1}

{∗u1}

∅

A A

L A

L

U

Figure 7.1: An LDQ-Res refutation of EQ1.

It is easy to see that every Q-Res refutation is an LDQ-Res refutation, and so the

completeness of LDQ-Res follows from that of Q-Res. The soundness of LDQ-Res is a

different matter, and any proof confirming that a QBF with an LDQ-Res refutation

is false must somehow interpret the semantics of merged literals. Reinterpreting

tautologies, however, is a non-trivial task, and, it is fair to say, one which appears to

be at odds with a conventional interpretation of logic.

For this reason, we do not prove the soundness of LDQ-Res, we only reference the

result which can be found in the literature. We come shortly to the semantics of

merged literals, and we defer proofs of soundness until we understand properly how

to present them consistently with the semantics of conjunctive normal form.

Theorem 7.3 ([2]). LDQ-Res is a proof system for FQBF.

Breakdown of lower bound techniques

It is instructive to compare the LDQ-Res refutation of EQ1 with the Q-Res refutation

in Figure 5.1. In the Q-Res refutation, the resolution over z1 is performed before the

resolution over x1. However, in LDQ-Res, the availability of universal tautologies, in

the form of merged literals, allows the resolution over x1 to take place first. In fact,

as the next result shows, merging even allows linear size refutations of EQ.

Theorem 7.4. EQ admits LDQ-Res refutations of size O(n).

Proof. For each i in [n], we can resolve the two clauses {x̄i, ūi, zi} and {xi, ui, zi}
to obtain the clause {∗ui, zi}. Resolving each of these in turn with the long clause

{z̄1, . . . , z̄n}, we obtain the fully universal clause {∗u1, . . . ,
∗
un}. Applying universal
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reduction to each literal in this clause, we obtain the empty clause, completing the

refutation. It is easy to see that the whole refutation is of size linear in n.

Theorem 7.4 demonstrates that our lower-bound techniques do not lift to long-

distance Q-Resolution. More precisely, strategy size is not a lower bound on proof

size in LDQ-Res, even for formulas of bounded quantifier depth.

The reason for this, in a nutshell, is that we are now dealing with tautological

clauses. The projection of a clause to a set of universal variables does not necessarily

represent an assignment, so the method of proof from Theorem 5.16 doesn’t work.

The role of the merged literal

The role of the merged literal became something of a talking point amongst the

QBF community. The crux of the matter is that the use of tautological clauses is

quite difficult to interpret semantically. Certainly we cannot interpret them as we

are accustomed to, since a derived tautology, which entails only other tautologies,

can never be useful in refuting a formula. However, as we saw in Theorem 7.4, the

tautological clauses used in LDQ-Res can actually shorten refutations.

A clear and precise account of the role of merged literals was finally given in

[66]: they represent universal dependency functions. (In fact, they represent partial

countermodels, which we come to in Chapter 12.) This was the result of a great

deal of interest in merged literals, particularly in relation to strategy extraction,

and the notion is evident to a greater or lesser degree in all of the earlier papers

[23, 3, 47, 45, 7].

It is certainly worth taking a moment to elaborate. When a universal variable is

merged, it is not in the dependency set of the existential pivot, or equivalently, the

pivot is in the dependency set of the merged variable. The merged literal implicitly

represents the function that always falsifies the literal in the antecedent clause in

which the pivot is falsified. For example, the merged literal
∗
u in Figure 7.1 represents

the function
〈{x1}〉 → 〈{u1}〉
x̄1 7→ ū1

x1 7→ u1 .

Further merging of literals with other literals, which may also be merged, produces

progressively more complex functions.

What is perhaps unfortunate for LDQ-Res is that these dependency functions are

represented implictly, and one must traverse the subderivation to determine exactly

which function is represented.
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7.2 Deferred LDQ-Res

Unlike Q-Resolution, long-distance Q-Resolution actually forms a complete QBF

proof system even when all universal reduction steps are performed at the end of

the refutation.

A deferred LDQ-Res derivation is an LDQ-Res derivation in which each application

of reduction follows every application of every other rule [16]. The LDQ-Res refutation

in Figure 7.1 is a deferred refutation; it has a single universal reduction which is

performed last.

We call the restriction of long-distance Q-Resolution to deferred derivations de-

ferred LDQ-Res.

Completeness of deferred refutations

Given a false QBF Q with a countermodel h, we construct a canonical reductionless

LDQ-Res refutation based on the ‘full binary tree’ representation of a countermodel

[55].

For each x ∈ 〈vars∃(Q)〉, there exists some Cε in the matrix falsified by ε ∪ h(ε).

The set of all such Cε may be successively resolved over existential pivots in reverse

prefix order, finally producing a clause containing no existentials. Merged literals

never block resolution steps in this construction, as they only ever appear to the right

of the pivot variable.

Lemma 7.5. Every false QBF has a deferred LDQ-Res refutation.

Proof. Let Q := P · F be a false QBF with countermodel h. Denote the existential

variables of Q by X := {x1, . . . , xn}, such that whenever i < j holds, xj does not

appear in a block quantified before the block in which xi appears.

Let ε1, . . . , ε2n define the natural lexicographic ordering of the total assignments

to X, as in

ε1 := z1 7→ 0, . . . , zn−2 7→ 0, zn−1 7→ 0, zn 7→ 0 ≈ 0 · · · 000 ,
ε2 := z1 7→ 0, . . . , zn−2 7→ 0, zn−1 7→ 0, zn 7→ 1 ≈ 0 · · · 001 ,
ε3 := z1 7→ 0, . . . , zn−2 7→ 0, zn−1 7→ 1, zn 7→ 0 ≈ 0 · · · 010 ,
ε4 := z1 7→ 0, . . . , zn−2 7→ 0, zn−1 7→ 1, zn 7→ 1 ≈ 0 · · · 011 ,
...

...
...

...
...

ε2n := z1 7→ 1, . . . , zn−2 7→ 1, zn−1 7→ 1, zn 7→ 1 ≈ 1 · · · 111 .

We define a sequence π := πn, . . . , π0 in which each πi := Ci
1, . . . , C

i
2i , and the

clauses Ci
j are defined recursively as follows. For j ∈ [2n], Cn

j is any clause in F
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falsified by εj ∪ h(εj) (at least one such clause exists by definition of countermodel).

For i ∈ [n] and j ∈ [2i−1], Ci−1
j := res(Ci

2j−1, C
i
2j, xi) if this resolvent exists, otherwise

Ci−1
j :=

{
Ci

2j−1 , if xi /∈ Ci
2j−1 ,

Ci
2j , if x̄i /∈ Ci

2j .

It is readily verified by downwards induction on i ∈ [n] that each Ci
j contains no

complementary universal literals in variables left of xi. Moreover, it is easy to see that

the conclusion C0
1 contains no existential literals. So a deferred LDQ-Res refutation

of Q is obtained from π by reducing all the literals in the final clause.

This is enough to show that deferred LDQ-Res is a refutational QBF proof system.

Theorem 7.6. LDQ-Res is a proof system for the language FQBF.

Proof. Completeness. Established by Lemma 7.5. Soundness and checkability. Both

follow from the (trivial) fact that LDQ-Res p-simulates deferred LDQ-Res.

7.3 The squared equality family

We have already seen that Theorem 7.4 marks the breakdown of our lower-bound

technique in the long-distance context. In fact, since the short refutations constructed

in the proof of Theorem 7.4 are in fact deferred, countermodel size is no proof-size

lower bound in deferred LDQ-Res either.

However, we can show a lower bound for deferred LDQ-Res by modifying the

equality family. The modification is a kind of squaring.

Definition 7.7 (equality family). The squared equality family is the QBF family

whose nth instance is

EQ2
n := ∃x1 · · ·xny1 · · · yn∀u1 · · ·unv1 · · · vn∃z1 · · · zn · eq2

n ,

where the CNF eq2
n consists of the clauses

{x̄i, ȳj, ūi, v̄j, zi,j} , for i, j in [n] ,
{xi, ȳj, ui, v̄j, zi,j} , for i, j in [n] ,
{x̄i, yj, ūi, vj, zi,j} , for i, j in [n] ,
{xi, yj, ui, vj, zi,j} , for i, j in [n] ,
{z̄i,j : i, j ∈ [n]} .

We call the final clause in the matrix eq2
n the square clause.
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Proof of hardness in deferred LDQ-Res

The squared equality family actually requires exponential-size deferred refutations.

To prove this, we first need a formal definition of a refutation path. A path is a

sequence of consecutive resolvents beginning with an axiom and ending at the final

resolvent.

Definition 7.8 (path). Let π be a deferred LDQ-Res refutation. A path from a clause

C in π is a subsequence C1, . . . , Ck of π in which:

(a) C = C1 is an axiom of π;

(b) Ck contains no existential literals;

(c) for each i in [k − 1], Ci+1 is an antecedent of Ci.

The lower-bound proof is based upon two facts, which we prove as preliminary

lemmata.

(1) Every total existential assignment corresponds to a path, all of whose clauses

are consistent with the assignment (Lemma 7.9).

(2) Every path from the square clause contains a ‘wide’ clause containing either all

the xi or all the yj variables (Lemma 7.10).

It is then possible to deduce the existence of exponentially many wide clauses, by

considering the set of assignments ε for which each ε(xi) = ε(yi) and each ε(zi,j) = 0,

all of whose corresponding paths begin at the square clause.

Lemma 7.9. Let π be a tidy deferred LDQ-Res refutation of a QBF Q, and let T be a

clause with vars(T ) = vars∃(Q). Then there exists a path in π in which no existential

literal outside of T occurs.

Proof. We describe a procedure that constructs a sequence P := Ck, . . . , C1 of clauses

in reverse order as follows. Let the clause C1 be the antecedent of the final resolution

step in π. At each step, let the next clause Ci+1 be the unique antecedent of Ci

which contains the pivot literal in the same polarity as it occurs in T . The procedure

terminates as soon an axiom is encountered; that is, Ck is the unique axiom in the

sequence.

P is clearly a path in π by construction. By induction we show that the existential

subclause of Ci is a subset of T , for each i in [n]. The base case i = 1 holds trivially

since there are no existential literals in the conclusion C1 of π. The inductive step

i ≥ 2 holds trivially by construction.
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The second lemma is more technical, and its proof more involved. The proof works

directly on the definition of path, the rules of LDQ-Res, and the syntax of the squared

equality formulas, to show the existence of a wide clause in all paths from the square

clause.

Lemma 7.10. Let n ≥ 2, and let π be a tidy deferred LDQ-Res refutation of EQ2
n. On

each path from the square clause, there occurs a clause C for which either {x1, . . . , xn} ⊆
vars(C) or {y1, . . . , yn} ⊆ vars(C).

Proof. Put X := {x1, . . . , xn} and Y := {y1, . . . , yn}. For any variable p, we call a

clause in π a p-resolvent if it is the consequent of a resolution step over pivot variable

p.

Now, we let P := C1, . . . , Ck be any path from the square clause. For each l in [k]

we define an n× n matrix Ml, where

Ml[i, j] :=

{
1 if z̄i,j ∈ Cl
0 otherwise .

We choose l0 as the least integer such that Ml0 has either a 0 in each row or a 0 in

each column. Note that l0 ≥ 2, as M1 has no zeros.

We consider two exhaustive cases. In the first we show that X ⊆ vars(Cl0), and

in the second we show that Y ⊆ vars(Cl0).

(a) Suppose that Ml0 has a 0 in each row. We first show that every row in Ml0 also

has at least one 1.

Aiming for contradiction, suppose that Ml0 contains a full 0 row r (this implies

that l0 ≥ 2, and hence that Ml0−1 exists). By definition of resolution there can

be at most one element that changes from 1 in Ml0−1 to 0 in Ml0 . Since Ml0−1

does not have a 0 in every column, it does not contain a full zero row. Hence

it must be the case that the unique element that went from 1 in Ml0−1 to 0

in Ml0 is in row r. Since n ≥ 2, we deduce that Ml0−1 has a 0 in each row,

contradicting the minimality of l0.

Consider the following three statements, which we claim hold for all i, j ∈ [n]:

(1) for each clause Cl on P , if z̄i,j is in Cl, then {ūi, ui} * Cl;

(2) each xi-resolvent in π contains {ūi, ui} as a subset;

(3) for each zi,j-resolvent R in π, if xi /∈ vars(R) then {ūi, ui} ⊆ R.
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We prove the claims afterwards.

For now, let i in [n]. Since the ith row in Ml0 contains a 1, there is some j

in [n] for which z̄i,j is in Cl0 . From claim (1) it follows that {ūi, ui} * Cl0 .

Moreover, as universal literals accumulate along the path, each clause on P up

to and including Cl0 does not contain {ūi, ui} as a subset. Since the ith row in

Ml0 contains a 0, there exists some j0 in [n] for which z̄i,j0 is not in Cl0 .

As z̄i,j0 is in C1, there must be a zi,j0-resolvent preceding Cl0 on P , which

contains variable xi by claim (3). Also, each clause up to and including Cl0 is

not an xi-resolvent by claim (2). It follows that xi ∈ vars(Cl0), and since i was

chosen arbitrarily, we have X ⊆ vars(Cl0).

(b) Suppose on the other hand that Ml0 does not contain a 0 in each row. Then

Ml0 contains a 0 in each column, and a symmetrical argument shows that Y ⊆
vars(Cl0).

It remains to prove the three claims.

(1) First, observe that each clause in π containing the positive literal zi,j also con-

tains the variable ui (this holds for every axiom and universal literals are never

removed).

Now, let Cl be a clause on the path P for which z̄i,j is in Cl, and, for the sake of

contradiction, suppose that {ūi, ui} ⊆ Cl. Since ui belongs to the dependency

set for zi,j, there cannot be a zi,j-resolvent on P following C, as such a resolution

step would be forbidden.

This means that z̄i,j occurs in Ck, the final clause of P . This is a contradiction,

since Ck is the antecedent of the final resolution step in the tidy refutation π;

it is followed only by reduction steps which derive the empty clause, and hence

contains no existential literals.

(2) First, observe that each clause in π containing x̄i also contains ūi, and each

clause containing xi also contains ui. Again, this holds for every axiom and

universal literals are never removed. It follows immediately that an xi-resolvent

contains {ūi, ui} as a subset.

(3) Observe that each axiom in π containing the positive literal zi,j contains variable

xi. Hence, any clause in π that contains literal zi,j, but not variable xi, must
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appear after an xi-resolvent on some path, and therefore contains {ūi, ui} by

Claim (2).

Now, let R be a zi,j-resolvent of R1 and R2 in π. Suppose that xi /∈ vars(R),

which implies that xi /∈ vars(R1). Since zi,j is in R1, we have {ūi, ui} ⊆ R1, and

it follows that {ūi, ui} ⊆ R.

Now we prove the lower bound from the preceding lemmata.

Theorem 7.11. EQ2 requires deferred LDQ-Res refutations of size 2n−1.

Proof. Let n be a natural number, and let π be a tidy deferred LDQ-Res refutation

of EQ2
n. Once again we put X := {x1, . . . , xn} and Y := {y1, . . . , yn}.

We show that |π| ≥ 2n−1. The size bound is trivially true for n = 1, so we assume

n ≥ 2.

Now, we call a non-tautological clause S symmetrical when it satisfies the following

three properties:

(a) vars(S) = vars∃(EQ2
n);

(b) for each i in [n], xi and yi appear in the same polarity in S;

(c) for each i, j in [n], zi,j appears in negative polarity in S.

It is easy to see that there are 2n distinct symmetrical clauses.

By Lemma 7.9, for each symmetrical clause S, there exists a path PS in π in which

all appearing existential literals belong to S. Moreover, each PS begins at the long

clause, since every other clause in eq2
n contains some positive ti,j literal that does not

occur in S.

Hence, by Lemma 7.10, on each PS there exists a clause CS for which either X ⊆
vars(CS) or Y ⊆ vars(CS). It follows that we can define a function f that maps each

symmetrical assignment S to a clause f(S) in π for which either proj(S,X) ⊆ f(S)

or proj(S, Y ) ⊆ f(S), or both.

Moreover, since distinct symmetrical clauses S1 and S2 satisfy

proj(S1, X) 6= proj(S2, X) and proj(S1, Y ) 6= proj(S2, Y ) ,

each f(S) is the image of at most two distinct symmetrical clauses. Hence, π contains

at least 2n−1 clauses.
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Part III

Models of Solving
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Chapter 8

Dependency Quantified Boolean
Formulas

Much of our work in this part of the thesis is based on translations from the set of

QBFs into a larger set, the set of dependency quantified Boolean formulas (DQBF).

At the same time, we want to lift our QBF proof systems to DQBF, but we encounter

some problems on the reduction side. It turns out that the semantics of DQBF, which

is richer than QBF, has a non-trivial impact on our translations.

In this chapter we provide the background on DQBFs that is needed for the

remaining chapters in Part III.

Organisation of the chapter

In Section 8.1, we deal with DQBF syntax, and turn to semantics in Section 8.2. In

Section 8.3, we discuss the proof complexity landscape for DQBF, and give a possible

explanation for the issues with reduction systems.

8.1 S-form and H-form

DQBFs can be written in one of two forms, Skolem form (S-form) and Herbrand form

(H-form). Skolem form DQBFs give the dependencies for the existential variables,

whereas Herbrand form gives the dependencies for the universals.

Definition 8.1 (DQBF). An S-form dependency quantified Boolean formula (DQBF)

is of the form

∀u1 · · · ∀um∃x1(S1) · · · ∃xn(Sn) · F

and an H-form dependency quantified Boolean formula is of the form

∃x1 · · · ∃xn∀u1(H1) · · · ∀um(Hm) · F
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where

(a) X := {x1, . . . , xn} and U := {u1, . . . , um} are disjoint sets of Boolean variables,

(b) for each i in [n], Si ⊆ U , and for each j ∈ [m], Hj ⊆ X,

(c) F is a CNF with vars(F ) ⊆ U ∪X.

We denote the set of S-form DQBFs by ‘S’ and the set of H-form DQBFs by ‘H’.

A DQBF is rather like a QBF whose dependency sets, either existential or uni-

versal, have been given explicitly. In an S-form DQBF, the dependency sets for the

existential variables are given: each Si is the dependency set for the existential xi.

Similarly, in H-form each universal dependency set Hj is given to variable uj explic-

itly. This is in contrast to QBF where the dependency sets are defined implicitly in

the prefix.

It is easy to see that the set of QBFs Q is a subset of both of S and H. For

example, given a QBF

Q := ∀U1∃X1 · · · ∀Ud∃Xd · F

with existential variables {x1, . . . , xn} and universal variables {u1, . . . , um}, we can

write it either as the S-form DQBF or the H-form DQBF in Definition 8.1, where the

Si and Hj are the existential and universal dependency sets of Q.

A QBF prefix prescribes a total order on blocks, meaning that the dependency

sets for QBFs always form nested subsets. More precisely, there always exists some

enumeration of the existential variables, say {x1, . . . , xn}, for which

S1 ⊆ S2 ⊆ · · · ⊆ Sn−1 ⊆ Sn ,

and some enumeration of the universal variables, say {u1, . . . , um}, for which

H1 ⊆ H2 ⊆ · · · ⊆ Hm−1 ⊆ Hm .

DQBFs in general do not have this property, since the dependency sets can be

arbitrary subsets of the oppositely quantified variables. As a result, the semantics of

DQBF is a much richer affair compared to QBF.
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8.2 Semantics

Models and countermodels for DQBF are defined exactly as for QBF (Definitions 3.2

and 3.4). Since a DQBF specifies dependency sets for only one quantification type,

models only make sense for S-form DQBFs, and countermodels only for H-form.

For example, a model for the S-form DQBF

∀u1 · · · ∀um∃x1(S1) · · · ∃xn(Sn) · F

is a set of existential dependency functions {fi}i∈[n] for which, for each total universal

assignment µ, the assignment

µ ∪ {fi(µ�Si
) : i ∈ [n]}

satisfies the matrix F . A countermodel for the H-form DQBF

∃x1 · · · ∃xn∀u1(H1) · · · ∀um(Hm) · F

is a set of universal dependency functions {hj}j∈[m], where

ε ∪ {hj(ε�Hj
) : j ∈ [m]}

falsifies F , for each total existential assignment ε.

We call an S-form DQBF true when it has a model, and false when it does not. In

contrast, we call an H-form DQBF false when it has a countermodel, and true when

it does not.

Complexity

Under a suitable encoding as binary strings, the set of true S-form DQBFs forms the

canonical NEXP-complete language TSDQBF [65]. We refer to the language of false

S-form DQBFs as FSDQBF, and the language of false H-form DQBFs as FHDQBF.

Complementation

To understand what is unusual about DQBF semantics, we recall a natural bijection

between S and H. The application of this bijection is called complementation.

Definition 8.2 (complement [1]). The complement of an S-form DQBF

Q := ∀u1 · · · ∀um∃x1(S1) · · · ∃xn(Sn) · F

is the H-form DQBF

∼Q := ∃x1 · · · ∃xn∀u1(H1) · · · ∀um(Hm) · F

where Hj := {xi : uj /∈ Si}, for each j in [m].
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(What we refer to here as the complement is actually the negation of the comple-

ment in [1].) The interesting thing about complementation is that it preserves truth

value on QBFs, but not on DQBFs in general.

Complementation on QBF

Imagine for a moment that Q in Definition 8.2 is a QBF, i.e. it has nested dependency

sets, and let us compute Hj, the dependency set for uj in the complement of Q. This

is the set of existential variables xi for which uj is not in Si, that is, for which uj

is quantified after xi in the total order of blocks. So Hj is exactly the universal

dependency set for uj in Q.

Applying complementation to Q really just swaps the existential dependency sets

for the universal ones. Now we have a good opportunity use the QBF folklore theorem

(Theorem 3.8), which tells us that Q has either a model or a countermodel, but not

both. We deduce two consequences:

(a) if Q has a model, it is a true S-form DQBF, and its H-form complement is also

true because it doesn’t have a countermodel.

(b) on the other hand, if Q has a countermodel, it is a false H-form DQBF, and its

S-form complement, which doesn’t have a model, is also false.

These two together show that complementation preserves QBF truth values.

Counterexamples to the folklore theorem for DQBF

The folklore theorem is not true however for DQBFs in general [1]. If it were, it would

read something like

‘an S-form DQBF is false if, and only if, its complement has a countermodel.’

As we see in the next examples, neither implication is true!

Example 8.3 (adapted from [1]). First we show a false S-form DQBF whose comple-

ment does not have a countermodel, namely

∀u1∀u2∃x1({u1})∃x2({u2}) · {{ū1, u2, x1}, {u1, ū2, x2}, {ū1, ū2, x̄1, x̄2}}

We can check, for example by an exhaustive search of dependency functions, that this

DQBF has no model, so it is false. We can also verify that its complement

∃x1∃x2∀u1({x2})∀u2({x1}) · {{ū1, u2, x1}, {u1, u2, x2}, {ū1, ū2, x̄1, x̄2}}

has no countermodel. �
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Example 8.4. This time we show a true S-form DQBF whose complement has a

countermodel, namely

Q := ∀u1∀u2∃x1({u1})∃x2({u2})∃x3({u1, u2}) · F

whose matrix is the CNF

F := {{ū1, x̄2, x̄3}, {u1, x2, x̄3}, {ū2, x̄1, x3}, {u2, x1, x3}} .

The following is a model for Q:

f1 : 〈{u1}〉 → 〈{x1}〉
{ū1} 7→ {x̄1}
{u1} 7→ {x1}

f2 : 〈{u2}〉 → 〈{x2}〉
{ū2} 7→ {x2}
{u2} 7→ {x̄2}

f3 : 〈{u1, u2}〉 → 〈{x3}〉
{ū1, ū2} 7→ {x3}
{ū1, u2} 7→ {x̄3}
{ū1, u2} 7→ {x̄3}
{u1, u2} 7→ {x3}

We can verify that this is indeed a model by checking, for each µ in 〈{u1, u2}〉,
that the assignment

µ ∪ f1(µ�{u1}) ∪ f2(µ�{u2}) ∪ f3(µ)

satisfies F .

The complement of Q is the H-form DQBF

Q := ∃x1∃x2∃x3∀u1({x2})∀u2({x1}) · F .

which has the following countermodel:

h1 : 〈{x2}〉 → 〈{u1}〉
{x̄2} 7→ {ū1}
{x2} 7→ {u1}

h2 : 〈{x1}〉 → 〈{u2}〉
{x̄1} 7→ {ū2}
{x1} 7→ {u2}

To check that this is indeed a countermodel, we just verify that the assignment

ε ∪ h1(ε�{u1}) ∪ h2(ε�{u2})

falsifies F , for each ε in 〈{x1, x2}〉. �

This completes the total breakdown of the folklore theorem for DQBF. As a result,

we can partition S-form into four distinct non-empty classes, based on the truth values

of the DQBF and its complement:
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expansion reduction

IR-calc

∀Exp+Res

LDQ-Res

Q-Res

sound,
complete

unsound

incomplete

Figure 8.1: Lifting QBF proof systems to S-form DQBF.

• S◦S := {Q ∈ S : Q has a model,∼Q has no countermodel}

• SH◦ := {Q ∈ S : Q has no model,∼Q has a countermodel}

• S◦◦ := {Q ∈ S : Q has no model,∼Q has no countermodel}

• SHS := {Q ∈ S : Q has a model,∼Q has a countermodel} .

All QBFs are either in S◦S or SH◦ . S◦◦ and SHS are classes of DQBFs whose semantic

properties are markedly different from QBF. Note that the QBF from Example 8.3

belongs to the class S◦◦, whereas the one in Example 8.4 belongs to SHS .

8.3 Lifting QBF proof systems

All of our four main QBF proof systems have been trialled on S-form, with varying

success. The two papers [1] and [15] together demonstrated what happens when we

try to lift them to S-form DQBF in the most obvious way. In each case, the lifted

system is something that tries to refute S-form DQBFs.

Figure 8.1 shows some results from the two papers. It turns out that ∀Exp+Res

and IR-calc are still sound and complete [6], whereas Q-Res is incomplete [1] and

LDQ-Res is unsound [15]. The conclusion of Figure 8.1 seems to be that expansion

systems lift to S-form DQBF whereas reduction systems do not.

It is not clear a priori why this should be the case.
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The expansion-reduction hypothesis

In the coming chapters, we present some evidence for the following idea:

Idea 8.5 (expansion-reduction hypothesis). Expansion systems prove the non-existence

of models, whereas reduction systems prove the existence of countermodels.

In fact, this one idea can explain the whole picture of Figure 8.1.

If expansion systems indeed prove the non-existence of models, then the use of

S-form DQBFs, which are false when they have no models, is perfect for a refutational

proof system. In this sense, the fact that ∀Exp+Res and IR-calc are both sound and

complete for S-form is consistent with our hypothesis.

In contrast, when we lift reduction proof systems to S-form, they are really working

to refute the complement H-form DQBF. So we should expect trouble from the classes

S◦◦ and SHS , where complementation does not preserve the truth value.

Indeed, the class S◦◦ is directly responsible for the incompleteness. As we will see

in Chapter 11, the DQBF from Example 8.3, which belongs to S◦◦, is a counterexample

to the completeness of Q-Res; it is a false formula that has no refutation. All of this

follows quite normally from the expansion-reduction hypothesis: If reduction is indeed

proving the existence of countermodels, it may not be able to refute false formulas in

S◦◦.
Moreover, the other class SHS is directly responsible for the unsoundness. We show

later in Chapter 12 that the true DQBF from Example 8.4, belonging to SHS , is a coun-

terexample to the soundness of LDQ-Res; it is a true formula with a refutation. Again

there is a clear reason: If reduction is indeed proving the existence of countermodels,

it is liable to refute true formulas in SHS .

The upshot is that reduction and S-form are not always compatible, and the

obvious fix is to use H-form instead. In Chapter 12, we propose a new reduction

calculus, Merge Resolution, which is sound and complete for the language of false

H-form DQBFs.

It is worth pausing for a moment to see that something like the expansion-

reduction hypothesis, which completely explains Figure 8.1, could never be advocated

from the QBF perspective, where complementation preserves truth values, and the

non-existence of a model is equivalent to the existence of a countermodel. One really

needs to know the behaviour of the classes S◦◦ and SHS to understand why these two

things are not equivalent for DQBFs in general.
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Chapter 9

Dependency Schemes

Solvers for quantified Boolean formulas are restricted in their choice of variable selec-

tion in a way that satisfiability solvers are not. For example, when solving a QBF

∀U1∃X1 · · · ∀Ud∃Xd · F

under normal circumstances, the solver would be forced to assign all the variables in

the first block U1, before moving on to the second block X1. Then, all the variables

in the second block must be assigned before moving to the third, and so on.

This is a result of the inter-block dependencies that arise due to the order of

quantification in the prefix. In propositional logic, we only have a single existential

block, so the issues for variable selection do not apply to SAT solvers. The main

drawback for QBF is that the scope of decision heuristics (algorithms that decide

which variable to assign next) are reduced when the allowable decisions are restricted.

Decision heuristics are one of the main drivers in CDCL solving.

Fortunately for QBF, it seems to occur frequently that some dependencies given

by the prefix are needlessly restrictive, and can be bypassed. This could be due

to prenexing, for example, which forces all quantification to the front of the formula,

meanwhile introducing ‘spurious’ dependencies between blocks that need not be there.

The subfield of QBF solving that works with this idea is called dependency-aware

solving.

Dependency awareness

Dependency awareness, as implemented in the solver DepQBF [41], is a QBF-specific

paradigm that attempts to maximise the impact of decision heuristics. By computing

a dependency scheme before the search process begins, the linear order of the prefix

is effectively supplanted by a partial order that better approximates the variable
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QBF

dependency scheme

solver

The QBF is passed to the depen-
dency scheme.

The dependency scheme computes
some dependency information and
passes this, along with the in-
stance, to the QBF solver.

The solver solves the QBF using
the dependency information.

Figure 9.1: Dependency-aware QBF solving.

dependencies of the instance, granting the solver greater freedom regarding variable

assignments.

The situtation is depicted in Figure 9.1. Use of the scheme is static; dependencies

are computed only once and do not change during the search. Despite the additional

computational cost incurred, empirical results demonstrate improved solving on many

benchmark instances [40].

Dependency schemes themselves are tractable algorithms that identify dependency

information by appeal to the syntactic form of an instance. From the plethora of

schemes that have been proposed in the literature, two have emerged as principal ob-

jects of study. The standard dependency scheme (Dstd [54]), a variant of which is used

by DepQBF, was originally proposed in the context of backdoor sets. This scheme

uses sequences of clauses connected by common existential variables to determine

a dependency relation between variables. The reflexive resolution path dependency

scheme (Drrs [63]) utilises the notion of a resolution path, a more refined type of

connection introduced in [26].

Organisation of the chapter

We recall the traditional interpretation of dependency schemes in Section 9.1, and

move on to the DQBF interpretation in Section 9.2. In Section 9.3, we turn to Dstd

and Drrs, and investigate how they operate on hand-crafted instances.
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9.1 The traditional interpretation

The traditional interpretation of dependency schemes originates from [53]. Soon after

it was modified to work with binary relations [54], and was subsequently employed

by a number of authors, e.g. [40, 62, 7].

The trivial dependency relation for a QBF Q is the binary relation on vars(Q)×
vars(Q) consisting of the pairs (z, z′) for which

(a) z and z′ are oppositely quantified, and

(b) z is left of z′.

The simplest dependency scheme is the trivial dependency scheme Dtrv. It is the

function that maps each QBF to its trivial dependency relation.

A dependency scheme D is a function that maps a QBF Q to a subrelation of

its trivial dependencies. Equivalently, D is a mapping from Q into the set of binary

relations on U× U, satisfying

D(Q) ⊆ Dtrv(Q), for each QBF Q.

So a dependency scheme maps QBFs to binary relations on variables. But how

should we interpret them?

The binary relation identifies pairs (z, z′) for which z′ is considered dependent on

z. So, the existence of a pair (z, z′) in D(Q) should be interpreted as ‘z′ depends on z

in Q according to the dependency scheme D’. Pairs not included in the binary relation

represent independencies. A pair (z, z′) absent from D(Q) should be interpreted as

‘z′ is independent of z in Q according to D’.

Existential and universal dependencies

The traditional interpretation of a dependency scheme as a binary relation on vari-

ables allows both kinds of dependencies to be expressed, namely, dependence of ex-

istentials on universals and dependence of universals on existentials. However, when

dealing with refutational proof systems, it turns out that we can ignore the latter:

we are only concerned with the independence of existentials on universals. So we can

view the dependencies of Q according to D as a binary relation on vars∀(Q)×vars∃(Q).

This is helpful for several reasons.
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9.2 The DQBF interpretation

The reader may already suspect that there is some relationship between dependency

schemes and DQBF, and indeed there is. In summary, the binary relation can be

written as an S-form quantifier prefix.

When we employ a dependency scheme, we are really replacing the linear order

of the QBF prefix with a partial order, hoping for a better approximation to the

‘true’ dependencies. A DQBF prefix represents exactly this kind of partial order.

So, instead of associating a QBF with a binary relation, we can associate it with an

S-form DQBF (with the same matrix), whose quantifier prefix expresses the binary

relation. S-form specifies dependency sets for the existential variables only, but this

is fine for us – we only consider existential dependencies in our theoretical models.

Since dependency schemes are in the business of identifying non-trivial indepen-

dencies, we inevitably want to map QBFs to DQBFs in which the dependency sets

are smaller (whereas the variable sets and matrix should not change). The strength

relation captures this.

Definition 9.1 (strength). Given two DQBFs

Q := ∀u1 · · · ∀um∃x1(S1) · · · ∃xn(Sn) · F ,

Q′ := ∀u1 · · · ∀um∃x1(S ′1) · · · ∃xn(S ′n) · F ,

we say that

(a) Q′ is stronger than Q when each S ′i is a subset of Si,

(b) Q′ is strictly stronger than Q when Q′ is stronger than Q and some S ′i is a

strict subset of Si.

Now we can redefine the dependency scheme using the notion of strength.

Definition 9.2 (dependency scheme). A dependency scheme is a function from Q
into S that maps each QBF to a stronger DQBF.

A dependency scheme is only useful when it maps to stronger formulas, so the

definition excludes mappings that do not. This is the analogue of the condition, in

the traditional interpretation, that the binary relation is a subrelation of the trivial

dependencies.

Moreover, we now define the trivial dependency scheme as the identity mapping.

That is, Dtrv is the unique function that maps each QBF to itself.
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Full exhibition

Full exhibition [61, 7] is a property of dependency schemes that guarantees they are

semantically correct. This means that their use in a solver can be verified as correct

by proving the soundness of the associated proof system. We look at proof systems

with dependency schemes beginning in Chapter 10.

But for now, back to full exhibition. The DQBF interpretation gives us a nice

definition.

Definition 9.3 (full exhibition [61, 7]). We call a dependency scheme fully exhibited

when it maps each true QBF to a true DQBF.

Note that a false QBF is always mapped to a false DQBF by any dependency scheme,

due to the strength condition – a DQBF that is stronger than some false DQBF is

itself false.

To check full exhibition of a dependency scheme D, we must search for models for

the image of a QBF under D. These models turn out to be quite important, so much

so that we give them their own name: D-models.

A D-model for a QBF is a model for the DQBF D(Q). This is analogous to the

D-models of the traditional interpretation [61, p.36]. A dependency scheme is fully

exhibited when, and only when, every true QBF has a D-model, and indeed this is

how the property was originally defined. The term ‘full exhibition’ was coined in [7],

the property itself originates from [61].

Pairwise comparison

The pairwise comparison of schemes also fits neatly into the DQBF interpretation.

Schemes are compared by the notion of generality, whereby one scheme is considered

more general than another if it is capable of identifying more independencies.

Definition 9.4 (generality). Given two dependency schemes D and D′, we say that

(a) D′ is more general than D when, for each Q, D′(Q) is stronger than D(Q),

(b) D′ is strictly more general than D when D′ is stronger than D and, for some

Q, D′(Q) is strictly stronger than D(Q).

It follows from the definitions of dependency scheme (Definition 9.2), full exhi-

bition (Definition 9.3) and generality (Definition 9.4) that the full exhibition of a

dependency scheme implies the full exhibition of any less general scheme.

Fact 9.5. Given two dependency schemes D and D′, if D is fully exhibited and more

general than D′, then D′ is also fully exhibited.
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9.3 Concrete dependency schemes

Many dependency schemes have been proposed in the literature (see [61] for a tax-

onomy). Here we focus on Dstd and Drrs, the two main schemes that are actually

implemented in solvers.

Both of these schemes work on ‘connections’ between clauses in the matrix. An

existential is considered dependent on a universal if there exists a connection to it,

i.e. a sequence of clauses in the matrix satisfying some property. The absence of a

connection represents independence. Therefore stronger notions of connection give

rise to stronger dependency schemes.

9.3.1 The standard dependency scheme

The standard dependency scheme was historically both the first to be proposed [54]

and to be implemented in a solver (DepQBF [41]).

In Dstd, an existential x depends on a universal u whenever a clause containing

variable x is connected to a clause containing variable u. A connection is a sequence

of clauses, where successive clauses share a common existential variable right of u.

Definition 9.6 (standard dependency scheme [54]). The standard dependency scheme

Dstd is the function that maps a QBF

Q := ∀u1 · · · ∀um∃x1(S1) · · · ∃xn(Sn) · F

to the S-form DQBF

Q′ := ∀u1 · · · ∀um∃x1(S ′1) · · · ∃xn(S ′n) · F ,

where S ′i is the set of universal variables u in Si for which there exists a sequence

C1, . . . , Cm of clauses in F satisfying the following conditions:

(a) u in vars(C1) and xi in vars(Cm);

(b) for each j in [m− 1], vars(Cj) ∩ vars(Cj+1) contains an existential variable xk

for which u is in Sk.

Example 9.7. We apply Dstd to the first instance of the equality family, namely

∃x1∀u1∃z1 · {{x̄1, ū1, z1}, {x1, u1, z1}, {z̄1}} .

122



Here, the dependency set for x1 is empty, and the dependency set for z1 is {u1}.
To apply Dstd to Q, we need to find out whether or not u1 should be removed from

the dependency set for z1.

For this, we look for a sequence satisfying conditions (a) and (b) of Definition 9.6.

It is easy to see that the single clause {x̄1, ū1, z} fits the bill. Both variables u1 and

z1 appear in the clause, satisfying (a). Condition (b) is satisfied vacuously since the

sequence is of length 1.

Hence u1 remains in the dependency set for z1, and Dstd(EQ1) is EQ1 itself. �

The standard dependency scheme does not perform so well on our hand-crafted

QBF families. In fact, it reduces to the weakest possible dependency scheme, i.e. the

identity mapping Dtrv, on all of them. Unfortunately for Dstd, connections based on

common variables are too weak to identify independencies in these formulas.

We show this first for the equality family.

Fact 9.8. For each natural number n, Dstd(EQn) = Dtrv(EQn).

Proof. In EQn, the dependency set for each xi is empty. Since a dependency scheme

maps to stronger DQBFs, the dependency set for xi in Dstd(EQn) is also empty, for

any D. Therefore we need only show that the dependency set for each ti in EQn,

namely {uj}j∈[n], is equal to that of Dstd(EQn).

Now, if we put C1 := {xj, uj, zj} and C2 := {z̄1, . . . , z̄n}, the sequence C1, C2

satisfies both

(a) uj ∈ vars(C1) and zi ∈ vars(C2),

(b) zj ∈ vars(C1) ∩ vars(C2), where uj is in the dependency set for zj in EQn.

Hence uj is in the dependency set for zi in Dstd(EQn).

Something similar happens for the other families PA and KB. It is easy to see,

by inspecting the formulas, that Dstd connections exist between all relevant variable

pairs.

Fact 9.9. For each natural number n, and each Q in {EQn,PAn,KBn}, Dstd(Q) = Q.

Whereas Fact 9.9 does not look so good for Dstd, it is useful for proving lower

bounds later on, when we incorporate Dstd into some QBF proof systems.

Now we turn to a stronger dependency scheme that can identify independencies

in our QBF families.
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9.3.2 The reflexive resolution path dependency scheme

Whereas connections in the standard dependency scheme are based on common vari-

ables, the reflexive resolution path dependency scheme (Drrs) also takes polarity into

account. The connecting existential variables must appear in opposite polarities in

the connected clauses. This turns out to be a much stronger method for dependency

awareness.

Definition 9.10 (reflexive resolution path dependency scheme [63]). The reflexive

resolution path dependency scheme Drrs is the function that maps a QBF

Q := ∀u1 · · · ∀um∃x1(S1) · · · ∃xn(Sn) · F

to the S-form DQBF

Q′ := ∀u1 · · · ∀um∃x1(S ′1) · · · ∃xn(S ′n) · F ,

where S ′i is the set of universal variables u in Si for which there exists a sequence

C1, . . . , Ck of clauses in F and a sequence a1, . . . , ak−1 of existential literals satisfying

the following conditions:

(a) u ∈ C1 and ū ∈ Cm,

(b) for some j in [k − 1], xi = var(aj),

(c) for each j in [k − 1], aj ∈ Cj and āj ∈ Cj+1,

(d) for each j in [k − 1], u is in the dependency set for var(aj) in Q,

(e) for each j ∈ [k − 2], var(aj) 6= var(aj+1).

Example 9.11. Now we consider what happens when we apply Drrs to the first instance

of the equality family. Once again, we need to find out whether u1 remains in the

dependency set for z1.

We need to find a sequence of clauses and a sequence of literals that satisfy condi-

tions (a)-(e) in the definition of Drrs, with respect to u1 and z1. It is easy to see that

no clause in the sequence can be a unit clause. Hence no such sequence can exist,

because the negative literal z̄1 only appears in a unit clause.

Hence u1 is removed from the dependency set for z1 and Drrs(Q) is the DQBF

∀u1∃x1(∅)∃z1(∅) · {{x̄1, ū1, z1}, {x1, u1, z1}, {z̄1}} ,

which in this case is also a QBF. �
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We can view Drrs as a generalisation of Dstd, which uses an improved notion of

connection. So it is easy to see that Drrs is more general than Dstd. In fact, the

preceding example already shows it is strictly more general.

Fact 9.12. Drrs is strictly more general than Dstd.

As further examples, we investigate how Drrs operates on our hand-crafted formula

families. The results are quite different compared to the standard dependency scheme.

On the equality family, Drrs works like the strongest possible dependency scheme:

all the dependency sets are empty.

Fact 9.13. For each natural number n, the dependency sets of Drrs(EQn) are all

empty.

Proof. Along the same lines of the proof of Fact 9.8, the dependency set for each xi

in EQn is empty, so its dependency set in Drrs(EQn) is also empty. So we need only

show that the dependency set for each zi in Drrs(EQn) is empty.

Aiming for contradiction, suppose that C1, . . . , Cm is a sequence of clauses in

eqn and a1, . . . , am−1 a sequence of existential literals satisfying conditions (a)-(e) of

Definition 9.10 with respect to the universal variable uj and the existential variable

zi.

By (a), C1 is the unique clause in eqn containing literal uj, namely {uj, xj, zj}.
Therefore a1 = zj, by (d). By (c), C2 is the unique clause in eqn containing z̄j, namely

{z̄1, . . . , z̄n}. Then, by (e), a2 = z̄k, for some k 6= j. Hence, by (c), C3 contains zk, and

must be either {xk, uk, zk} or {x̄k, ūk, zk}. In both clauses, zk is the only existential

variable whose dependency set contains uj. Hence, by (e), C3 concludes the sequence;

that is, m = 3. Since k 6= j, we have ūj /∈ Cm, contradicting (a).

In contrast, on the parity family, Drrs reduces to the trivial dependency scheme.

Fact 9.14. For each natural number n, Drrs(PAn) = Q.

Proof. To show that Drrs does not recognise any new independencies, we must show,

for each i in [n], that there exists a sequence of clauses and a sequence of literals

satisfying the five conditions of Definition 9.10 with respect to u and zi.

We take the sequence of clauses

{u, z̄n}, {x̄n, z̄n−1, zn} · · · {x̄i+1, z̄i, zi+1}, {x̄i+1, zi, z̄i+1}, . . . , {x̄n, zn−1, z̄n}, {ū, zn} ,

and the sequence of literals

z̄n, z̄n−1, . . . , z̄i+1, z̄i, z̄i+1, . . . z̄n .

It is easy to verify that they satisfy all five conditions.
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On the KBKF family, Drrs lies somewhere in the middle of what we see with the

equality and parity families. Drrs does identify some non-trivial independencies in

KB, and later on in Chapter 10, we show how they are crucial for constructing short

refutations.

Fact 9.15. For each natural number n and each i, j ∈ [n], i 6= j, the dependency set

for zi in Drrs(KBn) does not contain uj.

Proof. Let n ∈ N and let i, j ∈ [n] with i 6= j. Suppose that C1, . . . , Ck ∈ kbn

and a1, . . . , ak−1 are sequences of clauses and literals respectively, satisfying the five

conditions of Definition 9.10 with respect to ui and zj.

By condition (b), the literal sequence contains a literal in the variable zj. Observe

that, in the matrix kbn, the positive literal zj occurs only in the clauses {ūj, zj} and

{uj, zj}. Hence, by condition (c), there is some clause Cr in the clause sequence which

is one of these clauses. Since zj is the only existential literal in Cr, the clause must

be an endpoint of the sequence by condition (e), and hence we must have r = 1 or

r = k. However, since i 6= j, this implies that either ui /∈ C1 or ui /∈ Ck, contradicting

condition (a).

9.3.3 Full exhibition of Dstd and Drrs

It is known that both Dstd and Drrs are fully exhibited dependency schemes. The fact

that Drrs is fully exhibited follows directly from Thereoms 3 and 4 in [71]. The result

is also proved (somewhat differently) in [6].

Theorem 9.16 ([71, 6]). The reflexive resolution path dependency scheme is fully

exhibited.

Since Drrs is fully exhibited and more general than Dstd (Fact 9.12), Dstd is also

fully exhibited, by Fact 9.5.

Corollary 9.17. The standard dependency scheme is fully exhibited.
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Chapter 10

Dependency Schemes in Expansion

IR-calc

∀Exp+Res

LDQ-Res

Q-Res

In this chapter, we investigate models of dependency-aware expansion solving,

focusing on the two systems highlighted above. We show how to incorporate depen-

dency schemes into these models, and prove some complexity results. It turns out

that using the reflexive resolution path dependency scheme can exponentially shorten

expansion refutations. Thus, dependency schemes can potentially foster improved

expansion-based solving.

Incorporating dependency schemes

Adding a dependency scheme to a QBF expansion system like ∀Exp+Res takes the

form of a particular fragment of ∀Exp+Res. The particular fragment corresponds to

the image of the dependency scheme. Since the image of a dependency scheme is a

set of S-form DQBFs, we will be using ∀Exp+Res extended to S-form.

This is essentially the dependency-aware workflow from Figure 9.1, built into

∀Exp+Res. In terms of correctness, two things are crucial for the detour into DQBF.

First, the dependency scheme is fully exhibited, guaranteeing that the translation

preserves truth values. Second, S-form ∀Exp+Res is refutationally sound and complete

on the image of the dependency scheme.
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Organisation of the chapter

In Section 10.1, we show that much of the universal expansion paradigm lifts straight-

forwardly to S-form DQBF, including the proof system ∀Exp+Res. In Section 10.2,

we incorporate dependency schemes into ∀Exp+Res. We prove that the equality fam-

ily has linear-size refutations under Drrs, but requires exponential-size under Dstd. In

Section 10.3, we extend the picture to include instantiation. We prove that the Kleine

Büning family admits linear-size refutations under Drrs, but requires exponential-size

for Dstd.

10.1 Universal expansion revisited

The universal expansion paradigm extends to S-form DQBF in a very natural way.

If we were to look back at our introduction to universal expansion for QBF in Sec-

tions 4.1 and 4.2, we would find that all of it is applicable to S-form DQBFs in

general.

QBFs are the subset of S-form DQBFs for which the dependency sets form a total

order with respect to set inclusion. For the most of our work on QBF expansion,

we did not use this property, and wherever it is not used, definitions and results lift

immediately to DQBF.

Expansion of a DQBF

A good example is the definition of expansion (Definition 4.2), which makes no as-

sumptions about the dependency sets, and lifts straight away to DQBF.

Definition 10.1 (expansion of a DQBF). The expansion of an S-form DQBF

Q := ∀u1 · · · ∀um∃x1(S1) · · · ∃xn(Sn) · F ,

is the CNF

exp(Q) :=
⋃
µ∈〈U〉

F [µ ∪ {xi 7→ x
µ�Si
i : i ∈ [n]}] .

Nor were any restrictions placed on dependency sets throughout Subsection 4.1.1,

so the whole semantic connection between models and satisfying assignments for

the expansion can be established for S-form. The main point is the analogue of

Corollary 4.6.

Corollary 10.2. An S-form DQBF is true if, and only if, its expansion is satisfiable.
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∀Exp+Res for DQBF

One can also verify that we did not make any assumptions about the dependency sets

throughout Section 4.2, so we can define ∀Exp+Res in exactly the same way.

Definition 10.3 (S-form ∀Exp+Res [15]). A ∀Exp+Res refutation of an S-form DQBF

Q is a Resolution refutation of the expansion of Q.

Example 10.4. Consider again the S-form DQBF

∀u1∀u2∃x1({u1})∃x2({u2}) · {{ū1, u2, x1}, {u1, ū2, x2}, {ū1, ū2, x̄1, x̄2}}

from Example 8.3. The total expansion is the CNF

{{x{u1}1 }, {x{u2}2 }, {x̄{u1}1 , x̄
{u2}
2 }} ,

which has an obvious Resolution refutation, namely,

{x{u1}1 }, {x{u2}2 }, {x̄{u1}1 , x̄
{u2}
2 }, {x̄{u1}1 }, ∅

This constitutes an S-form ∀Exp+Res refutation. �

The proof that ∀Exp+Res is a refutational proof system for S-form DQBF is also

identical to that of its QBF analogue, Theorem 4.9, thanks to the absence of any

restriction on the dependency sets.

Theorem 10.5 ([15]). ∀Exp+Res is a proof system for the language FSDQBF.

10.2 Dependency schemes in expansion

Now that we know ∀Exp+Res is a refutational proof system for S-form DQBF, it is

time to incorporate a fully exhibited dependency scheme.

10.2.1 Parametrisation of ∀Exp+Res

First we define what it means to use a dependency scheme in ∀Exp+Res. Actually

this is quite simple. We first apply the scheme to the QBF, then try to refute the

resulting DQBF by finding a Resolution refutation of its expansion.

Definition 10.6 (∀Exp(D)+Res). A ∀Exp(D)+Res refutation of a QBF Q is a Res-

olution refutation of the expansion of D(Q).
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Example 10.7. We show a ∀Exp(Drrs)+Res refutation of the first instance EQ1 of the

equality family. By Fact 9.13, the image of EQ1 under Drrs is the S-form DQBF

∀u1∃x1(∅)∃z1(∅) · {{x̄1, ū1, z1}, {x1, u1, z1}, {z̄1}} ,

whose total expansion is the CNF

{{x̄∅1, z∅1}, {x∅1, z∅1}, {z̄∅1}} .

Hence the sequence of clauses

{x̄∅1, z∅1}, {x∅1, z∅1}, {z∅1}, {z̄∅1}, ∅

forms a ∀Exp(Drrs)+Res refutation of EQ1. �

Notice how the universal assignments in the annotations have disappeared with the

dependency scheme. This demonstrates how dependency schemes help in expansion

solving: they reduce the size of the expansion.

As it happens, full exhibition characterises the dependency schemes which can be

used correctly in expansion. Dependency schemes that are not fully exhibited give

rise to unsound proof systems.

Theorem 10.8. ∀Exp(D)+Res is a proof system for the language FQBF if, and only

if, D is fully exhibited.

Proof. For the “if” direction, suppose that D is fully exhibited. We show that

∀Exp(D)+Res is a proof system for FQBF.

Soundness and completeness. By the full exhibition of D, a QBF Q is false if, and

only if, D(Q) is false. By Corollary 10.2, D(Q) is false if, and only if, its expansion

is unsatisfiable. By the soundness and completeness of Resolution, the expansion of

D(Q) is unsatisfiable if, and only if, it has a Resolution refutation. Checkability. Since

D is polynomial-time computable, it can be checked in polynomial time whether a

clause belongs to the expansion of D(Q). Checkability of ∀Exp(D)+Res then follows

from the checkability of Resolution.

Now for the “only if” direction. Suppose that D is not fully exhibited. Then there

exists a true QBF Q for which D(Q) is false. Since ∀Exp+Res is complete for false

S-form DQBFs (Theorem 10.5), there exists a ∀Exp+Res refutation of D(Q), that is,

there exists a ∀Exp(D)+Res refutation of Q. Since ∀Exp(D)+Res refutes a true QBF,

it is not a proof system for FQBF.
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Simulations by generality

Moving to a more general scheme can indeed shorten proofs – we will we see some

examples of this shortly. However, as one might expect, moving to a less general

scheme can never shorten proofs.

Fact 10.9. Given two fully exhibited dependency schemes D and D′,

D is more general than D′ ⇒ ∀Exp(D′)+Res ≤p ∀Exp(D)+Res

Proof. Let D and D′ be two fully exhibited dependency schemes, and suppose that

D is more general than D′. A ∀Exp(D′)+Res refutation of a QBF Q can always be

turned into an ∀Exp(D)+Res refutation by shortening the annotations; more precisely,

by dropping the assignment to u in the annotation to variable x whenever u belongs

to the dependency set for x in D′(Q), but not in D(Q).

SinceDrrs is fully exhibited (Theorem 9.16) and more general thanDstd (Fact 9.12),

which is also fully exhibited (Corollary 9.17), we obtain the following simulations.

Fact 10.10. ∀Exp+Res ≤p ∀Exp(Dstd)+Res ≤p ∀Exp(Drrs)+Res.

10.2.2 Separation under Drrs

Now we show that ∀Exp(Drrs)+Res is exponentially stronger than ∀Exp(Dstd)+Res.

We have already seen that the standard dependency scheme is rendered ineffective

on our handcrafted families EQ and KB, as it is reduced to the identity mapping

(Fact 9.9). This means that ∀Exp(Dstd)+Res refutations of any of these formulas

are also ∀Exp+Res refutations. As a result, the exponential lower bounds for EQ
(Corollary 4.15) and KB (Corollary 4.19) still hold under the standard dependency

scheme.

Fact 10.11. The formula families EQ and KB both require ∀Exp(Dstd)+Res refuta-

tions of size 2n.

For the upper bound, we show that equality family admits short proofs under the

reflexive resolution path dependency scheme.

Lemma 10.12. The formula family EQ admits linear-size ∀Exp(Drrs)+Res refuta-

tions.
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{xi, ui, zi} {x̄i, ūi, zi}

{z̄∅1 , . . . , z̄∅i }{x∅i , u∅i , z∅i } {x̄∅i , ū∅i , z∅i }

{x∅i , z̄∅1 , . . . , z̄∅i−1} {x̄∅i , z̄∅1 , . . . , z̄∅i−1}

{z̄∅1 , . . . , z̄∅i−1}

A A

R R

R

Figure 10.1: Portion of a linear-size ∀Exp(Drrs)+Res refutation of EQn.

Proof. For each i in [n], we define the CNF Fi consisting of the clauses

{x∅i , z∅i } ,
{x̄∅i , z∅i } ,
{z̄∅1 , . . . , z̄∅i } .

By Fact 9.13, the existential dependency sets of Drrs(EQn) are empty. Hence, each

clause in Fn can be introduced as an axiom. Also, F1 is a constant-size unsatisfiable

CNF, which therefore has a constant-size Resolution refutation.

We complete a linear-size refutation by showing that, for each i in [n − 1], the

clauses in Fi can be derived from Fi+1. Now, two of the clauses of Fi, namely

{x∅i , z∅i } ,
{x̄∅i , z∅i } ,

already belong to the expansion of Drrs(EQn), and can be introduced as axioms. As

shown in Figure 10.1, from Fi+1 we can derive the remaining clause

{z̄∅1 , . . . , z̄∅i } ∈ Fi ,

in a constant number of resolution steps.

Fact 10.11 and Lemma 10.12 together show that ∀Exp(Dstd)+Res does not simulate

∀Exp(Drrs)+Res.

Theorem 10.13. ∀Exp(Dstd)+Res <p ∀Exp(Drrs)+Res.
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10.3 DQBF Instantiation

The whole framework for incorporating dependency schemes into expansion works

perfectly well for instantiation. In this section, we go through the motions again,

swapping ∀Exp+Res for IR-calc. In Subsection 10.3.2, we show that incorporating

Drrs into IR-calc admits short refutations of KB.

10.3.1 IR-calc revisited

Earlier in the chapter, we saw that much of our work on the universal expansion

paradigm for QBF lifted immediately to S-form DQBF, simply because we made

no assumptions about the dependency sets. Likewise, some of our work on QBF

instantiation made no assumptions about the dependency sets; in particular, the

definition of IR-calc for QBF (Definition 6.4) is also appropriate for S-form DQBFs.

For convenience, we recall the definition below.

Definition 10.14 (S-form IR-calc [15]). An IR-calc refutation of an S-form DQBF

Q := ∀u1 · · · ∀um∃x1(S1) · · · ∃xn(Sn) · F ,

is a sequence C1, . . . , Ck in which Ck is the empty clause and at least one of the

following holds for each i in [k]:

A Axiom: Ci is a clause in the weak expansion of Q;

R Resolution: Ci = res(Cr, Cs, p), for some r, s < i and existential literal p;

I Instantiation: Ci = inst(Cr, µ, P ), for some r < i and universal assignment µ;

W Weakening: Ci is L, or is subsumed by Cr for some r < i.

Moreover, the proof of soundness of IR-calc for QBF, which consisted of a transla-

tion into ∀Exp+Res, made no assumptions about dependency sets, and hence exactly

the same translation establishes that instantiation is sound for S-form DQBF, based

on the soundness of expansion (Theorem 10.5). Similarly the completeness (via p-

simulation of ∀Exp+Res) and checkability of IR-calc on S-form DQBF are identical to

the QBF analogues. So IR-calc indeed forms a refutational proof system for S-form

DQBF.

Theorem 10.15 ([15]). IR-calc is a proof system for the language FSDQBF.
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10.3.2 Dependency schemes in instantiation

Incorporating dependency schemes into IR-calc works just like it did for ∀Exp+Res.

Given Theorem 10.15, it forms a QBF proof system if, and only if, the dependency

scheme is fully exhibited.

Definition 10.16 (IR(D)-calc). An IR(D)-calc refutation of a QBF Q is an IR-calc

refutation of D(Q).

Theorem 10.17. IR(D)-calc is a proof system for the language FQBF if, and only if,

D is fully exhibited.

It is also easy to see that more general schemes always simulate less general ones.

The argument is the same as for ∀Exp+Res (Fact 10.9); from all annotations in a

refutation, we merely delete the assignments that become redundant under the more

general scheme.

Fact 10.18. IR-calc ≤p IR(Dstd)-calc ≤p IR(Drrs)-calc.

Short refutations of KB

Now we show that IR(Drrs)-calc admits linear-size refutations of KB.

Lemma 10.19. The formula family KB admits linear-size IR(Drrs)-calc refutations.

Proof. We construct linear-size refutations by defining, for each i in [n− 1], the CNF

Fi consisting of the clauses

{z{ūi}i } ,
{z{ui}i } ,
{x∅i−1, x̄

{ui}
i , ȳ

{ui}
i } ,

{y∅i−1, x̄
{ūi}
i , ȳ

{ūi}
i } ,

{x∅i , z̄∅1 , . . . , z̄∅i−1, z̄
{ui}
i } ,

{y∅i , z̄∅1 , . . . , z̄∅i−1, z̄
{ūi}
i } .

Then we show three things:

(a) each clause in Fn−1 can be introduced as an axiom from KBn;

(b) for each i in [n− 2], Fi can be derived from Fi+1 in a constant number of steps;

(c) F1∪{{x∅1, y∅1}} can be refuted in a constant number of steps, where {x∅1, y∅1} can

be introduced as an axiom from KBn
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Figure 10.2: Portion of a linear-size IR(Drrs)-calc refutation of KBn.

{z{ui+1}
i+1 }

{x∅i+1, z̄
∅
1 , . . . , z̄

∅
i , z̄
{ui+1}
i+1 }

{x∅i+1, z̄
∅
1 , . . . , z̄

∅
i }
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Figure 10.3: Symmetrical portion of the linear-size IR(Drrs)-calc refutation of KBn.
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Hence we obtain linear-size IR(Drrs)-calc refutations of EQ.

(a) This can be verified easily by inspection.

(b) It is easily verified that the first four clauses of Fi can be introduced as axioms.

Constant-size derivations of the remaining two clauses from Fi+1 are shown in

Figures 10.2 and 10.3.

(c) The CNF F1 contains the clauses

{z{ū1}1 } ,
{z{u1}1 } ,
{x∅i , z̄

{ui}
i } ,

{y∅i , z̄
{ūi}
i } .

It is easy to see that F1 ∪ {{x∅1, y∅1}} is an unsatisfiable, constant-size CNF. It

therefore has a constant-size Resolution refutation.

On the other hand, since the standard dependency scheme is the identity mapping

on KB, the exponential lower bound for KB in IR-calc (Theorem 6.21) lifts immedi-

ately to IR(Dstd)-calc. Thus we obtain the following strict simulation.

Theorem 10.20. IR(Dstd)-calc <p IR(Drrs)-calc.
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Chapter 11

Universal Reduction and Dynamic
Dependency Awareness

IR-calc

∀Exp+Res

LDQ-Res

Q-Res

In the previous chapter we saw how to incorporate dependency schemes into mod-

els of expansion-based solving, as fragments of DQBF proof systems. In this chapter

we continue to work with models of dependency-aware solving, focusing this time on

Q-Resolution. As predicted by the expansion-reduction hypothesis, lifting Q-Res to

S-form DQBF doesn’t go quite as smoothly: it is incomplete.

But all is not lost. It turns out that incompleteness of S-from Q-Res is not a major

obstacle for dependency schemes. The major obstacle is unsoundness, but we won’t

encounter that until we look at long-distance resolution in the next chapter.

So, we take the same approach, modelling dependency-aware QCDCL QBF solving

using fragments of S-form Q-Res. We will see that dependency schemes can indeed

shorten Q-Res proofs. In fact, the whole setup for static dependencies is very similar

to the previous chapter, and it is merely a formality to verify that the same picture

emerges.
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QBF

dependency scheme

solver

The QBF is passed to the depen-
dency scheme.

The dependency scheme computes
some dependency information and
passes this, along with the in-
stance, to the QBF solver.

The solver solves the QBF us-
ing the dependency information,
and can also call the dependency
scheme for dependency informa-
tion on the current subformula.

Figure 11.1: Dependency recomputation in QBF solving.

Dynamic dependency awareness

QCDCL solvers work by systematically testing variable assignments until the truth

value of the instance can be determined. Variable assignments are constantly being

selected and rejected, so that the size of the current assignment, as well as the as-

signment itself, is always changing. At any search node, the solver is really trying to

find the truth value of the QBF under the application of the current assignment.

This is very relevant to dependency-aware solving, since application of assignments

has a non-trivial interplay with dependency schemes. Applying assignments always

preserves independencies, but it may also introduce new ones. We will see that Drrs,

when applied to a QBF under assignment, can determine independencies that cannot

be ascertained from the original formula.

This points towards the dynamic use of dependency schemes as a new avenue for

QBF solving. The new situation, in which the solver can call the dependency scheme

during search, is depicted in Figure 11.1. In contrast, the static models that we have

seen up to now call the dependency scheme only once at the start.

To model this dynamic setting, we propose a new calculus dyn-Q(D)-Res. We will

see that the dynamic use of Drrs can have exponentially shorter proofs, compared to

the static approach we have seen up to now.

138



Organisation of the chapter

We begin with a recap of the static approach in Section 11.1. In Section 11.2, we

introduce the model for dynamic dependency awareness. We prove that it is sound

and complete for fully exhibited dependency schemes, and exponentially separated

from the static model in the case of Drrs.

11.1 Static dependency awareness

A great deal of what was said about dependency schemes in expansion carries over

to Q-Res. In the first section of this chapter, we quickly show how.

11.1.1 S-form Q-Res

S-form Q-Res can be defined just as it was for QBF. Even the notion of trailing literal

need not change: a universal literal a belonging to a clause C is trailing in C with

respect to P when var(a) does not belong to any of the dependency sets for the

existential variables in C.

For example, with respect to the S-form prefix ∀u1∀u2∃x1(u1)∃x2(u2), we have

(a) ū2 is trailing in {ū1, ū2, x1},

(b) ū1 is trailing in {ū1, ū2, x̄2},

(c) no literals are trailing in {ū1, ū2, x̄1, x̄2},

Definition 11.1 (S-form Q-Res [35]). A Q-Res derivation from a QBF Q := P · F is

a sequence C1, . . . , Ck of non-tautological clauses in which at least one of the following

holds for each i ∈ [k]:

A Axiom: Ci is a clause in F ;

R Resolution: Ci = res(Cr, Cs, p), for some r, s < i and existential literal p;

U Reduction: Ci = Cr \ {a}, for some r < i, where a is universal and trailing in

Cr with respect to P ;

W Weakening: Ci is L, or is subsumed by Cr for some r < i.

Example 11.2. An S-form Q-Res refutation of

∀u1∀u2∃x1({u1})∃x2({u2}) · {{ū1, x̄1, x̄2}, {ū1, x1, x̄2}, {ū2, x2}}

is shown in Figure 11.2. �
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{ū1, x̄1, x̄2} {ū1, x1, x̄2}

{ū1, x̄2}

{x̄2} {ū2, x2}

{ū2}

∅

A A

A

R

U

R

U

Figure 11.2: An S-form Q-Res refutation.

Soundness

We prove that S-form Q-Res is sound by showing that the rules are logically correct

at the DQBF level. This means that every model for the input formula models the

whole collection of derived clauses, under the given prefix.

Lemma 11.3 ([1]). If an S-form DQBF has a Q-Res refutation, then it is false.

Proof. Let π := C1, . . . , Ck be a Q-Res refutation of an S-form DQBF Q := P · F .

For each i in [k], let Fi = {C1, . . . , Ci}.
Aiming for contradiction, suppose that Q has a model f := {fi}i∈[n]. We prove

by induction on i ∈ [k] that f models P · Fi. Hence at step i = k, we reach a

contradiction, since Fk contains the empty clause Ck.

The base case i = 1 is trivial, since C1 is an axiom, and belongs to F .

For the inductive step, let 1 < i ≤ k, suppose that f is a model for P · Fi−1, and

let µ be a total assignment to the universal variables of Q. If Ci is an axiom, the

inductive step is identical to the base case, so we consider three further cases. In each

case we show that

σ := µ ∪ {fi(µ�Si
)}i∈[n]

satisfies Ci, and hence f is a model for P · Fi−1 ∪ {Ci} = P · Fi.

R Suppose that Ci = res(Ca, Cb, p) for some a, b < i, and some existential literal p.

Then, since both Ca and Cb are in Fi−1, σ satisfies both of them, by the inductive

hypothesis. Hence σ satisfies Ci by the logical correctness of propositional

Resolution.
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U Suppose that Ci = red(Ca, P ) for some a < i. Let ν be the negation of Ca \Ci,
i.e. the universal assignment falsiying the reduced literals.

Now, for each xi in vars∃(Ci), we have

fi((ν ◦ µ)�Si
) = fi(µ�Si

) .

Aiming for contradiction, suppose that σ falsifies Ci. But then

τ := (ν ◦ µ) ∪ {fi((ν ◦ µ)�Si
)}i∈[n]

falsifies Ci. Since ν is a subset of τ , τ also falsifies Ca, contradicting the inductive

hypothesis.

W Suppose that Ci = L, or is subsumed by Ca with a ≤ i. In the former case, σ

satisfies Ci trivially. In the latter case, σ satisfies Ca by the inductive hypothesis,

and therefore satisfies the larger clause Ci.

Incompleteness

Whereas Q-Res is sound for S-form DQBF, it is not complete. Following the expansion-

reduction hypothesis, which tells us that reduction systems prove the existence of

countermodels, we should expect to have difficulty refuting false formulas in the set

S◦◦. For example, consider again the S-form DQBF from Example 8.3:

∀u1∀u2∃x1({u1})∃x2({u2}) · {{ū1, u2, x1}, {u1, ū2, x2}, {ū1, ū2, x̄1, x̄2}} .

Applying universal reduction to the first two clause, we can derive {u2, x1} and

{u1, x2}. But from there, there are no more reductions, and all possible resolutions

produce tautological clauses. So this false DQBF has no refutation.

11.1.2 Dependency schemes in reduction

The fact that Q-Res is incomplete for S-form DQBF is not a major obstacle for

incorporating dependency schemes. Unlike unsoundness, incompleteness is harmless.

Incorporating a dependency scheme into Q-Res works much like it did for ∀Exp+Res

in Chapter 10. The resulting system is the fragment of S-form Q-Res corresponding

to the range of the dependency scheme.

Definition 11.4 (Q(D)-Res [63]). A Q(D)-Res refutation of a QBF Q is a Q-Res

Resolution refutation of D(Q).
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In contrast to expansion, full exhibition here does not characterise the dependency

schemes that give rise to QBF proof systems. In Q-Res, full exhibition is merely a

sufficient condition.

Theorem 11.5 ([61]). Q(D)-Res is a proof system for the language FQBF if D is

fully exhibited.

Proof. Soundness Let Q be a true QBF. By the full exhibition of D, D(Q) is a true

S-form DQBF, which has no Q-Res refutation by Lemma 11.3. Completeness It is

easy to see that Q(D)-Res always simulates Q-Res, which is complete. Checkability.

Follows from the checkability of S-form Q-Res.

11.1.3 Proof complexity of Q(D)-Res

In terms of proof complexity, a picture for Q(D)-Res emerges which is quite similar

to ∀Exp(D)+Res.

For example, we have the analogue of Fact 10.10. A more general dependency

scheme will remove more universal literals during reduction, so it is easy to see that

more a general scheme always simulates a less general one.

Fact 11.6. Q-Res ≤p Q(Dstd)-Res ≤p Q(Drrs)-Res.

Moreover, we can separate Dstd and Drrs, with essentially the same method as

Theorem 10.13.

Theorem 11.7. Q(Dstd)-Res <p Q(Drrs)-Res.

The separation can be shown with EQ. As Dstd has no effect on EQ (Fact 9.8),

the exponential lower bound for Q-Res (Theorem 5.18) lifts to Q(Dstd)-Res. For

the upper bound, the construction of linear-size Q(Drrs)-Res refutations is almost

identical to those for ∀Exp+Res. The important part of the construction is shown

in Figure 11.3. Notice that universal reduction steps marked with ∗ are forbidden

in Q-Res, but allowed in Q(Drrs)-Res, since the dependency sets of Drrs(EQn) are all

empty (Fact 9.13).

11.2 Dynamic dependency awareness

In this section, we make use of a binary operation ‘⊗’, which is a kind of direct

product on CNFs. Given two CNFs F and G, we define

F ⊗G := {C ∪D : C ∈ F,D ∈ G} .

142



{z̄1, . . . , z̄i}{xi, ui, zi}

{xi, zi}

{x̄n, ūi, zi}

{x̄i, zi}

({xi, z̄1, . . . , z̄i−1} {x̄i, z̄1, . . . , z̄i−1}

{z̄1, . . . , z̄i−1}

∗ ∗

Figure 11.3: Portion of a linear-size Q(Drrs)-Res refutation of EQn.

11.2.1 Linear assignments

In Chapter 9, we mentioned that QBF solvers are restricted in their choice of variable

assignments. Assignments must always respect the prefix dependencies, meaning that

a variable cannot be assigned before all the variables from preceding blocks have been

assigned.

These are the kind of assignments we would see in use within a QCDCL solver.

Moreover, they are the kind of assignments that we want to use in dyn-Q(D)-Res.

Definition 11.8 (linear assignment). A partial assignment to an S-form DQBF is

called linear when it assigns the whole dependency set for every assigned existential.

Linear assignments have a rather special property, namely, if a DQBF is false

under a linear assignment, then every model for the DQBF models the negation of

the linear assignment.

Lemma 11.9. Given a linear assignment σ to an S-form DQBF Q, it holds that

Q[σ] is false ⇒ Q � P · {A} ,

where P is the prefix of Q and A is the negation of σ.

Proof. If Q is false, the lemma holds vacuouly, so we assume that it is true. Actually,

we will prove the contrapositive statement: if Q does not entail P · {A}, then Q[σ] is

true.

Let f := {fi}i∈[m] be a model for D(Q) that does not model P · {A}. Further, let

σ∀ and σ∃ be the universal and existential subassignments of σ.
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Now, any universal assignment that does not extend σ∀ will satisfy A. Hence, since

f does not model P · {A}, there exists some total universal assignment µ extending

σ∀, for which

µ ∪ {fi(µ�Si
)}i∈[n]

does not satisfy A.

Now, consider an existential variable xi assigned in σ∃. Since σ is a linear assign-

ment, σ∀ assigns the whole of Si, so the function fi[σ∀] is constant. Moreover, fi[σ∀]

does not satisfy A, so it must be identically σ∃�{xi}.

Now we can apply Lemma 3.6. We deduce that f [σ∀] models Q[σ∀], and

f [σ∀][σ∃] models Q[σ∀][σ∃] = Q[σ] .

Lemma 11.9 does not hold in general for arbitrary assignments. Without going

into details, this is the essential reason why the order of variable assignments must be

restricted. On the other hand, the propositional version always holds: a CNF entails

the negation of any assignment under which it is unsatisfiable.

11.2.2 The proof system dyn-Q(D)-Res

Lemma 11.9 tells us that the negation of a falsifying linear assignment is a QBF

implicant. Therefore, if a sound system is capable of refuting Q[σ], there can be no

harm in introducing the negation of σ as if it were an extra axiom. This is the central

notion with which we build refutations in dyn-Q(D)-Res.

In the following definition, ◦ denotes concatenation of sequences.

Definition 11.10 (dyn-Q(D)-Res). Given a dependency scheme D and a QBF Q,

refutations in dyn-Q(D)-Res are defined recursively by degree:

• a degree-0 refutation is a Q(D)-Res refutation of Q;

• for d ∈ N, a degree-d refutation is a sequence π := π0 ◦ ρ1 ◦ · · · ◦ ρk satisfying

(a) π0 is a Q(D)-Res refutation of Q with extra axioms A1, . . . , Ak,

(b) each Ai is the negation of a linear assignment σi to D(Q),

(c) each ρi is a dyn-Q(D)-Res refutation of Q[σi],

(d) the maximum degree of the ρi is d− 1.
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Notice that a Q(D)-Res refutation of a QBF P · F with extra axioms A1, . . . , Ak

is not the same thing as a Q(D)-Res refutation of P · F ∪ {A1, . . . , Ak}, since in the

former case the Ai have no effect on the allowable universal reductions, whereas in

the latter case they may.

The power of the system lies in the fact that the dependency scheme D may

identify (or unlock) new independencies on the restricted formula, meaning that it

may be easier to refute the restricted formula Q[σi] than to derive the extra axiom

Ai directly from Q. Of course, the ‘referenced’ refutation ρi, being a refutation of

Q[σi], can make use of these newly unlocked independencies. In this way, the calculus

models the recomputation of dependencies during the QCDCL search procedure.

Now we show that full exhibition remains sufficient for soundness even in the

dynamic setting.

Lemma 11.11. Let D be a fully exhibited dependency scheme. If a QBF has a

dyn-Q(D)-Res refutation, then it is false.

Proof. Let π be a dyn-Q(D)-Res refutation of a QBF Q := P · F . We prove that Q is

false by induction on the degree of π.

For the base case, suppose the degree of π is 0. By definition, a degree 0 refutation

is a Q(D)-Res refutation. So Q is false by the soundness of Q(D)-Res (Theorem 11.5).

For the inductive step, suppose the degree of π is d ≥ 1. Then π is of the form

π := π0 ◦ ρ1 ◦ · · · ◦ ρk ,

satisfying conditions (a) to (d) for dyn-Q(D)-Res refutations (Definition 11.10).

By conditions (b), (c) and (d), each ρi is refutation of Q[σi] of degree at most

d− 1, where σi is a linear assignment to D(Q). By the inductive hypothesis, Q[σi] is

false. Applying Lemma 11.9, we see that

D(Q) � P ′ · {Ai} ,

where P ′ is the prefix of D(Q), and A is the negated expansion of σi. Therefore

D(Q) � P ′ · F ∪ {Ai : i ∈ [k]} . (11.1)

Now, by condition (a), π0 is a Q(D)-Res refutation of Q with extra axioms

A1, . . . , Ak. In other words, π0 is a Q-Res refutation of the S-form DQBF on the

right hand side of (11.1). By the soundness of S-form Q-Res (Lemma 11.3), that

DQBF is false, therefore so is D(Q).

Since fully exhibited dependency schemes preserve truth values, Q is also false.
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It is now a small step to show that dyn-Q(D)-Res is a refutational QBF proof

system.

Theorem 11.12. dyn-Q(D)-Res is a proof system for the language FQBF if D is fully

exhibited.

Proof. Soundness. Established by Lemma 11.11. Completeness. dyn-Q(D)-Res triv-

ially p-simulates Q(D)-Res, and is therefore complete by Theorem 11.5. Checkability.

As D is polynomial-time computable by definition, it can be determined in time

polynomial in the size of the prefix whether a partial assignment to D(Q) is linear.

Checkability of dyn-Q(D)-Res then follows from that of Q(D)-Res.

Simulating dynamic trivial dependencies

As we noted earlier, the appeal of dyn-Q(D)-Res lies in the ability for the system

to go to work on suitable restrictions of the input formula, whereby the system can

leverage any independencies that may be ‘unlocked’ by the restriction. In the case of

the trivial dependency scheme, however, there should be no advantage in doing so;

the dependencies remain trivial under restriction, so there is nothing to leverage.

If dyn-Q(D)-Res behaves correctly, then, the static and dynamic systems for the

trivial dependency scheme should be equivalent. The next fact establishes that this is

indeed the case. We will need it afterwards to prove the separation (Theorem 11.16).

Fact 11.13. dyn-Q(Dtrv)-Res refutations can be translated to Q-Res refutations with

no increase in size.

Proof. We show that a degree-1 dyn-Q(Dtrv)-Res refutation can be transformed into a

degree-0 refutation of the same QBF with no increase in size. Hence, given a degree-d

refutation π, one can repeatedly search for and transform the first associated degree-

1 refutation until no associated refutations are present. This procedure returns a

degree-0 refutation, that is, a Q-Res refutation, of size at most |π|.
To that end, let π be a degree-1 dyn-Q(Dtrv)-Res refutation of a QBF Q := P · F .

Then π is of the form

π := π0 ◦ ρ1 ◦ · · · ◦ ρk

as in Definition 11.10. Recall that π0 is a Q-Res refutation of Q with extra axioms

A1, . . . , Ak, and each ρi is a Q-Res refutation of Q[σi], where σi is a linear assignment

to Q whose negation is Ai.
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Now, consider a particular associated refutation

ρi := C1, . . . , Cki .

We first observe that

ρ∗i := Ai ∪ C1, . . . , Ai ∪ Cki

is a Q-Res derivation from P · F ⊗ {Ai}. To see this, observe that every existential

variable in Ai is left of every universal variable in Q[σi] (since σi is a linear assignment

to Q), so the addition of Ai to each line cannot block any universal reduction steps.

It follows that

seq(F ) ◦ C1 ∪ Ai, . . . , Cki ∪ Ai ,

where seq(F ) is the matrix F written as a sequence, is also a Q-Res derivation, since

each axiom of ρ∗i is subsumed by some clause in F . Moreover, by removing weakening

steps (Fact 5.9), it is easy to see that we obtain a Q-Res derivation

ρ′i := C ′1, . . . , C
′
ki

in which C ′j ⊆ Cj ∪ Ai, for each j in [ki]. In particular, C ′ki ⊆ Ai, since Cki is empty.

Therefore

ρ′1 ◦ · · · ◦ ρ′k ◦ A1, . . . , Ak ◦ π0

is a Q-Res refutation of Q.

Finally, we remove any weakening steps from π0, while rewriting it as π′0, which

renders the subsequence A1, . . . , Ak redundant; hence

ρ′1 ◦ · · · ◦ ρ′k ◦ π′0

is a Q-Res refutation of size at most |π|.

11.2.3 A further separation under Drrs

We conclude our investigation into dyn-Q(D)-Res by showing an exponential separa-

tion over Q(D)-Res when D is Drrs. This demonstrates that the dynamic application

of Drrs in principle offers an exponential speedup over the static approach.

Now, formulas that separate dyn-Q(Drrs)-Res from Q(Drrs)-Res can in fact be ob-

tained from those separating Q(Drrs)-Res and Q-Res in a general fashion. Since there

are various candidates for the latter separation, we take a general approach to the

construction of our separating formulas.
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Definition 11.14 (locked QBF). The lock of a QBF Q := P · F is the QBF

lock(Q) := ∃aP ·
(
{{ā}} ⊗ F

)
∪
(
{{a}} ⊗ trv(Q)

)
∪
(
{{a}}

)
,

where a is a fresh variable not in vars(Q), and

trv(Q) := {{u, x}, {ū, x̄} : u is in the dependency set for x in Q} .

The main idea is that whenever some QBFs {Qn}n∈N separate Q(Drrs)-Res from

Q-Res, {lock(Qn)}n∈N will separate dyn-Q(Drrs)-Res from Q(Drrs)-Res.

The role of the CNF trv(Q) is to introduce all the necessary connections so that the

reflexive resolution dependencies of lock(Q) are identical to the trivial dependencies.

Of course, all of these connections disappear as soon as the assignment {a} is made,

which returns the original formula Q. However, until this happens, the reflexive

resolution path dependency scheme is useless.

Fact 11.15. For any QBF Q,

(a) lock(Q)[{a}] = Q,

(b) Drrs(lock(Q)) = lock(Q).

Proof. One can verify (a) by inspection. To prove (b), we need show that, for each

x ∈ vars∃(Q) and each universal u in the dependency set for x in Q, there exists a

clause sequence and a literal sequence satisfying the five conditions of Definition 9.10,

with respect to u and x. Indeed, the clauses

{a, u, x}, {a, ū, x̄}

and the single literal x form suitable sequences.

We are now prepared to prove the separation formally.

Theorem 11.16. Given a QBF family Q which

(a) requires Q-Res refutations of size Ω(s(n)), and

(b) admits Q(Drrs)-Res refutations of size O(t(n)),

the QBF family whose nth instance is lock(Q(n))

(c) requires Q(Drrs)-Res refutations of size Ω(s(n)), and

(d) admits dyn-Q(Drrs)-Res refutations of size O(t(n)).
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Proof. Suppose that Q satisfies conditions (a) and (b), and let L be the QBF family

whose nth instance is lock(Q(n)).

First we prove statement (c). Aiming for contradiction, suppose that Q admits

dyn-Q(Drrs)-Res refutations of size o(s(n)). By Fact 11.15(b), Drrs is the identity

transformation on L, so dyn-Q(Drrs)-Res refutations of L are dyn-Q(Dtrv)-Res refuta-

tions. By Fact 11.13, there exist Q-Res refutations of L of size o(s(n)). Hence, by

Fact 11.15(a) and closure of Q-Res under existential assignments (Theorem 5.8), Q
admits Q-Res refutations of size o(s(n)), which contradicts (a).

Now for statement (d). Let {ρn1}n∈N be Q(Drrs)-Res refutations of Q of size

O(t(n)). We define the sequences {πn}n∈N, where

πn := πn0 ◦ ρn1 , πn0 := {ā}, {a}, ∅ .

We show that each πn is a degree-1 dyn-Q(Drrs)-Res refutation of L(n) by verifying

conditions (a) to (d) in turn.

(a) Since the unit clause {a} belongs to L(n), πn0 is a dyn-Q(Drrs)-Res refutation of

Q with an extra axiom {ā}.

(b) {a} is a linear assignment to Drrs(L) and {ā} is its negation.

(c) By Fact 11.15 (a), each ρn1 is a Q(Drrs)-Res refutation of Q(n)[{a}].

(d) The degree of ρ1
n is 0.

This completes the proof, since it is clear that the size of the πn is O(t(n)).

The dynamic system dyn-Q(Drrs)-Res trivially p-simulates Q(Drrs)-Res. Since we

already have two formula families separating Q-Res and Q(Drrs)-Res, Theorem 11.16

has the following corollary.

Theorem 11.17. Q(Drrs)-Res <p dyn-Q(Drrs)-Res.
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Chapter 12

DQBF Merging

IR-calc

∀Exp+Res

LDQ-Res

Q-Res

It is an unfortunate fact of life that long-distance Q-Resolution is not sound for

S-form DQBFs, but what is there to do about it? In this chapter, we use an idea

related to the expansion-reduction hypothesis: switch to H-form.

We first take a moment to see the trouble. Suppose we took the definition of de-

ferred LDQ-Res (Definition 7.1) and lifted it straight to S-form DQBF. Unfortunately,

this allows refutations of S-form DQBFs in SHS , all of which are true. The problem is

that their complements have countermodels, and LDQ-Res can find some of them.

For example, the S-form DQBF from Example 8.4 belongs to the class SHS . It has

a fairly simple deferred LDQ-Res refutation, shown in Figure 12.1. Here, the merged

literals
∗
u1 and

∗
u2 implicitly represent a countermodel for the complement. One can

verify by inspection that they represent exactly the countermodel {h1, h2} given in

Example 8.4.

Building in strategies

We introduce a proof system for false H-form DQBFs called Merge Resolution (M-Res).

An M-Res proof looks a little different to the other QBF proofs we have seen. It is

a resolution-based system, but rather than a sequence of clauses, a derivation is a
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{ū1, x̄2, x̄3} {u1, x2, x̄3} {ū2, x̄1, x3} {u2, x1, x3}

{∗u1, x̄3} {∗u2, x̄3}

{∗u1,
∗
u2}

{∗u1}

∅

A A A A

R R

R

U

U

Figure 12.1: A deferred LDQ-Res refutation of a true S-form DQBF.

sequence of lines:

L1 := (C1, {M j
1}j∈[m]) ,

...
...

...

Lk := (Ck, {M j
k}j∈[m]) .

Each line consists of a clause Ci, which contains only existential literals, accompanied

by a set {M j
i }j∈[m] of merge maps. The merge maps are a set of dependency functions,

each of whic is represented as a binary decision diagram (BDD).

The main idea behind M-Res is to build the partial countermodels, which are

implicit in long-distance resolution proofs, explicitly into the derivation. The partial

countermodels are recorded as merge maps and built up step-by-step as the proof

progresses. The existential clauses C1, . . . , Ck form a Resolution derivation, and the

merge maps determine which resolution steps are allowed.

Organisation of the chapter

In Section 12.1, we introduce a computational model called merge maps, based on

binary decision diagrams, that we use to represent partial strategies inside proofs. In

Section 12.2, we introduce the system Merge Resolution and prove that it is a proof

system for false H-form DQBFs. In Section 12.3, we show that Merge Resolution is

exponentially stronger than deferred long-distance Q-Resolution on QBF.
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Figure 12.2: Binary decision diagram depiction of a merge map.

12.1 Merge maps

A merge map is a BDD that queries a set of existential variables and outputs either

an assignment to some universal variable, or a placeholder that stands for ‘no as-

signment’. For typographical convenience, we will often use the standard convention

of representing assignments by literals. We represent the assignment u 7→ 1 by the

positive literal u, the assignment u 7→ 0 by the negative literal ū, and ‘no assignment’

by the symbol ∗.
We write merge maps as a list of instructions that encode the BDD, such as

6 7→ (x, 5, 3)
5 7→ (y, 4, 2)
4 7→ ∗
3 7→ (y, 1, 2)
2 7→ ū
1 7→ u .

A triple of the form (x, r, s) represents the instruction ‘if x is assigned 1 then

goto r else goto s’, and the literals ū, u, and ∗ represent output values. The highest

instruction number is executed first, in this case, instruction 6. You can see this

merge map depicted as a binary decision diagram in Figure 12.2.

We opt for a definition of merge map in which the instruction numbers need not

be sequential. This comes in useful later, when we want to use the proof line indexing

to label instructions.

Definition 12.1 (merge map). A merge map M for a Boolean variable u over a

finite set X of Boolean variables is a function from a finite set N of natural numbers

satisfying, for each i ∈ N , either

(a) M(i) ∈ {ū, u, ∗}, or

(b) M(i) ∈ X ×N<i ×N<i,
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where N<i := {i′ ∈ N : i′ < i}.

A merge map for u over X computes a function from 〈X〉 into {ū, u, ∗}, which is

the function computed by the associated BDD. The exact computation is formalised

below.

Definition 12.2 (computed function). Let M be a merge map for u over X with

domain N . The function computed by M is the function

h : 〈X〉 → {ū, u, ∗}

mapping σ to the output of the following algorithm:

1. i := max(N)

2. while M(i) /∈ {ū, u, ∗}

3. (x, r, s) := M(i)

4. if σ(x) = 1 then i := r else i := s

5. return M(i)

12.1.1 Relations and operations on merge maps

Merge Resolution requires two binary operations on merge maps, which we call select

and merge. Later, select and merge will appear in the M-Res proof rules, where

they help to define the allowable resolution steps. To determine preconditions for the

operations, we also need to introduce two relations, isomorphism and consistency.

We turn to these relations first.

Isomorphism

We call merge maps isomorphic when they are the same, up to some renumbering of

instructions.

Definition 12.3 (isomorphism). We call two merge maps M1 and M2 for u over X

with domains N1 and N2 isomorphic (written M1 'M2) when there exists a bijection

f : N1 → N2 such that the following hold for each i ∈ N1:

(a) if M1(i) is a literal in {ū, u, ∗} then M2(f(i)) = M1(i);

(b) if M1(i) is the triple (x, a, b) then M2(f(i)) = (x, f(a), f(b)).
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u ū1 3
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Merge map A

y

u ū1

3

2

Merge map B

y

ū u1

5

2

Merge map C

y

∗ ū4

5

2

Merge map D

relation isomorphic not isomorphic
consistent A ./ C; A ' C B ./ D; B 6' D

not consistent A 6./ B; A ' B C 6./ D; C 6' D

Figure 12.3: Relations on merge maps.

Isomorphism is useful in M-Res because isomorphic merge maps compute the same

function. To see why, let M1 and M2 be merge maps computing functions h1 and h2,

and let f be a bijection satisfying the properties of isomorphism (Definition 12.3).

For any ε in dom(h1), the computation of h2(ε) (as in Definition 12.2) is identical to

that of h1(ε), except that each natural number i in dom(M1) is replaced with f(i).

Fact 12.4. Any two isomorphic merge maps compute the same function.

Consistency

Our second relation, consistency, simply identifies whether or not two merge maps

agree on the intersection of their domains.

Definition 12.5 (consistency). Two merge maps M1 and M2 for u over X with

domains N1 and N2 are consistent (written M1 ./ M2) iff M1(i) = M2(i) for each

i ∈ N1 ∩N2.

Isomorphism and consistency, for some example merge maps, are illustrated in

Figure 12.3.

The select operation

The select operation identifies equivalent merge maps by means of the isomorphism

relation. It also allows a trivial merge map to be discarded. We call a merge map

trivial when it is isomorphic to 1 7→ ∗, that is, when it has a single node labelled with
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‘∗’. The operation is not defined when the merge maps are neither isomorphic, nor

is one of them trivial.

Definition 12.6 (select). Given two merge maps M1,M2 for which M1 'M2 or one

of M1,M2 is trivial,

select(M1,M2) :=

{
M2 if M1 is trivial ,

M1 otherwise .

Example 12.7. The merge maps A, B and C from Figure 12.3 are all isomorphic.

Therefore select(A,B) = select(A,C) = A. �

The merge operation

The merge operation allows two consistent merge maps to be combined as the children

of a fresh instruction. Intuitively, it corresponds to taking two BDDs, and adding a

new source query node that goes to the first BDD when satisfied, and to the other

when falsified.

Definition 12.8 (merge). Given consistent merge maps M1,M2 for u over X with

domains N1, N2, a natural number n > max(N1 ∪N2), and a variable x in X,

merge(M1,M2, x, n)(i) :=


(x,max(N1),max(N2)) if i = n ,

M1(i) if i ∈ N1 ,

M2(i) if i ∈ N2 \N1 .

Example 12.9. Looking again at the merge maps B and D in Figure 12.3, it is easy

to check that the merge map depicted in Figure 12.2 is merge(D,B, x, 6). �

12.2 Merge Resolution

We are now ready to put down the rules of Merge Resolution.

Definition 12.10 (merge resolution). An M-Res derivation from an H-form DQBF

Q := ∃x1 · · · ∃xn∀u1(H1) · · · ∀um(Hm) · F

is a sequence of lines

L1 := (C1, {M j
1 : j ∈ [m]}) ,

...
...

...

Lk := (Ck, {M j
k : j ∈ [m]}) ,

in which at least one of the following holds for each i ∈ [k]:
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A Axiom. There exists a clause C in F for which Ci is the existential subclause

of C, and, for each j in [m],

M j
i =


i 7→ uj if ūj ∈ C ,
i 7→ ūj if uj ∈ C ,
i 7→ ∗ otherwise ;

R Resolution. There exist integers r, s < i and p in [n] for which

(a) Ci = res(Cr, Cs, xp), and

(b) for each j in [m], either

(i) M j
i = select(M j

r ,M
j
s ), or

(ii) xp ∈ Hj and M j
i = merge(M j

r ,M
j
s , xp, i);

I Instantiation. There exists an integer r < i such that Ci is an existential

superclause of Cr and, for each j in [m], either

(i) M j
i = M j

r , or

(ii) M j
r is trivial and, for some literal a in {ū, u}, M j

i = i 7→ a.

A derivation whose final clause Ck is empty is called a refutation. The size of a

derivation is the number of lines.

Example 12.11. Figure 12.4 shows an M-Res refutation of the H-form DQBF

∃x∃y∀u({y}) · {{x̄, ȳ, ū}, {x, y, u}, {x̄, y}, {x, ȳ}} .

Lines 1 to 4 are axioms which introduce the matrix clauses in order. Lines 5 and

6 instantiate the trivial merge maps from lines 3 and 4.

Line 7 is the resolution over variable y of lines 1 and 5. Since x is in the dependency

set for u, we can apply the merge operation to the merge maps from lines 1 and 5,

which are consistent. Notice that this satisfies condition (b)(ii) in the M-Res definition

(Definition 12.10).

Line 9 is a resolution, over the other existential variable x, of lines 7 and 8. Note

that the merge maps in lines 7 and 8 are isomorphic, so we simply copy the map from

line 7, as specified by the select operation. This satisfies condition (b)(i). �
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Line Clause Merge map BDD

1 Axiom {x̄, ȳ} 1 7→ ū ū1

2 Axiom {x, y} 2 7→ u u2

3 Axiom {x̄, y} 3 7→ ∗ ∗3

4 Axiom {x, ȳ} 4 7→ ∗ ∗4

5 Instantiation {x̄, y} 5 7→ u u5

6 Instantiation {x, ȳ} 6 7→ ū ū6

7 Resolution {x}
7 7→ (y, 1, 5)
5 7→ u
1 7→ ū y

ū u

7

51

8 Resolution {x̄}
8 7→ (y, 6, 2)
6 7→ ū
2 7→ u y

ū u

8

6 2

9 Resolution ∅
7 7→ (y, 1, 5)
5 7→ u
1 7→ ū y

ū u

7

51

Figure 12.4: An example Merge Resolution refutation.

12.2.1 Soundness

We now turn to an important feature of Merge Resolution, namely, that the merge

maps compute partial countermodels. At the conclusion of a refutation, this becomes

a total countermodel, witnessing that the instance is false. This is as though strategy

extraction were built directly into the proof system.

We first define formally what we mean by a partial countermodel.

Definition 12.12. We call a set of dependency functions {hj}j∈[m] a partial coun-

termodel for a DQBF Q against a clause C when, for each ε in 〈vars∃(Q)〉 falsifying

C, the assignment

ε ∪ {fi(ε�Hi
) : i ∈ [m]}
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falsifies the matrix of Q.

The rules of Merge Resolution are devised so that the merge maps on any given

line compute a partial countermodel against its clause.

Lemma 12.13. Given an M-Res refutation

L1 := (C1, {M j
1 : j ∈ [m]}) ,

...
...

...

Lk := (Ck, {M j
k : j ∈ [m]}) ,

of an H-form DQBF Q, for each i in [k], the merge maps {M j
i }j∈[m] compute a partial

countermodel for Q against Ci.

Proof. We prove the lemma by induction in i ∈ [k]. We let σi be the negation of Ci.

For the base case i = 1, L1 is an axiom, so C1 belongs to F . The merge maps

{Mj}j∈[m] are constant, and together compute an assignment that falsifies the univer-

sal subclause of C1, which iteself belongs to F [σi]. Hence the merge maps compute a

countermodel for Q[σi].

For the inductive step, let i ≥ 2. Let σ be a total existential assignment to Q[σi].

For each j ∈ [m], and each r ≤ i let hjr be the function computed by M j
r .

The case where Li is introduced as an axiom is identical to the base case, so we

consider two cases.

R Suppose that Li was derived by resolution. Then there exist integers r, s < i

and an existential pivot x for which

(a) Ci = res(Cr, Cs, x), and

(b) for each j in [m], either

(i) M j
i = select(M j

r ,M
j
s ), or

(ii) x ∈ Hj and M j
i = merge(M j

r ,M
j
s , x, i);

Suppose that σ(x) = 1. From the definitions of select (Definition 12.6) and

merge (Definition 12.8), it is easy to see that, for each j ∈ [m]

hjr is not trivial ⇒ hji (σ) = hjr(σ)

Moreover, since σ falsifies Cr, the assignment

σ ∪ {hjr(σ�Hj
) : i ∈ [m],M j

r is not trivial} (12.1)
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falsifies F , by the inductive hypothesis. Hence

σ ∪ {hji (σ�Hj
) : i ∈ [m]} (12.2)

also falsifies C.

On the other hand, supposing that σ(x) = 1, we can show that assignment

(12.2) falsifies some clause in F with a symmetrical argument.

I Suppose that Li was derived by instantiation from Lr. Then there exists an

integer r < i such that Cr ⊆ Ci and, for each j in [m], either

(i) M j
i = M j

r , or

(ii) M j
r is trivial and, for some literal a in {ū, u}, M j

i = i 7→ a.

Now, σ falsifies Cr, which is a subset of Ci. Hence, by the inductive hypothesis,

assignment (12.1), falsifies some clause C in F . Since hji = hjr whenever M j
r is

not trivial, assignment (12.2) also falsifies C.

Since all assignments falsify the empty clause, a partial countermodel against

the empty clause is a (complete) countermodel. So the soundness of M-Res is an

immediate corollary of Lemma 12.13.

Corollary 12.14. If an H-form DQBF has an M-Res refutation, then it is false.

12.2.2 Completeness

We prove the completeness of Merge Resolution using a ‘full binary tree’ construction,

similar to that which we used to show completeness for Resolution (Fact 2.9).

First, an overview of the construction. LetQ be a false DQBF with a countermodel

{hj}j∈[m]. For each total existential assignment ε, the assignment

σ ∪ {hj(σ�Hj
) : j ∈ [m]}

falsifies some clause Cε in the matrix of Q.

Consider the M-Res line Lε, whose clause is the negation of ε, and whose merge

maps are constant functions computing h(ε). Each Lε can be derived in two steps,

by weakening the axiom corresponding to Cε. Moreover, the clauses {Cε : ε ∈ 〈X〉}
form the leaves of a full binary tree Resolution refutation which can be completed

using an arbitrary fixed order of the existential variables.
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The merge maps are constructed by merging over the pivot x when, and only

when, x is in the dependency set. Otherwise the select operation takes the merge

map from the first antecedent, since the full binary tree structure guarantees that

they are isomorphic.

As the structure of merge maps is bound to the structure of the refutation, it is

no surprise that the merge maps in our construction are also full binary trees. This

is captured by the following definition.

Definition 12.15 (binary tree merge map). A binary tree merge map for a variable

uj over a sequence of variables x1, . . . , xn is a function M with domain [2n+1 − 1]

satisfying

• M(i) = (xblog ic+1, 2i, 2i+ 1), for 1 ≤ i < 2n, and

• M(i) ∈ {ūj, uj}, for 2n ≤ i < 2n+1.

As a precursor to the completeness proof, we show the following fact.

Fact 12.16. Given an H-form DQBF Q, an assignment σ to an existential x, and an

M-Res refutation of Q[σ] with concluding merge maps {Mj}j∈[m], one can construct

an M-Res derivation of

(C, {Mj}j∈[m])

from Q, where C is the negation of σ.

Proof. Let π be the refutation with the given conclusion. The desired derivation may

be obtained from π just by adding the unique literal in C to each clause, applying

weakening where necessary, and adjusting the indexing of the merge maps to account

for the extra weakening steps.

Lemma 12.17. Every false H-form DQBF has an M-Res refutation.

Proof. Let

Q := ∃x1 · · · ∃xn∀u1(H1) · · · ∀um(Hm) · F

be a false DQBF

A merge map for uj over Hj is said to be complete if it is isomorphic to a binary

tree merge map for uj over the sequence

xτ(1), . . . xτ(|Hj |) ,

which enumerates Hj in increasing index order; that is, τ : [|Hj|]→ [n] is the unique

function satisfying

161



(a) {xτ(i) : i ∈ [|Hj|]} = Hj, and

(b) i < i′ ⇔ τ(i) < τ(i′), for each i, i′ in [|Hj|].

By induction on the number n of existential variables, we show that, for each

countermodel {hj}j∈[m] for Q, there exists an M-Res refutation whose concluding

merge maps are complete, and compute h.

For the base case n = 0, observe that each hj is a constant function, which maps

the empty assignment to one of the assignments uj 7→ 1 or uj 7→ 0. By definition of

countermodel, there exists a clause C ∈ F which is falsified by the assignment

{hj(∅) : j ∈ [m]} .

Applying the axiom rule to C, one obtains a derivation of the line (∅, {M j}j∈[m])

in which Mj computes the constant function hj if uj is in vars(C), and is trivial

otherwise. With a single weakening step, each trivial Mj can be swapped for a merge

map isomorphic to 1 7→ hj(∅). Then each M j is trivially complete and computes the

constant function hj.

For the inductive step, let n ≥ 1. By Lemma 3.6,

{hj[xi 7→ 1]}j∈[m] and {hj[xi 7→ 0]}j∈[m]

are countermodels for Q[xi 7→ 0] and Q[xi 7→ 1], both of which have i− 1 existential

variables. By Fact 12.16 and the inductive hypothesis, we deduce that there exist

M-Res derivations π and π′ from Q of the lines

L := ({x̄n}, {Mj}j∈[m]) and L′ := ({xn}, {M ′
j}j∈[m]) ,

in which theMj andM ′
j are complete merge maps computing hj[xn 7→ 1] and hj[xn 7→ 0].

Assume that the lines of π are indexed from 1 to |π| and that those of π′ are

indexed from |π| + 1 to |π| + |π′|. For each j in [m], the domains of Mj and M ′
j are

disjoint, so Mj ./ M
′
j. If xn is not in Hj, then

hj[xn 7→ 1] = hj[xn 7→ 0] ,

and we must have Mj 'M ′
j, since complete merge maps computing the same function

are isomorphic. It follows that the line

L′′ := (∅, {M ′′
j }j∈[m])
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can be derived by resolution from L and L′, where

M ′′
j :=

{
merge(Mj,M

′
j, xi, |π|+ |π′|+ 1) if xi ∈ Hi ,

Mj if xi /∈ Hj .

It is easy to see that the M ′′
j are complete merge maps computing the hj.

So, we have proved that M-Res is sound and complete, which leaves only checkabil-

ity. It is easy to see that the isomorphism and consistency relations can be efficiently

checked. From there, it is easy to see that the proof rules of Merge Resolution are

polynomial-time checkable.

Theorem 12.18. M-Res is a proof system for the language of false H-form DQBF.

12.3 Merge Resolution on QBF

Here we consider how Merge Resolution operates in the smaller realm of QBF. We

show that it is exponentially stronger than deferred LDQ-Res.

12.3.1 Simulation of deferred LDQ-Res

In a nutshell, deferred LDQ-Res is like M-Res with a restricted view of isomorphism,

namely, isomorphism is restricted to constant functions. In this view, select is only

defined when one of the maps is trivial, or both are isomorphic and constant.

For the simulation, we translate the universal literals in the long-distance refuta-

tion into merge maps.

Theorem 12.19. M-Res p-simulates deferred LDQ-Res.

Proof. Let π := C1, . . . , Ck, . . . , Ck′ be a deferred LDQ-Res refutation of a QBF Q

with universal variables {u1, . . . , um}, where Ck is the final clause that not derived

by universal reduction. For each i in [k] and j in [m] in, we define

aji :=


uj if ūj ∈ Ci ,
ūj if uj ∈ Ci ,
∗ if uj /∈ vars(Ci) .

We define a sequence ρ := L1, . . . , Ln, in which each Li := (C ′i, {M
j
i }j∈[m]), and

prove that it is an M-Res refutation of Q. For each i in [k], we define C ′i to be the

existential subclause of Ci. For each j in [m], the merge maps are defined recursively

as follows:
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If Ci is an axiom, we take M j
i as the merge map i 7→ aji . If Ci is derived by

resolution, say Ci = res(Cr, Cs, x) with r, s < i, then

M j
i :=

{
select(M j

r ,M
j
s ) , if select(M j

r ,M
j
s ) is defined ,

merge(M j
r ,M

j
s , x, i) , otherwise .

By induction on i in [k], we show the following for each j in [m]:

(a) if {ūj, uj} * Ci, then M j
i is isomorphic to 1 7→ aji ;

(b) Li can be derived from previous clauses using an M-Res rule.

For the base case i = 1, Ci is an axiom, and both (a) and (b) are established

trivially. For the inductive step, let i ≥ 2. The inductive step for an axiom is

the same as the base case, so we assume that Ci was derived by resolution. So

Ci = res(Cr, Cs, x) for some r, s < i and some existential variable x.

(a) Suppose that {ūj, uj} * Ci. By definition of resolution, either (1) aji = ajr = ajs,

or (2) exactly one of ajr, a
j
s is ∗ (ajs, say), the other (ajr, say) is equal to aji . In case

(1), M j
r and M j

s are both isomorphic to 1 7→ aji , by the inductive hypothesis.

In case (2), M j
r is isomorphic to 1 7→ aji and M j

b is trivial. Either way

M j
i = select(M j

r ,M
j
s ) = M j

r

is isomorphic to 1 7→ aji .

(b) We show that Li can be derived by resolution from Lr and Ls. We need only

show that merge(M j
r ,M

j
s , x, i) is defined whenever select(M j

r ,M
j
s ) is not.

Now, if {ūj, uj} is not a subset of Ci, then it is not a subset of Cr or Cs. By the

inductive hypothesis (a), at least one of M j
r and M j

s is isomorphic to 1 7→ aji ,

and the other is either isomorphic to 1 7→ aji or trivial. So select(M j
r ,M

j
s ) is

defined.

On the other hand, suppose that {ūj, uj} is indeed a subset of Ci. Then it is a

subset of at least one on Cr and Cs, say Cr. If uj is not in vars(Cs), then, by

the inductive hypothesis (a), M j
s is trivial, so select(M j

r ,M
j
s ) is defined. On the

other hand, if uj is in vars(Cs), then x is in Hj by the definition of long-distance

resolution, so merge(M j
r ,M

j
s , x, i) is defined.

This completes the induction. Since Ck contains only universal variables, C ′k is

the empty clause, and ρ is a refutation.
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12.3.2 Short proofs of the squared equality family

Here we construct short M-Res refutations of the squared equality formulas. The

approach is as follows.

First, for each i, j in [n], we derive a line ({zi,j},Mi,j) by resolving the axioms

for the four clauses in eq2
n that contain {zi,j}. In the set Mi,j, the merge map for ui

outputs xi with a single query, the merge map for vj outputs yj with a single query,

and all other maps are trivial.

Since all the non-trivial merge maps for a given universal variable are isomorphic,

the n2 unit clauses can all be resolved against the square clause, utilising the select

operation. It is this final step which is unavailable in deferred LDQ-Res.

Theorem 12.20. The squared equality family has O(n2)-size M-Res refutations.

Proof. Let n ∈ N. We construct a refutation in two stages. In the first stage we

explicitly construct an M-Res derivation π := L1, . . . , Lk from EQ2
n, where k = 2n2.

In the second stage, we show that π can be extended to a refutation with a further

n2 + 1 lines.

Stage one. For each h, i, j ∈ N we put

δ(h, i, j) := (h− 1)n2 + (i− 1)n+ j

We use L(h, i, j) as an alias for Lδ(h,i,j). Similarly, we let C(h, i, j) be the clause,

U(h, i, j) be the merge map for ui, and V (h, i, j) be the merge map for vj appearing

on line L(h, i, j). All other merge maps in π are trivial.

Letting i, j in [n], we define the first 4n2 lines with

C(0, i, j) := {xi, yj, zi,j} ,
C(1, i, j) := {x̄i, yj, zi,j} ,
C(2, i, j) := {xi, ȳj, zi,j} ,
C(3, i, j) := {x̄i, ȳj, zi,j} ,

U(0, i, j) := δ(0, i, j) 7→ ūi V (0, i, j) := δ(0, i, j) 7→ v̄j ,
U(1, i, j) := δ(1, i, j) 7→ ui V (1, i, j) := δ(1, i, j) 7→ v̄j ,
U(2, i, j) := δ(2, i, j) 7→ ūi V (2, i, j) := δ(2, i, j) 7→ vj ,
U(3, i, j) := δ(3, i, j) 7→ ui V (3, i, j) := δ(3, i, j) 7→ vj ,

and observe that each of these lines can be introduced as an axiom.

The next 2n2 lines are the result of the natural resolutions over yj. For each i, j

in [n], we define

C(4, i, j) := {xi, zi,j} U(4, i, j) := U(0, i, j) ,
C(5, i, j) := {x̄i, zi,j} U(5, i, j) := U(1, i, j) ,
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V (4, i, j) := δ(4, i, j) 7→ (yj, δ(0, i, j), δ(2, i, j))
δ(2, i, j) 7→ vj
δ(0, i, j) 7→ v̄j ,

V (5, i, j) := δ(5, i, j) 7→ (yj, δ(1, i, j), δ(3, i, j))
δ(3, i, j) 7→ vj
δ(1, i, j) 7→ v̄j .

Each line L(4, i, j) can be derived by resolution from L(0, i, j) and L(2, i, j). To see

this, note that U(0, i, j) is clearly isomorphic to U(2, i, j) and V (0, i, j) is trivially

consistent with V (2, i, j) (their domains are disjoint), therefore

U(4, i, j) = select(U(0, i, j), U(2, i, j)) , and
V (4, i, j) = merge(V (0, i, j), V (2, i, j), δ(4, i, j), yj) .

A similar argument shows each that L(5, i, j) can be derived by resolution from

L(1, i, j) and L(3, i, j).

The final n2 lines are the result of the natural resolutions over xi. For each i, j in

[n] we define

C(6, i, j) := {zi,j} V (6, i, j) := V (4, i, j) ,

U(6, i, j) := δ(6, i, j) 7→ (xi, δ(0, i, j), δ(1, i, j))
δ(1, i, j) 7→ ui
δ(0, i, j) 7→ ūi .

It is easy to see that each L(6, i, j) can be derived by resolution from L(4, i, j) and

L(5, i, j), since V (4, i, j) is clearly isomorphic to V (5, i, j) (an isomorphism is l 7→
l + n2) and U(0, i, j) is trivially consistent with U(1, i, j) (disjoint domains).

Stage two. We now show how π can be extended to a refutation. Let

L6 := {L(6, i, j) : i, j ∈ [n]}

denote the final n2 lines of π, in each of which appears some unit clause {zi,j}. We

observe that, for each r, s, i ∈ [n], U(6, i, r) is isomorphic to U(6, i, s) (an isomorphism

is l 7→ l + s− r); that is, amongst the lines L6, the non-trivial merge maps for ui are

pairwise isomorphic. Similarly, for each j in [n], the non-trivial merge maps for vj

appearing in L6 are pairwise isomorphic.

Now, a line T , consisting of the clause {z̄i,j : i, j ∈ [n]} and a full set of trivial

merge maps, can be introduced as an M-Res axiom in a derivation from EQ2
n. From T

and L6, in a further n2 steps we obtain a refutation by successively resolving each line

in L6 against T , removing a literal z̄i,j each time. All such resolution steps are valid,

since the merge map for ui (vj) in any line can be defined as select(Mr,Ms), where

Mr and Ms are the merge maps for ui (vj) appearing in the antecedent lines.
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Combining this upper bound with the lower bound in Theorem 7.11, along with

the simulation in Theorem 12.19, we have proved the following.

Theorem 12.21. On the language FQBF, deferred LDQ-Res <p M-Res.
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Part IV

Conclusions
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Chapter 13

Outlook

Now we wrap up the thesis and discuss the import of the results.

13.1 Future perspectives for QBF solving

Models proposed and results proved in this thesis suggest some potential future di-

rections for both QBF and DQBF solving.

Dependency schemes in QBF solving

We showed that the reflexive resolution path dependency scheme can exponentially

shorten proofs in ∀Exp+Res, the proof system underpinning expansion-based QBF

solving. This suggests that incorporating dependency schemes into expansion solvers

has the potential to solve instances that would otherwise remain intractable. Thus,

we endorse the move in this direction mooted at the conclusion of [33].

Moreover, we showed that applying dependency schemes dynamically, on restric-

tions of the the input QBF, shortens proofs even further. Dynamic application of

dependency schemes could be implemented by using dependency detection as a form

of inprocessing, rather than preprocessing. Our results validate this approach as at

least reasonable in theory, and potentially valuable in practice.

Another avenue of exploration is dependency learning [46], a recently proposed

approach to solving QBF that can be combined with dependency schemes [48]. We

have shown that dependency schemes are compatible with expansion, which perhaps

suggests that one could consider implementing dependency learning there as well.
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Solving H-form DQBF

We introduced Merge Resolution, the first sound and complete QCDCL-style proof

system for DQBF. In so doing we made two modifications: first, we switched the

input format to H-form, and second, we built syntactic representations of partial

countermodels into the proofs, allowing the system to reason with them.

It is conceivable that Merge Resolution gives rise to a decision procedure for H-

form DQBF. This would take the form of a CDCL-style proof search, which could

also be viewed as an exhaustive search for a countermodel.

As far as we are aware, there has been no dedicated research into solving H-form

DQBF, and as such there are no known applications. Our work suggests that solving

H-form is just as viable as S-form, forming the basis of an unexplored workflow. It

remains to be seen which problems lend themselves naturally to H-form encodings,

but it is hard to imagine that such problems do not exist to serve present or future

industrial applications.

13.2 Generalisations of results

Many of the results presented in this thesis can be extended to more general settings.

Resolution over universal pivots

The system QU-Res extends Q-Res by adding resolution over universal pivots. Since

resolution is a logically correct propositional rule of inference which preserves satisfy-

ing assignments, allowing resolution over all pivots is perfectly natural. Moreover, any

argument which does not use the fact that the pivot is existential will lift immediately

to QU-Res.

For example, our lower bound technique for Q-Res (Corollary 5.17) is equally

applicable to QU-Res, and hence our concrete lower bounds derived using that tech-

nique (e.g. for the equality family, Theorem 5.18) apply also to QU-Res. In fact, the

technique and the applications were originally presented for QU-Res in [8].

Also, all the material on dependency schemes in Q-Res appearing in Chapter 11

is applicable to QU-Res, and is presented this way in [9].

Beyond Resolution and conjunctive normal form

Our lower bound technique for Q-Res can actually be applied in a much broader

context: P+∀red. The proof system P+∀red adds a universal reduction rule to an

172



appropriate propositional proof system P, lifting it to a QBF proof system.

It turns out that a certain measure on the propositional proof system P (capacity)

along with a semantic measure on the QBF family (cost) is often sufficient to prove

a lower bound, by means of the Size-Cost-Capacity Theorem [10].

Theorem ([10]). The size of a P+∀red refutation of a QBF Q is at least

cost(Q)

capacity(P)
.

QU-Res is P+∀red when P is Resolution, and, as it turns out, the capacity of

Resolution is 1. Our Q-Res lower bound for the equality family really rests on the

fact the family has exponential cost, and our lower bound technique is really only a

special case of Size-Cost-Capacity.

Moreover, the propositional proof system Cutting Planes (CP), which p-simulates

Resolution, also has capacity 1. Hence the equality formulas require exponential size

refutations even in CP+∀red. Further applications to other QBF proof systems were

covered in [10].

13.3 Open problems and conjectures

Proof complexity of dependency schemes

All of our separations for models of solving with dependency schemes were based

on short proofs with the reflexive resolution path dependency scheme. An obvious

question is whether such separations can be made also with the standard dependency

scheme.

Open Problem 1. Does Q-Res p-simulate Q(Dstd)-Res?

Open Problem 2. Does ∀Exp+Res p-simulate ∀Exp(Dstd)+Res?

Another interesting question which we did not settle is the status of the two

expansion systems parameterised by Drrs.

Open Problem 3. Does ∀Exp(Drrs)+Res p-simulate IR(Drrs)-calc?

Given that we were able to find short proofs of KB in IR(Drrs)-calc, but not in

∀Exp(Drrs)+Res, we conjecture that the answer is no. Perhaps some DQBF generali-

sation of our ∀Exp+Res lower bound technique could be investigated as a lead for the

∀Exp(Drrs)+Res lower bound.
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H-form DQBF

At the time of writing, interest in solving DQBF, S-form in particular, is growing.

Our proposal of Merge Resolution as a natural QCDCL-style proof system for DQBF

pushes H-form towards the foreground. Moreover, our feeling is that H-form is not

merely a syntactic dual to S-form. With the expansion-reduction hypothesis, we have

attempted to explain why, and to clarify the inherent semantic subtleties of S-form

versus H-form DQBF.

One interesting and related open problem is the complexity of the decision problem

for H-form DQBF.

Open Problem 4. What is the computational complexity of the language of false

H-form DQBFs?

This question is not a priori related to the complexity of S-form DQBF, and it is

not clear whether the proof of NEXP-completeness for S-form can be modified for an

answer. Since H-form includes QBF, the decision problem is at least PSPACE-hard,

and since there are at most doubly-exponentially-many sets of dependency functions,

with a wave of the hand we can claim it is also in NEXP. Hence NEXP-complete

seems a fair conjecture.
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