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Abstract 

The number of connected objects in the Internet of Things (IoT) is growing 

exponentially. IoT devices are expected to number between 26 billion to 50 

billion devices by 2020 and this figure can grow even further due to the 

production of miniaturised portable devices that are lightweight, energy and 

cost efficient together with the widespread use of the Internet and the added 

value organisations and individuals can gain from IoT devices, if their data is 

processed. These connected objects are expected to be used in multitudes of 

applications, of which, some are, highly resource intensive such as visual 

processing services for surveillance based object recognition applications. 

The sensed data requires processing by the cloud in order to extract 

knowledge and make decisions accordingly. Given the pervasiveness of 

future IoT-based visual processing applications, massive amounts of data will 

be collected due to the nature of multimedia files. Transporting all that 

collected data to the cloud at the core of the network, is prohibitively costly, in 

terms of energy consumption.  

Hence, to tackle the aforementioned challenges, distributed processing 

is proposed by academia and industry to make use of a large number of 

devices located in the edge of the network to process some or all of the data 

before it gets to the cloud. Due to the heterogeneity of the devices in the edge 

of the network, it is crucial to develop energy efficient models that take care 

of resource provisioning optimally. The focus in today’s network design and 

development has shifted towards energy efficiency, due to the rising cost of 

electricity, resource scarcity and increasing emission of carbon dioxide (CO2).  
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This thesis addresses some of the challenges associated with service 

placement in a distributed architecture such as the fog. First, a Passive Optical 

Network (PON) is used to connect IoT devices and to support the fog 

infrastructure. A  metro network is also used to connect to the fog and 

aggregate traffic from the PON towards the core network. An IP/WDM 

backbone network is considered to model the core layer and to interconnect 

the cloud data centres. The entire network was modelled and optimised 

through Mixed Integer Linear Programming (MILP) and the total end to end 

power consumption was jointly minimised for processing and networking. Two 

aspects of service placements were examined: 1) non-splitable services, and 

2) splitable services. The results obtained showed that, in the capacitated 

problem, service splitting introduced power consumption savings of up to 86% 

compared to 46% with non-splitable services. Moreover, an energy efficient 

special purposed data centre (SP-DC) was deployed in addition to its general 

purpose counterpart (GP-DC). The results showed that, for very high 

demands, power savings of up to 50% could be achieved compared to 30% 

without SP-DC.   

 The performance of the proposed architecture was further examined 

by considering additional dimensions to the problem of service placements 

such as resiliency dimension in terms of 1+1 server protection, in the long 

term network design problem (un-capacitated) and the impact of inter-service 

synchronisation overhead on the total number service splits per task.     
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Chapter 1 Introduction 

 

This chapter serves as the basis for motivating the work in this thesis on 

improving the energy efficiency of distributed processing in the context of IoT. 

The problem statement is presented and the tools and methodologies utilised 

in this thesis are summarised. The objectives and contributions are provided 

and the relevant publications are listed. Finally, an outline of the remainder of 

the thesis is provided.   

1.1 Motivation  

The number of connected objects in the Internet of Things (IoT) is growing at 

unprecedented levels. In 2011, this number surpassed the world’s population 

and by 2020, interconnected devices are expected to range between 26 billion 

to 50 billion devices [1], [2]. This increase in the number of connected objects 

is directly linked to the technological advancement in the past decades as this 

has enabled the production of miniaturised portable devices that are light 

weight, energy and cost efficient together with the widespread use of the 

Internet and the added value organisations and individuals can gain from IoT 

devices if their data is processed. Hence, these trends have made it attractive 

to integrate and connect almost anything to the Internet which eventually leads 

to the concept of IoT [3],[4].   
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There will be multitudes of IoT applications, some are already in existent 

while others are yet to be realised. Thus, massive amounts of data will be 

produced, that, if processed centrally by conventional clouds would lead to 

slow decision making and increased pressure on the already overwhelmed 

network. Autonomous vehicles, for example, are reported to generate data 

that is in the range of 1 gigabyte per second [5]. It is evidently clear that 

transporting all of this data to the cloud for processing is prohibitively costly in 

terms of bandwidth requirements and energy efficiency. In the past, the main 

focus of Information and Communication Technologies (ICT) was fixated on 

performance only. Little or no attention was paid to the amount of power ICT 

based components consumed and their adverse impact on our environment. 

The focus has now shifted towards energy efficiency, due to the rising cost of 

electricity, resource scarcity and increasing emission of carbon dioxide (CO2) 

[6]. It is reported that the emission of CO2 due to ICT based technologies is 

increasing at an alarming rate of 6% per year. Given this growth rate, the 

Internet can become responsible for up 12% of the global emissions by 2030 

and cloud data centres which are at the heart of the IoT are one of the major 

components of ICT [7]. 

In this direction, distributed processing has been proposed by industry 

and academia as an effective strategy to curb the pressure imposed by the 

formidable scale of IoT. Fog computing is one of the distributed processing 

approaches which promises to tackle the aforementioned challenges by 

utilising the already available computational, storage, and networking 

resources in serving IoT data at the edge of the network, as close as possible 

to the source [8]. Oftentimes, decision making can be made better and quicker 

if the collected data is processed closer to the source [9]. Currently, fog 
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computing is still in its infancy and a standardised architecture has yet to be 

agreed. Thus, alternative IoT architectures are increasingly been studied in 

the research community in terms of efficient resource management and the 

interplay between fog devices and the cloud, since fog is regarded as a 

powerful complement to the cloud [10].  A proper resource management 

scheme is crucial in the fog, since application services can be placed on 

energy inefficient servers or even further from the source node which may 

result in higher communication latency as contemporary fog devices have 

limited processing, storage and communication power [6]. It is expected that 

through cooperation between fogs and the centralised cloud, a more efficient 

and greener computing platform can be achieved [11]. 

1.2 Problem Statement  

 
A large number of fog devices exist at the edge of the network, which 

collectively provides enormous amounts of computational resources, that, if 

used, may help in curbing the unnecessary data exchange with the centralised 

cloud. In order to integrate the vast number of fog devices that are 

heterogeneous in terms of resources, proper resource management and 

network design frameworks are needed. These should take into account 

important dimensions such as energy efficiency, due to its impact on our 

environment, resilience, due to mission-critical services, and inter-service 

communications due to end-device cooperation. This study aims first to model 

the IoT infrastructure from an end-to-end perspective such that all layers of 

the networking domain are taken into account when an IoT service is launched 

from the end-device to the ultimate destination in the cloud which is located in 

the core network.  
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 Passive Optical Networks (PON) have been proposed to support the 

distributed processing infrastructure as they are increasingly utilised due to 

their suitability for visual-based services as they provide high data rates, 

relatively low cost and are very scalable [12]. Several design factors that affect 

the power consumption of the distributed processing approach are 

considered. Those include the Power Usage Effectiveness (PUE) of the higher 

capacity fog layers, the core network and the cloud DC layer. PUE is the ratio 

of the total power consumption of a node (including cooling and lighting) to the 

power consumption of the communication and processing equipment. The 

studies in this thesis included investigations into the short term design 

problems (capacitated) and the long term ones (un-capacitated) in designing 

energy efficient network architectures [13]. 

1.3 Research Objectives 

The work reported in this thesis has the following objectives: 

1. To model and evaluate an end-to-end IoT infrastructure that is 

supported by fog and cloud processing. 

2. To study capacitated and un-capacitated network design problems that 

consider joint minimisation of networking and processing power 

consumption in the placement of resource intensive services such as 

visual and object recognition applications. 

3. To evaluate the impact of service splitting on improving the total power 

consumption of the distributed processing approach, in capacitated 

and un-capacitated network design problems. 
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4. To evaluate the provisioning of resilience for the proposed architecture, 

in terms of energy consumption overheads.  

5. To evaluate the impact of inter-service communication for 

synchronisation and cooperation. This provides an insight on whether 

service splitting among low-power fog and IoT devices is beneficial if 

processing overheads are accounted for. 

1.4 Thesis Contributions  

To knowledge, the thesis made the following contributions: 

 

1. It developed four new MILP models that can be used in the design of 

energy efficient distributed processing architectures, for both the short 

term and long term network design problems.   

2. It designed and optimised the placement of non-splittable services for 

a number of active IoT scenarios that capture different distributions of 

source nodes in the network topology.  

3. It evaluated through MILP, the impact of allowing service splitting on 

improving the total power consumption for both the short and long term 

network design problems. 

4. It examined through MILP optimisation, the resilience of server 

protection for the main scenarios of active IoT source nodes that were 

considered in the thesis.    

5. Finally, a MILP model was developed to incorporate the concept of 

inter-service communication to study its impact on total power 

consumption.  
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1.5 Related Publications 

The following list includes publications that resulted from the work presented 

in this thesis: 

B. Yosuf, M. Musa, T. Elgorashi, A. Q. Lawey and J. M. H. Elmirghani, 

"Energy Efficient Service Distribution in Internet of Things," 2018 20th 

International Conference on Transparent Optical Networks (ICTON), 

Bucharest, 2018, pp. 1-4. 

B. A. Yosuf, M. Musa, T. Elgorashi and J. M. H. Elmirghani, "Impact of 

Distributed Processing on Power Consumption for IoT Based Surveillance 

Applications," 2019 21st International Conference on Transparent Optical 

Networks (ICTON), Angers, France, 2019, pp. 1-5. 

Barzan. Yosuf, M. Musa, T. E. H. El-Gorashi and J. M. H.Elmirghani,“Energy 

Efficient Distributed Processing for IoT”, submitted to IEEE Access. 

Barzan. Yosuf, M. Musa, T. E. H. El-Gorashi and J. M. H.Elmirghani,“ Resilient 

and Energy Efficient IoT Processing”, to be submitted to IEEE Access. 
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1.6 Thesis Organisation 

Following the introduction in Chapter 1, this thesis is organised as follows: 

Chapter 2 reviews the concept of the Internet of Things (IoT) and highlights 

the key enabling technologies. It also overviews the reference architecture of 

IoT, its elements, service types, applications and concludes by listing a 

number of challenges facing IoT.  

Chapter 3 provides an overview of distributed processing paradigms and fog 

computing. It also provides a critical review of the related works which 

motivated this thesis.  

In Chapter 4, the problem of energy efficiency of distributed processing is 

tackled given non-splittable processing services, for both capacitated and un-

capacitated network design problems. A visual based object recognition 

application was considered and the workload characteristics were 

determined. In addition to multiple layers of fog, two types of data centres were 

examined: 1) general-purpose data centres, which are energy inefficient and 

2) special-purpose data centres, that are highly energy efficient and 

specialised in particular forms of processing. In most cases, distributed 

processing produced significant savings however for very high workloads it 

was observed special-purpose data centres were more favourable as they 

introduced savings of up to 50% in power consumption.  

Chapter 5 examines the influence of service splitting on improving the energy 

efficiency of the proposed distributed processing approach. It was observed 

that in the un-capacitated case, following optimisation for energy efficiency, 

service splits mostly occurred between the IoT and the CPE fog layers, for 

relatively low workload volumes however as the workload increased, the cloud 
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and metro fog interplay produced better results due to processing inefficiency 

of CPE fog servers. 

Chapter 6 focuses on resiliency for the architecture considered in Chapter 4 

and in Chapter 5. The studies examined a 1+1 server protection scheme 

through geographical node disjoint constraints. The results showed that the 

highest percentage power overhead occurred when protecting low workloads 

which are within the capacity of IoT devices due to the activation of optical 

network units (ONUs) to get to another IoT device. For relatively higher 

workloads, it was observed that all layers of the proposed architecture were 

utilised in the protection however for very high workloads, primary and backup 

servers were predominantly placed in the cloud DCs due to their processing 

efficiencies. 

 

Chapter 7 examined the impact of inter-service communications as a result of 

device cooperation and synchronisation.  

 

Chapter 8 summarises the contributions of this thesis and suggests possible 

directions for future work.  
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Chapter 2  

Background Review of Internet of Things (IoT) 

 

2.1 Introduction 

The Internet of Things (IoT), is regarded as a novel paradigm that is expected 

to pave the way for a plethora of applications that contribute significantly to 

enhancing our daily lives, in domains such as security, agriculture and health 

care, to name a few [14], [15]. Researchers in the past two decades have 

projected that billions of everyday objects will be connected over the Internet 

[16]. Such objects will range from simple devices such as RFID tags, 

temperature sensors to smart devices such as mobile phones, vehicles, 

surveillance cameras, etc. [17]. Cisco, reported in 2011, that by the year 2020, 

the number of connected IoT objects will reach around 50 billion [18]. While 

on the other hand, a more recent investigation by Gartner quoted this figure 

to be around 26 billion devices by 2020 [19]. Regardless of the correctness of 

the two aforementioned predictions, the matter of the fact is that IoT objects 

will be several times more than the estimated 7.7 billion of the world’s 

population [20]. These connected objects are all expected to have the ability 

to communicate with each other and cooperate in order to reach a common 

goal [3]. 

There are manifold definitions of the term IoT and they all imply the same 

concept of ubiquitous connectivity between the physical “things” anytime, from 

any place and for anyone [21]. Hence, it is certainly safe to suggest that 

connectivity from “any place” is virtually impossible without wireless capability 
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[22]. While most people regard IoT as large scale sensors, health and fitness 

monitors, self-driving cars, it stands for much more than that [23]. IoT will 

transform the modern world and reshape the industries within it. For example, 

smart meters will be used to enable better management of utilities across the 

national grid, sensors and actuators will allow automation a factory floor, city 

surveillance cameras will be used to help law enforcement agencies to 

prevent crimes before they happen through the aid of machine learning and 

pattern recognition algorithms [24]. The list of potential applications of the IoT 

is endless. It is not of any surprise that the IoT is included in the list of the top 

six “Disruptive Civil Technologies” by the US National Intelligence Council 

[17]. This is an indication of the important role the IoT will have in the near 

future and like the present Internet of today, it could contribute greatly to every 

domain of society. In 2012 alone, it was reported that IoT based application 

systems generated a revenue of $4.8 trillion [25]. It is still early days for the 

IoT and this figure could easily rise above and beyond expectations. 

2.2 Reference IoT Architecture 

Generally, in the literature [26],[27], a common high-level reference 

architecture for the IoT is proposed that comprises of several layers as 

depicted in Figure 2.1. These layers are briefly described below in a bottom-

up fashion: 
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Object Layer: This is the lowest layer in the IoT architecture and is often 

called the perception layer. Its main purpose is to perceive the raw data from 

the environment. All the data collection and sensing are carried out in this 

layer. The IoT objects comprise of a variety of devices such as temperature 

sensors, smartphones, vehicles, drones, cameras etc. [5].  

Aggregation Layer: This layer can also be called the network layer as it 

provides the networking infrastructure to securely forward the aggregated data 

from the objects to the cloud for processing. The transmission can be done 

Figure 2.1 A High Level Reference Architecture of Internet of Things (IoT) 
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through wired or wireless mediums. Typically, communication technologies 

such as WiFi, Bluetooth, ZigBee, LTE, etc are used, depending on the type of 

the devices in the object layer and the intended application [28]. In most cases, 

an IoT gateway device is used to aggregate raw data from the resource 

constrained devices in the object layer (especially the less smart ones) [29]. 

Cloud Layer: This can also be called the middleware layer as it receives huge 

volumes of data from the network layer [30]. The main purpose of this layer is 

service management and data storage. It has an analytical centre to process 

the aggregated data and take automatic decisions based on the results of the 

analysis and feeds the output into the application layer [29]. This layer 

facilitates data access and storage through services in the cloud such as 

infrastructure-as-a-service (IaaS), Platform-as-a-service (PaaS), Software-

as-a-service (Saas) and Network-as-a-service (NaaS). 

Application Layer: This layer is at the top of the architecture as is used in the 

presentation of the final data to the final user [3]. It receives information from 

the cloud and in return provides management services for the application 

presenting that information[30]. Hence, the application layer presents the IoT 

data in the form of smart city, smart home, eHealth, smart transportation, 

surveillance etc [28].  
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The basic workflow of IoT depicted in Figure 2.2 can be described in a 

simplified version as follows [30]:  

1) Objects begin by sensing and making identifications to communicate 

object-specific information. Such sensed information can be a temperature 

reading, orientation, motion, video or audio, etc. 

2) Processing of received information by smart devices which leads to 

making informed decisions such as triggering an actuator or object 

identification within a video/image file. 

3) Feeding back information on the current status of the system to the 

administrator. 

 

 

 

 

 

 

 

2.3 Enabling Technologies 

Many key technology enablers are driving IoT into actualisation [3], some of 

which are described below: 

1) Wireless and Low-Power Communication: For a long time, the 

“anytime, anywhere, any media” vision has been pushing forward the 

advances of communication technologies beyond boundaries. In this 

Sensing + id

Processing

Feedback

Figure 2.2 Basic Workflow in IoT 
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regard, wireless technologies have played a major role as it was 

reported in 2010 that, the ratio between radios and people neared the 

1:1 value  [3]. In addition to this, the increase of the number of 

transistors on a single chip whilst simultaneously achieving reductions 

in size, weight, energy consumptions and monetary cost of the actual 

radio chip can push the aforementioned ratio above orders of 

magnitude [31].   Additionally, recent developments in lightweight 

protocols such as the IEEE 802.15.4 low-power wireless personal area 

network (6LoWPAN) has made it possible for the IP stack to connect a 

huge number of tiny and battery constrained sensor devices to the 

Internet [32].  

2) Smart Devices: with the recent technological advancement in 

embedded systems and wireless communication, it is no longer the 

case that the IoT should include only simple sensors and actuators 

performing primitive tasks. As a result of the advances, various kinds 

of objects emerge as powerful devices that can sense, process and 

communicate over the network [33]. Such devices are expected to have 

capabilities of stationary servers residing in the cloud data centre [34]. 

Additionally, computational capability on portable devices have 

followed the Moor’s law for the past two decades and this is anticipated 

to continue the same way in the upcoming periods  [34]. In the 

literature, the key functionalities of smart devices are categorised into 

three main groups namely, context awareness, device connectivity and 

autonomy [35].   

3) Data and Energy Storage: Taking the most recent years as example, 

in 2012 data storage capabilities on a smart phone/tablet was about 
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32GB and as of 2019, Apple’s latest iPhone 11 is equipped with 256GB 

of internal storage [36]. It is of no doubt that memory and storage 

technologies will only get better in the future. This coupled with the 

invention of lithium batteries, it is only a matter of time before IoT 

objects penetrate every sector of our modern society. For instance, an 

RFID transmitter can operate up to one year on a single lithium coin 

cell battery with 240-mAh [37].   

4) Cloud & Virtualisation: Virtualisation is the key technology of the 

cloud. It allows for the creation of various logical infrastructures on the 

same physical hardware [38]. These logical infrastructures may 

comprise of computing and networking resources. The virtualisation of 

clouds enables small to large organisations to lease powerful resources 

on a pay-as-you-go basis such as Software-as-a-Service (SaaS), 

Platform-as-a-Service(PaaS), and Infrastructure-as-a-Service (IaaS) 

[28]. This implies that IoT system novelists do not have to own 

expensive infrastructure in order to be able to run IoT analytics, but 

instead, they only have to bear the cost of usage of the service(s) [38]. 

Moreover, as well as compute resources for data analytics, 

virtualization has also enabled IoT network resources to become 

decoupled from traditional proprietary hardware. Hence, allowing for 

small IoT developers to request multiple heterogeneous virtual IoT 

networks on a pay as you go basis, which is mostly referred to as Virtual 

Sensor Networks (VSNs) [39]. Thus, both compute and network 

resources have become fully flexible and can dynamically be shared to 

achieve rapid development of new IoT services [11], [40].   
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5) Next Generation Access Networks: Conventionally, the last drop to 

the end-devices is provided by fixed-line access technologies such as 

copper based xDSL WiFi modems as well as wireless mobile 

technologies such as 3G/LTE etc. Given, the enormous expected 

growth in the number of connected IoT nodes and the need to access 

the distant cloud for data processing, the aforementioned access 

technologies could not cope with the front/backhauling demand of the 

IoT due to lack of bandwidth as well as their energy inefficiencies [41]. 

Thus, a number of important advancements have been made to tackle 

the above issues such as a multitude of heterogeneous access 

networks integrated into a single platform (5G) to provide better and 

seamless data exchange with the cloud. A number of efficient schemes 

allow for the integration of a wireless front to offer ubiquitous services 

for mobile/fixed nodes and fibre links to provision for the backhauling 

which is not possible with the wireless infrastructure on its own [42]. In 

the access part of the network, Passive Optical Networks (PONs) have 

been hailed as the most attractive solution due to their high bandwidth, 

low cost and point-to-multipoint architecture [17]. This technology 

offers great bandwidth in the uplink and downlink and has the potential 

to allow for network convergence. Since the required data rates over 

wireless/mobile networks are achieved through decreased cell 

distances, a large number of cells in urban areas will be deployed, this 

particularly makes PON an attractive access networking solution due 

to its point-to-multipoint architecture [43].    
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2.4 IoT Service Types 

The IoT has embedded itself in many aspects of our daily lives. In this section, 

some of the applications and services of IoT are reviewed. The applications 

of the IoT are so vastly endless, we can merely scratch the surface. In the 

literature, works such as  [44], [45] and [46] have grouped the IoT applications 

into four main classes that can be used as umbrella terms to aid our 

understanding of this imminent technology. As depicted in Figure 2.3, these 

classes consist of 1) identity-related services, 2) information aggregation 

services, 3) collaborative-aware services and 4) ubiquitous services.   

 

Figure 2.3 Categorised groups of IoT services [44]. 

 

The most basic and yet important service out of the four is the identity-

related services. The reason behind this is that any application that requires 

digitalising the properties of the physical “things”, must first have the means 

to identify those “things” [44]. Whilst, on the other hand, Information 

Aggregation Services are reliant upon the first category as such services refer 

to the process of acquiring data from various sensors, processing this data 

then transmitting the obtained knowledge via IoT to the application in question. 

In the aggregation process, services may use different communication 
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channels to acquire data from different types of sensors. For instance, RFID 

tags could be used in an application to identify objects, whilst simultaneously 

using a ZigBee network to aggregate sensor data, as illustrated in Figure 2.1. 

All of these functionalities are incorporated into a device mostly referred to as 

“IoT Gateway” [47]. An IoT gateway can be a device or software that acts as 

a bridge between the objects and the cloud since all the data moving to the 

cloud has to pass through the gateway. Often most, the data passing through 

the gateway is mined in order to extract knowledge before it reaches the cloud. 

This extracted knowledge is then acted upon by Collaborative-Aware 

Services, which require “thing-to-thing”  as well as  “thing-to-person” 

communication. Thus, provisioning for collaborative aware services, the IoT 

network infrastructure will require extensive reliability and a significant 

increase in speed [46]. Ubiquitous Services, however, are the essence of IoT. 

Such services are not only collaborative, but aim to provide collaborative 

services “anytime”, “anywhere”, and for “anyone” [48].  

2.5 IoT Applications 

Having reviewed the categories of the IoT services and applications in the 

previous subsection, the current subsection will provide examples 

applications that fall into each type service class since this is a useful way of 

providing a basic framework to build an application upon a particular type of 

class [46]. With the potentialities offered by the IoT, it is not possible to list 

every possible application since only a small number is currently deployed in 

our society [3].    
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Logistics: This is one of the common examples of identity related services. 

IoT devices such as RFID tags are used to track and trace almost every link 

in the supply chain ranging from purchasing of raw materials, products to after 

sales and inventory management [49]. RFID tags used to be known as the 

digital version of barcodes, however, they offer much more in that they can be 

utilised to track items in realtime which provides useful information about their 

current status accurately and timely [21]. Thus, various enterprises can better 

manage their inventory and resources by being able to plan ahead of time, 

thus responding promptly and accurately to the dramatic nature of markets in 

a short time [3].   

Smart Transportation Systems: Smart motorways and roads are already 

deployed throughout most cities of the UK [50]. The application comprises of 

thousands of different types of sensors, cameras and digital displays to 

monitor and respond to the dynamic change in traffic on the motorway [51]. 

The National Roads Telecommunications Service (NRTS) project was 

implemented as part of the UK’s smart motorway project and its second phase 

contract has already been handed over to telnet Technology Services in 2017 

[52]. This project works on providing the backbone network that enables the 7 

regional control centres throughout the UK to connect to up 30,000 technology 

assets such as CCTV cameras, message signs, weather condition sensor 

networks and motorway incident detection and automatic signalling (MIDAS) 

loops installed every 500 meters to detect the current state of traffic due to an 

incident [53]. This type of application exhibits elements spanning across the 

identity-related services and information aggregation services. In fact, every 

potential IoT application will at least incorporate some parts of identity-related 

services due to the fact that every object within the network needs a digital 
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identity. As for the second class, the devices in the network are only used to 

aggregate data about their ambient environment and forward them towards 

the regional control centres for decision making purposes. Figure 2.4 is an 

illustrative depiction of the different types of device networks used for 

information aggregation for the regional control centres.  

 

 

 

 

 

 

 

 

Smart Surveillance: In a smart city, large numbers of intelligent video 

surveillance cameras will be distributed along roads or strategic intersections 

of a busy road to provide a strong sense of assurance to the general public 

[54]. These intelligent cameras will be exploited to run object recognition 

algorithms and machine learning tools to alert law enforcement agencies to 

take action proactively and prevent potential crimes [55]. The different 

cameras are also used in some applications to cooperate with one another to 

identify and track vehicles in motion [3]. This overall makes these intelligent 

devices somewhat autonomous and collaborative in the sense that there is 

some sense of collaboration between the objects in question and there is 

autonomous decision makings taking place [46]. In a nutshell, a service is 

Figure 2.4 A high-level depiction of the applications and Services 
offered by UK’s smart motorway systems. 
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classed as collaborative-aware if the data collected by the objects are acted 

upon at the source node and decisions for performing certain tasks are taken. 

One of the prerequisites of creating a collaborative-aware service is having 

computational power onboard IoT objects, hence these devices can no longer 

be used for sensing purposes only.   

2.6 Challenges 

In the near future, the IoT will revolutionise the shape of today’s Internet which 

will lead to endless economics and societal benefits, but at the same time, it 

is faced with many key challenges that need serious considerations [27], [56]. 

Some of these challenges are briefly described as follows [30]:  

 Object ID Management: As is apparent, the IoT ecosystem will consist 

of billions of heterogeneous objects, that are going to be used to 

provide innovative services. A network of objects at such scale will 

require these objects to have unique IDs over the Internet, thus, this 

calls for proper object ID management scheme, that is able to 

dynamically assign and manage unique identity for all the objects. 

Traditionally, the domain name system (DNS) has been used over the 

years in current networks for such purposes, however, such system 

cannot adapt to the IoT environment as many of the “things” or objects 

will be mobile and resource constrained [11].       

 Interoperability and Standardisation: The general prerequisite of IoT 

systems is to support openness and interoperability since different IoT 

objects need to connect through different interfaces to provide the 

required services [57]. Many of such objects are going to be proprietary 
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hardware, manufactured by various vendors, standardisation of the IoT 

is vital to provide better interoperability for all the “things” [58].  

 Security, Privacy & Trust:  The IoT presents serious security related 

challenges that are reported in the IERC 2010 Strategic and Innovation 

Roadmap. While each domain, security, privacy and trust is faced with 

unique challenges in the IoT, they all share a number of non-functional 

requirements such as 1) light-weight solutions to support constrained 

objects, and 2) scalable to billions of devices. Moreover, any solution 

must address object heterogeneity and diversity as well as being 

seamlessly integrated into real-world [1]. Below is a brief description of 

each domain:    

o Trust: Since IoT-based systems and application will scale over 

multiple administrative domains, it is bound to involve multiple 

stakeholders and ownerships. Hence, there needs to be a 

proper trust framework that enables the users of the IoT system 

to have full confidence that the services being provided can be 

relied upon.   

o Security: The IoT will comprise of a large number of physical 

objects that are potentially spread over in a large geographical 

region. Similar to DoS/DDOS attacks on the current Internet, the 

IoT will not be exempt also from such threats. It is necessary to 

have specific techniques and mechanisms to ensure that IoT 

services cannot be disrupted or undermined [1].  

Privacy: The IoT will use different forms of identification technologies such as 

RFID tags, that may be associated with objects, from which people’s location 

can be inferred, as an example. Thus, it is very important to have the right 
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mechanisms in place that prevents the inference on personal information and 

allows IoT users who wish to keep their details anonymous. Also, another 

measure to protect personal information is to keep data as local as possible 

making use of decentralised processing and key management [59]. 

 Network Channel Bandwidth: The vast number of connected “things” 

will create data at an exponential rate [60]. A connected object such as 

a vehicle can generate tens of MB’s of data per second. Such data will 

comprise of 1) the vehicle’s mobility and its routes, 2) vehicles 

operating conditions, 3) the vehicle’s ambient environment such as 

road and weather conditions, 4) videos recorded by the vehicle safety 

camera [5]. An autonomous vehicle is reported to generate even more 

data, at around 1 GB per second [61]. Transporting all the data over 

the network to the cloud will demand huge network bandwidths. The 

wireless medium used to transmit IoT data should be able to handle 

such scale of sensors without any data loss due to network congestion 

[30], [25].          

 

 Energy Efficiency of IoT (or Green IoT): Due to the formidable 

volume of data generated by billions of objects, the intervention of cloud 

becomes a necessity as processing will be required to extract 

knowledge from all that data. In order for the cloud to process, it is 

required to be running around the clock which leads to enormous 

consumption of power and this subsequently leads to higher CO2 and 

eventually takes a deep toll on the environment [25]. In addition to the 

environmental impact, energy consumption is directly linked with 
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network operators’ operational expenditure as well as social and 

political issues [62]. Thus, it is important to note that in this regard, 

energy harvesting and low-power ICs are central in the development of 

the IoT [22]. 

2.7 Summary 

Internet of Things (IoT) is regarded as an emerging paradigm and its 

actualisation is imminent in the near future. This chapter has briefly introduced 

the concept of IoT and its elements that are used to define and shape it. 

Although a standard architecture is yet to be agreed upon by all the 

stakeholders of this revolutionary technology, a reference architecture which 

is widely used in the literature was reviewed by depicting a high-level network 

architecture with a detailed description of all the layers involved in the IoT 

stack. This is followed by the most important technologies that are seen as 

major enabling factors in realising the IoT, types of service classes and 

example applications within each class and the chapter was concluded by 

identifying the key challenges that are reported to impede the progress of the 

IoT. 

The next chapter surveys various distributed processing paradigms as well as 

the related work on energy efficient distributed solutions in the context of IoT.   
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Chapter 3  

Distributed Processing and Related Works   

 

3.1 Introduction  

Generally, distributed processing refers to a decentralised system in which 

computational tasks are subdivided between multiple networked devices, and 

these devices communicate with one another through the network to achieve 

the original goal of the application. One of the earliest known versions of 

distributed processing was introduced back in the 1970s which comprised of 

a local area network (LAN) that interconnected serval computers and allowed 

multiple applications to communicate among themselves and develop a 

collective solution for a computational problem [63]. However, since then, 

distributed processing has evolved into various new paradigms, namely fog 

computing, edge computing, mobile cloud computing, cloudlets, clouds, etc 

[64]. These paradigms all have at least one thing in common which is 

processing end-devices data over a given communication network, as close 

as possible to the end device. However, they differ in terms of the scale of 

hardware deployment and their level of proximity to the IoT end devices [65]. 

For instance, clouds are accessed via the core network while fog computing, 

edge computing, mobile cloud computing and cloudlets could be one hop 

away from the end devices. Also, cloud data centres house thousands of 

powerful servers and compared to the other paradigms their resources are 

virtually unlimited [12].  
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Generally, cloud computing is known as a centralised solution in which end 

users share a large, centrally managed pool of resources which are offered to 

the end-users on a pay as you go basis. Such resources are mainly classed 

into three groups, namely Infrastructure as a Service (IaaS), Platform as a 

Service (PaaS) and Software as a Service (SaaS) [66]. With IaaS, end-users 

are offered virtualised storage, computation and network whilst PaaS are 

services that provide the needed environment for application development 

and SaaS combines IaaS and PaaS to allow end-users to outsource all their 

computational needs from the cloud [65].  

On the other hand, fog computing is classed as a decentralised 

computing paradigm due to its distributed nature and the number of nodes is 

greater than the centralised cloud by several orders of magnitude [67], [68]. 

Fog computing aims to extend the functionalities of the centralised cloud 

closer and even onto the end-devices themselves, hence the OpenFog 

Consortium as the main promoter of fog computing defines the fog 

architectures as a “cloud closer to the ground” [69]. As shown in Figure 3.1, 

fog computing can be represented through a hierarchically, usually in three 

layers. The bottom-most layer is where all the IoT end-devices are located 

and these are expected to have limited computation, storage and networking 

capacities, whilst the higher layers are expected to contain the more powerful 

devices. Any device that is equipped with communication, computational and 

storage resources can act as a fog node [70]. At the edge of the network, large 

numbers of potential fog nodes exist, collectively. They can offer enormous 

amounts of computing power as they are spread across millions of devices 

which include routers, switches, gateways, smartphones, surveillance 

cameras etc. [66].  
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It must be noted that fog cannot be implemented solely on its own, but rather, 

the cloud must be used to complement the limitations of the fog such as 

processing compute-intensive application components, whilst on the other 

hand, the less compute-intensive components can be processed on the fog 

nodes [2], [11].  
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3.2 Related Work 

The work proposed in this thesis reduces the energy consumption of 

distributed processing in the context of IoT and fog computing through the 

optimum placement of application services, from an end to end perspective. 

This subsection summarises previous research work related to energy 

consumption minimisation in the context of IoT and related paradigms, 

through various schemes such as resource allocation and architectural design 

and planning. 

Generally, in a fog architecture, a large number of devices exist at the 

edge of the network, which collectively provides enormous amounts of 

computational power, that, if used, may help in curb the unnecessary data 

exchange between the IoT and the centralized cloud [71]. These devices are 

heterogeneous in terms of resources. This poses a number of challenges in 

the optimum design of architectures, protocols and hardware of future IoT 

based networks. Hence, proper resource management and network design 

solutions are needed [72]. These solutions should take into account important 

dimensions such as but not limited to energy efficiency, due to its impact on 

the environment [73], resilience, due to service criticality [2], [73], [74] and 

end-device cooperation, due to traffic bifurcation which leads to inter-service 

communication [75], [76]. Thus, fog solutions have been proposed to improve 

the aforementioned performance metrics through various approaches such as 

resource allocation [10], [14], [16], [25], [77]–[80] and architectural design and 

planning [29],[71], [81]–[84]. The reader is referred to the works in [73] and 

[64], for architectural design imperatives of fog networks and a detailed 

taxonomy of fog based solutions, respectively. 
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The focus in the literature has shifted towards making the whole IoT 

infrastructure more energy efficient [29] as opposed to optimizing only 

individual layers namely the device layer, access layer or the cloud. The works 

in [83] and [84] proposed the use of  PONs to extend cloud and fog services 

closer to the user premises, respectively. Optical based networks are 

expected to become increasingly important to support edge and fog 

computing in the next decades. Although no particular algorithmic or 

optimization model was proposed, however, detailed discussions were 

provided on how the architecture in question can improve QoS and how 

different distributed fog resources located in the user premises can efficiently 

be managed.  

 

The authors of [29] proposed an energy efficient IoT architecture in 

which sensors’ sleep intervals are predicted based on their remaining battery 

level and as a result resources of the cloud can be better utilized by re-

provisioning them when the sensory nodes are in sleep mode. The main 

contribution of the work is centred around developing a mechanism to predict 

Figure 3.2 The Proposed Fog Architecture over PON by the Authors of [84]. 
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the sleep intervals of sensor nodes based upon certain sensor variables such 

as battery level and previous usage history.  

The work in [25] mathematically models the entire fog network from the 

end terminals (TNs) to the cloud data centres located in the core network. The 

TN nodes sense data and transmit the same to the fog tiers, either to be 

processed by fog nodes or to be forwarded to the cloud for further analysis. 

The performance of the fog approach in provisioning for IoT applications is 

investigated by considering several dimensions such as power consumption, 

CO2 emissions and service latencies in the fog network compared to the 

baseline cloud system. Their results indicate that the fog computing approach 

is only beneficial when there is a high number of latency-sensitive 

applications. Although fog computing was comprehensively studied, the 

authors made no mention of the practical networking or processing hardware 

that was used in obtaining their results. In another work, the authors of [71] 

compare the efficiencies of highly distributed edge devices called Nano data 

centres that can host and distribute user contents in a P2P fashion. These 

edge servers are comprised of Raspberry Pi’s that are low power single board 

computers.  The authors investigate the system performance through time-

based and a flow-based power consumption model. For devices that are 

highly shared by many users and services, the authors adopt a flow-based 

model whilst a time-based model is used for equipment that is close to end-

users.   

The work of [82] proposes a framework for cloudlet based network 

design and planning. The focus of the work is primarily centred around 

designing a network based on TDM-PON to optimize the network 
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infrastructure cost whilst meeting latency constraints only. The problem is 

formulated as a Mixed Integer Non Linear Programming (MINLP) model which 

is utilized to identify efficient cloudlet placement locations and optimal 

assignment of ONUs to cloudlets. The feasibility of the proposed model is 

evaluated against urban, suburban and rural scenarios, which guide the 

installation and maintenance costs. In another work [80], a generic fibre-

wireless architecture is proposed which supports the coexistence of the 

centralized cloud and distributed mobile edge computing (MEC) for IoT 

connectivity. A distributed game-theoretic algorithm is developed to support 

collaborative computational offloading between the cloud and MEC. 

Numerical results show very low energy consumption is achieved compared 

to the baseline which is the optimal case that cannot be realized in practice, 

hence the distributed approach is used to reduce complexities. The authors 

of [81] put forth a capacity planning framework that improves the resource 

utilization of a hierarchical edge cloud network whilst simultaneously meeting 

QoS requirements in terms of response delay. They do this, by taking 

advantage of diverse demands for CPU, GPU and network resources.   

The authors of [14] formulate the service distribution problem in an IoT-

Cloud architecture using a linear program whose solution results in the 

optimum placement of IoT service functions and the routing of network flows 

across a multi-layer architecture consisting of devices, access and cloud 

layers. The total energy consumption is minimized whilst meeting the end-

user latency demands. In another work [79], the service allocation problem is 

formulated as an integer programming optimization, whose objective function 

is to minimize the total latency experienced by IoT services, subject to 

capacity constraints at the various layers of the proposed fog architecture. The 
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IoT service requests are considered to be generic, ranging between 10 – 50 

homogenous requests. The delay is minimized by placing the less demanding 

services as close as possible to the IoT devices whilst the medium and high 

demanding services are placed higher up the fog network. In their work, IoT 

devices have been excluded from hosting any type of data processing. 

Similarly, the authors in [78] propose a generic algorithmic for the 

placement of IoT services in a fog-cloud framework. The IoT services are 

considered as multiple modules that are collectively used to deliver a full 

application. A specific algorithm is used to efficiently deploy application 

modules dynamically across the fog-cloud infrastructure close to the source 

terminals in the fog layer. The performance of the proposed solution is 

addressed through evaluation of latency and efficient resource utilization and 

it is claimed that it can be extended to include further design dimensions. In 

[77], an Integer Linear Program (ILP) is proposed to model the problem of 

resource provisioning from the perspective of service providers, in the context 

of the heterogeneous Internet of Things, where the objective function is to 

minimize the total monetary costs subject to capacity and latency budgets. 

The heterogeneity of IoT is modelled through unique profiling of applications 

and as such 4 different types of applications are considered. The topology 

considered comprises of a Metropolitan Area Network (MAN) and consists of 

two hierarchical levels of interconnected rings. The results indicated that the 

total operational cost is directly impacted by the application’s computational 

complexity, compression factor, and latency budget, coupled with proportions 

of local traffic versus global traffic. The authors in [10] put forth a convex 

optimization model that addresses the delay-power trade-off in a cloud-fog 

architecture which consists of four subsystems. The work demonstrated that 
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compromising modestly on computational resources in order to save 

communication bandwidth and reduce transmission latency, fog computing 

platforms can significantly complement the performance of cloud computing. 

The proposed work has not considered the impact of local computation using 

the devices in the IoT layer. 

The authors of [16], unlike the previous aforementioned works, model 

the IoT service placement in a practical testbed using an ILP formulation by 

considering several objective functions that address service latency, service 

migrations and energy efficiency. The optimization model is executed 

iteratively to allow for the retention of the objective values of previously 

executed models, thus, the feasibility region continuously decreases since 

iterations must satisfy previous results. The approach is generic and can be 

adapted to other resource placement problems. Their results show that for 

real-time services, latency becomes important and thus services are 

processed on the nearest fog, while the latency tolerant services can be 

offloaded to the distant cloud as energy consumption becomes the priority.     

It is observed that each of the approaches proposed in all of the 

aforementioned studies does not consider fog solutions that offer network 

designers’ insight into energy efficiency in short-term (capacitated) and long-

term (un-capacitated) optical based fog networks. Moreover, our previous 

works considered energy efficient solutions in cloud and core networks, IoT 

and mobile networks using MILP techniques considering a variety of scenarios 

including big data processing in core networks [85], [86], design of energy 

efficient optical architectures [87]–[89], and data centres [90], content 

distribution [91] and caching [92], network coding [93], NFV and big data in 
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mobile networks [94], [95] and virtualization and process embedding in IoT 

based networks [96], [97].  

In contrast, the work in this thesis aims first to model the entire IoT 

infrastructure in which all layers of the networking domains such as end 

devices, access, metro and core are taken into account from the moment an 

IoT service is launched until it is hosted on the ultimate destination which is 

the cloud DC, accessed via the core network. A Passive Optical Network 

(PON) has been proposed to support the fog infrastructure in the access 

domain as it is increasingly utilized due to its suitability for data intensive 

applications as they provide high bit rates, relatively low cost and high 

scalability [12]. An Ethernet based network is considered in the metro to 

aggregate traffic from the PON towards the cloud DCs in the core domain. An 

IP/WDM core network is considered to provide access to cloud DCs, in which 

a large number of servers are interconnected via a LAN network.    

One of our main contributions in this thesis is the inclusion of the optical 

core network to provide access to the Cloud DC which is currently not 

supported by any of the aforementioned studies. Furthermore, several design 

characteristics that affect the power consumption of the fog approach are 

considered, including 1) granular power consumption profile of networking and 

processing devices; 2) Power Usage Effectiveness (PUE) to account for 

cooling [98] requirement in higher capacity devices found in the access, metro, 

core and cloud layers; 3) service splitting and the prospect of improved server 

packing in the fog layers; 4) deployment of special purpose DCs (SP-DCs) in 

the core network in addition to its general purpose DC (GP-DC) counterpart; 
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and 5) inter-service processing overhead to account for synchronization 

between sub-services.  

3.3 Summary 

This chapter has provided a brief overview of distributed processing 

paradigms, which have evolved since their inception into the modern day fog 

computing, specifically within the scope of IoT. Based on the literature, a high-

level architecture of fog computing networks has been provided as well the 

type of devices that can act as fog nodes. Also, the merits of the fog IoT type 

services were compared to that of the conventional centralised cloud. 

Moreover, the cloud was briefly introduced along with the type of services it 

offers.  

The chapter was concluded by the second subsection which consisted of an 

overview of the works in the literature pertaining to this thesis. First, the works 

that inspired the basis for the thesis were reviewed and the merits of the 

choices made were also discussed. Then the remaining parts of the related 

works were discussed. These were mainly within the scope of resource 

management and provisioning in the context of fog computing for IoT services. 

Chapter 4 introduces the first new IoT-Fog architecture in this thesis and 

optimises it for energy efficiency. 
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Chapter 4  Energy Efficient Distributed Processing  

 with Non-Splittable IoT Services  

 

4.1 Introduction  

Due to the intensive resource requirements associated with visual processing 

applications, IoT based surveillance is a service with high energy consumption 

driven by the data rates and CPU it requires to deliver the final application. 

Processing all or parts of the collected data as close as to the end-device (e.g. 

source of the video) is seen as an effective strategy to reduce the total power 

consumption of such services. This chapter evaluates the impact of distributed 

processing on the reduction of the total power consumption, in an end-to-end 

IoT infrastructure based on the concept of fog computing. A Mixed Integer 

Linear Programming (MILP) model is developed to optimise the placement of 

service functions for a range of homogenous demands that are comprised of 

requests for networking and processing resources. In all the previous 

proposals, the problem of distributed processing in a practical network has not 

been considered yet in great detail. On the contrary, in this chapter, a very 

detailed and accurate approach towards energy efficient distributed 

processing from the end devices all the way to the cloud data centres attached 

to the core network elements is considered.  

4.2 Case Study  

As mentioned in previous chapters, IoT type devices do not only comprise of 

simple sensors and actuators but in addition, there will be a class of highly 

intelligent devices that will be expected to perform a substantial amount of 
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processing due to their abundant computational resources. In this thesis, we 

consider a visual analysis application for surveillance purposes. In the next 

generation smart cities, video surveillance is considered an important element 

since distributed cameras on a stretch of a busy road or a shopping centre 

could bring city security onto a higher level, thus providing the public with a 

strong sense of assurance [54]. China has already implemented a system 

called Skynet, which consists of a massive network of smart CCTV cameras 

that have AI incorporated into them and it is claimed to cover the whole of 

Beijing [99]. Although the project is faced with criticism from the Chinese 

public due to privacy concerns, it was demonstrated to a BBC journalist from 

a police control room how the system of networked cameras helped to catch 

the journalist within 7 minutes after an “escape” was staged [100]. 

Thus, we consider video surveillance applications as it has become clear that 

their widespread deployment is imminent in the future. The sheer data rates 

associated with video data being collected by a large scale network of 

intelligent cameras makes it virtually impractical to transport all of that data to 

the cloud for processing to obtain insights. In a news article published in 2013 

by The Telegraph, it is reported that there is one surveillance camera for every 

11 people in the UK [101]. Thus, we are motivated to investigate visual 

processing applications through the concept of fog computing to help reduce 

the implications of unnecessary data exchange with the centralised cloud by 

hosting parts of the service requests in the distributed layers of the fog 

framework. 
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4.3 The Proposed Distributed Processing Architecture   

We begin by describing each layer of the proposed architecture 

depicted in Figure 4.1. It comprises of four main layers, namely the IoT 

Devices, Access Fog (AF), Metro Fog (MF) and the Cloud DC (DC). The 

following subsections will provide further details on the aforementioned layers.  

 

 

 

Figure 4.1: Proposed PON-based IoT Architecture Supported by Fog and Cloud Computing. 
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IoT Devices (IoT) 

The bottom-most layer of the proposed architecture comprises of the   IoT 

devices. These devices are smart, wireless nodes that are used to collect 

video data and transmit the same via the connected access point  (ONU)  to 

the next layer for processing and analysis, if local resources are insufficient. 

A WiFi link is considered between the devices and the ONU access points.    

CPE Fog (CF) 

The  Customer Premises Equipment (CPE) Fog (CF)  domain consists of a  

Passive  Optical  Network (PON),  in which several clusters of  ONU devices 

share a single fibre link to connect to the Optical Line Terminal (OLT) at the 

local exchange, via a passive optical splitter. The split ratio is commonly 1:32 

or even 1:64, however, this depends solely on the planned network demand. 

Typically, PONs are connected in a star topology, with the link from the OLT 

being the root and ONUs being the leaves. This architecture is also known as 

point-to-multipoint  (P2MP) [102]. PON is considered as one of the key access 

network technologies as it brings along several benefits including high 

scalability, abundant bandwidth, cost-effective services,  and high energy 

efficiency compared to other access technologies  [84].  Devices in this layer 

are predominately stationary and their processing capabilities are usually 

higher than those found in the IoT layer [103].  A typical  PON  distribution 

distance is usually up to 20km -60 km from the local exchange/ central office 

(CO).  

Among the different flavours of  PON  (FDM-PON,  OFDM-PON, Hybrid-PON), 

Time Division Multiplexing (TDM-PON) is considered a  mainstream 

deployment across many regions of the world. The downstream bit rate in a 
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PON ranges from 1.244 to 2.488 Gbps, whilst in the upstream direction it 

ranges between 155 Mbps to 2.488 Gbps [104], [105]. Small organisations or 

even end-users can deploy their own fog infrastructures at locations such as 

APs, routers, gateways and etc.  

Access Fog (AF) 

The third layer is still part of the PON domain, however, it differs in terms of 

functionality and processing capability. Here,  OLT nodes are placed at the 

local exchange point  and they are used to aggregate service requests from 

all of the connected  ONUs.  In a  typical scenario,  a number of high-end 

servers are used to form a Fog collocated with the OLT [27],  [48]. Thus, a 

substantial amount of service demands aggregated from the ONUs can be 

hosted and processed on the fog connected to the OLT Ethernet input. 

However, it still faces limitations and resource-intensive services are relayed 

to the next layer for processing.  

Metro Fog (MF) 

The metro network consists of a high-capacity  Ethernet switch and a couple 

of edge routers that act as a gateway to the cloud data centres via the core 

network. The computational resources available to the metro fog is 

substantially higher in comparison to the lower fog due to the number of users 

and services it supports, however it still is incomparable to the cloud DC [106]. 
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Cloud DC (DC) 

The cloud layer comprises of a set of data centres that are accessed via the 

core network. Two types of data centres are considered: 1) a general purpose 

data centre (GP-DC),  and 2) a special purpose data centre (SP-DC). Both 

data centres are a single hop away from the aggregation core router. As 

depicted in Figure 4.2,  the local area network (LAN) elements inside both 

data centres consist of an edge router and a set of high speed switches to 

interconnect thousands of servers.  

 

 

 

 

Figure 4.2 Network elements inside a cloud DC. 

 

Core Network  

The core network uses IP/WDM technology and it consists of two layers,  the  

IP  layer and the optical layer.  In the  IP layer, an IP core router is deployed 

at each node to aggregate network traffic from the metro routers.  The optical 

layer is used to interconnect the IP core routers through optical switches and 

IP/WDM technologies such as EDFAs, transponders and regenerators.  

Special Purpose Data Centres (SP-DCs) 

Motivated by the sheer computational power of Graphical Processing Units 

(GPUs) as well as the breakthrough performances in terms of power 

consumption efficiencies for visual based deep learning algorithms, it is of 
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interest to investigate the implications of deploying such powerful servers that 

are dedicated and highly optimised to perform a specialised task, in the cloud 

data centre. We refer to such data centre as special purpose data centre 

because it only performs a specific service i.e. visual processing. On the 

contrary, the general purpose data centre (GP-DC) is designed to execute a 

range of generic services, hence, not as power efficient as the SP-DC. Nvidia, 

which is a leading manufacturer, has reported GPUs to be at least 10 times 

more efficient than CPUs.  

The latest NVidia GPU (Tensor Cores T4) performance was benchmarked 

against a high-end CPU on the ResNet-501. It is reported to be at least 27X 

more efficient than the CPU, using just 75 watts (W), making it an ideal 

solution for scale-out servers at the core or even the edge of the network. The 

ResNet-50 is a convolutional neural network that is trained on more than a 

million images and has the capability of classifying objects into 1000 

categories2. 

 

 

 

 

                                            

1 https://www.nvidia.com/en-gb/data-center/tensorcore/  

2 https://uk.mathworks.com/help/deeplearning/ref/resnet50.html 

Figure 4.3 NVidia's Tensor T4 GPU Performance versus CPU. 
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4.4 MILP Model for Energy Efficient Distributed Processing 

with Non-Splittable IoT Services 

We begin to describe in detail, the granular power consumption modelling of 

all the equipment depicted in the proposed architecture in Figure 4.1. Since 

the devices involved in the considered architecture span multiple 

heterogeneous layers, it becomes a necessity to fairly represent the utilization 

characteristics of these devices. For example, high-capacity networking 

elements such as OLTs, metro/ core routers and switches are used by many 

other types of applications in addition to the IoT and it wouldn't make a fair 

evaluation if the total idle power consumption of these devices were wholly 

attributed to a small number of IoT services, hence the factor of 𝛿 is assumed 

for such devices.  

While it is valid to assume that, the desirable power consumption profile 

should be a fully load dependent one, however in practical circumstances, this 

is not the case. It is reported in [107], that almost all devices adopt a linear 

power profile that consists of an idle and proportional part as depicted in 

Figure 4.4. With the former, power is consumed as soon as the device is 

activated however the latter dependents on various parameters such as 

frequency, voltage, or workload. In practice, idle power draws a large 

proportion of the maximum power of a networking/ processing device and 

hence it cannot be ignored. The total power consumption considering the 

linear profile with the idle power consumption of a networking/ processing 

device is calculated using equation (4.1) 
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𝑃𝑜𝑤𝑒𝑟 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = (
𝑃𝑚𝑎𝑥 − 𝑃𝑖𝑑𝑙𝑒

𝐶
) 𝜆 +  𝑃𝑖𝑑𝑙𝑒    (4.1) 

 

 

where 𝑃𝑖𝑑𝑙𝑒 is the idle power consumption of the device which is consumed 

as soon as the device is activated regardless of the load 𝜆 and (𝑃𝑚𝑎𝑥) is the 

maximum power consumption of the device, when it is 100% utilised at full 

capacity C (either in bps or MIPS). The proportional section of the power 

profile model for networking devices is expressed as energy per bit and 

likewise, for processing, it is expressed as energy per instruction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 Linear Power Profile with Idle Power Consumption. 
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Before introducing the MILP model, the sets, parameters and variables used 

are defined as follows: 

Sets: 

𝑁 Set of all nodes. 

𝑁𝑚 Set of neighbour nodes of node 𝑚 in the proposed architecture. 

𝐶 Set of core nodes in the IP/WDM network, where 𝐶 ⊂ 𝑁. 

𝑂𝑁𝑈 Set of ONUs in the PON network, where 𝑂𝑁𝑈 ⊂ 𝑁. 

𝑂𝐿𝑇 Set of OLTs in the PON network, where 𝑂𝐿𝑇 ⊂ 𝑁. 

𝑀(𝑅) Set of metro routers, where 𝑀(𝑅) ⊂ 𝑁. 

𝑀(𝑆𝑤) Set of metro switches, where 𝑀(𝑆𝑤) ⊂ 𝑁. 

𝐷𝐶 Set of data centre nodes, where 𝐷𝐶 ⊂ 𝑁. 

𝐼 Set of all IoT devices, where 𝐼 ⊂  𝑁.     

𝑃 Set of nodes with processing devices, where 𝑃 ⊂ 𝑁 and 𝑃 =

𝐼 ⋃ 𝑂𝑁𝑈 ⋃ 𝑂𝐿𝑇 ⋃ 𝑀(𝑆𝑤)  ⋃ 𝐷𝐶. 

𝑆 Set of IoT devices acting as source nodes where 𝑆 ⊂ 𝐼. 

Core Network Parameters: 

𝑃𝑚𝑎𝑥(𝑟) Maximum power consumption of an IP router port in the 

core network. 

𝑃𝑚𝑎𝑥(𝑡) Maximum power consumption of a transponder in the 

core network. 
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𝑃𝑚𝑎𝑥(𝑒) Maximum power consumption of an EDFA in the core 

network. 

𝑃𝑚𝑎𝑥(𝑜) Maximum power consumption of an optical switch in the 

core network. 

𝑃𝑚𝑎𝑥(𝑟𝑔) Maximum power consumption of a regenerator in the core 

network. 

𝑃𝑖𝑑𝑙𝑒(𝑟) Idle power consumption of an IP router port in the core 

network. 

𝑃𝑖𝑑𝑙𝑒(𝑡) Idle power consumption of a transponder in the core 

network. 

𝑃𝑖𝑑𝑙𝑒(𝑒) Idle power consumption of an EDFA in the core network. 

𝑃𝑖𝑑𝑙𝑒(𝑜) Idle power consumption of an optical switch in the core 

network. 

𝑃𝑖𝑑𝑙𝑒(𝑟𝑔) Idle power consumption of a regenerator in the core 

network. 

𝐵 Maximum bit rate of single wavelength.  

𝑊 Number of wavelengths in a fibre in the core network.  

𝐸𝑏(𝑟) Energy per bit of a router port, where 𝐸𝑏(𝑟) =

(
𝑃𝑚𝑎𝑥(𝑟)−𝑃𝑖𝑑𝑙𝑒(𝑟) 

𝐵
). 

𝐸𝑏(𝑡) Energy per bit of a transponder, where 𝐸𝑏(𝑡) =

(
𝑃𝑚𝑎𝑥(𝑡)−𝑃𝑖𝑑𝑙𝑒(𝑡) 

𝐵
). 
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𝐸𝑏(𝑒) Energy per bit of the EDFA’s, where 𝐸𝑏(𝑒) =

(
𝑃𝑚𝑎𝑥(𝑒)−𝑃𝑖𝑑𝑙𝑒(𝑒) 

𝐵
). 

𝐸𝑏(𝑜) Energy per bit of the optical switches, where 𝐸𝑏(𝑜) =

(
𝑃𝑚𝑎𝑥(𝑜)−𝑃𝑖𝑑𝑙𝑒(𝑜) 

𝐵
). 

  

𝐸𝑏(𝑟𝑔) Energy per bit of regenerators, where 𝐸𝑏(𝑟𝑔) =

(
𝑃𝑚𝑎𝑥(𝑟𝑔)−𝑃𝑖𝑑𝑙𝑒(𝑟𝑔) 

𝐵
). 

𝐷𝑚𝑛 Distance between two core nodes 𝑚 and 𝑛, where 𝑚, 𝑛 ∈

𝐶. 

𝑆(𝐸𝐷𝐹𝐴) Span distance between two EDFAs. 

𝑆(𝑟𝑔) Span distance between two regenerators.  

𝐴𝑚𝑛 Number of EDFAs used on each fibre in the core network 

from node 𝑚 ∈ 𝐶 to 𝑛 ∈ 𝐶, 𝐴𝑚𝑛 = ⌊((
𝐷𝑚𝑛

𝑆(𝐸𝐷𝐹𝐴)) − 1)⌋ + 2.  

ℜ𝑚𝑛 Number of regenerators used between core node 𝑚 ∈

𝐶 and core node 𝑛 ∈ 𝐶, ℜ𝑚𝑛 =  ⌊(
𝐷𝑚𝑛

𝑆(𝑟𝑔)
) − 1⌋. 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) Power Usage Effectiveness of IP/WDM core network 

node. 
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Cloud Data Centre Parameters: 

𝑃𝑚𝑎𝑥(𝐷𝑐𝑆𝑤)   Maximum power consumption of Cloud DC switch. 

𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑆𝑤)   Idle power consumption of Cloud DC switch. 

𝐵𝑅(𝐷𝑐𝑆𝑤) Bit rate of Cloud DC switch. 

𝐸𝑏(𝐷𝑐𝑆𝑤) Cloud DC switch energy per bit, where 𝐸𝑏(𝐷𝑐𝑆𝑤) =

(
𝑃𝑚𝑎𝑥(𝐷𝑐𝑆𝑤)−𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑆𝑤)  

𝐵𝑅(𝐷𝑐𝑆𝑤) ). 

𝑃𝑚𝑎𝑥(𝐷𝑐𝑅)   Maximum power consumption of Cloud DC router. 

𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑅)   Idle power consumption of Cloud DC router. 

𝐵𝑅(𝐷𝑐𝑆𝑅) Cloud DC router bit rate. 

𝐸𝑏(𝐷𝑐𝑅) Energy per bit of a Cloud DC router, where 𝐸𝑏(𝐷𝑐𝑅) =

(
𝑃𝑚𝑎𝑥(𝐷𝑐𝑅)−𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑅)  

𝐵𝑅(𝐷𝑐𝑅) ). 

𝑃𝑈𝐸(𝐷𝐶) Power Usage Effectiveness of DC node, for processing 

and networking.  

 

Metro Network and Fog Parameters: 

𝑃𝑚𝑎𝑥(𝑀𝑆𝑤)   Maximum power consumption of a metro switch. 

𝑃𝑖𝑑𝑙𝑒(𝑀𝑆𝑤)   Idle power consumption of a metro switch. 

𝐵𝑅(𝑀𝑆𝑤) Bit rate of a metro switch. 

𝐸𝑏(𝑀𝑆𝑤) Metro switch energy per bit, where 𝐸𝑏(𝑀𝑆𝑤) =

(
𝑃𝑚𝑎𝑥(𝑀𝑆𝑤)−𝑃𝑖𝑑𝑙𝑒(𝑀𝑆𝑤)  

𝐵𝑅(𝑀𝑆𝑤) ). 
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𝑃𝑚𝑎𝑥(𝑀𝑅)   Maximum power consumption of a metro router. 

𝑃𝑖𝑑𝑙𝑒(𝑀𝑅)   Idle  power consumption of a metro router. 

𝐵𝑅(𝑀𝑅) Bit rate of a metro router. 

𝐸𝑏(𝑀𝑅) Metro router energy per bit, where 𝐸𝑏(𝑀𝑅) =

𝑃𝑚𝑎𝑥(𝑀𝑅)−𝑃𝑖𝑑𝑙𝑒(𝑀𝑅)  

𝐵𝑅(𝑀𝑅) . 

𝑃𝑚𝑎𝑥(𝑀𝑓𝑆𝑤)   Maximum power consumption of a metro fog switch. 

𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑆𝑤)   Idle power consumption of a metro fog switch. 

𝐵𝑅(𝑀𝑓𝑆𝑤) Bit rate of a metro fog switch. 

𝐸𝑏(𝑀𝑓𝑆𝑤) Metro fog switch energy per bit, where 𝐸𝑏(𝑀𝑓𝑆𝑤) =

(
𝑃𝑚𝑎𝑥(𝑀𝑓𝑆𝑤)−𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑆𝑤)  

𝐵𝑅(𝑀𝑓𝑆𝑤) ). 

𝑃𝑚𝑎𝑥(𝑀𝑓𝑅)   Maximum power consumption of a metro fog router. 

𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑅)   Idle power consumption of a metro fog router. 

𝐵𝑅(𝑀𝑓𝑅) Bit rate of a metro fog router. 

𝐸𝑏(𝑀𝑓𝑅) Metro fog router energy per bit, where 𝐸𝑏(𝑀𝑓𝑅) =

(
𝑃𝑚𝑎𝑥(𝑀𝑓𝑅)−𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑅)  

𝐵𝑅(𝑀𝑓𝑅)
). 

𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜) Power Usage Effectiveness of a metro node, for 

processing and networking. 

𝜓 Metro router port redundancy. 
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Access Network and Fog Parameters: 

𝑃𝑚𝑎𝑥(𝑂𝐿𝑇) Maximum power consumption of OLT in the PON 

network. 

𝑃𝑖𝑑𝑙𝑒(𝑂𝐿𝑇) Idle  power consumption of OLT in the PON network. 

𝐵𝑅(𝑂𝐿𝑇) Bit rate of OLT in the PON network. 

𝐸𝑏(𝑂𝐿𝑇) OLT router energy per bit, where 𝐸𝑏(𝑂𝐿𝑇) =

(
𝑃𝑚𝑎𝑥(𝑂𝐿𝑇)−𝑃𝑖𝑑𝑙𝑒(𝑂𝐿𝑇)  

𝐵𝑅(𝑂𝐿𝑇)
). 

𝑃𝑚𝑎𝑥(𝑂𝑁𝑈) Maximum power consumption of an ONU in the PON 

network.  

𝑃𝑖𝑑𝑙𝑒(𝑂𝑁𝑈) Idle power consumption of an ONU in the PON network. 

𝐵𝑅(𝑂𝑁𝑈) Bit rate of the WiFi interface of an ONU in the PON 

network. 

𝐸𝑏(𝑂𝑁𝑈) ONU energy per bit, where 𝐸𝑏(𝑂𝑁𝑈) =

(
𝑃𝑚𝑎𝑥(𝑂𝑁𝑈)−𝑃𝑖𝑑𝑙𝑒(𝑂𝑁𝑈)  

𝐵𝑅(𝑂𝑁𝑈) ). 

𝑃𝑚𝑎𝑥(𝐴𝑓𝑆𝑤)   Maximum power consumption of an access fog switch. 

𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑆𝑤)   Idle power consumption of an access fog switch. 

𝐵𝑅(𝐴𝑓𝑆𝑤) Bit rate of an access fog switch. 

𝐸𝑏(𝐴𝑓𝑆𝑤) Access fog switch energy per bit, where 𝐸𝑏(𝐴𝑓𝑆𝑤) =

(
𝑃𝑚𝑎𝑥(𝐴𝑓𝑆𝑤)−𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑆𝑤)  

𝐵𝑅(𝐴𝑓𝑆𝑤) ). 

𝑃𝑚𝑎𝑥(𝐴𝑓𝑅)   Maximum power consumption of an access fog router. 
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𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑅)   Idle  power consumption of an access fog router. 

𝐵𝑅(𝐴𝑓𝑅) Bit rate of an access fog router. 

𝐸𝑏(𝐴𝑓𝑅) Access fog router energy per bit, where 𝐸𝑏(𝐴𝑓𝑅) =

(
𝑃𝑚𝑎𝑥(𝐴𝑓𝑅)−𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑅)  

𝐵𝑅(𝐴𝑓𝑅)
). 

𝑃𝑚𝑎𝑥(𝑐𝑝𝑒𝑓𝑆𝑤) Maximum power consumption of CPE fog switch. 

𝑃𝑖𝑑𝑙𝑒(𝑐𝑝𝑒𝑓𝑆𝑤)   Idle power consumption of a CPE fog switch. 

𝐵𝑅(𝑐𝑝𝑒𝑓𝑆𝑤) Bit rate of a CPE fog switch. 

𝐸𝑏(𝑐𝑝𝑒𝑓𝑆𝑤) CPE fog switch energy per bit, where 𝐸𝑏(𝑐𝑝𝑒𝑓𝑆𝑤) =

(
𝑃𝑚𝑎𝑥(𝑐𝑝𝑒𝑓𝑆𝑤)−𝑃𝑖𝑑𝑙𝑒(𝑐𝑝𝑒𝑓𝑆𝑤)  

𝐵𝑅(𝑐𝑝𝑒𝑓𝑆𝑤) ). 

𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠) Power Usage Effectiveness of an access fog node, for 

processing and networking. 

IoT Devices’ Parameters:  

𝑃𝑚𝑎𝑥(𝑇𝑥𝑅𝑥)  Maximum power consumption of an IoT transceiver. 

𝑃𝑖𝑑𝑙𝑒(𝑇𝑥𝑅𝑥)  Idle power consumption of an IoT transceiver. 

𝐵𝑅(𝑇𝑥𝑅𝑥) Bit rate of the WiFi interface of an  IoT device. 

𝐸𝑏(𝑇𝑥𝑅𝑥) IoT WiFi interface energy per bit, 𝐸𝑏(𝑇𝑥𝑅𝑥) =

(
𝑃𝑚𝑎𝑥(𝑇𝑥𝑅𝑥) −𝑃𝑖𝑑𝑙𝑒(𝑇𝑥𝑅𝑥) 

𝐵𝑅(𝑇𝑥𝑅𝑥) ). 
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IoT Demand Parameters:  

𝐷𝑠
(𝐶𝑃𝑈)

 CPU demand of task originating at IoT source node 𝑠 ∈

𝑆, in Million Instructions Per Second (MIPS). 

𝐷𝑠
(𝐵𝑤)

 Bandwidth demand of task originating at IoT source node 

𝑠 ∈ 𝑆, in Mbps 

  

Processing Devices’ Parameters  

𝑃𝑚𝑎𝑥𝑑
(𝐶𝑃𝑈)

 Maximum power consumption of processing device 𝑑 ∈ 𝑃, 

in Watts. 

𝑃𝑖𝑑𝑙𝑒𝑑
(𝐶𝑃𝑈)

 Idle power consumption of processing device 𝑑 ∈ 𝑃, in 

Watts. 

𝐶𝑑
(𝐶𝑃𝑈)

  Maximum capacity of processing device 𝑑 ∈ 𝑃 in Million 

Instructions Per Second (MIPS).  

𝐸𝑖𝑑 Energy per instruction of processing device 𝑑 ∈ 𝑃, where 

𝐸𝑖𝑑 = (
𝑃𝑚𝑎𝑥𝑑

(𝐶𝑃𝑈)
−𝑃𝑖𝑑𝑙𝑒𝑑

(𝐶𝑃𝑈)

𝐶
𝑑
(𝐶𝑃𝑈)

 
).  

 

Application Parameters: 

𝛿 Portion of the idle power of equipment attributed to the 

application. 

𝐾 Number of subtasks an IoT task can be divided into.  

Δ Number of MIPS required to process 1 Mb of traffic.  
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𝑀 Large enough number. 

Variables: 

𝜆𝑠𝑑 Traffic demand between IoT source node 𝑠 ∈ 𝑆 and 

processing device 𝑑 ∈ 𝑃. 

𝜆𝑚𝑛
𝑠𝑑  Traffic flow between IoT source node 𝑠 ∈ 𝑆  and processing 

device 𝑑 ∈ 𝑃, traversing link (𝑚, 𝑛), where  𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁𝑚. 

𝜆𝑑 Volume of traffic aggregated by node 𝑑 ∈ 𝑁.  

ℬ𝑚 ℬ𝑚 = 1,  if network node 𝑚 ∈ 𝑁 is activated, otherwise ℬ𝑚 =

0. 

𝜃𝑑 Traffic in node 𝑑 ∈ 𝑃 for processing.  

Γ𝑚𝑛 Γ𝑚𝑛 = 1, if core network link 𝑚, 𝑛, where 𝑚 ∈ 𝐶, 𝑛 ∈ (𝑁𝑚 ∩ 𝐶) 

is activated, otherwise Γ𝑚𝑛 = 0.  

𝜌𝑠𝑑 Processing demand of IoT source node 𝑠 ∈ 𝑆 hosted at 

processing device 𝑑 ∈ 𝑃. 

Ω𝑠𝑑 Ω𝑠𝑑 = 1, if processing demand of IoT source node 𝑠 ∈ 𝑆 is 

hosted at destination node 𝑑 ∈ 𝑃, otherwise  

Ω𝑠𝑑 = 0. 

Ω𝑑 Ω𝑑 = 1, if processing node 𝑑 ∈ 𝑃 is activated, otherwise  

Ω𝑑 = 0. 

𝒩𝑑  Number of processing servers activated at node 𝑑 ∈ 𝑃.   

𝑊𝑚𝑛 Number of wavelengths used in fibre link (𝑚, 𝑛) in the core 

network, where link 𝑚, 𝑛 ∈ 𝐶. 
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𝐹𝑚𝑛 Number of fibres used on link 𝑚, 𝑛 ∈ 𝐶. 

𝐴𝑔𝑚 Number of aggregation router ports activated at IP node 𝑚 ∈

𝐶. 

 

The total power consumption of the entire IoT infrastructure depicted in Figure 

4.1, is divided into two parts: 1) Network Power Consumption and 2) 

Processing Power Consumption. The following subsections contain a detailed 

breakdown of these power consumptions: 

 

4.4.1 Network Power Consumption   

Under the non-bypass light path approach [108], the IP/WDM total network 

power consumption is composed of: 

1) The power consumption of router ports: 

2) The Power consumption of transponders: 

 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) ( ∑ (𝐸𝑏(𝑟)𝜆𝑚)

𝑚∈𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑟) (𝐴𝑔𝑚 + ∑ 𝑊𝑚𝑛

𝑛∈(𝑁𝑚∩𝐶)

)) 

𝑚∈𝐶

) 

 

(4.2) 

 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) ( ∑ (𝐸𝑏(𝑡)𝜆𝑚)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑡)𝑊𝑚𝑛)

𝑛∈(𝑁𝑚∩𝐶)𝑚∈𝐶

) 
         

(4.3) 
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3) The power consumption of EDFAs: 

4) The power consumption of optical switches: 

 

5) The power consumption of regenerators: 

The metro network’s power consumption  is composed of: 

 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) ( ∑ (𝐸𝑏(𝑒)𝜆𝑚𝐴𝑚𝑛𝐹𝑚𝑛)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑒)𝐴𝑚𝑛𝐹𝑚𝑛)

𝑛∈(𝑁𝑚∩𝐶)

  

𝑚∈𝐶

) 

(4.4) 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) ( ∑ (𝐸𝑏(𝑜)𝜆𝑚)

𝑚∈𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑜)ℬ𝑚)

𝑚∈𝐶

) 
(4.5) 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) ( ∑ (𝐸𝑏(𝑟𝑔)𝜆𝑚ℜ𝑚𝑛𝑊𝑚𝑛)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑟𝑔) ℜ𝑚𝑛𝑊𝑚𝑛)

𝑛∈(𝑁𝑚∩𝐶)

  

𝑚∈𝐶

) 

(4.6) 

𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜) (( ∑ (𝐸𝑏(𝑀𝑅)𝜆𝑚𝜓)

𝑚∈𝑀(𝑅)

+ ∑ (ℬ𝑚𝑃𝑖𝑑𝑙𝑒(𝑀𝑅)𝜓)

𝑚∈𝑀(𝑅)

  )

+ ( ∑ (𝐸𝑏(𝑀𝑆𝑤)𝜆𝑚)

𝑚∈𝑀(𝑆𝑤)

+ ∑ (ℬ𝑚𝑃𝑖𝑑𝑙𝑒(𝑀𝑆𝑤))

𝑚∈𝑀(𝑅)

  )) 

(4.7) 
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The access network’s power consumption consists of the power consumption 

of OLT and ONU devices, which is given as: 

 

The IoT devices’ communication interfaces power consumption is given as:  

4.4.2 Processing Power Consumption  

The total power consumption of the processing devices (or servers) is 

composed of: 

 

1) The processing power consumption of IoT devices:  

 

∑ ∑(𝐸𝑖𝑑𝜌𝑠𝑑)

𝑑∈𝐼𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

 𝒩𝑑)

𝑑∈𝐼 

 (4.10) 

 

2) The processing power consumption of CPE fog  (CF) servers: 

∑ ∑ (𝐸𝑖𝑑𝜌𝑠𝑑)

𝑑∈𝑂𝑁𝑈𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

 𝒩𝑑)

𝑑∈𝑂𝑁𝑈 

 (4.11) 

 

𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠) ( ∑ (𝐸𝑏(𝑂𝐿𝑇)𝜆𝑚)

𝑚∈𝑂𝐿𝑇

+ ∑ (ℬ𝑚𝑃𝑖𝑑𝑙𝑒(𝑂𝐿𝑇))

𝑚∈𝑂𝐿𝑇

  )

+  ( ∑ (𝐸𝑏(𝑂𝑁𝑈)𝜆𝑚)

𝑚∈𝑂𝑁𝑈

+ ∑ (ℬ𝑚𝑃𝑖𝑑𝑙𝑒(𝑂𝑁𝑈))

𝑚∈𝑂𝑁𝑈

  )  

(4.8) 

∑(𝐸𝑏(𝑇𝑥𝑅𝑥)𝜆𝑚)

𝑚∈𝐼

+  ∑ ℬ𝑚𝑃𝑖𝑑𝑙𝑒(𝑇𝑥𝑅𝑥)

𝑚∈𝐼 

  (4.9) 
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3) The processing power consumption of access fog (AF) servers: 

𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠) (∑ ∑ (𝐸𝑖𝑑𝜌𝑠𝑑)

𝑑∈𝑂𝐿𝑇𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

 𝒩𝑑)

𝑑∈𝑂𝐿𝑇 

) 
(4.12) 

 

4) The processing power consumption of metro fog (MF) servers: 

 

𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜) (∑ ∑ (𝐸𝑖𝑑𝜌𝑠𝑑)

𝑑∈𝑀(𝑆𝑤)𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

 𝒩𝑑)

𝑑∈𝑀(𝑆𝑤) 

) 
(4.13) 

 

5) The processing power consumption of cloud DC servers 

  

𝑃𝑈𝐸(𝑑𝑐) (∑ ∑ (𝐸𝑖𝑑𝜌𝑠𝑑)

𝑑∈𝐷𝐶𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

 𝒩𝑑)

𝑑∈𝐷𝐶 

) 
(4.14) 

 

4.4.3 Power Consumption of Network inside Processing Nodes 

The cloud DCs network power consumption is composed of the power 

consumption of cloud DC routers and switches: 

𝑃𝑈𝐸(𝐷𝐶) (( ∑ (𝐸𝑏(𝐷𝑐𝑆𝑤)𝜃𝑑)

𝑑∈𝐷𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑆𝑤)Ω𝑑) 

𝑑∈𝐷𝐶

)

+  ( ∑ (𝐸𝑏(𝐷𝑐𝑅)𝜃𝑑)

𝑑∈𝐷𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑅) Ω𝑑)

𝑚∈𝐷𝐶

)) 

(4.15) 
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The metro fog network power consumption of metro fog routers and 

switches is given as: 

The access fog network power consumption of access fog routers and 

switches is given as: 

 

The CPE fog network power consumption of CPE fog switches is given as: 

∑ (𝐸𝑏(𝑐𝑝𝑒𝑓𝑆𝑤)𝜃𝑑)

𝑑∈𝑂𝑁𝑈

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑐𝑝𝑒𝑓𝑆𝑤) Ω𝑑)

𝑑∈𝑂𝑁𝑈 

 (4.18) 

 

 

 

𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜) (( ∑ (𝐸𝑏(𝑀𝑓𝑅)𝜃𝑑)

𝑑∈𝑀(𝑆𝑤)

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑅)Ω𝑑)

𝑚∈𝑀(𝑆𝑤)

  )

+ ( ∑ (𝐸𝑏(𝑀𝑓𝑆𝑤)𝜃𝑑)

𝑑∈𝑀(𝑆𝑤)

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑆𝑤))

𝑑∈𝑀(𝑆𝑤)

Ω𝑑)) 

(4.16) 

𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠) (( ∑ (𝐸𝑏(𝐴𝑓𝑅)𝜃𝑑)

𝑑∈𝑂𝐿𝑇

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑅)Ω𝑑)

𝑑∈𝑂𝐿𝑇

  )

+ (( ∑ (𝐸𝑏(𝐴𝑓𝑆𝑤)𝜃𝑑)

𝑑∈𝑂𝐿𝑇

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑆𝑤)Ω𝑑)

𝑑∈𝑂𝐿𝑇 

  ))) 

(4.17) 
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The MILP model’s objective function is given as follows: 

Objective 

Minimise the total power consumption: 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) [ ∑ (𝐸𝑏(𝑟)𝜆𝑚)

𝑚∈𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑟) (𝐴𝑔𝑚 + ∑ 𝑊𝑚𝑛

𝑛∈(𝑁𝑚∩𝐶)

)) 

 
𝑚∈𝐶

] + 

 (4.19) 

 

 

 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) [( ∑ (𝐸𝑏(𝑡)𝜆𝑚)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑡)𝑊𝑚𝑛)

𝑛∈(𝑁𝑚∩𝐶)𝑚∈𝐶

)] + 

 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) [( ∑ (𝐸𝑏(𝑒)𝜆𝑚𝐴𝑚𝑛𝐹𝑚𝑛)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑒)𝐴𝑚𝑛𝐹𝑚𝑛)

𝑛∈(𝑁𝑚∩𝐶)

  

𝑚∈𝐶

)] + 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) [( ∑ (𝐸𝑏(𝑜)𝜆𝑚)

𝑚∈𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑜)ℬ𝑚)

𝑚∈𝐶

)] +  
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𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) [ ∑ (𝐸𝑏(𝑟𝑔)𝜆𝑚𝑅𝑔𝑚𝑛𝑊𝑚𝑛)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑟𝑔)ℜ𝑚𝑛𝑊𝑚𝑛)

𝑛∈(𝑁𝑚∩𝐶)

  

𝑚∈𝐶

]

+ 𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜)  [ ∑ (𝐸𝑏(𝑀𝑅)𝜆𝑚𝜓)

𝑚∈𝑀(𝑅)

+ ∑ (ℬ𝑚𝑃𝑖𝑑𝑙𝑒(𝑀𝑅)𝜓)

𝑚∈𝑀(𝑅)

+ ∑ (𝐸𝑏(𝑀𝑆𝑤)𝜆𝑚)

𝑚∈𝑀(𝑆𝑤)

+ ∑ (ℬ𝑚𝑃𝑖𝑑𝑙𝑒(𝑀𝑆𝑤))

𝑚∈𝑀(𝑅)

 ]

+  𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠)  [ ∑ (𝐸𝑏(𝑂𝐿𝑇)𝜆𝑚)

𝑚∈𝑂𝐿𝑇

+ ∑ (ℬ𝑚𝑃𝑖𝑑𝑙𝑒(𝑂𝐿𝑇))

𝑚∈𝑂𝐿𝑇

  ] +  

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) [ ∑ (𝐸𝑏(𝑂𝑁𝑈)𝜆𝑚)

𝑚∈𝑂𝑁𝑈

+ ∑ (ℬ𝑚𝑃𝑖𝑑𝑙𝑒(𝑂𝑁𝑈))

𝑚∈𝑂𝑁𝑈

] +   
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[∑(𝐸𝑏(𝑇𝑥𝑅𝑥)𝜆𝑚)

𝑚∈𝐼

+  ∑ 𝑃𝑖𝑑𝑙𝑒(𝑇𝑥𝑅𝑥)ℬ𝑚

𝑚∈𝐼 

]

+  [∑ ∑(𝐸𝑖𝑑𝜌𝑠𝑑)

𝑑∈𝐼𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

 𝒩𝑑)

𝑑∈𝐼 

]

+  [∑ ∑ (𝐸𝑖𝑑𝜌𝑠𝑑)

𝑑∈𝑂𝑁𝑈𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

 𝒩𝑑)

𝑑∈𝑂𝑁𝑈 

]

+  𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠) [∑ ∑ (𝐸𝑖𝑑𝜌𝑠𝑑)

𝑑∈𝑂𝐿𝑇𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

 𝒩𝑑)

𝑑∈𝑂𝐿𝑇 

]

+  𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜) [∑ ∑ (𝐸𝑖𝑑𝜌𝑠𝑑)

𝑑∈𝑀𝑆𝑤𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

 𝒩𝑑)

𝑑∈𝑀(𝑆𝑤) 

]

+ 𝑃𝑈𝐸(𝑑𝑐) [∑ ∑ (𝐸𝑖𝑑𝜌𝑠𝑑)

𝑑∈𝐷𝐶𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

 𝒩𝑑)

𝑑∈𝐷𝐶 

] + 
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Subject to: 

Constraint (4.20) conserves traffic from the source node to the destination 

node in the considered topology depicted in Figure 4.1. It ensures that the 

𝑃𝑈𝐸(𝐷𝐶) [ ∑ (𝐸𝑏(𝐷𝑐𝑆𝑤)𝜃𝑑)

𝑑∈𝐷𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑆𝑤)Ω𝑑) + ∑ (𝐸𝑏(𝐷𝑐𝑅)𝜃𝑑)

𝑑∈𝐷𝐶𝑚∈𝐷𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑅) Ω𝑑)

𝑑∈𝐷𝐶

]

+ 𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜) [ ∑ (𝐸𝑏(𝑀𝑓𝑅)𝜃𝑑)

𝑑∈𝑀(𝑆𝑤)

+  ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑅)Ω𝑑) + ∑ (𝐸𝑏(𝑀𝑓𝑆𝑤)𝜃𝑑)

𝑑∈𝑀(𝑆𝑤)𝑑∈𝑀(𝑆𝑤)

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑆𝑤)Ω𝑑)

𝑑∈𝑀(𝑆𝑤)

  ]

+ 𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠) [ ∑ (𝐸𝑏(𝐴𝑓𝑅)𝜆𝑚)

𝑚∈𝑂𝐿𝑇

+ ∑ (ℬ𝑚𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑅))

𝑚∈𝑂𝐿𝑇

+  ∑ (𝐸𝑏(𝐴𝑓𝑆𝑤)𝜃𝑚) +  ∑ (ℬ𝑚𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑆𝑤))

𝑚∈𝑂𝐿𝑇 𝑚∈𝑂𝐿𝑇

 ]

+  [ ∑ (𝐸𝑏(𝑐𝑝𝑒𝑓𝑆𝑤)𝜃𝑑)

𝑑∈𝑂𝑁𝑈

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑐𝑝𝑒𝑓𝑆𝑤) Ω𝑑)

𝑑∈𝑂𝑁𝑈 

] 

 

∑ 𝜆𝑚𝑛
𝑠𝑑 − ∑ 𝜆𝑛𝑚

𝑠𝑑 = {
𝜆𝑠𝑑 𝑚 = 𝑠

−𝜆𝑠𝑑 𝑚 = 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑛∈𝑁𝑚𝑛∈𝑁𝑚

 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃, 𝑚 ∈ 𝑁: 𝑠 ≠ 𝑑. 

(4.20) 
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total incoming traffic at a node is equal to the total outgoing traffic of that node; 

unless the node in question is either the source node or the destination node. 

 

Constraint (4.21) ensures that processing task per IoT source node 𝑠 ∈ 𝑆 is 

met at a given destination node. 

 

Constraints(4.22) and (4.23) are used in the conversion of 𝜌𝑠𝑑  into its binary 

equitant. When  𝜌𝑠𝑑 = 1, the source node 𝑠 ∈ 𝑆 is processes its CPU task 

request at destination node 𝑑 ∈ 𝑃. 

Constraint (4.24)  ensures that processing tasks are placed at a single location 

only, hence, no task splitting is allowed. 

∑ 𝜌𝑠𝑑 = 𝐷𝑠
(𝐶𝑃𝑈)

𝑑∈𝑃

 

∀𝑠 ∈ 𝑆 

(4.21) 

 

𝜌𝑠𝑑 ≥ Ω𝑠𝑑 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃  

(4.22) 

 

𝜌𝑠𝑑 ≤ 𝑀Ω𝑠𝑑 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃  

(4.23) 

 

∑ Ω𝑠𝑑 ≤

𝑑∈𝑃

𝐾 

∀𝑠 ∈ 𝑆 

(4.24) 
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Constraint (4.25) determines the number of servers required at processing 

node 𝑑 ∈ 𝑃.  

 

Constraint (4.26) ensures that, the number of servers activated at a 

processing node 𝑑 ∈ 𝑃, does not exceed the maximum available number of 

servers in that node. 

Constraints (4.27) and (4.28) are used to ensure that, the binary variable Ω𝑑 =

1 if processing node 𝑑 ∈ 𝑃 is activated, otherwise Ω𝑑 = 0.    

𝒩𝑑 ≥ ∑
𝜌𝑠𝑑

𝐶𝑑
(𝐶𝑃𝑈)

𝑠∈𝑆

 

∀𝑑 ∈ 𝑃 

(4.25) 

𝒩𝑑 ≤ 𝒱𝑑 

∀𝑑 ∈ 𝑃 

(4.26) 

 

∑ Ω𝑠𝑑 ≥

𝑠∈𝐼

Ω𝑑 

∀𝑑 ∈ 𝑃 

(4.27) 

 

∑ Ω𝑠𝑑 ≤ 𝑀

𝑠∈𝐼

Ω𝑑 

∀𝑑 ∈ 𝑃 

(4.28) 

 

𝜆𝑚 = ∑ ∑ ∑ 𝜆𝑚𝑛
𝑠𝑑

𝑛∈𝑁𝑚𝑑∈𝑃𝑠∈𝑆:
𝑚=𝑠

  

∀𝑚 ∈ 𝑆 

 

(4.29) 
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Constraint (4.29) ensures that the total aggregate traffic on node 𝑚 ∈ 𝑆 is 

accounted for only when the source node is transmitting. Whilst constraint 

(4.30) ensures that, the aggregate traffic on node 𝑚 ∈ 𝑁,  where 𝑚 ∉ 𝐶, is only 

accounted for if the transmitting node 𝑚 ≠ 𝑠 is not the source of the traffic. 

Finally constraint (4.31) determines the aggregate traffic in the core network, 

given that the transmitting node 𝑚 ∈ 𝐶 is not equal to the source of the traffic 

node 𝑠 ∈ 𝑆.   

Constraints (4.38), (4.29) and (4.30) are used to linearise the product of the 

binary Ω𝑑, where 𝑑 ∈ 𝑃 and the continuous variable Ω𝑑, where 𝑑 ∈ 𝑃. This 

𝜆𝑚 = ∑ ∑ ∑ 𝜆𝑛𝑚
𝑠𝑑

𝑛∈𝑁𝑚𝑑∈𝑃:
𝑠≠𝑑 

𝑠∈𝑆:
𝑚≠𝑠

  

∀𝑚 ∈ (𝐼 ∪ 𝑂𝐿𝑇 ∪ 𝑀(𝑆𝑤) ∪ 𝑀(𝑅) ∪ 𝐷𝐶) 

 

(4.30) 

 

𝜆𝑚 = ∑ ∑ ∑ 𝜆𝑚𝑛
𝑠𝑑

𝑛∈𝑁𝑚:
  𝑛∈(𝑁𝑚∩𝐶)

𝑑∈𝑃:
𝑠≠𝑑 

𝑠∈𝑆

  

∀𝑚 ∈ 𝐶 

(4.31) 

 

𝜃𝑑 ≤ 𝑀Ω𝑑 

∀𝑑 ∈ 𝑃 

(4.32) 

 

𝜃𝑑 ≤ 𝜆𝑑 

∀𝑑 ∈ 𝑃 

(4.33) 

 

𝜃𝑑 ≥ 𝜆𝑑 − (1 − Ω𝑑)𝑀 

∀𝑑 ∈ 𝑃 

(4.34) 
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ensures that traffic on a processing node 𝑑 ∈ 𝑃 is only accounted for if it is 

destined to that node for processing.   

Constraint (4.35) and (4.36) convert the continuous variable 𝜆𝑚, where 𝑚 ∈ 𝑁 

into its binary equivalent. 

 

Constraint (4.37) ensures that the total traffic demand for each source node is 

met. The binary variable Ω𝑠𝑑 ensures that traffic is only directed to the 

destination node that is hosting a processing task.  

 

Constraint (4.38) ensures that the total traffic carried on link 𝑚, 𝑛, in the  

metro and access layer only does not exceed its capacity in Mbps.  

𝜆𝑚 ≥ ℬ𝑚 

∀𝑚 ∈ 𝑁 

(4.35) 

 

𝜆𝑚 ≤ 𝑀ℬ𝑚  

∀𝑚 ∈ 𝑁 

(4.36) 

 

𝜆𝑠𝑑 = 𝐷𝑠
(𝐵𝑊)

Ω𝑠𝑑 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃  

(4.37) 

 

∑ ∑ 𝜆𝑚𝑛
𝑠𝑑

𝑑∈𝑃:
𝑠≠𝑑

 ≤

𝑠∈𝑆

 𝐶𝑚𝑛 

∀𝑚 ∈ (𝐼 ∪ 𝑂𝑁𝑈 ∪ 𝑂𝐿𝑇 ∪ 𝑀(𝑆𝑤) ∪ 𝑀(𝑅) ∪ 𝐷𝐶): 𝑛 ∈ 𝑁𝑚 

 

(4.38) 

 

𝐴𝑔𝑚 ≥
𝜆𝑚

𝐵
 

∀𝑚 ∈ 𝐶 

(4.39) 
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Constraint (4.39) gives the number of aggregation router ports at each 

IP/WDM node. 

 

Constraints (4.40) and (4.41) represent the physical link capacity of the IP/WDM 

optical links. Constraint (4.40) ensures that the total traffic on a link does not exceed 

the capacity of a single wavelength while constraint (4.41) ensures the total number 

of wavelength channels does not exceed the capacity of a single fibre link.  

4.5 Input Data for the MILP Model 

To evaluate the performance of the proposed model, the IoT network is 

modelled as a graph 𝐺(𝑁, 𝐿), where 𝑁 is the set of all nodes and 𝐿 is the set 

of bidirectional links connecting those nodes.  A subset 𝐼 ⊂ 𝑁 represents the 

set of all the IoT devices in the considered network, whilst only a subset 𝑆 ⊆

𝑁 act as demand source nodes. A subset of processing nodes, where 𝑃 ⊂ 𝑁 

and 𝑃 ⊂ (𝐼 ∪ 𝑂𝑁𝑈 ∪ 𝑂𝐿𝑇 ∪ 𝑀(𝑆𝑤) ∪ 𝐷𝐶) act as processing nodes. The 

processing node 𝑑 ∈ 𝑃 has a maximum computational capacity 

𝐶𝑑
(𝐶𝑃𝑈)

  measured in  Million Instructions Per Second (MIPS).  Also, each link 

∑ ∑ 𝜆𝑚𝑛
𝑠𝑑

𝑑∈𝑃:
𝑠≠𝑑

 ≤ 𝑊𝑚𝑛𝐵 

𝑠∈𝑆

 

∀𝑚 ∈ 𝐶: 𝑛 ∈ (𝐶 ∩ 𝑁𝑚) 

 

(4.40) 

 

 
 

𝑊𝑚𝑛 ≤ 𝑊𝐹𝑚𝑛 

∀𝑚 ∈ 𝐶: 𝑛 ∈ (𝐶 ∩ 𝑁𝑚) 

(4.41) 
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(𝑚, 𝑛), where 𝑚 ∈ 𝑁 and 𝑛 ∈ 𝑁𝑚, has a maximum bit rate (BR) measured in 

Gbps.  

Some or all of the IoT devices are the sources of the workload. Each demand 

is characterised by a tuple 𝐷(𝐶𝑃𝑈, 𝐵𝑊), where 𝐶𝑃𝑈 is the amount of 

processing required in 𝑘𝑀𝐼𝑃𝑆 and 𝐵𝑊 is the amount of bandwidth required in 

𝑀𝑏/𝑠. These nodes consist of 20 devices in total and these  

devices are divided into 4 groups equally, hence each group is connected to 

the PON network via a single ONU as shown in the proposed architecture in 

Figure 3.2.  

4.5.1 Workload Intensity Definition  

 
In our evaluations, we have made CPU requirement proportional to traffic 

(𝐵𝑊), such that, for every bit of traffic 1000 MIPS is required. Although, it is 

beyond the scope of the work in this thesis, measuring CPU efficiency by 

MIPS is not an accurate benchmark, since different CPUs have different 

architectures, hence varied performances for the same task. Nevertheless, 

this does not stop us from making a starting point by consulting the literature 

to obtain realistic values. In [109], the authors have reported that for a specific 

visual processing algorithm referred to as Analyse Then Compress (ATC), for 

a file of 10KB (0.08Mb), 69.23 MIPS are required for processing for visual 

object recognition. Thus, through simple calculations we derived how many 

MIPS are required (Δ)  to process 1Mb of traffic in 1 second as follows, using 

equation (4.42): 

Δ =  
69.23

0.08
≅ 865.4.  (4.42) 



 

69 

For the sake of simplifying analysis and being conservative, we assume that 

each 1Mb of traffic requires approximately 1000 MIPS of processing, in 1 

second.  

 

As for the traffic requirement, we use an online tool to estimate the required 

data rates for different resolutions and this was estimated to be between 1 – 

10 Mbps, which covers video resolutions between 1024 ×  720 to 1600 ×

 1200 at 30 frames per second3. The CPU workload intensity is then calculated 

by multiplying the Δ by the amount of traffic. Thus, this makes the CPU 

demand proportional to the size of the traffic due to the assumption that the 

higher the traffic, the more features a video file will hold, thus more CPU 

instructions are required to process that file. 

 

 

 

 

 

 

 

4.5.2 Equipment Idle Power Consumption Attributed to IoT 

Application  

In our evaluations, we have made use of equipment datasheets where ever 

possible to report the power consumption of the devices. However, it is not 

always feasible to obtain this information from device datasheets, hence, we 

                                            

3 https://www.cctvcalculator.net/en/calculations/bandwidth-calculator/. 

Table 1 Data rate of various video files used as guide. 
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make realistic assumptions based on the literature. In terms of idle power 

consumption, based on [71], most high capacity networking equipment such 

as metro/core routers and switches consume 90% of the equipment’s 

maximum power. As for processing servers’ idle power consumption, based 

on [110], we assume it is 60% of the maximum power consumption of the 

CPU.  

Moreover, we assume that IoT applications are only responsible for a portion 

of 𝑃𝑖𝑑𝑙𝑒 of high capacity networking equipment. This assumption is valid, for 

instance, metro switches are used to serve thousands of different users 

simultaneously, thus it would not make a fair analysis if all of 𝑃𝑖𝑑𝑙𝑒 was 

attributed to a specific application like the one considered in this thesis.  Thus, 

we make use of Cisco’s visual networking index for the years 2017-2022 to 

estimate the total traffic of surveillance type applications similar to the one 

considered in this work. It is reported that, globally, 3% of all video traffic on 

the internet is due to surveillance services, hence the portion of idle power 𝛿 

attributed to the application in question is 3% [111].  

4.5.3 Power Usage Effectiveness (PUE) 

 

In our evaluations, PUE is not considered for the IoT and ONU devices, as 

there is generally no cooling requirements for them [112]. The power usage 

effectiveness (PUE) is the ratio of the total power consumed by a facility (i.e. 

ISP networks, data centres) to the total power consumption of the equipment 

within the facility (i.e. servers, switches, routers, etc). In 2018, Google reported 

that one of its data centres is currently operating at a PUE of 1.15. We make 

use of a report published in 2016 which estimates the PUE values of various 
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data centres base on “Space Type”  [98]. Within the report, it is shown that 

PUE values progressively decrease with the increase in the “Space Type”. 

 Thus, in a similar fashion, we increase PUE progressively in the proposed 

network architecture since the largest “Space Type” is generally hyper-

scale data centres connected to the core network. It is assumed that the 

PUE at any layer applies to both processing and networking equipment. The 

PUE value of the core network is referenced from one of our previous works, 

and this is assumed to be 1.5 [114]. Table 2 is a summary of the PUE values 

used in the model. 

 

 

 

 

 The network parameters used in the MILP model are summarised in Table 3. 

The parameters consist of the maximum and idle power consumption of the 

devices in question. The IoT and ONU devices’ power consumption is 

attributed to their WiFi transceivers and their value of 𝛿 and PUE set is to 1.  

Whilst the other remaining equipment have a PUE and a value of 𝛿 associated 

to them, due to their high capacity.  

 

 

 

 

 

Network Layer 
 
PUE 

IoT Devices 1 

CPE Fog (CF) 1 

Access Fog (𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠)) 1.5 

Metro Fog (𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜)) 1.4 

Cloud DC (𝑃𝑈𝐸(𝐷𝐶)) 1.12 [113] 

Core Network ((𝑃𝑈𝐸(𝑐𝑜𝑟𝑒))) 1.5 [114] 

Table 2 PUE values of all the layers of the proposed architecture. 

Device 
 

Pmax 
(W) 

Pidle 
(W) 

𝜹 BR 
(Gb/s) 

PUE 
 

IoT (WiFi) 0.56  0.34 - 0.1 1 

ONU (WiFi) 15 9  - 0.3  1 

OLT 1940  60 3% 8600  1.5 

Metro Router Port 30  27  3% 40  1.4 

Metro Ethernet 
Switch 

470 423 
3% 

600 1.4 

Metro Router Port 
Redundancy (𝜓) 

2 

 

Table 3 Network Parameters for the MILP Model 
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The core network consists of a number of core routers interconnected by 

IP/WDM technologies. We have considered the DC nodes to be only a single 

hop from the user traffic and the average distance between two neighbouring 

core nodes is 2010km (based on the AT&T US network topology). The power 

consumption values of the core network in the MILP model are summarised 

in Table 4. 

Table 4 Input data of the core network for the MILP Model 

 

 

 

 

Distance between two neighbouring EDFAs (𝑆(𝐸𝐷𝐹𝐴) 80 (km) [115] 

Number of wavelengths in a fibre (𝑊) 32 [115] 

Bitrate of a wavelength (𝐵) 40 Gb/s 

Distance between two neighbouring core nodes 𝐷𝑚𝑛 2500km 

Maximum power consumption of a router port 𝑃𝑚𝑎𝑥(𝑟) 638 (W) [115] 

Idle power consumption of a router port 𝑃𝑖𝑑𝑙𝑒(𝑟) 574.2 (W) 

Energy per bit of a router port 𝐸𝑏(𝑟) 1.6 W/Gb/s  

Maximum power consumption of a transponder 𝑃𝑚𝑎𝑥(𝑡) 129 (W) [115] 

Idle power consumption of a transponder 𝑃𝑖𝑑𝑙𝑒(𝑡) 116 (W) 

Energy per bit of a transponder 𝐸𝑏(𝑡) 0.32 (W/Gb/s) 

Maximum power consumption of an optical switch 𝑃𝑚𝑎𝑥(𝑜) 85 (W) [115] 

Idle power consumption of a transponder 𝑃𝑖𝑑𝑙𝑒(𝑜) 77 (W) 

Energy per bit of a transponder 𝐸𝑏(𝑜) 0.2 (W/Gb/s) 

Maximum power consumption of an optical switch 𝑃𝑚𝑎𝑥(𝑒) 85 (W) [115] 

Idle power consumption of a transponder 𝑃𝑖𝑑𝑙𝑒(𝑒) 11 (W) 

Energy per bit of a transponder 𝐸𝑏(𝑒) 0.02 (W/Gb/s) 

Maximum power consumption of an optical switch 𝑃𝑚𝑎𝑥(𝑟𝑔), 

reach 2500km 
71.4 (W) [115] 

Idle power consumption of a transponder 𝑃𝑖𝑑𝑙𝑒(𝑟𝑔) 64 (W) 

Energy per bit of a transponder 𝐸𝑏(𝑟𝑔) 0.19 (W/Gb/s) 

Portion of the aggregate idle powers attributed to the 

application (𝛿)  
3% [111] 
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The processing devices’ input parameters are summarised in Table 5. In order 

to estimate the processing capacity of the servers in MIPS, we have made 

use of a technical benchmark, in which, it is reported that Intel high-end 

servers process 4 instructions/ cycle (i/c) [116]. Thus, to determine the 

maximum capacity of a processing device we have used the following  

𝑀𝐼𝑃𝑆 =  𝑐𝑙𝑜𝑐𝑘 ×
𝐼𝑠

𝐶𝑦𝑐𝑙𝑒
 4.43 

Where 
𝐼𝑠

𝐶𝑦𝑐𝑙𝑒
 is the number of instructions a CPU can execute per clock cycle 

which is given in GHz in Table 5. To differentiate between the types CPUs and 

their efficiencies, we set the Is/Cycle of the Metro Fog (MF) as a reference 

point. The efficiency of the processing decreases as one moves down the 

hierarchy (from the core to the IoT device).  

 

 

 

 

 

 

 
 
 
At those layers where multiple servers can be deployed, a networking 

infrastructure becomes a necessity to interconnect the multiple active servers. 

Hence, we have used routers and switches accordingly to achieve this. We 

have used realistic values for the processing networking equipment to 

differentiate between the many layers of the proposed architecture  

 

Node Device Model 
Pmax 
(W) 

Pidle 
(W) 

C 
(GHz) 

C 
(MIPS) 

Ei 
(W/kMIP

S) 
Is/Cycle PUE 

SP-DC 
Server 

NVidia T4 GPU  
75 
[117] 

45  1.25[117] 1080k 27𝜇 864 

1.12 
GP-DC 
Server 

Intel Xeon E5-
2680  

130 
[118] 

78  2.7[118] 108k 481𝜇 5 

MF 
Server 

Intel X5675  
 

95 
[119] 

57  3.06[119] 73.44k 517𝜇 4 1.4 

AF 
Server 

Intel Xeon E5-
2420  

95 
[120] 

57  1.9[120] 34.2k 1111𝜇 3 1.5 

CF 
Server 

RPi 3 Model B 
12.5 
[121] 

2 1.2 [122] 2.4k 4375𝜇 2 2.5 

IoT 
Device 

RPi Zero W 
3.96 
[121] 

0.5 1 [123] 1k 3460𝜇 1 1 

Table 5 Input data of processing servers for the MILP  model. 
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in Figure 3.2. Generally, lower layers have been assigned lower specification 

devices where applicable, for instance, a metro switch is a much more power 

consuming equipment than an L2 switch at the access. Table 6 summarises 

the networking equipment used inside processing nodes.  

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Device 
Pmax 
(W) 

Pidle 
(W) 

BR 
(Gb/s) 

Eb 
(W/Gb/s) 

PUE 

CF Switch  1.78W [124] 0.36[124] 1.6[124] 0.89 1 

AF Router 13W[125] 11.7  40[125] 0.03 1.4 

AF Switch 210W[126] 189  240[126] 0.08 1.4 

MF Router 13W[125] 11.7  40[125]  0.03 1.4 

MF Switch 210W [126] 189  600[126] 0.04 1.4 

DC LAN Router 30[125] 27 40[125] 0.08 1.5 

DC LAN Switch 470[126] 423 600[126] 0.08 1.5 

Table 6 Processing network input data for the model. 
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4.6 Power Consumption Evaluation 

This section presents by results, the outcomes of the proposed energy 

efficient distributed MILP model for IoT with non-splittable services. The power 

consumption of the considered architecture depicted in Figure 4.1 is evaluated 

and the optimum processing locations of a range of representative workloads 

are found. We approach the optimisation problem using two design strategies: 

1) an un-capacitated design problem, and 2) a capacitated design problem. It 

is worthy of mention that, IoT devices are in all cases capacitated in terms of 

processing only. For each design problem, there is a further breakdown in 

scenarios, a) having GP-DCs only, and b) having access to SP-DC as well. 

Moreover, the complexity of the MILP models in the current and subsequent 

chapters grows exponentially with the increase in the number of IoT requests. 

Therefore, the total number of IoT nodes considered in a service request is 

between 1 and 20 requests which are distributed among 4 IoT groups 

uniformly with some degree of clustering depending on the distribution 

scenario (e.g. Scenario # 1 – Scenario #4). The four request scenarios are 

aimed at capturing the impact of the number of requests coupled with the 

location of those requests.  For instance, Scenario #1 and Scenario #4 capture 

the extreme ends of the request distribution whilst Scenario #2 and Scenario 

#3 capture cases that lie between the two aforementioned scenarios. The total 

number of IoT devices in each IoT group is based on a representative home 

LAN network which typically connects a single to few users [41]. Choosing to 

minimise energy or power consumption is dependent on the type of system 

one is working with. For instance, if the system is such that only a finite amount 

of load is expected at a given time period and for the rest of the time the 
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system is not consuming any power then it would be more practical to 

minimise energy. However if on the other hand, the system is expected to 

work continuously over a given time period then minimising power would be 

more appropriate, which currently is the case in this thesis because it is 

assumed that the source nodes (IoT video cameras) are operating at 

homogenous bit rates and hence consume the same amount of power 

throughout the evaluation period.   

AMPL software with CPLEX 12.5 solver is used as the platform for 

solving the MILP models and all the models were executed on a PC with an 

Intel Core i5-4460 CPU, running at 3.20 GHz, with 16 GB of RAM.     

4.7 Un-Capacitated Design Problem with GP-DCs Only       

In the un-capacitated design approach, it is assumed that the number of 

processing devices deployed at each node is unrestricted except in the 

devices located in the IoT layer due to their limited features. This approach 

aims to determine for a given demand volume, the optimum resources needed 

to host a given service if there are no restrictions on the network equipment 

capacity and no restrictions on the number of servers that can be hosted at 

each site. Note that in our evaluations, the network capacity is always 

sufficient to carry the traffic. Therefore the ‘capacitated restriction’ applies to 

the number of processing servers available at each location in our case. The 

goal is also to determine whether it is the optimal choice to build large numbers 

of devices at a given location in the proposed architecture. Generally, such 

design problems occur in medium to long term network design planning [127].   
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4.7.1 Scenario #1: A single active IoT 

 

In this scenario, out of the total 20 IoT devices in the model, we take one end 

of the extremes and assume that only a single IoT device is active at any time 

instance and the rest of the IoT devices are in the idle mode. As expected and 

shown in Figure 4.5, for low workload values such as 1000 MIPS, significant 

savings (98%) can be achieved compared to the baseline solution, where the 

baseline solution is a scenario where processing is always carried out at the 

GP-DC. This is due to the local computational resource of the IoT device, 

hence, the costly overhead of the network and high idle powers of DC servers 

are avoided. However, as the workload increases and violates the capacity of 

the IoT device, we begin to see the intervention of the CF node as it is only a 

single hop from the IoT device. The general trend in this scenario always 

favours the activation of additional servers attached to the CF node due to its 

low idle power consumption compared with the servers located in the upper 

layers of the fog architecture. Moreover, the results indicate promising power 

savings of at least 70%, at the extreme end of the workloads (10,000 MIPS).    
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Figure 4.5 Total Power Consumption of Distributed Approach in Scenario #1. 
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4.7.2 Scenario #2: Five active IoTs in the same group 

In this scenario, the number of IoT devices demanding computational 

resources has increased to five devices residing in the same group and 

connected to the same CF. The trends in this scenario remain the same as 

scenario #1, except for workload values of 5000 MIPS and beyond. As can be 

seen in Figure 4.8, the model decides to allocate all the demands to the metro 

fog that is connected via the metro network. Although the IoT devices are 

collocated in the same group and can be allocated to a single CF, the results 

indicate that activating a large server with high idle power and other 

associated overheads such as networking and PUE, is still the optimal choice. 

This can be explained by observing the processing inefficiency of the CF 

servers. For instance, taking 4000 MIPS as an example, we have 25,000 

MIPS in total as there are five IoT devices generating demands. The 

proportional power consumption for the total MIPS to be processing on CF 

servers amounts to 109 W alone, compared to the 57W idle power of the more 

efficient server attached the metro network. Hence, this gives interesting 

insights about the potential large scale deployments of such servers at the 
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edge of the network which may not be as energy efficient as larger fog nodes 

concentrated higher up in the network hierarchy. Although CF servers produce 

savings of up to 69% for lower ends of the workload, this diminishes as soon 

as the workload intensity of the services increase. With the demands allocated 

to the MF node, power consumptions savings of up to 46% can be achieved, 

compared to the baseline.  
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Figure 4.7 Total Power Consumption of Distributed Approach in Scenario #2. 

Figure 4.8 Workload Distribution in Scenario #2. 
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As can be seen in Figure 4.8, the model never utilises the AF server despite 

its close proximity in terms of distance from the IoT device and the fact that 

the OLT power consumption is minimal compared to the high capacity 

Ethernet switch attached to the MF server. The main cause for not choosing 

to utilise the processing resources of the AF is primarily linked with the high 

PUE value because the AF and MF have both identical servers in terms of 

power consumption.   

4.7.3 Scenario #3: Four active IoTs, one per group 

 

In this scenario, we aim to investigate the effect the location of the IoT devices 

has on the optimal allocation of services, hence, each request is connected to 

a separate network. Interestingly, the trends remain unchanged as in Scenario 

#2, except that accessing the MF is delayed to the case of 5000 MIPS. This 

agrees with the explanations provided for Scenario #1, as the results here 

indicate that, for IoT devices located in different parts of the network, activating 

additional CF servers at the four different locations coupled with the 

networking overhead at the CF layer (e.g. 4 ONU devices activated) is still the 

optimal choice. The distributed approach still produces promising power 

savings compared to the baseline scenario, as can be seen in Figure 4.9. 

When all demands are hosted at the CF layer, savings of up to 66% can be 

achieved whilst this drops down to 39% when the services are allocated to the 

MF node.   
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4.7.4 Scenario #4: Twenty active IoTs    

 

In this scenario, we take the other end of the extremes and assume that all of 

the IoT devices generate requests for resources simultaneously. With the 

increase in the number of IoT devices, the volume of demands also increases, 

hence trends are expected to change. As can be seen in Figure 4.11, the 

distributed processing approach still yields total savings of up to 17% at 7000 

MIPS, compared to the baseline. However, when the workload volume 
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Figure 4.9 Total Power Consumption of Distributed Approach in Scenario #3. 
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reaches a certain level, e.g. at 5000 MIPS, the model decides to allocate all 

of the workloads to the centralised cloud data centre and bypass the fog layers 

all together. This is attributed to the idle power consumption of the GP-DC 

because at 6000 MIPS and 7000 MIPS the model switches back to the MF as 

at those particular workload levels, additional servers have to be activated. 

Hence, the computational efficiency of the GP-DC is traded off with the costly 

overhead of the network. However, once the workload has increased to 8000 

MIPs and beyond, processing everything at the GP-DC proves to be the 

optimal choice. The only time the CF server is utilised is at workload 4000 

MIPS in combination with MF. This is because it saves activating an additional 

server MF node.  
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Figure 4.11 Total Power Consumption of Distributed Approach in Scenario #4. 
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4.8 Capacitated Design Problem with GP-DCs  

In this section, we consider the case where extra capacity cannot be added to 

the processing nodes in question, hence the problem is known as capacitated. 

Such design problems are faced in the short term when the network and in 

particular the processing nodes are already designed and are in place.  

 

4.8.1 Scenario #1: A Single active IoT    

In the capacitated design problem, different trends are expected because the 

prospect of adding extra processing capacity is no longer the case. As can be 

seen in Figure 4.14, unlike the trends observed in the scenarios of the un-

capacitated problem, the AF server is chosen as the next best choice after the 

IoT local computation and CF capacities have become violated. We have 

already observed that the AF server is never a good choice in the un-

capacitated case and this is primarily down to the value of the PUE associated 
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with this node. Although a bad choice, the distributed approach still yield 

savings with AF as can be seen in  Figure 4.14. 
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Figure 4.14 Total Power Consumption of Distributed Approach in Scenario #1, 

in the Capacitated Case. 
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Figure 4.14 Workload Distribution in Scenario #1, in the Capacitated Case. 
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4.8.2 Scenario #2: Five active IoTs in the same group  

   

In this scenario, we begin to observe the disappearance of the AF node as 

anticipated due to its lower processing efficiency and higher PUE compared 

with the MF node, as shown in Figure 4.16. The total power consumption 

savings drop down to 41% from 69% for workload volumes of 2000 MIPS in 

the un-capacitated case. This is mainly the difference between hosting the 

demands in the CF layer compared to the AF layer. As shown in Figure 4.15, 

still a significant amount of power saving is achieved compared to the baseline 

solution. Although the CF servers had enough capacity to host 9600 MIPS of 

the total 10,000 MIPS  (2000 MIPS/IoT), the model is forced to consolidate 

processing at the AF layer due to the service splitting constraint forcing 

processing to take place in a single location because the AF server would 

need to intervene anyway to process at least 400 MIPS thus packing a single 

AF server is the optimal choice in this case. This is consistent with previous 

observations in the un-capacitated case, for lower workload volumes (i.e. 

2000 MIPS), the model tends to serve the demands in the lower layers of the 

fog such as the AF node primarily due to the level of workload since the 

processing efficiency of the MF server and its lower PUE does not justify the 

networking overhead for accessing the MF. However, as the workload 

increases (i.e. 3000 MIPS and higher), the processing efficiency coupled with 

the lower PUE of the MF server compensates for the networking overhead, 

hence MF node is chosen as the optimal location to serve the demands as 

can be seen in Figure 4.16. 
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4.8.3 Scenario #3: Four active IoTs, one per group 

 

The trends in this scenario are relatively comparable to Scenario #2, except 

for the case at 2000 MIPS where instead of the AF server, the CF servers are 

utilized.   This is mainly due to the geographical distribution of the IoT source 

nodes as in this scenario, each CF server has enough capacity to serve its 

source node and the number of source nodes happen to match the number of 

CF servers available, hence the high idle power and associated PUE of the 
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Figure 4.15 Total Power Consumption of Distributed Approach in Scenario #2, in 

the Capacitated Case. 
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higher fog layers like the AF and the MF can be avoided in this case, unlike 

Scenario #2 at 2000 MIPS.  A total saving of up to 66% is achieved at 2000 

MIPS and up to 55% saving at higher workloads is achieved, as shown in  

Figure 4.17. 

 

 

 

 

 

 

 

 

4.8.4 Scenario #4: Twenty active IoTs    

In this scenario, we begin to observe the same trends found in scenario #4 in 

the un-capacitated case except that the intervention of the cloud occurs earlier 

in this scenario at 4000 MIPS.  This result proves the consistency of the model 
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Figure 4.17 Total Power Consumption of Distributed Approach in Scenario 

#3, in the Capacitated Case. 
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Figure 4.18 Workload Distribution in Scenario #3, in the Capacitated Case. 
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since the extra capacity needed to host all the demands at 4000 MIPS, 

requires multiple servers at the MF node, thus it becomes more efficient to 

migrate all services to the GP-DC to better pack the already activated servers 

as it is much more efficient and has a better PUE value. As can be seen in 

Figure 4.19, utilisation of the MF server is only beneficial at certain workload 

values, otherwise once a certain number of servers are required, the network 

overhead to get to the GP-DC justifies the activation of the MF server. Figure 

4.20 shows that there are still substantial savings (about 17%) at 7000 MIPS 

despite the activation of multiple servers at the MF and its high PUE, 

compared to the GP-DC.   
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Figure 4.20 Total Power Consumption of Distributed Approach in 

Scenario #4, in the Capacitated Case. 
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Figure 4.19 Workload Distribution in Scenario #4, in the Capacitated Case. 
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4.9 Impact of the SP-DC in all Cases 

Given the high energy efficiency of the SP-DC servers, it was worth 

investigating its impact on improving the energy efficiency of the proposed 

distributed processing model. The results indicated that all the trends in both 

the capacitated and un-capacitated cases and from scenario #1 to scenario 

#3, remained unchanged. However, at scenario #4, different trends were 

observed when a highly efficient server like the SP-DC is deployed. The 

impact of the SP-DC is observed at and beyond 4000 MIPS. Interestingly, as 

shown in Figure 4.21, the SP-DC yields total savings of up to 50%, whilst the 

maximum saving obtained in the same scenario was up to 30% even in the 

un-capacitated case where multiple CF servers could be deployed. This is a 

promising performance from the SP-DC and these results demonstrate that 

for scenarios where the computational workload is extremely high, deploying 

mini DCs in the fog layers that are associated with high PUEs and are less 

efficient in terms of processing per instruction,  hosting services on them 

brings no benefits when a highly efficient centralised DC is available at the 

core network.  
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4.10 MILP Model Verification  

This subsection considers boundary cases whose optimum server placement 

solution is known and hence provides verification of the MILP through simple 

analytic closed-form expressions. This is used to confirm with confidence the 

MILP results obtained in this thesis are valid. The current model forms the 

basis of the works in the subsequent chapters, hence it is sufficient and crucial 

to check this model. The checkpoints consist of various scenarios such as the 

case where all the services are processed by (i) the cloud (GP-DC), (ii) the 

access fog (AF), (iii) the metro fog (MF) and (iv) finally the IoT devices. 

Although not exhaustive, however, the aforementioned checkpoints ensure 

that all the network and server elements between the IoT and the cloud are 

verified in terms of networking and processing power consumption. The total 

power consumptions are evaluated by referring to appropriate figures in the 

power consumption evaluation subsection. The verifications are summarised 

in Table 7,  
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Table 8, and Table 9. In each table, reference is made to the scenario that is 

being evaluated. The column headings represent the power consumption at 

each layer of the proposed architecture while the row headings consist of 

network, processing and total power consumption. It is important to note that, 

the proportional power consumption of the network is ignored (since it's 

negligible compared to the idle power consumption of the networking 

equipment (and the servers processing power consumption)), hence the 

analytic checking calculations only account for idle network powers and 

processing power consumption. Also, for the sake of simplicity, in the 

processing column, the first value is the network power consumption of the 

processing node, the second is the server idle power and the third is the 

proportional power per instruction. All figures are calculated after PUE. 

 

Checkpoint 1 
 

Capacitated, Scenario #4, All processing at Metro Fog (MF) at 5000 MIPS per IoT,  
2 idle servers. 

Layer 𝑷𝑰𝒐𝑻 
(W) 

𝑷𝑪𝑷𝑬 
(W) 

𝑷𝑨𝑭 
(W) 

𝑷𝑴𝑭 
(W) 

𝑷𝒄𝒐𝒓𝒆 
(W) 

𝑷𝑫𝑪 
(W) 

Total (W) 

Network Power  6.8 36 3.6 17.76  - - 64.16 

Processing 
Power  

- - - 7.98 + 
(2*79.8)+ 
(72.38 
=239.96 

- - 239.96 

Total Power  304.1 W 

Capacitated, Scenario #4, All processing at Cloud DC (GP-DC) at 5000 MIPS per IoT,  
1 idle server. 

Network Power  - - - 2.2 11.58 + 
5.1+3.4+51 
=71.08 

- 64.16+71.08=135.24 
 

Processing 
Power  

- - - 15.12 + 
87.36 + 
53.87 

- - 156.2 

Total Power  291.5 W 
MILP Result  ≅ 299  refer to Figure 4.20.  

Table 7 Analytic Verification of the Optimal Choice in Scenario #4 at 5000 MIPS. 
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Table 7 is a summary of the verification checks done for Scenario #4 at a 

workload of 5000 MIPS per IoT. The results confirm that the optimal choice 

corroborates with that of the MILP as can be seen in Figure 4.20. In Table 7, 

the total power consumption was 291.5 W for the approximate analytic 

calculations versus 299 W for the accurate MILP optimisation which includes 

power consumption components ignored by the analytic approximation and its 

calculations. It is also worth noting that the choice of Metro fog to process the 

tasks results in higher power consumption (304.1W), and hence the metro fog 

is correctly not chosen by the MILP to place the processing tasks. 

 

Checkpoint 3 
 

Capacitated, Scenario #2, All processing at Access Fog (AF) at 2000 MIPS per IoT,  
1 idle server.  

Layer 𝑷𝑰𝒐𝑻 
(W) 

𝑷𝑪𝑷𝑬 
(W) 

𝑷𝑨𝑭 
(W) 

𝑷𝑴𝑭 
(W) 

𝑷𝒄𝒐𝒓𝒆 
(W) 

𝑷𝑫𝑪 
(W) 

Total (W) 

Network Power  1.7 9 2.7 - - - 13.4 

Processing 
Power  

- - - 8.55+85.5+15.5 - - 109.55 

Total Power  122.95 W 

Capacitated, Scenario #2, All processing at Metro Fog (MF) at 2000 MIPS per IoT,  
1 idle server. 

Network Power  - - - 17.76 - - 13.4+ 17.76= 
31.16 

 

Processing 
Power  

- - - 7.98+79.8+7.23 - - 95 

Total Power  126 W 
MILP Result  ≅ 125  refer to Figure 4.15 

 

Table 8 Analytic Verification of the Optimal Choice in Scenario #2 at 5000 MIPS. 

 

 

Table 8 also confirms the optimal choice of the MILP at 2000 MIPS, when all 

processing is done at the AF and MF separately. The optimal case is where 

processing is done at the OLT and the total power consumption is calculated 

as 122.95W. In the MILP this figure is roughly 125W as can be seen in Figure 

4.15. Table 9 is the final checkpoint that examines local processing at the IoT  

layer for Scenario #4, with similar verification conclusions. 
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4.11 Summary  

 
Energy efficiency has become a key factor in the design and implementation 

of communication networks in general. This chapter has evaluated distributed 

processing based on the paradigm of fog computing, in the context of IoT A 

MILP model has been developed with the objective of minimising the total 

power consumption (networking and processing) by optimal placement of IoT 

services. Un-capacitated and capacitated design problems were considered 

for a range of scenarios that consisted of different numbers of active IoT 

source nodes which reflected the extreme cases and the moderate ones in 

between. It has been demonstrated by results that, in most cases, distributed 

processing helps to improve energy efficiency by processing data in close 

proximity to the source nodes and hence substantial savings are made. 

Moreover, two types of data centre servers were examined (GP and SP). The 

results indicated that in scenarios where the workload volume is low, having 

a SP-DC in the core network made no difference, as the model would always 

prefer to allocate services to the fog nodes.  

 

Checkpoint 4 
 

Capacitated, Scenario #4, All processing at IoT at 1000 MIPS per IoT,  
20 idle servers.  

Layer 𝑷𝑰𝒐𝑻 
(W) 

𝑷𝑪𝑷𝑬 
(W) 

𝑷𝑨𝑭 
(W) 

𝑷𝑴𝑭 
(W) 

𝑷𝒄𝒐𝒓𝒆 
(W) 

𝑷𝑫𝑪 
(W) 

Total (W) 

Network Power  - - - - - - - 

Processing 
Power  

10
+ (20000 𝑀𝐼𝑃𝑆
× 3460𝜇𝑊) 

- - - - - 79.2 

Total Power  79.2 W 

MILP Result = 79.2  refer to Figure 4.21. 

Table 9 Analytic Verification of the Optimal Choice in Scenario #4 at 1000 MIPS. 
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However, when the number of active IoTs increase and subsequently 

the workload volume increased (scenario #4), the results indicated that 

deploying SP-DCs could save up to 50% compared to 30%. It became 

apparent by the results that bringing local computation such as the IoT 

devices, produce substantial savings, however, due to capacity limitations this 

could not have been achieved. In this direction, this chapter motivates the 

basis for investigating the impact of service splitting on improving energy 

efficiency in the next chapter. Finally, the chapter was concluded by a section 

of analytic verification of the considered MILP model.  
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Chapter 5 Energy Efficient Distributed Processing for IoT 

with Service Splitting 

5.1 Introduction  

Future IoT services will consist of multiple components, coordinating and 

communicating over the network to achieve a common task, similar to 

applications design in Service-Oriented Architectures (SOA) [3]. Extensive 

research has been carried out to tackle the problem of abstracting workflow 

of multiple services associated with end devices to provide a proper 

architecture that incorporates service management and composition 

capabilities. Each IoT device holds a limited amount of computational 

resources, given the scale of IoT, each device may be called on to provide a 

variety of services. In this direction, inspired by the work in [72], this chapter 

evaluates a scenario in which, service tasks can be split into multiple 

subtasks, hence multiple processing nodes can be utilised to complete a 

single service [128].     

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 An illustrative example of service splitting 
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Figure 5.1 is a simple illustrative example of service splitting in the considered 

architecture. An IoT source node has a task for processing that can be 

subdivided into multiple components (s1-s4). The main goal of this chapter is 

to determine in cases where IoT devices’ available CPU capacity is not 

sufficient to process a task, whether service splitting among numerous 

processing nodes becomes beneficial in terms of total power reduction, given 

the added power consumption associated with network traffic after splitting, 

especially when network equipment have idle power consumption. In our 

evaluations, service splitting is only said to have occurred if different subtasks 

of an application service are processed in geographically distributed servers, 

otherwise, if subtasks are all processed on the same processing node, then 

this is not classed as service splitting mainly due to the same network latency 

for the subtasks.  

5.2 Modification to the MILP Model 

The MILP model in Chapter 4 remains intact in the current chapter, except for 

a minimal modification to the processing location constraint (4.24) in Chapter 

4,  in order adapt to the variation introduced by service splitting. Previously, it 

was assumed that the parameter 𝐾 = 1, in the current chapter 𝐾 will adopt 

values from 1 – 5 to investigate a range of service splitting scenarios and their 

impact on the reduction of the total power consumption of the distributed 

processing approach. Therefore we introduce the constraint:  

∑ Ω𝑠𝑑 ≤ 𝐾

𝑑∈𝑃

 
(5.1) 

 

Constraint (5.1) remains unchanged, except that, the value of 𝐾 is increased 

from 1 to 5 for each iteration of the MILP model. 
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5.3 Power Consumption Evaluation 

Similar to chapter 4, we consider the same scenarios to gauge the impact of 

service splitting on improving the total power consumption.  

5.4 Un-Capacitated Design Problem with GP-DCs Only       

5.4.1 Scenario #1: A single Active IoT    

In this scenario, the results obtained show early indications that during low 

workloads, service splitting introduces comparable savings to the case where 

𝐾 = 1, as can be seen in Figure 5.2.  Interestingly, for all workload volumes at 

K = 3, the model still decides to always at least fully utilise the IoT source node 

as can be seen in Figure 5.3. This is understandable as local computation 

incurs zero network overhead plus the low idle power of the IoT node 

compared to the CF server makes it always beneficial to utilise in this case as 

it can avoid the activation of further CF servers which are associated with high 

idle power. 

For example, the case where K = 3 and the workload 4000 MIPS, the 

model does the service splitting in the ratio of 2:2. This is only done due to the 

restriction enforced by the value of K, otherwise, it would save more power to 

split the 4000 MIPS among the other IoT devices that are in the same group 

as the source node. This is confirmed in the scenario where the value of K 

was increased to 5. It is shown that splitting the 4000 MIPS in the ratio of 4:0 

is the best choice and hence the CF server is never utilised in this case due 

to the high idle power of the ONUs and the CF servers. The general trend in 

this scenario as can be observed in Figure 5.3, K=5 at 5000 MIPS, the optimal 

choice for the IoT source node is to process 1000 MIPS locally and offload the 
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remaining 4000 MIPS to the peer IoT nodes since up to five service splits can 

be performed, confirming the inefficiency of the CF servers due to high idle 

power of ONU.  

However, when the workload is increased to 6000 MIPS for the same 

scenario, we can observe that 4000 MIPS are kept on the IoT layer while the 

remaining 2000 MIPS are processed on the CF servers. At this instance, the 

CF server introduces savings and is not related to the value of K although the 

model is restricted by it, however, a single IoT group can provide an aggregate 

5000 MIPS and if the remaining 1000 MIPS was to be processed on another 

IoT from another group, then the demand must be offloaded via the OLT to 

another ONU of that group, hence, instead, it would introduce more savings 

to pack the CF servers connected to the source node group. It becomes clear 

that when the total workload is within the aggregate capacity of the IoT devices 

located in the same group as the source node, making use of service splitting 

improves power efficiencies due to the very low idle power of the IoT devices.   

  

 

   

 

 

 

 

 

 

Figure 5.2  Total Power Consumption of the Distributed Approach at 

Various Values of K. 
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5.4.2 Scenario #2: Five active IoTs in the same group   

In this scenario, the number of IoT source nodes has increased to 5 which is 

the total number of IoT devices in one group. The savings of service splitting 

are still comparable to the case where K=1, as can be seen in Figure 5.4. The 

maximum savings of service splitting compared to K=1 does not exceed 

2.73%. The trends in this scenario have changed compared to scenario #1. 

This is primarily due to the increase in the number of source nodes and 

subsequently the volume of demand. In Figure 5.5, it can be observed that 

service splitting (i.e. K=3) only becomes relevant for the lower end of the 

workload such as at 2000 MIPS to 5000 MIPS. This can be explained by 

noting that service splitting among the IoT device(s) and multiple CF server 

connected to the ONU is only beneficial if the volume of workload is below a 

certain threshold, in this case, 25000 MIPS in total which is 5000 MIPS per 

IoT source node. This can be confirmed by the case where the workload 

increases. Once the workload is increased to 6000 MIPS per IoT (30,000 in 

total), it can be confirmed in Figure 5.5, that service splitting is irrelevant 

Figure 5.3 Workload Distribution in Scenario #1 at Different Values of K. 
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mainly due to the processing inefficiency of the CF servers and IoT devices. 

For instance, the proportional power consumption to process just the 30,000 

MIPS and this would result in 131.3 W power consumption had this workload 

been processed on the CF servers that are a single hop from the IoT devices. 

This compared to the high idle power of the MF server which is 109W after 

PUE, still makes the MF server more efficient than splitting the demand 

between the IoTs and the CF server.  
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Figure 5.5 Workload Distribution in Scenario #2 at Different Values of K. 
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5.4.3 Scenario #3: Four active IoTs, one per group 

It is worthy of mention that in this scenario, the four active IoT nodes are 

located in different parts of the network such that each one is connected to a 

different ONU. The model in this instance makes use of service splitting (K 

=5) as it introduces up to 18% savings compared with no service splitting 

(K=1), as highlighted in Figure 5.6 at the workload 5000 MIPS. This is 

understandable because CF servers have 4x times more idle power 

consumption than their IoT counterparts, hence, making use of the maximum 

service splitting value K=5 produces more savings compared with the case 

where K=1 at 5000 MIPS. Moreover, it can be seen in  Figure 5.7, at 6000 

MIPS, service splitting is only utilised to allow the CF server intervene since 

the total demand is 24,000 MIPS (4×6000MIPS) compared to the 20,000 

available capacity offered by all the 20 IoT devices. We begin to notice that 

service splitting becomes irrelevant when the total workload has increased i.e. 

at 6000 MIPS, the metro fog (MF) is utilised to host all the workload. This is 

primarily due to the processing inefficiencies of the small IoT type devices 

CPE fog (CF) servers as activating a single MF server with a much better 

processing efficiency outperforms many IoT and CF servers activated 

together.      
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5.4.4 Scenario #4: Twenty active IoTs  

   

This scenario offers additional insights on whether service splitting improves 

the performance of the proposed distributed processing approach.  In the 

previous scenarios, the intervention of the cloud (GP-DC) was always 

avoided. However as shown in the workload distribution in Figure 5.9, the 

cloud has come into the picture primarily due to the processing inefficiency of 

the metro fog server compared to its cloud counterpart. If we take as an 

example the case where the demand per IoT is 5000MIPS (100,000 MIPS in 

total ) for all three cases K=1, K=3 and K=5, the model chooses to avoid 

service splitting and instead the workload is offloaded to the cloud altogether, 

bypassing the metro fog server. This is interesting because the processing 

efficiency of the cloud DC compensates for the additional power overhead of 

the core network and the network within the cloud. However, if services could 

be split to avoid the activation of multiple servers in the metro fog, then the 

cloud is also avoided in this scenario. For instance, at 8000 MIPS when K=1, 

Figure 5.7 Workload Distribution in Scenario #3 at Different Values of K. 
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the workload is wholly processed in the cloud whilst for the same scenario 

where K = 3 or K = 5, the model fully packs a single server in the metro fog 

and splits the remaining workload among the IoT devices, hence as has been 

highlighted in Figure 5.8, total savings of up to 6% was achieved by service 

splitting compared to the case where service splitting is not an option  (K = 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Workload Distribution in Scenario #4 at Different Values of K. 
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Figure 5.8 Total Power Consumption of the Distributed Approach at Various 

Values of K. 
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5.5 Capacitated Design Problem with GP-DCs Only 

In this section, it is of interest to investigate whether service splitting in the 

short term network design, introduces additional savings on top of the 

distributed processing approach. The following subsections comprise of the 

same scenarios that were also considered previously. This way we can make 

fair comparisons between the various observations in the results.   

       

5.5.1 Scenario #1: A single active IoT    

Figure 5.10 shows, in the case where processing nodes are limited by 

capacity, with the increase in the number of service splits (i.e. K>1), 

substantial savings can be made as opposed to the case with no service splits 

(K=1). The savings are due to the fact that the access fog’s server idle power 

is avoided since application services will be processed locally between the IoT 

devices and the CPE fogs despite the network overhead incurred in getting 

access to these devices. The total savings achieved by the distributed 

processing approach with non-splittable services (K=1) was up to 46% 

compared to the baseline, however, this figure increased to 86% when the 

value of K was changed to 2 (i.e. K=2), as highlighted in Figure 5.10. 

Moreover, when the workload volume increases to 10,000 MIPS at K = 

5, we begin to see a drastic drop in savings as can be seen in Figure 5.10. 

The savings due to service splitting dropped from 86% to only 7%. This can 

be understood by noting that at 10,000 MIPS, 4 CPE fog servers are activated 

to process 9000 MIPS whilst the remaining 1000 MIPS is processed at the IoT 

source node itself. Although there were 600 MIPS left for processing on the 
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CPE fog due to the power consumption of the fog switch and the processing 

inefficiency, the model fully packed the IoT source node instead.  

 

 

 

 

 

 

 

 

5.5.2 Scenario #2: Five active IoTs in the same group    

In this scenario, the power savings introduced by service splitting is very 

limited as shown in Figure 5.12. This is largely due to the capacity limitations 

placed on the CPE fog coupled with the inflexibility posed by the restriction of 

service splitting. For example at 4000 MIPS, the total demand is 20,000, 

Figure 5.11 Workload Distribution in Scenario #1 at Different Values of K. 
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Figure 5.10 Total Power Consumption of the Distributed Approach at 

Various Values of K. 
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although the IoT devices’ capacity in total can accommodate the total 

workload however this would mean the value of K to be increased to 12, 

provided that 9000 MIPS was host at the CPE fogs and the remaining 11,000 

MIPS was subdivided among the IoTs, hence K = 12. 

Interestingly, as shown in Figure 5.13, after the total capacity of the IoT source 

nodes’ group is depleted (4000 MIPS and beyond), the case for service 

splitting becomes irrelevant as the model always allocates the workload to the 

metro fog server as activating multiple CPE fogs would incur high costs due 

to high power consumption of ONU devices. 
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Figure 5.12 Total Power Consumption of the Distributed Approach at 

Various Values of K. 

Figure 5.13 Workload Distribution in Scenario #2 at Different Values of K. 



 

107 

5.5.3 Scenario #3: Four active IoTs, one per group 

 

The trends in this scenario remain relatively unchanged except for the fact that 

service splitting is utilised only because the IoT source nodes are from 

different groups, and the ONU devices would need to be turned on anyway to 

get to the metro fog, hence CPE fogs attached to the ONUs are used due to 

their low idle power compared to the metro fog server. This observation was 

established in the previous scenario in Figure 5.13 at 4000 MIPS, where only 

the metro fog server was used, compared to 4000 MIPS in this scenario where 

the workload is processed between the IoT nodes and CPE fogs. In this 

scenario, a total saving of 56% was achieved with service splitting value K >3 

as opposed to 33% with no service splits K = 1, as highlighted in Figure 5.14. 

As mentioned previously, this large saving is the difference between the idle 

power of the metro fog server and the smaller devices like the ONUs and the 

CPE fogs. However, we have already established that, when the workload is 

increased, the processing per instruction at the metro fog compensates for the 

idle power of its server, hence all workloads are processed at the metro fog 

as can be seen in Figure 5.14. 

 

 

 

 

 

 

 

 

 

Figure 5.14 Total Power Consumption of the Distributed Approach at 

Various Values of K. 
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5.5.4 Scenario #4: Twenty active IoTs    

In this scenario, similar to the case K = 1, service splitting is predominantly 

irrelevant, except in rare circumstances such the scenario at 4000 MIPS at 

K>1, a total of 80,000 MIPS is demanded by the source nodes and if all of this 

was to be processed on the metro fog, it would require two servers, hence, in 

this case, the metro fog server is fully packed and the remaining workload 

(6560 MIPS) is processed on source nodes’ local CPUs. Thus, as shown in 

Figure 5.16, service splitting at K>1 introduces total savings of up to 18% 

compared to 0% with no service splitting (K = 1) as the solution was the same 

as the baseline in this instance. Similar to the observations obtained in the un-

capacitated case, the metro fog and the cloud are largely the best choices, 

respectively, when the workload is too high.  

 

 

Figure 5.15 Workload Distribution in Scenario #3 at Different Values of K. 
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5.6 Impact of the SP-DC in Un/Capaciated Design 

 
It is of interest to investigate whether service splitting influences the decision 

of utilising the highly energy efficient SP-DC. The results indicated that service 

splitting did not have any influence on the decision of whether to utilise the  

SP-DC or not, in both cases the short term and long term design problems, 

i.e. capacitated and un-capacitated, respectively. This is consistent with the 

findings of chapter 4, for very high demand volumes, the cloud SP-DC 

produces significant savings as shown in Figure 5.18.   

Figure 5.17 Workload Distribution in Scenario #4 at Different Values of K. 
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Figure 5.16 Total Power Consumption of the Distributed Approach at 

Various Values of K. 
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5.7 Inter-Service Synchronisation Processing Overhead 

This section considers a scenario in which service splits incur an extra 

processing overhead due to synchronisation between the subtasks of the 

service in question, as depicted in Figure 5.20. The extra overhead only 

considers processing since the communication traffic power consumption is 

almost negligible in terms of its influence on decision making as network 

equipment idle power is 60% - 90% of the maximum power consumption. 
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Figure 5.18 Total Power Consumption of the Distributed Approach at 

Various Values of K. 

Figure 5.19 Workload Distribution in Scenario #4 at Different Values of K, when SP-DC 

deployed. 
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Figure 5.20 an example of synchronisation traffic between subtasks of an IoT service 

 

The power consumption evaluations within this section are based on several 

processing overheads due to synchronisation and these are ratios such as 

1%, 5% and 10%. From Chapter 5, the previously considered scenarios of 

active IoT devices such as Scenario #1, Scenario #2 and Scenario #3 were 

considered in the capacitated case, since the largest number of splits occurred 

in these scenarios where synchronisation overhead was not accounted for. 

Therefore, it is of interest to investigate the extent to which the synchronisation 

overhead impacts the decision in terms of making service splits.   

Before introducing the MILP model, the additional parameters and variables 

are defined as follows: 

Application Parameters:  

𝜙 Synchronisation traffic overhead ratio 

𝜙(𝑝) Synchronisation processing overhead ratio. 

𝑃𝑈𝐸𝑑 PUE of processing node 𝑑 ∈ 𝑃. 
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Variables:  

𝜆𝑑1𝑑2
𝑠  𝜆𝑑1𝑑2

𝑠 = 1, if there is synchronisation traffic overhead of service 

𝑠 ∈ 𝑆 between processing node 𝑑1 ∈ 𝑃 and 𝑑 2 ∈ 𝑃: 𝑑2 ≠ 𝑑1, 

otherwise 𝜆𝑑1𝑑2
𝑠 = 0. 

𝜆𝑑1𝑑2 Synchronisation traffic between processing nodes 𝑑1 ∈ 𝑃 and 

𝑑 2 ∈ 𝑃: 𝑑2 ≠ 𝑑1. 

𝜆𝑚𝑛
𝑑1𝑑2 Synchronisation traffic processing node 𝑑1 ∈ 𝑃 and 𝑑2 ∈

𝑃: 𝑑2 ≠ 𝑑1, traversing link 𝑚, 𝑛, where 𝑚 ∈ 𝑁 and 𝑛 ∈ 𝑁𝑚. 

𝜆𝑖
(𝑠𝑦𝑛𝑐)

 Synchronisation traffic on node 𝑖 ∈ 𝑁. 

𝜌𝑑1𝑑2
𝑠  Synchronisation processing demand of service 𝑠 ∈ 𝑆 between 

processing node 𝑑1 ∈ 𝑃 and 𝑑2 ∈ 𝑃. 

𝜌𝑠𝑑 Service processing demand of IoT source node 𝑠 ∈ 𝑆 hosted at 

processing device 𝑑 ∈ 𝑃. 

Ω𝑠𝑑 Ω𝑠𝑑 = 1, if service processing demand of IoT source node 𝑠 ∈ 𝑆 

is hosted at destination node 𝑑 ∈ 𝑃, otherwise  

Ω𝑠𝑑 = 0. 

𝒩𝑑
(𝑠𝑦𝑛𝑐)

 Number of processing servers activated for regular service 

request and synchronisation processing overhead at node 𝑑 ∈

𝑃.   

 

The total power consumption equations remain intact except for an 

additional equation which accounts for synchronisation processing overhead 

and this is defined as follows:  

Power Consumption of Synchronisation Overhead: 

 

∑ ∑ (𝜌𝑑1𝑑2
𝑠 𝑃𝑈𝐸𝑑2𝐸𝑖𝑑)

𝑑2∈𝑃:
𝑑2≠𝑑1

𝑠∈𝑆

 
(5.2) 
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Additional Constraints: 

 
 

∑ 𝜆𝑚𝑛
𝑑1𝑑2 − ∑ 𝜆𝑛𝑚

𝑑1𝑑2 = {
𝜆𝑑1𝑑2 𝑚 = 𝑑1

−𝜆𝑑1𝑑2 𝑚 = 𝑑2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑛∈𝑁𝑚𝑛∈𝑁𝑚

 

∀𝑑1 ∈ 𝑃, 𝑑2 ∈ 𝑃, 𝑚 ∈ 𝑁: 𝑑1 ≠ 𝑑2. 

(5.3) 

 

Constraint (5.3) conserves synchronisation traffic from source node to 

destination node in the topology depicted in Figure 3.2. It ensures that, the 

total incoming traffic at a node is equal to the total outgoing traffic of that node; 

unless the node in question is either the source node or the destination node 

 

𝜆𝑑1𝑑2
𝑠 ≤ Ω𝑠𝑑1 

∀𝑠 ∈ 𝑆, 𝑑1 ∈ 𝑃, 𝑑2 ∈ 𝑃: 𝑑1 ≠ 𝑑2  

(5.4) 

 

𝜆𝑑1𝑑2
𝑠 ≤ Ω𝑠𝑑2 

∀𝑠 ∈ 𝑆, 𝑑1 ∈ 𝑃, 𝑑2 ∈ 𝑃: 𝑑1 ≠ 𝑑2 

(5.5) 

𝜆𝑑1𝑑2
𝑠 ≥ (Ω𝑠𝑑1 + Ω𝑠𝑑2) − 1 

∀𝑠 ∈ 𝑆, 𝑑1 ∈ 𝑃, 𝑑2 ∈ 𝑃: 𝑑1 ≠ 𝑑2 

(5.6) 

Constraints (5.4) to (5.6) are used in the linearization of the product of binary 

variables Ω𝑠𝑑1 and Ω𝑠𝑑2 , where 𝑠 ∈ 𝑆  𝑑1 ∈ 𝑃 and 𝑑2 ∈ 𝑃: 𝑑2 ≠ 𝑑1. 

𝜌𝑑1𝑑2
𝑠 = 𝜆𝑑1𝑑2

𝑠 𝐷𝑠
(𝐶𝑃𝑈)

 𝜙 

∀𝑠 ∈ 𝑆, 𝑑1 ∈ 𝑃, 𝑑2 ∈ 𝑃: 𝑑1 ≠ 𝑑2 

(5.7) 
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Constraint (5.7) ensures that the total synchronisation processing overhead 

of the service source node 𝑠 ∈ 𝑆, between processing 𝑑1 ∈ 𝑃 and 𝑑2 ∈

𝑃: 𝑑2 ≠ 𝑑1 is realised. 

𝜆𝑖
(𝑠𝑦𝑛𝑐)

= ∑ ∑ 𝜆𝑚𝑛
𝑑1𝑑2

𝑑2∈𝑃:
𝑑2≠𝑑1

+

𝑑1∈𝑃

 ∑ ∑ 𝜆𝑛𝑚
𝑑1𝑚

𝑛∈𝑁𝑚:
𝑑1≠𝑚,𝑚∈𝑃

𝑑1∈𝑃

 

∀𝑚 ∈ 𝑁 

(5.8) 

Constraint (5.8) ensures that egress and ingress synchronisation traffic on 

node 𝑖 ∈ 𝑁 is accounted for. 

 

𝒩𝑑
(𝑠𝑦𝑛𝑐)

≥

(∑ 𝜌𝑠𝑑
𝑠∈𝑆 + ∑ ∑ 𝜌𝑑1𝑑2

𝑠
𝑑1∈𝑃:
𝑑1≠𝑑

𝑠∈𝑆 )

𝐶𝑑
(𝐶𝑃𝑈)

 
 

 

(5.9) 

Constraint (5.9) determines the number of servers required at processing 

node 𝑑 ∈ 𝑃.  

 

Constraint (5.9) ensures that the number of servers activated at a processing 

node 𝑑 ∈ 𝑃, does not exceed the maximum available number of servers in that 

node. 

 

𝒩𝑑
(𝑠𝑦𝑛𝑐)

≤ 𝒱𝑑 

∀𝑑 ∈ 𝑃 

(5.10) 

 

𝜆𝑑1𝑑2 =  ∑(𝜆𝑑1𝑑2
𝑠 𝐷𝑠

(𝐵𝑤)
)

𝑠∈𝑆

 

∀𝑑1 ∈ 𝑃, 𝑑2 ∈ 𝑃: 𝑑1 ≠ 𝑑2 

(5.12) 
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Constraint (5.12) ensures that the total communication demand between 

𝑑1 ∈ 𝑃 and 𝑑2 ∈ 𝑃, where 𝑑2 ≠ 𝑑1 is achieved. 

 

5.7.1 Scenario #1: A single active IoT    

 

As can be seen in previous subsections in Figure 5.10, the current scenario 

incurred the largest number of splits for a number of reasons: 1) due to the 

number of idle resources in the IoT and 2) the idle power consumption of the 

ONU devices. After having considered the processing overhead due to 

synchronisation, the results in Figure 5.21 indicate that, for low demand 

volumes such as 3000 MIPS as shown in Figure 5.22(a), service splitting is 

still favourable which can be related to the relatively higher idle power of the 

CPE fog server compared to that of the IoT devices. However, as shown in 

Figure 5.21(a), at 5000 MIPS and beyond, the trends observed indicate that 

synchronisation has a significant impact on the service placement decisions. 

For instance, at 5000 MIPS, the original solution with no overhead decided to 

split the total workload among the same group of IoTs, since there was enough 

capacity offered by IoT devices whereas the current solution has done the 

same number of splits but due to capacity limitations of the IoT devices 

(collectively), processing the extra workload due to overhead is done at the 

CPE fog (CF) as is one hope away.  The general trend shows that even at 

very small overhead ratios (e.g. 1%), service splitting, in the long run, is not 

an efficient choice as can be seen, with the increase in workload, the services 

are placed higher and higher up the network hierarchy.   
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Figure 5.21 Workload distribution at scenario #1 during (a) 1% overhead, (b) 5% overhead and (c) 10% overhead. 
(a) (b) (c) 

Figure 5.22 Total power consumption overhead at scenario #1 compared to the solution with no overhead (No_OH), during (a) 1% overhead, (b) 5% 

overhead and (c) 10% overhead. 

(a) (b) (c) 
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5.7.2 Scenario #2: Five active IoTs in the same group    

 

In this scenario, the number of active IoT’s have increased, hence the total 

workload has also increased. As can be seen in Figure 5.23(a), the number 

of service splits have dropped from 15 to 14 at an early stage, i.e. at 3000 

MIPS. This confirms the previous observations in scenario #1 that despite 

some overhead, for very low demands, service splitting, although marginal, it 

does still introduce savings in all cases as shown in Figure 5.24. Consistent 

with previous observations, the metro fog becomes the dominant choice due 

to its processing efficiency as this was the case before synchronisation 

overhead, if anything, synchronisation overhead will provide even further 

incentives to utilise the metro fog (MF). 

 



 

118 

 

 

 

 

 

 

 

IoT
CPE

AF
MF

GPDC

0

20000

40000

60000

M
IP

S 
P

ro
ce

ss
ed

 

IoT CPE AF MF GPDC

IoT
CPE

AF
MF

GPDC

0

20000

40000

60000

M
IP

S 
P

ro
ce

ss
ed

 
IoT CPE AF MF GPDC

IoT
CPE

AF
MF

GPDC

0

20000

40000

60000

1
0

0
0

3
0

0
0

5
0

0
0

7
0

0
0

9
0

0
0

M
IP

S 
P

ro
ce

ss
ed

 

IoT CPE AF MF GPDC

0

50

100

150

200

1000 3000 5000 7000 9000

To
ta

l P
o

w
er

 
C

o
n

cu
m

p
ti

o
n

 (
W

a
tt

s)

Workload Per IoT Task (MIPS)

S2_1%

No_OH

0

50

100

150

200

1000 3000 5000 7000 9000

To
ta

l P
o

w
er

 
C

o
n

cu
m

p
ti

o
n

 (
W

a
tt

s)

Workload Per IoT Task (MIPS)

S2_5%
No_OH

0

50

100

150

200

1000 3000 5000 7000 9000

To
ta

l P
o

w
er

 
C

o
n

cu
m

p
ti

o
n

 (
W

a
tt

s)

Workload Per IoT Task (MIPS)

S2_10%
No_OH

Figure 5.23 Workload distribution at scenario #2 during (a) 1% overhead, (b) 5% overhead and (c) 10% overhead. 

(a) (b) (c) 

(a) (b) (c) 

Figure 5.24 Total power consumption overhead at scenario #2 compared to the solution with no overhead (No_OH), during (a) 1% overhead, (b) 5% 

overhead and (c) 10% overhead 
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5.7.3 Scenario #3: Four active IoTs, one per group 

 

In this scenario, due to the distribution of the IoT source nodes, for low 

demand volumes with overheads of 5% and 10%, splitting is still favourable 

although the number of splits has decreased compared to the case with no 

synchronisation overheads as can be observed in Figure 5.26(a) and Figure 

5.26(b). This is largely due to the fact that, for an IoT source node to access 

another IoT device to process its request, an ONU device must be activated, 

hence utilising the CPE fog (CF) servers with larger capacity would be a better 

packing option as it will drop the number of splits.   
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Figure 5.26 Workload distribution at scenario #2 during (a) 3% overhead, (b) 5% overhead and (c) 10% overhead. 
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Figure 5.25 Total power consumption overhead at scenario #3 compared to the solution with no overhead (No_OH), during (a) 1% overhead, (b) 5% overhead 

and (c) 10% overhead. 
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5.8 Summary  

This chapter has extended the work carried out in Chapter 4 by investigating 

the impact service splitting introduces in terms of the improvement in the 

energy efficiency of the distributed processing approach. Two design 

problems were considered, 1) un-capacitated, and 2) capacitated, so that 

insight can be obtained for the problems that require short and long term 

solutions, respectively. In the un-capacitated case, it was found that service 

splitting did not improve the performance of the distributed approach largely 

due to the idle power consumptions associated with the ONUs and that of the 

CPE fog servers. It was observed that service splitting produced favourable 

savings for low workloads, given that subtasks were divided among the IoT 

devices that resided in the same group as the source(s), as this meant 

avoiding high idle power of the ONU devices.  

In general, for the un-capacitated case, we can conclude that, during 

very high workload volumes, processing on the CPE fog servers is not a good 

choice due to the idle power and processing inefficiency of these low power 

devices, hence, concentrating the workload in the more efficient metro fog 

was a better choice and this meant service splitting had no impact in this 

context. We also looked at the solution for a capacitated case (i.e. short term 

solution). The results showed that, during low workloads (i.e. scenario #1), 

service splitting achieved significant savings of up to 86% compared to 46% 

in the case where service splitting was not allowed (i.e. K=1); all compared to 

the baseline case where processing is all done in the cloud. However, for 

moderate workloads (i.e. scenario #3), savings due to service splitting 
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dropped down to 7%. This was due to the locations in which the source nodes 

where located, i.e. several ONU’s had to be activated to process the total 

demand. It was also confirmed that for very high workloads (i.e. scenario #4, 

at 4000 MIPS and beyond) service splitting did not have any influence on 

avoiding the distant SP-DC located in the core network, due to its highly 

energy efficient server. Having examined the aspect of distributed processing 

with and without service splitting, we can conclude that the fog approach 

improves energy efficiency significantly regardless of service splitting, 

however, the results have shown that the cloud is still relevant and may not 

be replaced entirely due to the processing efficiency of the cloud servers. 

Moreover, the results have shown that the inter-service 

synchronisation overhead between IoT subtasks has a great influence on the 

total number of service splits. However much insignificant the ratio of the 

processing overhead, the results showed that synchronisation processing 

overhead is not a trivial matter and hence much attention needs to paid to this 

area in order in order to make the best use of the resources that are available 

in the edge of the network. The impact of synchronisation processing 

overhead was evident in Scenario #1 which considered an overhead of only 

1%. For this scenario, in the case with no overheads, the most number of 

splits occurred, however, when 1% overhead was considered the maximum 

number of splits reduced from 3 to 2 for the lowest ends of the demands and 

for the higher demands this reduced to zero as processing demands in the 

Access Fog (AF) server was more energy efficient than splitting among the 

lower layers   
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Chapter 6 Resilient IoT Processing  

6.1 Introduction 

 

With the growing pervasiveness of the connected “objects” in our 

surroundings, the Internet of Things (IoT) becomes increasingly pertinent to 

our daily lives as it is expected to provide a myriad of applications ranging 

from manipulating simple sensors in a smart home to large scale industrial 

automation of industries and public utilities. Nevertheless, as these 

deployments are growing in scale and scope, our dependence on their proper 

performance is also increasing [115]. Oftentimes, the IoT objects are simple 

embedded systems that are inexpensive and disposable which can result in 

frequent failures and operational malfunctions. Thus, this poses several 

questions in terms of how to design such deployments that are resilient to 

failures.   

So far, in previous chapters, we have considered the IoT infrastructure 

to be in an ideal operational state, i.e, no failure consideration is taken into 

account, neither for links nor for nodes. The network survivability approaches 

for tackling failures are mainly grouped under two schemes: 1) protection and 

2) restoration. The former involves pre-emptive actions that are taken by 

network designers to be prepared for failures before they occur whilst the 

second approach deals with recovery options after a failure has already 

occurred, hence the term restoration [113]. This chapter is concerned with 

studying the power consumption overheads of a range of server protection 

approaches and draws comparisons with the baseline approach that does not 

take resilience into account.  
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Provisioning of resiliency is crucial, especially in an IoT-based surveillance 

application as any disruption in a node or link can lead to significant loss of 

intelligence that may be deemed too valuable by law enforcement agencies. 

In this direction, we aim to introduce resilience to server protection through 

the approach of node disjoint protection. This is where the primary and backup 

servers are placed at two nodes that are geographically apart, hence 

application services can be retained in case of any failure in the primary node. 

We have utilised the same architecture depicted in Figure 4.1 in our 

evaluations. Typically, there are three levels of server protection which are 

widely known as 1+1, 1:1 and 1:N. In the 1+1 case, it is assumed that for every 

primary server, an additional backup server is activated. Whereas in the 1:1 

case, the primary server is activated whilst the backup is on standby (i.e. 

consuming idle power only). Last but not least is the 1:N case in which a single 

secondary server can be shared as protection for multiple primary servers.  

These schemes all provide some level of resilience to a single node failure, 

however, the 1+1 approach provides the highest level of resilience as each 

task is replicated on a backup server and as soon as the primary server fails 

the intended application is redirected to the secondary server in real-time, 

hence, in this chapter 1+1 server protection is considered. In the following 

sections, the considered protection approach is evaluated in different 

scenarios in terms of the number and distribution of active IoTs.   
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6.2 Modification to the MILP Model 

To evaluate resilience, the MILP model introduced in Chapter 4 is considered. 

To apply the concept of resilience, the MILP model is modified to adapt to 

account for the additional variables that need to be incorporated.  

Here the modified variables appended to the original MILP model are 

introduced and redefined as follows:  

Variables: 

𝜆𝑝𝑠𝑑 Primary server traffic demand between IoT source node 𝑠 ∈ 𝑆 

and processing device 𝑑 ∈ 𝑃. 

𝜆𝑝𝑚𝑛
𝑠𝑑  Primary server traffic flow between IoT source node 𝑠 ∈ 𝑆  and 

processing device 𝑑 ∈ 𝑃, traversing link (𝑚, 𝑛), where  𝑚 ∈

𝑁, 𝑛 ∈ 𝑁𝑚. 

𝜆𝑑
(𝑝𝑏)

 Primary and backup servers’ traffic aggregated by node 𝑑 ∈ 𝑁.  

ℬ𝑚
(𝑝𝑏)

 ℬ𝑝𝑚 = 1, if network node 𝑚 ∈ 𝑁 is activated for primary or 

secondary server traffic, otherwise ℬ𝑝𝑚 = 0. 

𝜃𝑑
(𝑝𝑏)

 Primary server traffic in node 𝑑 ∈ 𝑃 for processing. 

𝜌𝑝𝑠𝑑 Primary server processing demand of IoT source node 𝑠 ∈ 𝑆 

hosted at processing device 𝑑 ∈ 𝑃. 

Ω𝑝𝑠𝑑 Ω𝑝𝑠𝑑 = 1, if primary server processing demand of IoT source 

node 𝑠 ∈ 𝑆 is hosted at destination node 𝑑 ∈ 𝑃, otherwise  

Ω𝑝𝑠𝑑 = 0. 



 

126 

Ω𝑝𝑑 Ω𝑝𝑑 = 1, if primary server processing node 𝑑 ∈ 𝑃 is activated, 

otherwise Ω𝑝𝑑 = 0. 

𝒩𝑑
(𝑝𝑏)

 Number of primary and backup processing servers activated at 

node 𝑑 ∈ 𝑃.   

𝒩𝑏𝑑 Number of backup processing servers activated at node 𝑑 ∈ 𝑃.   

𝜆𝑏𝑠𝑑 Backup server traffic demand between IoT source node 𝑠 ∈ 𝑆 

and processing device 𝑑 ∈ 𝑃. 

𝜆𝑏𝑚𝑛
𝑠𝑑  Backup server traffic flow between IoT source node 𝑠 ∈ 𝑆  and 

processing device 𝑑 ∈ 𝑃, traversing link (𝑚, 𝑛), where  𝑚 ∈

𝑁, 𝑛 ∈ 𝑁𝑚. 

Γ𝑚𝑛
(𝑝𝑏)

 Γ𝑚𝑛 = 1, if core network link 𝑚, 𝑛, where 𝑚 ∈ 𝐶, 𝑛 ∈ (𝑁𝑚 ∩ 𝐶) is 

activated for back server traffic, otherwise Γ𝑚𝑛 = 0.  

𝛾𝑏𝑑 𝛾𝑏𝑑 = 1, if network for primary server at processing node 𝑑 ∈ 𝑃 

is deactivated, otherwise 𝛾𝑏𝑑 = 0.   

𝜌𝑏𝑠𝑑 Backup server processing demand of IoT source node 𝑠 ∈ 𝑆 

hosted at processing device 𝑑 ∈ 𝑃. 

Ω𝑏𝑠𝑑 Ωb𝑠𝑑 = 1, if backup server processing demand of IoT source 

node 𝑠 ∈ 𝑆 is hosted at destination node 𝑑 ∈ 𝑃, otherwise  

Ωb𝑠𝑑 = 0. 

Ω𝑏𝑑 Ωb𝑑 = 1, if backup server processing node 𝑑 ∈ 𝑃 is activated, 

otherwise Ω𝑑 = 0. 
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𝑊𝑚𝑛
(𝑝𝑏)

 Number of wavelengths used in fibre link (𝑚, 𝑛), for primary and 

backup servers traffic in the core network, where link 𝑚, 𝑛 ∈ 𝐶. 

𝐹𝑚𝑛
(𝑝𝑏)

 Number of fibres used on link 𝑚, 𝑛 ∈ 𝐶, for primary and backup 

servers traffic in the core network 

𝐴𝑔𝑚
(𝑝𝑏)

 Number of aggregation router ports activated at IP node 𝑚 ∈ 𝐶, 

for primary and backup servers traffic in the core network 

 

The total power consumption of the entire IoT infrastructure depicted in Figure 

4.1 is divided into two parts: 1) Network Power Consumption and 2) 

Processing Power Consumption. Following subsections contain a detailed 

breakdown of these power consumptions: 

Under the non-bypass light path approach, the IP/WDM total network power 

consumption is composed of: 

6.2.1 Network Power Consumption 

1) The power consumption of router ports: 

 

 

 

 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) ( ∑ (𝐸𝑏(𝑟)𝜆𝑑
(𝑝𝑏)

)

𝑚∈𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑟) (𝐴𝑔𝑚
(𝑝𝑏)

+ ∑ 𝑊𝑚𝑛
(𝑝𝑏)

𝑛∈(𝑁𝑚∩𝐶)

)) 

𝑚∈𝐶

) 

(6.1) 
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2) The power consumption of transponders: 

 

1) The power consumption of EDFAs: 

3) The power consumption of optical switches: 

4) The power consumption of regenerators: 

 

 

 

 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) ( ∑ (𝐸𝑏(𝑡)𝜆𝑑
(𝑝𝑏)

)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑡)𝑊𝑚𝑛
(𝑝𝑏)

)

𝑛∈(𝑁𝑚∩𝐶)𝑚∈𝐶

) 
         (6.2) 

 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) ( ∑ (𝜆𝑚
(𝑝𝑏)

𝐴𝑚𝑛𝐹𝑚𝑛
(𝑝𝑏)

)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑒)𝐴𝑚𝑛𝐹𝑚𝑛
(𝑝𝑏)

)

𝑛∈(𝑁𝑚∩𝐶)

  

𝑚∈𝐶

) 

(6.3) 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) ( ∑ (𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑜)ℬ𝑚
(𝑝𝑏)

)

𝑚∈𝐶

) (6.4) 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) ( ∑ (𝜆𝑚
(𝑝𝑏)

𝑅𝑔𝑚𝑛𝑊𝑚𝑛
(𝑝𝑏)

)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑟𝑔) 𝑅𝑔𝑚𝑛𝑊𝑚𝑛
(𝑝𝑏)

)

𝑛∈(𝑁𝑚∩𝐶)

  

𝑚∈𝐶

) 

(6.5) 
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The metro network’s power consumption  is composed of: 

 

The access network’s power consumption consists of the power consumption 

of OLT and ONU devices, which is given as: 

The IoT devices’ communication interfaces power consumption is given as:  

𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜) (( ∑ (𝐸𝑏(𝑀𝑅)𝜆𝑚
(𝑝𝑏)

ℛ)

𝑚∈𝑀(𝑅)

+ ∑ (ℬ𝑚
(𝑝𝑏)

𝑃𝑖𝑑𝑙𝑒(𝑀𝑅)ℛ)

𝑚∈𝑀(𝑅)

  )

+ ( ∑ (𝐸𝑏(𝑀𝑆𝑤)𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝑀(𝑆𝑤)

+ ∑ (ℬ𝑚 
(𝑝𝑏)

𝑃𝑖𝑑𝑙𝑒(𝑀𝑆𝑤))

𝑚∈𝑀(𝑅)

  )) 

(6.6) 

𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠) ( ∑ (𝐸𝑏(𝑂𝐿𝑇)𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝑂𝐿𝑇

+ ∑ (ℬ𝑚
(𝑝𝑏)

𝑃𝑖𝑑𝑙𝑒(𝑂𝐿𝑇))

𝑚∈𝑂𝐿𝑇

  )

+  ( ∑ (𝐸𝑏(𝑂𝑁𝑈)𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝑂𝑁𝑈

+ ∑ (ℬ𝑚
(𝑝𝑏)

𝑃𝑖𝑑𝑙𝑒(𝑂𝑁𝑈))

𝑚∈𝑂𝑁𝑈

  )  

(6.7) 

∑ (𝐸𝑏(𝑇𝑥𝑅𝑥)𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝐼

+ ∑ ℬ𝑚
(𝑝𝑏)

𝑃𝑖𝑑𝑙𝑒(𝑇𝑥𝑅𝑥)

𝑚∈𝐼 

  
(6.8) 
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6.2.2 Processing Power Consumption  

The total power consumption of the processing devices (or servers) is 

composed of: 

1) The processing power consumption of IoT devices:  

 

∑ ∑(𝐸𝑖𝑑(𝜌𝑝𝑠𝑑 + 𝜌𝑏𝑠𝑑))

𝑑∈𝐼𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

𝒩𝑑
(𝑝𝑏)

)

𝑑∈𝐼 

 
(6.9) 

 

2) The processing power consumption of CPE fog  (CF) servers: 

∑ ∑ (𝐸𝑖𝑑(𝜌𝑝𝑠𝑑 + 𝜌𝑏𝑠𝑑))

𝑑∈𝑂𝑁𝑈𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

𝒩𝑑
(𝑝𝑏)

)

𝑑∈𝑂𝑁𝑈 

 
(6.10) 

 

3) The processing power consumption of access fog (AF) servers: 

𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠) (∑ ∑ (𝐸𝑖𝑑(𝜌𝑝𝑠𝑑 + 𝜌𝑏𝑠𝑑))

𝑑∈𝑂𝐿𝑇𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

𝒩𝑑
(𝑝𝑏)

)

𝑑∈𝑂𝐿𝑇 

) 

 

(6.11) 
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4) The processing power consumption of metro fog (MF) servers: 

𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜) (∑ ∑ (𝐸𝑖𝑑(𝜌𝑝𝑠𝑑 + 𝜌𝑏𝑠𝑑))

𝑑∈𝑀(𝑆𝑤)𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

𝒩𝑑
(𝑝𝑏)

)

𝑑∈𝑀(𝑆𝑤) 

) 

(6.12) 

 

5)   The processing power consumption of cloud DC servers 

  

𝑃𝑈𝐸(𝑑𝑐) (∑ ∑ (𝐸𝑖𝑑(𝜌𝑝𝑠𝑑 + 𝜌𝑏𝑠𝑑))

𝑑∈𝐷𝐶𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

𝒩𝑑
(𝑝𝑏)

)

𝑑∈𝐷𝐶 

) (6.13) 

 

6.2.3 Power Consumption of Network inside Processing Nodes 

The cloud DCs network power consumption is composed of the power 

consumption of cloud DC routers and switches: 

 

 

𝑃𝑈𝐸(𝐷𝐶) (( ∑ (𝐸𝑏(𝐷𝑐𝑆𝑤)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝐷𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑆𝑤)Ω𝑝𝑑) 

𝑑∈𝐷𝐶

)

+  ( ∑ (𝐸𝑏(𝐷𝑐𝑅)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝐷𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑅) Ω𝑝𝑑)

𝑚∈𝐷𝐶

)

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑅) 𝛾𝑝𝑑)

𝑚∈𝐷𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑆𝑤) 𝛾𝑝𝑑)

𝑚∈𝐷𝐶

) 

(6.14) 
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The metro fog network power consumption of metro fog routers and 

switches is given as: 

The access fog network power consumption of access fog routers and 

switches is given as: 

 

 

𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜) (( ∑ (𝐸𝑏(𝑀𝑓𝑅)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝑀(𝑆𝑤)

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑅)Ω𝑝𝑑)

𝑚∈𝑀(𝑆𝑤)

  )

+ ( ∑ (𝐸𝑏(𝑀𝑓𝑆𝑤)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝑀(𝑆𝑤)

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑆𝑤))

𝑑∈𝑀(𝑆𝑤)

Ω𝑝𝑑)

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑅) 𝛾𝑝𝑑)

𝑚∈𝑀(𝑆𝑤)

+  ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑆𝑤) 𝛾𝑝𝑑)

𝑚∈𝑀(𝑆𝑤)

) 

 

(6.15) 

𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠) ( ∑ (𝐸𝑏(𝐴𝑓𝑅)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝑂𝐿𝑇

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑅)Ω𝑝𝑑) +  ∑ (𝐸𝑏(𝐴𝑓𝑆𝑤)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝑂𝐿𝑇𝑑∈𝑂𝐿𝑇

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑆𝑤)γ𝑝𝑑) + ∑ (𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑅)γ𝑝𝑑)

𝑑∈𝑂𝐿𝑇 𝑑∈𝑂𝐿𝑇 

) 

(6.16) 
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The CPE fog network power consumption of CPE fog switches is given as: 

∑ (𝐸𝑏(𝑐𝑝𝑒𝑓𝑆𝑤)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝑂𝑁𝑈

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑐𝑝𝑒𝑓𝑆𝑤) Ω𝑝𝑑)

𝑑∈𝑂𝑁𝑈 

+  ∑ (𝑃𝑖𝑑𝑙𝑒(𝑐𝑝𝑒𝑓𝑆𝑤) 𝛾𝑝𝑑)

𝑑∈𝑂𝑁𝑈 

 

(6.17) 

 

The MILP model’s objective function is given as follows: 

Objective 

Minimise total power consumption: 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) [ ∑ (𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑟) (𝐴𝑔𝑚
(𝑝𝑏)

+ ∑ 𝑊𝑚𝑛
(𝑝𝑏)

𝑛∈(𝑁𝑚∩𝐶)

)) 

 
𝑚∈𝐶

] + 

 (6.18) 

 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) [( ∑ (𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑡)𝑊𝑚𝑛
(𝑝𝑏)

)

𝑛∈(𝑁𝑚∩𝐶)𝑚∈𝐶

)] + 
 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) [( ∑ (𝜆𝑚
(𝑝𝑏)

𝐴𝑚𝑛𝐹𝑚𝑛
(𝑝𝑏)

)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑒)𝐴𝑚𝑛𝐹𝑚𝑛
(𝑝𝑏)

)

𝑛∈(𝑁𝑚∩𝐶)

  

𝑚∈𝐶

)] + 

𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) [( ∑ (𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑜)ℬ𝑚
(𝑝𝑏)

)

𝑚∈𝐶

)] +  
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𝑃𝑈𝐸(𝑐𝑜𝑟𝑒) [ ∑ (𝜆𝑚
(𝑝𝑏)

𝑅𝑔𝑚𝑛𝑊𝑚𝑛
(𝑝𝑏)

)

𝑚∈𝐶

+ ∑ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑟𝑔) 𝑅𝑔𝑚𝑛𝑊𝑚𝑛
(𝑝𝑏)

)

𝑛∈(𝑁𝑚∩𝐶)

  

𝑚∈𝐶

]

+ 𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜)  [ ∑ (𝐸𝑏(𝑀𝑅)𝜆𝑚
(𝑝𝑏)

ℛ)

𝑚∈𝑀(𝑅)

+ ∑ (ℬ𝑚
(𝑝𝑏)

𝑃𝑖𝑑𝑙𝑒(𝑀𝑅)ℛ)

𝑚∈𝑀(𝑅)

+  ∑ (𝐸𝑏(𝑀𝑆𝑤)𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝑀(𝑆𝑤)

+ ∑ (ℬ𝑚
(𝑝𝑏)

𝑃𝑖𝑑𝑙𝑒(𝑀𝑆𝑤))

𝑚∈𝑀(𝑅)

 ]

+  𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠)  [ ∑ (𝐸𝑏(𝑂𝐿𝑇)𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝑂𝐿𝑇

+ ∑ (ℬ 𝑚
(𝑝𝑏)

𝑃𝑖𝑑𝑙𝑒(𝑂𝐿𝑇))

𝑚∈𝑂𝐿𝑇

  ] +  

∑ (𝐸𝑏(𝑂𝑁𝑈)𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝑂𝑁𝑈

+ ∑ (ℬ𝑚
(𝑝𝑏)

𝑃𝑖𝑑𝑙𝑒(𝑂𝑁𝑈))

𝑚∈𝑂𝑁𝑈

+ ∑ (𝐸𝑏(𝑇𝑥𝑅𝑥)𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝐼

+  ∑ 𝑃𝑖𝑑𝑙𝑒(𝑇𝑥𝑅𝑥)ℬ𝑚
(𝑝𝑏)

𝑚∈𝐼 

+ ∑ ∑(𝐸𝑖𝑑(𝜌𝑝𝑠𝑑 + 𝜌𝑏𝑠𝑑))

𝑑∈𝐼𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

𝒩𝑑
(𝑝𝑏)

)

𝑑∈𝐼 

 

+  ∑ ∑ (𝐸𝑖𝑑(𝜌𝑝𝑠𝑑 + 𝜌𝑏𝑠𝑑))

𝑑∈𝑂𝑁𝑈𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

𝒩𝑑
(𝑝𝑏)

)

𝑑∈𝑂𝑁𝑈 
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+ 𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠) [∑ ∑ (𝐸𝑖𝑑(𝜌𝑝𝑠𝑑 + 𝜌𝑏𝑠𝑑))

𝑑∈𝑂𝐿𝑇𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

𝒩𝑑
(𝑝𝑏)

)

𝑑∈𝑂𝐿𝑇 

]

+  𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜) [∑ ∑ (𝐸𝑖𝑑(𝜌𝑝𝑠𝑑 + 𝜌𝑏𝑠𝑑))

𝑑∈𝑀𝑆𝑤𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

𝒩𝑑
(𝑝𝑏)

)

𝑑∈𝑀(𝑆𝑤) 

]

+ 𝑃𝑈𝐸(𝐷𝐶) [∑ ∑ (𝐸𝑖𝑑(𝜌𝑝𝑠𝑑 + 𝜌𝑏𝑠𝑑))

𝑑∈𝐷𝐶𝑠∈𝑆

+ ∑ (𝑃𝑖𝑑𝑙𝑒𝑑
(𝑐𝑝𝑢)

𝒩𝑑
(𝑝𝑏)

)

𝑑∈𝐷𝐶 

]

+ 𝑃𝑈𝐸(𝐷𝐶) [ ∑ (𝐸𝑏(𝐷𝑐𝑆𝑤)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝐷𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑆𝑤)Ω𝑝𝑑) + ∑ (𝐸𝑏(𝐷𝑐𝑅)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝐷𝐶𝑚∈𝐷𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑅) Ω𝑝𝑑) + ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑅) 𝛾𝑝𝑑)

𝑚∈𝐷𝐶𝑑∈𝐷𝐶

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝐷𝑐𝑆𝑤) 𝛾𝑝𝑑)

𝑚∈𝐷𝐶

]

+ 𝑃𝑈𝐸(𝑚𝑒𝑡𝑟𝑜) [ ∑ (𝐸𝑏(𝑀𝑓𝑅)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝑀(𝑆𝑤)

+  ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑅)Ω𝑝𝑑) +  ∑ (𝐸𝑏(𝑀𝑓𝑆𝑤)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝑀(𝑆𝑤)𝑑∈𝑀(𝑆𝑤)

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑆𝑤)Ω𝑝𝑑)

𝑑∈𝑀(𝑆𝑤)

  ] + ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑅) 𝛾𝑝𝑑)

𝑚∈𝑀(𝑆𝑤)

+  ∑ (𝑃𝑖𝑑𝑙𝑒(𝑀𝑓𝑆𝑤) 𝛾𝑝𝑑)

𝑚∈𝑀(𝑆𝑤)
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Subject to: 

Constraint (6.19) conserves primary server traffic from the source node to the 

destination node in the considered topology depicted Figure 4.1. It ensures 

that the total incoming traffic at a node is equal to the total outgoing traffic of 

that node; unless the node in question is either the source node or the 

destination node. 

 

+𝑃𝑈𝐸(𝑎𝑐𝑐𝑒𝑠𝑠) [ ∑ (𝜆𝑚
(𝑝𝑏)

)

𝑚∈𝑂𝐿𝑇

+ ∑ (ℬ𝑚
(𝑝𝑏)

𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑅))

𝑚∈𝑂𝐿𝑇

+  ∑ (𝐸𝑏(𝐴𝑓𝑆𝑤)𝜃𝑚
(𝑝𝑏)

)

𝑚∈𝑂𝐿𝑇

+  ∑ (ℬ𝑚
(𝑝𝑏)

𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑆𝑤))

𝑚∈𝑂𝐿𝑇 

+  ∑ (𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑆𝑤)γ𝑝𝑑) + ∑ (𝑃𝑖𝑑𝑙𝑒(𝐴𝑓𝑅)γ𝑝𝑑)

𝑑∈𝑂𝐿𝑇 𝑑∈𝑂𝐿𝑇 

 ]

+ ∑ (𝐸𝑏(𝑐𝑝𝑒𝑓𝑆𝑤)𝜃𝑑
(𝑝𝑏)

)

𝑑∈𝑂𝑁𝑈

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑐𝑝𝑒𝑓𝑆𝑤) Ω𝑑𝑑)

𝑑∈𝑂𝑁𝑈 

+ ∑ (𝑃𝑖𝑑𝑙𝑒(𝑐𝑝𝑒𝑓𝑆𝑤) 𝛾𝑝𝑑)

𝑑∈𝑂𝑁𝑈 

 

 

∑ 𝜆𝑝𝑚𝑛
𝑠𝑑 − ∑ 𝜆𝑝𝑛𝑚

𝑠𝑑 = {
𝜆𝑝𝑠𝑑 𝑚 = 𝑠

−𝜆𝑝𝑠𝑑 𝑚 = 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑛∈𝑁𝑚𝑛∈𝑁𝑚

 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃, 𝑚 ∈ 𝑁: 𝑠 ≠ 𝑑. 

(6.19) 
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Constraint (6.20) ensures that the primary processing task per IoT source 

node 𝑠 ∈ 𝑆 is met at a given destination node. 

 

Constraints (6.21) and (6.22) are used in the conversion of 𝜌𝑝𝑠𝑑  , where 𝑠 ∈ 𝑆 

and 𝑑 ∈ 𝑃 into its binary equivalence. When  𝜌𝑝𝑠𝑑 = 1, it indicates that source 

node 𝑠 ∈ 𝑆 is processing its primary server CPU task at destination node 𝑑 ∈

𝑃. 

Constraint (4.23) ensures that backup processing task per IoT source node 

𝑠 ∈ 𝑆 is met at a given destination node. 

 

 

∑ 𝜌𝑝𝑠𝑑 = 𝐷𝑠
(𝐶𝑃𝑈)

𝑑∈𝑃

 

∀𝑠 ∈ 𝑆 

(6.20) 

 

𝜌𝑝𝑠𝑑 ≥ Ω𝑝𝑠𝑑 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃  

(6.21) 

 

𝜌𝑝𝑠𝑑 ≤ 𝑀Ω𝑝𝑠𝑑 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃  

(6.22) 

 

∑ 𝜌𝑏𝑠𝑑 = 𝐷𝑠
(𝐶𝑃𝑈)

𝑑∈𝑃

 

∀𝑠 ∈ 𝑆 

(6.23) 
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Constraints (4.24) and (4.25) are used in the conversion of 𝜌𝑏𝑠𝑑  , (where 𝑠 ∈

𝑆 and 𝑑 ∈ 𝑃) into its binary equivalent. Here 𝜌𝑏𝑠𝑑 = 1, indicates that source 

node 𝑠 ∈ 𝑆 is processing its primary server CPU task at destination node 𝑑 ∈

𝑃. 

Constraint (6.26) conserves backup server traffic from the source node to the 

destination node in the considered topology. It ensures that the total incoming 

traffic at a node is equal to the total outgoing traffic of that node; unless the 

node in question is either the source node or the destination node. 

 

Constraint (6.27) ensures the total traffic demand of the primary server for 

each source node is met. The binary variable Ω𝑝𝑠𝑑 ensures that traffic is only 

directed to the destination node that is hosting a processing task.  

 

𝜌𝑏𝑠𝑑 ≥ Ω𝑏𝑠𝑑 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃  

(6.24) 

 

𝜌𝑏𝑠𝑑 ≤ 𝑀Ω𝑏𝑠𝑑 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃  

(6.25) 

 

∑ 𝜆𝑏𝑚𝑛
𝑠𝑑 − ∑ 𝜆𝑏𝑛𝑚

𝑠𝑑 = {
𝜆𝑏𝑠𝑑 𝑚 = 𝑠

−𝜆𝑏𝑠𝑑 𝑚 = 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑛∈𝑁𝑚𝑛∈𝑁𝑚

 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃, 𝑚 ∈ 𝑁: 𝑠 ≠ 𝑑. 

(6.26) 

𝜆𝑏(𝑠𝑑) = 𝐷𝑠
(𝐵𝑊)

Ω𝑏𝑠𝑑 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃  

(6.27) 
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Constraint (4.28) ensures primary and backup servers are geographically 

located in different processing node 𝑑 ∈ 𝑃. 

Constraint (4.29) ensures that primary servers’ processing tasks are placed 

at a single location only, hence, no service splitting is allowed. 

Constraint (4.30) ensures that backup servers’ processing tasks are placed 

at a single location only, hence, no service splitting is allowed. 

 

Constraint (4.31) determines the number of servers required at processing 

node 𝑑 ∈ 𝑃, in order to process the primary and back servers’ demands. 

 

(Ω𝑝𝑠𝑑 + Ω𝑏𝑠𝑑) ≤ 1 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃  

(6.28) 

 

∑ Ω𝑝𝑠𝑑 ≤

𝑑∈𝑃

1 

∀𝑠 ∈ 𝑆 

(6.29) 

 

∑ Ω𝑏𝑠𝑑 ≤

𝑑∈𝑃

1 

∀𝑠 ∈ 𝑆 

(6.30) 

 

𝒩𝑑
(𝑝𝑏)

≥ ∑
(𝜌𝑝𝑠𝑑 + 𝜌𝑏𝑠𝑑)

𝐶𝑑
(𝐶𝑃𝑈)

𝑠∈𝑆

 

∀𝑑 ∈ 𝑃 

(6.31) 
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Constraint (4.32) determines the number of backup servers required at 

processing node 𝑑 ∈ 𝑃. 

 

Constraint (4.33) ensures that the number of primary and backup servers 

activated at a processing node 𝑑 ∈ 𝑃, does not exceed the maximum available 

to that node. 

Constraints (4.34) and (4.35) are used to ensure that, the binary variable 

Ω𝑝𝑑 = 1 if primary processing server node 𝑑 ∈ 𝑃 is activated, otherwise Ω𝑝𝑑 =

0. 

𝒩𝑏𝑑 ≥ ∑
(𝜌𝑏𝑠𝑑)

𝐶𝑑
(𝐶𝑃𝑈)

𝑠∈𝑆

 

∀𝑑 ∈ 𝑃 

(6.32) 

𝒩𝑑
(𝑝𝑏)

≤ 𝒱𝑑 

∀𝑑 ∈ 𝑃 

(6.33) 

 

∑ Ω𝑝𝑠𝑑 ≥

𝑠∈𝐼

Ω𝑝𝑑 

∀𝑑 ∈ 𝑃 

(6.34) 

 

∑ Ω𝑝𝑠𝑑 ≤ 𝑀

𝑠∈𝐼

Ω𝑝𝑑 

∀𝑑 ∈ 𝑃 

(6.35) 

 

∑ Ω𝑏𝑠𝑑 ≥

𝑠∈𝐼

Ω𝑏𝑑 

∀𝑑 ∈ 𝑃 

(6.36)  
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Constraints (4.36)  and (6.37) ensure that, the binary variable Ω𝑏𝑑 = 1 if 

backup server processing node 𝑑 ∈ 𝑃 is activated, otherwise Ω𝑏𝑑 = 0.    

 

Constraints (6.38) to (6.40) are used in the linearization of the product of 

binary variables Ωbd and (1 − Ωpd), where 𝑑 ∈ 𝑃. The term (1 − Ω𝑝𝑑) ensures 

that, 𝛾𝑏𝑑 = 0, if primary server processing device 𝑑 ∈ 𝑃 is already activated, 

otherwise 𝛾𝑏𝑑 = 0. 

∑ Ωbsd ≤ M

s∈I

Ωbd 

∀d ∈ P 

(6.37) 

 

𝛾𝑏𝑑 ≤ Ω𝑏𝑑 

∀𝑑 ∈ 𝑃 

(6.38) 

 

𝛾𝑏𝑑 ≤ (1 − Ω𝑝𝑑) 

∀𝑑 ∈ 𝑃 

(6.39) 

 

𝛾𝑏𝑑 ≥ ((Ω𝑏𝑑 + (1 − Ω𝑝𝑑)) − 1) 

∀𝑑 ∈ 𝑃 

(6.40) 

 

𝜆𝑚
(𝑝𝑏)

= ∑ ∑ ∑ (𝜆𝑝𝑚𝑛
𝑠𝑑 + 𝜆𝑏𝑚𝑛

𝑠𝑑 )

𝑛∈𝑁𝑚𝑑∈𝑃𝑠∈𝑆:
𝑚=𝑠

  

∀𝑚 ∈ 𝑆 

 

(6.41) 
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Constraint (6.41) ensures that the total aggregate traffic on node 𝑚 ∈ 𝑆 is 

accounted for only when the source node is transmitting. Whilst constraint 

(6.42) ensures that, the aggregate traffic on node 𝑚 ∈ 𝑁,  where 𝑚 ∉ 𝐶, is only 

accounted for if the transmitting node 𝑚 ≠ 𝑠 is not the source of the traffic. 

Finally constraint (6.43) determines the aggregate traffic in the core network, 

given that the transmitting node 𝑚 ∈ 𝐶 is not equal to the source of the traffic 

node 𝑠 ∈ 𝑆.   

𝜆𝑚
(𝑝𝑏)

= ∑ ∑ ∑ (𝜆𝑝𝑛𝑚
𝑠𝑑 + 𝜆𝑏𝑛𝑚

𝑠𝑑 )

𝑛∈𝑁𝑚𝑑∈𝑃:
𝑠≠𝑑 

𝑠∈𝑆:
𝑚≠𝑠

  

∀𝑚 ∈ (𝐼 ∪ 𝑂𝐿𝑇 ∪ 𝑀(𝑆𝑤) ∪ 𝑀(𝑅) ∪ 𝐷𝐶) 

 

(6.42) 

 

𝜆𝑚
(𝑝𝑏)

= ∑ ∑ ∑ (𝜆𝑝𝑚𝑛
𝑠𝑑 + 𝜆𝑏𝑚𝑛

𝑠𝑑 )
𝑛∈𝑁𝑚:

  𝑛∈(𝑁𝑚∩𝐶)
𝑑∈𝑃:
𝑠≠𝑑 

𝑠∈𝑆

  

∀𝑚 ∈ 𝐶 

(6.43) 

 

𝜃𝑑
(𝑝𝑏)

≤ 𝑀Ω𝑝𝑑 

∀𝑑 ∈ 𝑃 

(6.44) 

 

𝜃𝑑
(𝑝𝑏)

≤ 𝜆𝑑
(𝑝𝑏)

∀𝑑 ∈ 𝑃 
(6.45) 

 

𝜃𝑑
(𝑝𝑏)

≥ 𝜆𝑑
(𝑝𝑏)

− (1 − Ω𝑝𝑑)𝑀 

∀𝑑 ∈ 𝑃 

(6.46) 
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Constraints (6.44) to (6.46) are used to linearise the product of binary variable 

Ω𝑝𝑑 and continuous non-negative variable 𝜆𝑑
(𝑝𝑏)

, where 𝑑 ∈ 𝑃. This ensures 

that traffic (of primary and backup servers) on a processing node 𝑑 ∈ 𝑃 is only 

accounted for if it is destined to that node for processing. 

Constraints (6.47) and (6.48) convert the continuous variable 𝜆𝑚
(𝑝𝑏)

, where 𝑚 ∈

𝑁 into its binary equivalent.  

 

Constraint (6.49) ensures that the total traffic demand of the primary server 

for each source node is met. The binary variable Ω𝑝𝑠𝑑, where 𝑠 ∈ 𝑆 and 𝑑 ∈

𝑃,  ensures that traffic is only directed to the destination node that is hosting a 

processing task.  

 

𝜆𝑚
(𝑝𝑏)

≥ ℬ𝑚
(𝑝𝑏)

 

∀𝑚 ∈ 𝑁 

(6.47) 

 

𝜆𝑚
(𝑝𝑏)

≤ 𝑀ℬ𝑚
(𝑝𝑏)

  

∀𝑚 ∈ 𝑁 

(6.48) 

 

𝜆𝑝𝑠𝑑 = 𝐷𝑠
(𝐵𝑊)

Ω𝑝𝑠𝑑 

∀𝑠 ∈ 𝑆, 𝑑 ∈ 𝑃  

(6.49) 

 

∑ ∑ (𝜆𝑝𝑚𝑛
𝑠𝑑 + 𝜆𝑏𝑚𝑛

𝑠𝑑 )
𝑑∈𝑃:
𝑠≠𝑑

 ≤

𝑠∈𝑆

 𝐶𝑚𝑛 

∀𝑚 ∈ (𝐼 ∪ 𝑂𝑁𝑈 ∪ 𝑂𝐿𝑇 ∪ 𝑀(𝑆𝑤) ∪ 𝑀(𝑅) ∪ 𝐷𝐶): 𝑛 ∈ 𝑁𝑚 

 

(6.50) 
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Constraint (6.50) ensures that the total traffic (primary and backup) carried on 

link 𝑚, 𝑛, in the metro, access, DC and IoT layers  do not exceed its capacity 

in Mbps.  

Constraint (6.51) gives the number of aggregation router ports for primary 

and backup server traffic at each IP/WDM node.  

 

Constraints (6.52) and (6.53) represent the physical link capacity of the 

IP/WDM optical links. Constraint (6.52) ensures that the total traffic of primary 

and backup server on a link does not exceed the capacity of a single 

wavelength while constraint (6.53) ensures the total number of wavelength 

channels does not exceed the capacity of a single fibre link.  

6.3 Power Consumption Evaluation Using MILP 

The power consumption of the resilient distributed processing approach is 

evaluated using the modified MILP. To carry out the evaluations, the same 

scenarios considered previously in Chapter 4 and Chapter 5 of active IoTs is 

𝐴𝑔𝑚
(𝑝𝑏)

≥
𝜆𝑚

(𝑝𝑏)

𝐵
 

∀𝑚 ∈ 𝐶 

(6.51) 

 

∑ ∑ (𝜆𝑝𝑚𝑛
𝑠𝑑 + 𝜆𝑏𝑚𝑛

𝑠𝑑 )
𝑑∈𝑃:
𝑠≠𝑑

 ≤ 𝑊𝑚𝑛
(𝑝𝑏)

𝐵 

𝑠∈𝑆

 

∀𝑚 ∈ 𝐶: 𝑛 ∈ (𝐶 ∩ 𝑁𝑚) 

(6.52) 

 

 

𝑊𝑚𝑛
(𝑝𝑏)

≤ 𝑊(𝑝𝑏)𝐹𝑚𝑛 

∀𝑚 ∈ 𝐶: 𝑛 ∈ (𝐶 ∩ 𝑁𝑚) 

(6.53) 
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considered: scenario #1, scenario #2, scenario #3 and scenario #4. The 

distributed processing architecture remains unchanged except for a minimal 

change in the core network layer in which an additional data centre (DC2) has 

been considered and is still a single hop from the aggregation core router port, 

as depicted in Figure 6.1.  

 The input parameters for the original MILP model remain the same 

however several additional assumptions must hold, which are defined as 

follows: 

 Idle power consumption of networking and processing devices must 

only be consumed once. e.g. if a device is already activated by a 

primary server, then the same device must not be accounted for by a 

backup server, and vice versa.   

 The infrastructure is said to be protected, only if, for every demand, the 

primary and backup servers are geographically apart, e.g. node 

disjoint. However, backup servers belonging to different demands can 

be placed in the same node.   

 The primary and backup servers per demand must remain intact, i.e. 

service splitting is not taken into account.  

 The performance of the evaluated scenarios are compared to their 

respective baselines which consider no protection, however, the 

service placement is optimised by MILP.  

 The design problem remains unchanged similar to the un-capacitated 

problem in Chapter 4. 

 The cloud data centres comprise of general purpose servers only.   
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6.3.1 Scenario #1: A single Active IoT 

Figure 6.2(a) shows the total power consumption of the 1+1 server protection 

in Scenario #1 in which only a single IoT device is active out the total 20 IoT 

devices. It can be seen that the largest power consumption overhead (in 

percentage) is incurred in the case where the demand is 1000 MIPS. This is 

understandable since, at that particular workload, the IoT source node 

processes its own demand locally in the baseline approach (the baseline 

approach has no protection) which results in very low power consumption. 

However, when protection is considered, it would mean that an ONU device 

is activated which has a relatively higher idle power compared to the IoT node, 

hence 350% overhead in the total power consumption for having server 

protection at this level. Perhaps if a more efficient communication link such as 

device to device (D2D) communication based on WiFi Direct was available in 

the IoT layer, this overhead could be greatly reduced, as the communication 

ONU device will not occur [129].  

 Similar to the results in Chapter 4, un-capacitated, scenario #1, the 

services are kept in the IoT and CPE fog (CF) layers due to the low volume of 

Figure 6.1 Additional DC Added to the Original Architecture. 

Data Centre 1
(DC1)

Traffic To/From Metro 
Network

Core Network

Data Centre 2
(DC2)

Metro
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workload, as shown in Figure 6.3. However, the difference, in this case, is that 

two types of traffic exist, primary and backup. If we take 1000 MIPS as an 

example, the model allocates the primary server onto the IoT source node 

whilst the backup server is offloaded to another IoT located in the same group 

via the ONU devices. Likewise, similar cases can be observed for workloads 

at 2000 MIPS and beyond but in the CPE fog layer instead. Due to the low 

volume of workload, activating multiple ONUs in different parts of the network 

is more efficient than activating the higher layer servers due to their high idle 

power consumption. Hence, power consumption overhead for such cases 

remains almost constant as the baseline approach provided the same 

solution.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.3 Primary and backup servers distribution in Scenario #1 
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Figure 6.2 (a) Total power consumption of 1+1 sever protection in Scenario #1 compared to the 

baseline, (b) power overhead in percentage for 1+1 protection compared to baseline, for 

the same scenario. 
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6.3.2 Scenario #2: Five active IoTs in the same group 

In this scenario, consistent with previous observations, Figure 6.4(b) shows 

that the greatest overhead occurs when protecting low workload volumes that 

are within the capacity of IoT devices since compared to the very low power 

consumption of the baseline, overheads are expected to be significant. Unlike 

scenario #1, as can be seen in Figure 6.4(b), overheads have only remained 

constant for workloads at 2000 MIPS to 4000 MIPS, at about 100%. This is 

because the baseline solution had chosen the same solution as the one in this 

scenario, which is to process both primary and backup traffic within the CPE 

fog layer. Compared with the next workload, at 6000 MIPS, the overheads 

drop slightly down to about 95%. This is attributed to the fact that in the 

baseline, for this workload, the metro fog server was wholly used whilst for the 

protection scenario, CPE fog servers were used in combination to host the 

primary servers. The same observation as above is made for workloads of 

8000 MIPS to  1000 MIPS, except that, the overhead is slightly greater than 

the scenario at 6000 MIPS due to the activation of the cloud data centre (DC1) 

in combination with metro fog (MF), again proving the cloud’s relevance for 

high workloads due to its efficiency, as shown in Figure 6.5 
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                    Figure 6.5 Primary and backup servers distribution in Scenario #2. 

 

 

6.3.3 Scenario #3: Three active IoTs, one per group 

In this scenario, due to the distribution of the IoT source nodes, the trends 

vary from scenario #2. As shown in Figure 6.7, for low demands at 1000 MIPS, 

the IoT layer is utilised to host both primary and secondary servers, since 

there is only a single active IoT per group, there is enough capacity to host 

both primary and secondary servers. Unlike scenario #2, when 5 active IoTs 

resided in the same group, the CPE fog was utilised to host the backup servers 

as this avoided going through the access network to access another IoT 

device in another group. Also for workloads of 9000 MIPS to 10,000 MIPS. As 

can be seen in Figure 6.7, the model makes use of the CPE fog servers in 
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addition to the access and metro fogs. The reason for this is that, since the 

IoT source nodes are no longer in the same group, e.g. 1 source node per 

ONU, it would make more sense to pack a single CPE fog server for each 

source node as the ONUs are already activated to gain access to the higher 

processing layers such as the access fog and metro fog.    

  

 

 

 

 

 

 

 

 

 

 

 

                    Figure 6.7 Primary and backup servers distribution in Scenario #3 
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Figure 6.6 (a) Total power consumption of 1+1 sever protection in Scenario #3 compared 

to the baseline, (b) power overhead in percentage for 1+1 protection compared to 

baseline, for the same scenario. 
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6.3.4 Scenario #4: Twenty active IoTs    

In accordance with the observations made previously, in the case of very high 

workload volumes, the cloud DCs seem to be predominantly favourable 

compared to the fog layer processing nodes, largely due to their processing 

efficiency and enormous computational resources they can provide. This 

raises the question of whether the savings introduced by distributed 

processing are still worthwhile with the current general purpose server 

specifications. Perhaps the only way the cloud’s intervention lessens is by 

having better and more powerful processing servers located in the edge of the 

network.  

 

 

 

                     

Figure 6.9 Primary and backup servers distribution in Scenario #4. 
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Figure 6.8 (a) Total power consumption of 1+1 sever protection in Scenario #4 compared 

to the baseline, (b) power overhead in percentage for 1+1 protection compared to 
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6.4 Summary  

This chapter has provided an overview of resilience in the context of IoT and 

the different levels of protection approaches that are typically offered in terms 

of server protection. The original MILP model was considered for evaluation 

and the additional modification to the variables and equations were redefined 

to account for the variations introduced by resilience. The power consumption 

overhead due to resilience was found to be significant in cases where the 

workload could be hosted in the IoT layer, due to the low power consumption 

of local computation and avoiding the activation of ONUs. In this regard, it was 

suggested that device to device communication could potentially be beneficial 

as communication can be achieved directly between the IoT devices instead 

of going through the ONU.  

Moreover, the observations made confirmed the relevance of the cloud 

datacentres during very high workload volumes. The results showed that, from 

an energy efficiency point of view, the fog layers had limited role to play in this 

case in hosting the primary and backup servers, since the processing 

efficiency offered by the cloud DC’s compensated for the network overhead 

incurred to get to them. Future work can introduce additional optimisation 

metrics such as latency alongside energy efficiency and this can modify the 

optimum server placement decisions. 
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Chapter 7 Conclusions and Future Research Directions 

 

This chapter outlines the main contributions that have been presented in this 

thesis. It also suggests possible research avenues and future directions in the 

area of IoT based distributed processing and energy efficiency.   

8.1 Conclusions  

This thesis addressed energy efficiency of distributed processing approaches 

for resource intensive visual-based processing services in the context of IoT. 

An enormous number of small-sized, intelligent and relatively powerful 

devices exist in the edge of the network, hence, collectively, these devices 

offer a massive pool of resources that can potentially ease the pressure on 

cloud data centres by processing sensed data close to the end-devices. In this 

direction, a distributed architecture has been used which is based on Passive 

Optical Networks (PONs) due to their suitability for high bit rate application 

services and their scalability which particularly fits well with massive IoT 

deployments. Several layers of processing were considered in the IoT-cloud 

continuum, along with emerging energy efficient special purpose data centres 

(SP-DCs) that are highly optimised to perform a specific task, hence, they can 

be much more efficient than their general purpose counterparts. 

Chapter 5 considers two design phases, a un-capacitated one which 

gives insights about long term network deployment and a capacitated one that 

is aimed at plans for the short term network deployment. Power consumption 

evaluations were undertaken using realistic input data from manufactures for 

the devices and equipment where possible. The application resource 
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characteristics such as processing requirement were based on representative 

data extracted from related work in the literature and an online tool was used 

as a guide to estimate traffic demands since processing and traffic were 

assumed to be proportional to each other. In the capacitated case, given, non-

splittable service tasks and for low workload volumes, significant energy 

savings of up to 90% were made compared to the conventional cloud due to 

local computation. However, for relatively higher workloads, the savings 

dropped down to 30% due to activation of the metro fog layer that utilises more 

powerful servers. As for the un-capacitated scenario, it was found that building 

too many small CPE fog servers was not a good option in the long run for high 

workload volumes and hence the cloud DC was used due to its server 

processing efficiency.  

Chapter 5 extended on the work in Chapter 4 by investigating the 

impact of service splitting on the reduction of power consumption. It was found 

that, in the short term, for low workloads such as scenario #1, a single IoT with 

3000 MIPS, the savings increased from 46% with no service splitting to 88% 

with service splitting. However as the workload increased, it was found that 

service splitting was only beneficial in limited circumstances such as 

processing parts of the given services locally in the IoT layer in order to 

prevent activation of additional servers in the upper layers such as the metro 

fog and the cloud. Hence, CPE fog and access fog layers had limited or no 

role to play due to their high processing inefficiency and PUE value, 

respectively.  Chapter 5 also investigates the impact of inter-service traffic 

processing overhead between the subtasks of a service request. A range of 

synchronisation processing overhead will be covered which includes 1%, 5%, 

10% and 20%. 
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In Chapter 6, we considered the impact of resilience on server 

protection and hence the original MILP model was modified to produce the 

results. It was found that the power consumption overhead due to resilience 

was significant in cases where the workload could be hosted in the IoT layer. 

Local computation in the baseline approach with no protection consumed 

negligible power compared to activating an ONU to locate the backup server 

to another processing location. Moreover, the observations made confirmed 

the relevance of the cloud datacentres during very high workload volumes. 

The results showed that the fog layers had limited role to play in hosting the 

primary and backup servers since the processing efficiency offered by the 

cloud DC’s compensated for the network overhead incurred to get to them.   

8.2 Future Research Directions 

The work in this thesis has tackled the challenging task of resource 

management in a highly heterogeneous distributed processing architecture 

such as the fog/edge processing layer. The findings of this study are key to 

more energy efficient network design architectures for resource intensive 

applications and lead to the following future research directions: 

1. IoT network scale and workload characteristics: The work in this 

thesis has considered a limited number of IoT devices due to the 

complexity of runtime which leads to large memory requirements 

when executing the MILP optimisation using AMPL. Moreover, results 

were based on a deterministic set of workloads which can be at times 

inaccurate measure of processing service patterns and traffic patterns 

in the real world. Future related work can consider larger scale IoT 
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networks along with the inclusion of the dynamic nature of workloads 

in practical circumstances.  

2. Network topology and link resilience: In the considered work, only 

the tree topology of PON was considered. It would be of interest to 

investigate other topologies such as the bus and ring topologies in 

particular as they allow interconnection of ONUs at the CPE layer. 

Moreover, different link protection schemes in the PON access layer 

can be considered. Link protection is particularly important in PON-

based mission-critical services, due to the point-to-multipoint feature 

of the PON. A single failure to OLT or a cut in feeder fibre can result 

in the disconnection of a large number of users.  

3. Delay in mission-critical applications: The main goal of fog 

computing/edge processing is to reduce the latency of mission-critical 

services in order to make better decisions closer to the source. Joint 

delay and power consumption MILP cost functions would provide 

further insights into the design and development of future IoT 

networks if optimised jointly.  

4. Renewable energy sources at fog sites: Incorporation of green 

energy at the edge of the network to focus on the reduction of CO2 

emissions is of particular interest. A MILP model for hybrid-power IoT 

processing applications can be utilised to maximise the use of green 

energy sources whilst minimising the non-green ones in the 

distributed processing approach. 

5. Practical implementation through development of heuristics: 

The solutions obtained from the MILP models can be approximated 

through the use of efficient heuristic algorithms that can mimic the 
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behaviour of the optimal cases, hence, this can sever two purposes; 

a) as a validation tool for the correctness of the MILP computation and 

b) as a practical tool that can be implemented into hardware. 
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