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Abstract 

 

Synthetic microplastics ( ≤ 5-mm fragments) are anthropogenic contaminants that are 

rapidly accumulating in coastal environments worldwide. The distribution, abundance, 

ecological impacts and fate of these pollutants are poorly understood. In this study, a 

novel reflectance micro-FT-IR spectroscopy method was developed to detect 

microplastics in sediments from 17 sites (UK), using polyethylene (PE) as the model 

polymer. Additionally, a 14-day laboratory microcosm experiment was used to 

characterise bacterial succession on low-density polyethylene (LDPE) fragments over 

time and across three sediment types (ranging from sand to silt) from the Humber 

Estuary, UK. In contrast with ATR-FT-IR measurements, micro-FT-IR measurements 

in reflectance mode were susceptible to refractive error when analysing irregularly 

shaped PE fragments. However, molecular mapping by reflectance micro-FT-IR 

spectroscopy successfully detected PE within polymer-spiked sediments and in a non-

spiked sediment retentate. Moreover, reflectance micro-FT-IR spectra of PE were 

consistent across all 17 sampling sites. Bacteria were found to rapidly colonise LDPE 

fragments, with bacterial community structure and diversity differing significantly from 

those in bulk sediments, as demonstrated by scanning electron microscopy, T-RFLP 

analysis and 16S rRNA gene sequencing. The composition of LDPE-colonising 

assemblages within different sediment types increasingly converged over time, with 16S 

rRNA gene sequencing analysis identifying site-specific populations of the genera 

Arcobacter (Epsilonproteobacteria) and Colwellia (Gammaproteobacteria) as dominant 

members (up to 93% of sequences) of the plastic-associated communities after 14 days 

of exposure. Log-fold increases in the relative abundance of LDPE-associated bacteria 

occurred within 7 days of exposure with bacterial abundance differing significantly 

across sediment types, as shown by Q-PCR amplification of 16S rRNA genes. 



 

iv 

 

Attachment of bacterial cells and specifically of Colwellia spp. onto LDPE surfaces was 

demonstrated by CARD-FISH analysis. These results provide a foundation to both 

developing improved spectroscopy methods to detect microplastics, and characterising 

ecological interactions between microorganisms and microplastic debris within marine 

sediments. 
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1.1. Background 

We live in the Plastic Age, with industrialised nations now reliant on synthetic polymers 

in most aspects of our lives. The worldwide demand for plastics is estimated to have 

increased annually by 10% since the 1950s, with their total mass of production reaching 

245 million tonnes in 2006 (PlasticsEurope, 2008; Andrady and Neal, 2009). As a 

consequence of this 600-fold increase in predicted consumption during the past 60 

years, synthetic thermoplastics (e.g. polyethylene) now comprise the most abundant and 

rapidly growing component of anthropogenic debris entering the Earth’s oceans 

(Derraik, 2002; Moore, 2008; Barnes et al., 2009; Law et al., 2010). The increasing 

significance of this debris as a descriptor of the ecological integrity of marine 

ecosystems is recognised in environmental treaties across the globe, including the 

multilateral European Marine Strategy Framework Directive (Cheshire et al., 2009; 

Galgani et al., 2010; GESAMP, 2010a, 2010b).  

 

Plastic waste is globally distributed across both surface waters and sediments 

within the marine environment, reflecting the widespread use of polymer products and 

their ability to resist physical and biological degradation for centuries (Galgani et al., 

2000; Moore et al., 2001; Katsanevakis and Katsarou, 2004; Sudhakar et al., 2007b; 

Andrady and Neal, 2009). The environmental fate of this waste is controlled by both 

human activities and hydrogeological factors (e.g. littering, accidental disposal and 

oceanic circulation), with an excess of 200,000 plastic fragments having been 

discovered within a square kilometre of water in the North Atlantic Subtropical Gyre 

(Galgani et al., 2000; Katsanevakis and Katsarou, 2004; Morishige et al., 2007; Law et 

al., 2010; Browne et al., 2011). Since the majority of synthetic polymers sink in 

seawater, sediments function as sinks for the accumulation of plastic debris (Thompson 

et al., 2004; Reddy et al., 2006; Moore, 2008; Barnes et al., 2009; Browne et al., 2011; 
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Claessens et al., 2011; Cole et al., 2011; Hidalgo-Ruz et al., 2012). For example, up to 

47.4 kilogrammes per square kilometre of anthropogenic debris have been discovered in 

the Eastern Mediterranean seabed, over half of which was comprised of plastic 

(Koutsodendris et al., 2008). In comparison, 5.1 kilogrammes per square kilometre of 

floating plastics have been described in the North Pacific Central Gyre (Moore et al., 

2001; Ryan et al., 2009). 

 

The ubiquity and persistence of synthetic polymers are promoting global public 

concern about the impacts of plastic pollution on marine wildlife. These impacts are 

most apparent when considering the risks of entanglement in and ingestion of readily 

visible (> 5-mm) fragments of plastic by higher organisms, such as birds and fish (Laist, 

1987; Derraik, 2002; Moore, 2008; Gregory, 2009). Other impacts of plastic waste on 

marine animals include the transport of invasive species and alterations in the structure 

of macrobial communities in the seabed (Barnes, 2002; Katsanevakis et al., 2007; 

Gregory, 2009). For example, both the numerical abundance and species diversity of 

benthic epifauna have been shown to increase in the presence of marine litter, with 

potential long-term impacts upon intra- and interspecific interactions between different 

organisms residing on the seafloor (Katsanevakis et al., 2007). 

 

Within the last decade, increasing attention has been directed towards the 

proliferation and potential environmental impacts of microplastics (defined as ≤ 5-mm 

fragments) in marine ecosystems (Figure 1.1) (Thompson et al., 2004; Barnes et al., 

2009; NOAA, 2009; Andrady, 2011; Claessens et al., 2011; Hidalgo-Ruz et al., 2012). 

However, we only possess an elementary understanding of the distribution, abundance 

and fate of microplastics in the marine environment, partially due to the difficulty of 

detecting and quantifying these pollutants (NOAA, 2009; GESAMP, 2010b; Cole et al., 
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2011; Hidalgo-Ruz et al., 2012). The ecological interactions of microplastic debris with 

marine organisms are also poorly understood (Barnes et al., 2009). For example, 

although microorganisms (bacteria, archaea and microbial eukaryotes) mediate 

functions that sustain life in our oceans and could facilitate the breakdown of 

microplastic-associated chemical compounds or even of the debris itself, little research 

has been directed towards assessing the interactions between microplastics and 

microbial communities in marine ecosystems. 

 

 

Figure 1.1. Scanning electron micrograph of polyethylene microplastics. The scale bar is 1 mm.  

 

Herein, our knowledge concerning the distribution and detection of 

microplastics in marine ecosystems, and the potential interactions of these pollutants 

with marine organisms are discussed in order to identify avenues for novel research. 

Our understanding concerning methods for the detection, identification and enumeration 

of microplastics is evaluated. Subsequently, an appraisal of existing research into the 

ecological impacts of microplastics on higher organisms is provided. Following a brief 

overview of the role of microorganisms as drivers of the functioning of marine 

ecosystems, research into microbial-plastic interactions and the fate of marine plastic 

litter is explored with the aim of identifying key opportunities for future investigation. 
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Given the role of the sediment environment as a sink for plastic pollution (Thompson et 

al., 2004; Reddy et al., 2006; Moore, 2008; Barnes et al., 2009; Browne et al., 2011; 

Claessens et al., 2011), emphasis is given to methods for the detection of microplastics 

and to investigate microbial-plastic interactions within benthic marine habitats. 

 

1.2. Microplastic Pollution in Marine Ecosystems 

1.2.1. Sources, distribution and abundance of microplastics 

Although the accumulation of small fragments of plastics in the marine environment has 

been recognized since the 1970s, research into their sources, distribution and abundance 

has only gained momentum during the last decade, following the identification of 

microplastics as a distinct category of anthropogenic debris (Carpenter et al., 1972; 

Carpenter and Smith, 1972; Colton et al., 1974; Morris and Hamilton, 1974; Thompson 

et al., 2004; NOAA, 2009; Cole et al., 2011). Since then, it has become evident that 

microplastics are entering marine habitats at a global scale and particularly in the 

Northern Hemisphere, either as components of industrial and domestic waste or as a 

result of the photo-oxidative, hydrolytic and mechanical breakdown of larger plastics 

(Figure 1.2) (Thompson et al., 2004; Koutny et al., 2006; Ng and Obbard, 2006; 

Browne et al., 2007; Moore, 2008; Barnes et al., 2009; Corcoran et al., 2009; Fendall 

and Sewell, 2009; Andrady, 2011; Browne et al., 2011; Cole et al., 2011). For example, 

sewage contaminated with synthetic polymer fibres created as a by-product of washing 

clothes and use of exfoliating cleansers has been identified as a major source of 

microplastics in marine habitats (Fendall and Sewell, 2009; Browne et al., 2011; Cole et 

al., 2011). Wind-blown plastics from landfills may also become transported into the 

marine environment (Barnes et al., 2009). Other sources of marine microplastics 

include the manufacture of plastic pellets for industry, commercial and recreational 

fishing, aquaculture and coastal tourism, among other activities (Cole et al., 2011). 
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Figure 1.2. Schematic diagram of the sources and transport of synthetic microplastics into the 

marine environment. Microplastics may be transported into marine habitats either a) directly 

(termed primary microplastics) or b) indirectly due to fragmentation of larger plastic fragments 

(secondary microplastics) (Cole et al., 2011). For a detailed discussion concerning the sources, 

transport, distribution and abundance of microplastics in marine ecosystems, see Ryan et al. 

(2009), Cole et al. (2011) and Hidalgo-Ruz et al. (2012). 

  

Microplastics are likely to constitute the numerically most abundant type of 

plastic debris in marine ecosystems, particularly in coastal environments where these 

pollutants may represent as much as 80% of plastic litter (Browne et al., 2007; Barnes et 

al., 2009; Corcoran et al., 2009; Browne et al., 2010; Browne et al., 2011; Claessens et 

al., 2011). For example, at least two billion microscopic fragments of plastic have been 

estimated to have entered Californian coastal waters over three days, merely via two 

rivers (Moore et al., 2005). Near a polyethylene production site in Sweden, an excess of 

100,000 microplastic fragments has been recorded within a cubic metre of seawater 

(OSPAR, 2009). Moreover, at an intertidal site near a ship-wrecking yard in India, 

microplastics have been discovered in the sediment at a concentration of 81 parts per 

million by mass (Reddy et al., 2006). Although sediments and seawater from other 

study sites across the globe have typically been found to contain comparatively lower 

concentrations of microplastics (see Claessens et al., 2011), the abundance of these 
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pollutants in the marine environment is expected to increase in the future as a result of 

increased consumption of plastic products and population growth (Thompson et al., 

2004; Barnes et al., 2009; Browne et al., 2011; Claessens et al., 2011). Indeed, 

significant increases in the number of microplastic fragments over the last few decades 

have already been demonstrated both within marine sediments and seawater (Thompson 

et al., 2004; Barnes et al., 2009; Claessens et al., 2011). Additionally, whilst the highest 

abundances of microplastics have frequently been reported within densely populated 

areas and in proximity to land-based human activities (Barnes et al., 2009; Browne et 

al., 2011; Cole et al., 2011), it is probable that future research will detect increasing 

concentrations of microplastics in geographically remote locations, such as Arctic and 

Antarctic environments (Derraik, 2002; Moore, 2008; Barnes et al., 2010; Zarfl and 

Matthies, 2010). 

 

1.2.2. Methods for the detection of microplastics 

Currently, there are no standardised protocols for surveying, quantifying and monitoring 

microplastics in natural ecosystems (NOAA, 2009; Ryan et al., 2009; GESAMP, 

2010b). Previously described methods for enumerating microplastics in marine waters 

and sediments have typically involved separation of putative polymer fragments from 

other materials by flotation in saline solution, followed by filtration and/or sieving of 

the fragments, and their visual separation and examination by light microscopy 

(reviewed by Hidalgo-Ruz et al., 2012; see Thompson et al., 2004; Ng and Obbard, 

2006; Reddy et al., 2006; Corcoran et al., 2009; Andrady, 2011; Claessens et al., 2011). 

Due to difficulties associated with the efficient separation of microplastics from 

seawater and sediments in particular, only limited confidence can be placed on present 

estimates of the extent of microplastic pollution in the marine environment (Ryan et al., 

2009; GESAMP, 2010b; Claessens et al., 2011; Hidalgo-Ruz et al., 2012). Additionally, 
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microplastics frequently resemble sediment particles and other non-polymeric materials 

in appearance, and their characterisation by visual means is both labour-intensive and 

prone to error (GESAMP, 2010b). As such, spectroscopic techniques and specifically 

micro-Fourier-transform infrared (micro-FT-IR) spectroscopy (Skoog et al., 2007) have 

been used to detect microplastics in marine habitats by distinguishing the molecular 

structure of different plastic types from other materials (Hidalgo-Ruz et al., 2012). 

 

Infrared spectroscopy is a well-established technique to identify chemical 

functional groups in a molecule based on their vibration modes at different infrared 

frequencies (Skoog et al., 2007). The functional groups of synthetic plastics have been 

elucidated in detail and there are extensive databases for the identification of unknown 

polymers. Therefore, the identity of putative plastics in environmental samples may be 

determined by comparing the absorbance or transmission spectra of the analysed 

materials with those in a standard spectral library (Ng and Obbard, 2006; Browne et al., 

2010; Browne et al., 2011). The two main FT-IR operating modes are transmittance and 

reflectance (Skoog et al., 2007). Transmittance analyses are likely to be of limited 

suitability for identifying microplastics because the sample must be either transparent or 

sufficiently thin to transmit the infrared beam. Reflectance measurements are 

particularly useful for characterising solid samples that cannot be analysed in 

transmission mode (e.g. Ojeda et al., 2009). A separate reflective method is known as 

attenuated total reflectance FT-IR (ATR-FT-IR) spectroscopy (Skoog et al., 2007). In 

contrast with other FT-IR methods, in ATR-FT-IR spectroscopy the infrared beam is 

directed onto a highly refractive crystal in contact with the sample surface, enabling 

measurements with high signal-to-noise ratios and minimal spectral distortion even in 

the presence of irregularly shaped sample surfaces (Zhongsheng et al., 2007; Davis et 

al., 2010). All of the above techniques are compatible with microscopy (termed micro-
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FT-IR spectroscopy). Additionally, micro-FT-IR analyses may be used to visualise the 

spatial distribution of different functional groups within a sample, either by molecular 

mapping approaches or focal plane array (FPA)-based imaging (described in Levin and 

Bhargava, 2005). Briefly, mapping involves the spectral visualisation of a given area 

based on sequential measurements collected at spatially separated, user-defined point 

intervals. In contrast, FPA-based imaging enables rapid visualisation of an entire field 

of view based on simultaneous collection of spectra from the sample surface (Levin and 

Bhargava, 2005).   

 

Whilst the need for improved methods for separating microplastics from 

seawater and sediments is widely recognised (NOAA, 2009; GESAMP, 2010b), the 

development of improved spectroscopy techniques for identifying these pollutants has 

received little attention. For example, although micro-FT-IR spectroscopy is regarded as 

the most reliable method for detecting microplastics in marine ecosystems (Barnes et 

al., 2009; Hidalgo-Ruz et al., 2012), the suitability of different FT-IR techniques to 

identify these pollutants has not been assessed. Moreover, there has been no research 

into the spectral visualisation of microplastics. To date, conventional micro-FT-IR 

analyses in both transmittance and reflectance mode (Skoog et al., 2007) have been 

used to identify microplastics within coastal sediments (Ng and Obbard, 2006; Browne 

et al., 2010). Attenuated total reflectance FT-IR (ATR-FT-IR) spectroscopy and near-

infrared spectroscopy (Skoog et al., 2007) have also been employed to analyse 

microplastics within beaches and open-water environments (Corcoran et al., 2009; Hirai 

et al., 2011). Additionally, a single study has used Raman microspectroscopy to identify 

microplastics within crustacean gut samples (Murray and Cowie, 2011). Even so, all 

presently known methods for the spectroscopic analysis of microplastics are subject to a 
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broad range of uncertainties introduced by both sampling error and the prior visual 

selection of fragments for characterisation. 

 

1.3. Ecological Impacts of Microplastics on Higher Organisms 

Whilst microplastics may represent a physical hazard to marine animals, as in the case 

of larger plastic fragments (e.g. via ingestion and entanglement), their prevalence, high 

bioavailability and surface area-to-volume ratio have promoted significant additional 

concern over the ability of this debris to function as a substrate for the accumulation on 

and transport of plastic additives (e.g. organotins and phthalates) and of persistent 

organic pollutants (e.g. polynuclear aromatic hydrocarbons and polychlorinated 

biphenyls) (Mato et al., 2001; Masó et al., 2003; Rios et al., 2007; Teuten et al., 2007; 

Karapanagioti and Klontza, 2008; Teuten et al., 2009; Colabuono et al., 2010). The 

selective ingestion and subsequent bioaccumulation of microplastics has been 

demonstrated for suspension- and deposit-feeding invertebrates at the base of marine 

food webs, and there is emerging evidence for the transport of these fragments to higher 

trophic levels (Eriksson and Burton, 2003; Thompson et al., 2004; Teuten et al., 2007; 

Browne et al., 2008; Graham and Thompson, 2009; Teuten et al., 2009; Cole et al., 

2011; Murray and Cowie, 2011). For example, a recent survey of plastic ingestion by 

the sediment-dwelling crustacean Nephrops norvegicus reported the presence of 

microplastics in 83% of gut content samples obtained from the Clyde Sea (Murray and 

Cowie, 2011). Moreover, it has been estimated that the presence of a single 

microgramme of phenanthrene-contaminated polyethylene in a gramme of sediment 

significantly increased the body burden of this priority contaminant for the lugworm 

Arenicola marina (Teuten et al., 2007). Desorption of plastic-associated contaminants 

in the gut has also been demonstrated for the streaked shearwater (Calonectris 

leucomelas) (Teuten et al., 2009). As such, microplastics may constitute a threat to the 
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functioning of marine ecosystems which parallels that of engineered nanomaterials (Zhu 

et al., 2006; Blickey and McClellan-Green, 2008; Koehler et al., 2008; Andrady, 2011).  

 

1.4. Interactions between Microorganisms and Microplastics 

In the following sections, the significance of microorganisms in maintaining the 

ecological integrity of the marine environment and in potential interactions with 

synthetic microplastics is illustrated. For a comprehensive discussion of how 

microorganisms drive the biogeochemistry of marine ecosystems, the reader is referred 

to reviews by Arrigo (2005), Azam and Malfatti (2007), Karl (2007), Falkowski et al. 

(2008) and Strom (2008). 

 

1.4.1. Microorganisms and the marine biosphere 

Microorganisms are incredibly abundant in marine ecosystems and may reach up to 

hundreds of millions of bacterial cells in a gramme of wet marine sediment (Amann et 

al., 1995; Sievert et al., 1999). The total number of prokaryotic cells in marine 

subsurface habitats has been estimated as 355× 1028, with a tota1 of 170× 1026 cells 

occurring within the top 10 cm of open-ocean sediments (Whitman et al., 1998). The 

metabolically active fraction of these cells underpins the functioning of marine food 

webs by catalysing redox reactions that control primary productivity and the cycling of 

nutrients (including nitrogen, phosphorus and sulphur) in the oceans (Figure 1.3) 

(López-Urrutia et al., 2006; Hamasaki et al., 2007; Falkowski et al., 2008; Gasol et al., 

2008). Moreover, phototrophic microorganisms including algae and cyanobacteria (e.g. 

the genera Prochlorococcus and Synechococcus) are responsible for carbon fixation 

within pelagic marine environments (Falkowski et al., 1998; DeLong and Karl, 2005). 

As such, the entire marine carbon cycle is tightly coupled to elemental transformations 

that are exclusively mediated by microorganisms (Arrigo, 2005; Madsen, 2008). 
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Figure 1.3. Schematic diagram providing a simplified overview of nutrient assimilation and 

remineralisation by microorganisms in marine ecosystems. The conversion of inorganic 

nutrients to microbial biomass underpins the functioning of macrobial food webs in the marine 

environment, which in turn represents a major source of sediment organic matter. Organic 

matter deposited within sediments is subsequently remineralised by benthic microorganisms. 

For information concerning oceanic primary production, the microbial loop and pelagic 

elemental cycling, see Falkowski et al. (1998), DeLong and Karl (2005), Azam and Malfatti 

(2007) and Pomeroy et al. (2007).     

 

Marine sediments provide habitats for microbial growth that are fundamentally 

different from those in the water column (Falk et al., 2007). Horizontal and vertical 

gradients of physical and geochemical parameters (e.g. pH, oxygen and redox 

conditions, organic carbon, nutrients and light) structure the local composition and 

activities of microbial communities in the seafloor at the scale of millimetres (Edlund et 

al., 2008; Köster et al., 2008, Wu et al., 2008). The responsiveness of these 

communities to variation in habitat physicochemistry and the availability of growth 

substrata render the composition and metabolic activities of microbial assemblages 

within the seafloor potentially vulnerable to perturbation. Moreover, most of the 

biogeochemical transformations mediated by marine microorganisms occur in coastal 
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sediments which are at greater risk of exposure to human activities (including the 

disposal of synthetic plastics) than offshore sites (Walsh, 1991; Moore, 2008; Wu et al., 

2008). 

 

Given the high metabolic potential of microbial communities in the seafloor and 

the role of coastal benthic habitats as sinks for the deposition of plastic litter (Section 

1.2.1), investigation of the interactions between microorganisms and plastics within 

coastal sediments is of particular interest to understanding of the ecological impacts and 

fate of marine microplastic debris. In order to guide research into the responses of 

microorganisms to microplastics in marine habitats, it is pertinent to consider existing 

research into microbial-plastic interactions.  

 

1.4.2. Investigation of microbial-plastic interactions 

Microorganisms and particularly bacteria are known to function as primary colonists of 

several types of artificial materials present in marine ecosystems, including synthetic 

plastics (Dang and Lovell, 2000; Dang et al., 2008; Lee et al., 2008). Therefore, it is 

possible that plastic-colonising microbial assemblages participate in activities 

contributing to the absorption and/or desorption of plastic-associated compounds, and 

potentially even polymer biodegradation. Within marine habitats, microplastic particles 

may also function as sites for colonisation by microbial taxa that possess the capacity to 

influence the ecology and resident microflora of higher organisms following their 

ingestion (Deines et al., 2007; Graham and Thompson, 2009). A summary of the 

potential, yet primarily uncharacterised interactions between microplastics, plastic-

associated additives, contaminants, microbial assemblages and higher organisms is 

provided in Figure 1.4. 
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Figure 1.4. Schematic diagram of potential interactions between synthetic microplastics and 

marine microorganisms (bacteria, archaea and microbial eukaryotes) in relation to the wider 

environmental impacts of this debris. The filled arrows indicate interactions for which 

experimental evidence exists and the white arrows correspond to interactions which have not 

been explored within marine sediments. The colonisation of microplastics by microbial 

assemblages may a) occur directly, b) depend on the presence of plastic-associated organic 

compounds, c) occur following ingestion by higher organisms and/or become influenced by the 

gut microflora, d) mediate activities contributing to the biodegradation of plastic-associated 

chemicals or the plastics themselves, potentially influencing the extent and severity the of e) 

chemical and f) physical impacts of microplastics on higher organisms.     

 

Whilst there is long-standing evidence for the ability of floating fragments of 

plastic to function as sites for microbial attachment and the subsequent formation of 

plastic-associated biofilms, the interactions between microorganisms and plastic debris 

in aquatic ecosystems have received limited attention (Carpenter et al., 1972; Carpenter 

and Smith, 1972; Morris and Hamilton, 1974). In fact, evidence for the ecological 

impacts of plastic debris on microorganisms in these environments is largely restricted 

to demonstrations of the colonisation of and survival on polymer surfaces by bacteria 

and algae in seawater (Dang and Lovell, 2000; Masó et al., 2003; Dang et al., 2008; Lee 

et al., 2008; Tatchou-Nyamsi-König et al., 2008, 2009; Webb et al., 2009). In contrast, 



Chapter 1 – Introduction 

15 

 

no studies have characterised fundamental processes of microbial plastic colonisation in 

marine sediments that function as sinks for the accumulation of plastic debris 

(Thompson et al., 2004; Reddy et al., 2006; Barnes et al., 2009; Browne et al., 2011; 

Claessens et al., 2011; Cole et al., 2011). 

 

Despite detailed accounts of the likely prerequisites and mechanisms underlying 

the microbial biodegradation of plastics (Chiellini et al., 2003; Gu, 2003; Kawai et al., 

2004; Koutny et al., 2006; Lucas et al., 2008; Shah et al., 2008; Eubeler et al., 2010), 

little research has been conducted into the biodegradation of plastic litter in marine 

habitats. The biodegradability of synthetic polymers is thought to depend upon the type 

and chemical properties of the plastic, the environment (e.g. seasonality and the 

availability of oxygen) and metabolic interactions within plastic-associated biofilms 

(Bonhomme et al., 2003; Gilan et al., 2004; Artham et al., 2009). Although research 

into the biotransformation of plastics has focused on microorganisms from terrestrial 

habitats (e.g. Chiellini et al., 2003; Arkatkar et al., 2009), a limited number of 

experiments have characterised the capacity of microbial assemblages in the water 

column to utilise synthetic polymers as a resource for growth (Table 1.1). For example, 

low-density polyethylene has been estimated to degrade more rapidly than high-density 

polyethylene, polycarbonate and polypropylene immersed in seawater (Sudhakar et al., 

2007b; Sudhakar et al., 2008; Artham et al., 2009). A positive relationship between the 

degree of polymer oxidation and rates of in vitro plastic degradation has also been 

demonstrated for polyethylene films in freshwater (Chiellini et al., 2007). However, 

only two studies have examined the potential for sediment microorganisms in marine 

ecosystems to biodegrade plastic debris (Kumar et al., 2007; Balasubramanian et al., 

2010).  
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Overall, the rates of degradation of plastics in marine systems are likely to be 

significantly lower than in their terrestrial counterparts, due to the low availability of 

nutrients, oxygen and light (Barnes et al., 2009). Additionally, whilst several methods 

(e.g. microscopy, mass loss, FT-IR spectroscopy, calorimetry and respirometry) have 

been used to measure biodegradation of plastic litter in the environment, there is a lack 

of direct experimental evidence demonstrating the utilisation of synthetic plastics as a 

source of carbon for microbial growth (Lucas et al., 2008). Therefore, unequivocal 

evidence for the biodegradation of plastics is yet to emerge, because it is unclear 

whether microbial activities degrade the plastic itself, exploit plastic-associated 

chemicals or both (Koutny et al., 2006; Lucas et al., 2008; Eubeler et al., 2010). 
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Microbial taxa Plastic type Environment  Exposure Comments  References 
Pseudomonas sp. B2 Polycarbonate film 

containing bisphenol A 
(BPA) 

Seawater In situ and 
in vitro 

9% loss of mass over 12 
months, leaching of BPA 

 Artham and Doble (2009) 

Unidentified consortium Polycarbonate, 
polyethylene and 
polypropylene coupons 

Seawater In situ Degradation dependent on 
plastic type and season 

 Artham et al. (2009) 

Unidentified consortium Polyethylene film 
containing pro-oxidant 
additives 

Freshwater  In situ Degradation dependent on 
degree of polymer oxidation 

 Chiellini et al. (2007) 

Unidentified consortium Polyethylene films with 
and without starch 
additive 

Seawater In situ and 
in vitro 

Little or no evidence for 
degradation over 20 months  

 Rutkowska et al. (2002a) 

Unidentified consortium Polyurethane sheets Seawater In situ and 
in vitro 

Degradation dependent on 
polymeric cross-linking 

 Rutkowska et al. (2002b) 

Bacillus cereus, B. sphericus, Vibrio 
furnisii, Brevundimonas vesicularis 

Nylon pellets Seawater In vitro Degradation varied across 
microbial taxa (highest for 
B. cereus)    

 Sudhakar et al. (2007a) 

Pseudomonas spp., Clostridium spp., 
unidentified anaerobic, hetetrophic and 
iron-reducing bacteria, fungi  
 

Polyethyelene and 
polypropylene sheets 

Seawater In situ Degradation dependent on 
study site, plastic type and 
season 

 Sudhakar et al. (2007b) 

B. cereus subgroup A,  
B. sphericus GC subgroup IV  

Polyethylene sheets Seawater In vitro Degradation dependent on 
type of polyethylene 

 Sudhakar et al. (2008) 

Table 1.1. Experimental investigations of the biodegradation of synthetic polymers by aquatic microorganisms. 
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1.5. Opportunities for Future Research 

Whilst several aspects concerning the extent and environmental impacts of marine 

microplastic pollution are poorly understood, this introduction has highlighted three key 

areas for novel research concerning both the detection of synthetic microplastics and 

characterising microbial-plastic interactions in marine ecosystems: 

 

1. Research into the development of improved spectroscopic methods for detecting and 

visualising microplastics within the marine environment 

 

Our ability to understand the transport, distribution, abundance and ecological impacts 

of microplastics in marine ecosystems depends upon the development of technically 

robust and standardised methods for the quantification of these pollutants in 

environmental samples (NOAA, 2009; Ryan et al., 2009; GESAMP, 2010b; Hidalgo-

Ruz et al., 2012). Due to the inherent limitations of previously described techniques for 

the sampling, detection and quantification of microplastics, only limited confidence can 

be placed on present estimates of the extent of microplastic pollution in the marine 

environment. Yet, whilst the need for improved approaches to separate microplastics 

from marine habitats has already been acknowledged internationally (NOAA, 2009; 

GESAMP, 2010b), little attention has been directed towards optimising, assessing and 

comparing the applicability of different spectroscopy methods for the analysis of 

microplastics. Since micro-FT-IR spectroscopy represents the most commonly used 

method for identifying microplastics (Hidalgo-Ruz et al., 2012), there is a particular 

need to experimentally evaluate the performance of this technique across different 

marine habitats and sample types, and between research groups. Moreover, since all 

presently known methods for detecting microplastics are labour-intensive and prone to 
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error due to their dependence on the visual selection of putative polymers for analysis, 

there is a need to develop novel spectroscopy techniques that circumvent this step. 

 

2. Fundamental research into determining the potential for microplastics to function as 

sites for bacterial attachment over time and within different types of coastal sediments 

 

In order to advance our understanding of the ecological impacts of microplastic waste, 

research efforts must be focused on determining how the deposition of this debris into 

sediments affects those organisms that are most likely to be exposed to microplastics 

and which mediate ecosystem services that sustain marine life (NOAA, 2009; Galgani 

et al., 2010). Whilst we are beginning to address these questions with reference to 

invertebrates and other higher organisms, microorganisms underpin the functioning of 

marine ecosystems by driving primary productivity and elemental cycling (Madsen, 

2005; Falkowski et al., 2008). Microbial activities also facilitate the mineralisation of 

anthropogenic pollutants. Nevertheless, there is a lack of ecological information 

concerning the potential for microplastics in marine ecosystems to function as sites for 

the attachment of microbial assemblages originating from the wider environment. This 

is particularly true for sediments, where processes involved in the microbial 

colonisation of plastics remain essentially unknown (Section 1.4.2). Since previous 

studies of microbial-plastic interactions within seawater have identified bacteria as 

primary colonists of synthetic polymer surfaces (Dang and Lovell, 2000; Dang et al., 

2008; Lee et al., 2008), it is necessary to characterise processes involved in the 

colonisation of microplastics by these organisms within (coastal) marine sediments. In 

order to enable microbial research into the ecological impacts and fate of microplastics 

in the benthic marine environment, there is a particular need to understand fundamental 
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patterns of bacterial colonisation on microplastic surfaces over time and within different 

sediment types.  

 

3. Culture-independent investigation of the ecological interactions between 

microorganisms and microplastics in the marine environment 

 

Our understanding concerning the ecological interactions between microorganisms and 

synthetic polymers in marine ecosystems is constrained by the fact that most prior 

research into this topic has been based on the utilisation of culture-based methodologies 

or unidentified microbial assemblages within seawater (Section 1.4). Even so, only one 

per cent or fewer of all naturally occurring bacterial taxa are typically cultivable under 

laboratory conditions (Amann et al., 1995). Therefore, research employing culture-

independent molecular methods is required to elucidate the structure, diversity and 

taxonomic identities of plastic-colonising microorganisms in the marine environment 

and particularly within sediments. Additionally, it is likely that most plastic-colonising 

marine microbial taxa possessing the capacity to influence the fate and/or potential 

long-term biodegradation of microplastics and plastic-associated compounds remain 

undiscovered and could be characterised by culture-independent analyses. In this 

respect, the applications of molecular microbial ecology including microscopy 

techniques and PCR-based methods such as community fingerprinting and 16S rRNA 

gene sequencing (Liu et al., 1997; Suzuki et al., 2000; Pernthaler et al., 2002; Daims et 

al., 2005; Röling and Head, 2005) are bound to offer significant opportunities to 

advance our knowledge about the ecological impacts of microplastics within marine 

ecosystems. 
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1.6. Aims and Objectives 

Synthetic microplastics have now been recognised for nearly a decade as rapidly 

emerging and persistent anthropogenic pollutants within marine ecosystems (Thompson 

et al., 2004). Even so, very little is known about both the abundance and biological 

impacts of this waste. Therefore, this study aims to advance research into understanding 

the distribution and abundance, ecological impacts, biotic interactions and fate of 

microplastic pollutants in marine ecosystems by addressing two important yet 

understudied topics. Firstly, an optimised method for detecting microplastics in 

sediments by reflectance micro-FT-IR spectroscopy was developed and compared with 

ATR-FT-IR analyses (Chapter 2). The infrared spectra of microplastics were assessed 

across plastic-spiked sediments from a total of seventeen UK coastal and offshore 

sampling sites. Additionally, a novel approach to the molecular mapping of 

microplastics without the need for visual selection of fragments for analysis was 

explored, with the objective of informing investigation into the development of high-

throughput techniques for imaging these pollutants within environmental samples.  

 

Secondly, a laboratory microcosm experiment was used to evaluate successional 

patterns of bacterial colonisation on microplastics deposited into both sandy and silty 

coastal sediments collected from the Humber Estuary, UK (Chapter 3). This research 

aimed to investigate variation in the structure, diversity and taxonomic identities of 

plastic-associated bacterial communities using culture-independent analyses. Terminal-

restriction fragment polymorphism (T-RFLP) analysis of PCR-amplified bacterial 16S 

rRNA genes (Liu et al., 1997; Osborn et al., 2000) was used to examine patterns of 

primary succession within the plastic-sediment interface. T-RFLP fingerprinting is a 

well-established and reproducible method for comparing the relative structure, diversity 

and temporal dynamics of microbial communities in natural ecosystems (Osborn et al., 
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2000). Additionally, the predominant bacterial genera attaching to plastic surfaces in 

sediments were identified using sequencing analyses of bacterial 16S rRNA gene clone 

libraries (see Röling and Head, 2005).  

 

Whilst T-RFLP analysis and 16S rRNA gene sequencing analysis provide 

valuable information concerning the structure, diversity and taxonomic composition of 

microbial communities in the environment, these methods do not provide fully 

quantitative data concerning the abundance of microorganisms in different samples (von 

Wintzingerode et al., 1997). Hence, an additional objective of this study was to quantify 

the extent of bacterial attachment to microplastic surfaces over time and across both 

sandy and silty sediment types (Chapter 4), using the laboratory microcosm experiment 

described above. 16S rRNA gene numbers of plastic-associated bacteria were quantified 

as a proxy of relative bacterial abundance, using a quantitative real-time PCR (Q-PCR) 

assay (Becker et al., 2000; Suzuki et al., 2000; Smith et al., 2006; Smith and Osborn, 

2009). Q-PCR analysis is a widely used method for quantitatively measuring the 

abundance of selected target genes amplified from environmental DNA (Smith and 

Osborn, 2009). Moreover, this study aimed to visually investigate attachment by 

bacterial cells and specifically, key members of the plastic-colonising bacterial genera 

identified by 16S rRNA gene sequencing analyses. Bacterial attachment onto 

microplastic surfaces was examined using catalysed reporter deposition fluorescence in 

situ hybridisation (CARD-FISH) analysis, a microscopy-based technique that is 

independent of PCR amplification and is frequently used to demonstrate the presence of 

specific microbial taxa within environmental samples (Pernthaler et al., 2002; Sekar et 

al., 2003; Wendeberg et al., 2010). 
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All aims and objectives of this present study were addressed using low-density 

polyethylene (LDPE) as the model polymer due to both its commercial importance and 

prevalence as a component of marine plastic debris (Andrady and Neal, 2009; Barnes et 

al., 2009; Browne et al., 2011; Hidalgo-Ruz et al., 2012). Due to the absence of 

previous research into the topics examined within this study, the overarching focus of 

the present investigation was to generate primary empirical data to inform further 

research (Section 5.2) into the development of reliable methods for quantifying 

microplastics in marine habitats, and to characterise microbial-plastic interactions 

within a broad range of sediment environments. The microbiological aspect of this 

study was based on the following a priori predictions: 

 

1. Naturally occurring bacterial assemblages are able to colonise microplastics 

deposited into coastal marine sediments. 

 

2. The structure and diversity of microplastic-colonising bacterial assemblages 

vary over time and across different sediment types (ranging from sand to silt). 

 

3. The taxonomic composition of microplastic-associated bacterial assemblages 

varies across different sediment types (ranging from sand to silt). 

 

4. The abundance of plastic-associated bacteria varies with time and across 

different sediment types (ranging from sand to silt). 



 

 

 

 

 

Chapter 2 

 

The Applicability of Reflectance Micro-Fourier-

transform Infrared Spectroscopy for the Detection 

of Synthetic Microplastics in Marine Sediments 

 

This research has been published as: 

 

Harrison, J.P., Ojeda, J.J. and Romero-González. M.E. (2012) The applicability of 

reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic 

microplastics in marine sediments. Science of the Total Environment 416: 455-463. 
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2.1. Abstract 

Synthetic microplastics ( ≤ 5-mm fragments) are globally distributed contaminants 

within coastal sediments that may transport organic pollutants and additives into food 

webs. Although micro-Fourier-transform infrared (micro-FT-IR) spectroscopy 

represents an ideal method for detecting microplastics in sediments, this technique lacks 

a standardised operating protocol. Herein, an optimised method for the micro-FT-IR 

analysis of microplastics in vacuum-filtered sediment retentates was developed. 

Reflectance micro-FT-IR analyses of polyethylene (PE) were compared with attenuated 

total reflectance FT-IR (ATR-FT-IR) measurements. Molecular mapping as a precursor 

to the imaging of microplastics was explored in the presence and absence of 150-µm PE 

fragments, added to sediment at concentrations of 10, 100, 500 and 1000 ppm. 

Subsequently, polymer spectra were assessed across plastic-spiked sediments from 

fifteen offshore sites. Whilst all spectra consisted of evenly shaped plastics were typical 

to PE, reflectance micro-FT-IR measurements of irregularly shaped materials must 

account for refractive error. Additionally, the present research provides the first 

evidence that mapping successfully detects microplastics without their visual selection 

for characterisation, despite this technique relying on spectra from small and spatially 

separated locations. Flotation of microplastics from sediments only enabled a fragment 

recovery rate of 61 (± 31 SD)%. However, mapping 3-mm2 areas (within 47-mm filters) 

detected PE at spiking concentrations of 100 ppm and above, displaying 69 (± 12 SD)% 

of the fragments in these locations. Additionally, mapping detected a potential PE 

fragment in a non-spiked retentate. These data have important implications for research 

into the imaging of microplastics. Specifically, the sensitivity and spatial resolution of 

the present protocol may be improved by visualising the entire filter with high-

throughput detection techniques (e.g. focal plane array-based imaging). Additionally, 

since micro-FT-IR analyses depend on methods of sample collection, these results 
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emphasise the urgency of developing efficient and reproducible techniques to separate 

microplastics from sediments. 

 

2.2. Introduction 

Synthetic microplastics ( ≤ 5-mm fragments) are globally distributed pollutants in 

marine ecosystems that have been discovered particularly in coastal sediments (Barnes 

et al., 2009; Browne et al., 2010; Claessens et al., 2011; Hidalgo-Ruz et al., 2012). 

Despite their ability to transport organic pollutants and additives into food webs, our 

understanding concerning the abundance and fate of microplastics is insufficient, owing 

to the difficulty of quantifying these contaminants (NOAA, 2009; GESAMP, 2010b). 

Reflectance micro-Fourier-transform infrared (micro-FT-IR) spectroscopy represents an 

ideal method for the detection of microplastics, due to its non-destructive nature, 

minimal need for sample preparation and ability to produce IR absorption spectra for 

thick and opaque materials (Ojeda et al., 2009). To date, most attempts to employ FT-

IR analyses for the detection of microplastics in sediments have been preceded by the 

flotation and filtration of buoyant materials in a saline solution, followed by the light 

microscopy-based separation of putative polymers for spectroscopy (Thompson et al., 

2004; Ng and Obbard, 2006; Reddy et al., 2006; Corcoran et al., 2009; Claessens et al., 

2011; Hidalgo-Ruz et al., 2012). However, this approach to the FT-IR analysis of 

microplastics is both labour-intensive and prone to error due to its reliance on the visual 

selection of particles for characterisation (Corcoran et al., 2009; Ng and Obbard, 2006; 

Reddy et al., 2006; Thompson et al., 2004). Additionally, spectroscopic approaches for 

the characterisation of microplastics have not been evaluated between different research 

groups and across different types of marine habitats. Due to these challenges, limited 

confidence can be placed on estimates concerning the extent of microplastic pollution in 

the environment. Hence, the development of reliable methods for the collection, 
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detection and quantification of microplastics is pivotal to the advancement of research 

into the distribution, fate and impacts of plastic debris (NOAA, 2009; Ryan et al., 2009; 

GESAMP, 2010b). 

 

In order to form a basis for research into developing improved techniques for the 

FT-IR-based detection microplastics in the environment, this research assessed the 

applicability of reflectance micro-FT-IR analyses for the identification of synthetic 

microplastics in vacuum-filtered marine sediments. Following an optimisation of 

instrumental scanning parameters, as described by Mastalerz and Bustin (1995) and 

Ojeda et al. (2009) for the analysis of opaque samples, the reliability of reflectance 

micro-FT-IR spectroscopy was compared with attenuated total reflectance FT-IR (ATR-

FT-IR) analyses and with reference to evenly and unevenly shaped microplastics. 

Furthermore, the potential for the molecular mapping of microplastics was explored as a 

step towards the spectral imaging of these pollutants without the need for visual 

selection of fragments for analysis (Levin and Bhargava, 2005). Finally, the variability 

of microplastic spectra across fifteen offshore sampling sites was investigated. 

Throughout the study, polyethylene (PE) was used as a model polymer due to its role as 

a dominant component of marine plastic debris (Barnes et al., 2009). 

 

2.3. Materials and Methods 

2.3.1. Sediment sampling and analysis  

Sediments were collected between April and July 2009 from Lowestoft, Spurn Point 

(within the Humber Estuary) and fifteen offshore sites (UK), with distances of 50 – 500 

km between stations (Figure 2.1). Samples from Lowestoft and Spurn Point were 

collected from the surficial centimetre of the seabed at low tide, using a stainless steel 

spatula. Offshore samples were obtained using bulk sediments collected by a 0.1 m2 
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Day Grab. All sediments were stored at 4 ºC until use. Offshore sediments were 

analysed for organic carbon content as described by Sapp et al. (2010). 

 

 

Figure 2.1. The locations () of field sites used for sediment sampling (UK). Offshore sites are 

identified by the numbers 1 – 15. 

 

2.3.2. Spiking of sediments with microplastics 

For all analyses with the exception of molecular mapping, 10 g of wet homogenised 

sediment from each site were mixed with a single, evenly shaped 1 ×  5 ×  5-mm LDPE 

square (Goodfellow Cambridge Ltd., Huntingdon, UK) and 50 ± 5 mg of unevenly 

shaped 1-mm LDPE granules (Goodfellow). For molecular mapping, sediment from a 

single sampling site (Lowestoft, UK) was spiked with 10, 100, 500 or 1000 ppm of 

unevenly shaped 150-µm ultra-high molecular weight (UHMW) PE granules 

(Goodfellow). Non-spiked sediment retentates were also examined, using sediment 

collected from Lowestoft and Spurn Point, Humber Estuary (UK). All samples were 

prepared in triplicate. 
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2.3.3. Vacuum filtrations of plastic-spiked sediments  

Microplastic-spiked sediments were stored at 4 ºC for 48 hours and covered up to 50 ml 

with hypersaturated artificial seawater prepared using 1.2 kg l-1 of a standard salt 

mixture (ZM Systems, Hampshire, UK) (Thompson et al., 2004; Ng and Obbard, 2006; 

Browne et al., 2010). The samples were mixed by inversion, vortexed for 30 seconds at 

40 Hz and kept overnight at 4 ºC. The resulting supernatants (30 ml) were vacuum-

filtered through 47-mm IsoporeTM polycarbonate membrane filters with a pore size of 

0.2 µm (Millipore, USA). The filters were air-dried and stored at room temperature until 

analysis. 

 

2.3.4. Recovery of microplastics 

Recovery (%) of artificially added microplastics was calculated using sediments spiked 

with 150-µm UHMW PE fragments (n = 3). The mean mass of non-plastic residues on 

the filter (determined using retentates of sediment and water only; n = 3) was subtracted 

from the total mass of materials retained on the filter surfaces following vacuum 

filtration.   

 

2.3.5. FT-IR spectroscopy  

Fourier-transform infrared measurements were performed using reflectance micro-FT-

IR spectroscopy and attenuated total reflectance FT-IR (ATR-FT-IR) spectroscopy. 

Spectra were collected of artificially added microplastics within sediment retentates and 

of the membrane filter surface following vacuum filtration (Sections 2.3.2 and 2.3.3), 

using a Perkin-Elmer Spotlight imaging system and a Perkin-Elmer Spectrum One FT-

IR spectroscope (Ojeda et al., 2009). For ATR-FT-IR measurements, a Specac Silver 

Gate ATR accessory was used, consisting of a germanium crystal at an incidence angle 

of 45 degrees. Scans were performed using a spectral resolution of 4 cm-1. Reflectance 
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spectra were Kramers-Kronig-transformed to correct for specular reflection (Mastalerz 

and Bustin, 1995, 1996; Hacura et al., 2003). The micro-FT-IR analyses were 

performed individually or by molecular mapping. Individual measurements were 

obtained for randomly selected positions on the sample surface. Molecular micrographs 

were obtained for randomly selected areas of 3 mm2, with spectra collected at intervals 

of 150 µm. 

 

2.4. Results and Discussion 

Although micro-FT-IR spectroscopy represents an ideal method for the detection of 

microplastics in environmental samples (Thompson et al., 2004; Ng and Obbard, 2006; 

Ojeda et al., 2009), this method has not been experimentally evaluated. This study 

assessed the applicability of reflectance micro-FT-IR analyses for the detection of 

synthetic microplastics in retentates of vacuum-filtered marine sediments, using 

polyethylene as a model plastic. Following an examination of polymer spectra as a 

function of aperture size and the frequency of scans, reflectance micro-FT-IR analyses 

were compared with ATR-FT-IR measurements. Molecular mapping analyses were 

explored as a step towards the spectral imaging of microplastics. Finally, the spectra of 

plastics were compared across fifteen offshore sampling sites.   

 

2.4.1. Signal-to-noise ratio as a function of aperture size and the frequency of scans 

Despite previous attempts to detect synthetic microplastics in marine sediments 

(Thompson et al., 2004; Ng and Obbard, 2006; Reddy et al., 2006; Corcoran et al., 

2009), the instrumental parameters for the reflectance micro-FT-IR analysis of 

microplastics have not been optimised. Therefore, spectra were collected of granule- 

and square-shaped LDPE fragments within a vacuum-filtered retentate of plastic-spiked 

sediment from Lowestoft (UK) and of the polycarbonate membrane following filtration, 
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using 100 co-added scans at aperture sizes of 10, 15, 20 and 50 μm2 (Fig. 2.2). The 

filtration step did not affect the positions of absorbance bands, as shown by a 

comparison with spectra collected prior to filtration (Figure 2.3). The positions of 

absorbance bands and the ratios between peaks were consistent for all samples when 

examined as a function of aperture size. No interference was detected from the 

background signal originating from the polycarbonate membrane when collecting 

spectra for LDPE (Figure 2.2). Although the signal-to-noise ratios of the spectra 

improved (i.e. became increasingly well-resolved) with increasing aperture size, large 

apertures may limit the detection of small plastic particles in heterogeneous matrices. 

Small aperture sizes provide high spatial resolution and are likely to facilitate the 

molecular mapping of microplastics, favouring the use of small apertures during 

spectral collection. It was observed that an aperture size of 15 ×  15 μm provided well-

resolved spectra and included all absorbance peaks that were found with larger 

apertures. An aperture of 10 ×  10 μm was also tested. However, the spectra obtained 

showed low signal-to-noise ratios (Figure 2.2), reducing the ability to reliably 

discriminate between the absorbance bands. For this reason, an aperture size of 15 ×  15 

μm was selected for subsequent measurements. 
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Figure 2.2. Reflectance micro-FT-IR spectra of A) granule-shaped LDPE fragments (1 mm) 

and B) square-shaped LDPE fragments (1 × 5 × 5 mm) within a vacuum-filtered retentate of 

plastic-spiked sandy sediment (Lowestoft, UK), and C) the surface of the polycarbonate 

membrane following filtration. Spectra are presented as a function of aperture size (µm) while 

using 100 co-added scans per measurement, with absorbance recorded as arbitrary units (a.u.). 
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Figure 2.3. Reflectance micro-FT-IR spectra of A) granule-shaped LDPE fragments, B) square-

shaped LDPE fragments and C) the polycarbonate membrane prior to the filtration of 

microplastics, with absorbance recorded as arbitrary units (a.u.). 

 

The optimal number of scans was determined by collecting spectra of the filtered 

LDPE fragments on the polycarbonate membrane using 10, 50, 100, 250 and 500 co-

added scans (Figure 2.4). There was an increase in the quality of the signal-to-noise 

ratio between 10 and 50 scans at a spectral resolution of 4 cm-1. However, after 100 

scans the improvement in spectral quality was less evident. Five minutes were required 

to obtain 50 co-added scans, whereas 0.5, 10, 25 and 50 minutes were needed for 10, 

100, 250 and 500 scans, respectively. No shifts occurred in the positions of the 

absorbance bands or the ratios between peaks as a function of the number of scans, 

similarly to results obtained for the calibration of aperture size. Based on these findings, 

one hundred co-added scans were selected for the further collection of spectra. 

However, in order to reduce the data burden and measurement time required for 

molecular mapping, the lowest reliable frequency of scans was used (Ojeda et al., 

2009). Therefore, during mapping, ten co-added scans were obtained for individual 

spectra. 
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Figure 2.4. Reflectance micro-FT-IR spectra of A) granule-shaped LDPE fragments (1 mm), B) 

square-shaped LDPE fragments (1 × 5 × 5 mm) within a vacuum-filtered retentate of plastic-

spiked sandy sediment (Lowestoft, UK), and C) the surface of the polycarbonate membrane 

following filtration. Spectra are presented as a function of the number of scans while using an 

aperture of 15 × 15 μm, with absorbance recorded as arbitrary units (a.u.). 
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2.4.2. Impact of the mode of analysis on sample spectra 

In this study, it was found that the reflectance micro-FT-IR profiles of square-shaped 

LDPE fragments in retentates of vacuum-filtered sediments were similar to the standard 

spectrum of this polymer (Cooper and Corcoran, 2010), when examined across a broad 

range of aperture sizes and frequencies of co-added scans. Nonetheless, they differed 

from the corresponding measurements obtained for granule-shaped LDPE fragments 

(Figure 2.2). In order to determine whether micro-FT-IR analyses in reflectance mode 

resulted in distortions of the spectra due to differences in polymer shape, these profiles 

were compared with ATR-FT-IR measurements. Regions of absorbance intrinsic to the 

stretching of C-H (νC-H) (3000 – 2770 cm-1) and the bending of C-H (δC-H) (1500 - 1450 

cm-1) bonds were present for all fragments, irrespective of the mode of analysis (Figure 

2.5).  

 

Figure 2.5. Comparison between absorbance spectra of granule- and square-shaped LDPE 

fragments obtained by reflectance micro-FT-IR spectroscopy (A and B, respectively) and 

attenuated total reflectance FT-IR (ATR-FT-IR) spectroscopy (C and D, respectively). Regions 

of absorbance corresponding to the stretching, bending and scissoring (ν, δ and δS, respectively) 

of C-H bonds are indicated with reference to the spectra. 
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However, comparing the micro-FT-IR and ATR-FT-IR spectra demonstrated the 

potential for spectral distortion when analysing irregularly shaped plastics in reflectance 

mode. Although this may arise due to scattering of the infrared beam (Budevska, 2000; 

Földes et al., 2003; Bassan et al., 2009; Davis et al., 2010), no previous research has 

been conducted into the impacts of the morphology of microplastics upon their micro-

FT-IR spectra. Yet, alterations in the shapes of spectra due to variation in sample 

morphology may complicate the identification of microplastics. 

 

Given the susceptibility of reflectance micro-FT-IR spectroscopy to refractive 

error, this research emphasises the need to base the identification of microplastics on 

using a combination of polymer-specific regions of absorbance that are insensitive to 

variation in sample morphology (Cooper and Corcoran, 2010). Analyses by ATR-FT-IR 

spectroscopy could also facilitate identification of microplastics by detecting 

absorbance bands that cannot be discerned by reflectance micro-FT-IR spectroscopy 

alone. As seen from the present results, bands corresponding to the bending of C-H 

bonds (1500 – 1450 cm-1) were more efficiently distinguished by ATR-FT-IR 

measurements than by reflectance micro-FT-IR spectroscopy (Figure 2.5). Additionally, 

ATR-FT-IR measurements enabled detection of bands attributed to the scissoring of C-

H bonds (750 – 700 cm-1) that were indiscernible by reflectance micro-FT-IR analyses. 

 

2.4.3. Molecular mapping of microplastics in sediment retentates 

2.4.3.1. Rationale for mapping analyses 

Previous attempts to identify microplastics in filtered marine sediments have frequently 

relied on the visual selection of fragments for analysis (Thompson et al., 2004; Ng and 

Obbard, 2006; Reddy et al., 2006; Browne et al., 2010; Hidalgo-Ruz et al., 2012). 

Given the low precision of this approach, developing improved protocols for the 
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detection of microplastics is pivotal (NOAA, 2009). Molecular imaging by FT-IR 

microspectroscopy has been used to obtain high-resolution data concerning the 

distributions of several molecular groups in heterogeneous media, including biofilms 

(Ojeda et al., 2009), tissues and cancer cells (Yu et al., 2003; Faibish et al., 2005; Levin 

and Bhargava, 2005; Petibois and Déléris, 2006; Bhargava, 2007; Petibois et al., 2007). 

Interestingly, the technique has also been employed to visualise silicone and 

poly(ethylene terephthalate) in human tissues (Kidder et al., 1997). 

 

If successfully applied, FT-IR imaging would enable identification of 

microplastics without the visual separation of fragments for analysis (Bhargava et al., 

2000; Levin and Bhargava, 2005). Here, the applicability of this technique was assessed 

by utilising a point measurement-based approach for molecular mapping. Mapping 

performed on conventional FT-IR microscopes is slow and inefficient in contrast with 

modern focal plane array (FPA)-based imaging (Bhargava et al., 2000; Levin and 

Bhargava, 2005). However, it is a useful precursor to the further imaging of 

microplastics, due to its affordability and broad comparability with FPA-based analyses. 

 

2.4.3.2. Development of mapping protocol 

Prior results described herein have demonstrated that the main absorbance bands of both 

evenly and irregularly shaped LDPE fragments observed by reflectance micro-FT-IR 

spectroscopy were intrinsic to the stretching and bending of C-H bonds at 3000 - 2770 

cm-1 and 1500 – 1450 cm-1, respectively (Section 2.4.2). The need to base the 

identification of microplastics on polymer-specific regions of absorbance that are 

insensitive to variation in sample shape has also been discussed. Therefore, based on 

these regions of absorbance, molecular micrographs were obtained for randomly 

selected surface areas of 3 mm2, using retentates of vacuum-filtered sandy sediment 
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(Lowestoft, UK) on 47-mm polycarbonate membranes, and in the presence and absence 

of artificially added microplastics. Micrographs were similarly obtained for retentates of 

non-spiked silty sediment collected from Spurn Point (Humber Estuary, UK) (Figure 

2.1). Ultra-high molecular weight (UHMW) PE granules (150-µm diameter) were used 

for mapping in order to improve the ability of the micro-FT-IR instrument to focus on 

the plastic fragments. 

 

A comparison of false-colour micrographs across several spiking concentrations 

of UHMW PE microplastics within retentates of vacuum-filtered sandy sediment 

(Lowestoft, UK) is presented in Figure 2.6. At the lowest concentration of spiking (10 

ppm; Figure 2.6A), no microplastics were detected within the selected areas of 3 mm2. 

This may have been due to the employment of small surface areas for molecular 

mapping and methodological bias caused by the low and highly variable rates of 

recovery (%) estimated for UHMW PE fragments retrieved from sediment by flotation 

( x = 61 ± 31 SD) (n = 3). Interestingly, Claessens et al. (2011) reported particle 

recovery rates within a similar range of efficiency. Moreover, mapping was only found 

to detect 69 (± 12 SD) % of the total frequencies of fragments within the visualised 

areas, most likely due to the reliance of this technique on collecting spectra from small 

and spatially separated locations. Despite these limitations, mapping successfully 

detected PE fragments within all examined sediment retentates when the nominal 

concentration of spiking was 100 ppm or higher. Regions of comparatively high 

absorbance within the micrographs (Figure 2.6B-D) corresponded to the presence of 

microplastics, as confirmed by optical images. No evidence was found for interference 

from the background signal originating from the polycarbonate membrane (Figure 2.6). 

Moreover, the surface coverage (%) of spectra corresponding to PE in the micrographs 

increased in proportion with the visually calculated frequencies of microplastics 
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detected by mapping, as based on light microscopy (Figure 2.7). The calculated errors 

were also comparable (Figure 2.7). 

 

 
 

Figure 2.6.  Molecular micrographs showing artificially added 150-µm UHMW PE fragments 

in retentates of vacuum-filtered sandy marine sediment (Lowestoft, UK). False-colour images 

were obtained for sediments spiked with A) 10, B) 100, C) 500 and D) 1000 ppm of 

microplastics. The micrographs are based on measurements obtained by the integration of 

absorbance peaks corresponding to both the stretching and bending of C-H bonds (3000 – 2770 

and 1500 – 1450 cm-1, respectively). Analyses were performed in triplicate and represent 

randomly selected areas of 3 mm2. The arrows and optical images show the surface of the 

polycarbonate membrane filter (above) and an UHMW PE fragment (below). The scale bars are 

1 mm for the micrographs and 100 µm for the optical images. Absorbance is recorded as 

arbitrary units (a.u.). 
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Figure 2.7. Comparison between the A) mean surface coverage (%) of micro-FT-IR spectra 

corresponding to PE in false-colour micrographs and B) visually calculated frequencies of 150-

µm UHMW PE granules detected by molecular mapping. Micrographs were obtained for 

randomly selected 3-mm2 surfaces in filtrates of microplastic-spiked sandy sediment 

(Lowestoft, UK). Error bars represent one standard error (n = 3).  

 

Corresponding mapping analyses using non-spiked silty sediment from Spurn 

Point (Humber Estuary, UK) detected an irregularly shaped polymer fragment with a 

surface area of approximately 15 µm2 (Figure 2.8). Whilst the spectrum of this fragment 

differed from the absorbance profiles typical to the PE particles employed in the present 

study, this may have resulted from signal interference originating from the surrounding 

polycarbonate membrane. Interference may have occurred due to the area of the 

fragment being approximately equal to the scanning aperture (Section 2.4.1). Indeed, 

subtracting the IR signal of the polycarbonate membrane from that of the detected 

fragment enabled identification of clear absorbance bands intrinsic to the stretching and 

bending of C-H bonds (3000 - 2770 cm-1 and 1500 – 1450 cm-1, respectively) within the 

resulting spectrum (Figure 2.8C). Whilst these bands are characteristic of the IR 

spectrum of PE (Cooper and Corcoran, 2010), it must be noted that the resulting 
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absorbance profile was still different from that of the reflectance micro-FT-IR spectrum 

of the PE granules used in this study (Figure 2.8D). Therefore, a fully conclusive 

polymer type assignment could not be performed, highlighting the challenges of using 

reflectance micro-FT-IR spectroscopy for identifying micrometre-scale fragments in 

environmental samples that are likely to contain a mixture of several different polymer 

types possessing a broad range of surface morphologies (Browne et al., 2011). 

    

 

Figure 2.8. A molecular micrograph showing an approximately 15 × 15 µm microplastic 

fragment in a retentate of vacuum-filtered silty marine sediment (Spurn Point, Humber Estuary, 

UK). The micrograph is based on measurements obtained by the integration of absorbance 

peaks corresponding to the stretching and bending of C-H bonds (3000 – 2770 and 1500 – 1450 

cm-1, respectively). The scale bar is 1 mm. Absorbance spectra are given next to the micrograph, 

corresponding to A) the detected fragment, B) the surface of the polycarbonate membrane 

following filtration, C) the difference between the fragment and the polycarbonate membrane, 

and D) a granule-shaped LDPE fragment (reference). Absorbance is recorded as arbitrary units 

(a.u.). 

 

Despite the inherent limitations of the present analytical protocol, these results 

provide the first proof of principle for the feasibility of molecular mapping by 

reflectance micro-FT-IR spectroscopy for the detection of microplastics in sediment 

retentates. Further protocol development is now particularly necessary in order to 



Chapter 2 – Detection of Microplastics in Marine Sediments  

42 

 

optimise spectral visualisation methods for the analysis of multiple polymer types in 

complex environmental matrices and across several sampling sites. 

 

2.4.3.3. Considerations for further research into the imaging of microplastics 

This research has provided the first evidence that reflectance micro-FT-IR spectroscopy 

and molecular mapping analyses based on utilising a suitable combination of polymer-

specific regions of absorbance may be successfully applied to visualise microplastics in 

both plastic-spiked and untreated sediment retentates. As such, this study provides a 

foundation for the further development of methodologies for the spectral visualisation 

of these pollutants in environmental samples. 

 

In order to guide further research into the spectroscopic visualisation of 

microplastics, it must be recognised that the concentrations of microplastic particles in 

marine ecosystems are likely to be significantly lower than those employed in these 

experiments (Barnes et al., 2009), with a maximal concentration of 81 ppm by mass 

having been reported for coastal sediments (Reddy et al., 2006). Even so, the present 

protocol successfully detected PE in a non-spiked sediment retentate (see Figure 2.8) 

and further investigation is now required for the development of molecular mapping and 

imaging techniques for detecting microplastics at environmentally relevant 

concentrations. Whilst this approach towards mapping aimed to provide a proof of 

principle for the spectral visualisation of microplastics, it would be necessary to scan 

the entire surface of the membrane filter to detect all plastic fragments dispersed within 

the sediment retentate. Although mapping methods are unfeasible for visualising large 

surface areas, FPA-based imaging is likely to improve our ability to detect plastics 

within sediment retentates, because this technique rapidly captures spectra from the 

entire sample surface instead of small and spatially separated locations (Levin and 
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Bhargava, 2005). Where very high spatial resolution is required, Raman 

microspectroscopy may also provide an alternative to FT-IR analyses of microplastics 

(GESAMP, 2010b; Andrady, 2011; Murray and Cowie, 2011).  

 

Whilst polyethylene was employed as a model polymer in the present study due 

to its ubiquity in the marine environment (Barnes et al., 2009), FT-IR spectroscopy has 

also been shown to be capable of identifying several types of plastics in marine 

sediments across the globe, including acrylic, nylon, polyamide, polyester, polystyrene, 

polyvinylchloride and propylene (Thompson et al., 2004; Ng and Obbard, 2006; 

Browne et al., 2011; Claessens et al., 2011). As such, it is now possible to develop 

working protocols for the spectral visualisation of multiple types of polymers. Since 

measurements used for the generation of molecular micrographs consist of full-range IR 

spectra (4000 – 700 cm-1), several types of plastic may be imaged within a single 

micrograph by selecting different combinations of absorbance bands characteristic to a 

given type of plastic, following mapping and/or imaging. 

 

Importantly, due to the low and highly variable rates of recovery obtained by 

separating microplastics from sediments by flotation (see Sections 2.3.3 and 2.4.3.2), 

these results highlight the need for more efficient and reproducible methods to separate 

microplastics from sediments (NOAA, 2009). A coarse filtration step for the removal of 

meso- and macrolitter has been suggested previously (Andrady, 2011). Additionally, 

elutriation methods have been proposed as an alternative to the suspension and filtration 

of microplastics (GESAMP, 2010b). The pre-concentration or repeated extraction of 

plastics using a given sediment sample prior to filtration may also improve the ability of 

spectral visualisation techniques to detect these pollutants (Claessens et al., 2011). 
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2.4.4. Impacts of sampling site on FT-IR spectra 

Research by Ng and Obbard (2006) has invoked naturally occurring particulate matter 

as a source of uncertainty when evaluating the micro-FT-IR spectra of microplastics in 

sediments. The spectra could also be influenced by plastic-associated pollutants (e.g. 

polynuclear aromatic hydrocarbons) and/or naturally occurring organic materials in 

marine ecosystems (Mato et al., 2001; Endo et al., 2005; Rios et al., 2007; Teuten et al., 

2007; Ogata et al., 2009; Teuten et al., 2009). Therefore it can be speculated that the 

absorbance spectra of microplastics vary across sampling sites, reflecting differences in 

the organic composition of the sediment, among several other factors. This study has 

provided a baseline for further research into this topic by characterising variation in the 

spectra of artificially added granule- and square-shaped LDPE microplastics across 

sediments obtained from fifteen offshore sampling sites across the UK coast (Figure 

2.1). 

 

Typical LDPE spectra were observed across all sites, irrespective of fragment 

shape (Figure 2.9). Whilst these data support the potential for reflectance micro-FT-IR 

spectroscopy to identify artificially added microplastics in a wide range of sediments, it 

must be recognised that further research is required to confirm their applicability to true 

(i.e. non-spiked) environmental samples, despite the ability of the present molecular 

mapping protocol to detect a microplastic fragment in a non-spiked sediment retentate 

(see Figure 2.8). Even so, the polymer-spiked offshore sediments differed considerably 

in their organic carbon content (Table 2.1). The organic carbon content of sediments is 

known to influence the partitioning of contaminants between environmental 

compartments (McGroddy et al., 1996), and it may also affect the uptake of 

hydrophobic compounds by plastics (Teuten et al., 2007, 2009). Although the samples 

used in this work were obtained 48 hours following the spiking of sediments with 
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microplastics, phenanthrene may associate with polyethylene already within 24 hours of 

exposure (Teuten et al., 2007). Additionally, the organic carbon content of sediments 

has been found to influence the composition of microbial communities within the 

seafloor (Sapp et al., 2010), potentially impacting on the formation and structure of 

plastic-associated biofilms that may interfere with the micro-FT-IR spectra of plastics 

(Ojeda et al., 2009; Webb et al., 2009; Harrison et al., 2011; Lobelle and Cunliffe 

2011). 

 

Figure 2.9. The reflectance micro-FT-IR spectra of A) granule-shaped and B) square-shaped 

LDPE fragments within retentates of vacuum-filtered offshore sediments (UK). Sampling sites 

are indicated above the spectra and correspond to locations shown in Figure 2.1. Absorbance is 

recorded as arbitrary units (a.u.). 
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Although no spectral interference was detected due to the signal originating 

from organic materials when analysing PE fragments that had been manually added to 

sediments across all seventeen sampling sites in this study, digestion by a dilute mineral 

acid has been suggested as a potential method for the removal of organic impurities 

from polymer surfaces where necessary (Andrady, 2011). However, the spectra of 

synthetic plastics are frequently possible to distinguish from those of biological 

Site Mean OC ± SE (%)a 

1 1.30 ± 0.08  

2 0.07 ± 0.01 

3 0.52 ± 0.06 

4 0.41 ± 0.03 

5 0.80 ± 0.14 

6 0.59 ± 0.12 

7 0.03 

8 Data unavailable 

9 0.37 ± 0.02 

10 0.21 ± 0.01 

11 0.72 ± 0.05 

12 0.79 ± 0.06 

13 0.65 ± 0.04 

14 0.09 ± 0.02 

15 0.08 ± 0.01 

a Measured for size fractions of <2 

mm (n = 5). Values reported with 

reference to sediment dry weight. 

Table 2.1. Organic carbon (OC) content of offshore sediments 

(UK). Site locations are shown in Figure 2.1. 
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materials because the former are characterised by the presence of sharp, highly specific 

and well-defined absorbance due to their repetitive structural units, as compared with 

the broader and more complex range of signals exhibited by other organic materials. 

 

 Despite variation in the organic carbon content of sediments across sampling 

sites, the present protocol for the micro-FT-IR analysis of microplastics in sediment 

retentates (see Section 2.3) provided consistent measurements. The results are also 

promising with reference to the molecular mapping experiment described in this study 

(Section 2.4.3), supporting these attempts to provide an experimental basis for the 

development of an optimised method for the reflectance micro-FT-IR analyses of 

microplastics. These results represent the first important step towards understanding the 

applicability of reflectance micro-FT-IR spectroscopy for the routine analysis of 

microplastics across different geographic locations and environmental matrices. 

 

2.5. Conclusions 

This work has described the development and experimental evaluation of a protocol for 

the micro-FT-IR analysis of artificially added microplastics in vacuum-filtered 

retentates of marine sediments. Whilst the method produced reliable measurements 

across a broad range of geographic locations, micro-FT-IR analyses in reflectance mode 

must account for the potential for sample morphology to influence the spectra of 

microplastics. Where necessary, the employment of alternative spectroscopic techniques 

(e.g. ATR-FT-IR spectroscopy) may increase our ability to interpret the spectra of 

irregularly shaped microplastics in environmental samples. Additionally, this study has 

provided the first evidence for the ability of molecular mapping to successfully detect 

microplastics in sediment retentates, as based on their spectral characteristics and 

without the need for visual selection of fragments for characterisation. Despite the 
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inherent limitations of mapping techniques, microplastics were successfully detected 

both in the presence of manually added microplastics and in a non-spiked sediment 

retentate.  

 

In conclusion, the present research provides a foundation for research into the 

development of improved FT-IR-based methodologies for the detection of microplastics 

in complex matrices. Specifically, FPA-based imaging may be used to rapidly scan the 

entire surface of the retentate, increasing the sensitivity and spatial resolution of the 

present protocol. Moreover, since these results were obtained by scanning small surface 

areas and typically by spiking sediments with high concentrations of polyethylene, there 

is a need to further verify the utility of spectral visualisation techniques with reference 

to untreated field samples and other polymer types. Finally, since spectroscopic 

analyses of microplastics ultimately depend on methods of sample collection, this study 

highlights the immediate need to develop more efficient and reproducible protocols for 

the separation of these pollutants from sediments. 
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3.1. Abstract 

Synthetic microplastics ( ≤ 5-mm fragments) are now recognised as widespread 

environmental contaminants, with their ecological impact and fate only beginning to be 

revealed. Understanding of the interactions between microplastics and microorganisms 

that provide essential life-support functions in natural ecosystems is negligible. In this 

study, a laboratory microcosm experiment was used to investigate the colonisation of 

low-density polyethylene (LDPE) microplastics by bacteria within three types of coastal 

marine sediment from Spurn Point, Humber Estuary, UK. Scanning electron 

microscopy and terminal-restriction fragment length polymorphism (T-RFLP) analysis 

demonstrated rapid selection of LDPE-associated bacterial assemblages within the 

plastic-sediment interface, whose structure and taxonomic composition differed 

significantly from those in surrounding sediments. Moreover, T-RFLP analysis revealed 

successional convergence of the LDPE-associated communities from the different 

sediments over the 14-day experiment. Sequencing of cloned 16S rRNA genes revealed 

that these LDPE-associated communities were dominated after 14 days by location-

specific populations of the genera Arcobacter and Colwellia (84-93% of sequences). 

These results represent the first culture-independent assessment of the potential for 

microplastics to function as sites for bacterial colonisation in coastal sediments. As 

such, this study opens an avenue for further microbial research into the formation of 

plastic-associated biofilms in marine sediments, and the environmental impacts of 

microplastic particles in the benthic marine environment. 
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3.2. Introduction 

Plastic debris is globally distributed across estuarine and marine ecosystems (Carpenter 

and Smith, 1972; Colton et al., 1974; Morris and Hamilton, 1974; Wong et al., 1974; 

Moore et al., 2001; Law et al., 2010; Browne et al., 2011; Hidalgo-Ruz et al., 2012), 

reflecting the success of synthetic polymers as both consumer and industrial products, 

and their persistence in the environment (Barnes et al., 2009). Worldwide manufacture 

of thermoplastics has increased from less than two million tonnes in 1950 to between 

230 and 245 million tonnes during the last decade (Andrady and Neal, 2009). There is 

now widespread public concern about the ecological impacts of plastic waste on marine 

organisms. Whilst the physical impacts caused by plastic debris (for example, 

entanglement and suffocation of wildlife) are well-recognised (Gregory, 2009), the 

rapid proliferation of microplastics ( ≤ 5-mm fragments) in marine habitats (Colton et 

al., 1974; Thompson et al., 2004; Hidalgo-Ruz et al., 2012) is leading to a re-evaluation 

of the potential detrimental effects of plastic litter (Andrady, 2011). Microplastics 

represent both a physical and chemical threat to the ecological integrity of our seas and 

oceans (Barnes et al., 2009) due to their high bioavailability and capacity to transport 

persistent organic pollutants (e.g. polynuclear aromatic hydrocarbons) and plastic 

additives into marine food webs (Carpenter et al., 1972; Teuten et al., 2009). This is 

particularly true for coastal and intertidal sediments that represent sinks for the 

accumulation of plastic litter (Thompson et al., 2004; Reddy et al., 2006; Barnes et al., 

2009; Browne et al., 2011; Claessens et al., 2011; Cole et al., 2011), where microplastic 

concentrations may reach up to 81 parts per million by mass (Reddy et al., 2006) and 

constitute as much as 80% of plastic debris within the seafloor (Browne et al., 2007). 
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Most previous research into the environmental impacts of microplastics has 

focused either on their abundance and distribution (Barnes et al., 2009; Hidalgo-Ruz et 

al., 2012) or on their potential detrimental effects on higher organisms (Derraik, 2002). 

In marine environments, microorganisms function as pioneering surface colonists and 

drive critical ecosystem processes including primary production, biogeochemical 

cycling and the biodegradation of anthropogenic pollutants (Dang and Lovell, 2000; 

Dang et al., 2008). However, ecological interactions between marine microorganisms 

and microplastics have received scant attention, with our understanding of this topic 

being limited primarily to pelagic habitats (Harrison et al., 2011). Initial observations of 

the microbial colonisation of microplastics in seawater have reported the isolation of 

‘rod-shaped Gram-negative bacteria’ from ~0.5-mm polystyrene spherules (Carpenter et 

al., 1972) and the presence of diatoms on plastic fragments in the Sargasso Sea 

(Carpenter and Smith, 1972). Culture-based seawater microcosm studies have also 

demonstrated microbial attachment to polyethylene terphthalate (Webb et al., 2009) and 

polyethylene plastic bags (Lobelle and Cunliffe, 2011). Moreover, experiments using 

molecular fingerprinting and 16S rRNA gene clone sequencing analyses have identified 

Roseobacter spp. and other Alphaproteobacteria as key colonists of acryl, polyurethane, 

poly(methyl methacrylate) and polyvinylchloride surfaces, following up to 72-hour 

exposures of these materials in coastal waters (Dang and Lovell, 2000; Dang et al., 

2008; Lee et al., 2008). Bacterial association with plastic surfaces has also been 

reported in engineered ecosystems, including drinking water distribution systems 

(Assanta et al., 2002; Batté et al., 2003). Despite these initial reports there remains a 

lack of knowledge concerning microbial colonisation of (micro)plastic debris within 

marine environments, and in particular, there is an absence of any information 

concerning microbial-plastic interactions and colonisation processes within marine 

sediments (Harrison et al., 2011; Lobelle and Cunliffe, 2011). 
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Hence, in this study, a 14-day laboratory microcosm experiment was used to 

investigate the potential for microplastics to function as sites for attachment of naturally 

occurring bacterial assemblages within coastal marine sediments. Specifically, this 

research aimed firstly to investigate variation in the structure and diversity of plastic-

colonising bacterial assemblages over time and across both sandy and silty sediment 

types, and secondly to identify the predominant bacterial genera within the plastic-

sediment interface. Low-density polyethylene (LDPE) was chosen as the model 

polymer, due to its importance both as a commercial product and as a widely 

documented component of marine plastic debris (Andrady and Neal, 2009; Barnes et 

al., 2009; Browne et al., 2011; Hidalgo-Ruz et al., 2012). 

 

3.3. Materials and Methods 

3.3.1. Sediment sampling and characterisation 

Sediments were collected on the 25th of April 2010 from three sampling sites (SP1, SP2 

and WB) within the Humber Estuary (UK) (Figure 3.1). Samples were obtained from 

the surface top centimetre of the sediment. Sediments were stored either overnight in 

darkness at 4 °C prior to use in laboratory microcosms, or at -20 °C for 

sedimentological analysis. Samples for sedimentological analysis were dried at 105 °C 

and analysed for loss on ignition (LOI) (%) and particle size distribution (PSD). The 

LOI measurements were based on changes in mass following heating at 425 °C for 18 

hours. Sediment size fractions of <1 mm were analysed for PSD using a LA-950 

particle sizer (Horiba Instruments Ltd, Northampton, UK), using 0.1 M sodium 

hexametaphosphate as a dispersant (Langford et al., 2010). The sediments were 

predominantly comprised of fine sand (SP1), medium sand (SP2) and silt (WB) (Table 

3.1). 
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Figure 3.1. Locations of field sites used for sediment sampling at Spurn Point, Yorkshire, UK. 

The regional location of the sampling sites within the UK is shown in the inset together with 

eastern latitude and northern longitude (°), as indicated. 

 

Table 3.1. Particle size distribution (PSD) and loss on ignition (LOI) for coastal marine 

sediments from three sites (SP1, SP2 and WB) at Spurn Point, UK. Values are given in 

duplicate for the <1-mm fraction. The dominant particle size fraction for each sediment type is 

highlighted in bold. 

 

3.3.2. Sediment-LDPE microcosms 

Sediments were homogenised by stirring and microcosms were established by weighing 

5 – 7 ml of homogenised sediment into sterile, triple-vented 55-mm Petri dishes. Each 

microcosm was spiked with six fragments (1 ×  5 ×  5 mm) of LDPE (Goodfellow 

Cambridge Ltd, Huntingdon, UK) that had been sterilised with 70% ethanol. The 

sediments were submerged in sterile artificial seawater (ASW) (ZM Systems, 

Winchester, UK). The salinity of the ASW was based on in situ measurements (33 at 

SP1 and 30 at SP2 and WB) taken using a PortasalTM 8410A salinometer (Guildline, 

 Sieved fractions (%) 
 

<1 mm fraction (%)* 
  

Site > 2 mm 1 – 2 mm  Coarse sand Medium sand Fine sand Silt Clay  LOI (%) 

SP1 1.8 2.1  1.8 /  2.3 31.1 / 31.6 66.8 / 65.8 0.4 / 0.3 Absent  1.0 

SP2 1.4 1.0  24.4 / 21.7 65.1 / 64.7 10.2 / 13.4 0.3 / 0.2 Absent  1.7 

WB Absent Absent  0.5 / 0.6 9.5 / 9.8 24.8 / 25.6 57.0 / 59.6 8.1 / 4.4  10.1 

* <1-mm fraction comprised >96% of sediment particles from all sampling sites 



Chapter 3 – Bacterial Colonisation of Microplastics in Sediments  

55 

 

Smiths Falls, Canada). Microcosms were incubated in darkness at 4 °C (based on water 

temperature at the sites at the time of sediment sampling). Sacrificial sampling of plastic 

fragments was performed in triplicate at seven intervals (immediately, at 6 hours and 

after 1, 2, 4, 7 and 14 days). The plastics were suspended, rinsed in ASW and 

centrifuged for five seconds (up to 2038 × g). LDPE fragments were stored at -80 °C for 

molecular analyses or fixed overnight in 2% (v / v) formaldehyde at 4 °C for scanning 

electron microscopy. Following fixation, fragments were rinsed with ASW and 96% 

ethanol, and stored at -20 °C. Sediment samples were taken for molecular analysis from 

microcosms sampled at four time intervals (immediately and after 4, 7 and 14 days), 

and stored at -80 °C.  

 

3.3.3. Scanning electron microscopy  

Following an initial fixation step using 2% (v /v) formaldehyde (Section 3.3.2), LDPE 

fragments were secondarily fixed in 2.5% glutaraldehyde in 0.1 M sodium cacodylate 

buffer for two hours at room temperature. The fragments were washed twice for 30 

minutes with 0.1 M sodium cacodylate buffer and post-fixed in 2% osmium tetroxide 

for one hour. Samples were dehydrated by a graded series of 15-minute exposures to 

ethanol, involving (1) 75%, (2) 90% and (3, 4) absolute ethanol, and (5) absolute 

ethanol over anhydrous copper sulphate. LDPE fragments were then placed in a 50 / 

50% (v / v) mixture of absolute ethanol and hexamethyldisilazane for 30 minutes, 

followed by a 30-minute immersion in hexamethyldisilazane (Robards and Wilson, 

1993). The samples were coated with ~25 nm of gold using an Edwards S150B sputter 

coater. Images were obtained with an XL-20 scanning electron microscope (Philips / 

FEI, Cambridge, UK) at an accelerating voltage of 20 kV.    
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3.3.4. DNA isolation and PCR amplification of 16S rRNA genes 

DNA was isolated from either six pooled LDPE fragments (total surface area of 4.2 

cm2) or from 0.5 g of sediment using a Powersoil® DNA isolation kit (MO BIO, 

Carlsbad, CA), and eluted in either 50 µl or 100 µl of sterile nuclease-free water (LDPE 

and sediment, respectively) (Ambion, Austin, USA). PCR was used to amplify 16S 

rRNA gene sequences for T-RFLP analyses (Liu et al., 1997; Osborn et al., 2000) and 

for the construction of 16S rRNA gene clone libraries. For T-RFLP fingerprinting, the 

primers FAM-63F (5′- CAG GCC TAA CAC ATG CAA GTC -3′) (Marchesi et al., 

1998) and 1389R (5′- ACG GGC GGT GTG TAC AAG -3′) (Osborn et al., 2000) were 

used. For library construction, primers 27F (5′- AGA GTT TGA TCC TGG CTC AG -

3′) and 1492R (5′- TAC CTT GTT ACG ACT T -3′) were used (Lane, 1991). Each PCR 

contained 1 - 2 µl of template DNA, 1×  PCR buffer containing 1.5 mM of MgCl2, 2×  

Q Solution (Qiagen, Crawley, UK), 0.25 mM of each deoxyribonucleoside triphosphate 

(dNTP), 0.4 µM of each primer and 2.5 U of Taq polymerase (Qiagen) made up to a 

total volume of 50 µl with sterile nuclease-free water. For T-RFLP analyses, PCR 

cycling conditions were 94 °C for 2 min, followed by 35 cycles of 94 °C for 30 s, 57 °C 

for 45 s, 72 °C for 90 s and a final extension step at 72 °C for 10 min. For amplification 

of 16S rRNA genes prior to clone library construction, PCR cycling conditions were 94 

°C for 2 min, followed by 35 cycles of 94 °C for 1 min, 55 °C for 45 s, 72 °C for 2 min 

and a final extension step at 72 °C for 10 min. PCR products were visualized following 

electrophoresis on 0.8% (w / v) agarose gels. PCR products used for T-RFLP analyses 

were purified using QIAquick columns (Qiagen).  

 

3.3.5. Terminal-restriction fragment length polymorphism (T-RFLP) analysis 

Purified PCR products (5 – 10 µl) were digested with 20 U of AluI and 1×  restriction 

enzyme buffer (Roche, Burgess Hill, UK) in a total volume of 15 µl at 37 °C for three 
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hours. Digestion products (5 µl) were desalted using 0.2 mM MgSO4 • 7H2O and 5 µg 

glycogen (20 mg ml-1) (Bioline, London, UK) in 70% ethanol. Desalted digests (1 – 4 

µl) were denatured with formamide containing 0.5% GeneScan™ 500 ROX™ internal 

size standard (Applied Biosystems, Warrington, UK) in a total volume of 10 µl and 

incubated at 94 °C for 3 min prior to electrophoresis using an ABI 3730 PRISM® 

Genetic Analyser (Applied Biosystems), with injection times of 5 or 10 s and an 

injection voltage of 2 kV. Capillary electrophoresis was conducted at 15 kV for 20 

minutes. 

 

3.3.6. 16S rRNA gene clone library construction and sequencing 

Purified PCR products were ligated into the pCR4®-TOPO® TA cloning vector and 

transformed into One Shot® chemically competent Escherichia coli TOP10 cells 

(Invitrogen, Paisley, UK). Transformants were selected on Luria-Bertani (LB) agar 

plates containing ampicillin (50 µg ml-1) and X-gal (80 µg ml-1). Insert DNA from white 

colonies was amplified using the vector primers T7 (5′- TAA TAC GAC TCA CTA 

TAG G-3′) and T3 (5′- AAT TAA CCC TCA CTA AAG G -3′). Each PCR contained 1 

µl of overnight culture, 1×  PCR buffer, 1.5 mM of MgCl2, 0.25 mM of each dNTP, 0.4 

µM of each primer and 2.5 U of Taq polymerase (Bioline), and was made up to a final 

volume of 25 µl with sterile nuclease-free water (Ambion). The PCR was performed as 

described for the primers 27F and 1492R (see Section 3.3.4), using 25 cycles. PCR 

products were purified using the SureClean PCR purification kit (Bioline). Sequencing 

analysis was performed using 0.5 µM of primer 27F, a BigDye® Terminator v3.1 cycle 

sequencing kit and an ABI 3730 PRISM® Genetic Analyser (Applied Biosystems). 
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3.3.7. Bioinformatics and multivariate analyses 

T-RFLP profiles were analysed using Genemapper® (version 3.7, Applied Biosystems). 

Sizes of terminal restriction fragments (T-RFs) (50 - 500 nucleotides) were estimated 

using the Local Southern method (Southern, 1979). Peaks represented by fluorescence 

intensities of <100 units were excluded from further analyses. Remaining T-RFLP 

profiles were aligned using the software T-Align (http://inismor.ucd.ie/~talign/) (Smith 

et al., 2005). The relative abundance of each T-RF was calculated as a proportion (%) of 

the total peak area within each profile. Peaks with relative areas of <0.5% were 

excluded. Square root-transformed Bray-Curtis similarity matrices based on the T-

RFLP data were analysed using the PRIMER statistical package (version 6.1.13) 

(Clarke and Gorley, 2006) for non-parametric multidimensional scaling ordinations, 

analyses of similarity (ANOSIM) (Clarke, 1993), and Shannon’s diversity (Shannon, 

1948). A two-way ANOSIM was performed with ‘time’ (of exposure of LDPE 

microplastics within sediment) and ‘substrate type’ (sediments and plastic-sediment 

interface) as factors. One-way ANOSIMs were conducted with ‘sediment type’ or 

‘time’ (of exposure of LDPE microplastics within sediment) as the factors. One-way 

ANOVAs for comparing Shannon’s diversity were performed using the R statistical 

package (version 2.12.0) (R Development Core Team, 2010), with ‘exposure time’ as 

the factor. 

 

DNA sequences of cloned 16S rRNA genes were edited using ChromasPro 

software (version 1.5; http://www.technelysium.com.au). Multiple alignments were 

constructed using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/), with 

chimeric sequences excluded using Mallard (version 1.02) (Ashelford et al., 2006) and 

Bellerophon (Huber et al., 2004). Alignments were inspected for anomalous reads and 

trimmed to a universal read length with Mothur (version 1.17.2) (Schloss et al., 2009). 
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Taxonomic assignments were performed using the Ribosomal Database Project 

Classifier (version 6) (Wang et al., 2007). Sequences were compared to the GenBank 

database using the Basic Local Alignment Search Tool for nucleotides (BLASTn) 

(Altschul et al., 1990). Neighbour-joining trees (Saitou and Nei, 1987) were constructed 

using MEGA (version 5.03) (Tamura et al., 2011). Evolutionary distances were 

calculated using the Kimura 2-parameter method (Kimura, 1980). Rate variation among 

sites was modelled by a gamma distribution with tree-specific shape parameters, as 

based on the maximum-likelihood fits of different nucleotide substitution models. 

Positions containing gaps and missing data were eliminated. Confidence levels for the 

tree topology were assessed by bootstrap analysis (1000 replicates).          

 

3.3.8. Accession numbers  

16S rRNA gene sequences have been submitted to the GenBank Database under 

accession numbers JF928573 to JF928823. 

 

3.4. Results 

3.4.1. The structure and diversity of LDPE-associated bacterial communities 

Scanning electron microscopy was used to examine microplastics obtained from 

sediment-LDPE microcosms either immediately or following 14 days of exposure to 

either sandy or silty sediment types (sites SP1, SP2 and WB; see Table 3.1). Attachment 

of morphologically diverse prokaryotic cells (rod- and spirilla-shaped) was observed 

onto both the LDPE surface and also within the plastic-sediment interface in all 

sediment types (Figure 3.2), with additional attachment by pennate diatoms (Figure 

3.3).  

 

 



Chapter 3 – Bacterial Colonisation of Microplastics in Sediments  

60 

 

 

 

Figure 3.2. Scanning electron micrographs showing prokaryotic attachment onto the LDPE-

sediment interface. Images were taken of LDPE microplastic fragments sampled from 

microcosm experiments containing coastal marine sediment from three sites: SP1 (a and b), SP2 

(c and d) and WB (e and f) at Spurn Point (UK), sampled either immediately or after 14 days 

(left-hand and right-hand panels, respectively). The scale bars are 5 µm. 
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Figure 3.3. Scanning electron micrograph showing attachment by prokaryotic cells and 

an unidentified pennate diatom onto the LDPE-microplastic surface. The image is of 

LDPE sampled after 14 days from a microcosm experiment containing coastal marine 

sediment from Spurn Point, UK (site SP2). The scale bar is 5 µm.     

 

Bacterial communities associated with LDPE surfaces differed significantly 

from those within the sediments, as demonstrated by terminal-restriction fragment 

length polymorphism (T-RFLP) analysis of 81 AluI-digested PCR products derived 

from DNA isolated from individual sediment-LDPE microcosms (two-way ANOSIM, 

global R = 0.71, p < 0.001; see Figure 3.4). Initially (i.e. following two days of exposure 

to sediments), sediment type-specific bacterial communities were found within the 

LDPE-sediment interface (one-way ANOSIM, global R = 0.67, p = 0.04; Fig. 3.5a). 

Subsequently, significant variation was observed in the structure of the LDPE-

associated bacterial communities during the 14-day experiment (Table 3.2). 

Specifically, there were significant shifts in the structure of LDPE-associated bacterial 

communities by Days 7 and 14 of the experiment, with notable convergence in the 

structure of these communities across the three sediment types (Fig. 3.5a). One-way 

ANOSIM R decreased from R = 0.67 (p < 0.001) to R = 0.01 (not significant), when 

comparing differences between LDPE-associated communities at Day 2 vs. Day 14 and 

Day 7 vs. Day 14, respectively (Table 3.2). In contrast, sediment bacterial communities 
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from each site remained significantly different from each other throughout the 14-day 

experiment (one-way ANOSIM, global R = 0.72, p < 0.001; Fig. 3.5b). Moreover, no 

significant temporal variation was observed in the structure of the sediment bacterial 

communities (Table 3.2). Bacterial communities within the LDPE-sediment interface 

became significantly less diverse over time (one-way ANOVA of Shannon’s diversity, 

F = 4.69, p = 0.008, d.f. = 3, 32) (see Table 3.3). In contrast, no significant temporal 

shifts were observed in the diversity of sediment bacterial communities (one-way 

ANOVA of Shannon’s diversity, F = 2.12, p = 0.117, d.f. = 3, 32) (Table 3.2). 

 

 

Figure 3.4. Representative T-RFLP electropherograms of bacterial communities in a) coastal 

marine sediments and b) within the LDPE-sediment interface. T-RFLP profiles were generated 

following PCR amplification of bacterial 16S rRNA genes amplified from DNA isolated from 

sediment-LDPE microcosms from three sampling sites (SP1, SP2 and WB, as indicated), 

sampled after 14 days.  
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Figure 3.5. Non-metric multidimensional scaling (nMDS) ordinations of sediment and LDPE-

associated bacterial communities in sediment microcosms over time.  The ordinations were 

derived from a Bray-Curtis resemblance matrix calculated from square-root-transformed 

terminal restriction fragment (T-RF) relative abundance data. Data are shown for bacterial 

communities within a) the LDPE-sediment interface (stress = 0.16) and b) sediments (stress = 

0.13). Labels correspond to samples taken over time [immediately (Imm.), after 6 hours, and on 

days (D) 1, 2, 4, 7 and 14)] from microcosms containing coastal marine sediments from three 

sites (SP1, SP2 and WB, as indicated). Similarity thresholds (%) are based on group-average 

clustering. Arrows indicate the temporal trajectory of bacterial community succession with the 

LDPE-sediment interface. 
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Table 3.2. Pairwise comparisons of the structure of bacterial communities within the LDPE-

sediment interface and sediments over time. Global one-way ANOSIM R values for the factor 

‘exposure time’ are derived from T-RFLP datasets generated following PCR amplification of 

bacterial 16S rRNA genes amplified from DNA isolated from sediment-LDPE microcosms 

from three sampling sites (SP1, SP2 and WB). Values are shown only for sampling intervals for 

which data were available for all three sites. 

       * P < 0.001    N.S. = not significant 

 

Table 3.3. Shannon’s diversity indices (H’) for bacterial assemblages within sediments and the 

LDPE-sediment interface over time. The values are derived from T-RFLP datasets generated 

following PCR amplification of bacterial 16S rRNA genes amplified from DNA isolated from 

sediment-LDPE microcosms from three sampling sites (SP1, SP2 and WB). The data are given 

as mean ±  SE (n = 3). 

       * Data not available for all sampling sites ** No samples collected 
 

3.4.2. 16S rRNA gene sequence analyses of LDPE-associated bacterial communities 

Clone libraries were constructed of PCR-amplified 16S rRNA genes from LDPE 

fragments from sites SP1, SP2 and WB, following fourteen days of exposure to either 

sandy or silty sediment types (see Table 3.1). A total of 251 sequences were generated 

across the three libraries. Rarefaction curves (Figure 3.6) displayed a tendency for 

curvilinearity when using operational taxonomic unit (OTU) designations based on 95, 

97 or 99% sequence similarity. Moreover, Good’s coverage estimates of >75% were 

typically obtained for OTU designations at these levels of sequence identity (Table 3.4). 

 LDPE-sediment interface  Sediment 

Exposure time 2 days 4 days 7 days  Immediate 4 days 7 days 

4 days 0.10 *    0.08 (N.S.)   

7 days 0.46 * 0.07 (N.S.)   0.12 (N.S.) 0.09 (N.S.)  

14 days 0.67 * 0.38 * 0.01 (N.S.)  0.12 (N.S.) 0.00 (N.S.) 0.03 (N.S.) 

 Sampling interval 

Substrate Immediate 2 days 4 days 7 days 14 days 

Sediment 3.41 ± 0.05 N/A ** 3.23 ± 0.07 3.26 ± 0.05 3.31 ± 0.04 

LDPE-sediment interface N/A * 3.26 ± 0.11 3.05 ± 0.10 2.88 ± 0.09 2.80 ± 0.08 
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Figure 3.6. Rarefaction curves for bacterial 16S rRNA gene clone libraries of LDPE-associated 

assemblages. Clone libraries were generated following PCR amplification of bacterial 16S 

rRNA genes amplified from DNA isolated from sediment-LDPE microcosms from three 

sampling sites (SP1, SP2 and WB, as indicated), sampled after 14 days. Rarefaction curves are 

shown for operational taxonomic unit (OTU) designations for unique sequences and for OTUs 

based on similarity cut-off thresholds ranging from 99 to 95%, following removal of chimeric 

sequences. The dashed lines represent 95% confidence intervals. 

 

 

Table 3.4. Good’s coverage estimates for 16S rRNA gene clone libraries. Values are given for 

operational taxonomic unit (OTU) designations for unique sequences and for OTUs based on 

similarity cut-off thresholds ranging from 99 to 95%, following removal of chimeric sequences. 

16S rRNA gene clone libraries were generated from the LDPE-sediment interface following 14-

day laboratory microcosm experiments in coastal marine sediments from three sites (SP1, SP2 

and WB).   

 

  Coverage estimates (%) for different OTU designations 

Site 
Number of 

clones 
Unique sequences 99% 97% 95% 

SP1 95 38.9 76.8 87.4 88.4 

SP2 98 51.0 81.6 91.8 93.9 

WB 58 15.5 63.8 82.8 87.9 
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16S rRNA gene sequences from the genera Arcobacter (Epsilonproteobacteria) 

and Colwellia (Gammaproteobacteria) were found to dominate the LDPE-associated 

bacterial assemblages, comprising between 84 and 93% of sequences from the three 

sites (Figure 3.7). Neighbour-joining phylogenetic trees revealed a high degree of 

sediment-specific clustering within each genus, with 80 – 100% of the sequences within 

individual populations originating from a given sediment type (Figure 3.8). OTU-based 

analyses also showed sediment-specific clustering of these sequences, with 80 – 100% 

of the dominant OTUs within each genus typically originating from a single sampling 

site (Figure 3.8; see Figure 3.9). Moreover, the LDPE-affiliated communities from each 

site contained significantly different Arcobacter spp. populations, as assessed using 

LIBSHUFF (with Bonferroni correction, p < 0.05). Site-specific Colwellia spp. 

populations were also found. However, for this genus, differences between sites SP2 

and WB were barely significant (p = 0.05), in agreement with the high similarities 

observed  between the structures of the overall LDPE-associated bacterial communities 

at these two sites as determined by T-RFLP analysis (Figure 3.5). 
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Figure 3.7. Taxonomic composition and relative abundance (%) of LDPE-associated bacterial 

assemblages. Clone libraries were generated following PCR amplification of bacterial 16S 

rRNA genes amplified from DNA isolated from LDPE microplastics sampled after 14 days 

from sediment-LDPE microcosms from three sampling sites (SP1, SP2 and WB, as indicated). 

Clones were assigned to operational taxonomic units (OTUs) based on a similarity cut-off 

threshold of 99%, with numbers of individual OTUs within each taxon indicated. 

 

Figure 3.8. (next page). Neighbour-joining phylogenetic trees and heat maps showing 

taxonomic affiliation of bacterial 16S rRNA gene sequences from the genera a) Arcobacter and 

b) Colwellia within the LDPE-sediment interface. Sequences (in bold) were obtained from 

LDPE microplastics sampled after 14 days from sediment-LDPE microcosms from three sites 

(SP1, SP2 and WB, as indicated). Most-closely related GenBank database sequences are 

included in the trees. Tree branches are collapsed according to OTU designations using a 99% 

similarity cut-off threshold. Highlighted regions indicate predominant sediment-specific 

populations. Bootstrap values of ≥ 50% are shown adjacent to nodes; scale bar represents 1% 

sequence divergence. Corresponding heat maps display the contributions (%) of the most 

dominant OTUs within the LDPE-sediment interface for each genus at each site. Overall 

contributions (%) of each OTU within each genus (i.e. across the three sites) are shown beneath 

each OTU label. 
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Figure 3.9. Frequencies of LDPE-associated Arcobacter- and Colwellia-affiliated operational 

taxonomic units (OTUs) within and across different sediment sampling sites. Values are shown 

for OTUs based on similarity cut-off thresholds of 99% (a and b), 97% (c and d) and 95% (e 

and f). Clone libraries were generated following PCR amplification of bacterial 16S rRNA 

genes amplified from DNA isolated from LDPE microplastics sampled after 14 days from 

sediment-LDPE microcosms from three sampling sites (SP1, SP2 and WB, as indicated). 

 

3.5. Discussion 

In this study, a 14-day laboratory microcosm experiment has shown that bacteria 

present in coastal marine sediments can rapidly colonise low-density polyethylene 

(LDPE) microplastics. Molecular analysis revealed that these LDPE-associated bacterial 

communities were structurally and taxonomically distinct from those found in the 

surrounding sediment environment. Scanning electron microscopy visually confirmed 

the direct attachment of primarily rod-shaped prokaryotic cells onto LDPE fragments 
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within both sandy and silty sediment types (sampling sites SP1, SP2 and WB; see Table 

3.1). Terminal-restriction fragment polymorphism (T-RFLP) analysis demonstrated 

significant time-dependent shifts in the structure of bacterial assemblages within the 

LDPE-sediment interface, in particular, by Days 7 and 14 of the experiment, with 

successional convergence occurring across all three sediment types examined. In 

contrast, the structures of bacterial communities within sediments from the three sites 

remained significantly different from each other over the duration of the experiment, 

and no significant temporal patterns were observed in the structure of the sediment 

bacterial communities. Despite recognition of the role and importance of sediments as a 

sink for the accumulation of plastic debris (Thompson et al., 2004; Reddy et al., 2006; 

Barnes et al., 2009; Browne et al., 2011; Claessens et al., 2011), previous research into 

the interactions between marine microorganisms and plastic debris has focused on 

investigation of microbial interactions with polymers in the water column (Carpenter et 

al., 1972; Dang and Lovell, 2000; Dang et al., 2008; Lee et al., 2008; Webb et al., 

2009; Harrison et al., 2011; Lobelle and Cunliffe, 2011). Moreover, prior culture-

independent investigation into the bacterial colonisation of plastics within the water 

column has only investigated communities following exposure of polymers in seawater 

for up to 72 hours, representing initial colonisation events (Dang and Lovell, 2000; 

Dang et al., 2008; Lee et al., 2008). The present research has demonstrated that over 

longer time periods (up to 14 days), successional shifts in the structure of LDPE-

affiliated bacterial assemblages occur, highlighting the need to undertake analyses over 

varying timescales to fully understand microbial biofilm colonisation processes on 

microplastics (Harrison et al., 2011). 

 

By the end of the 14-day experiment, the LDPE-sediment interface was 

primarily colonised by location-specific populations of Arcobacter spp. 
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(Epsilonproteobacteria) and Colwellia spp. (Gammaproteobacteria), as shown by 16S 

rRNA gene sequencing. Both rarefaction analysis and Good’s coverage estimates for 

operational taxonomic units (OTUs) supported strong representation of the overall 

taxon diversity within the plastic-associated bacterial communities (see Figure 3.6 and 

Table 3.4, respectively). Interestingly, previous studies characterising bacterial-plastic 

interactions within USA, China and Korea coastal waters identified Roseobacter spp. 

and other Alphaproteobacteria as the primary colonists of acryl, polyurethane, 

poly(methyl methacrylate) and polyvinylchloride surfaces within 24 hours of exposure 

(Dang and Lovell, 2000; Dang et al., 2008; Lee et al., 2008). In contrast, 

Epsilonproteobacteria were not detected on any of these polymer types. Moreover, the 

relative abundance of Gammaproteobacteria found attached to polymers in seawater 

was repeatedly found to significantly decrease after 24 hours of exposure (Dang and 

Lovell, 2000; Dang et al., 2008; Lee et al., 2008). These differences in taxon 

composition between bacterial assemblages colonising polymers within either water or 

sediment may be attributable to several factors, including variation in the structure, 

composition and activities of bacterial communities between environmental 

compartments, differences in experimental conditions, polymer types and durations of 

exposure (Dang and Lovell, 2000; Bakker et al., 2004; Dang et al., 2008; Lee et al., 

2008; Harrison et al., 2011). Despite these uncertainties, the present research strongly 

suggests that processes involved in the bacterial primary colonisation of microplastic 

debris are likely to differ between sediment habitats and the marine water column. It 

may also be hypothesised that the plastic-sediment interface represents an 

anthropogenic parallel to other types of microhabitats within natural ecosystems, 

including organic aggregates such as ‘clay hutches’ (Lünsdorf et al., 2000) and marine 

snow within the water column (Rath et al., 1998). 
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Whilst the LDPE-affiliated Arcobacter 16S rRNA gene sequences reported in 

this study were closely related to those from isolates and / or clones from marine 

environments (Figure 3.8), the ecological roles of this genus are poorly understood. 

Although Arcobacter spp. are increasingly found within marine environments including 

coastal habitats and sediments (Fera et al., 2004; Collado et al., 2008; Collado and 

Figueras, 2011), prior research has primarily focused on their role as clinical and animal 

pathogens (reviewed in Collado and Figueras, 2011). However, Assanta et al. (2002) 

have demonstrated attachment of Arcobacter butzleri to polyethylene pipe surfaces used 

in water distribution systems. Colwellia spp. identified in this study were most closely 

related to those in both polar and sub-tropical marine habitats (Fig. 3.8). Interestingly, 

whilst Colwellia spp. are considered as psychrophilic and have predominantly been 

found within polar environments (Methé et al., 2005), members of this genus have also 

been identified as minor components of an acryl-colonising bacterial assemblage within 

seawater near the coast of Korea (Lee et al., 2008). Furthermore, Colwellia spp. are 

known to produce extracellular polymeric substances (EPS) (Huston et al., 2004) that 

may enhance biofilm formation on plastic surfaces. Whilst research into the direct 

detection of EPS and other bacterial metabolites on LDPE fragments was beyond the 

scope of this investigation, bacterial-surface interactions during primary colonisation are 

known to exert a significant influence on the composition and further successional 

recruitment of microorganisms on plastic surfaces (Dang and Lovell, 2000; Dang et al., 

2008). 

 

Although the ecological roles of the LDPE-colonising sediment bacteria 

described in this study are unknown, both Arcobacter (Voordrouw et al., 1996; 

Watanabe et al., 2000; Yeung et al., 2011) and Colwellia are additionally present in 

hydrocarbon-rich environments, with Colwellia spp. having previously been affiliated 
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with hydrocarbon contaminant mineralisation in cold ecosystems (Powell et al., 2004; 

Yakimov et al., 2004; Valentine et al., 2010). To advance our understanding of 

microbial-plastic interactions and their implications for research into the environmental 

impacts and / or fate of plastic litter in the marine environment, more work is needed to 

characterise the ability of microplastic-associated bacteria to mediate breakdown of 

plastic co-contaminants, additives and/or of the petroleum hydrocarbon-derived 

polymers themselves (Harrison et al., 2011). Wider investigation is also required in 

order to determine whether the structure, taxonomic identities and metabolic functions 

of plastic-affiliated microbial consortia vary across different in situ environmental 

conditions and polymers retrieved from both benthic and pelagic habitats (Dang and 

Lovell, 2000; Bakker et al., 2004; Dang et al., 2008; Lee et al., 2008). 

 

In conclusion, this study has demonstrated the capacity for rapid attachment of 

microorganisms onto LDPE microplastics within coastal marine sediments and the 

development, succession and selection of LDPE-associated bacterial communities 

dominated by sediment-specific populations of Arcobacter and Colwellia spp. These 

results represent the first demonstration of the potential for microplastics in marine 

sediments to function as sites for microbial colonisation and biofilm formation. Whilst 

the metabolic activities of the LDPE-associated bacterial assemblages reported in this 

study are unknown, the present results provide a starting point for research into the 

formation, ecology and functions of plastic-associated biofilms in benthic marine 

habitats, and into the ecological impacts of microplastic-associated contaminants and/or 

microplastics within sediment systems. 

 

 

 



Chapter 3 – Bacterial Colonisation of Microplastics in Sediments  

74 

 

3.6. Acknowledgements 

Fieldwork and collection of sediment samples was assisted by Gregory Walker, David 

Ivall and Ashley Tuck. Robert Ashurst performed the sedimentological analyses and 

water salinity measurements were performed by the Centre for Environment, Fisheries 

and Aquaculture Science (Cefas). Aimeric Blaud provided practical assistance with the 

laboratory microcosm experiment. The University of Sheffield BMS-MBB Electron 

Microscopy Suite provided microscopy support. 



 

 

 

 

 

Chapter 4 

 

Quantification and Visualisation of Bacteria 

Attaching to Low-density Polyethylene 

Microplastics in Coastal Marine Sediments 

 

Aspects of this research have been submitted for publication as: 

 

Harrison, J.P., Sapp, M., Schratzberger, M. and Osborn, A.M. Rapid bacterial 

colonization of low-density polyethylene microplastics in coastal marine sediments. 

(Submitted) FEMS Microbiology Ecology. 



Chapter 4 – Quantification and Visualisation of Plastic-associated Bacteria  

76 

 

4.1. Abstract 

Synthetic microplastics ( ≤ 5-mm fragments) are now globally ubiquitous in marine 

sediments. Whilst little is known about the ability of microorganisms to associate with 

microplastics in sediments, research into this topic is fundamental to understand the 

environmental fate of marine plastic debris. This study employed a 14-day sediment 

microcosm experiment and quantitative PCR to enumerate 16S rRNA genes as a proxy 

for the abundance of bacteria present on low-density polyethylene (LDPE) surfaces over 

time and across three sediment types, ranging from sand to silt. Log-fold increases in 

the abundance of 16S rRNA genes from LDPE-associated bacteria occurred within 7 

days with bacterial numbers differing significantly across sediment types. Catalysed 

reporter deposition fluorescence in situ hybridisation (CARD-FISH) demonstrated 

attachment of bacteria, and specifically Colwellia spp., onto LDPE within sediments. 

This research provides the first quantitative assessment showing that polyethylene 

microplastics can function as sites for rapid bacterial attachment in coastal marine 

sediments. 

 

4.2. Introduction 

Synthetic microplastics ( ≤ 5-mm fragments) are globally distributed persistent 

pollutants that are accumulating particularly in marine sediments (Browne et al., 2011; 

Claessens et al., 2011; Cole et al., 2011). Due to their high bioavailability and potential 

to transport organic contaminants (e.g. polynuclear aromatic hydrocarbons) and 

additives into marine food webs, microplastics represent both a physical and chemical 

threat to marine organisms (Andrady, 2011). Whilst the interactions between plastics 

and microorganisms (bacteria, archaea and microbial eukaryotes) remain understudied, 

research into the microbial colonisation of microplastics is fundamental to 

understanding of the longer-term potential for biodegradation of plastic-associated 
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contaminants and/or the plastics themselves (Harrison et al., 2011). Bacterial 

colonisation of plastics within the marine environment was first reported in the 1970s, 

whereby rod-shaped Gram-negative bacteria were shown to be present on a polystyrene 

fragment in the Sargasso Sea (Carpenter et al., 1972). More recently, several studies 

have highlighted the ability of marine microorganisms to rapidly colonise and persist on 

several types of synthetic polymers in seawater (Sudhakar et al., 2007a, 2007b; Webb et 

al., 2009; Lobelle and Cunliffe, 2011). However, in contrast, very little is known about 

microbial-plastic interactions within sediments that serve as sinks for the accumulation 

of microplastics in the marine environment (Browne et al., 2011). 

 

Consequently and in order to investigate microbial biofilm formation on 

microplastics within marine sediments, a sediment microcosm experiment was 

employed (see Chapter 3) to demonstrate colonisation of low-density polyethylene 

(LDPE) microplastics by naturally occurring bacteria in coastal sediments. Briefly, 

bacterial assemblages present at the LDPE-sediment interface were found via molecular 

analysis to be structurally and taxonomically different from those in bulk sediments, and 

these communities exhibited successional convergence over a 14-day exposure period. 

The majority of bacteria within these communities were found to be members of the 

genera Arcobacter and Colwellia. Whilst this work initiated research into microbial-

plastic interactions in marine sediments, there remains a continuing lack of fundamental 

ecological data that could inform research into microbial colonisation processes on 

plastic pollutants within the marine environment and on the wider environmental 

impacts of plastic debris within marine sediments, and ultimately on the potential 

microbial mineralisation of polymer-associated contaminants and/or of the plastics 

themselves (Harrison et al., 2011). For example, there is a paucity of both quantitative 

data and visual information on early-stage microbial colonisation of microplastics in 
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sediment habitats. Moreover, most prior research into microbial-plastic interactions has 

been culture-based. Since only 1% or fewer of environmental microbial taxa are 

typically culturable in the laboratory (Amann et al., 1995), research employing culture-

independent molecular analyses is essential to inform understanding of the ecological 

interactions between microorganisms and plastic litter.     

 

In the present study, a microcosm experiment in combination with molecular 

analyses was used to investigate the early-stage bacterial colonisation of microplastics 

added into coastal marine sediments. Specifically, this research aimed to quantify 

attachment of naturally occurring bacteria onto LDPE fragments over time in both 

sandy and silty sediments, and to visually confirm the colonisation of LDPE surfaces by 

sediment bacteria. LDPE was used as a reference material due to the high abundance of 

this plastic type within the marine environment (Barnes et al., 2009). Bacterial 16S 

rRNA gene numbers on LDPE fragments were quantified as a proxy of the relative 

abundance of plastic-colonising bacteria using a quantitative real-time PCR (Q-PCR) 

assay (Becker et al., 2000; Suzuki et al., 2000; Smith et al., 2006; Smith and Osborn, 

2009). Catalysed reporter deposition in situ hybridisation (CARD-FISH) (Pernthaler et 

al., 2002; Wendeberg et al., 2010) was then used to visualise bacterial cells and 

specifically Colwellia spp. (Gammaproteobacteria) attached on LDPE surfaces. 

 

4.3. Materials and Methods 

4.3.1. Sediment sampling and sediment-LDPE microcosms 

Sediment sampling was performed as described in Section 3.3.1. Sediment-LDPE 

microcosms were established and LDPE fragments were sampled as outlined in Section 

3.3.2. Sediment samples for the construction of a Q-PCR standard curve were collected 

from the microcosms following 7 days of exposure. LDPE fragments and sediments for 
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Q-PCR analysis were stored at -80 °C. LDPE fragments for CARD-FISH analysis were 

fixed overnight in 2% (v / v) formaldehyde at 4 °C, then rinsed with ASW and 96% 

ethanol, and stored at -20 °C until use. 

 

4.3.2. DNA isolation and Q-PCR amplification of bacterial 16S rRNA genes 

DNA was isolated both from sediments and LDPE fragments as described in Section 

3.3.4. Bacterial 16S rRNA genes were amplified by PCR from DNA extracted from 

sediments from sites SP2 and WB using the universal bacterial primers EUB338 (5′- 

ACT CCT ACG GGA GGC AGC AG -3′) and EUB518 (5′- ATT ACC GCG GCT 

GCT GG -3′) (Fierer et al., 2005). No PCR amplification product could be obtained 

from sediment from site SP1 (data not shown). Each PCR contained 1 µl of template 

DNA, 1×  PCR buffer containing 1.5 mM of MgCl2, 0.25 mM of each 

deoxyribonucleoside triphosphate (dNTP), 0.3 µM of each primer and 2.5 U of Taq 

polymerase (Qiagen) made up to a total volume of 25 µl with sterile nuclease-free water 

(Ambion). PCR cycling conditions were 94 °C for 3 min, followed by 40 cycles of 94 

°C for 30 s, 50 °C for 45 s and 72 °C for 30s and a final extension step at 72 °C for 7 

min. The resulting PCR products (~200 bp) were purified with a QIAquick® gel 

extraction kit (Qiagen) and used to construct a standard curve to quantify 16S rRNA 

gene numbers on LDPE surfaces across the three sites, over a range of 1.0 ×  106 to 1.0 

×  109 amplicons of target DNA per mm2 of LDPE. 

 

Q-PCR analysis was performed on a single assay plate (Smith et al., 2006). Each 

Q-PCR reaction contained 1 µl of template DNA, 5x QuantiFast® SYBR® Green PCR 

Mastermix (Qiagen) (Wittver et al., 1997) and 0.3 µM of each primer, made up to a 

total volume of 25 µl with sterile nuclease-free water (Ambion). Primers and cycling 

conditions were as described for end-point PCR amplifications, with the exception of 
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omitting the final extension step (see above). No-template controls (NTCs) (n = 3) were 

included. Measurements were performed in triplicate for each sampling interval and 

sediment type, using a CFX96TM Real-Time PCR Detection System (Bio-Rad, Hemel 

Hempstead, UK) and quantified by CFX ManagerTM software (Bio-Rad). Mean cycle 

threshold (Ct) values (i.e. the number of cycles required for the fluorescence signal to 

exceed the background) were estimated (Smith and Osborn, 2009). PCR product 

specificity was confirmed by melting curve analysis (data not shown) (Ririe et al., 

1997). Statistical analyses of the Q-PCR data were performed using the R statistical 

package (version 2.12.0) (R Development Core Team, 2010). 

 

4.3.3. CARD-FISH analysis of LDPE-associated bacteria 

An existing catalysed reported deposition fluorescence in situ hybridisation (CARD-

FISH) protocol (Wendeberg et al., 2010) was employed in conjunction with universal 

bacterial oligonucleotide probes (EUB338 I-III) and a negative control probe (NON338) 

(Thermo Fisher Scientific or Biomers, Ulm, Germany) (Table 4.1), using hybridisation 

conditions listed in Table 4.1. A probe targeting Colwellia spp. (PSA184) (Biomers) 

was also used (Table 4.1). Catalysed reporter deposition was performed using a TSATM 

Cyanine 3 Tyramide Reagent Pack (Perkin-Elmer, Buckinghamshire, UK). Following 

hybridisation and catalysed reporter deposition, the LDPE fragments were 

counterstained by 4’,6-diamidino-2-phenylindole (DAPI) (Wendeberg et al., 2010). 

Bacteria were visualised using an Olympus IX71 epifluorescence microscope equipped 

with a 100X / NA 1.3 objective. All hybridisations were performed using LDPE 

fragments exposed to sediments from site SP2 for 14 days. 
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Probe Nucleotide sequence (5′ – 3′) Probe target % FAa °Cb References 

NON338 ACT CCT ACG GGA GGC AGC Negative control 55 35 Wallner et al. (1993) 

EUB338 I GCT GCC TCC CGT AGG AGT Most Bacteria 55 35 Amann et al. (1990) 

EUB338 II GCA GCC ACC CGT AGG TGT Planctomycetales 55 35 Daims et al. (1999) 

EUB338 III GCT GCC ACC CGT AGG TGT Verrumicrobiales 55 35 Daims et al. (1999) 

PSA184 CCC CTT TGG TCC GTA GAC Pseudoalteromonas, Colwellia 30 31 Eilers et al. (2000) 

a Per cent (v / v) formamide (FA) in hybridisation buffer, based on Sekar et al. (2003) (NON338, EUB probes) or Eilers et al. (2000) (PSA184) 

b Hybridisation temperature, based on Sekar et al. (2003) (NON338, EUB probes) or a modification of Pernthaler et al. (2002) (PSA184) 

Table 4.1. Oligonucleotide probes and hybridisation conditions used for CARD-FISH analysis of bacteria attached to LDPE 

fragments, retrieved from microcosms following 14 days of exposure to sediment from sampling site SP2 (Humber Estuary, UK). 
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4.4. Results and Discussion 

In order to obtain meaningful Q-PCR results, it is necessary to separate the DNA 

template amplification signal from background fluorescence (Smith et al., 2007; Smith 

and Osborn, 2009). It is considered that gene number estimates with mean Ct values less 

than 3.3 cycles lower than those corresponding to NTCs (i.e. less than a log-fold 

difference in gene numbers) are potentially influenced by background interference 

(Smith and Osborn, 2009). For the three sites (SP1, SP2 and WB), this was the case for 

LDPE fragments sampled prior to Day 4 and additionally for site SP1 at Days, 4, 7 and 

14. Consequently, estimates of bacterial 16S rRNA gene numbers for these samples 

were excluded from statistical analysis. 

 

For LDPE fragments retrieved from microcosms containing sediments from sites 

SP2 and WB, the abundance of 16S rRNA genes differed significantly both as a 

function of time of exposure to sediments and to sediment type (two-way ANOVA: F2,12 

= 16.50, p < 0.001 and F1,12 = 14.65, p < 0.01, respectively). 16S rRNA gene numbers 

quantified following 7 and 14 days of exposure to sediments from sites SP2 and WB 

were approximately a log-fold higher than after four days of exposure (Tukey multiple 

comparison test for factor ‘exposure time’, p < 0.01 and p < 0.001, respectively) (Figure 

4.1). There was no significant difference between numbers of 16S rRNA genes 

amplified from DNA extracted from LDPE fragments sampled after 7 and 14 days of 

exposure to sediments. Following seven days of exposure to sediments, mean 16S 

rRNA gene numbers on LDPE surfaces corresponded to a ratio of 2.8:1.0 between sites 

SP2 ( x  = 1.3 ×  108 ±  9.9 ×  106 SE) and WB ( x  = 4.8 ×  107 ±  1.6 ×  107 SE), 

respectively (Figure 4.1).  
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Figure 4.1. Variation in the relative abundance of bacterial 16S rRNA genes amplified from 

DNA extracted from LDPE fragments in sediments sampled over time. LDPE fragments were 

sampled in triplicate over time [immediately (Imm.), after 6 hours (hrs) and on days (D) 1, 2, 4, 

7 and 14)] from microcosms containing sediments from three sites (SP1, SP2 and WB, as 

indicated). Abundances are expressed as 16S rRNA genes per mm2 of LDPE. Error bars 

represent one standard error (n = 3). Gene numbers were calculated from the following standard 

curve: r2 = 0.979, y intercept = 42.6, slope = -4.64, E (amplification efficiency) = 64%, and Ct 

cut-off of 28.7. 

 

For LDPE fragments exposed to sediments from site SP1, a nearly log-fold 

increase in the abundance of bacterial 16S rRNA genes on the plastic surfaces was 

observed over the duration of the experiment. Whilst the data relating to site SP1 were 

omitted from statistical analysis due to the estimated gene copy numbers for this site 

being near the detection limit of the Q-PCR analysis, this result is in agreement with the 

corresponding estimates of approximately log-fold increases in gene numbers on LDPE 

fragments analysed following exposure to sediments from sites SP2 and WB (Figure 

4.1). Therefore, despite the potential influence of background fluorescence on gene 
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copy numbers calculated for site SP1 (see above), the results presented for this site are 

indicative of bacterial primary colonisation of LDPE fragments. 

 

The Q-PCR data reported herein provide the first quantitative evaluation of the 

potential for both time-dependent and sediment-specific bacterial attachment onto 

LDPE fragments within coastal marine sediments. The observed log-fold increases in 

the abundance of bacterial 16S rRNA genes on LDPE surfaces within 7 days of 

exposure to sediments corroborate existing evidence for rapid colonisation of plastics by 

naturally occurring bacterial assemblages (Chapter 3; see Lobelle and Cunliffe, 2011). 

Although these results were obtained by culture-independent molecular analyses, they 

are consistent with previous culture-based research reporting a significant increase in 

the number of polyethylene-associated bacteria following three weeks of exposure in 

seawater (Lobelle and Cunliffe, 2011), and demonstrating colonisation of high-density 

polyethylene surfaces by cultures of Arthrobacter sp. and Pseudomonas sp. isolated 

from marine sediments in the Gulf of Mannar, India (Balasubramanian et al., 2010). 

 

Although universal bacterial primers were used for the present Q-PCR analysis, 

prior research (Chapter 3) demonstrated the successional development of  bacterial 

communities within the LDPE-sediment interface that were both structurally and 

taxonomically distinct from those in bulk sediments. 16S rRNA gene clone library 

analyses using ‘Day 14’ LDPE samples indicated that plastics within each of the three 

sediment types were primarily associated with members of the genera Arcobacter 

(Epsilonproteobacteria) and Colwellia (Gammaproteobacteria). However, there is 

limited microscopy-based evidence confirming the attachment to and taxonomic 

identities of naturally occurring bacteria on microplastics within marine sediments. 

Therefore, CARD-FISH analysis (Section 4.3.3; Table 4.1) was employed to determine 
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whether bacterial cells and specifically Colwellia spp. attach directly to LDPE 

fragments exposed to sediments. This taxon is of potential interest to research into the 

environmental impacts and fate of microplastic-associated pollutants and/or the plastics 

themselves, due to its prior affiliation with hydrocarbon contaminant degradation 

(Powell et al., 2004; Yakimov et al., 2004; Valentine et al., 2010). LDPE fragments 

exposed to sediment from site SP2 were chosen for CARD-FISH analysis on the basis 

of the high abundance of bacterial 16S rRNA genes (see Fig. 4.1) and due to the 

prevalence of LDPE-affiliated Colwellia 16S rRNA gene sequences found previously 

for this site (Chapter 3). 

 

Bacterial cells were found to be directly attached onto the LDPE surfaces, as 

shown by CARD-FISH analysis performed with the oligonucleotide probes EUB338 I-

III (Figure 4.2c-d). Bacteria typically constituted the majority of prokaryotic cells 

observed on the LDPE fragments (Figure 4.2d). Moreover, CARD-FISH analysis using 

the PSA184 probe (Table 4.1) demonstrated the presence of Colwellia spp. on the 

LDPE surface following 14 days of exposure to sediments (Fig. 2f), as previously 

indicated by sequencing of 16S rRNA gene clone libraries (Chapter 3). As such, this 

information provides the first insight into the spatial localisation of members of 

Colwellia spp. within the plastic-sediment interface. 
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Figure 2. Epifluorescence micrographs showing bacterial attachment to LDPE surfaces 

following 14 days of exposure to coastal sediment (sampling site SP2) in experimental 

microcosms. Micrographs corresponding to staining by 4’,6-diamidino-2-phenylindole (DAPI) 

are displayed in the left-hand panels (a, c and e). Micrographs corresponding to staining by 

CARD-FISH are displayed on the right-hand panels, as shown for the oligonucleotide probes 

NON338 (b), EUB338 I – III (d) and PSA184 (f). The scale bar is 20 µm.     

 

Collectively, this study provides the first quantitative and culture-independent 

assessment of the ability of LDPE fragments in coastal marine sediments to function as 

sites for rapid bacterial attachment. Whilst only a single previous study has 

demonstrated the potential for bacteria originating from marine sediments to colonise 

plastic surfaces (Balasubramanian et al., 2010), the present data are in broad agreement 
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with existing observational and culture-based research demonstrating microbial 

attachment to plastic debris in the water column (Carpenter et al., 1972; Carpenter and 

Smith, 1972; Sudhakar et al., 2007b; Webb et al., 2009; Lobelle and Cunliffe, 2011). 

However, microbial-plastic interactions in the marine environment remain poorly 

understood in comparison with those in terrestrial ecosystems (Section 1.4.2; Lobelle 

and Cunliffe, 2011). For this reason, there is a particular need for longer-term and in 

situ exposure experiments to characterise microbial attachment and biofilm formation 

on microplastics within sediment habitats. Moreover, further experiments utilising both 

culture-independent and traditional microbiological methods are required to characterise 

the formation and ecological functions of plastic-associated biofilms in different marine 

habitats, as well as inform wider microbial research with regard to the environmental 

impacts and fate of marine microplastic debris. 
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 5.1. Summary of Main Findings 

This study aimed to provide fundamental knowledge concerning the abundance, 

ecological impacts and fate of microplastics within coastal benthic environments that 

function as sinks for the accumulation of these rapidly emerging pollutants (Chapter 1). 

Research was initiated into the development of improved FT-IR spectroscopy methods 

to detect, image and quantify polyethylene microplastics within marine sediments 

(Chapter 2). Moreover, a 14-day laboratory microcosm experiment and culture-

independent analyses were used to evaluate the potential for bacterial colonisation of 

LDPE microplastics within three sediment types (ranging from sand to silt) collected 

from the Humber Estuary, UK. The structure, diversity and taxonomic identities of 

LDPE-associated bacterial assemblages were determined by scanning electron 

microscopy, T-RFLP analysis and 16S RNA gene clone library sequencing (Chapter 3). 

Additionally, bacterial attachment to LDPE surfaces in sediments was quantified and 

visually confirmed using a Q-PCR assay and CARD-FISH, respectively (Chapter 4).  

 

Individual overviews of the experimental findings reported in this study are 

provided as part of earlier chapters (Sections 2.1, 3.1 and 4.1). Briefly, whilst ATR-FT-

IR spectroscopy produced similar spectra of both regularly and irregularly shaped 

LDPE fragments within sediment retentates, reflectance micro-FT-IR analysis of 

irregularly shaped plastics was susceptible to refractive error. Therefore, the reflectance 

spectra of unevenly shaped fragments must be interpreted with caution. Using several 

types of spectroscopy (including ATR-FT-IR spectroscopy) may assist the identification 

of microplastic particles (Hidalgo-Ruz et al., 2012). Despite this potential for spectral 

distortion, reflectance micro-FT-IR spectra of LDPE fragments in polymer-spiked 

sediments were shown to be consistent across a total of 17 sampling sites, 

demonstrating the wider suitability of this method between different environmental 
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substrates. Additionally, molecular mapping detected PE microplastics in both polymer-

spiked sediments and in a non-spiked sediment retentate, irrespective of the inherent 

biases of this technique and challenges associated with the separation of microplastics 

from sediments. Whilst additional work is now required to assess the wider applicability 

of spectral imaging to detect microplastics in marine ecosystems, these results represent 

the first important step towards developing new techniques for the quantitative and 

high-throughput spectral visualisation of microplastics. 

 

Bacteria were found to rapidly colonise microplastics deposited into both sandy 

and silty sediment types, exhibiting successional convergence across all three sampling 

sites. Both the structure and diversity of the LDPE-associated bacterial assemblages 

differed significantly from those within bulk sediments. Following 14 days of exposure, 

these LDPE-colonising bacterial assemblages were primarily comprised of members of 

the genera Arcobacter (Epsilonproteobacteria) and Colwellia (Gammaproteobacteria). 

Whilst no previous studies have examined the colonisation of plastics by bacteria in 

marine sediments, plastic-associated Epsilonproteobacteria have not been detected 

during prior research characterising bacterial attachment onto several different polymer 

types within coastal waters (Dang and Lovell, 2000; Dang et al., 2008; Lee et al., 2008). 

Additionally, the present evidence for positive successional selection of Colwellia spp. 

within the LDPE-sediment interface is in contrast with previous studies reporting rapid 

declines in the relative abundance of plastic-associated Gammaproteobacteria in 

seawater (Dang and Lovell, 2000; Dang et al., 2008; Lee et al., 2008). Therefore, the 

results obtained in this study strongly suggest that patterns of bacterial primary 

colonisation of plastics in the marine environment are likely to differ between sediments 

and the water column. 
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Log-fold increases in the relative abundance of LDPE-associated bacteria were 

observed within 7 days of exposure to sediments. The abundance of plastic-affiliated 

bacteria also differed significantly between the three sediment types. For example, mean 

bacterial 16S rRNA gene numbers on LDPE surfaces following 7 days of exposure to 

sediments corresponded to a ratio of 2.8:1.0 in relation to sites SP2 and WB, 

respectively. These results represent the first quantitative assessment of the ability of 

LDPE fragments in coastal sediments to function as sites for bacterial attachment. The 

present evidence for site-specific variation in the relative abundance of LDPE-

associated bacteria was also qualitatively supported by scanning electron microscopy 

and T-RFLP analysis. For example, T-RFLP profiles of bacterial communities within 

the plastic-sediment interface following less than 2 days of exposure to sediment from 

site SP1 typically exhibited low fluorescence intensities (data not shown), in agreement 

with the comparatively low 16S rRNA gene numbers estimated for this site (see Figure 

4.1). Moreover, the presence of bacterial cells and specifically of Colwellia spp. onto 

the LDPE surfaces was confirmed independently of PCR-based methods by CARD-

FISH analysis. 

 

Collectively, the results of the microcosm experiment reported herein provide a 

fundamental insight into the time-dependent colonisation of LDPE microplastics by 

bacteria within different types of marine sediments. Intriguingly, the ecological roles of 

these plastic-associated bacteria are presently unknown. 

 

5.2. Recommendations for Further Research 

Several recommendations for research into the environmental impacts of microplastics 

were proposed as a theoretical foundation to the present study (see Section 1.5).  

Recommendations for further investigation into topics highlighted by the main results 
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obtained via this research have also been provided within each experimental chapter 

(Chapters 2 – 4). In particular, considerations for future work involving the 

spectroscopic detection and imaging of microplastics in marine habitats are discussed in 

detail within Chapter 2 (Section 2.4.3.3). The current section expands upon these 

previous suggestions and outlines several examples of key areas for additional 

investigation at the interface between spectroscopy, microbial ecology and research into 

the environmental impacts of marine microplastics on higher organisms.  

 

5.2.1. Spectroscopic characterisation of microbial-plastic interactions 

FT-IR spectroscopy is considered the most reliable technique for identifying synthetic 

microplastics in the marine environment (Hidalgo-Ruz et al., 2012). Therefore, this 

study has aimed to advance research into developing improved FT-IR spectroscopy 

methods for detecting and imaging these pollutants in sediment habitats (Chapter 2; 

research recommendations discussed in Section 2.4.3.3). Whilst limitations associated 

with our ability to detect microplastics in marine ecosystems represent an important 

constraint to our understanding of the extent of marine plastic pollution (GESAMP, 

2010b), FT-IR spectroscopy may also be useful for characterising interactions between 

microplastics and marine microorganisms. Reflectance micro-FT-IR spectroscopy has 

already been used to determine the chemical composition of microbial biofilms on thick 

and opaque materials including steel surfaces (Schmitt and Flemming, 1998; Ojeda et 

al., 2009). Therefore, it is possible that this method could also be used to obtain novel 

information concerning microbial attachment to plastic fragments and microbial-

microplastic interactions within both marine habitats and higher organisms (Figure 1.4; 

Section 5.2.8). For example, although the formation of conditioning films and secretion 

of extracellular polymeric substances (EPS) by LDPE-adhering bacteria were not 

examined as part of this present study, reflectance micro-FT-IR spectroscopy has 
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previously been applied to characterise the adsorption of EPS onto solid surfaces 

(Omoike and Chorover, 2006). FT-IR spectroscopy may also aid research into the 

colonisation of plastics by marine microorganisms by providing data concerning in situ 

biofilm composition and the specific bonding mechanisms involved in microbial 

adherence onto surfaces (Ojeda et al., 2009). 

 

In addition to FT-IR spectroscopy, other forms of vibrational spectroscopy may 

also be useful to both molecular and culture-based research into microbial-plastic 

interactions in marine ecosystems. For example, Raman microspectroscopy has 

previously been employed to differentiate genetically identical microbial populations in 

environmental samples based on their phenotypic, physiological and metabolic states 

(Huang et al., 2010). This technique has also been used to identify macromolecules 

involved in cellular attachment to surfaces (Andrews et al., 2010) and to resolve 

temporal patterns related to the formation and chemical structure of bacterial colonies 

(Choo-Smith et al., 2001). Moreover, Raman microspectroscopy is compatible with 

several other analytical approaches (e.g. fluorescence in situ hybridisation and stable 

isotope probing), enabling direct investigation of the ecological functions of naturally 

occurring microbial communities at the scale of single cells (Huang et al., 2010). As 

such, this method is of considerable interest to research aimed at identifying microbial 

activities influencing both the long-term fate and potential biodegradation of 

microplastics in marine ecosystems (Section 5.2.7).  

 

5.2.2. Laboratory experiments under a wider range of environmental conditions 

To date, investigation of microbial-plastic interactions in marine ecosystems has been 

restricted to aerobic habitats (see Table 1.1). Therefore and due to practical reasons, the 

microcosm experiment employed in this study focused on elucidating bacterial-plastic 
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interactions under aerobic conditions and with reference to a single exposure scenario 

(based on measurements of in situ water temperature and salinity) (Chapters 3 and 4). 

Within natural ecosystems, the penetration depth of oxygen in coastal marine sediments 

is likely to be limited to a range of milli- and/or centimetres (Cai and Sayles, 1996; 

Köster et al., 2008). This decline in oxygen content is accompanied by a stratification of 

redox conditions that corresponds to marked differences in both the composition and 

activities of resident microbial communities (Edlund et al., 2008; Köster et al., 2008). 

Although the present study demonstrated striking similarities in the taxonomic identities 

of LDPE-colonising bacterial assemblages across several sediment types supporting 

structurally distinct bacterial communities (Chapter 3), it remains probable that 

processes of microbial colonisation on microplastics are influenced by several 

environmental parameters including oxygen availability and the prevailing redox state. 

Similarly to microorganisms residing in pelagic habitats (Fuhrman et al. 2006; Kan et 

al. 2007; Sapp et al. 2007), the community structure of microorganisms inhabiting 

coastal sediments is known to fluctuate seasonally (Köster et al. 2008). Therefore, 

further laboratory experiments are now required to characterise microbial attachment to 

microplastics under a wide range of environmental conditions and across several 

seasons. This research may also be combined with field studies of microplastic-

associated microorganisms (Section 5.2.4).  

 

Due to the propensity of microplastics to associate with organic contaminants 

(e.g. polynuclear aromatic hydrocarbons) (see Section 1.3), it is also necessary to note 

that the spiking of sediments with LDPE microplastics in this study was performed in 

the absence of other artificially added pollutants. Therefore, it is of particular interest to 

future laboratory-based research into microbial-plastic interactions to determine how the 

presence of plastic co-contaminants impacts upon the structure, composition and 
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particularly the ecological activities of microplastic-associated microbial communities 

(Section 5.2.7).  

 

5.2.3. Colonisation of microplastics by microbial eukaryotes and archaea 

Attachment by microbial eukaryotes (e.g. diatoms, dinoflagellates and fungi) onto 

synthetic polymer surfaces has previously been observed within aquatic habitats and the 

marine water column (Carpenter and Smith, 1972; Masó et al., 2003; Sudhakar et al., 

2007b; Shah et al., 2008; Pramila and Ramesh, 2011). Interestingly, the present study 

also demonstrated attachment by pennate diatoms onto LDPE fragments deposited into 

coastal marine sediments (Figure 3.3). Despite this and whilst microbial eukaryotes 

have frequently been affiliated with plastic biodegradation in terrestrial habitats (e.g. 

Shah et al., 2008; Russell et al., 2011), no research has been conducted into elucidating 

successional patterns of microbial eukaryotic colonisation on plastic litter within marine 

ecosystems. Additionally, whilst archaea have previously been shown to adhere both to 

steel surfaces in seawater (Dang et al., 2011) and polyvinylidene fluoride membranes 

within a wastewater treatment facility (Calderón et al., 2011), the presence of these 

organisms on marine plastic debris has not been reported. Since the potential ecological 

interactions between microplastics, microbial eukaryotes and archaea and in the marine 

environment (see Figure 1.4) remain poorly understood, there is a need for fundamental 

laboratory- and field-based research into this topic. 

 

5.2.4. In situ studies of microbial-plastic interactions within coastal sediments 

The present research employed sacrificial sediment-LDPE microcosms as a model 

system to obtain an understanding of the ability of microplastic particles to facilitate 

bacterial attachment within coastal sediments (Chapters 3 and 4). Whilst microcosm 

experiments represent an invaluable tool to ecological research due to their simplicity, 
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reproducibility and potential to reveal biological processes that are of importance in 

natural ecosystems, the reliability of results obtained by laboratory-based studies must 

ultimately be verified under field conditions (Teuben and Verhoef, 1992; Ahl et al., 

1995; Kampichler et al., 2001). Sediment mesocosm systems are likely to represent a 

useful and experimentally controlled counterpart to laboratory studies that could enable 

elucidation of microbial colonisation processes on microplastic surfaces under in situ 

environmental conditions. Due to their partially enclosed nature and direct contact with 

both organic and inorganic fluxes in the wider environment (Kampichler et al., 2001), 

field-based mesocosm experiments may also allow for longer-term investigation of 

successional processes on polymer surfaces than enclosed microcosm experiments. 

 

Although combining microcosm experiments with mesocosm studies will 

undoubtedly advance our understanding of microbial-plastic interactions in sediment 

habitats, it must be noted that no previous research has been conducted into determining 

the structure, composition and activities of microbial communities associated with 

microplastics retrieved directly from sediments within different sampling sites. 

Therefore, further research is required to characterise microbial biofilms adhering to 

plastic fragments obtained by field surveys focusing on both coastal and offshore 

locations (Section 5.2.6). 

 

5.2.5. Isolation of key microbial taxa associated with microplastics 

Molecular analyses of rRNA genes are highly useful to research into the structure, 

diversity and composition of naturally occurring microbial communities because they 

enable direct examination of phylogenetically diverse assemblages without the 

involvement of a culturing step (Amann et al., 1995). However, the isolation of 

environmental microorganisms is of continuing relevance to microbial ecology due to 
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the ability of culture-based experiments to provide valuable information concerning the 

physiology and life histories of selected microbial taxa (e.g. Orphan et al., 2000). In this 

current study, both Arcobacter spp. and Colwellia spp. were identified as key LDPE-

colonising bacterial taxa within coastal marine sediments (Chapter 3). However, the 

degree to which the attachment of these taxa to microplastics is facilitated by the 

properties of the polymer, ambient environmental conditions and/or the presence of 

other plastic-colonising microbial taxa is unknown. For this reason, attempts are now 

required to isolate these key plastic-colonising bacterial taxa and to characterise their 

potential to associate with LDPE surfaces using culture-based experiments. Such 

experiments are particularly likely to be of importance to elucidating the ecological 

functions of plastic-associated microorganisms in marine habitats (see Section 5.2.7).  

 

5.2.6. Microbial-plastic interactions in coastal versus open-water habitats 

The results presented in this study highlight the likelihood that ecological interactions 

between marine microorganisms and synthetic microplastics will differ between 

environmental compartments, including sediments and the water column (Chapters 3 

and 4). As such, studies comparing successional patterns of microbial colonisation on 

plastic surfaces in both sediments and seawater should constitute a research priority. 

Attention has also been directed towards the need for wider research into characterising 

patterns of microbial colonisation of microplastic debris across a broad range of 

environmental conditions and habitat types (Sections 5.2.2 and 5.2.4).  

 

Although coastal environments are of particular significance to microplastics 

research due to their role as primary sites for marine biogeochemical processes and 

because of their high risk of exposure to plastic contamination (Halpern et al., 2008; 

Barnes et al., 2009; Browne et al., 2010; Browne et al., 2011; Cole et al., 2011), 
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microbial-plastic interactions in these habitats are poorly understood. Given the 

additional and global-scale accumulation of microplastic debris in open-ocean 

environments including the North Atlantic Subtropical Gyre (Law et al., 2010), 

additional research is needed in order to understand whether and how colonisation 

processes and activities of plastic-associated microorganisms vary between coastal and 

offshore environments. Expeditions of marine ecosystems across the globe have 

previously taken place in order to enable the molecular fingerprinting and high-

throughput metagenomic sequencing analyses of microbial communities within pelagic 

environments (Venter et al., 2004; Rusch et al., 2007; Fuhrman et al., 2008; Simon and 

Daniel, 2011). Next-generation metagenomic analyses have also become increasingly 

affordable and have recently been applied to assess the functional diversity of microbial 

communities in natural ecosystems (Simon and Daniel, 2011; Desai et al., 2012). The 

presence of microplastics in the marine environment is already being investigated 

globally (Barnes et al., 2009; Browne et al., 2011). As such, high-throughput screening 

of metagenomic libraries may also enable research into characterising the diversity and 

metabolic potential of plastic-associated microbial assemblages worldwide.      

 

5.2.7. Functional analyses of microplastic-associated microbial assemblages 

In this study, DNA-based molecular analyses were used to advance our understanding 

of microbial-microplastic interactions within coastal marine sediments (Chapters 3 and 

4). However, the ecological functions of microplastic-associated microbial taxa remain 

unknown and currently only indirect inferences may be made about this topic, based on 

examination of the phylogenetic relationships of these organisms as shown by 16S 

rRNA gene sequencing analyses (see Figure 3.8). Therefore, and due to the extensive 

reliance of previously published research into microbial-plastic interactions on culture-

based methods (Section 1.4.2), there is a particular lack of culture-independent research 
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into the metabolic activities, process rates and patterns of functional gene expression by 

plastic-associated microorganisms in the marine environment.  

 

Where sufficient information is available concerning the likely microbially 

mediated ecological functions within a given environment, both the abundance and 

expression of selected functional genes may be rapidly quantified using Q-PCR analysis 

(Becker et al., 2000; Suzuki et al., 2000; Smith et al., 2007; Smith and Osborn, 2009). 

For example, Colwellia spp. were identified as key colonisers of LDPE surfaces in the 

present study (Chapter 3), and members of this genus are known to possess mono- and 

dioxygenase genes potentially involved hydrocarbon contaminant degradation (Methé et 

al., 2005). However, the expression of these genes within the plastic-sediment interface 

has not been studied. Therefore, Q-PCR analysis targeting these genes is of interest to 

future research into microbial-plastic interactions, breakdown of plastics and/or plastic-

associated contaminants, and the environmental fate of marine microplastic debris. 

 

Future investigation into microbial-plastic interactions and the breakdown of 

microplastics and their co-contaminants may also be facilitated by molecular techniques 

including stable isotope probing (SIP) and microbial transcriptomics. These methods 

enable culture-independent identification of taxa responsible for key metabolic activities 

and functional gene expression in natural environments (Radajewski et al., 2000; 

Radajewski et al., 2003; Madsen, 2005; Poretsky et al., 2005; Poretsky et al., 2009; 

Gilbert et al., 2010; Vila-Costa et al., 2010). For example, SIP may be used to trace the 

assimilation of a 13C-labelled carbon source by specific microbial populations within 

natural ecosystems (Radajewski et al., 2000). This technique is also compatible with 

Raman microspectroscopy (Section 5.2.1). As such, SIP could be utilised to determine 

the potential for 13C-labelled plastics and plastic-associated compounds to function as a 
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source of carbon for microbial metabolism (Lucas et al., 2008). Additionally, 

transcriptomic profiling is likely to provide useful insights into the metabolic activities 

of microplastic-associated microbial communities in the absence of previous research 

into this topic (Poretsky et al., 2005). This method has previously been applied to reveal 

the presence of previously undetected functional genes and to elucidate temporal 

patterning in several aspects of microbial metabolism within the marine environment 

(Poretsky et al., 2005; Poretsky et al., 2009; Gilbert et al., 2010). 

 

In addition to culture-independent functional analyses of microplastic-associated 

microbial communities, culture-based research using isolates of key plastic-colonising 

taxa (Section 5.2.5) is required to fully understand the physiology and activities of 

plastic-colonising microorganisms in marine ecosystems. Future laboratory experiments 

could be employed to identify and characterise microbially produced compounds (e.g. 

biosurfactants and enzymes) (Satpute et al., 2011) facilitating biofilm formation and/or 

catalysing metabolic reactions performed by plastic-colonising microorganisms. For 

example, extracellular polymeric substances (EPS) produced by Colwellia 

psychrerythrea strain 34H have already been shown to become retained within artificial 

sea ice, likely enabling direct cellular attachment to ice within pelagic marine habitats 

(Ewert and Deming, 2011). Moreover, analysis of the extracellular aminopeptidase 

ColAP purified from this strain has revealed several structural features conferring cold 

adaptation and protein metabolism at low temperatures (Huston et al., 2004). 

Concurrently to investigating the role of microbially produced macromolecules in both 

the formation and ecology of plastic-associated biofilms, further work is required to 

determine the ability of selected microbial taxa to grow on microplastics as the only 

carbon source (e.g. Gilan et al., 2004; Russell et al., 2011). This type of research could 

be performed both in the presence and absence of artificially added plastic co-
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contaminants (Teuten et al., 2009), in order to broaden our understanding of how these 

compounds are likely to influence microbial-plastic interactions within natural habitats. 

 

5.2.8. Microbial-plastic interactions in contact with higher organisms 

Although this research has focused on characterising the ecological relationship 

between microplastics and microorganisms within marine sediments, the potential for 

ingestion of these pollutants by higher organisms is widely documented (Section 1.3). 

As such, microplastics may also represent a vector for the transport of plastic-associated 

microorganisms into higher organisms (Figure 1.4). Additionally, microbial taxa within 

the gut may also interact with microplastics and/or microplastic-associated microbial 

assemblages originating from the wider environment. However, no research has been 

conducted into these topics, and there is a need for future experimentation to understand 

the ability of microplastics to influence higher organisms from a microbiological 

viewpoint. Additionally, due to the potential negative impacts of microplastics and 

plastic-associated contaminants upon higher organisms (Section 1.3), the presence of 

microplastic debris may indirectly influence microbially mediated biogeochemical 

processes in marine ecosystems. For example, burrowing activities by bioturbating 

invertebrates are known to exert a significant impact upon the structure, composition 

and activities of sediment microbial communities (Laverock et al., 2010). Therefore, 

and since sediment-dwelling organisms are highly susceptible to ingestion of 

microplastics (Section 1.3), future research must address whether the potential 

deleterious impacts of microplastic particles on these organisms could also influence the 

maintenance of vital ecosystem processes by naturally occurring microbial 

communities. 
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5.3. Outlook 

The findings reported in this study provide both a novel and significant contribution 

toward improving our ability to detect marine microplastic fragments and to understand 

the potential of these pollutants to facilitate formation of plastic-associated biofilms. In 

addition to initiating research into both the development of improved spectroscopic 

protocols for the detection of microplastics and microbial colonisation of microplastics 

in marine sediments, this work has identified a broad range of key subjects for future 

research. The results of this research will be of particular use to developing robust and 

standardised methods for quantifying microplastics, and as an experimental foundation 

to performing laboratory-based and in situ microbiological investigations aimed at 

characterising the ecological impacts and long-term residence times of microplastic 

debris within the global marine environment. 
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