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Abstract 

Fluorescent flow cytometry (FFC) is an accessible, high-throughput and 

sensitive technique that is well suited to analysis of cells suspended in 

complex heterogeneous media. Using a wide variety of live, fixed, 

extracellular, intracellular, dye/antibody/peptide based FFC assays, multiple 

and novel aspects of platelet biology including; activation, inflammation and 

mitochondrial function were examined. 

Through the examination of platelet activation with multiparameter and 

multidimensional analysis three platelet subsets in PAR1/GPVI activated 

whole blood samples were described. This same assay in the presence of 

PGI2 suggested a dichotomy in inhibition when comparing fibrinogen binding, 

phosphatidylserine (PS) exposure and CD62P. Using novel phosphoflow 

protocols the inhibition resistant expression of CD62P was shown to be 

independent of robust cAMP signalling. This CD62P expression was then 

shown to mediate platelet monocyte interactions – in the presence of 

inhibition. 

Caspase-1 cleavage as a marker of NLRP3 inflammasome activity was 

measured using fluorescent peptide dyes. Activation was induced by 

canonical activators of the complex, but it was observed that this was 

significantly potentiated by oxidised LDL (oxLDL). ROS and calcium were also 

shown to have a vital role in activation of platelet NLRP3 and scavenging or 

chelation of either induced a loss of signal. Furthermore, active caspase-1 

signal also correlated with PS exposure. 

Finally, mitochondrial function in response to oxLDL in vitro and in the context 

of murine hyperlipidaemia ex vivo was measured using live cell dyes. In vitro 

stimulation with oxLDL drove an increase in both mitochondrial superoxide 

production and mitochondrial membrane potential. However, this was 

demonstrated to be important in vivo, as transgenic models of hyperlipidaemia 

showed a significant increase in basal mitochondrial superoxide compared to 

wild type control. This was recapitulated diet-induced obesity murine models 

and a trend towards increased mitochondrial superoxide and membrane 

potential was described. 
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Chapter 1 

Introduction 

1.1 PLATELETS 

1.1.1 Platelet production and death 

Platelets are anucleate cells that have been shown to have roles in haemostasis, 

thrombosis, innate immunity, wound healing and angiogenesis (Gibbins, 2004, 

Koupenova et al., 2018, Golebiewska and Poole, 2015, Blair and Flaumenhaft, 

2009). They circulate in the body at a clinical reference range of 150-400 x 109 cells/L 

of blood (Bonaccio et al., 2016) and have a lifespan in circulation of approximately 

ten days. They are removed via Ashwell-Morrell receptors, in the hepatic vasculature, 

which recognise the desialyted surface proteins aged platelets display (Hoffmeister 

and Falet, 2016). As part of the apoptotic pathway in platelets, several key events 

occur which include; mitochondrial depolarisation, cytochrome C release, activation 

of apoptotic caspases culminating in caspase-3,  exposure of phosphatidylserine and 

finally cellular blebbing and fragmentation (Gyulkhandanyan et al., 2012). Ageing of 

platelets is controlled by the major anti-apoptotic protein BCL-XL (Vogler et al., 2011) 

and this is suggested to be further regulated by cAMP-PKA activity (Zhao et al., 

2017). The majority of platelets are produced within the bone marrow by the platelet 

pre-cursor cell, megakaryocytes (Parise, 2016), however, there is also evidence of a 

megakaryocyte population within the pulmonary system (Lefrancais et al., 2017). 

Megakaryocytes are large diffuse cells which exhibit polyploidy with many copies of 

nuclear DNA, often 64 copies at maturity (Italiano and Battinelli, 2009). 

Megakaryocytes trail filopodia into the circulation which shed pro-platelets. Pro-

platelets undergo maturation in the vasculature and further break apart in their final 

discoid mature platelet morphology (Italiano and Battinelli, 2009). Megakaryocytic 

platelet production is mostly driven by the hormone thrombopoietin and a steady 
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platelet count is maintained within the body, although certain conditions may 

predispose individuals towards changes in the number of platelets produced such as 

in acute coronary syndrome (Martin et al., 2012), while pathogenic disease such as 

sepsis can result in consumption of platelets (Guclu et al., 2013).  

 

 1.1.2 Platelet structure 

Platelets are small discoid cells with a diameter between 2-4 µm and despite their 

size they are complex cells with over 4,191 proteins listed on a recent proteomic 

study (Burkhart et al., 2012). These proteins may be membrane bound, cytosolic or 

within secretory α- or δ-granules (Figure 1). Platelets have evolved for rapid 

haemostatic function and are able to respond rapidly to stop haemorrhage at vascular 

sites of both arterial and venous shear, including; tethering against shear forces, 

degranulation, spreading over a damaged site and binding to and recruiting other 

platelets and facilitating the coagulation cascade.  
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Figure 1. Platelet structure and typical contents. (Upper) Equatorial section of a 
resting human platelet taken by transmission electron microscopy (x36,000). 
(Lower) Ultrastructural features of resting human platelets. Abbreviations in 
each area of the cell include peripheral zone; Exterior coat (EC), trilaminar unit 
membrane (CM), submembrane (SMF) and open canalicular system (OCS). 
Sol-gel zone; microtubules (MT) and glycogen (Gly). Organelle zone; 
mitochondria (M), alpha granules (G), dense bodies (DB) and dense tubular 
system (DTS). Adapted from (White, 2004). 

 

  1.1.2.1 Membrane 

The platelet membrane is a typical cellular phospholipid bilayer, presenting 

phosphatidylcholine on the exterior and phosphatidylserine on the interior, which is 
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regulated by flippase and scramblase enzymes (Lhermusier et al., 2011). However 

when platelets are activated, some platelets present phosphatidylserine (PS) on the 

surface of the cell (Agbani and Poole, 2017), with these negatively charged 

phospholipids facilitating coagulation (Hoffman and Monroe, 2001). Outside of the 

platelet lipid bilayer is the polysaccharide rich glycocalyx, in which the glycoprotein 

surface receptors sit (Bennett, 1963). Platelets also demonstrate a phenomenon of 

folding of the membrane, suggested to be important for quickly increasing the platelet 

surface area on activation and spreading, this is termed the open canalicular system 

(OCS) (Escolar and White, 1991). More recently, changes of the OCS in disease has 

been suggested to play a role in platelet activation (Selvadurai and Hamilton, 2018). 

The platelet lipid membrane is a dynamic environment which has been shown to 

undergo extensive remodelling, allowing receptor recycling and localisation, this is 

facilitated by cholesterol rich lipid rafts (Lopez et al., 2005). Lipid rafts are suggested 

to form islands of lipids within the phospholipid bilayer, presenting a fluid mosaic 

structure which can readily move and rearrange to facilitate membrane bound protein 

reorganisation. The islands are cholesterol sphingolipid rich domains and can, 

therefore, remain distinct from phospholipid lipid rich regions, which allows them to 

move independently of the total membrane (Lopez et al., 2005). These rafts, carrying 

receptors, are thought to play an important role in allowing receptors to cluster, which 

is a central requirement for signalling in the case of Immunoreceptor Tyrosine-based 

Activation Motifs (ITAMs), notably platelet GPVI clustering and signalling (Locke et 

al., 2002). Lipid rafts have also been linked to roles in compartmentalisation of 

inhibitory cAMP signalling, which may control spatial inhibition (Raslan and Naseem, 

2015). 
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  1.1.2.2 Cytoskeleton 

The platelet cytoskeleton is vital to the ability of platelets to rapidly change 

morphology on activation and their role in driving clot retraction. The cytoskeleton in 

resting platelets is apparent as a cell spanning coil of microtubules (Figure 1), which 

support the resting discoid cell shape of platelets (Behnke, 1965). Upon activation 

the coil of microtubules are contracted and the platelets lose their discoid shape 

(Menche et al., 1980). Platelets also contain an active actin cytoskeleton controlled 

by a wide variety of kinases which is also mobilised on activation driving formation of 

filopodia, lamellipodia and finally stress fibres (Atkinson et al., 2018, Yusuf et al., 

2017). Together these two processes result in the collapse of the platelet discoid 

shape and the ability to rapidly spread over a large surface area. 

 

1.1.2.3 Cytosol and granules 

Like other cells, the platelet cytosol contains many of the typical eukaryotic 

organelles, although it also contains platelet specific granules (Figure 1). In similarity 

to all other cells (excluding red blood cells), in the cytosol platelets carry mitochondria 

for the efficient production of ATP (Zharikov and Shiva, 2013). A platelet specific 

organelle termed the dense tubular system (DTS) is also present, and this stores 

intracellular Ca2+ (Ebbeling et al., 1992). Platelets contain three types of granules, of 

which the α-granule is the most numerous, this is followed by δ-granules and 

lysosomal granules. There are ~65 α-granules per platelets and they are roughly 0.2 

– 0.5 µm in diameter (Blair and Flaumenhaft, 2009). The contents of each granule 

type vary. In general, α-granules contain adhesion proteins, chemokines, coagulation 

factors, fibrinolytic enzymes and growth factors. The function of α-granules, 

therefore, spans haemostasis, thrombosis, repair/growth and immunity (Golebiewska 

and Poole, 2015). The role of α-granules is diverse. They not only release 

haemostatic modulators such as; thrombospondin-1 (TSP-1), fibrinogen, von 
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Willebrand factor (vWF), but also contain growth factors such as; vascular 

endothelium, platelet-derived, fibroblast, epidermal, hepatocyte and insulin-like 

growth factors (Blair and Flaumenhaft, 2009). Further to this α-granules also play a 

role in immunity through the release of soluble chemokine factors; CXCL4, CXCL7, 

CXCL12, CCL2 and CCL3 and the surface presentation of CD62P and CD154 from 

within the granules (Blair and Flaumenhaft, 2009). This led to discussion over the 

wide-ranging roles of platelet α-granules and whether they may be distinctly sorted 

into subsets of granules, such as “haemostatic” or “inflammatory” granules (Italiano 

and Battinelli, 2009). Classically, the role of secreted chemokines and growth factors 

has been suggested to facilitate thrombus resolution and subsequent wound healing, 

however, the platelet: immune cell interactions facilitated by α-granules proteins has 

also been reported to be important to atherosclerotic plaque development 

(Golebiewska and Poole, 2015). 

In contrast, δ-granules contain primarily small molecules such as polyphosphates, 

ADP, ATP, Ca2+ and serotonin, all of which support coagulation or directly promote 

further platelet activation through the P2X1, P2Y1/12 and 5-HT2A g-coupled 

receptors respectively (Stalker et al., 2012). 
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1.2 HAEMOSTATIC FUNCTION 

 1.2.1 Platelet activation at the site of injury 

The initiation of haemostasis is a major function of platelets in the vasculature. 

Platelets circulate the body in a state of tonic inhibitory quiescence, which is 

maintained by endothelial derived nitric oxide and prostacyclin. This inhibitory state 

is rapidly overcome at sites of injury, which is vital to fast cessation of bleeding. 

Platelet activation and subsequent thrombus formation consists of several distinct 

stages; rolling, tethering, spreading, recruitment and finally resolution (Figure 2). 

Blood flow forces platelets to the periphery of vessels due to their relatively small 

size, which places them near walls of the vessels, allowing them to rapidly detect 

vascular injury. When the vasculature is damaged the sub-endothelial matrix is 

exposed and the fibrillar protein collagen is exposed. von Willebrand factor (vWF), 

which circulates in the blood in a conformation unable to bind collagen, binds to 

collagen when shear induces a conformational change in the protein. This vWF can 

then ligate GP1b/V/IX receptor complex on the platelet surface. Ligation of the 

receptor acts to slow circulating platelets, allowing them to roll and come into further 

contact with the exposed surface. This initiates a major haemostatic activation of 

blood platelets, where the receptor GPVI can interact with collagen.  

The platelet receptors facilitating adhesion to collagen are α2β1 integrins and GPVI. 

When bound to GPVI, collagen stimulates signalling events that lead to platelet 

activation. Collagen cross-links GPVI resulting in tyrosine phosphorylation of 

immunoreceptor tyrosine-based activation motifs (ITAMs) on Fc receptor γ-chains 

(FcRγ) which is co-expressed and physically associated with GPVI at the platelet 

membrane. These phosphorylation events are mediated by Src-family kinases, Lyn 

and Fyn, and lead to the recruitment of the tyrosine-kinase Syk to phosphorylated 

FcRγ ITAMs where it becomes activated by autophosphorylation. This leads to the 

activation of phospholipase γ 2 (PLCγ2) and phosphatidylinositol 3-kinase (PI 3-K). 
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PLCγ2 hydrolyses membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) into 

diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3). DAG activates the serine-

threonine kinase protein kinase C (PKC). This leads to the mobilisation of intracellular 

calcium through IP3 binding to its receptors on the DTS. This rapid activation cascade 

drives conformational changes in platelet integrins. The integrin α2β1 binds firmly to 

collagen and allows firm tethering on the endothelial matrix. The integrin αIIbβ3 also 

undergoes a conformational change through its controlling proteins, including talin. 

The conformational change exposes the site of the integrin which binds to the RGD 

domain on the bivalent ligand fibrinogen. As a single platelet expresses over 50,000 

copies of this integrin, and can, therefore, bind to many fibrinogen monomers, this 

bridges many platelets into a platelet rich aggregate. The platelets then spread 

across this three-dimensional matrix and recruit further platelets from the blood by 

secretion of additional mediators. The binding of fibrinogen to integrin αIIbβ3 not only 

provides a mechanical attachment, but also causes outside-in signalling when ligated 

and this drives further activation. Simultaneously, the localised release of both α- and 

dense granules and the synthesis of eicosanoids (thromboxane A2 (TxA2)) acts to 

further drive platelet activation. Platelet α-granules contain many inflammatory and 

haemostatic mediators, and those which support haemostasis include fibrinogen, 

factor XIII and vWF. The release of ADP from dense granules activates platelets 

through binding to the P2Y1 and P2Y12 receptors, which drive further activation and 

inhibit adenylyl cyclases. The synthesis of thromboxane A2 (TxA2) through cyclo-

oxygenase 1 (COX1) drives further secondary activation through the thromboxane 

receptor (TP). A subset of these robustly activated platelets express 

phosphatidylserine on their surface through enzymatic activation of flippases. The 

expression of phosphatidylserine supports coagulation through the recruitment of 

factor X. The factor Xa complex drives the activation of pro-thrombin (factor II) to 

thrombin (factor IIa). Thrombin cleaves fibrinogen into fibrin monomers, which can 

polymerise into vast interlinked webs of protein that form the major protein net-like 
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structure of a clot. Thrombin also further potentiates platelet activation through the 

protease activated receptors 1 and 4 (PAR1/4). Platelets are also able to begin the 

resolution of thrombus formation. Firstly, platelets induce clot and thrombus retraction 

by pulling on the fibrinogen network (Tucker et al., 2012). Secondly, within the α-

granules are many chemokines; PF4, CXCL7 and SDF-1, cytokines; TGF-β and MIP-

1α and growth factors; PDGF and VEGF (Golebiewska and Poole, 2015). These 

factors all play an important role in the recruitment of neutrophils to remove cellular 

debris and in the development of an healing response. 
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Figure 2. Schematic of platelet activation induced by exposure of a vascular 
wound. Tethering occurs through GPIb-IX-V binding to vWF which in turn 
interacts with exposed collagen. Robust activation can occur when GPVI is able 
to cluster on collagen inducing ITAM signalling motifs. This leads to activation 
of the integrin αIIbβ3 which facilitates platelet: platelet interactions through the 
bivalent ligand fibrinogen. Further platelet recruitment is mediated by ADP 
release, thromboxane synthesis and granule secretion. Finally, full thrombus 
formation occurs, procoagulant platelets are formed and thrombin (FIIa) is 
produced leading to fibrin mesh production. (Left to right, upper then lower). 

 

 1.2.2 Procoagulant activity 

Alongside typical platelet-platelet homotypic interactions driven by integrin αIIbβ3 

binding the bivalent ligand fibrinogen, vital for clot retraction and platelet-rich 

thrombus formation (Tucker et al., 2012), an alternative mode of platelet function is 

supported through their procoagulant function (Heemskerk et al., 2013). 
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Procoagulant platelets externalise PS on their outer leaflet membrane, a 

phospholipid whose expression is normally conserved to the inner leaflet of the cell 

membrane. Exposure of PS plays a vital role in the support of the coagulation 

cascade and thrombin generation (Hoffman and Monroe, 2001). The procoagulant 

platelet phenotype has been described for many years under a variety of 

pseudonyms (COATED, collagen and thrombin activated-activated; FIB-CAP, 

fibrinogen-capped platelets; SCIP, sustained calcium-induced platelet morphology; 

and BNS, balloon non-spread), however, many of these suggested subpopulations 

have now been unified as all falling within the procoagulant super-family (Agbani and 

Poole, 2017). Studies have identified key roles for the externalised PS on the surface 

of procoagulant platelets in the recruitment of coagulation factors (Podoplelova et al., 

2016). It is also widely accepted that for the procoagulant platelets to form, a robust 

stimulus of dual PAR1 and GPVI ligation is key (Agbani and Poole, 2017) and that 

these platelets likely form at the core of a thrombus where both thrombin and collagen 

(respective to the above receptors) will be present (Stalker et al., 2013). 

Procoagulant platelets have been described by many methods including fluorescent 

flow cytometry using primarily annexin V and lactadherin conjugates (Sodergren and 

Ramstrom, 2018), fluorescent imaging cytometry (Reddy et al., 2018) and ex vivo 

flow models (Kuijpers et al., 2005). However, procoagulant activity can also be 

measured through thrombin generation assays both directly in PRP and in PPP which 

contain platelets and platelet microparticles respectively, although for direct 

measurement fluorescent flow cytometry remains the gold standard. This thorough 

phenotyping has helped describe some of the pathways vital to procoagulant platelet 

activation and formation. Primarily a sustained calcium flux has been shown to be 

vital (Choo et al., 2012), which is driven by the simultaneous activation of both PAR1 

and GPVI. In addition, mitochondrial depolarisation has been shown as a key event 

prior to PS exposure (Choo et al., 2017). While a consensus on the overall description 

of procoagulant platelets in the literature has now been reached (Agbani and Poole, 
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2017), there are still several open questions regarding roles they may play in vivo, 

how number of procoagulant platelets may change in disease and further 

understanding of the regulation and activation of procoagulant platelets. A key 

argument for the important role of procoagulant platelets in in vivo haemostasis is 

illustrated in Scott syndrome patients whom demonstrate no scramblase activity, and 

cannot expose PS and as a result show a strong bleeding phenotype (Lhermusier et 

al., 2011). In disease, initial observations suggest that PS exposing platelets are 

formed in individuals who have Wiskott-Aldrich syndrome, at a greatly increased rate 

(Obydennyi et al., 2019) and it has also been shown that in individuals who have 

suffered an ischaemic stroke, PS positive platelets can be detected in the blood 

(Pretorius et al., 2012). The first definitive description of procoagulant platelets were 

described in trauma patient undergoing haemorrhage by imaging cytometry, further 

validated by transmission electron microscopy (Vulliamy et al., 2019). These 

procoagulant platelets were stimulated by histone H4 and shown to release PS 

positive microparticles that interacted with leukocytes (Vulliamy et al., 2019). These 

studies propose that PS platelets may well play a role in platelet-pathogenesis in 

disease or act as sensitive biomarkers of disease. 

 

 1.2.3 Platelet heterogeneity 

Platelet heterogeneity has been a widely discussed topic for several years, with 

several suggested sources of heterogeneity within the platelet population. A widely 

accepted source of heterogeneity within the total platelet population is the 

procoagulant subset (Agbani and Poole, 2017), however it must be noted that this 

heterogeneity only emerges on activation. To date there have been no pre-activation 

features identified to recognise which platelets may assume a procoagulant 

phenotype on stimulation, if discovered this may prove to be a valuable biomarker of 

the future of propensity to form the procoagulant subset. Beyond the previously 

described 1/3 of platelets becoming procoagulant, in recent years the procoagulant 
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subset has been described to contain further heterogeneity. Initially procoagulant 

platelet subsets were suggested to be distinguished by calcium signalling and 

modulation of the integrin αIIbβ3 (Topalov et al., 2012), however this was later refuted 

as a result of erroneous flow cytometry gating (Choo et al., 2017), the study described 

herein goes further to describe heterogeneity within the procoagulant platelet subset. 

Platelet size has also been shown as another feature of platelet heterogeneity 

associated with procoagulant exposure. It was described that platelet size correlated 

very closely with procoagulant activity, where it was small cells that primarily 

expressed PS (Sodergren and Ramstrom, 2018). 

In addition to the platelet heterogeneity characterised by procoagulant formation, 

which only emerges on activation, platelet age can also be used to describe 

heterogeneity within the platelet population, vitally in resting platelets. Young 

platelets which have been recently released from the megakaryocytes and carry 

more vestigial mRNA are described as reticulated platelets (Harrison et al., 1997) 

and are typically enumerated by their thiazole orange staining intensity (Bonan et al., 

1993). Many studies have since pursued these immature cells and they have been 

characterised in vitro which has shown they exhibit a phenotype of hyperactivity in 

comparison with aged platelets (Lador et al., 2017), furthermore reticulated platelets 

have also been shown to be clinically relevant in vivo and potentially prognostic of 

cardiovascular disease (Lev, 2016).  
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1.3 REGULATION OF PLATELET FUNCTION 

Platelet activation is a rapid process which if uncontrolled can lead to pathological 

thrombosis. Therefore, it is vital that platelets are maintained in a sensitive but 

quiescent state of inhibition in circulation. Endothelial derived PGI2 and NO  are the 

two major endogenous inhibitors of platelet function (Mitchell et al., 2008). These 

inhibitors are both synthesised by the vascular endothelium in response to the 

pulsatile flow of blood which ensures that circulating platelets are maintained in an 

inhibitory state throughout circulation. These inhibitors regulate platelets through 

cyclase mediated production of cyclic nucleotides, and activation of downstream 

inhibitory protein kinases. 

 

 1.3.1 Nitric oxide 

NO is a potent vasodilator that relaxes vascular smooth muscle and diffuses across 

platelet membranes to activate intracellular soluble guanylyl cyclase (sGC) to 

produce cyclic guanosine monophosphate (cGMP) which activates a dependent 

serine/threonine kinase, protein kinase G (PKG), which in turn mediates various 

inhibitory phosphorylation events (Mitchell et al., 2008, Stalker et al., 2012) (Figure 

3). Notable among these are inhibition of Rap1b, TxA2 receptors, RhoA and IP3 

receptors on the DTS, which result in inhibition of the integrin αIIbβ3, secondary 

activation, actin remodelling and calcium mobilisation respectively. Moreover, PKG 

activates sarcoendoplasmic reticulum calcium ATPase (SERCA) which pumps 

cytoplasmic calcium back into the DTS, returning its concentration to basal levels. 

 

 1.3.2 Prostacyclin 

PGI2 is a prostanoid which is derived from arachidonic acid freed by phospholipase 

A (PLA). PGI2 is secreted by the endothelium and has a short half-life in the blood 

(Cho and Allen, 1978). It binds to the prostacyclin Gαs-linked IP receptors on 
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platelets. Gαs activates adenylyl cyclase, which converts adenosine triphosphate 

(ATP) to cyclic adenosine monophosphate (cAMP). High intracellular levels of cAMP 

signal within the cell driving activation of protein kinase A (PKA), which drives the 

inhibitory effects within the cell (Figure 3). 

Similar to cGMP via PKG, cAMP targets several key pathways in the cell to mediate 

inhibition via PKA. In terms of receptors and their immediate signalling, PKA controls 

several routes of activation. PKA modulates GPIb-V-IX by phosphorylation of GPIbβ 

which reduces vWF binding (Bodnar et al., 2002). PKA is able to further target GPVI 

dimerization (Loyau et al., 2012), which is vital to GPVI signal transduction (Locke et 

al., 2002), thereby reducing collagen mediated signalling. It also modules Gα13 

thereby blocking signal transduction from both TP receptors and PAR (Manganello 

et al., 1999, Manganello et al., 2003). The major integrin αIIbβ3 is also blocked from 

activation by phosphorylation of Ca2+ dependent Rap1b (Lapetina et al., 1989). In 

combination, these demonstrate that PKA can modulate the major activatory platelet 

receptors via a combination of direct or indirect phosphorylation of related 

components. Calcium mobilisation is, as described, a major outcome of platelet 

activation and is vital to almost all aspects of activity (Varga-Szabo et al., 2009). 

cAMP-PKA inhibitory signalling also modulates calcium signalling via targeting IP3 

receptors which would, in turn, prevent the release of internal stores of calcium 

downstream of PLCγ2 (Quinton et al., 1996). More recently, however, aspects of 

calcium signalling via P2X1 calcium entry have been shown to remain independent 

of cAMP-PKA activity, which suggests that cAMP does not result in the complete 

shutdown of platelet activity (Fung et al., 2012). An additional key aspect of platelet 

activity is shape-change and spreading, primarily mobilised by the highly active actin 

cytoskeleton. PKA phosphorylates several actin binding proteins including LASP 

(LIM and SH3 protein), HSP27 (heat-shock protein 27) and vasodilator-stimulated 

protein (VASP) (Butt et al., 1994, Butt et al., 2001, Butt et al., 2003). VASP is heavily 

phosphorylated on two serine residues, 157 and 239 (Benz et al., 2009), and provides 
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a valuable readout of cAMP-PKA activity by immunoblot and phosphoflow (Spurgeon 

et al., 2014). 

 

 1.3.3 Regulation of inhibitory signalling 

Given the potent inhibitory effects of cAMP signalling, levels must be maintained 

within the cell to ensure that activation of platelets can take place when required. 

Phosphodiesterases (PDEs) can terminate PGI2- and NO-stimulated signalling 

events and are thus important regulators of platelet function and many other cells. 

PDEs form a large group of enzymes that hydrolyze the 3’ cyclic phosphate bond of 

either cAMP or cGMP, yielding their inactive 5’ metabolites. Although cyclic 

nucleotides can be transported across the platelet membrane, the catalytic action of 

PDEs represents the only known mechanism for rapidly lowering platelet cyclic 

nucleotide contents and thereby controlling signalling events. Platelets contain at 

least three different PDE isozymes including cGMP-stimulated PDE2, cGMP-

inhibited PDE3A and the cGMP-specific PDE5. Binding of cGMP to an allosteric 

binding site leads to the PDE2-catalysed degradation of both cAMP and cGMP. 

Binding of cGMP to PDE3A, on the other hand, inhibits the preferential hydrolysis of 

cAMP. The second messenger, cGMP, can, therefore, attenuate or enhance the level 

of intraplatelet cAMP. Indeed, significant cross-talk exists between the cAMP and 

cGMP signalling cascades. PDE3A is phosphorylated and activated by cAMP-

dependent protein kinase in a negative feedback loop that eventually restores basal 

levels of cAMP. There is also evidence that the transporter ABCC4 (Cheepala et al., 

2015), can drive efflux of cAMP out of a platelet to rapidly diminish the inhibitory 

burden, although phosphodiesterases are currently considered the major regulator 

of cAMP levels. 

  



- 17 - 

 

Figure 3. Overview of platelet inhibitory signalling mediated by prostacyclin 
and nitric oxide. Prostacyclin (PGI2) and nitric oxide (NO) are synthesised in 
endothelial cells by phospholipase A (PLA) and nitric oxide synthetase (NOS) 
respectively. They are then subsequently released in the cytoplasm. PGI2 binds 
to the platelet prostacyclin receptor (IP) which in turn activates adenylyl 
cyclases (AC) which produce cAMP in an ATP dependent manner. Intracellular 
pools of cAMP are regulated by phosphodiesterase 3A (PDE3A), but when 
production exceeds breakdown cAMP activates protein kinase A (PKA), which 
acts as the key effector of PGI2-mediated inhibition and phosphorylates multiple 
targets within the platelet. NO does not require a receptor and diffuses across 
the phospholipid membrane where it activates soluble guanylyl cyclase (sGC) 
which produces cGMP. Phosphodiesterase 5a regulates intracellular levels of 
cGMP, but when levels are raised over breakdown rate protein kinase G (PKG) 
is activated. PKG acts as the effector of the NO pathway and phosphorylates 
multiple targets in the platelet. 
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1.4 PLATELET METABOLISM 

 1.4.1 Mitochondria and metabolism 

Metabolism is a series of chemical processes which occur to support life, primarily to 

provide energy substrates for cellular processes. Eukaryotic cells carry mitochondria, 

which are organelles with a complex internal structure and defined external 

membrane. Mitochondria are vital to cellular homeostasis as they allow the more 

efficient aerobic respiration to occur rather than anaerobic glycolysis. Mitochondria 

are 0.5 – 1 µm in length and are mobile organelles, continually undergoing fission 

and fusion. Structurally mitochondria have four regions (Figure 4); the internal matrix, 

which contains enzymes required for the citric acid cycle along with mitochondrial 

DNA (mtDNA), then surrounding this is the inner membrane which is folded into 

cristae that increase the intracellular membrane surface area in order to increase the 

number of proteins to drive oxidation in the electron transport chain (ETC). It is this 

membrane which the electrochemical gradient is maintained over. The 

intermembrane space is sandwiched between the inner and outer membranes and 

finally the outer membrane carries mitochondrial receptors and vitally the porin 

voltage-dependent anion channel (VDAC) which makes this membrane permeable 

to molecules <5 kDa (Alberts et al., 2008). 

The core process of energy production relies on the harnessing of chemiosmotic 

coupling, namely chemical bond-forming reactions facilitated by changes in osmotic 

pressure and electric charge. In brief, electrons derived from oxidation are 

transported along the ETC embedded in the mitochondrial membrane in a process 

which liberates energy allowing H+ to be pumped across the membrane, driving 

formation of an electrochemical gradient. This gradient is a form of energy, which 

when flowing back into the mitochondria via ATP synthase produces adenosine 

triphosphate (ATP) from adenosine diphosphate (ADP) and inorganic phosphate (Pi) 

(Alberts et al., 2008). ATP then acts as fuel within the cell for many processes.  
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Figure 4. Mitochondrial structure. The complex internal structure of mitochondria 
is apparent in this three-dimensional model, with folded inner membrane 
forming cristae (o, c and b), the central free channel (fc) demonstrating 
increased surface area within the smaller confines of the outer membrane (a1, 
a2, a3 demonstrate sites of section removal), adapted from (Palade, 1953). 

 

 1.4.2 Platelet metabolism and disease 

Platelets are among the most numerous cells in the blood and are known to be very 

metabolically active. In recent years, studies have begun to assess how platelet 

mitochondrial dysfunction may be linked to changes in platelet function. A major part 

of this push, is the understanding that mitochondria are not only important for energy 

production (Alberts et al., 2008), but play a vital role in cellular signalling, 

predominantly through production of ROS (Tait and Green, 2012, Schulz et al., 2014). 

The important role of ROS in platelet biology, is easily summarised in the canonical 

spike in ROS (typically cytosolic not mitochondrial) when GPVI is activated (Walsh et 

al., 2014). Indeed, mitochondrial superoxide is readily produced from platelet 

mitochondria and it is converted to hydrogen peroxide where it may leave and act as 

a cellular messenger (Anand et al., 2013). 
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Platelets have a high energy consumption, and in circulation resting platelets derive 

35% of their energy from oxidation phosphorylation and the majority (65%) from 

glycolysis (Zharikov and Shiva, 2013). When platelets are activated, they do not 

differentiate between the two sources of energy and the rate of both oxidative 

phosphorylation and glycolysis can be elevated relative to substrate availability 

(Aibibula et al., 2018). Studies have identified a role for mitochondrial function in 

several aspects of platelet biology. The formation of the mitochondrial permeability 

transition pore (MPTP) has been linked to platelet activation, notably the MPTP is 

formed on a subset of platelets on treatment with both thrombin and convulxin which 

leads to phosphatidylserine exposure, it was further suggested that mitochondrial 

cyclophilin D was regulating this (Jobe et al., 2008). Follow up studies later identified 

that it is specifically mitochondrial calcium and mitochondrial ROS which facilitated 

PS exposure (Choo et al., 2012). Highlighting an important role for mitochondria in 

regulating procoagulant platelet activity. 

However, what is emerging, is that mitochondrial dysfunction likely plays an important 

role in modulating many aspects of platelet function (Wang et al., 2017a). To highlight 

several studies, in ageing mice mitochondrial membrane potential was suggested to 

be raised, hypothesising that this may lead to age associated degeneration of 

response (Xu et al., 2007). In the well-known disorder Wiskott-Aldrich Syndrome 

(WAS), the platelet thrombocytopaenia was recently shown to be dependent on 

mitochondrial dependent necrosis (Obydennyi et al., 2019). In several diseases there 

have also been observations of mitochondrial dysfunction noted specifically within 

platelets; in cardiovascular disease (CVD) there have been reports of increased 

mtDNA methylation (Baccarelli and Byun, 2015), in polycystic ovary syndrome 

(PCOS) AMPK and respiration rate are both decreased but rescued by metformin 

treatment (Randriamboavonjy et al., 2015), in sickle cell disease (SCD) complex V 

activity is reduced (Cardenes et al., 2014), in sepsis mitochondrial depolarisation 

correlates with disease severity (Grundler et al., 2014) and finally in diabetes mellitus 
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aldose reductase activity is reduced (Tang et al., 2014). Importantly all these 

conditions are also associated with platelet dysfunction; CVD increased thrombotic 

events and platelet transcriptional remodelling (Ramos-Arellano et al., 2014, Heffron 

et al., 2018), PCOS increased platelet hyperactivity (Aye et al., 2014), SCD increased 

platelet NLRP3 inflammasome activity (Vogel et al., 2018a), sepsis increased platelet 

activity and IL-1β production (Brown et al., 2013, Damien et al., 2015) and diabetes 

increased platelet activity and loss of inhibitory IP receptors (Angiolillo et al., 2005, 

Knebel et al., 2015). This suggests there may well be a link between mitochondrial 

dysfunction and platelet dysfunction in these conditions. Understanding what is 

driving these changes in platelet mitochondrial dysfunction will be key to 

development of pharmacological protection from these changes. 
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1.5 PLATELETS AND INFLAMMATION 

The role of platelets in inflammation and immune response is a relatively new field of 

research, but there is now also evidence of platelet involvement in these responses 

(Vogel and Thein, 2018, Koupenova et al., 2018). There are indications of a 

concurrent role to thrombosis, of platelets as a blood-borne sentinel cell, and as such 

they are now thought to be involved in the development and progression of vascular 

inflammation, both sterile and unsterile (Koupenova et al., 2018). A growing body of 

evidence suggest that platelets are capable of mediating multiple immune responses 

(Morrell et al., 2014, Gaertner et al., 2017, Clark et al., 2007, Koupenova et al., 2018). 

This has been illustrated through showing their ability to respond to danger and 

pathogen-associated molecular patterns (D/PAMPs), which can be characterised into 

endogenous danger ligands such as oxidised LDL (oxLDL) and exogenous 

pathogenic ligands such a lipopolysaccharide (LPS) (Podrez et al., 2007, Damien et 

al., 2015). Platelet inflammatory responses can be manifested through many routes 

but key pathways include; direct synthesis of the cytokines IL-1β (Brown et al., 2013), 

and IL-18 (Allam et al., 2017), P-selectin mediated leukocyte recruitment, CD40L 

release or neutrophil extracellular trap (NET) activation (Morrell et al., 2014, 

Koupenova et al., 2018, Clark et al., 2007), and deposition and release of 

chemokines such as PF4 and RANTES (Golebiewska and Poole, 2015). These 

inflammatory mediators suggest platelets have the capacity to modulate all major 

immune cell classes within the vasculature, monocytes, lymphocytes and 

granulocytes. 

 

 1.5.1 Platelet-leukocyte interactions 

A well described pathway which platelets modulate systemic inflammation through is 

heterotypic interactions with leukocytes. Platelets are demonstrated to have potent 

activatory checkpoint roles in the recruitment and activation of many white cell 

subsets including neutrophils, monocytes and lymphocytes. Numerous examples of 
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platelet leukocyte interactions have been described by both in vitro and in vivo with 

multiple partner cell types (Koupenova et al., 2018, Vogel and Thein, 2018, Morrell 

et al., 2014, Golebiewska and Poole, 2015, Li et al., 2017). Below, examples of how 

platelets interact with each major immune cell class are presented. Via CD62P-PGL1 

interaction platelets activate neutrophils and receive eicosanoid precursors in return 

to drive thromboxane synthesis and stimulate inflammatory neutrophil extravasation 

(Rossaint et al., 2016). Platelets can also recruit monocytes via CCN1 and facilitate 

inflammatory monocyte patrolling in an animal model of inflammation (Imhof et al., 

2016). Lymphocyte activation via platelet expressed CD40 ligand (CD154) has also 

been demonstrated (Stokes et al., 2009). However, beyond these studies the 

association between platelets and leukocytes primarily occurs through interaction of 

P-selectin and P-selectin glycoprotein ligand-1 (PSGL1). 

 

 1.5.2 CD62P-PSGL1 

CD62P (P-selectin, granule membrane protein 140 or platelet activation-dependent 

granule to external membrane protein) is a platelet protein which is contained within 

α-granules, and as such is expressed on the surface of platelets when granule 

secretion is stimulated (Harrison and Cramer, 1993). The secretion of α-granules, as 

previously mentioned, will induce the release of many other chemokines and other 

recruitment mediators such as CD154 (CD40L) alongside CD62P. However, the 

interaction of CD62P with PSGL1 is among the most well described mediators of 

platelet: leukocyte interaction. CD62P is expressed in both platelet α-granules and 

also endothelial Weibal-Palade bodies and is also present as a soluble (cleaved) 

form in the blood as sCD62P, which can be cleaved from platelets (Andre, 2004). 

CD62P interacts with PSGL-1 (P-selectin glycoprotein ligand-1 or CD162) which 

facilitates both interactions between cells in suspension and rolling in vasculature as 

well as transducing activating signal, the partner for CD62P, PSGL1 is expressed on 
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monocytes, neutrophils and platelets themselves (Moore, 1998). Early descriptions 

of the CD62P-PSGL1 interaction were carried out in vitro and concentrated on the 

mediation of rolling, this study demonstrated that at a range of a shear rates 

neutrophils would roll on Chinese hamster ovary (CHO) cells which expressed 

CD62P (Moore et al., 1995). Further studies followed on and examined the affinity of 

the CD62P-PSGL1 interaction, the binding was highly specific and interestingly they 

demonstrated that sCD62P also binds with a high affinity, suggesting sCD62P may 

act as a regulator of the interaction or to drive signalling itself (Mehta et al., 1998). A 

reciprocal approach was later used, where PSGL1 was significantly increased on the 

platelet surface on activation, but treatment with an anti-PSGL1 antibody abrogated 

platelet-endothelial rolling when measured by in vivo intravital microscopy (Frenette 

et al., 2000). Although there had been a clear indication that the CD62P-PSGL1 axis 

may be important in disease, a consensus was reached that P-selectin played a vital 

role in the recruitment of leukocytes to the endothelial and that increased levels of 

sCD62P in CVD indicated it may play a role in the pathophysiology of atherogenesis 

(Blann et al., 2006). Alongside the indication of CD62P-PSGL1 playing a role in the 

modulation of vascular inflammation, there was also evidence emerging that it played 

a role in thrombosis as a stabilising agent between platelet-platelet interactions and 

the recruitment of leukocytes, which in turn facilitates a role in coagulation for CD62P-

PSGL1, where it induces tissue factor expression on the monocyte surface (Andre, 

2004). Clinical studies have also highlighted correlations between sCD62P and 

cardiovascular disease/events, which are vitally rescued in CD62P/PSGL1 knockout 

models (Wang et al., 2007, Ye et al., 2019). While the CD62P-PSGL1 interactions 

between platelets and monocytes and themselves vitally, important, they can lead to 

further interactions between the two cells. The major receptor on monocytes which 

is upregulated in response to CD62P/PSGL1 interactions is Mac-1 (integrin αMβ2 or 

CD11b/CD18) (Meerschaert and Furie, 1995). Mac-1 interacts with GP1bα on the 

platelet surface, which is a constitutive component of the GP1b-V-IX complex, and 
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this has been suggested to drive thrombosis (Wang et al., 2017b). In addition to this 

Mac-1 also binds to fibrinogen thereby driving heterotypic platelet-monocyte 

interactions via the integrin αIIbβ3 (Wright et al., 1988). These studies have continued 

to progress and the CD62P-PSGL1 axis is now understood to regulate many vascular 

events and drive the progression of atherogenesis, vascular inflammation, 

thrombosis and more recently described cancer (Kappelmayer and Nagy, 2017). 
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1.6 OXIDISED LOW-DENSITY LIPOPROTEINS AND PLATELETS 

1.6.1 Low-density lipoprotein and atherosclerosis 

Elevated plasma lipids, particularly cholesterol in the form of low-density lipoproteins 

(LDL), are correlated with increased CVD risk. However, the precise mechanisms of 

hyperlipidaemia mediated thrombosis are unclear. Lipoproteins are spherical rich 

particles, comprised of an ‘outer shell’, hydrophobic ‘lipid core’ and protein 

component that serve to transport lipids to the tissues. The outer shell is composed 

predominantly of a phospholipid monolayer, with traces of cholesterol and contains 

specialised apolipoproteins which act to direct the transport of lipoproteins. These 

proteins facilitate recognition of particles by cell surface receptors or enzymes. The 

lipid core contains triglycerides and cholesterol esters, but predominantly cholesterol 

esters in LDL, which are transferred to tissues during the lipoprotein’s lifetime. There 

are several lipoprotein subtypes including; chylomicrons, vLDL, LDL and LP(a) 

which are atherogenic, and HDL which is anti-atherogenic, but it is LDL that is most 

strongly implicated in CVD (Feingold et al., 2000).  

LDL are an intermediate size particle when compared with HDL, LDL, vLDL and 

chylomicrons, ranging from 18-25 nm in diameter with a molecular weight of ~2,300 

kDa and density of 1.019 – 1.063 g/mL. In addition to their lipid content, the outer 

shell also contains a single apolipoprotein (Apo B-100). Apo B-100 is one of the 

largest proteins in the human genome and is comprised of 4,536 amino acid residues. 

Functionally, Apo B-100 is essential for the delivery of cholesterol by acting as a 

ligand for cells bearing the LDL-receptor (LDL-R) (Feingold et al., 2000). In patients 

with familial hypercholesterolemia, the amount of LDL increases due to mutations in 

the LDL-R, significantly increasing the risk of CVD (Defesche et al., 2017), clearly 

implicating excess plasma LDL with CVD. At sites of endothelial dysfunction, LDL 

can transverse the endothelial cell layer and accumulate in the intima layer of the 

blood vessel by binding to proteoglycans. Once retained in the intima, LDL undergoes 
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chemical modification resulting in oxidised LDL (oxLDL), a lipoprotein with distinct 

biological function and central in the pathogenesis of atherosclerosis. The degree of 

oxidation of LDL particles yields multiple species with different biological functions. 

The presence of oxLDL in the intima alters the local environment, causing changes 

to the secreted chemokine profile from activated EC and inflammatory cells, leading 

to the recruitment of monocytes to the area of inflammation, where they differentiate 

into macrophages and encounter oxLDL. Recognition of LDL, both native and 

modified, by LDL-R and scavenger receptors, causes unregulated lipid uptake into 

the macrophages and causes their phenotype to change, becoming ‘foam cells’ 

(Stocker and Keaney, 2004). In addition, internalised LDL can also be modified 

further due to the acidic conditions within the macrophage lysosome. Increased 

numbers of foam cells in the vessel wall manifests as a fatty streak, the earliest 

hallmark of pathological lesion formation in atherosclerosis (Wadhera et al., 2016). 

More recently oxLDL has been shown to be increased in the circulation of subjects 

with atherosclerosis, early cardiovascular disease (obesity) and stroke (Kato et al., 

2009, Ramos-Arellano et al., 2014, Wadhera et al., 2016). Circulating oxLDL 

functions as a vascular DAMP and is able to induce activation of both immune cells 

and platelets, which in turn drives vascular inflammation, endothelial dysfunction, and 

atherogenesis (Golia et al., 2014, Steinberg, 2009). Indeed, oxLDL has been shown 

to drive macrophage foam cell formation, specifically via the receptor CD36 (Podrez 

et al., 2002a), which further confirms that oxLDL plays a key role in the development 

of atherosclerotic plaque. 

 

 1.6.2 Oxidation of LDL 

When oxidised, the LDL particle becomes highly atherogenic. Oxidation of LDL is a 

multi-step process which results in change to both surface phospholipids (oxPL) and 

protein modification (Apo B-100). This allows oxidised LDL to be recognised by 
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certain scavenger receptors (Levitan et al., 2010) which can drive monocyte 

polarisation, cytokine expression, expression of endothelial adhesion molecules and 

platelet hyperactivity among several characterised effects (Feingold et al., 2000). 

Several cells in the atherosclerotic plaque/vessel wall have been shown to be able to 

oxidise LDL, notably endothelial cells, smooth muscle cells, macrophages (including 

foam cells) and lymphocytes (Wilkins and Leake, 1994a). Oxidation of LDL in vivo 

has been suggested to be predominantly via the production and release of reactive 

oxygen species into the locale, notably superoxide anion and hydrogen peroxide, 

which can interact with LDL in the extracellular matrix. Indeed, it has been 

demonstrated that superoxide dismutase regulates early stages of LDL oxidation, 

suggesting it is primarily the superoxide anion which controls the oxidation of LDL 

(Cathcart et al., 1988). Additionally, transition metal ions have been suggested to 

drive oxidation of LDL, while the zinc ion (ZnSO4) was shown to protect LDL from 

oxidation – whereas copper ion and ferrous ions were not (Wilkins and Leake, 

1994b). Myeloperoxidase (MPO) a ROS producing enzyme expressed in leukocytes 

produces hypochlorous acid (HOCl), which dissociates into the OCl- hypochlorite 

anion and can oxidise LDL, however, other enzymes including lipoxygenase and 

nitric oxide synthase can also oxidise LDL in vitro (Carr et al., 2000). 

To use oxLDL experimentally, it must be isolated directly from blood which contains 

modified LDL or produced by in vitro oxidation of native LDL (nLDL). Modified LDL 

has been successfully isolated from patients in the context of chronic kidney disease. 

isolating carbamylated LDL (cyanic acid adduct) (Holy et al., 2016) and from ST-

segment elevation myocardial infarction (STEMI) patients isolated electronegative 

LDL (L5-LDL) (Yang et al., 2017b). However, typically LDL is modified in vitro to 

prevent multiple heterogenous modifications which may occur in vivo and to produce 

specifically oxidation, carbamylation, glycation or acetylation products which drive the 

phenotype. Of these varied species of modified LDL, oxLDL is the most researched 

modified LDL. Typically oxLDL is modified in vitro using well characterised oxidation 
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protocols, where oxidation is catalysed by the addition of copper ions (CuSO4), 

although it is possible for other transition metal ions to replace copper in this model 

(Gerry et al., 2008). The output of this copper catalysed oxidation can be modified by 

the researcher through changes in temperature at which the oxidation is carried out, 

however, in all models oxidised LDL particles present a very heterogeneous particle 

with a variety of oxidation products, both phospholipids and modified Apo B-100 

(Lenz et al., 1990). By oxidising LDL in the presence of copper ions at either 4◦C or 

37◦C, the reactive species produced on the LDL can be manipulated. Through 

oxidation at 4◦C, LDL rich in hydroperoxides can be produced, at 4◦C the breakdown 

of these hydroperoxides is protected. Conversely if oxidised at 37◦C, an oxLDL of 

predominantly oxysterols is produced, as the hydroperoxides are fully broken down 

(Gerry et al., 2008). As the outer, and therefore accessible, surface of lipoproteins is 

formed of mainly phospholipids, therefore it is these which are most vulnerable to 

oxidative modification. In the presence of hydroxyl radicals (OH-), lipid radicals are 

formed which react with molecular oxygen to form lipid peroxides (LOO-). These LOO- 

further propagate the hydrogen abstraction from surrounding moieties or react with 

themselves to become oxidised phospholipids (Equation 1) (Feingold et al., 2000), 

such as KOdiA-PC, which is commonly used as an oxLDL mimetic (Biswas et al., 

2017, Kar et al., 2008, Podrez et al., 2002a, Podrez et al., 2002b). Alongside 

production of oxPL, lipid aldehydes are also formed which modify surrounding 

proteins, notably Apo B-100 in the case of LDL (Feingold et al., 2000). 
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Equation 1. Copper mediated lipid peroxidation. Reaction 1 and 2, copper ions 
are involved in redox reactions with endogenous lipid hydroperoxides. Reaction 
3 and 4, peroxyl and alkoxyl lipid radicals oxidised the parent polyunsaturated 
fatty acid by hydrogen abstraction. Reaction 5, oxygenation of lipids propagates 
reactions 3 and 4. Abbreviations; LOOH, lipid hydroperoxide, LOO◦ lipid 
peroxyl, LO◦ lipid alkoxyl, LH polyunsaturated fatty acid. Adapted from (Burkitt, 
2001). 

 

1 𝐶𝑢2+ +  𝐿𝑂𝑂𝐻 → 𝐶𝑢+ + 𝐿𝑂𝑂 ∙ + 𝐻+ 

2 𝐶𝑢+ +  𝐿𝑂𝑂𝐻 → 𝐶𝑢2+ + 𝐿𝑂 ∙ + 𝑂𝐻− 

3 𝐿𝑂𝑂 ∙  + 𝐿𝐻 → 𝐿𝑂𝑂𝐻 + 𝐿 ∙ 

4 𝐿𝑂 ∙  + 𝐿𝐻 → 𝐿𝑂𝐻 + 𝐿 ∙ 

5 𝐿 ∙  + 𝑂2 → 𝐿𝑂𝑂 ∙ 

 

The understanding of specific oxPL which are produced on the surface of LDL on 

oxidation has allowed deeper characterisation of where precisely these adducts may 

bind to various receptors, including LOX-1 (Chen et al., 2001), SRB1 (Levitan et al., 

2010) and CD36 (Podrez et al., 2002b, Kar et al., 2008). 

 

 1.6.3 Effects of oxLDL on platelets 

Early evidence exists to show that human platelets are able to both bind and 

sequester labelled nLDL-Au (Zhao et al., 1994). Further studies then suggested that 

platelets recognise exclusively oxLDL, but not acetylated LDL, and that this was not 

via the typically described scavenger receptors A, but by CD36 (Volf et al., 1999). To 

provide further functional outcome of the platelet: oxLDL interaction, it was also 

shown that oxLDL induced platelet activation (Naseem et al., 1997). In studies similar 

to the initial LDL-Au study, oxLDL labelled with a fluorescent label was again shown 

to both bind and be internalised in platelets and these oxLDL positive platelets were 

shown to modulate endothelial inflammation in vitro (Daub et al., 2010). This study 
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was supported by a later ex vivo observation in patients with acute coronary 

syndrome (ACS), of increased oxLDL retention on circulating platelets paired with 

increased binding of platelets to the endothelium (Stellos et al., 2012). These initial 

studies have been followed by a comprehensive series of studies examining both the 

in vitro signalling biology of platelet: oxLDL and the translational aspects of this 

interaction in vivo. 

oxLDL has been shown to drive many aspects of platelet function, indeed almost all 

facets of platelet function have been shown to be upregulated in some form by 

oxLDL. These include shape change in suspension and also static adhesion and 

spreading on immobilised oxLDL (Wraith et al., 2013), which in the context of 

immobilised oxLDL was shown to be accompanied by calcium flux, integrin activity 

and expression of CD62P (Nergiz-Unal et al., 2011). Other studies in response to 

modified electronegative LDL, which shares many hallmarks with oxLDL have shown 

platelet α-granule secretion, integrin activity, potentiation of aggregation and 

increased platelet-endothelium interactions, likely a result of increased platelet 

CD62P expression and endothelial activation (Chan et al., 2013). Alongside the 

described shape change, adhesion, calcium flux, α-granule secretion and integrin 

activity; δ-granule secretion has also been demonstrated as measured by ATP 

release (Nergiz-Unal et al., 2011), which suggests a model where oxLDL induces 

both cytoskeletal rearrangement and granule secretion, where dense granule 

secretion then releases ADP which provides an activatory feedback loop leading to 

complete platelet activation (Stalker et al., 2012), vitally all downstream of oxLDL 

(Nergiz-Unal et al., 2011). 

Further studies began to interrogate the precise signalling events which led to oxLDL 

mediated platelet activation or hyperactivity, with a view to link these events to 

translational in vivo observations. A critical study in 2007 demonstrated that oxLDL 

could drive an in vivo prothrombotic phenotype via platelet CD36, demonstrated with 

murine models (Podrez et al., 2007). Many key studies emerged following this, which 
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began to elucidate the pathways by which oxLDL may drive platelet hyperactivity. 

Early work suggested that oxLDL, via CD36, signalled through a tyrosine kinase 

dependent pathway via Src family kinases Fyn and Lyn (Chen et al., 2008), a 

pathway common to several platelet signalling cascades, notably that of GPVI 

(Stalker et al., 2012). CD36: oxLDL induced signalling was further shown to drive 

cytoskeletal Rho-kinase, via tyrosine kinases, leading to platelet shape change and 

activation (Wraith et al., 2013). Further important roles for oxLDL in vivo were then 

described, where oxLDL was not only driving direct platelet activity but reducing tonic 

inhibition (disinhibition). Firstly, oxLDL, via CD36 and NOX2 was shown to reduce 

PKG activity – the key mediator of NO inhibitory signalling (Magwenzi et al., 2015). 

Following this, oxLDL were shown to activate PDE3a which regulates cAMP levels 

downstream of PGI2, driving disinhibition of cAMP-PKA signalling in a CD36 

dependent mechanism. Further to the involvement of CD36 and NOX2, a subsequent 

signalling study confirmed that this converged on the activatory kinase, ERK5, which 

was shown to regulate aspects of the oxLDL mediated platelet hyperactivity (Yang et 

al., 2017a). Finally, a new aspect of the CD36: oxLDL signalosome was suggested, 

which included toll-like receptors. Using a combination of murine models, it was 

demonstrated that TLR2 and TLR6 form a signalling complex with CD36 which then 

signals via the canonically described TLR-MyD88-IRAK pathway (Biswas et al., 

2017). 
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1.7 INFLAMMASOMES 

The inflammasomes are a broad group of large multimeric protein complexes with 

enzymatic activity. The complexes are related in their ability to drive an inflammatory 

response mediated by subsequent cytokine or interferon synthesis (Schroder and 

Tschopp, 2010). Inflammasomes respond to both DAMPs and PAMPs, although are 

often highly specific to a single ligand. 

 

 1.7.1 NLRP3 inflammasome 

While NLRP3 is part of the larger family of inflammasomes, it remains distinct since 

it appears to play a role in many diseases, notably in multiple sterile inflammatory 

diseases including gout (Martinon et al., 2006), systemic lupus erythematosus (SLE) 

(Kahlenberg et al., 2013), cardiovascular disease (Yang et al., 2017b) and 

rheumatoid arthritis (Mathews et al., 2014). However, there is also evidence that the 

NLRP3 inflammasome is involved in systemic viral infections (Hottz et al., 2013) or 

bacterial sepsis (Dolunay et al., 2017). The multiple diseases NLRP3 is associated 

with, is likely due to the number of ligands it can be activated by. This is atypical of 

other inflammasomes, as the majority have a single specific agonist. This agonist 

specificity is vital to the tight regulation of inflammasomes, which when dysregulated 

drive severe inflammatory disease (Rowczenio et al., 2017). The NLRP3 

inflammasome has been shown to respond to multiple ligands including the bacterial 

toxin nigericin, bacterial membrane component LPS, cellular stress signal ATP, gout 

monosodium urate crystals, atherosclerotic plaque cholesterol crystals, oxLDL and 

amyloid-β protein (Sheedy et al., 2013, Agostini et al., 2004). Conversely, the AIM2 

inflammasome is only stimulated by viral double stranded DNA (dsDNA) presented 

when cells are infected by dsDNA viruses (Sagulenko et al., 2013), and the IPAF 

inflammasome is only stimulated by type III or IV secretion systems, commonly 

employed by gram negative bacteria to deliver toxins (Schroder and Tschopp, 2010). 
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The NLRP3 inflammasome is thought to respond to many ligands as they are 

assumed to converge on a common signalling pathway, where although they initiate 

from divergent points, there is a subsequent convergence on a shared node that has 

been suggested to be mitochondrial dysfunction paired with reactive oxygen species 

(ROS) production (Zhou et al., 2011, Ye et al., 2017, Murakami et al., 2012). This 

suggests that all the canonical agonists of the NLRP3 inflammasome are not yet 

known, but where mitochondrial ROS dysfunction is a result of the given ligand, 

NLRP3 inflammasome activation could be conjectured to occur. 

The NLRP3 inflammasome has been comprehensively described in leukocytic 

models since the first report of the complex in 2004 (Agostini et al., 2004), and this 

has provided a robust understanding of the structure of the complex and each subunit 

of the multimer. The NLRP3 inflammasome when activated is comprised of the nacht-

leucine rich repeat pyrin domain containing protein 3 (NLRP3) subunit, which binds 

to apoptosis-associated speck-like protein containing a CARD (ASC) via its pyrin 

domain. ASC subsequently recruits the thiol protease caspase-1 via its caspase 

recruitment domain (CARD). Once recruited, caspase-1 undergoes auto-cleavage 

and activation. The active caspase-1 tetramer is then able to cleave both gasdermin 

D and pro-interleukin-1β (IL-1β), which facilitate secretory pore formation and 

synthesis of IL-1β respectively (Figure 5). 
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Figure 5. Molecular structure of the NLRP3 inflammasome. Upon activation, the 
NLRP3 inflammasome is recruited and oligomerises. This results in the 
recruitment and activation of caspase-1 which in turn cleaves pro-IL-1β and 
gasdermin D. Abbreviations; LRR – leucine-rich repeat, NACHT – nucleotide-
binding and oligomerisation domain, PYD – pyrin domain, CARD – caspase 
recruitment domain, p20/p10 – active caspase-1 domains, p17 – mature IL-1β, 
PFD – pore forming domain, RD – repressor domain. 

 

1.7.2 Activation and regulation of the NLRP3 inflammasome 

For activation, the NLRP3 inflammasome must first undergo a priming event 

(Schroder and Tschopp, 2010). This is an intrinsic requirement of the complex, where 

it needs two distinct signals to permit activation. This two-step activation is a common 

feature of immune cell activation as it reduces aberrant activation which can drive 

severe inflammatory diseases. A classic example of this two-signal process is the 

memory B-cell class switch (Litinskiy et al., 2002), where a lack of dual signals, in 

this case, drives hypogammaglobinaemia (Salzer et al., 2005). In the context of the 

NLRP3 inflammasome, this requirement ensures careful regulation of the highly 

inflammatory IL-1β or IL-18 cytokines. The two-step activation is characterised firstly 

as a priming event which prepares the complex for recruitment and increases 

expression of constituent proteins, followed by a second signal that recruits the 

complex and drives activation (Schroder and Tschopp, 2010). It is now understood 

that priming is a combination of two concurrent events and can be further sub-divided 

into transcriptional and non-transcriptional priming. Transcriptional priming is 

transcription of inflammasome genes and translation of mRNA into inflammasome 
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component proteins – which of the five components, pro-IL-1β is required in particular 

abundance (Estruch et al., 2015). Non-transcriptional priming, is conversely 

regulatory events not driven by transcription, and has been shown to have several 

mediators including ubiquitination (Py et al., 2013, Rodgers et al., 2014, Song et al., 

2016) and phosphorylation of multiple components including ASC (Lin et al., 2015) 

and NLRP3 (Song et al., 2017). This two-step model of NLRP3 inflammasome 

activation means that for a classical laboratory stimulation assay/experiment a two-

step process of adding LPS followed by ATP or nigericin is required, to provide a 

priming and then an activating signal (Shi et al., 2016). 

 

 1.7.3 Platelets and the NLRP3 inflammasome 

While several publications have demonstrated a role for the NLRP3 inflammasome 

in platelets, it is still an emerging field with many aspects of expression, regulation 

and function not yet understood. The NLRP3 inflammasome in platelets was first 

reported in 2013 and the authors described a role for platelets in the pathogenicity of 

viral haemorrhagic fever caused by dengue virus infection (Hottz et al., 2013). With 

the application of flow cytometry, this study demonstrated dengue virus driven 

shedding of IL-1β rich platelet microparticles which correlated with caspase-1 

activation. Using pharmacological inhibitors against caspase-1, mitochondrial ROS 

and RIP1 kinase, these mediators were shown to be vital in the activation of NLRP3 

(Hottz et al., 2013). Later it was reported that Brutons tyrosine kinase (BTK) caused 

the activation of the NLRP3 inflammasome downstream of the classical platelet 

agonists collagen and thrombin and it was proposed that NLRP3 had an important 

role in platelet haemostatic activation (Murthy et al., 2017). In 2018, NLRP3 

inflammasome mediated regulation of platelet function was further explored and was 

shown to be key to the regulation of integrin outside-in signalling, and when tested in 

a NLRP3 knockout model (of note this was not a PF4/GP1b-cre model), platelet 
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thrombus formation was significantly reduced and bleeding times increased (Qiao et 

al., 2018). Although these two studies agreed on the importance of the NLRP3 

inflammasome in platelet activation, they disagreed with respect to the existence of 

phenotypes associated with α-granule secretion. Murthy et al., (2017) found no 

phenotype associated with α-granule secretion, whilst Qiao et al., (2018) found an α-

granule phenotype. Indeed, the role of the cytokine IL-1β itself on platelets and the 

effects it may have regarding function remains largely un-investigated. 

The platelet NLRP3 inflammasome model has also been applied to a sickle cell 

disease (SCD) cohort and murine model (Vogel et al., 2018a). A series of 

experiments were performed concentrating on fluorescence measurements of 

caspase-1 cleavage with the fluorochrome labelled inhibitors of caspase (FLICA) 

(Bedner et al., 2000). Their data suggested that the platelet derived TLR4 ligand, 

high-mobility group box 1 (HMGB1) through BTK drives NLRP3 inflammasome 

activation. Furthermore, this ligand is present in the plasma of SCD patients, 

correlates with basal caspase activation and diseased plasma can also stimulate 

naïve platelets from healthy donors (Vogel et al., 2018a). This is consistent with work 

from the same group which showed that increased NLRP3 inflammasome activity 

drove platelet aggregation and thereby supports their previous findings (Murthy et al., 

2017). A further short study again from the same group was published which 

reinforced their previously suggested aggregatory role of the platelet NLRP3 

inflammasome in a murine model of hind limb ischemia downstream of platelet TLR4 

ligation and caspase-1 cleavage (Vogel et al., 2018b). The same group then followed 

this up with a similar murine study which identifies that the platelet NLRP3 

inflammasome plays a role in the development of pancreatic cancer in a murine 

model (Boone et al., 2019). While not directly referencing NLRP3, and as such not 

considered part of these core publications, in 2017 a group described a role for 

platelet secreted IL-1β in the stimulation of endothelial cells in the context of SLE 

(Nhek et al., 2017). 
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In summary of the NLRP3 inflammasome in platelets, these papers agree on the core 

hypothesis determined from the literature identified above, that the NLRP3 

inflammasome plays an important role in platelet biology. However, they do not agree 

on the specific roles which the NLRP3 inflammasome may play, ranging from a 

systemic effect of secreted IL-1β driving vascular inflammation in dengue infection or 

SLE (Hottz et al., 2013, Nhek et al., 2017), to an autocrine effect which is vital for 

platelet activation (Brown et al., 2013, Qiao et al., 2018) or control of platelet 

activation (Murthy et al., 2017, Vogel et al., 2018a, Vogel et al., 2018b). 

 

1.7.4 Expression of NLRP3 components in platelets 

The current platelet NLRP3 inflammasome studies all provide convincing functional 

evidence of NLRP3 in platelets (Hottz et al., 2013, Murthy et al., 2017, Qiao et al., 

2018, Vogel et al., 2018a, Vogel et al., 2018b), and in addition to this there is prior 

evidence that platelets can produce IL-1β (Brown et al., 2013, Nhek et al., 2017) and 

IL-18 (Allam et al., 2017) that is indicative of NLRP3 activity. 

An additional valuable and comprehensive resource available to platelet researchers 

are transcriptomic or proteomic studies. In a brief overview of human and murine 

platelet proteomes and transcriptomes, the human proteome reports only ASC and 

gasdermin D, with copy numbers of both proteins predicted to be no more than 1500 

per cell (Burkhart et al., 2012). In contrast, the transcriptome of both human and 

murine platelet RNA reports the presence of all components; NLRP3, ASC, caspase-

1, IL-1β and gasdermin D, yet none are ranked within the 3000 most common 

transcripts (Rowley et al., 2011). The murine platelet proteome is identical to that for 

humans and suggests that only ASC and gasdermin D are present (Table 1) (Zeiler 

et al., 2014). These reports suggest that the presence of the complete NLRP3 

inflammasome in healthy individuals is unlikely, as expression of NLRP3 was not 

detected within the healthy donors which the proteomic and transcriptomic studies 
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where performed, yet as previously described there is a functional role for platelet 

NLRP3 in the literature. This could be attributed to either low copy numbers of these 

proteins or transcripts below current detection thresholds. In support of this, the 

human proteome does not detect the presence of Toll-like receptors (TLR), but their 

expression has been evidenced by traditional biochemistry in multiple studies 

(Biswas et al., 2017, Fung et al., 2012, Rex et al., 2009, Damien et al., 2015, Vogel 

et al., 2018a, Vogel et al., 2018b). Alternatively, and discussed at greater length in 

the following section, within healthy naïve donors the complexes are not present until 

after an initial inflammatory insult. 

Table 1. Relative expression or copy number of NLRP3 inflammasome 
components in human and murine platelets respectively (Rowley et al., 2011, 
Burkhart et al., 2012, Zeiler et al., 2014). Rowley et al., rank transcripts on assumed 
count from highest to lowest. Burkhart et al., and Zeiler et al., use an estimated copy 
number of each protein. 

 Protein or 

transcript 

Rowley, 

human rank 

Burkhart, 

human copy 

number 

Rowley, 

murine rank 

Zeiler, murine 

copy number 

C
o

m
p

o
n

e
n

ts
 

NLRP3 5913 - 10955 - 

ASC 3005 1000 4178 3743 

Caspase-1 3365 - 6354 - 

Interleukin1-β 4972 - 5773 - 

Gasdermin D 4114 1500 9645 308 

U
p

s
tr

e
a
m

 

TLR2 5465 - 10865 - 

TLR4 7930 - 11414 - 

TLR6 11362 - 12714 - 

MyD88 3858 940 1906 1044 

C
o

n
tr

o
ls

 

GPIX 48 32400 16 63503 

CD36 615 16700 6093 - 

GPVI 367 9600 155 7822 

BTK 599 11100 1590 12146 

Fyn 548 6800 490 4145 
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 1.7.5 Priming of the NLRP3 inflammasome in platelets 

The two-step model of NLRP3 activation of priming then activation is understood to 

be vital for robust synthesis of IL-1β via the NLRP3 inflammasome. However, no 

platelet NLRP3 inflammasome studies to date have explored this signalling 

dichotomy nor suggested it as necessary for NLRP3 activity. To date, the published 

work in this area agrees that platelets are able to demonstrate activation with only a 

single signal, but disagrees on whether this is inflammatory (Vogel et al., 2018a), 

pathogenic (Hottz et al., 2013), or thrombotic (Qiao et al., 2018). While this disagrees 

with current literature in nucleated cells, where the use of thrombotic ligands has 

been described, this is not surprising since platelets are unique cells and lack the 

capacity to undergo extensive transcriptional priming. They are instead more likely 

released from a megakaryocyte with the inflammasome component proteins; NLRP3, 

ASC, caspase-1, IL-1β and gasdermin D present in an inactive state. Therefore, it is 

possible to hypothesise that pre-programming is occurring, and it is the 

megakaryocyte which receives the transcriptional priming signal and the platelet the 

non-transcriptional priming and second activatory signal. This suggests there may be 

a complex cross-cellular process in place regulating this potent inflammatory event 

controlling a platelet population which is pre-programmed by megakaryocytes whom 

have adapted to the systemic environment and produced platelets tailored to 

requirement, not dissimilar to the model proposed by Davizon-Castillo et al., who 

propose that in ageing megakaryocytes produce inflammatory and metabolically 

defective platelets (Davizon-Castillo et al., 2019). 

In support of platelet pre-programming by the megakaryocyte, the concept of disease 

altering the platelet proteome has already been demonstrated in severe obesity 

(Heffron et al., 2018). This would further suggest that the lack of inflammasome 

components in the Burkhart (Burkhart et al., 2012), Rowley (Rowley et al., 2011), and 

Zeiler (Zeiler et al., 2014) studies may be due to the use of naïve donors for analysis. 

It is tempting to suggest the pulmonary megakaryocyte subset (Lefrancais et al., 
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2017), which it can be assumed are constantly bombarded with various airborne 

DAMPs, exhaust emissions or smoke, and PAMPs may be a source of early 

inflammatory platelets. Early work on this megakaryocyte subset suggested that the 

blood concentration of platelets was changing in response to respiratory insult 

(Sharma and Talbot, 1986), and it could be hypothesised that this increase in cell 

count was paired with a change in proteome. However this has not been further 

pursued to date. 

Conversely or alongside this theory of platelet pre-programming, there is some 

evidence platelets have synthetic capacity and they are packaged with mRNA for 

pro-IL-1β (Brown et al., 2013), and pro-IL-18 (Allam et al., 2017), which has been 

shown to be spliced upon activation. This suggests there is flexibility within the 

platelets to splice selected mRNAs and upregulate proteins (Denis et al., 2005), 

therefore platelets may also inherently have the capacity for transcriptional priming 

and undergo post-megakaryocyte proteomic changes. 

What remains clear is that where there are 150-400,000 platelets per microlitre of 

human blood, or ~75-200 x1010 platelets per individual, any inflammatory event they 

can initiate must be tightly controlled and aberrant activation avoided. It is the 

relationship between megakaryocytes and platelets in an inflammatory environment 

which undoubtedly remains vital to the pro-inflammatory platelet phenotype which 

the NLRP3 inflammasome evidences. This strongly suggests that understanding the 

changes which megakaryocytes undergo in inflammation will be just as vital as those 

which the platelets themselves demonstrate.  

 

1.7.6 NLRP3 inflammasome and atherosclerosis 

While the role of the NLRP3 inflammasome in platelets is not yet fully understood, it 

is possible to hypothesise a role for platelets in other systemic inflammatory diseases 

beyond the example of an acute dengue virus infection (Hottz et al., 2013), or the 



- 42 - 

more recently established role for platelets in chronic sickle-cell disease (Vogel et al., 

2018a). While many chronic inflammatory roles for other cells via the NLRP3 

inflammasome have been demonstrated, the blood borne inflammation that drives 

atherogenesis is an area which platelets could be proposed to play a key role 

(Sheedy et al., 2013). Particular clinical emphasis has recently been placed on the 

role of NLRP3 inflammasome produced IL-1β in the progression of atherosclerosis 

(Grebe et al., 2018, Baldrighi et al., 2017). The link between IL-1β and atherosclerosis 

has been proposed for several years and has been demonstrated in animal models 

by different research groups. Heijden et al. used the ApoE-/- murine model, which 

rapidly develops atherosclerosis, to demonstrate that pharmacological NLRP3 

inhibition leads to reduced plaque size (van der Heijden et al., 2017). Similarly, van 

Hout et al. used a wild type porcine model and observed that with NLRP3 inhibition, 

and therefore reduced IL-1β synthesis, the severity of myocardial infarction was 

reduced (van Hout et al., 2017). Finally, the ApoE-/-/ IL-1β-/- double knockout murine 

model has been shown to present with reduced atherosclerotic plaque size compared 

to ApoE-/-/IL-1β+/+ (Kirii et al., 2003). These all identify a key role for IL-1β in 

atherosclerotic development and progression of cardiovascular disease. 

Further to these observations, clinical studies have begun to explore the relationship 

between the NLRP3 inflammasome and atherosclerosis. A recent human study has 

associated genetic polymorphisms in the genes which code for NLRP3 and caspase-

1 with increased risk of developing acute coronary syndrome (Gonzalez-Pacheco et 

al., 2017). These studies and others have prompted the clinical trial into the 

effectiveness of canakinumab, a monoclonal antibody targeting IL-1β, as a therapy 

to target atherosclerotic disease (Ridker et al., 2011). Early results have indicated 

that anti-IL-1β therapy leads to a significantly reduced rate of cardiovascular events 

against the control group (Ridker et al., 2017a). A further studies outcomes of note 

included that canakinumab also appeared to exert protective effects in lung cancer 

incidence, considering the pulmonary megakaryocyte/platelet pool this could be 
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considered as another proposed role for platelet inflammatory function (Ridker et al., 

2017b). Importantly for platelet researchers, these studies are global knockouts or 

systemic non-targeted treatment, leaving the question as to which cells contribute to 

these overt atherosclerotic phenotypes open. 

OxLDL has been shown to modulate cellular function in many ways (Levitan et al., 

2010), however, an implication in driving vascular inflammation and atherogenesis 

suggests it is a potential clinical target. OxLDL has been implicated in driving 

atherogenesis through activation of the NLRP3 inflammasome in macrophages and 

monocytes (Sheedy et al., 2013, Estruch et al., 2015, Yang et al., 2017b), which is 

likely via CD36 in a heteromeric signalling platform with TLRs 2/4/6 (Chavez-Sanchez 

et al., 2014, Stewart et al., 2010). OxLDL has also been shown to modulate 

endothelial cell biology, mostly by driving production of ROS which in turn impacts 

cell viability and lifespan (Touyz, 2014, Vindis et al., 2005, Zmijewski et al., 2005). 

The majority of the ROS produced in endothelial cells downstream of oxLDL have 

been functionally linked to mitochondrial dysfunction (Giovannini et al., 2002). This is 

likely via the LOX1 receptor (Christ and Latz, 2014, Touyz, 2014, Yang et al., 2017b), 

although CD36 also mediates cellular dysfunction (Sheedy et al., 2013) and can also 

be found directly on the mitochondrial surface (Smith et al., 2011). Taking all of these 

points in other cell types together and the functional expression of the NLRP3 

inflammasome in platelets, it is possible to hypothesise a role for oxLDL and platelet 

NLRP3 in atherogenesis and vascular inflammation (Figure 6). 
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Figure 6. Proposed model of NLRP3 activity in platelets. DAMPs or PAMPs ligate 
their appropriate receptor which drives (post-)transcriptional priming of the 
NLRP3 inflammasome, followed by a second signal which drives recruitment, 
speck formation and cleavage of gasdermin D and IL-1β 
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1.8 AIMS OF STUDY 

-Understand how platelet regulation may determine novel platelet subpopulations 

-Explore the function of the NLRP3 inflammasome in platelets downstream of oxLDL 

-Determine the role of oxLDL in driving platelet mitochondrial dysfunction 
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Chapter 2 

Materials & Methods 

2.1 REAGENTS 

2.1.1 Chemicals & reagents 

Sodium Citrate (367691), ACD-A (8304451), Sodium Heparin BD Vacutainer Tubes 

(8516324), BD DC Protein Assay Kit (5000112) and BD Phosflow Lyse/Fix Buffer 5X 

(558049) were from BD Biosciences. TMRE-Mitochondrial Membrane Potential 

Assay Kit (113852) was from Abcam. SFLLRN (Thrombin Receptor Activating 

Peptide) (58927) was from Anaspec. Collagen-related peptide (CRP-XL) was from 

Collagen Toolkits. Prostaglandin I2 (sodium salt) (61849-14-7) was from Cayman 

Chemical. VersaComp Antibody Capture Bead Kit (B22804) was from Beckman 

Coulter Life Sciences. 4% Paraformaldehyde Aqueous Solution (157-4) was from 

Electron Microscopy Sciences. All other reagents were from Sigma-Aldrich. 

 

2.1.2 Antibodies 

Annexin V APC Ready Flow Conjugate (R37176), CD63 Monoclonal Antibody 

(H5C6) eFluor 660 (50-0639-42), CD154 Monoclonal Antibody (24-31) FITC (11-

1548-42), Mouse IgG1 kappa Isotype Control (P3.6.2.8.1) eFluor 660 (50-4714-82), 

Mouse IgG1 kappa Isotype Control (P3.6.2.8.1) FITC (11-4714-81), and Goat anti-

Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody Alexa Fluor 488 (A-

11034) were from ThermoFisher Scientific. BB700 Mouse Anti-Human CD42b 

(742219), APC Mouse Anti-Human CD42b (551061), FITC Mouse Anti-Human PAC-

1 (340507), PE Mouse Anti-Human CD62P (555524), PE Mouse IgG1 κ Isotype 

Control (556650), FITC Mouse Anti-Human CD14 (347493) and PerCP Mouse Anti-

Human CD42a (340537) were from BD Biosciences. Anti-Human Fibrinogen/FITC 

(F0111) was from Agilent Technologies. Phospho-VASP (Ser157) Antibody (3111) 

was from Cell Signalling Technology. 
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2.2 METHODS FOR THE ISOLATION OF BLOOD CELLS 

2.2.1 Isolation of human platelets 

Platelets were isolated from whole blood obtained from healthy volunteers in 

accordance with the declaration of Helsinki. All donors were consenting and healthy 

on presentation and also confirmed they had taken no anti-coagulants or anti-platelet 

drugs. Careful isolation procedures were required since platelets are very sensitive 

to artefactual activation during handling. The first approach was to use prostaglandin 

I2 (PGI2) to inhibit activation during isolation (Vargas et al., 1982). However, when 

cAMP signalling was being studied, a second approach where the pH was lowered 

using citric acid, which also inhibits platelets, was used. The average yield from 16 

mL of healthy human donor blood was 2.4 mL of cell suspension at 5 x 108 

platelets/mL (Figure 7). 

 

 

Figure 7. Average yield of washed platelets from 16 mL of whole blood. Platelets 

washed from 16 mL of whole blood drawn into ACD-A and resuspended to a 

final count of 5 x 108 platelets/mL and total volume measured. (Mean±SD, 

n=22) 
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2.2.2 Isolation methods 

Blood was obtained from palpable veins located in the ante-cubital fossa through 

venepuncture with a 21g butterfly needle by trained phlebotomists. Blood was drawn 

into acid citrate dextrose (ACD, 2.9 mM citric acid, 29.9 mM sodium citrate, 72.6 mM 

NaCl, 113.8 mM glucose, pH 6.4) syringes at a 1:5 ratio with anticoagulant or into 

commercial ACD-A (BD) vacutainers at 1:5 ratio with anticoagulant (85 mM sodium 

citrate, 136 mM dextrose, 42 mM citric acid, 1 mM potassium sorbate), then 

transferred to a 50 mL falcon tube at a fill rate of 20 mL per tube, and centrifuged at 

100 g for 20 minutes (no brake) to isolate platelet-rich plasma (PRP). PRP was 

removed using a 1.5 mL Pasteur pipette and equally distributed between two 15 mL 

falcon tubes. 

In some cases, PRP was treated for 2 minutes with PGI2 (200 nM) then centrifuged 

at 1000 g for 10 minutes (with brake) to pellet the cells. Supernatant plasma was 

removed, and the pellet was re-suspended in 5 mL of modified Tyrode’s buffer (0.5 

mM MgCl2, 0.55 mM NaH2PO4, 2.7 mM KCl, 5 mM HEPES, 5.6 mM glucose, 7 mM 

NaHCO3, 150 mM NaCl, pH 7.4), 0.5 mL of ACD and 200 nM PGI2 and incubated for 

2 minutes. This was then centrifuged at 1000 g for 10 minutes (with brake) to pellet 

washed cells. Supernatant wash buffer was removed, and the pellet was re-

suspended in 1 mL of modified Tyrode’s buffer, counted and rested at 37◦C for 20 

minutes prior to assay initiation to allow for recovery from PGI2 treatment. 

As an alternative approach, a citric acid-based wash buffer, which both reduces pH 

and contains EDTA to chelate calcium ions, was used to inhibit platelet activation in 

the absence of PGI2. Here PRP was treated for 2 minutes with citric acid (0.3 M) at a 

ratio of 20 µL/1 mL PRP. This was then centrifuged at 1000 g for 10 minutes (with 

brake) to pellet the cells. Supernatant plasma was removed, and the pellet was re-

suspended in 5 mL of wash buffer (5 mM glucose, 5 mM KCl, 9 mM NaCl, 10 mM 

EDTA, 36 mM citric acid, pH 6.4) and centrifuged at 1000 g for 10 minutes (with 



- 49 - 

brake) to pellet washed cells. Supernatant wash buffer was removed, and the pellet 

was re-suspended in 1 mL of modified Tyrode’s buffer, counted and rested at 37◦C 

for 20 minutes prior to assay initiation to allow for recovery from isolation. 

 

2.2.3 Isolation of murine platelets 

Murine blood was drawn from the exposed vena cava of isoflurane anaesthetised 

mice with a 25g needle into a 1 mL syringe pre-filled and coated with 200 µL of ACD. 

This was transferred to a 15 mL falcon tube and 200 µL of modified Tyrode’s buffer 

was added prior to centrifugation at 100 g for 5 minutes (no brake) to isolate PRP. 

PRP was removed to a 15 mL falcon tube and the remaining blood cell pellet was 

remixed with an addition of 200 µL of modified Tyrode’s buffer prior to a second 

centrifugation at 100 g for 5 minutes (no brake). The resulting PRP was combined 

with the previously isolated PRP. The PRP volume was then adjusted to 2 mL with 

modified Tyrode’s buffer and PGI2 (200nM). The PRP was centrifuged at 1000 g for 

6 minutes (with brake), then the supernatant removed, and the isolated platelets 

resuspended in 500 µL of modified Tyrode’s buffer, before counting and resting at 

37◦C for 20 minutes prior to assay initiation to allow for recovery of cAMP levels. 

 

2.2.4 Counting isolated platelets 

Platelet counting was performed on a Beckman Coulter Z1 particle counter. The 

platelet suspension was diluted 1/2000 (5 µL in 10 mL) of isotonic count buffer 

(Beckman Coulter) and analysed for particles between 2 – 7 µm in diameter using a 

50 µm aperture. This count was multiplied by 2000, to account for the dilution factor, 

giving a concentration per resuspended millilitre of cells. The count was adjusted to 

the desired concentrations for each assay using Equation 2. For example, 

concentrations of 2.5 x 108/mL, 5 x 108/mL and 10 x 108/mL were used for 

aggregation, flow cytometry and immunoblotting respectively. 
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(
𝑎𝑐𝑡𝑢𝑎𝑙 𝑐𝑜𝑢𝑛𝑡

𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑜𝑢𝑛𝑡
) − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 

Equation 2. Used to calculate volume of buffer to add to adjust platelet count. Where 
adjustment volume is the volume of buffer to add to reach the desired 
concentration. 

2.3 METHODS FOR STUDYING PLATELET FUNCTION 

 2.3.1 Fluorescent flow cytometry 

Flow cytometry, as the name suggests is the measurement of cells under flow in 

suspension. This simple description hides the true power, which is the 

multiparameter analysis of single cells in complex media at a rate of >1000 

cells/second. This allows not only descriptive characterisation of single cells, but 

vitally their comparisons within their given population, and subsequent division into 

phenotypically distinct subpopulations. However, given the current relative ease of 

accessibility, appropriate application of technical aspects and biological controls is 

key to the correct interpretation of data (Cossarizza et al., 2017). 

Flow cytometry relies on several key principles, each of which feed into one another; 

(i) cells are in suspension at a suitably low concentration, (ii) the fluidic forces of 

sheath can push the sample into a sample core of single cells, (iii) lasers are able to 

excite each individual cell as it passes through and detectors collect the emitted and 

scattered light (Cossarizza et al., 2017). 

The essential principle of a flow cytometer is the ability of a sheath of fluid under 

pressure to force a suspension of particles into a linear core, and this was first 

described and used for counting particles in suspension (Crosland-Taylor, 1953). 

This hydrodynamic focusing forces Brownian suspensions of particles into streams 

of single particles (Figure 8). Yet on some occasions events can pass through the 

flow cell simultaneously (swarming) or aggregates/agglomerates of cells/particles 

can form resulting in erroneous data as these are counted as single particles or 

events. Therefore, it is key that both, concentration of particles does not allow 
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swarming and the milieu in which the particles are suspended does not encourage 

precipitate or doublet formation, or commonly in the case of platelets, homotypic 

aggregate formation. Here we used a Beckman Coulter CytoFLEX, which uses a 

peristaltic pump as oppose to the more traditional syringe drive to maintain a 

consistent flow of sample through the flow cell (Beckman Coulter). 

Typically, the digital information presented on an interface attached to a flow 

cytometer has gone through several transformations. Cells and fluorophores which 

are passed through the flow cell are excited by lasers and emitted light intensity is 

measured. This collected light, or photons, are routed to detectors after pre-

processing in optical filters, which is a key step as the detectors are insensitive to the 

wavelength of light. In the CytoFLEX, avalanche photodiodes (APDs) are used rather 

than the more commonly used photomultiplier tubes (PMT), APDs have been shown 

to give a greater detection of near-infrared signals than PMTs (Lawrence et al., 2008), 

allowing greater flexibility in panel design. The detectors convert photons into 

photoelectrons which are then processed and amplified accordingly and then 

converted to a digital signal via an analogue digital converter (ADC) (Cossarizza et 

al., 2017). The optimal set up of the cytometer and performance of each component 

should lead to a low signal: noise ratio, which is the key determining factor of the 

sensitivity of a flow cytometer. 
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Figure 8. Fluidic system of a fluorescent flow cytometer. Sample is drawn into 
the flow cell and focussed into a beam of single cells by hydrodynamic focusing. 
These then pass through excitation lasers which drive emission of tagged 
fluorophores and allow physical light scattering to be collected. Adapted from 
(Cossarizza et al., 2017) 

 

2.3.1.1 Applications of FFC to platelet biology 

Flow cytometry has been used for the analysis of platelets for many years. It is a 

technique which is well suited for platelet research, since platelets typically exist 

within suspensions of complex media (blood or plasma) and express unique markers 

on activation which can be easily detected. Several major milestones of platelet flow 

cytometry have been reached. Firstly, the use of the peptide Glycine-Proline-

Arginine-Proline (GPRP) was shown to allow activation analysis in thrombin 

stimulated whole blood to be carried out (Michelson, 1994). Secondly, the 

widespread use of the PAC1 antibody, which detects the conformational change in 
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the integrin αIIbβ3, was presented as an alternative marker to fibrinogen binding 

(Frelinger, 2018). Thirdly the use of phosphoflow to detect intracellular changes to 

phosphorylation state in platelets (Spurgeon et al., 2014) Fourthly, the first six-

parameter platelet panel was reported on in 2018 (Sodergren and Ramstrom, 2018), 

and finally the application of cytometry by time of flight (CyTOF) was applied to 

platelet biology (Blair et al., 2018). These milestones have all pushed the frontiers of 

platelet analysis by flow cytometry, and vitally have opened an important discussion 

on standardisation of technique and how these assays may be translated to clinics 

(Welch et al., 2018, Linden et al., 2004, Harrison, 2009, Harrison et al., 2011, 

Ramstrom et al., 2016, Spurgeon and Naseem, 2019). Based on the current 

progression of the cellular immunology field, platelet biology assessed by fluorescent 

flow cytometry is likely to continue to grow with an increased uptake of 

multiparameter assays with multidimensional analysis which will, in turn, drive the 

potential for discovery of rare cell subpopulations. Furthermore, the phosphoflow 

protocol has not yet been fully realised in the study of platelet biology, where the 

simultaneous measurement of multiple phosphorylation events paired with changes 

in surface marker expression (Leelatian et al., 2015), will provide a hugely powerful 

platform for the interpretation of platelet signalling in the future. 

 

2.3.1.2 Multiparameter flow cytometry 

As multiparameter flow cytometry becomes more routine, there is a requisite increase 

in demand for multidimensional analyses, which avoid the biased and time-

consuming manual gating strategy in lieu of algorithm based deconvolution and 

clustering. There are several such variants now available for the researcher to use 

on an open access basis. The three most common variants currently in use are 

SPADE (Spanning-tree progression analysis of density-normalized events), 

flowSOM (Flow self-organising map) and tSNE (T-stochastic neighbourhood 
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embedding) and they can be applied from open-source GitHub resources or through 

packages such as FlowJo or Cytobank. A brief overview of the three main 

multidimensional analyses are as follows. 

SPADE (2011), is a computational approach to analysis of flow cytometry data which 

is used to uncover cellular heterogeneity from multiparameter flow cytometry data 

sets. SPADE provides the researcher with a “tree” of clusters of cells which are 

grouped into major groups of related cells (branches), i.e., granulocytes, and then 

within that will be individual clusters (leaves), i.e., belonging to neutrophil, basophil 

and eosinophils – providing that the marker panel chosen distinguishes these cells.  

FlowSOM (2015), analysis was developed as an alternative means of clustering and 

dimensionality reduction. FlowSOM produces a tree of related cells similar to SPADE, 

but has been shown to be roughly 100x faster in analysis as it does not require 

subsampling (Van Gassen et al., 2015). However, it is generally not compatible with 

less than 7-parameter cytometry as it loses power of resolution. 

t-SNE (2008), is a visualisation tool which reduces the dimensionality of 

multiparameter data onto a 2-dimensional plot of arbitrary t-SNE axes (van der 

Maaten and Hinton, 2008). Unlike SPADE, which plots only clusters representative 

of cells as relatively size globes on a tree, t-SNE plots all cells/events analysed. Using 

a random seed and a series of exaggeration phases it pulls together related events 

and pushes apart non-related events giving rise to islands. t-SNE is used for both 

genomic data as well as flow cytometry data, although initially the algorithm struggled 

with very large (>1 x 106 events) datasets, several iterations have since been 

proposed to address these initial pitfalls. Further improvements include the 

development of optimal parameter t-SNE, opt-SNE (Belkina et al., 2018), which 

provided automated tools as part of the analysis package which deploy prior to tSNE 

analysis to determine optimal pre-t-SNE conditions. This demonstrated a significant 

improvement in the size of datasets which could be processed, allowing up to 20 x 
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106 events to be processed and populations resolved. In this study, we use fast 

Fourier transform-accelerated interpolation-based t-SNE, Fit-SNE (2019). This re-

iteration of the original algorithm sped analysis time, reduced computational load and 

enhanced scaling to larger data sets through application of Fourier transform and 

using an ANNOY library lookup to calculate nearest neighbours as oppose to using 

vantage-point trees (Linderman et al., 2019). None of these methods of analysis have 

yet been applied to fluorescent flow cytometry data of platelets, while two papers 

using CyTOF analysis of platelets have used t-SNE (Blair et al., 2018) or both t-SNE 

and flowSOM (Blair and Frelinger, 2019) and have used these to describe differences 

in marker expression across the entire platelet population, although have not 

definitely identified subpopulations based on specific marker expression yet. 

The following protocols focus primarily on human platelet analysis, although the 

assays are interchangeable with murine platelets providing an antibody that targets 

the murine platelets protein is available. 

 

2.3.1.3 Platelet identification 

Platelets can be identified on a flow cytometer based on their distinct physical 

characteristics of forward scatter (FSC) and side scatter (SSC), as they are 

considerably smaller than both red-blood cells and leukocytes. However, where 

possible and compatible with the assay, positive gating was used to confirm the gated 

population of cells are platelets. This uses the expression of platelet specific surface 

markers and excludes debris which may fall into the physical gate (Figure 9). In 

platelet activation assays, a further physical gate was analysed to ensure cellular 

doublets were not analysed. 
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Figure 9. Platelet gating on a fluorescent flow cytometer. Platelets can be gated 
for using physical characteristics on FSC and SSC (left) or using CD42b 
positive events (right), where a small amount of debris (left shift) which positive 
gating omits can be seen, as can the platelet doublet events which are twice as 
bright for the platelet marker (right shift). Here a CD42b-BB700 was used to 
provide a platelet positive gate. 

 
 

2.3.1.4 Platelet activation 

Flow cytometric measurement of platelet activation utilises a variety of different 

antibodies or protein conjugates, which bind to either constitutive or inducible protein 

markers on the platelet surface. Typically, we used antibodies or conjugates raised 

against CD62P (P-selectin), fibrinogen, the active integrin αIIbβ3 or annexin V which 

binds to PS in a calcium dependent manner. 

Regardless of the antibody mixture used, platelet activation assays on the flow 

cytometer were performed under the following conditions. All reagents bar blood was 

added, and the tube was mixed thoroughly on whole blood addition, incubated for 20 

minutes and then fixed in 10x volume of 1% paraformaldehyde/PBS. Table 2 provides 

an overview of the reagents required for a mock experiment comparing basal with 

stimulated and an isotype control tube. Where many conditions were being 

performed a 1.1 mL 96-well round bottomed plate was used to allow for high 

throughput processing of samples. 
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Table 2. A generic design of a platelet activation flow cytometry assay. Working 
with a total volume of 50 µL, whole blood, titrated antibodies and 10x agonists 
are added to an appropriate amount of modified Tyrode’s buffer. There is 
flexibility in the additions as the volume of modified Tyrode’s buffer can be 
adjusted to account for additional inhibitors or larger volumes of antibodies and 
agonists. 

Condition M. 
Tyrode’s 

Whole 
blood 

Antibodies Agonists Control 
Antibodies 

Basal 40 5 5 0 0 

Stimulated 35 5 5 5 0 

Control 35 5 0 5 5 

 

Platelet activation can then be measured as median/mean fluorescence intensity 

(MFI), fold over basal or percent positive cells over control (Figure 10). MFI is a total 

reading of signal from the population of events and as such is quantitative for volume 

of antibody bound and therefore antigen exposed. Fold over basal also uses MFI, but 

all data is normalised to a basal signal, this eliminates a requirement for an IgG or 

fluorescence minus one (FMO) control. However, this approach prevents the 

researcher making any comment on basal activity. Percent positive cells is a 

qualitative readout, by setting a background fluorescence baseline of 2% on an IgG 

or FMO control, any fluorescence which exceeds this is determined to be positive 

signal, and the event is therefore considered positive for the marker. This measure 

is insensitive to quantity of antibody bound but can be very sensitive to subtle 

changes. Preferably, both quantitative MFI and qualitative percent positive are used 

when expressing data, as they present more fully the depth of data available and 

may provide insight into nuances which one data set alone would not illustrate. 
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Figure 10. Two-parameter platelet activation. Fibrinogen-FITC (Y-axis) and 
CD62P-PE (X-axis) were measured in platelets at basal (left) and stimulated 
(right) with SFLLRN (5 µM). Gates were determined using EDTA and IgG-PE 
control which allows for percentage positive cells to be calculated. 

 

In this study many antibodies were used to measure activation. They were often 

combined into panels (Table 3) to study activation and therefore compare markers 

and provide data for advanced analysis. 
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Table 3. Multicolour panels used to examine platelet activation. In combination 
these panels allow 7 markers to be compared for changes in expression upon 
activation. The breadth of markers was designed to allow several phases of 
platelet activation to be monitored including; aggregatory activation, 
degranulation of alpha and dense granules and procoagulant activity. 

 Filter (band pass) 

Panel 525/40 585/42 660/10 712/25 

1 Fibrinogen 

-FITC 

CD62P 

-PE (AK-4) 

CD42b 

-APC (HIP1) 

- 

2 Fibrinogen 

-FITC 

CD62P 

-PE (AK-4) 

Annexin V 

-APC 

CD42b 

-BB700 

(HIP1) 

3 PAC1 

-FITC 

CD62P 

-PE (AK-4) 

CD42b 

-APC (HIP1) 

- 

4 PAC1 

-FITC 

CD62P 

-PE (AK-4) 

Annexin V 

-APC 

CD42b 

-BB700 

(HIP1) 

5 CD154 

-FITC (24-31) 

CD62P 

-PE (AK-4) 

CD63 

-eF660 

(H5C6) 

CD42b 

-BB700 

(HIP1) 

 

2.3.1.5 Platelet counting in whole blood 

In brief, by diluting 5 µL of blood within 45 µL of staining cocktail, that contained an 

antibody which targets a platelet marker such as CD41, CD42b or CD61, and then 

adding 450 µL of PBS a dilution factor of 1/100 was maintained. By running samples 

at a low acquisition rate (10 µL/minute) for 2.5 minutes, the events/µL and therefore 

cell count can be compared between donors, or transgenic murine strains. 

 

2.3.1.6 Platelet leukocyte aggregates 

Platelet-leukocyte aggregates are measured on a flow cytometer using a multi-

fluorescence approach and through a gating strategy that uses cell specific surface 

markers to identify the leukocyte of interest (Figure 11). For example, in enriched 



- 60 - 

PBMC suspension monocytes are distinguished using gates set as SSC-A/CD14-

FITC (CD45 positive) and lymphocytes with SSC-A/CD45-PE (CD14 negative). 

 

 

Figure 11. Monocyte and lymphocyte gating strategy in enriched PBMC 
suspension. Enriched PBMC suspension was probed with CD14-FITC and 
CD45-PE to allow for identification of monocytes (CD14-FITC, mid) and 
lymphocytes (CD45-PE, right) respectively.  

 

Gating of the leukocyte of interest then allowed for platelet fluorescence to be 

measured from this gate, where signal for platelet specific markers indicated that 

platelets are bound to the leukocyte. For example, platelet monocyte interactions 

were measured using a CD14-FITC monocyte gate and then these cells were 

examined for CD42b-BB700 fluorescence. The basal sample exhibited little platelet 

monocyte aggregates and the stimulated sample (SFLLRN 10 µM, 20 minutes) 

demonstrated the majority of monocytes are bound to platelets (Figure 12). 



- 61 - 

 

Figure 12. Platelet monocyte interactions. Whole blood is left at basal (left) or 
stimulated (right, SFLLRN 10 µM, 20 minutes) and probed with CD14-FITC and 
CD42b-BB700 (detected with the APC-A700 filter) to identify monocytes and 
platelets respectively. 

 

In this study several antibodies were used to distinguish platelets, monocytes, 

lymphocytes and neutrophils. They include CD42b-APC, CD42b-BB700, CD42a-

PerCP, CD14-FITC, CD16-APC, CD45-PE. 

 

2.3.1.7 Technical development of assays 

The use of multiple fluorophores allows the simultaneous acquisition of numerous 

markers on the cell surface. However, spectral overlap of fluorophores is considered 

the major issue with multi-colour fluorescent flow cytometry. With the Beckman 

Coulter CytoFLEX allowing up to 13 channels to be measured in a spectral range 

which covers only 330 nm, this means that panel design, fluorophore selection and 

compensation must all be used to eliminate the inclusion of false data. 

 

2.3.1.8 Panel design 

For the panel design used in this study, the targets were ranked by expression level 

and then by those markers which are used qualitatively for gating or those used 
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quantitatively for accurate measurement of expression. By arranging targets like this 

it was possible to assign appropriate fluorophores based on brightness, stability and 

the amount of spectral compensation each channel will require. For example, a target 

of interest which has low expression but is suspected to change only a small amount 

on activation is a good candidate for a bright fluorophore such as PE. However, if the 

target was simply a cell marker used for gating which is highly expressed and 

changes are not expected to occur, a less sensitive fluorophore could be used, such 

as far-red BB700. 

 

 2.3.1.9 Compensation 

Compensation is the calculation of spectral overlap between fluorophores into 

adjacent channel bandpass filters, allowing the subsequent subtraction of 

fluorescence which is deemed to be from outside of the target fluorophores emission. 

It is performed with either antibody binding beads or cells. Several tubes of cells or 

beads are produced with each one stained with a single fluorophore and compared 

to an unstained tube. By analysing each tube individually, it is then possible to 

calculate the degree to which each fluorophore bleeds into each adjacent channel. 

Using software such as CytExpert or FlowJo, a compensation matrix can then be 

produced, an example of which is given (Table 4). A compensation matrix is specific 

to the fluorophores, gains and spectral characteristics for the specific cytometer on 

which it was acquired. Applied properly, a compensation matrix will subtract spectral 

overlap and allow multicolour fluorescent flow cytometry to be performed. 
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Table 4. An example compensation matrix. This matrix was produced using beads 
bound to antibodies with the appropriate fluorophore. It allows compensated 
four-colour measurement of Fibrinogen-FITC, CD62P-PE, Annexin V-APC and 
CD42b-BB700. 

Channel -FITC% -PE% -APC% -APC-A700% 

FITC  0.64 0.00 14.11 

PE 27.62  0.00 42.67 

APC 0.00 0.00  10.24 

APC-A700 0.00 0.00 37.66  

 

In practice, compensation can be demonstrated using a population of three differently 

stained beads. Beckman Coulter VersaComp beads stained with FITC, PE and APC 

were run separately to produce a compensation matrix which was automatically 

calculated by the CytExpert compensation calculator, before running individually and 

the data was then compared for spectral overlap in both uncompensated and 

compensated data sets. FITC and PE were shown to overlap heavily as they are of 

similar emission and both excited by the 488 nm laser, while APC which is excited 

by the 638nm laser was not affected by either of these fluorophores. The matrix 

compensated the spill-over between FITC and PE, but it also induced an increase in 

spreading of the data around the median point (Figure 13). Which is the major caveat 

of compensation, which will result in a increase in data spread and therefore a small 

loss of a sensitivity, although often this caveat is outweighed by the increased power 

that multiple parameters bring to a cytometry assay. 
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Figure 13. Three colour compensation in practice. Staining with FITC, PE and 
APC conjugated antibodies demonstrate the principles of spectral bleed from 
each channel in the uncompensated column (left), but when a compensation 
matrix is applied the spectral overlap is eliminated with some increased 
spreading of compensated parameters (right). 
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2.3.1.10 Phosphoflow 

Phosphoflow is a novel method for analysing the phospho-proteome by fluorescent 

flow cytometry (Oberprieler and Tasken, 2011). Typically, phosphorylation events are 

measured through a combination of immunoblot and immunoprecipitation and this 

provides a bulk phosphorylation measurement for the entire population of cells. By 

flow cytometry each cell is analysed as an individual event, this allows 

phosphorylation of cellular subpopulations to be examined. Furthermore, flow 

cytometry is also high throughput and needs only small samples, whereas traditional 

immunoblot techniques take upwards of a day and require large sample volumes. 

The method is based on permeabilisation of cells to allow the entry of phospho-

specific antibodies (Spurgeon and Naseem, 2018).  

Whole blood (20 µL) was incubated with PGI2 (1 – 1000 nM) for 2 minutes within the 

wells of 96-well plate. Each sample then had 10x volume of 1x BD fix/lyse at room 

temperature to fix and lyse RBC. This was centrifuged at 1000 g for 10 minutes with 

low brake to pellet cells and supernatant removed. The subsequent pellet was 

resuspended in 300 µL of ice-cold PBS/Triton-X100 0.1%, mixed by pipetting 20x 

avoiding aeration, incubated for 10 minutes and was followed by the addition 300 µL 

of ice-cold PBS then centrifuged at 1000 g for 10 minutes with low brake to pellet 

cells and supernatant removed. The pellet was then resuspended in 100 µL of ice-

cold PBS/anti-phospho VASP s157 (1 µg/mL), and incubated for 30 minutes at 4◦C. 

This was followed by the addition 300 µL of ice-cold PBS followed by centrifugation 

at 1000 g for 10 minutes with low brake to pellet cells and supernatant removed. The 

pellet was then resuspended in 100 µL of ice-cold PBS/anti-rabbit-PE (1 µg/mL). At 

30 minutes, 300 µL of ice-cold PBS was added and this was centrifuged at 1000 g 

for 10 minutes with low brake to pellet cells. The supernatant was removed, and the 

pellet was then resuspended in 150 µL of ice-cold PBS and analysed by fluorescent 

flow cytometry recording 10,000 platelet positive events. It is important that buffer 

post-fix is kept cold to prevent residual phosphatase activity reducing the 
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phosphorylation state of target proteins. Typically, IgG controls are not used in 

phosphoflow experiments and the increases in phosphorylation are expressed as fold 

over basal, however this does exclude the assays from commenting on changes in 

basal phosphorylation. 

The basic protocol can be adapted to suit other phospho-site or protein specific 

antibodies which have been validated and optimised. 

 

2.3.1.11 Surface staining and phosphoflow 

A recent adaptation of phosphoflow developed here in platelets for the first time 

allows both intracellular phosphorylation and extracellular markers to be measured 

simultaneously. Here a novel protocol was developed to allow an intracellular 

signalling event to be compared directly to a change in expression of an activation 

marker. This protocol followed a simultaneous stimulate/probe (surface), fix, 

permeabilise, probe (intracellular), analyse approach, which allowed for 

simultaneous measurement of surface CD62P-PE and CD42b-APC with intracellular 

phospho VASP s157. The use of a probe, fix, permeabilise, probe was applied here 

as excessive fixation and permeabilisation would prevent the surface targeted 

antibodies from binding correctly due to loss of epitope. Permeabilisation also 

meaning that all CD62P would be measured, not just that expressed on the surface 

on activation, which would render the assay insensitive to changes if probed for 

CD62P post-permeabilisation. 

For this assay whole blood was stimulated for 2 minutes with PGI2 (10 – 1000 nM) 

followed by 20 minutes with SFLLRN (20 µM) in the presence of the surface staining 

antibodies. This is then fixed with 10x volume of 1x BD fix/lyse and then a standard 

phosphoflow protocol was used. 
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2.3.1.12 Application of novel dyes in platelet biology 

The flow cytometry protocols described so far have relied primarily on the use of 

conjugated antibodies, aside from the annexin V-APC conjugate, as markers of 

changes to the platelet surface or signalling machinery. However, there are many 

other methods of staining markers which have no direct sites of recognition for 

antibodies to target. In this work three such dyes were applied. 

 

2.3.1.13 Fluorochrome-labelled inhibitors of caspases 

Fluorochrome-labelled inhibitors of caspases, or FLICA dyes are designed around 

an inhibitory motif specific to caspase enzymes (Bedner et al., 2000). Each caspase 

enzyme has a high affinity for four amino acid motifs, which can be used to target 

them with a relatively high specificity (Garcia-Calvo et al., 1998). Here FLICA was 

used to target caspase-1, and the motif applied was YVAD. The YVAD motif is 

sandwiched between FAM-YVAD-FMK where FAM is a carboxyfluorescein and FMK 

is a fluoromethylketone. An additional YVAD-FMK was used conjugated to a far-red 

fluorophore to validate findings with the FAM conjugate. When caspase-1 binds to 

the YVAD motif in attempt to cleave the moiety, it is covalently bound to the enzyme 

by the FMK group, this means that the fluorescent tag is directly bound to active 

caspase-1 (Figure 14).  

 

Figure 14. Overview of method by which FLICA detects activated caspase-1. 
The fluorescently tagged peptide motif YVAD binds to the active site of 
caspase-1 and forms a covalent bond with the FMK moiety. This fluorescently 
tags active caspase-1 enzymes. 
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A protocol was developed to detect caspase-1 activity in platelets. Washed platelets 

(2 x 106) were suspended in a total volume of 50 µL of calcified modified Tyrode’s 

buffer (2 mM) and the inflammasome activated by the bacterial potassium pore 

forming toxin nigericin (1-10 µM). If other agonists or inhibitors were used, they were 

added prior to nigericin to allow them to take effect. This activated suspension is 

mixed and incubated for 20 minutes and then 5.5 µL of 1x FLICA dye is added to this 

and mixed thoroughly. This is then incubated for a further 40 minutes to allow the dye 

to enter the cells and bind to active caspases. The samples are then fixed in 10x 

volume of 1% paraformaldehyde/PBS for 10 minutes prior to two washes in PBS at 

1000 g for 10 minutes to remove unbound dye. The samples are then run and 

analysed for carboxyfluorescein fluorescence in the 525/40 bandpass filter or the far-

red FLICA in the 660/10 bandpass filter. As there is no FMO, IgG or competitive 

control in this instance, MFI or fold over basal was used to present the data. 

 

2.3.1.14 MitoSOX 

MitoSOX is a mitochondrial superoxide dye, which is not fluorescent until it is oxidised 

by superoxide, for which it has a high specificity. The dye rapidly collects specifically 

within mitochondria, and when superoxide anions leak from the electron transport 

chain within the mitochondria, mitoSOX within the organelle will be rapidly oxidised 

and become fluorescent. 
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Figure 15. MitoSOX specificity for mitochondrial superoxide. Washed platelets 
(2 x 106) were suspended in a total volume of 50 µL and incubated with 
mitoSOX at basal and treated with antimycin A (100 µM). Fluorescent signal 
increases over basal (blue histogram) when treated and is measured in the 
585/42 BP channel (pink histogram). 

 

In this assay platelets (2 x 106) in a total volume of 50 µL of reaction mixture, 

containing modified Tyrode’s buffer, mitoSOX (5 µM), agonists and inhibitors. 

Platelets in buffer are pre-incubated with MitoSOX for 10 minutes, to allow it to enter 

the mitochondria, and the reaction was started by the addition of agonists. However, 

where mitochondrial radical scavengers such as mitoTEMPO were used, these were 

pre-incubated for 20 minutes prior to mitoSOX. Agonists were then added and 

incubated at 37◦C for up to 180 minutes. At the endpoint, 10x volume of PBS was 

added and samples were then immediately analysed. As this was a live cell dye, it 

was important that cells were run immediately as the levels of reactive oxygen 

species may continue to change. Antimycin A was used throughout as a positive 

control to ensure cell viability and dye function (Figure 15). Although there was a 

negative control in the form of the mitochondrial superoxide scavenger it was most 

appropriate to express the data as total MFI or fold over basal. 

 

2.3.1.15 TMRE 

Tetramethyl rhodamine ethyl ester (TMRE) is a stain which collects specifically within 

the mitochondria of live cells, in the presence of polarised mitochondria which have 
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membrane potential. When mitochondria exhibit a loss of membrane potential, they 

also lose their capacity to be stained with TMRE. Furthermore, if mitochondria gain 

potential, they will accumulate more TMRE and therefore stain more brightly. 

 

 

Figure 16. TMRE specificity for mitochondrial membrane potential. Resting 
platelets have active mitochondria and collect TMRE and therefore 
fluorescence in the 585/42 BP channel (red histogram). However, upon 
treatment with the negative control FCCP, fluorescence is lost (green 
histogram). 

 

An assay to examine TMRE accumulation was established. Washed platelets (2.5 x 

106) were suspended in 50 µL of 50 nM TMRE in modified Tyrode’s buffer, mixed 

and left to stain for 20 minutes. The negative control, FCCP (20 µM), was added for 

10 minutes prior to TMRE addition to fully depolarise the mitochondria (Figure 16). 

At 20 minutes, 10x excess of PBS was added and samples were immediately 

analysed. This assay was not fixative compatible, as this killed the cells and the 

mitochondria lost any mitochondrial membrane potential, as a result, alike to 

mitoSOX, there is no halt step so samples must be run as soon as possible. 

 

2.3.2 Aggregometry 

Light transmission aggregometry (LTA) was developed by Gustav Born in 1962 to 

examine platelet function (Born, 1962). The turbidimetric assay is based on changes 
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in light scattering through a platelet suspension which is detected by a photocell. It is 

assumed that when using small volumes with stirring that resting platelets are 

uniformly distributed in suspension and presented with shear stress. This forms an 

optically dense medium which is refractory to the passage of light. However, following 

their activation, platelets aggregate into clumps generating an increasingly 

transparent suspension that allow light to pass through (Figure 17). The extent of 

light transmission is proportional to the level of platelet aggregation which is in turn 

dependent on the degree of platelet activation.  

 

Figure 17. Principles of platelet light transmission aggregometry. Resting 
platelets in suspension show a turbid solution, however when stimulated, 
aggregation occurs then transmission of light increases and this correlates with 
level of aggregation and activation. 

 

Aggregometry was performed on a Chrono-log aggregometer using washed platelets 

at 2.5 x 108/mL, stirred at 1000 RPM at 37◦C. Activation was stimulated with collagen 

(1 - 10 µg/mL) or thrombin (0.01 - 0.1 U/mL) and recorded for 3 minutes. Aggregation 

traces were exported, and amplitude measured. 
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2.4 ISOLATION AND OXIDATION OF HUMAN LOW-DENSITY LIPOPROTEIN 

LDL can be isolated from humans and oxidised, to produce oxLDL. In the laboratory 

LDL and oxLDL are stored at 4◦C, however shelf life is often limited to <12 weeks 

before native LDL becomes passively oxidised by environmental oxygen. Therefore, 

regular isolation and oxidation is a necessity. 

 

2.4.1 Isolation 

LDL has a density ranging between 1.019 and 1.063 g/mL and can therefore be 

isolated from other plasma lipoproteins based on density (Feingold et al., 2000). Here 

continuous density gradient isolation was used, although sequential density gradient 

ultracentrifugation is also appropriate (Wilkins and Leake, 1994a). Blood (40 mL) was 

drawn from the ante-cubital fossa through venepuncture with a 21g butterfly needle 

directly into EDTA (5 mM) and then centrifuged at 1500g for 20 minutes to allow for 

separation of acellular plasma. Plasma was placed into a 50 mL falcon tube in wet 

ice to preserve LDL and prevent any unwanted oxidation. 

 

 2.4.2 Density buffers 

This protocol relies on the use of buffers of known densities. High (Table 5) and low-

density (Table 6) buffers are first made and then buffers in the range between these 

can be made by mixing the 1.316 and 1.006 g/mL buffers at calculated ratios. 
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Table 5. Reagents for 1 L of high-density buffer (1.316 g/mL). 1 L of buffer is made, 

and pH is set at 7.4. 

Reagent Molarity (M) g/L 

KBr 2.97 354 

NaCl 2.62 153 

EDTA.Na22H2O 0.297 mM 0.1105 

 

 

Table 6. Reagents for 5 L of low-density buffer (1.006 g/mL). 5 L of buffer is made, 

and pH is set at 7.4. 

Reagent Molarity (mM) g/5L 

NaCl 150 43.83 

EDTA.Na22H2O 0.297 0.5645 

 

A 2 L solution of 1.109 g/mL density was made by adding a 1.316 g/mL solution to a 

1.006 g/mL solution using the following equation. 

(
0.013 ∗ 2000

1.316 − 1.019
) = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 1.316 𝑡𝑜 𝑎𝑑𝑑 

The density of the resulting solution was then checked using a 100 mL volumetric 

flask weighed on a fine balance.  

(
𝑤𝑒𝑖𝑔ℎ𝑡 − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑙𝑎𝑠𝑘

100
) = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 1 𝑚𝐿 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

If required, the density was then adjusted using appropriate volumes of either the 

1.006 g/mL or 1.316 g/mL buffer calculated from the equation below if the density 

was too high, then the 1.006 g/mL solution was added, and conversely if is the density 

was too low then the 1.316 g/mL solution was added. 

(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦) + (𝑥 × 𝑎𝑑𝑗𝑢𝑠𝑡𝑖𝑛𝑔 𝑏𝑢𝑓𝑓𝑒𝑟)

= (𝑣𝑜𝑙𝑢𝑚𝑒 + 𝑥) × 𝑡𝑎𝑟𝑔𝑒𝑡 
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2.4.3 Continuous gradient ultracentrifugation 

Continuous gradient ultracentrifugation has advantages over discontinuous gradient 

ultracentrifugation as it is far more time efficient and also requires a smaller starting 

volume of blood (Naseem et al., 1997). To carry out the procedure plasma density 

was adjusted through the addition of solid KBr, at a ratio of 0.44285 g/1 mL which 

was dissolved with gentle stirring. Beckman Coulter QuickSeal 13.5 mL tubes were 

pre-filled with 1.006 g/mL density solution (150 mM NaCl, 297 µM EDTA.Na22H2O, 

pH 7.4) and underlaid with 5 mL of density adjusted plasma. Tubes were then 

balanced to +/- 10 mg on a fine balance and ultra-centrifuged at 200,000 g at 4◦C for 

4.5 hours in a Beckman Coulter 70.1Ti rotor. This yielded a distinct band of LDL which 

could be removed by piercing the tube with a 21g butterfly needle and syringe, with 

an additional needle to release the vacuum (Figure 18). 

 

Figure 18. Adjusted plasma after the first stage of continuous gradient 

ultracentrifugation. A distinct LDL fraction rests in the middle of the tube and 

is distinct from other regions by clear zones of buffer, it can be isolated for 

further purification. 

 

LDL fraction 

Transition zone 

HDL fraction 
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This preliminary LDL was then overlaid over 1.151 g/mL density solution into 

QuickSeal tubes before being itself overlaid with 1.063 g/mL density solution. This 

was then balanced to +/- 10 mg on a fine balance and ultra-centrifuged at 200,000 g 

at 4◦C for 16 hours in a Beckman Coulter 70.1Ti rotor. This yielded a clear bright 

yellow band at the top of the tube which was collected with a 21g butterfly needle as 

before. It was then dialysed for 24 hours with 10,000 molecular weight cut off dialysis 

tubing at 4◦C with 2 changes against phosphate-EDTA dialysis buffer (140 mM NaCl, 

8.1 mM Na2HPO4, 1.9 mM NaH2PO4, 0.1 mM EDTA, pH 7.4) to remove the heavy 

salts and impurities. The LDL is then filtered through a 0.22 µm filter and stored in 

the dark at 4◦C prior to protein concentration and oxidation. 

 

2.4.4 Oxidation of LDL 

Unlike in the body, where oxidation predominantly occurs as a result of cellular ROS, 

in vitro oxidation is initiated with the addition of copper ions (Naseem et al., 1997). 

Oxidation at 37◦C was used as predominantly oxysterol-rich LDL is produced by that 

method, whereas at 4◦C primarily hydroperoxide-rich LDL is produced (Gerry et al., 

2008). 

In this work for LDL oxidation, LDL was first dialysed against phosphate buffer (140 

mM NaCl, 8.1 mM Na2HPO4, 1.9 mM NaH2PO4, pH 7.4) for 4 hours at 4◦C with 3 

changes of buffer. The LDL was then dialysed against MOPS-Chelex buffer to 

remove EDTA (150 mM NaCl, 10 mM MOPS, 0.1% Chelex-100 w/v, pH 7.4) for 24 

hours at 4◦C with 2 changes of buffer. A small volume of MOPS-copper buffer was 

then added directly to the dialysis tubing (to ensure LDL concentration at oxidation 

was <2 mg/mL) and the LDL further dialysed against the MOPS-copper buffer (150 

mM NaCl, 10 mM MOPS, 10 µM CuSO4, pH 7.4) for 24 hours at 37◦C with 3 changes 

of buffer. Oxidation occurred within 4-6 hours indicated by a loss of yellow colouration 

of the LDL suspension as the β-carotene was broken down. Finally, oxidation was 
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halted through the addition of EDTA (1 mM) directly to the LDL. This was then 

dialysed against phosphate-EDTA dialysis buffer (140 mM NaCl, 8.1 mM Na2HPO4, 

1.9 mM NaH2PO4, 0.1 mM EDTA, pH 7.4) for 24 hours at 4◦C with 2 changes, filtered 

through a 0.22 µm filter and stored in the dark at 4◦C. 
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2.5 METHODS FOR THE STUDY OF PROTEINS 

2.5.1 Protein concentration 

Protein concentration was measured in both LDL and platelet lysates. BioRad 

Detergent Compatible Protein assay is an adaptation of the Lowry assay (Lowry et 

al., 1951), and was used as per manufacturer’s guidelines. In brief, protein standards 

were produced using BSA dissolved at a range of 0.2 - 2 mg/mL and loaded in 

triplicate in 96-well plates. The two-colour reagents, copper tartrate and Folin’s 

reagent were added to each well and mixed, and a blue colour developed, the 

intensity of which was indicative of protein concentration, and is measured by a plate 

reader at 750 nm and a standard curve produced. The concentrations of protein, LDL 

or platelet lysates were calculated from these standard curves. 

 

2.5.2 Relative electrophoretic movement assay 

The relative electrophoretic movement (REM) was used to determine the overall 

surface charge of each LDL preparation. Since LDL becomes increasingly negatively 

charged during the oxidation process it leads to increase migration towards the 

anode. A ratio is calculated by comparing the distance migrated by ox and nLDL 

measured from the start point and can be used to determine the extent of oxidation, 

typically a ratio of >3 is considered appropriate (Figure 19). In addition, the REM 

assay can be used to confirm the purity of the LDL preparation, since LDL should 

have only a single protein band, Apo B-100. The presence of additional bands would 

suggest contamination with other lipoproteins. 
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Figure 19. Schematic of relative electrophoretic movement assay. Differently 
treated LDL is loaded in an agarose gel and run towards the anode, the greater 
the level of oxidation the faster the speed of protein migration. 

 

Native LDL and oxidised LDL were both loaded onto an agarose gel (1% agarose, 

TAE buffer w/v) in a tank of TAE buffer (Tris base 40 mM, glacial acetic acid 0.1% 

v/v, EDTA 1 mM) and ran at 100 volts for 60 minutes. The gel is then rinsed in dH2O 

and proteins stained with Coomassie stain overnight. Excess stain is then washed 

off and the gel is imaged with a visible light scanner. 

 

2.5.3 Dot blot assay 

A dot blot is a simple but effective and high throughput method for assessing content 

of an antibody target within any suspension. In this case, it was used to detect 

oxidised phospholipids (oxPL) present in LDL preparations, as a marker of the levels 

of oxPL (Berger et al., 2019b). E06 is a murine IgM antibody raised against oxidised 

phospholipid (oxPL) and can therefore be used to differentiate between oxLDL and 

nLDL. A polyvinylidene fluoride (PVDF) membrane was activated in methanol and 

oxLDL and nLDL (2 µg) loaded. This was left to bind to the membrane (20 minutes) 

before blocking in BSA/Tris-base saline (5% BSA w/v, NaCl 150 mM, Tris-base 20 

mM, pH 7.6) for 30 minutes at room temperature. The blocking buffer was removed, 
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and the membrane probed overnight at 4◦C with E06 (1/1000 in 2% BSA/TBS), an 

antibody that recognises oxPL. The membrane was washed three times in Tris-base 

saline-Tween 20 (TBS-T, NaCl 150 mM, Tris-base 20 mM, Tween 20 0.1% v/v, pH 

7.6) and incubated with anti-mouse-HRP conjugate 1/10,000 TBS-T for 60 minutes 

at room temperature. Membrane was visualised by incubation with enhanced 

chemiluminescent (ECL) reagent for 90 seconds. For loading control, the membrane 

was counterstained with Coomassie stain and imaged on a visible light scanner. 

 

2.5.4 Immunoprecipitation 

Immunoprecipitation is used to isolate a protein from a mixture such as a cell extract. 

An antibody specific for a target protein is added to the mixture to form antibody-

antigen complexes. The complexes are then precipitated by adsorbing the antibodies 

to an insoluble matrix such as agarose or sepharose beads conjugated to protein A 

or G. The latter two proteins derive from bacteria and are stably bound by antibody 

constant regions. Using centrifugation, the beads are sedimented into a pellet and 

the supernatant containing unwanted proteins is aspirated and discarded. After 

several washes, the antibody-antigen complex is liberated from the beads by boiling 

in lysis (Laemmli) buffer (Laemmli, 1970). The isolated protein may be studied further 

using SDS-PAGE and Western blotting or by mass spectrometry. In addition to 

enriching the concentration of proteins that would otherwise be too scarce to detect 

through normal immunoblotting, the technique enables biochemical analysis of single 

proteins and interactions or post-translational modification states.  

Platelets were lysed with immunoprecipitation lysis buffer (150 mM NaCl, 10 mM Tris 

base, 1 mM EGTA, 1 mM EDTA, 1% Igepal (v/v)), which preserved protein: protein 

interactions and post-translational modifications. The lysed platelet suspension was 

then pre-cleared with protein A/G beads which were removed by centrifugation. The 

primary antibody targeted against the protein of interest was then added to the lysate 
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and incubated (4◦C, 60 minutes) prior to addition of protein A/G beads, which were 

then incubated overnight (4◦C). The lysate with beads now bound to antibodies which 

were bound to the desired protein were then isolated by centrifugation (1000 g, 10 

minutes). The lysate supernatant was then removed, and the beads were 

resuspended in Laemmli lysis buffer which released the proteins from the beads and 

bound antibodies. This enriched lysate could then be processed by SDS-PAGE. 

 

2.5.5 Gel electrophoresis and immunoblot 

Immune-specific detection of proteins separated using SDS-PAGE allows accurate 

detection of selected proteins against which specific antibodies are used. 

Electrophoresis allows the separation of charged macromolecules in an electric field. 

When applied to a porous matrix such as a gel it can be used to separate molecules 

based on their size and charges. SDS-PAGE uses a combination of SDS and the 

polyacrylamide gels to separate proteins according to their molecular masses by 

electrophoretic migration. Acrylamide molecules polymerise into long linear chains 

which are cross-linked by bisacrylamide. This polymerisation is accelerated by the 

presence of free radicals. Hence, ammonium persulphate (APS) is added when 

casting gels as it decomposes to release SO4
- radical anions. 

Tetramethylethylenediamine (TEMED) is also included to catalyse the decay of APS. 

The percentage of the acrylamide used in these solutions determines the pore size 

and therefore the relative separation of the proteins within the mixture.  

To identify specific proteins separated from the mixture, Western blotting is routinely 

used. This involves transferring the proteins from a gel to an adhesive matrix such 

as nitrocellulose or polyvinylidene fluoride (PVDF) membranes under an electric field. 

Once transferred, the membranes are probed with specific primary antibodies against 

target proteins. A secondary antibody raised against the primary antibody species is 
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then added. Secondary antibodies are commonly conjugated to horseradish 

peroxidase (HRP) which allows visualisation of antibody detected protein bands. 

 

2.5.6 Sample preparation 

Platelet lysate was generated after treatment of washed platelets with the appropriate 

agonists or antagonists. Platelets (5-10 x 108/mL ) were lysed with Laemmli buffer 

(4% SDS (w/v), 10% 2-mercaptoethanol (v/v), 20% glycerol (v/v), 50mM Tris base, 

trace bromophenol blue, pH 6.8) and boiled at 95◦C for 5 minutes (Laemmli, 1970). 

SDS is an anionic detergent that binds and denatures proteins leaving them with 

similar, rod-shaped tertiary structure. Furthermore, it confers equal negative charge 

per unit protein mass (1.4g SDS per 1g protein). In the presence of a reducing agent 

such as 2-mercaptoethanol, disulphide bonds are broken, and proteins become fully 

denatured. 

All samples were run under discontinuous SDS-PAGE (Laemmli, 1970), using 

precast gels composed of a 4% stacking gel overlying a 10-18% gradient resolving 

gel. The more porous stacking gel containing wells for protein loading ensured that 

all the proteins entered the less porous resolving gel simultaneously. As the gels 

were buffered differently from each other and the running buffer, application of 

electric current caused a narrow band of high voltage to migrate down the stacking 

gel, compressing loaded proteins into a tight horizontal band. When the band reached 

the resolving gel, the proteins were dispersed as they passed through its pores. 

Protein lysates (30 µg) were loaded in each well and a biotinylated or visual molecular 

weight marker (Precision Plus) was also added. Gels were left to run at 120 V for 2 

hours, after which proteins were transferred to PVDF membranes using a BioRad 

turbo blotter for 7 minutes at 2.5 A and 25 V. Where own cast gels were used, a 1.5 

mm protocol was instead used which ran for 10 minutes to allow for the thicker gel’s 

slower transfer. 
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The membranes were blocked with 5% (w/v) BSA dissolved in TBS-T BSA (bovine 

serum albumin) w/v or 5% milk w/v in Tris-base saline + Tween-20 0.1% v/v (TBS-T) 

for 30 min and subsequently probed with primary antibody (at noted dilution in figure 

legends) diluted in 2% (w/v) BSA/TBS-T overnight at 4°C. The next day, the 

membranes were rinsed with TBS-T for 10 minutes, probed with HRP-conjugated 

secondary antibodies; anti-rabbit or anti-mouse (as appropriate, both 1:10000) and 

anti-biotin (1:2000) for 1 hour, washed with TBS-T (4 washes, 15 minutes each) and 

developed with ECL solution. 

 

2.5.7 Development of probed membranes 

Development of membranes was performed by either near infra-red (nIR) 

fluorescence detection with a LiCor CLX or by enhanced chemi-luminescence (ECL) 

using film in a dark room. For fluorescence detection, after incubation with nIR-

conjugated secondary antibodies, the membranes were further washed three times 

for 5 minutes each under orbital movement (30 RPM) in TBS, rinsed in dH2O and then 

imaged on a LiCor CLX system and analysed using Image Studio Lite (v.5.2.5). This 

system is a two-colour system and will allow multiplexed detection of two primary 

antibodies simultaneously provided they are from different species and therefore the 

secondary antibodies can distinguish between them. 

For ECL detection, after incubated with HRP-conjugated secondary antibodies, the 

membranes were incubated with 1 mL of SuperSignal™ West Pico PLUS 

Chemiluminescent Substrate (ThermoFisher) for 1 minute, placed in a film cassette 

and developed under dark room conditions with exposures ranging from 0.2 – 30 

minutes. Films were then developed using an automatic silver developing and acetic 

acid fixation system. 
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In either instance, membranes can then be washed for 5 minutes under orbital 

movement (30 RPM) in TBS-T and stored for repeat development, stripping or re-

probing with further primary antibodies. 
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2.6 DATA PRESENTATION AND STATISTICAL ANALYSIS 

2.6.1 Data presentation 

Where raw value data was presented, GraphPad Prism (v.8) and/or Microsoft Excel 

(Office ‘16) were used. Where flow cytometry data was presented as histograms or 

scatter plots, FlowJo (v.10) or CytExpert (v.2) were used for analysis and graphics 

production. Data quoted in text is provided as XX ± standard deviation. 

 

2.6.2 Statistical analysis 

Statistical analysis was performed using GraphPad Prism (v.8). For single 

comparisons Students T-tests were used, however where multiple parameters were 

compared ANOVA tests were used. 
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Chapter 3 

Platelet regulation and subpopulations 

3.1 INTRODUCTION 

Platelet activation results in a series of dramatic changes to the surface of the cell, 

which are required to facilitate haemostasis, coagulation and inflammation. 

Degranulation results in the increased expression of numerous ligands or receptors 

stored within the granules, primarily within α-granules. These include but are not 

limited to CD62P (P-selectin), CD154 (CD40L), CD63 (LAMP-3) and integrin αIIbβ3. 

Cellular activation also causes conformational changes in the integrins, notably 

integrin αIIbβ3, converting them from a cryptic form to one that can bind protein 

ligands. In addition to changes to the protein receptors and associated ligands there 

is also a change in the surface lipid profile, with the increased externalisation of 

phosphatidylserine required to support coagulation. 

Fluorescent flow cytometry provides a platform for single cell analysis of multiple 

parameters. We sought to understand how multiple markers may be simultaneously 

changing across the platelet population and if the application of multiparameter 

assays in combination with multidimensional analysis could allow for identification of 

platelet subsets beyond the previously described procoagulant subpopulation and 

how the endothelial inhibitor PGI2 may regulate these procoagulant platelets (Agbani 

and Poole, 2017).  
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3.2 AIMS OF CHAPTER 

- Determine optimal conditions to measure platelet activity by flow cytometry 

- Develop multiparameter flow cytometry panels and apply multidimensional 

analysis to identify platelet subpopulations 

- Understand how PGI2 regulates the formation of platelet subpopulations 
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3.3 OPTIMISATION OF ANTIBODY CONCENTRATIONS 

Antibodies should be titrated to determine optimal doses. Correct titration can 

dramatically improve assay sensitivity and it can also allow for substantial reductions 

in antibody consumption per assay. In brief, each antibody dilution must be compared 

with a control or basal sample at a matched concentration, this comparison allows a 

comment on the sensitivity of each assay as opposed to simply the brightest 

stimulated condition, which will often be paired with excessive background binding 

and therefore anomalously high basal signal. Calculating fold over control allows the 

condition with the highest fold increase, and therefore optimal window for detection 

of changes, to be selected. 
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 3.3.1 CD62P 

CD62P was exposed on the platelet surface upon activation. Here we determined 

that 1.25 µL of anti-CD62P-PE is the optimal titre (Figure 20). 

 

 

Figure 20. Titration of anti-CD62P-PE. In whole blood drawn into sodium citrate, 
CD62P-PE was added at 6 dilutions ranging from 5 to 0 µL of antibody. Each 
sample was made in duplicate and half were stimulated with SFLLRN (10 µM) 
for 20 minutes, and the other half were maintained at basal, prior to fixation (1% 
PFA/PBS). CD42b-APC was used as a platelet marker which did not spectrally 
interfere with CD62P-PE. Samples were analysed for 10,000 platelet positive 
events and MFI and fold over relative basal are presented. 
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 3.3.2 Fibrinogen 

Fibrinogen is a ligand of activated platelets. Because the conformational change of 

the αIIbβ3 integrin is dependent on calcium, EDTA is used as a background 

fluorescence control. Here we determined that 1.25 µL of anti-fibrinogen-FITC was 

the optimal titre (Figure 21). 

 

 

Figure 21. Titration of anti-fibrinogen-FITC. In whole blood drawn into sodium 
citrate, fibrinogen-FITC was added at 6 dilutions ranging from 5 to 0 µL of 
antibody. Each sample was made in duplicate and half were stimulated with 
SFLLRN (10 µM) for 20 minutes, while half were maintained at basal, prior to 
fixation (1% PFA/PBS). CD42b-APC was used as a platelet marker which did 
not spectrally interfere with fibrinogen-FITC. Samples were analysed for 10,000 
platelet positive events and MFI and fold over relative basal are presented. 
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3.3.3 PAC1 

The monoclonal antibody PAC1 measures the same activity as the anti-fibrinogen 

antibody. PAC1 recognises the activated, but not inactivated, αIIbβ3 integrin which 

is vital for platelet homotypic aggregate formation (Frelinger, 2018). EDTA is used as 

a background fluorescence control. Here we determined that 5 µL of PAC1-FITC was 

the optimal titration (Figure 22). 

 

 

Figure 22. Titration of PAC1-FITC. In whole blood drawn into sodium citrate, PAC1-
FITC was added at 8 dilutions ranging from 20 to 0.5 µL of antibody. Each 
sample was made in duplicate and half were stimulated with SFLLRN (20 µM) 
for 20 minutes prior to fixation (1% PFA/PBS). CD42b-APC was used as a 
platelet marker which did not spectrally interfere with PAC1-FITC. Samples 
were analysed for 10,000 platelet positive events and MFI and fold over EDTA 
control are presented. 
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3.3.4 CD63 

CD63 (LAMP-3) is a lysosomal glycoprotein which is expressed in both platelet 

lysosomal and δ-granules and presented on the surface upon activation. Here we 

determined that 2 µL of anti-CD63-eF660 was the optimal dilution, where non-specific 

binding is at a minimum and the difference between IgG-eF660 control and CD63-

eF660 is maximal (Figure 23).  

 

 

Figure 23. Titration of anti-CD63-eF660. In whole blood drawn into sodium citrate, 
CD63-eF660 was added at 8 dilutions ranging from 16 to 0.5 µL of antibody. 
Each sample was made in duplicate and all were stimulated with SFLLRN (20 
µM) for 20 minutes prior to fixation (1% PFA/PBS). CD42b-FITC was used as 
a platelet marker which did not spectrally interfere with CD63-eF660. Samples 
were analysed for 10,000 platelet positive events and MFI and fold over 
matched IgG control are presented. 
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3.3.5 CD514 

CD154 (CD40L) is expressed in platelet α-granules and is important for platelet-

leukocyte interactions, when platelets degranulate some CD154 is maintained on the 

surface (Damien et al., 2015). Here we determined that 4 µL of anti-CD154-FITC was 

the optimal dilution over IgG-FITC control, although here all dilutions are similar, likely 

due to relatively low surface abundance of CD154 (Figure 24). As surface expression 

of CD154 was anticipiated to be low it was put in the relatively sensitive FITC channel. 

 

 

Figure 24. Titration of anti-CD154-FITC. In whole blood drawn into sodium citrate, 
CD154-FITC was added at 8 dilutions ranging from 16 to 0.5 µL of antibody. 
Each sample was made in duplicate all were stimulated with SFLLRN (20 µM) 
for 20 minutes prior to fixation (1% PFA/PBS). CD42b-APC was used as a 
platelet marker which did not spectrally interfere with CD154-FITC. Samples 
were analysed for 10,000 platelet positive events and MFI and fold over 
matched IgG control are presented. 
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3.3.6 TMRE 

TMRE is a dye which collects within mitochondria against an electrochemical 

gradient and is used as a marker of mitochondrial hyperpolarisation or depolarisation. 

TMRE is incompatible with whole blood and must be used with washed cells. Here 

we determined that 50 nM of TMRE dye staining 2 x 106 washed platelets for 20 

minutes was the optimal concentration over the mitochondrial uncoupler carbonyl 

cyanide-p trifluoromethoxyphenylhydrazone (FCCP) (20 µM) control (Figure 25). 

 

 

Figure 25. Titration of TMRE. 2 x 106 washed platelets were either treated or 
untreated for 10 minutes with FCCP (20 µM) and then duplicate pair was 
stained with TMRE (50 – 400 nM). At 10 (green) or 20 (red) minutes each 
sample was diluted 10x in PBS and analysed immediately for 10,000 platelet 
events and MFI and fold over matched FCCP control are presented. 
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3.4 PRE-ANALYTICAL CONDITIONS 

The quality of a flow cytometry experiment is underpinned by three main aspects; 

appropriate pre-analytical conditions, assay design with appropriate controls and 

accurate analysis incorporating MFI, percent positive cells and appropriate gating. 

Here we sought to understand the impact of several different pre-analytical variables 

which can affect assay output. Platelet activation was analysed using a four-

parameter assay for fibrinogen binding (FITC), CD62P (PE), annexin V (APC) and 

CD42b (BB700) under a variety of different conditions. Anti-coagulants were 

compared for; the effects of resting whole blood, reproducibility of the assay in 

different preparations of platelets and storage of samples for up to 4.5 hours. The 

four parameters which this assay measured provide a broad cross-section of the 

changes which platelet undergo upon activation, and therefore provides confidence 

that the pre-analytical conditions chosen as optimal, should be suitable for the 

measurement of many aspects of platelet biology. 

For all experiments, blood was drawn into the appropriate vacutainer, after a discard 

of the first draw to prevent artefactual activation. Stimulation was then carried out for 

20 minutes at 37◦C in the presence of calcium (1.8 mM) and Gly-Pro-Arg-Pro (GPRP; 

500 µM). Calcium is required to support annexin V binding (Gyulkhandanyan et al., 

2012) while GPRP is required to prevent fibrin polymerisation (Michelson, 1994). 

Activation was halted at 20 minutes by the addition of 450 µL of 1% 

paraformaldehyde/calcified modified Tyrodes buffer. Where storage was tested, 

samples were stored at 4◦C in the dark between re-acquisitions.  
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3.4.1 Optimal anti-coagulant 

Three anti-coagulants were investigated to examine and compare their effects on 

platelet activation. Discerning the best anti-coagulant for platelet activation is likely 

the most important pre-analytical step. The three anti-coagulants compared were; 

sodium citrate, sodium heparin and potassium EDTA, all pre-loaded into commercial 

evacuated tubes. All three anti-coagulants are routinely used in clinical laboratories, 

and as such, platelet researchers in collaboration with a clinic could potentially 

receive, or request to receive patient samples in either of these three anti-coagulants. 

ACD is an anticoagulant which is used universally in the platelet research laboratory, 

however this is predominantly for isolation of platelets where the reduction in pH is 

beneficial. In the context of whole blood activation assays, it is unlikely to be suitable, 

so we did not test this anticoagulant. To assess each anti-coagulant we measured 

fibrinogen binding, CD62P expression and annexin V binding. 

Platelets demonstrated the highest capacity for fibrinogen binding in citrate tubes and 

this was diminished in heparin and further diminished in EDTA (Figure 26a). CD62P 

expression was not affected by the anti-coagulants tested with both the capacity for 

expression and the number of positive events remaining the same for each anti-

coagulant. However there was a difference in the basal expression; with the lowest 

basal expression observed in citrate, followed by heparin and the highest at 40% 

positive in EDTA (Figure 26b). The binding of annexin V to phosphatidylserine was 

the most sensitive in heparin, followed by citrate and finally EDTA. Although the 

brightness of positive events when measuring annexin V was reduced, the number 

of positive events was consistent across the anti-coagulants, which is an important 

observation when annexin V is used a qualitative as opposed to quantitative marker 

(Figure 26c). Collating this data, it was possible to determine that the optimal anti-

coagulant to measure whole blood multiparameter platelet activation was determined 

to be sodium citrate as fibrinogen was most sensitive, CD62P basal was lowest and 

annexin V binding, as a qualitative marker, was effectively unchanged. 
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Figure 26. The major pre-analytical consideration for platelet activation assays 
is the anti-coagulant. Three anti-coagulants, sodium citrate, sodium heparin 
and potassium EDTA, were compared in whole blood for multicolour platelet 
activation and each is shown to affect activation markers differently. (A) 
Fibrinogen binding, MFI and percent positive over EDTA control. (B) CD62P, 
MFI and percent positive over IgG control. (C) Annexin V, MFI and percent 
positive over EDTA control. (n=3 for all experiments, error shown as standard 
deviation) 
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3.4.2 Optimal assay initiation 

The second issue which researchers working on primary cells, or clinical samples, 

must contend with is delays in receipt of samples. Consequently, the impact of assay 

initiation at either 0, 1.5 or 4.5 hours after blood was drawn was tested.  

Platelet binding to fibrinogen peaked at 0 hours, however this declined significantly 

after 1.5 hours and declined further still after 4.5 hours (Figure 27a). Although 

fluorescence intensity is reduced at 1.5 hours, percent positive cells retain some 

sensitivity but is severely compromised at 4.5 hours (Figure 27a). CD62P is a robust 

marker and is not significantly affected in terms of expression capacity or percent 

positive on stimulation, with only a minor decrease in capacity at the longest 

timepoint. However basal activation was shown to increase up to 2-fold across the 

time points tested, with the lowest at the immediate timepoint, and an increase in 

basal at 1.5 hours followed by further increases in basal degranulation at 4.5 hours 

(Figure 27b). Annexin V binding is a marker of cellular apoptosis as well as the 

procoagulant platelet subset. A longer rest increased the capacity for platelet annexin 

V expression with a small increase in basal expression (Figure 27c). The three 

studies would suggest that where possible, assays should be performed as soon as 

blood is drawn, however where this is not feasible, the degradation of sample quality 

over time must be appreciated during analysis of results and if carrying out multiple 

assay repeats these should be started at the same time point post-venepuncture 

wherever possible to eliminate artificial variation. 
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Figure 27. Resting citrated blood compromises assay sensitivity and drives 
basal expression of activation markers. Platelet activation was assayed in 
sodium citrated whole blood at 0 hours (freshly drawn), 1.5 and 4.5 hours. (A) 
Fibrinogen binding, MFI and percent positive over EDTA control. (B) CD62P, 
MFI and percent positive over IgG control. (C) Annexin V, MFI and percent 
positive over EDTA control. (n=4 for all experiments, error shown as standard 
deviation) 
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3.4.3 Optimal platelet preparation 

The third pre-analytical consideration for the platelet biologist is the media the 

platelets are suspended in, either; whole blood, PRP or washed platelets. In many 

situations, whole blood is ideal, as this is the more physiologically relevant milieu to 

examine platelet activation. However, in certain experimental situations the use of 

whole blood is not feasible. This is likely in situations where a chemical reagent loses 

specificity or activity in whole blood, and therefore a depleted system of platelet-rich 

plasma or a buffered system of washed platelets would be used. 

Whole blood and PRP from sodium citrate vacutainers were compared with ACD-A 

vacutainer washed platelets. Fibrinogen binding was most sensitive in whole blood, 

primarily as fibrinogen is removed in each stage of platelet isolation, presenting an 

anomalously high signal in washed cells. This anomalously high signal is represented 

by very bright MFI, indicative of strong antibody binding, but paired with low 

percentage positive, indicative of low antibody binding. As the percent positive cells 

is calculated over the EDTA control, and is low in signal, it suggests that the excess 

binding in MFI signal is likely non-specific (Figure 28a). The capacity for activation as 

measured by CD62P was again robust and not significantly affected by platelet 

isolation, although, the stress of isolation was indicated in the large increase in basal 

expression of CD62P, which correlated with longer isolation times and results in over 

60% of washed platelets being pre-activated (Figure 28b). Finally, annexin V was 

shown to increase in sensitivity in PRP and washed platelets, however this is at the 

cost of a minor increase in basal expression of phosphatidylserine (Figure 28c). 

Where feasible, and assay reagents do not require PRP or washed platelets to be 

effective, whole blood should be used for platelet activation assays, particularly if 

fibrinogen binding is to be measured. However, CD62P and annexin V binding remain 

robust in other platelet preparations. 
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Figure 28. Different preparations of platelets either whole blood, platelet-rich 
plasma or washed platelets impacts assay sensitivity. Whole blood drawn 
into sodium citrate, PRP isolated from sodium citrated blood and washed 
platelets isolated from ACD blood were compared. (A) Fibrinogen binding, MFI 
and percent positive over EDTA control. (B) CD62P, MFI and percent positive 
over IgG control. (C) Annexin V, MFI and percent positive over EDTA control. 
(n=3 for all experiments, error shown as standard deviation) 
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3.4.4 Storage of samples 

The final pre-analytical condition we considered was the durability of samples during 

routine 4◦C storage. Where feasible, it is expected that samples are processed for 

acquisition as soon as possible and then analysed. However, this is not always 

possible, therefore we re-ran selected samples at 90 minutes and again at 270 

minutes, storing samples at 4◦C in the dark between acquisitions to observe any 

differences in assay results.  

We compared the fluorescence intensity of the three activation markers from the 

initial processing with two later acquisitions of sample. Here we were able to show 

that fibrinogen binding remained robustly positive with no change in MFI (Figure 29a). 

However, both CD62P and annexin V binding demonstrated considerable decreases 

in fluorescence intensity in a time dependent manner (Figure 29b & Figure 29c). 

Whether this is due to degradation of the fluorophores, loss of epitope or antibody 

binding is unclear. Nevertheless, we can confirm that in the context of this four-colour 

assay, samples should be acquired as soon as possible, and it must be appreciated 

that any delay will result in a decrease in fluorescence intensity of both CD62P and 

annexin V. 
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Figure 29. Storage time negatively effects CD62P and annexin V binding 
however fibrinogen binding remains consistent. The effect of storing blood 
at 4◦C for each demonstrated timepoint was compared. (A) Fibrinogen binding, 
MFI and percent positive over EDTA control. (B) CD62P, MFI and percent 
positive over IgG control. (C) Annexin V, MFI and percent positive over EDTA 
control. (n=4 for all experiments, error shown as standard deviation) 
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3.4.5 Activation induced intracellular phosphorylated ERK1/2 

In conjunction with surface staining for activation markers, it is possible to link these 

changes in sensitivity in anti-coagulants to intracellular events by staining for key 

phosphorylation events using permeabilisation techniques (Spurgeon and Naseem, 

2018). We used phospho-ERK1/2 as an intracellular marker of platelet activation 

(Stalker et al., 2012). Stimulation with SFLLRN (20 µM) for 10 minutes led to 

increased platelet ERK1/2 phosphorylation in whole blood. We compared ERK 

phosphorylation in whole blood using sodium citrate, sodium heparin and potassium 

EDTA as anticoagulants. As calcium flux is vital for platelet activation, the potent 

chelator EDTA prevents ERK phosphorylation (0.94). However, consistent with the 

surface marker expression, phosphorylation was still evident in citrate (1.64) and 

heparin (1.68) (Figure 30). Furthermore, in conjunction with the previous observation 

of diminished response over time (Figure 27), phosphorylation capacity was shown 

to decline over time in both citrate (0 1.64, 60 1.46, 300 minutes 1.01) and heparin 

(0 2.68, 60 1.63, 300 minutes 1.36) anticoagulants (Figure 30). This experiment was 

performed with a standard phosphoflow protocol (Spurgeon and Naseem, 2018), 

using an AF647 conjugated pERK1/2. 

  



- 104 - 

 

Figure 30. Phosphorylation of ERK1/2 on stimulation with 20 µM SFLLRN 
compared across anti-coagulants. Whole blood drawn from indicated anti-
coagulants and at demonstrated time point was stimulated with SFLLRN (10 
µM) for 10 minutes prior to fixation in BD fix/lyse, permeabilisation and staining 
with pERK1/2-AF647. (n=1-2) 
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3.4.6 Antagonist induced intracellular phosphorylated VASP 

Platelet inhibition is a vital facet of platelet biology; however, it is more difficult to 

measure directly than activation, which can be measured by a multitude of surface 

markers. Although the effect of inhibition can be indirectly observed as a loss of 

activation, platelet inhibition can be directly measured through intracellular 

phosphorylation events which occur downstream of inhibition. The ability to measure 

platelet inhibition is a valuable tool in drug-screening studies (Spurgeon et al., 2014). 

Here we use the phosphoprotein VASP, an established target of both cAMP and 

cGMP signalling pathways (Butt et al., 1994). 

In a mirror experiment to the identification of optimal anti-coagulant for intracellular 

pERK1/2 measurement, pVASP-s157 in response to PGI2 was measured in sodium 

citrate, sodium heparin and potassium EDTA anticoagulated whole blood at multiple 

time points (0 – 300 minutes). The phosphorylation of VASP was not affected by 

anticoagulant choice (Citrate 8.69, Heparin 8.89, EDTA 8.31) (Figure 31). We found 

that after in vitro storage, platelet sensitivity to inhibition was diminished by 50% 

(Citrate 0 8.69, 60 6.47, and 300 minutes 4.47) (Figure 31). This experiment was 

performed with a standard phosphoflow protocol (Spurgeon and Naseem, 2018), 

using an AF647 secondary antibody against pVASP-s157. 
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Figure 31. Phosphorylation of pVASP-s157 on stimulation with PGI2 compared 
across time and anti-coagulants. Whole blood drawn from indicated anti-
coagulants and at demonstrated time point was stimulated with PGI2 (200 nM) 
for 5 minutes prior to fixation in BD fix/lyse, permeabilisation and staining with 
pVASP-s157. (n=1) 

  



- 107 - 

3.5 PLATELET ACTIVATION 

Having previously determined that freshly drawn whole blood into sodium citrate, are 

the optimal conditions for measuring multiparameter whole blood platelet activation, 

we proceeded to develop panels of antibodies and fluorophores to examine platelet 

activation in different contexts. We demonstrate measurement of platelet activation 

by both agonists and antagonists by changes in the surface protein expression and 

by measurement of intracellular phosphorylation of activation transducing enzymes. 

 

3.5.1 Activation induced surface antigens – fibrinogen, CD62P and 

CD42b 

Initially a three-colour assay was developed using antibodies which targeted 

fibrinogen, CD62P and CD42b. This combination allows two distinct measurements 

of platelet activation, fibrinogen binding (integrin activity/aggregation) and α-granule 

secretion (degranulation), and a constitutively expressed marker for platelet 

identification. The antibodies were tagged with fluorescent conjugates; fibrinogen-

FITC, CD62P-PE and CD42b-APC respectively. FITC and PE are both excited by 

the 488 nm laser and read in the 525/40BP and 585/42BP filters respectively and 

share overlapping spectral profiles. Due to this a compensation matrix was 

developed to allow for analysis of these parameters (Table 7). 

Table 7. Compensation matrix for three colour panel. 

Channel -FITC% -PE% -APC% 

525/40BP - 0.64 0.00 

585/42BP 27.62 - 0.00 

660/10BP 0.00 0.00 - 

 

The thrombin mimetic, SFLLRN (1 – 20 µM) induced a concentration dependent 

increase in both fibrinogen binding and CD62P expression (Figure 32). Where the 

data is analysed as percent positive cells, both markers reached near 100% 
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expression (fibrinogen 74.8±16% and CD62P 95.6±2%) at SFLLRN (5 µM) and do 

not increase significantly further as dose increased (fibrinogen 80.5±10% and CD62P 

98.1±1%) at SFLLRN (20 µM). This means that all platelets expressed the marker of 

activation at a level above the detection threshold, which is determined by either the 

use of EDTA or isotype control for fibrinogen and CD62P respectively. This provides 

a valuable illustration where despite percent positive cells not increasing further 

beyond SFLLRN (5 µM), MFI continued to increase; in fibrinogen binding, this 

increased from 844.7±76 (basal) to 9332.6±5009 (5 µM) peaking at 11,057.4±4673 

(20 µM). For CD62P expression, MFI increased dose dependently from 620.4±85 

(basal) to 13,314.6±3170 (5 µM) peaking at 17,099.9±2273 (20 µM). This experiment 

was performed with a standard surface staining protocol. 
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Figure 32. Platelet activation dose response to SFLLRN by three colour 
fluorescent flow cytometry. Whole blood was stimulated with SFLLRN (1 – 
20 µM) for 20 minutes prior to fixation in 1% PFA/PBS and subsequent 
fluorescent flow cytometry acquisition and analysis. (unpaired T-test, n=5, 
**<0.01 and ****<0.0001, error shown as standard deviation) 
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3.5.2 The influence of PKA signalling on platelet activation 

An outstanding caveat of most of the literature surrounding platelet activation, is that 

it is rarely carried out in the context of inhibition. Indeed, it is often measured in 

platelets which have been isolated from whole blood, plasma and any physiological 

milieu for some time. Work done in this hypo-inhibitory context suggests that platelets 

are hyper-sensitive to all stimuli, however, it must be considered that within the 

vasculature platelets are continually exposed to NO and PGI2. Therefore, we sought 

to perform analysis of platelet activation in the physiological milieu of whole blood 

and in the presence of PGI2, in order to more closely replicate activation in the blood 

to further understand how this affects the current beliefs surrounding the expression 

of markers of platelet activation. To do this, we applied fluorescent flow cytometry, 

as it allows an assessment of platelet function in whole blood without further sample 

processing. 

We first performed a dose response of PGI2 (1 – 100 nM) against a static dose of 

SFLLRN (5 µM) measuring fibrinogen-FITC, CD62P-PE and CD42b-APC 

simultaneously in the same samples (Figure 33). PGI2 caused a concentration 

dependent inhibition of both fibrinogen binding and CD62P expression. However, this 

approach allowed us to observe a difference in sensitivity of the markers to PGI2. 

Fibrinogen binding, and therefore integrin activation, was more sensitive to the 

effects of PGI2 with the marker returned to basal (5.3±3%) at maximal PGI2 (100 nM) 

treatment (5.9±3%). In contrast, CD62P remained significantly elevated over basal 

(10.1±6%) under the same conditions (33.1±18%) (Figure 33). 

We sought to further characterise this apparent dichotomy and repeated this 

experiment using a static maximal dose of PGI2 (1000 nM) against a dose response 

of SFLLRN (1 – 20 µM) (Figure 34). While kinetics of stimulation was similar across 

the two markers, with both fibrinogen and CD62P reaching near maximal percentage 

positivity at SFLLRN (5 µM) (74.6±16% and 95.6±2% respectively), the response to 
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activation in the context of inhibition was significantly different. Here, PGI2 maintained 

fibrinogen binding at basal regardless of agonist concentration, at maximal SFFLRN 

(20 µM) with PGI2, fibrinogen percentage expression was 3.7±3% and MFI was 

966.6±72, in comparison with fibrinogen basal at 2.2±3% and 844.72±76 

respectively. In contrast, CD62P expression remained elevated with PGI2 and 

SFLLRN at maximal dose (20 µM), percentage expression was 72.3±4% and MFI 

was 2948.6±741, and this remained significantly increased over basal at 24.3±10% 

(p<0.0001) and 620.4±85 (p<0.005) respectively (Figure 34). This reinforces the 

earlier finding (Figure 33), where PGI2 inhibited fibrinogen more than CD62P, and 

further confirms a dichotomy of response to PGI2 between the two markers of platelet 

activation, fibrinogen binding (integrin activation) and CD62P expression (granule 

secretion). 
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Figure 33. Dose response of PGI2 against a static dose of SFLLRN. Whole blood 
probed with fibrinogen-FITC, CD62P-PE and CD42b-APC treated with PGI2 (1 
– 100 nM) for 2 minutes and then treated with SFLLRN (5 µM) for 20 minutes 
prior to fixation in 1% PFA/PBS and subsequent fluorescent flow cytometry 
acquisition and analysis. (n=42, unpaired T-test, ns=non-significant and 
****<0.0001, error shown as standard deviation) 
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Figure 34. Dose response of SFLLRN against a static maximal dose of PGI2. 
Whole blood probed with fibrinogen-FITC, CD62P-PE and CD42b-APC treated 
with PGI2 (1000 nM) for 2 minutes and then treated with SFLLRN (1 – 20 µM) 
for 20 minutes prior to fixation in 1% PFA/PBS and subsequent fluorescent flow 
cytometry acquisition and analysis. (n=5, unpaired T-test, ns=non-significant, 
*<0.05, **<0.01, ***<0.005 and ****<0.0001, error shown as standard deviation) 
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3.5.3 pVASP-s157 phosphorylation is sustained 

In order to confirm that inhibitory signalling induced by PGI2 was sustained for the 

duration of the experiment (20 minutes) and these differences were not due to a 

significant loss of inhibitory signalling, we examined pVASP-s157. The levels of 

VASP phosphorylation at the initial time point of 2 minutes and the longer time point 

of 20 minutes were compared against a dose response of PGI2. Although there was 

a small reduction in phosphorylation over time, vitally the phosphoflow data 

confirmed that inhibitory signalling was sustained above basal by >4-fold for the 

duration of the time course tested (Figure 35). Hence CD62P remains expressed on 

the majority of cells despite elevated cAMP. 
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Figure 35. pVASP-s157 dose response of PGI2 at 2 and 20 minutes. Whole blood 
treated with PGI2 (1 – 100 nM) for 2 or 20 minutes prior to fixation in BD fix/lyse, 
permeabilisation, barcoding, washing and staining with pVASP-s157. (n=42) 
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3.6 MULTIPARAMETER SUBPOPULATION IDENTIFICATION 

Given that previous data (Figure 33 and Figure 34) demonstrated that fibrinogen 

binding and CD62P showed differing sensitivity to PGI2, we wanted to explore this 

concept of differential regulation using additional markers of platelet activation. The 

assay was adapted by adding in a fourth fluorescent parameter, annexin V-APC, 

which binds to phosphatidylserine (PS) and acts as a marker of platelet procoagulant 

activity (Gyulkhandanyan et al., 2012). In order to introduce this marker on an APC 

fluorophore, we used CD42b conjugated to a polymer BB700 dye, which is excited 

by the 488 nm laser and is detected in the 712/25BP channel. This increased the 

complexity of the compensation matrix required, as a greater number of fluorophores 

were emitting within a similar spectral range and overlapping within the detector 

bandpass array (Table 8). 

Table 8. Compensation matrix for four colour panel. 

Channel -FITC% -PE% -APC% -BB700% 

525/40BP - 0.64 0.00 14.11 

585/42BP 27.62 - 0.00 42.67 

660/10BP 0.00 0.00 - 10.24 

712/25BP 0.00 0.00 37.66 - 

 

 3.6.1 Multiparameter analysis platelet activation in the presence of PGI2 

In the four-parameter fibrinogen, CD62P, PS and CD42b assay we provided robust 

SFLLRN mediated PAR1 activation and cross-linked collagen related peptide (CRP-

XL) mediated GPVI activation. This dual stimulus drives platelet activation and 

phosphatidylserine exposure, which will induce the formation of the procoagulant 

platelet subpopulation (Sodergren and Ramstrom, 2018). 

Data from the four-parameter assay is presented here as percent positive cells over 

EDTA or IgG control respective to the conjugate and as fold MFI over basal. 

Fibrinogen binding was significantly increased over basal when treated with SFLLRN 
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(20 µM)/CRP-XL (10 µg/mL) for both percent positive (0.5±0.3% to 67.6±13.5%, 

p<0.0001) and fold MFI (1 to 8.6±3.9, p<0.05). CD62P was also significantly 

increased over basal in the same samples after stimulation in both percent positive 

(20.4±9.3% to 96.9±2.6%, p<0.0001) and fold MFI (1 to 37.4±5.9, p<0.0001). Again 

from the same cells, PS exposure was measured, and this was also increased over 

basal after stimulation in both percent positive (7.7±7.8% to 43.5±13.6%, p<0.0001) 

and fold MFI (1 to 9.8±3.8, p<0.01). However, pre-treatment of the whole blood with 

PGI2 (1 – 1000 nM) led to differences in sensitivity to inhibition becoming apparent in 

each marker measured on the same cells. In a recapitulation of previous data 

fibrinogen binding was shown to be significantly reduced in the presence of PGI2 

(1000 nM) in percent positive (67.6±13.5% to 10.62±6.9%, p<0.0001) and fold MFI 

(8.6±3.9 to 1.9±0.2, p<0.05). Again in support of previous findings, CD62P 

expression was shown to remain mostly independent of inhibition, with only a small 

reduction in percent positive (96.9±2.6% to 83.7±14.8%, p<0.05) and no significant 

reduction in fold MFI (37.4±5.9 to 23±13.6, ns). Finally, the third activation marker 

measured on these cells showed that PS exposure was also more sensitive to 

inhibition than granule secretion and demonstrated a significant reduction in percent 

positive (43.5±13.6% to 28.3±15.9%, p<0.01), although here percent positive cells 

appears to remain high the MFI data confirms that almost all signal is lost with a 

return to near basal (9.8±3.8 to 2.9±1.8, p<0.01). Furthermore, as a four parameter 

assay, CD42b expression was also measured here and shown to be decreased by 

stimulation (data not shown), but was protected from shedding by PGI2 treatment. In 

total this experiment demonstrates that three of four markers measured here are 

sensitive to PGI2 mediated inhibition of activation, but CD62P remains resistant to 

inhibition. 

Here we demonstrated an extension of the dichotomy between different markers of 

platelet activation in response to PGI2. Fibrinogen and phosphatidylserine both 

demonstrated markedly greater sensitivity to PGI2 than CD62P, which demonstrated 
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a significant resistance to PGI2. As this experiment was performed measuring four 

parameters simultaneously, this provides confidence in the dichotomy examined here 

between these markers as antagonists and agonists can be demonstrated to work in 

parallel markers, and further supports the previous observations made regarding the 

resistance of CD62P to inhibition. 
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Figure 36. Four parameter dose response of PGI2 against a static dose of 
SFLLRN/CRP-XL. Recalcified whole blood probed with fibrinogen-FITC, 
CD62P-PE, annexin V-APC and CD42b-BB700 treated with PGI2 (1 – 1000 nM) 
for 2 minutes and then treated with SFLLRN (20 µM)/CRP-XL (10 µg/mL) for 
20 minutes prior to fixation in 1% PFA/Ca2+ modified Tyrodes and subsequent 
fluorescent flow cytometry acquisition and analysis. (n=12 for percentage, 5 
matched for fold MFI, paired T-test, ns=non-significant, *<0.05, **<0.01 and 
****<0.0001, error shown as standard deviation) 
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3.6.2 FItSNE analysis of platelet subsets 

Here we applied multidimensional analysis to the four-parameter fibrinogen-FITC, 

CD62P-PE, annexin V-APC, CD42b-BB700 panel to distinguish unique subsets of 

platelets with an impartial clustering strategy. We applied a variant of t-SNE, FIt-SNE 

(Linderman et al., 2019). tSNE allows multidimensional (4D) data to be expressed on 

a 2D plot by the formation of clusters of related cells. These resulting “islands” of cells 

are related by their unique receptor expression profile. This analysis was performed 

on concatenated FCS files with 30,000 platelet positive events in each treatment 

category, which was drawn from 3 biological repeats. The islands formed through the 

algorithm were then pseudo coloured for expression of each marker so we could 

further understand the defining characteristics of each group. Where islands were 

distinct, they are manually gated to provide relative fluorescence intensities and 

population size of each island. In this case, blue represents negative populations, 

green-yellow interstitial expression, while red is indicative of high levels of 

expression. 

At basal we identified no distinct islands (upper, Figure 37), although the basal activity 

of CD62P was apparent. However this is a universally observed by platelet biologists 

(Frelinger et al., 2015), and is likely, but perhaps not exclusively, due to the physical 

trauma of venepuncture driving mild activation of platelets. When stimulated with 

SFFLRN (20 µM)/CRP-XL (10 µg/mL), 3 distinct islands emerged (mid, Figure 37). 

These cells were characterised primarily by distinct levels of PS exposure and 

fibrinogen binding. These are classified as; PSlo/FBhi (66.3%), PShi/FBlo (23.3%) and 

PShi/FBhi (9.5%). While the phenomena of PS+ and PS- platelet subpopulations have 

been previously described in many contexts, this is a novel observation suggesting 

that within PS+ platelets there are further unique subsets distinguished by a capacity 

to bind fibrinogen. In contrast to fibrinogen and PS, we found that within these 

populations there were minor differences in CD62P and CD42b expression.  
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However, as expected from our previous data, when pre-inhibited with PGI2 (100 nM) 

and then stimulated with SFFLRN (20 µM)/CRP-XL (10 µg/mL), there was a dramatic 

remodelling of the subpopulations previously described. We now identify 4 unique 

islands which have all undergone large changes in the presence of inhibition (lower, 

Figure 37). These subsets are characterised as; CD62Phi/FBlo (69.2%), CD62Phi/FBhi 

(20.8%), CD62Plo/FBlo (7.2%) and CD62Phi/PShi (2.9%). This is the first description 

of platelet subpopulations which emerge after potent stimulation in the physiological 

context of calcified whole blood and PGI2. 
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Figure 37. Static PGI2 against static SFLLRN/CRP-XL analysed by FIt-SNE. 
Recalcified whole blood probed with fibrinogen-FITC, CD62P-PE, annexin V-
APC and CD42b-BB700 treated with PGI2 (100 nM) for 2 minutes and then 
treated with SFLLRN (20 µM)/CRP-XL (10 µg/mL) for 20 minutes prior to 
fixation in 1% PFA/Ca2+ modified Tyrodes and subsequent fluorescent flow 
cytometry acquisition and analysis by FIt-SNE. (n=3) 
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 3.6.3 PGI2 protects mitochondria from depolarisation 

TMRE collects within mitochondria against an electrochemical gradient and is 

used as a marker of mitochondrial (de)polarisation. It has been previously 

suggested that mitochondrial depolarisation is a key event in the process of 

phosphatidylserine exposure (Agbani and Poole, 2017, Choo et al., 2017). We 

wanted to use this as a basis for asking where in the pathway PGI2 may target 

phosphatidylserine exposure. We demonstrate this data with fold MFI over 

controls (FCCP/EDTA respectively). Under basal conditions, TMRE measured 

2.3±0.8, which was reduced to 1.1±0.1 after activation with SFLLRN/CRP-XL. 

This decrease is indicative of mitochondrial depolarisation. The loss of 

mitochondrial polarisation under these conditions was associated with increased 

PS expression from 1.0±0 to 41.2±4 (upper, Figure 38). This is visually 

demonstrated by the biaxial plots examining the relationship between TMRE and 

Annexin V. Here it can be seen that under basal conditions platelets were high in 

TMRE, but low in PS. Stimulation leads to a loss of TMRE and increase in PS 

(lower, Figure 38).  

To understand if the inhibition of phosphatidylserine exposure was linked in any 

way to TMRE and the temporal order of events, we examined both markers in the 

presence of PGI2. PGI2 reduced annexin V events from 78.2% to 31.5%. The 

biaxial plots demonstrate that most of the platelet population (68.5%) that are PS 

negative also have normal TMRE staining (61.2%), this is an important 

observation, where a left shift alone would have shown that mitochondria are 

remaining depolarised, but PS is blocked from exposure. The shift is a return to 

polarised mitochondria, which confirms that depolarisation occurs upstream of 

PS exposure (Choo et al., 2017)and that PGI2 is either targeting mitochondria 

and protecting them or inhibiting the event prior to depolarisation, which in turn 

blocks mitochondrial depolarisation to prevent PS exposure. There was a dose 

responsive recovery of mitochondrial depolarisation and inhibition of PS 
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expression in the presence of PGI2, where at maximal dose mitochondria was 

rescued from depolarisation (TMRE, 1.1±0.1 to 2.0±0.7, SFLLRN/CRP-XL and 

PGI2 1000 nM respectively) (Figure 38). 
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Figure 38. Dose response of PGI2 against a static dose of SFLLRN/CRP-XL to 
examine mitochondrial membrane potential and phosphatidylserine. 2 x 
106 washed platelets were treated with PGI2 (1 – 1000 nM) for 2 minutes and 
then treated with SFLLRN (20 µM)/CRP-XL (10 µg/mL) for 20 minutes while 
staining for TMRE (50 nM) and annexin V-APC. Each sample was diluted 10x 
in PBS and analysed immediately for 10,000 platelet events, biaxial contour 
plots and fold over matched FCCP/EDTA control are presented. (n=3, ns=non-
significant, error shown as standard deviation) 
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3.6.4 Validation by PAC1 multiparameter panels 

To validate the previous observation with a parallel marker of integrin αIIbβ3, we 

repeated these experimental conditions with the monoclonal antibody PAC1. This 

antibody targets the integrin αIIbβ3 specifically in its active conformation, as opposed 

to the anti-fibrinogen antibody which targets fibrinogen bound to the integrin αIIbβ3, 

or indeed elsewhere on the platelet surface, and acts as a proxy for receptor 

activation. This allowed us to cross-validate and confirm our previous observations 

which suggested that fibrinogen binding was more sensitive to PGI2 mediated 

inhibition than CD62P expression. 

We first compared PAC1 and CD62P in a three-parameter assay including CD42b 

(Figure 39). Here, to compare inhibitory response, the two parameters are compared 

on the calculated percent inhibition. This demonstrated that in response to increasing 

doses of PGI2 (1 – 1000 nM), PAC1 inhibition was markedly more than that of CD62P 

and significantly increased when comparing minimal and maximal dose of PGI2 

(4.4±9% and 75.7±15%), whereas there was no significant difference when 

comparing CD62P (10.0±3% and 34.7±17%) (Figure 39).  

To then further validate our findings regarding the two PShi subsets, we used PAC1 

as an alternative marker of integrin αIIbβ3 activity and performed a four parameter 

assay also including CD62P, annexin V and CD42b. Here we could show that upon 

treatment with the dual stimulus of SFLLRN and CRP-XL, three subsets were formed; 

PS-PAC1+, PS+PAC1- and PS+PAC1+ (Figure 40). These corroborate with the three 

subsets formed when observed with fibrinogen as the primary marker of integrin 

αIIbβ3 activity (Figure 37). 
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Figure 39. PAC1 and CD62P dose response of PGI2 against a static dose of 
SFLLRN/CRP-XL. Whole blood probed with PAC1-FITC, CD62P-PE and 
CD42b-APC treated with PGI2 (1 – 1000 nM) for 2 minutes and then treated 
with SFLLRN (20 µM)/CRP-XL (10 µg/mL) for 20 minutes prior to fixation in 1% 
PFA/PBS and subsequent fluorescent flow cytometry acquisition and analysis. 
(n=3, paired T-test, ns=non-significant and **<0.01, error shown as standard 
deviation) 

 

 

 

Figure 40. Four parameter PAC1 assay with a static dose of SFLLRN/CRP-XL 
for subpopulation identification. Recalcified whole blood probed with PAC1-
FITC, CD62P-PE, annexin V-APC and CD42b-BB700 treated with SFLLRN (20 
µM)/CRP-XL (10 µg/mL) for 20 minutes (+/- EDTA 10 mM) prior to fixation in 
1% PFA/Ca2+ modified Tyrodes and subsequent fluorescent flow cytometry 
acquisition and analysis. (n=1) 
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3.6.5 Validation by multiparameter granule secretion panel 

While we have been able to establish that CD62P demonstrates resistance to 

inhibition in the context of robust stimulation and show this in multiple assays, we 

sought to provide further validation and further explore this phenomenon. Here using 

an additional four-marker panel using CD154-FITC, CD62P-PE, CD63-APC and 

CD42b-BB700 we aimed to validate and explore our observations on these additional 

markers of platelet degranulation. By using 3 markers of granule secretion, we hoped 

to be able to confirm the resistance demonstrated to PGI2 by CD62P would also be 

conferred onto other markers of granule secretion, thereby validating the 

independence of CD62P (and granule secretion) to cAMP-mediated inhibitory 

signalling. 

These markers were all shown to be significantly increased in the presence of robust 

stimulation (SFLLRN/CRP-XL) (CD154 28.1±7%, CD62P 98.7±0.2%, CD63 

98.5±0.3%), but also demonstrated significant resistance to inhibition, shown as a 

continued significant difference to basal in the presence of maximal PGI2 (1000 nM) 

(CD154 22.8±11%, CD62P 96.1±4%, CD63 96.0±3%) (Figure 41). This validates our 

previous observations surrounding CD62P and further suggests that it is platelet 

degranulation itself that may retain resistance to cAMP signalling in the context of 

robust stimulation. 
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Figure 41. Dose response of PGI2 against a static dose of SFLLRN/CRP-XL to 
measure granule secretion. Whole blood probed with CD154-FITC, CD62P-
PE, CD63-eF660 and CD42b-BB700 treated with PGI2 (1 – 1000 nM) for 2 
minutes and then treated with SFLLRN (20 µM)/CRP-XL (10 µg/mL) for 20 
minutes prior to fixation in 1% PFA/PBS and subsequent fluorescent flow 
cytometry acquisition and analysis. (n=5, unpaired T-test, **<0.01, ***<0.005 
and ****<0.0001, error shown as standard deviation) 
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 3.6.6 Inhibitory signalling by phosphoflow with surface CD62P 

Having previously confirmed the partial resistance of agonist induced CD62P 

expression to PGI2 through three different assays, we next wanted to further confirm 

that the resistance was not due to diminished cAMP signalling over the course of the 

experimental 20-minute incubation. To explore this, we developed a novel assay 

which for the first time in platelet biology combined intracellular phosphoflow with 

measurement of surface markers of activation. This assay requires a stimulation, 

surface probe, fix, permeabilise and intracellular probe protocol to allow for optimal 

recognition and detection of all markers. 

Treatment with PGI2 (10 – 1000 nM) resulted in a robust phosphorylation of pVASP-

s157 (6.3±0.1, 7.5±0.5 and 7.6±1.1 at 10, 100 and 100 nM respectively), at higher 

doses of PGI2 (100 – 1000 nM) this was not diminished in the presence of SFLLRN 

(20 µM) (8.3±1.8 and 9.0±3.0 respectively), but was reduced with weaker PGI2 

stimulation (10 nM) from 6.1±0.1 to 2.4±0.5 respectively (Figure 42). Examining 

CD62P on the same cells demonstrated that CD62P was expressed in the presence 

of both PGI2 and SFLLRN, and SFLLRN alone at all doses, as prior, at the lower dose 

of PGI2 (10 nM) the opposite observation than for pVASP-s157 was made where 

CD62P expression was greater than at higher doses of PGI2 (100 – 1000 nM) 

16,637.3±5495 vs. 8969.4±3613 and 8316.8±3007 at 10, 100 and 1000 nM 

respectively. This suggests there is some capacity for CD62P inhibition but it remains 

expressed independent of robust cAMP signalling driven by excess PGI2 (Figure 42). 

By also demonstrating this data as a biaxial contour plot of pVASP versus CD62P, 

we can confirm that all cells positive for CD62P (97.1%) retain robust VASP-s157 

phosphorylation and there is no subset of inhibition resistant platelets (Figure 42), 

therefore confirming that the CD62P expression is independent of intact inhibition 

signalling and is not due to diminished inhibition.  
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Figure 42. Dose response of PGI2 against a static dose of SFLLRN/CRP-XL to 
measure inhibitory signalling. Whole blood probed with CD62P-PE and 
CD42b-APC treated with PGI2 (10 – 1000 nM) for 2 minutes and then treated 
with SFLLRN (20 µM) for 20 minutes prior to BD fix/lyse, permeabilisation and 
staining with pVASP-s157 followed by fluorescent flow cytometry acquisition 
and analysis. Within biaxial contour plots, the line indicates IgG-PE background 
fluorescence. (n=3, unpaired T-test, ns=non-significant and *<0.05, error 
shown as standard deviation) 
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 3.6.7 Platelet monocyte aggregates 

Given that CD62P and CD154 are known to be as key mediators of platelet-leukocyte 

interactions (Rossaint et al., 2016, Stokes et al., 2009), and we had shown that these 

were independent of platelet inhibitory signalling, we assessed the effect of PGI2 on 

platelet-monocyte aggregates (PMA). We hypothesised that PMA may be 

independent of PGI2-cAMP signalling under the same experimental conditions of 

robust activation and inhibition where the previous observations had been made. 

Here, monocytes (CD14+) were analysed for expression of the platelet marker 

CD42a. PMA were significantly increased after co-stimulation of whole blood with 

SFLLRN (20 µM) and CRP-XL (10 µg/mL) from 1508.6±177 at basal to 6819.7±1835 

when stimulated (p<0.005). Exposure of whole blood to PGI2 prior to platelet 

activation led to a modest reduction in PMA (5093.6±705), but this was not 

statistically significant (Figure 43). To further confirm that fibrinogen binding was 

inhibited by PGI2 and did not mediate PMA, we employed the specific αIIbβ3 integrin 

blocker Tirofiban. We showed that Tirofiban did not potentiate PGI2 (1000 nM) 

inhibition (4664.1) and that alone it could mimic the effects of PGI2 alone 

(5673.4±1574) (Figure 43). This suggests that PMA do not depend on platelet-bound 

fibrinogen and can occur independently of fibrinogen binding and are probably 

mediated by platelet granule proteins which are resistant to inhibition. Therefore, 

residual PMA in the presence of the vascular inhibitor PGI2 is independent of 

fibrinogen binding and occurs in a context where inhibition independent CD62P and 

CD154 expression is upregulated. 
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Figure 43. Platelet monocyte aggregates continue to form in the context of 
inhibition and are not dependent on fibrinogen. Platelet monocyte 
aggregates are induced by SFLLRN (20 µM) and CRP-XL (10 µg/mL) and in 
some cases pre-treated with PGI2 (1000 nM) or Tirofiban (1 µg/mL). CD42a 
fluorescence measured with anti-CD42a-Peridinin Chlorophyll Protein Complex 
(PerCP). (n=5, Two-tailed unpaired T-tests; ns=non-significant and ***<0.005, 
error shown as standard deviation). 
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3.7 DE-ACTIVATION OF PLATELETS BY PROSTACYCLIN 

Previously, we examined the effects of PGI2 on platelet activation when added prior 

to stimulation, which most likely presents the real scenario in vivo. However, we also 

sought to understand if platelet activation markers could be modulated by PGI2 post-

stimulation, which had been shown previously in a static adherent model (Yusuf et 

al., 2017). In vivo, it is also likely that activated platelets may continue to be exposed 

to endothelial inhibitors. Our own data previously suggested there is some capacity 

for a reduction in activation markers, this was observed as part of the pVASP-

s157/CD62P assay where basal expression of CD62P was shown to be lost when 

treated with PGI2 (Figure 42). Therefore, we sought to specifically pursue this 

question. 

 

 3.7.1 Reversal of platelet activation 

First, we designed a four-colour flow cytometry experiment to assess several aspects 

of platelet activation. Here we applied fibrinogen-FITC, CD62P-PE, CD63-EF660 and 

CD42b-BB700. whole blood was stimulated for 20 minutes followed by 2 minutes of 

PGI2 treatment. Two matched controls were included, one of which was a mock 

treatment with 2 minutes of modified Tyrode’s buffer and the second fixed at 20 

minutes, which provided a snapshot of activation at both 20- and 22-minutes allowing 

comparisons to the effects of post-activation inhibition. Here mock treated then fixed 

is presented for comparison. 

Remarkably, we were able to observe reductions in all examined markers of 

activation, although to different extents. Fibrinogen binding, CD62P and CD63 were 

all reduced by treatment with PGI2 (1000 nM) and the effect was strongest on those 

samples which had been stimulated with the lower doses of SFLLRN (1 µM). At the 

lower dose of SFLLRN (1 µM) fibrinogen binding was reduced from 10,553.7 to 

1465.4, CD62P from 25743.6 to 9965.4 and CD63 from 1825.8 to 1028.0 (Figure 44). 
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Again, in reference to our previous observation that fibrinogen binding/ integrin αIIbβ3 

was more sensitive to PGI2 than granule secretion, at maximal SFFLRN (10 µM), 

fibrinogen binding was reduced from 40,966 to 19,886.8 while the granule markers 

remained essentially unchanged; CD62P from 66,293.7 to 52,241.7 and CD63 from 

6470.3 to 5571.1. CD42b presented an important control in this experiment. As 

previously shown (Figure 37), expression of CD42b was decreased by stimulation, 

from 11,375.7 to 4857.5 (basal and SFLLRN 10 µM respectively). Therefore, as 

CD42b was shed after stimulation, unlike the other markers, it could not be recovered 

(4407.6, SFLLRN 10 µM + PGI2 1 µM) despite the post-activation inhibition. 
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Figure 44. Dose response of SFLLRN against a static dose of PGI2 added post 
activation. Whole blood probed with fibrinogen-FITC, CD62P-PE, CD63-
eF660 and CD42b-BB700 treated with SFLLRN (1 – 10 µM) for 20 minutes prior 
to addition of PGI2 (1000 nM) for 2 minutes or mock treated and then fixed in 
1% PFA/PBS. (n=2) 
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3.8 DISCUSSION 

Platelet activation and inhibition measured by fluorescent flow cytometry provides a 

platform for robust, reproducible and data rich interpretation of the platelet status. In 

this chapter, we have demonstrated the use of traditional surface markers of platelet 

activation, intracellular markers of inhibition and markers for surface 

phosphatidylserine and mitochondrial depolarisation. With the application of unique 

combinations of markers, we have been able to demonstrate the potential for 

discovery which this technique provides. We have revealed novel platelet 

subpopulations and shown how these are remodelled in the presence of activated 

PKA and also shown how fluorescent flow cytometry can be used to link surface 

markers to intracellular signalling events within platelets. 

 

3.8.1 Pre-analytical considerations 

Although there have been several platelet flow cytometry guidelines published to date 

(Spurgeon and Naseem, 2019, Harrison et al., 2011, Harrison, 2009, Linden et al., 

2004) which comprehensively examine pre- and post-analytical considerations of 

platelet flow cytometry, they have not examined multicolour platelet flow cytometry in 

recalcified whole blood. Therefore, an important element of this chapter was to 

assess the major pre-analytical considerations which may impact this study. A four-

colour assay was designed with the marker’s fibrinogen-FITC, CD62P-PE, Annexin 

V-APC and CD42b-BB700, which allows the researcher to comment on αIIbβ3 

integrin activity, α-granule secretion and procoagulant activity on cells confirmed as 

platelets, all simultaneously. Applying this assay, we then examined and assessed 

the impact of the pre-analytical considerations including; anti-coagulant, assay 

initiation, platelet medium (whole blood, PRP or washed platelets) and impact of 

storage of samples post-fixation. 
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The three anti-coagulants tested here are all commonly used in clinical laboratories 

and all blood was drawn into vacutainers. The recent work of others on whole blood 

flow cytometry has confirmed the suitability of vacutainers for platelet biologists 

(Welch et al., 2018). The use of vacutainers carries several inherent advantages over 

manually prepared syringes. Primarily, it creates standardisation across laboratories, 

but it also allows rapid translation of assays to clinical samples, where the standard 

is evacuated tubes. We decided to determine the optimal anti-coagulant based on 

optimal sensitivity in each marker. We found that sodium citrate was the optimal anti-

coagulant for platelet activation by flow cytometry. Previously, citrate, heparin and 

hirudin anti-coagulants were compared with markers PAC1, CD62P and LAMP1 

(Ramstrom et al., 2016), or CD62P alone was assayed (Golanski et al., 1996) and in 

agreement with our study, citrate tubes were determined as optimal for platelet flow 

cytometry. We determined sodium citrate as optimal, as fibrinogen binding was most 

sensitive in this anti-coagulant, and CD62P remained sensitive and was not 

dependent on changes in anti-coagulant. Furthermore, in citrated blood fluorescence 

intensity of annexin V binding was reduced in comparison to sodium heparin, but as 

a qualitative marker, the percent positive remained unchanged and therefore 

sensitivity to determine the procoagulant platelet subset was not compromised. In 

support of this observation we were also able to measure ERK1/2 phosphorylation, 

which can be used as a marker of platelet activity (Stalker et al., 2012), and 

demonstrated that this was most sensitive in heparin and citrate, but not EDTA anti-

coagulants. This signalling defect in EDTA mirrors the functional defects observed in 

EDTA anti-coagulated blood. 

In a research laboratory prompt instigation of assays is optimum, however when 

working on clinical samples where medical intervention must be the first concern, 

delay in obtaining blood samples may be unavoidable. We rested blood at room 

temperature (Harrison et al., 2011), and compared results from each time point. 

Surprisingly we observed an almost total loss of fibrinogen binding at the longest time 
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point, with a large reduction in assay sensitivity. Work from others has suggested that 

this reduced fibrinogen binding is unlikely to be due to the αIIbβ3 integrin losing 

capacity to bind fibrinogen, as PAC1 binding does not significantly decrease over 

storage time (Huskens et al., 2018), nor is it likely degradation of the ligand, as 

fibrinogen levels have also been shown to increase at 8 hours of ambient temperature 

storage (Kemkes-Matthes et al., 2011). As part of assay design and to limit variation 

across time points, staining solutions were made up at 0-hours and stored on wet ice 

in the dark throughout the experiment. To eliminate the potential of this inducing error, 

duplicate samples with fresh stain at 4.5 hours were also analysed and the reduction 

in fibrinogen was again observed (data not shown). Therefore, it is probable that it is 

the addition of GPRP to the whole blood at 0 hours and subsequent storage with this 

peptide that caused this effect, indeed it has previously been shown that excess 

GPRP is able to block some fibrinogen binding to platelets (Plow and Marguerie, 

1982). Nevertheless, the addition of GPRP is vital in a calcified whole blood system 

to prevent fibrin formation and clotting, but the consistent reduction in fibrinogen 

binding, suggests a long-term incompatibility with GPRP treated stored samples. 

Consequently either the addition of GPRP should be delayed, a non-calcified system 

used (meaning annexin V could not be used (Gyulkhandanyan et al., 2012)), or PAC1 

substituted as an alternative marker of integrin αIIbβ3 activation where sample 

resting is likely to occur (Frelinger, 2018). The robust marker of CD62P remained 

sensitive to activation over the time points tested, although basal expression 

significantly increased over time. This highlights that when comparing donors, it is 

vital assays are initiated at the same time point to minimise basal activation, which 

could be misinterpreted as having clinical significance, where basal activation could 

be considered a clinical biomarker. This increase in basal CD62P suggests that some 

platelets are degranulating, by both a small amount (noting small MFI increases) and 

not all cells (noting percentage positive). Both annexin V basal and stimulated 

expression increased over time, but this is likely due to reduction in the inhibition of 
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the apoptotic pathways at 4.5 hours ex vivo, if longer time points were examined it is 

probable more platelets would become apoptotic and functional responses continue 

to decline (Sperling et al., 2019, Sodergren et al., 2016). 

The platelet medium which assays will be performed in is an important consideration. 

The data presented here suggested that for activation, whole blood is optimal. 

However, contradictions for the use of whole blood may include fluorescent dyes, 

chemical inhibitors or agonists which are incompatible with any system other than 

washed cells in a buffered suspension. Fibrinogen binding, counter-intuitively, 

appears to substantially increase on the surface of washed platelets, however when 

MFI is compared with percent positive cells, it is apparent that there is a significant 

loss of sensitivity. This is clearly demonstrated by the EDTA control which can no 

longer prevent binding, suggesting that most of the signal appears to be non-specific 

binding or no longer calcium dependent/integrin αIIbβ3 mediated. Where washed 

platelets might regularly be assayed, it would be practical to exchange anti-fibrinogen 

for PAC1, which would detect integrin activation without the need for fibrinogen to be 

present and eliminate this anomaly and restore assay sensitivity (Frelinger, 2018). 

Although CD62P retains capacity for activation within washed platelets, there is a 

high basal activation from the physical stresses of isolation, as a result percent 

positive cells loses sensitivity as a marker of activation. Finally, annexin V binding to 

phosphatidylserine appears to increase in PRP and further in washed platelets. It 

appears that in washed platelets, platelets are pre-disposed to become procoagulant, 

this could be due to increased agonist availability, however as it has previously been 

demonstrated that the number of phosphatidylserine positive cells should not change 

based on agonist availability (Sodergren and Ramstrom, 2018). In support of this, 

this phenomena was also observed in later experiments when annexin V and TMRE 

were assayed together, again the number of PS positive cells exceeding the typically 

accepted ~35%. 
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Finally, we considered the effect of storage of fixed and probed samples. In many 

instances, it is not feasible to acquire samples immediately, although based on our 

findings we recommend that samples are acquired promptly. Notably here, and in 

contrast to our other results presented here, fibrinogen binding remains robust but 

both CD62P and annexin V are diminished by storage. Previous work by Atar et al. 

has suggested CD62P is stable up to 5 days, however they used different 

concentrations of paraformaldehyde (2% versus 0.9%) and based their observations 

on basal expression whereas our samples were stimulated, greatly increasing the 

window to detect a decrease (Atar et al., 2010). Furthermore, although there is a 

considerable decrease in CD62P MFI in our data, the number of positive cells 

remained consistent (data not shown). Where samples are required to be stored, it 

may be prudent to freeze samples immediately to add further protection against 

degradation. Regardless, we recommend that where possible samples are run for 

cytometry acquisition as soon as feasible, or in cases where this is not possible 

delays are universally applied to all samples to reduce any errors within data. 

Here we have described several comparisons of pre-acquisition parameters within 

the control of the platelet biologist. In summary, we determined that when performing 

platelet activation assays in re-calcified systems, assays should be performed on 

citrated blood drawn into evacuated tubes; sample preparation should be begun 

immediately after the blood is drawn or when this is not possible started at a 

consistent time point after blood acquisition, and samples must be acquired 

immediately or stored for standard time frames. As a result, we followed these 

strictures in subsequent studies. 

 

3.8.2 PGI2 and platelet subpopulations 

Signalling downstream of elevated cAMP is known to regulate multiple aspects of 

platelet function including calcium mobilisation, integrin αIIbβ3 activity and the actin 



- 142 - 

cytoskeleton (Raslan and Naseem, 2014). The aim of this series of experiments was 

to determine if distinct platelet functions showed differential sensitivity to inhibition by 

PGI2, using multiparameter fluorescent flow cytometry as a model assay. A pro-

coagulant platelet subpopulation has been characterised and the three-dimensional 

structure, stimulation conditions and functions of the pro-coagulant PS positive 

platelet subpopulation has been previously described (Heemskerk et al., 2013, 

Agbani and Poole, 2017). However, several unresolved discrepancies between 

studies are evident, in particular, the difference in the expression of active integrin 

αIIbβ3 or fibrinogen binding on PS positive platelets has remained unresolved, 

despite publications on this subject (Agbani and Poole, 2017, Topalov et al., 2012, 

Choo et al., 2017). A combination of multicolour flow cytometry assays, validated with 

the pre-analytical considerations study, was used and multidimensional data analysis 

algorithms applied, variants of which have been previously applied to CyTOF platelet 

data (Blair et al., 2018) but not fluorescent flow cytometry data, and this facilitated 

both a novel and objective approach. 

Using a four-parameter assay, fibrinogen-FITC, CD62P-PE, annexin V-APC and 

CD42b0BB700 we identified two subsets within the larger subpopulation of 

procoagulant platelets that could be differentiated by their ability to bind fibrinogen 

(PShi/FBhi and PShi/FBlo). This suggests that both sides of this ongoing discussion as 

to whether PS positive platelets bind to fibrinogen are correct. This PShi 

characterisation supports a previous study that also identified two PS populations, 

which were distinguished primarily by Ca2+ signalling, this group also demonstrated 

a difference in PAC-1 binding, but intriguingly they suggested there were no 

differences in fibrinogen binding (Topalov et al., 2012), in direct disagreement with 

our study. However, we further validated our findings using PAC1. The analytical 

approach with FIt-SNE allowed us to evaluate how these subsets were linked to other 

platelet surface markers. Under potent activatory conditions, CD62P was expressed 

on all platelets, but the highest expression of CD62P was concentrated in the 
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PShi/FBhi subset, indicating that these platelets were “super-activated”. Given the 

functional dichotomy of procoagulant and aggregatory platelets, the role of the 

intermediate subset that expresses both markers are unclear. However, they may 

represent a group of cells that act to integrate the two arms of platelet function or 

indeed may change in disease and represent a hyperactive/thrombotic platelet 

subset which can facilitate both platelet-rich thrombus formation and thrombin 

generation alone. 

Having established the presence of three subsets of platelets upon strong activation, 

we wanted to understand how they were affected by cAMP signalling. First, in a 

screening experiment, we found that PGI2 failed to fully inhibit mild agonist-induced 

CD62P expression on the blood platelets of 42 healthy individuals despite robust 

inhibition of fibrinogen binding. Further exploration with the subpopulation defining 

four colour assays revealed that PGI2 prevented fibrinogen binding and PS exposure 

despite potent activation, ameliorating the generation of any procoagulant subsets. 

What emerged was a novel platelet population that was characterised by high CD62P 

expression (CD62Phi/PSlo/FBlo). Further investigation using a separate multicolour 

assay for independent validation showed that this subset of platelets was also 

enriched in the expression of CD154 and CD63. To understand the wider 

physiological relevance of these findings we measured platelet-monocyte aggregates 

(PMA) in whole blood, as it is established to occur through CD62P-CD162 and 

potentially CD154-CD40. In these experiments, PMA was confirmed to be fibrinogen 

independent, and it was not significantly inhibited by PGI2. This suggests that the 

resistant CD62P on the platelet surface is competent to support heterotypic cell-cell 

interactions. Thus, under physiological conditions of elevated cAMP, procoagulant 

and aggregatory subsets are diminished, yet an immunocompetent phenotype is 

maintained. This could represent a model for platelet monocyte aggregate formation 

without associated thrombotic activity. 
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The mechanism underpinning the ability of PGI2 to modulate subset formation 

remains unclear. It is now established that the formation of PShi platelets requires a 

sustained increase in Ca2+ and subsequent mitochondrial depolarisation (Agbani and 

Poole, 2017). PGI2 has been shown to regulate intracellular Ca2+ flux (Fung et al., 

2012), which accounts for both PS exposure and integrin activation, there is a 

component of Ca2+ signalling that is resistant to PGI2. We found that TMRE 

fluorescence, where a loss is associated with mitochondrial depolarisation (Choo et 

al., 2017), is protected by treatment with PGI2, confirming that another component of 

the pathway driving the generation of procoagulant platelets is blocked by cAMP. 

This data also suggests that granule secretion under these conditions is independent 

of mitochondrial dysfunction and not wholly reliant on flux of Ca2+. Previous studies 

have shown that cAMP-elevating agents can inhibit CD62P expression in weakly 

activated platelets, leading us to believe that cAMP causes global inhibition of platelet 

function. However, it has previously been shown that elements of Ca2+ in platelets 

are unaffected by supraphysiological concentrations of PGI2 (Fung et al., 2012). 

Recently, clear differences in agonist-dependent platelet sensitivity have been shown 

in the presence of gradient doses of PGI2 (Macwan et al., 2019). Indeed, in the cited 

study CD62P expression showed far greater resistance to PGI2-mediated inhibition 

than fibrinogen-mediated aggregation in paired samples that were stimulated with 

only CRP-XL (Macwan et al., 2019), a finding that we are able to support and expand 

on using single cell analysis. In the context of our current study, CD62P resistance is 

not related to a difference in overall cAMP signalling in platelets as pVASP-s157 

phosphorylation was elevated to the same degree in all subsets. Thus, our data, and 

that of others, suggests that a more nuanced mechanism must explain the inhibition 

of platelets by cAMP.  

One caveat of non-imaging flow cytometry is that it cannot reveal the localisation of 

signalling molecules (Cossarizza et al., 2017). In many cells, cAMP modulates 

distinct aspects of cell function through the selective coupling of its signalling 
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complexes to specific substrates or regions within the cell (Raslan et al., 2015). 

However, much of the data regarding the role of cAMP in platelet function, including 

CD62P expression (Libersan et al., 2003), has been gained from in vitro studies using 

mimetics that act as global cAMP modulators or bypass AC, as well as 

pharmacological inhibitors that have off-target effects (Yan et al., 2009, Libersan et 

al., 2003). Previously there has been evidence of compartmentalisation of cAMP 

signalling (Raslan and Naseem, 2015, Raslan et al., 2015), with individual PKA 

isoforms targeting distinct components of activatory machinery and elements of Ca2+ 

signalling demonstrating resistance to PGI2. Therefore, it is possible that cAMP 

signalling preferentially targets signalling mediators which lead to PS exposure and 

integrin activation, while secretory mechanisms are only partially inhibited in highly 

activated platelets. Thus, platelets could retain their immunomodulatory properties 

and continue to regulate vascular inflammation, or wound healing, despite the 

elevations in cAMP they experience during routine circulation, but this concept 

requires further study and we have only been able to hint at its existence. 

Our data provides a novel glimpse into the complex regulation of platelets that occurs 

within the vasculature, where despite the constant barrage of inhibitory endothelial 

PGI2 and nitric oxide (Mitchell et al., 2008), platelets can become activated and form 

thrombi. Our model may initially suggest that PGI2 is able to fully block haemostasis, 

but several points must be considered. Firstly, haemostasis will often occur outside 

the direct effect of endothelial-derived PGI2 (Cho and Allen, 1978). Furthermore, in 

vivo, the core and shell model of thrombus formation would promote platelet 

activation at the core, where PGI2 is excluded leading to a reduction in cAMP 

signalling (Stalker et al., 2013). Additionally, a recent model of platelet adhesion 

resolved with microfluidic studies proposed that thrombus formation was initiated by 

the GP1b(CD42)-IX-V complex binding to vWF in conjunction with CD62P interacting 

with endothelial PSGL1 prior to subsequent arrest and activation via integrin outside-

in signalling, GPVI and thromboxane synthesis (Coenen et al., 2017). This suggests 
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that the CD42 complex and CD62P may be enough to initiate haemostasis and 

promote tethering, a model which supports our findings of expression of CD42 and 

resistant CD62P in the presence of vascular inhibition. 

The observation that granule secretion is resistant to PGI2 may have importance in 

the context of cardiovascular disease. Platelet hyperactivity in several cardiovascular 

diseases manifests as increased circulating levels of platelet-monocyte complexes, 

sCD62P, sCD154 (Wang et al., 2007) and PF4 (Gresele et al., 2011), all of which are 

granule-dependent processes. However, it has been difficult to explain the 

observations in patients, since short-lived haemostatic agonists are unlikely to mimic 

sustained levels of activation in platelets that circulate in patients with cardiovascular 

diseases. Where perhaps what is happening, is that short-lived haemostatic agonists 

are inducing granule secretion with the majority of thrombotic activity suppressed by 

tonic inhibition. Furthermore, many platelet studies do not look at activation in 

physiological conditions, where platelets are continually bathed in PGI2 and NO. Our 

data might suggest that PS and integrin αIIbβ3 are maintained at near basal levels 

by exposure to PGI2 after transient platelet activation, but CD62P remains elevated 

where it can then mediate heterotypic cellular interactions that are important for 

vascular inflammation, and degranulation permits the release of soluble ligands such 

as sCD62P or sCD154, and the secretion of growth factors that contribute to the 

resolution of injury. It may be important to determine if the level of CD62P resistance 

or indeed the ratio of PShi/FBlo and PShi/FBhi subsets change in disease cohorts, as 

this might prove to be a valuable clinical biomarker of platelet hyperactivity. Such an 

approach may be particularly pertinent since many states of cardiovascular disease 

are associated with hyposensitivity to PGI2 (Magwenzi et al., 2015, Knebel et al., 

2015, Hishinuma et al., 2001). 

In summary, we have identified and characterised novel platelet subsets, which 

reveal themselves only in the presence of both activatory and inhibitory agonists. 

Stimulatory conditions lead to the generation of PSlo/FBhi, PShi/FBlo and PShi/FBhi 
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subsets. After PGI2 treatment, however, these subsets are replaced primarily by 

platelets expressing CD62P, which we demonstrate allows the continued interaction 

of platelets with monocytes. 

 

 3.8.3 Reversible platelet activation 

The previous work focussed on examining platelet activation post-inhibitory 

stimulation, which drives a potent remodelling of the activated platelet phenotype. 

However, what is less well understood is the effect of inhibition post-activation. 

Although this has previously been explored in static systems, as opposed to systems 

in suspension, there is evidence of a phenotype which is predominantly remodelling 

of the actin cytoskeleton by endothelial inhibitors after activation (Atkinson et al., 

2018, Yusuf et al., 2017). Therefore, we sought to replicate this finding in our models. 

The physiological relevance of this question can be justified, as, within the 

vasculature, there will be regions of the vascular system, likely capillary beds, that 

have reduced endothelial surface area and are at much lower shear and therefore 

produce less inhibitory PGI2 and NO. Platelets will circulate through these capillary 

beds and return to the venous and finally arterial vasculature where they will then 

again be exposed to greater levels of PGI2 and NO, suggesting platelets may have 

to respond to fluctuations in inhibitory signalling in the circulation. Therefore, we 

hypothesise that within the healthy controls tested here, platelets will have the 

capacity to reduce expression of activation markers. We applied four-parameter 

whole blood fluorescent flow cytometry to this question. 

We adapted our previously used four-colour assay to measure fibrinogen binding, 

CD62P, CD63 and CD42b expression and stimulated platelets for 20 minutes prior 

to 2 minutes treatment with PGI2, followed by fixation. Under these conditions, we 

found a marked reduction in expression of all markers when compared to mock 

treated. Critically, we found no recovery of CD42b expression, which was already 
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shed and could not be returned to the surface (Bodnar et al., 2002). The reduction in 

marker expression was most significant with transient expression at lower doses of 

SFLLRN. While CD42b did not change with post-inhibition, fibrinogen binding 

demonstrated the largest post-activation inhibition mediated reduction, suggesting 

that integrin αIIbβ3 may be able to be turned back off, although this experiment 

requires further repeats and validation by PAC1, to confirm this observation. It would 

also be valuable to examine both the cAMP response after 20 minutes of stimulation 

and the calcium flux, both can also be performed by fluorescent flow cytometry. The 

granule markers CD62P and CD63 demonstrate small decreases with post-activation 

inhibition, whether this is recycling or shedding we cannot currently comment, 

although fractionation experiments could be used to determine if membrane bound 

receptors return to the cytoplasm, or fluorescence live cell microscopy could be used 

to track the movement of these receptors when stimulated with an inhibitor. 

In addition to this, a further observation was made from the pVASP-s157, CD62P 

and CD42b assay we performed as part of the previous study. Here we were able to 

demonstrate that basal CD62P expression was consistently inhibited and returned to 

background by the addition of PGI2. While not designed to examine this question 

initially, it was a model of addition of PGI2 post (basal) stimulation, of note this was a 

reversion from very weak stimulation where CD62P positive cells was <20%. This 

may well further support the hypothesis that platelets are able to not only be 

prevented from activation by pre-exposure to PGI2, but also have some capacity to 

be “switched off” with post-activation exposure to PGI2, the pVASP-s157 experiments 

would be a valuable addition to measuring cAMP-PKA activity in cells treated with 

PGI2 post stimulation. Although only a small exploration of this hypothesis, it suggests 

that there is some flexibility within platelets to reverse or diminish their activatory state 

post-stimulation. This provides a novel insight into how thrombi may be resolved once 

haemostasis has occurred, where weakly or transiently activated platelets at the 
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margin of the thrombus (Stalker et al., 2013) may return to circulation, or how 

platelets in the vasculature may respond to fluctuations in tonic inhibition. 
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Chapter 4 

NLRP3 inflammasome activation and expression 

4.1 INTRODUCTION 

The inflammasomes are a broad group of large multimeric protein complexes with 

enzymatic activity which are related in their ability to drive an inflammatory response 

(Schroder and Tschopp, 2010). NLRP3 is a relatively unique inflammasome as it 

appears to play a role in many diseases, notably in several sterile inflammatory 

diseases including gout (Martinon et al., 2006), systemic lupus erythematosus (SLE) 

(Kahlenberg et al., 2013), cardiovascular disease (Yang et al., 2017b) and 

rheumatoid arthritis (Mathews et al., 2014). NLRP3 has been shown in vitro to 

respond to many agonists including the bacterial toxin nigericin, bacterial membrane 

component LPS, cellular stress signal ATP, gout derived monosodium urate crystals, 

atherosclerotic plaque cholesterol crystals, oxLDL and amyloid-β protein (Sheedy et 

al., 2013, Agostini et al., 2004). NLRP3 is suggested to respond to the wide variety 

of ligands as they are assumed to share common signalling node, where they 

converge on a regulator of activity, which is proposed to be mitochondrial ROS 

production (Zhou et al., 2011). While there is literature demonstrating other cells 

types respond to oxLDL and this drives NLRP3 activity, and that platelets respond to 

oxLDL which drives other pathways and that platelet NLRP3 can be activated by 

other agonists, there has been no exploration yet surrounding oxLDL and NLRP3 

platelet activity. Here we attempt to characterise the platelet NLRP3 inflammasome 

and explore if oxLDL can drive inflammatory platelet activity mediated by this 

complex. 
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4.2 AIMS OF CHAPTER 

- To measure platelet caspase-1 cleavage through the FLICA dye and 

fluorescent flow cytometry 

- To assess expression of NLRP3 inflammasome components by biochemical 

analysis 
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4.3 FLUORESCENT MEASUREMENT OF CASPASE-1 ACTIVITY 

Caspase-1 cleavage and subsequent activity can be used as a direct measure of 

NLRP3 inflammasome activity. This can be measured by immunoblotting for cleaved 

caspase-1 (P20/P10 subunits) (Lin et al., 2015) or by proprietary methods which rely 

on the specificity of caspases to unique amino acid sequences. Caspase-1 primarily 

targets, and has a high specificity for, the amino acid YVAD motif (Garcia-Calvo et 

al., 1998).  

The assay employed here uses a cell permeable construct of the YVAD motif 

sandwiched between a fluorophore, FAM or a far-red 660nm dye and a FMK which 

forms a covalent bond with the enzyme once within close enough proximity (Bedner 

et al., 2000). This assay has been termed as fluorochrome-labelled inhibitors of 

caspases (FLICA) and for caspase-1 are based on the fluorophore-YVAD-FMK 

design. Therefore, FLICA assays allow specific activated caspases to be targeted, 

bound to covalently, and tagged with a fluorescent probe. 

Here, the FLICA assay was set up to detect caspase-1 cleavage in human and 

murine washed platelets to assess their NLRP3 inflammasome activity in a high 

throughput and quantitative manner. 

 

4.3.1 Calcium is required for detection of caspase-1 cleavage 

This assay was established using washed platelets to allow activation of platelets in 

an otherwise cell and plasma free system, as initial attempts in whole blood appeared 

to be not compatible with the FLICA dye (data not shown). Experiments using washed 

platelets are normally performed in modified Tyrode’s buffer, which does not contain 

calcium. We first examined whether the inclusion of extracellular calcium was 

required to detect caspase-1 cleavage. At the time, this was based on the single 

previous report of detection of caspase-1 cleavage by FLICA in platelets in a 

complete media, M199, which included extracellular calcium (Hottz et al., 2013). 
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Calcium was also assumed to be required for NLRP3 activation due to previous 

biochemical studies that determined that the influx of calcium from extracellular pools 

was vital for NLRP3 inflammasome activity and therefore caspase-1 cleavage 

(Murakami et al., 2012). 

In a single experiment, we were able to reproduce these previous findings and 

demonstrate a significant increase in fluorescent signal. Washed platelets were 

incubated with nigericin (20 µM) in the presence or absence of extracellular calcium 

(2 mM). In the absence of extracellular calcium nigericin failed to increase FLICA 

signal above basal (Figure 45). In contrast the presence of Ca2+ led to a significant 

increase in signal (p=<0.005). As a result, all subsequent assays were performed 

with the inclusion of calcium (2 mM). 
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Figure 45. FLICA in human washed platelets +/- calcium. Human washed 
platelets (2x106/well) in the presence and absence of CaCl2 (2 mM) treated with 
or without nigericin (20 µM) for 30 minutes then incubated with 1x FLICA-green 
for 60 minutes followed by fixing, washing and acquisition. (One-way ANOVA 
vs. relative basal, ***<0.005, error shown as standard deviation, n=3) 
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4.3.2 FLICA titrations and optimal conditions 

As the basis for this assay is a cell-permeant fluorescent dye, we performed titrations 

to determine optimal dose and incubation time. Each dilution and time point were 

compared with a basal sample at a matched concentration and time, this comparison 

allows a comment on the sensitivity of each assay condition as oppose to asking 

simply which dye condition is brightest, which often leads to excessive background 

binding and therefore anomalously high basal signal. Calculating fold over control 

allows the condition with the highest fold increase, and therefore optimal window for 

detection of changes, to be selected. 

Data are presented as fold increase over relative basal (same 

concentration/timepoint) to account for the additional background signal that more 

dye will induce. All 60-minute timepoints induced only a 2-fold increase, while at 40 

minutes the increases ranged from 2 to 4-fold. 40 minutes incubation with 1x dye 

presented a fold increase of 4 over relative control (Figure 46). Therefore, we 

determined that 1x dye, or 5 µM, incubated for 40 minutes post stimulation then 

followed by fixation provided the optimal window for signal to be measured. 
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Figure 46. FLICA in human washed platelets at a range of dye doses and 
incubation times. Human washed platelets (2x106/well) + 2 mM CaCl2 treated 
with or without nigericin 5 µM for 15 minutes then incubated with designated 
dose of FLICA-green for designated time followed by fix, wash and acquisition. 
(error shown as standard deviation, n=2-5) 
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Beyond optimal dye dose and incubation time, we also optimised the conditions for 

appropriate fixation and washing of the samples. Fixation can both improve 

adherence and stability of a probe or conversely mask epitopes and diminish signal. 

Washing samples should generally improve signal: noise ratio, however in the case 

of weakly bound probes positive signal may also be lost. Therefore, we confirmed 

optimal conditions for this assay. 

First, we compared three different fixation conditions; fixed and washed, unfixed and 

washed, unfixed then washed and fixed. In each instance we compared basal with a 

dose response of nigericin (2, 5 and 10 µM) and there was a dose dependent 

increase in signal in all conditions. Comparing the three conditions at maximal 

treatment (nigericin 10 µM) the MFI values were 6364.8, 4771.5 and 4133.6 for 

fixed/washed, unfixed/washed and unfixed/washed/fixed respectively. There was a 

reduced basal signal when washing pre-fix 824.8 but not post-fix 1237.7, suggesting 

that early fixation does drive some increase in background signal, however the 

increased retention of positive signal outweighed this caveat. From this we 

determined that fixation prior to washing provided the largest signal (Figure 47). 

Fixing of the samples has the additional advantage of providing a distinct halt point 

in time course experiments. 

Secondly, we compared fixed and washed platelets with unwashed platelets. Here 

we demonstrated that washing after fixation significantly reduced excess binding of 

the dye and increases resolution and sensitivity of the assay. After washing the 

increase in MFI from basal to nigericin treatment (10 µM), there was a 2.6-fold 

increase, compared to 1.6-fold increase without washing (Figure 47). Therefore, we 

determined that fixed and then washed cells are optimal for signal resolution and 

sensitivity in the FLICA assay when measured by flow cytometry. 
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Figure 47. FLICA fixed versus unfixed and washed versus unwashed. Human 
washed platelets (2 x 106/well) + 2 mM CaCl2 treated with or without nigericin 
(2 – 10 µM) for 20 minutes followed by 1x FLICA-green for 40 minutes followed 
by varied combinations of fixation and washing protocols followed by 
acquisition. (n=1) 
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4.3.3 Nigericin dose response 

Nigericin is a potassium ionophore (Perregaux and Gabel, 1994, Estradao et al., 

1967), and is a known canonical activator of the NLRP3 inflammasome (Tang et al., 

2017). It was used as a positive control ligand in all FLICA experiments. To validate 

assay sensitivity and determine the optimal concentrations of nigericin a dose 

response experiment was performed using concentrations surrounding those 

commonly cited in the literature (Liu et al., 2017). 

Incubation of platelets with nigericin (2, 5 and 10 µM) led to a concentration 

dependent increase in FLICA signal. While there was a response at all doses of 

nigericin, it was significantly different to basal (987.4±61) at 5 µM (3531.2±1495, 

p<0.01) and 10 µM (4445.5±1972, p<0.005), but not at 2 µM (2396±1137) (Figure 

48). This data further demonstrated the natural variation within the assay, assumed 

to be due to variation across a normal cohort of healthy donors, mixed in age, gender, 

ethnicity, BMI and other lifestyle factors. This variation suggests that within a normal 

population, platelets are primed for NLRP3 inflammasome activity at varying states 

and therefore demonstrates a wide variety of responses. Nevertheless, it is important 

to note that while all donors and treatments do demonstrate an increase over basal, 

it is solely the size of increase which is variable. 
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Figure 48. FLICA in human washed platelets, nigericin dose response. Human 
washed platelets (2 x 106/well) + 2 mM CaCl2 treated with or without nigericin 
(2 – 10 µM) for 20 minutes followed by 1x FLICA-green for 40 minutes followed 
by fix, wash, wash and acquisition. (One-way ANOVA vs. basal, **<0.01 and 
***<0.005, error shown as standard deviation, n=7) 
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4.3.4 OxLDL and caspase-1 cleavage 

Typically, NLRP3 inflammasome activity is considered in the context of various 

diseases, both sterile and unsterile, with priming and activation driven by DAMPs and 

PAMPs dependent on the disease in question. We have previously published that 

platelets respond to oxLDL, a DAMP which is known to be significantly upregulated 

in cardiovascular disease (Berger et al., 2019a, Berger et al., 2019b, Magwenzi et 

al., 2015, Wraith et al., 2013). Furthermore, oxLDL has been shown to drive NLRP3 

inflammasome activity in other cells types including macrophages (Liu et al., 2014). 

Hence the aims of this section were to examine if oxLDL could drive caspase-1 

cleavage alone or potentiate caspase-1 cleavage following stimulation with nigericin 

at a low dose (2 µM), since we previously showed a low dose induces a consistent 

but small increase over basal which provides a suitable window to observe 

potentiation of signal (Figure 48). 

Basal caspase-1 cleavage was demonstrated to be low (968.0±63), and in response 

to nigericin (2 µM) there was a small but statistically non-significant increase in signal 

(2566.4±1346). Incubation of platelets with oxLDL and nLDL did not cause a 

significant increase in FLICA response above basal (724.9±31 and 845.4±32 

respectively). However, pre-treatment of platelets with oxLDL (50 µg/mL) for 10 

minutes, but not nLDL, significantly potentiated nigericin (2 µM) induced caspase-1 

cleavage from 8116.9±7092 vs. 1399.9±364 (p<0.01) (Figure 49). Interestingly we 

found that only 3 of 5 platelet donors were sensitive to the effects of oxLDL. 

Given the variability of the response, we repeated these experiments with different 

batches of ox/nLDL, but also employed a distinct FLICA-red dye. Here we were able 

to demonstrate findings consistent with those previously observed, nigericin (2 µM) 

induced a significant increase in MFI over basal (12,588.8±1513 and 3133.0±1309 

respectively, p<0.001), while oxLDL significantly potentiated the response induced 

by nigericin (2 µM) (31,941.1±5139, p<0.0001). Vitally nLDL (12,194.2±3048) was no 
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different to nigericin (2 µM) (12,588.8±1513). We included an additional condition of 

maximal dose nigericin (10 µM) and found the level of caspase-1 cleavage induced 

by this strong stimulus was substantially exceeded by nigericin (2 µM) when pre-

treated with oxLDL (50 µg/mL) (18,910.7±4606 and 31,941.1±5139 respectively) 

(Figure 49). Here we again demonstrate a significant potentiation of caspase-1 

cleavage induced by oxLDL treatment, confirming our prior observations with 

different donors, LDL preparations and dye conjugate. 

This data also suggests that FLICA-red is potentially more sensitive than FLICA-

green, although the same trends were observed in both assays. The significant 

difference between basal and nigericin (2 µM) observed in FLICA-red but not green 

is indicative of this improvement in assay sensitivity. 
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Figure 49. LDL treatment of human washed platelets. Human washed platelets 
(2 x 106/well) + 2 mM CaCl2 treated with or without ox/nLDL (50 µg/mL) for 10 
minutes, then incubated with or without nigericin (2 µM) for 20 minutes followed 
by 1x FLICA-green (upper) or 1x FLICA-red (lower) for 40 minutes followed by 
fix, wash, wash and acquisition. (One-way ANOVA vs. basal, ns=non-
significant, **<0.01, ****<0.0001, error shown as standard deviation; Green 
n=5; Red n=3 with LDL conditions in 2 duplicates with different LDL 
preparations) 
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4.3.5 oxLDL potentiation, CD36 inhibitors and ROS scavenger screen 

Following on from our previous key observation that oxLDL primes the NLRP3 

inflammasome for activation in washed platelets, we sought to understand the 

pathway through which this process may occur. Here we applied several inhibitors 

and scavengers/chelators to investigate this pathway. We primarily targeted ROS, 

which oxLDL is known to induce in platelets (Berger et al., 2019b), calcium which our 

previous observations suggested was vital and then the primary platelet oxLDL 

receptor CD36 and downstream signalling apparatus (Wraith et al., 2013). N-acetyl-

cysteine (NAC) was used as a ROS scavenger, BAPTA-AM as an intracellular 

calcium chelator, EDTA as an extracellular calcium chelator, FA6-152 as a CD36 

blocking antibody with control IgG, BAY61 to block Syk, PP2 to block Src family 

kinases, PP3 as an analogue control and a DMSO vehicle control. 

Treatment with nigericin (2 µM) increased FLICA MFI to 3568.4±1290 which was 

potentiated by oxLDL to 29,287.4±4980, this was again a large increase over 

nigericin alone or nigericin pre-treated with nLDL. We were then able to demonstrate 

that NLRP3 inflammasome activation and potentially oxLDL priming were ablated 

completely by the addition of the ROS scavenger NAC, as was the nigericin and nLDL 

control. In the oxLDL experiments, FLICA MFI was reduced from 29,287.4±4980 to 

1060.75±313 (p<0.0001) by the presence of the antioxidant NAC (Figure 50). We 

again reiterated our previous observation of the requirement of calcium for caspase-

1 cleavage in platelets with the chelators BAPTA-AM (intracellular) and EDTA 

(extracellular), these reduced FLICA MFI from 29,287.4±4980 (oxLDL/nigericin) to 

2372.7 and 2474.8 respectively. Finally, blockade of CD36, Src family kinases or Syk 

had no effect (Figure 50). This suggests that other receptors may be involved. While 

we were unable to explore these here, there is literature evidence that oxLDL can 

drive NLRP3 through CD36/TLR4/6 complexes in other cells, and evidence that 

oxLDL can ligate CD36/TLR2/TLR6 on platelets driving hyperactivity (Stewart et al., 

2010, Biswas et al., 2017).  
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Figure 50. FLICA-red in human washed platelets +/- LDL, scavengers, chelators 
and CD36 signalling inhibitors. Human washed platelets (2 x 106/well) + 2 
mM CaCl2 treated with or without designated inhibitors (NAC 5 mM, BAPTA 20 
µM, EDTA 10 mM, Fa6/IgG 5 µg/mL, BAY61 5 µM, PP2/PP3 20 µM, DMSO 
0.1% (v/v)) for 20 minutes, then incubated with or without ox/nLDL (50 µg/mL) 
for 10 minutes then nigericin (2 – 10 µM) for 20 minutes followed by 1x FLICA-
red for 40 minutes followed by fix, wash, wash and acquisition. (One-way 
ANOVA vs. inhibited sample, *<0.05 and ****<0.0001, error shown as standard 
deviation, n=1(CD36 signalosome), 3(all other measurements)) 

  



- 166 - 

4.3.6 NLRP3 inhibition by MCC950 

While previous results have highlighted a novel role for oxLDL in the potentiation of 

NLRP3 inflammasome activity measured by caspase-1 cleavage, the FLICA assay 

has lacked a negative control peptide or a control to specifically target and block 

NLRP3. To measure this we sought to apply the highly specific compound inhibitor 

of NLRP3, MCC950 (Coll et al., 2015). This inhibitor has been widely applied both in 

vitro and in vivo (Coll et al., 2019, van der Heijden et al., 2017) and has also been 

used in platelets to some effect (Vogel et al., 2018a). We stimulated washed platelets 

with a mid-range dose of nigericin (5 µM) and compared this against a range of doses 

of MCC950 pre-treated samples (Figure 51). On stimulation with nigericin (5 µM) MFI 

increased to 1281±1562 from 168.8±51 at basal, although there was large error in 

these experiments primarily to a very strong responder. When treated with maximal 

dose of MCC950 (10 µM) MFI remained comparable to nigericin alone at 603±412 

due to the error (Figure 51). We were not able to demonstrate any significant 

differences in treated samples, however the variability in the nigericin alone treated 

samples results in it not being significantly different to the basal condition (which 

mimics 100% inhibited) either, a lower dose of nigericin was used here to prevent 

there being excessive activation preventing the inhibitor functioning, however 

repetition with a higher dose of nigericin may provide a larger window of observation. 

In order to pursue that possibility, this was later repeated on oxLDL potentiated 

samples where the window for inhibition considerably exceeds any nigericin alone 

treatments (Figure 55, Figure 56). Nevertheless, there are not any significant trends 

of inhibition emerging, while the literature suggests this inhibitor has a high efficacy 

(Coll et al., 2015). 

  



- 167 - 

 

Figure 51. FLICA-green in human washed platelets +/- MCC950. Human washed 
platelets (2 x 106/well) + 2 mM CaCl2 treated with or without MCC950 (1 nM – 
10 µM) for 30 minutes, then incubated with nigericin (5 µM) for 20 minutes 
followed by 1x FLICA-green for 40 minutes followed by fix, wash, wash and 
acquisition. (One-way ANOVA vs. basal, ns=non-significant, error shown as 
standard deviation, n=1-5) 
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4.3.7 Correlation of FLICA signal with CD62P 

To further understand mechanist elements of what may be occurring within the 

platelets concurrent to caspase-1 cleavage, we developed an assay to 

simultaneously measure both FLICA-green and a marker of α-granule secretion 

(CD62P-PE) against a dose response of nigericin (1 – 10 µM) and a low/high dose 

of the thrombin mimetic and PAR1 peptide agonist SFLLRN (1 and 10 µM). These 

two agonists act as positive controls for each marker respectively and allow a 

comparison of how each marker responds to a specific agonist targeted against the 

other pathway. 

Incubation of platelets with nigericin (0 – 10 µM) led to a concentration dependent 

increase in caspase-1 cleavage. However, this was associated with increased 

expression of CD62P on the platelet surface, suggesting the platelets are activated 

and have undergone degranulation (Figure 52). Although this cannot be the exclusive 

conclusion, as loss of membrane stability would allow antibody entry into the platelet, 

similar to a detergent permeabilisation step, and therefore intracellular staining of 

pools of CD62P would be detected. While the expression of CD62P at maximal dose 

of nigericin (10 µM) (28,043) was similar only to low dose SFLLRN (1 µM) (32,094.7), 

it was increased over basal (784.4). Furthermore, SFLLRN (10 µM) (4216.3) was 

shown to induce caspase-1 cleavage to a similar level compared to low dose nigericin 

(2 µM) (3922.1) over basal (1329.4) (Figure 52).  

We also explored if nigericin is able to induce platelet aggregation by LTA, as the 

prior indication was that it did possibly drive platelet activation. However, nigericin did 

not induce aggregation up to 15 minutes, only a linear decrease in turbidity, 

potentially agglomeration or platelet death (Figure 53). Notably there was no shape 

change or aggregates in the nigericin treated cuvette (19%) and tirofiban an inhibitor 

of the integrin αIIbβ3, did not attenuate the effect of nigericin (22%) suggesting it is 

not typical platelet aggregation and is independent of any fibrinogen: integrin 
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interactions. In support of this inducing platelet death, samples treated with nigericin 

analysed by flow cytometry also consistently demonstrated a reduced concentration 

of cells when compared with basal despite all tubes being initially loaded with 2 x 106 

platelets (data not shown). 
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Figure 52. Correlation of FLICA-green binding with platelet activation. Human 
washed platelets (2 x 106/well) + 2 mM CaCl2 incubated with nigericin (1 – 10 
µM) or SFLLRN (1 or 10 µM) for 20 minutes followed by co-staining with 1x 
FLICA-green and CD62P-PE for 40 minutes followed by fix, wash, wash and 
acquisition. (n=2) 
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Figure 53. Nigericin induces linear clearance of platelet solution that is 
aggregation independent. Human washed platelets (2.5x108/mL) were 
stimulated with 0.1U/mL or 10 µM nigericin +/- 1 µg/mL tirofiban and trace was 
observed for aggregation for up to 15 minutes by light transmission 
aggregometry. (Thrombin alone and nigericin alone are representative of n=3) 
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4.3.8 Transgenic murine caspase cleavage 

Our previous observations suggested a wide variation across healthy human donors 

with respect to caspase-1 activation. Having also demonstrated that oxLDL can 

potentiate this response, we sought to assess if basal activity changed with 

cardiovascular disease, where oxLDL has been shown to be increased (Ramos-

Arellano et al., 2014). To do this we translated the FLICA assay into a murine model 

to allow further exploration with genetically modified or diet induced models of 

obesity. We first repeated our previous experiment, to demonstrate extracellular 

calcium was required for the FLICA assay to detect caspase-1 cleavage in murine 

samples. Calcium was reconstituted to 2.5 mM, to mirror the calcium concentrations 

found within murine blood (Otto et al., 2016). This basic question was first explored 

as it fulfils two early questions, namely; does the assay translate to murine models, 

and is the mechanism conserved with human platelets, i.e., calcium dependent. Here 

we were able to reiterate our previous findings from humans in a murine model and 

confirm that calcium is a requirement for murine platelet caspase-1 cleavage (Figure 

54). 

Due to the variation in response to nigericin we saw across the normal human 

population, we hypothesised this could be a phenotype driven by lifestyle and 

environmental changes which may be commonly observed within a normal cohort of 

individuals. To explore this question, we tested this theory in wild type C57/Bl6 and 

ApoE-/- murine platelets. ApoE-/- models are known to progress to early 

atherosclerosis and demonstrate a strong phenotype of vascular inflammation on 

chow diet (Getz and Reardon, 2006). Wild type (WT) mice alone showed an increase 

over basal (318.3) when treated with nigericin (5 µM) (1344.8) but not with ATP (5 

mM) (229.7). Basal caspase-1 cleavage was not different between the two groups 

and unexpectedly when stimulated with a mid-dose of nigericin (5 µM) the C57/Bl6 

platelets demonstrated a greater caspase-1 cleavage than the platelets from the 

ApoE-/- animals (1344.8 compared to 944.2). We also stimulated with ATP, which is 
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another canonical stimulator of NLRP3 activity, and this showed no increase in MFI 

above basal at a maximal dose (Figure 54). Therefore, assuming parallels between 

murine models of atherosclerosis and human cardiovascular disease, this is not 

regulating NLRP3 activity of platelets in these models and suggests that factors 

beyond hyperlipidaemia must be inducing the natural variation. 
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Figure 54. FLICA in murine washed platelets +/- calcium. (Upper) Murine washed 
platelets (2x106/well) +/- 2.5 mM CaCl2 treated with or without nigericin 10 µM 
for 15 minutes then incubated with 1x FLICA-green for 60 minutes followed by 
fix, wash and acquisition (n=1). (Lower) As prior but cells were treated with or 
without nigericin 5 µM or ATP 5 mM for 15 minutes. (n=2) 
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4.3.9 Specificity and validation of the FLICA assay 

Although we had made several novel and extremely reproducible observations 

including; (i) oxLDL is able to significantly potentiate caspase-1 cleavage, (ii) the 

requirement for ROS and (iii) requirement for extracellular calcium for caspase-1 

cleavage in platelets, a key inhibitor of NLRP3, MCC950 (Coll et al., 2015), was 

unable to this block signal. This led to several concerns of the specificity of the FLICA 

dye, as without a negative control the signal could not be confirmed as a true marker 

of caspase-1 cleavage. This was further supported by literature that has previously 

demonstrated that FLICA will bind with a low specificity to apoptotic cells and cannot 

be outcompeted by unlabelled peptide controls, although these studies were not 

performed in platelets (Pozarowski et al., 2003, Darzynkiewicz and Pozarowski, 

2007). A series of experiments were performed to explore the specificity of the dye 

and events which occur concurrently to FLICA dye binding in platelets. 

Using mirrored conditions across four assays we explored other events occurring 

simultaneously to caspase-1 cleavage. The assays applied included; (i) mitoSOX to 

detect mitochondrial superoxide, (ii) Annexin V binding to detect apoptosis or 

coagulant platelet formation, (iii) TMRE to measure mitochondrial polarisation and 

formation of mitochondrial pores, and (iv) FLICA-red. MitoSOX at basal gave an MFI 

of 486 and when treated with nigericin (2 µM) alone or with oxLDL (50 µg/mL) this 

increased to 1962.6 and 1534.3 respectively. The positive control of antimycin A (100 

µM) (1188.9) surprisingly produced less mitochondrial superoxide than nigericin 

alone. Annexin V binding at basal was low (1011) and when treated with nigericin (2 

µM) alone or with oxLDL (50 µg/mL) this increased to 4680.1 and 4161.1 

respectively, the positive control of SFLLRN/CRP-XL (20 µM/10 µg/mL) was 

comparable at 4014.2. TMRE binding at basal was bright (1859.1) suggesting 

normally polarised mitochondria, when treated with nigericin (2 µM) alone or with 

oxLDL (50 µg/mL) this decreased to 357.7 and 407.7 respectively. FLICA bound as 

previously demonstrated, with low basal, a mild increase with low dose nigericin (2 
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µM) and significant potentiation with oxLDL (50 µg/mL) from 10,335.3 to 35,278.9 

respectively. The inhibitor MCC950 (1000 nM) did not drive a large reduction in the 

signal when cleavage was induced with nigericin and oxLDL together (31,787.3) 

(Figure 55). Through comparisons across each assay, we were able to determine 

that concurrent to caspase-1 cleavage detected by the FLICA-red assay, 

mitochondrial superoxide is significantly increased, PS is exposed on the outer leaflet 

of the phospholipid membrane and the mitochondria are depolarised (Figure 55). 

These are many hallmarks of apoptotic cells and suggests that the FLICA-red assay 

may be binding non-specifically to apoptotic platelets – potentiated by oxLDL and 

driven by nigericin. 

To further understand if the binding of FLICA-red mirrored PS exposure we tested 

these two parameters with a series of inhibitors; basal, nigericin alone, nigericin pre-

treated with MCC950, glyburide (Lamkanfi et al., 2009), mitoTEMPO, NAC, EDTA or 

vehicle control. As expected nigericin (2 µM) increased FLICA-red binding (2402.0 to 

5899.5), and consistent with previous data was blocked by the ROS scavenger NAC 

(2291.4), and calcium chelator EDTA (2791.9) (Figure 56). In contrast, NLRP3 

inhibitors MCC950, the ATP channel inhibitor glyburide and the mitochondrial 

superoxide scavenger mitoTEMPO were without effect and all showed comparable 

values to nigericin alone (5795.5, 9772.0 and 7102.5 respectively). Importantly, these 

effects were almost identical to PS exposure measured by annexin V binding, where 

nigericin (2 µM) induced a significant increase in surface PS over basal (1432.9 to 

14,698.1) and only NAC and EDTA reduced signal (2369.0 and 255.8 respectively) 

(Figure 56). In conjunction, this may suggest that this treatment is killing the platelets, 

but in a calcium and ROS dependent manner, which suggests mitochondria may be 

the common node here. Finally, the specificity of the FLICA-dye was validated with 

z-YVAD-FMK, an identical peptide to FLICA’s FAM-YVAD-FMK, but without a 

fluorophore conjugate (Pozarowski et al., 2003). Using concentrations ranging from 
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50x less to 200-fold excess no demonstrable competitive inhibition of FLICA-green’s 

binding to nigericin stimulated platelets across two donors (Figure 57).  

Taken together, we used two different dyes and a range of inhibitors that have been 

shown to modulate the activity of the NLRP3 inflammasome and were unable to see 

any change in response. While the numbers of experiments are not high, the data 

suggested that the signal measured by FLICA may indeed be non-specific to 

apoptotic cells and so further experiments in this system were not pursued.  
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Figure 55. Specificity of the FLICA reagent to caspase-1 cleavage, marker 
screen. Four assays in washed human platelets were performed under 
identical conditions on the same donor to understand what events may occur 
simultaneous to FLICA dye binding. mitoSOX was used to detect mitochondrial 
superoxide, Annexin V to detect phosphatidylserine exposure, TMRE to detect 
mitochondrial membrane potential and FLICA-green to detect caspase-1 
cleavage. All assays used human washed platelets (2 x 106/well) + 2 mM CaCl2. 
All dyes were used as described. oxLDL was pre-incubated for 10 minutes prior 
to nigericin addition for a total time course of 60 minutes prior to sample 
acquisition or fixation (n=1) 
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Figure 56. Specificity of the FLICA reagent to caspase-1 cleavage, inhibitor 
screen. Two assays were performed under identical conditions on the same 
donor to understand the relationship between phosphatidylserine exposure and 
FLICA binding. All assays used human washed platelets (2 x 106/well) + 2 mM 
CaCl2. All dyes were used as described, FLICA-red was used, and inhibitors 
were incubated for 30 minutes prior to addition of nigericin (2 µM) for a total 
time of 60 minutes. (n=1) 
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Figure 57. Inability to outcompete FLICA dye binding by unlabelled z-YVAD-
FMK peptide. Human washed platelets (2 x 106/well) + 2 mM CaCl2 treated 
with or without z-YVAD-FMK (100 nM – 100 µM) for 30 minutes, then incubated 
with nigericin (10 µM) for 20 minutes followed by 1x FLICA-green for 40 minutes 
followed by fix, wash, wash and acquisition. (n=2, plotted as individual data 
sets) 
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4.4 PROTEIN EXPRESSION, IMMUNOBLOTS AND IMMUNOPRECIPTATIONS 

In order to perform cross validation of FLICA data, immunoblotting experiments were 

performed for components of the NLRP3 inflammasome including NLRP3, ASC, 

caspase-1, gasdermin D and IL-1β (Schroder and Tschopp, 2010). Although NLRP3 

activity in platelets has been measured, primarily by FLICA it is worth noting, there 

has been little convincing evidence of expression in any published papers to date, 

with the majority relying on immunofluorescence (Vogel et al., 2018a) or flow 

cytometry (Hottz et al., 2013), with the first report of detection by immunoblot 

appearing in 2019 (Vats et al., 2019). 

 

4.4.1 NLRP3 immunoblot and immunoprecipitation 

Here we immunoprecipitated (IP) NLRP3 from human washed platelet lysate using 

two antibodies raised against NLRP3, monoclonal (anti-cryopyrin 6F12) and 

polyclonal (anti-cryopyrin H66). Whole cell lysate, immunoprecipitated monoclonal 

antibody (mAb), immunoprecipitated polyclonal antibody (pAb), IgG and inputs were 

immunoblotted using both anti-cryopyrin 6F12 and H66 antibody. The IP using anti-

cryopyrin H66 led to the detection of bands at 110 kDa and 140 kDa respectively 

(Upper, Figure 58). The proposed molecular weight of NLRP3 is 110 kDa, suggesting 

that NLRP3 was potentially identified under these conditions. In contrast, no NLRP3 

was detected in the whole cell lysate or immunoprecipitating with anti-cryopyrin 6F12, 

which made this less conclusive, where typically a second antibody would act to 

validate findings. The lack of a positive control sample and potential PBMC 

contamination in a standard washed platelet preparation also weakens the possibility 

of expression. Intriguingly the Coomassie stain of the same membrane suggests the 

presence of a 110 kDa band in both immunoprecipitate elutions. 

We also immunoblotted for NLRP3 on human washed platelet lysate with the 

extensively published CRYO-2 antibody clone. As part of this study, we validated the 
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antibody against positive control lysates from immortalised THP1 and HL60 cell lines. 

While a band was detected in both positive controls at ~110 kDa, the predicted 

molecular weight of NLRP3, no band was detected at that weight in the platelet 

lysates from three separate donors although we were able to detect the ~140 kDa 

band which was immunoprecipitated previously alongside several other protein 

bands at <100 kDa (Figure 58). 
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Figure 58. Immunoprecipitation and immunoblot of NLRP3. (Upper) NLRP3 was 
immunoprecipitated from human washed platelet lysate with either a 
monoclonal (6F12) or polyclonal (H66) anti-cryopyrin (Santa Cruz) antibody as 
shown. The immunoprecipitate was washed, lysed and underwent SDS-PAGE 
and western blot. The blot was probed with anti-NLRP3 (6F12) mAb 1/1000 in 
5% milk followed by anti-mouse-680nm 1/20,000 and anti-NLRP3 (H66) pAb 
1/1000 in 5% milk followed by anti-mouse-800nm 1/20,000. The blot is 
composite of both secondary detections, NLRP3 only detected in pAb lysate by 
pAb probe. Detection was by fluorescence using an Odyssey LiCor. (Lower) 
Immunoblot, human washed platelet lysate was separated with SDS-PAGE and 
probed with anti-NLRP3 (CRYO-2, Adipogen) at 1/1000 in 5% milk followed by 
anti-mouse-HRP 1/10,000. Detected by ECL. Representative of 3 blots. 
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4.4.2 ASC immunoblot and immunoprecipitation 

ASC is a 22 kDa protein which bridges NLRP3 and caspase-1 through its pyrin 

domain and CARD domain respectively (Matsushita et al., 2009). ASC forms 

filaments which amplify the signal from NLRP3 and results in caspase-1 recruitment 

(Dick et al., 2016). In the first instance, ASC was detected by immunoblot of whole 

cell lysates of multiple human and murine donors and was demonstrated to be 

expressed in 3 human and 3 murine donors at 20 kDa (Upper, Figure 59). In the 

second instance ASC was immunoprecipitated from human washed platelet lysate 

using a monoclonal antibody raised against ASC, note that the dominant bands in 

the IP are immunoglobulin heavy and light chain (50 and 25 kDa respectively) (Lower, 

Figure 59). In both sets of experiments, the detected ASC band was clear, suggesting 

this is specific antibody recognition, but at 20 kDa rather than 22 kDa, as typically 

described in the literature and also demonstrated here as blotted from THP1 and 

HL60 cells. Of note, ASC was immunoblotted and immunoprecipitated from multiple 

donors exclusively at a molecular weight of 20 kDa. However, there are shortened 

isoforms of ASC previously described in other cells which may lack a hinge domain 

and therefore be constitutively active (Matsushita et al., 2009), and are known to be 

20 kDa. Here we have described, that human and murine platelets predominantly 

express a shortened isoform of the NLRP3 adaptor protein ASC. 

  



- 185 - 

 

Figure 59. Immunoblot and immunoprecipitation of ASC. (Upper) human washed 
platelet lysate was separated with SDS-PAGE and probed with anti-ASC (F9, 
mAb) at 1/250 in 5% milk followed by anti-mouse-HRP 1/10,000, representative 
of 3 blots. (Lower) the ASC (F9, mAb) immunoprecipitate was washed, lysed 
and underwent SDS-PAGE and western blot. The blot was probed with anti-
ASC (F9, mAb) 1/250 in 5% milk followed by anti-mouse-HRP 1/10,000. 
Developed by ECL onto x-ray film. 
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4.4.3 Identification of caspase-1 and cleavage products 

Caspase-1 is a thiol protease which belongs to the inflammatory caspases sub-group 

(Miao et al., 2011). Upon inflammasome activation, recruited caspase-1 undergoes 

self-cleavage which forms two subunits, P20 and P10, these form an active 

enzymatic tetramer which cleaves at the amino acid motif YVAD (Garcia-Calvo et al., 

1998). 

Here, using two antibodies, we first try to determine the presence of caspase-1 in 

washed platelet lysate and compare these with two leukocyte lysates THP1 and HL-

60 used as positive controls. We validated that the antibody detects bands between 

50 and 40 kDa, which covers the range of major caspase-1 isoforms; α (50 kDa), β/γ 

(40-45 kDa) and δ (<40 kDa) (Alnemri et al., 1995) (Upper left, Figure 60). Using the 

HL-60 as a positive control we next immunoblotted platelet lysates and detected a 

dominant band at 45 kDa, which would suggest that platelets may express primarily 

a caspase-1 β isoform (Upper right, Figure 60). 

When caspase-1 is activated, it undergoes cleavage, therefore we sought to 

immunoblot for cleavage products, ranging from 10-20 kDa, encompassing P20 and 

P10 subunits (Broz et al., 2010). Washed platelets were stimulated with thrombin (10 

U/mL), ATP (5 mM) or nigericin (1 and 10 µM) for 15 and 30 minutes and caspase-1 

cleavage evaluated. Under these conditions, only nigericin was able to induce 

cleavage with a band detected at 15 kDa (Lower, Figure 60). This is consistent with 

previous FLICA data, which detected caspase-1 cleavage was optimal after 

treatment with nigericin (Figure 48), with only a mild increase for the thrombin mimetic 

SFLLRN (Figure 52). 
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Figure 60. Immunoblots of caspase-1. Human washed platelet lysate untreated or 
treated as indicated was separated with SDS-PAGE and probed with anti-
caspase-1 CST2225S (upper 2 blots) or SCBT mAb (16F468) (lower blot) in 
5% milk followed by anti-rabbit-HRP (upper blots) or anti-mouse-IR800 (lower 
blot) and then developed by enhanced chemi-luminescence onto x-ray film or 
fluorescence on Odyssey LiCor respectively. Cleavage blot representative of 
n=4. 
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4.4.4 Identification of Gasdermin D 

Gasdermin D is a 55 kDa protein cleaved by caspase-1. In canonical inflammasome 

activation it is responsible for pore formation which induces pyroptosis and releases 

IL-1β (Liu et al., 2016) and in non-canonical activation it is part of the caspase-11 

feedback loop leading to potassium efflux dependent NLRP3 activation (Ringel-Scaia 

et al., 2016). 

Here gasdermin D was detected by immunoblot from three human donors washed 

platelet lysate using a monoclonal antibody raised against gasdermin D. Comparing 

THP1 lysate to human washed platelet lysate from three separate donors, there was 

a prominent band at the predicted 55 kDa and a second band at 40 kDa which is 

shared by both cell lines (Figure 61), suggesting it may be non-specific or a cleavage 

product of the pore forming domain or repressor domain. This novel observation 

confirms that human platelets express gasdermin D and may represent a novel 

pathway for secretion of intracellular cargo. To examine this further, gasdermin D 

cleavage products after caspase-1 activation should be immunoblotted for, where 

they should represent a pore-forming domain and repressor domain. 
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Figure 61. Immunoblot of Gasdermin D. Human washed platelet lysate was 
separated with SDS-PAGE and probed with anti-gasdermin D (mAb) at 1/500 
in 5% milk followed by anti-mouse-HRP 1/10,000. Developed by enhanced 
chemi-luminescence onto x-ray film. 
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4.4.5 Interleukin 1-beta immunoblot 

IL-1β is the final cleavage product of NLRP3 inflammasome activation and is the 

systemic effector of the pathway. On an initial signal, pro-IL-1β (p37) is produced via 

transcriptional priming and accumulates within the cell, prior to cleavage by caspase-

1 into bio-active IL-1β (p17) which can then act beyond the cell and drive 

inflammation (Perregaux and Gabel, 1994, Grebe et al., 2018). 

Here we screen human washed platelet lysate treated with several agonists for 

expression of IL-1β using two separate antibodies, anti-IL-1β P420B pAb and 5C10 

mAb to ensure confidence in findings. Using the HL-60 lysate both clones bound to 

a distinct band at approximately 40 kDa. In contrast, this was not detected in THP1 

lysate. This discrepancy is likely as the HL60 lysate is generated from cells pre-

treated with LPS while the THP1 was not, and as described LPS acts as a priming 

signal and drive IL-1β accumulation within the cell. There is also a remarkable 

difference in specificity of antibody when comparing the pAb with the mAb. Even with 

the highly specific mAb, from this donor, the washed platelets demonstrated no 

detectable IL-1β under any of the conditions of stimulation or priming used (Figure 

62). 
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Figure 62. Immunoblot of IL-1β. Human washed platelet lysate was left untreated 
or treated with the indicated agonist (30 minutes) and was separated with SDS-
PAGE and probed with anti-IL-1β (SCBT 5C10 mAb or TF P420b pAb) at 1/500 
in 5% milk followed by anti-mouse/rabbit-HRP 1/10,000. Developed by ECL 
onto x-ray film. 
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4.5 DISCUSSION 

 4.5.1 FLICA and NLRP3 inflammasome activity 

The first section of data in this chapter concerned the FLICA assay, which 

fluorescently labels active caspase-1 (Bedner et al., 2000). We used this to attempt 

to pull apart mechanistic elements and novel ligands which may drive activation of 

the platelet NLRP3 inflammasome, first described in 2013 (Hottz et al., 2013). Initially 

we were able to show that the canonical NLRP3 activating ligand, nigericin 

(Perregaux and Gabel, 1994), could drive a significant increase in FLICA signal in 

the presence of (plasma levels of) calcium (Murakami et al., 2012), this was an 

important basis for the study, as it suggested that known aspects of NLRP3 biology 

described in other cells was reproducible in platelets. We next sought to understand 

if oxLDL may drive or potentiate caspase-1 cleavage in platelets, as it has been 

shown to have other effects on platelets including ROS production (Berger et al., 

2019b), disinhibition (Magwenzi et al., 2015, Berger et al., 2019a) and activation 

(Wraith et al., 2013, Yang et al., 2017a) and in macrophages, oxLDL has been shown 

to drive NLRP3 activation (Liu et al., 2014). While we were unable to demonstrate an 

increase in FLICA signal when treated with oxLDL alone, oxLDL significantly 

potentiated a sub-maximal dose of the canonical activator nigericin. Vitally this effect 

was not observed if treated with nLDL. This suggests that in platelets, rather than 

directly activating the NLRP3 inflammasome, oxLDL may be functioning as a primer 

of complex recruitment, allowing for greater activation when stimulated. This 

hypothesis is in agreement with the literature, where oxLDL is proposed to have both 

a priming effect (transcriptional activity) and also an activatory effect via ROS 

production (Liu et al., 2014). Considering the potential for oxLDL to be present not 

only in atherosclerotic plaque, but in circulation (Ramos-Arellano et al., 2014), we 

can suggest that circulating oxLDL may priming platelets for NLRP3 activity. 
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Having demonstrated that oxLDL potentiated the effects of nigericin on caspase-1 

cleavage as measured by FLICA, we sought to understand the mechanisms through 

which this occurs. In platelets, there are many studies which show oxLDL signals 

primarily through CD36 (Podrez et al., 2007, Wraith et al., 2013), which is highly 

expressed by human platelets (Burkhart et al., 2012). However, it is also known that 

other receptors may be involved in driving platelet-oxLDL interactions. To look at 

other mechanisms through which this effect could be transduced we included the 

general ROS scavenger N-acetyl cysteine (NAC) and the calcium chelators EDTA 

(extracellular) and BAPTA (intracellular). OxLDL is known to induce ROS in platelets 

(Magwenzi et al., 2015), and also induce calcium release via PLCγ2 (Berger et al., 

2019b), which is a key mediator of both platelet activation (Begonja et al., 2005) and 

also NLRP3 (Ye et al., 2017, Liu et al., 2014). Interestingly we were able to 

demonstrate both that this increase in signal was wholly reliant on ROS, and again 

reiterated the importance of calcium. As the inhibitors also blocked the positive 

control of nigericin alone, it cannot be confirmed if they also selectively inhibit oxLDL 

potentiation or instead block all nigericin driven NLRP3 activity. Since NAC also 

completely blocks the activation of caspase-1 by high dose nigericin (10 µM) 

suggesting it blocks an upstream event, it cannot be assumed that NAC is targeting 

only downstream of oxLDL rather it is either only blocking all NLRP3 activity or 

simultaneously blocking the potentiation caused by oxLDL. To dissect the role of 

CD36 in the transduction of the oxLDL signal, we applied inhibitors against several 

aspects of the pathway targeting the receptor itself and downstream kinases using 

previously published inhibitors (Magwenzi et al., 2015, Wraith et al., 2013). We 

applied FA6-152 as a CD36 blocking antibody, BAY61 to block Syk and PP2 to block 

Src family kinases. These inhibitors were shown to not have any significant effects 

on the FLICA signal after treatment with nigericin and oxLDL. There was a minor 

decrease in signal after treatment with BAY61, which based on Fa6 and PP2 not 

inhibiting response would suggest it was not affecting CD36 signalling, therefore as 
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Syk has been previously shown to be involved in the regulation of ASC recruitment, 

this may be the pathway through which this reduction was mediated (Lin et al., 2015). 

Nevertheless, together this suggests that oxLDL is not signalling through CD36 to 

potentiate caspase-1 activity. However, as these studies on the CD36 signalosome 

lack repeats, it is important that the experiments are later repeated to validate these 

observations. 

Having found a reproducible phenotype, where oxLDL heavily potentiated the 

cleaved caspase-1 signal, we wanted to verify this, as it was a larger increase than 

anticipated. Therefore we adjusted our strategy to attempt to blockade NLRP3 with 

the specific inhibitory compound MCC950, which has been shown to inhibit the 

NLRP3 inflammasome with a high specificity (Coll et al., 2019, Coll et al., 2015). We 

chose to pursue this method, as the FLICA assay does not have an intrinsic control 

to account for non-specific binding and a well published inhibitor (MCC950) could 

provide a negative control for this purpose. As was demonstrated several times, this 

inhibitor, at a wide range of doses failed to inhibit FLICA signal. This surprising result 

suggested that; (i) NLRP3 is not present in platelets and the caspase-1 cleavage 

being measured is downstream of an alternative mediator, or (ii) the FLICA dye is 

binding non-specifically and potentially an alternative event is being measured. 

Platelet proteomic studies have demonstrated no other inflammasome complexes 

present in human or murine platelets, bar NLRX1 (Burkhart et al., 2012, Zeiler et al., 

2014), which does not signal through caspase-1 as it lacks both a pyrin domain to 

recruit ASC, or a CARD domain to recruit caspase-1 (Allen, 2014). We were therefore 

concerned that we were inducing platelet apoptosis and pursued several assays to 

measure events which are hallmarks of death pathways. 

Having demonstrated that the signal we induce is insensitive to MCC950, we sought 

further validation of the assay. We pursued the use of a competitive unlabelled 

YVAD-motif control and screened our optimal stimulation conditions against assays 

for mitochondrial ROS, mitochondrial membrane potential and phosphatidylserine 
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exposure. Here we were able to demonstrate, in agreement with previous literature 

(Pozarowski et al., 2003), that an unlabelled peptide cannot outcompete FLICA 

binding at large molar excess. We further demonstrated that under identical 

conditions, where FLICA binding is high, that apoptotic hallmarks such as PS 

exposure, loss of mitochondrial membrane potential and mitochondrial ROS are all 

induced. Critically MCC950 was confirmed as unable to block FLICA binding, but the 

data also suggested that PS exposure may not be downstream of inflammasome 

activation, which was similarly unperturbed by the inhibitor, again indicative of 

apoptosis. While pyroptosis, or inflammatory cell death (Miao et al., 2011) is a well 

described phenomena of NLRP3 activity the inability of blockade of FLICA signal by 

specific inhibitors and the relative similarities to apoptosis observed suggest the 

peptide may be binding non-specifically to apoptotic/pyroptotic platelets (Pozarowski 

et al., 2003, Darzynkiewicz and Pozarowski, 2007). Potassium efflux is also 

suggested to be vital to NLRP3 activation, we tested whether an excess of 

extracellular potassium could block FLICA binding (Tang et al., 2017) but again, we 

could demonstrate no blockade of signal (data not shown). Further to this, we tested 

nigericin on the classical platelet assay of LTA. This demonstrated no aggregation 

but did induce a linear clearance of platelet suspension which was not dependent on 

fibrinogen binding, suggesting this may be cell death. This was also supported by an 

observation in cellular concentrations when samples were analysed by flow 

cytometry, where those samples treated with nigericin took considerably longer to 

acquire an equivalent number of cells in comparison to basal samples. While LTA 

demonstrated no functional response CD62P expression did appear to be induced 

by nigericin treatment. This observation is in agreement with literature suggesting 

that NLRP3 activity in platelets can be induced by traditional platelet agonists 

thrombin and collagen, of which SFLLRN is a thrombin mimetic (Murthy et al., 2017). 

Furthermore, we can show that the K+ ion flux driven by nigericin is possibly able to 

induce α-granule secretion, however confirmation with additional marker PAC1 would 
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provide validation that this is complete activation. PAC1 would be insensitive to 

changes in membrane permeability, as CD62P staining might be, as it instead detects 

the active conformation of the integrin αIIbβ3. There is a likelihood that if the cells are 

truly becoming apoptotic, the CD62P antibody may be simply entering the cell to 

detect total CD62P rather than exposure of the protein on the surface. 

While there are concerns over the specificity of FLICA as a readout of NLRP3 activity 

within the literature (Darzynkiewicz and Pozarowski, 2007), we have applied several 

control experiments to our model in washed human platelets. We can summarise that 

FLICA signal is robustly increased by the known NLRP3 activator nigericin and we 

show that oxLDL significantly potentiates this and nLDL does not, however, we are 

unable to block this effect with MCC950 (Coll et al., 2015), glyburide (Lamkanfi et al., 

2009), competitive peptide controls (Pozarowski et al., 2003) or potassium efflux 

blockade (Tang et al., 2017). Remarkably the ROS scavenger NAC (Ye et al., 2017) 

and calcium (Murakami et al., 2012) are shown to be vital to this signal, but the FLICA 

signal also co-exists with several apoptotic markers. The importance of ROS and 

calcium concurrent with markers of apoptosis and mitochondrial dysfunction may 

suggest that nigericin is perturbing mitochondrial stability leading to apoptosis. 

Ultimately, while we may be reading caspase-1 cleavage, under the current 

conditions we cannot be sure that this is the case and several factors point to the 

treatment inducing platelet death, although again this may be pyroptosis (Miao et al., 

2011). This study requires further validation, preferably by alternative methods such 

as immunoblot for cleaved caspase-1 or ELISA for secreted IL-1β. Additionally the 

use of NLRP3 knockout murine models to avoid relying on chemical inhibition would 

significantly enhance the study and overcome the limitations of biochemical 

inhibitors. 
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 4.5.2 NLRP3 inflammasome expression 

Another important consideration is the expression of NLRP3 and associated 

components in platelets. The human platelet proteome reports the presence of only 

ASC and gasdermin D (Table 9), with copy numbers of both proteins presumed not 

to exceed 1500 per cell (Burkhart et al., 2012), the murine platelet proteome also 

reports that only ASC and gasdermin D are present (Table 10) (Zeiler et al., 2014). 

However, it must be noted that these proteomic studies were performed on healthy 

donors, or wild type mice, and there is a strong argument for inflammatory protein 

complexes being upregulated in a diseased state, and therefore not present in 

healthy donors. However, it is of some concern to this argument of inflammatory 

reprogramming, that in individuals with dengue virus infection, where platelet NLRP3 

activity was initially described (Hottz et al., 2013), the same group later reported no 

NLRP3 detectable by proteomics (Trugilho et al., 2017). In contrast with this, the 

transcriptome of both human and murine platelet RNA reports the presence of all 

components; NLRP3, ASC, caspase-1, IL-1β and gasdermin D (Table 11), although 

none are ranked within the 3000 most common transcripts (Rowley et al., 2011). 

These negative reports could be attributed to a lack of protein presence in the healthy 

donors assayed or low copy numbers of these proteins or transcripts, below detection 

thresholds. In support of this, the human proteome does not detect the presence of 

TLRs, but their expression has been evidenced by traditional biochemistry and 

functional studies both in vivo and in vitro (Biswas et al., 2017, Fung et al., 2012, 

Damien et al., 2015, Vogel et al., 2018a, Vogel et al., 2018b, Rex et al., 2009).  
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Table 9. Protein name, accession code, confidence of signal and estimated copy 
number for each component of the NLRP3 inflammasome in human platelets 
(Burkhart et al., 2012). 

Protein Accession Confidence (%) Copy number 

NLRP3 Q96P20 - - 

ASC Q9ULZ3 100 1,000 

Caspase-1 P29466 - - 

Gasdermin D P57764 100 1,500 

IL-1β P01584 - - 

 

 

Table 10. Protein name, accession code and estimated copy number for each 
component of the NLRP3 inflammasome in murine platelets (Zeiler et al., 2014). 

Protein Accession Copy number (+/- variation) 

NLRP3 Q8R4B8 - 

ASC Q9EPB4 3,743 +/- 1,375 

Caspase-1 P29452 - 

Gasdermin D Q9D8T2 308 +/- 111 

IL-1β P10749 - 

 

 

Table 11. Protein name, genecard symbol and relative expression rank in the 
transcriptome for each component of the NLRP3 inflammasome (Rowley et al., 
2011). 

Protein Symbol Human rank Murine rank 

NLRP3 NLRP3 5913 10955 

ASC PYCARD 3005 4178 

Caspase-1 CASP1 3365 6354 

Gasdermin D GSDMD 4114 9645 

IL-1β IL1B 4972 5773 

 

We attempted to assess the expression of NLRP3 inflammasome components by 

protein biochemistry; immunoprecipitation and immunoblot. We were able to 

immunoprecipitate a clear NLRP3 band, however this migrated at a molecular weight 

different to that predicted from the literature by roughly 30 kDa. The data indicated 

that immunoblotting confidently detected three potential components of this complex 
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including ASC, caspase-1 and gasdermin D. While efforts to detect caspase-1 

cleavage, IL-1β and NLRP3 were challenging. 

The above data was then compared and summarised in a single table to compare 

expression of NLRP3 inflammasome complex proteins by different methods including 

open access proteomics, transcriptomics and our own protein biochemistry of platelet 

lysates. In summary, only ASC and gasdermin D are present across all three studies 

(Burkhart et al., 2012, Zeiler et al., 2014, Rowley et al., 2011), including our own 

(Table 12). 

 

Table 12. NLRP3 inflammasome complex components presence based on 
proteomic data (Burkhart et al., 2012), transcriptomic data (Rowley et al., 
2011) and own immunoblots and immunoprecipitations. += present, -=not-
present, ~=further validation and X=not tested. 

Protein Proteom
e (h) 

Transcri
pt (h) 

Lysate 

(h) 

Proteom
e (m) 

Transcri
pt (m) 

Lysate 

(m) 

NLRP3 - + ~ - +  

ASC + + + + + + 

Caspase-1 - + + - +  

Gasdermin D + + + + +  

IL-1β - + - - +  

 

A novel finding made here was that platelets express primarily a spliced transcript of 

ASC (Matsushita et al., 2009), which is suggested to be constitutively active or play 

regulatory roles in NLRP3 activity depending on the spliced variant expressed (Bryan 

et al., 2010). What is known is that ASC recruitment is a vital step in NLRP3 activity 

(Dick et al., 2016), one could hypothesise, that if ASC is able to oligomerise without 

NLRP3, NLRP3 itself may not be required in platelets to activate ASC CARD domains 

and recruit caspase-1, potentially explaining why the MCC950 did not work in this 

model. Further studies are required on the capacity of platelet ASC to oligomerise, 

and this can be pursued by both CHAPS cross-linked immunoblotting for oligomers 

or light microscopy for ASC puncta (Dick et al., 2016). We also identified that platelets 
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express gasdermin D, a novel finding that has not previously been described but 

which requires further work, as if confirmed, gasdermin D pore formation could well 

represent a novel node of cargo trafficking available to platelets (Liu et al., 2016), 

particularly if as some literature suggests platelet NLRP3 is activated by typical 

platelet agonists (Murthy et al., 2017, Qiao et al., 2018). The fact that several 

components of the pathway are present would suggest that; (i) there is some capacity 

to enact NLRP3 like activity via a novel pathway, (ii) an alternative and as of yet 

undetected NLR complex exists, where a recent proteomic study detected NLRP2 

(Trugilho et al., 2017), (iii) the NLRP3 inflammasome is present in platelets and 

detection and inhibition remains a challenge. However, without the confirmation of 

the NLRP3 inflammasome in this study, these suggested points currently remain 

speculation. 

Our findings here raise some discrepancies when compared with the literature 

currently surrounding the NLRP3 inflammasome in platelets. Where several platelet 

NLRP3 papers all provide functional evidence of NLRP3 activity (Hottz et al., 2013, 

Murthy et al., 2017, Qiao et al., 2018, Vogel et al., 2018a, Vogel et al., 2018b) and 

there is also prior evidence of platelets cytokines downstream of NLRP3, IL-1β 

(Brown et al., 2013, Nhek et al., 2017), or IL-18 (Allam et al., 2017). Furthermore, 

activation of the inflammasome in platelets, in our study and others, has been 

measured primarily using the FLICA assay. In comparison with our own work, the 

effects of MCC950 on platelet inflammasome activity have been small in the literature 

(Vogel et al., 2018a). However, there has been little evidence of protein expression 

by immunoblot of NLRP3 bar a single report (Vats et al., 2019), which has routinely 

been shown in leukocytes, and indeed in almost all leukocyte NLRP3 papers since 

the field was started (Agostini et al., 2004). Instead, platelet studies have typically 

used fluorescent flow cytometry (Hottz et al., 2013) or fluorescent microscopy (Vogel 

et al., 2018a), which intrinsically have fewer controls than traditional protein detection 

by immunoblot.  
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Chapter 5 

Mitochondrial dysfunction under lipid stress 

5.1 INTRODUCTION 

Platelets are metabolically active cells and demand for energy production increases 

on activation (Aibibula et al., 2018). Therefore a decreased mitochondrial activity 

leads to platelets which are hyporesponsive (Baaten et al., 2018). Beyond the 

requirement of functional mitochondria for effective platelet haemostatic activity, 

mitochondria have been implicated as key regulators of NLRP3 activity in other cell 

types (Zhou et al., 2011) and also in platelets (Hottz et al., 2013). Platelet 

mitochondria also regulate the procoagulant platelet phenotype – where 

mitochondrial depolarisation driven by sustained calcium signalling is a key event in 

the pathway leading to phosphatidylserine exposure (Choo et al., 2017, Choo et al., 

2012). 

Mitochondrial superoxide anion (O2
•-) is produced from the electron transport chain 

and is reduced by manganese superoxide dismutase (Mn+ SOD) to H2O2 which can 

leave the mitochondria into the cytoplasm. In the cytoplasm, H2O2 is broken down by 

catalase to produce H2O and O2 (Collins et al., 2012). Mitochondrial membrane 

potential can be diminished by excess mitochondrial ROS, and when membrane 

potential is lost, this further increases the rate of mitochondrial ROS production, 

leading to a snowball effect of mitochondrial dysfunction. These mitochondrial ROS 

can leak out of the mitochondria if the mitochondrial permeability transition pore is 

formed (Schulz et al., 2014). Mitochondria play a key role in many cellular signalling 

pathways (Tait and Green, 2012) and by measuring markers of mitochondrial stress 

we aim to link mitochondrial dysfunction to a functional platelet phenotype.  

Mitochondrial function in platelets has previously been measured and shown to be 

implicated in several aspects of platelet function, including activation, ageing and 

necrosis (Gyulkhandanyan et al., 2012, Fidler et al., 2017, Zhao et al., 2017, Baaten 
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et al., 2018, Obydennyi et al., 2019, Zhang et al., 2019). Collagen-GPVI mediated 

platelet activation has been shown to be potentiated by hyperglycaemia driven by 

mitochondrial superoxide production (Yamagishi et al., 2001). In aged mice, 

mitochondria are changed in circulating platelets by parent megakaryocytes which 

are suggested to drive an age-associated hyperactivity phenotype (Davizon-Castillo 

et al., 2019). Furthermore, in Wiscott-Aldrich syndrome patients, platelets are shown 

to undergo mitochondrial-dependent necrosis on activation (Obydennyi et al., 2019). 

Understanding there is a key role for mitochondria in the regulation of many facets of 

platelet function, we sought to understand how oxLDL or lipid stress may be affecting 

platelet mitochondrial function. In other cell types oxLDL has been shown to affect 

mitochondrial function having several effects; driving mitochondria-dependent 

apoptosis in endothelial cells (Vindis et al., 2005), mitochondrial ROS production in 

endothelial cells (Chowdhury et al., 2010, Zmijewski et al., 2005), mitochondrial ROS 

production in macrophages (Asmis and Begley, 2003) and hyperpolarisation in 

enterocytes (Giovannini et al., 2002). This suggests a clear effect of oxLDL on 

metabolism in cells from multiple lineages, however, the effects of oxLDL on platelet 

or megakaryocyte metabolism has not been previously explored. Nevertheless, we 

have previously shown that ROS are produced in platelets in response to oxLDL 

(Magwenzi et al., 2015, Berger et al., 2019b), and that ROS signal from oxLDL 

treatment is sustained over several hours (Berger et al., 2019b), which is in contrast 

with the spike of ROS on GPVI activation (Walsh et al., 2014), suggesting that this 

divergence in ROS kinetics may control different platelet function. 

To further understand the mechanisms of this pathway, several known pathways 

could be targeted to determine how oxLDL is transducing a signal to the mitochondria 

leading to the observed dysfunction. The first and most well described pathway 

through which oxLDL signals in platelets is via CD36. CD36 ligation with oxLDL has 

been shown to drive platelet activation via; Spleen tyrosine kinases (SYK) and Rho 

(Wraith et al., 2013), PLCγ2 and ROS (Berger et al., 2019b), disinhibition of NO via 
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NOX2 (Magwenzi et al., 2015), disinhibition of PGI2 via PDE3a (Berger et al., 2019a), 

JNK (Chen et al., 2008) and ERK5 (Yang et al., 2017a). Recent studies in platelets 

have also now demonstrated a role for CD36 signalling in conjunction with other 

receptors, primarily Toll-like receptors (TLRs). This was first described in 

macrophages as being a CD36, TLR4 and TLR6 (Stewart et al., 2010) heteromeric 

complex, however it was then further described as a CD36, TLR2 and TLR4 (Chavez-

Sanchez et al., 2014) complex. In platelets, oxLDL signalling has been suggested to 

be via a different heteromeric complex to that detailed above; CD36, TLR2 and TLR6 

(Biswas et al., 2017). Other receptors on the platelet surface which may bind to 

oxLDL alongside CD36 include LOX1 and SRB1 (Levitan et al., 2010) and TLR2/4 in 

a heteromeric complex with CD36 (Biswas et al., 2017, Chavez-Sanchez et al., 

2014). LOX1 has been shown to be expressed on the platelet surface downstream 

of activation (Chen et al., 2001). Importantly for this study, LOX1 has also been 

shown to directly drive mitochondrial dysfunction and release of mtDNA – in turn 

activating the NLRP3 inflammasome (Christ and Latz, 2014). Additionally, LOX1 has 

been suggested to target the mitochondrial enzyme arginase II (ARG2) via ROCK 

(Touyz, 2014). Furthermore, and in support of LOX1 activation related to modified 

LDL and metabolic defects, a recent clinical study has identified circulating soluble 

LOX1 as a marker of the metabolic syndrome (MetS) which further correlates with 

another modified LDL, carbamylated LDL (cLDL) (Stankova et al., 2019). 

Therefore, within our system, we sought to understand how oxLDL, a key ligand in 

atherogenic lipid stress (Podrez et al., 2002a), may modulate mitochondrial biology, 

particularly in the context of mitochondrial superoxide production and mitochondrial 

membrane potential. We hypothesised that these observations may provide a 

functional link between oxLDL and the potentiation of FLICA/caspase-1 cleavage 

signal. 
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5.2 AIMS OF CHAPTER 

- To measure platelet mitochondrial function in response to lipid stress 

- To understand if platelet mitochondrial function changes in a model of diet-

induced hyperlipidaemia 
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5.3 PLATELET MITOCHONDRIAL SUPEROXIDE 

Previous FLICA findings suggested the potentiation of caspase-1 cleavage was 

driven by oxLDL but not by the control, nLDL. Furthermore, the data from section 

4.3.5 (Figure 50) indicated that these effects were mediated by ROS and calcium. 

Both calcium and ROS are intrinsically related to modulating mitochondrial function 

and ROS are additionally produced by mitochondria (Tait and Green, 2012, Schulz 

et al., 2014). Therefore, we chose to examine whether oxLDL modulated 

mitochondrial biology, specifically mitochondrial superoxide production, a potent 

source of intracellular ROS. 

A cell-permeant fluorescent probe assay which fluoresces when oxidised in 

mitochondria, mitoSOX, was established. This dye has previously been applied to 

measure platelet superoxide production (Hottz et al., 2013, Fidler et al., 2017), but 

platelet mitochondrial dysfunction in the context of lipid stress has not previously 

been measured.  

 

5.3.1 MitoSOX titrations 

The basis for this assay is a cell-permeant dye which fluoresces upon oxidation, and 

cell loading titrations were performed using the positive control antimycin A (AA; 100 

µM), which blocks complex 3 of the electron transport chain leading to superoxide 

leak. Each dilution was compared with a basal sample at a matched concentration, 

this comparison allows a comment on the sensitivity. As before calculating fold over 

control allows the condition with the highest fold increase, and therefore optimal 

window for detection of changes to be selected. There was a consistent signal in 

basal samples which did not change when incubated with increasing amounts of 

mitoSOX dye. Antimycin A (100 µM) caused increased signal as a function of dye 

concentration and it was determined that 5 µM dye provided the optimal window for 

positive signal to be measured (Figure 63). This is a dose of the dye that has 
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previously been loaded into washed platelets to measure mitochondrial superoxide 

(Fidler et al., 2017). 
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Figure 63. MitoSOX dye titration. Washed human platelets (2 x 106) were treated 
with or without antimycin A (100 µM) for 20 minutes prior to incubation with or 
without mitoSOX (1 – 5 µM) for 10 minutes. Samples were then diluted 10x in 
PBS and analysed by fluorescent flow cytometry. (n=1) 
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5.3.2 Antimycin A dose and time response 

Antimycin A targets and blocks complex 3 of the mitochondrial electron transport 

chain (Potter and Reif, 1952). Blocking complex 3 is known to induce superoxide leak 

from the electron transport chain, therefore we can use this agonist as a positive 

control ligand for mitoSOX (Park et al., 2007). Here in washed human platelets, time 

and dose responses against antimycin A were performed to determine the sensitivity 

of the assay. At 0 minute basal, fluorescent signal was low, suggesting basal 

mitochondrial superoxide production in platelets was also low (569.1±23), and this 

was increased after 60 minutes of resting (730.4±86). Antimycin A (10 – 100 µM) 

caused a concentration dependent increase in superoxide generation when 

incubated for 60 minutes, with a significant increase over time matched basal 

observed at 50 and 100 µM (1229±374 and 1345±355 (p<0.05) respectively) (Figure 

64). Antimycin A (50 µM) also increased superoxide production in a time-dependent 

manner and outstripped basal at 60 minutes (730.4±86) after just 15 minutes with 

antimycin A (810.8±159) with maximal effects seen at 60 minutes (1117±263, 

p<0.005, longest time tested) (Figure 64). This suggested the assay was sensitive to 

small changes in superoxide production at short time points and did not only detect 

changes at maximal dose/time. 
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Figure 64. MitoSOX antimycin A dose and time response. Washed human 
platelets (2 x 106) were treated with or without antimycin A (10 – 100 µM) for 60 
minutes or with or without antimycin A (50 µM) for 1 – 60 minutes prior to 
incubation with mitoSOX (5 µM) for the final 10 minutes of incubation. Samples 
were then diluted 10x in PBS and analysed by fluorescent flow cytometry. (One-
way ANOVA vs. basal sample, *<0.05, **<0.01 and ***<0.005, error shown as 
standard deviation, n=3-4)  
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5.4 OXIDISED LDL AND MITOCHONDRIAL SUPEROXIDE 

5.4.1 OxLDL dose and time response 

Having determined that the assay is sensitive over a wide range of time points and 

several doses of the positive control antimycin A, we next performed dose and time 

responses with oxLDL comparing it to basal and nLDL treated platelets. The mitoSOX 

probe was added 10 minutes prior to analysis, the assay was designed like this to 

avoid continued kinetic activation of the dye and false amplification of the signal. 

However, as part of this study we also explored if pre-incubation of the samples with 

the dye for 10 minutes followed by incubation with the agonist could improve the 

sensitivity of the assay through the amplification of superoxide signal (Figure 65). 

Performing the assay with dye incubated for only 10 minutes prior to analysis, we 

used antimycin A as a positive control which was significantly increased over basal 

(1840±412 vs. 634.9±29, p<0.0001) and confirmed the assay was functioning 

appropriately. We were then able to show that oxLDL (6.25 - 200 µg/mL) induced a 

dose-dependent increase in mitochondrial superoxide with maximal effects observed 

at 200 µg/mL (1055±198, p<0.05). In contrast, the signal at maximal dose of nLDL 

(617.6 ±49) was not significantly different from basal. Although the difference in signal 

was not statistically significant at all doses of oxLDL, there was an obvious trend that 

as the concentration of added oxLDL increased so did the level of superoxide (Figure 

66). There was also a time-dependent increase in mitochondrial superoxide when 

the concentration of added oxLDL was a constant (50 µg/ml). Again, increases in MFI 

were not statistically significant for all time points but nonetheless increase was seen 

after the shortest time point (674.7±37), and significant increases were then observed 

after at 90 minutes (894.4±115, p<0.05) and 180 minutes (1037.0±172, p<0.01). 

Crucially, the control nLDL at 180 minutes was again not different from basal (634.6± 

38) (Figure 66).  
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Figure 65. Timeline of two mitoSOX dye loading strategies. Two mitoSOX 
staining strategies were used in this study. Protocol one was used in Figure 66, 
and protocol two in Figure 67. A total oxLDL incubation of 90 minutes is used 
but the incubation of mitoSOX was varied. 

  



- 212 - 

 

Figure 66. MitoSOX oxLDL dose and time response. Washed human platelets (2 
x 106) were treated with oxLDL or nLDL (6.25 – 200 µg/mL) for 60 minutes or 
with oxLDL or nLDL (50 µg/mL) for 15 – 180 minutes prior to incubation with 
mitoSOX (5 µM) for the final 10 minutes of incubation. Antimycin A (100 µM, 30 
minutes) was used as a positive control and stained in the same way. Samples 
were then diluted 10x in PBS and analysed by fluorescent flow cytometry. (One-
way ANOVA vs. basal, ns=non-significant, *<0.05, **<0.01and ****<0.0001, 
error shown as standard deviation, n=3-11) 
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We repeated the previous experiment and explored if pre-incubation of the samples 

with the dye for 10 minutes followed by the agonist incubation would affect sensitivity 

(Figure 65). Under these conditions antimycin A (100 µM) again increased the MFI 

from 590.2±37 to 2111.2±623 (p=<0.0001) (Figure 67). Interestingly, the increase in 

MFI was not that different to that observed when mitoSOX was added at the assay 

endpoint (634.9±29 to 1840±412) (Figure 66), suggesting that assay performance 

was not affected by longer incubations with the dye and that the effects of antimycin 

A were likely maximal. In agreement with our previous findings oxLDL increased the 

level of superoxide in both a time and dose-dependent manner. OxLDL (200 µg/mL) 

increased MFI over nLDL (200 µg/mL) from 898.3±116 to 1498.7±78 (p=<0.05). 

Furthermore, at 120 minutes, oxLDL (50 µg/mL) increased MFI signal over nLDL (50 

µg/mL) from 988.0±209 to 1576.0±296 (p=<0.05) (Figure 67). In comparison, when 

the dye was added for 10 minutes post agonist treatment (Figure 66), oxLDL (200 

µg/mL) increased MFI over nLDL (200 µg/mL) from 617.6±49 to 1054.6±198 and at 

120 minutes, oxLDL (50 µg/mL) increased MFI signal over nLDL (50 µg/mL) from 

634.6±38 to 1037.2±172. Therefore, it was concluded that the differences between 

nLDL and oxLDL were greater when the dye was incubated for the duration of the 

experiment suggesting that this approach provided a better window of sensitivity. An 

additional advantage to using this incubation approach, is that it allows for the basal 

accumulation of superoxide to be assessed, here the basal superoxide signal was 

590.2±37, 1025.0±282 and 1130.6±264 at 0, 90 and 120 minutes respectively, for 

reference background unstained signal was 487.0±2, importantly these basal signals 

were exceeded in all cases by oxLDL signal at the relative time points (Figure 67). 
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Figure 67. MitoSOX oxLDL dose and time response with assay redesign. 
Washed human platelets (2 x 106) were loaded with mitoSOX (5 µM) for 10 
minutes and then treated with oxLDL or nLDL (12.5 – 200 µg/mL) for 60 minutes 
or with oxLDL or nLDL (50 µg/mL) for 15 – 120 minutes. Antimycin A (100 µM, 
30 minutes) was used as a positive control and stained in the same way. 
Samples were then diluted 10x in PBS and analysed by fluorescent flow 
cytometry. (One-way ANOVA vs. nLDL, ns=non-significant, *<0.05 and 
****<0.0001, error shown as standard deviation, n=3) 
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Having shown that using an assay design whereby the dye was incubated for the 

duration of the experiment is permissible and allows basal signal to be measured; 

the increased basal signal observed prompts the question of whether this assay 

design would allow the dye to be used as a kinetic measurement rather than the 

standard approach whereby single tubes are read at x time point and then discarded. 

Consequently, we compared a time response of oxLDL set up using single tubes for 

each condition, which were then read at x time point and discarded, against tubes 

read repeatedly for each increasing time point. Consistent with previous single tube 

with dye incubated throughout the time course, oxLDL (50 µg/mL) increased 

superoxide over time (30 – 120 minutes) which was elevated over matched basally 

treated time points (120 minutes) from 1130.6±264 to 1576±296 (Figure 68). Kinetic 

tubes also demonstrated an increase in MFI when comparing basal and oxLDL (50 

µg/mL, 120 minutes) from 843.1±50 to 1526.4±143 respectively (Figure 68). The 

comparison between single and kinetic tubes demonstrated a similar increase in 

oxLDL treated superoxide signal, but the use of kinetic tubes also removed/reduced 

the increase in basal signal over time, where basal (120 minutes) in single tubes was 

1130.6±264 and in kinetic tubes was 843.1±50. 

This demonstrated that the assay could be used in a kinetic manner without the need 

for multiple tubes for each condition and suggested that a kinetic read ablates the 

error in increasing basal signal and also reduces intrinsic assay error as single tubes 

are read repeatedly eliminating tube-tube error. As a result, the sensitivity to measure 

an increase in superoxide stimulated by oxLDL was increased. Ultimately, we have 

shown that when dye is pre-loaded into the assay (protocol 2) and a kinetic process 

of measurements is used then optimal conditions are obtained. 
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Figure 68. Single tubes versus kinetic reading. Washed human platelets (2 x 106) 
were loaded with mitoSOX (5 µM) for 10 minutes and then treated with oxLDL 
or nLDL (50 µg/mL) for 30 – 120 minutes. Antimycin A (100 µM, 30 minutes) 
was used as a positive control and stained in the same way. Samples were 
then diluted 10x in PBS and analysed by fluorescent flow cytometry, kinetic 
samples were single tubes from the earliest time point for each treatment that 
were then re-read at each subsequent time point. (Error shown as standard 
deviation, n=3) 
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5.4.2 ROS scavenger screen against oxLDL induced superoxide 

The demonstration that oxLDL, but not nLDL, drove a time and dose-dependent 

increase in platelet mitochondrial superoxide is a novel finding. To understand this 

further and explore the mechanisms driving the process we used several 

pharmacological inhibitors to confirm the source of ROS. 

We used oxLDL at a fixed dose and time point (50 µg/mL & 90 minutes) and pre-

treated samples with two scavengers, the mitochondrial superoxide scavenger 

mitoTEMPO (mT, 100 µM) and the cytoplasmic ROS scavenger NAC (5 mM). 

Antimycin A (100 µM) caused a significant increase in MFI from 634.9±29 to 

1839.7±412 which was significantly reduced to 952.9±107 by the presence of 

mitoTEMPO (p<0.0001), and therefore confirmed mitoTEMPO was an effective ROS 

scavenger (Figure 69). OxLDL (50 µg/mL, 90 minutes), caused a significant increase 

in MFI (894.4±115) over basal (634.9±29) (p<0.05) but this was not seen for nLDL 

(614.4±40) (Figure 69). In contrast to the effect of mitoTEMPO on antimycin A, 

attempts to scavenge oxLDL mediated superoxide demonstrated no significant 

decreases in MFI for oxLDL (894.4±115) compared to oxLDL + mitoTEMPO 

(774.5±125), with just a trend of reduction observed. Furthermore, the addition of 

NAC with oxLDL showed no difference in MFI (853.5±177), but as NAC scavenges 

cytoplasmic ROS and not mitochondrial superoxide this may mean it does not have 

access to the mitochondria. The inability of mitoTEMPO to cause a marked return to 

basal could be interpreted in several ways; (i) the superoxide signal from the oxLDL 

is false signal; (ii) the scavenging capacity of the mitoTEMPO is limited (superoxide 

is not returned to basal even with effective scavenging in antimycin A samples), or 

(iii) the mitoSOX assay is not sensitive enough to determine such subtle changes, 

where the increase over basal is already small (+260 a.u). However, with increased 

repetition of the experiment, the scavenging of oxLDL mediated superoxide would 

likely become more distinct. Considering the clear effects of oxLDL when compared 
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to the control nLDL and the non-return to basal of scavenged antimycin A superoxide, 

an informed assumption suggests the issue is a combination of points ii and iii. 
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Figure 69. MitoSOX treated with ROS scavengers. Washed human platelets (2 x 
106) were treated with oxLDL or nLDL (50 µg/mL) for 90 minutes prior to 
incubation with mitoSOX (5 µM) for the final 10 minutes of incubation. Antimycin 
A (100 µM, 30 minutes) was used as a positive control and stained in the same 
way. In some cases, samples were pre-incubated with mitoTEMPO (mT) (100 
µM, 20 minutes) or N-acetyl-cysteine (5 mM, 20 minutes) prior to agonist 
addition. Samples were then diluted in PBS 10x and analysed by fluorescent 
flow cytometry. Individual donors are shown as superimposed points over each 
bar. (One-way ANOVA vs. shown, ns=non-significant, *<0.05 and ****<0.0001, 
error shown as standard deviation, n=3-11) 
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5.5 MURINE MITOCHONDRIAL SUPEROXIDE 

5.5.1 Murine antimycin A dose and time 

Having confirmed that superoxide production in mitochondria mediated by oxLDL is 

increased in human platelets, we next sought to replicate this study using a murine 

model. Here we wanted to validate the mitoSOX assay in murine platelets, so that 

we could later screen transgenic or diet-fed murine platelets. In washed wild type 

murine platelets, we performed time and dose responses against antimycin A. 

Antimycin A (1 – 10 µM), caused a dose dependent increase in MFI, with maximal 

effects over basal observed at 10 µM (2016.2±137 vs. 1244.6±310, 10 µM vs. basal). 

Using a constant 10 µM concentration of antimycin A, a time dependent increase in 

superoxide production was observed with MFI increasing from 622.7±25 at basal to 

931.9±65 after 1 minute (p<0.05) and 2295±159 after 60 minutes (p<0.0001) (Figure 

70). The increase in superoxide occurred rapidly after just 1 minute of treatment and 

the MFI measured at every treated time points were significantly different to the basal 

at 0 minutes (Figure 70). Specifically, for time-matched comparison, the MFI at 60 

minutes basal was 1244.6±310 and after 60 minutes of antimycin A treatment had 

increased to 2294.8±159 (Figure 70). 
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Figure 70. Murine mitoSOX antimycin A dose and time response. Washed 
murine platelets (2 x 106) were loaded with mitoSOX (5 µM) for 10 minutes and 
then treated with or without antimycin A (1 – 10 µM) for 60 minutes or with or 
without antimycin A (10 µM) for 1 – 60 minutes. Samples were then diluted 10x 
in PBS and analysed by fluorescent flow cytometry. Individual mice are shown 
as superimposed points over each bar. (One-way ANOVA vs. basal, *<0.05, 
**<0.01 and ****<0.0001, error shown as standard deviation, n=4) 
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5.5.2 Platelet mitochondrial superoxide in murine models of 

atherosclerosis 

Having validated the applicability of the mitoSOX assay in wild type murine platelets 

we tested if platelet superoxide generation was altered in genetically instigated 

hyperlipidaemia. For this, we first compared wild type animals against the transgenic 

ApoE-/- model, where mice are spontaneously hyperlipidaemic, inflammatory and 

develop early atherosclerotic plaques (Getz and Reardon, 2006). MFI for mitoSOX 

increased from 710.2±78 for wild type murine platelets to 1135.8±308 for the ApoE-

/- platelets (p<0.01) (Figure 71). Further investigation using a double knockout model 

deficient in GP91 a component of NOX2, ApoE/GP91-/- confirmed that basal 

superoxide was derived from mitochondrial sources, and not the cytoplasmic ROS 

generator NOX2 (Magwenzi et al., 2015). Similar to the ApoE, and in support of that 

observation, this double knockout also had increased platelet mitochondrial 

superoxide above wild type (1110.5±151) (p<0.05), indicating that NOX2 was not 

responsible for superoxide production under these conditions but the effects of ApoE 

knockout were conserved (Figure 71). This demonstrated that platelets from mice 

under lipid and inflammatory stress demonstrate increased basal superoxide. 
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Figure 71. MitoSOX basal superoxide in murine models of atherosclerosis. 
Washed murine platelets (2 x 106) were loaded with mitoSOX (5 µM) for 10 
minutes. Samples were then diluted 10x in PBS and analysed by fluorescent 
flow cytometry. Individual mice are shown as superimposed points over each 
bar. (One-way ANOVA vs. basal, *<0.05 and **<0.01, error shown as standard 
deviation, n=3-8) 

  



- 224 - 

5.6 PLATELET MITOCHONDRIAL MEMBRANE POTENTIAL 

Mitochondrial membrane potential can be used as a measure of the hyper-, normo- 

or hypopolarisation of the mitochondria (Joshi and Bakowska, 2011). 

Hypopolarisation is a collapse of the gradient across the mitochondria, this is often a 

pre-cursor to apoptosis. Hyperpolarisation describes an increase in the mitochondrial 

electrochemical gradient and may drive mitochondrial hyperactivity. Both events are 

likely to lead to an increased production of mitochondrial superoxide. Having shown 

that oxLDL can induce changes in mitochondrial function and drive superoxide 

production, we explored other measures of mitochondrial dysfunction to confirm 

these findings and further understand the involvement of oxLDL in mitochondrial 

superoxide formation. Specifically, we explored the effects of lipid stress on 

mitochondrial membrane polarisation. 

 

 5.6.1 TMRE titrations 

TMRE is a dye which collects within mitochondria against an electrochemical 

gradient, therefore it can be used as a marker of mitochondrial hyperpolarisation or 

depolarisation (Joshi and Bakowska, 2011). TMRE is incompatible with whole blood 

and therefore must be used with washed cells. To optimise assay design for accurate 

discrimination between normally polarised platelet mitochondria and depolarised or 

hyperpolarised platelet mitochondria the dye was titrated to determine the optimum 

staining concentration. Here we determined that 50 nM of TMRE dye, staining 2 x 

106 washed platelets was the optimum concentration compared to the FCCP (20 µM) 

control (Figure 72). This was determined based on the largest fold-decrease between 

the stained and the FCCP treated sample, where FCCP was used to induce 

depolarisation and therefore prevent TMRE accumulation and drive a decrease in 

TMRE signal (Toninello and Siliprandi, 1982). At 20 minutes incubation with 50 nM 

of dye, there was a 3-fold decrease in fluorescence. Comparatively, at excess levels 
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of dye, the higher concentration drove increased accumulation of the dye which then 

became insensitive to changes in mitochondrial membrane potential. For example, 

using 400 nM over 20 minutes resulted in only a 1.1-fold decrease. 

In order to translate these findings to murine models of obesity, dyslipidaemia or 

genetic knockouts as previously used in mitoSOX studies, TMRE was also titrated in 

murine platelets. We determined that, in similarity to human samples, 50 nM of TMRE 

dye staining 2 x 106 washed platelets for 20 minutes was the optimal concentration 

over FCCP (20 µM) control demonstrating a 3-fold decrease in fluorescence when 

treated with FCCP (Figure 73). 
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Figure 72. Titration of TMRE. Washed human platelets (2 x 106) were pre-treated 
with or without FCCP (20 µM) for 20 minutes and then stained with TMRE (50 
– 400 nM) for 10 or 20 minutes. Samples were then diluted 10x in PBS and 
analysed by fluorescent flow cytometry. Total MFI and fold over matched 
control are shown. (n=1) 
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Figure 73. Murine TMRE titration. Washed murine platelets (2 x 106) were pre-
treated with or without FCCP (20 µM) for 20 minutes and then stained with 
TMRE (50 – 400 nM) for 10 or 20 minutes. Samples were then diluted 10x in 
PBS and analysed by fluorescent flow cytometry. Total MFI and fold over 
matched control are shown. (n=1) 
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5.6.2 OxLDL and mitochondrial membrane potential 

Having confirmed that TMRE is an assay which is sensitive to changes in 

mitochondrial membrane potential in platelets, the next step was to identify if oxLDL 

influenced mitochondrial membrane potential in addition to superoxide production. 

Platelets (2x106 cells) were treated with oxLDL and nLDL (50 µg/ml) and changes in 

membrane potential were measured over time, including a 90-minute time point, 

which is comparable with the time point at which the majority of mitoSOX studies 

were performed. 

FCCP (20 µM) caused a significant decrease in MFI, from 5451.5 to 580.1 after 90 

minutes, which indicated a clear shift from normopolarised to hypopolarised 

mitochondria and loss of TMRE signal. This was observed for all time points where 

FCCP induced depolarisation of the platelet mitochondria. Furthermore, across the 

course of the experiment (0 – 180 min) basal polarisation decreased – although this 

did not reach the level of staining indicated as depolarised (FCCP treated) across 

time points tested (Figure 74). This steady loss of mitochondrial membrane potential 

could be explained by, or explain the short half-life of the washed platelet which 

typically begin losing function beyond 360 minutes of 37̊C storage. 

In contrast to FCCP, oxLDL significantly increased the TMRE signal at all time points 

measured over both basal (5451.5 to 9861.8, 90 minutes) and the control nLDL 

treated samples (5222.8), which suggests that oxLDL is driving significant 

mitochondrial hyperpolarisation in platelets. A key control was the dual FCCP/oxLDL 

treated sample, which demonstrated a total loss of fluorescent signal indicating that 

the increased MFI was neither autofluorescence of the LDL particles or binding of 

TMRE to LDL. After treatment with nLDL, polarisation remained consistent with time 

matched basal at 90 minutes but increased against time matched basal after 180 

minutes. This suggested that at the longer time points nLDL could be maintaining 

some mitochondrial membrane potential, but vitally it did not exceed the initial basal 
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(0 minutes) MFI reading, which demonstrated nLDL does not drive hyperpolarisation 

while oxLDL convincingly does (Figure 74). 
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Figure 74. TMRE oxLDL time course. Washed human platelets (2 x 106) were pre-
treated with or without FCCP (20 µM) for 20 minutes and/or treated with oxLDL 
or nLDL (50 µg/mL) for 0 – 180 minutes. Samples were then stained with TMRE 
(50 nM) for the final 20 minutes. Samples were then diluted 10x in PBS and 
analysed by fluorescent flow cytometry. Individual donors are shown as 
superimposed points over each bar. (n=1-2) 
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5.7 MURINE PLATELET MITOCHONDRIAL FUNCTION IN DIET-INDUCED 

OBESITY 

In sections 5.4, 5.5 and 5.6, we concluded that oxLDL causes increased 

mitochondrial superoxide and mitochondrial membrane polarisation. Therefore, we 

sought to examine if western diet-induced obesity influenced murine platelet 

mitochondrial function. 8-week old C57/Bl6 mice were fed for up to 16 weeks with 

either normal chow or a western diet (WD) (45% fat). Several parameters were 

measured from these mice including; systemic changes such as weight, insulin 

resistance and glucose tolerance, and platelet function; mitochondrial superoxide, 

mitochondrial membrane potential, activation and platelet-monocyte interactions 

(activation and PMA data not shown). This approach allowed a deep phenotyping of 

the effects of obesity in C57/Bl6 mice caused by a prolonged western diet. 

 

5.7.1 Systemic characteristics 

We were able to measure several features to characterise the systemic phenotypes 

of these animals prior to platelet phenotyping. These included weight, post-prandial 

hyperglycaemia and insulin tolerance. This range of tests allowed an evaluation of 

the animal and diagnoses of obesity and/or type 2 diabetes which are both conditions 

likely to be induced by a western diet. C57/Bl6 mice fed a western diet put on weight 

at a greater rate than normal chow-fed animals and this was significantly different 

(p<0.005) at 11 weeks of feeding (Figure 75, weight). A test for post-prandial 

hyperglycaemia induced by fasted glucose bolus, or a glucose tolerance test (GTT) 

is a typical test for type 2 diabetes used in human diabetes and endocrine clinics. 

After 13 weeks of being fed a western diet (WD), fasting blood glucose was 7.7±1.3 

mmol/L which was significantly higher than for normal chow (NC) fed mice (4.7±0.6 

mmol/L). In addition WD showed a diminished reduction over time and remained 

more different to 0 minute basal at 120 minutes (14±1.8 mmol/L WD 120 minutes vs. 

8±0.7 mmol/L NC 120), indicating that the mice are in a state of pre-diabetes (Figure 
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75, GTT). Insulin tolerance is another hallmark of cardiometabolic disease (Golia et 

al., 2014), and can be tested by an insulin tolerance test (ITT), where an injection of 

insulin is provided and response in blood glucose measured. After 13 weeks of 

feeding, the resting blood glucose was again demonstrably different between the two 

feeding regimes, with 10.6±1.3 mmol/L for NC and 13.6±1.6 mmol/L for the WD fed 

mice (p<0.005). However, there was no significant difference in response to insulin 

suggesting the mice are likely not diabetic (Figure 75, ITT). 
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Figure 75. Analysis of systemic changes in a murine model on western diet. 
Murine delta (∆) weight measured over 16 weeks of western diet feeding. 
Glucose tolerance test and insulin tolerance test, both done at 13 weeks 
western diet feeding. (Multiple T-tests with Holm-Sidak multiple comparisons, 
***<0.005 and ****<0.0001, error shown as standard deviation, Weight NC n=3, 
WD n=4; GTT n=5; ITT NC n=4, WD n=5) 
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5.7.2 Platelet mitochondrial function in hyperlipidaemic mice 

Platelet mitochondrial function was examined in both WD and normal chow fed mice 

after 8 and 16 weeks of feeding using the optimised mitoSOX and TMRE assays. 

There were no differences in mitoSOX at basal levels or in response to antimycin A 

(10 µM) between the two feeding regimes at 8 weeks (Figure 76, 8-week mitoSOX). 

After 16 weeks there was a trend that platelets from WD fed mice had a greater 

response to antimycin A, where NC platelet response was 2495.8±417 compared to 

2906.4±465 from WD platelets, but this was not statistically significant (Figure 76, 16-

week mitoSOX). Whilst a phenotype had been anticipated but not observed we can 

be confident in these results, since mitoSOX increased when treated with antimycin 

A and was scavenged by mitoTEMPO indicating the assay was functioning correctly. 

When platelet mitochondrial polarisation was measured by TMRE, we again found 

no significant difference in fluorescence between the feeding regimes after 8 weeks 

(Figure 76, TMRE). At 16 weeks there was evidence of a small increase in basal 

mitochondrial membrane potential for the WD fed mice, from NC at 3668.5±643 to 

WD at 4129.5±456, but again this was not significant (Figure 76, 16-week TMRE). 
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Figure 76. Mitochondrial superoxide and membrane potential in an 8 and 16-
week fed DIO murine model. Grey bars, NC. Pink bars, WD. MitoSOX and 
TMRE staining were performed on murine washed platelets at 2x106 per tube 
as previously described, mitoSOX was loaded prior to agonist addition. 
Treatments included positive control antimycin A, negative controls 
mitoTEMPO and FCCP for mitoSOX and TMRE respectively. Individual mice 
are shown as superimposed points over each bar. (Error shown as standard 
deviation, NC n=3, WD n=4)  
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5.8 DISCUSSION 

While we did not pursue the NLRP3 inflammasome directly any further, primarily due 

to assay limitations and the requirement of murine knockout models, we were able to 

demonstrate that oxLDL had a distinct effect over nLDL on FLICA signal which was 

dependent on calcium and ROS (chapter IV). Calcium is key to the regulation of many 

cellular processes including mitochondrial function itself, and ROS are produced in 

platelets from several sources, but predominantly NADPH oxidases and the 

mitochondria (Schulz et al., 2014). Mitochondria are also involved in the regulation of 

inflammasome activity (Zhou et al., 2011) and were implicated in the initial 

observation regarding the platelet inflammasome (Hottz et al., 2013). Therefore, we 

explored what effects oxLDL may be having on mitochondrial metabolism and 

homeostasis in platelets, to this end we specifically measured mitochondrial 

superoxide production and mitochondrial membrane potential. 

OxLDL, but not control nLDL, was found to induce platelet mitochondria to produce 

superoxide, detected by fluorescent mitoSOX. This is a novel finding and has never 

been observed before in platelets. Furthermore, a second new observation 

demonstrated that oxLDL stimulated increased mitochondrial membrane potential 

detected by fluorescent TMRE and maintained this polarisation over basal and 

control nLDL for up to 3 hours (longest time point measured). While not definitive, 

these two observations could suggest that the increased superoxide production is 

linked to the ability of oxLDL to induced mitochondrial hyperpolarisation. To 

determine the kinetics of the relationship between polarisation and superoxide 

production, co-incubation with oxLDL and mitoTEMPO followed by measurement of 

polarisation would suggest if polarisation occurred prior to superoxide production 

(and is therefore unaffected by scavenging) or is driven by changes in superoxide 

production (and is therefore protected by scavenging).  



- 237 - 

To explore the mechanistic aspects of oxLDL on mitochondrial superoxide 

production, we first applied the general ROS scavenger NAC and the mitochondrial 

specific scavenger mitoTEMPO. Here we were able to show that mitoTEMPO 

significantly reduced the superoxide produced by the positive control antimycin A, 

however it did not drive a significant reduction in oxLDL mitochondrial superoxide, 

although there was a trend towards a reduction in signal. It was possible that these 

observations were due to the small margin of increase induced by oxLDL, which 

reduced the opportunity to detect a significant inhibition of signal. Interestingly, 

mitoTEMPO never fully decreased the maximal effects of antimycin A of superoxide 

generation, and there is also the possibility that the scavenger is not able to fully 

deplete the mitochondria of superoxide. In a second approach, we found that oxLDL 

consistently induced hyperpolarisation of the mitochondria. Together we were able 

to confirm that oxLDL, through a currently unknown mechanism drives mitochondrial 

superoxide production and hyperpolarisation. The functional consequence of this 

mitochondrial dysfunction downstream of oxLDL remains unclear. However, there 

are suggestions in the literature that mitochondrial dysfunction is key to regulating 

NLRP3 inflammasome activity (Zhou et al., 2011, Hottz et al., 2013). Furthermore, 

oxLDL driven mitochondrial dysfunction is perhaps unlikely to affect platelet function 

itself, as several pathways for oxLDL driven platelet hyperactivity have been 

described and phenotypes rescued with no reference to mitochondrial superoxide 

(Berger et al., 2019a, Magwenzi et al., 2015, Wraith et al., 2013). In addition to this, 

a recent study has shown that platelet function is not perturbed by a superoxide 

dismutase 2 (SOD2/Mn+ SOD) platelet specific knockout model either in vitro or in 

vivo (Fidler et al., 2017). These data in conjunction with the results described in this 

chapter suggest platelet mitochondrial dysfunction likely controls aspects of platelet 

function beyond (oxLDL-mediated) haemostatic function. In the future however, this 

work must all be repeated using the now optimised mitoSOX conditions, namely pre-

loading of cells with the permeant superoxide dye followed by kinetic reading of each 
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treatment condition over time, as this has been shown to increase the sensitivity of 

the assay. A striking finding was the effect of oxLDL on mitochondrial membrane 

potential, therefore this study must be pursued and repeated, firstly to validate these 

findings and then to explore the pathways leading to this effect and also the outcomes 

of the mitochondrial hyperpolarisation. 

While we were able to demonstrate that extracellular oxLDL treatment in vitro could 

drive a mitochondrial phenotype, we wanted to ask if this phenotype was also 

apparent in platelets from mice which were both inflammatory and hyperlipidaemic – 

a suitable environment for the production of circulating oxLDL (Kato et al., 2009). 

Therefore, we applied these experimental questions to murine platelets of the 

following genotypes. We compared wild-type C57/Bl6, ApoE -/- and ApoE/GP91 -/- 

mice, where ApoE knockouts are a model of hyperlipidaemia and atherosclerosis 

(Kirii et al., 2003), and GP91 are deficient in the major platelet source of cytoplasmic 

ROS, NOX2 (Magwenzi et al., 2015). Basal mitoSOX in C57/Bl6 mice was consistent 

across all animals tested. However, when compared with ApoE -/- and ApoE/GP91 -/- 

mice, there was a significant increase in superoxide in the mice under 

hyperlipidaemic stress. Furthermore, the inclusion of ApoE/GP91 -/- validated the 

model as independent of NOX2, which has been shown previously to be stimulated 

by oxLDL in platelets to produce ROS (Magwenzi et al., 2015). These differences in 

platelet mitochondrial biology between the transgenic mice requires further 

phenotyping and the inclusion of controls to scavenge superoxide. A further vital 

control to be pursued include a measurement of mitochondrial mass (Zhang et al., 

2019), where this increase in signal from these murine platelets may potentially not 

caused by an increase in superoxide, but rather an increase in mitochondrial mass 

which in turn drives greater dye collection and therefore greater signal. Indeed, such 

a dramatic increase in platelet mitochondrial mass would be equally interesting in this 

context. These novel findings suggest that platelets circulating in murine models with 
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increased lipid stress, and likely circulating oxLDL (Kato et al., 2009), are 

metabolically and functionally different from a healthy donor C57/Bl6.  

To examine our previous observation in transgenic mice further, we applied our 

experimental approach to western diet-fed C57/Bl6 mice at 8 and 16 weeks of 

western diet. This western diet model induces a hyperlipidaemic phenotype which is 

considerably milder than ApoE -/-, particularly in terms of the inflammatory profile 

(Getz and Reardon, 2006). We were able to demonstrate that in the western diet-

induced model of obesity, the C57/Bl6 mice put on weight at an increased rate over 

normal chow. Further analysis suggested that 11-weeks of feeding also showed 

increased resting blood glucose and diminished glucose tolerance but without 

marked insulin resistance. Beyond systemic changes to the mice, we also measured 

for changes in mitochondrial characteristics between the two groups at both 8 and 

16 weeks of feeding using mitoSOX and TMRE to measure mitochondrial superoxide 

and membrane potential respectively. At both time points, 8 and 16-weeks, there 

were no significant differences between the normal chow and western diet-fed 

groups, although, at both stages there was a trend towards an increase in 

mitochondrial superoxide when stimulated with antimycin A and also increased basal 

mitochondrial membrane potential for the WD fed mice compared to the NC mice. 

Reassuringly these trends developed further when comparing them at 8 and 16-

weeks. This pilot study has highlighted the critical difference between western diet 

induced models against transgenic models, suggesting that in less severe 

environments of only dietary pressure, platelets have a capacity to resist dysfunction. 

In interpretation, these results could point towards different phenotypes, for example; 

capacity for mitochondrial superoxide production is increased, mitochondrial 

membrane potential has increased, or tying the two together in a phenotype where 

mitochondrial mass has increased which in turns leads to a greater potential reading 

(due to there being more mitochondria to stain) and a greater superoxide production 

(as there is more mitochondrial surface area). Therefore this study would require 
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additional confirmation of mitochondrial mass changes, measured by either 

transmission electron microscopy (TEM) (Obydennyi et al., 2019) or fluorescent dye 

(Zhang et al., 2019). This study could also be further enhanced by understanding 

how mitochondrial function itself is changing in the presence of oxLDL, notably by 

the bioenergetic measurements of extracellular acidification rate and oxygen 

consumption rate as markers of glycolysis and oxidative phosphorylation respectively 

(Aibibula et al., 2018). The data in terms of increased platelet mitochondrial 

membrane potential in WD may tie in with a study in humans with cardiovascular 

disease, where monocytes bound to platelets were shown to have increased 

mitochondrial membrane potential (Vogel et al., 2015), although this could be from 

the platelets, monocyte or both cells, as the experiments in that study lacked the 

appropriate controls to confirm the source of changes in membrane potential (Vogel 

et al., 2015). Although we were unable to replicate the basal mitochondrial 

superoxide finding of the ApoE -/- models, the differences in systemic phenotype of 

the animals must be considered, where the knockout model is more severe (Getz 

and Reardon, 2006) – however it is likely a viable option to repeat this feeding study 

on animals with an ApoE -/- background to increase the potential for measuring a 

phenotype and repeat mitoSOX, and vitally measured mitochondrial membrane 

potential (TMRE) and add an additional marker of mitochondrial mass. The use of 

TEM (Obydennyi et al., 2019) and fluorescent dye (Zhang et al., 2019) to measure 

mass in conjunction would provide data on; mass, morphology, autophagy, fission 

and fusion simultaneously, all of which have the potential to be affected in a 

hyperlipidaemic environment (Dose et al., 2016). Alternatively, the relatively simple 

approach of continuing to use mitoSOX and TMRE but also measuring these by 

fluorescent microscopy would allow for mitochondrial mass and mitochondrial 

number to be evaluated. 

In summary, we described that oxLDL, but not nLDL, can drive an increase in platelet 

mitochondrial superoxide and membrane potential. Furthermore, in murine models 
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of transgenic hyperlipidaemia, there is a phenotype of increased mitochondrial 

superoxide. However, in diet induced obesity models this is only mildly recapitulated 

and a trend towards increase mitochondrial superoxide and membrane potential. 

This work requires further exploration of mechanisms involved in the transduction of 

oxLDL signal, alongside other changes which may occur in the mitochondria by 

alternative methods and finally investigation into hyperlipidaemic human donors to 

measure if these modifications to platelet mitochondria are present. 
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Chapter 6 

Conclusions and future studies 

6.1 PLATELET REGULATION AND SUBPOPULATIONS 

The application of novel multidimensional analysis to four parameter platelet 

fluorescent flow cytometry is a considerable innovation for platelet biologists. 

Typically, the majority of platelet fluorescent flow cytometry is done using single 

parameter assays, this not only limits the data rich potential of the technique, but it 

prevents true comparisons between markers on single cells and implicates a lack of 

platelet marker controls in each experiment. There are exceptions to this general 

statement, these include the very high parameter application of CyTOF (Blair and 

Frelinger, 2019, Blair et al., 2018) and other multicolour fluorescent flow cytometry 

studies (Reddy et al., 2018, Sodergren and Ramstrom, 2018), however the field is 

still immature compared to cellular immunology where up to 20 parameters are 

routinely applied (Cossarizza et al., 2017). Some groups are however publishing 

guidelines to both advance and standardise best practice in platelet cytometry 

(Spurgeon and Naseem, 2019, Frelinger, 2018, Welch et al., 2018, Ramstrom et al., 

2016, Harrison, 2009, Harrison et al., 2011). The biggest innovation has undoubtedly 

come from the recent analysis of platelets by CyTOF, although the applications of 

CyTOF are powerful (Blair and Frelinger, 2019, Blair et al., 2018), a major caveat is 

the lack of accessibility to mass cytometers, therefore we sought to apply novel 

analytical techniques to fluorescent flow cytometry, an instrument that the majority of 

platelet biologists have access to. Since our initial study validated the potential of 

these analytical innovations paired with four parameter assays and resulted in the 

discovery of rare subpopulations of platelets, we believe this should stimulate the 

field to implement these techniques and continue to investigate and innovate modern 

assay design and analytical approaches. 

Through the measurement of multiple markers simultaneously, we were not only able 

to describe subpopulations and define subsets within large subpopulations, but also 
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able to describe differences in PGI2-cAMP regulation of aspects of platelet activation. 

Reassuringly a recent study, using single colour flow cytometry paired with LTA 

suggested there may well be differences in inhibition of different platelet markers of 

activation (Macwan et al., 2019). We took this further and demonstrated a dichotomy 

in granule secretion and integrin activity or PS exposure through four parameter 

assays with validation by alternative markers. We suggested this plays a role in the 

inhibitory vascular environment in allowing immunomodulatory platelet: monocyte 

interactions but preventing thrombotic platelet: platelet interactions. We further 

applied some mechanistic studies to confirm that PGI2-cAMP protects mitochondria, 

preventing depolarisation upstream of PS exposure and that CD62P is expressed on 

the cell surface independent of robust inhibitory signalling indicated by pVASP-s157. 

 

6.1.1 Future studies 

While several approaches were taken to confirm that cAMP signalling was preserved 

and that CD62P is independent of cAMP-signalling further studies could describe the 

mechanism by which this occurs. 

A primary question is how calcium signalling is regulated in the context of excess 

activation and inhibition. While aspects of calcium signalling are known to be 

independent of cAMP-signalling (Fung et al., 2012), it would be advantageous for this 

study if a calcium dye could be used to understand the flux of calcium and how this 

may compare under conditions where potent inhibition has blunted integrin αIIbβ3 

activity and inhibited PS exposure but where granule secretion has continued. 

Indeed, if residual calcium signal correlated with granule secretion that would suggest 

a mechanism of action and suggest granule secretion is less dependent on calcium 

than other hallmarks of platelet activation.  

As the novel subset we described has previously been suggested to exist in murine 

platelets (Topalov et al., 2012) and was subsequently suggested to be a result of 
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platelet doublets (Choo et al., 2017) forming between PShi and integrin αIIbβ3hi 

platelets, we validated this by a doublet gate based on the increase in pulse width of 

doublets. However, this could further be validated using a model treated with an 

antagonist of integrin αIIbβ3 (tirofiban) which does not perturb calcium levels, though 

this would require that integrin αIIbβ3 activity could still be detected by PAC1 

(Frelinger, 2018) in the presence of inhibitors to distinguish the PShi/αIIbβ3hi subset. 

Future studies should also look to provide a full understanding of the mechanisms by 

which cAMP inhibition may be targeted to discrete aspects of activation. Based on 

previous literature the hypothesis would be that subcellular pools of cAMP are 

targeted to distinct machinery within the platelets (Wehbi and Tasken, 2016, Raslan 

et al., 2015, Raslan and Naseem, 2015). If PKA could be demonstrated to be 

associated with specific aspects of the cellular biology regulating integrin αIIbβ3 and 

PS exposure but not granule secretion, this would demonstrate a definitive 

mechanism for this study. 

Additionally, with modern iterations of in vivo imaging approaches (Imhof et al., 2016), 

it should be feasible to image platelets expressing CD62P in association with 

monocytes, vitally in the context of tonic endothelial inhibition. This would confirm 

that platelet: monocyte interactions can occur independently to active cAMP-

signalling. 

 

6.1.2 Summary of findings 

In this chapter, several novel findings were described by the application of fluorescent 

flow cytometry. Platelet subpopulations using multidimensional FIt-SNE analysis 

were explored, applying this analysis for the first time to platelet fluorescent flow 

cytometry data. This allowed a detailed description of how PGI2 controls the formation 

of platelet subpopulations and this further elucidated a dichotomy in how PGI2-cAMP 
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regulates aspects of platelet function, most notably differences in granule secretion 

when compared with integrin activation and phosphatidylserine exposure. 

• First application of multidimensional analysis to platelet FFC data 

• Description of platelet subsets within PShi established by fibrinogen binding 

• PGI2 inhibition differentially targets fibrinogen binding, PS and granule 

secretion 

• PGI2 resistant CD62P facilitates platelet monocyte interactions 
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6.2 NLRP3 INFLAMMASOME ACTIVATION AND EXPRESSION 

The first report of the NLRP3 inflammasome was published in 2004 (Agostini et al., 

2004), and it was not until 2013 that is was shown to be present and functional in 

human platelets (Hottz et al., 2013). To date there have been a number of papers 

that have described a functional role for NLRP3 in platelet biology (Boone et al., 2019, 

Qiao et al., 2018, Vogel et al., 2018a, Vogel et al., 2018b, Murthy et al., 2017, Vogel 

et al., 2017, Vats et al., 2019). We measured NLRP3 activity in platelets using the 

FLICA assay which fluorescently labels activated caspases. Specifically, we 

measured caspase-1, as caspase-1 cleavage can be used as a marker of NLRP3 

activity. We used this to measure NLRP3 activity downstream of oxLDL, which has 

not been examined in platelets before. Previously, in response to oxLDL, platelets 

have been shown to express markers of activation (Berger et al., 2019b, Wraith et 

al., 2013). Furthermore, oxLDL has been shown to drive NLRP3 activity in other cell 

types (Liu et al., 2014). We were able to describe a novel potentiation of caspase-1 

cleavage by oxLDL treatment that was not seen in the nLDL control, and which was 

dependent on ROS and Ca2+ (Murakami et al., 2012). Additionally, preliminary 

studies here suggested it is not via the well described CD36-signalosome (Berger et 

al., 2019b, Wraith et al., 2013). However, due to a lack of responsiveness to NLRP3 

inhibitors MCC950 (Coll et al., 2015) and glyburide (Lamkanfi et al., 2009) we were 

unable to validate this observation as a definite marker of caspase-1 cleavage. As a 

result, we pursued further questions regarding the validity of the assay and found it 

correlated with markers of apoptosis (Pozarowski et al., 2003). 

Due to concerns over the validity of the FLICA observations we sought to identify the 

components of NLRP3 by immunoblot; NLRP3, ASC, caspase-1, gasdermin D and 

IL-1β (Schroder and Tschopp, 2010). We described a potential NLRP3 band by 

immunoprecipitation, a splice variant of ASC by immunoprecipitation and immunoblot 

(Matsushita et al., 2009), caspase-1 by immunoblot, gasdermin D by immunoblot and 

were unable to identify IL-1β in healthy donors. We cross-referenced this with 
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proteomic (Burkhart et al., 2012, Zeiler et al., 2014) and transcriptomic (Rowley et 

al., 2011) platelet studies, which are generally not supportive of NLRP3 

inflammasome expression and suggest only ASC and gasdermin D are expressed at 

a protein level. 

 

6.2.1 Future studies 

The findings described in this chapter, while novel, are also potentially of great impact 

considering the presence of oxLDL in the vasculature and the literature supporting 

this finding. However, they require further validation, primarily due to assay 

limitations. 

The single series of experiments, which would validate these observations beyond 

doubt, require transgenic murine models. Specifically, repetition of these studies in 

wild type murine models compared with NLRP3 knockout and CD36 knockout murine 

models respectively would confirm; the FLICA assay is correct/incorrect as there is 

no need for biochemical inhibitors of NLRP3, and the potential lack of involvement of 

the CD36-signalosome, again without the need for biochemical inhibitors of the 

receptor and signalling apparatus. 

If transgenic models were available this would further allow for enhanced 

identification of the proteins by immunoprecipitation, as a comparison between wild 

type and transgenic models would immediately demonstrate the loss or otherwise of 

a protein band – thereby identifying that band as the protein in question. If the 

proteins could be confirmed by biochemical means that would allow further studies 

by co-immunoprecipitation (Shi et al., 2016) to understand the conditions under which 

the complex is assembled and potentially co-localisation studies by high-resolution 

microscopy. 

This is also the first description of a spliced variant of ASC in platelets, this should 

also be explored. The size of the variant suggests it may lack a hinge domain and 
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therefore be constitutively active (Matsushita et al., 2009), further studies have also 

suggested that variants of ASC play important roles in the regulation of NLRP3 

activity, both up and down regulation (Bryan et al., 2010). Therefore, additional 

immunoprecipitations of ASC should be performed, and mass spectrometry should 

be performed to confirm that this detected band is indeed a splice variant of ASC. In 

addition to this RT-PCR analysis of the platelet transcriptome would also suggest if 

a splice variant is also expressed at a transcriptional level, further supporting this 

protein observation. To highlight a functional role for a splice variant of ASC, cross-

linked immunoblot assays should be performed to explore whether this splice variant 

of ASC is constitutively oligomerised in platelets, or indeed is even able to 

oligomerise. 

This study also identified the pore forming protein gasdermin D, gasdermin D is 

known to be cleaved by caspase-1 to facilitate pyroptosis (Miao et al., 2011) and 

subsequent release of IL-1β (Liu et al., 2016). However, within platelets, which are 

cells packed with pro-thrombotic proteins, growth factors and chemokines, this may 

represent an additional pathway to the release of platelet contents on activation. In 

context, it has been shown that typical platelet activity does induce NLRP3 activity 

(Murthy et al., 2017, Qiao et al., 2018), which would in turn suggest that gasdermin 

D may be cleaved and pores formed in traditional platelet activation. Therefore, 

further biochemical studies over the capacity of gasdermin D to be cleaved in 

platelets and to form pores on the surface would suggest this is a hypothesis worth 

pursuing. 

While there have been several publications on platelet NLRP3 there has been little 

mechanism described to date. Open questions remain regarding the recruitment and 

particularly the priming of the NLRP3 inflammasome in platelets (Schroder and 

Tschopp, 2010). While the role of transcriptional priming is a challenging avenue 

within platelets, where there is some evidence this may be able to occur (Denis et 

al., 2005), there is clear potential for non-transcriptional priming. Non-transcriptional 
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priming of NLRP3 has been shown in other cells and is driven by pathways common 

to platelets, namely phosphorylation of ASC by Syk (Lin et al., 2015), phosphorylation 

of NLRP3 by JNK1 (Song et al., 2017) or de-ubiquitination of ASC (Rodgers et al., 

2014) or NLRP3 (Song et al., 2016). Additional studies into the mechanism of NLRP3 

activity in platelets should be followed, with emphases on the post-translational 

modifications of NLRP3 components and how this may regulate function in platelets. 

Finally, if the model can be validated, then the propensity for NLRP3 inflammasome 

activity should be measured in clinically relevant murine models such as ApoE 

(hyperlipidaemia) or streptozotocin (diabetes) to understand if activity changes, if so, 

clinical human cohorts are worth pursuing, as current studies suggest the NLRP3 

inflammasome plays an important role in the progression of many human diseases 

(Ridker et al., 2011). 

 

6.2.2 Summary of findings 

Within this chapter the FLICA assay was applied to understand how oxLDL may 

regulate caspase-1 cleavage downstream of postulated NLRP3 activity. A significant 

effect of oxLDL on the potentiation of caspase-1 cleavage was demonstrated, where 

nLDL had no effect and chelation of calcium or scavenging of ROS blocked this 

potentiation effect. The effects of inhibitors against the CD36-signalosome were 

further examined and demonstrated no significant inhibition of potentiation. In 

addition, the expression of components of the NLRP3 inflammasome were measured 

by SDS-PAGE. The relative expression of each constituent was determined, and this 

described that ASC is expressed predominantly as a truncated form and for the first-

time, expression of gasdermin D in human platelets. 

• OxLDL potentiates FLICA signal 

• Potentiation of oxLDL-caspase-1 cleavage is likely not through the CD36-

signalosome 
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• An ASC isoform is expressed in human platelets 

• Caspase-1 and GSDMD are expressed in human platelets 
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6.3 MITOCHONDRIAL DYSFUNCTION UNDER LIPID STRESS 

OxLDL is known to induce mitochondrial dysfunction in other cells (Zmijewski et al., 

2005, Giovannini et al., 2002, Vindis et al., 2005) and mitochondrial dysfunction is 

also known to play a key role in NLRP3 activity (Zhou et al., 2011). Therefore, as 

oxLDL is known to stimulate platelets (Berger et al., 2019b, Wraith et al., 2013) and 

we have made an observation of NLRP3 activity in platelets (chapter IV), we explored 

whether oxLDL may drive mitochondrial dysfunction in platelets. We were able to 

show that oxLDL, but not nLDL, drives both mitochondrial superoxide production and 

membrane potential, and this agrees with results from other cell types that 

demonstrate a similar phenotype in production of mitochondrial superoxide 

(Chowdhury et al., 2010, Zmijewski et al., 2005) and increased mitochondrial 

membrane potential (Giovannini et al., 2002). We further translated this hypothesis 

into western-diet fed (Getz and Reardon, 2006) and transgenic ApoE -/- murine 

models (Kato et al., 2009). We observed that the more severe transgenic model 

drove a significant increase in mitochondrial superoxide and diet-induced drove a 

small increase in superoxide and membrane potential in platelets, this agrees with 

literature demonstrating an increase in endothelial mitochondrial dysfunction in 

hyperlipidaemia (Yu et al., 2012). 

 

6.3.1 Future studies 

While the results within this chapter are preliminary, they highlight some changes to 

platelet mitochondrial metabolism in the context of hyperlipidaemia which should be 

pursued. However, prior to pursuing this, they must be validated. 

The basic observations regarding increases in mitochondrial superoxide or 

mitochondrial membrane potential with oxLDL suggested there may be a phenotype 

in vivo, which was replicated in a severe model of hyperlipidaemia in ApoE animals. 

This observation should be repeated and additional controls to measure 
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mitochondrial mass should be used, as an increase in mass may have given false 

positive increase in signal of superoxide. These can be pursued by fluorescence 

microscopy, TEM or alternative mass dyes by fluorescent flow cytometry (Zhang et 

al., 2019). If mass does change, this must be accounted for, however it may be that 

the change in mass is an important finding. Further to this, the study could be 

expanded to examine other aspects of mitochondrial biology including oxygen 

consumption rate and extracellular acidification rate (Aibibula et al., 2018), to 

understand if oxLDL mitochondrial dysfunction also modulates basal metabolic rate. 

Mechanistically, the pathway by which oxLDL may transduce mitochondrial 

dysfunction should be explored, as it may be via the well described CD36-

signalosome (Chen et al., 2008, Wraith et al., 2013), alone or in heteromeric 

complexes with TLRs (Biswas et al., 2017), or via alternative LOX1 pathways (Holy 

et al., 2016). A combination of biochemical inhibitors targeting these pathways should 

be used before immunoblotting for tyrosine phosphorylation or IRAK phosphorylation 

for CD36 or TLR activity respectively to validate the inhibitors. The effects they have 

on oxLDL induced mitochondrial dysfunction could then be explored. LOX1 as an 

alternative oxLDL receptor should also be explored, as it has been demonstrated to 

transduce signal leading to mitochondrial dysfunction in other cell types (Christ and 

Latz, 2014). 

If the findings can be validated and the mechanism understood, it would be vital that 

this finding was translated to a clinical hyperlipidaemic cohort, as the defects in 

platelet mitochondrial metabolism may drive hyperactivity, dysfunction, or indeed 

NLRP3 activity (Christ and Latz, 2014). 

 

6.3.2 Summary of findings 

In chapter V, how oxLDL may mediate superoxide production within platelet 

mitochondria was explored. This demonstrated that oxLDL, but not nLDL, drove 
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mitochondrial superoxide production and increased mitochondrial membrane 

potential in human platelets. This study was translated into murine models, in 

transgenic ApoE -/- a significant increase in basal superoxide was observed over wild 

type animal. In diet-induced obesity C57/Bl6 models a trend towards increased 

stimulated superoxide production and membrane potential was also measured.  

• oxLDL induces mitochondrial superoxide production 

• oxLDL drives a mitochondrial membrane potential increase 

• Murine models of dyslipidaemia show increased mitochondrial superoxide 

and membrane potential 



- 254 - 

References 

AGBANI, E. O. & POOLE, A. W. 2017. Procoagulant platelets: generation, 
function, and therapeutic targeting in thrombosis. Blood, 130, 2171-
2179. 

AGOSTINI, L., MARTINON, F., BURNS, K., MCDERMOTT, M. F., 
HAWKINS, P. N. & TSCHOPP, J. 2004. NALP3 forms an IL-l beta-
Processing inflammasome with increased activity in Muckle-Wells 
autoinflammatory disorder. Immunity, 20, 319-325. 

AIBIBULA, M., NASEEM, K. M. & STURMEY, R. G. 2018. Glucose 
metabolism and metabolic flexibility in blood platelets. Journal of 
Thrombosis and Haemostasis, 16, 2300-2314. 

ALBERTS, B., JOHNSON, A., LEWIS, J., RAFF, M., ROBERTS, K. & 
WALTER, P. 2008. Molecular Biology of the Cell (fifth edition), 
Garland Science, Taylor & Francis Group. 

ALLAM, O., SAMARANI, S., JENABIAN, M. A., ROUTY, J. P., TREMBLAY, 
C., AMRE, D. & AHMAD, A. 2017. Differential synthesis and release 
of IL-18 and IL-18 Binding Protein from human platelets and their 
implications for HIV infection. Cytokine, 90, 144-154. 

ALLEN, I. C. 2014. Non-inflammasome forming NLRs in inflammation and 
tumorigenesis. Frontiers in Immunology, 5. 

ALNEMRI, E. S., FERNANDESALNEMRI, T. & LITWACK, G. 1995. 
CLONING AND EXPRESSION OF 4 NOVEL ISOFORMS OF 
HUMAN INTERLEUKIN-1-BETA CONVERTING-ENZYME WITH 
DIFFERENT APOPTOTIC ACTIVITIES. Journal of Biological 
Chemistry, 270, 4312-4317. 

ANAND, R., SHARMA, D. R., VERMA, D., BHALLA, A., GILL, K. D. & 
SINGH, S. 2013. Mitochondrial electron transport chain complexes, 
catalase and markers of oxidative stress in platelets of patients with 
severe aluminum phosphide poisoning. Human & Experimental 
Toxicology, 32, 807-816. 

ANDRE, P. 2004. P-selectin in haemostasis. British Journal of Haematology, 
126, 298-306. 

ANGIOLILLO, D. J., FERNANDEZ-ORTIZ, A., BERNARDO, E., RAMIREZ, 
C., SABATE, M., JIMENEZ-QUEVEDO, P., HERNANDEZ, R., 
MORENO, R., ESCANED, J., ALFONSO, F., BANUELOS, C., 
COSTA, M. A., BASS, T. A. & MACAYA, C. 2005. Platelet function 
profiles in patients with type 2 diabetes and coronary artery disease 
on combined aspirin and clopidogrel treatment. Diabetes, 54, 2430-
2435. 

ASMIS, R. & BEGLEY, J. G. 2003. Oxidized LDL promotes peroxide-
mediated mitochondrial dysfunction and cell death in human 
macrophages - A caspase-3-independent pathway. Circulation 
Research, 92, E20-E29. 

ATAR, O. D., EISERT, C., POKOV, I. & SEREBRUANY, V. L. 2010. Stability 
validation of paraformaldehyde-fixed samples for the assessment of 
the platelet PECAM-1, P-selectin, and PAR-1 thrombin receptor by 
flow cytometry. Journal of Thrombosis and Thrombolysis, 30, 79-83. 

ATKINSON, L., YUSUF, M. Z., ABURIMA, A., AHMED, Y., THOMAS, S. G., 
NASEEM, K. M. & CALAMINUS, S. D. J. 2018. Reversal of stress 



- 255 - 

fibre formation by Nitric Oxide mediated RhoA inhibition leads to 
reduction in the height of preformed thrombi. Scientific Reports, 8. 

AYE, M. M., KILPATRICK, E. S., ABURIMA, A., WRAITH, K. S., 
MAGWENZI, S., SPURGEON, B., RIGBY, A. S., SANDEMAN, D., 
NASEEM, K. M. & ATKIN, S. L. 2014. Acute Hypertriglyceridemia 
Induces Platelet Hyperactivity That is Not Attenuated by Insulin in 
Polycystic Ovary Syndrome. Journal of the American Heart 
Association, 3. 

BAATEN, C., MOENEN, F., HENSKENS, Y. M. C., SWIERINGA, F., 
WETZELS, R. J. H., VAN OERLE, R., HEIJNEN, H. F. G., TEN 
CATE, H., HOLLOWAY, G. P., BECKERS, E. A. M., HEEMSKERK, J. 
W. M. & VAN DER MEIJDEN, P. E. J. 2018. Impaired mitochondrial 
activity explains platelet dysfunction in thrombocytopenic cancer 
patients undergoing chemotherapy. Haematologica, 103, 1557-1567. 

BACCARELLI, A. A. & BYUN, H. M. 2015. Platelet mitochondrial DNA 
methylation: a potential new marker of cardiovascular disease. 
Clinical Epigenetics, 7. 

BALDRIGHI, M., MALLAT, Z. & LI, X. 2017. y NLRP3 inflammasome 
pathways in atherosclerosis. Atherosclerosis, 267, 127-138. 

BEDNER, E., SMOLEWSKI, P., AMSTAD, P. & DARZYNKIEWICZ, Z. 2000. 
Activation of caspases measured in situ by binding of fluorochrome-
labeled inhibitors of caspases (FLICA): Correlation with DNA 
fragmentation. Experimental Cell Research, 259, 308-313. 

BEGONJA, A. J., GAMBARYAN, S., GEIGER, J., AKTAS, B., POZGAJOVA, 
M., NIESWANDT, B. & WALTER, U. 2005. Platelet NAD(P)H-
oxidase-generated ROS production regulates alpha IIb beta 3-integrin 
activation independent of the NO/cGMP pathway. Blood, 106, 2757-
2760. 

BEHNKE, O. 1965. FURTHER STUDIES ON MICROTUBULES - A 
MARGINAL BUNDLE IN HUMAN AND RAT THROMBOCYTES. 
Journal of Ultrastructure Research, 13, 469-+. 

BELKINA, A., CICCOLELLA, A., ANNO, R., HALPERT, E., SPIDLEN, J. & 
SNYDER-CAPPIONE, J. 2018. Automated Optimal Parameters For 
T-Distributed Stochastic Neighbor Embedding Improve Visualization 
And Allow Analysis Of Large Datasets. bioRxiv. 

BENNETT, H. S. 1963. MORPHOLOGICAL ASPECTS OF 
EXTRACELLULAR POLYSACCHARIDES. Journal of Histochemistry 
& Cytochemistry, 11, 14-&. 

BENZ, P. M., BLUME, C., SEIFERT, S., WILHELM, S., WASCHKE, J., 
SCHUH, K., GERTLER, F., MUNZEL, T. & RENNE, T. 2009. 
Differential VASP phosphorylation controls remodeling of the actin 
cytoskeleton. Journal of Cell Science, 122, 3954-3965. 

BERGER, M., RASLAN, Z., ABURIMA, A., MAGWENZI, S., WRAITH, K. S., 
SPURGEON, B. E. J., HINDLE, M. S., LAW, R., FEBBRAIO, M. & 
NASEEM, K. M. 2019a. Atherogenic lipid stress induces platelet 
hyperactivity through CD36-mediated hyposensitivity to prostacyclin-; 
the role of phosphodiesterase 3A. Haematologica. 

BERGER, M., WRAITH, K., WOODWARD, C., ABURIMA, A., RASLAN, Z., 
HINDLE, M. S., MOELLMANN, J., FEBBRAIO, M. & NASEEM, K. M. 
2019b. Dyslipidemia-associated atherogenic oxidized lipids induce 



- 256 - 

platelet hyperactivity through phospholipase C gamma 2-dependent 
reactive oxygen species generation. Platelets, 30, 467-472. 

BISWAS, S., ZIMMAN, A., GAO, D. T., BYZOVA, T. V. & PODREZ, E. A. 
2017. TLR2 Plays a Key Role in Platelet Hyperreactivity and 
Accelerated Thrombosis Associated With Hyperlipidemia. Circulation 
Research, 121, 951-+. 

BLAIR, P. & FLAUMENHAFT, R. 2009. Platelet alpha-granules: Basic 
biology and clinical correlates. Blood Reviews, 23, 177-189. 

BLAIR, T. & FRELINGER, A. 2019. Platelet surface marker analysis by 
mass cytometry. Platelets. 

BLAIR, T. A., MICHELSON, A. D. & FRELINGER, A. L. 2018. Mass 
Cytometry Reveals Distinct Platelet Subtypes in Healthy Subjects and 
Novel Alterations in Surface Glycoproteins in Glanzmann 
Thrombasthenia. Scientific Reports, 8. 

BLANN, A. D., NADAR, S. K. & LIP, G. Y. H. 2006. The adhesion molecule 
P-selectin and cardiovascular disease (vol 24, pg 2166, 2003). 
European Heart Journal, 27, 501-501. 

BODNAR, R. J., XI, X. D., LI, Z. Y., BERNDT, M. C. & DU, X. P. 2002. 
Regulation of glycoprotein Ib-IX-von Willebrand factor interaction by 
cAMP-dependent protein kinase-mediated phosphorylation at 
Ser(166) of glycoprotein Ib beta. Journal of Biological Chemistry, 277, 
47080-47087. 

BONACCIO, M., DI CASTELNUOVO, A., COSTANZO, S., DE CURTIS, A., 
DONATI, M. B., CERLETTI, C., DE GAETANO, G., IACOVIELLO, L. 
& INVESTIGATORS, M.-S. 2016. Age-sex-specific ranges of platelet 
count and all-cause mortality: prospective findings from the MOLI-
SANI study. Blood, 127, 1614-1616. 

BONAN, J. L., RINDER, H. M. & SMITH, B. R. 1993. DETERMINATION OF 
THE PERCENTAGE OF THIAZOLE ORANGE (TO)-POSITIVE, 
RETICULATED PLATELETS USING AUTOLOGOUS 
ERYTHROCYTE TO FLUORESCENCE AS AN INTERNAL 
STANDARD. Cytometry, 14, 690-694. 

BOONE, B. A., MURTHY, P., MILLER-OCUIN, J. L., LIANG, X., RUSSELL, 
K. L., LOUGHRAN, P., GAWAZ, M., LOTZE, M. T., ZEH, H. J. & 
VOGEL, S. 2019. The platelet NLRP3 inflammasome is upregulated 
in a murine model of pancreatic cancer and promotes platelet 
aggregation and tumor growth. Ann Hematol. 

BORN, G. V. R. 1962. AGGREGATION OF BLOOD PLATELETS BY 
ADENOSINE DIPHOSPHATE AND ITS REVERSAL. Nature, 194, 
927-&. 

BROWN, G. T., NARAYANAN, P., LI, W., SILVERSTEIN, R. L. & 
MCINTYRE, T. M. 2013. Lipopolysaccharide Stimulates Platelets 
through an IL-1 beta Autocrine Loop. Journal of Immunology, 191, 
5196-5203. 

BROZ, P., VON MOLTKE, J., JONES, J. W., VANCE, R. E. & MONACK, D. 
M. 2010. Differential Requirement for Caspase-1 Autoproteolysis in 
Pathogen-Induced Cell Death and Cytokine Processing. Cell Host & 
Microbe, 8, 471-483. 

BRYAN, N. B., DORFLEUTNER, A., KRAMER, S. J., YUN, C., 
ROJANASAKUL, Y. & STEHLIK, C. 2010. Differential splicing of the 
apoptosis-associated speck like protein containing a caspase 



- 257 - 

recruitment domain (ASC) regulates inflammasomes. Journal of 
Inflammation-London, 7. 

BURKHART, J. M., VAUDEL, M., GAMBARYAN, S., RADAU, S., WALTER, 
U., MARTENS, L., GEIGER, J., SICKMANN, A. & ZAHEDI, R. P. 
2012. The first comprehensive and quantitative analysis of human 
platelet protein composition allows the comparative analysis of 
structural and functional pathways. Blood, 120, E73-E82. 

BURKITT, M. J. 2001. A critical overview of the chemistry of copper-
dependent low density lipoprotein oxidation: Roles of lipid 
hydroperoxides, alpha-tocopherol, thiols, and ceruloplasmin. Archives 
of Biochemistry and Biophysics, 394, 117-135. 

BUTT, E., ABEL, K., KRIEGER, M., PALM, D., HOPPE, V., HOPPE, J. & 
WALTER, U. 1994. CAMP-DEPENDENT AND CGMP-DEPENDENT 
PROTEIN-KINASE PHOSPHORYLATION SITES OF THE FOCAL 
ADHESION VASODILATOR-STIMULATED PHOSPHOPROTEIN 
(VASP) IN-VITRO AND IN INTACT HUMAN PLATELETS. Journal of 
Biological Chemistry, 269, 14509-14517. 

BUTT, E., GAMBARYAN, S., GOTTFERT, N., GALLER, A., MARCUS, K. & 
MEYER, H. E. 2003. Actin binding of human LIM and SH3 protein is 
regulated by cGMP- and cAMP-dependent protein kinase 
phosphorylation on serine 146. Journal of Biological Chemistry, 278, 
15601-15607. 

BUTT, E., IMMLER, D., MEYER, H. E., KOTLYAROV, A., LAASS, K. & 
GAESTEL, M. 2001. Heat shock protein 27 is a substrate of cGMP-
dependent protein kinase in intact human platelets - Phosphorylation-
induced actin polymerization caused by Hsp27 mutants. Journal of 
Biological Chemistry, 276, 7108-7113. 

CARDENES, N., COREY, C., GEARY, L., JAIN, S., ZHARIKOV, S., BARGE, 
S., NOVELLI, E. M. & SHIVA, S. 2014. Platelet bioenergetic screen in 
sickle cell patients reveals mitochondrial complex V inhibition, which 
contributes to platelet activation. Blood, 123, 2864-2872. 

CARR, A. C., MCCALL, M. R. & FREI, B. 2000. Oxidation of LDL by 
myeloperoxidase and reactive nitrogen species - Reaction pathways 
and antioxidant protection. Arteriosclerosis Thrombosis and Vascular 
Biology, 20, 1716-1723. 

CATHCART, M. K., CHISOLM, G. M., MCNALLY, A. K. & MOREL, D. W. 
1988. OXIDATIVE MODIFICATION OF LOW-DENSITY 
LIPOPROTEIN (LDL) BY ACTIVATED HUMAN-MONOCYTES AND 
THE CELL-LINES U937 AND HL60. In Vitro Cellular & 
Developmental Biology, 24, 1001-1008. 

CHAN, H. C., KE, L. Y., CHU, C. S., LEE, A. S., SHEN, M. Y., CRUZ, M. A., 
HSU, J. F., CHENG, K. H., CHAN, H. C. B., LU, J., LAI, W. T., 
SAWAMURA, T., SHEU, S. H., YEN, J. H. & CHEN, C. H. 2013. 
Highly electronegative LDL from patients with ST-elevation 
myocardial infarction triggers platelet activation and aggregation. 
Blood, 122, 3632-3641. 

CHAVEZ-SANCHEZ, L., GARZA-REYES, M. G., ESPINOSA-LUNA, J. E., 
CHAVEZ-RUEDA, K., LEGORRETA-HAQUET, M. V. & BLANCO-
FAVELA, F. 2014. The role of TLR2, TLR4 and CD36 in macrophage 
activation and foam cell formation in response to oxLDL in humans. 
Human Immunology, 75, 322-329. 



- 258 - 

CHEEPALA, S. B., PITRE, A., FUKUDA, Y., TAKENAKA, K., ZHANG, Y. Y., 
WANG, Y., FRASE, S., PESTINA, T., GARTNER, T. K., JACKSON, 
C. & SCHUETZ, J. D. 2015. The ABCC4 membrane transporter 
modulates platelet aggregation. Blood, 126, 2307-2319. 

CHEN, K., FEBBRAIO, M., LI, W. & SILVERSTEIN, R. L. 2008. A specific 
CD36-dependent signaling pathway is required for platelet activation 
by oxidized low-density lipoprotein. Circulation Research, 102, 1512-
1519. 

CHEN, M. Y., KAKUTANI, M., NARUKO, T., UEDA, M., NARUMIYA, S., 
MASAKI, T. & SAWAMURA, T. 2001. Activation-dependent surface 
expression of LOX-1 in human platelets. Biochemical and Biophysical 
Research Communications, 282, 153-158. 

CHO, M. J. & ALLEN, M. A. 1978. CHEMICAL STABILITY OF 
PROSTACYCLIN (PGI2) IN AQUEOUS-SOLUTIONS. 
Prostaglandins, 15, 943-954. 

CHOO, H. J., KHOLMUKHAMEDOV, A., ZHOU, C. Z. & JOBE, S. 2017. 
Inner Mitochondrial Membrane Disruption Links Apoptotic and 
Agonist-Initiated Phosphatidylserine Externalization in Platelets. 
Arteriosclerosis Thrombosis and Vascular Biology, 37, 1503-1512. 

CHOO, H. J., SAAFIR, T. B., MKUMBA, L., WAGNER, M. B. & JOBE, S. M. 
2012. Mitochondrial Calcium and Reactive Oxygen Species Regulate 
Agonist-Initiated Platelet Phosphatidylserine Exposure. 
Arteriosclerosis Thrombosis and Vascular Biology, 32, 2946-+. 

CHOWDHURY, S. K. R., SANGLE, G. V., XIE, X. P., STELMACK, G. L., 
HALAYKO, A. J. & SHEN, G. X. 2010. Effects of extensively oxidized 
low-density lipoprotein on mitochondrial function and reactive oxygen 
species in porcine aortic endothelial cells. American Journal of 
Physiology-Endocrinology and Metabolism, 298, E89-E98. 

CHRIST, A. & LATZ, E. 2014. LOX-1 and mitochondria: an inflammatory 
relationship. Cardiovascular Research, 103, 435-437. 

CLARK, S. R., MA, A. C., TAVENER, S. A., MCDONALD, B., GOODARZI, 
Z., KELLY, M. M., PATEL, K. D., CHAKRABARTI, S., MCAVOY, E., 
SINCLAIR, G. D., KEYS, E. M., ALLEN-VERCOE, E., DEVINNEY, R., 
DOIG, C. J., GREEN, F. H. Y. & KUBES, P. 2007. Platelet TLR4 
activates neutrophil extracellular traps to ensnare bacteria in septic 
blood. Nature Medicine, 13, 463-469. 

COENEN, D. M., MASTENBROEK, T. G. & COSEMANS, J. 2017. Platelet 
interaction with activated endothelium: mechanistic insights from 
microfluidics. Blood, 130, 2819-2828. 

COLL, R. C., HILL, J. R., DAY, C. J., ZAMOSHNIKOVA, A., BOUCHER, D., 
MASSEY, N. L., CHITTY, J. L., FRASER, J. A., JENNINGS, M. P., 
ROBERTSON, A. A. B. & SCHRODER, K. 2019. MCC950 directly 
targets the NLRP3 ATP- hydrolysis motif for inflammasome inhibition. 
Nature Chemical Biology, 15, 556-+. 

COLL, R. C., ROBERTSON, A. A. B., CHAE, J. J., HIGGINS, S. C., 
MUNOZ-PLANILLO, R., INSERRA, M. C., VETTER, I., DUNGAN, L. 
S., MONKS, B. G., STUTZ, A., CROKER, D. E., BUTLER, M. S., 
HANEKLAUS, M., SUTTON, C. E., NUNEZ, G., LATZ, E., KASTNER, 
D. L., MILLS, K. H. G., MASTERS, S. L., SCHRODER, K., COOPER, 
M. A. & O'NEILL, L. A. J. 2015. A small-molecule inhibitor of the 



- 259 - 

NLRP3 inflammasome for the treatment of inflammatory diseases. 
Nature Medicine, 21, 248-+. 

COLLINS, Y., CHOUCHANI, E. T., JAMES, A. M., MENGER, K. E., 
COCHEME, H. M. & MURPHY, M. P. 2012. Mitochondrial redox 
signalling at a glance. Journal of Cell Science, 125, 801-806. 

COSSARIZZA, A., CHANG, H. D., RADBRUCH, A., AKDIS, M., ANDRA, I., 
ANNUNZIATO, F., BACHER, P., BARNABA, V., BATTISTINI, L., 
BAUER, W. M., BAUMGART, S., BECHER, B., BEISKER, W., 
BEREK, C., BLANCO, A., BORSELLINO, G., BOULAIS, P. E., 
BRINKMAN, R. R., BUSCHER, M., BUSCH, D. H., BUSHNELL, T. P., 
CAO, X. T., CAVANI, A., CHATTOPADHYAY, P. K., CHENG, Q. Y., 
CHOW, S., CLERICI, M., COOKE, A., COSMA, A., COSMI, L., 
CUMANO, A., DANG, V. D., DAVIES, D., DE BIASI, S., DEL ZOTTO, 
G., DELLA BELLA, S., DELLABONA, P., DENIZ, G., DESSING, M., 
DIEFENBACH, A., DI SANTO, J., DIELI, F., DOLF, A., 
DONNENBERG, V. S., DORNER, T., EHRHARDT, G. R. A., ENDL, 
E., ENGEL, P., ENGELHARDT, B., ESSER, C., EVERTS, B., 
DREHER, A., FALK, C. S., FEHNIGER, T. A., FILBY, A., 
FILLATREAU, S., FOLLO, M., FORSTER, I., FOSTER, J., FOULDS, 
G. A., FRENETTE, P. S., GALBRAITH, D., GARBI, N., GARCIA-
GODOY, M. D., GEGINAT, J., GHORESCHI, K., GIBELLINI, L., 
GOETTLINGER, C., GOODYEAR, C. S., GORI, A., GROGAN, J., 
GROSS, M., GRUTZKAU, A., GRUMMITT, D., HAHN, J., HAMMER, 
Q., HAUSER, A. E., HAVILAND, D. L., HEDLEY, D., HERRERA, G., 
HERRMANN, M., HIEPE, F., HOLLAND, T., HOMBRINK, P., 
HOUSTON, J. P., HOYER, B. F., HUANG, B., HUNTER, C. A., 
IANNONE, A., JACK, H. M., JAVEGA, B., JONJIC, S., JUELKE, K., 
JUNG, S., KAISER, T., KALINA, T., KELLER, B., KHAN, S., 
KIENHOFER, D., KRONEIS, T., et al. 2017. Guidelines for the use of 
flow cytometry and cell sorting in immunological studies. European 
Journal of Immunology, 47, 1584-1797. 

CROSLAND-TAYLOR, P. J. 1953. A DEVICE FOR COUNTING SMALL 
PARTICLES SUSPENDED IN A FLUID THROUGH A TUBE. Nature, 
171, 37-38. 

DAMIEN, P., COGNASSE, F., EYRAUD, M. A., ARTHAUD, C. A., 
POZZETTO, B., GARRAUD, O. & HAMZEH-COGNASSE, H. 2015. 
LPS stimulation of purified human platelets is partly dependent on 
plasma soluble CD14 to secrete their main secreted product, soluble-
CD40-Ligand. Bmc Immunology, 16. 

DARZYNKIEWICZ, Z. & POZAROWSKI, P. 2007. All that glitters is not gold: 
All that FLICA binds is not caspase. A caution in data interpretation - 
and new opportunities. Cytometry Part A, 71A, 536-537. 

DAUB, K., SEIZER, P., STELLOS, K., KRAMER, B. F., BIGALKE, B., 
SCHALLER, M., FATEH-MOGHADAM, S., GAWAZ, M. & 
LINDEMANN, S. 2010. Oxidized LDL-Activated Platelets Induce 
Vascular Inflammation. Seminars in Thrombosis and Hemostasis, 36, 
146-156. 

DAVIZON-CASTILLO, P., MCMAHON, B., AGUILA, S., BARK, D., 
ASHWORTH, K., ALLAWZI, A., CAMPBELL, R. A., MONTENONT, 
E., NEMKOV, T., D'ALESSANDRO, A., CLENDENEN, N., SHIH, L., 
SANDERS, N. A., HIGA, K., COX, A., PADILLA-ROMO, Z., 



- 260 - 

HERNANDEZ, G., WARTCHOW, E., TRAHAN, G. D., NOZIK-
GRAYCK, E., JONES, K., PIETRAS, E., DEGREGORI, J., RONDINA, 
M. T. & DI PAOLA, J. 2019. TNF-alpha driven inflammation and 
mitochondrial dysfunction define the platelet hyperreactivity of aging. 
Blood. 

DEFESCHE, J. C., GIDDING, S. S., HARADA-SHIBA, M., HEGELE, R. A., 
SANTOS, R. D. & WIERZBICKI, A. S. 2017. Familial 
hypercholesterolaemia. Nature Reviews Disease Primers, 3. 

DENIS, M. M., TOLLEY, N. D., BUNTING, M., SCHWERTZ, H., JIANG, H. 
M., LINDEMANN, S., YOST, C. C., RUBNER, F. J., ALBERTINE, K. 
H., SWOBODA, K. J., FRATTO, C. M., TOLLEY, E., KRAISS, L. W., 
MCINTYRE, T. M., ZIMMERMAN, G. A. & WEYRICH, A. S. 2005. 
Escaping the nuclear confines: Signal-dependent Pre-mRNA splicing 
in anucleate platelets. Cell, 122, 379-391. 

DICK, M. S., SBORGI, L., RUHL, S., HILLER, S. & BROZ, P. 2016. ASC 
filament formation serves as a signal amplification mechanism for 
inflammasomes. Nature Communications, 7. 

DOLUNAY, A., SENOL, S. P., TEMIZ-RESITOGLU, M., GUDEN, D. S., 
SARI, A. N., SAHAN-FIRAT, S. & TUNCTAN, B. 2017. Inhibition of 
NLRP3 Inflammasome Prevents LPS-Induced Inflammatory 
Hyperalgesia in Mice: Contribution of NF-kappa B, Caspase-1/11, 
ASC, NOX, and NOS Isoforms. Inflammation, 40, 366-386. 

DOSE, J., HUEBBE, P., NEBEL, A. & RIMBACH, G. 2016. APOE genotype 
and stress response - a mini review. Lipids in Health and Disease, 15. 

EBBELING, L., ROBERTSON, C., MCNICOL, A. & GERRARD, J. M. 1992. 
RAPID ULTRASTRUCTURAL-CHANGES IN THE DENSE TUBULAR 
SYSTEM FOLLOWING PLATELET ACTIVATION. Blood, 80, 718-
723. 

ESCOLAR, G. & WHITE, J. G. 1991. THE PLATELET OPEN 
CANALICULAR SYSTEM - A FINAL COMMON PATHWAY. Blood 
Cells, 17, 467-485. 

ESTRADAO, S., GRAVEN, S. N. & LARDY, H. A. 1967. POTASSIUM ION-
DEPENDENT HYDROLYSIS OF ADENOSINE TRIPHOSPHATE 
INDUCED BY NIGERICIN IN MITOCHONDRIA. Journal of Biological 
Chemistry, 242, 2925-&. 

ESTRUCH, M., RAJAMAKI, K., SANCHEZ-QUESADA, J. L., KOVANEN, P. 
T., OORNI, K., BENITEZ, S. & ORDONEZ-LLANOS, J. 2015. 
Electronegative LDL induces priming and inflammasome activation 
leading to IL-1 beta release in human monocytes and macrophages. 
Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 
1851, 1442-1449. 

FEINGOLD, K. R., ANAWALT, B., BOYCE, A., CHROUSOS, G., DUNGAN, 
K., GROSSMAN, A., HERSHMAN, J. M., KALTSAS, G., KOCH, C., 
KOPP, P., KORBONITS, M., MCLACHLAN, R., MORLEY, J. E., 
NEW, M., PERREAULT, L., PURNELL, J., REBAR, R., SINGER, F., 
TRENCE, D. L., VINIK, A. & WILSON, D. P. 2000. Endotext. 

FIDLER, T. P., ROWLEY, J. W., ARAUJO, C., BOUDREAU, L. H., MARTI, 
A., SOUVENIR, R., DALE, K., BOILARD, E., WEYRICH, A. S. & 
ABEL, E. D. 2017. Superoxide Dismutase 2 is dispensable for platelet 
function. Thrombosis and Haemostasis, 117, 1859-1867. 



- 261 - 

FRELINGER, A. L. 2018. Using flow cytometry to monitor glycoprotein IIb-
IIIa activation. Platelets, 29, 670-676. 

FRELINGER, A. L., GRACE, R. F., GERRITS, A. J., BERNY-LANG, M. A., 
BROWN, T., CARMICHAEL, S. L., NEUFELD, E. J. & MICHELSON, 
A. D. 2015. Platelet function tests, independent of platelet count, are 
associated with bleeding severity in ITP. Blood, 126, 873-879. 

FRENETTE, P. S., DENIS, C. V., WEISS, L., JURK, K., SUBBARAO, S., 
KEHREL, B., HARTWIG, J. H., VESTWEBER, D. & WAGNER, D. D. 
2000. P-selectin glycoprotein ligand 1 (PSGL-1) is expressed on 
platelets and can mediate platelet-endothelial interactions in vivo. 
Journal of Experimental Medicine, 191, 1413-1422. 

FUNG, C. Y. E., JONES, S., NTRAKWAH, A., NASEEM, K. M., FARNDALE, 
R. W. & MAHAUT-SMITH, M. P. 2012. Platelet Ca2+ responses 
coupled to glycoprotein VI and Toll-like receptors persist in the 
presence of endothelial-derived inhibitors: roles for secondary 
activation of P2X1 receptors and release from intracellular Ca2+ 
stores. Blood, 119, 3613-3621. 

GAERTNER, F., AHMAD, Z., ROSENBERGER, G., FAN, S. X., NICOLAI, 
L., BUSCH, B., YAVUZ, G., LUCKNER, M., ISHIKAWA-
ANKERHOLD, H., HENNEL, R., BENECHET, A., LORENZ, M., 
CHANDRARATNE, S., SCHUBERT, I., HELMER, S., STRIEDNIG, 
B., STARK, K., JANKO, M., BOTTCHER, R. T., VERSCHOOR, A., 
LEON, C., GACHET, C., GUDERMANN, T., SCHNITZLER, M. M. Y., 
PINCUS, Z., IANNACONE, M., HAAS, R., WANNER, G., LAUBER, 
K., SIXT, M. & MASSBERG, S. 2017. Migrating Platelets Are 
Mechano-scavengers that Collect and Bundle Bacteria. Cell, 171, 
1368-+. 

GARCIA-CALVO, M., PETERSON, E. P., LEITING, B., RUEL, R., 
NICHOLSON, D. W. & THORNBERRY, N. A. 1998. Inhibition of 
human caspases by peptide-based and macromolecular inhibitors. 
Journal of Biological Chemistry, 273, 32608-32613. 

GERRY, A. B., SATCHELL, L. & LEAKE, D. S. 2008. A novel method for 
production of lipid hydroperoxide- or oxysterol-rich low-density 
lipoprotein. Atherosclerosis, 197, 579-587. 

GETZ, G. S. & REARDON, C. A. 2006. Diet and murine atherosclerosis. 
Arteriosclerosis Thrombosis and Vascular Biology, 26, 242-249. 

GIBBINS, J. M. 2004. Platelet adhesion signalling and the regulation of 
thrombus formation. Journal of Cell Science, 117, 3415-3425. 

GIOVANNINI, C., MATARRESE, P., SCAZZOCCHIO, B., SANCHEZ, M., 
MASELLA, R. & MALORNI, W. 2002. Mitochondria hyperpolarization 
is an early event in oxidized low-density lipoprotein-induced apoptosis 
in Caco-2 intestinal cells. Febs Letters, 523, 200-206. 

GOLANSKI, J., PIETRUCHA, T., BAJ, Z., GREGER, J. & WATALA, C. 1996. 
Molecular insights into the anticoagulant-induced spontaneous 
activation of platelets in whole blood - Various anticoagulants are not 
equal. Thrombosis Research, 83, 199-216. 

GOLEBIEWSKA, E. M. & POOLE, A. W. 2015. Platelet secretion: From 
haemostasis to wound healing and beyond. Blood Reviews, 29, 153-
162. 

GOLIA, E., LIMONGELLI, G., NATALE, F., FIMIANI, F., MADDALONI, V., 
PARIGGIANO, I., BIANCHI, R., CRISCI, M., D'ACIERNO, L., 



- 262 - 

GIORDANO, R., DI PALMA, G., CONTE, M., GOLINO, P., RUSSO, 
M. G., CALABRO, R. & CALABRO, P. 2014. Inflammation and 
Cardiovascular Disease: From Pathogenesis to Therapeutic Target. 
Current Atherosclerosis Reports, 16. 

GONZALEZ-PACHECO, H., VARGAS-ALARCON, G., ANGELES-
MARTINEZ, J., MARTINEZ-SANCHEZ, C., PEREZ-MENDEZ, O., 
HERRERA-MAYA, G., MARTINEZ-RIOS, M. A., PENA-DUQUE, M. 
A., POSADAS-ROMERO, C. & FRAGOSO, J. M. 2017. The NLRP3 
and CASP1 gene polymorphisms are associated with developing of 
acute coronary syndrome: a case-control study. Immunologic 
Research, 65, 862-868. 

GREBE, A., HOSS, F. & LATZ, E. 2018. NLRP3 Inflammasome and the IL-1 
Pathway in Atherosclerosis. Circulation Research, 122, 1722-1740. 

GRESELE, P., FALCINELLI, E., LOFFREDO, F., CIMMINO, G., CORAZZI, 
T., FORTE, L., GUGLIELMINI, G., MOMI, S. & GOLINO, P. 2011. 
Platelets release matrix metalloproteinase-2 in the coronary 
circulation of patients with acute coronary syndromes: possible role in 
sustained platelet activation. European Heart Journal, 32, 316-325. 

GRUNDLER, K., ANGSTWURM, M., HILGE, R., BAUMANN, P., ANNECKE, 
T., CRISPIN, A., SOHN, H. Y., MASSBERG, S. & KRAEMER, B. F. 
2014. Platelet mitochondrial membrane depolarization reflects 
disease severity in patients with sepsis and correlates with clinical 
outcome. Critical Care, 18. 

GUCLU, E., DURMAZ, Y. & KARABAY, O. 2013. Effect of severe sepsis on 
platelet count and their indices. African Health Sciences, 13, 333-338. 

GYULKHANDANYAN, A. V., MUTLU, A., FREEDMAN, J. & LEYTIN, V. 
2012. Markers of platelet apoptosis: methodology and applications. 
Journal of Thrombosis and Thrombolysis, 33, 397-411. 

HARRISON, P. 2009. Assessment of platelet function in the laboratory. 
Hamostaseologie, 29, 25-31. 

HARRISON, P. & CRAMER, E. M. 1993. PLATELET ALPHA-GRANULES. 
Blood Reviews, 7, 52-62. 

HARRISON, P., MACKIE, I., MUMFORD, A., BRIGGS, C., LIESNER, R., 
WINTER, M., MACHIN, S. & BRITISH COMM STAND, H. 2011. 
Guidelines for the laboratory investigation of heritable disorders of 
platelet function. British Journal of Haematology, 155, 30-44. 

HARRISON, P., ROBINSON, M. S., MACKIE, I. J. & MACHIN, S. J. 1997. 
Reticulated platelets. Platelets, 8, 379-83. 

HEEMSKERK, J. W. M., MATTHEIJ, N. J. A. & COSEMANS, J. 2013. 
Platelet-based coagulation: different populations, different functions. 
Journal of Thrombosis and Haemostasis, 11, 2-16. 

HEFFRON, S. P., MARIER, C., PARIKH, M., FISHER, E. A. & BERGER, J. 
S. 2018. Severe obesity and bariatric surgery alter the platelet mRNA 
profile. Platelets, 1-8. 

HISHINUMA, T., TSUKAMOTO, H., SUZUKI, K. & MIZUGAKI, M. 2001. 
Relationship between thromboxane/prostacyclin ratio and diabetic 
vascular complications. Prostaglandins Leukotrienes and Essential 
Fatty Acids, 65, 191-196. 

HOFFMAN, M. & MONROE, D. M. 2001. A cell-based model of hemostasis. 
Thrombosis and Haemostasis, 85, 958-965. 



- 263 - 

HOFFMEISTER, K. M. & FALET, H. 2016. Platelet clearance by the hepatic 
Ashwell-Morrell receptor: mechanisms and biological significance. 
Thrombosis Research, 141, S68-S72. 

HOLY, E. W., AKHMEDOV, A., SPEER, T., CAMICI, G. G., ZEWINGER, S., 
BONETTI, N., BEER, J. H., LUSCHER, T. F. & TANNER, F. C. 2016. 
Carbamylated Low-Density Lipoproteins Induce a Prothrombotic State 
Via LOX-1 Impact on Arterial Thrombus Formation In Vivo. Journal of 
the American College of Cardiology, 68, 1664-1676. 

HOTTZ, E. D., LOPES, J. F., FREITAS, C., VALLS-DE-SOUZA, R., 
OLIVEIRA, M. F., BOZZA, M. T., DA POIAN, A. T., WEYRICH, A. S., 
ZIMMERMAN, G. A., BOZZA, F. A. & BOZZA, P. T. 2013. Platelets 
mediate increased endothelium permeability in dengue through 
NLRP3-inflammasome activation. Blood, 122, 3405-3414. 

HUSKENS, D., SANG, Y., KONINGS, J., VAN DER VORM, L., DE LAAT, B., 
KELCHTERMANS, H. & ROEST, M. 2018. Standardization and 
reference ranges for whole blood platelet function measurements 
using a flow cytometric platelet activation test. Plos One, 13. 

IMHOF, B. A., JEMELIN, S., BALLET, R., VESIN, C., SCHAPIRA, M., 
KARACA, M. & EMRE, Y. 2016. CCN1/CYR61-mediated meticulous 
patrolling by Ly6C(low) monocytes fuels vascular inflammation. 
Proceedings of the National Academy of Sciences of the United 
States of America, 113, E4847-E4856. 

ITALIANO, J. E. & BATTINELLI, E. M. 2009. Selective sorting of alpha-
granule proteins. Journal of Thrombosis and Haemostasis, 7, 173-
176. 

JOBE, S. M., WILSON, K. M., LEO, L., RAIMONDI, A., MOLKENTIN, J. D., 
LENTZ, S. R. & DI PAOLA, J. 2008. Critical role for the mitochondrial 
permeability transition pore and cyclophilin D in platelet activation and 
thrombosis. Blood, 111, 1257-1265. 

JOSHI, D. C. & BAKOWSKA, J. C. 2011. Determination of Mitochondrial 
Membrane Potential and Reactive Oxygen Species in Live Rat 
Cortical Neurons. Jove-Journal of Visualized Experiments. 

KAHLENBERG, J. M., CARMONA-RIVERA, C., SMITH, C. K. & KAPLAN, 
M. J. 2013. Neutrophil Extracellular Trap-Associated Protein 
Activation of the NLRP3 Inflammasome Is Enhanced in Lupus 
Macrophages. Journal of Immunology, 190, 1217-1226. 

KAPPELMAYER, J. & NAGY, B. 2017. The Interaction of Selectins and 
PSGL-1 as a Key Component in Thrombus Formation and Cancer 
Progression. Biomed Research International. 

KAR, N. S., ASHRAF, M. Z., VALIYAVEETTIL, M. & PODREZ, E. A. 2008. 
Mapping and characterization of the binding site for specific oxidized 
phospholipids and oxidized low density lipoprotein of scavenger 
receptor CD36. Journal of Biological Chemistry, 283, 8765-8771. 

KATO, R., MORI, C., KITAZATO, K., ARATA, S., OBAMA, T., MORI, M., 
TAKAHASHI, K., AIUCHI, T., TAKANO, T. & ITABE, H. 2009. 
Transient Increase in Plasma Oxidized LDL During the Progression of 
Atherosclerosis in Apolipoprotein E Knockout Mice. Arteriosclerosis 
Thrombosis and Vascular Biology, 29, 33-U82. 

KEMKES-MATTHES, B., FISCHER, R. & PEETZ, D. 2011. Influence of 8 
and 24-h storage of whole blood at ambient temperature on 
prothrombin time, activated partial thromboplastin time, fibrinogen, 



- 264 - 

thrombin time, antithrombin and D-dimer. Blood Coagulation & 
Fibrinolysis, 22, 215-220. 

KIRII, H., NIWA, T., YAMADA, Y., WADA, H., SAITO, K., IWAKURA, Y., 
ASANO, M., MORIWAKI, H. & SEISHIMA, M. 2003. Lack of 
interleukin-1 beta decreases the severity of atherosclerosis in ApoE-
deficient mice. Arteriosclerosis Thrombosis and Vascular Biology, 23, 
656-660. 

KNEBEL, S. M., SPRAGUE, R. S. & STEPHENSON, A. H. 2015. 
Prostacyclin receptor expression on platelets of humans with type 2 
diabetes is inversely correlated with hemoglobin A1c levels. 
Prostaglandins & Other Lipid Mediators, 116, 131-135. 

KOUPENOVA, M., CLANCY, L., CORKREY, H. A. & FREEDMAN, J. E. 
2018. Circulating Platelets as Mediators of Immunity, Inflammation, 
and Thrombosis. Circulation Research, 122, 337-351. 

KUIJPERS, M. J. E., NIEUWENHUYS, C. M. A., FEIJGE, M. A. H., 
KLOOTS, W., GIESEN, P. L. A., JERLING, J. C., EGBRINK, M. & 
HEEMSKERK, J. W. M. 2005. Regulation of tissue factor-induced 
coagulation and platelet aggregation in flowing whole blood. 
Thrombosis and Haemostasis, 93, 97-105. 

LADOR, A., LESHEM-LEV, D., SPECTRE, G., ABELOW, A., KORNOWSKI, 
R. & LEV, E. I. 2017. Characterization of surface antigens of 
reticulated immature platelets. Journal of Thrombosis and 
Thrombolysis, 44, 291-297. 

LAEMMLI, U. K. 1970. CLEAVAGE OF STRUCTURAL PROTEINS DURING 
ASSEMBLY OF HEAD OF BACTERIOPHAGE-T4. Nature, 227, 680-
&. 

LAMKANFI, M., MUELLER, J. L., VITARI, A. C., MISAGHI, S., FEDOROVA, 
A., DESHAYES, K., LEE, W. P., HOFFMAN, H. M. & DIXIT, V. M. 
2009. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. Journal 
of Cell Biology, 187, 61-70. 

LAPETINA, E. G., LACAL, J. C., REEP, B. R. & VEDIA, L. M. Y. 1989. A 
RAS-RELATED PROTEIN IS PHOSPHORYLATED AND 
TRANSLOCATED BY AGONISTS THAT INCREASE CAMP LEVELS 
IN HUMAN-PLATELETS. Proceedings of the National Academy of 
Sciences of the United States of America, 86, 3131-3134. 

LAWRENCE, W. G., VARADI, G., ENTINE, G., PODNIESINSKI, E. & 
WALLACE, P. K. 2008. Enhanced red and near infrared detection in 
flow cytometry using avalanche photodiodes. Cytometry A, 73, 767-
76. 

LEELATIAN, N., DIGGINS, K. E. & IRISH, J. M. 2015. Characterizing 
Phenotypes and Signaling Networks of Single Human Cells by Mass 
Cytometry. Methods Mol Biol, 1346, 99-113. 

LEFRANCAIS, E., ORTIZ-MUNOZ, G., CAUDRILLIER, A., MALLAVIA, B., 
LIU, F. C., SAYAH, D. M., THORNTON, E. E., HEADLEY, M. B., 
DAVID, T., COUGHLIN, S. R., KRUMMEL, M. F., LEAVITT, A. D., 
PASSEGUE, E. & LOONEY, M. R. 2017. The lung is a site of platelet 
biogenesis and a reservoir for haematopoietic progenitors. Nature, 
544, 105-+. 

LENZ, M. L., HUGHES, H., MITCHELL, J. R., VIA, D. P., GUYTON, J. R., 
TAYLOR, A. A., GOTTO, A. M. & SMITH, C. V. 1990. LIPID 
HYDROPEROXY AND HYDROXY DERIVATIVES IN COPPER-



- 265 - 

CATALYZED OXIDATION OF LOW-DENSITY-LIPOPROTEIN. 
Journal of Lipid Research, 31, 1043-1050. 

LEV, E. I. 2016. Immature Platelets Clinical Relevance and Research 
Perspectives. Circulation, 134, 987-988. 

LEVITAN, I., VOLKOV, S. & SUBBAIAH, P. V. 2010. Oxidized LDL: 
Diversity, Patterns of Recognition, and Pathophysiology. Antioxidants 
& Redox Signaling, 13, 39-75. 

LHERMUSIER, T., CHAP, H. & PAYRASTRE, B. 2011. Platelet membrane 
phospholipid asymmetry: from the characterization of a scramblase 
activity to the identification of an essential protein mutated in Scott 
syndrome. Journal of Thrombosis and Haemostasis, 9, 1883-1891. 

LI, J. L. Y., ZARBOCK, A. & HIDALGO, A. 2017. Platelets as autonomous 
drones for hemostatic and immune surveillance. Journal of 
Experimental Medicine, 214, 2193-2204. 

LIBERSAN, D., ROUSSEAU, G. & MERHI, Y. 2003. Differential regulation of 
P-selectin expression by protein kinase A and protein kinase G in 
thrombin-stimulated human platelets. Thrombosis and Haemostasis, 
89, 310-317. 

LIN, Y. C., HUANG, D. Y., WANG, J. S., LIN, Y. L., HSIEH, S. L., HUANG, 
K. C. & LIN, W. W. 2015. Syk is involved in NLRP3 inflammasome-
mediated caspase-1 activation through adaptor ASC phosphorylation 
and enhanced oligomerization. Journal of Leukocyte Biology, 97, 825-
835. 

LINDEN, M. D., FRELINGER, A. L., BARNARD, M. R., PRZYKLENK, K., 
FURMAN, M. I. & MICHELSON, A. D. 2004. Application of flow 
cytometry to platelet disorders. Seminars in Thrombosis and 
Hemostasis, 30, 501-511. 

LINDERMAN, G. C., RACHH, M., HOSKINS, J. G., STEINERBERGER, S. & 
KLUGER, Y. 2019. Fast interpolation-based t-SNE for improved 
visualization of single-cell RNA-seq data. Nature Methods, 16, 243-
245. 

LITINSKIY, M. B., NARDELLI, B., HILBERT, D. M., HE, B., SCHAFFER, A., 
CASALI, P. & CERUTTI, A. 2002. DCs induce CD40-independent 
immunoglobulin class switching through BLyS and APRIL. Nature 
Immunology, 3, 822-829. 

LIU, W. W., YIN, Y. L., ZHOU, Z. H., HE, M. & DAI, Y. L. 2014. OxLDL-
induced IL-1beta secretion promoting foam cells formation was mainly 
via CD36 mediated ROS production leading to NLRP3 inflammasome 
activation. Inflammation Research, 63, 33-43. 

LIU, X., PICHULIK, T., WOLZ, O.-O., DANG, T.-M., STUTZ, A., DILLEN, C., 
DELMIRO GARCIA, M., KRAUS, H., DICKHOFER, S., DAIBER, E., 
MUNZENMAYER, L., WAHL, S., RIEBER, N., KUMMERLE-
DESCHNER, J., YAZDI, A., FRANZ-WACHTEL, M., MACEK, B., 
RADSAK, M., VOGEL, S., SCHULTE, B., WALZ, J. S., HARTL, D., 
LATZ, E., STILGENBAUER, S., GRIMBACHER, B., MILLER, L., 
BRUNNER, C., WOLZ, C. & WEBER, A. N. R. 2017. Human NACHT, 
LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome 
activity is regulated by and potentially targetable through Bruton 
tyrosine kinase. The Journal of allergy and clinical immunology, 4, 
1054-1067. 



- 266 - 

LIU, X., ZHANG, Z. B., RUAN, J. B., PAN, Y. D., MAGUPALLI, V. G., WU, 
H. & LIEBERMAN, J. 2016. Inflammasome-activated gasdermin D 
causes pyroptosis by forming membrane pores. Nature, 535, 153-
158. 

LOCKE, D., CHEN, H., LIU, Y., LIU, C. D. & KAHN, M. L. 2002. Lipid rafts 
orchestrate signaling by the platelet receptor glycoprotein VI. Journal 
of Biological Chemistry, 277, 18801-18809. 

LOPEZ, J. A., DEL CONDE, I. & SHRIMPTON, C. N. 2005. Receptors, rafts, 
and microvesicles in thrombosis and inflammation. Journal of 
Thrombosis and Haemostasis, 3, 1737-1744. 

LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L. & RANDALL, R. J. 
1951. PROTEIN MEASUREMENT WITH THE FOLIN PHENOL 
REAGENT. Journal of Biological Chemistry, 193, 265-275. 

LOYAU, S., DUMONT, B., OLLIVIER, V., BOULAFTALI, Y., FELDMAN, L., 
AJZENBERG, N. & JANDROT-PERRUS, M. 2012. Platelet 
Glycoprotein VI Dimerization, an Active Process Inducing Receptor 
Competence, Is an Indicator of Platelet Reactivity. Arteriosclerosis 
Thrombosis and Vascular Biology, 32, 778-U543. 

MACWAN, A. S., BOKNÄS, N., NTZOUNI, M. P., RAMSTRÖM, S., 
GIBBINS, J. M., FAXÄLV, L. & LINDAHL, T. L. 2019. Gradient-
dependent inhibition of stimulatory signaling from platelet G protein-
coupled receptors. Haematologica, 1482-1492. 

MAGWENZI, S., WOODWARD, C., WRAITH, K. S., ABURIMA, A., 
RASLAN, Z., JONES, H., MCNEIL, C., WHEATCROFT, S., 
YULDASHEVA, N., FEBBRIAO, M., KEARNEY, M. & NASEEM, K. M. 
2015. Oxidized LDL activates blood platelets through CD36/NOX2-
mediated inhibition of the cGMP/protein kinase G signaling cascade. 
Blood, 125, 2693-2703. 

MANGANELLO, J. M., DJELLAS, Y., BORG, C., ANTONAKIS, K. & LE 
BRETON, G. C. 1999. Cyclic AMP-dependent phosphorylation of 
thromboxane A(2) receptor-associated G alpha(13). Journal of 
Biological Chemistry, 274, 28003-28010. 

MANGANELLO, J. M., HUANG, J. S., KOZASA, T., VOYNO-
YASENETSKAYA, T. A. & LE BRETON, G. C. 2003. Protein kinase 
A-mediated phosphorylation of the G alpha(13) switch I region alters 
the G alpha beta gamma(13)-G protein-coupled receptor complex and 
inhibits Rho activation. Journal of Biological Chemistry, 278, 124-130. 

MARTIN, J. F., KRISTENSEN, S. D., MATHUR, A., GROVE, E. L. & 
CHOUDRY, F. A. 2012. The causal role of megakaryocyte-platelet 
hyperactivity in acute coronary syndromes. Nature Reviews 
Cardiology, 9, 658-670. 

MARTINON, F., PETRILLI, V., MAYOR, A., TARDIVEL, A. & TSCHOPP, J. 
2006. Gout-associated uric acid crystals activate the NALP3 
inflammasome. Nature, 440, 237-241. 

MATHEWS, R. J., ROBINSON, J. I., BATTELLINO, M., WONG, C., 
TAYLOR, J. C., EYRE, S., CHURCHMAN, S. M., WILSON, A. G., 
ISAACS, J. D., HYRICH, K., BARTON, A., PLANT, D., SAVIC, S., 
COOK, G. P., SARZI-PUTTINI, P., EMERY, P., BARRETT, J. H., 
MORGAN, A. W., MCDERMOTT, M. F. & BRAGGSS 2014. Evidence 
of NLRP3-inflammasome activation in rheumatoid arthritis (RA); 
genetic variants within the NLRP3-inflammasome complex in relation 



- 267 - 

to susceptibility to RA and response to anti-TNF treatment. Annals of 
the Rheumatic Diseases, 73, 1202-1210. 

MATSUSHITA, K., TAKEOKA, M., SAGARA, J., ITANO, N., KUROSE, Y., 
NAKAMURA, A. & TANIGUCHI, S. 2009. A Splice Variant of ASC 
Regulates IL-1 beta Release and Aggregates Differently from Intact 
ASC. Mediators of Inflammation, 287387. 

MEERSCHAERT, J. & FURIE, M. B. 1995. THE ADHESION MOLECULES 
USED BY MONOCYTES FOR MIGRATION ACROSS 
ENDOTHELIUM INCLUDE CD11A/CD18, CD11B/CD18, AND VLA-4 
ON MONOCYTES AND ICAM-1, VCAM-1, AND OTHER LIGANDS 
ON ENDOTHELIUM. Journal of Immunology, 154, 4099-4112. 

MEHTA, P., CUMMINGS, R. D. & MCEVER, R. P. 1998. Affinity and kinetic 
analysis of P-selectin binding to P-selectin glycoprotein ligand-1. 
Journal of Biological Chemistry, 273, 32506-32513. 

MENCHE, D., ISRAEL, A. & KARPATKIN, S. 1980. PLATELETS AND 
MICROTUBULES - EFFECT OF COLCHICINE AND D2O ON 
PLATELET-AGGREGATION AND RELEASE INDUCED BY 
CALCIUM IONOPHORE A23187. Journal of Clinical Investigation, 66, 
284-291. 

MIAO, E. A., RAJAN, J. V. & ADEREM, A. 2011. Caspase-1-induced 
pyroptotic cell death. Immunological Reviews, 243, 206-214. 

MICHELSON, A. D. 1994. PLATELET ACTIVATION BY THROMBIN CAN 
BE DIRECTLY MEASURED IN WHOLE-BLOOD THROUGH THE 
USE OF THE PEPTIDE GPRP AND FLOW-CYTOMETRY - 
METHODS AND CLINICAL-APPLICATIONS. Blood Coagulation & 
Fibrinolysis, 5, 121-131. 

MITCHELL, J. A., ALI, F., BAILEY, L., MORENO, L. & HARRINGTON, L. S. 
2008. Role of nitric oxide and prostacyclin as vasoactive hormones 
released by the endothelium. Experimental Physiology, 93, 141-147. 

MOORE, K. L. 1998. Structure and function of P-selectin Glycoprotein 
ligand-1. Leukemia & Lymphoma, 29, 1-15. 

MOORE, K. L., PATEL, K. D., BRUEHL, R. E., LI, F. G., JOHNSON, D. A., 
LICHENSTEIN, H. S., CUMMINGS, R. D., BAINTON, D. F. & 
MCEVER, R. P. 1995. P-SELECTIN GLYCOPROTEIN LIGAND-1 
MEDIATES ROLLING OF HUMAN NEUTROPHILS ON P-
SELECTIN. Journal of Cell Biology, 128, 661-671. 

MORRELL, C. N., AGGREY, A. A., CHAPMAN, L. M. & MODJESKI, K. L. 
2014. Emerging roles for platelets as immune and inflammatory cells. 
Blood, 123, 2759-2767. 

MURAKAMI, T., OCKINGER, J., YU, J. J., BYLES, V., MCCOLL, A., 
HOFER, A. M. & HORNG, T. 2012. Critical role for calcium 
mobilization in activation of the NLRP3 inflammasome. Proceedings 
of the National Academy of Sciences of the United States of America, 
109, 11282-11287. 

MURTHY, P., DURCO, F., MILLER-OCUIN, J. L., TAKEDAI, T., SHANKAR, 
S., LIANG, X. Y., LIU, X., CUI, X. D., SACHDEV, U., RATH, D., 
LOTZE, M. T., ZEH, H. J., GAWAZ, M., WEBER, A. N. & VOGEL, S. 
2017. The NLRP3 inflammasome and bruton's tyrosine kinase in 
platelets co-regulate platelet activation, aggregation, and in vitro 
thrombus formation. Biochemical and Biophysical Research 
Communications, 483, 230-236. 



- 268 - 

NASEEM, K. M., GOODALL, A. H. & BRUCKDORFER, K. R. 1997. 
Differential effects of native and oxidatively modified low-density 
lipoproteins on platelet function. Platelets, 8, 163-173. 

NERGIZ-UNAL, R., LAMERS, M. M. E., VAN KRUCHTEN, R., LUIKEN, J. 
J., COSEMANS, J., GLATZ, J. F. C., KUIJPERS, M. J. E. & 
HEEMSKERK, J. W. M. 2011. Signaling role of CD36 in platelet 
activation and thrombus formation on immobilized thrombospondin or 
oxidized low-density lipoprotein. Journal of Thrombosis and 
Haemostasis, 9, 1835-1846. 

NHEK, S., CLANCY, R., LEE, K. A., ALLEN, N. M., BARRETT, T. J., 
MARCANTONI, E., NWAUKONI, J., RASMUSSEN, S., RUBIN, M., 
NEWMAN, J. D., BUYON, J. P. & BERGER, J. S. 2017. Activated 
Platelets Induce Endothelial Cell Activation via an Interleukin-1 
Pathway in Systemic Lupus Erythematosus. Arteriosclerosis 
Thrombosis and Vascular Biology, 37, 707-716. 

OBERPRIELER, N. G. & TASKEN, K. 2011. Analysing phosphorylation-
based signalling networks by phospho flow cytometry. Cellular 
Signalling, 23, 14-18. 

OBYDENNYI, S. I., ARTEMENKO, E. O., SVESHNIKOVA, A. N., 
IGNATOVA, A. A., VARLAMOVA, T. V., GAMBARYAN, S., 
LOMAKINA, G. Y., UGAROVA, N. N., KIREEV, I. I., 
ATAULLAKHANOV, F. I., NOVICHKOVA, G. A., MASCHAN, A. A., 
SHCHERBINA, A. & PANTELEEV, M. 2019. Mechanisms of 
increased mitochondria-dependent necrosis in Wiskott-Aldrich 
syndrome platelets. Haematologica, 105-2. 

OTTO, G. P., RATHKOLB, B., OESTEREICHER, M. A., LENGGER, C. J., 
MOERTH, C., MICKLICH, K., FUCHS, H., GAILUS-DURNER, V., 
WOLF, E. & DE ANGELIS, M. H. 2016. Clinical Chemistry Reference 
Intervals for C57BL/6J, C57BL/6N, and C3HeB/FeJ Mice (Mus 
musculus). Journal of the American Association for Laboratory Animal 
Science, 55, 375-386. 

PALADE, G. E. 1953. AN ELECTRON MICROSCOPE STUDY OF THE 
MITOCHONDRIAL STRUCTURE. Journal of Histochemistry & 
Cytochemistry, 1, 188-211. 

PARISE, L. V. 2016. Introduction to a review series: megakaryocytes to 
platelets in health and disease. Blood, 127, 1215-1215. 

PARK, W. H., HAN, Y. W., KIM, S. H. & KIM, S. Z. 2007. An ROS generator, 
antimycin A, inhibits the growth of HeLa cells via apoptosis. Journal of 
Cellular Biochemistry, 102, 98-109. 

PERREGAUX, D. & GABEL, C. A. 1994. INTERLEUKIN-1-BETA 
MATURATION AND RELEASE IN RESPONSE TO ATP AND 
NIGERICIN - EVIDENCE THAT POTASSIUM-DEPLETION 
MEDIATED BY THESE AGENTS IS A NECESSARY AND COMMON 
FEATURE OF THEIR ACTIVITY. Journal of Biological Chemistry, 
269, 15195-15203. 

PLOW, E. F. & MARGUERIE, G. 1982. INHIBITION OF FIBRINOGEN 
BINDING TO HUMAN-PLATELETS BY THE TETRAPEPTIDE 
"GLYCYL-L-PROLYL-L-ARGINYL-L-PROLINE. Proceedings of the 
National Academy of Sciences of the United States of America-
Biological Sciences, 79, 3711-3715. 



- 269 - 

PODOPLELOVA, N. A., SVESHNIKOVA, A. N., KOTOVA, Y. N., ECKLY, A., 
RECEVEUR, N., NECHIPURENKO, D. Y., OBYDENNYI, S. I., 
KIREEV, II, GACHET, C., ATAULLAKHANOV, F. I., MANGIN, P. H. & 
PANTELEEV, M. A. 2016. Coagulation factors bound to procoagulant 
platelets concentrate in cap structures to promote clotting. Blood, 128, 
1745-1755. 

PODREZ, E. A., BYZOVA, T. V., FEBBRAIO, M., SALOMON, R. G., MA, Y., 
VALIYAVEETTIL, M., POLIAKOV, E., SUN, M., FINTON, P. J., 
CURTIS, B. R., CHEN, J., ZHANG, R., SILVERSTEIN, R. L. & 
HAZEN, S. L. 2007. Platelet CD36 links hyperlipidemia, oxidant stress 
and a prothrombotic phenotype. Nature Medicine, 13, 1086-1095. 

PODREZ, E. A., POLIAKOV, E., SHEN, Z. Z., ZHANG, R. L., DENG, Y. J., 
SUN, M. J., FINTON, P. J., SHAN, L., FEBBRAIO, M., HAJJAR, D. 
P., SILVERSTEIN, R. L., HOFF, H. F., SALOMON, R. G. & HAZEN, 
S. L. 2002a. A novel family of atherogenic oxidized phospholipids 
promotes macrophage foam cell formation via the scavenger receptor 
CD36 and is enriched in atherosclerotic lesions. Journal of Biological 
Chemistry, 277, 38517-38523. 

PODREZ, E. A., POLIAKOV, E., SHEN, Z. Z., ZHANG, R. L., DENG, Y. J., 
SUN, M. J., FINTON, P. J., SHAN, L., GUGIU, B., FOX, P. L., HOFF, 
H. F., SALOMON, R. G. & HAZEN, S. L. 2002b. Identification of a 
novel family of oxidized phospholipids that serve as ligands for the 
macrophage scavenger receptor CD36. Journal of Biological 
Chemistry, 277, 38503-38516. 

POTTER, V. R. & REIF, A. E. 1952. INHIBITION OF AN ELECTRON 
TRANSPORT COMPONENT BY ANTIMYCIN-A. Journal of Biological 
Chemistry, 194, 287-297. 

POZAROWSKI, P., HUANG, X., HALICKA, D. H., LEE, B., JOHNSON, G. & 
DARZYNKIEWICZ, Z. 2003. Interactions of fluorochrome-labeled 
caspase inhibitors with apoptotic cells: A caution in data 
interpretation. Cytometry Part A, 55A, 50-60. 

PRETORIUS, E., ENGELBRECHT, M. J. & DUIM, W. 2012. 
Thromboembolic Ischemic Stroke and the Presence of Necrotic 
Platelets: A Scanning Electron Microscopy Investigation. 
Ultrastructural Pathology, 36, 19-22. 

PY, B. F., KIM, M. S., VAKIFAHMETOGLU-NORBERG, H. & YUAN, J. Y. 
2013. Deubiquitination of NLRP3 by BRCC3 Critically Regulates 
Inflammasome Activity. Molecular Cell, 49, 331-338. 

QIAO, J. L., WU, X. Q., LUO, Q., WEI, G. Y., XU, M. D., WU, Y. L., LIU, Y., 
LI, X. Q., ZI, J., JU, W., FU, L., CHEN, C., WU, Q. Y., ZHU, S. Y., QI, 
K. M., LI, D. P., LI, Z. Y., ANDREWS, R. K., ZENG, L. Y., 
GARDINER, E. E. & XU, K. L. 2018. NLRP3 regulates platelet integrin 
alpha IIb beta 3 outside-in signaling, hemostasis and arterial 
thrombosis. Haematologica, 103, 1568-1576. 

QUINTON, T. M., BROWN, K. D. & DEAN, W. L. 1996. Inositol 1,4,5-
trisphosphate-mediated Ca2+ release from platelet internal 
membranes is regulated by differential phosphorylation. Biochemistry, 
35, 6865-6871. 

RAMOS-ARELLANO, L. E., MUNOZ-VALLE, J. F., DE LA CRUZ-MOSSO, 
U., SALGADO-BERNABE, A. B., CASTRO-ALARCON, N. & PARRA-
ROJAS, I. 2014. Circulating CD36 and oxLDL levels are associated 



- 270 - 

with cardiovascular risk factors in young subjects. Bmc 
Cardiovascular Disorders, 14:54. 

RAMSTROM, S., SODERGREN, A. L., TYNNGARD, N. & LINDAHL, T. L. 
2016. Platelet Function Determined by Flow Cytometry: New 
Perspectives? Seminars in Thrombosis and Hemostasis, 42, 268-281. 

RANDRIAMBOAVONJY, V., MANN, W. A., ELGHEZNAWY, A., POPP, R., 
ROGOWSKI, P., DORNAUF, I., DROSE, S. & FLEMING, I. 2015. 
Metformin reduces hyper-reactivity of platelets from patients with 
polycystic ovary syndrome by improving mitochondrial integrity. 
Thrombosis and Haemostasis, 114, 569-578. 

RASLAN, Z., ABURIMA, A. & NASEEM, K. M. 2015. The Spatiotemporal 
Regulation of cAMP Signaling in Blood Platelets-Old Friends and New 
Players. Frontiers in Pharmacology, 6. 

RASLAN, Z. & NASEEM, K. M. 2014. The control of blood platelets by cAMP 
signalling. Biochemical Society Transactions, 42, 289-294. 

RASLAN, Z. & NASEEM, K. M. 2015. Compartmentalisation of cAMP-
dependent signalling in blood platelets: The role of lipid rafts and actin 
polymerisation. Platelets, 26, 349-357. 

REDDY, E. C., WANG, H., CHRISTENSEN, H., MCMILLAN-WARD, E., 
ISRAELS, S. J., BANG, K. W. A. & RAND, M. L. 2018. Analysis of 
procoagulant phosphatidylserine-exposing platelets by imaging flow 
cytometry. Research and Practice in Thrombosis and Haemostasis, 2, 
736-750. 

REX, S., BEAULIEU, L. M., PERLMAN, D. H., VITSEVA, O., BLAIR, P. S., 
MCCOMB, M. E., COSTELLO, C. E. & FREEDMAN, J. E. 2009. 
Immune versus thrombotic stimulation of platelets differentially 
regulates signalling pathways, intracellular protein-protein 
interactions, and alpha-granule release. Thrombosis and 
Haemostasis, 102, 97-110. 

RIDKER, P. M., EVERETT, B. M., THUREN, T., MACFADYEN, J. G., 
CHANG, W. H., BALLANTYNE, C., FONSECA, F., NICOLAU, J., 
KOENIG, W., ANKER, S. D., KASTELEIN, J. J. P., CORNEL, J. H., 
PAIS, P., PELLA, D., GENEST, J., CIFKOVA, R., LORENZATTI, A., 
FORSTER, T., KOBALAVA, Z., VIDA-SIMITI, L., FLATHER, M., 
SHIMOKAWA, H., OGAWA, H., DELLBORG, M., ROSSI, P. R. F., 
TROQUAY, R. P. T., LIBBY, P., GLYNN, R. J. & GRP, C. T. 2017a. 
Antiinflammatory Therapy with Canakinumab for Atherosclerotic 
Disease. New England Journal of Medicine, 377, 1119-1131. 

RIDKER, P. M., MACFADYEN, J. G., THUREN, T., EVERETT, B. M., 
LIBBY, P., GLYNN, R. J. & GRP, C. T. 2017b. Effect of interleukin-1 
beta inhibition with canakinumab on incident lung cancer in patients 
with atherosclerosis: exploratory results from a randomised, double-
blind, placebo-controlled trial. Lancet, 390, 1833-1842. 

RIDKER, P. M., THUREN, T., ZALEWSKI, A., LIBBY, P. & GRP, C. S. 2011. 
Interleukin-1 beta inhibition and the prevention of recurrent 
cardiovascular events: Rationale and Design of the Canakinumab 
Anti-inflammatory Thrombosis Outcomes Study (CANTOS). American 
Heart Journal, 162, 597-605. 

RINGEL-SCAIA, V. M., MCDANIEL, D. K. & ALLEN, I. C. 2016. The 
Goldilocks Conundrum: NLR Inflammasome Modulation of 



- 271 - 

Gastrointestinal Inflammation during Inflammatory Bowel Disease. 
Critical Reviews in Immunology, 36, 283-314. 

RODGERS, M. A., BOWMAN, J. W., FUJITA, H., ORAZIO, N., SHI, M., 
LIANG, Q. M., AMATYA, R., KELLY, T. J., IWAI, K., TING, J. & 
JUNG, J. U. 2014. The linear ubiquitin assembly complex (LUBAC) is 
essential for NLRP3 inflammasome activation. Journal of 
Experimental Medicine, 211, 1331-1345. 

ROSSAINT, J., KUHNE, K., SKUPSKI, J., VAN AKEN, H., LOONEY, M. R., 
HIDALGO, A. & ZARBOCK, A. 2016. Directed transport of neutrophil-
derived extracellular vesicles enables platelet-mediated innate 
immune response. Nature Communications, 7. 

ROWCZENIO, D. M., GOMES, S. M., AROSTEGUI, J. I., MENSA-VILARO, 
A., OMOYINMI, E., TROJERL, H., BAGINSKA, A., BAROJA-MAZO, 
A., PELEGRIN, P., SAVIC, S., LANE, T., WILLIAMS, R., BROGAN, 
P., LACHMANN, H. J. & HAWKINS, P. N. 2017. Late-Onset 
Cryopyrin-Associated Periodic Syndromes Caused by Somatic 
NLRP3 Mosaicism - UK Single Center Experience. Frontiers in 
Immunology, 8. 

ROWLEY, J. W., OLER, A. J., TOLLEY, N. D., HUNTER, B. N., LOW, E. N., 
NIX, D. A., YOST, C. C., ZIMMERMAN, G. A. & WEYRICH, A. S. 
2011. Genome-wide RNA-seq analysis of human and mouse platelet 
transcriptomes. Blood, 118, E101-E111. 

SAGULENKO, V., THYGESEN, S. J., SESTER, D. P., IDRIS, A., 
CRIDLAND, J. A., VAJJHALA, P. R., ROBERTS, T. L., SCHRODER, 
K., VINCE, J. E., HILL, J. M., SILKE, J. & STACEY, K. J. 2013. AIM2 
and NLRP3 inflammasomes activate both apoptotic and pyroptotic 
death pathways via ASC. Cell Death and Differentiation, 20, 1149-
1160. 

SALZER, U., CHAPEL, H. M., WEBSTER, A. D. B., PAN-HAMMARSTROM, 
Q., SCHMITT-GRAEFF, A., SCHLESIER, M., PETER, H. H., 
ROCKSTROH, J. K., SCHNEIDER, P., SCHAFFER, A. A., 
HAMMARSTROM, L. & GRIMBACHER, B. 2005. Mutations in 
TNFRSF13B encoding TACI are associated with common variable 
immunodeficiency in humans. Nature Genetics, 37, 820-828. 

SCHRODER, K. & TSCHOPP, J. 2010. The Inflammasomes. Cell, 140, 821-
832. 

SCHULZ, E., WENZEL, P., MUNZEL, T. & DAIBER, A. 2014. Mitochondrial 
Redox Signaling: Interaction of Mitochondrial Reactive Oxygen 
Species with Other Sources of Oxidative Stress. Antioxidants & 
Redox Signaling, 20, 308-324. 

SELVADURAI, M. V. & HAMILTON, J. R. 2018. Structure and function of the 
open canalicular system - the platelet's specialized internal 
membrane network. Platelets, 29, 319-325. 

SHARMA, G. K. & TALBOT, I. C. 1986. PULMONARY 
MEGAKARYOCYTES - MISSING LINK BETWEEN 
CARDIOVASCULAR AND RESPIRATORY-DISEASE. Journal of 
Clinical Pathology, 39, 969-976. 

SHEEDY, F. J., GREBE, A., RAYNER, K. J., KALANTARI, P., 
RAMKHELAWON, B., CARPENTER, S. B., BECKER, C. E., 
EDIRIWEERA, H. N., MULLICK, A. E., GOLENBOCK, D. T., 
STUART, L. M., LATZ, E., FITZGERALD, K. A. & MOORE, K. J. 



- 272 - 

2013. CD36 coordinates NLRP3 inflammasome activation by 
facilitating intracellular nucleation of soluble ligands into particulate 
ligands in sterile inflammation. Nature Immunology, 14, 812-820. 

SHI, H. X., WANG, Y., LI, X. H., ZHAN, X. M., TANG, M., FINA, M., SU, L. 
J., PRATT, D., BU, C. H., HILDEBRAND, S., LYON, S., SCOTT, L., 
QUAN, J. X., SUN, Q. H., RUSSELL, J., ARNETT, S., JUREK, P., 
CHEN, D., KRAVCHENKO, V. V., MATHISON, J. C., MORESCO, E. 
M. Y., MONSON, N. L., ULEVITCH, R. J. & BEUTLER, B. 2016. 
NLRP3 activation and mitosis are mutually exclusive events 
coordinated by NEK7, a new inflammasome component. Nature 
Immunology, 17, 250-258. 

SMITH, B. K., JAIN, S. S., RIMBAUD, S., DAM, A., QUADRILATERO, J., 
VENTURA-CLAPIER, R., BONEN, A. & HOLLOWAY, G. P. 2011. 
FAT/CD36 is located on the outer mitochondrial membrane, upstream 
of long-chain acyl-CoA synthetase, and regulates palmitate oxidation. 
Biochemical Journal, 437, 125-134. 

SODERGREN, A. L. & RAMSTROM, S. 2018. Platelet subpopulations 
remain despite strong dual agonist stimulation and can be 
characterised using a novel six-colour flow cytometry protocol. 
Scientific Reports, 8. 

SODERGREN, A. L., TYNNGARD, N., BERLIN, G. & RAMSTROM, S. 2016. 
Responsiveness of platelets during storage studied with flow 
cytometry - formation of platelet subpopulations and LAMP-1 as new 
markers for the platelet storage lesion. Vox Sanguinis, 110, 116-125. 

SONG, H., LIU, B. Y., HUAI, W. W., YU, Z. X., WANG, W. W., ZHAO, J., 
HAN, L. H., JIANG, G. S., ZHANG, L. N., GAO, C. J. & ZHAO, W. 
2016. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 
inflammasome activation by promoting proteasomal degradation of 
NLRP3. Nature Communications, 7:13727. 

SONG, N., LIU, Z. S., XUE, W., BAI, Z. F., WANG, Q. Y., DAI, J., LIU, X., 
HUANG, Y. J., CAI, H., ZHAN, X. Y., HAN, Q. Y., WANG, H. X., 
CHEN, Y., LI, H. Y., LI, A. L., ZHANG, X. M., ZHOU, T. & LI, T. 2017. 
NLRP3 Phosphorylation Is an Essential Priming Event for 
Inflammasome Activation. Molecular Cell, 68, 185-197. 

SPERLING, S., VINHOLT, P. J., SPROGOE, U., YAZER, M. H., 
FREDERIKSEN, H. & NIELSEN, C. 2019. The effects of storage on 
platelet function in different blood products. Hematology, 24, 89-96. 

SPURGEON, B. E. J., ABURIMA, A., OBERPRIELER, N. G., TASKEN, K. & 
NASEEM, K. M. 2014. Multiplexed phosphospecific flow cytometry 
enables large-scale signaling profiling and drug screening in blood 
platelets. Journal of Thrombosis and Haemostasis, 12, 1733-1743. 

SPURGEON, B. E. J. & NASEEM, K. M. 2018. High-Throughput Signaling 
Profiling in Blood Platelets by Multiplexed Phosphoflow Cytometry. 
Methods Mol Biol, 1812, 95-111. 

SPURGEON, B. E. J. & NASEEM, K. M. 2019. Platelet Flow Cytometry: 
Instrument Setup, Controls, and Panel Performance. Cytometry B 
Clin Cytom. 

STALKER, T. J., NEWMAN, D. K., MA, P., WANNEMACHER, K. M. & 
BRASS, L. F. 2012. Platelet signaling. Handb Exp Pharmacol, 59-85. 

STALKER, T. J., TRAXLER, E. A., WU, J., WANNEMACHER, K. M., 
CERMIGNANO, S. L., VORONOV, R., DIAMOND, S. L. & BRASS, L. 



- 273 - 

F. 2013. Hierarchical organization in the hemostatic response and its 
relationship to the platelet-signaling network. Blood, 121, 1875-1885. 

STANKOVA, T., DELCHEVA, G., MANEVA, A. & VLADEVA, S. 2019. 
Serum Levels of Carbamylated LDL and Soluble Lectin-Like Oxidized 
Low-Density Lipoprotein Receptor-1 Are Associated with Coronary 
Artery Disease in Patients with Metabolic Syndrome. Medicina 
(Kaunas), 55. 

STEINBERG, D. 2009. The LDL modification hypothesis of atherogenesis: 
an update. Journal of Lipid Research, 50, S376-S381. 

STELLOS, K., SAUTER, R., FAHRLEITNER, M., GRIMM, J., STAKOS, D., 
EMSCHERMANN, F., PANAGIOTA, V., GNERLICH, S., PERK, A., 
SCHONBERGER, T., BIGALKE, B., LANGER, H. F. & GAWAZ, M. 
2012. Binding of Oxidized Low-Density Lipoprotein on Circulating 
Platelets Is increased in Patients With Acute Coronary Syndromes 
and Induces Platelet Adhesion to Vascular Wall In Vivo-Brief Report. 
Arteriosclerosis Thrombosis and Vascular Biology, 32, 2017-U626. 

STEWART, C. R., STUART, L. M., WILKINSON, K., VAN GILS, J. M., 
DENG, J. S., HALLE, A., RAYNER, K. J., BOYER, L., ZHONG, R. Q., 
FRAZIER, W. A., LACY-HULBERT, A., EL KHOURY, J., 
GOLENBOCK, D. T. & MOORE, K. J. 2010. CD36 ligands promote 
sterile inflammation through assembly of a Toll-like receptor 4 and 6 
heterodimer. Nature Immunology, 11, 155-U75. 

STOCKER, R. & KEANEY, J. F. 2004. Role of oxidative modifications in 
atherosclerosis. Physiological Reviews, 84, 1381-1478. 

STOKES, K. Y., CALAHAN, L., HAMRIC, C. M., RUSSELL, J. M. & 
GRANGER, D. N. 2009. CD40/CD40L contributes to 
hypercholesterolemia-induced microvascular inflammation. American 
Journal of Physiology-Heart and Circulatory Physiology, 296, H689-
H697. 

TAIT, S. W. G. & GREEN, D. R. 2012. Mitochondria and cell signalling. 
Journal of Cell Science, 125, 807-815. 

TANG, T. T., LANG, X. T., XU, C. F., WANG, X. Q., GONG, T., YANG, Y. 
Q., CUI, J., BAI, L., WANG, J., JIANG, W. & ZHOU, R. B. 2017. 
CLICs-dependent chloride efflux is an essential and proximal 
upstream event for NLRP3 inflammasome activation. Nature 
Communications, 8. 

TANG, W. H., STITHAM, J., JIN, Y., LIU, R. J., LEE, S. H., DU, J., ATTEYA, 
G., GLEIM, S., SPOLLETT, G., MARTIN, K. & HWA, J. 2014. Aldose 
Reductase-Mediated Phosphorylation of p53 Leads to Mitochondrial 
Dysfunction and Damage in Diabetic Platelets. Circulation, 129, 1598-
1609. 

TONINELLO, A. & SILIPRANDI, N. 1982. RESTORATION OF MEMBRANE-
POTENTIAL IN MITOCHONDRIA DE-ENERGIZED WITH 
CARBONYL CYANIDE PARA-
TRIFLUOROMETHOXYPHENYLHYDRAZONE (FCCP). Biochimica 
Et Biophysica Acta, 682, 289-292. 

TOPALOV, N. N., YAKIMENKO, A. O., CANAULT, M., ARTEMENKO, E. O., 
ZAKHAROVA, N. V., ABAEVA, A. A., LOOSVELD, M., 
ATAULLAKHANOV, F. I., NURDEN, A. T., ALESSI, M. C. & 
PANTELEEV, M. A. 2012. Two Types of Procoagulant Platelets Are 
Formed Upon Physiological Activation and Are Controlled by Integrin 



- 274 - 

alpha(IIb)beta(3). Arteriosclerosis Thrombosis and Vascular Biology, 
32, 2475-2483. 

TOUYZ, R. M. 2014. Linking LOX-1 and Arginase II Through Mitochondria A 
Novel Paradigm in Endothelial Dysfunction. Circulation Research, 
115, 412-414. 

TRUGILHO, M. R. D., HOTTZ, E. D., BRUNORO, G. V. F., TEIXEIRA-
FERREIRA, A., CARVALHO, P. C., SALAZAR, G. A., ZIMMERMAN, 
G. A., BOZZA, F. A., BOZZA, P. T. & PERALES, J. 2017. Platelet 
proteome reveals novel pathways of platelet activation and platelet-
mediated immunoregulation in dengue. Plos Pathogens, 13. 

TUCKER, K. L., SAGE, T. & GIBBINS, J. M. 2012. Clot retraction. Methods 
Mol Biol, 788, 101-7. 

VAN DER HEIJDEN, T., KRITIKOU, E., VENEMA, W., VAN DUIJN, J., VAN 
SANTBRINK, P. J., SLUTTER, B., FOKS, A. C., BOT, I. & KUIPER, J. 
2017. NLRP3 Inflammasome Inhibition by MCC950 Reduces 
Atherosclerotic Lesion Development in Apolipoprotein E-Deficient 
Mice. Arteriosclerosis, thrombosis, and vascular biology. 

VAN DER MAATEN, L. & HINTON, G. 2008. Visualizing Data using t-SNE. 
Journal of Machine Learning Research, 9, 2579-2605. 

VAN GASSEN, S., CALLEBAUT, B., VAN HELDEN, M. J., LAMBRECHT, B. 
N., DEMEESTER, P., DHAENE, T. & SAEYS, Y. 2015. FlowSOM: 
Using self-organizing maps for visualization and interpretation of 
cytometry data. Cytometry Part A, 87A, 636-645. 

VAN HOUT, G. P. J., BOSCH, L., ELLENBROEK, G., DE HAAN, J. J., VAN 
SOLINGE, W. W., COOPER, M. A., ARSLAN, F., DE JAGER, S. C. 
A., ROBERTSON, A. A. B., PASTERKAMP, G. & HOEFER, I. E. 
2017. The selective NLRP3-inflammasome inhibitor MCC950 reduces 
infarct size and preserves cardiac function in a pig model of 
myocardial infarction. European Heart Journal, 38, 828-836. 

VARGA-SZABO, D., BRAUN, A. & NIESWANDT, B. 2009. Calcium signaling 
in platelets. Journal of Thrombosis and Haemostasis, 7, 1057-1066. 

VARGAS, J. R., RADOMSKI, M. & MONCADA, S. 1982. THE USE OF 
PROSTACYCLIN IN THE SEPARATION FROM PLASMA AND 
WASHING OF HUMAN-PLATELETS. Prostaglandins, 23, 929-945. 

VATS, R., BRZOSKA, T., BENNEWITZ, M. F., JIMENEZ, M. A., PRADHAN-
SUNDD, T., TUTUNCUOGLU, E., JONASSAINT, J., GUTIERREZ, 
E., WATKINS, S. C., SHIVA, S., SCOTT, M., MORELLI, A. E., NEAL, 
M. D., KATO, G. J., GLADWIN, M. T. & SUNDD, P. 2019. Platelet 
Extracellular Vesicles Drive Inflammasome-IL1β-dependent Lung 
Injury in Sickle Cell Disease. Am J Respir Crit Care Med, 201:33-46. 

VINDIS, C., ELBAZ, M., ESCARGUEIL-BLANC, I., AUGE, N., HENIQUEZ, 
A., THIERS, J. C., NEGRE-SALVAYRE, A. & SALVAYRE, R. 2005. 
Two distinct calcium-dependent mitochondrial pathways are involved 
in oxidized LDL-induced apoptosis. Arteriosclerosis Thrombosis and 
Vascular Biology, 25, 639-645. 

VOGEL, S., ARORA, T., WANG, X. D., ALMEIDA, L. E., QUEZADO, Z. & 
THEIN, S. L. 2017. The NLRP3 Inflammasome in Platelets Is 
Upregulated in Sickle Cell Disease and Promotes Platelet 
Aggregation and In Vitro Thrombosis. Blood, 130:1, 113. 

VOGEL, S., ARORA, T., WANG, X. D., MENDELSOHN, L., NICHOLS, J., 
ALLEN, D., SHET, A. S., COMBS, C. A., QUEZADO, Z. M. N. & 



- 275 - 

THEIN, S. L. 2018a. The platelet NLRP3 inflammasome is 
upregulated in sickle cell disease via HMGB1/TLR4 and Bruton 
tyrosine kinase. Blood Advances, 2, 2672-2680. 

VOGEL, S., MURTHY, P., CUI, X., LOTZE, M. T., ZEH, H. J. & SACHDEV, 
U. 2018b. TLR4-dependent upregulation of the platelet NLRP3 
inflammasome promotes platelet aggregation in a murine model of 
hindlimb ischemia. Biochem Biophys Res Commun, 614-619. 

VOGEL, S., RATH, D., LU, J., CHATTERJEE, M., GEISLER, T. & GAWAZ, 
M. 2015. Elevated mitochondrial membrane potential of circulating 
monocyte-platelet aggregates in patients with coronary heart disease. 
International Journal of Cardiology, 181, 135-137. 

VOGEL, S. & THEIN, S. L. 2018. Platelets at the crossroads of thrombosis, 
inflammation and haemolysis. British Journal of Haematology, 180, 
761-767. 

VOGLER, M., HAMALI, H. A., SUN, X. M., BAMPTON, E. T. W., DINSDALE, 
D., SNOWDEN, R. T., DYER, M. J. S., GOODALL, A. H. & COHEN, 
G. M. 2011. BCL2/BCL-X-L inhibition induces apoptosis, disrupts 
cellular calcium homeostasis, and prevents platelet activation. Blood, 
117, 7145-7154. 

VOLF, I., MOESLINGER, T., COOPER, J., SCHMID, W. & KOLLER, E. 
1999. Human platelets exclusively bind oxidized low density 
lipoprotein showing no specificity for acetylated low density 
lipoprotein. Febs Letters, 449, 141-145. 

VULLIAMY, P., GILLESPIE, S., ARMSTRONG, P. C., ALLAN, H. E., 
WARNER, T. D. & BROHI, K. 2019. Histone H4 induces platelet 
ballooning and microparticle release during trauma hemorrhage. 
Proceedings of the National Academy of Sciences of the United 
States of America, 116, 17444-17449. 

WADHERA, R. K., STEEN, D. L., KHAN, I., GIUGLIANO, R. P. & FOODY, J. 
M. 2016. A review of low-density lipoprotein cholesterol, treatment 
strategies, and its impact on cardiovascular disease morbidity and 
mortality. Journal of Clinical Lipidology, 10, 472-489. 

WALSH, T. G., BERNDT, M. C., CARRIM, N., COWMAN, J., KENNY, D. & 
METHAROM, P. 2014. The role of Nox1 and Nox2 in GPVI-
dependent platelet activation and thrombus formation. Redox Biology, 
2, 178-186. 

WANG, J. H., ZHANG, S. Z., JIN, Y. P., QIN, G. M., YU, L. & ZHANG, J. N. 
2007. Elevated levels of platelet-monocyte aggregates and related 
circulating biomarkers in patients with acute coronary syndrome. 
International Journal of Cardiology, 115, 361-365. 

WANG, L., WU, Q., FAN, Z. J., XIE, R. F., WANG, Z. C. & LU, Y. 2017a. 
Platelet mitochondrial dysfunction and the correlation with human 
diseases. Biochemical Society Transactions, 45, 1213-1223. 

WANG, Y. M., GAO, H. Y., SHI, C., ERHARDT, P. W., PAVLOVSKY, A., 
SOLOVIEV, D. A., BLEDZKA, K., USTINOV, V., ZHU, L., QIN, J., 
MUNDAY, A. D., LOPEZ, J., PLOW, E. & SIMON, D. I. 2017b. 
Leukocyte integrin Mac-1 regulates thrombosis via interaction with 
platelet GPIb alpha. Nature Communications, 8. 

WEHBI, V. L. & TASKEN, K. 2016. Molecular Mechanisms for cAMP-
Mediated immunoregulationin T cells - Role of Anchored Protein 
Kinase A Signaling Units. Frontiers in Immunology, 7. 



- 276 - 

WELCH, E. L., CROOKS, M. G. & HART, S. P. 2018. Agreement between 
blood draw techniques for assessing platelet activation by flow 
cytometry. Platelets, 1-5. 

WHITE, J. G. 2004. Electron microscopy methods for studying platelet 
structure and function. Methods Mol Biol, 272, 47-63. 

WILKINS, G. M. & LEAKE, D. S. 1994a. THE EFFECT OF INHIBITORS OF 
FREE-RADICAL GENERATING ENZYMES ON LOW-DENSITY-
LIPOPROTEIN OXIDATION BY MACROPHAGES. Biochimica Et 
Biophysica Acta-Lipids and Lipid Metabolism, 1211, 69-78. 

WILKINS, G. M. & LEAKE, D. S. 1994b. THE OXIDATION OF LOW-
DENSITY-LIPOPROTEIN BY CELLS OR IRON IS INHIBITED BY 
ZINC. Febs Letters, 341, 259-262. 

WRAITH, K. S., MAGWENZI, S., ABURIMA, A., WEN, Y. C., LEAKE, D. & 
NASEEM, K. M. 2013. Oxidized low-density lipoproteins induce rapid 
platelet activation and shape change through tyrosine kinase and Rho 
kinase-signaling pathways. Blood, 122, 580-589. 

WRIGHT, S. D., WEITZ, J. I., HUANG, A. J., LEVIN, S. M., SILVERSTEIN, 
S. C. & LOIKE, J. D. 1988. COMPLEMENT RECEPTOR TYPE-3 
(CD11B/CD18) OF HUMAN POLYMORPHONUCLEAR 
LEUKOCYTES RECOGNIZES FIBRINOGEN. Proceedings of the 
National Academy of Sciences of the United States of America, 85, 
7734-7738. 

XU, J., SHI, C., LI, Q., WU, J. J., FORSTER, E. L. & YEW, D. T. 2007. 
Mitochondrial dysfunction in platelets and hippocampi of senescence-
accelerated mice. Journal of Bioenergetics and Biomembranes, 39, 
195-202. 

YAMAGISHI, S., EDELSTEIN, D., DU, X. L. & BROWNLEE, M. 2001. 
Hyperglycemia potentiates collagen-induced platelet activation 
through mitochondrial superoxide overproduction. Diabetes, 50, 1491-
1494. 

YAN, R., WANG, Z. C., YUAN, Y. H., CHENG, H. & DAI, K. S. 2009. Role of 
cAMP-dependent protein kinase in the regulation of platelet 
procoagulant activity. Archives of Biochemistry and Biophysics, 485, 
41-48. 

YANG, M., COOLEY, B. C., LI, W., CHEN, Y. L., VASQUEZ-VIVAR, J., 
SCOGGINS, N. O., CAMERON, S. J., MORRELL, C. N. & 
SILVERSTEIN, R. L. 2017a. Platelet CD36 promotes thrombosis by 
activating redox sensor ERK5 in hyperlipidemic conditions. Blood, 
129, 2917-2927. 

YANG, T. C., CHANG, P. Y. & LU, S. C. 2017b. L5-LDL from ST-elevation 
myocardial infarction patients induces IL-1 beta production via LOX-1 
and NLRP3 inflammasome activation in macrophages. American 
Journal of Physiology-Heart and Circulatory Physiology, 312, H265-
H274. 

YE, X. C., ZUO, D. D., YU, L., ZHANG, L., TANG, J., CUI, C. C., BAO, L., 
ZAN, K., ZHANG, Z. H., YANG, X. X., CHEN, H., TANG, H., ZU, J., 
SHI, H. J. & CUI, G. Y. 2017. ROS/TXNIP pathway contributes to 
thrombin induced NLRP3 inflammasome activation and cell apoptosis 
in microglia. Biochemical and Biophysical Research Communications, 
485, 499-505. 



- 277 - 

YE, Z. S., ZHONG, L., ZHU, S. N., WANG, Y. N., ZHENG, J., WANG, S. J., 
ZHANG, J. N. & HUANG, R. C. 2019. The P-selectin and PSGL-1 
axis accelerates atherosclerosis via activation of dendritic cells by the 
TLR4 signaling pathway. Cell Death & Disease, 10. 

YU, E., MERCER, J. & BENNETT, M. 2012. Mitochondria in vascular 
disease. Cardiovascular Research, 95, 173-182. 

YUSUF, M. Z., RASLAN, Z., ATKINSON, L., ABURIMA, A., THOMAS, S. G., 
NASEEM, K. M. & CALAMINUS, S. D. J. 2017. Prostacyclin reverses 
platelet stress fibre formation causing platelet aggregate instability. 
Scientific Reports, 7. 

ZEILER, M., MOSER, M. & MANN, M. 2014. Copy Number Analysis of the 
Murine Platelet Proteome Spanning the Complete Abundance Range. 
Molecular & Cellular Proteomics, 13, 3435-3445. 

ZHANG, W., MA, Q., SIRAJ, S., NEY, P. A., LIU, J., LIAO, X., YUAN, Y., LI, 
W., LIU, L. & CHEN, Q. 2019. Nix-mediated mitophagy regulates 
platelet activation and life span. Blood Adv, 3, 2342-2354. 

ZHAO, B., DIERICHS, R., LIU, B. & BERKES, P. 1994. GOLD-LABELED 
LOW-DENSITY LIPOPROTEINS BIND TO WASHED HUMAN 
PLATELETS. Platelets, 5, 113-120. 

ZHAO, L. L., LIU, J., HE, C. Y., YAN, R., ZHOU, K. X., CUI, Q. Y., MENG, X. 
J., LI, X. D., ZHANG, Y., NIE, Y. M., HU, R. P., LIU, Y. C., ZHAO, L., 
CHEN, M. X., XIAO, W. L., TIAN, J. L., ZHAO, Y. X., CAO, L. J., 
ZHOU, L., LIN, A. N., RUAN, C. G. & DAI, K. S. 2017. Protein kinase 
A determines platelet life span and survival by regulating apoptosis. 
Journal of Clinical Investigation, 127, 4338-4351. 

ZHARIKOV, S. & SHIVA, S. 2013. Platelet mitochondrial function: from 
regulation of thrombosis to biomarker of disease. Biochemical Society 
Transactions, 41, 118-123. 

ZHOU, R. B., YAZDI, A. S., MENU, P. & TSCHOPP, J. 2011. A role for 
mitochondria in NLRP3 inflammasome activation. Nature, 469, 221-
225. 

ZMIJEWSKI, J. W., MOELLERING, D. R., LE GOFFE, C., LANDAR, A., 
RAMACHANDRAN, A. & DARLEY-USMAR, V. M. 2005. Oxidized 
LDL induces mitochondrially associated reactive oxygen/nitrogen 
species formation in endothelial cells. American Journal of 
Physiology-Heart and Circulatory Physiology, 289, H852-H861. 

 

 



- 278 - 

List of Abbreviations 

∆Ψm Mitochondrial membrane potential 

αIIbβ3 Integrin alpha 2b beta 3 

AC Adenylyl cyclase 

ACD Acid-citrate dextrose 

ADP Adenosine diphosphate 

AA Antimycin A 

APC Allophycocyanin 

APD Avalanche photo-diode 

ASC Apoptosis-associated speck-like protein containing a CARD 

ATP Adenosine triphosphate 

BB Brilliant blue 

BSA Bovine serum albumin 

Ca2+ Calcium ion 

CARD Caspase recruitment domain 

cAMP Cyclic adenosine monophosphate 

cGMP Cyclin guanosine monophosphate 

Cu2+ Copper ion 

CVD Cardiovascular disease 

CyTOF Mass cytometry by time-of-flight 

DAMP Danger-associated molecular pattern 

DMSO Dimethyl sulphoxide 

ECL Enhanced chemi-luminescence 

EDTA Ethylenediaminetetraacetic acid 

FIIa Thrombin 

FCCP Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone 

FFC Fluorescent flow cytometry 

FITC Fluorescein 

FIt-SNE Fast Fourier Transform-accelerated Interpolation-based t-SNE 

FLICA Fluorochrome-labelled inhibitors of caspases 

FSC Forward scatter 

GP1b-IX-V Glycoprotein Ib-IX-V 

GPVI Glycoprotein VI 
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HRP Horseradish peroxidase 

IB Immunoblot 

IL-1β Interleukin-1 beta 

IP Immunoprecipitation 

IPR Prostacyclin receptor 

LDL Low-density lipoprotein 

LPS Lipopolysaccharide 

LTA Light transmission aggregometry 

Mg2+ Magnesium ion 

NAC n-acetyl-cysteine 

nLDL Native low-density lipoprotein 

NLRP3 Nacht-leucine rich repeat pyrin domain containing protein 3 

NO Nitric oxide 

oxLDL Oxidised low-density lipoprotein 

PAGE Polyacrylamide gel electrophoresis 

PAMP Pathogen-associated molecular pattern 

PAR Protease-activated receptor 

PBMC Peripheral blood mononuclear cell 

PBS Phosphate-buffered saline 

PE phycoerythrin 

PDE Phosphodiesterase 

PerCP Peridinin-Chlorophyll-protein 

PGI2 Prostaglandin I2 (Prostacyclin) 

PFD Pore forming domain 

PKA Protein kinase A 

PKC Protein kinase C 

PKG Protein kinase G 

PMN Polymorphonuclear leukocyte 

PPP Platelet poor plasma 

PRP Platelet rich plasma 

PYD Pyrin domain 

RD Repressor domain 

ROS Reactive oxygen species 
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SD Standard deviation 

SDS Sodium dodecyl sulphate 

Ser Serine 

sGC Soluble guanylyl cyclase 

SOX Superoxide 

SSC Side scatter 

t-SNE t-Stochastic Neighbourhood Embedding 

TBS(-T) Tris-buffered saline(-Tween 20) 

TLR Toll-like receptor 

TMRE Tetramethyl rhodamine ethyl ester 

VASP Vasodilator-stimulated phosphoprotein 

vWF Von Willebrand factor 

WCL Whole cell lysate 

WP Washed platelets 

 


