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Abstract

In the simplest sense, mixing acts on an initially heterogeneous sys-

tem, transforming it to a homogeneous state through the actions of

stirring and diffusion. The theory of dynamical systems has been suc-

cessful in improving understanding of underlying features in fluid mix-

ing, and how smooth stirring fields, coherent structures and bound-

aries affect mixing rates. The main stirring mechanism in fluids at

low Reynolds number is the stretching and folding of fluid elements,

although this is not the only mechanism to achieve complicated dy-

namics.

Mixing by cutting and shuffling occurs in many situations, for example

in micro–fluidic split and recombine flows, through the closing and re-

orientation of values in sink–source flows, and within the bulk flow of

granular material. The dynamics of this mixing mechanism are subtle

and not well understood. Here, mixing rates arising from fundamental

models capturing the essence of discontinuous, chaotic stirring with

diffusion are investigated.

In purely cutting and shuffling flows it is found that the number of

cuts introduced iteratively is the most important mechanism driv-

ing the approach to uniformity. A balance between cutting, shuffling

and diffusion achieves a long-time exponential mixing rate, but sim-

ilar mechanisms dominate the finite time mixing observed through

the interaction of many slowly decaying eigenfunctions. The time to

achieve a mixed condition varies polynomially with diffusivity rate

κ, obeying t ∝ κ−η. For the transformations meeting good stirring

criteria, η < 1. Considering the time to achieve a mixed condition

to be governed by a balance between cutting, shuffling, and diffusion

derives η ∼ 1/2, which shows good agreement with numerical results.

In stirring fields which are predominantly chaotic and exponentially

mixing, it is observed that the addition of discontinuous transforma-

tions contaminates mixing when the stretching rates are uniform, or



close to uniform. The contamination comes from an increase in scales

of the concentration field by the reassembly of striations when cut

and shuffled. Mixing stemming from this process is unpredictable,

and the discontinuities destroy the possibility to approximate early

mixing rates from stretching histories. A speed up in mixing rate can

be achieved if the discontinuity aids particle transport into islands of

the original transformation, or chops and rearranges large striations

generated from highly non-uniform stretching. The long-time mix-

ing rates and time to achieve a mixed condition are shown to behave

counter-intuitively when varying the diffusivity rate. A deceleration

of mixing with increasing diffusion coefficient is observed, sometimes

overshooting analytically derived bounds.
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of the dominant eigenfunctions v2 shown in Figure 6.14 for the

composition transformations Π ◦Mα
B with α = 0.4 and κ = 10−5.

Each plot represented a different permutation Π ∈ S3. A four de-

gree polynomial line of best fit is plotted, showing that dominating

scales in the eigenfunctions of the rotation permutations (left) are

at larger wavemodes than the interleaving permutations (right). . 184

xvii



LIST OF FIGURES
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Chapter 1

Introduction

Mixing is ubiquitous in a variety of natural, industrial and technological appli-

cations, therefore it is essential to understand the underlying mechanisms of the

process. In the simplest sense, the process of mixing can be divided into two

areas: stirring, which is the kinematic transport of two or more different materi-

als resulting in decreased segregation, and diffusion, which evens out gradients of

high and low concentrations on the molecular level, achieving equal distribution

in the long time.

The key stirring mechanism in fluid mixing is the stretching and folding of

fluid elements, where in high Reynolds number flows this is efficiently achieved

via turbulent eddies, or can be attained in laminar flows through specially pre-

scribed velocity fields with chaotic characteristics [Aref (1984)]. The limit of zero

Reynolds number allows kinematic transport in fluid flows to be modelled as a

dynamical system, for which there is a wealth of literature aiding the understand-

ing of observed mixing phenomena arising from particular underlying advective

dynamics. As well as highlighting which dynamical features result in efficient

stirring [Ottino (1989); Wiggins (2013)], or those which hinder particle transport

[Springham & Sturman (2014); Sturman & Springham (2013)], models of chaotic

advection have unearthed the driving mechanisms for rates of mixing to unifor-

mity from molecular diffusion [Antonsen Jr et al. (1996); Gouillart et al. (2008);

Haynes & Vanneste (2005)].

It is important to distinguish the dynamical mechanisms contributing to stir-

ring and mixing rates, since dominant characteristics leading to rapid or contam-

inated mixing may be easily identifiable in complex systems, which are difficult

to model as a whole. For example, identifying coherent structures and basins of

attraction in coarse grain models of the oceans informs the potential spread or
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CHAPTER 1. INTRODUCTION

Figure 1.1: Venn Diagram of mixing mechanisms. The highlighted regions show emerg-

ing topics of interest in the literature. The dark grey regions indicate the mixing

mechanisms of main interest in this thesis.

confinement of contaminants [Froyland et al. (2007)]. Additionally, knowledge of

stirring mechanisms can enhance mixing protocol designs without building and

testing many configurations. For example, boundaries have been shown to con-

taminate the approach to uniformity across the whole mixing domain, where slow

stretching caused by no-slip boundaries is injected into the bulk flow [Gouillart

et al. (2008); Sturman & Springham (2013)]. Rotating the walls and generating

a homoclinic orbit causes a barrier from contamination in the bulk flow and re-

achieves fast mixing rates [Gouillart et al. (2010); Thiffeault et al. (2011)]. Similar

knowledge of dynamical systems can be utilised to increase understanding and

innovation across a range of engineering and environmental mixing applications

saving considerable resources. Designing models which capture dominant mecha-

nisms of mixing, help isolate specific dynamical behaviours and aid in identifying

their contribution to overall particle transport organisation and mixing rates.

While stretching and folding is the dominant stirring mechanism in most fluid

flows, there are many stirring protocols where fluid material may also be cut,

shifted and shuffled. Employing moving stirrers may be infeasible in certain ap-

plications, due to the energetic cost in highly laminar flows, or if the material

being stirred consists of long, polymer chains which may be damaged in the pro-

cess [Priye et al. (2013)]. Split-and-recombine micro-mixers are configured to cut

and rearrange viscous fluid, increasing the number of striations and encouraging

the approach to uniformity [Schönfeld et al. (2004)]. Likewise, chaotic trajecto-
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ries can be implemented via pressure differences caused from the subtraction and

re-injection of fluid using syringes [Cola (2004)]. Reorientation of the syringes

creates time dependence, essential to establishing chaos, and discontinuities in-

troduced on the closing and opening of valves. Similarly, granular material in

tumblers possess both stirring mechanisms of stretching and folding, and cut-

ting and shuffling [Sturman et al. (2008)]. Shearing occurs in a flowing layer at

the surface, while cutting and shuffling stirs the bulk material, which is in solid

body rotation with the tumbler walls. While discontinuous mixing arises in many

systems, there is little understanding of the impact discontinuities have on fluid

transport and the resulting homogenization in fluid mixing.

A fairly new area of research in dynamical systems is the study of piecewise

isometries (PWIs), associated with transformations constructed entirely from

translations, rotations and re-orientations [Goetz (1998, 2000)]. Although lack-

ing exponential separation of near-by trajectories, the hallmark of chaos, PWIs

can generate complex structures such as fractal coverings of coding partitions

[Goetz (2003)]. Although PWIs do not contain the main mechanism of fluid stir-

ring, stretching and folding, cutting and shuffling of finite pieces can decrease

segregation and increase material interface. This was observed in PWI models

of idealised granular tumbler flow with a vanishing shearing layer [Juarez et al.

(2010)].

More recently, interest has grown in understanding particle transport organi-

sation in combined systems of stretching and folding, and cutting and shuffling.

Models investigating the cut-dominated limit in reorientated dipole flows with

slip deformations identified novel possibilities for particle transport, not attain-

able in smoothly deforming Hamiltonian systems [Smith et al. (2016)]. When

measuring the rate of decrease in the scale of segregation [Smith et al. (2017b)]

it was observed that typically a decrease in the speed of stirring occurs from the

presence of cutting and shuffling, compared to uniform stretching acting alone.

This was also seen in uniformly expanding maps composed with permutations

[Byott et al. (2013, 2016)]

However, the impact of discontinuities on the complete composition of mixing

mechanisms has not been investigated, since in these studies the approach to

uniformity from the action of diffusion has been neglected. A handful of studies

have considered mixing rates arising in one-dimensional PWIs with a diffusive

step, and find that discontinuous transformations mix faster than pure diffusion
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alone [Ashwin et al. (2002)], and universality in mixing rates emerges under time-

rescaling [Wang & Christov (2018)].

However, none of these investigations attempt to quantify the effect differ-

ent stirring parameters have on the rates of mixing. Additionally, completely

overlooked in the literature is the combined mechanisms of stretching and fold-

ing, cutting and shuffling, and diffusion. Figure 1.1 illustrates a Venn diagram

of these three, distinct mechanism of mixing, and highlights the overlaps which

have received little or no attention. The dark grey regions indicate the overlaps

which are the focus of this thesis.

The aim of this thesis is to illuminate the impact discontinuous particle trans-

port has on the rates of mixing of passive scalar fields in their approach to ho-

mogenization. Simplified models capturing the essence of the three mixing mech-

anisms are devised, in which the stirring dynamics are wholly comprehensive,

aiding understanding on the mixing dynamics observed on the inclusion of diffu-

sion. The models take the form of one and two-dimensional discrete time maps,

which present themselves as ideal models to address the aim since they possess

the following advantages.

1. Dynamical maps are a populated area of research, with many analytical

and computational studies to draw upon.

2. The devised maps can be reformulated in terms of their transfer operators,

which describe the evolution of typical densities and concentration fields.

This allows comment on the typical mixing behaviours which would be

expected.

3. Derivation of transfer operators allows diffusion effects to be captured via

numerically accurate computational methods.

The points (1-3) are employed in each results chapter, which individually inves-

tigate the rates of mixing arising from a specific composition of discontinuous

stirring dynamics with diffusion.

Chapter 2 reviews the relevant literature and introduces the computational

methodologies used throughout the thesis. In Chapter 3 there is a short presen-

tation on mixing rates from a range of dynamics in smooth stirring velocity fields

with diffusion. This is presented to allow a direct comparison with the results

reported for discontinuously stirred velocity fields. The main results chapters
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begin with Chapter 4, which investigates the rates of mixing in cutting and shuf-

fling transformations with a diffusive step. The effect of stirring parameters is

discussed, and a scaling law between the time to achieve a mixed condition and

the rate of diffusivity found. Next, advection governed by the composition of

uniform stretching with cutting, shuffling and diffusion in explored in Chapter 5.

A deceleration of mixing rates is observed, both via the addition of discontinuous

transformations, and counter intuitively, increasing the rate of diffusion. The

latter result is informed by analytical mixing rates for the diffusion-less limit.

Whether discontinuous stirring protocols can be used to speed up, or hinder mix-

ing rates in non-uniform hyperbolic maps is discussed in Chapter 6. A direct com-

parison to mixing phenomena arising from non-uniform stretching rates increases

understanding of the driving mechanisms governing mixing is discontinuous trans-

formations. In Chapters 4, 5, and 6, the models are one-dimensional, therefore

an extension investigating mixing in two-dimensional discontinuous models is in-

troduced in Chapter 7. It is revealed that the driving mechanisms of mixing

observed in the one-dimensional models operate in higher dimensions. The key

conclusions of the thesis are summarised in Chapter 8, with a discussion of future

research directions.
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Chapter 2

Literature Review

Mixing occurs in a variety of natural, industrial and technological applications:

from something as simple as stirring milk into tea, to the transfer of heat through

the Earth’s atmosphere via jet streams. In addition to fluid mixing, mixing can

occur in particle laden flows, such as granular material in tumblers. In a tum-

bler, granular material will rotate in solid body rotation with the tumbler walls

while a flowing layer exhibits shearing, intrinsic to fluid mixing. The diversity of

applications means that there are many approaches which are used to study such

flows, however we can ask questions which are central to all problems to help

quantify and predict the amount of mixing that occurs in each scenario.

Dynamical systems captures the kinematic behaviour of mixing, describing

fluid particle transport from the action of stirring and has uncovered fundamental

mechanisms which control rates of mixing. However, stirring is unlikely to occur

in isolation and processes such as molecular diffusion, chemical reactions, and

particle-particle interaction, assist homogenization and uniformity in the long

time. Understanding the evolution of typical initial concentration fields under the

combination of these processes will lead to a more comprehensive understanding

of mixing.

In this chapter literature is reviewed with covers a large breadth of methods

used to investigate the driving mechanisms behind rates of mixing in models of

fluid and granular mixing. In Section 2.1, mixing is described in the simplest

sense, as a process leading to homogenization in the long-time limit from the

actions of advection and diffusion. Non-dimensional scaling numbers are intro-

duced characterising fluid flow properties. In Section 2.2 the concept of chaotic

advection is introduced, a term originated by Aref (1984), who discovered effi-

cient stirring could be generated in unsteady laminar flows. By analysing the
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velocity field as a dynamical system with chaotic trajectories, the relevant theory

is introduced to determine if a chaotic system has good mixing properties via the

ergodic hierarchy. A reduction of continuous time flows to discrete time maps is

a simplification which captures time periodic mixing protocols.

The limitations of including diffusion using standard computational approaches

is discussed in Section 2.3, accompanied by dynamical methods to include diffu-

sion via discrete time maps. The relevant theory of transfer operators to predict

typical asymptotic mixing rates is introduced. In Section 2.4 methods to measure

mixing when there is stirring alone, alongside standard functional norms used in

models with molecular diffusion are introduced.

Section 2.5 reviews key results from studies covering a combination of chaotic

advection and diffusion. The impact of non-uniformity in the stretching rates

of the flow field, non-mixing regions, and the effect of parabolic points due to

boundaries are discussed. Section 2.6 introduces discontinuous transformations

and mixing applications in which discontinuities arise. Analytical results from

piecewise isometric transformations are given, which do not include material de-

formation by shearing, a hallmark of chaotic advection. A discussion on the

handful of studies concerned with pair-wise combinations of the mixing mech-

anisms, stretching and folding, cutting and shuffling, and molecular diffusion,

concludes the review.

2.1 Mixing and Applications

2.1.1 Advection-diffusion equation

Mixing is a mechanical or natural processes acting on an initially heterogeneous

system, transforming it to a homogeneous state. A requirement for homegeniza-

tion are mechanisms such as molecular diffusion or chemical reaction, encouraged

by the kinematic action of stirring from an applied or incidental velocity field.

Ignoring chemical reactions and additional effects on the velocity, such as heat

transport, the simplest way to capture mixing of a passive concentration field is

via the advection-diffusion equation

∂c

∂t
+ u(x, t) · ∇c(x, t) = κ∇2c(x, t). (2.1)

The constant κ represents the diffusion coefficient and u the underlying velocity

field. If the flow is incompressible then the velocity field u satisfies ∇ · u = 0.
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Throughout this work pure advection (κ = 0) will be referred to as stirring,

while the term mixing is reserved for the process of homogenization from the

dual actions of stirring and diffusion (κ 6= 0).

Defining the average 〈c〉 as the average of c(x) over a fixed domain of interest

Ω,

〈c〉 =
1

Ω

∫
Ω

c(x)dΩ (2.2)

then if the domain Ω has periodic boundary conditions, it can be shown from

(2.1) that

∂t〈c〉 = 0, (2.3)

and average of c is conserved. The variance, defined ψ = 〈c2〉 − 〈c〉2, evolves in

time as

∂tψ = −2κ〈|∇c|2〉, (2.4)

which implies ψ → 0 when κ is non-zero. Note that the velocity field u is no

longer represented, instead the gradients |∇c| of the concentration field govern

decrease in ψ. However it is precisely the velocity field which generates these

necessary gradients for faster decay. Shearing in a velocity field filaments initially

concentrated regions, with continued stirring reducing the lengths scales across

widths of these filaments, increasing the surface area of material interface, and

consequently increasing gradients. A good outline to these ideas is given by

Thiffeault (2008).

Therefore the primary interest when wanting to achieve good mixing is to

understand how certain flow features of an underlying velocity field lead to effi-

cient growth in gradients in a concentration field. Eliminating barriers to mixing

or optimizing mixing with fixed energetic cost is the motivation behind many

studies. However, idealised systems can be devised where specific kinematic dy-

namics of the velocity field are isolated with the potential for analytic results to

inform observations of mixing rates. The applicability of results to a wide range

of applications can be quantified by dimensionless numbers capturing the ratios

of fluid properties.

2.1.2 Scaling numbers

Flow dynamics and their effect on mixing can be generalised across a range of ap-

plications, comparing length and time scales with fluid properties via dimension-

less ratios. These ratios characterise the importance of competing mechanisms
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from advection and diffusion. Two important dimensionless numbers to consider

when interested in (2.1) are the Reynolds number and the Péclet number.

The Reynolds number (Re) is a measure on inertial forces to viscous forces,

defined

Re =
UL

ν
, (2.5)

with U the typical velocity scale, L a characteristic length scale and ν the kine-

matic viscosity. Low Re number implies a dominance in viscous forces, a laminar

regime, while large Re number corresponds to turbulent flows. The limit of zero

Reynolds number is called Stokes flow, which demonstrates time-reversibility.

The Péclet number (Pe) is the ratio of advective transport rate to diffusive

transport rate, defined

Pe =
UL

κ
, (2.6)

with U the typical velocity scale, L a characteristic length scale and κ diffusivity

coefficient. In idealised models with normalised length and velocity scales it is

conventional to take κ = 1/Pe. For a fixed advective rate, a larger Pe number

implies the effect of diffusivity is weak. Therefore for large Pe, (2.4) can only de-

cay quickly if large gradients are introduced into the concentration field. Vortical

eddies are inherent to turbulent flow and are extremely efficient in shearing fluid,

inducing large gradients which ensure fast mixing. In laminar flow, specialised

velocity fields need to be applied for effective mixing, discussed with further detail

in Section 2.2.

Flows with low Re are common across mixing applications. On geophysical

scales, heat transfer in the Earth’s mantle has length scales on the order of 106

metres but slow flow speeds, resulting in low Reynolds numbers (Re ∼ 10−20)

[Ottino (1989)]. In the context of pharmaceutical, food, polymer and biochemical

manufacturing, mixing is frequently carried out at low speeds or involves highly

viscous fluids [Ottino (1990)].

Micro-fluidic devices are employed in typical mixing tasks, such as gas ab-

sorption, emulsification, foaming, and blending, or specialised applications such

as sample preparation in biomedical and chemical analysis [Hessel et al. (2005)].

They operate at length scales as small as 10−6 metres to macroscales on the order

of centimetres, with times scales on the order of milliseconds to seconds [Sturman

et al. (2006)]. For example, water has a kinematic viscosity of ν ∼ 0.01cm2/s, so

at these length and times scales, flows are typically in a laminar regime.

Similarly, in many of these applications large Péclet numbers are plausible.

Molecular dyes in water or glycerol solutions in micro-fluidic devices have Pe in
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the range 103 to 105 [Stroock et al. (2002)]. Results from experimental granular

flow suggest analogies can be drawn between mechanical and thermal behaviour

for both laminar and turbulent flows of simple fluids [Wang & Campbell (1992)].

Macro-scale granular flows in rotating tumblers have Pe ∼ 105 [Christov et al.

(2011)]. In turbulent reactive flows, Pe can be as high as Pe ∼ 1010 [Muzzio

& Liu (1996)], meaning a slow approach to uniformity is possible even in large

Reynolds number flows. Therefore, advancing expertise in implementing good

stirring protocols in laminar, high Péclet number flows is essential.

2.2 Fluid transport as a dynamical system

One of the main questions when studying fluid mixing is whether the mixing per-

formance can be determined given a prescribed velocity field. The basic mecha-

nisms for stirring were first understood and advanced by Reynolds (1894), who

noted that stretching and folding (SF) were key elements in the deformation of

fluid parcels. Others also highlighted this important mechanism in mixing [Eckart

(1948); Welander (1955)]. Turbulent flow fields are by definition unsteady and

contain greatly varying velocity fields in which fluid shearing causes deformation

and stretching, leading to efficient stirring through the exponential lengthening

of material lines [Batchelor (1952)]. In laminar, low Reynolds number flow, tur-

bulent eddy structures are not present and specially designed stirring protocols

need to be implemented to ensure good mixing occurs.

Flow behaviour in low Reynolds number regimes can be well approximated by

Stokes flow, a considerable simplification of the Navier-Stokes equations governing

the motion of fluids. When varying the Reynolds number in experiments of rod

stirring flow and comparing with numerical Stokes flow approximations, Clifford

et al. (2004) concluded that the zero Reynolds number model was a good indicator

for the evolution of material lines up to Re ∼ 3. The advantages of using such

an approximation are outlined in this section.

2.2.1 Chaotic advection

The trajectories for non-inertial particles are simply the integration along the

underlying velocity field
dx

dt
= u. (2.7)
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This collection of ordinary differential equations forms a dynamical system cap-

turing the fluid transport. For a point initially located at x0, its trajectory

after a time t is the solution to the integration of (2.7), and can be denoted as

x(t) = Φt(x0), Φt : Rd → Rd, known as the flow.

A seminal investigation by Aref (1984) found that in a model of Stokes flow

as a dynamical system, pulsed, counter rotating vortices generated complex dye

deformations after just a handful of iterations. From this study, the term chaotic

advection was coined to describe the phenomenon, since the complex patterns

were generated by exponential separation of nearby fluid particles, a hallmark

of chaotic systems. Before Aref’s study it was not known that such striation

structures could be generated in laminar flow using a deterministic velocity field.

Following this paper, the interest in studying chaotic advection, and dynamical

systems in general, as a foundation for understanding mixing in low Reynolds

number flows has grown across a number of multidisciplinary areas [Aref (2002)].

Many stirring protocols are periodic in time, allowing the assumption that

u(x, t + T ) = u(x, t), where T is the time period. A flow with time periodicity

is easily represented as an iterative map M : Ω→ Ω acting along the streamlines

from t → t + T . The domain Ω ⊂ Rd represents the full domain in which

the mixing takes place. If the map M can be found, it is numerically easier to

analyse than solving for the full time-integration along the streamlines of (2.7).

The evolution of a given point x ∈ Ω by the mapping M is counted iteratively by

iteration number j ∈ Z such that xj+1 = M(xj). If the flow represented by (2.7)

is incompressible, ∇·u = 0, then the map M is area-preserving as a consequence

which implies that the determinant | detDM | = ±1, where DM is the Jacobian

matrix

DM =

[
∂M

∂x1

. . .
∂M

∂xd

]
, (2.8)

defining the localised deformation by the map. Maps can be thought of as a

snapshot of the full flow dynamics and exhibit chaotic behaviour similar to their

chaotic flow counterparts.

Viewing the advection of fluid particles as a dynamical systems is advan-

tageous since there is a vast amount of theory supporting the topic [Katok &

Hasselblatt (1995); Ott (2002)]. For example, two-dimensional flows require time

dependence to generate chaos by the Poincaré-Bendixson theorem. This is evi-

denced by the study of Aref (1984), where the vortices where required to alternate

their rotation, to introduce time dependence and chaotic trajectories. In maps,

only one-dimension is sufficient to generate chaos if specific criteria are met.
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Fundamental features of dynamical systems are periodic points, where their

stability determines how nearby trajectories evolve in time. In periodic flows of

time period T , periodic points are defined as fixed points of ΦpT (xf ) = xf , where

p is the periodicity of the point. In a discrete map they are simply described by

Mp(xf ) = xf , fixed points of the pth iteration. The stability of periodic points

are classified by the eigenvalues of the Jacobian determinant DΦ (2.8) evaluated

at the point x = xf . Elliptic points have complex eigenvalues and surrounding

points are stable and rotate about the periodic point, generating orbits which act

as barriers to particle transport. Hyperbolic points are classified by real eigenval-

ues and are unstable, causing a contraction and expansion of nearby trajectories.

Hyperbolic points are a hallmark of chaotic behaviour. Parabolic points on the

other hand are characterised by degenerate eigenvalues, λ1 = · · · = λd = ±1,

and as such are neither stable and rotating, nor unstable and expanding locally.

The books by Ottino (1989) and Wiggins (2003) provide a comprehensive discus-

sion on the application of dynamical systems, and the effect of periodic points in

mixing.

Dye tracer experiments have been effective in determining if properties of

dynamical systems predict mixing qualities of a prescribed flow. Macroscopic

structures of fluorescent dye evolved in flow between two rotating, non-concentric

cylinders qualitatively agreed with the position of periodic points, with stable

and unstable manifolds indicating new barriers to mixing, providing an outline

to striation arrangement [Chaiken et al. (1986); Swanson & Ottino (1990)]. Sim-

ilar conclusions were drawn from cavity driven flows generated from pulsed sides

[Leong & Ottino (1989)]. The dye trace experiments of [Jana et al. (1994) pre-

sented that in almost all cases a few or one of the lower-order hyperbolic periodic

points contribute to striation arrangement, while other hyperbolic points with

p ≥ 1 add to the fine structure.

Other dynamical behaviours have been observed experimentally outside of

comparisons with Stokes flow. Structures analogous to horseshoes, core examples

of chaotic stretching and folding from a square domain into itself, were identified

within flow visualisation of cavity flow [Chien et al. (1986); Ottino et al. (1994)].

Similarly, the study of a more topological approach, braid theory, has informed the

best way to interweave multiple stirrers, and has been the topic of experimental

[Boyland et al. (2000)], computational and analytic studies [Finn et al. (2003);

Thiffeault et al. (2008)]. Mixing protocols inspired by braid theory do not require

much tuning of stirrer parameters in comparison to one stirrer protocols.
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2.2.2 Ergodic hierarchy

The additional benefit of studying stirring as a dynamical system is the potential

for analytic results describing the transport and mixing of typical initial con-

ditions via ergodic theory. Flows and maps can be constructed to capture the

essence of mixing protocols, for example link-twist maps imitate the perpendic-

ular shearing of egg beater flows [Sturman et al. (2006)]. To address whether a

transformation is stirring a blob of dye evenly thought a domain, a precise and

quantitative approach is required. The ergodic hierarchy provides a mathematical

framework, as an ordering of behaviours of increasing complexity, capturing the

kinematic properties essential to good stirring. To begin a discussion in ergodic

theory, some basic and necessary terminologies on quantifying the size of sets and

describing the behaviour of functions is required.

A transformation or map M requires a tuple (Ω,A,M, µ), consisting of a do-

main Ω, a σ-algebra A over Ω, the transformation itself M , and an invariant

measure µ. A measure is a function which assigns a number to a given set, and

can be thought of as size, volume or probability of the set. The measure µ is a

non-negative, real-valued function defined on the σ-algebra, a collection of subsets

on Ω. The transformations of interest in this current work are to represent in-

compressible, one or two-dimensional flows, therefore the measure µ will be taken

as Lebesgue measure with the appropriate σ-algebra; the collection of half open

intervals and products thereof. Lebesgue measure can be considered as the math-

ematical formalisation of Euclidean length, area or volume. The formalisation of

incompressibility in ergodic theory is to describe a transformation representing

an incompressible velocity field as a measure preserving transformation, defined

such that for any set A ⊂ Ω,

(M−1(A)) = µ(A) for all A ⊂ A. (2.9)

The starting point to the ergodic hierarchy is the notion of in-decomposability

of a domain, known as ergodicity. Within a domain of interest, elliptic island

and invariant surfaces can generate barriers to mixing since they do not allow

typical trajectories to traverse the entirety of the domain. Typical here refers to

the trajectories of almost all initial starting positions, since many of the points

will have some form of regularity in their behaviour. Typical trajectories of an

ergodic transformation traverse the whole domain Ω, motivating the following

definition in terms of sets.
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Definition 2.2.1. (Ergodicity) A measure-preserving dynamical system (Ω,A,M, µ)

is ergodic if µ(A) = 0 or µ(A) = 1 for all A ∈ A such that M(A) = A.

Sometimes, f is called an ergodic transformation, or that µ is an ergodic,

invariant measure. The domain of an ergodic transformation can not be broken

down into two or more sets of positive measure on which the transformation can

be studied separately. Following from the definition, regular points in ergodic

transformations will have a total volume within the domain equivalent to zero.

Ergodicity is not strong enough to determine if good mixing is possible. An

irrational rotation on the unit circle is ergodic, but simply rotating a concentra-

tion field does not allow for a decrease in the scale of segregation. Instead, the

definition of (strong) mixing is required to characterise such a desirable property

of stirring.

Definition 2.2.2. ((Strong) Mixing) A measure preserving, invertible trans-

formation (Ω,A,M, µ) is (strong) mixing if for any two non-empty, measurable

sets A,B

µ(M j(A) ∩B)− µ(A)µ(B)→ 0 as j →∞. (2.10)

This fundamentally says that in the infinite time limit, all arbitrary sets B of

domain Ω contain the same proportion of the set A, as the proportion of A in

Ω. For a non-invertible transformation, M j is replaced with the backward time

evolution of the map M−j given in the definition. In many transformations strong

mixing does not hold, and the notion of weak mixing applies instead.

Definition 2.2.3. (Weak mixing) The measure-preserving transformation M :

(Ω, µ)→ (Ω, µ) is said to be weak mixing if for any two measurable sets A, B ⊂ Ω

we have:

lim
j→∞

1

j

n−1∑
k=0

|µ(M−k(A) ∩B)− µ(A)µ(B)| = 0. (2.11)

Strong mixing implies weak mixing, which implies ergodicity, however the

converse statements are not true. Of course, these definitions of strong and weak

mixing are for infinite time, and a system may be mixing but with no understand-

ing of “how quickly”. In many applications, the rate of decay of correlations is

used as a measure to quantify the rate of mixing. As a starting point, the def-

inition of strong mixing can be reformulated in terms of a correlation function

between arbitrary functions from a class of interest, such that

Cj(φ, ψ) =

∣∣∣∣∫ (φ ·M−j)ψdµ−
∫
φdµ

∫
ψdµ

∣∣∣∣→ 0 as j →∞, (2.12)
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for any pair of bounded measurable functions φ and ψ. For a given rate function

r(j), if there exists some constant C such that

Cj(φ, ψ) ≤ Cr(j), (2.13)

then the rate of decay of correlations can be determined, and a mixing rate

assigned to the transformation. Analytic derivation of the decay rate of correla-

tions is not general and as such finding r(j) via rigorous approaches is limited to

a number of ergodic maps and the choice of observation functions φ and ψ.

2.3 Mixing via chaotic advection

While dynamical systems model well the kinematic properties of stirring in fluids,

they can not wholly capture the mixing dynamics when diffusion is introduced.

The advection-diffusion equation (2.1) is a partial differential equation in which

there is a multitude of approaches to solve for initial value problems, particularly

via numerical schemes such as finite difference methods. These computational

methods employ either structured of variable grids to approximate the time evo-

lution of desired functional field.

Problems arise when using finite sized grids to approximate mixing in turbu-

lent or laminar flows driven by chaotic advection, since the exponential expansion

of near by particles, and the consequential compression of striations from incom-

pressibility, quickly generates variations in the concentration field with widths

smaller than the grid cells. Refining a grid to accurately approximate the evolu-

tion of a concentration field in chaotic advective flows with large Péclet number

would result in infeasible computational times to complete comprehensive param-

eter studies. For example, in the cavity flows of Leong & Ottino (1989), finite

element and finite difference schemes were employed alongside a dynamical sys-

tems model, and were able to approximate the coarse structures of the flow but

predicting the exact arrangement of striations were beyond the capabilities of the

numerical schemes.

As was noted in Section 2.2.2, simple systems can be developed which cap-

ture the essence of stirring dynamics which are open to analytic investigation

on stirring qualities and expected rates using ergodic theory. An extension to

these ideas can be made to develop iterative advection-diffusion maps, which are

open to analytic study or more efficient computational methods, to investigate

the driving mechanisms behind mixing rates. These approaches are outlined in

detail in this section.
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2.3.1 Iterative advection-diffusion equation

Although (2.7) can be used to study fluid particle evolution it tells us little

about the evolution of a passive scalar. If the velocity field is captured by a

mapping M over the time period T , then the evolution of a concentration field

c by this velocity field is also an iterative process c(x, t) → c(x, t + T ). This

is represented by a linear operator acting on the space of functions PM : X →
X, c ∈ X. This operator is known as the Frobenius-Perron operator in the

dynamics literature, capturing the evolution of densities by a map M . However,

the reformulation of stirring as a map means the integration of diffusional effects

can not be incorporated for the full-time evolution in the interval [t, t+ T ).

Similar to considering the advection as an iterative step, an idealisation of the

advection-diffusion equation is to consider it iteratively via an operator splitting.

First the concentration field is evolved according to (2.1) with κ = 0 for a time

T . The advective step is then followed by a diffusive step in which (2.1) is

solved for the time T with u = 0. This is equivalent to applying a functional

operator PD : X → X, with PD = exp(tκ∇2) for a time t = T . The operator

for the full advective-diffusive step over time T is thus the composition of the

operators P = PD ◦ PM and c(j+1)(x) = P (c(j))(x). The operator P is linear

due to the linearity of the advection-diffusion equation (2.1). When the maps

used to investigate mixing are not descriptions of real velocity fields for some real

periodic time interval T , the factor κT in the diffusive operator PD can be treated

with T = 1 normalised, such that the coefficient κ is needed only to describe the

diffusional effects. This normalisation of the time-step T is taken throughout

this work. The advantage of studying the evolution of a scalar field by analysing

transfer operators acting on functional spaces is introduced in the next section.

2.3.2 Properties of Transfer Operators

Common approaches in studying dynamical systems is to study the long time

behaviour of a specific trajectory or looking at local, Lagrangian dynamics near

periodic points. However when discussing mixing we are generally concerned

with how a function evolves in time, such as the concentration of particles, dyes,

contaminants etc. This approach can be re-imagined as the evolution of densities

by considering the statistical evolution of typical trajectories.

A measurable function φ : Ω → X, called an observable, will have a time

series of functions {φ ◦ Mn}k≥0, following a repeated action on points in Ω of
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the mapping M . The composition φ ◦M j represents the observation φ made at

time j. For example, the concentration of particles could represent a particular

observation. For a given map M : Ω → Ω, its transfer operator P acting on a

suitable Banach space of functions X→ X is given by

(Pφ)(x) =
∑

M(y)=x

φ(y)

|DM(y)|
, φ ∈ X, (2.14)

where |DM(y)| is the Jacobian determinant evaluated at the point y. If M

preserves an ergodic measure µ with density ρ(x) ∈M , then (Pρ)(x) = ρ(x) and

ρ is called in invariant density of P .

For example, the dyadic transformation is defined as the map M : I → I,

M(x) = 2x mod 1, with I = [0, 1]. Under this mapping, each x has exactly two

pre-images under M , so the transfer operator for functions φ is

Pφ(x) =
1

2

(
φ
(x

2

)
+ φ

(
1

2
+
x

2

))
. (2.15)

An invariant density of (2.15) is ρ(x) = 1 since

Pρ(x) =
1

2
(1 + 1) = 1,

which implies that a uniform density in the interval I = [0, 1] remains uniform

under the dyadic transformation.

Recall that for a measure preserving system (Ω,A,M, µ) the rate of mixing

can be quantified by the rate function r(j) governing the decay of correlations

(2.13). Provided functions are chosen from an appropriate functional space, the

properties of the transfer operator give a tool for analysing the mixing properties

of the system. For a complete Banach space B of functions the rate function may

not be specified, i.e. there might exists φ ∈ B for which r(j) decays arbitrarily

slowly. For example, expanding maps on the unit interval require XS ∈ B is

taken as function of bounded variation for the decay of correlations to decay

exponentially [Byott et al. (2013)]. The operator restricted to the given functional

space can be defined as PM |X.

Provided a suitable space of functions is chosen, the spectrum of a transfer

operator Spec(PM |X) yields information on the asymptotic mixing rates of the

transformation. The spectrum of the operator P : X→ X is the set

σ(P ) = {λ ∈ C|P − λI is not an invertible operator on X}. (2.16)
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Trivial eigenvalue

Continuous Spectrum

Discrete Eigenvalue

Essential spectral radius

Spectral gap

λ : |λ| = τ

Figure 2.1: A representative spectrum for a transfer operator P is illustrated, which has

a continuous spectrum bounded above by ress, and a point spectrum with a spectral

gap since only the trivial eigenvalue λ1 = 1 lies on the unit circle.

The spectrum σ will contain, but is not necessarily equal to, the set of eigenvalues

of P called the point spectrum. Eigenvalues in the point spectrum are called

discrete, and these eigenvalues and their respective eigenfunctions satisfy

PMvi = λivi. (2.17)

There will exist a trivial eigenvalue equal to λ1 = 1 which corresponds to the

invariant density ρ. There may exist a continuous spectrum bounded by a closed

disc of radius ress. The essential spectral radius ress = ress(PM |X), is defined by

ress = inf{r ≥ 0 : λ ∈ Spec(PM |X), λ > r =⇒ λ isolated of finite multiplicity}.
(2.18)

Figure 2.1 illustrates an example spectrum for an operator with both a continuous

and point spectrum. To aid in discussion, the point spectrum (2.17) can be

organised according to the modulus of their values, such that |λ1| ≥ |λ2| ≥ · · · ≥
0.

Bounds on mixing rates can be obtained from the spectrum and we say that

PM |X has a spectral gap if

τ = sup{|λ| : λ ∈ Spec(PM |X)\{1} < 1}. (2.19)

If an operator has a spectral gap, then the following lemma is important in deter-

mining the rate of mixing via the decay of correlations. An alternative formulation
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of (2.13) in terms of the Frobenius-Perron operator PM and associated spectrum

is captured in the following Lemma.

Lemma 2.3.1. Let XS be a class of real-valued functions preserved by P . Let

σ(P ) denote the spectrum of P when considered as an operator of XS, and set

τ = {|z| : z ∈ σ(P )\{1}}. Then there is a constant C < ∞ such that Cφ,ψ(j) ≤
Cτ j if ψ ∈ XS and φ ∈ L∞ [Froyland (2001)].

Therefore τ , the largest non-unit eigenvalue, determines the rate of decay

of correlations. As long as PM |X has a spectral gap, then this mixing rate is

exponential with rate τ . Smaller values of τ imply a faster decay of correlations

while a global mixing rate close to 1 implies that there are eigenfunctions for

which convergence is very slow. A transformation will only have a spectral gap if

it is strong mixing, otherwise non-trivial eigenvalues will reside on the unit circle.

The essential spectral radius essentially gives a lower bound for the value of τ .

Note however that estimates on the constant C are in general difficult to obtain,

and the value of the smallest such constant C will depend on both the mixing

protocol and the initial concentration.

The above describes how spectra of transfer operators help determine strong

mixing rates of advective maps, however the discussion can be extend to consider

advective-diffusive systems. An operator P = PD◦PM for the iterative advection-

diffusion equation will also have an associated spectrum which can be used to

predict the asymptotic mixing rate. Even in the absence of stirring, diffusion

ensures an exponential approach to uniformity. All systems in which diffusion is

included will have a spectral gap, even those in which the underlying advective

map itself is not strong mixing. Therefore all eigenvalues λk will have a modulus

less than one except for the trivial eigenvalue λ1 = 1. The eigenfunction of

the trivial eigenvalue λ1 = 1 is the mean field of the scalar concentration c̄,

and all other eigenfunctions vk will decay to c̄ with the rate given by λk. The

eigenfunction associated with λ2 will be the slowest decaying from the action of

the operator. A distinction is made throughout this thesis with τ denoting the

largest eigenvalue of the point spectrum for PM , and λ2 the eigenvalue with the

largest modulus from the spectrum of PD ◦ PM for κ 6= 0.

Eigenvalue spectra alone do not give definite information of finite time be-

haviours, where instead eigenfunctions v can aid understanding of the evolution

of densities in early stages.
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For two functions f, g ∈ X for the operator P , the inner product is defined as

〈f, g〉 =

∫
Ω

f(x)g(x)dx. (2.20)

Suppose the functional space has an orthonormal basis given by the set of func-

tions {u1(x), u2(x), . . . , un(x)} where n may be infinite. For the orthonormal

basis

〈uk, ul〉 =

∫
Ω

uk(x)ul(x)dx = δkl (2.21)

and functions can be written as a linear combination of the basis functions,

f(x) =
n∑
k=1

bkuk(x). (2.22)

The eigenfunctions vk of P form a set of basis functions for the transfer operator,

therefore functions c(x, j) representing the concentration field can be written as

a linear combination of the eigenfunctions

c(x, j) =
n∑
k=1

bk(j)vk(x), (2.23)

and the coefficients bk(j) found by evaluating the inner product (2.20) 〈c, vk〉. The

evolution in time of the coefficients bk(j) for a given c(x, 0) reveal information on

the finite time behaviour of the operator P .

Typically the methods used in determining the spectra of transformations,

the values of τ and λ2 in particular, and analysis of their eigenfunctions are not

general and are far from trivial.

2.3.3 Numerical approximations of transfer operators

In special cases the transfer operator (2.14) can be written down explicitly for all

functions φ, and the point spectrum of P determined from (2.17). However, in

general this approach might be too complex. An easier approach is to define a

set of basis functions which are dense in the domain of interest, and define the

operator as a transfer matrix P , describing the transfer in functional space as the

change in amplitude in the elements of the basis set. This approach informs the

numerical method to investigate the properties of transfer operators. The transfer

matrix will satisfy an eigenvalue equation Pv = λv, and the eigenfunctions v

given as a summation of the amplitudes for the basis functions, represented by

the elements of the eigenvectors v.
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When employing transfer operators to study mixing, the most common ap-

proach is to consider a transformation on Td, where d denotes the dimension, and

apply periodic boundary conditions. Then, a discrete Fourier series can be used

as the set of basis functions. This approach is advantageous since time evolution

of the diffusive operator PD is easily solved is discrete Fourier space. This method

has been frequently used in the literature [Ashwin et al. (2002); Fereday et al.

(2002); Popovych et al. (2007); Thiffeault & Childress (2003)]. How to explicitly

find the advective and diffusive transfer matrices for this set of basis functions is

described in detail in Section 2.3.4. When other boundary conditions are taken

a different set of basis functions can be used. For example Gilbert (2006) out-

lines the appropriate functions to solve the heat kernel for zero and insulating

boundaries when applying the non-uniform baker’s transformation to represent

fluid stretching and folding.

In many cases, finding a suitable set of basis functions in which the transfer

matrix elements can be found analytically, is impossible. A numerically simple

way to construct a transfer matrix for the advective operator is to form a basis of

indicator functions over a finite partition of disjoint elements within the domain.

Conventionally, evenly distributed squares define the partition, and the transfer

matrix element P ij is the proportion of square i carried into square j during

one periodic iteration of the velocity field. Diffusion is either included via an

operator splitting, such as the Marchuk-Yaneko method, or approximated by

numerical diffusion. Such methods were inspired by the work of Spencer & Wiley

(1951), who addressed their potential for understanding mixing in viscous fluids,

and Ulam who proposed the method to approximate Frobenius-Perron operators

representing the evolution of densities [Ding & Zhou (2010); Ulam (1960)]. This

approach is sometimes referred to as the Mapping method.

This numerical method has been suggested as a tool box to optimize mi-

cromixer configurations, used to detect eigenmodes in granular flows, and study

autocatalytic reactions into chaotic advective flows [Christov et al. (2011); Schlick

et al. (2014); Singh et al. (2008b)].

The advantage of the Mapping method is its simplicity in derivation, in which

matrix elements can be computed by tracking the proportion of many initialised

points from one cell into others. Rather than having to evolve single initial

conditions with finite difference methods, eigenfunctions of the advectice-diffusive

operator can be well approximated from the transfer matrix alone. However,

similar to other grid based methods, the computational time and memory can be
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particularly costly to ensure finer details of the concentration field are captured.

Additionally an effective Péclet number needs to be determined by taking into

consideration the numerical diffusion introduced by approximating the transfer

operator, which may mean that diffusive effects are not accurate.

2.3.4 Numerical approach using Discrete Fourier expan-

sion

Depending on the map M and the boundary conditions an advective-diffusive

transfer operator P = PD ◦ PM can sometimes be computed with ease using the

following method. A specific advantage of this numerical method is that the

effect of numerical diffusion is largely eliminated, which can occur for velocity

fields with chaotic trajectories when using numerical schemes based on grids.

The numerical problem is to evolve an initial concentration field c(0)(x) ∈ X

with a domain Ω as an iterative operator problem c(j) = P j(c(0))(x). The transfer

operator P can be constructed as a matrix, denoting the transfer of concentration

as a change in amplitude for a suitable set of basis functions, which are dense

for any f ∈ X over the domain Ω. When choosing periodic boundary conditions

on the unit circle Ω ∈ [0, 1), an integrable function f can be represented by a

infinite series of sines and cosines via a discrete Fourier expansion. The set of

functions cos(2πkx) and sin(2πkx) for all k ∈ Z form a dense set of basis functions

and are suitable to construct a transfer matrix acting on the Fourier coefficients.

The method is easily expendable to higher dimensions, such as the unit torus

T2 = [0, 1)× [0, 1).

For the one-dimensional case on the unit circle Ω = T = [0, 1), consider the

periodic function c ∈ X, then its discrete, exponential Fourier expansion is,

c(j)(x) =
∞∑

q=−∞

ĉ(j)
q e2πiqx (2.24)

where the complex coefficients ĉ are given by

ĉ(j)
q =

∫ 1

0

c(j)(x)e−2πiqxdx. (2.25)

The basis functions e2πikx are dense in X. Iterating the concentration field by a

mapping M(x) produces a new concentration field with a Fourier expansion and

its own respective Fourier coefficients c(j+1)(x) =
∑∞

k=−∞ ĉ
(j+1)
k e2πikx.
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If the mapping is considered on the Fourier coefficients, then the new coeffi-

cients after one iteration will be of the form

ĉ
(j+1)
k =

∫ 1

0

c(j)(M−1(x))e−2πikxdx. (2.26)

=
∞∑

q=−∞

ĉ(j)
q

∫ 1

0

e2πiqM−1(x)−2πikxdx. (2.27)

The transformation between Fourier coefficients can be represented by a linear

transformation in the form of a transfer matrix

ĉ
(j+1)
k =

∞∑
q=−∞

M kq ĉ
(j)
q =⇒ M kq =

∫ 1

0

e2πiqM−1(x)−2πikxdx. (2.28)

Similarly, if the transfer operator acting on the concentration field was purely

diffusive PD with diffusivity coefficient κ then a transfer matrix representing this

is

ĉ
(j+1)
k =

∞∑
q=−∞

Dkq ĉ
(j)
q , Dkq = ρk

2

δkq, ρ = exp(−4π2κT ). (2.29)

where the Kronecker delta δkq = 1 if k = q and 0 otherwise. Since the advection

component is considered as an iterative map, the time period T only appears

in the diffusive contribution exp(−4π2κT ), and so can be normalised to T = 1,

allowing the diffusive step to be parametrized by the κ alone. The full iterative

advection-diffusion mapping for one time step is represented by the composition

of the transfer matrices

ĉ
(j+1)
k =

∞∑
q=−∞

DkmMmq ĉ
(j)
q . (2.30)

If an analytic expression for the entries of the transfer matrixM can be found,

then numerical calculation in discrete Fourier space can be accomplished easily

without much concern for numerical diffusion. The only consideration is that the

number of modes used in the computation can not be infinite, and a truncation

on the number of Fourier modes is required, so that −Q ≤ q, k ≤ Q. Wonhas

& Vassilicos (2002) note that the diffusive contribution to the transfer between

Fourier modes is exp(−4π2κk2) so modes in which |k| � kd are negligible, where

kd =
1

2π
√
κ
. (2.31)
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The effect of the truncation Q will be investigated to ensure the correct evolution

and decay of the concentration field occurs irrespective of truncation value.

The method is easily extended to N dimensions by Fourier expanding c(j)(x)

c(j)(x) =
∑
k

ĉ
(j)
k e2πik·x (2.32)

then

ĉ
(j+1)
k =

∑
q

Mkq ĉ
(j)
q (2.33)

with

Mkq =

∫
TN

exp
(
2πi(q ·M−1(x)− k · x)

)
dx, (2.34)

or for the full advective-diffusive step

DMkq =

∫
TN

exp(2πi(q ·M−1(x)− k · x)− 4π2κk · k)dx, (2.35)

where x = (x1, x2, . . . , xN) and similarly for k and q. The summation is over all

possible q = (q1, . . . , qN) and k = (k1, . . . , kN) with −Q ≤ kn, qn ≤ Q for the

chosen truncation Q.

The leading, non-trivial eigenvalue λ2 of the transfer matrices DM give a

single value for the asymptotic mixing rate and the eigenvectors v contain the

coefficients ĉk for the discrete Fourier expansion for the eigenfunctions vk. The

inner product (2.20) can be rewritten in terms of discrete Fourier coefficients by

the following derivation.

Given the functions f(x) =
∑∞

k=−∞ ake
2πik·x and g(x) =

∑∞
l=∞ ble

2πil·x the

inner product

〈f, g〉 =

∫ 1

0

f(x)g(x)dx, (2.36)

can be written as

=

∫ 1

0

∞∑
k=−∞

ake
2πik·x

∞∑
l=∞

ble
−2πil·xdx,

=

∫ 1

0

∞∑
k=−∞

∞∑
l=∞

akble
2πi(k−l)·xdx.

Evaluating the integral gives

〈f, g〉 =
∞∑

k=−∞

∞∑
l=∞

akblδkl =
∞∑

k=−∞

akbk. (2.37)
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Therefore, the vectors v can be used to determine the influence the eigenfunctions

v have on the finite time behaviour of a given initial condition c(x, j), acted on

by the transfer matrix DM by evaluating (2.37).

Truncating the matrix makes it possible to compute the discrete spectrum of

the transfer operator. Eigenvalues and eigenvectors of the transfer matrix can be

computed easily using preprogrammed algorithms, however when increasing Q

the computation time quickly becomes infeasible. Even constructing the transfer

matrix for large Q involves large amounts of computing memory, especially for a

two-dimensional system where memory restrictions may mean this is not achiev-

able in practice. In this work, construction of the transfer matrix is restricted

to one-dimensional systems. In two-dimensional systems the numerical approach

used is to iterate over the sums of wavemodes instead. The Python package Scipy

is used to solve for the eigenvalues and eigenvectors of the composition matrix

DM .

2.4 Measures of mixing

The ergodic hierarchy provides a mathematical formalisation encapsulating ideas

of good stirring within an advective transformation, however solving analytically

for the properties is complicated in general and rarely possible in realistic flows.

In addition they say nothing about the mixing quality or rates of mixing for

observable functions, such as a scalar concentration fields decaying via the action

of molecular diffusion. Transfer operators provide a means to study the evolution

of typical concentrations fields in both advective and advective-diffusive systems,

but properties of their spectra only relate to mixing rates in the asymptotic limit.

Understanding mixing throughout the full finite time evolution is essential in real

mixing scenarios.

As such an array of techniques quantifying the size of blobs, their occupation

throughout a domain, and their homogenization with the surrounding fluid, has

been developed throughout the literature to evaluate mixing in a range of appli-

cations. Although a measure on the quality of mixing is essential, how to quantify

such a process is not straightforward. A handful of measures are introduced which

are important to the current work.
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2.4.1 Functional norms and the mix norm

An approach to uniformity from diffusive effects is easily quantified from func-

tional norms, where a norm is defined measuring the distance between the con-

centration field being mixed and its mean field.

The family of norms called the Lq norms are frequently used, and are defined

such that given a concentration field c(x) with mean field c̄,

||c(x, t)− c̄||q =

(∫
Ω

|c(x, t)− c̄|qdΩ

)1/q

. (2.38)

The L∞ norm is specifically defined as,

||c(x, t)− c̄||∞ = inf{R : |c(x, t)− c̄| ≤ R a.e. x ∈ Ω}. (2.39)

Determining which L norm is better suited to quantify mixing is dependent on

the application at hand. For example Ashwin et al. (2002) highlight that when

disinfecting in food processing, L∞ would be more desirable since it is important

that all locations are smoothly covered during the mixing process. The most

common norm in the study of mixing is the L2 norm, the variance of the concen-

tration field from its mean field. While Lq norms are good measures in systems

which are mixing to uniform, in systems that are purely stirring, functional norms

such as those defined by (2.38) and (2.39) would not decay. As such in purely

stirring systems other measures of mixing are required.

One of the first quantifications of stirring quality was devised by Gibbs (1902),

who formulated the idea of coarse-grained density. Grid cells are assigned to the

mixing domain of interest and values computed on the average number of grid

cells occupied by a component of the stirred fluid. Problems arise with such

methods since they are sensitive to the size of the cells used in computation.

Later Danckwerts (1952) defined the scale of segregation, which encapsulated

the average of the size of clumps in a mixed component. Mathew et al. (2005)

developed a functional norm to capture the idea of the scale of segregation which

does not need diffusion to decay, called the mix norm, which is now described.

Consider the scalar function c : Td → R, where Td = [0, 1]d is an d-dimensional

torus and µ is the Lebesgue measure. For a given length scale s ∈ (0, 1) and point

p ∈ Tn, then define the sphere

B(x, s) = {y ∈ Ω such that ||y − x||2 ≤ s/2}, (2.40)

that is the ball is defined as all the points within the d-dimensional sphere about

the point x of radius s/2, and volume of the ball noted Vol(B(s)).

27



CHAPTER 2. LITERATURE REVIEW

To define the mix norm let

b(c,p, s) =

∫
x∈B(p,s)

c(x)µ(dx)

VolB(s)
, (2.41)

for all length scales s ∈ (0, 1) and p ∈ Td. Taking the L2 norm of b

φ(c, s) =

(∫
Ω

b2(c,x, s)µ(dx)

)1/2

(2.42)

and finally integrating over all possible values of the scale s gives the mix norm

for the concentration field c as

Φ(c) =

(∫ 1

0

φ2(c, s)µ(ds)

)1/2

. (2.43)

This norm was shown to capture the exponential and algebraic decay rates ex-

pected in specific mixing problems [Mathew et al. (2005)]. Numerically inte-

grating over spatial scales is time consuming, therefore Smith (2016) presents a

recursive algorithm to reduce computational cost. If the problem is computed, or

accurately transformed into discrete Fourier space, the computation is less inten-

sive taking advantage of the spatial scales represented by the wavemode number.

Similarly, negative Sobolev norms will decay in the absence of diffusion and are

easily computed in discrete Fourier space. These such norms are collectively

called multiscale norms, and Thiffeault (2012) provides a review of their use in

quantifying mixing and transport.

Profiles of norms decaying to the mean field, plotted against iteration num-

ber, give a full finite time analysis for a given stirring protocol and diffusivity

coefficient. When comparing across a range of parameters however, the full pro-

files can be difficult to compare. A single quantifying value for finite time mixing

can be found by choosing a mixed condition and computing the iteration number

when this condition is achieved; called the time to a mixed condition. In line with

Ashwin et al. (2002), if interest lies in finding how many iterations it takes to stir

to within 5% of uniform, or the time to 95% mixed state t95, then define t95 as

the smallest t95 > 0 such that

||ct95(x)− c̄|| < 0.05 (2.44)

for all j > t95 and the chosen norm || · ||. Other time to t% can be defined similarly

as t% > 0 such that

||ct%(x)− c̄|| < 1−%. (2.45)
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The time to a mixed condition t% gives a single value which can be used to

compare across varying parameters and initial conditions for mixing systems,

capturing how they effect mixing in the initial stages without analysing the full

time of a norm decay. Throughout the thesis, eigenvalues τ and |λ2| will be

computed where possible to understand the asymptotic behaviour of each mixing

system, while t95 and t% will be used within parameter studies as a simple method

to quantify changes within the finite time mixing behaviour, where a full spectra

and eigenfunction analysis would be demanding.

2.4.2 Measures of mixing in Fourier space

The variance of a concentration field from the mean-field is easily computed from

Fourier coefficients via Parseval’s Theorem. Recall the variance is taken as

ψ(j) =

∫ 1

0

|c(x)− ĉ|2dx, (2.46)

and substituting in c(x) =
∑∞

k=−∞ ĉke
2πik·x gives

ψ(j) =

∫ 1

0

∣∣∣∣∣ ∑
k:k 6=0

ĉke
2πik·x

∣∣∣∣∣
2

dx, (2.47)

where the amplitude of the wavemode 0 = (0, . . . , 0) is ignored since ĉ0 = c̄.

Using the fact that when c(x) is complex, |c(x)|2 = c(x)c(x), then∣∣∣∣∣ ∑
k:k 6=0

ĉke
2πik·x

∣∣∣∣∣
2

=
∑
k:k 6=0

∑
l:l6=0

ĉkĉle
2πi(k−l)·x. (2.48)

Substituting (2.48) into the integral (2.47) gives

ψ(j) =
∑
k:k 6=0

∑
l6=0

ĉkĉlδkl =
∑
k:k 6=0

|ĉk|2 (2.49)

Therefore the variance can be computed as the sum of the modulus squared of

the discrete Fourier coefficients of the concentration field. It is from (2.49) that

it can be easily understood, that if the long-time mixing is dominated by the

slowest decaying eigenfunction v2, the coefficients ĉk of the eigenfunction v2 will

vary iteratively as λ2ĉk, and the variance decay on average given by

ψ(j) ∼ |λ2|2j. (2.50)

For the L∞ norm, computation from Fourier coefficients alone is not possible

and the concentration field c(x) would need to found from ĉk via an inverse Fast

Fourier Transform (IFFT). Many computational programmes provide packages

which compute IFFTs, in this work the Python package Numpy is used.
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2.4.3 Additional measures of mixing

A number of other measures exist in the literature but have limitations. Two of

the more commonly used are the growth in length of the material interface, and

the decrease in the largest or average lamellar width.

The length of interface between two materials is a measure on the amount

of stretching occurred on a fluid element. Used in one-dimensional and two-

dimensional studies of lamellar formations, increased interface is desirable in

problems without diffusion [Krasnopolskaya et al. (1999); Krotter et al. (2012);

Meleshko & Aref (1996)]. Usually in two-dimensions the interface of an initial

dye parcel is represented by a collection of points and the mapping these point

forward in time reveals how the interface changes and extends in the fluid flow.

However it can be difficult to compute efficiently in such studies, since tracking

an interface which stretches exponentially results in resolution problems and gaps

in the quickly appear. Algorithms have been developed which introduce points

when the separation becomes large [Krasnopolskaya et al. (1999)], however the

exponential stretching leads to a limit on precision. In one-dimensional models,

tracking the growth in interface is easy since it is simply represented by a count-

able set of finite points. For example, the increased interface via discontinuous

mapping has been measured by the increasing number of cuts Cj at each iteration

[Krotter et al. (2012); Yu et al. (2016)].

In one-dimensional models of strips of fluid, the average lamellar width or

largest lamellar width gives an indication on how much the fluid is contracted

and folded, however it has been shown that the decay rate in diffusion and re-

action problems is sensitive to lamellar arrangement [Clifford et al. (1999)]. An

additional problem with such measures as that they are not easily extended to

two-dimensional studies due to the variation in the orientation of striations [Finn

et al. (2004)]. Such measures have been employed when cutting and shuffling a

one-dimensional concentration field [Krotter et al. (2012); Smith et al. (2018); Yu

et al. (2016)].

The main problem with both of these measures of mixing is that they lack

knowledge of the distribution of mixing throughout the full domain, and the

average scales of segregation. For example, an interface within a small chaotic

region may stretch exponentially without visiting much of the domain [Finn et al.

(2004)]. Although computationally more intensive to compute, the mix norm

eliminates such problems and gives a quantification to uniformity from stirring.
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The measures described so far are measures which quantify a degree of mixing

at snapshots during the mixing time for a particular initial concentration field,

however other methods in the literature, such as homogenisation theory, have

been successful at predicting finite time mixing behaviours of a passive scalar in

simple flows by describing the evolution of desired statistics but these methods

can be difficult to apply in general [Majda & Kramer (1999)].

2.5 Mixing rates in chaotic advection

Now that methods to capture and quantify mixing have been outlined, a review

on results from the literature concerning mixing rates arising from a range of

stirring dynamics are presented. Molecular diffusion acting alone will cause a

concentration field to tend to uniformity at an exponential rate, although this

rate is generally very slow. Stirring will increase the rate to uniformity.

In fully chaotic flows exponential stretching and compression of fluid parcels

produce an exponential rate in the reduction of length scales and an increase

in the material interface. However, elliptic islands and invariant tori, boundaries

surrounding fully chaotic domains, or parabolic points can contaminate this expo-

nential mixing rate [Horita et al. (1990); Springham & Sturman (2014); Sturman

& Springham (2013)]. However, these mixing processes are unlikely to arise in

isolation in real life applications.

There is an extensive literature studying the combination of stretching and

folding from chaotic advection, with diffusion, and how the underlying stirring

dynamics produce the observed mixing rates. The key results are outlined in the

following sections.

2.5.1 Non-uniformity and strange-eigenmodes

Recall (2.4) which describes the evolution of the variance ψ from the diffusivity

coefficient κ and the average gradients in the concentration field |∇c|. If κ is

small, in the initial stages of stirring the gradients in the concentration field are

small and the variance will remain almost constant. It is only when the gradients

|∇c| are large that ψ will begin to decay significantly. It is suggested from (2.4)

that good stirring occurs when the system becomes independent of diffusivity,

such that κ〈|∇c2|〉 balances and

∇c ∼ κ−1/2, (2.51)
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and the smallest scales visible in the concentration field have size ∼
√
κ. If the

flow is assumed to be chaotic with average local strain rate h, the gradients in the

concentration field would vary as |∇c| ∼ e−ht. The time T when the concentration

striations stabilise due to the balance between the effect of diffusion and strain

is given by

e−ht ∼
√
κ, =⇒ T ∼ h−1 log κ. (2.52)

The length scale of the striations where this occurs is

lB =

√
κ

h
, (2.53)

called the Batchelor length [Balkovsky & Fouxon (1999); Thiffeault (2008)]. Once

the spatial scale of the concentration field reaches the Batchelor length, the con-

centration field will deplete quickly. From (2.52), this initial stage where ψ is

almost constant varies weakly with diffusivity, only logarithmically with κ. The

decay rates of the concentration field after this stage, quantified by norms such

as the variance, will vary depending on the kinematic dynamics of the underlying

flow.

In chaotic systems which have a uniform rate of strain throughout the domain,

the addition of diffusion predicts an unrealistic super-exponential mixing rate due

to the combined action of exponential diffusive rates alongside exponential reduc-

tion in concentration scales [Thiffeault & Childress (2003); Wonhas & Vassilicos

(2002)]. Such rates have never been observed outside of perfectly realised mathe-

matical models, since real fluid flow contains large amounts of non-uniformity in

the stretching and deformation from shearing in the velocity field.

Introducing non-uniformity in the strain rates of the underlying flow field

produces exponential mixing rates overall. This was first observed by Pierrehum-

bert (1994), where a non-uniformly deforming chaotic flow produced a persistent

pattern in the concentration field after several iterations, and the variance decay

achieved an exponential long-time mixing rate. It was noted that on decreasing

the rate of diffusivity, the initial stages where not much mixing took place ex-

tended, but the exponential mixing rate became independent of the diffusivity.

The spatial structure on the concentration field remained time independent but

the amplitude decreased at each iteration. The pattern appeared to have arbi-

trary fractal scales, limited only by the presence of diffusion, and as such was

described as a “strange eigenmode”, where strange was chosen to describe the

32



CHAPTER 2. LITERATURE REVIEW

fractal spatial scales observed. A strange eigenmode was observed experimen-

tally by Rothstein et al. (1999), where a spatially persistent pattern emerged in

an electromagnetically driven, two-dimensional fluid layer with florescent dye.

Local Lagrangian dynamics were used by Antonsen Jr et al. (1996) in an

attempt to explain the exponential decay in a unifying theory. It was proposed

that the exponential decay is determined by the small number of orbits which

are aligned perpendicular to the contracting direction of the flow. Thiffeault

(2008) considered probability distributions of randomised stretching histories,

where again a slower decay rate was produced, however concern was raised over

the limitations of local theory if blobs of fluid were to interact with each other

or boundaries during evolution. Indeed, examples were found in which the local

theory could not account for an exponential decay of tracer variance.

Fereday et al. (2002) posed a one-dimensional baker’s transformation with a

diffusional step, which exhibited long-time exponential decay when the stretching

factors were non-homogeneous within the interval. In this one-dimensional map,

perpendicular alignment of stretching histories do not account for the observed

decay rate, since the initial condition is directly aligned with the stretching di-

rection. In such a system the local theory predicts a super-exponential mixing

rate.

A similar study in two-dimensional discrete Fourier space, used the cat map

with non-uniformity added via a small-wave perturbation [Thiffeault & Childress

(2003)]. This perturbed system was a rare example of a two-dimensional map in

which the variance decay could be investigated analytically. It concluded that

the exponential mixing rate which emerged was not governed by the alignment of

stretching histories, since the parameters ensured the map was close to uniform

stretching, but the dispersion of variance into wavemodes of longer wavelength

via the non-uniformity. Both Fereday et al. (2002) and Thiffeault & Childress

(2003) showed the decay of variance was dominated by the variance trapped in

the gravest Fourier modes.

This theory in which the gravest wavemodes dominate the decay of variance,

resulting in the emergence of eigenfunctions of the concentration field, was de-

scribed as a “global” theory of mixing, in contrast to “local” Lagragian description

from stretching histories. The global mechanism arises from the arrangement of

striations with varying widths, due to the non-uniformity in the stretching rates.

This latter theory is supported by the long-time mixing rate being sensitive to

boundary conditions which the local description would not predict, shown for
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the one-dimensional non-uniform baker’s transformation by Wonhas & Vassilicos

(2002) and Gilbert (2006).

It has been argued however that the local mechanism describes well the initial

transient stage of mixing, before the eigenmode regime begins [Fereday & Haynes

(2004); Hu & Pierrehumbert (2002); Wonhas & Vassilicos (2002)]. Studies on the

one-dimensional non-uniform baker’s transformation map were extended by Won-

has & Vassilicos (2002) who showed that the probability density function (PDF)

of stretching histories capture well the evolution of concentration in the first few

iterations [Wonhas & Vassilicos (2002)]. Additionally Tsang et al. (2005) and

Haynes & Vanneste (2005) found the local mechansim can capture the asymp-

totic stages of mixing depending on the flow and velocity scales in the vanishing

diffusivity limit, confirmed by Sukhatme & Pierrehumbert (2002). The local argu-

ment provides a lower bound on the exponential mixing rate, associated with the

essential spectral radius of the continuous spectrum, while the global mechanism

is associated with discrete isolated eigenvalues of the advective transfer operator

[Haynes & Vanneste (2005)]. The global mechanism describes the regime where

the domain scale is significantly larger than the flow scale, and scalar transport

is dominated by large scale transport and the domain geometry.

Although in the global mechanism, Lypaynov exponent statistics fail to cap-

ture the asymptotic mixing rate of tracer decay, qualitatively the spatial distri-

butions of finite time stretching histories seem linked to the spatial arrangement

of the strange eigenmodes. Gilbert (2006) used boundary layer theory to predict

the eigenfunctions in the presence of small diffusion and showed eigenmode align-

ment to regions of low stretch were evident, similarly reported in other numerical

studies [Gouillart et al. (2008)].

The emergence of eigenfunctions in the concentration field via the advective-

diffusive transfer operator with κ > 0 is easily understood, since the eigenvalues

all satisfy |λk| < 1. The eigenfunctions vk satisfying (2.17) decay at the rate

of their respective eigenvalues under each application of the transfer operator

P = PD ◦ PM . For a given initial concentration field under the action of P ,

after some time the eigenfunctions with the slowest decaying rate will begin to

emerge in the concentration field and dominate the long-time evolution. The

average long-time exponential mixing rate is given by the modulus second leading

eigenvalue of the transfer operator for the discrete time evolution, |λ2|. Therefore

the long-time mixing rate is independent of initial condition. The variance decays

proportionally to the leading eigenvalue as ψj ∝ |λ2|2j, however its possible for
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oscillations about this average mixing rate arise due to the complex nature of the

eigenvalue λ2 [Toussaint et al. (1995)].

The independence in the long-time mixing rate which emerges in the limit of

zero-diffusivity is due to the leading eigenvalue tending to the strong mixing rate

of the advective transfer operator, |λ2| → τ , however this approach is non general.

In the local regime, Haynes & Vanneste (2005) reported that if the spectrum has

no isolated eigenvalues, then the leading eigenvalue λ2 of P tends to ress, the

upper limit of the continuous spectrum of PM , like 1/ log2 κ. In the global regime

the diffusive correction to τ goes like κσ for some 0 < σ < 1.

For many of the numerical studies in the global regime, the approach λ2 → τ

is monotonic with κ [Thiffeault & Childress (2003); Wonhas & Vassilicos (2002)].

Non-monotonic convergence in the diffusive limit was reported by Gilbert (2006)

for the non-uniform baker’s transformation with a flux boundary condition, where

regular oscillations in the correction |τ − λ2| where observed with scaling log(κ),

but in general the approach exhibited a power law in line with Haynes & Vanneste

(2005). Similar non-monotonic convergence was reported by Eckhardt et al.

(2003) for a 3 branched, folded baker’s transformation with a diffusive step.

The pre-mentioned studies on non-uniformity in stretching rates gave some

insight into the complicated behaviour of laminar advection-diffusion, but were

idealised cases concerning fully chaotic domains with mainly periodic boundaries.

In many real life mixing systems, barriers to mixing, such as islands, and no-slip

boundary conditions would be present.

2.5.2 Boundaries and walls

No-slip boundaries have also been shown to inhibit mixing. Numerical studies

considering the effect of slip and no-slip wall boundaries reported that the variance

was shown to decay via a power-law during intermediate times of mixing for both

Neumann and Dirichlet boundary conditions [Salman & Haynes (2007); Zaggout

& Gilbert (2012)]. Additional studies such as an experiment of a figure of 8 stirrer

in a circular vessel will walls [Gouillart et al. (2007)], a numerical adaptation of

the baker’s map with a parabolic point at the origin [Gouillart et al. (2008)], and

an abstract two-dimensional ergodic map of an egg beater flow with parabolic

points along the boundaries [Sturman & Springham (2013)] also revealed power-

law mixing rates in both diffusive or non-diffusive systems. In these latter studies,

analytical results or numerical Poincaré sections showed that the chaotic regions

extended to the boundaries and there were no barriers to mixing in all cases.
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They concluded that the fluid experiencing slow, algebraic stretching rates at

the boundaries injected into the bulk flow via repeated stretching and folding

contaminates mixing rates across the whole domain.

In the figure of 8 stirring vessel, exponential decay rate was successfully re-

achieved in the bulk through rotation of the outer walls generating a homoclinic

orbit, protecting the inner mixing from boundary contamination Gouillart et al.

(2010); Thiffeault et al. (2011). The central region at long-times recovered the

formation of an eigenmode, however there remained a thin layer of unmixed fluid

in the region at the boundaries.

A question can be posed however, across a number of protocols, can a stirring

strategy with an algebraic decay rate beat one of exponential rate to a sufficient

mixing condition? Rotating an exterior wall will provide additional energy costs

in practice and a least cost effective protocol may be just as effective. Mixing

protocols are generally studied in isolation and only a handful compare a large

number of parameters [Finn et al. (2004)].

2.5.3 Barriers to mixing

A transformation with elliptic islands, or several chaotic domains separated by

invariant tori, are not ergodic and as such limit particle transport. Elliptic islands

have been shown to cause trajectories which pass near to be slow and stick to

them for some time, posing problems to mixing similar to boundary behaviour

discussed in Section 2.5.2 [Horita et al. (1990); Pierrehumbert (1991)].

However, the main contamination from elliptic orbits and invariant tori in

the approach to uniformity, is the restriction of concentration transfer to only

diffusion across the barriers in the long-time limit. The inhibition of material

transfer from stirring means that large elliptic islands will prevent an approach

to the Batchelor length in regions of the flow, preventing a rapid approach to

uniformity. In the limit of small diffusivity, the transfer of material by diffusion

through the interfaces is slow.

Popovych et al. (2007) investigated the evolution of a scalar concentration field

via advection-diffusion in a phase space with weakly connected chaotic regions,

and a phase space consisting of a chaotic sea with large elliptic islands. In both

cases the transfer operator describing the iterative evolution was computed and

it was found that the finite time variance decay could be well approximated as

a summation of the two slowest decaying eigenfunctions of the transfer operator.

The latter phase space resulted in a polynomial decay rate. Plotting the spatial
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distribution of stretching histories via finite time Lyapunov exponents, it was

observed that the slowest decay eigenfunctions aligned with regions of low stretch,

near islands or boundaries to chaotic regions.

2.6 Discontinuous mixing

The studies discussed so far have been mainly concerned with material deforma-

tions arising via stretching and folding alone, however systems with discontinuous

stirring also exists. The stirring mechanisms arising from discontinuities in such

systems has previously been described as cutting and shuffling (CS) [Smith et al.

(2016); Sturman (2012); Wang & Christov (2018)].

2.6.1 Dynamics of Piecewise Isometries

Most discontinuous systems studied analytically to date have been those com-

posed of CS dynamics alone. Transformations composed of translations, rotations

and re-orientations, are called Piecewise Isometries, which was largely instigated

by Goetz [Goetz (1998, 2000, 2003)]. Such systems can give rise to complex

structures, where coding partitions can have fractal self similar patterns [Goetz

(2003)], and non-smooth invariant curves forming barriers to ergodicity [Ashwin

& Goetz (2005)]. Positive Lyapunov exponents and exponential mixing are the

hallmark of chaotic advection, and although complex behaviour can emerge in

piecewise isometries, Lyapunov exponents have be shown to be zero [Fu & Duan

(2008)], and transformations having zero entropy [Buzzi (2001)].

Although stirring from CS lacks essential chaotic properties and does not cause

material deformation from shearing, it can still create interface and decrease the

scale of segregation. A handful of analytical results outline the potential mixing

properties in one-dimensional piecewise isometries.

An Interval Exchange Transformation (IET) is a one-dimensional subset of

generalised piecewise exchanges and translations in higher dimensions. Mathe-

matical studies of IETs have proven that they increase the number of interfaces

linearly [Novak (2009)] and are minimal and ergodic if the permutation on the

intervals is irreducible and the subinterval lengths rationally independent [Keane

(1975)]. Katok (1980) asserts IETs are never strong mixing and it was later

proved that almost all minimal permutations which are not a rotation are weakly

mixing [Avila & Forni (2007)], at a rate which is at most polynomial. The conse-

quence of a transformation that is not strong mixing is that the transfer operator
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describing the evolution of observables contains no spectral gap. Therefore trans-

fer operators describing Interval Exchange transformations have a point spectrum

with non-trivial eigenvalues on the unit-circle.

Weak mixing is an asymptotic mixing rate, and more recent numerical stud-

ies have been concerned with the finite time segregation properties of Interval

Exchange transformations [Krotter et al. (2012); Yu et al. (2016)] and higher di-

mensional Piecewise isometries constructed on a hemi-spherical shell [Juarez et al.

(2012); Park et al. (2016, 2017); Smith et al. (2017a)]. All studies show that sig-

nificant complexity can arise in such systems after a finite number of iterations.

Both Krotter et al. (2012) and Yu et al. (2016) found that the parameters which

result in weak mixing inform the parameters for good finite time stirring, even

if they are not strictly met i.e., rational dependence between subintervals can

be relaxed to some extent. Introducing cut variation, mimicking uncertainty in

mechanical stirring, also improves stirring [Yu et al. (2016)]. Smith et al. (2018)

proposed an IET with variable parameters at each iteration which optimized

decreasing the scale of segregation.

The hemi-spherical shell model was first proposed by Sturman et al. (2008) as

an idealisation of a spherical granular tumbler. In the limit of a vanishing flowing

layer, where shearing like mixing takes place, the mixing is captured purely by

cutting and shuffling in the bulk from solid body rotation. A half filled tumbler is

rotated first in one-direction, followed by a second rotation in the perpendicular

direction, represented as a piecewise isometry with four pieces whose sizes are

determined by the rotation angles. In such systems, streamline jumping governed

by solid body rotation and a limiting shear layer leads to complexity in the absence

of chaos [Christov et al. (2010)]. There has been extensive investigation into the

rotation angle parameter space and resulting coverage of cutting lines within the

domain [Juarez et al. (2012); Park et al. (2017)]. By identifying resonances in the

parameter space which generate large regions untouched by cutting lines, Smith

et al. (2017a) where able to suggest a broad collection of rotation angles likely to

result in a successful stirring in finite time.

IETs, the hemi-spherical shell, and many other piecewise isometric transfor-

mations informed a recent review on their possibilities in mixing [Smith et al.

(2019)]. However, these mixing processes are unlikely to arise in isolation in real

life applications. The next section outlines the range of applications involving

combined dynamics of stretching and folding with discontinuities, followed by a
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review of studies considering the combined effects of stretching and folding (SF),

cutting and shuffling (CS) and diffusion (D).

2.6.2 Examples of discontinuous mixing

There are many instances in mechanical mixing in which discontinuities arise, al-

though there is comparatively little understanding in their implication on mixing.

For example, if the underlying fluid being stirred is a polymer solution, paste, or

is highly viscous, stirring by conventional methods such as using paddles or rods

may require too much energetic costs to be effective. Split–and–recombine mixers

adopt the action of cutting and shuffling to increase the number of lamellae be-

tween substances and can have complicated geometries. They are commonly em-

ployed in micro-mixing flows only millimetres across [Hardt et al. (2008); Hobbs

& Muzzio (1997); Hossain & Kim (2015); Schönfeld et al. (2004)]. Notably, the

Kenics mixer cuts and rotates fluid to mimic the stretching and folding action

of the baker’s transformation, a paradigm transformation which is strong mixing

[Hobbs & Muzzio (1997)].

Sink–source flows stir via pressure differences arising from fluid subtraction

and reinjection, which may be configured to generate chaotic velocity profiles

[Cola (2004); Lester et al. (2009)]. Discontinuities can be introduced via the clos-

ing and opening of valves during syringe reorientation, required to ensure stream-

line crossing and chaotic trajectories produced [Hertzsch et al. (2007); Jones &

Aref (1988)]. Streamline jumping has been known to destroy dynamical features

[Lester et al. (2009)], or in the presence of no-slip boundary condition create

pseudo-elliptic and pseudo-hyperbolic periodic points in the cut-dominated limit

[Smith et al. (2016)].

As briefly mentioned in Section 2.6.1, granular materials also exhibit stirring

mechanisms of both stretching and folding and cutting and shuffling. Piecewise

isometries have been shown to capture the underlying structure in spherical tum-

bler flows [Juarez et al. (2012); Sturman et al. (2008); Yu et al. (2019)], with

deviations in experimental models occurring due to the material passing through

the flowing layer or diffusive-like effects from particle–particle interaction. Work

has been done to understand the bifurcations that occur in the models when in-

troducing shearing from the flowing layer into the piecewise isometry. In a model

with reduced granular material height, stretching and folding is present even in

the no shearing limit, and new bifurcations have been observed when cutting lines

meet elliptic islands [Smith et al. (2017c)].
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Another mechanism which could introduce discontinuities in fluid mixing is

from the underlying properties of the material being stirred. High strain in poly-

meric, plastic or metallic material may cause slip deformations due to shear band-

ing [Louzguine-Luzgin et al. (2012)].

Even though the applications are numerous, there a few studies on the inter-

play between stretching, folding, cutting and shuffling and diffusion. The next two

sections cover in detail analytical and numerical studies investigating the rates

of stirring and mixing in systems with a discontinuous mechanism to particle

transport.

2.6.3 Dynamics of mixed SF and CS systems

There are many applications in which a combination of SF and CS stirring mech-

anisms arise but comparatively little analytical or computational studies inves-

tigating the impact of discontinuous fluid transport on mixing rates. Sturman

(2012) provides a substantial review on the necessary background and applica-

tions in which discontinuities play a role in fluid mixing.

Vaienti (1992) rigorously proved the sawtooth map is ergodic, a discontin-

uous area-preserving automorphism of the unit torus onto itself. However, the

proof is far from trivial and employs the work of Katok et al. (1985), who gen-

eralised Pesin theory to maps with singularities. Byott et al. (2013) showed that

for one-dimensional expanding maps composed with permutations of equal sized

cells, permutations do not improve the rate of decay of correlations, but typ-

ically make it worse. For a given stretch rate m, whether permutations from

SN have the potential to cause a decomposition in the composed map is proven

by combinatorial methods. The strong mixing rates were explicitly computed

from probability transition matrices between Markov states, which are the iso-

lated eigenvalues of the maps transfer operators. Byott et al. (2016) extended

the study to include all combinations of expanding maps with inverted branches.

Jones & Aref (1988) recognised that discontinuous fluid transport arises in

Pulsed sink–sources flows from fluid extraction and re-injection. There have been

numerous other studied on sink–source based flows considering the particle trans-

port invoked by configuring the systems to generate chaotic advection, however

none of the studies commented on the effect of the discontinuities [Cola (2004);

Cola et al. (2006); Hertzsch et al. (2007)].

Smith et al. (2016) recently investigated the dynamics of a Reoriented Poten-

tial Mixing (RPM) flow, where a free-slip boundaries created discontinuities in
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SF & D SF & CS CS & D

Pierrehumbert (1994) Viana (2006) Ashwin et al. (2002)

Antonsen Jr et al. (1996) Byott et al. (2013, 2016) Wang & Christov (2018)

Fereday et al. (2002) Smith et al. (2016)

Sukhatme & Pierrehumbert (2002) Smith et al. (2017b)

Wonhas & Vassilicos (2002) Smith et al. (2017c)

Gilbert (2006)

Popovych et al. (2007)

Schlick et al. (2013)

Table 2.1: Key literature is listed which investigates fluid transport and mixing rates

in systems with combined mixing dynamics of stretching and folding (SF), cutting and

shuffling (CS) and molecular diffusion (D).

fluid transport. Analysis of a simplified map, which they called the Cut-Shear-

Shear (CSS) map, revealed how changing the direction of the slip deformation and

shears caused variation in the transport dynamics, all of which featured in differ-

ent regions within the full RPM flow model. Novel periodic points and bifurcation

transitions were identified which would be impossible in standard Hamiltonian

systems of chaotic advection. Tracing the images and pre-images of cutting lines

assisted in identifying these periodic points named pseudo-elliptic and pseudo-

hyperbolic. The impact on the rates of mixing in the CSS map were investigated

by Smith et al. (2017b) measuring the decay of the mix norm, and found that rate

of decrease in material segregation was slowed from the uniform hyperbolic case

when the slip deformation was present. Additionally, exotic bifurcations were

identified in idealised granular flows which consisted of combined dynamics from

SF and CS [Smith et al. (2017c)], where contact from cutting lines eliminates

invariant tori surrounding elliptic periodic points.

2.6.4 Dynamics of mixed CS and D systems

In addition to systems of combined SF and CS, there has been a handful of

studies considering the combined dynamics of CS and D. Recall the decay of

variance in (2.4), which states that an increase in average gradients will generate

a quicker decay of variance. Although CS will not increase gradients through

shearing, sharp interfaces can be introduced into the concentration field from

discontinuous transformations, and so increase the speed of mixing. This was

confirmed by Ashwin et al. (2002), who showed that permutations of equal sized

cells on the unit interval, a subset of Interval exchange transformations (IET),
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although themselves are not strong or weak mixing, accelerate the asymptotic

mixing rate of diffusion acting alone. It was observed that the ordering of the

permutations which achieve the quickest mixing was dependent on the rate of

diffusivity. IETs with diffusion have been used as toy models to investigate mixing

rates and optimizing diffusional schemes [Froyland et al. (2016); Sturman (2012)],

but there was no investigation of mixing rates in a larger parameter space.

Wang & Christov (2018) studied the average mixing rates across groups of

IETs with a diffusional step, and concluded a universal stretched exponential

in the decay of variance emerges on rescaling with a mixed time. The study

was inspired by the work of Liang & West (2009), who looked for cut-offs in

chaotic advective mixing, a phenomenon seen in card shuffling [Aldous & Diaco-

nis (1986)]. The variation distance is a measure used in probability which can

be used to specify how far away a deck of cards is from a perfectly randomised

deck during a shuffling process. A cut-off describes a sharp transition in variation

distance and as an such could predict a potential stopping time. Wang & Chris-

tov (2018) questioned whether a similar phenomenon is observed in mixing by

IETs and could be used as a proposed stopping time on stirring. They conclude

that the system presents evidence of cut-offs, however this is not clearly evident

from their results. A cut-off is described as a relative quicker transition to a

well mixed state when decreasing the diffusivity rate. The trend in the rescaled

variance profiles of Wang & Christov (2018) vary qualitatively from both Aldous

& Diaconis (1986) and Liang & West (2009), and do not show the behaviour

expected of cut-offs. The main problem is that the rescaling of the profiles does

not see an agreement between the respective stopping times, which is needed to

assess whether a steeping in the transition between a not well mixed state, and

well mixed state occurs. A more rigorous discussion on Wang & Christov (2018)

is carried out in Chapter 4.

Table 2.1 lists the key literature investigating the combination of mixed dy-

namics in chaotic advective systems. The combination of chaotic advection and

diffusion (SF & D) has received much attention, as outlined in Section 2.5, and

as such a wealth of literature is omitted and the named studies are those which

are particularly relevant to the current body of work. The combined dynamics of

SF & CS has a handful of studies associated to understanding the dynamic and

ergodic properties in such mixed systems, however CS & D, and additionally SF,

CS & D has received little or no attention. This latter fact is the main motiva-

tion of the work carried out herein, in which the role of molecular diffusion on the
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rates of mixing to uniformity are investigated in discontinuous transformations.
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Chapter 3

Fundamental models of mixing

by chaotic advection

This Chapter outlines the use of dynamical maps to study mixing in chaotic

advective systems where the velocity field is continuous. Discrete time-periodic

maps can be devised which capture the essence of fluid mixing, where stretch-

ing and folding lead to good mixing while boundaries and separated domains

contaminate and increase the time to homogenization. Discrete maps allow for

intuitive understanding of the effect specific dynamics have on mixing due to

their simplicity. In more complicated models deciphering which flow field dy-

namics contribute to the observed behaviours is more difficult. Methodologies

for constructing maps, including diffusion, and analysing mixing dynamics are

introduced which will be repeatedly used in the current work.

3.1 Discrete maps as models for mixing

3.1.1 Toral Automorphisms

A selection of toral automorphisms are presented which capture a range of dynam-

ics in which stretching and folding are the key mechanism for chaotic advection.

Methods of analysis are introduced throughout which will be used within the

chapters which follow.

Toral automorphisms are paradigm examples of two-dimensional maps which

can exhibit chaotic dynamics, namely exponential separation of nearby parti-

cles. Non-uniformity in the stretching dynamics is added via a small wave-

perturbation. Since discrete time intervals describe the stirring of fluid parti-
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v1

v2
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y y
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1 0 1
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a) b) c)

Figure 3.1: The action of two shear maps are shown in a) and b), independent of y and

x respectively. The composition of the two shears, applying b) followed by a), results

in the cat map. The action on the unit square of the cat map is shown in c) with a

representation of reassembly onto the unit torus.

cles, diffusion is introduced iteratively by solving the heat equation after each

time step. Implementing periodic boundary conditions means that the evolution

of a concentration field is computed using discrete Fourier coefficients without

numerical diffusion. Dynamical metrics such as Poincaré maps and Lyapunov ex-

ponents, and how they can be used to determine observations in mixing systems,

are discussed.

The unit torus is defined by the projection π : R2 → T2 such that

π(x+m, y + n) = π(x, y) for all (m,n) ∈ Z2. (3.1)

Let A be an integer matrix

A =

(
a b
c d

)
and let M

(
x
y

)
= A

(
x
y

)
mod 1. (3.2)

then M : T2 → T2. Provided detA = ±1, A−1 will also be an integer matrix.

Maps M : T2 → T2 in which A and A−1 are both integer matrices are called Toral

Automorphisms. All toral automorphism preserve Lebesgue measure since they

are invertible and have detA = 1. A toral automorphism will have characteristic

polynomial for the eigenvalues of the matrix, given by χ(λ) = λ2 − tAλ + 1,

tA = traceA, so the eigenvalues are given by λ = (tA ±
√
t2A − 4)/2 with tA an

integer. The eigenvalues determine the behaviour of the toral automorphism.

For tA ≥ 3, or tA ≤ −3 A has two real eigenvalues λ1 and λ2 with |λ1| > 1 and

|λ2| < 1, resulting in hyperbolic behaviour, with a stretching and contracting

direction.
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Figure 3.2: The evolution of the initial condition c(0)(x, y) = cos(2πx) by the shear

map (3.3). Striations are compressed uniformly but at a rate which is subexponential.

The simplest toral automorphism is the shear map MS : T2 → T2, which has

A =

(
1 1
0 1

)
, so that MS

(
x
y

)
=

(
x+ y
y

)
. (3.3)

Figure 3.1 a) depicts the action of the map on the points x and y, where for all

points the y value remains fixed and they move in lines parallel to the x axis on

repeated iteration. The shearing action of the map results in stretching of fluid

elements. This is seen when showing the evolution of a concentration field.

A simple initial concentration field c(0)(x, y) can be used as an example to show

how a map M might evolve typical concentration fields. First, represent c(0)(x, y)

on a grid of evenly spaced points xi, yi. If xji , y
j
i denotes the values at the jth

iteration, then the concentration field at iteration (j) can be plotted by working

out c(j)(xi, yi) = c(0)(x−ji , y−ji ), where x−ji , y−ji are worked out from the inverse

inverse map M−1(x, y). Figure 3.2 shows the evolution of the initial condition

c(0)(x, y) = cos(2πx), which is sheared and stretched by the map. Although

this map is stretching the concentration field, it is doing so at a rate which is

subexponential. The shear map is neither mixing or even chaotic, reflected in the

eigenvalues of the shear map which are both λ1 = λ2 = 1, and no hyperbolicity

is present.
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Figure 3.3: The evolution of the initial condition c(0)(x, y) = cos(2πx) by the cat

map (3.4), a composition of two shears. Striations are compressed uniformly with an

exponential rate of compression.

The composition of the two shears depicted in Figure 3.1 a) and b), is called

Arnold’s cat map. The cat map MC is an example of a toral automorphism which

is hyperbolic and as such captures the essence of good mixing, defined by

MC

(
x
y

)
=

(
1 1
0 1

)(
1 0
1 1

)(
x
y

)
mod 1 =

(
2 1
1 1

)(
x
y

)
mod 1. (3.4)

The action of the cat map on the unit torus is shown in Figure 3.1 c), before

it is reassembled by periodic boundary conditions. The evolution of the initial

condition c(0)(x, y) = cos(2πx) by the action of the cat map is depicted in Figure

3.3, and in comparison to the shear map, stretches the initial condition at a much

faster rate. This is because the cat map is hyperbolic; in that it has exponential

separation of infinitesimally nearby trajectories. This is due to the hyperbolicity

of the cat map, which has eigenvalues λ1 = (3 +
√

5)/2 and λ2 = (3−
√

5)/2, and

respective eigenvectors v1 and v2 shown in Figure 3.1 c) showing the directions

of stretch and contraction.

Compositions of shears have been considered as paradigm models of stretching

and folding dynamics in mixing. Sturman et al. (2006) consider how co-rotating or

counter-rotating effects of shears describe the dynamics on co-twisting or counter-
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Figure 3.4: Poincaré sections for the Standard map where varying colours distinguish

the trajectories of multiple initial conditions along the line (x = 1/2, y) for 1000 time

steps. On increasing the effect of the wave perturbation, for large K a chaotic sea

emerges with elliptic islands.

twisting link-twist maps. The action of counter-twists can lead to un-stirring dy-

namics. Additionally, Sturman & Springham (2013) use a composition of shears

in a link twist map with parabolic boundaries to prove the decay of correlations

is polynomial at best in the presence of walls. D’Alessandro et al. (1999) investi-

gate the optimization of entropy as a potential measure for mixing, and conclude

that simple periodic application of counter-rotating shears gives the maximum

measure of entropy over randomised applications. This periodic composition is

simply repeated applications of the cat map.

The failing of these maps is the uniformity in the stretching rates, which

is not applicable to realised physical mixing scenarios. Non-uniformity can be

introduced by adding a wave perturbation such that

M

(
x
y

)
=

(
a b
c d

)(
x
y

)
+
K

2π

(
sin(2πx)
sin(2πx)

)
mod 1. (3.5)

For the shear map, this results in the standard map, also known as the Chirikov-

Taylor map, defined

MPS

(
x
y

)
=

(
x+ y + K

2π
sin(2πx)

y + K
2π

sin(2πx)

)
= MS(x) + ω(x), ω(x) =

K

2π

(
sin(2πx)
sin(2πx)

)
.

(3.6)

Similarly the cat map with a wave perturbation can be defined as MPC(x) =

MC(x) + ω(x). This latter map was used to investigate mixing in non-uniformly

stretching systems by Thiffeault & Childress (2003).
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Figure 3.5: The initial concentration field c(0)(x, y) = cos(2πx) is evolved via the

standard map with K = 1.0. The wave perturbation introduces non-uniformity in the

width of striations, and within regions aligning with elliptic islands in the Poincar’e

maps, limited filamentation occurs.

3.1.2 Poincaré sections

Plotting long trajectories of points under a mapping M will highlight structures

in the underlying flow. These plots are known as Poincaré sections, and they are

useful in studying mixing systems since non-mixing regions will appear as islands

or decompositions of the domain, while a chaotic sea, in which trajectories appear

to fill the state space, suggest good mixing may be present.

Figure 3.4 shows multiple trajectories initialised along the line (x = 1/2, y)

for the standard map (3.6). For K = 0 the trajectories lie along straight lines

parallel to the x-axis. Adding the wave perturbation causes the lines to bend,

in some instances generating chains of elliptic islands, apparent in the Poincaré

sections when K = 0.5. As K increases, regions of chaotic trajectories between

elliptical chains emerges, shown for K = 1.0, until finally a chaotic sea appears

with several elliptic islands, depicted for K = 2.0. Figure 3.5 shows the evolu-

tion of c(0)(x, y) = cos(2πx) by the standard map with K = 1.0, where elliptic

islands have restricted regions of the concentration field from filamenting, while

the chaotic sea between elliptic chains have resulted in a large increase in gradi-

ents in the concentration field due to exponential stirring dynamics there.

Poincaré section for the cat map with added wave perturbation are shown in
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Figure 3.6: Poincaré sections for the wave perturbed cat map where varying colours

distinguish the trajectories of multiple initial conditions along the line (x = 1/2, y)

for 1000 time steps. For small values of K the cat map remains chaotic however for

K > 1.5 elliptic island emerge within the chaotic sea.

Figure 3.6. When K = 0 the map is fully chaotic and a chaotic sea fills the unit

torus. As K is increased the transformation remains fully chaotic, observed when

K = 0.5 and 1.0, until finally when the parameter K is large enough, elliptic

islands emerge within the chaotic sea, shown for K = 2.0.

In Figure 3.6 there is no qualitative difference between the Poincaré sections

for K = 0.5 and 1.0, with trajectories filling the whole of the domain T2, but

looking at the evolution of c(0)(x, y) = cos(2πx) in Figure 3.7 when K = 1.0, the

concentration field shows variations in the striation widths as it is being stretched.

Although Poincaré sections show that trajectories can densely cover the do-

main, they reveal only long-time dynamics of trajectories and give no quantitative

information about the transformation. Lyapunov exponents, and the distribution

of finite time Lyapunov exponents (FTLEs), provided quantitative and qualita-

tive measures of stretching rates in a dynamical system and are described in the

next section.

3.1.3 Lyapunov exponents

Lyapunov exponents quantify the exponential separation of infinitesimally nearby

trajectories within a dynamical system and are typically used to determine if a

dynamical system is chaotic. Stretching histories and short-time evolution of

nearby trajectories are captured by finite-time Lyapunov exponents (FTLEs).
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Figure 3.7: The initial concentration field c(0)(x, y) = cos(2πx) is evolved via the

wave perturbed cat map with K = 1.0. The hyperbolicity of the cat map is retained

under perturbation, with efficient filamentation after just a handful of iterations. Non-

uniformity in the stretching rates produces uneven compression of lamellar throughout

the domain.

For an initial location x0 and an initial perturbation δx0 the evolution the

Lyapunov exponent is defined as

h(x0, δx0) = lim
t→∞

lim
δx0→0

1

t
ln

(
||δxt||
||δx0||

)
(3.7)

where δxt denote the deformation of the perturbation after time t.

A similar definition applies for discrete maps M

h(x0, δx0) = lim
n→∞

1

n
lim

δx0→0

n−1∑
k=0

ln
||δxk||
||δx0||

(3.8)

The deformation of the element δx can be thought of as the local deformation.

The infinitesimal limit of the local deformation is the Jacobian determinant Df

(2.8) at the point along the trajectory.

For a N -dimensional system there are N Lypaunov exponents defined for each

point, typically however interest lies with the Lyapunov exponent value for the

fastest stretching direction, called the maximal Lyapunov exponent. A chaotic

dynamical system will have a positive maximal Lyapunov exponent. For an area

or volume preserving system, the Lyapunov exponents of a trajectory will sum

to 0. For x0 which belongs to an ergodic partition B say, almost all x0 ∈ B will
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Figure 3.8: Stretching histories along element trajectories are shown by finite time

Lyapunov exponents (FTLEs) averaged over 10 iterates for the Standard map with

varying K. Elliptic islands appear as dark islands while the chaotic sea shows regions

with low and high stretch.

Figure 3.9: Stretching histories along element trajectories are shown by finite time

Lyapunov exponents averaged over 10 iterates for the cat map with added wave per-

turbation with varying K.

have σ1, . . . σN equivalent. This is due to Birkhoff’s ergodic theory and which

states that time averages are equivalent to spatial averages which results in

h(x) = lim
n→∞

1

n

n−1∑
k=0

ln ||Df(x)|| =
∫

ln ||Df(x)||dµ(x). (3.9)

where || · || denotes the matrix norm, and Df denotes the Jacobian determinant

matrix (2.8). Thus within an ergodic partition, finding the Lyapunov exponents

along a single trajectory is enough to calculate the Lyapunov exponent for that

ergodic partition. Lyapunov exponents can be computed numerically via the

method of Parker & Chua (2012). This method is described in detail in Appendix

A.
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Since for almost all points within an ergodic partition the Lyapunov expo-

nents will be the same they do not highlight regions which may experience low

or high stretch locally. Finite time Lyapunov exponents can be calculated for

individual points within an ergodic partition by computing (3.8) can be iterated

for a specified iterations number T . However, to observe the specific stretching

history of a given trajectory we need the maximal finite time Lyapunov exponent.

This can be calculated as

hT (x0, δx−T ) =
1

T

T∑
k=1

ln
||δx1

−k||
||δx0||

, (3.10)

where computing in backward time finds the average of the finite time stretching

histories for the point of interest x0. For area-preserving maps, h1 and hT1 are

always zero or positive in value. For a grid of chosen points (xi, yi) in the domain

T2, Figures 3.8 and 3.9 plot the maximal finite time Lyapunov exponents for each

point, averaged over T = 10 backwards iterations for the standard map and the

cat map with added wave perturbation respectively. The same values of K are

used as those of the Poincaré sections in Figure 3.4 and 3.6 for comparison.

For the standard map in Figure 3.8, when K is small, only small regions

between chains of elliptic islands experience large values of hT1 . As K is increased,

there is an increase in regions which experience high values of stretch in the

trajectory history, until K = 2.0 where the chaotic sea shows a good distribution

of hT1 > 0. The stretching histories surrounding the elliptic islands are slow in

comparison to regions far from the elliptic islands in the chaotic sea.

For the cat map, qualitative differences in the stretching behaviours is seen

between K = 0.5 and K = 1.0 which are not seen in the fully chaotic Poincaré

sections. As K is increased, regions of lower stretch emerge as bands throughout

the domain, aligned with the fastest eigenvector of the cat map with some small

perturbation about it. Comparing with Figure 3.7 which shows evolution of

c(j)(x) = cos(2πx), striations are larger where the finite time Lyapunov exponents

are the lowest, highlighting regions of low stretch and compression which are

reflected in the evolution of striation widths in the concentration field.

Now that the dynamics of the maps in the absence of diffusion have been

established, attention is now directed at including diffusion and observing how

the dynamics effect mixing rates to the uniform distribution when full advection-

diffusion iterative operator applied for κ > 0.
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3.2 Discrete chaotic maps with diffusion

The advantage of the maps presented in Section 3.1.1 is that the discrete advective-

diffusive transfer operator can be derived easily using the methods of Section 2.3.4

via discrete Fourier expansion of the concentration field for periodic boundary

conditions.

3.2.1 Analytic solutions of idealised chaotic mixing

Shear map

Solving for the transfer matrix (2.34) for the shear map (with no wave perturba-

tion) (3.3) gives

DMkq = e−4π2κk·k
∫

[0,1)

exp(2πiQ1x)dx ·
∫

[0,1)

exp(2πiQ2y)dy (3.11)

where Q1 = k1 − q1 and Q2 = k1 + k2 − q2. Since Q1, Q2 ∈ Z the integral is

periodic and equates to zero unless Q1 = Q2 = 0, then

DMkq = e−4π2κk·kδ0,Q1δ0,Q2. (3.12)

The wavemodes which exchange concentration can be written as an iterative map

q
(j+1)
1 = q

(j)
1

q
(j+1)
2 = q

(j)
2 − q

(j)
1 .

(3.13)

From this iterative relation on wave modes, the decay of variance can be worked

out directly. If for a given q(0) = (q
(0)
1 , q

(0)
2 ), ψq(j) = |ĉ(j)

q |2, then

ψq(1) = ψq(0) × exp(−4π2κq(1) · q(1))2. (3.14)

Then it follows that

ψq(j) = ψq(0) ×
j∏
i=1

exp
(
−4π2κq(i) · q(i)

)2
= ψq(0) × exp

(
−8π2κ

j∑
i=1

q(j=i) · q(i)

)
,

(3.15)

and the total variance at each iteration is

ψ(j) =
∑
q

ψq(j) . (3.16)

55



CHAPTER 3. FUNDAMENTAL MODELS OF MIXING BY CHAOTIC ADVECTION

For a y independent initial condition c(0)(x, y) = cos(2q1πx), the iterative

equation (3.13) on the wavemodes reduces to q
(j)
1 = q0

1 and q
(j)
2 = −j ·q0

1 and ψ(j)

and is written analytically as

ψ(j) = ψ(0) exp

(
−8π2κ

j∑
n=1

((q0
1)2 + (−n · q0

1)2

)
(3.17)

ψ(j) = ψ(0) exp

(
−8π2κ|q0

1|2
j∑

n=1

(1 + n2)

)
. (3.18)

Faulhaber’s formula expresses the sum of squares of the first n positive integers

as
n∑
k=1

k2 =
n3

3
+
n2

2
+
n

6
. (3.19)

Hence the variance decay (3.18) can be written as,

ψ(j) = ψ(0) exp
(
−8π2κ|q0

1|2P(j)
)
, (3.20)

where the polynomial P(j) = j3

3
+ j2

2
+ 7j

6
. Therefore for the initial condition

c(0)(x, y) = cos(2πx) when q1 = 1, the decay of variance can be computed ex-

plicitly. For this initial condition, the decay of variance profiles from numerical

computations for different κ are plotted in Figure 3.10, and (3.20) agrees exactly.

As κ goes to zero, the polynomial growth in the transfer of wavemodes means

that the rate of mixing becomes very slow. Although the map is stretching, the

shear map is slow at reducing the scale of the concentration field to a scale in

which diffusion is effective and the map is not an effective stirring protocol.

Cat map

Solving for the transfer matrix for the cat map results in

DMkq = e−4π2κk·kδ0,Q1δ0,Q2, (3.21)

with Q1 = 2k1 +k2− q1 and Q2 = k1 +k2− q2, Q1, Q2 ∈ Z. An iterative equation

for the wavemodes can be written as(
q

(j+1)
1

q
(j+1)
2

)
=

(
1 −1
−1 2

)(
q

(j)
1

q
(j)
2

)
(3.22)

As the map is iterated forward the wavemodes align with the eigenvector cor-

responding to the stretching direction of the matrix in (3.22) multiplied by the

maximal eigenvalue σmax at each iteration such that for a given q(0)

||q(j)|| ≈ ||q(0)|| · σjmax. (3.23)
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Figure 3.10: Profiles for the decay of variance in the shear map with no wave pertur-

bation and a range of diffusivity coefficients κ. The initial condition for all profiles was

c(0)(x, y) = cos(2πx). The decay has a stretched exponential profile, the rate of which

slows down as κ→ 0.

Figure 3.11: Profiles for the decay of variance in the cat map with no wave perturba-

tion and a range of diffusivity coefficients κ. The initial condition for all profiles was

c(0)(x, y) = cos(2πx). Super-exponential decay emerges for all values of κ.
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This means the variance can be approximated by

ψq(j) ∼ ψq(0) · exp
(
−8π2κ||q0||2σ2(j−1)

max

)
(3.24)

and the total variance given by (3.16). This leads to super-exponential decay in

variance, seen in Figure 3.11 for the initial condition c(0)(x, y) = cos(2πx). When

κ is small, the variance does not deplete for the first few iterations until the

concentration profile reaches a scale in which diffusion becomes more effective,

at which the decay begins. The main effect of changing the diffusion coefficient

is changing the scale at which diffusion begins to effectively reduce gradients

in the concentration field. In Figure 3.11 the onset of super-exponential decay

changes linearly with the values of κ, which vary by orders of magnitude, implying

j ∝ − log(κ), as discussed at the start of Section 2.5.1 and given by equation

(2.52).

Figure 3.12: Profiles for the decay of variance in the cat map with wave-perturbation

with strength K = 1.0 and a range of diffusivity coefficients κ. The initial condition

for all profiles was c(0)(x, y) = cos(2πx). The long-time mixing is exponential and as

κ→ 0 this mixing rate becomes independent of κ.

3.2.2 Numerical solutions of non-uniform chaotic mixing

Wave perturbed shear and cat maps

When K > 0, the evolution of a concentration field, and the respective variance

decay, is no longer simple enough to solve analytically. Instead, when adding the
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Figure 3.13: Profiles for the decay of variance in the cat map with wave-perturbation

with strength K = 2.0 and a range of diffusivity coefficients κ. The initial condition

for all profiles was c(0)(x, y) = cos(2πx). Since islands are present in the flow, in the

long-time limit the transport is restricted to diffusion across boundaries and as such

the exponential mixing rate is not independent of κ as κ→ 0.

wave perturbation the transfer matrix M can be derived analytically for both the

wave-perturbed shear and cat maps. This was done for the cat map in Thiffeault

& Childress (2003). The transfer matrix relations between Fourier modes for all

toral automorphism maps with the added wave-perturbation (3.5) and diffusion

coefficient κ are given by

DMkq = exp(−4π2κk ·k)δ0,Q2(−1)Q1JQ1((k1 +k2)K), Q = k ·A−q (3.25)

where A denotes the integer matrix for the toral automorphism. The derivation

of the transfer matrix is in Appendix B.

The non-uniformity in the stretching rates causes a dispersion in the amplitude

of a given wavemode to several wavemodes at each iteration, rather than a direct

cascade, such as (3.13) and (3.22). This introduces complexity in the transfer

of concentration through the wavemodes and the decay of variance can not be

written down analytically. The evolution of a concentration field and its approach

to the mean field is studied numerically only.

Figure 3.12 shows the decay of variance in the cat map with added wave

perturbation for varying diffusivity rates. The strength of the perturbation isK =

1.0, which varies the stretching histories of trajectories significantly but does not

introduce regular islands or barriers to mixing to the flow field, observed in Figure
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3.6. The initial condition was c(0)(x, y) = cos(2πx). The decay of variance ψj is

shown of a linear-log axis, revealing long-time exponential mixing for all values of

κ. Exponential mixing occurs due to the dispersion between the Fourier modes,

resulting in the emergence of a slowly decaying eigenfunction in the asymptotic

limit. Changing the initial condition does not change the exponential mixing

rates. Although in two-dimensions it is not feasible to compute the eigenvalues

and eigenfunctions for the operators PD ◦PM when κ is small, the mechanism for

the emergence of exponential mixing due to the emergence of the slowest decaying

eigenfunction in the flow field remains the same.

On decreasing the effect of diffusion, the initial stages in which the variance

does not decay much is extended, similar to the super-exponential mixing case

when K = 0, however as κ→ 0 the asymptotic rate of mixing becomes indepen-

dent of diffusivity.

When the strength of the perturbation is increased such that K = 2.0, elliptic

islands appear and form barriers to mixing through stirring alone. This is reflected

in Figure 3.13, where the long-time mixing rate does not become independent of

κ, and instead the exponential mixing rate becomes incredibly slow as κ→ 0, due

to the fact that |λ2| → 1 since the transfer operator PM is no longer strong mixing.

Although computation of λ2 is computationally infeasible from the computational

method employed herein for these two-dimensional systems, and approximation

of |λ2| can be computed from the variance profile in these late stages.

The mixing in the long-time limit is restricted to diffusive transport across

the edge of the islands. In the wave perturbed shear map, barriers to mixing

are present for all values K > 1.0 and as such the long-time mixing behaviour

is similar in nature and as such plots of the variance decay are not included for

brevity.

There has been much discussion that the long-time mixing can be predicted

from stretching histories alone [Antonsen Jr et al. (1996); Sukhatme & Pierre-

humbert (2002)], however it is widely accepted that situations where this would

be correct are rare in occurrence and the exponential mixing arises from the global

mechanism of slowly decaying eigenfunctions in most cases. However comparisons

of the distributions of stretching histories, captured in FTLEs, to the concentra-

tion field show that stretching histories can be used to predict the appearance

of emerging eigenfunctions. Figures 3.14 and 3.15 show both the concentration

field after 15 iterations when κ = 10−5 and the FTLEs for the wave perturbed
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(a)

(b)

Figure 3.14: (a) Concentration fields after 15 iterations for the wave perturbed

cat map with different wave perturbation strengths K. The initial condition was

c(0)(x, y) = cos(2πx) and κ = 10−5. The concentration field can be compared with

(b) the distribution of FTLEs in the domain, showing alignment of regions where little

mixing has occurred, with areas of little or no stretch experienced by trajectories.
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(a)

(b)

Figure 3.15: (a) Concentration fields after 15 iterations for the wave perturbed

shear map with different wave perturbation strengths K. The initial condition was

c(0)(x, y) = cos(2πx) and κ = 10−5. The concentration field can be compared with

(b) the distribution of FTLEs in the domain, showing alignment of regions where little

mixing has occurred, with areas of little or no stretch experienced by trajectories.

cat map and shear map respectively. Iteration 15 is chosen because for this dif-

fusivity coefficient and initial condition c(0)(x, y) = cos(2πx), the evolution of

the concentration field is in the eigenfunction regime of the advective-diffusive

operator for the wave perturbed cat map. The concentration fields have been

rescaled and normalised with the maximum absolute value of the concentration

field at the iteration, revealing well mixed regions as zeros in the concentration

field, and peaks far from the concentration field revealing areas where mixing is

not as good.

In Figure 3.14 there is a correlation between well stretched regions and those

that have experienced a significant approach the to the mean field. When K =

0.5 and K = 1.0 bands which have experienced the least amount of average

stretching history are reflected by white and black bands in the concentration

field, representing the peaks and troughs of the concentration field furtherest from

the mean field. When K = 2.0, islands in the flow exhibit the least amount of
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Figure 3.16: Number of iterations t95 is plotted for the mixed condition; within 5% of

uniform, with varying rates of diffusivity coefficient κ for different stirring transforma-

tions on the unit torus. (a) plots t95 for the cat map MC and the wave perturbed cat

map MPC showing and almost linear relation with a logarithmic change in κ, while (b)

shows t95 varies polynomially with κ for the shear map MS and perturbed shear map

MPS , the exponent of which is dependent on the dynamics.

mixing and dominate the concentration field while within the chaotic sea where

some positive average stretching rates exist, the concentration field is close to

approaching zero. Again, there is a qualitative agreement between bands of least

stretching and regions where there are some peaks in the concentration field away

from these islands.

Similar results are shown in Figure 3.15 for the wave perturbed shear map,

where the fastest mixing has occurred close to the islands where the fastest aver-

age stretch has been experienced for K = 0.5 and K = 1.0. For larger K = 2.0

when a chaotic sea exists, good mixing occurs with regions of peaks and troughs

aligning with regions of low stretch, surrounding the non-mixing islands. So al-

though FTLEs and distributions thereof, can not be used to quantify long-time

exponential mixing rates, they give qualitative understanding of eigenfunction

appearance.
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3.2.3 Time to a mixed condition

As an additional measurement, the time to a mixed condition is used to compare

across example toral automorphism maps with and without wave-perturbation,

and varying diffusivity coefficient κ. Figure 3.16 (a) plots how the time changes

with κ when the underlying mapping is fully chaotic, comparing the cat map

alone MC and the wave perturbed cat map MPC for K = 1.0 when there are

no islands in the flow. The log-linear axis shows that the approximation that

t95 ∝ log(κ) is a reasonable approximation to find how long in takes to achieve a

well-mixed concentration field.

When the mixing is not chaotic but either slowing stretching, like the shear

map MS, or has islands, like the perturbed shear map MPS or perturbed cat

map with K = 2.0, the time to a mixed condition changes more abruptly with

decreasing κ. For the shear map, when plotted on a log-log axis it is observed

that t95 ∝ κ−1/3. Recall from (3.20) that for the shear map the variance can be

computed analytically as

ψ(j) = ψ(0) exp

(
−8π2κC

(
j3

3
+
j2

2
+

7j

6

))
(3.26)

where C is a constant relating to the initial condition. As such the iterate j

when the concentration field is within 5% of uniform, that is ψ(j)/ψ(0) ≤ 0.05,

is approximated by

exp

(
−8π2Cκ

(
j3

3
+
j2

2
+

7j

6

))
≈ 0.05. (3.27)

To find how this scales with diffusion, some rearrangement gives

j3

3
+
j2

2
+

7j

6
≈ 1

−8π2κ
log(0.05), (3.28)

which to leading order of the polynomial in j predicts the scaling j ∝ κ−1/3,

which agrees with the line in Figure 3.16 (b) for the shear map.

Flow with islands predict long-time mixing rates dominated purely by diffusive

effects across boundaries. Large islands in the flow will produce a slowly decaying

eigenfunction with concentration of amplitude in small wavemodes, irrespective

of the diffusivity coefficient. Say the dominant wavemode had wavenumber k ,

and since the main mechanism of mixing is purely diffusive, there is not transfer

of concentration to other mode with stirring and dispersion, then the only way
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amplitude can decay in this mode is via diffusive effects. Therefore the variance

decay contribution from this mode will be

ψ(j) ≈ ψ(0)

j∏
n=0

exp
(
−4π2Cκk · k

)
= ψ(0) exp

(
−4π2Cκjk · k

)
. (3.29)

By similar arguments to the shear map, this means that the time to a mixed

condition scales with diffusion coefficient κ as j ∝ κ−1. Indeed, for the wave

perturbed shear map with K = 2.0 this is a good approximation, shown in Figure

3.16 (b). Although the wave perturbed cat map with K = 2.0 has islands in the

transformation, significant mixing occurs in the initial stages, seen in the decay of

variance profiles in Figure 3.13. This results in a diversion from the scaling ∼ κ−1

for t95. However, looking at Figure 3.16 it seems reasonable to assume that the

profile of t95 as κ→ 0 may approach this limit. This deviation from the expected

scaling of ∼ κ−1 occurs because when the t95 condition is satisfied the system is

not always in the asymptotic regime, and the transition to the asymptotic regime

in finite time may vary depending on the initial conditions and parameters of

the flow. Therefore, t95 and other t% relations are used throughout the thesis to

compare deviations in the mixing behaviour in the initial, finite-time stages of

mixing.

3.3 Conclusions

Methodologies where introduced to study advective-diffusive systems iteratively.

The advantage to this approach is the potential in studying the long-time mixing

dynamics via the spectra of transfer operators; where eigenvalues of the point

spectrum can be used to determine if a transformation M is strong mixing and

determine the rate of decay of correlations for purely advective systems, or the

rate of approach to the mean-field in advective-diffusive systems. In the advective-

diffusive systems it is the emergence of slowly decaying eigenfunctions towards

the mean field which produce an exponential long-time mixing rate.

Toral automorphism maps, and wave perturbed versions thereof, were used

as simple examples to show how varying underlying dynamics contribute to finite

time mixing rates. This was akin to Thiffeault & Childress (2003). The maps

were chosen specifically since periodic boundary conditions allows for a direct

computation of a transfer matrix using a dense collection of discrete Fourier

waveforms. This method is accurate in computing the evolution of a concentration
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field via advection and diffusion as long as a reasonably large number of Fourier

modes are kept in construction of a finite sized transfer matrix.

Standard dynamical techniques, such as Poincaré sections and the distribu-

tion of FTLEs, were shown to highlight features of the flow likely to contaminate

mixing, such as barriers to stirring by islands, and regions which experience slow

stretching histories. The latter also qualitatively suggested the appearance of

peaks in the concentration field away from the mean field in the long-time mix-

ing of advective-diffusive systems, providing a tool to predict the appearance

of eigenfunctions. Similar observations on the alignment of concentration peaks

with regions of low compression have been made before [Gilbert (2006); Gouillart

et al. (2008); Popovych et al. (2007)]

Although variance decay profiles are helpful in picturing the full finite time

evolution of a concentration field by a particular transformation and diffusion

coefficient, the time to a mixed condition provides a single value, beneficial to

compare across stirring and diffusive parameters. It was shown that fully chaotic

flows are likely to have weak-relation to varying diffusivity, only logarithmic with

κ, while non-chaotic shear flow and islands have a polynomial relation ∝ κ−η,

where η was different depending on the underlying dynamics of the non-chaotic

stirring.
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Chapter 4

Mixing by cutting and shuffling

As discussed in Chapter 3, smoothly varying transformations with chaotic trajec-

tories result in fast mixing in the presence of diffusion. The stretching caused by

the exponential separation of nearby particles is the dominating mixing mecha-

nism of these systems. There are many instances in mechanical mixing in which

the main underlying transport mechanism is from cutting and shuffling, which in

and of itself is non-exponential, as discussed in Section 2.6.2. Examples are split-

and-recombine micro-mixers and the mixing of granular material, where particle

interlocking in the bulk of the flow restricts shearing.

Transformations in which cutting and shuffling form the basic mechanism of

increasing surface area and decreasing segregation are explored in this chapter, in

particular the mixing rates which emerge when combined with the homogeniza-

tion effect of molecular diffusion. Mathematical results of such transformations

so far have been concerned with asymptotic ergodic properties, and they can be

at most weak mixing. Little is known of finite time mixing behaviour in such

transformations.

Krotter et al. (2012) and Yu et al. (2016) studied the potential of Interval

Exchange Transformations (IETs) to mix well in finite time, investigating which

parameters resulted in efficient decreases in the scale of segregation. Here, their

defined parameter space is utilised to investigate the rate of mixing from diffusion

in these one-dimensional cutting and shuffling transformations. Ashwin et al.

(2002) investigated the asymptotic rates of mixing by permutations of equally

sized cells composed with diffusion and found a speed-up over the action of pure

diffusion, however only permutations from the groups S3, S4 and S5 were consid-

ered, which have low periodic orders. In the absence of diffusion, reassembly of

any initial condition would occur after just a handful of iterations. A diffusive
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step in the IETs of Krotter et al. (2012) and Yu et al. (2016) has already been

investigated by Wang & Christov (2018), attempting to find evidence of cut-offs,

a phenomenon in card shuffling. A function is found which described the aver-

aged finite mixing behaviour, however there is no parameter space exploration

or discussion on long-time mixing rates. Additionally, the diffusional numerical

method used by Wang & Christov (2018) would not be independent of the dis-

cretization resolution, and a detailed review of the numerical method and results

of this paper are contained within this chapter.

Here a superior computational model is used to investigate the evolution of

concentration fields to the mean field in asymptotic and finite time, for a range

of parameter choices defining an Interval Exchange transformation. The effect

of permutation choice, interval lengths, number of intervals and the diffusivity

coefficient κ are all considered and compared to results of previous literature.

This computational study shows that previous suggestions on parameters which

result in good stirring in the absence of diffusion, hold to some extent when there

is diffusion but not necessarily in the way previously thought in the literature.

The chapter concludes with a potentially universal scaling on the effect of

diffusion to achieve a desired mixed condition in IETs. When the parameters are

chosen to satisfy the conditions of good stirring, this scaling is shown to be faster

than diffusion acting alone and numerical evidence suggests it holds well for all

such IETs. The scaling also appears in the modulus of the leading, non-trivial

eigenvalue which defines the asymptotic mixing rate. This leads the discussion

to hypotheses on a mechanism which would derive such a scaling in both finite

and asymptotic time; a balance between cutting, shuffling and diffusion.

0 1

3 1 4 2 5

1 2 3 4 5

0 1

Figure 4.1: A permutation of equal sized cells on the unit interval by an interleaving

permutation from S5.
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4.1 Interval exchange transformations

4.1.1 Formal definitions

The cutting and rearranging of a unit interval has been explored in many dynam-

ical problems. The simplest formation is the rearrangement of equal sized pieces

which is defined as a map as follows.

Definition 4.1.1. (Permutation of equal sized cells) Let Ω = [0, 1) and

consider a permutation Π ∈ SN where SN is the group of all permutations on the

set of symbols {1, 2, . . . , N}. The action of the map MΠ can be defined such that

for a point x ∈ [(l − 1)/N, l/N),

MΠ(x) = x+
Π(l)− l
N

. (4.1)

The definition can be extended to any interval Ω = [a, b), but in the discussion

which follows, Ω is always taken to be the unit interval.

The notation defining a permutation Π is non-standardised. For example Ash-

win et al. (2002) adopted disjoint cyclic notation which is helpful in understanding

the periodic order of a given permutation. Figure 4.1 shows an interleaving per-

mutation of equal sized cells from S5 and can be represented by either (1243)(5),

meaning 1 → 2, while 2 → 4 and 4 → 8 mod 5 = 3 and 3 → 1, to complete

the cycle while 5 appears as its own disjoint cycle. An alternative cyclic nota-

tion is (1243), where elements which do not move are omitted. The disadvantage

of the alternative notation is that difficulty can arise from distinguishing which

permutation group SN a permutation belongs to if it is not stated. The order of

a permutation Π is the minimal common multiple of the lengths of the disjoint

cycles.

Krotter et al. (2012) and Yu et al. (2016) choose to represent a permutation

as the final rearrangement order of the sub-intervals. For example if the initial

configuration of sub-intervals from S5 is represented by [12345], then the rear-

rangement of these intervals by one iteration of the interleaving permutation of

Figure 4.1 would be [31425]. The latter notation is adopted throughout the work

herein, since is avoids unnecessary confusion and is more compact than the former

cyclic notation.

An extension rearranging sub-intervals of varying length is captured in an

Interval Exchange Transformation (IET), described by a tuple of a permutation

and a set of interval lengths. The following definition is taken from Avila & Forni

(2007).
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Definition 4.1.2. (Interval Exchange Transformation (IET)) Let N ≥ 2

be a natural number and let Π be a permutation Π ∈ SN . Given L ∈ RN
+ , we

define an Interval Exchange Transformation f(L,Π) by considering the interval

I = I(L) =

[
0,

N∑
i=1

Li

)
(4.2)

broken into sub-intervals

Ii = Ii(L) =

[∑
j<i

Lj,
∑
j≤i

Lj

)
, 1 ≤ i ≤ N. (4.3)

Then the action of the IET is to rearrange the Ii according to Π (the ith interval

is mapped to the Π(i)th interval) such that f(L,Π) : I → I is given by

f(x) = x+
∑

Π(j)<Π(i)

Lj −
∑
j<i

Lj, x ∈ Ii. (4.4)

IETs are one-to-one and continuous except for a finite set of points, preserve

Lebesgue measure and, as defined above, preserve orientation. For the remainder

of the chapter the action of IETs on the unit interval I = Ω = [0, 1) is considered

without loss of generality.

Finally two additional definitions are introduced which are important to the

discussion. Permutations of SN can be divided into subgroups by the following

definitions.

Definition 4.1.3. A rotation permutation is defined as Π ∈ SN which satisfies

Π(i+ 1) = Π(i) + 1 mod N for all i ∈ {1, 2, . . . N}.

Definition 4.1.4. A reducible permutation is defined as Π where there exists

k ∈ {1, . . . N − 1} such that

Π1({1, . . . , k}) ∈ Sk (4.5)

then for any choice of L, the sub-interval

J =
⋃
i≤k

Ii =
⋃

Π(i)≤k

Ii (4.6)

is invariant under the transformation f .

A permutation that is not reducible is defined as irreducible. For example,

[32154] is a reducible permutation, since the first 3 elements are a permutation

of only themselves, and similarly the last two elements. An example of an ir-

reducible permutation [31524], which can not be decomposed into two or more

permutations. Note that all rotation permutations are irreducible, except an

identity permutation such as [12345]. Ergodic properties and dynamics of IETs

were discussed in Section 2.6.1.
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4.1.2 Model parameters for investigation

In line with past literature, the parameter space of interval exchange transfor-

mations conceived by Krotter et al. (2012) is chosen for investigation herein.

Consider the set of sub-intervals {L1, . . . , LN} where the length Li = |Ii| of adja-

cent sub-intervals satisfies a constant ratio r = Li/Li−1. Since it is required that

the total length of the interval I to be 1, then the primary interval length L1 is

found to be;
N∑
i=1

ri−1L1 = 1 =⇒ L1 =
r − 1

rN − 1
. (4.7)

The IET can then be redefined as a tuple with respect to r such that the map

is f(r,Π) : [0, 1) → [0, 1). Figure 4.2 depicts an example IET under this con-

struction. The action of the IET f(1.5, [3142]) is shown as a space-time plot of

incurred decrease in segregation from repeat application on a given initial condi-

tion, here a half black, half white unit interval. The new concentration field across

the interval is shown at each iteration to aid understanding of the full finite time

evolution up to iteration j. Space-time plots are similar to panelled concentration

plots shown for a number of iterations in Chapter 3, and are used numerously in

this and further Chapters.

Computational investigations on the finite time stirring of IETs f(r,Π) are

restricted to only rational values of r due to limited precision in computing. This

implies that weak mixing IETs can not be computed, but since weak mixing is

an asymptotic result and gives no information on finite time mixing properties,

1 2 3 4

j = 2

j = 1

j = 0

L1 L2 = rL1 L3 = r2L1 L4 = r3L1

Figure 4.2: Construction of an IET using the parameters f(r,Π), where r = 1.5 and

Π = [3142]. Repeat application of the IET decreases the scale of segregation of the

initial condition half black, half white, shown qualitatively by a space-time plot. Cut

locations (dashed red) are tracked by the rearrangement (solid red) of intervals
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it is not considered a problem for this discussion. Due to the choice of rational

r, the IET f(r,Π) can be redefined as a map MΠf (4.1), a permutation of equal

sized cells of length Nf . The length Nf and permutation Πf are found as follows.

Since r is rational, the fractions representing the rational numbers {L1, L2, . . . , LN}
will have a largest common denominator. This can be found from

Nf = lcd =
(rNn − rNd )

(rn − rd)
(4.8)

when r is converted to a fraction r = rn/rd. The permutation Πf acting on cells

of equal length 1/Nf can be constructed by the permutation arrangement

ΠNf (i) = i+
∑

π(j)<π(i)

LjNf −
∑
j<i

LjNf , (4.9)

since all values LiNf are integers. The rearrangement of this larger permutation

formed the basis of the computational algorithm of Krotter et al. (2012). All IETs

with rationally dependent intervals will be periodic and all points x ∈ I will have

a periodic order given by the order of the disjoint cycles Πf or the minimal

common multiple of all disjoint cycle orders. The order of the permutation Πf

will give the total number of iterations needed to observe a full reassembly of an

initial concentration field.

The results of Krotter et al. (2012) and Yu et al. (2016) found that good

reduction in the scale of segregation can be achieved in finite time by establishing

the following criteria on the IET f(r,Π);

1. Π should be an irreducible, non-rotational permutation,

2. the ratio of adjacent sub-interval lengths should not be large; closer to 1

but not equal to 1,

3. and the ratio of adjacent sub-intervals should be “closer-to-irrational”, or

there should be slight random variation in the cut locations which define

the boundaries of the sub-intervals.

In Krotter et al. (2012) an r is described as “closer-to-irrational” if it has a

longer continued fraction, that if a is a rational number, then it can be represented

by

a = a0 +
1

a1 +
1

a2 +
1

. . . +
1

ak

, (4.10)
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a finite continued fraction of k partial denominators. Real numbers have a unique

continued fraction representation where ak are all integers, and irrational numbers

correspond to infinite continued fractions. If b has a longer continued fraction

than a, this means that more ak are needed to write b in its continued fraction

form. Krotter et al. (2012) contribute needing more ak elements to represent r

results in the permutation Πf having a larger Nf (number of equal-sized cells to

capture the sub-intervals).

This definition is mathematically ambiguous and whether this holds for all

rational r is not known. To compare with the results and terminology of Krotter

et al. (2012) and Yu et al. (2016), for a fixedN , a “closer-to-irrational” r will result

in a Πf with a larger Nf . Krotter et al. (2012) also state an observed diminishing

returns of increasing the number of sub-intervals and state that N = 6 is the

most practical, while Yu et al. (2016) state that as long as the final criterion of

the IET good stirring criteria, listed on the previous page, is met then N = 4 is

enough to produce good stirring.

Two choices in the methodologies of Krotter et al. (2012), Yu et al. (2016) and

Wang & Christov (2018) which will not be used here are the measures of mixing

diagnostics and the initial concentration fields. The two mixing measures in the

diffusion-less investigations are the increase in the number of interfaces Cj, and

the largest percent unmixed Uj; both of which were briefly described in Section

2.4.3. They give no spatial information on the total arrangement across the

interval, are not easily computable in higher dimensions, and are not computable

in systems with molecular diffusion. Wang & Christov (2018) investigated the

latter point. Similarly, the main initial condition considered in these studies is

constructed by assigning different colours, or values, to the IET sub-intervals and

then tracking how these are cut and shuffled. This choice of initial condition is

again specific to the configuration at hand and unrealistic compared to real mixing

processes. These initial configurations were likely chosen due to the limitations

of the computational schemes; shuffling the larger permutation [Krotter et al.

(2012)] and tracking interfaces [Yu et al. (2016)]. However, a result of Yu et al.

(2016) shows that the conclusions on the value r hold when the initial condition

is composed of two components; a half-black, half white interval.

The next section outlines the numerical method to include diffusion as an

iterative step in Interval Exchange transformations.
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4.2 Iterative Advection-Diffusion Transformation

Investigating stirring from cutting and shuffling alone is interesting mathemati-

cally but in real-life mixing problems is unlikely to occur in isolation. Yu et al.

(2016) introduced random, but small, variations about sub-interval boundaries at

each iteration, mimicking mechanical variation as one approach to a more realis-

tic mixing scenario. Similarly, stretching and folding may be present as part of

a stirring mechanism, or diffusion may blur the edges between neighbouring sub-

segments of varying colour, be it fluid via molecular diffusion or particle-particle

interaction in granular material. For the remainder of this chapter, the mix-

ing rates of Interval Exchange transformations with molecular diffusion are the

investigated.

4.2.1 Transfer operators for permutations of equal sized

cells

The incorporation of diffusion can be achieved by previous computational meth-

ods introduced in Chapter 3, solving the advection-diffusion equation as a discrete

time evolution via operator splitting. By assuming periodic boundary conditions,

discrete Fourier modes are once again used as the basis functions to construct a

finite sized transfer matrix. Ashwin et al. (2002) derived the transfer matrix for

the permutation of equally sized cells by solving

ĉ
(j+1)
k = ĉ(j)

q

∫ 1

0

e2πiqx−2πikMΠ(x)dx (4.11)

where q is regarded as the initial wavenumber, and k as the final wavenumber

at each iteration. This results in the transfer matrix M kq denoting a transfer of

concentration from q to k of

M kq =
1− ω(q−k)

2πi(q − k)

N∑
`=1

ωkΠ(`)−q` (4.12a)

when k 6= q, where the primitive Nth root of unity is defined as ω = e−2πi/N .

When k = q,

M kq =
1

N

N∑
`=1

ωk(Π(`)−`). (4.12b)

The derivation of transfer matrices are within Appendix B. Taking the notation c

to mean the complex conjugate of c, the matrix elementsM kq have the symmetry
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M−k−q = M kq, ensuring the reality of concentration fields are preserved by the

transfer matrix.

Extension of the matrix derivation to IETs f(r,Π) is possible due to the map

MΠf (4.9) where there is the construction of a larger permutation of equal sized

cells. This is extendible to all IETs f(L,Π) with the set L of rational sub-intervals

Li. The matrix defining the diffusive operator PD is simply the diagonal matrix

dkq = ρk
2

δkq, ρ = exp(−4π2κ), (4.13)

and the matrix describing the full iterative step is then

ĉ
(j+1)
k =

Q∑
q=−Q

dkmMmq ĉ
(j)
q , (4.14)

for a given truncation value Q. A resolution test can be performed to find an

appropriate value Q required for accurate representation of the evolution when

κ is non-zero, which is addressed in the next section. Since the system is one-

dimensional, the size of the transfer matrix for certain values of Q will be of a

feasible size to directly compute the eigenvalues and eigenvectors of the transfer

matrix.

Note that computation of the transfer matrix (4.12) for the IET f(r,Π) in

terms of MΠf involves computing 2Q× 2Q entries, all of which require a summa-

tion over the length Nf of the extend permutation. IETs which result in large Nf

produce significant computation time for each entry of the transfer matrix, hence

there are some restrictions on the reasonable choices for r and N with feasible

computation time. Therefore the choice of IETs with “closer-to-irrational” r is

limited. Additionally, extension to investigating IETs with cut variation is not

intuitively straightforward and is excluded.

The main measure of mixing used throughout the discussion is the decay of

variance to the mean field. However, when a comparison is needed to the stirring,

non-diffusive dynamics of the IETs, the mix norm of Mathew et al. (2005), which

gives indication of spatial scales within the interval, is also used. The computation

of the mix norm in the diffusion-less case is taken from Smith (2016).

4.2.2 Initial conditions of interest

Krotter et al. (2012) and Yu et al. (2016) both consider initial conditions in which

a different colour, or numerical value, is assigned uniformly across each initial sub-

interval Li to investigate stirring. Most recently the assigned-component initial
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condition was also employed by Wang & Christov (2018) to study diffusion in

IETs.

This study discards this initial condition due to several Reasons. Firstly,

such an initial condition depends purely on the parameters of the underlying

stirring transformations, meaning comparison across varying parameter spaces do

not yield the same starting conditions. Secondly, it is an unlikely configuration

assigned in a real-life mixing scenario. Thirdly, on the inclusion of diffusion the

reasoning for choosing such a condition is made completely invalid; which was

purely visual rather than a numerical consideration of an approach to a mean

field. Finally, a unique problem to this study, the computation of such an initial

condition in discrete Fourier space may be complicated, with no simple way to

analytically compute the Fourier coefficients. Using a fast Fourier transform of the

initial configuration is possible, but the errors introduced when doing so would

be unknown. Instead the main initial conditions considered herein are: half

black, half white and variations thereof, and in line with the previous chapter,

configurations of cosine and sine waves.

The half black, half white initial condition, represented periodically across the

interval as the square wave, has a Fourier representation which is easy to compute.

The advantage of this initial condition is its utility in investigating both mixing

when there is diffusion, and segregation when the system is purely stirring. Other

initial conditions composed of sine and cosine waves are not directly transferable

to computational methods of the past literature on mixing in Interval Exchange

transformations.

The square wave on the unit torus is given by

csq(x) =

{
−1 if x ∈ [0, 1/2)

+1 if x ∈ [1/2, 1).
(4.15)

The discrete Fourier coefficients for the square wave are calculated from

ĉk =

∫ 1/2

0

1 · e−2πixkdx+

∫ 1

1/2

−1 · e−2πixkdx (4.16)

such that

ĉk =

{
0 when k even,
2i
kπ

when k odd.
(4.17)

For the square wave, a simple rotation of α can be applied as cα(x) = csq(x+α);

in which the coefficients are evaluated as

ĉαk =

{
0 when k even,
2i
kπ
· e2πiαk when k odd.

(4.18)
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(a) (b)

Figure 4.3: Results from a resolution test for Q using the IET f(r,Π) = f(1.5, [4321])

as an example transformation. Both (a) the decay of variance ψj/ψ0, for one diffusive

rate κ = 10−6, and (b) the modulus of the leading eigenvalue |λ2| for several diffusivity

rates show a convergence in values for Q = 250 and 500.

Initial conditions composed of cosine and sine waves can be created similarly to

Toussaint et al. (1995) in which the amplitude of the first few Fourier coefficients

are randomised to provide a simple random way to test the effect of the initial

condition. Taking c to represent the complex conjugate of c, providing ĉ−k = ĉk,

the initial condition is real.

4.2.3 Resolution of Fourier Modes

A resolution test is required to ensure enough wave modes are used to correctly

capture the evolution of the concentration field, otherwise there may be significant

contribution from numerical diffusion. The decay of variance ψj/ψ0, and the

modulus of the non-trivial leading eigenvalue of the matrix dM , are used as

metrics to determine the resolution required. The results for both metrics are

shown in Figure 4.3 using a representative IET with Π = [4321] and r = 1.5, and

the values Q = 25, 50, 100, 250, 500 tested. The initial condition for the variance

decay was c(0)(x) = cos(2πx). Profiles for both ψj/ψ0 and |λ2| show no variation

between the values Q = 250 and 500, presented by the perfect alignment of the

symbols on both plots. Additionally, Q = 1000 was computed and showed no

variation. For lower values of Q variance loss in the initial stages is significant

due to numerical diffusion.

It is surprising that Q = 250 accurately captures the evolution correctly

for values when the diffusivity coefficient is as low as κ = 10−6. For the one-

77



CHAPTER 4. MIXING BY CUTTING AND SHUFFLING

dimensional approximation of the non-uniform baker’s transformation with diffu-

sion, Wonhas & Vassilicos (2002) suggest the diffusive contribution exp(−4π2κk2)

makes modes |k| � Qd negligible where

Qd =
1

2π
√
κ
, (4.19)

which for κ = 10−6, Qd ≈ 160, however it is arguable whether 250 � 160.

Compare the value of Q here to that of the cat map in Section 3.2.2, in which

Q ≈ 1800 was required to accurately capture the evolution of the concentration

field. However, there is a contrast here, since from cutting and shuffling alone

there is an inefficient transfer of concentration to higher modes, in contrast to

the cat map in which there is an exponential cascade to large wavemodes. From

stirring by the IET, the transfer of concentration to higher modes is due primarily

to the discontinuities introduced at each iteration. In this case the value of the

coefficient ĉk from a discontinuity is likely to be small, as is seen in the complex

coefficients of the square wave where to capture the discontinuity, coefficients

decrease as |ĉk| = 2/kπ, which for Q = 250 is |ĉ250| ≈ 0.002. Therefore, with

the contribution from diffusion, the value of coefficients at these wavemodes are

likely to be very small, and thus negligible in evolution of the concentration field.

For the remainder of the study, the truncation Q = 250 is used with diffusivity

coefficients no smaller than κ = 10−6 considered.

To ensure that the resolution results are not dependent on the chosen parame-

ters f([4321], 1.5), other permutations of larger N and different r were also tested

and the same conclusions reached.

4.2.4 An initial example of mixing by Interval Exchange

transformations with diffusion

As an introductory example, the IET depicted in Figure 4.2 is used to show

the incorporation of diffusion alongside a second IET for comparison. Figure

4.4 (a) shows a space-time plot plotting the first 200 iterations of the initial

condition half white, half black under the evolution of the IET f1 = f([4321], 1.5).

Small sub-segments of white and black are dispersed between larger segments,

and qualitatively there appears to be some order to the pattern, where a banded

structure is visible in many of the rows, rotated across the domain. Figure 4.4 (b)

shows the space-time plot for the evolution of the same initial condition under the

action of a second IET f2(r2,Π2) with parameters Π2 = [653241] and r2 = 1.25.
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Figure 4.4: The mixing of two example IETs is compared. In (a),(b) a qualitative

comparison using space-time plots for stirring is plotted in, while in (c),(d) an approach

to uniformity with diffusivity coefficient κ = 10−5 is plotted. In (a),(c) f1(r1,Π1) with

r1 = 1.5 and Π1 = [3142], in (b),(d) f2(r2,Π2) with r2 = 1.25, Π2 = [653241]. The

initial condition in all plots was the square wave c(0(x) = csq.
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Figure 4.5: The mixing of two example IETs from Figure 4.4 is compared again but

in the plots (c),(d) an approach to uniformity with diffusivity coefficient κ = 10−5

is plotted with the concentration field normalised at each iteration. It can be seen

that the inclusion of diffusion significantly changes the scale and arrangement of the

concentration field as it approaches the mean field.
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These two IETs were compared in Yu et al. (2016) to see the effects of varying the

parameters Π and r. In that study, f2 improved stirring of a coloured component

initial condition, however because the permutations varied in size, so too did the

initial conditions. Here, qualitatively it is seen that both IETs acting on the same

initial condition preserves the conclusions that f2 is superior at stirring over f1.

The space-time plots of Figures 4.4 (c) and (d) show the time evolution for

the iterative advective-diffusive equation (4.14) with diffusion coefficient κ = 10−5

and advection provided by the same IETs, f1 and f2 respectively. A transition

to grey, the mean field of the initial condition, is observed in both however the

qualitative comparison between the two space-time plots appears to show a faster

transition for f2.

Figure 4.5 re-plots the space-time evolutions of Figure 4.4 but with the con-

centration field normalised at each iteration. The inclusion of diffusion cause a

depletion of a concentration field to its mean field and, from these renormalised

space-time plots, it is also observed that diffusion encourages an increase in spa-

tial scale horizontally within the domain. Particularly for the IET f2 in Figure 4.5

(d), the final concentration field appears to have a dominant wave mode which

undergoes rotational symmetry under repeat iteration of the transfer operator

P = PD ◦ PM which is much larger in scale when compared to the concentration

field at the same time in the diffusionless system Figure 4.5 (c). It is also seen

that the IET f2 undergoes two regimes during the finite time evolution of the ini-

tial condition c(0) = csq with diffusion, where a repeat pattern in the renormalised

concentration field seems visible between iterations ∼ 25− 125, before there is a

transition into a different, later stage pattern as j → 200. The presence of these

two exponential regimes are reflected in the decay of variance.

Computing the variance at each iteration gives a quantitative comparison

between the two IETs, plotted in Figure 4.6 on two different axes. In the linear-

linear plot in Figure 4.6 (a) the variance depletion in the initial stages decays

similarly for both IETs. In these early stages not much stirring has taken place,

however sharp gradients introduced at each iteration have initiated an approach

to the mean field. Around iteration 20, there is a divergence in the variance decay

profiles and IET f2 depletes the variance quicker than f1. This agrees with the

superior stirring properties of f2.

In both cases there appears to be a distinct transition to a later stage of

mixing, around iteration 40 for f1 and iteration 25 for f2. On the linear-log axis

in Figure 4.6 (b) this transition leads to exponential mixing. However, for f2,
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(a) (b)

Figure 4.6: The decay of variance in iterative diffusive IETs are compared between

f1(r1,Π1) and f2(r2,Π2) with r1 = 1.5, Π1 = [3142] and r2 = 1.25, Π2 = [653241], and

diffusion coefficient κ = 10−5. The initial condition was the square wave c(0)(x) = csq.

(a) Linear-linear plot shows clearly the initial stages of mixing, while a (b) linear-log

plot shows the long-time exponential mixing rate.

there appears to be two exponential decay rates in the variance profile, with a

long-time exponential mixing rate emerging around iteration 150, after significant

depletion of variance has occurred. Assuming the long-time decay of variance is

dominated by the slowest decaying eigenfunction (2.50), plotted for comparison

are the variance decay profiles predicted from the second leading eigenvalue λ2,

ψj ∝ |λ2|2j. (4.20)

computed from the respective diffusive transfer matrices dM for each IET. There

is good agreement to both profiles confirming this is indeed the long-time mixing

rate of the transfer operator. Note that the long-time mixing rate is also quicker

for IET f2, suggesting that good stirring properties may impact all stages of

mixing. In both cases this long-time mixing rate emerges after significant mixing

has occurred, especially for f2 where ψj/ψ0 is O(10−6) before the final stage

begins. Following this illustrative example of diffusive IET transformations, the

next section considers each of the mixing stages separately. A full parameter

study is left for later in the chapter.

4.3 Stages of mixing in Diffusive Interval Ex-

change Transformations

Thiffeault & Childress (2003) noted that chaotic mixing systems had three dis-
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tinct stages of mixing. First there is an initial stage where there is hardly any

depletion of variance. This lasts until the concentration field is stirred and the

scales of segregation reach that on the order of which diffusion is effective. Then

there is the possibility of a super-exponential stage of mixing due to the dual

exponential mixing rates from stirring combined with the exponential effect of

diffusion at small scales. This stage is rarely seen. The final stage of mixing

is when there is a balance between stretching to smaller scales and diffusion,

seeing the emergence of eigenfunctions of the concentration field and the corre-

sponding long-time exponential rate. If the underlying system is strong mixing,

the exponential decay rate becomes independent of diffusion in the diffusion-less

limit. Similarly in systems with contamination from slow regions of mixing, such

as physical or island boundary behaviour, an additional stage of polynomial de-

cay rate is observed before the final exponential stage [Gouillart et al. (2008);

Popovych et al. (2007)].

IETs lack hyperbolic behaviour leading to exponential decay in the scale of

segregation, and instead discontinuous transformations introduce sharp interfaces

into a concentration fields. These sharp gradients will then be washed out by

diffusion. Due to these differences with chaotic systems it can not be assumed

that similar stages of mixing occur. In the next two sections, the evolution of the

concentration field is considered in two parts. First the asymptotic, long-time

exponential mixing rate is discussed, computed from the leading eigenvalues of

the transfer operator, and compared with how it varies with diffusion coefficient

κ. Secondly, the full finite time mixing profile is considered where the variance

decay profiles deviate from an exponential mixing rate. A function fit for this

mixing rate is investigated and a mechanism for the mixing rate proposed.

4.3.1 Asymptotic mixing rates

In the transfer matrix (4.12), for each given mode k there is a dispersion of am-

plitude to lots of modes rather than a direct cascade. As would be expected, this

dispersion results in long-time exponential decay. This was reported for permu-

tations of equal size cells by Ashwin et al. (2002). This is due to the fact that

the dispersion creates eigenfunctions for the transfer operator with eigenvalues

which predict the exponential mixing rate. This dispersion is caused from the

cutting and rearranging of the concentration field at each iteration. Therefore,

although the underlying mechanism producing dispersion in the Fourier modes

differs from that that continuously deforming transformations, where it is caused
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Figure 4.7: The modulus of the leading non-trivial eigenvalue |λ2| for both f1(r1,Π1)

and f2(r2,Π2) tends to 1 as κ → 0. Some non-monotonicity in the approach to the

diffusion-less limit is seen for (r2,Π2). The values of |λk| are plotted as light-grey lines

suggesting |λk| → 1 as κ→ 0 for all k.

by non-uniformity in stretching rates, the resulting asymptotic mixing dynamics

are somewhat similar.

In the two-dimensional examples discussed in Chapter 3, the transfer matrices

constructed for the tuple of wavenumbers (k1, k2) are extensive and solving for

eigenvalues computationally impractical. However, one-dimensional transforma-

tions produce a less extensive matrix of size 2Q × 2Q, and as such it is efficient

to compute a spectrum of eigenvalues. Most importantly, the second leading

eigenvalue and the long-time mixing rate |λ2|, can be compared across a range of

parameters.

Figure 4.7 plots how |λ2| changes with the diffusivity coefficient κ for the two

example IETs, f1 and f2 of Section 4.2.4. For large values of κ the asymptotic

mixing rate for both IETs is similar until around κ = 10−3 where there is a

divergence as κ is decreased. The profile of |λ2| for f2 shows some monotonic

behaviour, decreasing slightly in value before tending to 1 as κ → 0. For all

values of κ < 10−3 the value of |λ2| for f1 is greater than that for f2. This agrees

with the finite time mixing results of Figure 4.6, and suggests that the value of

|λ2| may depend on the stirring properties of the IET.

For chaotic maps it was observed that the rate |λ2| becomes independent of

diffusivity κ as κ → 0, however since Interval Exchange Transformations are
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(a) f(r,Π) = f(1.5, [4312]) (b) f(r,Π) = f(1.5, [3421])

Figure 4.8: The decay of variance ψj/ψ0 in iterative diffusive IETs is plotted for a

range of diffusivity coefficients κ for two different IETs shown separately in (a) and

(b). Depending on the IET and diffusivity coefficient, either the variance decay can be

approximated well by the long time exponential decay for nearly all of the finite time

mixing or large deviations occur in the initial iterations.

at most only weak mixing and not strong mixing, no spectral gap will exist in

the diffusion-less limit. This implies that for the advective-diffusive operator,

as κ → 0, |λk| → 1 for all k. Indeed, for the example permutations, f1 and

f2, the values of |λk| are plotted as light-grey lines alongside the values of |λ2|
in Figure 4.7, and as κ → 0 all profiles tend to 1 for all k with no sign of

becoming independent with decreased diffusivity. As with eigenmodes resulting

from smooth stirring, this long-time mixing rate is independent of almost all

initial conditions. Since the stirring action of IETs is complicated it is unlikely

that an initial condition would be prescribed that would not fall into this slowest

decaying eigenfunction under evolution.

The effect of IET parameter choices, r, N and Π on the long-time exponential

mixing rate will be discussed in a later section. The next two sections discuss the

contributing factor for the rate of mixing in finite-time and the effect that the

initial condition has on this mixing.

4.3.2 Finite time mixing: interaction of slowly decaying

eigenfunctions

The asymptotic mixing rates for diffusive IETs with rational sub-intervals can

be found easily enough and compared for changing parameters, but they tell us

little of finite time mixing behaviour. In Figure 4.6 for both illustrative IETs it is
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observed that although an exponential mixing rate is achieved in the long time,

significant decay of variance occurs within the initial stages where the mixing

rate varies from the final exponential rate.

Figure 4.8 plots the decay of variance for two new IETs. These IETs vary from

Section 4.2.4 and are chosen to clearly show that deviations from the long-time

mixing rate can exist for many iterations, particularly with changing diffusion.

For varying rates of diffusivity coefficient κ, profiles are plotted for (a) f(r,Π) =

f(1.5, [4312]) and (b) f(r,Π) = f(1.5, [3421]). The expected decay of variance

from the second leading eigenvalue is plotted as a comparison. Note that the

scales between both plots differ to best represent the overall decay of variance,

and the initial condition for all was c(0)(x) = csq.

In both plots when κ is large, the mixing rate achieves the final exponential

mixing rate after a small number of iterations, shown by the dark blue and green

lines. This similarly holds for f(1.5, [3421]) in Figure 4.8 (b) when κ = 10−5,

where there is little deviation from the final mixing rate across the full profile.

For f(1.5, [4312]) in Figure 4.8 (a), the initial stages of mixing show a steeper

descent in variance before the long-time mixing rate is achieved when κ = 10−5.

For a smaller diffusivity rate κ = 10−6, both profiles have early, non-exponential

like mixing stages where significant depletion of variance occurs before tending

to the final exponential mixing rate approximated by ψj = C|λ2|2j.
Previous work of Wang & Christov (2018), investigating finite time mixing in

IETs with diffusion, suggests a stretched exponential function approximates the

averaged profiles of variance decay across permutation groups and fixed r. They

propose an appropriate fit is given by

||c(x, j)− c(x, 0)||p = C · e−(j/T̄ )γ , (4.21)

and find good agreement in the initial stages. Fitting to numerical results, values

for the parameters T̄ and γ are found, but the authors state that both have non-

trivial dependencies on the length ratio r and diffusivity κ. No mechanism was

suggested for why a stretched exponential mixing rate emerges.

The numerical method used in Wang & Christov (2018) models the evolution

of concentration limited to the equal sized cells in the construction of the large

permutation (4.9) for given IET parameters r and Π. Diffusion is applied as

a simple finite-difference step between consecutive cells. This means that com-

paring mixing between different IETs for the same diffusivity coefficient requires

a rescaling in time to take into account the spatial resolution problems of the
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f(r,Π) λ1 |λ2| |λ3| |λ4| |λ5| |λ6|
f(1.25, 6) 1.0 0.972014 0.972014 0.957913 0.957913 0.951927

f(Π, r) |λ7| |λ8| |λ9| |λ10| |λ11| |λ12|
f(1.25, 6) 0.951927 0.950489 0.950489 0.949988 0.949988 0.948377

Table 4.1: Leading Eigenvalues in the spectrum for IET f2(r2,Π2) with κ = 10−5

Figure 4.9: The evolution of the modulus of the coefficients bk(j) with iteration number

j for the IET f2(r2,Π2). An influence of eigenfunctions with k ≥ 6 occurs in the initial

iterations until k ∼ 100 when b2(j) emerges as the dominant coefficient for all future

times. The initial condition was c(0)(x) = csq and κ = 10−5.

numerical method. Therefore a direct comparison between the model presented

here and the results of Wang & Christov (2018) is not easily achieved due to

a discrepancy in the diffusion coefficient κ, and their parameter D defining the

sharing factor of concentration between adjoining cells. However comments on

their conclusions, and comparison to the results presented herein, will be made

throughout the discussion in this and following sections.

Recall the initial example of Section 4.2.4 where the variance decay for the

diffusive IET f2 was plotted with κ = 10−5. Two exponential mixing rates with

oscillations were observed. The modulus for the first leading eigenvalues are

listed in Table 4.1, revealing that the eigenvalues are particularly close in value.

All eigenvalues appear in complex conjugate pairs for those listed, which is why

|λ2k| = |λ2k+1| for k = 1, 2, . . . across the table.

The eigenvalues listed in Table 4.1 are very close in value, which occurs for all

eigenvalues in the spectrum of P = PD ◦PM for IETs as κ→ 0. If eigenfunctions
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vk of the operator are decaying on average at a rate given by |λk|, an eigenfunction

with only a slightly faster mixing rate may emerge as a dominant feature in

the concentration field for several stirring periods before the slowest decaying

eigenfunction emerges as the long-time dominant persistent pattern. In line with

past literature [Popovych et al. (2007)], eigenvalues close in modulus value will

be referred to as close-to-degenerate, since degenerate eigenvalues are those which

are equal in value.

Popovych et al. (2007) investigated if close-to-degenerate eigenvalues con-

tributed to non-exponential, finite time mixing rates in smoothly stirred systems,

such as the polynomial mixing rates in flows with islands or boundaries. Here,

the interaction of slowly decaying eigenfunctions are investigated as the potential

mechanism for the finite time mixing behaviour of IETs with weak diffusivity. If

the concentration field evolves via the summation of the underlying eigenfunc-

tions, then

c(x, j) =
∑
k

bk(j)vk(x). (4.22)

Since the eigenfunctions are decaying as a product with their respective eigenval-

ues, the concentration field can be approximate as

c(x, j) =
∑
k

akλ
j
kvk(x), (4.23)

for some coefficients ak. After some time we would expect lower order terms

which have smaller values of |λk| can be ignored and the decay of variance decay

approximated by

ψ(c(j)) = 〈(c(j)− c̄)2〉 ≈ d2λ
2j
2 + d3λ

2j
3 + . . . , (4.24)

which is the precise approximations taken by Popovych et al. (2007). However,

in contrast to that work here the eigenvalues in the limit of weak diffusivity result

in many close-to-degenerate eigenvalues. An eigenfunction analysis can be per-

formed to compute the coefficients bk(j) and observe the competing interaction

of eigenfunctions and how they contribute to the finite time mixing behaviour.

The coefficients bk(j) from (4.22) can be found by evaluating the inner product

(2.37) from Section 2.3.4, and since the coefficients bk(j) are complex, the mod-

ulus |bk(j)| plotted to see competing influence the eigenfunctions have on the

concentration field at each iteration.

Figure 4.9 plots the modules |bk(j)| for k = 2, 4, 6, 8, 10 against iteration

number j for the IET f2 = f(1.25, 6) from Section 4.2.4. In the initial iterations,
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Figure 4.10: Variance decay for f2(r2,Π2) with κ = 10−5 and c(0)(x) = csq. Expected

variance decays ψ = C|λk|2 match well the exponential decay rates which occur.

the dominance in the values of |bk(j)| fluctuate in value between k = 2, 6, 8 and

10, with no single eigenfunction a dominating influence on the concentration field.

For many iterations, the eigenfunction v8 dominates the concentration field with

the largest values in |b8(j)|, until around iteration 100 when |b2(j)| dominates

for all future iterates, associated with the eigenfunction v2, the slowest decaying

eigenfunction. Figure 4.10 replots the variance for f2 with decay rates ψ ∝ |λ8|2j

and ψ ∝ |λ2|2j showing good agreement for each respective stages.

The examples in Figure 4.8 can be used to see if close-to-degenerate eigenval-

ues are the mechanism contributing to the finite time mixing profiles observed

which deviate from exponential in the initial stages. Figure 4.11 plots the coeffi-

cients |bk(j)| for the first five slowest decaying eigenfunctions, where the complex

conjugate eigenfunctions have been neglected since they result in the same values

of |b(j)|. In both cases, in the early stages of finite time evolution the modulus

of the coefficients |bk(j)| are greater for a couple of values k > 2, than |b2(j)| re-

lating to the dominant eigenfunction. This suggests that in the earlier iterations,

the concentration field is influenced by the interaction of many eigenfunctions

decaying with similar decay rates.

An approximation of the variance decay can be computed from the evolution

of the leading eigenfunctions and coefficients |bk(j)| as

ψKapprox =
K∑
k=2

|bk(j)vk|2 (4.25)
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(a) f(r,Π) = f(1.5, [4312]) (b) f(r,Π) = f(1.5, [3421])

Figure 4.11: The evolution of the modulus of the coefficients bk(j) with iteration

number j are plotted for two IETs. The initial condition was c(0)(x) = csq and κ = 10−5.

(a) f(r,Π) = f(1.5, [4312]) (b) f(r,Π) = f(1.5, [3421])

Figure 4.12: The approximation of the variance decay from the interaction of slowly

decaying eigenfunctions by (4.25) are plotted alongside the full variance decay for the

initial condition c(0)(x) = csq with κ = 10−5.
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and plotted alongside the full variance evolution of from the initial condition

c(0)(x) = csq, as is shown in Figure 4.12. In Figure 4.12 (a) K = 11 under

approximates the variance decay and K = 21 is required for a more accurate

approximation of the variance decay profile, while in Figure 4.12 (b) K = 11

approximates well the variance profile. The former is not surprising due to the

values of |bk(j)| being close in value for the initial iterations in Figure 4.11. These

examples reveal that the interaction of the slowly decaying eigenfunctions indeed

contribute to the finite time evolution of IETs with a diffusive step, however

since all eigenvalues have |λk| → 0 for all k as κ→ 0, for weak diffusivity several

slowly decaying eigenfunctions interact and contribute to the observed mixing

behaviour.

4.3.3 Effect of initial condition

The asymptotic mixing rate of an IET is independent of almost all initial con-

ditions, as discussed in Section 4.3.1. In the previous section, the initial stages

of mixing were well approximated by the combination of several eigenfunctions

with similar decay rates, however how long each of the eigenfunctions dominates

the concentration field, and how this depends on the initial condition, was not

discussed. Popovych et al. (2007) note that in their systems of interest, the

time interval over which the non-exponential decay of concentration is observed

depends strongly on initial conditions. This reflects a strong variation in the

coefficients dk in (4.24). Is this also observed for the non-chaotic transformations

investigated here?

A return to the time to achieve a mixed condition, specifically t95, allows a

clear understanding of the effect of initial conditions on finite time mixing rates.

For the example IET f(1.5, [4312]), Figure 4.13 (a) plots the decay of variance

for different initial conditions when the diffusion coefficient is taken as κ = 10−6.

The changes in the initial condition considered were five rotations of the square

wave, such that cα(x) = csq(x+ α) where α ∈ {0.0, 0.05, 0.1, 0.15, 0.2}. It is seen

that changing the initial condition in such a simple way has a considerable effect

on the decay of variance. The time to achieve a variance of decay below 5% of

the mean field varies over 200 iterations. For α ∈ {0.25, 0.3, 0.35, 0.4, 0.45, 0.5}
the plot is similar to Figure 4.13 (a), and due to the rotational symmetry of the

square wave, for α > 0.5 the results are repeated.

The IET f(1.5, [4312]) is an irreducible, non-rotational permutation and has

a short periodic order of 65. Figure 4.13 (b) shows how the mix norm changes
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(a) (b)

Figure 4.13: (a) The decay of variance for the IET r = 1.5, Π = [4312] with κ = 10−6

shown for various rotations of the initial condition the square wave, representing half

white, half black. Dashed line represents when ψj/ψ0 is within 5% of the mean field. (b)

Mix norm measurement for the segregation by the IET f(1.5, [4312]) in the diffusion-

less limit for rotated initial conditions of the square wave. For all ICs rejoining occurs

are 65 periods, however between these periods the mixing at each iteration depends on

the initial condition.

for the rotated square wave initial conditions under evolution of the IET in the

diffusion-less case. The mix norm is calculated using the recursive computational

method of Smith (2016) on an extended lattice with 10,000 points sampling the

concentration field. Reassembly of the initial condition occurs after just 65 it-

erations, however the value of the mix norm between these peaks varies across

the range of α. For the case α = 0.2, which takes the longest time to achieve

the mixed condition t95 in Figure 4.13 (a), the stirring is the least effective in

decreasing the value of the mix norm..

The effect of changing the initial condition was considered by Yu et al. (2016),

but only in comparing across the parameter value r and averaging across permu-

tation groups. They did not report any variation in mixing properties of IETs due

to varying initial conditions. Of course, this is a specific example and with a small

periodic order of 65 stirring periods, does not satisfy the parameter specifications

for good finite time mixing by Krotter et al. (2012) and Yu et al. (2016). There

is no mention of the effect of initial conditions in the diffusive IETs of Wang &

Christov (2018).

It would be hoped that an IET that mixes well for one initial condition should

mix well for nearly all initial conditions. Therefore, in addition to the time to

achieve a mixed condition t%, an additional quantitative measure of the ability
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to mix well in finite time will be tmax% − tmin% . For a fixed IET with parameters

defined by r and Π, and the rotated square wave initial condition parameterized

by α, tmax% denotes the largest number of iterations taken to achieve the mixed

condition while tmin% will be the smallest number of iterations required, when

varying α. Therefore a small value of tmax% − tmin% suggests that the IET mixing

properties do not vary much across the range of initial conditions, while a large

tmax% − tmin% implies the mixing properties are sensitive to the initial condition.

4.4 Dependence on parameters

So far a handful of example permutations have been used to explain in detail

the mixing behaviour and resulting mixing rates that emerge in IETs with a

diffusive step. The parameter r defining the ratio between sub-interval lengths

has only had the values r = 1.5 or r = 1.25, and similarly the rearrangement

in the shuffling has only been given by irreducible, non-rotational permutations.

Now an aim to quantify the effect of parameters defining an IET f(r,Π) is carried

out. These are the permutation arrangement Π, the sub-interval length scaling

parameter r, and the number of sub-intervals N .

4.4.1 Effect of permutation rearrangement

The simplest division of permutation groups into subgroups depending on their

rearrangement order are given by rotation permutations, reducible permutations

or irreducible non-rotational permutations. The asymptotic and finite time mix-

ing rates for these three groups are investigated for fixed r.

Rotation permutations

In the case of periodic boundary conditions, the mixing rates by rotation permu-

tations can be explicitly computed. An IET f(r,Π) where Π is a rotation will

result in the permutation Πf which is also a rotation, such that

Πf (i) = i+m mod Nl (4.26)

for all j ∈ {1, 2, . . . , Nf}, where m is fixed and dependent on the rotation. This

results in the map

MΠf (x) = x+
m

Nf

mod 1. (4.27)
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(a) Space-time plot for f(1.5, [1432]) (b) Space-time plot for (f1.5, [2143])

Figure 4.14: Space-time plots for the evolution of a concentration field under the action

of two reducible permutations. A component initial condition [Krotter et al. (2012); Yu

et al. (2016)] shows that a separation of the domain occurs preventing further stirring

and reduction in the scale of segregation.

The transfer matrix for the IET then has elements M kk = ωm where ω = e2πi/Nf ,

and with |M kk| = 1 while M kq = 0 for k 6= q. Since the transfer matrix is a

diagonal matrix, representing only a shift in phase for each of the Fourier modes,

there is no dispersion between other modes. Therefore mixing to uniformity can

only occur through the action of diffusion. The eigenvalues can be explicitly

written down since Mnq and dkn are diagonal matrices and

Md− λI = 0 =⇒ λk = Mdkk (4.28)

where Mdkk = ωmρk
2
, such that |λ2| = ρ for all rotations. In the initial stages,

the finite time mixing rate depends only on the initial condition and will be the

same for all rotation permutations, including the identity permutation.

Reducible and irreducible permutations

As an illustrative example, the space-time evolution of two IETs with r = 1.5 and

reducible permutations from S4 are shown in Figure 4.14. The first permutation

Π = [1432] plotted in Figure 4.14 (a) is one of the simplest permutations to

satisfy the reducible definition; in which the first element is fixed but the others

are free to be shuffled within the rest of the domain. Assigning the component

coloured initial condition from Krotter et al. (2012); Yu et al. (2016), it is easily

seen that this reducible permutation allows no mixing of the first sub-interval

into the rest of the domain, while cutting and shuffling generates some smaller
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(a) Space-time plot for f(1.5, [3241]) (b) Space-time plot for f(1.5, [4231])

Figure 4.15: Space-time plots for the evolution of a concentration field under the

action of two irreducible permutations. A component initial condition [Krotter et al.

(2012); Yu et al. (2016)] shows the respective mixing from each. Although (a) suggests

irreducibles reduce the scale of segregation well, a counter example permutation in (b)

shows in some cases they result in bad mixing and low periodic order, resulting in

reassembly of the initial condition after just 12 iterations.

sub-segments of colour in the remainder of the domain. Figure 4.14 (b) shows

a second reducible permutation Π = [2143] in which the first two, and last two

sub-intervals are swapped, again resulting in a decomposition of the domain into

two sub-intervals.

These examples reveal that reducible permutations as defined by Definition

4.1.4 separate the domain in which the IET is acting into two or more distinct

intervals. These distinct sub-intervals may have their own segregating dynamics,

however between them no transfer of concentration can occur via stirring. This

implies that uniformity can be only achieved via diffusion across the boundary

between the intervals.

In contrast, Figure 4.15 plots the space time evolution for two irreducible per-

mutations from S4 with r = 1.5. The first in Figure 4.15 (a) is good at reducing

the scale of segregation, generating smaller and smaller sub-segments with each

cut and shuffle. The second in Figure 4.15 (b) however does not, and reassembles

the initial condition after just 12 iterations. These examples highlight some of

the subtleties of mixing in IETs. Yu et al. (2016) put the bad mixing proper-

ties of f(1.5, [4231]), and like permutations, where the first and last elements are

simply swapped, down to consecutive sub-intervals contaminating the potential

for mixing at each iteration. They neglect the fact that the additional rational

scaling r between all sub-intervals contributes too, and produces short periodic
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Figure 4.16: Asymptotic mixing rate |λ2| varies with κ for all Π ∈ S4 with r = 1.5.

Profiles for rotations (black), reducible (blue) and irreducbile, non-rotational (green)

permutations are distinguished by colour.

orders for permutations of this type. Varying the lengths of the sub-intervals

so that there is no common ratio between them all produces better reduction

in the scale of segregation and a longer periodic order for these permutations.

However consecutive sub-intervals do restrict the potential decrease in segrega-

tion scale at each iteration. This is discussed in more detail in a later section.

The IET f(1.5, [3241]) has a periodic order of 177, while all other irreducible,

non-rotational permutations from S4 with r = 1.5 have a periodic order of 65,

equivalent in value to the length Nf of the larger permutation Πf for these pa-

rameters. The relevance of Nf and the periodic order of an IET on mixing is

more important when discussing the parameters r and N and as such is left for

the discussion of those sections.

Now that the segregation properties of different permutations groups are un-

derstood, the resulting mixing rates from including diffusion iteratively are inves-

tigated. Unlike rotations, it is not possible to analytically solve for the leading

eigenvalues of reducible and irreducible, non-rotational permutations. Instead nu-

merical results on the asymptotic and finite time mixing rates are quantitatively

compared.

Figure 4.16 shows for the IETs f(1.5,Π ∈ S4) how the second leading eigen-

value varies with diffusivity rate. The lines are coloured dependent on the per-

mutation properties, black for the identity or rotational permutations, blue for
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Mean Median Max Min

κ = 10−3 13.58 13.05 25.6 7.1

κ = 10−4 102.86 89.05 237.8 48.5

κ = 10−5 905.53 813.7 2333.6 245.4

κ = 10−6 8639.9 7932.65 23202.7 1158.8

(a)

Mean Median Max Min

8.14 8.05 10.8 5.9

26.76 23.95 37.3 19.1

74.31 67.6 140.5 44.2

256.43 243.25 498.4 139

(b)

Table 4.2: Statistics of t95 averaged over varying initial condition for (a) reducible

permutations and (b) non-rotational, irreducible permtuations from S4 with r = 1.5.

The initial conditions were rotations of the square wave with 10 evenly distributed

values of α in [0, 0.5).

the reducible permutations, and green for the irreducible, non-rotational permu-

tations.

For fast diffusivity, κ > 10−4 the profiles of |λ2| are complicated, varying non-

monotonically in some cases, with overlapping profiles regardless of whether the

permutation is reducible or irreducible. This was similarly reported by Ashwin

et al. (2002) for permutations of equal sized cells, the order of permutations by the

value of |λ2| changes with the value of κ, thus there is not one permutation defin-

ing the IET which mixes better for all diffusion coefficients. The rotations and

identity permutation always have the slowest long-time mixing rate, determined

by the slowest decaying mode from diffusion alone.

As κ is decreased, on average it appears as though the irreducible, non-

rotational permutations have a quicker long-time mixing rate, seen in the inlay

plot. This result implies that irreducible, non-rotational permutations are better

at mixing, which is not surprising since Krotter et al. (2012) and Yu et al. (2016)

report that IETs with irreducible, non-rotational permutations are also better at

reducing the scale of segregation in finite time. The slow long-time mixing rates

for reducible permutations with weak diffusivity is due to the large unstirred re-

gions of the domain and limited mixing across their boundaries by diffusion only.

Since the scale of this unmixed region will be much larger than that which can

be achieved by an irreducible permutation, the rate of decay of the largest mode

capturing this diffusion-limited unmixed region will be much slower.

As discussed in Section 4.3, the asymptotic time does not reveal the whole

finite time mixing behaviour, which is highly sensitive to properties of the IET

and the initial condition. For r = 1.5 and each Π ∈ S4 the time to achieve
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a 95% mixed state, t95, was computed for 10 different initial condition and the

mean value taken. The different initial condition were rotations of the square-

wave (4.18) with α evenly distributed in the interval [0,0.5). The average of t95

is computed since, as previously discussed, large variations in finite time mixing

can occur for simple variations in initial condition.

Table 4.2 lists the statistics for averaged values of t95 across the permutation

group S4, split for the reducible permutations (of which there are 10) and irre-

ducible non-rotational permutations (10). In each row the value of the diffusivity

coefficient is changed to show the drastic differences in how many iterations are

required to achieve the mixed condition depending on Π. For all diffusivity values

the irreducible, non-rotational permutations have lower values across all statisti-

cal measures. In line with the asymptotic mixing rate, irreducible, non-rotational

permutations are significantly faster at mixing to a desired condition than re-

ducible permutations and confirms that choosing such a permutation is essential

to achieve good mixing; in both diffusive and diffusion-less transformations.

N=4 N=5 N=6 N=7

r=1.5 65 211 665 2059

r=1.2 671 4651 31031 -

r=1.1 4641 61051 - -

Table 4.3: Nf for the parameter choices of Π ∈ SN and different values of r. On

average the periodic order of IETs from this parameter space have order = Nf with a

few outliers, more often larger than Nf .
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4.4.2 Effect of sub-interval ratio r

Krotter et al. (2012) and Yu et al. (2016) concluded that better reduction in the

scale of segregation can be achieved when the ratio r between sub-interval lengths

is “closer-to-irrational”. This is because such values of r parametrising an IET

essentially generates a permutation of equal sized cells with large length Nf , and

subsequently the possibility to achieve a small scale of segregation of width 1/Nf .

Since at each iteration a diffusive step will begin to blur sharp gradients in the

concentration field between sub-segments of varying colour, this preciseness in

the possible concentration scale will be lost. A numerical parameter study on the

effect of r highlights whether the conclusions of previous stirring studies carry

over into IETs with a diffusive step. Additionally r closer to, but not equal to, 1

achieves the best stirring results, therefore only r ∈ [1.1, 1.5] is considered here.

Table 4.3 lists Nf for a variety of parameter pairings f(r,Π ∈ SN). Three

values of r are listed; r = 1.5, 1.2, and 1.1. As the value of r decreases for these

selected values, the length of the extended permutation Πf increases roughly

by one order of magnitude. For fixed r increasing the number of sub-intervals

N in the permutations also increases the value of Nf . Since increasing N also

decreases the possible scale of segregation, it would be difficult to determine

whether it is a larger Nf , or more intervals N , which contribute to better mixing.

However these values allow for a comparative study between the two since if it is

larger Nf that contributes mainly to better mixing overall, it would be expected

that f(1.2,Π ∈ S4) and f(1.5,Π ∈ S6) would have similar mixing properties

due to having comparatively similar values of Nf . Similarly f(1.1,Π ∈ S4) and

f(1.2,Π ∈ S5). Since rotational and reducible permutations result in bad mixing,

only the subset of irreducible, non-rotational permutations are taken from the

groups SN ; of which there are 10 in S4, 67 in S5 and 457 in S6.

First the effect of r on the mixing rates is investigated. The long-time mixing

rates, finite time mixing rates and the spread of finite time mixing rates dependent

on the initial conditions are compared across the values of r, given by |λ2|, t95 and

tmax95 − tmin95 respectively. Since t95 is variable dependent on the initial condition,

as was done when comparing reducible and irreducible permutations, an averaged

value will be taken for each permutation across 10 initial conditions; rotations of

the square-wave parametrised by α. Box plots are used to graphically depict the

spread in these measures across the permutation groups SN . Like all methods to

show a spread in values, there is a loss in information by not including all data

points. However, box plots were chosen since they capture the median (red line),
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Figure 4.17: Boxplots showing the spread of the modulus of the second leading eigen-

value |λ2| for non-rotational irreducible permutations from S4 dependent on the sub-

interval ratio r = 1.5, 1.2 and 1.1. In each of the sub-figures the diffusion coefficient is

a) κ = 10−6, b) κ = 10−6, c) κ = 10−6, and d) κ = 10−6,

Figure 4.18: Boxplots showing the spread of t95 for non-rotational irreducible permu-

tations from S4 dependent on the sub-interval ratio r = 1.5, 1.2 and 1.1. In each of the

sub-figures the diffusion coefficient is a) κ = 10−6, b) κ = 10−5, c) κ = 10−4, and d)

κ = 10−3,
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upper and lower quartiles (top and bottom of boxes respectively), and maximum

and minimum values in a data set excluding anomalies (whiskers) presenting a

sizeable amount of information on the spread, as opposed to say the mean and

standard deviation. Similarly, box plots seem more appropriate since each data

point in the spread is a unique mixing measure for a single IET (rΠ) for Π ∈ SN ,

rather than one realisation of the action of (r,Π) with some small variation in

the conditions, such as a different initial concentration field.

Figure 4.17 shows box plots representing the statistics on the spread of |λ2|
across each of the 10 irreducible non-rotational permutations Π ∈ S4. The sub-

figures represent different values of the diffusion coefficient κ, and note that each

has a varying y-axis scale to better capture the spread of values. Box plots are

shown to represent a selection of the full |λ2| profiles for easy comparison across

parameters. Additionally, the spread in values is captured better via the median

and upper and lower quartiles, than from the mean value and standard deviation

alone.

Across the range of diffusivity coefficients, no value of r emerges which has a

faster on average long-time mixing rated for all values of κ. When κ is large, it

appears as though r = 1.1 has the slowest overall long-time exponential decay,

while for the smallest value of κ = 10−6, the median and lower quartiles are the

lowest in value compared to r = 1.5 and r = 1.2. Although r = 1.1 for Π ∈ S4 has

the largest Nf , these results suggest that the long-time mixing rate determined

by the decay rate of the dominant eigenfunction is not necessarily governed by

the possibility to reduce the scale of segregation in finite time.

The finite time mixing behaviour similarly shows little advantage in increasing

the value of Nf via choosing a “more irrational” r. The spread of t95 averaged

over varying initial conditions is plotted in Figure 4.18, again as box plots showing

the median, upper and lower quartiles and general spread of all values. In Figure

4.18 (c) when κ = 10−4 a trend is seen in which choosing a “more irrational” r,

resulting in larger Nf , on average gives a quicker finite time mixing rate, however,

this trend does not hold in any of the other sub-figures (a), (b) and (d). Figure

4.19 plots the variation in the time to achieve a mixed condition with varying

initial condition, tmax95 − tmin95 , for small diffusivity coefficients and shows that

although the median values for all three parameters are very similar, a number

of permutations r = 1.5 and r = 1.2 result in larger variations depending on the

initial condition in contrast to r = 1.1 which shows less variation overall.
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Figure 4.19: Boxplots showing the spread tmax95 − tmin95 for non-rotational irreducible

permutations from S4 dependent on the sub-interval ratio r = 1.5, 1.2 and 1.1. In each

of the sub-figures the diffusion coefficient is a) κ = 10−6 and b) κ = 10−5.

Figure 4.20: Boxplots showing the spread of the modulus of the second leading eigen-

value |λ2| for non-rotational irreducible permutations from S5 dependent on the sub-

interval ratio r = 1.5, 1.2 and 1.1. In each of the sub-figures the diffusion coefficient is

a) κ = 10−6, b) κ = 10−5, c) κ = 10−4, and d) κ = 10−3.
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Figure 4.21: Boxplots showing the spread of t95 for non-rotational irreducible permu-

tations from S5 dependent on the sub-interval ratio r = 1.5, 1.2 and 1.1. In each of the

sub-figures the diffusion coefficient is a) κ = 10−6, b) κ = 10−5, c) κ = 10−4, and d)

κ = 10−3.

Figure 4.22: Boxplots showing the spread of tmax95 − tmin95 for non-rotational irreducible

permutations from S5 dependent on the sub-interval ratio r = 1.5, 1.2 and 1.1. In each

of the sub-figures the diffusion coefficient is a) κ = 10−6 and b) κ = 10−5.
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A repeated study using irreducible, non-rotational permutations Π ∈ S5 was

performed and showed similar results. Since S4 only has 10 suitable permutations,

S5 with 67 provides a better number of IETs to compare across. In this case the

variations in the value of Nf are larger with Nf = 211 for r = 1.5, Nf = 4651 for

r = 1.2 and Nf = 61051 for r = 1.1. Even though the size of the smallest scale of

segregation changes drastically for varying r in this case, Figure 4.20 shows for

all values of κ the spread in the long-time exponential mixing rate given by |λ2|
has little correlation to this fact.

In contrast to S4, in Figure 4.21 the box plots for the average value of t95

appear to suggest r = 1.5 has the slowest finite time mixing rates on average

when compared to r = 1.2 and r = 1.1 across all diffusivity values, except for

one or two outliers. Looking again at tmax95 − tmin95 in Figure 4.22, the trend in

behaviour is now opposite to that reported in Figure 4.19, with r = 1.5 showing

the least variation in the time to achieve a mixed condition from changing the

initial condition.

These numerical results are inconclusive in suggesting having a larger Nf from

the choice of r results in better mixing in diffusive IET transformations. In the

next section the effect of including more sub-intervals N is investigated and the

conclusions compared to the results thus far.

4.4.3 Effect of the number of sub-intervals N

The effect of N on reducing the scale of segregation in cutting and shuffling IETs

was discussed by Krotter et al. (2012) and Yu et al. (2016) in addition to the

parameter r. Krotter et al. (2012) noted diminishing returns on the effect of N

to achieve on average a smaller, largest unmixed sub-segment Uj over the initial

first 50 iterations. When including cut variation, Yu et al. (2016) found that the

profiles for the average of Uj with r aligned for all values N = 4, 5 and 6, if

the underlying permutations are irreducible and non-rotational. They concluded

that 4 sub-intervals in an IET is enough to achieve good stirring in finite time.

Whether this hypothesis can be carried over into IETs with a diffusive step is

considered here.

The previous mixing metrics used in Section 4.4.2 to compare across values of

r are used to compare across changing N . Again, only irreducible, non-rotational

permutations are used. For fixed r = 1.5, Figure 4.23 plots the spread of the

second leading eigenvalue |λ2|, contributing to the long-time exponential mixing

rate, for varying permutation groups SN . In addition to S4, S5, and S6, the
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Figure 4.23: Boxplots showing the spread of the modulus of the second leading eigen-

value dependent on the number of sub-intervals in the permutation Π. All non-

rotational irreducible permutations from S4, S5 and S6 are considered with r = 1.5. In

each of the sub-figures the diffusion coefficient is a) κ = 10−6, b) κ = 10−5, c) κ = 10−4,

and d) κ = 10−3.

group SNC6 is included, denoting the group of non-consecutive, irreducible, non-

rotational permutations of S6, defined such that after permutation, sub-intervals

which were consecutive in the initial arrangement [123456], are consecutive fol-

lowing rearrangement. For example, Π = [635214] is non-consecutive.

In contrast to changing r, here an obvious trend emerges with the median

value of |λ2| being the lowest for S6 for all values of κ. The variation is more

significant as κ is decreased. Note however that when increasing κ, the upper

tails on the spread is the largest in value for S6, showing that some of the slowest

mixing IETs belong to f(1.5,Π ∈ S6). This is likely due to the fact that S6 has

many permutations in which a couple or more of the sub-intervals are consecutive

in the permutation rearrangement. Removing these and focusing on only the non-

consecutive permutations indeed lowers the upper whiskers and/or reduces the

median of |λ2| across all diffusivity coefficients, shown by plotting the spread of

|λ2| for SNC6 .

Looking at the spread of values in Figure 4.24 for the average t95 across dif-

ferent initial conditions, and Figure 4.25 for the variation in the time to achieve

the mixed condition tmax95 − tmin95 , the trend persists that increasing the number

of sub-intervals has a significant effect on increasing the speed of mixing, the
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Figure 4.24: Box plots showing t95 for non-rotational, irreducible permutations from

S4, S5, and S6, alongside the non-consecutive irreducible permutation of S6, for varying

rates of diffusivity coefficient κ and fixed r = 1.5. In each of the sub-figures the diffusion

coefficient is a) κ = 10−6, b) κ = 10−5, c) κ = 10−4, and d) κ = 10−3 Eliminating the

consecutive permutations from Π ⊂ S6 in the group SNC6 removes most of the outliers.

Figure 4.25: Box plots showing tmax95 − tmin95 for non-rotational irreducible permutations

from S4, S5 and S6 with fixed sub-interval ratio r = 1.5. In each of the sub-figures the

diffusion coefficient is a) κ = 10−6 and b) κ = 10−5.
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latter suggesting that good mixing holds across varying initial conditions. When

plotting the same figures for r = 1.2, the same conclusions can be drawn (not

included).

From Table 4.3, the difference in Nf between N = 4 and N = 5 is a factor of

3, similarly between N = 5 and N = 6, when r = 1.5. Recall from the results

of fixed N = 4 with different r, there was little effect in the finite and long-time

mixing rates from just large increases in Nf . Therefore as a comparative study,

although Nf increases with N , a more considerable improvement occurs due to

the increase in N , rather than Nf alone. The implication of more cuts at each

iteration is that more interfaces are introduced across which diffusion is effective.

Additionally more cuts increases the potential to reduce the scale of segregation

at each iteration following rearrangement. This implies that it is not the potential

to achieve the smallest scales of segregation over a finite time alone which gives

better mixing in diffusive IET transformations, but the ability to introduce more

new cuts at each iteration, which larger N allows.

4.5 Polynomial dependence on the time to achieve

a mixed condition with diffusivity rate

Previous work by Wang & Christov (2018) on IETs with a diffusive step investi-

gated the effect of varying the Péclet number. This is equivalent to the current

work by changing the diffusivity coefficient κ. The mixing metric used was the

variance || · ||2 with t∼36% as a mixed condition, which they call the e-folding time.

One could argue t36 is not a practical mixed condition since depending on the

application, other mixing metrics such as || · ||∞ can still be significantly large

in value for this condition on the variance, and they do not state any physical

reasoning for applying this condition except it allows an analytical approximation

for a mixing time. Earlier drafts of their work used t50, inspired by problems from

shuffling cards [Aldous & Diaconis (1986),Diaconis (1996)]. Famously, card shuf-

fling problems ask how many shuffles are required to achieve a desired variation

distance from a perfectly randomised permutation of cards. In card shuffling a

variation distance around 50% makes sense practically because for this condition,

the pack is essentially random by the definition of variation distance, and hence

well mixed. For the variance of a concentration field, this is not necessarily the

case. From numerical results they did not find any definitive scaling relation

between varying the Péclet number and the time to achieve a mixed condition.
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Figure 4.26: t95 with κ from numerical simulations for all non-rotational Π ∈ S4,

r = 1.5. Initial condition c(0)(x) = csq.

In the previous section, the time to achieve a mixed condition t95 was used as

a diagnostic to investigate the effect of IET parameters on rates of mixing. Only

a handful of diffusion coefficients were considered. This section addresses in detail

how the time to achieve a mixed condition varies with the rate of diffusivity. A

scaling t% with κ is found and related to the eigenvalues of the transfer operator.

A mechanism is introduced which predicts a similar scaling rate.

4.5.1 Numerical results for t95

Figure 4.26 plots t95, the iteration at which the variance achieves a 95% mixed

state, for all permutations Π ∈ S4 when r = 1.5. The profiles are coloured

according to the rearrangement properties of the permutation, whether reducible

(blue), or irreducible and non-rotational (green, denoted only as irreducible in the

legend). The rotation permutations are omitted. For each the initial condition

was c(0)(x) = csq and 51 values of κ tested, uniformly distributed in log-scale for

κ ∈ [10−6, 10−1]. For large κ the profiles appear to plateau, with stepped profiles,

which is caused by the integer values in t95 from discrete time iteration in j.

A log-log scaling on the axes reveals a roughly polynomial relation for all
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permutations of

t95 = Cκ−η, (4.29)

where η is dependent on the underlying permutation used in the IET. For most

of the reducible permutations η = 1.0, while for nearly all of the irreducible

permutations η is smaller in value. The line t95 ∝ κ−1 is included as a comparison.

Using (4.29) for the profiles of t95, the curve-fit function from the Scipy pack-

age in Python is used to find approximations for the exponent η. Table 4.4 lists

approximations of η from the numerically computed profiles for the irreducible

permutations alone. For each IET f(1.5,Π), the profile of t95 with κ was com-

puted for 5 rotated initial conditions of the square wave, η computed for each,

and then the mean value taken. For nearly all initial conditions the values of

η had small deviations from those listed in the table, varying by roughly 0.01

absolute error. Π = [2413] is omitted due to the profile being highly variable and

not accurately described by (4.29). Note also that Π = [4231] has η = 1.0, the

permutation which was discussed in Section 4.4.1 for having bad stirring proper-

ties. The latter result is due to the fact that for this permutation the IET has

a periodic order of just 12 iterations and is not good at reducing the scale of

segregation. Similarly, reducible permutations which seem to have an exponent

η < 1 are those in which the first interval I1 remains fixed, resulting in only a

small static island. This is quite surprising since it would be expected that when

∼ 12.3% of the domain is static, diffusion-limited mixing would be expected.

This may suggest that the large values of κ, scales in the concentration field un-

der repeated cutting, shuffling and diffusion are larger than the static interval

I1 for these reducible cases. However as κ → 0, for both of these permutations

the profile of t95 starts to curve upwards, and diffusion limited mixing predicting

t95 ∝ κ−1 dominates the mixing dynamics.

All values of η for the irreducible permutations fall within the interval η ∈
[0.5, 0.62]. Re-plotting this figure for other mixed conditions, such as t99, t90 and

Π [3142] [4132] [2413] [4231] [4213] [4312] [2431] [3241] [3241] [3421]

η 0.5 0.54 - 1.0 0.56 0.57 0.59 0.54 0.56 0.62

Table 4.4: Approximation for η from curve fitting t95 = Cκ−η to numerically computed

profiles for irreducible, non-rotational permutations Π ∈ S4. Profiles were computed

for 5 different initial conditions of the square wave rotated by α and the exponent of

each averaged.
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Figure 4.27: The variation in the second leading eigenvalue |λ2| with diffusivity coef-

ficient κ is plotted for all non-rotational Π ∈ S4, r = 1.5. The values of |λ2| where

computed from the respective transfer matrices dM .

t80 retains the polynomial scaling (4.29), where the only main difference is the

changing value of C. Also for other values of r, such as r = 1.1 and r = 1.2,

similar conclusions can be made.

Since κ can vary over orders of magnitude in certain mixing problems, the

polynomial scaling (4.29) predicts orders of magnitude increases in the time to

achieve a mixed condition with decreasing diffusivity rates. This contrasts chaotic

stirring systems where t% ∼ log(κ), which is weakly related to orders of magnitude

change in κ.

4.5.2 Comparison to leading eigenvalue

In the last section numerical results for a range of t% revealed a polynomial scaling

with the diffusion coefficient κ. An attempt to generalise the scaling observed

can be done following the ideas of Ashwin et al. (2002), who stated that the

time to achieved a mixed condition is bounded by the mixing rate of the leading

eigenvalue λ2. This is reminiscent of Lemma 2.3.1 for diffusion-less maps M which

are strong mixing, where the decay of correlations is given by Cφ,ψ(j) ≤ Cτ j, for
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a class of suitable, real-valued functions φ, ψ and some constant C < ∞, where

τ is the leading eigenvalue of the spectrum σ(P ).

Consider that for an advective-diffusive transfer operator P the asymptotic

mixing rate is given by the second leading eigenvalue |λ2| of P , then there exists

a constant C <∞ such that

|c(x, j)− c̄| < |c(x, 0)− c̄|C|λ2|j (4.30)

where c(x, j) = P jc(x, 0) and assume that for a given initial concentration field,

C is constant over mixing protocols. Then, a time t% can be found in terms of C

and the eigenvalue λ2 in which the concentration field achieves a % mixed state;

|c(x, j)− c̄| < |c(x, 0)− c̄|C|λ2|t% = R, (4.31)

|λ2|t% =
(
R−1C|c(x, 0)− c̄|

)−1
, (4.32)

=⇒ t% =
log(R−1C|c(x, 0)− c̄|)

− log |λ2|
, (4.33)

where R represents the ratio of percent mixed, for example 0.05 for t95. Hence

for a given percentage %, t% will approximately decrease by a factor given by the

ratio of the logarithm of the leading eigenvalues for the mixing protocol. Since

all |λ2| < 1, a smaller |λ2| decreases t% faster as expected.

The relation (4.33) leads to t% ∝ −(log |λ2|)−1, so if the leading eigenvalue

strongly effects the time to achieve a mixed condition, then it is expected that

− (log |λ2|)−1 ∝ κ−η. (4.34)

Plotting −(log |λ2|)−1 in Figure 4.27 for the same parameters as in Figure 4.26,

indeed both scaling relations for the reducible permutations, η = 1, and for the

non-rotational irreducible permutations a slope of η < 1 are retained. The figures

are qualitatively similar except for the eigenvalue profiles when κ < 10−5, where

a slight up turn in −(log |λ2|)−1 occurs.

Figure 4.28 (a) plots the profiles in more detail for the irreducible permu-

tations, minus Π = [4231]. Different colours in the profiles show complicated

variations as κ decreases. It is surprising that the scaling relation is visible in

both t95 and −(log |λ2|)−1 since it was shown in Section 4.3.2 that the finite time

mixing is not dependent on the long-time mixing rate when κ is small. Figure

4.28 (b) plots both profiles of t95 and −(log |λ2|)−1 for an example permutation,

alongside how −(log |λk|)−1 varies for a handful of k representing the largest

eigenvalues in the spectrum of PD ◦ PM (grey). This permutation is chosen as it
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(a) (b)

Figure 4.28: (a) The variation in the leading eigenvalues, plotted as −(log |λ2|)−1 is

plotted again diffusivity, for only the irreducible, non-rotational permutations in S4,

with r = 1.5. Dashed line represents the expected polynomial relation from diffusion

alone. In (b) for a single permutation Π = [3241] profiles of − log(|λk|) for many k are

plotted in grey, alongside the |λ2| profile and the time to achieve a 95% mixed state

t95. The latter profiles are well approximated by ∝ κ−0.54.

is one of the smoothest profiles. For large values of κ all eigenvalue profiles appear

to change ∝ κ−1. As κ decreases below 10−3, the relation −(log |λ2|)−1 ∝ κ−0.54

holds. The other eigenvalues continue to have −(log |λk|)−1 ∝ κ−1 until they

are bounded by the leading eigenvalue. As κ decreases, the eigenvalues be-

come close-to-degenerate and predict the finite time mixing, all of which go like

−(log |λk|)−1 ∝ κ−0.54.

Since the finite time mixing was shown to be well approximated by close-to-

degenerate eigenvalues, this similarity in the variation of |λk| with |λ2| with small

diffusivity could explain why the scaling is observed in both long-time mixing

rates |λ2| and finite time mixing rates t%. Of course this is only a single example

and the other profiles do not provide good comparisons to make a conclusive

hypothesis when κ is small. In the next section a potential mechanism for the

mixing rates is explored and predicts the scaling (4.29) with η < 1, more precisely

η ∼ 0.5.
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4.5.3 Mechanism for polynomial scaling relations

The mechanism for the η = 1 scaling when the underlying IET has a reducible

permutation is easy to understand. A reducible permutation will leave a large

continuous colour segment unmixed from having a single, or several, static sub-

intervals. Mixing between this segment and the domain outside is only possi-

ble due to diffusion across the boundaries, since no scalar concentration can be

stirred into the segment from the transformation. Even if some stirring via cut-

ting and shuffling occurs within the segment, eventually the final approach to a

uniform mean field will be via diffusion. Therefore the long-time mixing will be

dominated by the slow decay of the eigenfunction capturing the diffusion-limited

mixing across the unstirred segment. For fixed scales in a concentration field, the

effect of varying the diffusivity coefficient is proportional to exp(−κ). Therefore

eigenvalues will change with diffusivity value as λ ∝ exp(−κ) and (4.33) predicts

t% =
K

κ
, (4.35)

with η = 1. This was similarly discussed in Chapter 3.2.3 for the shear map with

a strong wave perturbation and resulting island, where it was shown that the

time to achieve a mixed condition fin variance decay was ∝ κ−1 . Now to address

the scaling when the IET has an irreducible, non-rotational permutation, which

satisfy good stirring conditions.

In chaotic systems an eigenfunction emerges in the concentration field due

to a balance between the repeated strain from stretching, and leading to the

eradication of large gradients in the concentration. This occurs when the smallest

length scales in the scalar concentration field reaches the Batchelor length scale

wB =
√
κ/λ (4.36)

where the effects of compression and diffusion balance. In purely cutting and

shuffling transformations there is no local stretching to result in a balance between

compression and diffusion. Whether a scale such as the Batchelor length scale

exists, presenting a minimum scale where there is a balance between cutting and

shuffling and diffusion, is not known.

Wang & Christov (2018) hypothesised a method for predicting a stopping

time T in cutting and shuffling systems, similar to card shuffling systems. They

attempted to find a time TPe in which the concentration field reaches a scale where

diffusion is effective, and fast depletion results from then on with no further
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cutting and shuffling required. For this they employed the analysis of Schlick

et al. (2013) for the rate of depletion of two sub-segments of unequal colour via

diffusion. It is worth recalling the discussion of Schlick et al. (2013) and Wang &

Christov (2018) as it is beneficial in the suggestion of a mechanism predicting a

similar scaling to (4.29) observed for the irreducible, non-rotational permutations

in Figure 4.26. Some mistakes were made in their arguments and these will be

addressed throughout.

Schlick et al. (2013) asked us to consider two subsegments of opposing colour.

Let them be represented by values −1 and 1 respectively, both of equal length

l and periodic boundary conditions. Then the concentration profile under the

action of diffusion with diffusivity coefficient κ is

c(x, t) =
∞∑
k=0

2

π(2k + 1)
sin
(nπx

l

)
exp

(
−(2k + 1)2π2 tκ

l2

)
. (4.37)

For the dominant mode to be washed out by a significant factor, say about e−2 ≈
13%, this gives a diffusional length scale l∗, such that

l∗ = l∗(T ) ≈ π

√
Tκ

2
, (4.38)

where T is the time period over which diffusion is applied for the given diffusivity

coefficient κ.

Wang & Christov (2018) then ask: when will the average continuous color sub-

segment length, denoted lm, in the cutting and shuffling process without diffusion

reach l∗? They state the importance of this question, since if lm ≈ l∗ then T

iterations of cutting and shuffling with diffusion later, the concentration of the

striation will be damped out by e−2 = 13%, so T is the e-folding time; their

specified mixed condition.

It is in this statement that the confusion lies. The statement defines T as

though it is the iteration number, implying that l∗ increases with increasing

iterations of the IET. However, in the analysis of Schlick et al. (2013), T is the

time taken during the diffusive intervals in the iterative process, where significant

depletion begins to occur at every iteration, once the concentration field reaches

this scale. If the question and the accompanying statement were to be linked, l∗

should be a constant for T constant, instead of l∗ varying with time which they

have in their study. Their argument then continues with finding numerical values

for lm and rescaling variance profiles depending on the iteration number in which

l∗ = lm, which they denote T̃Pe. They find no discernible pattern in T̃Pe with
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Peclet number and state that numerical evidence suggests cut-off phenomena is

observed, similar to card shuffling, however this remaining fact is also arguable

due the problems of definitions already discussed.

Other problems lie in this suggested mechanism of mixing in comparison to

the model presented here. Numerical results of this study suggest extremely

slow, long time mixing rates attributed to eigenfunctions with eigenvalues ∼ 1,

extremely slow compared to a fast depletion time of 13% at each iteration. Ad-

ditionally this approach completely neglects the effect of diffusion in the early

stages of cutting and shuffling. However, the idea of comparing lm and l∗ can be

re-imagined in terms of defining a balance between cutting, shuffling and diffu-

sion, and how this balance would vary with diffusion.

The results presented in this current work show that an eigenfunction regime

emerges in IET systems with diffusion, dominating both the finite and long-time

mixing dynamics. An eigenfunction regime implies there is a balance between

cutting and shuffling and diffusion since, on average at every iteration, the con-

centration field is decaying with a fixed factor given by the respective eigenvalue of

the eigenfunction. Therefore at each iteration a decay rate φ of an eigenfunction

can be defined as

φ = |λ2|. (4.39)

Comparing this to the analysis idea of Schlick et al. (2013), the mixing rate is

also related to the average scale of the concentration field l, that is

φ = exp(−4π2κ/l2). (4.40)

Now if the decay rate was taken over a number of iterations with a fixed rate

with unchanging scale l, φ could be written as a function of j,

φ(j) = exp(−4π2κj/l2). (4.41)

However, in cutting and shuffling systems the largest scale of the concentration

field l is not fixed and is instead a function of iteration number l(j). Then, interest

lies in working out how the decay rate φ(j) of the concentration field achieves on

average a constant decay rate over j iterations, say φ(j) = e−C , and how many

more iterations it takes if the diffusion coefficient κ was decreased. This would

imply that

φ(j) = exp(−4π2κ/l(j)2) =⇒ l2(j) =
4π2κ

C
. (4.42)

All that is left now is to approximate the average variation of l(j) over j itera-

tions. However, following the assumption that a balance occurs between cutting,
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shuffling and diffusion an approximation from l is not simple to conceive. One

simple assumption is between j iterations of an decay rate by φ, the mid-way

point of changing l(j) captures an average length scale l∗. This is the assumption

carried forward, however other claims can be made on what the lengthscale l∗

should be capturing the balance between cutting, shuffling and diffusion. For all

cutting and shuffling IETs, at most new interface can be generated linearly, so

that if N new cuts are made at each iteration, then a minimum function of the

value of l(j) is

l(j) =
1

jN
. (4.43)

Then the length scale at the mid-way iterations j/2 would be

l∗ =
2

jN
. (4.44)

Substituting this into (4.42) gives(
2

jN

)2

=
4π2κ

C
, =⇒ j2 =

C

2π2κN2
. (4.45)

Therefore if the diffusivity coefficient is varied, the number of iterations needed

to ensure the same decay factor φ = exp(−C) is achieved goes like

j ∝ κ−1/2. (4.46)

This mechanism of attempting to derive a simplistic representation of a balance

between cutting and shuffling has derived a polynomial scaling between the time

to achieve a fixed decay rate and the diffusivity coefficient κ, which is remarkably

similar to the numerical results presented in Sections 4.5.1 and 4.5.2. Figure 4.29

re-plots Figure 4.26 with (4.46) relation included for comparison, showing good

agreement. The scaling (4.45) also captures that increasing N , the number of

sub-intervals in the IET, would see an improvement on the time to achieve a

mixed condition by reducing the number of iterations needed.

Of course, this argument ignores the diffusion across sharp interfaces in the

concentration field, however it is expected in the eigenfunction stages that these

have been balanced and are not as effective across the eigenfunction as they are

in the initial stages of mixing. Additionally, choosing l∗ to be (4.44) may not

be appropriate and other functions could be derived and investigated in future

work. The numerical results suggest η = 0.5 as a potential lower bound on how

t95 varies with diffusivity, with values of η greater than this in general, listed in

Table 4.4. More development is needed in the intuition that mixing rates arise

from a balance of cutting, shuffling and diffusion.
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Figure 4.29: t95 with κ from numerical simulations for all non-rotational Π ∈ S4,

r = 1.5. The line t95 ∝ κ−1/2 is included for comparison from (4.46). The initial

condition for all profiles was c(0)(x) = csq.

4.6 Conclusions

The work presented in this chapter extended the studies of Ashwin et al. (2002),

Krotter et al. (2012), and Yu et al. (2016) to study rates of mixing in one-

dimensional IETs with a diffusive step. The construction of the transfer operator

as a transfer matrix describing the advective step was possible due to the rational

ratio r taken between the sub-interval lengths. This allowed for a computational

study with results independent of the resolution of wavemodes if Q was taken

large enough, which can not be said for a previous study on diffusive IETs by

Wang & Christov (2018). Derivation of a transfer matrix suggests a long-time

exponential mixing rate, as is observed, and as κ→ 0, |λk| → 1 for all k. This is

due to the fact that the underlying advective transformation is not strong mixing

by definition.

For a considerable number of iterations when the diffusion coefficient is small,

a deviation from this final exponential mixing rate is observed for the IETs pre-

sented here, and the profiles of variance decay follow a stretched exponential first

suggested as an appropriate fit by Wang & Christov (2018). Close-to-degenerate

eigenvalues and corresponding eigenfunctions are presented as a mechanism to
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explain the mixing rate in this stage where a summation of multiple exponential

decay rates also approximated the variance profile well. The application of this

mechanism was inspired by Popovych et al. (2007) who showed that close-to-

degenerate eigenvalues contributed to the mixing for weakly connected chaotic

domains or flows with islands, both of which are not strong mixing in the diffusion-

less limit. However, where they showed the variance profile could predict the two

leading eigenvalues, here more than two eigenvalues were needed for an accurate

approximation of the decay of variance profile. This is likely due to the fact that

many close-to-degenerate eigenvalues emerge in the IETs systems with diffusion

as κ → 0. These initial stages where the decay of concentration is dominated

by the superposition of many slowly decaying eigenfunctions is sensitive to the

initial condition, shown herein by the time to achieve a mixed condition varying

over hundreds of iterations for initial conditions with fixed scales, but are simply

rotated in the domain. This implies that predicting when the transition to the

asymptotic regime, governed by the slowest decaying eigenfunction, is difficult

for knowledge of the initial condition and flow parameters alone.

An illustrative example of two IETs suggested that the decay of a concen-

tration field to its mean value occurs faster for an IET which satisfies the good

stirring conditions of Krotter et al. (2012) and Yu et al. (2016), than for an IET

which does not meet all the criteria. A parameter study was carried out to find

which of the criteria were essential, and which were less important, for an IET

with diffusion. The choice of Π as an irreducible, non-rotational permutation was

found to be essential for fast mixing.

However it was found that the choice or r leading to a larger Nf was not

as important as having more sub-intervals in the permutation rearrangement.

In Krotter et al. (2012) and Yu et al. (2016) an IET with larger Nf suggested

better decrease in the scale of segregation due to the fact that this decreases the

smallest scale that could be achieved from cutting and shuffling (1/Nf ). Although

increasing N for a fixed r also increases Nf , it was observed that faster long-time

and short-time mixing rates are on average better with increasing N , compared

to changing r, even if the latter caused a much more significant increase of Nf .

This suggests that in the presence of diffusion it is not the reduction to smaller

scales over finite time in the initial stages which will achieve a better long-time

mixing rate, but rather introducing new cuts and decreasing segregation at each

iteration which will mix the concentration field faster. In the diffusion-less limit, a

choice of r resulting in a larger Nf would become important, since mixing would
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be restricted by only diffusion across the edges of the equal sized cells of size

1/Nf .

Studies on cutting and shuffling in higher dimensional systems, such as those

on the hemi-spherical shell [Park et al. (2016, 2017); Smith et al. (2017a)], and

new studies in two-dimensional planar systems [Smith et al. (2019)] have been

concerned with fine tuning rotation parameters within the piecewise isometries,

to achieve the best coverage of cutting lines and as such small scales of segrega-

tion across finite times. In all of the examples the number of pieces within the

piecewise isometry remains fixed, implying the total length of cuts introduced at

each iteration is also fixed. The results of the current work herein, suggest that

such parameter tuning may not be of high importance when diffusion is present.

Similarly, numerical results presented here on the finite-time mixing rates reveal

that roughly 100 iterations is required to achieve a 95% mixed condition when

κ = 10−6, so IETs do not present themselves as efficient options as practical

mixing protocols when the diffusivity coefficient is small.

This is because the relationship between the time to achieve a mixed condition,

t% and diffusivity coefficient κ, has a polynomial relation such that t% ∝ κ−η. For

IETs which satisfy the good stirring conditions, η ∼ 0.5, which is also derived

from an argument considering a balance between cutting, shuffling and diffusion.

This exponent is smaller in value than for diffusive restricted mixing, which gives

η = 1.0, as seen for nearly all reducible IETs with unstirred sub-segments. For

rational r, a likely assumption is that as κ→ 0 for all IETs, η → 1 since eventually

all mixing would be restricted across the boundaries of the cells of equal size. This

is seen briefly in the eigenvalue profiles for r = 1.5, Π ∈ S4 in Figure 4.27, however

this is as an open question for future work.

A recent study was interested in investigating decreasing scales of segregation

via IETs with variable parameters. Smith et al. (2018) devised an optimization

procedure to find IETs with variable cut locations to achieve the best stirred

condition. The goal was to achieve a final concentration field which would have a

scale of segregation which, as well as small in scale, is evenly distributed within the

domain. However studies such as Miles & Doering (2018) find that homogeniza-

tion from diffusion, and filamentiation via advection, are sometimes in conflict

and produce a negative impact on mixing in optimized flows. Therefore it is

likely that the optimized cutting method of Smith et al. (2018) is not directly

transferable to diffusive IETs. They also address the limitation that knowing the

initial condition is required for their optimization scheme to work. As evidenced
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herein, in IET transformations better segregation does not necessarily suggest

fast mixing with diffusion, and varying the initial condition can have a drastic

effect on the time to achieve a mixed condition. One may be able to construct an

optimization procedure for an IET with varying cut location when there is dif-

fusion, where at each iteration the best rearrangement is chosen for an assigned

number of cuts. However whether this is of practical interest or computationally

feasible is debatable.
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Chapter 5

Mixing by piecewise, uniformly

expanding maps

The last chapter investigated the rates of mixing in cutting and shuffling transfor-

mations with diffusion, however, it is unlikely that these mechanisms will occur

in isolation. Generally stretching and folding is the key stirring mechanism. This

chapter investigates the effect discontinuous transformations have on mixing rates

in chaotic advective systems.

Hyperbolic maps with discontinuities have been at the heart of a number of

studies investigating mixing. It has been observed that strong mixing can be

preserved in expanding maps composed with permutations [Byott et al. (2013)],

although it was reported that typically the mixing rate is slowed down. In special

cases a discontinuous slip deformation can lead to exotic pseudo-elliptic points

where mixing can be hindered completely [Smith et al. (2016)]. However, there

has been no investigation into the mixing rates for the composition of the three

mixing dynamics in the literature; stretching and folding, cutting and shuffling

and diffusion.

This is addressed in the current work where a simple map on the unit interval

is derived representing an idealised time-periodic flow with the three mixing dy-

namics. Comparison to previously published results by Byott et al. (2013) allows

for computation of strong mixing rates in the diffusion-less limit. Numerical re-

sults on the mixing rates when there is diffusion are presented and the implication

of results on finite time mixing are discussed.

It is observed that the addition of cutting and shuffling behaves similarly

to non-uniformity in stretching rates, discussed in Section 2.5.1, causing dis-

persion of the concentration field between wavemodes in discrete Fourier space.
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Figure 5.1: The action of the baker’s transformation (5.1) is to contract the x direction,

stretch the y direction and reassemble onto the unit torus. Taking a y independent

initial condition, here c(x, y) = blue for x < 1/2 and c(x, y) = white for x ≥ 1/2,

reduces the baker’s transformation to a one-dimensional map on the unit interval.

This results in eigenfunctions with long-time exponential decay rates. The decay

rates of the eigenfunctions are shown to be dependent on the choice of permu-

tation, although counter-intuitively for many of the permutations these mixing

rates change non-monotonically with the diffusion coefficient. The strong mixing

rates of the underlying maps, the limit of vanishing diffusivity, are found using

Markov partitions and bounds on the rates presented. The non-monotonicity of

the mixing rates results in the bounds no longer being applicable when diffusion

is included.

5.1 Formulation of the problem

5.1.1 Baker’s transformation with permutations

The two-dimensional incompressible baker’s transformation is a paradigm exam-

ple of a hyperbolic chaotic map which is mixing. In two-dimensions the map is

defined as follows

Definition 5.1.1. (The baker’s transformation) Let Ω be the unit square

such that Ω = [0, 1)× [0, 1). We define the transformation T : Ω→ Ω by

MB(x, y) =

{
(x/2, 2y) y ∈ [0, 1/2)

((x+ 1)/2, 2y − 1) y ∈ [1/2, 1)
(5.1)
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Figure 5.1 depicts the action of the baker’s transformation, which shows that

there is a compression by 1/2 in the x direction whilst a stretch of 2 in the y

direction, followed by horizontally dividing the rectangle for reassembly onto the

unit square.

Considering a y independent initial condition, the baker’s transformation re-

duces to a one-dimensional map which is one-to-two and represented acting on a

concentration field by

c(j+1)(x) =

{
c(j)(2x) x ∈ [0, 1/2),

c(j)(2(x− 1/2)) x ∈ [1/2, 1).
(5.2)

The y independent initial condition remains y independent in Figure 5.1. The

baker’s transformation is a paradigm example of a hyperbolic, chaotic trans-

formation which is strong mixing. The inverse of the one-dimensional baker’s

transformation, is captured in the following transformation;

Definition 5.1.2. (m-adic transformation) Consider the transformation T :

[0, 1)→ [0, 1) given by

f(x) = mx mod 1, (5.3)

where m is an integer. For m = 2 it is customarily called the doubling map.

The one-dimensional approximation of the baker’s transformation is the pre-

image of the doubling map, (5.3) with m = 2. The doubling map is a one-

dimensional map which is also chaotic, ergodic, mixing and exact. The one-

dimensional baker’s transformation (5.2) will form the stretching and folding

component of the dynamics.

For the discontinuous transformation, permutations of equal sized cells (4.1)

are used acting in the x direction. Interval exchange transformations with varying

interval lengths are withheld until later in the discussion. For the sake of con-

ciseness, only the permutation groups S3, S4 and S5 are investigated. S3 has 6

permutations, 3 rotations and 3 interleaving permutations, while S4 and S5 have

24 and 120 permutations respectively. This gives a total number of permutations

which is feasible to compute, while enough to make a varied and comparative

study. The composition maps will be denoted Π ◦MB.

Although this model is one-dimensional, and thus highly idealised, the action

of stretching and folding creates long lamellar structures which align with the un-

stable manifolds. In high dimensional systems, the action of cutting and shuffling

will introduce discontinuities, but it is likely that these will propagate with the
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flow and also align with the unstable manifolds from the stretching and folding

dynamics. Thus this one-dimensional model can be considered as a cross-section

approximation of the dynamics.

The one-dimensional baker’s transformation has successfully been used many

times as an initial investigation into the mixing rates of chaotic maps with non-

uniform stretching rates [Fereday et al. (2002),Wonhas & Vassilicos (2002)] and

the effect of no-slip boundary conditions, sufficiently capturing experimental be-

haviour [Gouillart et al. (2007),Gouillart et al. (2008)]. These studies were re-

viewed in more detail in Section 2.5.1, alongside other relevant literature on mix-

ing arising from non-uniform stretching.

Figure 5.2: Space-time plots showing the evolution of striations of a half-white, half-

black initial condition. In (a) the action of the baker’s transformation (5.1) decreases

striation width exponentially, while in (b) the transformation Π◦MB with Π = [35421]

appears to retain the exponential creation of striations but introduces non-uniformity

in the striation widths.

5.2 Dynamics in the absence of diffusion

5.2.1 Space-time plots of segregation

Observing how the concentration field evolves in time gives a qualitative explana-

tion of how including permutations can perturb the mixing of the baker’s transfor-

mation. For this the use of space-time plots is employed, similar to Chapter 4 for

IETs. The simplest initial condition half-white, half-black, and slight variations

thereof, are enough to present the range of behaviour. Example permutations

from S3, S4 and S5 are used without a full parameter study presented.
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Figure 5.3: Increase in the number of interfaces C(j) is plotted against iteration num-

ber, showing that exponential growth in striations is preserved for the mappings MB,

Π1 ◦MB and Π2 ◦MB where Π1 = [35421] and Π2 = [213]. The permutations also

increase the total amount of interface. The initial condition was half-white, half-black.

Figure 5.2 (a) shows how a half-white, half black initial condition evolves under

the action of the one-dimensional baker’s transformation. At each iteration the

white and black sub-segments are halved in size and total number doubled within

the domain, giving an exponential decay of correlations. The equal distribution

of white and black in the initial condition is preserved uniformly in the striation

widths at each iteration.

In Figure 5.2 (b), the evolution of the same initial condition is shown under

the transformation Π1 ◦MB with Π1 = [35421], a random permutation chosen

from S5. After the first iteration, parts of the concentration field are swapped

by the permutation and uniformity in the striation widths is no longer retained.

This swapped striation arrangement in then halved in size and doubled in num-

ber, before being rearranged by the cutting and shuffling once more. After several

iterations, a highly non-uniform concentration field of many striation widths is

observed. It appears as though the exponential increase in striations is preserved

by the composition Π1 ◦MB. This is confirmed in Figure 5.3 where exponential

growth in the striations is inferred from plotting the number of interfaces be-

tween sub-segments of the concentration field of varying colour C(j). The growth

in interfaces is also plotted for the baker’s transformation MB alone, and the com-

position map Π2 ◦MB with the interleaving permutation Π2 = [213]. The results

show that alongside retaining exponential growth in the number of interfaces, the
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Figure 5.4: Space-time plots show the evolution of striations of a half-white, half-black

initial condition by a composition Π ◦MB. In (a) the permutation Π = [1324] un-

mixes the new striations formed by the baker’s transformation, reassembling the initial

condition, while in (b) the permutation Π = [4231] behaves similarly reassembling the

black and white sub-segments after they are swapped within the domain.

number of interfaces in the concentration field is increased by the permutations.

However this is not always the case.

For some of the permutations in S4, different behaviour is observed. Take for

example the permutation Π = [1324] which swaps the middle two sub-intervals.

After one iteration by the baker’s transformation, the concentration field consists

of four sub-segments of width 1/4, as seen in Figure 5.4 (a). Applying the per-

mutation reassembles the white sub-intervals and the black sub-intervals, so that

only two sub-intervals remain with width 1/2. Repeated application of the map

Π◦MB repeats this behaviour and no increased segregation can occur. Similarly,

the permutation Π = [4231] reassembles the striations but interchanges their po-

sition in the domain at each iteration, with no increased segregation. This is

because permutations Π ∈ S4 align with the point x = 1/2. An initial condi-

tion constructed from four colours of equal size reveals what is happening, shown

in Figure 5.5. For Π = [1324] although no exchange between the sub-intervals

[0, 1/2) and [1/2, 1) can occur from the transformation Π ◦MB, exponential mix-

ing occurs within the two halves independently of each other. The permutation

creates two ergodic partitions.

Finally, Figure 5.6 (a) shows the evolution of the half-white, half-black initial

condition from the baker’s transformation MB compared with (b) when a rota-

tion permutation Π = [45123] is applied. The rotation preserves the uniformity
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Figure 5.5: Space-time plot for IC with 4 colours, evolving under the map Π ◦MB

with Π = [1324]. Exponential mixing occurs on the partitions x ≤ 1/2 and x > 1/2

but no exchange of colour between the regions.

Figure 5.6: Space-time plots for the evolution of a half-white, half-black initial con-

centration is compared for (a) the baker’s transformation and (b) when a rotation

permutation Π = [45123] is applied for Π ◦MB. The rotation preserves the uniformity

of the striation widths.
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Figure 5.7: Graphical representations of a) the one-dimensional approximation of

the baker’s transformation, the halving map, b) the halving map composed with the

permutation Π = [35421], denoted (Π ◦MB), and c) the preimage map (Π ◦MB)−1

with an appropriate Markov Partition.

of the striation widths at each iteration, but rotates the concentration field peri-

odically within the domain [0, 1). In the next section the effect of permutations

on segregation is quantified by the rates of decay of correlations.

5.2.2 Rate of decay of correlations

Figure 5.7 a) shows graphically the map MB representing the evolution of points

by the one-dimensional baker’s transformation (5.2), which can be considered as

a halving map. In this configuration, it is easy to see that the map is contracting

to the stable fixed point x = 0 and is not chaotic, nor mixing. Figure 5.7 b)

shows the map Π ◦MB for the permutation Π = [35421], the same permutation

used in the space-time plot in Figure 5.2 (b). The map Π ◦ MB is no longer

continuous but is clearly piecewise smooth with multiple pieces. The branches

all have the same slope as the halving map, suggesting contraction and stability

of points, however, the evolution of striations in Figure 5.2 (b) clearly show good

mixing properties for the halving map and Π ◦MB with exponential reduction

in striation widths and increase in interface. This is because the action of sets

under the map Π ◦MB is related to ergodic, and strong mixing properties of the

pre-image map (Π ◦MB)−1.

Recall from Definition 2.2.2 for strong mixing, then the action of the map M

on the set A is taken to be the backward time iteration of the transformation.

Figure 5.7 c) shows the inverse map (Π ◦MB)−1 which is not invertible, and as

such to determine if the map (Π ◦MB)−1 is strong mixing, then it is precisely

the evolution of sets by the mapping Π ◦MB which needs to be considered. The
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Figure 5.8: Graphical representations of a) the one-dimensional approximation of the

doubling map b) the doubling map composted with permutation Π = [35421], denoted

(Π ◦ f), and c) (Π ◦ f) with an appropriate Markov Partition.

definition of strong mixing for (Π ◦MB)−1 can be thought of heuristically as the

infinite time limit of the half white, half black intervals iterated by Π◦MB. If the

set A is the half-open interval [0, 1/2) ⊂ A, identified by colouring it white, then

µ(A) = 1/2. For any other interval B = [a, b) ⊂ [0, 1), if under repeated images

of A by Π ◦MB, limj→∞B ∩ (Π ◦MB)j(A) = µ(B)/2, then the map (Π ◦MB)−1

is strong mixing. That is, in every subinterval B, in the infinite limit half of the

interval is occupied by white striations.

Therefore, the problem lies in determining if the pre-image maps (Π ◦MB)−1

are strong mixing. Fortunately, the pre-image maps have a special property that

a Markov partition can be determined. An example partition is shown in Figure

5.7 c). Constructing a probability transition matrix between the Markov states

gives a way for finding the mixing rate τ (2.19). The method for finding the

mixing rates τ follows closely the work of Byott et al. (2013), who investigate

the mixing properties of expanding maps f (5.3) composed with permutations,

Π◦f . Their application and method is now briefly explained, followed by how the

method and results are extended to find the mixing rates for the maps (Π◦MB)−1.

Mixing rates for Π ◦ f

Byott et al. (2013) investigate the mixing rates of expanding maps (5.3) composed

with permutations of equal sized cells (4.1), Π ◦ f . A graphical representation of

the doubling map f when m = 2 is shown in Figure 5.8 a), and in Figure 5.8 b)

Π◦f with Π = [35421]. The map Π◦f is similarly piecewise smooth with multiple

pieces, however there are differences between this map and (Π ◦ MB)−1 with

the same permutation. The relevant methods for defining the Markov partition,
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Markov transition matrices and theory for transfer operators for the maps Π ◦ f
from Byott et al. (2013) are now described.

A piecewise linear Markov map M : Ω→ Ω has a finite partition Bq = {Ii}qi=1

and a representative transition matrix B. Here B is a q × q matrix with Bij = 1

if Ij ⊂ M(Ii), and Bij = 0 if M(Ii) ∩ Ij = ∅, where it is assumed that M is

differentiable on the interior of each element. From Figure 5.7 c) and Figure 5.8

c), the maps Π ◦ f with m = 2, and (Π ◦ MB)−1 are piecewise linear Markov

maps, with a suitable partition B shown. The partition B can be determined

systematically for Π ◦ f for a given m and Π ∈ SN .

Consider a partition Bq of constructed for q ≥ 1 by

Bq = {[j/q, (j + 1)/q) : 0 ≤ j ≤ q − 1}, (5.4)

of Ω = [0, 1) into q equal subintervals. The map f with stretch factorm, is Markov

with respect to the partition Bm, while the permutation map Π, is Markov with

respect to BN . The composition map Π ◦ f however, is Markov with respect to

BmN , shown in Figure 5.8 c).

The probability transition matrix for Π◦f is constructed in the following way.

Index the subintervals of the partition Bq by {0, 1, . . . , q} and number the rows

and columns of the associated transition matrix accordingly. Define the matrix

B(m,N) to represent the transition matrix for the expanding map f with respect

to the partition BmN . That is for 0 ≤ i, j ≤ mN − 1

B(m,N)ij =

{
1 if j = mi+ d mod Nm with 0 ≤ d ≤ m− 1.

0 otherwise.
(5.5)

Additionally, define the matrix A(m,N) with respect to BN such that 0 ≤ i, j ≤
N − 1 such that

A(m,N)ij =

{
1 if j = mi+ d mod N with 0 ≤ d ≤ m− 1.

0 otherwise.
(5.6)

For example, taking m = 2 and N = 3, the matrices are

B(2, 3) =


1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 , A(2, 3) =

1 1 0
1 0 1
0 1 1

 . (5.7)
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Although A is not defined on the Markov partition BmN , it has importance in

the proof of the theorems of Byott et al. (2013), and is essential in establishing

bounds on the mixing rates of (Π ◦MB)−1 in the next section.

To find the corresponding state transition matrices for Π ◦ f , the columns

of matrices B(m,N) and A(m,N) are permuted. Given a permutation Π, the

matrix P (Π), an N ×N matrix representing the permutation is given by

P (Π)ij =

{
1 if j = Π(i)

0 otherwise.
(5.8)

and similarly the matrix Q(Π) can be defined as a mN × mN matrix derived

from P (Π), in which every 1 is replaced with a m×m identity matrix and 0 with

a m×m zero matrix. The state transition matrix for the composition map Π ◦ f
is then the product B(m,n)Q(Π). The action of this product is that Q(Π) causes

a permutation on the columns of B(m,N). For example, take the m = 2 and

N = 3 and Π = [213], then

P (Π) =

0 1 0
1 0 0
0 0 1

 , Q(Π) =


0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (5.9)

The state transition matrices for the transformation Π ◦ f with Π = [213] are

derived by permuting the columns and are

A(2, 3)P (Π) =

1 1 0
0 1 1
1 0 1

 , B(2, 3)Q(Π) =


0 0 1 1 0 0
1 1 0 0 0 0
0 0 0 0 1 1
0 0 1 1 0 0
1 1 0 0 0 0
0 0 0 0 1 1

 . (5.10)

Note that P (Π)A(m,N) is the matrix obtained by applying the inverse permu-

tation Π−1 to the rows of A(m,N). Byott et al. (2013) prove that the non-

zero eigenvalues of B(m,N)Q(Π) are equivalent to the non-zero eigenvalues of

A(m,N)P (Π). This is covered in more detail in the next section. The main

results and theorems from Byott et al. (2013) are now discussed.

It is proven combinatorially that Π ◦ f is topologically mixing dependent on

the parameters m and N and Byott et al. (2013) arrive at the following theorem.

Theorem 5.2.1. [Byott et al. (2013)] Let f be as described in (5.3)
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1. if N is not a multiple of m, then Π ◦ f is mixing for all Π ∈ SN .

2. if N > m and N is a multiple of m, say N = ml, there there will be some

Π ∈ SN for which Π ◦ f is not mixing. As l→∞ (with fixed m), however,

the proportion of permutations Π ◦ f mixing tends to 1.

This theorem gives a condition on the parameters m and Π which ensures

mixing. When determining the mixing rates of the maps, i.e. the rate of decay

of correlations, a suitable functional space needs to be defined. Since the maps

Π ◦ f are no longer continuous, the transformation does not preserve the space

of Hölder continuous functions. Instead Xs is taken to be the Banach space of

functions with bounded variation BV . Given a function φ : [a, b]→ R, the total

variation of φ is defined

TV (φ) = sup

{
n∑
k=1

|φ(xk)− φ(xk−1)| : a = x0 ≤ · · · ≤ xn = n

}
(5.11)

where the supremum is taken over all partitions of [a, b]. The function φ has

bounded variation if TV (φ) <∞.

Now a suitable Banach space has been chosen, the spectrum of the transfer

operator for the map acting on this space of functions Pf |BV : BV → BV will

give a means to determine the mixing rate. The spectrum is contained in the

unit disk of the complex plane and has a trivial eigenvalue 1, corresponding

to the equilibrium state. Since f is piecewise expanding, with the expansion

factor uniformly bounded away from 1, the essential spectral radius ress can be

interpreted as the slowest local mixing rate of the system. The spectrum may

also contain isolated points of modulus greater than ress. The global mixing rate

τ of the system is therefore determined by

τ = sup{|λ| : λ ∈ Spec(Pf |BV )\{1}}. (5.12)

For Pf |BV the essential spectal radius is ress = 1/m and there are no isolated

eigenvalues with λ > 1/m except for 1, hence τ = 1/m. For the composition

maps Π ◦ f this is not the case. When Π ◦ f is mixing, the mixing rate is defined

as

τΠ = sup
{
|λ| : λ ∈ Spec(PΠ◦f |BV \{1}

}
(5.13)

For the choice of two integers m and N , Byott et al. (2013) prove the following

theorem for the mixing rates of PΠ◦f ;

132



CHAPTER 5. MIXING BY PIECEWISE, UNIFORMLY EXPANDING MAPS

Theorem 5.2.2. Fix m, N ≥ 2 and consider the transformations Π ◦ f for

Π ∈ SN . Then the following hold;

1. For all Π ∈ SN , the essential spectral radius is given by ress(PΠ◦f |BV ) =

1/m.

2. If N > m and gcd(m,N) = 1, then for each Π ∈ SN , we have

τΠ◦f ≤ τmax =
sin(mπ/N)

m sin(π/N)
. (5.14)

The proof of the theorem is arrived at by a detailed study of the Fredholm

matrices, and the related Markov transition matrices associated with Π ◦ f . It is

not necessary to discuss the full details of the proof, only that the mixing rate τΠ is

determined from the leading non-unit eigenvalue λ of the matrices B(m,N)Q(Π)

and A(m,N)P (Π) as τΠ = (1/m)∗λ. The values ress and τmax essentially provide

lower and upper bounds on the mixing rates. The main conclusion of the study

is that permutations preserve the mixing rate or typically make it worse.

For a given m and N and Π ∈ SN , Byott et al. (2013) define

ΛΠ =
{
λ ∈ Spec(PΠ◦f |BV ) such that |λ| = τΠ

}
, (5.15)

τΠ as defined in 5.13. This is because there may be multiple eigenvalues with

|λ| = τΠ. The geometric arrangement of the set ∪Π∈SNΛΠ in the complex plane

was of interest for Byott et al. (2013).

Mixing rates for (Π ◦MB)−1

Similar to Byott et al. (2013), the construction of the Markov matrices for the

maps (Π ◦MB)−1 can be generalised. Compare the differences between the map

Π ◦ f in Figure 5.8 and (Π ◦MB)−1 in Figure 5.7. The map could be rewritten in

terms of a permutation Γ such that (Π ◦MB)−1 = f ◦ Γ. In terms of a Markov

transition matrix, this implies that we take a permutation on the rows with Γ, in

contrast for the maps Π ◦ f in which a permutation occurs on the columns.

For a given permutation Π, Q(Π−1)B(m,N) produces the appropriate Markov

transition matrices for the map (Π ◦MB)−1. The eigenvalues of these transition

matrices can be computed and would give the mixing rates of the map (Π◦MB)−1.

However no assumptions can be made that the Theorems of Byott et al. (2013)

carry over to this system of maps, or that P (Π−1)A(m,N) has the same eigenvalue

spectrum as Q(Π−1)B(m,N). This is addressed in the following two lemmas.
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Figure 5.9: ΛΠ is plotted for Π ◦ f and (Π ◦MB)−1 and shows that the distributions of

τ in the unit plane agree, along with the lower (ress) and upper (τmax) bounds shown

in blue and green respectively.

Lemma 5.2.3. For all m, N and Π ∈ SN , the non-zero eigenvalues of Q(Π)B(m,N)

are the same as those of P (Π)A(m,N).

Proof. The proof follows the method of Byott et al. (2013) for the proof that the

matrices B(m,N)Q(Π) and A(m,N)P (Π) have the same none zero eigenvalues.

View the matrix Q(Π)B(m,N) as determining a linear endomorphism θ on the

space V = CmN of column vectors. Clearly B(m,N) has rank N , since the first N

rows are linearly independent and the remaining rows merely repeat these. There-

fore since Q(Π)B(m,N) is just a permutation of these rows, then Q(Π)B(m,N)

also has rank N . The kernel W of θ therefore has dimension N(m − 1), and θ

induces an endomorphism θ̄ on the quotient space V/W of dimension N . The

eigenvalues of θ, (that is of QB) are therefore the eigenvalues of θ̄ together with

the eigenvalue 0 with multiplicity N(m− 1) coming from W . The result follows

if the matrix PA represents θ̄, which it does following from the construction of

the basis vectors in Byott et al. (2013). This is omitted for brevity.

Lemma 5.2.4. Fix m, N ≥ 2 and consider the transformations (Π ◦ MB)−1

where MB is the one-dimensional baker’s transformation and Π ∈ SN . Then

1. For all Π ∈ SN , the essential spectral radius is given by ress = 1/m.

2. If N > m and gcd(m,N) = 1, then, for each Π ∈ SN , we have

τΠ ≤ τmax =
sin(mπ/N)

m sin(π/N)
.
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Proof. Note that for a given Π ∈ SN , a Γ ∈ SN can be found such that

P (Π−1)A(m,N) = A(m,N)P (Γ).

Since it follows that the non-zero eigenvalues of P (Π−1)A(n,M) andQ(Π−1)B(n,M)

are equivalent, then

∪Π∈SN ΛΠ = ∪Γ∈SNΛΓ, (5.16)

and all results and bounds on the mixing rate found by for Π ◦ f hold for

(Π ◦MB)−1.

In Figure 5.9 the distribution of the leading eigenvalues ∪Π∈SNΛΠ are plotted

in the unit-circle for the maps Π◦f and (Π◦MB)−1 and find agreement for m = 2

and N = 5. For all other choices m and N the distributions agree.

In conclusion, the mixing rates of the baker’s transformation composed with

permutations can be found using Markov partitions. This method follows closely

the work of Byott et al. (2013), who found bounds on the mixing rate dependent

on the stretch factor m and the number of equal sized cells in the permutation.

Although slightly different in construction, both Π ◦ f and (Π ◦MB)−1 have the

same distribution of eigenvalues for a given m and N .

5.3 Introducing diffusion

5.3.1 Deriving the transfer operator

The inclusion of diffusion is computed through the action of operator splitting,

as was previously performed in Chapters 3 and 4. In this case, the advective

step can also be considered as split operators, where the operator evolving the

concentration field by the baker’s transformation PMB
, is followed by an operator

representing the evolution by the permutation PΠ, such that one full advective

step is

c(j+1)(x) = PD ◦ PΠ ◦ PMB
c(j)(x). (5.17)

As for the maps considered in Chapter 3 and 4, the evolution of the concentration

field c(x) is captured easily by a transfer matrix representing the transfer of

amplitude between complex coefficients of a discrete Fourier expansion of c(x)

when periodic boundary conditions are applied.

The action of the one-dimensional baker’s transformation is given by

ĉ
(j+1)
k =

∞∑
q=−∞

ĉq

∫ 1

0

e2πiM−1
B (x)−2πikx =

∞∑
q=−∞

ĉq

∫ 1

0

e2πiq2x−2πikxdx (5.18)
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which results in the transfer matrix

T kq = δ0,(k−2q). (5.19)

The transfer matrix M kq for the operator PΠ is the same as in 4.12. However,

deriving the single advective transfer matrix via MT is not computationally effi-

cient since for a truncation of Q modes, the matrix for the baker’s transformation

produces a matrix of size 2Q× 2Q, with Q columns that are all zeros. It follows

that the product matrix MT similarly has Q zero columns.

It is more computationally efficient to derive the transfer matrix from the

action of both maps simultaneously. The application of MB followed by MΠ is

such that the Fourier coefficients evolve according to

ĉ
(j+1)
k =

∑
ĉq

∫ 1

0

e2πiq(MΠ◦MB)−1(x)−2πikxdx (5.20)

and the transfer matrix defined

M kq =

∫ 1

0

e2πiq2x−2πikMΠ(x)dx. (5.21)

When k 6= 2q,

M kq =
1− ω(2q−k)

2πi(2q − k)

N∑
`

ωkΠ(`)−2q`, (5.22a)

while for k = 2q

M kq =
1

N

N∑
`=1

ωk(Π(`)−`). (5.22b)

Since f−1 = Mx
B when MB is the one-dimensional map presented Figure 5.7 when

m = 2, the transfer matrix M kq for Π ◦ f−1 can be easily derived for any stretch

factor m via

M kq =
1− ω(mq−k)

2πi(mq − k)

N∑
`

ωkΠ(`)−mq` (5.23a)

when k 6= mq, while for k = mq

M kq =
1

N

N∑
`=1

ωk(Π(`)−`). (5.23b)

Matrices M kq defined in (5.22) and (5.23) share the symmetry M−k−q = M kq,

which implies the reality of concentration fields are preserved on the application

of the transfer operator. Additionally, if λ is an eigenvalue with eigenvector v,

then λ is also an eigenvalue with eigenvector v.
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Figure 5.10: Resolution testing showing convergence in the leading eigenvalue |λ2| on

increasing the number of wavemodes Q for Π◦MB with Π = [213]. Different diffusivity

values κ are test and convergence occurs around Q = 500 for all considered.

The full advective-diffusive step is then to iterate the concentration field ac-

cording to

ĉ
(j+1)
k = dkpM pq ĉ

(j)
q (5.24)

where dkp is defined as in (4.13).

As in Section 4.2.2, the initial conditions considered will be variations of

the square wave, sine or cosine profiles, or randomised concentration fields con-

structed by randomising the amplitude ĉk of the first handful of discrete Fourier

modes. The decay of variance forms the main measure of mixing.

5.3.2 Resolution of Fourier modes

For the computations, it is required that the number of Fourier modes are trun-

cated to deal with finite matrices. A resolution test is performed to ensure a

sufficient number of Fourier modes are included for the diffusivity values of inter-

est, without introducing significant numerical diffusion. In the previous Chapter,

a surprisingly small truncation was needed, Q ∼ 250, however since the model of

this Chapter involves chaotic behaviour it is expected that a larger truncation is

required.

The leading eigenvalue of the full advective-diffusive matrix dM is easily com-

puted and the values compared for varying Q. As a test case, the transformation
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Figure 5.11: The decay of variance is plotted for the evolution of c0(x) = cos(2πx) under

the mapping Π◦MB with Π = [213] and diffusivity coefficient κ = 10−6. Increasing the

number of wavemodes used in computation shows convergence occurs around Q = 500.

Π ◦MB with Π = [213] is used. Figure 5.10 plots the modulus of the leading

eigenvalue |λ2|, comparing 6 values of the truncation number Q of Fourier mode

and 4 diffusivity values κ. The permutation perturbs the uniformity of the baker’s

transformation and results in leading eigenvalues with |λ2| 6= 0. Although it can

be noted that when κ = 10−6, the approximation of |λ2| is quite accurate when

only a small number of modes are taken with slight over approximations when

low truncation values are used. When Q is taken to be Q = 500 or Q = 1000 no

difference in |λ2| is observable. Convergence was also observed in the values |ĉk|
for all k ∈ [−Q,Q] of the eigenfunction v2 for Q = 500 and Q = 1000, but the

results are omitted for brevity.

Additionally, the decay of variance can be used to observe the effects of the

truncation value Q. Figure 5.11 shows the results for evolving the initial condition

c(0)(x) = cos(2πx) with κ = 10−6 for different values of Q. In this case the

variation in the finite time mixing behaviour is readily seen when Q is not larger

enough and again agreement occurs well for Q ≥ 250, where the Q = 250 marker

is hidden behind the markers for higher values. Furthermore Q = 2500 was tested

which showed no improvement over the chosen value, hence Q = 1000 is sufficient

to capture the dynamics of this transformation with diffusion for κ ≥ 10−6 and

is taken throughout the computations whose results follow.
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5.4 Mixing with diffusion

5.4.1 Mixing in the initial transient

As a leading example, a comparison between mixing in the initial stages can

be made between the baker’s transformation acting alone, or composed with

rotations and interleaving permutations from S3.

It was observed in Section 5.2.1 that the rotation permutation Π = [45123],

while rotating the concentration field after the action of the baker’s transforma-

tion preserved the uniformity of the striation widths. This is observed for all

rotation permutations, which will be denoted as the group SRN for brevity. Given

Π ∈ SRN the map for the full advective step Π ◦MB reduces to

M(x) = 2x+m/N mod 1, (5.25)

and the transfer matrix (5.21) reduces to

M kq = δ0,(k−2q)ω
kq, (5.26)

with |ωkq| = 1 for all k,q. This represents explicitly that the amplitude of con-

centration at each wavemode is directly mapped to the wavemode twice its value

and rotated by the factor ωkq. For the initial condition, c(0)(x) = cos(2πx), which

has ĉ−1,1 = 0.5 and ĉ|k|>1 = 0 the evolution of the variance for MB and Π ◦MB

for Π ∈ SRN can be explicitly computed as

ψ(j) = ψ(0) exp

(
−32

3
π2κ(4j − 1)

)
, (5.27)

in which details on the derivation are in Appendix B.3. There is an exponential

cascade to large wavemodes where the action of diffusion is extremely effective,

resulting in super-exponential decay of variance, expressed by the 4j term in the

exponential of (5.27). This result is the same as discussed in Fereday et al. (2002)

for the baker’s transformation, who investigate the effect of adding non-uniformity

in stretching rates. The extension here is that it applies to all composition maps

Π ◦MB where Π ∈ SRN .

Figure 5.12 (a) shows three initial conditions, and in Figure 5.12 (b) the

respective decay of variance under the action of the baker’s transformation MB

and the composition map Π ◦MB with Π = [213]. The diffusivity coefficient was

κ = 10−5 for all. The initial evolution of c(0)(x) = cos(2πx) is plotted as the

solid blue line and follows (5.27). For this initial condition evolved by the baker’s
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Figure 5.12: The initial transient of variance decay is shown for κ = 10−5 and 3 different

initial conditions, plotted in (a). The mixing of transformations MB (solid) and Π◦MB

with Π = [213] (dot-dashed) are compared in (b). In the initial stages composition with

a permutation increases the decay of variance over the baker’s transformation acting

alone, however eventually the non-perturbed map is faster.

Figure 5.13: The decay of variance is shown for κ = 10−5 and 3 different initial con-

ditions of Figure 5.12 on a linear-log plot revealing the long-time mixing. MB acting

alone has super-exponential decay of variance for all initial conditions, while Π ◦MB,

Π1 = [213] has long time exponential decay with average rate given by |λ|2j .
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transformation MB, the first few iterations sees little depletion in the variance

which remains nearly constant. This is due to the fact that for small rates of

diffusivity, the scales on the concentration field are too large in the initial stages

for diffusion to be effective. It is only after a number of iterations, in which

the segregation of the concentration field becomes significant, when diffusion is

effective. The variance in the first few iterations is depleted quicker for these

other initial conditions compared to c(0)(x) = cos(2πx) due to increased gradients

caused by the discontinuity and dominant amplitude in higher wavemodes. The

conditions are the square wave and a concentration field composed by randomising

the amplitudes of the first four modes, plotted as solid lines in green and red

respectively. Figure 5.13, plots the decay of variance on a linear-log scale revealing

clearly that eventual super-exponential occurs for MB for all initial conditions.

For all three initial conditions, the addition of the permutation Π = [213]

increases depletion of variance in the initial iterations, represented by the dot-

dashed lines in Figures 5.12 (a) and (b). Recall from Section 2.1.1 that the

decrease in variance from diffusive mixing contributed entirely to an increase in

gradients in the concentration field. In smoothly deforming transformations this

can only happen through increasing the number of striations and decreasing their

width by repeated stretching and folding. In discrete Fourier space this is the

cascade to large wavemodes, such as the action presented by the baker’s transfor-

mation. If the stirring transformation is discontinuous, large, sharp interfaces can

be introduced into the concentration field at each iteration, effectively increasing

the homogenization by diffusion in the early stages of mixing.

For the composite maps Π◦MB where Π is not a rotation, there is dispersion of

amplitude in the complex coefficients to large wavemodes due to the introduction

of discontinuities, and the diffusive step reduces the amplitude more effectively

at the resulting sharp gradients in the concentration field. This explains the

enhancement of mixing in the first handful of iterations in Figure 5.12 when the

diffusivity coefficient κ is small. This improvement in mixing over the baker’s

transformation holds for nearly all Π investigated in the maps Π ◦MB which are

not rotations.

However, this enhancement of the mixing by Π ◦MB when Π /∈ SRN , does not

hold in the later stages. From Figure 5.13 it is seen that the long-time mixing

rate is exponential and slower than the baker’s transformation acting alone. This

long-time mixing rate is explored in more detail in the next section.
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Figure 5.14: Eigenfunction can be seen emerging as a periodic pattern in the evolution

of the concentration field. There is an attempt to renormalise the concentration field at

each iteration to highlight the self-similar pattern on the eigenmode. c(0)(x) = cos(2πx)

and κ = 10−5

5.4.2 Long-time exponential mixing

In Figure 5.13 the decay of variance for Π◦MB is exponential in the long time limit

and is the same for all initial conditions considered. This exponential decay rate

is predicted from the transfer matrix dM of the composed advection-diffusion

iterative operator. After a number of initial iteration the eigenfunctions vk decay

at the rate of their respective eigenvalues until the slowest decaying eigenfunction

with the slowest decay rate, the second leading eigenvalue λ2, dominates the

evolution of the concentration field and the long-time exponential decay rate

of the variance is given by ψ(j) ∼ |λ2|2j as expected. This expected decay

of variance is plotted on Figure 5.13 as the black dashed line. Although the

actual decay of variance shows some variation in the decay profile, the dashed line

accurately predicts the average exponential decay rate. Oscillations arise due to

the complex value of the eigenvalues λk of the transfer matrix, and the respective

eigenfunctions evolve spatially on further applications of the transfer operator.

Figure 5.14 plots the space-time evolution for c(0)(x) = cos(2πx) with κ = 10−5,

where c(j)(x) is renormalised at each iteration to show spatial comparison of the

field between iterations. It is observed that the concentration field has a spatially

periodic pattern, aligning with the periodic oscillations in the variance profile of

Figure 5.13. This is the eigenfunction v2 associated with λ2. Calculating the
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Permutations eigenvalue κ = 10−3 κ = 10−4 κ = 10−5 κ = 10−6

[132],[213],[321] |λ2| 0.7177 0.5962 0.6054 0.6091

Table 5.1: Decay rates for permutations Π ∈ S3 for Π /∈ Π ∈ SRN for different values of

κ. The modulus |λ2| agrees for all values of κ due to a rotation symmetry of the map

MΠ ◦MB for these permutations.

eigenvalues for other two interleaving permutations in S3 gives the same leading

eigenvalue, listed in Table 5.1, and plots of the variance match those seen in

Figure 5.13.

The long-time eigenfunction can be thought of a persistant patterns with a

decay rate irrespective of the initial condition, similar to those seen in chaotic

advective systems with non-uniformity in the stretching rates of the flow field.

This is a well know global mechanism for mixing in smoothly deforming systems

(Section 2.5). The contrast here however, is that the dispersion between Fourier

modes occurs due to permutation composition, rather than the non-uniformity

in stretching rates for non-uniform maps. The decay rate is not governed by

any Local Lagrangian behaviour since the stretching rates are the same almost

everywhere except for a countable number of discontinuities which form a set

of measure zero, introduced by the cutting and shuffling transformation. The

non-uniformity arises in the rearrangement of striations by the interval exchange,

observed in the segregation plots of Figure 5.2 for the permutation Π = [35421].

Non-uniformity in striation arrangement of the concentration field occurs for all

Π /∈ SRN , such as Π = [213] here.

However, unlike the strange eigenfunctions of non-uniform smooth systems

which align with regions of low stretch, the eigenfunction for the composition

Π ◦ MB, Π = [213], does not appear to correlate with physical characteristics

of the underlying advective dynamics, such as periodic points or where the dis-

continuities are introduced. The same can be said when considering a range of

diffusivity coefficients κ.

5.4.3 Effect of diffusion

Figure 5.15 plots the decay of variance for Π ◦MB with Π = [213] for a range

of diffusivity coefficients κ. For all values of κ considered, the initial condition is

c(0)(x) = cos(2πx). The effect of diffusion on the early stages of mixing is com-

parable to smoothly deforming systems. The transition from early stages, where
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Figure 5.15: Decay of variance for Π ◦MB with Π = [213] with the initial condition

c(0)(x) = cos(2πx). The diffusivity coefficient κ is varied showing a ∼ log(κ) depen-

dency on the long-time mixing behaviour emerging.

variance depletion is weak, to long-time exponential or super-exponential mixing

stages is only a handful of iterations. It is weakly related by log(κ), similarly

reported for non-uniform smoothly deforming systems [Thiffeault (2008); Won-

has & Vassilicos (2002)]. This contrasts the results for the purely cutting and

shuffling, Interval Exchange Transformations of Chapter 4, where the relation on

finite time mixing was polynomial with diffusion coefficient.

Once variance depletion becomes significant however, in Figure 5.15 it appears

as though long-time mixing when κ = 10−3 is slower than all κ < 10−3 computed.

To look at the effect of diffusion in the later, asymptotic mixing stage, the change

in the modulus of the leading eigenvalues need only be considered. The permuta-

tions fall into two groups; Π ∈ SRN or the interleaving permutations with |λ2| 6= 0.

For Π ∈ SRN only a direct cascade between wavemodes k = 2q occurs which results

in |λk| = 0 and a super-exponential mixing rate for all initial conditions, seen in

Figure 5.13.

For the interleaving permutations |λ2| 6= 0 and are listed in Table 5.1 for a

handful of diffusivity coefficients. The modulus of the leading eigenvalue is equiv-

alent for all interleaving Π due to a rotational symmetry on the transformation

MΠ ◦MB, and λ3 = λ2 due to the symmetry M−k−q = M kq. Therefore the lead-

ing eigenvalue |λ2| need only be computed for one of the permutations Π /∈ SR3 to

see the changes of |λ2| with finer values of κ. Figure 5.16 plots the profile of |λ2|
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Figure 5.16: The leading eigenvalue |λ2| is plotted for the interleaving permutation

and rotations thereof. Non-monotonicity in the value can be observed with periodic

like behaviour in value occurring logarithmically with κ. |λk| is plotted for 2 < k < 50

also and shows the non-monotonicity arises with collision.

for Π ◦MB with Π = [213] against a log scaling for the diffusion coefficient κ.

It is observed that the leading eigenvalue changes non-monotonically with dif-

fusion, the highest peak occurring for large κ, and oscillatory-like peaks continuing

on further decreasing values of κ. It appears as though there is some periodicity

in growth and decay of these peaks which is logarithmic in κ. The largest peak

achieves a value of |λκ| = 0.7231 around κ = 0.00158. The maximum values of

the following peaks in the decease of κ are 0.6231 and 0.62 respectively, hence a

slight decrease in their value. The profile for κ = 10−3 in Figure 5.15 which has

the slowest long-time mixing rate coincides which the largest bump of |λ2| plotted

against κ in Figure 5.16. Plotted in grey are the modulus of the other eigenvalues

|λk|, showing that the troughs occur through collisions with other eigenvalues in

the spectrum of the composition operator PD ◦ PM . Non-monotonicity persists

in all eigenvalue profiles.

The eigenvalue collision which occurs in the region κ ∈ [10−4, 10−3] can be

understood by looking at the eigenfunctions. Figure 5.17 plots the eigenfunctions

v2 (blue) and v4 (green) for the two values κ = 10−3 and κ = 10−4. Note that

λ3 = λ2 and λ5 = λ4, and similarly v3 = v2 and v5 = v4, therefore the functions

v3 and v5 are not shown. When κ = 10−3 the eigenfunctions have distinct spatial

scales in both the real (<(v)) and imaginary (=(v)) parts. As κ is decreased the

spatial scales become more similar until the eigenvalue collision, which is observed

in Figure 5.16, occurs and the spatial scales of the eigenfunctions agree. After
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Figure 5.17: The real (<(v)) and imaginary (=(v)) parts of the eigenfunctions v2 and

v4 are plotted for different values of κ, κ = 10−3 and κ = 10−4 on the top and bottom

rows respectively. When κ = 10−3, the eigenfunctions v2 and v4 have distinct spatial

scales. When κ = 10−4, where v2 and v4 share a symmetry in both <(v) and =(v)

about x = 0.5.

collision the eigenfunctions v2 and v4 share a spatial symmetry, a reflection about

x = 0.5. This is seen in Figure 5.17 when κ = 10−4, where the reflected symmetry

about x = 0.5 is seen in both the real and imaginary parts of the eigenfunctions.

A similar eigenvalue collision occurs within the window κ = [10−6, 10−5]. When

κ = 10−5, v2 and v4 maintain the shared spatial scales. On decreasing κ eventually

there is a division so that |λ2| = |λ3| 6= |λ4| = |λ5|, and a collision occurs in which

|λ4| = |λ6| = |λ5| = |λ7| instead. After this collision the spatial scales between

v2 and v4 no longer agree, and instead the spatial scales between v4 and v6 now

agree with symmetries in the eigenfunctions.

The dotted black line represents the diffusion-less, asymptotic mixing rate τ

for the map (Π ◦MB)−1 for Π = [213], the strong mixing rate. Values of |λ2|
are seen to overshoot τ for most of the diffusivity coefficients considered, with

no suggestion that convergence might occur as κ→ 0. Note that the parameters

N = 3 and m = 2 satisfy Theorem 5.2.1, and predict lower and upper bounds

τmin =
1

2
, τmax =

sin(2π/3)

2 sin(π/3)
≈ 0.5, (5.28)
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Group Permutations eigenvalue κ = 10−3 κ = 10−4 κ = 10−5 κ = 10−6

S1
4 [1243],[1423],[2134],[4132], |λ2| = |λ3| 0.4083 0.4563 0.485 0.4927

[2314],[4312],[3241],[3421]

S2
4 [1324],[1342],[3124],[3142], λ2 0.8923 0.9707 0.9913 0.9973

[2413],[4213],[2431],[4231] λ3 0.4461 0.4853 0.4957 0.4987

Table 5.2: Eigenvalues for permutations Π ∈ S4, with Π /∈ SR4 , grouped according to

their leading non-unit eigenvalues.

derived from Lemma 5.2.4. Therefore the overshoot of τ by the profile of |λ2|,
also overshoots the upper bound on the diffusion-less mixing rate, τmax.

This deceleration of mixing rate with increasing diffusivity coefficient is counter-

intuitive, as it would be expected that fast mixing from diffusion should encourage

faster mixing over all. However, the formation of a long-time eigenfunction allows

this complicated behaviour to emerge. Since there is no spatial relation between

the eigenfuction and the dynamics of the underlying map, the local effect of dif-

fusion on the formation of the eigenfunction is more difficult to understand and

could result in unexpected spatial arrangement in the eigenfunction, and as such

a persistent pattern in the concentration field with a slow decay rate. The spatial

properties of the eigenfunction are discussed further in the next chapter.

In this section S3 was used as a starting example. The next two sections

briefly discuss the results from other permutation groups of interest, S4 and S5.

5.4.4 Results for S4

For the strong mixing results in the diffusion-less limit, S4 with m = 2 does

not coincide with the rules from Theorem 5.2.1, and as such it is possible for

permutations in S4 for the composition maps (Π ◦MB)−1 to not be topologically

mixing.

Table 5.2 lists the modulus of the non-trivial leading eigenvalue λ2 and λ3 and

shows that similar to S3, the values of the eigenvalues suggest permutations of

S4 can be grouped according to their long-term mixing behaviour. For Π ∈ S1
4

λ3 = λ3, while for Π ∈ S2
4 their eigenvalues λ2 and λ3 are real and vary in modulus.

Permutations SR4 are neglected since it is understood that their eigenvalues satisfy

|λk| = 0 for all k and values of κ.

The first of the two groups, denoted S1
4 , has a leading eigenvalues which

appears to converge as as κ → 0, to |λ2| ∼= 0.5. This coincides with the
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Figure 5.18: The leading eigenvalue |λ2| is plotted for the two groups Π ∈ S1
4 and

Π ∈ S2
4 identified from Table 5.2, and additionally |λ3| for S2

4 .

computation of τ in the diffusionless limit, which is found by constructing the

Markov transition matrix as described in Section 5.2.2, giving τ = 0.5 for Π ∈ S1
4 .

This is confirmed in Figure 5.18 where the profile of |λ2| is plotted on a finer

resolution of diffusion coefficients κ for a selected permutation from S1
4 . As with

the profile of |λ2| when Π ◦MB has permutation Π = [213], oscillations occur in

the profile, however it never overshoots τ . Oscillations in the non-monotonicity

appear to be on the order ∝ log(κ). The short and long-time mixing behaviour

of the maps Π◦MB with Π ∈ S1
4 is similar to the interleaving permutations of S3,

where rearrangement of the concentration field by cutting and shuffling causes

long-time exponential mixing, independent of initial condition. This is reflected

in the evolution of variance profiles for the three different initial conditions in

Figure 5.19, represented by the solid lines for Π = [1243] ∈ S1
4 .

The permutations Π ∈ S4
2 , the final group, have varying behaviour. As κ→ 0,

|λ2| → 1 monotonically, which corresponds to τmax = 1 for S4 as the diffusion-less

strong mixing rate. This is due to the separated ergodic partitions which were

shown in Figure 5.4 (a), where no mixing occurred between the two partitions.

Instead, only diffusion can act across the boundaries at x = 0 and x = 1/2. How-

ever, note that the second-leading, non-trivial eigenvalues |λ3| 6= 1, and instead

appears to converge |λ3| = 0.5 as κ→ 0. In Figure 5.18 the profile of |λ3| plotted

in grey, converges monotonically to 0.5.

In Figure 5.19 the implication of this result is observed. For the square wave
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Figure 5.19: The initial transient of variance decay is shown for κ = 10−5 and the

3 different initial conditions of Figure 5.12 (a) where colours are respective of initial

conditions. Different permutations Π1 ∈ S1
4 , and Π2 ∈ S2

4 result in different long-time

behaviour. For Π ∈ S2
4 , Π ◦MB is not strong mixing and dramatic change between

mixing stages is observed, dependent on the initial condition. Black dashed line plots

ψj ∝ 0.52j for comparison.

initial condition the map Π ◦MB with Π = [1324] does not encourage increased

segregation and the long time mixing rate is diffusive only across the bound-

aries at the edges of the two partitions. Slow mixing occurs from the initial

iterations, plotted as the green dotted-dashed line. For the initial condition

c(0)(x) = cos(2πx), after the action of the baker’s transformation during the

first iteration, the swapping of the middle two sub-intervals does not reassemble

the initial condition. Instead mixing occurs within the two ergodic partitions and

the long-time mixing is exponential, faster than predicted by |λ2|. The variance

profile decays according to ψ(j) ∝ |λ3|2j, represented by the dashed black line

in Figure 5.19 aligning with the variance profile in dotted-dashed blue. It is im-

portant that at each iteration, the mean field within each partition has the value

c̄ = 0, resulting in this long-time mixing behaviour.

For the randomised initial condition, the mixing rate is similar to that of

c(0)(x) = cos(2πx) for the first few iterations, where significant mixing occurs

within each ergodic partition. This is plotted as the dashed-dotted red line in

Figure 5.19. However c̄ 6= 0 on the partitions and eventually, once significant

strong mixing has encouraged the concentration field to approach the mean value

within each partition, only diffusion across the partitions’ boundaries can cause

c(x) → c̄ for the whole domain. There is a sharp transition between the strong
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mixing in the initial stages and the slow mixing dominated by diffusion in the

later stages.
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Table 5.3: Decay rates for permutations Π ∈ S5, grouped according to their leading non-unit eigenvalues

Permutations |λk| κ = 10−3 κ = 10−4 κ = 10−5 κ = 10−6

[12354],[15234],[21345],[51324],[35124], |λ2| 0.4270 0.5589 0.5872 0.5977
[23415],[24513],[45213],[35412],[24351] |λ3| 0.4270 0.5589 0.5872 0.5977

[12435],[13245],[13452],[41235],[51243], |λ2| 0.3459 0.5445 0.5978 0.6318
[41523],[54123],[34152],[32451],[34521] |λ3| 0.3459 0.509 0.56 0.5569

[12534],[51342],[23145],[53124],[35142], |λ2| 0.6486 0.6760 0.6707 0.6856
[42513],[53412],[24531], [42351], [45231] |λ3| 0.6486 0.6760 0.6707 0.6856

[12453],[14235],[13425],[14523],[31245], |λ2| 0.7189 0.6880 0.6079 0.6255
[41253],[51423],[31452],[32154],[34251] |λ3| 0.7189 0.6880 0.6079 0.6255

[12543],[14532],[31542],[51432],[32145], |λ2| 0.6093 0.6707 0.6426 0.5993
[42153],[43125],[43251],[54231],[53421], |λ3| 0.6093 0.6707 0.6426 0.575

[13254],[15243],[14352],[21435],[31524], |λ2| 0.5821 0.6810 0.7223 0.7420
[41325],[24153],[32415],[54213],[35421], |λ3| 0.5821 0.5571 0.5611 0.5393

[14253],[31425],[53142],[25314],[42531] |λ2| 0.8853 0.8720 0.8238 0.7955
|λ3| 0.8853 0.8720 0.8238 0.7955

[13524],[41352],[24135],[52413],[35241] |λ2| 0.6256 0.7422 0.7834 0.7987
|λ3| 0.6256 0.7422 0.7834 0.7987
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Table 5.3 – continued from previous page

Permutations |λk| κ = 10−3 κ = 10−4 κ = 10−5 κ = 10−6

[14325],[15423],[21453],[31254],[34215] |λ2| 0.5459 0.5727 0.5878 0.5813
|λ3| 0.5459 0.5727 0.5878 0.5813

[15324],[21354],[24315],[25413],[35214] |λ2| 0.6563 0.7406 0.7867 0.7984
|λ3| 0.4833 0.6041 0.5742 0.5836

[13542],[41532],[42135],[52143],[43152], |λ2| 0.5436 0.5728 0.6084 0.6305
[54132],[32541],[52431],[53241],[43521] |λ3| 0.4513 0.5729 0.5774 0.5395

[15342],[21534],[23154],[25143],[32514], |λ2| 0.6115 0.5928 0.6381 0.6148
[42315],[53214],[54312],[25431],[45321] |λ3| 0.6115 0.5928 0.6381 0.6148

[15432],[21543],[32154],[43215],[54321] |λ2| 0.3694 0.5099 0.4807 0.5124
|λ3| 0.3694 0.5099 0.4807 0.5124

[25134],[23514],[52314],[45312],[25341] |λ2| 0.7719 0.7628 0.7762 0.8023
|λ3| 0.3241 0.4368 0.4484 0.4733

[52134],[45132],[43512],[23541],[52341] |λ2| 0.6522 0.7027 0.6435 0.5911
|λ3| 0.3558 0.5107 0.5518 0.5911
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Figure 5.20: Exponential decay of variance is shown for κ = 10−5 for a number of

permutations representing the groupings shown in Table 5.3.

5.4.5 Results for S5

As a final example, variance profiles and eigenvalues for the composition maps

Π ◦MB with permutations from S5 were computed. In Figure 5.20, profiles for

the variance decay are plotted for the same initial condition, evolved according

to Π ◦MB, for a handful of permutations Π ∈ S5. There is significant variation

in the exponential rates of mixing depending on the choice of Π. Oscillations

occur in a few of the profiles but average mixing rates are predicted well by the

eigenvalues of each transformation.

For the maps Π ◦MB with diffusion, permutations from S3 and S4 fell into

two and three groups respectively. For the permutation group S5, with has 120

elements, Table 5.3 lists the modulus of the leading and second non-trivial eigen-

values |λ2| and |λ3| for 4 different diffusion coefficients. In total 16 groups emerge

consisting of 5 or 10 permutations giving the same asymptotic mixing rates. The

rotation permutations are neglected in the table since λk = 0 for all κ. Similar to

S4, in a number of groups there is a discrepancy in value between |λ2| and |λ3|,
which occurs when λ2 is real, while |λ2| = |λ3| corresponds to λ2 = λ3. None of
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Figure 5.21: Profiles of the exponential mixing rate for Π ∈ S5 given by the leading

eigenvalue |λ2|. All profiles are shown in lightgrey showing a range of complicated

behaviour. A number of representative permutations are highlighted in red and blue as

examples to varying behaviour.

the eigenvalues tend to 1 because for m = 2 and N = 5 the conditions of Theorem

5.2.1 are satisfied and all maps (Π ◦MB)−1 are strong mixing.

It is not intuitive from the permutations alone what the groups should be

and they are dependent on the full composition of the transformation. When

computing the eigenvalues for another inverse-expanding map, say Π ◦ f−1 with

m = 3, again 16 groups emerge but there is disagreement between the groupings

of m = 2, S5 and m = 3, S5.

Figure 5.21 plots the profiles of |λ2| with κ for a selected permutation from

each group. Five profiles have been highlighted for discussion, however all are

shown in light-grey revealing the complicated behaviour that emerges across the

16 profiles. Many of the profiles change monotonically with diffusion, and tend to

a constant mixing rate in the limit of κ→ 0. Example profiles of this behaviour

are shown with circled lines. Additionally, non-monotonic like profiles emerge,

highlighted by the diamond lines. For the permutation Π = [14253], |λ2| appears

to convergence as κ → 0, however there is an overshoot of this value when κ

is large. The other two highlighted profiles have non-monotonic mixing rates,

permutations Π = [15432] and Π = [12453]. Repeated decreases and increases in
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[12354] [12434] [12534] [12453] [12543] [13254] [14253] [13524]

|λ10−7

2 | 0.6042 0.6444 0.673 0.5878 0.6013 0.7493 0.7996 0.8046

|λ10−8

2 | 0.6061 0.6518 0.6641 0.6235 0.5904 0.753 0.8075 0.807

Markov τ 0.5919 0.6624 0.6677 0.5755 0.5755 0.7564 0.809 0.809

[14325] [15324] [13542] [15342] [15432] [25134] [52134]

|λ10−7

2 | 0.5751 0.8048 0.6443 0.6086 0.5089 0.8075 0.6156

|λ10−8

2 | 0.561 0.8072 0.6531 0.5926 0.4788 0.807 0.5808

Markov τ 0.5 0.809 0.6624 0.5919 0.5 0.809 0.5

Table 5.4: For each of the subgroups, the modulus of the second leading eigenvalues

for low values of the diffusion coefficient, denoted |λκ2 |, are computed. A comparison

with τ , the mixing rate from the respective Markov transition matrices of the pre-image

mapping (Π ◦MB)−1, shows good agreement.

Figure 5.22: Profiles of |λ2| for the transformations Π ◦ f−1 with m = 3 and Π ∈ S5.

Non-monotonicity is observed in many of the profiles with overshooting of the upper

bound on the value of τ achieved by a few.
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value occur with no obvious convergence to a fixed mixing rate as κ decreases.

Table 5.4 compares τ for the pre-image maps (Π ◦MB)−1 with |λ2| for the

respective diffusive transfer matrices in the limit of small diffusivity. The values

show good agreement for many of the permutations, however this is not the case

for all. The permutations in which there is not good agreement correspond to

the profiles of |λ2| with show significant non-monotonic variation with κ. It is

not known whether the profiles will converge or continue oscillating as κ → 0,

however investigating smaller values of κ is computationally infeasible.

The lower and upper bounds on the value of τ for (Π ◦MB)−1 when Π ∈ S5

are

τmin =
1

2
, τmax =

sin(2π/5)

2 sin(π/5)
≈ 0.809, (5.29)

respectively. These are plotted as the black dashed-line in Figure 5.21, and seem

to be reasonable bounds on the asymptotic mixing rates when the diffusivity

coefficient is small. However, at large values of κ the upper bound τmax does not

agree as a bound for all |λ2|, due to the non-monotonicity with κ. Table 5.3 also

confirms that for many of the permutations, |λκ2 | > τΠ. These results persist for

Π ◦ f−1 with m = 3 and Π ∈ S5, shown in Figure 5.22, where non-monotonicity

leads to values of |λ2| > τmax for non-zero κ.

If the subgroups were listed by the value of |λ2|, then it is apparent from Figure

5.21 and Figure 5.22 that the ordering of permutations would be dependent on

the value of κ. This suggests that for the maps Π ◦MB where Π /∈ SRN , the best

mixing protocol, that which achieves a mixed condition in the fastest time, may

be dependent on the rate of diffusion. This has been similarly reported for the

mixing of permutations of equal sized cells Ashwin et al. (2002). However, the

values of |λ2| give the long-time mixing rate of the system and may have little

affect in the early stages where significant mixing can occur. This is addressed

in the next section.

5.4.6 Time to achieve a mixed condition

For all of the permutations groups considered, many presented non-monotonic

variations with the asymptotic rate of mixing when varying the diffusivity coef-

ficient. In several of the cases, for κ > 0, |λ2| > τ , where τ is the diffusion-less,

strong mixing rate of the map. This result is interesting itself as it is counter-

intuitive in the expectations of increasing the rate of diffusivity at each iteration.

However, this result is for the long-time mixing. Mixing of a concentration field
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Figure 5.23: (a) Variance decay ψj/ψ0 and (b) L∞ norm L∞j /L
∞
0 are plotted for the

map Π◦MB with Π = [14253] evolving the c(0) = cos(2πx) for three different diffusivity

rates. 95% mixed condition is plotted as a dashed black line, revealing that the slowest

diffusivity rate κ = 10−5 crosses the threshold at the earliest time.

has several stages which contribute to the finite time mixing. In practical situa-

tions one would want to consider the time needed to mix to a desired condition.

Hence, a return to studying the time to achieve a mixed condition is necessary

to understand the full implications of these results.

In addition to taking the decay of variance as a quantifier for the amount of

mixing, the definition 2.44 is generalised to consider any norm. In addition to

the variance (L2 norm), the L∞-norm (2.39) is used as an additional measure of

mixing to determine the time to achieve a mixed condition.

In smoothly deforming chaotic flows, during the initial stages of advection

and diffusion, when the effect of diffusivity is small, an Lq norm will remain

constant for some time until the gradients or length scales in the concentration

field are on the order of the Batchelor length scale
√
κ/hls, the balance between

the diffusive rate and local strain rate hls. In the limit of small diffusivity the

exponential mixing rate becomes independent of the diffusivity coefficient, thus

the main consequence of decreasing the effect of diffusion is to extend the initial

transient where a measured norm is close to constant. Recall that this initial

stage is weakly dependent on diffusivity, on the order of log(κ).

The systems Π ◦MB presented in this chapter are discontinuously deforming

with chaotic stretching rates. It has already been observed that the asymptotic,

exponential mixing rate does not always become independent of the diffusivity
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rate as κ → 0, and deceleration with increasing κ is common. The numeri-

cal results for the mixing of c(0)(x) = cos(2πx), by the mapping Π ◦MB with

Π = [14253] are plotted in Figure 5.23 for three different diffusivity coefficients.

Recall that this permutation from S5 had |λ2| > τmax for non-zero κ in Figure

5.21. For both (a) the decay of variance and (b) the decay of the L∞ norm, the

time to achieve a mixed condition is first achieved when the diffusivity coefficient

is κ = 10−5, the smallest diffusivity value considered. For the decay of variance,

the condition is achieved about 1 iteration before κ = 10−3 and 10−4. For the L∞

norm the condition is reached approximately five iterations earlier. In applica-

tions of fluid mixing devices this would equate to five additional stirring periods

or channel segments to achieve the desired result, which could be overlooked if

approximating mixing time from advective properties only and thus the correct

mixing criteria not achieved in the predicted time.

As with chaotic mixing systems, it is observed in Figure 5.23 that changing κ

prolongs any significant depletion an Lq norm in the first initial iterates, which

appears as though it may follows a similar log(κ) relation. It is not surprising that

this is the case, since the dominant mechanism of stirring in the system is still

from an exponential reduction in lengths scale, therefore a logarithm variation in

the value of κ has only a linear effect on the time needed to achieve the length

scales where significant depletion takes place. However, this example illustrates

that even with such a weak relation from the diffusivity coefficient on the initial

stages of mixing, the counter-intuitive deceleration of the asymptotic mixing rate

with diffusivity coefficient could still have a notable effect on the time to achieve

a practical mixing condition, such as within 5% of uniform.

5.5 Conclusions

The results from a one-dimensional model which captures a mixture of stretching

and discontinuous advective dynamics with a diffusive step, are presented. Three

permutation groups S3, S4 and S5, were investigated for the discontinuous step

and similarities in the results persisted across the groups.

In the initial transient, permutations in which sub-intervals are swapped (all

but rotations), introduced sharp interfaces into the concentration field and these

increases in gradients sped up the decay of variance over the purely chaotic advec-

tion of the baker’s transformation. However, once the Batchelor scale is reached

and variance begins to deplete significantly, a phase of exponential decay emerges
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due to non-uniformity caused by the permutation of the striation arrangement.

Diffusive and reactive systems have been shown previously to be sensitive to stri-

ation arrangement Clifford et al. (1999). Lagrangian arguments fail to explain

the varying decay rates across the range of permutations since stretching rates

are the same almost everywhere except where they are undefined on the discon-

tinuities which form a set of measure zero. The mechanism for emergence of an

exponential asymptotic mixing rate is global.

Rather than a direct cascade to large wavenumbers which occurs for the

baker’s transformation alone, the amplitude in a wavemode of the discrete Fourier

expansion is dispersed to many wavemodes at each iteration. This is comparable

to dispersion due to non-uniformity in stretching rates reported by Fereday et al.

(2002) and Wonhas & Vassilicos (2002). However, the mechanism causing the dis-

persion is different. The slowest decaying eigenfunction of the transfer operator,

and respective eigenvalue, are computed from the transfer matrices representing

the linear operator and the eigenvalue predicts average long-time mixing rate of

the system.

As κ → 0, it is well reported for smoothly deforming chaotic maps that

|λ2| → τ , where τ is an isolated discrete eigenvalue for the advective transfer

operator. For systems where the asymptotic mixing mechanism is global, this

convergence is

|τ − λ2| ∝ κη (5.30)

with 0 < η < 1 Haynes & Vanneste (2005). For the discontinuous systems

Π ◦MB the mixing rate in the diffusion-less limit is well approximated by the

strong mixing rate τ , predicted from Markov partitions of the pre-image map.

However, this approach to the mixing rate in the zero-diffusivity limit is non-

monotonic in many cases, predicting a deceleration with increasing diffusivity

coefficient, which is counter-intuitive. Non-monotonicity in profiles of |λ2| with

κ have been observed in one-dimensional maps before; for an expanding map

with three branches where one branch is inverted Eckhardt et al. (2003), and a

non-uniform inverted baker’s transformations with a no-flux boundary condition

Gilbert (2006). However the oscillations in both of these maps occur as |λ2|
converges to τ , the latter shown to have a polynomial power-law on average,

in line with (5.30). Oscillations in |λ2| occur for the maps Π ◦MB, but where

convergence to τ happens for some, this is not always the case for others.

All maps which report non-monotonicity in the mixing rate with diffusivity

have a common property in that they contain points which are non-differentiable.
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A sensible hypothesis would be that this deceleration of mixing rate is a feature of

non-continuous mappings, in which discontinuous transformations are a subset.

Explaining the non-monotonicity is beyond the scope of this work.

In the dynamical systems and ergodic theory literature there is great interest

in finding global mixing rates of maps, but these computational results suggest

that in studying fluid mixing systems in which there is a mixture of stretching

and folding and cutting and shuffling, diffusion may have to be taken into account

for accurate mixing rate predictions and comparisons across mixing protocols.

For example, designing parameter configurations for periodic and non-periodic

stirring protocols has been successfully completed using Ulam’s method as a crude

approximation for the advective transfer operator [Kang et al. (2008); Schlick

et al. (2015); Singh et al. (2008a)]. A transfer matrix is constructed using grid-

based partitions and computing the ratio of the volume in partition element

mapped to all others when advected by the flow. Numerical diffusion is significant

in these grid based methods, but it has been argued by some to be an a possible

approximation for an applied diffusion equation [Schlick et al. (2013)], although

the rate of this numerical diffusion is uncontrolled and will be variable through-

out the domain. The counter-intuitive deceleration with diffusion observed herein

suggests that in models with discontinuous stirring, under-approximation of stir-

ring times to a desired condition might occur if the rate of diffusivity is too large.

This is likely to occur in these models where Ulam’s methods are used to ap-

proximate the transfer of concentration where numerical diffusion increases the

diffusion of a concentration field at each step. The significance of this is shown

to effect mixing rates in finite time considerations to achieve physical mixing

conditions, chosen arbitrarily to be a 95% mixed state.

Additionally, behaviour was presented when the transformation was not strong

mixing across the whole domain, but instead created two ergodic partitions in

which the dynamics on each are strong mixing. For two of the reported initial

conditions, the long-time mixing rate was slow, limited to diffusion across the

boundaries between the partitions. The initial decay of variance could be fast,

and no transition to parabolic like mixing rates emerged between the two stages

of mixing. This contrasts what is observed in chaotic flows with islands or weakly-

connected, chaotic partitions where non-exponential, parabolic decay of variance

described the main stage of mixing Popovych et al. (2007). The difference here is

because the transformation does not contain parabolic points, which are known
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to contaminate mixing rates [Gouillart et al. (2007, 2008)], and instead the dy-

namics are non-Hamiltonian in the stability arrangement of periodic points in the

flow. These ergodic partitions are comparable to the pseudo-elliptic points which

contaminated mixing in cut-shear-shear flow of Smith et al. (2016). If the parti-

tions are denoted as B1 and B2, for specially chosen initial conditions in which

c̄|Bi = c̄|[0,1)], i = 1, 2, the long-time mixing is exponential given by |λ3|. However,

for almost all initial conditions diffusion-limited mixing between partitions would

dominate the asymptotic mixing rate.

There are many extensions which could be considered to this model. One of

the most obvious would be to consider extending the permutations of equal size

to Interval Exchange Transformations of the last Chapter. Recall that IETs with

rational sub-intervals can be approximated as larger permutations of equal sized

cells. Consider the upper bound function on non-diffusive mixing rates, which

has the property that

lim
N→∞

sin(mπ/N)

m sin(π/N)
→ 1. (5.31)

Hence, one implication of considering IETs is that they are more likely to lead to

slower mixing rates as an upper bound. However, in Zhang (2012), the distribu-

tion of τΠ was investigated in the limit as N → ∞ and probability distribution

functions on the spread of τ appeared to converge to an average mixing rate. They

contemplated whether convergence on an average mixing rate would emerge;

lim
N→∞

1

N !

∑
Π∈SN

τΠ. (5.32)

Bordenave et al. (2018) found that although a permutation can arbitrarily slow

down the mixing rate in the limit as N →∞, a typical permutation is more likely

to have τ = 1/
√
m, which for m = 2 has τtypical = 2/

√
2 ≈ 0.7071. In light of these

results, it can not be readily seen why extending the study to interval exchange

transformations will reveal anything of interest than is already reported herein.

This is a similar conclusion to extending the study to tent maps with various

inversions of uniform expanding branches where Byott et al. (2016) has already

investigated values of τ and distributions in the unit-circle.

Another obvious extension would be to consider the non-uniform baker’s trans-

formation [Fereday et al. (2002); Gilbert (2006); Wonhas & Vassilicos (2002)]

composed with cutting and shuffling transformations. Since the non-uniformity

in stretching rates itself produces eigenfunctions of the transfer operators with a
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long-time exponential mixing rate in the presence of diffusion, it is worth consid-

ering if permutations help or hinder the mixing rates. This is the topic of the

next Chapter.
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Chapter 6

Mixing by piecewise,

non-uniformly expanding maps

In the previous chapter, introducing discontinuous transformations to uniformly

stretching transformations resulted in a deceleration of the asymptotic mixing

rate. Rather than super-exponential mixing as expected in the baker’s trans-

formation with diffusion, exponential mixing emerged due to the formation of

eigenfunctions. These arose due to the non-uniformity in the concentration field

evolution, caused by the cutting and rearranging of the concentration field from

the permutation transformations. Other studies considering uniform stretching

with discontinuous transformations concluded that they generally stir worse than

uniform stretching alone [Byott et al. (2013); Smith et al. (2016, 2017b)]. How-

ever, it is unlikely in real life mixing situations for such strict uniformity in

stretching rates to exist. Non-uniformly stretching systems exhibit the same long-

time mixing phenomena where persistent patterns with exponential decay rates

emerge in the concentration field evolution. These eigenfunctions arise from a

different mechanism in generating non-uniformity in striation arrangement, from

the varying compression rates of non-uniform stretching and folding.

In this chapter, transformations which are a composition of non-uniform

stretching and discontinuous transformations are discussed. In line with a num-

ber of studies interested in non-uniform stirring [Fereday et al. (2002),Wonhas

& Vassilicos (2002)], the non-uniform baker’s transformation is used to investi-

gate the composition of mixing dynamics in one-dimension. The discontinuous

transformations used are permutations of equal sized cells.

It is found that little improvement on asymptotic mixing rates can be achieved

with permutation transformations which cut and shuffle. Improvement in finite
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Figure 6.1: Illustration of the non-uniform baker’s transformation. The unit square is

divided horizontally into two rectangles with areas α and β. These are stretched in the

y direction by factors α−1 and β−1 respectively, and then reassembled onto the unit

square by bringing the top rectangle to the right of the lower rectangle.

time mixing is only observed in the initial stages, where sharp gradients intro-

duced by the discontinuities increase depletion of variance. In the later stages,

the global effects of rearrangement contaminate the mixing with the possibility

for significant reduction in mixing rates. As well as the potential to cut the con-

centration field into smaller striations, the permutations allow for the possibility

of striation rejoining, increasing the scales in the concentration field at each it-

eration. This is the same mechanism which contributes to the contamination of

mixing in Chapter 5, however the comparison between the non-uniformity arising

from stretching alone, highlights the differences between the mechanisms.

When the non-uniformity in the stretching rates is particularly large, discon-

tinuous rearrangement does improve the asymptotic mixing rate when diffusivity

is particularly fast, but shows little improvement in the diffusion-less limit. Rota-

tion permutations on the other hand, which are not discontinuous but rearrange

the stretching histories of points in the domain, can improve the mixing rate. The

qualitative differences in the mixing behaviours between continuous non-uniform

stirring and discontinuous non-uniform stirring are discussed. By looking in de-

tail at the evolution of the concentration field and resulting eigenfunctions, the

reason for the slow long-time mixing becomes clear. The predictability in the

appearance of the eigenfunctions in relation to the underlying dynamics of the

composition transformations is investigated.
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6.1 Non-uniform baker’s transformation

6.1.1 Formulation of the map

The non-uniform, area-preserving baker’s transformation is a paradigm model

of a non-uniformly mixing transformation. The unit square is divided into two

rectangles of area α and β by a cut parallel to the x-axis. Choosing α + β = 1

ensures incompressibility and without loss of generality the convention α < β is

taken. The two rectangles are stretched in the y direction by factors α−1 and β−1

respectively, and then reassembled on the unit square. The action on the points

(x, y) ∈ T2 is

Mα
B(x, y) =

{
(αx, y/α) y ∈ [0, α)

(βx+ α, [y − α]/β) y ∈ [α, 1).
(6.1)

Figure 6.1 illustrates one iteration of the transformation. Taking a y-independent

initial concentration field, the non-uniform baker’s transformation reduces to a

one-dimensional map which is one-to-two, and the action on the concentration

field given by

c(x) =

{
c
(
x
α

)
, x ∈ [0, α),

c
(
x−α
β

)
, x ∈ [α, 1).

(6.2)

This produces a simple one-dimensional mapping in which on repeated itera-

tion the number of striations increases exponentially, akin to the uniform baker’s

transformation, but now the contraction rate of striations is no longer uniform.

The action of the map on points x is illustrated in Figure 6.2, where the fixed

point xf = 1 is highlighted.

As in previous chapters, a diffusive step can be easily incorporated by ap-

plying periodic boundary conditions and representing the concentration field by

its discrete Fourier expansion. A transfer matrix Bα is derived which describes

the changes to the Fourier coefficients by the action of the map. Due to the

non-uniformity of the map, the transfer of concentration to the Fourier modes

is more complicated than the uniform case in Section 5.3. For one-dimensional

non-uniform baker’s transformation of (6.2), the transfer matrix is computed for

each pair of modes kq by the following. If q = αk, Bα
kq = α and similarly, if

q = βk, Bα
kq = β. These represent resonances in the map. Otherwise,

Bα
kq =

sin(kπα)

π

(β − α)qe−kiπα

(q − αk)(q − βk)
. (6.3)
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Figure 6.2: Illustration of the one-dimensional mapping for the non-uniform baker’s

transformation as shown in Figure 6.1 when taking a y-independent initial condition.

The red line represents Mα
B(x) = x and xf marks the non-trivial fixed point x = 1,

which lies on the β branch of least compression.

As with the transfer matrices of earlier chapters, it is true that Bα
−k−q = Bα

kq,

and the matrix preserves reality an the initial condition. The matrix (6.3) was

given by Fereday et al. (2002) and Wonhas & Vassilicos (2002), but the full deriva-

tion is listed in Appendix B. Note the special cases when α = 1/2, which derives

just the uniform baker’s transformation, while α = 0 results in no stretching and

the action of pure diffusion only. The intermediate stages of interest are where

α ∈ (0, 1/2).

Before the main investigation into the composition of non-uniform stretching

with permutations, a short review is presented, with references to the relevant

literature, on the results of mixing in the non-uniform baker’s transformation

important to the discussion.

6.1.2 Mixing rates with diffusion

Figure 6.3 a) shows the decay of variance for the non-uniform baker’s transfor-

mation with α = 0.2 and a range of diffusivity rates. On decreasing the value of

the diffusion coefficient κ, independence of the exponential mixing rate emerges.

Although the profiles feature some oscillation, the mixing rate given by |λ2|2j ap-

proximates the average exponential decay of variance. The relation ψj/ψ0 ∝ |λ2|2j

is plotted as the dashed black line for κ = 10−5 showing good agreement for the

variance decay when κ = 10−6 also. This is because as κ → 0, |λ2| becomes

independent of diffusivity. The values of |λ2| varying with diffusion coefficient κ
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(a) Decay of variance for α = 0.2 (b) Leading eigenvalue profiles for different α.

Figure 6.3: Mixing properties of the non-uniform baker’s transformation are shown from

a) decay of variance when α = 0.2 and b) the leading eigenvalues |λ2| for a selection of α

values with varying diffusivities κ. In b) the profiles of |λ2| increase monotonically with

decreasing κ and become independent in the zero limit. This is reflected in a) where

the dashed line representing ψ ∝ |λ2|2j , with |λ2| when κ = 10−5, shows agreement

with ψj/ψ0 with κ = 10−6. The initial condition was c(x) = cos(2πx).

is shown in Figure 6.3 b). For all values of α the profiles change monotonically,

and each becomes independent of diffusivity coefficient in the zero-limit. In the

diffusion-less limit, Gilbert (2006) gives the leading eigenvalues to be complex

conjugate pairs with

|λ| = max(α, β) + o(κ), (6.4)

and states that as κ→ 0, convergence to |λ| = max(α, β) is monotonic and slow,

only logarithmic in κ.

Figure 6.4 shows the resulting eigenfunctions for κ = 10−5 and different values

of α. Each of the eigenfunctions is normalised but plotted without scale, and the

value of the mean field c(x) = c̄ included as a dashed black line for reference.

For large α, when the non-uniformity in the compression rates of the map does

not differ too much, there are large fluctuations in the eigenfunction across the

domain. Peaks occur in the eigenfunction and align with images of the fixed point

xf = 1 where the least compression takes place at each iteration, plotted as red

dashed lines for α = 0.4. As α→ 0.1, where the non-uniformity in the stretching

rates is more diverse, images of x = 1 are more pronounced in the concentration

field. The regions between these peaks are seemingly better mixed. For α = 0.1

the eigenfunction has little variation in values across the domain except for the

distinctive peak around x ∼ 1. All the eigenfunctions vary in time on further

iteration of the map, due to the complex value of the second leading eigenvalue
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Figure 6.4: The dominant eigenfunction v2, corresponding to the eigenvalue λ2 of the

diffusive-advective transfer matrix dBα, plotted as a scalar field solution for different

values of α and κ = 10−5. The eigenfunctions were obtained in Fourier space and

transformed to real space using a numerical inverse Fourier transform and the dashed

black line in each represents c̄. When α = 0.4, the images of the fixed point xf = 1

are plotted as dashed red lines. The fixed point corresponds to the place where least

compression takes place, and its images align with peaks in the concentration field.
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which causes a rotational shift in the Fourier coefficients of the concentration

field.

The non-uniform baker’s transformation of the form (6.1) was used as a

paradigm example to prove that global effects can contribute to the long-time

exponential mixing rate in chaotic-diffusive maps. The respective literature re-

viewed in Section 2.5.1.

6.2 Composition with permutations

In line with the previous chapter, the simplest discontinuous transformation in

one-dimension are permutations of equal sized cells, such that a complete stirring

step is the composition Π ◦ Mα
B. The transfer matrix for the transformations

Π ◦Mα
B in discrete Fourier space is

T = MBα (6.5)

where M is given by (4.12) and Bα given by (6.3), such that one full advective-

diffusive step is

ĉj+1
k =

∞∑
q=−∞

dkmTmq ĉ
(j)
q (6.6)

with dkm as defined in (4.13). As in Section 5.3.2, finite truncation to Q = 1000

suffices for diffusivity values κ ≥ 10−6. A resolution test was carried out for

confirmation, however it is omitted for brevity. The decay of variance ψj/ψ0 is

used to measure the mixing for given initial conditions c(0)(x), and eigenvalues

and eigenfunctions of the transfer matrices dT computed using the Numpy and

Scipy packages in Python. The initial condition taken in every computation was

c(x, y) = cos(2πx), however the main results discussed refer to the asymptotic

mixing rates and behaviours, which are independent of the initial condition.

First the stirring dynamics in the absence of diffusion are discussed, since for

certain parameters a decomposition of the unit interval is possible resulting in

separate ergodic partitions, similar to those observed for S4 is Section 5.4.4.

6.2.1 Decomposition from cutting and shuffling

Depending on the choice of parameters, Π and α, a decomposition into two or

more ergodic components can occur. Take for example α = 1/3 and Π = [213],

where Figure 6.5 a) illustrates the action of the one-dimensional non-uniform
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Figure 6.5: Illustrations of a) the one-dimensional mapping of the non-uniform baker’s

transformation with α = 1/3 and b) the mapping under the composition Π ◦ Mα
B

with Π = [213]. The red line represents Π ◦Mα
B(x) = x, and a fixed point emerges

at xf = 1/2. Note that the pre-image of the cut locations x = 1/3 and x = 2/3,

represented by the dashed black lines, is x = 1/2.

baker’s transformation and b) the accompanying transformation when composed

with the permutation. It is highlighted that for these parameters a decomposition

of the map into two halves, [0, 1/2) and [1/2, 1), occurs. Note that the fixed point

xf = 1/2 aligns with the pre-image of the cut locations xc = 1/3 and xc = 2/3.

Unfortunately the analytical proof of Byott et al. (2013) used to derive The-

orem 5.2.1 that states which parameters in expanding maps composed with per-

mutations result in a decomposition, can not be directly applied. There, combi-

natorial arguments were used to prove which permutations preserve topological

mixing. The non-uniform baker’s transformation introduces additional complex-

ity by having two branches with different expansion and compression rates. In-

stead, herein a computational study reveals which parameters might result in

a decomposition and a conjecture made on the attributing criteria. Similarly,

an analytical approach to find the strong mixing rates in the diffusion-less limit

would be non-trivial and as such is not investigated here.

An easy approach to determine if a decomposition is likely to occur is to

numerically approximate the transfer matrix T (6.5) for the advective step. A

decomposition will produce a transfer operator with a leading eigenvalue |λ2| ∼ 1.

Numerical diffusion will be present due to the finite truncation of the transfer

matrix, however the effect will be negligible in determining if |λ2| ∼ 1. If the

decomposition is large in scale, such as the halving for the domain for α = 1/3,
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(a) Eigenvalues for Π ∈ S4 (b) Map Π ◦Mα
B with Π = [3214]

Figure 6.6: Profiles of approximated eigenvalues |λ2| with α for different Π are computed

from the transfer matrices Tnk using a low resolution of Q = 50. Peaks in the profiles

towards |λ2| = 1 highlight the likely parameters which results in a decomposition.

Confirmation of a decomposition can be found by plotting the one-dimensional map,

shown in b) for α = 0.25 and Π = [3214], where again the images of the cut locations

align with the fixed point xf of the map.

Π = [132], even small truncation values K will highlight transformations which

produce a decomposition. This is because small wavemodes will be dominant

features of the eigenfunction predicting the decomposition, so the eigenfunctions

would be well approximated if enough wavemodes are included, and the respective

eigenvalue ∼ 1.

To investigate which values of α produce a decomposition for Π ∈ SN , the

transfer matrices T (6.5) are constructed for all permutations Π ∈ SN for a given

N and 100 values of α ∈ [0.1, 0.5). Smaller value of α ∈ [0.0, 0.1) are ignored

because as α→ 0, all eigenvalues of the transfer operator will have |λk| → 1 since

α = 0 represents the diffusion only limit. The resolution Q = 50 is chosen as it is

small enough to ensure quick computation but large enough to avoid significant

numerical diffusion. The values of |λ2| are then plotted against α to see where

peaks towards 1 occur. Whether a decomposition has occurred can be checked

by plotting the one-dimensional map for which it seems |λ2| ∼ 1, similar to those

shown in Figure 6.5 for the α = 1/3 example.

For example, in Figure 6.6 (a) the profiles of |λ2| approximated for all Π ∈
S4 are shown, with peaks occurring around α = 1/4 and 1/2 for a handful of

permutations. In Figure 6.6 (b) the map Π◦Mα
B for an example permutation, Π =

[3214], which resulted in a value of |λ2| ∼ 1 in the low resolution approximation
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(a) Eigenvalues for Π ∈ S3 (b) Eigenvalues for Π ∈ S5

Figure 6.7: Profiles of approximated eigenvalues |λ2| with α for different Π . In a) for

Π ∈ S3, only one profile approximates a decomposition around α = 1/3, while for b)

Π ∈ S5, two peaks occur for many permutations around α = 0.2 and α = 0.3. Further

investigation into the peak at α = 0.3 reveals a decomposition does not occur.

is illustrated. When α = 0.25, indeed a decomposition of the domain into two

components has occurred, [0, 2/3) and [2/3, 1). Note that the point xf = 2/3 is

a fixed point of the map but is also a pre-image of the cut-locations x = 1/4 and

x = 3/4.

In Figure 6.7 the eigenvalue results are plotted for the permutation groups S3

and S5. When N = 3, the only problematic point is around α = 1/3 with only

one permutation causing a decomposition which was mentioned previously. When

N = 5, the value of α resulting in |λ2| ∼ 1 are α = 0.2 and = 0.4. These were

confirmed by plotting the one-dimensional maps. Around α ∼ 0.3 there seems

to be another peak of slow mixing, however it does not seem to reach |λ| = 1.

The one-dimensional map reveals that a decomposition does not occur however

the period 2 mapping shows a near decomposition dominates the dynamics. Not

shown here, but for a representative subset of permutations from S6, α = 1/6,

1/3 and 1/2 resulted in decompositions. These computational results suggest the

following conjecture.

Conjecture 6.2.1. Given a permutation group SN , and transformation Π◦Mα
B :

[0, 1)→ [0, 1], where Π ∈ SN and Mα
B(x), where Mα

B : x→M1(x) ∪M2(x),

M1(x) = αx, M2(x) = βx+ α, (6.7)

for α, β ∈ [0, 1], satisfying β = 1 − α. A decomposition of the interval [0, 1)

into two or more disjoint intervals occurs if an interval [a, b) exists such that
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Permutation group α Π

S3 1/3 [213]

S4 1/4 [2134],[2143],[2314],[3214]

1/2 [1324],[1342],[3124],[3142],[2413],[4213],[2431]

S5 1/5 [21345],[21354],[21435],[21534],[21453][21543],[23145],

[23154],[32145],[32154],[23415],[24315],[32415]

[42315],[34215],[43215]

2/5 [21435],[21453], [13425],[13425],[15423],[13452],[31245],

[31254],[31425],31524],[41325],[51423],[31452],[31542],

[51432],[34125][43125],[35421],[53421]

Table 6.1: Permutations which create a decomposition are listed under their respective

SN group and the parameter α for which the decomposition occurs. In all cases, pre-

images of the cut locations align with fixed points, a necessity for a splitting of the

interval [0, 1) into two or more pieces.

(Π◦Mα
B)([a, b)) = [a, b) and (Π◦Mα

B)([a, b))∪ [0, 1)\[a, b) = ∅. The map Π◦Mα
B,

does not have a decomposition if α, β /∈ {1/N, 2/N . . . , (N − 1)/N}.

In all of the maps investigated, a decomposition occurred when a pre-image

of a cut location aligned with a fixed point xf of the map Π ◦ Mα
B and could

inform a starting point for the proof of Conjecture 6.2.1. However, whether a

decomposition does not occur if the alignment does not occur is not known and

so this fact is not sufficient to prove the Conjecture alone. Table 6.1 for each α and

permutation group SN lists the permutations which result in a decomposition.

For the remainder of the chapter, interest lies in the rates of mixing in maps

which do not results in a decomposition of the domain. Therefore given a per-

mutation group SN , values of α which result in decompositions, and values of α

in close proximity, are avoided.

6.2.2 Finite-time mixing behaviours

To begin examining the mixing behaviour of the maps Π◦Mα
B with diffusion, ini-

tial examples are presented with α = 0.4 and Π ∈ S3, since S3 has a manageable

6 permutations. Figure 6.8 plots the decay of variance ψj/ψ0 for all 6 permuta-

tions when α = 0.4, κ = 10−5, and the initial condition was cos(2πx). Figure 6.8
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Figure 6.8: Profiles of variance decay for the composition maps Π ◦Mα
B for Π ∈ S3 and

α = 0.4 are plotted on a) a linear axis and b) a semilogrithmic axis. The diffusivity

coefficient is κ = 10−5 and the initial condition c0(x) = cos(2πx). The interleaving

permutations deplete variance quicker in the first initial iterates, however the identity

and rotation permutations are superior at depleting variance in the long-time limit.

Example expected mixing rates |λ2|2j are plotted as black dashed lines in b) for two

permutations.

(a) plots the variance for the initial 12 iterations on a linear-linear plot, while

Figure 6.8 (b) uses a linear-log plot to reveal the long-time mixing behaviour.

All permutations Π ∈ S3 have unique profile of variance, unlike the transforma-

tions in Chapter 5 where subgroups of the permutation groups SN emerged. This

is due to the fact that when non-uniformity in the stretching rates is included,

symmetries between the maps under the action of rotations and reflections of the

unit interval no longer occur.

In Figure 6.8 (a) it is seen that for the identity and rotation permutations

Π ∈ SR3 the initial decay of variance is the same and all profiles are overlaid by

the variance decay for Π = [231]. There is little depletion of variance in the first

few iterations until a fast decay emerges thereafter. Note however that in Figure

6.8 (b), it is observed that once significant decay of variance has occurred for the

rotation permutations, exponential decay emerges in the long-time with varying

rates across Π ∈ SR3 .

The interleaving permutations, Π /∈ SR3 have contrasting mixing behaviour.

They are named as such since one sub-interval in each is swapped and interleaved

between the remaining two. In the initial stages the depletion of variance is faster

than the rotation permutations. This is due to the discontinuities introduced on

rearranging the concentration field via cutting and shuffling at each iteration.
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These results are similar to the initial stages of mixing seen in Chapter 5, where

the sharp interfaces also assisted the approach to uniformity. In the final mixing

stages, shown in Figure 6.8 (b), the interleaving permutations have a long-time

exponential mixing rate much slower than that of the rotation permutations.

This is reminiscent of the mixing behaviour observed in Chapter 5, where all

permutations which cut and shuffled mixed slower than the rotation permutations

when composed with the uniform baker’s transformation, particularly notable for

the long-time exponential mixing rates listed in Table 5.3 for Π ∈ S5. However

there, the rotation permutations had long-time super-exponential mixing. This

is not the case for the systems discussed here. It is not immediately clear why, for

this non-uniformly stretching system, the interleaving permutations are inferior

at mixing in the long-time limit to the rotation permutations.

In line with other strong mixing transformations with diffusion, the main

effect of decreasing the diffusivity coefficient κ on finite time mixing, is to extend

the early stages before exponential mixing is achieved. Therefore, the finite time

mixing is of no great interest, and so the next section looks in detail at how the

asymptotic mixing rate changes depending on the parameters α, κ and Π. Profiles

of |λ2| computed from the transfer matrices are compared across parameters since

they approximate the average exponential decay of variance in the long-time limit,

shown for the maps Π ◦Mα
B for two of the permutations in Figure 6.8 (b).

6.2.3 Asymptotic mixing rates

In the last section, for a specific example, it was observed that the initial stages of

mixing are sped up by cutting and shuffling through the introduction of disconti-

nuities, however the final stages, dominated by the emergence of eigenfunctions,

were slowed by the discontinuous transformations. Figure 6.9 plots the profiles of

|λ2| against the diffusivity coefficient κ for Π ∈ S3. Each plot shows the profiles

for different values of α. The profiles for the identity permutation, i.e. the map

Mα
B acting alone, is plotted as a solid black line.

When α = 0.4, for all values of κ, the identity and rotation permutations

have a faster long-time mixing rate than the interleaving permutations, with the

rotations also having lower values of |λ2| compared to the identity permutation

for most values of κ. The value of |λ2| quickly becomes independent of diffusivity

as κ→ 0 for the interleaving permutations.

On decreasing α, the discrepancy in the mixing rates across the profiles be-

tween Π ∈ SR3 and Π /∈ SR3 decreases, where for α = 0.2 the rotations no longer
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Figure 6.9: The modulus of the leading eigenvalues |λ2| are plotted against the diffusiv-

ity coefficient κ for Π ◦Mα
B with Π ∈ S3. Each plot represents a different α value. Two

behaviours emerge categorised by the rotation permutations and interleaving permu-

tations. The interleaving permutations only mix faster than the rotation permutations

on decreasing α and increasing κ.
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Figure 6.10: The modulus of the leading eigenvalues |λ2| are plotted against the non-

uniformity parameter α for Π ◦ Mα
B with Π ∈ S3. Each plot represents a different

diffusivity coefficient κ. The finer values of α confirm the observations of Figure 6.9

177



CHAPTER 6. MIXING BY PIECEWISE, NON-UNIFORMLY EXPANDING MAPS

have faster mixing rates across the whole range of κ. By α = 0.1, for large values

of κ, the interleaving permutations have a faster mixing rate than the rotation

permutations. However, as κ→ 0, the profiles converge to a similar mixing rate,

∼ 0.9, the diffusion-less strong mixing rate for Mα
B with α = 0.1. Many of the

profiles varying non-monotonically across the range of κ, although overshooting

the diffusion-less mixing rate does not appear to happen. This can not be fully

understood since the strong mixing rates in the diffusion-less limit are not known.

Note the same trends appear in Figures 6.10, where each plot represents a

different value of κ, and the profiles of |λ2| plotted for finer values in α. Note for

Π = [123], shown again as a solid black line, the profile changes smoothly with α

and monotonically. For the other permutations, the profiles do not vary smoothly

or monotonically and as diffusion coefficient κ becomes very small, the profiles

vary erratically with α. Note the peak in the profile of Π = [213] corresponds

to α = 1/3 where the transformation is no longer mixing or ergodic as discussed

in Section 6.2.1. Decreasing the value of diffusion further does not qualitatively

change the plot observed for κ = 10−5.

The trends in the profiles of |λ2| for Π ∈ S3 with varying α values are seen

again for the permutations from S4, where Figure 6.11 plots |λ2| for every Π ∈ S4

with κ for 4 different values of α. The identity permutation is plotted in black

again, while the three rotation permutations are plotted as red lines, and the

remaining permutations which swap two or more elements are all plotted in grey.

For α = 0.4, the permutations Π ∈ SR4 have profiles of |λ2| with the lowest values

for almost all values of κ, while for Π /∈ SR4 the profiles are either similar in

value to the interleaving permutations of S3 in Figure 6.9, or fall at intermediate

between these and the profiles for Π ∈ SR4 . As α→ 0 and the non-uniformity in

stretching rates is larger, the permutations Π /∈ SR4 which cut and shuffle parts of

the concentration field improve the mixing rates on average when the diffusivity is

fast (large κ). As κ→ 0 a transition occurs and most of values of |λ2| for Π /∈ SR4
are larger than for Π ∈ SR4 . When α = 0.1, only a handful of permutations

improve the mixing rate for the smallest values of κ, with the majority having a

larger value of |λ2| than the identity or rotation permutations.

These results suggest that it is only for fast diffusivity rates and large non-

uniformity in the stretching rates that improvement in the long-time mixing is

generally achieved from cutting and rearranging the concentration field. The

latter observation makes sense, since the addition of sharp interfaces introduced

at each iteration combined with a fast diffusivity rate will speed up the average
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Figure 6.11: The modulus of the leading eigenvalues |λ2| are plotted against the diffu-

sivity coefficient κ for Mα
B with Π ∈ S4. The identity permutation (black) and rotation

permutations (red) are highlighted as specific profiles against all other permutations

(grey). Trends in the profiles of S3 persist in S4, such that for small non-uniformity,

cutting and shuffling hinders the long-time mixing. When the non-uniformity is larger,

the interleaving permutations improve mixing for large κ, but as κ is decreased, im-

provement in the rate of mixing does not happen on average
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Figure 6.12: Probability density functions (PDFs) of FTLEs for the composite maps

Π◦Mα
B for Π ∈ S3 and α = 0.4. Each Π is represented by a different coloured profile as in

previous plots. Different iteration values j are shown in each plot. For all permutations

the PDFs are the same, except for small deviations arising from numerical errors in

computation.

mixing rate. The rest of the discussion focuses on the cases with α ≥ 0.3 and

κ ≤ 10−5 where the mixing rates are hindered by the interleaving permutations.

In the next section a closer look at the concentration field evolution and the

eigenfunctions in the long-time limit help explore the reasons for trends observed

in the values of |λ2|.

6.3 Stretching histories and eigenfunctions

6.3.1 Distribution of FTLEs and mixing rates

Previously, literature has tried to understand the mixing rates of passive scalars

in chaotic flows from the underlying chaotic dynamics. Notably Antonsen Jr et al.

(1996) approximated the decay of scalar variance by relating it to the growth of

particle pair separations, implying a Lagrangian analysis of stretching histories

is enough to determine the amount of mixing. However, the one-dimensional

non-uniform baker’s transformation was used by Fereday et al. (2002) to show

this isn’t always the case, although Wonhas & Vassilicos (2002) showed that the

probability distribution function (PDF) of FTLEs could be used to approximate

well the decay of variance in its initial stages.

Figure 6.12 shows PDFs of FTLEs for the 6 maps Π ◦Mα
B for Π ∈ S3 when

α = 0.4. The distributions were computed as the ratios of stretching histories

from 1000 evenly distributed points within the domain [0, 1). Three different j
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Figure 6.13: The initial transient of variance decay from Figure 6.8 is replotted with

lc marked, the Batchelor length scale for the parameters α and κ = 10−5. For the

identity and rotation permutations, the variance decay profiles agree until divergence

when the Batchelor lengthscale is reached and the eigenfunction regime emerges. For

the interleaving permutations divergence from FTLE prediction happens from the first

iteration.

iterations of the averages are shown, and in all the PDFs for the composite maps

are exactly the same. Small variations arise purely from numerical computation,

since the PDFs can be computed analytically.

At each iteration, every point representing the concentration field will experi-

ence two compression rates, one of value α and one of value β, and stretch factors

1/α and 1/β respectively. The addition of a permutation at each iteration does

not change this fact; there will always be two images with two different com-

pression rates. Therefore, for each composite map Π ◦ Mα
B the distribution of

stretching histories is represented by

P (h, j) =

j∑
l=0

(
j

l

)
αj−lβlδ

(
h− hα +

j

l
(hα − hβ)

)
(6.8)

where hα = −lnα and hβ = − ln β, corresponding to the Lyapunov exponent

responding to uniform strain rate by 1/α and 1/β respectively. This was given

for the non-uniform baker’s transformation by Wonhas & Vassilicos (2002). In

the limit j → ∞ (6.8) tends to a normal distribution. The fact that the PDFs

of FTLEs are the same for all the composition transformations is specific to the

one-dimensional mapping under consideration. It is not assumed to hold for
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higher-dimensional flows which are a composition of stretching and folding, and

cutting and shuffling.

The fact that the PDFs of stretching histories approximate well the mixing in

the early stages of smoothly deforming transformations is seen here in the profiles

for the decay of variance for Π ∈ SR3 , the rotation permutations. Figure 6.13 re-

plots the variance decay in the initial stages for the maps Π ◦Mα
B with α = 0.4,

Π ∈ S3 and κ = 10−5. Wonhas & Vassilicos (2002) approximate the iterate lc the

Batchelor’s length scale is reached for the non-uniform baker’s transformation as

lc =
1

2hβ
log

(
hα + hβ
16π2κ

)
, (6.9)

The iteration lc is plotted as a dotted black line in Figure 6.13. For the 3 rotation

permutations, which are smoothly deforming, agreement in the variance decay

occurs up until lc is reached and the eigenfunction regime begins. After this

time the profiles diverge in long-time mixing rate, although by this time the

variance has already reached around ψj/ψ0 ∼ 10−2. Therefore since the stretching

histories approximated well the mixing for Mα
B, they do for all Π ◦Mα

B with Π ∈
SR3 . Approximating the appearance of the Batchelor length scale from (6.9) does

not appear to hold for the three interleaving permutations, which each depleted

the variance quicker in the initial stages. This suggests where discontinuous

transformations are concerned, mixing rates will not be well approximated by

stretching histories across all stages of mixing.

6.3.2 Eigenfunctions and asymptotic mixing rates

For the examples discussed thus far, the large discrepancies in the asymptotic mix-

ing rates between the rotation permutations and the interleaving permutations

in the composition maps can be understood from the qualitative appearances

of the dominant eigenfunctions. This further gives insight to the mechanisms

contributing to the values of |λ2| across varying parameter values.

For α = 0.4 and κ = 10−5, for which the finite time mixing behaviour was

shown in Figure 6.8, Figure 6.14 plots the eigenfunctions v2 computed from the

transfer matrices via their real (blue) and imaginary (grey) parts. The dominant

eigenfunctions v2 were computed from the transfer matrices and transformed into

real space via a inverse Fast Fourier transform algorithm in Python. Since the

transfer matrices (6.3) share the symmetry B−k−q = Bkq, λ3 = λ2 is also a

dominant eigenvalue with corresponding eigenfunction v3 = v2, which is omitted

182



CHAPTER 6. MIXING BY PIECEWISE, NON-UNIFORMLY EXPANDING MAPS

Figure 6.14: Real (blue) and imaginary (grey) parts of the dominant eigenfunctions

v2 are plotted as scalar fields for composition transformations Π ◦Mα
B with α = 0.4

and κ = 10−5. Each plot represented a different permutation Π ∈ S3. The dashed

black line in each represents c̄. Qualitative differences in the eigenfunctions appearance

are visible between the identity and rotation permutations (left), and the interleaving

permutations (right).
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Figure 6.15: The modulus of the coefficients |ĉk| are plotted for the spectrum of the

dominant eigenfunctions v2 shown in Figure 6.14 for the composition transformations

Π ◦Mα
B with α = 0.4 and κ = 10−5. Each plot represented a different permutation

Π ∈ S3. A four degree polynomial line of best fit is plotted, showing that dominating

scales in the eigenfunctions of the rotation permutations (left) are at larger wavemodes

than the interleaving permutations (right).
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from the plots since there is only a symmetry in the imaginary part due to the

conjugacy. Each plot represents a different permutation Π ∈ S3. The black

dashed line represents the mean field of the concentration, which will be regarded

as c(x) = c̄ = 0 for the discussion.

The eigenfunctions for the identity and rotation permutations (left) and the

interleaving permutations (right) are qualitatively different. The rotation permu-

tations have a number of large peaks in the concentration field, which are small in

width, and frequent transitions between positive and negative values occur across

the whole unit interval. This contrasts the appearance of the eigenfunctions for

the interleaving permutations, where large peaks occur across the whole domain,

many large in width and large regions dominated either by all positive or all

negative values.

Figure 6.15 plots the wave spectrum for each of the eigenfunctions, where the

respective coefficients |ĉk| are plotted against wave-number k. A line of best fit is

plotted using a polynomial of 4th degree found using polyfit function in Numpy,

Python. Although the spectrum varies non-smoothly between each consecutive

wave number, for the rotation permutations a peak in the fitted function occurs

around k ∼ 25. However, for the interleaving permutations, the peak in the

spectrum occurs for the smallest value k = 1 and as such the dominant features

in the concentration field are large in scale. The spectrum provides a quantita-

tive description of the features seen in the eigenfunctions of Figure 6.14. It is

this dominant scale in the eigenfunctions of the interleaving permutations which

contribute to the overall slow mixing rates.

In the eigenfunction regime, the dominant mechanism stirring the concentra-

tion field is the compression of v2 by Mα
B at each iteration. The permutation step

could cut and rearrange the concentration field, reducing the scale of one or more

striations and introduce large gradients via a discontinuity, however the overall

effect of this is the concentration field will be negligible compared to the action

of the stretching. Conflictingly, it could also rejoin striations of similar colour,

increasing the average scale in the concentration field. The diffusion step will

then blur any large gradients. Since the scales in the eigenfunctions are larger for

the interleaving permutations in comparison to the rotation permutations, they

will remain larger after the action of the stirring, hence less chance of striations

being washed out by diffusion, and a slow decay rate overall.

Although the large scales in the eigenfunction contribute to the slow asymp-

totic mixing rates, how the scales emerge is not initially clear. Figure 6.16 plots
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Figure 6.16: The initial iterations of the concentration field evolution for two composite

maps Π ◦ Mα
B are plotted for Π = [123] (left) and Π = [132] (right). The initial

condition was c(0)(x) = cos(2πx), plotted in grey in the top images. While variation

in striation width arises from the non-uniformity in stretching rates for the identity

permutation Π = [123], the interleaving permutation Π = [132] produces large striations

from reassembly by cutting and shuffling.
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the evolution of the concentration field under the action of Mα
B and Π ◦Mα

B with

Π = [132] for α = 0.4 and κ = 10−5. The iteration number of each concen-

tration field in plotted in the top, right hand corner. The initial condition for

both was c(0)(x) = cos(2πx), plotted as the grey profile in both plots with j = 1.

For Π = [123], the differences in the compression rates at each iteration produce

slight variations across the widths of the striations, which the largest striations

eventually becoming dominant features in the eigenfunction. For Π = [132] at

iteration j = 1, after the initial compression by the map Mα
B, the rearrangement

of the concentration field introduces two sharp discontinuities at x = 0, 1/3 and

2/3, however the rearrangement has rejoined striations of similar value, gener-

ating large scale features in the concentration field. On further iteration, these

large features are carried into the future concentration fields and further rejoin-

ing of striations occurs. By the third iteration, large regions of all positive or all

negative values already dominate the concentration field.

This example only considers a single initial concentration field, but since eigen-

function regimes and mixing rates are independent of almost all initial conditions,

it would be unsurprising that the contamination to mixing from the rejoining of

striations is a global mechanism in cutting and shuffling transformations, which

would contaminate for almost all initial conditions. In smoothly deforming sys-

tems where the stirring mechanism is from stretching and folding alone, the only

contamination to the mixing is from areas which experience slow compression

rates, while for the composite transformations, both mechanisms of contamina-

tion are possible; slow compression and striation reassembly. The next section

considers the dominant eigenfunctions in the long-time limits and whether any of

the distinctive features can be approximated by the dynamics of the underlying

transformations.

6.3.3 Eigenfunction features and their relation to under-

lying dynamical properties

To briefly summarise the results so far on the mixing rates of the composite

maps Π ◦ Mα
B; permutations which cut and rearrange the concentration field

can lead to slow mixing rates arising from the reassembly of striations, and a

loss in the predictability of short time mixing rates approximated by stretching

histories. In this final section, whether any features of the concentration field in
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(a) v2 for Π ◦Mα
B with Π = [231] (b) v2 for Π ◦Mα

B with Π = [312]

Figure 6.17: Dominant eigenfunctions v2 are plotted for the composite maps Π ◦Mα
B

with Π = [231] and [312], the rotation permutations, with α = 0.4 and κ = 10−6. Addi-

tionally, the distributions of the FTLEs are plotted for j = 8 iterations below the plots.

Black, representing areas of least compression, align with peaks in the concentration

field. For Π = [231], which has a fixed point on a branch of least compression, images

of this fixed point also align with the peaks in the concentration field.

the eigenfunction regime can be pre-determined from the dynamical features of

the underlying stirring flow is investigated.

Figure 6.17 plots of the eigenfunctions for Π◦Mα
B with α = 0.4 and Π ∈ SR3 , the

rotation permutations. Underneath each of the plots, a colour map representing

the distribution of FTLEs across the unit interval is shown for j = 8 iterations.

Light regions correspond to areas which have experienced fast stretching histories

while dark regions correspond to the areas which have seen the least stretching.

The 8th iteration of FTLEs was chosen since it captured enough of the details in

the FTLE field to compare with the eigenfunctions for the diffusivity coefficient

κ = 10−6. A smaller diffusivity coefficient was applied in comparison to Figure

6.14, which showed eigenfunctions for κ = 10−5, to show the finer details which

emerge when decreasing the diffusivity rate. For Π = [231], the non-trivial fixed

point xf which falls on the permuted β branch of least compression, is plotted

alongside its images under the mapping as dashed red lines, and align with the

regions of least stretch in the FTLE distribution. The mean field, c̄ is included

as a dashed black line.
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The eigenfunctions for the composition maps with rotations are well mixed,

with fluctuations about the mean value small in general. Peaks in the concen-

tration field exist as distinctive features in the eigenfunction, focused near areas

which have experienced the least compression. This is seen by comparing the

peaks to the position of the dashed red lines, or the dark areas in the FTLE dis-

tributions. Since the rotations do not chop and rearrange the concentration field

at each iteration, the stirring dynamics are still smooth and the eigenfunctions

behave similarly to past literature of smoothly deforming chaotic systems, where

eigenfunctions have been shown to align with regions of low stretch [Gouillart

et al. (2008); Popovych et al. (2007); Wonhas & Vassilicos (2002)].

The eigenfunctions for the interleaving permutations in S3 depicted in Figure

6.14 are not well mixed, instead composed of regions of large width, composed

of either all positive or all negative values. To see whether dynamical features of

the underlying map Π ◦Mα
B help predict the appearance of the eigenfunctions,

Π = [213] is used as an initial example.

Figure 6.18 shows the illustrative map for Π ◦ Mα
B with α = 0.4 and (a)

Π = [213], and a second permutation (b) Π = [4321]. These permutations cut

and shuffle the concentration field at each iteration, but also have fixed points

which fall on the β branches of least compression. This is not true for the other

interleaving permutations of S3 or many other permutations in general. Since

these fixed points and their pre-images align with the slowest stretching histories

of the FTLE distributions, they should provide accurate point comparisons to

see if the eigenfunctions in the composite maps which are cut and shuffled, also

align with points which have experienced the least stretching rates.

Figure 6.19 (a) plots the dominant eigenfunctions v2 for Π◦Mα
B with α = 0.4,

Π = [213] and κ = 10−6. Red dashed lines plots the images of the two fixed points

which fall on the β branch, xf = 1/6 and 1, and again the black dashed line plots

the mean-field value c̄. The eigenfunction of this smaller diffusivity coefficient is

also not well mixed, with large width fluctuations between positive and negative

values. Across much of the domain, the images of the fixed points align with many

sharp transitions between positive and negative values in the concentration field.

However, the eigenfunction is not static and the concentration field oscillates with

further iteration of the transfer operator.

As an additional diagnostic, maximum and minimum values in the evolu-

tion of the eigenfunction can be found by evolving v2 by the transfer operator,

P jv2, and rescaling by the decay factor of the eigenvalue |λ2| at each iteration,
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(a) α = 0.4, Π = [213] (b) α = 0.4, Π = [4321]

Figure 6.18: Maps for Π ◦Mα
B shown with periodic points xf marked as they cross the

line Π◦Mα
B(x) = x (red). In a) the fixed point xf = 5/9 lines on the faster compression

branch while xf = 1/6 and 1 correspond to points of least compression. In b) the one

fixed point for Π = [4321] lines on the branch of least compression.

P jv2/|λ2|, therefore renormalising the scale of the concentration field to highlight

distinctive features. Figure 6.19 (b) plots the maximum and minimum values of

the concentration field during the evolution of the eigenfunction. The profiles

of maximum and minimum values (blue) are seen to be symmetric abound the

mean field c̄ (dotted black). The top plot shows again the locations of the fixed

points and their images, showing alignment with many distinctive peaks which

now emerge as maximums and minimums of the eigenfunction. The bottom plot

also shows the locations of the cuts and their images as an additional dynamical

feature. Again, alignment with some of the peaks occurs, but this is due to the

fact that the cut locations align images of fixed points. The cut locations do not

highlight any other distinctive aspects of the eigenfunctions appearance.

As a second example, Figure 6.20 (a) plots the dominant eigenfunctions v2

for Π ◦Mα
B with α = 0.4, Π = [4321] and κ = 10−6. Red dashed lines plots the

images of the single fixed point which fall on the β branch, xf = 3/8. Analogous

to the eigenfunctions of the interleaving permutations in S3, the eigenfunction is

not well mixed in general, with large fluctuations about the mean field across the

whole domain. Unlike the previous example however, images of the fixed point

do not align with the dominant peaks in the eigenfunction. Many of the peaks

indeed align with dark regions in the FTLE distribution, included below the plot,
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(a) v2 plotted with FTLE distribution. (b) Maximum and minimum values of v2 plotted

with images of xf and images of cut locations

Figure 6.19: In a) dominant eigenfunction v2 is plotted for the composite maps Π◦Mα
B

with Π = [213], with α = 0.4 and κ = 10−6. Additionally, the distribution of FTLEs

is plotted for j = 8 iterations below the plots. Black, representing areas of least

compression, align with peaks in the concentration field. When Π = [231], there is

a fixed point on a branch of least compression, and images of this fixed point agree

with the peaks in the concentration field. In b) maximum and minimum values of the

concentration field under further iteration of the eigenfunction show that many of the

dominant peaks coincide with areas of least compression, while images of the cuts show

some agreement with peaks but show no obvious alignment with any features of the

eigenfunction.
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(a) v2 plotted with FTLE distribution. (b) Maximum and minimum values of v2 plotted

with images of xf and images of cut locations

Figure 6.20: In a) dominant eigenfunction v2 is plotted for the composite maps Π ◦
Mα
B with Π = [4321], with α = 0.4 and κ = 10−6. Additionally, the distribution of

FTLEs is plotted for j = 8 iterations below the plots. Black, representing areas of

least compression, align with peaks in the concentration field. When Π = [4321] the

images of the fixed point on a branch of least compression do not align with peaks on

the eigenfunction, although there is some agreement with dark regions of the FTLE

distribution. In b) maximum and minimum values of the iterated eigenfunction show

neither images of fixed points or cut locations predict any dominating features of the

concentration field.
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which in this example do not directly correspond to the fixed point.

Figure 6.20 (b) again plots the maximum and minimum values of the evolv-

ing eigenfunction under further iterations of the transfer operator. For this case,

P jv2 is period two, therefore the maximum and minimums of v2 and Pv2/|λ2|
need only be plotted. Neither the first few images of the fixed point (top) or the

images of the cut locations (bottom) predict any of the distinctive features of the

eigenfunction. Although not plotted, further images of the fixed point did not

align with the most dominant maximum and minimum peaks in the eigenfunc-

tion, even though other regions of least compression in the FTLE distribution

do appear to predict some of the largest peaks. Similar to the last example, this

result suggests that distinctive features in eigenfunctions of mixed systems of

stretching and folding, cutting and shuffling, may be predictable from stretching

histories of the underlying system, however numerically accurate predictors for

some of least compressed areas, such as images of least compressed fixed points,

may not be wholly representable.

6.4 Conclusions

In Chapter 5 it was demonstrated that transformations composed of stretching

and folding, and cutting and shuffling could result in slower mixing rates by

introducing non-uniformity in striation arrangement from the rearranging of the

concentration field. Similar to non-uniformity introduced through non-uniform

stretching rates, this is a mechanism which results in long-time exponentially

decaying eigenfunctions. In this chapter, the differences in the two mechanisms

are explicitly compared. The rearrangement of a concentration field from cutting

and shuffling can result in the rejoining of striations of similar species, and has

the ability to drastically slow the mixing rates in the small diffusive limit. Only in

the fast diffusive limit, improvements in mixing rates were observed on including

a discontinuous transformation. This is when the non-uniformity in the mixing

rates was particularly diverse and the diffusion coefficient sufficiently large.

It is found that employing the distribution of stretching histories to approxi-

mate mixing in the early stages would prove unsuccessful in discontinuous trans-

formations, since the sharp interfaces introduced at each iteration speed up the

mixing and are not captured by the stretching histories. This was shown herein

where for continuous maps with the same stretching histories distribution the
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decay of variance agreed up until the Batchelor scale was reached and the eigen-

function regime began, while in contrast the discontinuous compositions from

cutting and shuffling led to a diversion in finite time mixing from the first itera-

tion.

Finally, whether any features of the mixing behaviour could be predicted from

distributions of stretching histories was addressed by comparing such to the ap-

pearance of eigenfunctions which emerge in the long-time limit. Although the

eigenfunctions for the cut and shuffle transformations are qualitatively different

from their smoothly deforming counterparts, regions of low stretch in the FTLE

distributions appeared to approximate well many distinctive maximum and min-

imum peaks in the concentration field. This contrasts the eigenfunctions in the

systems of Chapter 5, where the transformations lacked dynamical features for

comparison since FTLE distributions in those systems with uniform stretching

rates did not vary across the domain. Since the transformations in this chapter

are more realistic, it is of greater interest to understand the contributing factors

to the mixing behaviours. More work is needed for a complete understanding of

these mixed systems.

Briefly it was shown that decompositions are possible in these system, with ini-

tial numerical results suggesting a hypothesis on the parameters which contribute

to such. An extensive study to determine analytically the parameters which re-

strict mixing, and deriving the strong mixing rates in the diffusion-less limit such

as that of Byott et al. (2013, 2016), would further assist the understanding of

the numerical results presented herein. For example, whether a deceleration of

mixing rate with increased diffusivity is observed only for the idealised uniform

baker’s transformation or whether it is trait intrinsic to discontinuous transfor-

mations. While results for the non-uniform baker’s transformation thus far show

non-monotonicity in the mixing rate persists, they do not strongly suggest a

slower than diffusion-less mixing rate is likely.
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Chapter 7

Mixing by discontinuous

transformations in 2D

In previous chapters extensive investigation into mixing properties of one-dimens-

ional discontinuous transformations, and their dependency on the underlying pa-

rameters, was carried out. The one-dimensional models were advantageous due to

several factors, such as their ease in computation, the availability of analytical re-

sults from past literature for comparison, and the simplicity of the concentration

field evolution aiding understanding in the mechanisms which drive the observed

behaviours. In this chapter the study of mixing in discontinuous mappings is

briefly extended to two-dimensional maps as an initial investigation into which

phenomena persists in higher dimensions.

Firstly, simple models of planar piecewise isometries with a diffusive step are

investigated, namely two-dimensional Interval and Rectangle Exchange Trans-

formations. For two IETs acting in perpendicular directions on the unit torus,

one-dimensional mixing dominates the long-time mixing, suggesting the results

of Chapter 4 hold in higher dimensions. Similarly, Rectangle Exchange transfor-

mations (RETs) which have good stirring properties see a polynomial relation

between diffusion and the time to achieve a mixed condition.

Secondly, toral automorphisms, and wave perturbed versions thereof, are used

as the underlying chaotic maps to investigate the combination of the three mixing

dynamics; stretching and folding, cutting and shuffling and diffusion. When

the underlying map is strong mixing, permuting the concentration field at each

iteration results in a slower mixing rate. This is again due to the potential to

reassemble striations of like colour, leading to increased scales observed in the

eigenfunctions. An example is shown in which an improvement in mixing can be
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Figure 7.1: A complete iteration of a Double IET with fx = fy = IET1 with param-

eters r = 1.5 and Π = [3142]. Panel a) shows the diagonalised half-white, half black

initial condition, and panel b) the concentration field after the IET is applied in the

x directions, followed by panel c) where the IET is applied in the y direction. The

solid red lines represent cuts about to be made, while dashed red are the images of

the discontinuities. A decrease in the scale of segregation occurs through the action of

cutting and shuffling.

achieved from permutations through the destruction of large elliptic islands from

enhanced particle transport.

7.1 Two-dimensional Piecewise Isometries

7.1.1 Double Interval Exchange Transformations

The simplest model extending cutting and shuffling on the unit interval to cut-

ting and shuffling on the unit torus is to apply an IET in one direction, followed

by an IET in the other direction. Yu et al. (2016) touched on a toy model of

such a transformation, looking at the resulting stirring in the initial iterations.

They hypothesise that similar properties from the one-dimensional case will hold

for two-dimensions. More recently Smith et al. (2019) define these transforma-

tions as Double IETs, discuss their limitations in practical applications, and note

that material transport is restricted to the horizontal and vertical slices of each

respective point. This latter fact is a contributor to the results which follow.

Explicitly, a Double Interval Exchange Transformation can be defined as a

mapping S : T2 → T2 such that

S(x, y) = (fx(x), f y(y)) (7.1)
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where fx and f y are IETs with parameters (Lx,Πx) and (Ly,Πy) respectively. The

superscript denotes the direction in which the interval exchange transformation is

applied. In continuation of the parameter space of Chapter 4, for the investigation

herein the set of sub-intervals, Lx and Ly, are defined such that adjacent sub-

intervals are scaled by the ratio r.

Figure 7.1 illustrates the stirring effect of a Double IET when applying the

same IET in both directions with r = 1.5 and Π = [3142]. The initial condition

is such that the unit torus is half-white, half-black, symmetric about the line

y = x. Even at the intermediate stage, the scale of segregation is decreased

across parts of the domain. Rather than extensively investigating the decrease in

the scale of segregation by Double IETs, the results presented here focus instead

on the resulting mixing which occurs from including a diffusional step, and reveal

why such a study on segregation may not be necessary. The numerical approach

to include diffusion is briefly outlined, followed by a handful of results which

epitomise the mixing behaviour in such systems.

Iterative Advection-Diffusion Transformation

Applying periodic boundary conditions on the unit torus, the concentration field

c(x, y) can be represented by a two-dimensional discrete Fourier expansion with

coefficients defined as

ĉk1,k2 =

∫ 1

0

∫ 1

0

c(x, y)e−2πik1xe−2πik2ydxdy. (7.2)

A transfer matrix can then be constructed, representing the evolution of c(x, y)

by a Double IET through the action of the transformation acting on values of

the Fourier coefficients. Since each Double IET is composed of two IETs acting

independently in the vertical and horizontal directions, the transfer in discrete

Fourier space can be applied first on the action of the wavemodes representing

the horizontal shuffle followed by the action on the wavemodes representing the

vertical shuffle. Therefore, rather than deriving the transfer matrix acting on

each pair of wavemodes (k1, k2), a simpler computational method can be devised.

Firstly, represent the values of the Fourier coefficients as a two-dimensional

matrix Ck1,k2 , such that at each iteration the entries are

C
(j)
k1,k2

= ĉ
(j)
k1,k2

. (7.3)

For each of the IETs fx and f y derive the transfer matrix between Fourier coeffi-

cients for one dimension as in (4.12), say Mx and M y respectively. Then, when
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Figure 7.2: Two initial conditions are illustrated a) the diagonalised half-white half-

black, symmetric about the line y = x (red), and b) half-white half-black but non-

symmetric about y = x.

applying the IET fx, fix each vertical wavenumber, say k2 = n and define the

vector

C
(j)
k1

(n) = C
(j)
k1,k2
|k2=n, (7.4)

and perform

C
(j+1)
k1

(n) = MxC
(j)
k1

(n). (7.5)

The row is then updated in the original matrix, such that Ck1,n = Ck1(n). One

complete application of the IET fx is then to loop over all values −Q ≤ n ≤ Q

defining (7.4), applying (7.5) and then updating the matrix of Fourier coefficients,

where Q denotes the chosen truncation value.

Similarly, for the IET acting in the horizontal direction, fix k1 = n, define

C
(j)
k2

(n) = C
(j)
k1,k2
|k1=n, and apply C

(j+1)
k2

(n) = M yC
(j)
k2

(n), looping over all wave-

numbers and updating the original matrix. The diffusional step is achieved by

multiplying each entry of C(k1,k2) by the factor exp(−4π2κ(k2
1 +k2

2)) following the

complete stirring iteration.

Numerical results

Mixing results are presented for Double IETs S = fx ◦ f y with fx and f y taken

from two IETs; IET1 with parameters (r1,Π1) = (1.5, [3142]) and IET2 with

(r2,Π2) = (1.5, [4213]). Three combinations are presented; IET x1 ◦ IET
y
1 , IET x1 ◦

IET y2 , and IET x2 ◦ IET
y
2 . For all of the examples, the decay of variance was

measured as a quantitative degree of mixing and the initial conditions considered

shown in Figure 7.2. The initial conditions were plotted on a grid in real-space
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Figure 7.3: Mixing properties for double IET transformations shown from a) the decay

of variance when κ = 10−5 and b) the concentration fields after 200 iterations for two

different transformations. The initial condition was Figure 7.2 a) symmetric half-white

half-black. The red dots on the variance decay profiles indicate the concentration fields

shown are representative of the eigenfunction regime. IET x1 ◦ IET
y
1 and IET x1 ◦ IET

y
2

both have the same decay rate once the eigenfunction regime is reached.

Figure 7.4: Mixing properties for double IET transformations shown from a) the decay

of variance when κ = 10−5 and b) the concentration fields after 200 iterations for

the same transformation with a symmetric initial condition and c) a non-symmetric

initial condition, shown respectively in Figure 7.2 a) and b). The red dots on the

variance decay profiles indicate the concentration fields shown are representative of the

eigenfunction regime. Even though the concentration fields look qualitatively different

the decay rates are the same. This is due to the perpendicular independence in the

mixing of the IETs.
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and then a Fast Fourier Transform algorithm used to find approximations for the

Fourier coefficients.

Figure 7.3 a) plots the decay of variance for the three combinations of Double

IETs when the symmetric initial condition was applied, Figure 7.2 a). Although

the variance decay is similar in the first 50 iterations, the mixing for IET x2 ◦
IET y2 is superior at depleting the variance in the long time. For the combination

IET x1 ◦ IET
y
1 and the mixed IET x1 ◦ IET

y
2 the long-time mixing has the same

exponential mixing rate.

Figures 7.3 b) and c) display the renormalised concentration field at iteration

200 for these final two cases. For IET x1 ◦ IET
y
2 the concentration field is sym-

metric about y = x, while for IET x1 ◦ IET
y
2 the concentration field has reduced

to varying mainly in one-dimension, showing little dependency in the y coordi-

nate. These results arise from the orthogonality of the transformations, where the

eigenfunctions of each transfer matrix Mx and M y are also orthogonal to each

other. For the case where the IET parameters differ, the dominant eigenfunction

vy2 varying in the y direction, decays at a fast rate leaving the slowest decaying

eigenfunction vx2 , orientated in the x direction, to dominate the concentration

field and the long-time mixing rate.

Computing the mixing of IET1 and IET2 as individual stirring transforma-

tions on the unit interval indeed confirms IET2 to be superior at depleting vari-

ance. The average asymptotic mixing rate for the Double IETs is predicted by

the largest of the leading eigenvalues, |λ2|x or |λ2|y, from the transfer matrices

Mx and M y respectively. The slowest decaying eigenfunction for IET2 decays

quicker than that of IET1, and essentially produces a one-dimensional mixing

regime governed by the long-time dynamics of IET1. For the case where the stir-

ring is given by IET x1 ◦IET
y
1 the orthogonal eigenfunctions are decaying with the

same rate and the resulting concentration field in the long-time is a composition

of the eigenfunction in both directions. This is due to the fact that the initial

condition was symmetric about y = x.

Figure 7.4 compares the variance decay for IET x1 ◦ IET
y
1 between having the

symmetric initial condition and the non-symmetric initial condition from Fig-

ure 7.2. The decay of variance in both cases in nearly identical with the same

asymptotic exponential mixing rate. However, the concentration field at iter-

ate 200 shows the composition of the two orthogonal eigenfunctions. Having

a non-symmetric initial condition has resulted in one of the orthogonal eigen-
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Figure 7.5: One configuration of Haller’s rectangle transformation which is potentially

weak mixing from initial computational investigations of Haller (1981). The parameter

tuple (α, β, δ) generates a full scaling on the transformation acting on the unit torus

functions being less dominant in the concentration field, and the preference for

one-dimensionality is observed slightly in its appearance.

This one-dimensionality due to orthogonality suggests that the results on

asymptotic mixing rates for interval exchange transformations from Chapter 4

carry over to higher dimensional transformations composed of orthogonal In-

terval Exchange transformations. Finite time behaviours may vary but investi-

gation into these has been left for future work. In these transformations, two

one-dimensional IETs are applied orthogonal to each other with perpendicular

mixing dynamics, therefore these results are unlikely to reveal anything about

generalised planar piecewise isometries.

7.1.2 Rectangle transformations on the unit torus

The generalised extension of interval exchange transformations to the unit torus

are Rectangle Exchange Transformations (RETs). They are obtained by cutting

the unit square up into a finite number of rectangular pieces and rearranging

the pieces. Unlike interval exchange transformations, the unit torus can not be

arbitrarily cut into rectangular pieces which will reassemble under permutation

to construct the original domain. Haller (1981) investigated the admissible par-

titions for 4 subrectangles and determined when they are ergodic. Figure 7.5

illustrates one of the five classes of admissible partitions found by Haller (1981)
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with the general partition defined

PA = [0, α)× [0, 1), PB = [α, 1− γ)× [δ, 1)

PC = [1− γ, 1)× [δ, 1), PD = [α, 1)× [0, δ).
(7.6)

This rectangle transformation is ergodic if permuted as shown in Figure 7.5, and

the parameters α, α·β/(1−α) and 1 are independent over Q; i.e the scaling param-

eters for the sub-rectangle dimensions are rationally independent. Additionally,

following a computational study on the stirring properties of RETs by Hetmanski

(2012), it was hypothesised that this particular case could also be weak mixing

under the conditions specified, however no rigorous analytical results support this

claim. This RET case informs the rest of the discussion.

To investigate the mixing properties of rectangle transformations, parameter

tuples (α, β, δ) are chosen for the case illustrated in Figure 7.5. These will define

the RET which will be repeatedly applied as the stirring step in the transfor-

mation, followed by a diffusional step after each iteration. Rational dependence

on the sub-rectangle dimensions α, β, and γ is taken due to computational re-

strictions. Unfortunately, it is not possible to define a transfer matrix between

the coefficients of the discrete Fourier expansion for rectangle transformations, as

was done for Interval Exchange transformations. Instead, rational dependence be-

tween the sub-rectangle dimensions allows construction of the transformation on

a structured grid and a finite difference scheme to be applied for the diffusional

step. The full computational approach is described in Appendix C, in which

periodic boundary conditions are taken in line with the computational studies

of previous Chapters. Although rationality of sub-rectangle lengths means the

underlying transformation is not ergodic, and as such no potential to be weak

mixing, this idealisation is not a problem herein.

Rather than present results from a full parameter study on mixing in rect-

angle exchange transformations, which would be a large undertaking for such a

system with little research literature associated with it, focus instead lies with the

effect of diffusion on the rate of mixing. Appendix C presents results on a small

stirring study looking at the effect of changing the parameters α, β, and δ, and

the qualitative decrease in the scale of segregation. Figure 7.6 shows three exam-

ples of the rectangle transformations which have sufficient stirring properties to

ensure good mixing is likely to occur, i.e. not restricted by large stirred regions.

The initial configuration of the 4 rectangles are accompanied by the respectively

concentration fields after 100 shuffles. The initial condition was a half black, half

white domain, segregated on x ∈ [0, 1/2) and x ∈ [1/2, 1) respectively.

202



CHAPTER 7. MIXING BY DISCONTINUOUS TRANSFORMATIONS IN 2D

Figure 7.6: Three parameter tuples (α, β, δ) and the resulting decrease in the scale of

segregation via the Haller rearrangement shown in Figure 7.5 after 100 iterations. For

fixed α, β and δ are specified at the top of each rectangle. The initial condition was

black for x ∈ [0, 1/2) and white for x ∈ [1/2, 1).

Figure 7.7: Time to achieve a mixed condition t95 with varying diffusivity coefficient κ

for the three example rectangle transformations shown in Figure 7.6. The profiles have

a polynomial scaling with κ shallower than pure diffusion, however t95 ∝ κ−1/2 does

not appear to approximate the relation well.
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For the three examples the time to achieve the mixed condition t95 was com-

puted for varying rates of diffusivity coefficient κ. Figure 7.7 shows the results

for t95 in which all three profiles follow the trend t95 ∝ κ−β for β ∈ (0, 1). The

diffusion-driven trend ∝ κ−1 is included for comparison, and reveals that equiva-

lent to the results in Chapter 4, the polynomial relation has an exponent β < 1.

However, the suggestion that β = 1/2 may be a suitable scaling does not provide

a good approximation for any of the profiles. Profiles for the mixed conditions

t80, t90, and t99, were computed and also showed the same polynomial trends for

all three examples.

This result suggests that the polynomial scaling relation found in Section 4.5

persists in higher dimensions, but correctly approximating of the exponent β

depending on the stirring behaviour is not immediately obvious. An extension of

studying diffusion in other planar diffusional piecewise isometries is essential to

better the mechanism driving this scaling relation.

7.2 Toral automorphisms composed with per-

mutations

Chapters 5 and 6 investigated the effect of cutting and shuffling on the rates

of mixing in stretching and folding transformations with diffusion. The main

conclusion from the studies, was that after a short time in which the added

sharp gradients assisted the mixing of a concentration field to the mean field,

usually discontinuous stirring hindered mixing in the long-time limit. However

the one-dimensionality of the systems allowed for unrealistic idealisations, the

largest being the alignment of discontinuities with the unstable manifolds of the

stretching direction. Whether a similar contamination to mixing rates arises in

higher dimensional models is not immediately obvious.

Smith et al. (2016) investigated novel particle transport and the resulting

stirring from slip deformations in the two-dimensional Re-orientated Potential

Mixing flow, and a simplified model capturing the key dynamics, the Cut-Shear-

Shear (CSS) map. When the slip deformation counteracted the direction of the

shear, the stirring was hindered with island like regions emerging in the flow

about periodic points, which were named pseudo-elliptic islands. These non-

Hamiltonian structures where shown to be identifiable from tracking the evolution

of discontinuities as a new diagnostic in mixed systems with discontinuities. The
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rates of strong mixing in the CSS maps were investigated in Smith et al. (2017b),

concluding that cutting could be enhanced or impeded by the presence of the cut.

Rather than deriving a numerical scheme to accurately include diffusion in the

Cut-Shear-Shear model, the simplest approach to begin investigating mixing in

two-dimensional models is to return to the toral automorphism of Chapter 3 and

compose them with permutations, where the mixing can be accurately computed

in discrete Fourier space. In these systems the idealisation of alignment between

the unstable and stable manifolds with the permutations no longer persists. Sim-

ilarly, non-uniformity can be easily introduced via the wave-perturbed versions

of the maps. An initial example of the wave-perturbed cat map composed with

a single permutation concludes the results of the Chapter.

7.2.1 Mathematical description and formulation

The toral automorphisms of interest are the cat map, and the double application

of the cat map,

MC =

(
2 1
1 1

)
, MCC =

(
5 3
3 2

)
, (7.7)

respectively. Both maps are strong mixing and have eigenvalues λMC
= (3±

√
5)/2

and λMCC
= (7 ±

√
45)/2. The rate of stretch by the map MCC is much larger

than that of the cat map, over 2 fold. As such MCC is used as a comparison map

to see the general effect of increasing the rate of stretch when composed with

permutations.

The computational approach is to solve the transfer operator for the toral

automorphism first, as in Section 2.3.4, and apply the permutation and diffusional

step by the approach of Section 7.1.1. The permutation transformation is only

performed in the x direction, and chosen from Π ∈ SN with N = 3, 4 and 5 for

permutations of equal sized cells. A permutation can be easily applied in the y

direction, or two IETs applied in both directions, at each iterative step but for

simplicity of discussion only the x direction is presented here. None of the chosen

permutations composed with the toral automorphisms produced a decomposition

of the domain.

A handful of numerical results are presented which capture the overall trends

in the transformations considered. The discussion evolves around the results

present here, and the similarities and differences to main results of Chapter 5,

in which uniformly stretching transformations were composed with permutations.

Namely, whether non-uniformity of concentration rearrangement results in a slow
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Figure 7.8: Evolution of the initial condition c(0)(x, y) = cos(2πx) by transformation

Π ◦MC with Π = [132] and diffusion coefficient κ = 10−5. The concentration field is

renormalised at each iteration to highlight the spatial features.

down of mixing rate, and whether this mixing rate changes monotonically or non-

monotonically with diffusion. Additionally the effect of increased stretch factor is

compared, comparative to choosing the value of m in the extension of the uniform

baker’s transformation. No analytical results on the mixing rates were derived

from the cat map, or double cat map, composed with permutations.

7.2.2 Mixing in uniformly stretching toral automorphisms

composed with permutations

Snap-shots of the concentration field evolution for a single example provide a

qualitative means to understand the resultant mixing. Figure 7.8 shows the

evolution of the initial condition c(0)(x, y) = cos(2πx) under the action of the

cat map MC and the permutation Π = [132] acting in the x-direction. The

diffusion coefficient was κ = 10−5 and the concentration field renormalised and

shown without scale at each iteration, to highlight the changing scales across

the concentration field striations, rather than the reduction in the height of the

concentration field as it approaches the mean field.

In line with the observations of Chapter 5, where the cutting and rearranging
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Figure 7.9: Decay of variance Π ◦MC with Π = [132] for varying diffusivity values

κ. The initial condition c(0)(x) = cos(2πx). Black dashed line represents the decay of

variance for the cat map MC alone with κ = 10−6.

of the concentration field rejoined striations of similar colour, a similar mecha-

nism is in mixing contamination can be seen in Figure 7.8. This is most clearly

shown by iteration j = 3, where regions of mostly white, and regions of most

black are easily distinguishable throughout the domain. By iteration j = 5, an

eigenfunction forms, where smaller striations are starting to be washed out by

the balance between shearing and diffusion.

Figure 7.9 plots the decay of variance for the underlying transformation shown

in Figure 7.8, Π ◦MC with Π = [132], for varying diffusivity coefficients κ. Also

included as a dashed black line is the decay of variance for the cat map MC

mixing alone with κ = 10−6. The addition of the permutation results in long-

time exponential mixing, due to the non-uniformity in the striation widths from

the rearrangement of the concentration field at each iteration. Recall that for the

maps Π ◦MB with Π ∈ S3, non-monotonicity in the long-time mixing rate |λ2|
with κ was reported, additionally observed in the variance decay profiles. Here

it appears as though |λ2| may vary monotonically.

The values |λ2| can be approximated from the average decay rate of the vari-

ance profiles as a comparison across finer values of κ. Figure 7.10 shows the

profiles |λ2| computed for Π ◦MC with the interleaving permutations Π ∈ S3.

All produce the same long-time mixing rates and non-monotonicity in the values

of |λ2| are observed. There appears to be a convergence to a mixing rate with

κ→ 0, the maximum value across the profile being when κ = 10−6.

Similarly, Figure 7.11 plots the approximated values of |λ2| for Π◦MC with (a)
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Figure 7.10: The modulus of the leading eigenvalues |λ2| against diffusivity coefficient

computed from the average decay rate of the variance profiles. The three interleaving

permutations Π ∈ S3 have the same mixing rates.

(a) |λ2| approximation for Π ∈ S4 (b) |λ2| approximation for Π ∈ S5

Figure 7.11: The modulus of the leading eigenvalues |λ2| against diffusivity coefficient

κ, computed from the average decay rate of the variance profiles for a) Π ∈ S4 and b)

Π ∈ S5.
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(a) Comparison of |λ2| for Π ∈ S3 (b) Comparison of |λ2| for Π ∈ S4

Figure 7.12: The modulus of the leading eigenvalues |λ2| against diffusivity coefficient

κ, computed from the average decay rate of the variance profiles for a) Π ∈ S3 and b)

Π ∈ S4 for both the cat map composed with permutations Π ◦MC (solid) and the cat

map applied twice, Π ◦MCC (dashed). The additional stretch from applying the cat

map twice always produces faster mixing rates.

Π ∈ S4 and (b) Π ∈ S5. As with the interleaving permutations of S3, symmetry

in the advective transformations results in subgroups emerging from the permu-

tation groups SN with the same long-time mixing rates. An example profile is

plotted for each subgroup, showing the range of mixing rates across κ. As with

S3, non-monotonicity in the value of |λ2| occurs in some of the profiles as κ→ 0,

and for nearly all of the profiles, there appears to be a convergence in the value

of |λ2| as κ→ 0.

In Chapter 5 the most surprising result was that non-monotonicity in the

value of |λ2| sometimes achieved |λ2| > τ for non-zero κ, where τ is the diffusion-

less mixing rate. Since no analytical results on the value of τ were found for the

maps Π ◦MC , it is assumed that |λ2| when κ = 10−6 gives a good approximation

since convergence seems to be happening for small values of κ. In contrast to the

results of Chapter 5, either no overshoot of τ for non-zero κ happens for these

systems, or if it is occurring the effect is less dramatic.

As a final comparison study to the results of Chapter 5, the profiles of |λ2|
with κ can be compared for Π ◦MC and Π ◦MCC , to see whether having a larger

stretch is more likely to result in faster long-time mixing. Figure 7.12 plots the

profiles of the long-time mixing rate for each of the subgroups of Π ∈ S3 and

Π ∈ S4, for the composition maps Π ◦MC (solid) and Π ◦MCC (dashed). The

subgroups between Π ◦MC and Π ◦MCC differed, showing that again it is the

action of both stretch and folding, and cutting and shuffling, which determines
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the resultant long-time mixing rate. The subgroups are included as one-profile

for each of the maps.

All of the profiles for Π ◦MCC have values of |λ2| smaller than Π ◦MC across

all values of κ. The additional stretch at each iteration arising from applying the

cat map twice will reduce the scales in the concentration field of the eigenfunction

significantly, allowing fast depletion from diffusion. Although the cutting and re-

arranging of the concentration field by the permutation has the potential to rejoin

regions of similar concentration, stretching is the dominant mixing mechanism in

the transformation. This outcome mirrors that of the uniform baker’s transfor-

mation with additional branches, where a larger m speeds up the mixing rate on

average; more easily understood by the 1/m factor in the bounds of mixing from

Byott et al. (2013).

7.2.3 Mixing in the wave perturbed cat map composed

with permutations

Chapter 6 presented a one-dimensional study on the combined stirring dynamics

of non-uniform stretching with cutting and shuffling. Having a combination of

both mixing mechanisms which produce non-uniformity in the widths of striation

evolution allowed for a direct comparison between the mechanisms of contami-

nation; where cutting and shuffling can significantly slow down mixing rates by

generating large scale non-uniformities in the concentration field from striation

reassembly, in comparison to contamination arising from slow compression of

striations alone.

For the toral automorphisms, introducing the wave-perturbation increases the

complexity in the computation of the transfer operator, directly increasing the

computation time. Therefore a parameter study in such systems is left for future

work. Instead the wave perturbed cat map composed with a single permutation

Π = [132] is used as an initial investigation into the combined stirring dynamics in

two-dimensions. As before, the computations are carried out in discrete Fourier

space, applying the wave perturbed cat map first, via the numerical method of

Section 2.3.4, followed by the permutation in the x direction and diffusional step

of Section 7.1.1.

Figure 7.13 plots the decay of variance for 6 different maps; the wave perturbed

cat map MPC , and the composition map Π◦MPC with Π = [132], for three values

of K. The decay of variance for the maps MPC are plotted as dashed lines, while
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(a) (b)

Figure 7.13: Decay of variance for the cat map with an added wave perturbation

with three values of K (dashed) and when the permutation Π = [132] is applied as a

composition transformation Π◦MPC (solid). (a) shows the initial iterations on a linear-

linear axis, while the long-time exponential mixing behaviour is more easily observed

in (b) on a linear-log axis. For smaller values of K the permutation slows down the

decay of variance, while when K = 2.0 the permutation improves the mixing rate.

(a) MPC (b) Π ◦MPC , Π = [132]

Figure 7.14: Poincarè sections for (a) the cat map wave with K = 2.0, a number of

islands are seen to decompose the domain, while in (b) when the permutation is applied

the islands are destroyed leaving only potentially small decompositions in the domain.

1000 iterations of 200 points are plotted, initialised along the line x = 1/2.
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Figure 7.15: The concentration field for the wave-perturbed cat map MPC with K = 1.0

and diffusivity coefficient κ = 10−5 after 15 iterations shows distinctive peaks where

the least compression occurs just this stirring stage. At this iteration the mixing is in

the eigenfunction regime. In b) a slice of the concentration field at x = 0.5 confirms

that dominant peaks of small width occur across the domain. The initial condition was

c(x, y) = cos(2πx).

the composition maps are plotted as solid lines. The assigned colours correspond

to the values of K in each. For all composition maps, the mixing in the first

handful of iterations is faster than for the maps MPC . When K = 0.5 and 1.0,

the addition of the permutation slows down the speed of mixing in the long-time

limit. It is only for K = 2.0 that the mixing rate is improved by the addition of

the permutation throughout all times.

The latter can be easily understood, since for K = 2.0 the map MPC has two

large islands which restrict transport throughout the domain. These are observed

in Figure 7.14 (a) from a Poincaré section plotting 1000 iterations of 200 points

initialised along the line x = 1/2. Long-time mixing is restricted to diffusion

across the boundaries of the islands. When including the permutation Π = [132],

the large islands are destroyed and no other sizeable islands visible, shown in

Figure 7.14 (b) for Π ◦ MPC . Small islands may remain within the domain,

not visible on the scale of this plot. Since large decompositions of the domain

no longer exist, fast mixing can occur via all mechanisms of stretching, folding,

cutting, shuffling and diffusion. These initial results suggest that an improvement

to mixing from cutting and shuffling can only be achieved when the underlying

transformation has bad stirring properties, reminiscent of the conclusions from

Chapter 6 on one-dimensional non-uniform stirring.
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Figure 7.16: The concentration field for the wave-perturbed cat map and permuta-

tion Π ◦MPC with K = 1.0, Π = [132] and diffusivity coefficient κ = 10−5 after 15

iterations. At this iteration the mixing is in the eigenfunction regime. In b) a slice

of the concentration field at x = 0.5 reveals that the concentration field has regions

dominated either by all positive or all negative values, with sharp transitions between

these striations with large width. The initial condition was c(x, y) = cos(2πx).

Finally, the appearance of the eigenfunctions and comparisons to the stretch-

ing histories are addressed for this example. Figure 7.15 a) plots the full con-

centration field at iteration 15 under the action of the map MPC with K = 1.0

for the initial condition c(x, y) = cos(2πx) and κ = 10−5. At iteration 15 the

concentration field has reached the eigenfunction regime, where on average the

decay rate is exponential but oscillations in the modulus of the leading eigenvalue

and the concentration field occur. The eigenfunction is shown renormalised, using

the same colour map as in Chapter 3, with white and black representing maxi-

mum and minimum values respectively, and orange representing the mean field.

Peaks and troughs in the concentration field exist as thin bands throughout the

domain, shown in Chapter 3 to align regions which have experienced the smallest

stretching histories. A slice of the eigenfunction is taken through c(0.5, y), and

plotted in Figure 7.15 b), where distinctive peaks that are small in width, are

the dominant features of the concentration field. Across most of the domain, the

concentration field is well mixed and close to the mean field, with only extreme

values found in the peaks.

Figure 7.16 a) shows the eigenfunction observed in the map Π ◦MPC with

K = 1.0, Π = [132], for the initial condition c(x, y) = cos(2πx) and κ = 10−5,

and Figure 7.16 b) the slice taken at c(0.5, y). Large regions of either all positive,
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(a) FTLEs

(b) Eigenfunctions

Figure 7.17: Comparison between a) the distribution of FTLEs within the domain under

the transformations Π ◦MPC with different K and Π = [132], and b) the respective

concentration fields after 15 iterations. Regions of least compression highlight areas

which exhibit peaks in the concentration field, particularly when K = 2.0 and the

non-uniformity in the stretching is the largest.
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or all negative values are seen across the slice where values in the concentration

field are comparable in size across the striations, without a single peak or trough

emerging as a dominant feature. This coincides with the observations from the

one-dimensional case, where contamination from striation reassembly dominates

the long-time mixing.

Figure 7.17 (a) plots the FTLE fields for the maps Π◦MPC for different K and

(b) a comparison to the concentration fields at iteration 15. The regions of low

stretch align well with the darkest and lightest regions of the concentration field,

while well mixed regions are well approximated by areas which have experienced

the largest stretching histories. When K = 2.0 and the non-uniformity in the

stretching rates is the largest, the concentration field is more well mixed across

the domain in comparison to K = 1.0. The largest peaks in the eigenfunction

align well with the darkest regions in the FTLE plot. This example suggests

that while cutting and shuffling are likely to slow down mixing from increasing

scales in the concentration field via striation reassembly, potentially when there

is large variation in the stretching histories of the flow, areas of least compression

dominate the contamination to mixing. As with smoothly deforming systems,

the distribution of FTLEs approximate well the appearance of the eigenfunction.

7.3 Conclusions

An initial investigation into mixing in two-dimensional, discontinuous transfor-

mations was presented as an accompaniment to the one-dimensional models of

earlier chapters. While the one-dimensional models were open to rigorous analyt-

ical and numerical investigation, they are highly idealised in comparison to real

laminar mixing flows.

Two-dimensional interval exchange transformations were observed to reduce

to one-dimensional systems in the presence of diffusion, due to the composition of

two transformations which are stirring in perpendicular directions only. Therefore

it is assumed that the results of Chapter 4 on the long-time mixing rates can be

readily applied in two-dimensional or higher dimensional IETs, as defined by

Smith et al. (2019).

Mixing in another planar piecewise isometry was investigated, an RET of

Haller (1981). A single case of rectangle rearrangement was chosen which could

result in qualitatively well stirred concentration fields if the scaling parameters

defining the rectangular shapes satisfied certain conditions, outlined in Appendix
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C. The relation t95 ∝ κ−η with η < 1 was observed for all three parameter tuples

(α, β, δ) considered, but η ∼ 0.5 did not approximate the scaling well. Future

work should focus firstly on a thorough parameter space investigation of the

stirring resulting from different values of α, β and δ, akin to the work of Krotter

et al. (2012) and Yu et al. (2016) for IETs. This should be followed by an in depth

study on finite and long-time mixing rates in such systems, and whether there

is sensitivity to the initial condition as was observed for IET stirring systems in

Chapter 4 but not explored here for RETs.

Toral automorphisms with uniform stretching, composed with permutations

mix slower than the non-composed maps in the long-time limit. Similar to their

one-dimensional counterpart, the baker’s transformation composed with permu-

tations, rearrangement of the concentration field by the discontinuous transfor-

mation generates non-uniformity in striation arrangement by rejoining regions of

like colour. In the long-time limit, eigenfunctions form with exponential decay

rates. The asymptotic mixing rates similarly vary non-monotonically with diffu-

sivity coefficient. However lacking knowledge of the diffusion-less mixing rates,

it can not be concluded whether a counter-intuitive deceleration of mixing rate

with diffusivity is observed.

Composing the wave perturbed cat map with an example permutation results

in contamination to mixing, expect for when the composition assists fluid trans-

port, destroying islands. The scales in the concentration field are increased from

cutting and shuffling, resulting in eigenfunctions which are larger in scale than

the eigenfunctions arising from purely non-uniform stretching and folding. The

observations in this two-dimensional model are analogous to those of Chapter 6,

when the stretching and folding mechanism is provided by one-dimensional non-

uniform baker’s transformation. However, only a limited parameter space was

studied due to the computational cost of solving the iterative advection-diffusion

problem for these transformations.

There has been only a handful of studies investigating the dynamics in discon-

tinuous, chaotic advective transformations in two or more dimensions [Smith et al.

(2016, 2017b); Vaienti (1992)]. Derivations of analytical results on the ergodic

properties in such systems are likely to be non-trivial. This chapter presented

a brief numerical investigation into mixing arising in two dimensional systems

where discontinuities where introduced via chopping and rearranging the concen-

tration field following a continuous stirring transformation. Rigorous proofs of

ergodic properties, rates of stirring and mixing, and the role discontinuities play
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in these results should be the focus of future work. A range of discontinuous maps

should be the focus of these investigations, such as those where a discontinuity

arises via slip deformation, which have not been addressed in the current work.
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Chapter 8

Conclusions

The primary aim of this thesis was to illuminate the impact discontinuous particle

transport has on the rates of mixing of passive scalar fields. Where previous

studies have mainly investigated the effect discontinuities have on organisation of

particle trajectories, and rates of decrease in the scale of segregation, the novelty

of this work was to include diffusion and study the rates of mixing to uniformity

in a range of discontinuous models, with and without chaotic advection.

In fulfilment of this aim, models were devised using discrete time maps which

allowed for the derivation of transfer operators capturing the evolution of con-

centration fields, and a diffusive step easily introduced. Computational methods

and analysis techniques were introduced in Chapter 3, alongside an introduction

of discrete time maps with smooth velocity fields, and results presented on their

mixing rates in relation to the underlying dynamics of the flow.

In Chapter 4 the action of cutting and shuffling transformations to achieve

homogenization was investigated using a one-dimensional computational model.

The model utilised the parameter space of Krotter et al. (2012) for Interval Ex-

change transformations, and transfer operators derived from transfer matrices

computed for permutations of equal sized cells from Ashwin et al. (2002). The

long-time mixing rates are exponential, however since IETs lack strong mixing

properties, the interaction of slowly decaying eigenfunctions dominate the finite

time mixing profiles in the limit of small diffusivity. This fact was shown to

contribute to large variations in the time to achieve a desired mixed state from

small variations in the initial condition. A parameter study highlighted that the

dynamics which on average achieve the fastest rates of mixing, are those which

introduce more cuts at each iteration, and ensure there is no significant decom-

position of the domain. This has the dual effect of increasing gradients in the
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concentration field via sharp discontinuities, as well as decreasing the scale of

segregation at each iteration. The time to a mixed condition was shown to be

polynomial with t% ∝ κ−η, where η < 1 when IET parameters satisfied those with

good stirring criteria. This relation was reflected in the changing profiles of the

leading eigenvalues with diffusion, suggesting that the balance between cutting,

shuffling and diffusion could be the main driving mechanism for the result. If

the mixing rate is governed by the scale of the concentration field balanced by

the mixing mechanisms, this predicts η ∼ 0.5, which shows good agreement with

numerical results.

Chapter 5 began the investigation into the impact of discontinuous transport

when the main stirring mechanism is from exponential stretching, the hallmark of

chaotic advection. This initial study implemented the one-dimensional approx-

imation of the baker’s transformation with uniform stretching rates composed

with permutations. When the permutations do not generate a decomposition of

the domain, exponential stirring is maintained, found by extending the analyt-

ical results of Byott et al. (2013). The exponential rates of stirring are either

preserved, or slowed by the permutations. On the inclusion of a diffusive step,

the asymptotic mixing rates are exponential due to the emergence of eigenfunc-

tions, generated by the non-uniformity in striation arrangement arising from the

chopping and rearranging of the concentration field following the exponential

stretching and folding. Mixing rates are sensitive to striation arrangement [Clif-

ford et al. (1999)], therefore the mixing rates vary significantly across the choice

of permutations. Only in the initial stages do the discontinuous transformations

assist mixing over the uniform baker’s transformation, by introducing sharp in-

terfaces which help the depletion of variance before the Batchelor scale is reached

from shearing. A counter-intuitive observation is that the asymptotic mixing

rates vary non-monotonically with diffusivity rate for many of the composition

transformations, with some mixing slower than their diffusion-less limit.

The emergence of eigenfunctions via the variation of striation widths also oc-

curs in smoothly varying velocity fields with non-uniform stretching rates, and

can be described as a global mechanism of mixing. Chapter 6 investigated the

mixing behaviour in the non-uniform baker’s transformation composed with per-

mutations, creating a system in which both stirring mechanisms resulting in the

global regime could be compared: non-uniform stretching and cutting and shuf-

fling. As was previously observed, the depletion of variance is encouraged in

the initial iterations from the sharp interfaces introduced by the discontinuous
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transformations. However, when the non-uniformity in the stretching rates is not

significant, permuting the concentration field at each iteration leads to significant

reduction in the asymptotic mixing. Qualitative assessment of the resulting eigen-

functions and evolution of the concentration in finite time, reveals that cutting

and shuffling the concentration field can lead to reassembly of striations of like

concentration, contaminating the mixing by significantly increasing scales of the

concentration field. While it is commonly understood that stretching histories

are not able to predict asymptotic mixing rates arising from a global mechanism,

in non-uniform smooth stretching flows, they have been reported to approximate

well the early stages of mixing, prior to the Batchelor length scale being reached

[Wonhas & Vassilicos (2002)]. It is shown herein that in discontinuous trans-

formations, stretching histories can no longer be used to approximate variance

depletion at any stage of mixing, however there is some evidence to suggest that

areas of least compression may dominate the long-time concentration field evolu-

tion in the eigenfunction regime.

In Chapter 7, a handful of introductory, two-dimensional models with dis-

continuous material transport were presented. The two-dimensional extension

of IETs were shown to reduce to one-dimensional mixing in the long-time limit,

due to the perpendicular action of cutting and shuffling. Therefore, a Rectangle

Exchange transformation was employed to initiate investigation into mixing from

planar PWIs without this idealisation. A polynomial relation on the time to

achieve a mixed condition with diffusivity rate is observed when the scaling pa-

rameters of the transformation led to good stirring in finite time. When modelling

the composition of the three mixing mechanism in toral automorphisms composed

with permutations, striation reassembly leads to mixing contamination and the

emergence of eigenfunctions. This is similarly observed on including a wave per-

turbation to generate non-uniformity in the stretching and folding element of

the transformation. Observations mirror those of Chapter 6, where scales in the

concentration field are larger compared to the smooth velocity field counterparts,

but regions of low compression still qualitatively capture dominant features of

the concentration field. An improvement in mixing is achieved when the compo-

sition of a discontinuous transformation aid particle transport, extending stirring

throughout the domain.

Discrete time modelling using maps satisfied the requirement of periodic dy-

namics to allow the derivation of transfer operators, however, modelling mixing

via operator splitting is an idealisation. Similarly, the velocity fields lacked a
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representation of walls and boundaries, and only cut and rearrange discontinuous

transformations were considered due to their ease in deriving transfer matrices,

which was essential for reliable computational modelling. In spite of these lim-

itations, the use of discrete time maps has provided substantial insight into the

driving mechanisms of mixing rates governed by discontinuous stirring fields.

Previously, the decay of variance from IETs with a diffusive step was well

approximated by a stretched exponential function [Wang & Christov (2018)]. The

results herein suggests that the mechanism leading to this observed finite time

mixing rate is due to the interaction of slowly decaying eigenfunctions. This is a

product of the fact IETs are not strong mixing, and as such the transfer operators

lack a spectral gap, with the modulus of all isolated eigenvalues tending to 1 in

the diffusion-less limit.

While Krotter et al. (2012) and Yu et al. (2016) suggested criteria for good

finite time stirring, a parameter study revealed that some of the criteria could

be relaxed when a diffusive step was included, and in contrast to the suggestions

of Yu et al. (2016), that 4 sub-intervals is enough for good stirring, the number

of cuts introduced at each iteration was found to be one of the best contributors

to faster mixing rates. However, the criteria that rearrangement of intervals

should follow an irreducible, non-rotational permutation is essential, which is

physically analogous to reducing large decompositions in the system. This latter

condition has been the main consideration when investigating the parameter space

of rotation angles in spherical tumblers, where a larger coverage of cutting lines is

ascribed to the potential for better mixing [Park et al. (2016, 2017); Smith et al.

(2017a)]. However, the conclusions of the study herein suggest that these other

studies may be fruitless if diffusion is present, since their aim is to reduce almost

all visible decompositions, which it is found here can be relaxed.

In contrast to chaotic systems which are weakly related to Péclet number, the

mixing rates of PWIs both in one and two dimensions were shown herein to have

a polynomial relation to the diffusivity rate. Also it was shown that in the low

diffusivity limit, the time to a mixed condition is sensitive to initial concentra-

tion arrangement. Therefore when investigating parameter optimization in cut

and shuffle systems a wide range of initial conditions would be required. For

small diffusivity rates, cutting and shuffling does not present itself as an efficient

method of stirring alone. The most successful split-and-recombine micro-mixers

employed configurations which mimic exponential stretching [Hobbs & Muzzio

222



CHAPTER 8. CONCLUSIONS

(1997); Schönfeld et al. (2004)], and the results of this thesis suggests that indeed

this is the best approach.

In discontinuous systems where the dominant mechanism driving the decrease

in the scale of segregation is from chaotic stirring, results of this thesis suggest that

discontinuities can both improve and contaminate mixing. If islands are present in

the flow, discontinuous permutations can be applied to enhance particle transport,

and potentially achieve a chaotic sea with almost full measure. In the literature,

slip deformations were similarly shown to increase the possibilities of particle

transport [Smith et al. (2016)], and cutting lines shown to destroy boundaries of

islands on contact [Smith et al. (2017c)]. In those flows, the slip deformations

are a consequence of the stretching dynamics, where here the results suggest that

adding a discontinuous step into a stirring protocol could assist mixing, similar to

how rotating walls can prevent contamination for no-slip boundaries and increase

mixing in the bulk flow [Gouillart et al. (2010); Thiffeault et al. (2011)]. In all

results presented, even when the chaotic stirring did not result in a decomposition,

discontinuities increased mixing in the early iterations from the introduction of

sharp interfaces into the concentration field. Therefore if the majority of mixing

occurs before the Batchelor scale is reached, then a discontinuous transformation

in a predominantly stretching velocity field could speed up the homogenization

process to a mixed condition.

However, the results of the models developed in this work showed that the

mixing rate can be severely contaminated when striations of like concentration

are reassembled by cutting and shuffling. Although the reassembled striations

are stretched and folded by the chaotic advection, they were shown to also con-

taminate long-time mixing rates. This is reminiscent of the deceleration in ex-

ponential rate of decay of correlations reported for expanding maps composed

with permutations [Byott et al. (2013, 2016)]. The contamination is also driven

by the inclusion of diffusion, which blurs the reassembly of like striations gener-

ating increased scales in the emerging eigenfunctions. Present in both one and

two-dimensional systems, the mechanism is essentially dependent on the initial

condition and unpredictable from stretching histories.

This additional contamination from blurring striations together with diffu-

sion, and increasing scales of the concentration field, could be the reason for the

counter-intuitive observation of deceleration in asymptotic mixing rate with in-

creased diffusivity. Although non-monotonicity has been reported in other maps

in the approach of the leading eigenvalue to the diffusion-less strong mixing rate
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τ , herein lies a novel observation of significant overshoot in |λ2| in models where

τ could be analytically derived. Whether similar observations would be made in

other systems, and whether a defining feature of these systems is non-continuous

or non-differentiable velocity fields, could be of interest to the wider dynamical

systems literature. For example, would systems driven by stochastic diffusion,

such as Brownian motion of particles, see similar scale increases in density profile

evolution when particles can jump discontinuously?

An additional impact of this results lies in the approach many studies in the

literature take, where numerical approximations of transfer operators are com-

monly computed when analytical derivation may be too complex. The mapping

method, an extension of Ulam’s method, is a common computational approach

outlined in Section 2.3.3. Including diffusion is problematic in such methods and

in some cases the action of numerical diffusion is relied upon as a basic approxi-

mation [Schlick et al. (2015); Singh et al. (2008b)]. In applications of optimizing

mixing, such as in micro-fluidic flows, if comparisons across discontinuous stirring

protocols were computed neglecting the true diffusivity properties of the fluid to

be stirred, an under or over approximation of the time to achieve the desired

result may occur. This could result in the correct mixing criteria not achieved in

the predicted time in real application.

8.1 Suggestions for future work

Preliminary results on mixing rates from Double IETs and RETs were presented

in this thesis, however these PWIs are idealised in some sense. The cutting lines in

the transformations are parallel to the x and y axes, and they could be thought

of as some of the simplest manifestations of planar piecewise isometries. The

advantage of these transformations were that either a transfer matrix could be

derived analytically for a set of basis functions, or a computational method easily

applied on a structured grids. The literature on piecewise isometries presents ex-

otic examples of transformations which are formed from translating, rotating and

reorienting pieces of the domain, generating cutting lines in a variety of directions

[Goetz (2000, 2003)]. The difficulty of including diffusion in these models is the

derivation of a numerical scheme which preserves the concentration field during

the advective step without numerical diffusion. Novel computational methods to

study diffusion in such piecewise isometries could inform the basis of future work.

Additionally, advancement could be made by devising experiments which exhibit
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discontinuous stirring mechanisms. A recent overview on segregation by cutting

and shuffling transformations by Smith et al. (2019) listed a number of piece-

wise isometries which could be realised, most notably they showed that rotating

overlapping circles, a toy model for duct flow [Shearer (1973)], can generate com-

plicated dynamics. As such experiments designed around the systems discussed in

Smith et al. (2019) could form a comparison to the results presented in Chapters

4 and 7 on purely cutting and shuffling stirring.

Advancing numerical models for the inclusion of diffusion in PWIs could then

extended investigation into systems composed with the three mixing mechanisms

of stretching and folding, cutting and shuffling and diffusion. In the studies

herein, the addition of discontinuous particle transport was only performed via

the cutting and shuffling of permutations since they allowed analytic derivation

of transfer operators and easy implementation of diffusion. It would be advan-

tageous to study the effect of diffusion in velocity fields with slip deformations,

such as those of Smith et al. (2016) and Smith et al. (2017b), and see if mixing

phenomena reported here also emerges. Similarly, not all stirring dynamics were

investigated. Whether discontinuous transformations can be used to limit the

impact of parabolic points to contaminate mixing could be another avenue of po-

tential investigation. Again, experimental configurations of a dye tracer diffusing

in systems which exhibit discontinuous, chaotically stirred configurations could

advance understanding of mixing rates in these mixed systems with an adaptation

to the Re-orientated Dipole Mixer of Smith et al. (2016) an obvious contender.

In general, the impact of discontinuities in particle transport has many open

questions, even in the absence of diffusion. For example, if a transformation

which is strong mixing is composed with a piecewise isometric map at each step,

is ergodicity and strong mixing preserved in the composed transformation if a

decomposition does not occur? Byott et al. (2013) showed that in expanding

maps, the exponential strong mixing rate could be made arbitrarily slow when

composed with a permutation if the number of intervals in the permutation tended

to infinity. Viana (2006) proved that in the sawtooth map, ergodicity is preserved,

but no results were found on the rates of decay of correlations. Future work

could focus on developing analytical techniques to prove ergodic properties of a

range of discontinuous maps, which would prove advantageous in addressing this

question. However, in comparison to the necessary developments of Katok et al.

(1986) to extend Pesin theory to maps with singularities, it is expected that such

developments would be non-trivial.
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Appendix A

Computation of Lyapunov

exponents

This method to compute the Lyapunov exponents for 2 dimensions is taken from

Parker & Chua (2012).

First a point x0 and an initial perturbation δx0 are chosen. The point is then

mapped forward to x1 = M(x0) and the Jacobian matrix DM computed at the

point x1 such that the deformation of the perturbation evolves as

δx1 = DM(x1) · δx0 (A.1)

Continued integration of (A.1) would give the rate of growth of δxn, and the

maximal Lyapunov exponent calculated from

h(x0, δx0) =
1

N
ln

N∏
n=1

||δxn||
||δx0||

. (A.2)

However when considering chaotic systems the length ||δxn|| will grow unbounded

with n and numerical problems will arise. Similarly all δx will align with the

eigenvector for the fastest stretching direction and computation of other eigen-

values, bar the maximal Lyapunov exponent, would be impossible.

To reliably calculate the spectrum of eigenvalues in an N dimensional system,

the perturbation at each iteration can be renormalised and an orthogonalisation

performed for the set of perturbation vectors δx which will prevent the align-

ment of all vectors with the fastest growing eigenvector. The maps considered

herein have N = 2, so the method is described in detail for calculating h1 and h2,

however the method is easily extend to higher N using Gram-Schmidt orthogo-

nalisation. The only constraint is that the orthogonalised vectors must span the

same subspace as the original vectors.
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First chose an initial state x0 and two initial perturbations δx1 and δx2 as two

linearly independent vectors, setting δx1
0 = δx1 and δx2

0 = δx2. The normalised

vectors are then u1
0 = δx1

||δx1|| and u2
0 = δx2

||δx2|| . Iterating the initial state x0 is

denoted as xk = Mk(x0) and the perturbation equations from (A.1)

δx1
k = DM(xk−1) · u1

k−1, δx2
k = DM(xk−1) · u2

k−1. (A.3)

The final step it to ensure that the deformation vectors remain orthonormal at

each iteration. This can be done by letting v1
k = δx1

k, u
1
k = v1

k/||v1
k|| and then

v2
k = δxk2 − 〈δx2

k,u
1
k〉u1

k

and finally u2
k = v2

k/||v2
k||, which is orthogonal to u1

k. Then on repeated iteration

of (A.1) and the orthonormalisation process that follows, the Lyapunov exponents

h1 and h2 can be found as

h1 =
1

K

K∑
k=1

ln ||v1
k||, h2 =

1

K

K∑
k=1

ln ||v2
k||. (A.4)

for K large enough.
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Derivation of transfer matrices

B.1 Derivation of discrete Fourier transfer ma-

trix for wave-perturbed toral automorphisms

Define M = A ·x+φ(x) where A is a non-singular matrix with integer coefficients

which has unit determinant and φ(x) is periodic in both directions with unit

period. The transfer matrix defining transfer between Fourier coefficients is

Mkq =

∫
T2

exp(2πi(q ·M−1(x)− k · x)− 4π2κk2)dx, (B.1)

but since M has unit determinant this can be written as

Mkq =

∫
T2

exp(2πi(q · x− k ·M(x))− 4π2κk2)dx (B.2)

with a change of variables. In line with Thiffeault & Childress (2003), taking

φ(x) =
K

2π

(
sin(2πx1)
sin(2πx1)

)
(B.3)

and expanding out the map M gives

Mkq = exp(−4π2κk2)

∫
T2

exp[2πi(q−k ·A)x− i(k1 + k2)K sin(2πx1)]dx (B.4)

where q is the initial wave number and k is the final wave number after one

advective iteration. The expression q − k · A can be written as

Q =

(
Q1

Q2

)
=

(
q1 − k1A00 − k2A10

q2 − k1A01 − k2A11

)
. (B.5)

The integral over x2 gives a Kronecker delta, thus the matrix reduces to

Mkq = e−4π2κk2

δ0,Q2

∫
T

exp[−2πiQ1x1 − i(k1 + k2)K sin(2πx1)]dx1. (B.6)
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The integral over x1 can be written in terms of a Bessel function of the first kind

via the following manipulation; first shift the integrals limits with x = x1 + 1/2;∫
T

. . . dx1 =

∫ 1/2

−1/2

exp(−2πiQ1x− πiQ1 − iχ sin(2πx+ π))dx (B.7)

where χ = (k1 + k2)K and then defining η = 2πx, such that dη = 2πdx

= e−iπQ1
1

2π

∫ π

−π
exp(−i[Q1η + sin(η)])dη = (−1)Q1JQ1(χ). (B.8)

The full transfer matrix is then written as

Mkq = exp(−4π2κk2)δ0,Q2(−1)Q1JQ1((k1 + k2)K). (B.9)

B.2 Fourier transfer matrix for permutations of

equal sized cells

The mapping Tσ(x) for a given permutation σ on symbols {1, 2, . . . , N} is given

by

Tσ(x) = x+
σ(i)− i
N

when x ∈ [(i− 1)/N, i/N). (B.10)

The transfer matrix between complex Fourier coefficient is

ĉ
(j+1)
k =

∞∑
q=−∞

M kq ĉ
(j)
q

where the transfer matrix can be computed as

M kq =

∫ 1

0

e2πiqT−1
σ (x)−2πikxdx (B.11)

Since M ′(x) = 1 for all x, from a change of variables the matrix can be found as

M kq =

∫ 1

0

e2πiqx−2πikTσ(x)dx

M kq =
N∑
l=1

∫ l/N

(l−1)/N

e2πiqx−2πikx−(2πik/N)(σ(l)−l)dx

=
N∑
l=1

e(−2πik/N)(σ(l)−l)
∫ l/N

(l−1)/N

e2πi(q−k)xdx

=
N∑
l=1

e(−2πik/N)(σ(l)−l) 1

2πi(q − k)

[
e2πi(q−k)x

]l/N
(l−1)/N
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=
N∑
l=1

e(−2πik/N)(σ(l)−l) 1

2πi(q − k)

[
e2πi(q−k)(l/N) − e2πi(q−k)(l−1)/N)

]
=

N∑
l=1

e(−2πik/N)(σ(l)−l) 1

2πi(q − k)

[
e2πi(q−k)(l/N) − e2πi(q−k)(l/N)−2πi(q−k)/N

]
.

Define the primitive Nth root of unity ω = e−2πi/N then,

=
N∑
l=1

e(−2πik/N)(σ(l)−l) (1− ω(q−k))

2πi(q − k)
e2πi(q−k)(l/N)

=
(1− ω(q−k))

2πi(q − k)

N∑
l=1

e(−2πik/N)(σ(l)−l)e2πi(q−k)(l/N)

=
(1− ω(q−k))

2πi(q − k)

N∑
l=1

e−2πikσ(l)/N+2πikl/N+2πiql/N−2πikl/N

=
(1− ω(q−k))

2πi(q − k)

N∑
l=1

e−2πikσ(l)/N+2πiql/N

=
(1− ω(q−k))

2πi(q − k)

N∑
l=1

ωkσ(l)−ql.

B.3 Derivation of the uniform baker’s transfor-

mation variance decay

Wonhas & Vassilicos (2002) present the solution that given the initial condition

c(x) = cos(2πx), that the variance is given by the equation

ψ(j) = ψ(0) exp

(
−32

3
πκ(4j − 1)

)
. (B.12)

Here it is briefly noted how this is derived.

First, for the initial condition cos(2πx) would have ĉ±1 = 0.5 such that ψ(0) =

2||ĉ1||2 = 0.5. The action of the baker’s transformation is to map ĉ±k → ĉ±2k,

so in the absence of diffusion and starting with the wave number k = 1 the

wavenumber at iteration (j) is ĉ±2j .

Considering this, when there is diffusion the variance changes by a factor

at each iteration according to the diffusion coefficient and the corresponding

wavenumber resulting in

ψ(j) = ψ(0)

j∏
l=1

exp(−8π2κ22l) (B.13)
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ψ(j) = ψ(0) exp(−8π2κ

j∑
l=1

4l) (B.14)

Now what is left to do is to evaluate the summation of the powers of 4. Have

that
j∑
l=1

4l+1 −
j∑
l=1

4l = 4j+1 − 4

=⇒ (4− 1)

j∑
l=1

4l = 4(4j − 1)

=⇒
j∑
l=1

4l =
4

3
(4j − 1)

Hence, substituting this into (B.14) derives the solution of Wonhas & Vassilicos

(2002).

B.4 Derivation of the Fourier transfer matrix

for non-uniform baker’s transformation

Assume the baker’s transformation is uneven such that for 0 < α < 1, have

β = 1− α and the mapping is such that

c(x) =

{
c(α−1x) for 0 ≤ x < α,

c(β−1(x− α)) for α ≤ x < 1.
(B.15)

This mapping is given in terms c(x) = c(T−1(x)). The transfer matrix between

Fourier modes is given from

ĉ
(j+1)
k =

∞∑
q=−∞

ĉ(j)
q

∫ 1

0

e2πiqT−1(x)−2πikxdx (B.16)

Since the map is 1 : 2 and not area preserving we derive the transfer matrix

directly from (B.16) as

Mα
qk =

∫ α

0

exp(2πiqx/α−2πikx)dx+

∫ 1

α

exp(2πiq(x−α)/β−2πikx)dx. (B.17)

If (q/α− k) = 0 then the first integral simply becomes

[x]α0 .

232



APPENDIX B. DERIVATION OF TRANSFER MATRICES

The second integral becomes∫ 1

α

exp(−2πi(qα/β) + 2πix(q/β − k))dx

Substituting α = 1− β into the integral derives∫ 1

α

exp(−2πiq/β + 2πix(q/β − k))dx

Equate the integral and again, substitute α = 1−β for α, the integral equates to

zero. Thus the first bracket equates to α and the second to zero, so the resonance

q/α = k has Mα
qk = α. Similarly, q/β = k, Mα

qk = β. Otherwise

Mα
qk =

[
exp(2πix(q/α− k))

2πi(q/α− k)

]α
0

+

[
exp(−2πiqα/β + 2πix(q/β − k))

2πi(q/β − k)

]1

α

(B.18)

=
α

2πi(q − αk)
[exp(−2πiαk)− 1]+

β

2πi(q − βk)
[exp(−2πiq(1− α)/β)− exp(−2πiαk)]

=
α(q − βk)

2πi(q − αk)(q − βk)
[exp(−2πiαk)− 1]+

β(q − αk)

2πi(q − αk)(q − βk)
[1− exp(−2πiαk)]

Mα
qk =

1

2πi(q − αk)(q − βk)

[
(β − α)q

(
1− e−2πiαk

)]
.

Taking out a factor of e−πiαk in the square bracket results and using the fact that

sin(x) =
eix − e−ix

2i
(B.19)

arrives at the transfer matrix of for the non-uniform baker’s transformation

Mα
qk =

sin(kπα)

π

(β − α)qe−kiπα

(q − αk)(q − βk)
. (B.20)
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Appendix C

Rectangle Exchange

transformation

C.1 Computational scheme for Haller’s rectan-

gle transformations with diffusion

In this section the computational method is described to compute the iterative

evolution of a scalar-field c(x, y, t) by Haller’s rectangle transformation with a

diffusional step.

For the advective step, the concentration field is shuffled by one application of

the rectangle transformation from Chapter 7 for a given tuple (α, β, γ). Similar

to an Interval Exchange transformation with rational dependence between sub-

intervals, if α, β and δ are rationally dependent, then a permutation between

sub-rectangles of equal size can be constructed on the unit torus. By converting

the scaling parameters to fractions, for example α = αN/αD, then M can be

defined as the least common multiple between αD, βD and δD. A sub-rectangle

with sides of equal length 1/M is the smallest piece that can be created from

cutting and shuffling by the transformation. By assigning a reference number i

to each of these small sub-rectangles and an associated colour C to the face of

the rectangle, segregation by the permutation can be investigated in a similar

fashion to that of Krotter et. al. by constructing a permutation Π between the

sub-rectangles and where they are shuffled to by C(j)(i) = C(j−1)(Π−1(i)). This

method is restrictive to the types of concentration field which can be considered

and does not necessarily allow a high resolution spatially if the effect of diffusion

in the system is of interest.
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Rather, a grid can be constructed of uniform size in both the x and y direc-

tion, such that ∆x = ∆y = h and h = 1/MN , where N ∈ N>0 and is chosen to

be sufficiently large. The concentration field c(x, y, t) is then approximated nu-

merically as a vector Ci·MN+j = c(xi, yj, t). A transfer matrix φ for the rectangle

transformation S can be constructed by

φi′·MN+j′,i·MN+j =

{
1 if (xi, yj) = S(xi′ , yj′)

0 otherwise.
(C.1)

By choosing h = 1/MN the transformation is captured perfectly on the uniform

grid with no numerical diffusion in the advective step.

For the diffusive step the heat equation

∂c

∂t
= κ

(
∂2c

∂x2
+
∂2c

∂y2

)
. (C.2)

is solved with periodic boundary conditions over the interval t = 0 to t = 1. Finite

difference methods (FDMs) are simple and effective solvers for partial differential

equations such as the heat equation. They approximate the derivatives using

finite differences on a discretization in space and time and reduce the problem to

solving a system of algebraic equations. Taking the spatial discretisation already

established for the advective step, the time interval is discretised so that it has

uniform increments ∆t = tk+1−tk for all k. One-dimensional FDMs are relatively

quick and many unconditionally stable methods exist, such as Crank-Nicolson,

however extension to two-dimensions using such methods produces a complicated

system of equations.

An Alternating Direction Implicit (ADI) scheme splits the finite difference

scheme into two steps, for each derivative, and can be computed relatively quickly

if designed to solve systems of tridiagonal matrices. At each time step the finite

difference is solved first for the x derivative implicitly and and then the y deriva-

tive implicitly, such that

c
k+1/2
ij − ckij

∆t/2
= κ

δ2
xc
k+1/2
ij + δ2

yc
k
ij

h2
(C.3)

ck+1
ij − c

k+1/2
ij

∆t/2
= κ

δ2
xc
k+1/2
ij + δ2

yc
k+1
ij

h2
(C.4)

where δ2
p is the central second difference operator for the p− th coordinate

δ2
xcij = ci+1,j − 2cij + ci−1,j, δ2

ycij = ci,j−1 − 2cij + ci,j−1. (C.5)
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The systems of equations to solve these can be made tridiagonal by changing the

referencing on the coordinates (i, j) between each of the half steps. The Thomas

Algorithm is particularly fast at solving tridiagonal systems and is of O(N) for

N systems of equations, while Gaussian elimination is (N3).

Complications arise by choosing periodic boundary conditions for the system

which means that the systems of unknowns are no longer tridiagonal but have

elements A1,MN 6= 0 and AMN,1 6= 0, however the Sherman-Morrison algorithm

reduces the problem to solving two tridiagonal systems via the Thomas algorithm

at each implicit derivative step retaining O(N).

For the computations, α, β and δ were chosen such that M = 100 and N

was taken to be 10 such that ∆x = ∆y = 1/1000 in the spatial directions and

∆t = 0.01 was taken. For diffusion coefficient values κ ∈ [10−6, 10−4] this time

step was sufficient.
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Figure C.1: α = 0.07 in all images. β and δ are changed according to labels.

C.2 Segregation study

To see if the scaling t% ∝ κ−η with η < 1 holds for piecewise isometries in

higher dimensions, the parameters α, β and γ need to be chosen such that they

produce good segregation in finite time. This appendix presents a small study on

the choice of parameters (α, β, δ), more specifically the respective scaling sized

between the sub-rectangles, and the resulting decrease in the scale of segregation

after a number of iterations.

The parameters are characterised as being either small, medium or large in

width, relative to the other parameters. For example, Figure C.1 gives 9 examples

where the value of α is small, α = 0.07 on the unit torus, while β and δ vary

between three values. The values β = 0.11, 0.43 and 0.73, and δ = 0.11, 0.47,
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Figure C.2: Segregation after 100 iterations for the initial condition half-black, half

white. α = 0.07 in all images. β and δ are changed according to Figure C.1.

0.89, are chosen to represent small, medium or large values of these parameters in

comparison to small α, but also all result in long-periodic dynamics of the RETs,

i.e. reassembly of the initial condition only occurs for an extremely large number

of iterations. This is because no smaller value than M = 100 can represent the

RET for these parameters.

Figure C.2 plots the resulting stirring after 100 iterations for the parameter

fields in Figure C.1. For nearly all of the tuples with small α, large regions which

are poorly stirred exist within the domain. Only when β is medium sized, a more

even dispersion of black and white are visible throughout the domain.

Figure C.3 repeats a similar scaling plot with α fixed at a medium value and

the same δ values explored. The scales of β vary however, taking into account

the updated value of α, were now the small, medium and large values of β are

associated with the remainder of the domain once α is fixed. Figure C.4 plots
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Figure C.3: α = 0.07 in all images. β and δ are changed according to labels.

the resulting stirring after 100 iterations for the parameter fields in Figure C.3.

Better mixing is observed throughout the 9 parameter tuples explored. The best

decreases in the scale of segregation appear when β = 0.23 and δ = 0.11 or 0.47.

Qualitatively, it appears as though a medium scaling of all parameters result in

the best stirred concentration field after 100 iterations.

As a final study, for large α, fixing small β, Figure C.5 shows three configu-

rations of the RET with varying δ. The segregation plots of Figure C.6 reveal

these to the be worse parameter configurations to achieve good stirring in a short

finite time.
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Figure C.4: Segregation after 100 iterations for the initial condition half-black, half

white. α = 0.07 in all images. β and δ are changed according to Figure C.3.

Figure C.5: α = 0.07 in all images. β and δ are changed according to labels.
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Figure C.6: Segregation after 100 iterations for the initial condition half-black, half

white. α = 0.07 in all images. β and δ are changed according to Figure C.5.
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