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Abstract

This thesis makes a contribution to the classification of certain specific relational structures

under the relation of n-equivalence, where this means that Player II has a winning strategy

in the n-move Ehrenfeucht-Fräıssé game played on the two structures. This provides a

finer classification of structures than elementary equivalence, since two structures A and

B are elementarily equivalent if and only if they are n-equivalent for all n. On each move

of such a game, Player I picks a member of either A or B, and Player II responds with a

member of the other structure. Player II wins the game if the map thereby produced from

a substructure of A to a substructure of B is an isomorphism of induced substructures.

Certain ordered structures have been studied from this point of view in papers by

Mostowski and Tarski, for ordinals [22], and Mwesigye and Truss, for ordinals [25], some

scattered orders, and finite coloured linear orders [24]. Here we extend the known results

on linear orders by classifying them all up to 3-equivalence (which had previously been

done for 2-equivalence), of which there are 281, using the method of characters.

We also classify all partial orders up to 2-equivalence (there are 39), and discuss the

difficulties of extending this to 3-equivalence, since the method of characters is not as

effective as in the linear case. We classify (total) circular orders up to 3-equivalence, and

relate the classification of partial circular orders to both these and to partial orders. A

variety of related structures are discussed: trees, directed and undirected graphs, and

unars (sets with a single unary function), which we categorise up to 2-equivalence.

In a pebble game, the players of an otherwise standard Ehrenfeucht-Fräıssé game are in

addition provided with two identical sets of k distinguishable pebbles, and on each move

they place a pebble on their chosen point. On each move, Player I may choose either to

move a pebble to another point, or else use a new pebble, if any remain, and Player II must

place the corresponding partner pebble. Such games correspond to logics in which there

are only k variables, and moving a pebble corresponds to reusing the variable. Here we

extend some work of Immerman and Kozen [14] on pebble games played on linear orders.
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Chapter 1

Introduction

There are many kinds of games used throughout mathematical logic. Typically, two players

take turns to select elements known as moves from some class of potential moves, and, after

a predetermined finite number or infinite ordinal number of turns, one of the players wins

and the other loses according to the preselected win conditions (which preclude a draw).

The winner depends only on the moves chosen by each player, and not on any external

elements like dice rolls or card draws, but in some games such as von Neumann games [29]

we do allow the players to choose their moves probabilistically. We typically assume that

the game has perfect information, which means that the full state of the game is known

to both players, including the win conditions, the domain of possible moves, and the set

of moves played up until the current moment in time. Games with imperfect information,

such as Blackwell games [3] [19], have also been studied, where the players are unaware of

some aspect of the state of the game.

Unlike many real world games, games in a mathematical sense are typically not played

repeatedly for fun, but rather analysed to understand the strategies that either player can

employ, and to determine under which circumstances either player can guarantee a win.

Situations in which a player does, or does not, have a winning strategy correspond to

certain properties of the structures on which the games are played, thanks to our choice

of game, and the study of the games aims to elucidate these properties.

Since we require there to be only one winner, it is not possible for both players to

simultaneously have a winning strategy, but it is not in general necessary that either
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of the players does. In fact, if we assume the Axiom of Choice, then there are games

for which neither player has a winning strategy; we call these games undetermined. An

alternative well known set theoretic notion, the Axiom of Determinacy [28], states that

in every perfect information game on ωω, one of the players has a winning strategy (and

so every such game is determined). This axiom is independent of ZF, though in view of

the above remarks, it is necessarily incompatible with the Axiom of Choice. There are

numerous similar determinacy axioms identifying classes of infinitary game for which the

axiom asserts that there is always a winning strategy for some player, and these are also

independent of ZF and often relate to various large cardinal notions. However, Gale and

Stewart proved in 1953 that all games on ωω whose payoff sets (i.e. the set of sequences

for which Player I wins) are either open or closed must be determined [8], and in 1975

Donald A. Martin strengthened this result to show that all Borel games are determined

[18].

In games of finite length, all payoff sets must be both open and closed, and so one player

or other must have a winning strategy. We may also prove this directly by backwards

induction from the end of the game, as we show later in Lemma 3 for Ehrenfeucht-Fräıssé

games. Note that some mathematical games have infinitely many moves, and others have

finitely many. The game state is typically changed by every move, which ought to depend

on the set of previous moves. If at some point in time there were no “next move” but

an infinite descending sequence of upcoming moves, it is unclear how we could determine

which moves are wise or even possible, since the state of the game at each move depends

on all the previous moves! Even in a game of imperfect information, where each player

may be unaware of the other’s moves, each player would usually still be expected to recall

their own previous moves. We therefore desire the moves of a game to be well-ordered,

and label the pairs of moves by some ordinal α. If α is the order type of the pairs of

moves of some game G, we say that G has length α. In practice, most work on infinite

games uses games of length ω, such as the model-theoretic constructions in [12]. In a

game of longer length α > ω, there exist moves (such as the ωth move) that occur after

infinitely many previous moves, but in games of length ω, every move occurs at some

finite index, and therefore depends on only finitely many predecessors. The games we will
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cover, Ehrenfeucht-Fräıssé games (and a variant thereof), have finitely many moves and

must therefore be determined.

In 1944, John von Neumann and Oskar Morgenstern published their seminal book

Theory of Games and Economic Behavior [29], establishing the field of game theory,

which was studied extensively in the 1940s and 1950s. The analogy of games was used in

a logical context in the 1950s by Leon Henkin, who was working on Tarski’s notions of

logical truth. First order logic permits only finitely many quantifiers, but we can conceive

of formulae with infinitely many quantifier alternations, which correspond to meaningful

statements that we would like to be able to represent. Henkin suggested using the analogy

of a game between two players, both trying to win, who select elements for the universal

or existential quantifiers respectively. Jaakko Hintikka [11] developed these ideas further,

and described semantic games on first-order sentences such that the existential player has

a winning strategy if and only if the sentence is true. This is closely related to the notion

of games that we will be using.

In this thesis we use Ehrenfeucht-Fräıssé games, and a variant thereof, to classify

partial orders, linear orders, and other relational structures.

Ehrenfeucht–Fräıssé games were formulated by Andrzej Ehrenfeucht [5] as a way of

capturing the essence of Roland Fräıssé’s application of back-and-forth methods in model

theory [7]. In these games, two players play for a (fixed) finite number of moves on two

structures, choosing a point in one of the structures at each move, and the second player

always plays in the opposite structure to Player I’s previous move. Player II is said to win

a play of the game if the substructures induced by the points played in the two structures

are isomorphic; otherwise, Player I wins. A strategy for a player is a rule telling her what

to play next given the moves so far. It is a winning strategy if it results in a win for that

player no matter which moves the other player makes. There is a natural notion of the

quantifier depth of a formula (given in the next chapter), and one can verify that Player

II has a winning strategy in a k-move game if and only if the two structures satisfy the

same sentences of quantifier depth at most k. We deduce that if Player II has a winning

strategy in the k-move game for every value of k, then the two structures are elementarily

equivalent. On the other hand, if there is some k such that Player II does not have a



4 Chapter 1. Introduction

winning strategy for a game of length k, then there must be a sentence of quantifier depth

k that is true in one of the structures but false in the other.

If there exists a strategy for Player II such that the substructures induced by the points

played in any game of length n in which she uses this strategy are isomorphic, then the

two structures satisfy the same sentences of quantifier depth n. Therefore, Player II has

winning strategies for games of all lengths if and only if the two structures are elementarily

equivalent. On the other hand, if there exists k such that Player I has a winning strategy

in the game of length k on two structures, then there is some formula φ of quantifier depth

k such that one structure satisfies φ and the other ¬φ.

We remark on two other well-known notions of “game” in the literature. The first

of these is Banach-Mazur games, which are games of length ω first defined by Stanis law

Mazur in the Scottish Book [20], a collaborative work between the mathematicians of

Lwów. In these games, a subset X ⊆ R of the set of real numbers is given in advance,

and the players play a sequence of non-trivial closed intervals, each a proper subset of

the previous interval. If the intersection of this sequence is contained in X, then Player I

wins; otherwise, Player II wins. This type of game is used in the analysis of a particular

set-theoretical property of sets of reals, called the Baire property, since it can be easily

shown that Player I has a winning strategy if and only if X is comeagre on some non-

trivial interval, and Player II has a winning strategy if and only if X is meagre. From

Banach-Mazur games originated other, related games corresponding to other topological

notions, and games in this class are known as topological games [35].

The other rather all-embracing notion of “game” is given by Conway in his book

On numbers and games [4] where he gives a very elegant and powerful definition of the

two notions in the title, which are rather surprisingly closely related. There are many

particular actual “games” in the colloquial sense which can be used to illustrate this

definition, for instance, various versions of the game of Nim. While the games that we

consider must necessarily come under his broad heading, they are much more specific to

particular purposes (i.e. study of the finer logical properties of particular structures), so

his study is not of direct relevance here.

The contents of the chapters are as follows. Chapter 2 introduces some preliminary
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notions in model theory and order theory. In Chapter 3 we survey some results on linear

orders and classify them up to 3-equivalence. Chapter 4 contains a classification of the 2-

equivalence classes of partial orders and various results illustrating the differences between

the linear and partial cases. Chapter 5 deals with cyclic orders and the related notion of

partial cyclic orders. Chapter 6 contains multiple short sections considering trees, graphs,

directed graphs and unars. In Chapter 7 we consider a modified type of Ehrenfeucht-

Fräıssé game, known as a pebble game, where previously played “pebbles” are re-used and

their previous locations discarded. We shall finally conclude with a summary of our results

and suggestions of directions for future work. A more detailed summary of the contents

of each chapter follows.

In Chapter 2 we introduce some preliminary notions in model theory and order theory.

The main definitions concern Ehrenfeucht-Fräıssé games, and the corresponding notion of

n-equivalence, written ≡n. This gives a finer classification than elementary equivalence,

since two structures are n-equivalent if and only if they satisfy the same sentences of

quantifier depth at most n. It follows that if the language is finite and relational, then

there are only finitely many ≡n-classes. One can therefore choose a representative of each

class, often in a natural way such as one of minimal size or least order type, though an

arbitrary choice can also be made.

The main result of Chapter 3 is a classification of all≡3-classes of linear orders, of which

there are 281. The ideas and methods are however of more interest than the actual number.

The ≡2-classes of linear orders were given in [24] and are represented by 0, 1, 2, 3, ω, ω∗

and Z. The main tool used here is that of the character of a point. If we are seeking to

pass from knowledge of ≡n-classes to ≡n+1-classes, we first assume that representatives

have been chosen for the ≡n-classes, and write [X] for the representative of X. Then the

n-character of a ∈ X is defined to be the ordered pair ([X<a], [X>a]). The idea is that

if a is played by one of the players in X, then the n-character keeps track of how that

player will be able to play either to the left or right of a in subsequent moves. An easy

lemma from [24] asserts that two ordered structures are (n + 1)-equivalent if and only if

they exhibit precisely the same n-characters. This means that, for instance, one of the

main tasks in analysing linear orders up to 3-equivalence is to study sets of 2-characters,
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which can be taken to be ordered pairs of members of {0, 1, 2, 3, ω, ω∗,Z}.

In Chapter 4 we seek to extend results from the linear case to general partial orders.

As usual, the one move case is trivial, and games of length two are also straightforward, as

an analogue of the linear order notion of the 2-character of a point a works quite smoothly.

Here we have to identify three subsets A,B,C of the partial order, containing the points

above, below, and incomparable with a respectively. Clearly A > B, C � B and C � A.

In two moves, the players have no time to exploit any relations between these sets, so

two partial orders are 2-equivalent if and only if they exhibit the same 2-characters, as

we show. This leads to a classification of all partial orders up to 2-equivalence - there

are 39 classes. For 3-equivalence, things are considerably more complicated, and this is

illustrated by counter-examples and discussions of uses of colours.

Chapter 5 concerns a different type of relation connected with orderings, namely cyclic

orders and partial cyclic orders. We deduce a classification of the (total) cyclic orders up

to 3-equivalence, which is related to a part of the classification of linear orders up to

2-equivalence, since we can obtain a linear order from a circular one by cutting it at a

point. We then discuss partial cyclic orders, and show that some equivalence classes of

these relate to cyclic orders and to partial orders, but others do not.

In Chapter 6 we consider a few different kinds of interesting relational structures. The

first is trees. Although this is a special case of a partial order, the fact that it is simpler

gives some hope of classifications for higher numbers of moves. In particular, we conjecture

that two trees exhibiting the same (n − 1)-characters should be n-equivalent, unlike for

general partial orders. We prove this conjecture for a special case for n = 3, and also

classify the trees up to 2-equivalence, which allows us to calculate a loose upper bound on

the number of 3-equivalence classes. In this chapter we also make remarks about digraphs,

and two particular special cases, namely undirected graphs and unars. By definition, a

unar consists of a set together with a single unary function acting on the set. It therefore

forms a dynamical system, and some previous work has studied Ehrenfeucht-Fräıssé games

on unars from that point of view. Our principal contribution here is to classify unars up

to 2-equivalence, of which there are 133 classes. Note that as the signature of a unar is

not relational, we recast it as a binary relation, so that it may be viewed as a special kind
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of digraph. For notational ease, however, the function is still used, but it lacks official

significance when it comes to equivalence in Ehrenfeucht-Fräıssé games.

The final chapter, Chapter 7, takes quite another direction, with a variant game known

as a “pebble game”. These correspond to logics in which there is a finite bound k on the

number of variables used, in addition to the usual, unrelated, finite bound n on the number

of moves. This affects the definition of the game by equipping each player with k pebbles

which are deployed during the game to keep track of variable use. The classical result is

that 3 pebbles suffice to distinguish linear orders up to elementary equivalence, and in no

more moves than would be required in a standard Ehrenfeucht-Fräıssé game. We extend

this by characterising the circumstances in which Player II wins a 2-pebble game, for any

number n of moves. This result illustrates that the addition of the pebbles radically alters

the players’ strategies, and that a dearth of pebbles constricts the number of equivalence

classes significantly - there are only quadratically many (n, 2)-equivalence classes of linear

orders, but exponentially many n-equivalence classes of linear orders when there is no

pebble restriction.





Chapter 2

Preliminaries

We begin by giving standard notation and introductory concepts in model theory and

order theory. Readers familiar with these may wish to proceed to Chapter 3.

2.1 Notation

We list standard notation that we shall use throughout. Many of the notions mentioned

will be formally introduced in what follows.

• Gn(A,B), the Ehrenfeucht-Fräıssé game of length n ∈ N played on the structures A

and B (which may be of any size)

• Gkn(A,B), the pebble game of length n ∈ N with k ∈ N pebbles played on the

structures A and B (which may be of any size)

• a<, where a is a member of some structure (A,<), the set of points b ∈ A such that

b < a

• a>, for a ∈ A, the set of points b ∈ A such that b > a

• a≤, for a ∈ A, the set of points b ∈ A such that b ≤ a

• a≥, for a ∈ A, the set of points b ∈ A such that b ≥ a

• “tree”, unless otherwise specified, a partial order P such that for all a ∈ P , a< is

linearly ordered and such that for any a, b ∈ P there exists c ∈ P with c ≤ a, b.
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• α, an ordinal, or a set of that order type

• α∗, where α is an ordinal, a set of the reverse order type

• F , a colouring function from the set being coloured to some set of “colours”

• [X], the canonical representative of the equivalence class ofX under some equivalence

relation

•
⊔
i∈I Ai =

⋃
i∈I{(x, i) : x ∈ Ai}, the disjoint union of the sets (Ai)

• A tB, the disjoint union of two sets, as defined above

• ∼=, an isomorphism relation with A ∼= B if and only if there exists an isomorphism

φ : A→ B

• ∗, a placeholder entry in a component of a character to indicate that any of the

possible values may hold in that component

2.2 Order theory

A partial order (X,≤) is a set X equipped with a relation ≤ such that:

• for all a ∈ X, a ≤ a (reflexivity)

• for all a, b ∈ X, if a ≤ b and b ≤ a then a = b (antisymmetry)

• for all a, b, c ∈ X, if a ≤ b and b ≤ c then a ≤ c (transitivity)

We may define < so that a < b precisely when a ≤ b and a 6= b. Then (X,<) is a

strict partial order, while (X,≤) is a non-strict partial order. Since our language includes

equality, each strict partial order naturally gives rise to a non-strict partial order, and vice

versa, and the two formulations have equivalent properties. We may therefore use both <

and ≤, and we also define > and ≥ in the obvious way: let a > b if and only if b < a, and

let a ≥ b if and only if b ≤ a.
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A linear order is a partial order (X,≤) that additionally satisfies the axiom of totality:

for any a, b ∈ X, either a ≤ b or b ≤ a. As with partial orders, we can have both strict

and non-strict linear orders.

A linear order X is dense if whenever x < y, there exists some z such that x < z < y.

If this property holds on some interval, we may say X is dense on that interval. If there

exist x, y such that x < y and there is no point z lying between them, then we say that x

and y are consecutive.

If (A,<A) and (B,<B) are linear orders, then we may define the concatenation A+B

as follows: we take the underlying set to be AtB, the disjoint union of A and B, and we

define the new relation < as follows:

• for any a ∈ A and b ∈ B, a < b

• for a1, a2 ∈ A, a1 < a2 if and only if a1 <A a2

• for b1, b2 ∈ B, b1 < b2 if and only if b1 <B b2

Lemma 1. If A and B are linear orders, then A+B is a linear order.

Proof. We verify that A + B satisfies the axioms of reflexivity, antisymmetry and tran-

sitivity given above. It is reflexive (when considered as a non-strict linear order), since

a ≤A a for a ∈ A and b ≤B b for b ∈ B so certainly x ≤ x for all x ∈ A + B. For

antisymmetry, take x, y ∈ A+B. If they both lie in A, or both in B, then we are done, as

we know A and B to be antisymmetric. Otherwise, one point lies in each, suppose without

loss of generality that x ∈ A and y ∈ B, and we have x < y but not y < x. In either

case antisymmetry holds. For transitivity, suppose that x, y, z ∈ A+B, and suppose both

x < y and y < z. Again, if they are all in A, or all in B, we are done, so suppose not. B

is upward closed, so if x ∈ B then y ∈ B, and if y ∈ B then z ∈ B. Therefore we must

certainly have z ∈ B, and likewise we must have x ∈ A if any of the three points are to

lie in A. But everything in B lies above everything in A, so x < z. Finally, we verify

totality. If x, y ∈ A+B then either x, y ∈ A, which is total, or x, y ∈ B, which is total, or

one lies in each. Again, we are done in the first two cases, so we consider the third, and
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without loss of generality take x ∈ A and y ∈ B. But then x < y is immediate and we are

done.

If (A,<A) and (B,<B) are linear orders, then we may also define the lexicographic

product A × B as follows. The underlying set is the Cartesian product A × B = {(a, b) :

a ∈ A and b ∈ B}, and we take (a1, b1) < (a2, b2) if and only if either a1 < a2 (regardless

of b1 and b2), or both a1 = a2 and b1 < b2. We may think of this as taking A copies of B,

since for any a ∈ A the set {a} ×B = {(a, b) : b ∈ B} has the same order type as B, and

these copies are arranged in the order of the elements of A, with each copy lying either

entirely above or entirely below any other distinct copy. For example, if A is a two-point

linear order, then A×B = B +B for any linear order B. (Please note that some authors

use the anti-lexicographic ordering, which is notated the other way around.)

Lemma 2. If A and B are linear orders, then A×B is also a linear order.

Proof. A × B is irreflexive as a strict linear order, since (a, b) < (a, b) is false for any

(a, b) ∈ A × B. If (a1, b1), (a2, b2) lie in A × B, then by the above definition we can only

have both (a1, b1) < (a2, b2) and (a2, b2) < (a1, b1) if either a1 < a2 and a2 < a1 both hold,

which is impossible by antisymmetry of A, or if a1 = a2 and b1 < b2 < b1, which is also

impossible by antisymmetry of B. But then (a1, b1) = (a2, b2) and we have antisymmetry.

For transitivity, suppose that (a1, b1) < (a2, b2) and (a2, b2) < (a3, b3). Then a1 ≤ a2 ≤ a3,

so a1 ≤ a3 by transitivity of A. If a1 < a3, then immediately (a1, b1) < (a3, b3), so suppose

a1 = a3. Then also a2 = a1 = a3, so from the definition of lexicographic product it

must be the case that b1 < b2 < b3. Therefore (a1, b1) < (a3, b3), since a1 = a3 and

b1 < b3. Finally, we verify that this is total by noting that there are only nine possible

cases for the relations between (a1, b1) and (a2, b2): either a1 < a2, a1 = a2 or a2 < a1,

by linearity of A, and a similar trichotomy holds for b1 and b2. The above definition sets

either (a1, b1) < (a2, b2) or (a2, b2) < (a1, b1) (or both, in the case where they are equal)

for each of these nine possibilities, and therefore < is total on A×B.

A colouring function on a set X is a function F : X → C, where C is some set,

typically finite and small, whose elements are known as colours. As the name suggests,
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we can envision the values of C as colours applied to the relevant points of X, and we will

often take C = {red, blue} or C = {red, blue, green}, or simply C = {ci : 1 ≤ i ≤ n} for

larger n. If the names of colours are chosen so as to encode relevant information, or if X

is recoloured multiple times without losing the previous information, we may instead call

F a labelling function.

2.3 Ehrenfeucht-Fräıssé games

The definitions and results of this section are well-known and may be found in standard

model theory texts such as those by Hodges [13] and Marker [17].

An Ehrenfeucht-Fräıssé game is a logical game of finite length used as a model theoretic

technique for comparing two relational structures [5]. We think of Ehrenfeucht-Fräıssé

games as being played by two players, who take turns to play and who both wish to win

the game. The number of moves is fixed in advance. The player to move first, Player I,

wins if she can demonstrate that the two structures are different, in a sense to be made

precise shortly, and the player who moves second, Player II, wins if she can prevent this.

The n move game played on the structures A and B is notated Gn(A,B), and proceeds

as follows:

• Player I makes a move by selecting any member of either A or B. If she selects an

element of A, call this a1; if she selects an element of B, this is b1.

• Player II responds by selecting a member of the other structure, giving a pair

(a1, b1) ∈ A×B.

• This repeats n− 1 more times, for a total of n moves each.

Note that Player I is free to select from either A or B at any move, regardless of

whether she previously played in A, B or both. She does not need to choose elements

from the same structure every time.

When all n turns have been played, we have (a1, . . . , an) from A and (b1, . . . , bn) from

B, where ai and bi were selected on the ith move.
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Player II wins if the map taking ai to bi for each i, and preserving the interpretations

of any constant symbols, is an isomorphism of substructures. Otherwise, Player I wins.

A strategy for a player is a function from sequences of moves that may have already

been played before their nth turn, to a possible nth move for that player. Player I’s nth

move may depend on her (n− 1)th and previous moves and on Player II’s (n− 1)th and

previous moves, while Player II’s nth move may depend on Player I’s nth and previous

moves and on her own (n− 1)th and previous moves. Since Player I always moves on odd

turns, a strategy for her is a function σ :
⋃n
i=1(A×B)i−1 → A∪B, while a strategy τ for

Player II is a function τ :
⋃n
i=1(A× B)i−1 × (A ∪ B)→ A ∪ B, subject to the restriction

that τ(x) ∈ B if the last element of x lies in A, and τ(x) ∈ A if the last element of x lies

in B (otherwise the move would not be valid).

A winning strategy for Player I is a strategy σ such that, for every strategy τ for Player

II, Player I wins the game in which her moves are selected according to σ and Player II’s

are selected according to τ . Likewise, a winning strategy for Player II is one for which she

is guaranteed to win if she plays according to it, regardless of the strategy employed by

Player I.

Lemma 3. In any Ehrenfeucht-Fräıssé game Gn(A,B), either Player I has a winning

strategy or Player II has a winning strategy (but not both). [5]

Proof. Since their victory conditions are negations of each other, every completed game

must be won by precisely one of Player I and Player II. Player I and Player II cannot both

have winning strategies, since they could each play their winning strategy and thereby

both win the same game, which is by assumption impossible.

We show that one of the players must have a winning strategy, by induction on n. In

the 1-move game, either Player I has some move x for which every response by Player II

results in a Player I win, or this is not the case, and every move x of Player I has some

response yx that could be played to give a Player II win. In the former case, playing x

is a winning strategy for Player I; in the latter case, τ : x 7→ yx is a winning strategy for

Player II.

Suppose now that games of length at most k are determined, and consider the game
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of length (k + 1). After the first moves x and y, the remaining subgame is of length k,

so some player has a winning strategy. Possibly there exists some x such that if Player I

plays it for her first move, then for any response y from Player II, Player I has a winning

strategy σ in the remaining subgame of length k. If so, then playing x for the first move

and then following σ on subsequent moves is a winning strategy for Player I. If not, then

for every x that Player I may play as a first move, there exists some response yx such

that Player I does not have a winning strategy on the remaining subgame of length k. By

the induction hypothesis, Player II therefore has a winning strategy τ on the remaining

subgame. So playing yx for her first move and then following τ is a winning strategy for

Player II. In either case we have constructed a winning strategy for one of the players, so

by induction, Gn(A,B) is determined for any finite n.

Informally, if Player I or Player II has a winning strategy in a given game, we may say

she “wins” or “can win” that game. Since the Ehrenfeucht-Fräıssé games are really pro-

cesses with which to compare structures, we are at all times concerned with whether there

exist possible subsequent states in which either player has won, rather than envisioning

the actions an actual person would take. We need not concern ourselves with human issues

such as making mistakes, forgetting the strategy, intentionally letting the other player win,

failing to specify a point clearly, having imperfect recall of all the preceding moves, and

so on, and so we can relax the usual linguistic distinction between having the ability to

win, and a way to win existing.

If Player II has a winning strategy in Gn(A,B), we say that A and B are n-equivalent,

and write A ≡n B.

Theorem 4. As the notation suggests, ≡n is an equivalence relation. [17]

Proof. Consider Gn(A,A), the Ehrenfeucht-Fräıssé game of length n played on two copies

of A. Then of course there is an isomorphism φ between the two copies of A. Player

II may adopt the strategy that if Player I plays a in the first copy of A, then Player II

responds by playing φ(a) in the second copy of A, and likewise if Player I plays b in the

second copy of A, then Player II responds by playing φ−1(b). Since φ is an isomorphism,
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the resulting substructures will always be isomorphic, and so A ≡n A. This is therefore a

winning strategy for Player II, and so ≡n is reflexive.

Now consider Gn(A,B) and Gn(B,A). These are the Ehrenfeucht-Fräıssé games of

length n played on A and B and on B and A, respectively. But in either game, Player I

is free to play in either A or B on each move, and Player II must respond with a move

in B or A respectively. So, if A ≡n B, then Player I has a winning strategy in Gn(A,B),

which is also a winning strategy in Gn(B,A), since the movesets available to her and her

opponent are identical, and so B ≡n A.

For transitivity, suppose that X ≡n Y and Y ≡n Z, and consider Gn(X,Z). If Player

I makes a move x1 in X, Player II can think of a “move” σ(x1) = y1 in Y consistent with

her winning strategy σ in the auxiliary game Gn(X,Y ), and then find a move τ(y1) = z1

in Z consistent with her winning strategy τ in Gn(Y,Z). If Player I plays z1 ∈ Z, then

Player II chains her auxiliary strategies in the opposite direction and plays x1 = σ(τ(z1)).

When the game ends, both (x1, ..., xn) and (z1, ..., zn) will be isomorphic to (y1, ..., yn), so

must be isomorphic to each other, and so X ≡n Z.

As we shall see, n-equivalence is closely linked to the notion of quantifier depth d(φ)

of a formula φ, which we define inductively as follows:

• if φ is atomic, then d(φ) = 0

• d(¬φ) = d(φ)

• d(φ ∨ ψ) = d(φ ∧ ψ) = d(φ→ ψ) = max(d(φ), d(ψ))

• d(∀xφ) = d(∃xφ) = d(φ) + 1

Note that this is not necessarily the same as the number of quantifiers in the prenex

normal form of a formula. For example, φ := ∃x(∀y(x < y) ∨ ∀y(x > y)) has quantifier

depth two in our sense, but its prenex form is φ1 := ∃x∀y∀z((x < y) ∨ (x > z)), which

requires three quantifiers. Note that φ is not logically equivalent to the similar prenex

formula of quantifier depth two ψ := ∃x∀y((x < y) ∨ (x > y)), since ψ holds in any linear

order of size at least two, not just those with an endpoint.



2.3. Ehrenfeucht-Fräıssé games 17

A language is the set of symbols that may appear in our formulae. This may be of any

size, but finite or countable languages are often used, as these suffice to describe many

classes of structures. A language may contain symbols that represent functions, which

are known as function symbols. A language that does not contain function symbols is

known as a relational language, so called because it only has relation symbols (as well as

constants, variables, connectives and quantifiers). We remark that it is sometimes possible

to use the symbols of a relational language to formally define something that we think of

informally as being a function (such as a colouring function, or the unary function of a

unar in Section 6.4). In these cases the language is still a relational language, as it does

not contain function symbols.

Lemma 5. In a finite language with no function symbols, A and B are n-equivalent if

and only if they satisfy the same formulae of quantifier depth at most n. [17]

Proof. We prove both directions by an induction on the quantifier depth n. Within that,

for each fixed quantifier depth we show that we may reduce to considering only sentences

that are not a propositional combination of shorter sentences, since given the result for

these we can use propositional connectives to extend the result to all other sentences of

the same quantifier depth. We begin with the forward direction.

Suppose that φ is a sentence of quantifier depth n which is true in A but not in B

(without loss of generality). We show that Player I has a winning strategy in the n-move

game Gn(A,B).

First, we reduce to the case in which φ is not a propositional combination of shorter

sentences. It suffices to give a reduction for the cases where φ contains ∨ or ¬, since the

other propositional connectives ∧ and → are expressible in terms of these.

Suppose first that φ has the form ψ ∨χ. Then either ψ or χ is true in A, but both are

false in B. Let us assume without loss of generality that ψ is true in A. Since ψ is shorter

than φ, true in A and false in B, we may use ψ to obtain a winning strategy for Player I.

Now suppose that φ = ¬ψ. Then ψ is shorter than φ, and ψ is true in B but not in A

(which we may relabel without loss of generality), so again the induction hypothesis gives

a winning strategy for Player I.
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By repeatedly applying the above two reductions we may therefore find, given that

there exists some sentence of quantifier depth n satisfied by A and not by B, a sentence

φ which is not a propositional combination of shorter sentences, has quantifier depth at

most n, and is satisfied by A but not by B.

We now show by induction on n that Player I has a winning strategy. Suppose that

φ is not a propositional combination of shorter sentences. In the base case n = 0, φ

is atomic, so it has the form R(c1, . . . , ck), where R is a relation symbol and c1, . . . , ck

are constant symbols. Then R(c1, . . . , ck) is true in A but false in B, so the structures

on the interpretation a1, . . . ak of c1, . . . , ck in A and b1, . . . , bk of c1, . . . , ck in B are not

isomorphic, and so Player I wins.

For the induction step, we again only need to consider one of the quantifiers, since

∀xϕ↔ ¬∃x¬ϕ. We therefore suppose without loss of generality that φ is ∃xψ(x).

Since φ is true in A, there must be some a ∈ A for which ψ(a) is true in A, but no

b ∈ B such that ψ(b) is true in B. We augment the language with one more constant

symbol c, which is interpreted in A as a. Let Player I play a on her first move. Then

whichever b ∈ B Player II plays in response, ψ(b) will be false in B, so ψ(c) is a sentence

of quantifier depth at most n− 1 which is true in (A, a) but false in (B, b). Therefore, by

the induction hypothesis, Player I has a winning strategy for the remaining n− 1 moves,

completing a winning strategy in the whole game.

We now prove the other direction of the lemma: that A and B are n-equivalent if they

do satisfy the same sentences of quantifier depth at most n.

For the base case n = 0, suppose that A and B satisfy the same quantifier-free sen-

tences. Then they also satisfy the same atomic sentences, and so Player II wins G0(A,B)

(without playing any moves).

Now suppose that A and B satisfy the same sentences of quantifier depth n > 0. We

show that Player II has a winning strategy in Gn(A,B). Suppose that Player I plays

a ∈ A on her first move. The language is finite, and remains so after one constant symbol

denoting a is adjoined, so by a similar inductive analysis of formulae, we see that there

are only finitely many sentences of the language of quantifier depth at most n− 1, up to

relabelling and contractions. We may therefore form the conjunction of all the finitely
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many sentences (up to logical equivalence) satisfied by a in A. We write this conjunction

as φ(c), where c is the constant symbol interpreted as a in A, and we note that φ also

has quantifier depth at most n − 1. Then ∃xφ(x) is certainly true in A, so it must also

be true in B, and so Player II can choose a witness b to its truth in B. By construction,

(A, a) and (B, b) satisfy the same sentences of quantifier depth at most n − 1, so by the

induction hypothesis, Player II has a winning strategy σ for the remaining n − 1 moves.

Playing b on her first move and then following σ therefore constitutes a winning strategy

for Player II in the whole game Gn(A,B).

Therefore, since every formula in our language has finite quantifier depth:

Corollary 6. A and B are elementarily equivalent if and only if Player II wins Gn(A,B)

for all n.

While infinitary versions of this game are sometimes used, as mentioned in the intro-

duction, here we always take n to be a natural number. Note that the length of the game

is chosen in advance, and that this is an important distinction. There exist structures

where Player I can make a move such that, for any response by Player II, there exists a

finite number n such that Player I can win if they continue playing for a total of n moves.

This is not sufficient to show non-equivalence; n must be declared in advance, and Player

II may use her knowledge of n to select a move such that Player I would only eventually

win after n+ 1 moves or more. Then Player II would be the one with a winning strategy

and the structures in question would be n-equivalent.

For example, consider Gn(A,B) where A = ω + Z and B = ω. For her first move,

Player I can play an element a of Z ⊂ A, and Player II’s response b must lie in B, and

so must be at some finite index measured from the start of ω. If Player I were granted

arbitrarily many moves from this situation, she could easily use the fact that b is at some

finite index from the beginning, and a is not, to win the game. However, since Player

II is aware prior to her move of the length of the game, she can pick b sufficiently large

(b > 2n suffices, where n is the number of moves), such that Player I will not be able to

distinguish the large but finite number of points in B<b from the infinite fragment of A<a
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in the n− 1 remaining moves of the game. We therefore have ω +Z ≡n ω for any n, even

though every point of ω has some finite index and none of the points in Z ⊂ A do. This

corresponds to the fact that “not every point of A has a finite index” is not expressible as

a sentence of first order logic, but “there is some point of A with index greater than n”

is, for any particular finite value of n. Finite conjunctions, but not infinite conjunctions,

of this are expressible.

Up to logical equivalence, there are only finitely many first-order formulae over our

finite language of quantifier depth at most n, so there are only finitely many≡n-equivalence

classes. We may show this by induction:

Lemma 7. In a finite relational language L with constants but no functions, there are

only finitely many L-structures up to n-equivalence. [13]

Proof. If n = 0 then all structures are equivalent as the game has length 0 and Player II

immediately wins. This gives us a base case. Now assume the result for n, and consider

(n+ 1)-equivalence: A ≡n+1 B if and only if for every a ∈ A there exists b ∈ B, and vice

versa, such that (A, a) ≡n (B, b). The languages L(A, a) and L(B, b) must be finite, since

they add a single extra constant symbol to L(A) or L(B), which are assumed to be finite.

Thus A ≡n+1 B if and only if {(A, a) : a ∈ A} and {(B, b) : b ∈ B} are identical up to

n-equivalence. By the induction hypothesis, there are finitely many n-equivalence classes

for these, and so it follows that there are finitely many ≡n+1-classes.

We can see that this follows from the structure of the games: n-equivalence of A and

B depends on whether the relations between (a1, . . . , an) and those between (b1, . . . , bn)

are the same, and to which of these n-tuple possibilities each k-tuple (a1, . . . , ak) (with

k < n) along the way can be extended. We can therefore characterise structures by the

set of relations of their k-tuples and on the n-tuples to which these extend, and there are

finitely many such possibilities since n is finite and we are working over a finite relational

language.

As there are only finitely many equivalence classes, we can find representatives of

minimal size for those equivalence classes that contain finite members.
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In general, we may play Ehrenfeucht-Fräıssé games on any relational structure, includ-

ing those with high arities.

Lemma 8. For a relational structure with relations of least arity k, not counting equality,

there are (n+ 1) many n-equivalence classes for each n < k.

Proof. Suppose that the relation of least arity has arity k, not counting equality, and

consider the game Gn(A,B), where n < k and A and B are arbitrary. Whichever moves

are played, we obtain final tuples (a1, . . . , an) and (b1, . . . , bn) of size n. However, there are

no relations of arity n or below, so if a1, . . . , an are distinct and likewise b1, . . . , bn, then

we must have (a1, . . . , an) ≡ (b1, . . . , bn). Therefore, any two structures containing at least

n points are n-equivalent, as Player II can play such that ai = aj if and only if bi = bj .

Moreover, any two structures containing exactly m < n points must be n-equivalent, since

Player II can select a bijection of her choice and play the corresponding move at each

turn, which is a winning strategy. However, if |A| < n and |A| < |B|, then Player I can

win by playing (|A|+ 1) distinct points in B, since Player II’s responses in A must, by the

pigeonhole principle, contain the same point twice. We therefore conclude that there are

precisely (n+1) n-equivalence classes, containing those structures with precisely 0, 1, . . . , n

points respectively.
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Linear orders

Many results on equivalence of linear orders are already known, for example by Mostowski

and Tarski [22] and later by Bissell-Siders [2] [32] and by Mwesigye and Truss [24] [25] [26].

Rosenstein’s text [30] on linear orders also gives an overview of some results. The results

already obtained include classifications of the 2-equivalence classes of linear orders, the

n-equivalence classes of finite orders and of ordinals, and some results on the scattered and

coloured cases. When we require the linear orders on which we play to be well-ordered,

we gain access to the corresponding notion of the minimal representative of a class, and

existing work on ordinals has constructed bounds on the size of minimal representatives

in both the monochromatic and coloured cases [26], as well as on particular subclasses

of monochromatic scattered orders that can be constructed from concatenating copies

of ω and ω∗ [27]. The classification of finite linear orders up to n-equivalence is well-

known: these have 2n equivalence classes, of which 2n − 1 contain each linear order of

size 0, 1, . . . , 2n − 2 in its own equivalence class, and one contains all finite orders of size

2n − 1 or greater. The (entire) class of linear orders has heretofore been classified up to

only 1- and 2-equivalence. There are two 1-equivalence classes of linear orders, of which

one contains only the empty linear order and the other contains all non-empty ones, and

seven 2-equivalence classes, which we shall give below. The main result of this section is

to extend these existing results to a classification of all linear orders up to 3-equivalence.
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3.1 Characters of linear orders

Theorem 9. (Mwesigye-Truss [24]) For two linear orders A and B, A ≡n B if and only

if for every a ∈ A there exists some b ∈ B, and vice versa, such that {x ∈ A : x < a} ≡n−1

{y ∈ B : y < b} and {x ∈ A : x > a} ≡n−1 {y ∈ B : y > b}.

Likewise, for two coloured linear orders A and B, A ≡n B if and only if for every

a ∈ A there exists some b ∈ B of the same colour as a, and vice versa, such that {x ∈ A :

x < a} ≡n−1 {y ∈ B : y < b} and {x ∈ A : x > a} ≡n−1 {y ∈ B : y > b}.

Bearing this in mind, we may construct a useful notion of character: let the n-character

χ(a) of a point a in a linear order A be the pair ([A<a], [A>a]), where [X] denotes the

chosen representative of the n-equivalence class of X. (Not all equivalence classes need

have an obvious well-ordering, but there are only finitely many equivalence classes, so our

ability to choose representatives is non-controversial.) We may therefore restate the above

theorem using characters: two linear orders A and B are (n+ 1)-equivalent if and only if

for every a ∈ A there exists some b ∈ B, and vice versa, such that χ(a) = χ(b), that is, if

A and B realise the same n-characters.

By convention we take 0 and 1 as representatives of the 1-equivalence classes of linear

orders, where 0 represents the class containing only the empty linear order and 1 represents

the class containing all nonempty linear orders. For coloured linear orders with k colours

there are 2k distinct 1-equivalence classes, whose minimal members are those linear orders

containing either 0 or 1 points of each colour. For example, the two-coloured linear orders

have minimal representatives with a single blue point, a single red point, both a blue and

a red point (in either order), and the empty linear order.

We remark that the 1-character of a point a is a binary pair ([A<a], [A>a]), such that

[A<a] = 1 if there is a point b with b < a and 0 otherwise, and likewise [A>a] = 1 if there

is a point c > a and 0 otherwise. Therefore, the 2-equivalence classes of linear orders

depend only on whether they realise endpoints (and non-endpoints, and singletons). We

take 0, 1, 2, 3, ω, ω∗ and Z as representatives of the seven 2-equivalence classes of linear

orders [24]. Linear orders of size 0, 1 or 2 are the only ones in their class, and the other

representatives are minimal members of theirs. For linear orders X of size ≥ 3 the following
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equivalences hold:

• X ≡2 3 if and only if X has both a least point and a greatest point

• X ≡2 ω if and only if X has a least point but no greatest point

• X ≡2 ω
∗ if and only if X has a greatest point but no least point

• X ≡2 Z if and only if X has neither a greatest nor a least point

These equivalences will be used extensively in the following section as we classify points

according to the 2-equivalence classes of the segments of the line lying entirely above or

below the point in question.

3.2 Linear orders up to 3-equivalence

To obtain our full classification of the linear orders up to 3-equivalence, we use the method

of characters. Earlier we showed that n-equivalence of linear orders is determined by the

(n − 1)-characters realised by their points: here, every point has a 2-character, which

is a pair of 2-equivalence classes of linear orders. We select representatives of each 2-

equivalence class; arbitrary choices of representatives would entirely suffice, but we opt

for “minimal” ones for elegance and convenience. 0, 1 and 2 are the only members of their

respective classes and so must be chosen, and we choose 3, ω, ω∗ and Z for the other four.

The first three of these are minimal with regard to the ordering or reverse ordering; all

members of Z’s equivalence class have no endpoints and so must be neither well ordered

nor reverse well ordered, but every nonempty linear order without endpoints must embed

Z, so it is at least minimal in that sense.

We therefore take our 2-characters to be elements of {0, 1, 2, 3, ω, ω∗,Z}2. The 2-

character of a point x0 ∈ X is the pair (L,R) such that {x ∈ X : x < x0} ≡2 L and

{x ∈ X : x0 < x} ≡2 R; by the prior classification of linear orders up to 2-equivalence,

there is precisely one such pair in {0, 1, 2, 3, ω, ω∗,Z}2.

In our classification, we break down linear orders into a, usually large, middle section

containing most of the general structure equipped with two relatively small end sections,
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containing the endpoint related structure.

We correspondingly define the notion of a large or small character: a point has a small

character if one or both of the components of its character are 0, 1 or 2. A character is

large if it is not small, that is, if both of its components are 3, ω, ω∗ or Z. Either, neither,

or both may arise, but points of small character may only be located at the ends of a linear

order, while a typical linear order may consist mainly of many points of large character.

We begin by considering the subcase of linear orders without endpoints.

Theorem 10. There are twelve 3-equivalence classes of linear orders without endpoints.

Proof. We have the result from Theorem 9 that linear orders satisfy A ≡n B if and

only if for all x ∈ A there exists y ∈ B, and vice versa, such that A>x ≡n−1 B
>y and

A<x ≡n−1 B<y [24]. Therefore, two linear orders are 3-equivalent if and only if they

realise the same 2-characters, and a linear order without endpoints is not 3-equivalent to

any linear order with an endpoint. The linear orders up to 2-equivalence are 0, 1, 2, 3, ω, ω∗

and Z. Of these, 0, 1, 2 and 3 cannot occur in a linear order without endpoints, and ω

cannot occur on the left side of a character nor ω∗ on the right, as these would imply the

existence of a least or greatest point respectively. The possible 2-characters are therefore

(ω∗, ω), (ω∗,Z), (Z, ω) and (Z,Z). The power set of these has sixteen elements; we show

that four of these cannot be the set of 2-characters occurring in a linear order without

endpoints, and exhibit linear orders realising the other twelve.

We remark that there is no clear canonical choice of minimal representatives, as we

typically have a choice of the order in which to realise the large characters. For example,

Z+Q and Q+Z represent the same 3-equivalence class, and while both are more natural

than, say, Q + Z + Z + R + Z + R + Q + Q + Z + Q, which lies in the same equivalence

class, there is no compelling reason to prefer one over the other. Even when we come to

consider linear orders with endpoints in Theorem 11, which will have to begin or end with

1, 2, 3 or at least 4 points (in practice, 4 and ω suffice), the same situation arises with

the points of large character. The representatives given here are chosen to be minimal in

the sense of not containing a smaller example, and consist of finite concatenations of the

reasonably canonical linear orders 1, ω, ω∗,Z,Q and Q× {0, 1}.
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We begin by showing that the following sets of 2-characters are impossible: {(ω∗,Z)},

{(ω∗,Z), (Z,Z)}, {(Z, ω)} and {(Z, ω), (Z,Z)}. Note that any point with left character

ω∗ has a predecessor; this means that there exists a point with a successor, which must

have right character ω. Likewise, any point with right character ω forces its successor to

exist and to have left character ω∗. The four above mentioned sets of characters therefore

cannot occur, since if (ω∗,Z) occurs then either (Z, ω) or (ω∗, ω) must occur, and if (Z, ω)

occurs then either (ω∗,Z) or (ω∗, ω) must occur.

The other twelve sets of 2-characters are realisable, as we demonstrate below:

• ∅ is realised by the empty linear order.

• {(ω∗, ω)} is realised by Z.

• {(Z,Z)} is realised by Q.

• {(ω∗, ω), (ω∗,Z)} is realised by ω∗ + Z.

• {(ω∗, ω), (Z, ω)} is realised by Z+ ω.

• {(ω∗, ω), (Z,Z)} is realised by Z+Q.

• {(ω∗,Z), (Z, ω)} is realised by Q× {0, 1}.

• {(ω∗, ω), (ω∗,Z), (Z, ω)} is realised by ω∗ + Z+ ω.

• {(ω∗, ω), (ω∗,Z), (Z,Z)} is realised by ω∗ +Q.

• {(ω∗, ω), (Z, ω), (Z,Z)} is realised by Q+ ω.

• {(ω∗,Z), (Z, ω), (Z,Z)} is realised by Q× {0, 1}+Q.

• {(ω∗, ω), (ω∗,Z), (Z, ω), (Z,Z)} is realised by ω∗ +Q+ ω.

We remark that for a linear order with one or both endpoints, there will similarly only

be four possible 2-characters that can occur in the middle section. The 2-character of a

point is determined by whether there are endpoints and/or middle points in the segments
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of the linear order lying before and after it. If we fix at least three points at the start

and end of the linear order (whether this includes an endpoint or an unbounded chain of

points), then only two possible left characters may be realised in between these two sets:

if there is a left endpoint, then only ω and 3 are possible left characters; if there is no left

endpoint, then only Z and ω∗ may arise as left characters. In each case one left character

occurs in points that have a predecessor (3 or ω∗), and one in those that do not have a

predecessor (ω or Z). There are similarly only two available right characters: either 3

and ω∗, or ω and Z. We may therefore consider different possibilities for an initial and

terminal set of size at least three, and for each, find which of the 16 subsets of the four

possible characters may occur in between.

Theorem 11. There are 281 3-equivalence classes of linear orders.

Proof. We know that 3-equivalence depends on the set of 2-characters that are realised.

We therefore show that there are 281 possible sets of 2-characters that may occur. Recall

that the linear orders up to 2-equivalence are 0, 1, 2, 3, ω, ω∗ and Z, so the characters may

be represented by ordered pairs from this list. Of these, 0, 1 and 2 may occur on the left

side of the character of at most one point, and on the right side of the character of at most

one point. We call a character small if it contains 0, 1 or 2 in at least one component,

and we break down the possibilities according to the small characters realised. Two linear

orders are 3-equivalent if and only if they realise precisely the same 2-characters, so by

finding all possible sets of large character that may occur for each set of small characters,

we obtain all equivalence classes without duplicates.

The large characters are pairs consisting only of 3, ω, ω∗ and Z. However, a linear order

may not exhibit characters beginning with 3 or ω and also exhibit characters beginning

with ω∗ or Z, since the first two characters imply that there is a least element and the

latter two imply that there is not. Similarly, a linear order may not exhibit both characters

ending with 3 or ω∗ and characters ending with ω or Z. A linear order may therefore realise

at most four large characters (that is, those characters with neither component less than

three); if it has no endpoints, these are (ω∗, ω), (ω∗,Z), (Z, ω) and (Z,Z), as we showed

above. If there is a left endpoint, then left components turn from ω∗ to 3 and from Z to
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ω, and if there is a right endpoint, then right components turn from ω to 3 and from Z

to ω∗. Given the small characters occurring, there are therefore at most 16 possibilities

for the set of large characters realised. In each case we determine how many of these may

occur.

First, we consider the possible sets of characters containing only 0, 1 and 2, that is,

where both parts of the character are small. If (0, 0) occurs in a linear order A, then A

is a single point. If (0, 1) or (1, 0) occurs, then they must both occur and A is a chain of

length two. If (0, 2), (1, 1) or (2, 0) occurs, then they must all occur and A is a chain of

length three. If (1, 2) or (2, 1) occurs, then so must the other of these as well as (0, 3) and

(3, 0) and A is a chain of length four. If (2, 2) occurs, then so must (0, 3), (1, 3), (3, 1) and

(3, 0), and A is a chain of length five.

Otherwise, no point has a character with both components less than 3, so we may

consider the small characters at the right and left ends separately, as they now cannot

overlap. A point with a small left character must now have large right character, and a

point with a small right character must have a large left character.

Four cases remain: either there is a left endpoint, a right endpoint, both, or neither.

These possibilities correspond to the existence or nonexistence of small characters. Left

endpoints have small left character, as do the second and third points if these exist, but if

there is no left endpoint then there is no point of small left character. Likewise, the final,

penultimate and antepenultimate points have small right character if these exist, but if

there is no right endpoint then there are no points with small right character.

Case 1 (no endpoints): If there is neither a left nor a right endpoint, then the linear

order is 3-equivalent to one of the twelve linear orders without endpoints listed above in

Theorem 10.

Case 2 (left endpoint): Suppose that there is a left endpoint but not a right end-

point. Then there are four possibilities for the set of small characters that can arise. There

could be (0,Z), in which case there can be no characters of the form (1, ∗) or (2, ∗). There

could be (0, ω) and (1,Z), in which case there must be no character of the form (2, ∗).

There could be (0, ω), (1, ω) and (2,Z), or there could be (0, ω), (1, ω) and (2, ω). Note

that this last possibility implies that there is a point with a character of the form (3, ∗),
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since the point of character (2, ω) has a successor.

We consider the sets of large characters that may accompany these. Each large char-

acter is a member of {3, ω, ω∗,Z}2. Since there is a left endpoint, no character may have

ω∗ or Z as its left component; since there is no right endpoint, no character may have

3 or ω∗ as its right component. The possible large characters in this case are therefore

(3, ω), (3,Z), (ω, ω) and (ω,Z).

Of the sixteen possible combinations of these, four are impossible in this case. We

cannot have the empty set, since the overall linear order is infinite and so has infinitely

many points of large character. The character set s{(3,Z)} is impossible, as it requires

every point to have a predecessor but no point to have a successor. Likewise, {(ω, ω)}

cannot arise, as every point would have a successor but no point would have a predecessor.

The set {(ω, ω), (ω,Z)} is also impossible, since the point of character (ω, ω) has a successor

but there is no character that could belong to its successor.

If the small characters are {(0,Z)}, {(0, ω), (1,Z)} or {(0, ω), (1, ω), (2,Z)}, then

{(3,Z), (ω,Z)} is also an impossible accompanying set of large characters, since any point

of character (3,Z) must have a predecessor. That predecessor must have character (x, ω)

where x ≥ 2, but neither the small character (2, ω) nor any large character of the form

(∗, ω) is realised, so no linear orders realising precisely these characters exists. If the small

characters are {(0, ω), (1, ω), (2, ω)}, however, {(3,Z), (ω,Z)} is possible if (3,Z) is realised

only by the fourth point, for example in 4 +Q.

On the other hand, {(ω,Z)} is an impossible set of large characters when the small

characters are {(0, ω), (1, ω), (2, ω)}, since there must be a point of character (3, ∗) to

come next, but it is perfectly compatible with the other three sets of small characters.

For example, 1 + Q, 2 + Q and 3 + Q realise {(0,Z), (ω,Z)}, {(0, ω), (1,Z), (ω,Z)} and

{(0, ω), (1, ω), (2,Z), (ω,Z)} respectively.

We have eliminated four sets of large character that are incompatible with any small

character sets in this case, and a further two that may only arise with some of them.

The other ten possible sets of large character are compatible with any of the four sets

of small character that arise in this case. To show this, we exhibit examples. In general

we may take similar representatives for the small character sets {(0,Z)}, {(0, ω), (1,Z)}
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and {(0, ω), (1, ω), (2,Z)}, but {(0, ω), (1, ω), (2, ω)} sometimes behaves differently due to

the role played by points of character (3, ∗). In fact, representatives from all 33 of the

classes containing {(0,Z)}, {(0, ω), (1,Z)} or {(0, ω), (1, ω), (2,Z)} may be obtained by

prepending one, two or three points to the beginning of the eleven nonempty linear orders

without endpoints given in Theorem 10 (of which one, {(ω,Z)}, is considered above).

The following linear orders realise each of the ten remaining sets of large characters

together with each of the four possible sets of small characters in this case:

• {(3, ω)} is realised by n+ Z for 1 ≤ n ≤ 3 and by ω for the (2, ω) case

• {(3, ω), (3,Z)} is realised by n+ ω∗ + Z for 1 ≤ n ≤ 4

• {(3, ω), (ω, ω)} is realised by n+Z+ω for 1 ≤ n ≤ 3 and by ω+ω for the (2, ω) case

• {(3, ω), (ω,Z)} is realised by n+Z+Q for 1 ≤ n ≤ 3 and by ω+ 1 +Z for the (2, ω)

case

• {(3,Z), (ω, ω)} is realised by n+Q× {0, 1} for 1 ≤ n ≤ 4

• {(3, ω), (3,Z), (ω, ω)} is realised by n+ ω∗ + Z+ ω for 1 ≤ n ≤ 4

• {(3, ω), (3,Z), (ω,Z)} is realised by n+ ω∗ +Q for 1 ≤ n ≤ 4

• {(3, ω), (ω, ω), (ω,Z)} is realised by n + Q + ω for 1 ≤ n ≤ 3 and by ω + Q + ω in

the (2, ω) case

• {(3,Z), (ω, ω), (ω,Z)} is realised by n+Q× {0, 1}+Q for 1 ≤ n ≤ 4

• {(3, ω), (3,Z), (ω, ω), (ω,Z)} is realised by n+ ω∗ +Q+ ω for 1 ≤ n ≤ 4.

So, there are eleven possible sets of large characters for each of the four possible small

character sets, giving a total of 44 equivalence classes in this case.

Case 3 (right endpoint): Similarly to the previous case, if there is a right endpoint

but not a left endpoint, then the possible sets of characters ending in 0, 1, or 2 are {(Z, 0)},

{(ω∗, 0), (Z, 1)}, {(ω∗, 0), (ω∗, 1), (Z, 2)}, and {(ω∗, 0), (ω∗, 1), (ω∗, 2)}. Again, the last pos-

sibility implies that there is a point with a character of the form (∗, 3). By symmetry, we
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find that there are a further 44 classes in this case, whose members are the reverses of the

orders in the classes arising in the previous case.

Case 4 (both endpoints): In the final case, there are both left and right endpoints,

but we are not in one of the five classes above where the character of some point has both

components less than 3. The possibilities for the small characters on the left are {(0, ω∗)},

{(0, 3), (1, ω∗)}, {(0, 3), (1, 3), (2, ω∗)}, and {(0, 3), (1, 3), (2, 3)}. These sets are similar to

those in the case with only a left endpoint, except that in this case the linear order has a

final element. Similarly, the possibilities for the points of small character on the right hand

side, given that there is a left endpoint, are {(ω, 0)}, {(3, 0), (ω, 1)}, {(3, 0), (3, 1), (ω, 2)},

and {(3, 0), (3, 1), (3, 2)}.

Considering the large characters, no character can begin with ω∗ or Z, and no character

can end with ω or Z. The possibilities are therefore (3, 3), (3, ω∗), (ω, 3) and (ω, ω∗), and

the sixteen potential large character sets are the power set of these.

We remark again that when the left hand points are {(0, 3), (1, 3), (2, 3)}, there must be

a next point with character (3, ∗), and when the right hand points are {(3, 0), (3, 1), (3, 2)}

there must be a point with character (∗, 3). Naturally, if both (2, 3) and (3, 2) occur then

both (3, ∗) and (∗, 3) must be realised by some middle point, and we could achieve this by

either having just (3, 3), both (3, ω∗) and (ω, 3), or by forgoing large characters altogether

and having the point of character (3, 2) immediately follow the point of character (2, 3),

in which case we find that the overall linear order is of size six.

As before, when (2, 3) and (3, 2) are both absent we may straightforwardly construct

representatives by appending one, two or three points to the beginnings and ends of the

eleven nonempty linear orders without endpoints listed previously. This gives representa-

tives for the 99 classes where the points of small character are {(0, ω∗)}, {(0, 3), (1, ω∗)},

or {(0, 3), (1, 3), (2, ω∗)} on the left and {(ω, 0)}, {(3, 0), (ω, 1)}, or {(3, 0), (3, 1), (ω, 2)} on

the right. The other five sets of large character, ∅, {(3, ω∗)}, {(ω, 3)}, {(ω, 3), (ω, ω∗)} and

{(3, ω∗), (ω, ω∗)}, cannot occur with these small characters for the same reasons as before.

Suppose that (2, 3) is realised but not (3, 2). Then there are at most three points at the

end of the linear order, but no point fourth from last. We may construct representatives

of these classes by appending one, two or three points after the representatives for the
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case where there is a left endpoint but no right. In all cases taking n ∈ {1, 2, 3}:

• {(3, 3)} is realised by ω + n

• {(3, 3), (3, ω∗)} is realised by 4 + Z+ n

• {(3, 3), (ω, 3)} is realised by ω + ω + n

• {(3, 3), (ω, ω∗)} is realised by ω + 1 + Z+ n

• {(3, ω∗), (ω, 3)} is realised by 4 +Q× {0, 1}+ n

• {(3, ω∗), (ω, ω∗)} is realised by 4 +Q+ n

• {(3, 3), (3, ω∗), (ω, 3)} is realised by 4 + ω∗ + Z+ ω + n

• {(3, 3), (3, ω∗), (ω, ω∗)} is realised by 4 + ω∗ +Q+ n

• {(3, 3), (ω, 3), (ω, ω∗)} is realised by ω + ω + 1 + Z+ n

• {(3, ω∗), (ω, 3), (ω, ω∗)} is realised by 4 +Q× {0, 1}+Q+ n

• {(3, 3), (3, ω∗), (ω, 3), (ω, ω∗)} is realised by 4 + ω∗ +Q+ ω + n

The five sets of large characters which were impossible in the earlier case remain

impossible now. We cannot have the empty set, since the overall linear order is infinite

and so has infinitely many points of large character. The set {(3, ω∗)} is impossible, as

it requires there to be points of large character all of which have a predecessor but none

of which have a successor. The character sets {(ω, 3)}, {(ω, 3), (ω, ω∗)} and {(ω, ω∗)} are

also impossible, since there must be a point of character (3, ∗) in the fourth position, and

we do not have (3, 2) (which would be impossible with these anyway), so this must be a

large character point with character (3, 3) or (3, ω∗).

There are therefore 33 equivalence classes of linear orders with both endpoints that

realise (2, 3) but not (3, 2). If (3, 2) is realised but not (2, 3), then the situation is the

reverse of that above, and so we also have 33 equivalence classes in this case, whose

members are the reverse orderings of the members of the previous case.



34 Chapter 3. Linear orders

Finally, if both (3, 2) and (2, 3) are realised then there are eleven possibilities realising

{(0, 3), (1, 3), (2, 3), (3, 2), (3, 1), (3, 0)} as well as the following sets of large characters:

• ∅ is realised by the linear order with six elements

• {(3, 3)} is realised by the linear order with seven (or a larger finite number) elements

• {(3, 3), (3, ω∗)} is realised by 4 + ω∗

• {(3, 3), (ω, 3)} is realised by ω + 4

• {(3, 3), (ω, ω∗)} is realised by ω +Q+ ω∗

• {(3, ω∗), (ω, 3)} is realised by 4 +Q× {0, 1}+ 4

• {(3, 3), (3, ω∗), (ω, 3)} is realised by 4 + Z+ 4

• {(3, 3), (3, ω∗), (ω, ω∗)} is realised by 4 + ω∗ +Q+ ω∗

• {(3, 3), (ω, 3), (ω, ω∗)} is realised by ω +Q+ ω + 4

• {(3, ω∗), (ω, 3), (ω, ω∗)} is realised by 4 +Q+Q× {0, 1}+ 4

• {(3, 3), (3, ω∗), (ω, 3), (ω, ω∗)} is realised by ω + 2 +Q+ 4

The character set {(3, ω∗)} is impossible, as it requires there to be points of large

character all of which have a predecessor but none of which have a successor. Likewise,

{(ω, 3)} cannot arise, as every large character point would have a successor but no large

character point would have a predecessor. The final three combinations may also not arise:

{(3, ω∗), (ω, ω∗)} is impossible since there is no large character (∗, 3) which can belong to

the fourth from last point, {(ω, 3), (ω, ω∗)} is impossible since there is no point of character

(3, ∗) to belong to the fourth point, and {(ω, ω∗)} is impossible, since it fails both of these

conditions.

In total we have five equivalence classes where some character is small in both com-

ponents; 12 classes with no small characters at all; 44 equivalence classes where there are

small characters on the left but not the right; 44 classes with small characters on the right

but not the left, and 176 classes with small characters on the left and small characters
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on the right, but no character which is small in both. We have shown that no other sets

of characters are possible, and exhibited members of each of these equivalence classes,

therefore there are 281 3-equivalence classes of linear orders.

3.3 Bounds on 4-equivalence

We remark that Theorem 11 allows us a crude upper bound on the number of 4-equivalence

classes of linear orders. Since n-equivalence is determined by the set of (n− 1)-characters

that are exhibited, there can be at most 278961 4-equivalence classes. Unfortunately this

bound has 23770 digits so is unlikely to be close to the actual figure. We can obtain

analogously loose bounds for general n: if B3 = 281, then Bn = 2(B2
n−1) is an upper bound

on the number of n-equivalence classes of linear orders. These bounds are rather large,

though computable.

In order to directly calculate the 4-equivalence classes of linear orders, we would wish

to again apply the method of characters. The 3-character of a point a is a pair of elements

(X,Y ) from the above set (or another choice of representatives), such that A< ≡3 X and

A> ≡3 Y . In an analogous way to the above proof, we can determine which combinations

of 3-characters may co-occur - however, since we are starting with 2812 possible characters

rather than 72, the list of permissible combinations would be substantially longer.

We may use an alternative method to produce better upper bounds. Any linear order

may be broken down into three (not necessarily nonempty) components: an initial well-

ordered section, a middle section without endpoints, and a terminal reverse-well-ordered

section. We may therefore construct an upper bound on the number of n-equivalence

classes of linear orders by determining the number of linear orders without endpoints up

to n-equivalence, and optionally modifying them with an ordinal at the beginning and a

reversed ordinal at the end.

We note that the bounds thus obtained are significantly sharper than by the above

method of counting elements in the power set. Given that the number of 2-equivalence

classes of linear orders is seven, we could have calculated that there are at most 249 =

562949953421312 3-equivalence classes of linear orders.
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Using ordinals, we may achieve a much more reasonable bound. Any linear order is 3-

equivalent to one of the form α+X+β∗ where α and β are ordinals and X is a linear order

without endpoints. We may take α and β to be minimal. The ordinals up to 3-equivalence

have been classified by Feresiano Mwesigye [23]. There are seventeen equivalence classes,

and since the class of ordinals is well ordered there exist minimal representatives, which

are 0, 1, 2, 3, 4, 5, 6, 7, ω, ω+ 1, ω+ 2, ω+ 3, ω+ 4, ω+ω, ω+ω+ 1, ω+ω+ 2 and ω+ω+ 3.

We may therefore construct an upper bound on the number of 3-equivalence classes

of linear orders: every linear order is 3-equivalent to a linear order of one of the form

L + M + U , where L is a member of this set of 16 ordinals, M is one of the twelve

members of the list of linear orders without endpoints given in Theorem 10, and U is the

reverse of a 3-minimal ordinal. This gives us an upper bound of 3072 linear orders up to

3-equivalence, much closer to the true value of 281.

To perform the analogous calculation for 4-equivalence, we need to know the ordinals

up to 4-equivalence, and the linear orders without endpoints up to 4-equivalence.

The ordinals up to 4-equivalence have been classified by Mwesigye and Truss [25] [23].

There are 63 4-equivalence classes, and since we are considering only ordinals we are able

to easily select a minimal representative for each using the usual ordering. From the above

papers these are:

• 0, 1, 2, . . . , 15

• ω, ω + 1, ω + 2, . . . , ω + 12

• ω · 2, ω · 2 + 1, ω · 2 + 2, . . . , ω · 2 + 12

• ω · 3, ω · 3 + 1, ω · 3 + 2, . . . , ω · 3 + 12

• ω · 4, ω · 4 + 1, ω · 4 + 2, ω · 4 + 3

• ω2, ω2 + 1, ω2 + 2, ω2 + 3

There are therefore at most 632 = 3969 times as many 4-equivalence classes of linear

orders as there are 4-equivalence classes of linear orders without endpoints.
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Partial orders

A natural extension of the linear case is that of partial orders. We shall see that things

are considerably more complicated here, but we can at least make progress in some special

cases. We also consider coloured partial orders, though here things become a lot harder

than for linear orders, for which the coloured version obeys the coloured variation of

Theorem 9 and may thus be broken down into smaller pieces just as in the monochromatic

case.

The main initial result gives a complete listing of all 2-equivalence classes of partial

orders. Bearing in mind that there are only 7 linear orders up to 2-equivalence, the fact

that our list has 39 illustrates the increased complexity, and this discrepancy is expected

to increase greatly for 3-equivalence and above. The natural technique in the linear case

of the use of characters can be adopted here, but with a lot less success. For a start we

require three sets relating to a point rather than two: those points above, below, and

incomparable to it. Moreover, we would also require the sets containing all points either

above or incomparable to our given point to be equivalent, and likewise for the sets of

points lying either below or incomparable. Yet even this does not suffice, as we shall

show, and a more satisfying notion of character is not apparent. From the structure of an

Ehrenfeucht-Fräıssé game, we are able to extract a notion of character that does entail all

the necessary information, but this is unwieldy and may be unlikely to yield many fruitful

results aside from large upper bounds on the number of n-equivalence classes.
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4.1 Characterising 2-equivalence

As with linear orders, there are only two 1-equivalence classes of partial orders: the class

containing the empty partial order and the class containing the non-empty partial orders.

By analogy with 1-characters on linear orders, we may define a notion of 1-character for

partial orders, which still takes the value of 0 or 1 in each component corresponding to

the 1-equivalence class arising there, but requires three components rather than two.

Theorem 12. Let the 1-character of a point x in a partial order be the tuple (χa(x), χb(x),

χi(x)), where

• χa(x) = 1 if {y : y > x} is nonempty, 0 otherwise;

• χb(x) = 1 if {y : y < x} is nonempty, 0 otherwise;

• χi(x) = 1 if {y : y ≮ x, y ≯ x} is nonempty, 0 otherwise.

Then the partial orders P and Q are 2-equivalent if and only if they realise the same

1-characters.

Proof. Suppose that P and Q do not realise the same 1-characters. Then there is some

character χ in one of them, suppose without loss of generality in P , that does not occur in

Q. Let Player I pick a point x of character χ. Player II must then pick a point in Q, but

there is no point of character χ, so she must pick a point y of character χ1 6= χ. Player I

compares χ and χ1 and identifies a coordinate that is 1 in one of them and 0 in the other.

This being the first, second or third coordinate respectively indicates to her that there

exists a point above, below or incomparable with x but not with y (or vice versa). She

therefore picks a point with the corresponding relationship with x, such that no point has

this relationship with y (or vice versa). Player II is then unable to pick a point with this

relationship with y (or x) and so Player I wins.

Conversely, suppose that P and Q realise the same 1-characters. Then whichever

x Player I plays, Player II can play a point y in the other partial order with identical

character. Since the characters are equal, there are points above x if and only if there

are points above y, points below x if and only if there are points below y, and points
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incomparable with x if and only if there are points incomparable with y. Player I may

then select a second point of her choosing, but whatever its relationship to the point played

in the first round, there must exist a point of the same relationship to the other point

played in the first round, which Player II can play in response. Therefore Player II wins

and P and Q are 2-equivalent.

While the name “1-character” arises by analogy with the n-characters of linear orders,

we have not defined n-characters for partial orders in general. This is because we do

not have the same inductive condition as with linear orders, and so categorising points

according to which (n− 1)-equivalence class the sets of points above/below/incomparable

to them belong to is not actually very useful, as we shall see later.

The comparatively straightforward n-equivalence categorisation of partial orders when

n = 2 is more amenable. During the two-move game, only two points in each structure

are selected, which must be either ascending, descending or incomparable to each other.

Ternary properties such as betweenness cannot be expressed and so cannot affect the 2-

equivalence classification. When we consider the three-move game, we must consider the

relations that each possible choice of third point can have to both of the preceding points,

and so the properties required for equivalence will become correspondingly more complex.

We remark that the analogous result holds for coloured partial orders if we append the

colour of each point to its character, and modify χa, χb and χc to record the sets of the

colours of points lying above, below and incomparable to it respectively.

4.2 Monochromatic partial orders up to 2-equivalence

We classify the partial orders (X,<) up to 2-equivalence, using characters. Recall that a

partial order is 2-equivalent to another partial order if and only if the sets of 1-characters

(defined in Theorem 12) that occur are identical. There are eight possible 1-characters, as

they are triples of 1-equivalence classes, so there are at most 28 combinations of characters

that could occur in a partial order. Of course, the antisymmetry and transitivity of above-

ness as well as the symmetry of incomparability mean that not all of these combinations

can occur.
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Theorem 13. There are 39 monochromatic partial orders up to 2-equivalence.

Proof. We first dispose of two trivial cases: if no 1-characters at all are realised, then the

partial order must be ∅, and if some point realises (0, 0, 0), then there can only be one

point. From now on we therefore suppose that there are at least two points in our partial

order X, and that the character (0, 0, 0) does not occur.

We break the possibilities down into cases according to the existence of greatest and

least points. Here a greatest point is a point that lies above all other points, in contrast to

a maximal point, which is merely required to have no points lying above it. When these

characters occur, (1, 0, 0) points are least, (0, 1, 0) points are greatest, (1, 0, 1) points are

minimal but not least, (0, 1, 1) points are maximal but not greatest, (0, 0, 0) points are

both greatest and least, (0, 0, 1) points are both minimal and maximal but not least or

greatest, and (1, 1, 0) and (1, 1, 1) points are neither maximal nor minimal.

We observe that if there are at least two points in total, then there is a greatest point if

and only if (0, 1, 0) is realised, and there is a least point if and only if (1, 0, 0) is realised. If

there is a (0, 0, 1) point, then it has nothing above or below it, so it must be both maximal

and minimal (but neither greatest nor least). We deduce that there is a maximal point

which is not greatest if and only if (0, 1, 1) or (0, 0, 1) is realised, and similarly there is a

minimal point which is not least if and only if (1, 0, 1) or (0, 0, 1) is realised. This helps us

keep track of the nine various cases which arise.

Case 1: There are both greatest and least points. Thus characters (0, 1, 0) and (1, 0, 0)

both occur. Since all other points lie between these two, the only other possible characters

are (1, 1, 0) and (1, 1, 1). This gives rise to four possibilities, which can all occur, as follows:

3. {(0, 1, 0), (1, 0, 0)}, a chain of two elements (which is the only example realising this set

of characters).

4. {(0, 1, 0), (1, 0, 0), (1, 1, 0)}, a chain of size three, or any larger chain with both top and

bottom points (so here there are many examples, both finite and infinite).

5. {(0, 1, 0), (1, 0, 0), (1, 1, 1)}, of which the smallest example has four elements in a dia-

mond shape, though there are many others (finite and infinite).

6. {(0, 1, 0), (1, 0, 0), (1, 1, 0), (1, 1, 1)}, obtained by combining the two structures in 4 and
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5, for instance, a diamond with an extra point added at the top.

Case 2: There is a greatest element, and also a minimal one, but no least element. Here

(0, 0, 1) cannot arise, since such a point would have to be incomparable with everything

else, which contradicts there being a greatest in this case. We must have characters

(0, 1, 0), at the greatest element, and (1, 0, 1), at a minimal element, but not (0, 1, 1) or

(1, 0, 0) in this case. The remaining characters which may arise are (1, 1, 0) and (1, 1, 1)

and this gives rise to four possibilities as follows:

7. {(0, 1, 0), (1, 0, 1)}, for instance, a Λ shape or fan with a single top point and multiple

bottom points but none in the middle.

8. {(0, 1, 0), (1, 0, 1), (1, 1, 1)}, for instance, a Λ shape with a point added below one of its

minimal elements.

9. {(0, 1, 0), (1, 0, 1), (1, 1, 0)}, for instance, a Λ shape with a point added at the top.

10. {(0, 1, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}, such as a Λ shape with points added at both top

and bottom.

Case 3: There is a least element, and also a maximal one, but no greatest. This is case

2 inverted, so there are four more equivalence classes whose members are the inversions of

those in the previous case.

11. {(1, 0, 0), (0, 1, 1)}, for instance, three points in a V shape.

12. {(1, 0, 0), (0, 1, 1), (1, 1, 1)}, for instance, a V shape with a point added above one of

its maximal elements.

13. {(1, 0, 0), (0, 1, 1), (1, 1, 0)}, for example, a V shape with a point added at the bottom.

14. {(1, 0, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)}, for example, a V shape with points added at the

top and bottom.

Case 4: There is a greatest element, but no minimal one. Here we have character

(0, 1, 0) but none of (0, 0, 1), (0, 1, 1), (1, 0, 0), and (1, 0, 1), as the first two fail to be

below the greatest element and the latter two would be minimal. The remaining possible

characters are (1, 1, 0) and (1, 1, 1), and since we require some additional point at least

one of these must arise, so there are three more options:

15. {(0, 1, 0), (1, 1, 0)}, for instance, ω∗.

16. {(0, 1, 0), (1, 1, 1)}, for instance, two otherwise disjoint copies of ω∗, with their top
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points identified.

17. {(0, 1, 0), (1, 1, 0), (1, 1, 1)}, of which an example may be obtained by adding one more

point at the top of our example for 16.

Notice that this is the first case in which all examples must be infinite; all previous

equivalence classes had finite members.

Case 5: There is a least element, but no maximal one. This is Case 4 inverted, so

there are three more examples, which are also necessarily infinite.

18. {(1, 0, 0), (1, 1, 0)}, for instance, ω.

19. {(1, 0, 0), (1, 1, 1)}, for instance, two otherwise disjoint copies of ω, with their bottom

points identified.

20. {(1, 0, 0), (1, 1, 0), (1, 1, 1)}, of which an example may be obtained by adding a point

at the bottom of our example for 19.

Case 6: There are maximal and minimal elements, but no greatest or least element.

Thus (0, 1, 0) and (1, 0, 0) do not occur, and either (0, 0, 1) occurs, or (0, 1, 1) and (1, 0, 1)

both do. Supposing first that (0, 0, 1) does not occur, we obtain the following possibilities:

21. {(0, 1, 1), (1, 0, 1)}, for instance, a partial order of size four which is the disjoint union

of two chains of length two.

22. {(0, 1, 1), (1, 0, 1), (1, 1, 0)}, for instance, an X shaped partial order with two maximal

elements, two minimal elements, and a point in between.

23. {(0, 1, 1), (1, 0, 1), (1, 1, 1)}, for instance, the disjoint union of a chain of length three

and a chain of length two.

24. {(0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}, for instance, obtained from 22 by adding a new

point above one of the maximal ones. Note that the minimal representative of this equiv-

alence class has size six; a smaller example is impossible since there must be at least two

points realising each of the characters (1, 0, 1) and (0, 1, 1), and of course (1, 1, 0) and

(1, 1, 1) must also occur at at least one point. This is the largest minimal representative

of any 2-equivalence class of finite partial orders.

Next suppose that (0, 0, 1) does occur. This point is incomparable with all others, so

(1, 1, 0) does not occur (as well as the other (∗, ∗, 0) characters, which we have already

ruled out). The remaining characters which may occur are (1, 0, 1), (0, 1, 1), and (1, 1, 1).
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We cannot have just {(0, 0, 1), (1, 0, 1)}, since the minimal (1, 0, 1) point must have some

point with a different character above it; likewise, we cannot have just {(0, 0, 1), (0, 1, 1)}.

This leaves us with six possibilities as follows:

25. {(0, 0, 1)}, which arises in any antichain of any size at least two.

26. {(0, 0, 1), (1, 1, 1)}, for instance, Z together with one isolated point. There are no finite

examples.

27. {(0, 0, 1), (1, 0, 1), (0, 1, 1)}, for instance, a two-element chain and one isolated point.

28. {(0, 0, 1), (1, 0, 1), (1, 1, 1)}, for instance, the disjoint union of ω and one isolated point.

There are no finite examples.

29. {(0, 0, 1), (0, 1, 1), (1, 1, 1)}, for instance, the disjoint union of ω∗ and an isolated point.

Again, this cannot arise in a finite partial order.

30. {(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)}, for instance the disjoint union of a chain of three

elements and an isolated point.

We note that seven of the equivalence classes arising in Case 6 have finite representa-

tives.

Case 7: There is a maximal element but no greatest or minimal one. Hence (1, 0, 0),

(0, 1, 0), (1, 0, 1) and (0, 0, 1) do not arise, but (0, 1, 1) does. At least one of (1, 1, 0) and

(1, 1, 1) must also arise, since not all elements are maximal (or they would also all be

minimal). This gives rise to the following three options:

31. {(0, 1, 1), (1, 1, 0)}, for instance ω∗ with two extra maximal points added at the top.

32. {(0, 1, 1), (1, 1, 1)}, for instance two disjoint copies of ω∗.

33. {(0, 1, 1), (1, 1, 0), (1, 1, 1)}, which may be obtained from 31 by adding an extra maxi-

mal point above one of the already top points.

Case 8: There is a minimal element but no least or maximal one. This is Case 7

inverted, so there are just three more possibilities:

34. {(1, 0, 1), (1, 1, 0)}, for instance ω with two extra minimal points added at the bottom.

35. {(1, 0, 1), (1, 1, 1)}, for instance two disjoint copies of ω.

36. {(1, 0, 1), (1, 1, 0), (1, 1, 1)}, which may be obtained from 34 by adding an extra minimal

point below one of the already bottom points.

Case 9: There is no maximal or minimal element. Then the only possible characters
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are (1, 1, 0) and (1, 1, 1). Since there is at least one point, the options are therefore as

follows:

37. {(1, 1, 0)}, for instance Z.

38. {(1, 1, 1)}, for instance two disjoint copies of Z.

39. {(1, 1, 0), (1, 1, 1)}, for instance two copies of Z, disjoint except that the zero elements

of each are identified.

This covers all possible cases, and so there are precisely 39 equivalence classes.

Of these 39 equivalence classes, 21 contain finite partial orders: the trivial two, all

those in Cases 1-3, and seven of those from Case 6. From our above observations we may

deduce the following:

Corollary 14. If a partial order is 2-equivalent to a finite partial order, then it is 2-

equivalent to one of size at most six.

We have given representatives of size ≤ 6 for each of the 21 equivalence classes with

finite members, and shown that one class (numbered 24) contains no partial orders of size

5 or smaller, so we deduce that the largest minimal representative of the 2-equivalence

classes of finite partial orders has size six. In fact, the representatives listed above are each

minimal representatives of their respective classes, as may be easily verified by counting

the number of points required to realise each. In general, there must be at least as many

points in the partial order as there are distinct characters; any point with a character of

the form (∗, ∗, 1) must have some other point of with character of the form (∗, ∗, 1) to

which it can be incomparable; and the characters (1, 0, 1) and (0, 1, 1) cannot occur only

once in a finite partial order unless (0, 0, 1) is also present (though they may of course

occur zero times). Minimal representatives of each class for which finite members exist

are shown in Figure 4.1 (for those arising in Cases 1−3), and Figure 4.2 (for those arising

in Case 6).

Almost all of the 2-equivalence classes of partial orders contain infinitely many mem-

bers. The equivalence class for the empty partial order and the equivalence class containing

the one point partial order are both trivially finite, as no other partial order is 2-equivalent

to either of these. The equivalence class of the partial order with two comparable points
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Figure 4.1: Finite minimal representatives of equivalence classes 1 to 14, in that order.

Since the representative of the first equivalence class is the empty partial order, there are

only thirteen visible diagrams: those of classes 2− 6 in the top row, 7− 10 in the middle

row, and 11− 14 in the bottom row.
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Figure 4.2: Finite minimal representatives of equivalence classes 21, 22, 23, 24, 25, 27 and

30, in that order, with 21− 24 in the top row and 25, 27 and 30 in the bottom row. Since

the minimal representatives (and all other members) of classes 25, 27 and 30 have multiple

components, incomparable pairs of points in these are connected with a dotted line.
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also has only one member, as its character {(0, 1, 0), (1, 0, 0)} requires that there be a point

above everything and a point below everything, but nothing with points both above and

below it. There must therefore be one top point, one bottom point, and no other points.

Any partial order other than these three can be modified to give another partial order

in its equivalence class. It must either have middle points with a character of the form

(1, 1, ∗), which can be replaced by a chain to give a new partial order realising precisely

the same characters as the original, or else it has incomparable points with a character

of the form (∗, ∗, 1), which can be replaced by an antichain to give a new partial order

realising exactly the same characters. These chains and antichains may be of any size, so

there are infinitely many distinct partial orders that may be obtained by this method, and

therefore 36 of the 39 equivalence classes of partial orders (with the above three classes as

the exceptions) contain infinitely many members.

There are 18 infinite-only equivalence classes, three of which realise (0, 0, 1) alongside

some other points that we can take to be an infinite linear order with a top, bottom or

neither, and fifteen of which fit into a top/middle/bottom classification as follows.

We say that a point x is split if there is some y 6= x with y ≮ x, x ≮ y, that is, some

point y which is incomparable to x. Then a greatest point that lies above all other points

is an unsplit top point, a maximal point that does not lie above all other points is a split

top point, and likewise for least and non-least minimal points. Similarly, middle points of

character (1, 1, 1) are split and (1, 1, 0) are unsplit.

We obtain the infinite-only equivalence classes by combining the possibilities for the

combinations of split and unsplit points that can occur at the top, middle and bottom

of the partial order. The infinite-only equivalence classes contain infinite chains that are

split, unsplit or both; with either no top and no bottom, a split or unsplit top but no

bottom, or a split or unsplit bottom but no top.

This gives 3∗ (1+2+2) = 15 possibilities, which are realisable by combining a suitable

choice of top, middle and bottom sets. For example, we may take a single point for an

unsplit top or bottom set, two incomparable points for a split top or bottom set, Z for an

unsplit middle set, two disjoint copies of Z for a split middle set, and Z with one point

replaced by two incomparable points (or two copies of Z with a point in each identified,
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or many other possibilities) for the middle set with both split and unsplit points.

As noted above, the remaining three possibilities arise when there is a point of character

(0, 0, 1). This universally unrelated point makes everything else split, but the fact that

this point has character (0, 0, 1) distinguishes this case from the situation included above

where there is a split chain with a split top (0, 1, 1) and a split bottom (1, 0, 1).

The 21 finite cases can also be understood in this framework: they must have both

maximal and minimal elements, being finite, so there are 4 ∗ 2 ∗ 2 = 16 possibilities with

a chain that is split (1, 1, 1), unsplit (1, 1, 0), both, or neither; with a top that is split

(0, 1, 1) or unsplit (0, 1, 0) (but not neither, as this is the finite case); and a bottom that is

split (1, 0, 1) or unsplit (1, 0, 0), plus three possibilities with a universally unrelated point

(0, 0, 1) along with a linear order (a single point (0, 0, 1), two points (1, 0, 1) and (0, 1, 1), or

more than two points (1, 0, 1), (0, 1, 1) and (1, 1, 1)), as well as the two degenerate classes

containing only the single point partial order (0, 0, 0) and the empty partial order.

Remark. Not all partial orders contain a minimal representative of their equivalence

class.

Every linear order contains a minimal representative of its 2-equivalence class. This

is implicit in [24], lemma 3.2. However, the same does not hold for partial orders. There

exist monochromatic finite partial orders P such that no proper subset of P is 2-equivalent

to P , but such that there exists another partial order of size < |P | which is 2-equivalent

to P .

For example, let P = {a1, a2, b1, b2, c1, c2} with ai > bj > ck for all i, j, k and no other

relations. A diagram of P is given in Figure 4.3. Then P has points with characters

(0, 1, 1), (1, 1, 1) and (1, 0, 1). However, any proper subset of P would not realise all these

characters. The points are on three tiers with two points on each tier, so removing any

points would either remove a tier or leave a point alone on its tier, either of which would

make this set of characters impossible. Removing a tier would prevent (1, 1, 1) from arising,

as a point of this character has points both above and below it, and having a tier with only

one point would give that point a character of the form (∗, ∗, 0), which is not present in

P . However, Q = {a, b, c, d, e} with a < b > c > d < e realises exactly the same characters
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a1 a2

b1 b2

c1 c2

a

b

c

d

e

Figure 4.3: P (left) and Q (right) are 2-equivalent, but P has no equivalent substructure

of at most the size of Q.

and |Q| = 5 < 6 = |P |.

4.3 Coloured partial orders

A coloured linear order is a tuple (A,<, F ) consisting of a set A, a total order < on A, and

a function known as a colouring function F : A → C, where C is some set of “colours”.

Likewise, a coloured partial order is a tuple (A,<, F ) where < is a partial order on A and

F is a colouring function. A monochromatic linear order may be obtained by taking C to

be a singleton. It is often of interest to take C to be finite; if |C| = n then we refer to F

as an n-colouring of A and say that A is n-coloured.

Since there are 39 2-equivalence classes of monochromatic partial orders, there must

be at least 39n 2-equivalence classes of n-coloured partial orders, because we can combine

arbitrary partial orders of each colour with no inter-colour relations to give partial orders

that are certainly pairwise non-2-equivalent if their substructures of any colour are not

2-equivalent. It seems likely that there are many more, however, as two partial orders of

different colours can be combined in multiple possible ways. In general, the 1-character

of a point x is the tuple (colour of x, set of colours of points above x, set of colours of

points below x, set of colours of points incomparable with x). If there are n permissible

colours, this gives n ∗ 23n possible 1-characters. Since structures are 2-equivalent if and

only if they realise the same 1-characters, this gives an upper bound of 2n23n possible
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equivalence classes. Of course the true number is much smaller due to various constraints

- for example, a point of any colour with character (0, 0, 0) would imply that no other

points existed, so this upper bound may be shrunk by a factor of almost 2n immediately.

There are a large number of ways of combining two differently coloured partial orders.

Even adding a single red point to various blue partial orders yields perhaps ten or fourteen

2-equivalence-distinct results, depending on which partial order was started with. More-

over, one might find that different possibilities arise when adding a new colour of point to

two different members of the same equivalence class. Even adding a red point to something

as simple as a three-point or four-point blue linear order gives an additional possibility in

the 4-point case, yet by themselves the three-point and the four-point linear order lie in

the same 2-equivalence class. This removes any hope of finding the number of 2-colour

2-move equivalence classes by simply enumerating the possible equivalence classes arising

from each of the 392 pairs of equivalence classes of the red and blue substructures.

If two coloured partial orders are n-equivalent, then the induced substructures con-

sisting of the points of each colour must be n-equivalent. If two coloured partial orders

are n-equivalent, then the reducts formed by discarding the colour information must also

be n-equivalent. If two partial orders are n-equivalent, then there exists a recolouring

such that the recoloured versions of each are not n-equivalent. There must also exist a

recolouring such that the recoloured versions are n-equivalent, such as colouring all points

the same colour.

Recolourings that increase the number of colours need not in general preserve equiv-

alence. Consider applying a colouring to the monochromatic 3-point and 4-point linear

orders. For the coloured versions to remain equivalent, the top points must be the same

colour, the bottom points must be the same colour, and the middle points must be the

same colour. Then either all points are the same colour, in which case we have not suc-

cessfully performed a nontrivial recolouring, or the upper (or, respectively, lower) middle

point has two different colours below (respectively, above) it in the 4-point linear order,

and so the recoloured linear orders are not 2-equivalent.

These examples are monochromatic, but we can use a similar construction to show

that m to m + 1 recolourings need not preserve equivalence for any m. By colouring the
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3- and 4- point linear orders with colour c1 and adding one point of each colour c2, ..., cm

in the same order above (or below) them, we similarly find an example of two m-coloured

linear orders and a recolouring with m+ 1 colours such that the original linear orders are

2-equivalent but the recoloured linear orders are not.

4.4 Notions of n-character for partial orders

A number of interesting properties may be characterised in three moves but not in two,

including:

• two points having a common upper bound

• two points having a common lower bound

• existence of an antichain of size at least three

• existence of a chain of size at least three

• density

• branching - a point having at least two incomparable points above it (or below)

• “extensibility” - x has a point above (or below) it that is incomparable to y

The required characters are no longer as straightforward in a game of length three as

they were in the two move case. In a game of length two, it only matters whether each

component is empty or nonempty; for a game of length three, the internal structure of

each component matters, as well as the relations between them.

In order to sensibly work on the classification of partial orders up to 3-equivalence or

higher, or for n-equivalence in general, we would need a more advanced notion of character

than the restricted notion of 1-character used in Theorem 13.

We introduce a notion of character analogous to that of linear orders. We consider the

partition of the partial order P : Px = {x} ∪Ax ∪Bx ∪ Cx where

Ax = {y ∈ P : y > x},

Bx = {y ∈ P : y < x},
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Cx = {y ∈ P : y 6= x, y ≮ x, y ≯ x}.

As well as being an initial segment of the alphabet, note that this choice of letters

lets A, B and C refer to the points which are Above, Below, and inComparable with x,

respectively.

For a linear order, it is true that X is (n+1)-equivalent to Y if and only if for all x ∈ X

there exists y ∈ Y with Ax ≡n Ay, Bx ≡n By, and vice versa. Here however we cannot

merely consider n-equivalence of each part separately: the relationships between elements

of different components still matter, and unlike in the linear case these are not necessarily

determined by which components they lie in. We still know that a > b for a ∈ Ax, b ∈ Bx,

since a > x > b. However, points in Ax may be either above or incomparable with points

in Cx (but not below, or we would have c > a > x, and by definition c 6> x), and likewise,

points in Bx may be either below or incomparable with points in Cx. To account for

this, we must also require n-equivalence of Ax ∪ Cx and Bx ∪ Cx, however: there exist

partial orders P and Q and n ∈ N such that for all x ∈ P there exists y ∈ Q such that

Ax ≡n Ay, Bx ≡n By, Cx ≡n Cy, Ax ∪ Cx ≡n Ay ∪ Cy, and Bx ∪ Cx ≡n By ∪ Cy, and for

all y ∈ Q there exists x ∈ P such that the above equivalences hold, but P and Q are not

(n+ 1)-equivalent.

In fact, such partial orders even exist for n = 2.

Theorem 15. There exist partial orders P,Q such that for all p ∈ P there exists q ∈ Q

and vice versa such that Ap ≡2 Aq, Bp ≡2 Bq, Cp ≡2 Cq, Ap ∪ Cp ≡2 Aq ∪ Cq, and

Bp ∪ Cp ≡2 Bq ∪ Cq, but P and Q are not 3-equivalent.

Proof. Let P be a partial order consisting of countably many points {an : n ∈ Z} ∪ {bn :

n ∈ Z} ∪ {cn : n ∈ Z} ∪ {d}.

For n even, let an > cn, an+1 > cn, an > cn+1, an+1 > cn+1. For n odd, let bn < cn,

bn+1 < cn, bn < cn+1, bn+1 < cn+1, and let the transitive closure of these relations be the

only relations on P . (See Figure 4.4 for a diagram of a finite quotient set of P , obtained

by identifying n with n+ 6 for each n ∈ N.)

Let Q also consist of countably many points {xn : n ∈ Z} ∪ {yn : n ∈ Z} ∪ {zn :

n ∈ Z} ∪ {w}. Let the relations in Q be those induced by the following: for each n ∈ Z,
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c0

a0 a1

c1

b1 b2

c2

a2 a3

c3

b3 b4

c4

a4 a5

c5

b5 b6

d

Figure 4.4: A finite quotient set of P obtained by setting an = an+6, bn = bn+6, cn = cn+6.

Note that b5 and b6 lie below c0; these lines are depicted as dipping slightly downwards

only to avoid overlap.

xn > zn, xn+1 > zn, yn < zn and yn+1 < zn. (See Figure 4.5 for a diagram of a finite

quotient set of Q, obtained by identifying n with n+ 4 for each n ∈ N.)

We show that for each p ∈ P there exists q ∈ Q, and vice versa, such that Ap ≡2

Aq, Bp ≡2 Bq, Cp ≡2 Cq, Ap ∪Cp ≡2 Aq ∪Cq, and Bp ∪Cp ≡2 Bq ∪Cq. We also show that

P and Q are not 3-equivalent.

First, we show that the points of P and Q have counterparts in the other structure

such that each pair of induced components are 2-equivalent. We recall that two sets are

2-equivalent if and only if they realise the same 1-characters.

For a point ai ∈ P , where i ∈ Z, we haveAai = ∅ which realises no 1-characters. The set

Bai contains the points {c2bi/2c, c2bi/2c+1, b2bi/2c−1, b2bi/2c, b2bi/2c+1, b2bi/2c+2} with relations

b2bi/2c−1, b2bi/2c < c2bi/2c and b2bi/2c+1, b2bi/2c+2 < c2bi/2c+1, so Bai is the union of two

disjoint Λ shapes. The set of 1-characters realised by this is {(1, 0, 1), (0, 1, 1)}. The set Cai

is the remainder of P , which realises the 1-characters {(1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0, 1)}.

We have Aai ∪ Cai = Cai , so it also realises precisely {(1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0, 1)},

and so does Bai ∪ Cai .

Now consider xj ∈ Q. Now Axj = ∅, Bxj is an M shape which realises precisely

{(1, 0, 1), (0, 1, 1)}. The set Cxj again realises only {(1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0, 1)}, as
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z0

x0 x1

y0 y1

z1

y2

x2

z2

y3

x3

z3 w

Figure 4.5: A finite quotient set of Q obtained by setting xn = xn+4, yn = yn+4, zn = zn+4.

do Axj ∪ Cxj and Bxj ∪ Cxj . Therefore, the ais and xjs give components that realise

precisely the same 1-characters, and so each corresponding pair of these components are

2-equivalent.

Since both P and Q are invariant under inverting <, we observe that the components

Abi , Bbi and Cbi for bi ∈ P are just the components for ai flipped upside down, and likewise

the components for yj ∈ Q are the inverted components for xj . Therefore, we also have

Abi ≡2 Ayj , Bbi ≡2 Byj , Cbi ≡2 Cyj , Abi ∪Cbi ≡2 Ayj ∪Cyj and Bbi ∪Cb1 ≡2 Byj ∪Cyj , for

any i, j.

For the central points ci ∈ P , Aci and Bci are both antichains of size two, and Cci is

large but realises only {(1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0, 1)}. So must Aci∪Cci and Bci∪Cci ,

since every point is incomparable to d and so no characters of the form (∗, ∗, 0) may be

realised. For each zj ∈ Q, Azj and Bzj are also two point antichains, and Czj , Azj∪Czj and

Bzj ∪Czj also realise all four of the possible characters {(1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0, 1)},

so again we find that the components produced from breaking down P and Q according

to the relationship with ci and zj respectively form 2-equivalent pairs.

Finally, we consider the lone points d and w. (These were included to compensate

for the fact that Ca2n for example contains an isolated point a2n+1 which is unrelated to

anything else, but Cxm would not contain any isolated points if not for w.) Everything is

incomparable to these points, so we have A = B = ∅ and C = A ∪ C = B ∪ C for each
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of them. We verify by inspection that Cd and Cw both realise precisely the characters in

{(1, 0, 1), (1, 1, 0), (0, 1, 1)}, and so therefore do their unions with the empty A and B sets.

This enumeration has exhausted all the classes of points of both P and Q, and so the

above correspondences between the (ai) and the (xi), the (bi) and the (yi), the (ci) and

the (zi) and between d and w demonstrate that for all p ∈ P there exists q ∈ Q, and vice

versa, with Ap ≡2 Aq, Bp ≡2 Bq, Cp ≡2 Cq, Ap ∪ Cp ≡2 Aq ∪ Cq, and Bp ∪ Cp ≡2 Bq ∪ Cq.

It remains only to show that P and Q are not 3-equivalent.

We show this by giving a winning strategy for Player I in G3(P,Q). Player I begins

by playing z0 in Q. Player II must respond by playing a point with something both above

it and below it (otherwise, Player I wins on her next move by playing above/below z0

accordingly), so she must play ci for some i. Player I then plays z1. There exists a point

above both z0 and z1, and there exists another point below them both; however, Player II

cannot achieve this setup in P .

Suppose that i is odd. If Player II plays ci+1, then Player I wins by playing x1, since

x1 lies above both z0 and z1 but no point in P lies above both ci and ci+1. Should Player

II play ai−1, ai, ai+1 or ai+2, then Player I wins by playing x2, which lies above z1, as

no point lies above ai−1, ai, ai+1 or ai+2. For any move other than ci+1, ai−1, ai, ai+1 and

ai+2, Player I wins by playing y1, since y1 lies below both z0 and z1 but Player II’s second

move does not have a lower bound in common with ci.

If i is even, then Player I’s strategy is analogous: If Player II plays ci+1, then Player I

wins by playing y1, which lies below both z0 and z1; if she plays bi−1, bi, bi+1 or bi+2, then

Player I wins by playing y2, which lies below z1; and for any other move Player I wins by

playing x1.

Therefore, P and Q are not 3-equivalent and the proof is complete.

The above examples are infinite but finite examples also exist. By choosing m and

identifying an with an+m, bn with bn+m, and likewise for cn, xn, yn and zn, we may obtain

crown-like partial orders which have finitely many points but have similar structures to

P and Q as defined above. In particular, taking m = 6 gives the smallest example of

this form. The values m = 4, 5 also work for Q but not for P , for which m = 4 is too
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small and odd values are incompatible with the desired alternating zigzag. The 19 point

finite quotient of P and 13 point finite quotient of Q are therefore also 2-equivalent in all

components but not 3-equivalent. These are depicted in Figures 4.4 and 4.5.

4.5 Iterated colouring system

Although we cannot break down our partial order into much smaller pieces as with linear

orders, we nevertheless wish to investigate higher numbers of moves. We introduce an

iterated colouring scheme to encode the information that would be necessary to classify

n-equivalence of partial orders. This may also be thought of as a sequence of labels.

After each move xi ∈ P , we remove xi and colour/label the remaining points of P\{xi}

according to their relationship with xi. For the three-move situation, this need only be

done once (and is therefore most obviously analogous to colouring); for more than three

moves, iterated colouring is required.

For each x ∈ P and y ∈ P\{x}, let a colouring function cx colour the points according

to their relationship to x. Let cx(y) := c
(x)
0 if y > x, cx(y) := c

(x)
1 if x > y and cx(y) := c

(x)
2

otherwise. This is the x-induced colouring on P\{x}. For three moves, the colouring need

only be done once, as shown in Theorem 12, so there are only three colours c
(x)
0 , c

(x)
1 and

c
(x)
2 , which we take to be blue, red and green respectively.

Let Ax, Bx and Cx be the points coloured blue, red and green respectively. (Equiva-

lently, let them be the sets of points in P\{x} that are above, below and incomparable to

x, respectively.) We consider the tuple (P\{x}, Ax, Bx, Cx).

Theorem 16. P ≡n Q if and only if for all x ∈ P there exists some y ∈ Q, and vice

versa, such that (P\{x}, Ax, Bx, Cx) ≡n−1 (Q\{y}, Ay, By, Cy)

Proof. First, suppose that P ≡n Q. Then Player II has a winning strategy in Gn(P,Q).

So for any first move x that Player I may make, without loss of generality let x ∈ P ,

there exists some y ∈ Q such that if Player II plays y, she can proceed to win the game

Gn−1(P,Q). Therefore, Player II certainly has a winning strategy onGn−1(P\{x}, Q\{y}).

As the game continues, Player I may choose to play a subsequent move in Ax, which would

lie above x in P , and since Player II’s strategy wins it must provide a move in Ay, as her
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response must lie above y in Q. Likewise, the moves produced by the winning strategy

in response to moves in Ay, Bx, By, Cx and Cy must lie in the corresponding component

of the other structure. So Player II’s original winning strategy in Gn(P,Q) gives her a

winning strategy in Gn−1((P\{x}, Ax, Bx, Cx), (Q\{y}, Ay, By, Cy)) and we are done.

Conversely, suppose that for all x ∈ P there exists some y ∈ Q, and vice versa,

such that (P\{x}, Ax, Bx, Cx) ≡n−1 (Q\{y}, Ay, By, Cy). We construct a winning strat-

egy for Player II in Gn(P,Q). Without loss of generality let Player I’s first move be

x ∈ P , then by assumption there exists some y ∈ Q such that (P\{x}, Ax, Bx, Cx) ≡n−1

(Q\{y}, Ay, By, Cy); we take this y as the first move of Player II’s strategy. Now, as-

suming that she does not repeat a move (which is not to her advantage, as Player II can

just repeat her corresponding move), each of Player I’s subsequent moves xi in Gn(P,Q)

must lie in either Ax, Ay, Bx, By, Cx or Cy, to which Player II’s winning strategy in

Gn−1((P\{x}, Ax, Bx, Cx), (Q\{y}, Ay, By, Cy)) will give a response yi in Ay, Ax, By, Bx,

Cy or Cx respectively. But since xi and yi are always in corresponding components (rel-

ative to x and y) of opposite structures, the moves given by this strategy also form a

winning strategy for Player II in Gn(P,Q), and so P ≡n Q.

We remark briefly on the distinction between this colouring scheme and the setup for

our earlier result where we showed that the existence of, for all p ∈ A, some q ∈ B, and

vice versa, such that Ap ≡n−1 Aq, Bp ≡n−1 Bq, Cp ≡n−1 Cq, Ap ∪ Cp ≡n−1 Aq ∪ Cq, and

Bp ∪Cp ≡n−1 Bq ∪Cq, does not guarantee n-equivalence. In the previous scenario, we did

not distinguish the correct location of A within A∪C nor B within B∪C, and so although

substrategies on each of these subsets existed, they did not need to be compatible. The

inequivalent example given in that section used a “misalignment” between the A and

B sets and the wider structure: in one structure, each pair of consecutive middle layer

points shared both an upper and a lower bound, while in the other structure each pair of

consecutive middle layer points shared either two upper or two lower bounds, but never

one of each. With this colouring scheme, this sort of “misalignment” is strictly prohibited -

each x’s counterpart y must not only have similar sets of points above (Ay) and below (By)

it, but these must fit into the wider structure in a similar way, since we now require that
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a copy of P\{x} with Ax and Bx marked out with distinct colours be (n − 1)-equivalent

to the copy of Q\{y} with Ay and By distinguished by colour. Our earlier example would

fail this strengthened 2-equivalence condition, since given x there does not always exist y

such that (P\{x}, Ax, Bx, Cx) ≡2 (Q\{y}, Ay, By, Cy).

This result allows us to analyse n-move games on monochromatic partial orders in

terms of (n − 1)-move games on 3-coloured partial orders. However, it is more broadly

applicable - we can apply an analogous method to n-move games on multicoloured partial

orders. If there are m colours colouring P initially, then we require at most 3m colours

for (P\{x}, Ax, Bx, Cx), to distinguish the points of colour ci which lie above, below or

incomparable to x, for each i. In practice, we let these 3m colours be tuples (c, j), where

c is one of the original m colours and j ∈ {1, 2, 3}. By iterating this process, we can

therefore turn an n move game on an m-coloured partial order into a 1-move game on a

3n−1m-coloured partial order, where the colouring depends on the n− 1 choices of x with

respect to which we colour.

While this notion of character does contain all the necessary information to determine

n-equivalence (unlike the more reductive linear-like notion discussed in Section 4.4), it

may unfortunately be too unwieldy to be of much practical use, since the partial orders to

which we reduce are almost as large as the partial order from which we started, and have

complicated labels. The equivalence may be useful to know for future work, however, and

in any case the apparent unavailability of an inductive equivalence condition depending

on (much) smaller subsets illustrates the relative complexity of classifying partial orders

when compared to linear orders.
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Cyclic orders

5.1 Cyclic orders

A cyclic order, or circular order, is a set X equipped with a ternary relation R, where we

think of R(a, b, c) as holding when, starting from a and proceeding anticlockwise around

the circle on which the set is arranged, one reaches b before one reaches c. Formally, this

relation satisfies the following axioms:

• If R(a, b, c), then R(b, c, a).

• If R(a, b, c), then ¬R(c, b, a).

• If R(a, b, c) and R(a, c, d), then R(a, b, d).

• If a, b, and c are distinct, then either R(a, b, c) or R(a, c, b).

Conventionally, we take R(a, b, c) to hold when, going anticlockwise from a, one reaches

b before c, but so long as one is consistent the choice between clockwise and anticlockwise

is unimportant. Choosing the clockwise direction would also satisfy the above axioms and

gives a complementary structure to that obtained with the anticlockwise sense: by the final

bullet point above, either R(a, b, c) or R(a, c, b) holds for each choice of distinct a, b, c, so

R(a, b, c) holds in the clockwise sense if and only if R(a, c, b) holds in the anticlockwise

sense. We remark that we could also have opted to use a non-strict, irreflexive relation R′,

in which R′(a, a, b) and R′(a, b, b) hold for any a, b. As with < and ≤ in partial orders, it
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does not matter whether we use R′ or R, since our language contains equality, and so we

may reconstruct either the strict or non-strict relation from the other using the equivalences

R(a, b, c)↔ R′(a, b, c) ∧ (a 6= b 6= c) and R′(a, b, c)↔ R(a, b, c) ∨ (a = b) ∨ (b = c).

Given a linear order L, we may create a related cyclic order by setting R(a, b, c) if and

only if a < b < c or b < c < a or c < a < b, for each a, b, c ∈ L. We call this rolling L, and

may think of it as “bending L into a circle”, since if one were to pick up a line segment

containing L and curl it back on itself to form a circle, the ordering on this circle would

have the new cyclic order. Conversely, given a cyclic order C, we may construct a linear

order on C\{x} for any point x ∈ C by setting a < b if and only if R(x, a, b) in C. This

linear order is called the cut of C at x, and the ordering may be denoted by <x.

This is not the only natural way to turn a cyclic order into a linear order. For example,

we have a natural notion of density: a cyclic order C is dense if for any a, b ∈ C there

exists some c ∈ C with R(a, c, b). Then if C is not dense, we could also split C between

two consecutive elements a and b, by adding some c such that R(a, c, b) and then taking

the cut of C at c. Likewise, we could add a new point in some other natural way, such as a

point corresponding to a notion of a limit point or a completion point under some metric,

and cut there. However, for the purposes of Ehrenfeucht-Fräıssé games, which are of finite

length and involve finitely many actual points, we are interested in the possibilities that

arise on either side of an actual point in a cyclic order, and so all of our cuts will occur at

points of the cyclic order.

Since the relation of least arity here is ternary, all nonempty cyclic orders must be

1-equivalent and all cyclic orders with at least two points must be 2-equivalent, as we

showed earlier in Lemma 8.

Theorem 17. Let a, b ∈ N and let Ca and Cb be cyclic orders with |Ca| = a and |Cb| = b.

Then Ca ≡n Cb if and only if the linear order of size a − 1 is (n − 1)-equivalent to the

linear order of size b− 1.

Proof. Suppose a − 1 ≡n−1 b − 1 as linear orders and consider Gn(Ca, Cb). On her first

move, Player I plays some element x1 ∈ Ca, and Player II may respond with any element

of Cb. As Cb is entirely symmetric, it does not matter which point Player II chooses; select
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an arbitrary move in Cb and call it y1.

The remainder of the game is to be played on Ca\{x1} and Cb\{y1}. Player II has

a winning strategy if these moves can be selected such that R(x1, xi, xj) if and only if

R(y1, yi, yj) for each 1 < i, j ≤ n (which implies, by transitivity of R, that R(xi, xj , xk) if

and only if R(yi, yj , yk) for all i, j, k ≤ n). This is possible if the moves can be selected

such that xi < xj if and only if yi < yj , using the linear orders induced on Ca\{x1} and

Cb\{y1} by setting c < d if and only if R(x1, c, d) in Ca and z < w if and only if R(y1, z, w)

in Cb respectively. Player II has a strategy to accomplish this if a − 1 ≡n−1 b − 1, so

a− 1 ≡n−1 b− 1 implies that Player II also has a winning strategy on Gn(Ca, Cb).

Conversely, suppose that a−1 6≡n−1 b−1 as linear orders. Then Player I has a winning

strategy in Gn−1(a−1, b−1). In Gn(Ca, Cb), let Player I select an arbitrary element as her

first move, and Player II will naturally respond in the other cyclic order. Let the moves

played so far be x ∈ Ca and y ∈ Cb. Then, Player I considers the cut of Ca at x and the

cut of Cb at y. These are linear orders of size (a− 1) and (b− 1) respectively. Player I has

a winning strategy on Gn−1(a−1, b−1), and she plays according to this. Player II’s moves

in Gn(Ca, Cb) must respect the cyclic relations with x or y, and so must respect the linear

orders of these cuts, so her moves must be valid moves in Gn−1(a − 1, b − 1). Player I’s

winning strategy on Gn−1(a−1, b−1) therefore gives the remainder of a winning strategy

on Gn(Ca, Cb) and so these structures are inequivalent.

Corollary 18. Let C1 and C2 be cyclic orders of finite size a and b respectively. Then

C1 ≡n C2 if and only if either |a| = |b| < 2n−1 or |a|, |b| ≥ 2n−1

Proof. We know from [25] that for finite linear orders L1, L2 of finite size a and b respec-

tively, L1 ≡n L2 if and only if either a = b < 2n − 1 or a, b ≥ 2n − 1. Since C1 and

C2 are n-equivalent if and only if the finite linear orders obtained by cutting them are

(n− 1)-equivalent, this corollary follows.

In fact, an analogous result to Theorem 17 also holds for infinite cyclic orders:

Theorem 19. Let C1 and C2 be cyclic orders. Then C1 ≡n C2 if and only if for all x ∈ C1

there exists y ∈ C2 such that (C1\{x}, <x) ≡n−1 (C2\{y}, <y) as linear orders, and for

all y ∈ C2 there exists x ∈ C1 such that the same condition holds.
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Proof. Suppose first that there is some x1 ∈ C1 (without loss of generality) such that

for no y ∈ C2 does (C1\{x1}, <x1) ≡n−1 (C2\{y}, <y), and consider Gn(C1, C2). Player

I may play x1 as her first move, and whatever Player II’s response y1, we must have

(C1\{x1}, <x1) 6≡n−1 (C2\{y1}, <y1). Therefore Player I has a winning strategy σ in

Gn−1((C1\{x1}, <x1), (C2\{y1}, <y1)). Player I may play the moves provided by σ for her

remaining moves ofGn(C1, C2). At the end of the game, the selected points x1, . . . , xn ∈ C1

and y1, . . . , yn ∈ C2 must have provided a win for Player I in the subgame Gn−1((C1\{x1},

<x1), (C2\{y1}, <y1)), and so there must exist i, j > 1 such that xi <x1 xj but yj <x1 yi,

or vice versa. But then R(xi, xj , x1) holds but R(yi, yj , y1) does not, so Player I has won

Gn(C1, C2) using this strategy.

Conversely, suppose that C1 6≡n C2. Then there exists some strategy σ for Player I

such that she will win Gn(C1, C2), and we must have n ≥ 2 (since all nonempty cyclic

orders are 1-equivalent). Let the first move of σ be x1 and without loss of generality let

x1 ∈ C1. Player II’s response must lie in C2, call it y1. There must exist subsequent

moves, which must lie in C1\{x1} and C2\{y1} (always choosing the same point is not a

winning strategy for Player I). If n = 2, then we are in the case where exactly one of C1

or C2 has size 1, so the conclusion holds, since either C1\{x1} or C2\{y1} is empty and so

they are not 1-equivalent.

If n > 2, let the subsequent moves be x2, . . . , xn ∈ C1 and y2, . . . , yn ∈ C2. We know

that (x1, . . . , xn) 6∼= (y1, . . . , yn), since Player I played her winning strategy. Therefore,

there exist distinct i, j, k such that R(xi, xj , xk) but R(yj , yi, yk). Possibly we have i = 1

or j = 1 or k = 1 already, in which case we proceed to the next paragraph. If i, j, k 6= 1,

then x1 must lie in one of these three intervals, so one of these sets of relations holds:

{R(xi, x1, xj), R(x1, xj , xk), R(xk, xi, x1)}, {R(xj , x1, xk), R(x1, xk, xi), R(xi, xj , x1)} or

{R(xk, x1, xi), R(x1, xi, xj), R(xj , xk, x1)}. But similarly, either {R(yj , y1, yi), R(y1, yi, yk),

R(yk, yj , y1)}, {R(yi, y1, yk), R(y1, yk, yj), R(yj , yi, y1)} or {R(yk, y1, yj), R(y1, yj , yi),

R(yi, yk, y1)} hold. In any of the nine possible combinations, we find some a, b ∈ {i, j, k}

such that R(x1, xa, xb) but R(y1, yb, ya).

Therefore, xa <x1 xb but yb <y1 ya, and so (C1\{x1}, <x1) 6≡n−1 (C2\{y1}, <y1). Since

we made no assumptions about y1, we conclude that x1 witnesses that it is false that for
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all x ∈ C1 there exists y ∈ C2, and vice versa, such that (C1\{x}, <x) ≡n−1 (C2\{y}, <y),

thus completing the proof.

5.2 3-equivalence of cyclic orders

We may therefore classify the cyclic orders up to 3-equivalence using existing results about

2-equivalence of linear orders.

Theorem 20. There are 15 circular orders up to 3-equivalence.

Proof. By the above result, two circular orders (X,RX) and (Y,RY ) are 3-equivalent if

and only if for every x ∈ X there exists y ∈ Y , and vice versa, such that X\{x} ≡2

Y \{y}, where each has the linear ordering induced on it from the cut. We may therefore

characterise a circular order (X,R) up to 3-equivalence by the set of 2-equivalence classes

of the linear orders (X\{x}, <x) for x ∈ X, which we view as the characters of the points

of X.

Recall that the linear orders up to 2-equivalence are 0, 1, 2, 3, ω, ω∗, and Z. If (X\{x},

<x) ≡2 0 then X = {x}; similarly if (X\{x}, <x) ≡2 1 then X is the two-element circular

order and if (X\{x}, <x) ≡2 2 then X is the three-element circular order. In each of these

cases, no distinct characters can occur in X, and so the possible sets of characters are just

the singletons {0}, {1} and {2}. This gives us three equivalence classes of cyclic orders.

The remaining classes arise from considering the remaining possible characters: 3, ω, ω∗

and Z. Of the sixteen subsets of these, 12 can arise; we rule four out, and exhibit circular

orders corresponding to each of the others.

We may define notions of predecessor and successor analogously to linear orders: a is

the immediate predecessor of b if a 6= b and there is no c ∈ C such that R(a, c, b), and also

b is the immediate successor of a in this case. Having already dispensed of the case of

cyclic orders of size less than three, we may assume that a point’s immediate predecessor

and immediate successor (if it has them) are distinct. We remark that 3 is realised if

and only if there is some point with both an immediate predecessor and successor, ω is
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realised if and only if there is some point with an immediate successor but no immediate

predecessor, ω∗ is realised if and only if there is some point with an immediate predecessor

but no immediate successor, and Z is realised if and only if there is some point with neither

an immediate predecessor nor a successor, since the predecessor and successor if present

become endpoints of the remaining linear order. Therefore, {ω} cannot occur, since if

(X\{x}, <x) has order type ω then x has a successor y and no predecessor, but then y

has a predecessor, x, and so y cannot have character ω. Similarly, {ω,Z} cannot occur, as

the point of character ω has a successor which has a predecessor, and points of characters

ω and Z have no predecessor. By reversing the orderings for these, we also see that {ω∗}

and {ω∗,Z} cannot arise.

The other twelve characters are realisable:

• ∅ is realised by the empty cyclic order

• {3} is realised by a cyclic order of finite size n ≥ 4

• {Z} is realised by Q “rolled into a circle” (a countable dense cyclic order)

• {3, ω} is realised by ω rolled into a circle

• {3, ω∗} is realised by ω∗ rolled into a circle

• {3,Z} is realised by Z+Q rolled into a circle

• {ω, ω∗} is realised by Q× {0, 1} rolled into a circle

• {3, ω, ω∗} is realised by Q× {0, 1, 2} or Z+ 2 rolled into a circle

• {3, ω,Z} is realised by ω +Q rolled into a circle

• {3, ω∗,Z} is realised by ω∗ +Q rolled into a circle

• {ω, ω∗,Z} is realised by Q+ 2 rolled into a circle

• {3, ω, ω∗,Z} is realised by Q+ 3 rolled into a circle
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We remark that this list directly corresponds to the list of twelve possible linear orders

without endpoints up to 3-equivalence. This is because both depend only on which points

have successors and/or predecessors, since cyclic orders have no endpoints and the issue of

endpoints has been deliberately excluded from consideration of the linear orders without

endpoints. In cyclic orders, a character of 3 indicates a point with both a successor and

a predecessor, corresponding to (ω∗, ω) in the linear orders without endpoints. Similarly,

ω and (Z, ω) correspond to points with a successor but no predecessor, ω∗ and (ω∗,Z)

correspond to points with a predecessor but no successor, and Z and (Z,Z) correspond

to points with neither a predecessor nor a successor. Having determined that one cannot

have a point with a predecessor if there are no points with a successor, or vice versa,

the remaining twelve possibilities for predecessor/successor combinations give the twelve

possibilities in each case. In fact, the twelve representatives given for linear orders without

endpoints give representatives for the cyclic orders when rolled.

Deducing the n-equivalence classes of cyclic orders from the (n−1)-equivalence classes

of linear orders is not in general quite so straightforward. For 4-equivalence, rather than

considering only the predecessor and successor of a point, we would need to consider the

small characters (in the sense of Chapter 3) arising to its immediate left and right, as well

as considering the large characters arising in points elsewhere, which themselves depend

both on their predecessors/successors and on the endpoints of the remaining linear order.

Likewise, for n-equivalence, we need to consider all the (n− 1)-characters that may arise

in the linear order obtained by each cut, which means determining the precise behaviour

near the newly designated endpoints (or cofinal chains) in increasing detail. Naturally, the

other points arising near a potential endpoint are also themselves potential candidates for

a cut, and so the relationships between the characters that may co-occur are intertwined

in a way that does not occur for linear orders where behaviour between the endpoints need

only be considered within the context of that fixed choice of splitting point.
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5.3 Partial cyclic orders

We may define partial cyclic orders, which differ from cyclic orders in an analogous way

to how partial orders differ from linear orders. Precisely, a partial cyclic order is a set X

equipped with a ternary relation R such that

• If R(a, b, c), then R(b, c, a).

• If R(a, b, c), then ¬R(c, b, a).

• If R(a, b, c) and R(a, c, d), then R(a, b, d).

Note that this is a proper subset of the set of axioms for a cyclic order. It is immediate

that all cyclic orders are partial cyclic orders. In a cyclic order, we additionally require

that for all distinct a, b, and c, either R(a, b, c) or R(a, c, b). This is the axiom of totality,

and just as the linear orders are precisely the partial orders that are total, the cyclic orders

are precisely the partial cyclic orders that are total.

If a partial cyclic order X may be extended to a (total) cyclic order Y , then we say

that X is totalisable.

Lemma 21. Not every partial cyclic order may be extended to a cyclic order.

Proof. A counterexample is given by Megiddo in [21]:

Let X = {a, b, c, d, e, f, g, h, i, j, k, l,m} and let the following relations hold on X:

R(a, c, d), R(b, d, e), R(c, e, f), R(d, f, g), R(e, g, h), R(f, h, a), R(g, a, c), R(h, c, b),

R(a, b, i), R(c, i, j), R(b, j, k), R(i, k, l), R(j, l,m), R(k,m, a), R(l, a, b), R(m, b, c),

R(h, c,m), R(b, h,m), as well as their cyclic permutations (e.g., R(a, c, d) also entails

R(c, d, a) and R(d, a, c), and likewise for all other triples of related elements). This sat-

isfies one of our three axioms for a partial cyclic order by definition: if R(a, b, c), then

R(b, c, a). For transitivity we require that if R(a, b, c) and R(a, c, d), then R(a, b, d); this

may be seen by noting that the only pairs of elements that appear together in more than

one cycle are the pairs in {a, b, c}2 and in {b, c, h,m}2, and we can verify that each transi-

tive consequence is included above. We also require X to satisfy the asymmetry axiom: if

R(a, b, c), then not R(c, b, a); since the above list is transitively closed, this can be easily
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verified by noting that no two triples contain the same three elements in orders of opposite

chirality, and so (X,R) is a partial cyclic order.

However, X cannot be extended to a cyclic order. Any cyclic order X ′ extending X

must be total, and so it must realise either the relation R(a, b, c) or R(a, c, b). However,

if the relation R(a, b, c) is added to the set, then since R(a, c, d) is in our set we must

also add R(b, c, d), and since R(b, d, e) also holds we must have R(c, d, e), and so on.

After applying this chain of reasoning to each of R(a, c, d), R(b, d, e), R(c, e, f), R(d, f, g),

R(e, g, h), R(f, h, a), R(g, a, c), R(h, c, b) in order, we deduce that R(a, c, b) holds on X ′.

But then X ′ is not a cyclic order, since both R(a, b, c) and R(a, c, b) hold.

Suppose instead that X ′ contains the relation R(a, c, b). Using another sequence of

relationships on X, R(a, b, i), R(c, i, j), R(b, j, k), R(i, k, l), R(j, l,m), R(k,m, a), R(l, a, b),

R(m, b, c), we get a similar chain of deductions: R(a, c, b) and R(a, b, i) implies R(c, b, i);

R(c, b, i) and R(c, i, j) imply R(b, i, j), and so on, and finally we deduce R(a, b, c).

It is therefore impossible for a total extension of X to contain precisely one of R(a, b, c)

and R(a, c, b), and so there is no cyclic order extending X.

We recall that any linear order corresponds to a unique (up to choice of direction)

cyclic order, and that a cyclic order likewise induces a linear order for each possible choice

of point, gap, or completion point to cut at. There are likewise interesting relationships

between (non-cyclic) partial orders and partial cyclic orders.

5.4 Partial orders and partial cyclic orders

Theorem 22. Let (P,<) be a partial order, and let us define R as follows: R(a, b, c) if

and only if a < b < c or b < c < a or c < a < b for each a, b, c ∈ L. Then (P,R) is a

partial cyclic order.

Proof. We verify the three axioms listed above: cyclicity, asymmetry and transitivity.

Suppose that R(a, b, c) holds in (P,R). Then either a < b < c or b < c < a or c < a < b

in (P,<). But of course this is precisely the same as b < c < a or c < a < b or a < b < c

holding in (P,<), so also R(b, c, a).
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For asymmetry, again suppose that R(a, b, c) holds in (P,R), which implies that a <

b < c or b < c < a or c < a < b in (P,<). Because (P,<) is a partial order, < is

asymmetric, so we do not have a < c < b or b < a < c or c < b < a in (P,<), since any

of these would give a contradiction. We therefore deduce that R(c, b, a) cannot hold in

(P,R).

Finally, we assume that both R(a, b, c) and R(a, c, d) hold, and hope to show R(a, b, d).

By definition, R(a, b, c) implies that a < b < c or b < c < a or c < a < b in (P,<), and

similarly R(a, c, d) implies that a < c < d or c < d < a or d < a < c in (P,<). The

relations a < b < c and a < c < d together imply a < b < d; a < b < c and d < a < c

together imply d < a < b; b < c < a and c < d < a together imply b < d < a; and

c < a < b and c < d < a together imply d < a < b. The other five combinations are

impossible, since we would have both a < c and c < a. Therefore, whichever possible

combination holds, we have R(a, b, d) in (P,R) and so R is transitive.

We remark that this is analogous to our earlier process of rolling for converting linear

orders into cyclic orders. Given an arbitrary partial order, we can perform the above

rolling operation on it to give a partial cyclic order, and the converse question naturally

arises - given an arbitrary partial cyclic order, can we always obtain a corresponding

partial order? We can already answer this in the negative.

Lemma 23. Every partial cyclic order obtained by rolling a partial order must be extensible

to a total cyclic order.

Proof. It is well known that every partial order may be extended to a total order; this

is the Szpilrajn extension theorem [34]. Let P be a partial order, and let ≺ be some

linear order on P extending <. Let (P,R<) be obtained by letting, for each a, b, c ∈ P ,

R<(a, b, c) if and only if a < b < c or b < c < a or c < a < b in P . As shown in Theorem

22, (P,R<) is a partial cyclic order. Similarly, let (P,R≺) be obtained by letting, for each

a, b, c ∈ P , R≺(a, b, c) if and only if a ≺ b ≺ c or b ≺ c ≺ a or c ≺ a ≺ b. Then (P,R≺) is

a (total) cyclic order, as we verify below.

First, we note that (P,≺) is itself a partial order (specifically, a total one), so (P,R≺)

must be a partial cyclic order by the previous result in Theorem 22. Therefore, (P,R≺)
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must satisfy the axioms of cyclicity, antisymmetry and transitivity, and it remains only

to verify that (P,R≺) is total. Let a, b, c ∈ P be distinct. By linearity of (P,≺), either

a ≺ b ≺ c, b ≺ c ≺ a, c ≺ a ≺ b, a ≺ c ≺ b, b ≺ a ≺ c or c ≺ b ≺ a must hold, and

therefore either R≺(a, b, c) or R≺(a, c, b) must hold.

We have established that (P,R≺) is total; now we show that it extends (P,R<). Sup-

pose that R<(a, b, c) holds in the partial cyclic order (P,R<), for some a, b, c ∈ P . Then

either a < b < c or b < c < a or c < a < b in the partial order (P,<). By assumption, ≺

extends <, so whichever of these is true, it must certainly also hold in (P,≺). But then

when we derive (P,R≺) from (P,≺), we must deduce that R≺(a, b, c) holds in (P,R≺).

Therefore (P,R≺) extends the partial order (P,R<).

Therefore any partial cyclic order which does not extend to a total cyclic order, such

as the one exhibited above in the proof of Lemma 23, cannot be obtained by rolling a

partial order.

5.5 Totalisable partial cyclic orders

Stehr showed in [33] that his generalised notion of cyclic orders, which is a multi-arity

generalisation of the notion of partial cyclic orders considered here, are totalisable pre-

cisely when they admit a clock representation - that is, when they can be arranged on

a plane such that all cycles (here, the triplets representing the partial cyclic relation R)

are oriented clockwise around a common centre. In [9], Haar gives two further equivalent

conditions. One uses separating sets, thereby giving a useful notion of cut: a partial cyclic

order P is totalisable if and only if it may be extended to a (partially cyclically ordered)

superstructure P ′ in which every cut, a maximal subset of P ′ such that no pair extends to

a related triple, intersects every cycle, a finite sequence of edges whose endpoints match

up in the obvious way. An edge in this context is defined precisely in [9], but may be

thought of as an interval in some component cycle of P ′ within which the points may be

linearly ordered.

The other equivalence given is to a “winding” of a periodic partial order, and the proof

of the equivalence gives a method to construct a periodic partial order P and a group G
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of automorphisms of P from a partial cyclic order Q, such that the orbits of P under G

form Q. This is different to our previous notion of rolling a partial order, and is in fact

more general. Instead of rolling an arbitrary partial order P as above, we may instead

wind the periodic partial order Z × P , to give the same partial cyclic order. However,

partial cyclic orders obtained by the method of rolling must have a “gap” between one

copy of P and the next, such that all points in a lower copy of P are below all points

in the higher copy. This constrains the relations that may arise. In contrast, winding a

periodic partial order allows the copies to be more intertwined, and there may not exist

such a gap. For example, let P = {a, b, c, d, e, f}, with the following relations: R(d, e, f),

R(a, e, f), R(b, f, d), R(c, d, e), and their cyclic and transitive closure. Then P is a partial

cyclic order, and moreover it is totalisable, as we know immediately from the fact that it

admits a clock representation (depicted in Figure 5.1), or by verifying that, for example,

the total cyclic order consisting of a, d, b, e, c, f in that order extends P . We may obtain P

by winding the partial order Q, shown in Figure 5.2, consisting of
⋃
i∈Z{ai, bi, ci, di, ei, fi}

with the relations dn < en, en < fn, fn < dn+1, an < en, bn < fn, cn < dn+1, dn < bn,

en < cn, fn < an+1, for each n ∈ Z. However, we cannot find any partial order which may

be rolled to give P , as its set of maximal points would be a maximal antichain A which

could be extended to related triples by precisely the same pairs, and no such subset of P

exists.

Relating the equivalence classes of partial cyclic orders to those of partial orders is

therefore not as straightforward as in the total cyclic order to linear order case. However,

the known equivalence to periodic partial orders does give a potential route to classifying

partial cyclic orders. Moreover, the method of rolling inequivalent partial orders to give

inequivalent partial cyclic orders (up to new equivalencies caused by no longer distinguish-

ing maximality and minimality, of course) would still suffice to provide lower bounds on

the number of n-equivalence classes of partial cyclic orders.

Considering the n-equivalence classes for small n, we see from Lemma 8 that all

nonempty partial cyclic orders are 1-equivalent, and all partial cyclic orders with at least

2 points are 2-equivalent, just as with cyclic orders, because the cycle relation is ternary.

Therefore, 3-equivalence of partial cyclic orders is the first interesting length of game. Re-
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a

d

ef

bc

Figure 5.1: A totalisable partial cyclic order that cannot arise from rolling a partial order.

a0 b0 c0

d0 e0 f0

a1 b1 c1

d1 e1 f1

a2 b2 c2

d2 e2 f2

a3 b3 c3

d3 e3 f3

Figure 5.2: A (finite fragment of a) periodic partial order that may be wound into the

partial cyclic order in Figure 5.1 above.

call that there are as many 3-equivalence classes of total cyclic orders as of 3-equivalence

classes of linear orders without endpoints; as discussed above, the correspondence is not

so direct for partial cyclic orders, but it may still give us a lower bound.

We note that there are 7 2-equivalence classes and 281 3-equivalence classes of linear

orders, which give rise to 15 2-equivalence classes of cyclic orders. For partial orders,

we know there to be 39 2-equivalence classes, and the number of 3-equivalence classes is

expected to be rather larger. We therefore suggest that it may be rather impractical to

determine the 3-equivalence classes of partial orders and thereby obtain this lower bound

on the number of 3-equivalence classes of totalisable partial cyclic orders, but perhaps it

is tractable by identifying a sufficing subset of the 3-equivalence classes of partial orders.

Recall that the linear orders without endpoints up to 3-equivalence already gave enough

information to determine the cyclic orders up to 3-equivalence, and the considerable ad-

ditional complexity arising from the endpoints of linear orders was irrelevant to the cyclic

case. Similarly, the 3-equivalence classes of partial orders will depend on the local struc-

ture near the endpoints, though the “endpoints” may be considerably more complex than
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in the linear case, and it may be possible to extract only the information about global

structure necessary to provide distinct 3-equivalence classes of partial cyclic orders. Since

this would only give a lower bound, however, we suggest that the more promising route

may be to calculate the exact number of 3-equivalence classes of totalisable partial cyclic

orders via study of 3-equivalence classes of periodic partial cyclic orders.
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Other structures

6.1 Trees

One may encounter multiple definitions of the word “tree” in mathematics. Here we take

a rather broad definition: a tree is a partial order T such that for each x ∈ T , its set of

predecessors {y : y < x} is linearly ordered, and such that for any a, b ∈ T , there exists

c ∈ T with c ≤ a, b. This may also be called a semilinear order. Note that this differs from

another common set theoretic definition of “tree”, in which the set of predecessors must

be well-ordered, as well as from graph theoretical notions of trees as cycle-free connected

graphs. If there exists some r ∈ T such that for all t ∈ T , r ≤ t, then we say that r is

the root of the tree T . A subset B ⊂ T is a branch if B is linearly ordered and maximal.

The disjoint union of a set of trees is a forest, which is also what we would obtain if

we removed the requirement for every two elements to have a lower bound. This is the

motivation for requiring trees to have all lower bounds - forests would be broken down into

their constituent trees for analysis anyway. Note that we do not assume that the trees are

necessarily finite, that there is a root, or that the branches are well ordered.

Since any two points which are incomparable themselves cannot have a common upper

bound, splitting is “permanent”, and the situation is more constrained than for general

partial orders. There are far fewer possible combinations of characters, so there are fewer

2-equivalence classes that can actually arise.

In terms of our components (Ax, Bx, Cx) as in Chapter 4, Ax is never above anything
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in Cx, and Bx ∪ Cx is also more constrained - Bx is a linear order, and everything in Cx

lies above some member of Bx.

6.1.1 2-equivalence classes of trees

Theorem 24. There are 18 2-equivalence classes of trees (where tree is in the sense given

above, that is, a semilinear order with pairwise common lower bounds).

Proof. Trees may exhibit the following characters:

• a root below everything, of character (1, 0, 0)

• points before any branching but above the root if there is one, of character (1, 1, 0)

• middle points after at least one branching point, of character (1, 1, 1)

• top points after branching, of character (0, 1, 1)

There are also the degenerate cases where the tree is empty; some point has character

(0, 0, 0) and so that point is the entire tree; and five further cases where there is no

branching: either there is a root of character (1, 0, 0) with a single point above it of

character (0, 1, 0); a (1, 0, 0) root with a string of middle points of character (1, 1, 0) and

then a top point of character (0, 1, 0), a (1, 0, 0) root with an infinite ascending chain all

of character (1, 1, 0), a chain of order type ω∗ with a top point of character (0, 1, 0) and

middle points of character (1, 1, 0) but no root, or a chain of order type Z containing only

points of character (1, 1, 0).

This gives a total of seven non-branching trees corresponding precisely to the linear

orders up to 2-equivalence.

The character (0, 0, 0) only occurs in the degenerate single point case, and the character

(0, 1, 0) only occurs if there is no branching, so its presence implies that we are in one of

the cases above. The characters (0, 0, 1) and (1, 0, 1) cannot occur in trees, as a point x

with either of these characters is incomparable to some other point y, but there are no

points below x and so x and y fail to have a common lower bound.
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The remaining possible characters are (1, 0, 0), (0, 1, 1), (1, 1, 0) and (1, 1, 1). We con-

sider first the trees with a root, which must have character (1, 0, 0). The character set

{(1, 0, 0)} cannot arise, as there is no point to go above a point of character (1, 0, 0), and

{(1, 0, 0), (1, 1, 0)} was already listed when we considered the linear orders above.

The remaining six possibilities for sets of characters that can occur if there is a root

and there is branching are:

8. {(1, 0, 0), (0, 1, 1)}, a fan consisting of a root with arbitrarily many (but at least two)

pairwise incomparable points above it.

9. {(1, 0, 0), (0, 1, 1), (1, 1, 0)}, any linear order of size at least two that has a least and

a greatest point, plus a fan coming out of the greatest point. (The greatest point is

necessary to give a common lower bound to the leaves above.)

10. {(1, 0, 0), (0, 1, 1), (1, 1, 1)}, a tree with a root, but no other points below all branch-

ing. Either there is more than one point immediately above the root, or else there is

a branch along which the root has no immediate successor and there are branching

points arbitrarily close to the root. A linear order of order type 1 + ω∗ with leaves

attached to the even points would fulfil this, for example. At least one branch must

be of length at least three (otherwise, we are in the fan case), and at least one branch

is finite.

11. {(1, 0, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)}, a tree with at least two points below all branch-

ing - there is a root, and at least one point above the root which lies either below

or above all other points. Note that there need not be some non-root point lying

below every other non-root point - we could have a linear order where the root has

no successor, such as 1 + ω∗. There is at least one chain of length two lying above

a branching point (or else we are in the linear order then fan case), and there is at

least one leaf.

12. {(1, 0, 0), (1, 1, 1)}, a rooted tree that immediately starts branching, and has no

leaves.
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13. {(1, 0, 0), (1, 1, 0), (1, 1, 1)}, a rooted tree that does not immediately start branching,

but does after at least one non-root point, and has no leaves.

Finally, we determine the equivalence classes in which there is branching, but no

root. The sets of characters in this case are subsets of {(0, 1, 1), (1, 1, 0), (1, 1, 1)}, though

{(0, 1, 1)} and {(1, 1, 0)} are impossible. The former requires some point to have a point

below it but no point to have a point above it, and the latter has no branching and corre-

sponds to one of the linear cases already given. Excluding these two sets and the empty

set, the other five possible subsets of these characters are:

14. {(1, 1, 1)}, a bottomless tree in which no branches have endpoints, and there is

branching below any given point. For example, Z with a copy of ω extending from

each point x ∈ Z.

15. {(0, 1, 1), (1, 1, 1)}, a bottomless tree in which some branches have endpoints, and

there is branching below any given point. For example, Z with a single leaf extending

from each point.

16. {(1, 1, 0), (1, 1, 1)}, a bottomless tree in which no branches have endpoints but there

are points below all branching, for example, Z with a copy of ω extending from each

point x ∈ N.

17. {(0, 1, 1), (1, 1, 0), (1, 1, 1)}, a bottomless tree in which some branches have endpoints

and there are points below all branching, for example, Z with a leaf extending from

each point x ∈ N.

18. {(0, 1, 1), (1, 1, 0)}, a bottomless tree containing only points below all branching and

endpoints of branches. This tree therefore consists of a linear order with no least

point, with at least two points above the linear order, all of which are mutually

incomparable. For example, ω∗ equipped with two incomparable points above it.

This gives a total of 18 2-equivalence classes of trees, of which seven are the linear

orders.
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We remark that the 2-equivalence classes of trees form a subset of the 2-equivalence

classes of partial orders given in Theorem 13.

Excluding the seven equivalence classes where the tree is linearly ordered, we see that

there are only eleven nontrivial 2-equivalence classes for trees. The first four have finite

representatives; the rest do not, since they either have all their branches unbounded above

or they have no least point. The minimal representatives of the finite classes have sizes

three, four, four and five respectively, as may easily be constructed - a V shape, a Y shape,

and each of these with an extra point added to the top of one branch. These are depicted

in the bottom row of Figure 4.1.

If we consider the tree equivalence classes as equivalence classes of partial orders, then

there are other, non-tree, partial orders in most of the equivalence classes, with three excep-

tions: every partial order realising precisely {(1, 0, 0), (0, 1, 1)}, {(1, 0, 0), (0, 1, 1), (1, 1, 0)}

or {(0, 1, 1), (1, 1, 0)} is a tree. Every other equivalence class either only contains linear

orders, or contains trees with a point of character {(1, 1, 1)}. However, in any equivalence

class realising {(1, 1, 1)}, there are both trees and non-tree partial orders, since given a

tree T and a point x ∈ T of character (1, 1, 1) we may create T ′ from T by substituting

x with a diamond consisting of x1, x2, x3, x4 with x1 < x2 < x4 and x1 < x3 < x4 and x2

and x3 incomparable. A diagram of T and T ′ is given in Figure 6.1. We select witnesses

a, b, c ∈ T such that a > x, b < x and c is incomparable with x, which must all exist, by

x’s character. But when we perform the diamond substitution, we have a > x1, x2, x3, x4,

b > x1, x2, x3, x4 and c is incomparable with x1, x2, x3, x4. So x1, x2, x3, x4 also have char-

acter (1, 1, 1); moreover, they have the same relationship to each other point of the tree

as x did, so the characters of all other points are unchanged, and so the set of characters

realised in T ′ is identical to that realised in T . However, T ′ is certainly not a tree, as x2

and x3 are incomparable and so x4’s predecessors are not linearly ordered.

This shows that we cannot characterise being a tree in just 2 moves; in fact, the

property of being a tree involves in its most natural form the quantifier depth 3 sentence

∀x∀y∀z(y ≤ x ∧ z ≤ x → (y ≤ z ∨ z ≤ y)), which asserts that the predecessors of each

point are linearly ordered.
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Figure 6.1: We may replace a point x of character (1, 1, 1) with x1, x2, x3, x4 as shown to

create a non-tree which is 2-equivalent to the original tree.

6.1.2 n-equivalence of trees

We hoped to characterise n-equivalence of trees in terms of (n − 1)-equivalence of the

components A,B,C, and B ∪C, as was not possible for more general partial orders. This

seemed plausible, as the absence of cycles prevented many undesirable configurations from

occurring. Trees are significantly more constrained than partial orders, since there is only

branching in one direction, and in the other direction the behaviour is linear-like.

However, neither a proof nor a counterexample was forthcoming. In order for a proof

to work, we would need to show that strategies on B,C, and B ∪ C may always be made

compatible. A counterexample, on the other hand, would need to find two trees with

incompatible strategies, for example two similar possibilities for B lay in different places

in B ∪ C.

Conjecture 25. Two trees T1 and T2 are n-equivalent if and only if for all x ∈ T1 there

exists y ∈ T2, and vice versa, with (Ax, Bx, Cx, Bx ∪ Cx) ≡n−1 (Ay, By, Cy, By ∪ Cy).

The forwards direction of this conjecture is clear, as any winning strategy for Player

II in Gn(T1, T2) allows us to find such a y for any x by presenting x as Player I’s move

and taking y to be the strategy’s response.

We prove the backwards direction in a special case.
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Let the height of a tree be the size of a maximal chain. We note that some authors

may use this to refer either to the number of vertices or the number of edges in a maximal

chain; we choose the former usage.

For height 3 trees, it is in fact the case that 2-equivalence of the components A,B,C,

B ∪ C implies 3-equivalence overall. We may prove this by using the componentwise 2-

equivalence to find a matching second layer point and hence a matching branch in the

other tree.

Theorem 26. Two trees X and Y of height at most 3 are 3-equivalent if and only if for all

x ∈ X there exists y ∈ Y , and vice versa, with (Ax, Bx, Cx, Bx ∪Cx) ≡2 (Ay, By, Cy, By ∪

Cy).

Proof. The forward direction is immediate, as with the more general conjecture above.

We prove the backward direction by considering in turn each level of the tree at which x

may be located, and giving a winning strategy for Player II in each case.

First, suppose that x is in the bottom layer of X. Then x is the root of X, and every

other point in X lies above x. If Player II responds with some point z that is not on the

bottom layer of Y , then Player I may immediately win by playing below z, so Player II’s

first move strategy is to play the root y of Y . Since x and y are the roots of their respective

trees, we have Ax = X\{x} and Ay = Y \{y}. But by assumption, Ax ≡2 Ay, so Player II

has a winning strategy σ in G2(Ax, Ay). Player II may therefore play according to σ for

her last two moves, completing her winning strategy in G3(X,Y ).

Now suppose that x is in the middle layer of X, that is, that there is precisely one point

below x. By assumption, there exists y such that (Ax, Bx, Cx, Bx ∪ Cx) ≡2 (Ay, By, Cy,

By ∪ Cy), so let it be Player II’s strategy to play this y on her first move. Bx is a single

point and Bx ≡2 By, so y must also be in the middle layer of Y . Player II may use the

equivalences to give a winning strategy. Ax ≡2 Ay, so if Player I plays a point (or two

points) in Ax or Ay then Player II may also play in Ay or Ax (and her strategy is to do

so). Bx and By contain only the singleton points at the roots of the trees, and if Player I

plays one root then Player II’s strategy is to play the other root. All other points are in

Cx and Cy, and if these are played then Player II should respond according to her winning
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strategy σ in G2(Cx, Cy). By playing according to these strategies, we see that whatever

Player I plays, Player II will win. In any substructure that may result from any strategy

of Player I, points in Ax will lie above x and above the point of Bx, if played, but will

be incomparable to the points of Cx. The point in Bx will lie below all other points, and

points in Cx will lie above Bx and be incomparable to x and any played points in Ax. All

of these relations hold for Ay, By and Cy as well. If two points in Cx are played, these

may or may not be related, but since Player II is playing according to σ, the relations

obtained will be the same in both structures. Player II therefore wins if x is on the middle

layer of X.

Finally, suppose that x is in the top layer of X, that is, that there are precisely

two points below x. By assumption, there exists y such that (Ax, Bx, Cx, Bx ∪ Cx) ≡2

(Ay, By, Cy, By ∪ Cy), but we must in this case be a little careful about which y we take.

Consider the point z immediately below x. There is a unique such z, since X is a tree,

and z must be on the middle layer of X. Possibly, z could have exactly one point above it

(this point being x), or it could have more than one point lying above it. However, since

the equivalence assumption holds for all points, there must exist some w ∈ Y such that

(Az, Bz, Cz, Bz ∪Cz) ≡2 (Aw, Bw, Cw, Bw ∪Cw). In particular, this implies that w is also

on the middle layer of Y , and that Aw ≡2 Az. Therefore, w has only one point above it if

z has only one point above it, and w has multiple points above it if z does so. (There may

also exist middle layer points in Y with zero points above them, but w cannot be these in

either case.)

Player II’s first move is to pick a point y lying above w. We have now ensured that

there is branching at the point below x if and only if there is branching at the point below

y, and we shall find that this condition is sufficient. We run through the possibilities for

Player I’s remaining moves. Player I cannot play in Ax or Ay, as these are empty. If

Player I plays in Bx on her second move, then she must play either w or the root of the

tree. If she plays w, then Player II responds by playing z; if she plays the root of X,

then Player II plays the root of Y . Player II plays analogously with the labels swapped if

Player I plays in By. Now Player II will win, because there is branching at the root in X

if and only if there is branching at the root in Y , and likewise for z and w, so she has a
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corresponding response to every possible third move by Player I.

If Player I’s second move is in Cx or Cy, assume that she plays in Cx (as we may

relabel if necessary). Points in Cx are of four types: those in the middle layer with a point

above them, those in the middle layer with no point above them, those in the top layer

lying above z, and those in the top layer not lying above z. In each of these cases, Player

II determines a point satisfying the same property in Cy and plays that.

If Player I plays a point p ∈ Cx in the middle layer with a point above it, then Ap and

Bp are single points, so by assumption there is some point q ∈ Y for which Aq and Bq are

singletons. Of course w is such a point of Y , but it cannot be the only one, or Cy would

contain no chains of length 2 and we would not have Cx ≡2 Cy, so there must exist some

q 6= w such that Aq and Bq are singletons; let Player II play this q. Note that there is a

point below both p and x, a point above p that is incomparable with x, a point below x

that is incomparable with p, and possibly points incomparable with both p and x. There

is also a point below both q and y, a point above q that is incomparable with y, a point

below y that is incomparable with q, and there are points incomparable with both q and y

if and only if there are points incomparable with both p and x, since Cx ≡n Cy. Therefore,

whichever point Player I chooses as her third move, Player II has a winning response.

If Player I plays p ∈ X in the middle layer with no point above it, then Ap is empty

and Bp is a single point, so by assumption there is some point q ∈ Y with Aq empty and

Bq a singleton, and Player II plays q. In this case, there is a point below both p and x (and

a point below both q and y), a point below x and incomparable with p (and a point below

y and incomparable with q), and possibly points incomparable with both p and x, which

arise if and only if there are also points in Y incomparable with both q and y. Therefore,

Player II again has a winning response to every possible third move by Player II.

If Player I plays a point p 6= x in the top layer lying above z, then z has at least 2

points above it, so w also does, and so Player II plays any q 6= y with q > w. In this

case, there are points below both p and x, points below both q and y, and possibly points

incomparable with both p and x, which arise if and only if there are points incomparable

with both q and y, so again Player II has a winning strategy.

If Player I plays a point in the top layer of X not lying above z, then there must also
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exist a point q in the top layer of Y that does not lie above w, since Cw ≡2 Cz and Cz

contains a chain of length 2. Player II plays this q. In this case, there is a point below both

p and x, a point below p that is incomparable to x, a point below x that is incomparable

to p, and possibly points incomparable to both, and likewise for q and y. As before, the

equivalent conditions also hold on q and y, and so Player II also wins in this case.

We have given a winning response for Player II for any possible moves by Player I, and

so X ≡3 Y .

In the above proof, the key idea is that we must pass to a point on the middle level

with the desired ramification, and that the correspondence of these mid level points gives

a winning strategy for Player II in the game of length 3. We may therefore determine the

trees of height at most 3 up to 3-equivalence by determining which types of points may

exist on the middle level.

Theorem 27. There are 24 trees of height at most 3, up to 3-equivalence.

Proof. Every tree of height at most 3 has a single point on the bottom layer, unless it is

the empty tree. The middle layer may contain various points with, potentially, various

numbers of points above them. As in the proof above, there are three possibilities here for

a point in the middle layer: either a middle layer point has no points above it, in which

case we say it is of type 0, or it has precisely one point above it, in which case we say it is

of type 1, or it has two or more distinct points above it, in which case we say it is of type

2. The points arising in the top layer are determined, up to 3-equivalence, by the types of

the middle points, except in the case where there is a single middle point of type 2, when

there may be either precisely 2 or ≥ 3 top points.

We determine all combinations of types of middle points that may arise, up to 3-

equivalence.

Considering first the number of type 0 middle points, we see that if a height ≤ 3 tree

T has at least two type 0 points , then Player I may play two type 0 points on her first two

moves. If Player II’s responses are not both of type 0, then Player I may win by playing

above one of them . We may therefore distinguish whether there are zero, one or at least

two type 0 points in a height ≤ 3 tree.
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Middle points of types 1 and 2 both have one or more points above them, and the only

way to distinguish these from one another is by playing those points. There are certainly

enough moves in the game to distinguish the existence of one middle point of type 2, by

playing it and the two points above it, or one middle point of type 1, by playing it and

then either the point above it, if the response has type 0, or the two points above the

response, if the response has type 2.

We can also determine whether a height ≤ 3 tree has at least two points in total of

types 1 and 2, because if Player I plays two such points, Player II must be able to respond

with two middle points that are not maximal.

Finally, we can also determine whether a tree has at least three middle points in total,

since Player I can play a middle point on the first two moves, which must be responded

to by two middle points of the other tree, and then play some point incomparable to both

previous middle points on her third move.

We now show that any height ≤ 3 trees that agree on each of these five conditions are

3-equivalent. Let T1 and T2 be trees which satisfy these conditions: they either both have

0, both have 1, or both have at least 2 points of type 0; they each have a point of types

1 and 2 if and only if the other also has a point of this type; if one of them has a single

type 2 middle point with no other middle points and precisely two points above it, then

they both do; they only have either one or zero total middle points of types 1 and 2 if the

other tree also has the same number; and they only have fewer than three middle points

in total if the other tree also has the same number. Then Player II has a winning strategy.

Without loss of generality, assume that Player I plays in T1 on her first move. Then

on her first move, Player II plays the root of T2 if Player I played the root of T1, a middle

point of type n if Player I played a middle point of type n, and a top point that lies above

a point of type n if Player I played a top point above a middle point of type n. This is

possible because any middle point type present at least once in T1 must also be present in

T2.

We now give a second move strategy for Player II such that Player II will also have a

winning third move. On the second move, if Player I plays above a middle point already

chosen, then Player II plays above the middle point already chosen in the other tree (which
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must be possible, because the middle points played are of the same type). We verify that

Player II has a winning third move, since the roots are below both moves, there are no

points above both moves, and there are points incomparable to both moves or above the

middle point but incomparable to the top one if and only if these are also present in the

other tree. Likewise, if Player I plays a top point on her first move and a middle point on

her second move, then Player II also plays below the first move, which is again guaranteed

to be possible by her first move strategy, and the reasoning for her third move is similar.

If Player I plays the root, Player II again plays the root, and here all possible third moves

are above the second move and the same options arise in each tree for the relations to the

first move.

If Player I plays a top point with the same middle point predecessor as the first move,

then Player II plays a top point with the same middle point predecessor as the first move in

the other tree. This must be possible since the first move was above a point of type 2 if and

only if the first move in the other tree was also above a point of type 2. Here all possible

third moves are either below both of them (which must be possible) or incomparable to

both of them, which is possible in one tree if and only if it is possible in the other, due to

the conditions on middle points and the condition on trees with a single, type 2, middle

point.

If Player I plays any top point which is neither above the first move nor above the same

middle point as it, then Player II plays a top point in the other tree which is also neither

above nor sharing a predecessor with the first move. Such a point must exist, because in

this case there are at least two middle points of types 1 and 2 in both structures. Then

the possible third moves are the point below this, which is incomparable with the first

move, the root, points above/below the first move if present, and any other incomparable

moves, which must be present in one tree if in the other.

If Player I plays a middle point of type 1 or 2 which is not below the first move, then

Player II plays a point of type 1 or 2 in the other structure, which must exist by the same

reasoning. The third move may lie above or below this, and the options must similarly be

the same in both trees.

Finally, if Player I plays a middle point of type 0, then Player II plays a middle point
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of type 0 in the other structure, which again must exist by the condition on the counts of

type 0 points. The third move may only be below this if it is the root, otherwise it will be

incomparable to the second move and so the first move strategy guarantees that the same

options arise.

We have already determined that trees of height at most 3 are inequivalent to one

another if they differ in any of these conditions, and so we may now list multisets of

characters of the middle points of trees which correspond to every 3-equivalence class of

trees of height ≤ 3, and exhibit the corresponding trees.

That this list is complete may be seen by considering the tuple (n0, n1, n2), where ni

is the number of middle points of type i. As discussed above, except for the two classes

arising from (n0, n1, n2) = (0, 0, 1), we may distinguish precisely the cases where n0 is 0,

1 or ≥ 2, n1 is 0 or ≥ 1, n2 is 0 or ≥ 1, n1 + n2 is 0, 1, or ≥ 2 and n0 + n1 + n2 is 0, 1, 2

or ≥ 3.

There are two equivalence classes in which no middle points arise: that where the tree

also has no root (the empty tree), and that in which the tree does have a root (the tree of

size 1). For all other equivalence classes, the following multisets of types of middle points

give a representative:

{0}, {0, 0}, {0, 0, 0}, {1}, {1, 1}, {1, 1, 1}, {1, 0}, {1, 1, 0}, {1, 0, 0}, {1, 1, 0, 0}, {2}

(which gives rise to two equivalence classes), {2, 2}, {2, 2, 2}, {2, 0}, {2, 2, 0}, {2, 0, 0},

{2, 2, 0, 0}, {2, 1}, {2, 1, 1}, {2, 1, 0}, and {2, 1, 0, 0}.

For each multiset, the corresponding tree may be constructed by taking a point for

the root and adding above it a middle point of each type listed, with the corresponding

number of top points above each (usually the number of the type, but the tree for the

second equivalence class of {2} has three (or more) top points). These are shown in Figure

6.2 and Figure 6.3.

We have shown that two trees of height at most 3 are equivalent if and only if they

realise the same multiset of types (or are one of two {2} trees, or the trees of size zero or

one), and that there exist trees realising each of these multisets of types (encoded above,

and depicted in Figures 6.2 and 6.3). Therefore, there are a total of 24 3-equivalence

classes of trees of height at most 3.
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Assuming Conjecture 25, we can use the 2-equivalence classes of trees to bound the

number of 3-equivalence classes of trees of any height. Since every linear order is a (some-

what degenerate) tree, we must have at least 281 3-equivalence classes of trees altogether,

by Theorem 11. The true number is likely to be much higher than this, and yet much

lower than the following upper bound.

If Conjecture 25 holds, then 3-equivalence of trees depends precisely on the 2-equivalence

classes of (Ax, Bx, Cx, Bx ∪ Cx) that arise. Of these, Ax is a forest, Bx is a linear order,

Cx is a forest, and Bx ∪ Cx is a tree. There are 18 2-equivalence classes of trees, and 7

2-equivalence classes of linear orders. We did not calculate the 2-equivalence classes of

forests, but since there are 8 possible 2-characters that they can realise, there can be at

most 28 2-equivalence classes of forests. (The upper bound would still be very loose even

with a tighter bound for the number of forests.)

There are therefore at most 28∗7∗28∗18 = 8257536 possible tuples (Ax, Bx, Cx, Bx∪Cx)

up to 2-equivalence. This gives an upper bound of 28257536 3-equivalence classes. Even

with a more conservative upper bound m for the number of forests, we would get an upper

bound of 2126m2
, and since every tree is a forest we would certainly have m ≥ 18. We may

likewise obtain a large bound for the number of n-equivalence classes by repeating this

method.

We suggest that for the case of 3-equivalence, it may be possible to determine all

combinations of 2-equivalence classes that may actually arise. In particular, this may be

practical for the subclass of finite trees, since there are only eight 2-equivalence classes of

finite trees, of which four are the finite linear orders of lengths 0, 1, 2 and at least 3. These

would still give quite a large upper bound with the analogous calculations to those above,

but many of the combinations counted in that loose bound would actually be impossible,

and so the number should whittle down to something closer to the mere 24 3-equivalence

classes in the height 3 case.
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Figure 6.2: The trees corresponding to the middle point types ∅, {0}, {0, 0}, {0, 0, 0},

{1} and {1, 1}, on the top row; {1, 1, 1}, {1, 0}, {1, 1, 0} and {1, 0, 0}, on the middle row;

{1, 1, 0, 0}, {2}, {2} and {2, 2}, on the bottom row.
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Figure 6.3: Trees corresponding to the remaining multisets of middle point types. Top

row: {2, 2, 2}, {2, 0} and {2, 2, 0}. Middle row: {2, 0, 0}, {2, 2, 0, 0} and {2, 1}. Bottom

row: {2, 1, 1}, {2, 1, 0} and {2, 1, 0, 0}.
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6.2 Graphs

A graph is a set of points X and a subset E ⊆ X2 of edges between points in X. In order

for E to correspond to the edges of an undirected graph we require it to be symmetric (if

not, we just take the symmetric completion): (x, y) ∈ E if and only if (y, x) ∈ E. This

may also be thought of as a relation R where xRy if and only if there is an edge between

x and y. The relation R is symmetric and irreflexive, as we do not permit xRx.

Considering graphs up to 1-equivalence, we find there are only two equivalence classes

- one containing the empty graph, and one containing all nonempty graphs. Since the only

relation is binary, we certainly have G ≡1 H when G and H are nonempty graphs.

In the two move game we have two possible relationships between the pair (x, y): either

xRy or ¬xRy. For the purpose of 2-equivalence, we can assign each point x a character

(a, b) where a = 1 if there exists y such that (x, y) ∈ E and a = 0 otherwise, and b = 1

if there exists y such that (x, y) 6∈ E and b = 0 otherwise. Note that no graph can realise

both (1, 0), which is realised only at points adjacent to all other points (and there is at

least one other point), and (0, 1), which is realised only at points such that there are other

points and it is not adjacent to any of them.

Lemma 28. There are seven 2-equivalence classes of graphs.

• the empty graph, if no characters are realised

• the graph with one point, if the character (0, 0) is realised

• the complete graph on two or more vertices, if only the character (1, 0) is realised

• the empty graph on two or more vertices, if only the character (0, 1) is realised

• graphs realising only (1, 1), where every point has both points adjacent to it and

points not adjacent to it, for example {a, b, c, d} with aRb and cRd only, or the

random (Rado) graph [6]

• graphs realising {(1, 0), (1, 1)}, where there is at least one point adjacent to all other

points, and at least one pair of points with no edge between them, for example a fan

such as {a, b, c} with aRb and aRc only
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• graphs realising {(0, 1), (1, 1)}, whose complement is in the class above: here there

is at least one point with no edges, and at least one pair of points with an edge, for

example {a, b, c} with bRc only

Graphs need not be transitive, or satisfy any other particular constraint involving more

than two points. So, when constructing a graph, we can choose which relations hold almost

entirely freely, with the caveat that the edge relation must be symmetric. If we add a new

point x to a graph containing m points, then we can choose any of the 2m possible sets of

edges to x and still get a valid supergraph.

Consider the three move game, played on graphs with at least three points. A point is

selected for the first move, which may have points adjacent to it, points not adjacent to it,

or both. After the second move, we have a pair of points joined by an edge (or not joined

by an edge), and the other points in the graph are in one of four states: adjacent to the

first point but not the second, adjacent to the second point but not the first, adjacent to

both or adjacent to neither. Likewise, in longer games there will be 2n possible states of

other points after the nth move.

Note that we cannot just multiply the number of possible states at each move to give

the number of equivalence classes, since if we make the first move x such that all other

points are adjacent to x, then we certainly shall not be able to play points that are not

adjacent to x on subsequent moves.

However, we may determine the 3-equivalence classes, and more generally the n-

equivalence classes, by using the (n− 1)-equivalence classes as follows.

We may use a similar method of character to those we used for linear and partial

orders. Instead of partitioning according to an order relation, we may partition a graph

G into Gx and Gx̄, where Gx = {y ∈ G : (x, y) ∈ E} and Gx̄ = {y ∈ G : (x, y) 6∈ E}. Note

that these partitions are not directly analogous to those in a linear order - for a linear

order A, if x ∈ A<y then y ∈ A>x asymmetrically, but for a graph G, if x ∈ Gy then

y ∈ Gx symmetrically.

We may then apply an iterated colouring scheme similar to the one proposed for partial

orders in Section 4.5. If the first moves chosen are x ∈ G1 and y ∈ G2, then we colour
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G1\{x} and G2\{y} according to the edge relation: let Gx be coloured red and Gx̄ blue.

Then G1 ≡n G2 if and only if for all x ∈ G1 there exists y ∈ G2, and vice versa, such that

(G1, G
x
1 , G

x̄
1) ≡n−1 (G2, G

y
2, G

ȳ
2).

Note that we cannot simply consider the (n − 1)-characters of Gx and Gx̄ separately

to determine n-equivalence, because the edges between the points of Gx and those of Gx̄

matter too, at least for games of length three or longer. For example, in the three move

game, given x and y, we can distinguish structures in which ∃z(zRx ∧ zRy), as well as

∃z(¬zRx∧ zRy), ∃z(zRx∧¬zRy) and ∃z(¬zRx∧¬zRy). Any useful notion of character

must therefore also be able to distinguish these properties, but if xRy then the (n − 2)-

characters of (Gx)y and (Gx)ȳ would provide no information about whether any points w

with ¬wRx satisfy wRy, and likewise if ¬xRy then the character would not distinguish

whether or not any points v with vRx satisfy vRy.

We also remark that the local nature of the graph relation does not enable us to reduce

any infinite graph to an n-equivalent finite graph. For example:

Lemma 29. Let G be a graph with vertex set N, with an edge between n and n + 1 for

each n ∈ N, and no other edges. Then G is not 4-equivalent to any finite graph.

Proof. Any finite graph H contains an integer number of edges (possibly 0), each of which

runs between two vertices. Therefore, the sum of the degrees of the vertices in H is even,

and so H must contain an even number of vertices of odd degree.

Suppose first that H contains no vertices of odd degree. Then Player I may win

G4(G,H) (or even G3(G,H)) by playing 0, 1 ∈ G on her first two moves. Let Player II’s

corresponding moves in H be h0, h1. By assumption, h0 has even degree, so there must

exist some x 6= h1 adjacent to h0. For her third move, Player I plays x, which wins because

Player II can find no additional vertex adjacent to 0 in G.

Now suppose that H has more than one vertex of degree 1. Then Player I wins

G4(G,H) by the following strategy. First, she plays two distinct vertices of H that have

degree 1. Player II’s distinct responses in G must include a vertex of degree 2. Player I

then plays both neighbours of the vertex of degree 2, and Player II is unable to play two

distinct neighbours of the corresponding degree 1 vertex in H, so Player I wins.
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Finally, suppose that H contains a vertex of degree > 2. Then Player I wins G4(G,H)

by playing that vertex and three distinct neighbours. No vertex in G has more than two

neighbours, and so Player II’s response must lose.

In any case, H is not 4-equivalent to G. All finite graphs must fall into one of these

three cases, and so we conclude that G is not 4-equivalent to any finite graph.

6.2.1 Hypergraphs

Suppose we play on a hypergraph rather than a graph. A hypergraph G is a pair (X,E)

where E ⊆ P(X). We call X the vertex set of G and E the hyperedge set. If every

member of E has size m, we call the hypergraph an m-graph, and the (hyper)edge relation

is defined on sets of size m. Note that we recover the usual notion of graph when m = 2.

Taking m = 0 gives a set with no relations, and so there must be n+1 many n-equivalence

classes - those of size 0, 1, . . . , n − 1, and those of size at least n. Taking m = 1 gives a

slightly less trivial case - we have a set with a single unary relation, so there are two classes

of points: those for which the relation holds, and those for which it does not. If G and H

had different amounts of one type of point, and at least one of these was a finite number

smaller than n, then Player I would be able to win Gn(G,H) by exhaustively choosing

the points of that type. Therefore there are at least (n + 1)2 n-equivalence classes, since

the number of type 1 and type 2 points may each be 0, 1, . . . , n− 1 or ≥ n. We may easily

verify that this condition is sufficient and so there are precisely (n + 1)2 n-equivalence

classes of 1-graphs.

Having dispensed with the lower values, we consider m ≥ 3 (m = 2 being the standard

graphs discussed above). As usual, games shorter than the least arity of a relation have

only the trivial counting equivalence classes, so there are (n+ 1) n-equivalence classes of

m-graphs for n < m. When n ≥ m, we run into new considerations we did not have for

m = 2. For 2-graphs, we may partition the points of G\{x} into those with an edge to x

and those without. When m > 2, the partition is no longer determined solely by x and the

singular other point under consideration. Rather, there are three types of second move

y after a first move x: those for which (x, y, a3, . . . , an) is a hyperedge for every string of



6.3. Directed graphs 93

subsequent moves a3, . . . , an, those for which no sequence of subsequent moves b3, . . . , bn

makes (x, y, b3, . . . , bn) a hyperedge, and those for which there are both a3, . . . , an such

that (x, y, a3, . . . , an) is a hyperedge and b3, . . . , bn such that (x, y, b3, . . . , bn) is not a

hyperedge. Naturally this last class breaks down further into possibilities at each move.

6.3 Directed graphs

We have primarily been trying to generalise work on linear orders to partial orders, or

at least to some intermediate class like semilinear orders (trees). We look briefly in the

direction of yet more generality.

Partial orders are characterised by three properties:

• reflexivity - we always have x ≤ x, for all x

• antisymmetry - if x ≤ y and y ≤ x then x = y

• transitivity - if x ≤ y and y ≤ z then x ≤ z.

In the maximal natural generalisation we would just have a set of points with a binary

(or otherwise) relation upon them, and none of these properties would necessarily hold.

Dropping reflexivity does not give us anything interesting - we already have strict and non-

strict partial orders in which either all points do or all points do not relate to themselves,

and considering a structure in which some points related to themselves and some did not

would just create two different types of point, which could be done more elegantly by just

using coloured partial orders. We could drop antisymmetry, which would give a preorder,

or we could explore dropping transitivity.

A strict partial order is just the transitive closure of a directed acyclic graph, as we

may see by considering each edge of its Hasse diagram as an arrow from the lower to the

higher element. So, we may consider antisymmetric directed graphs as a generalisation of

partial orders. Our characters (a, b, c) now indicate whether there are points with arrows

to x, with arrows from x, and with neither an edge to or an edge from x, respectively. We

find the 2-equivalence classes.



94 Chapter 6. Other structures

Clearly every partial order 2-equivalence class is contained in a distinct directed graph

2-equivalence class. With graph equivalence classes, many of the same constraints still

hold. We still cannot have a point of character (0, 0, 0) with anything else, or (1, 0, 0) with

any character of the form (∗, 0, ∗), or (0, 1, 0) with (0, ∗, ∗). These imply that we again

cannot have both a greatest element and a non-greatest maximal point (as these would

have characters (0, 1, 1) and (0, 1, 0)), or both a least element and a non-least minimal

point (of characters (1, 0, 1) and (1, 0, 0)).

Recall that a greatest point in this new context is a point with at least one edge to

it and no edges from it, and a maximal one is where every other point has an edge to it.

Least points are similarly ones with arrows from them but none to them, and points with

arrows both to and from them are middle points. There are only 39 equivalence classes

satisfying these constraints. As there were 39 equivalence classes for partial orders, these

must be the same.

For three moves, there are more equivalence classes in games on directed graphs than

on partial orders, since there are more configurations that can arise between three points:

for example, we can have A→ B → C → A in a directed graph but not A < B < C < A

in a partial order. We can also more generally have A → B → C but A 6→ C, which

cannot arise in a partial order. This corresponds to the notion of transitivity, which is a

three-point property, so its absence makes no difference when in the game of length two.

For example, the 3-cycle above is 2-equivalent to a transitive directed graph of order type

Z, since both realise only the character (1, 1, 0). However, the latter is transitive, and so

corresponds to a partial order, but the former does not.

Lemma 30. Let P be a partial order and D a directed graph. If P ≡n D for some n ≥ 3,

then D is a partial order.

Proof. Consider the sentence of quantifier depth 3 φ = ∃x∃y∃z(xRy ∧ yRz ∧ ¬xRz). By

assumption, P and D are 3-equivalent, and so by Lemma 5, they satisfy precisely the

same sentences of quantifier depth 3. In P , φ is false, and therefore φ must also be false

in D. But φ is the negation of the property of transitivity, so this means that D must be

transitive, and so D is a partial order.
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For values of n ≥ 3, therefore, every n-equivalence class of transitive digraphs is also

an n-equivalence class of partial orders, with precisely the same members. There are also

n-equivalence classes containing non-transitive digraphs, such as the n-equivalence class

of the triangular digraph given above, and these do not correspond to equivalence classes

of partial orders.

If we permit our directed graphs to have edges in both directions, thereby also sac-

rificing the two-point property of antisymmetry, we could have A → B → A, whereas

A < B < A is of course impossible. In this case our notion of character would be a

poor choice. The current notion has three components, for points such that xRy, yRx, or

neither, where the relation R is either aboveness or directed edges. Permitting both xRy

and yRx, that is, breaking antisymmetry, would necessitate a fourth character component

for points such that both xRy and yRx hold, in addition to our original triplet of the

equivalence classes of the sets of points such that xRy but not yRx, yRx but not xRy,

and neither, hold respectively. As partial orders are antisymmetric, all points of all partial

orders would have fourth components of zero in this notion of character, but points in

some digraphs do not if y → x→ y is permitted.

6.4 Unars

A unar is a pair (X, f) consisting of a set X and a unary function f : X → X, whence

the name [16] [15].

One can obtain many structures of interest to mathematicians by adding more restric-

tions on the properties of X and f , but here we consider unars in general, as well as the

following modification: an ordered unar (X, f,<) consists of a set X which is equipped

with both a unary function f , and a total order <. Some analysis of these from a dynami-

cal systems perspective may be found in [31]. The (unordered) unar (X, f) and the linear

order (X,<) are both reducts of the ordered unar (X, f,<).

As with colouring functions, we actually view the function as a relation, so that unars

are relational structures and we can apply the theory of Ehrenfeucht-Fräıssé games. Given

a unary function f on X, let R be a relation such that xRy if and only if f(x) = y. Then
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(X,R) and (X,R,<) are relational structures, and it is these that we consider. We may

easily recover the function f from this definition, since for every x there is a unique y such

that xRy. By defining a function f to take these y values at their respective values of x,

we recover the desired function f : X → X, which we refer to in practice instead of R.

A unar may be represented as a kind of directed graph, in which loops are permitted,

and edges in both directions between two points, but not multiple edges in the same

direction between the same two points. Let X be the vertex set, and for each x ∈ X, let

there be a directed edge e from x to f(x), and no other edges. Then (X,E), where E is

the set of directed edges on X, is a directed graph. In a directed graph corresponding to

a unar, every vertex x has out-degree exactly 1, since f(x) has only one value.

6.4.1 Structures of unars

In a unar (X, f), a cycle is a finite set of points {x1, . . . , xn} ⊆ X such that f(xn) = x1

and for i < n, f(xi) = xi+1. We do not count an infinite chain of points {xm : m ∈ Z}

with f(xi) = xi+1 as a cycle, though it resembles them in some ways.

Lemma 31. Every connected component in the directed graph of a unar X contains at

most one cycle.

Proof. A proof is given in [10], which studies unars under the name of functional digraphs;

we also include a proof for completeness, as it is reasonably brief and instructive to do so.

Suppose that X contains two distinct cycles (x, f(x), . . . , fn−1(x)) and (y, f(y),

. . . , fm−1(y)), where fn(x) = x and fm(y) = y. Since every vertex has out-degree 1,

these cycles must be disjoint. If they were to occur in the same connected component,

then there would exist some path between f i(x) and f j(y) for some i, j, disregarding the

direction of arrows. Let {x1, . . . , xk} be the points of such a path, chosen such that k is

minimal and there is an edge (in either direction) between f i(x) and x1, there is an edge

between xa and xa+1 for each a, and there is an edge between xk and f j(y). This path

contains k + 2 points, so it must have k + 1 edges. However, there is no edge from f i(x)

or f j(x) in the path, since f(f i(x)) = f i+1(x) and f(f j(y)) = f j+1(y) are both members

of the cycles and so cannot be on the path by minimality of k. We therefore only have,
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at most, the edges from {x1, . . . , xk} in the path, which gives at most k edges, and so a

connecting path cannot exist.

A unar may therefore be split into connected components, which are of two kinds.

Some components may contain a (unique, finite) cycle, and each point of the cycle may

also have predecessors outside the cycle. For any point that does not lie in this cycle,

there is a unique path under the action of f which intersects the cycle in a unique vertex.

The set of all vertices whose path intersects the cycle at a particular point cannot itself

contain a cycle by Lemma 31, and so each point of the cycle is the root of a tree (possibly

empty) with all edges given direction pointing towards the root (an anti-arborescence).

Alternatively, a component may contain no finite cycle, in which case it contains some

infinite sequence {xn : n ∈ ω} with an edge from xn to xn+1 for each n. These edges

are the only ones coming from the points of the infinite sequence, but there are again

trees (which may each be empty, finite or infinite) “leading into” each xi, with every

other point in the component leading into some xi. In a cycle-free component, the infinite

sequence (xi) need not be unique, but any two infinite sequences (xi) and (yj) in the same

component must agree beyond some point, that is, given (xi) and (yj), we may find M

and N such that xM+n = yN+n for all n.

Note that here we take “tree” in the graph-theoretical sense of a tree as a set of points

equipped with edges between some subset of the set of pairs of them, in contrast to our

earlier usage of “tree” as a particular sort of partial order in Section 6.1. Earlier, we were

quite happy to declare a set of order type ω + 1 a tree; this is explicitly disallowed here

since the final point has no predecessor and so such an ordering cannot be meaningfully

constructed using a chain of edges. Instead, a directed tree in this sense is a connected

directed acyclic graph.

There is a relationship between trees as discussed in Section 6.1 and unars, but not a

comprehensive correspondence. Discrete trees with their edges directed towards the root

give a subclass of the class of unars, but the existence of loops renders unars quite different

overall. One could categorise unars using the discrete trees feeding into each of the points

of each of its cycles, but this would be rather complicated in practice.
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We say y is reachable from x if there exists n ≥ 0 such that fn(x) = y. If y is not

in a cycle, then there will be at most one such n, but if y is in a cycle of length k then

of course fn+mk(x) = y for any m ∈ N and there are infinitely many such values. If y is

reachable from x and x is reachable from y but y 6= x, then there exists a cycle containing

both y and x.

For n ≥ 3, there exist unars that are not n-equivalent to any finite unar, such as injec-

tive unars that contain some point x with no predecessor. These cannot be 3-equivalent

to any finite unar, because any finite unar must either fail to be injective or must have

predecessors for all points. In the former case, Player I can win by identifying two distinct

points x and y in the finite unar with f(x) = f(y), and playing x, y and f(y) on her first

three moves; in the latter case, Player I can win by playing x and then any predecessor of

Player II’s response.

Unlike the other monochromatic structures we have considered, not all nonempty unars

are 1-equivalent. We observe that there are two distinct types that may each be realised:

{x ∈ X : f(x) = x} and {x ∈ X : f(x) 6= x} may each be empty or nonempty, and so

there are four 1-equivalence classes of unars (of which one only contains the empty set,

leaving three 1-equivalence classes of nonempty unars: those that realise only the first

type, only the second, and those that realise both). By a similar argument, there are four

1-equivalence classes of ordered unars; this is to be expected since < is a binary relation

and so cannot be of relevance to equivalence in games of length less than two. For games

of length n in general, however, we expect there to be many more equivalence classes of

ordered unars, due to the interplay between the two relations.

6.4.2 2-equivalence of unars

We classify the 2-equivalence classes of unordered unars. To do this, we determine the

possible sets of relationships that can hold on pairs of points in a unar. Given a point

x ∈ X, there must exist precisely one point w such that f(x) = w, and precisely one of

the following must hold:

• f(x) = x
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• f(x) 6= x, but f(f(x)) = x

• f(x) 6= x and f(f(x)) = f(x)

• x 6= f(x), f(x) 6= f(f(x)) and f(f(x)) 6= x

There may possibly also exist points y 6= x, f(x). Each of the following sets may be empty

or nonempty, but they are disjoint and together partition X\{f(x), x}.

• {y : x 6= y 6= f(x) and f(y) = x}

• {y : x 6= y 6= f(x) and f(y) = y}

• {y : x 6= y 6= f(x) and y 6= f(y) 6= x}

Note that we do not need to separately consider {y : x 6= y 6= f(x) and f(y) = f(x)},

because we cannot distinguish whether f(y) = f(x) in any length of game if some y and

x are played with f(x), f(y) 6= x, y, unless f(x) or f(y) is also played at some point in

the game. Recall that f(x) is the value of z such that R(x, z) holds, and we may assume

that z is unique in this because we are considering games on unars (X,R) where R is a

relation with this property, not an arbitrary relation. Therefore, f(x) = f(y) if and only

if ∃z(R(x, z)∧R(y, z)). For the purposes of determining the winner of the game, however,

only the points played in the game affect the outcome, and so even if there were points

x1, x2, y1, y2 with f(x1) = f(y1) = z and f(x2) 6= f(y2) but the structures were otherwise

similar, we would still have (x1, x2) ∼= (y1, y2) in the substructures played in the game,

and so Player I would not be able to win a game using only this difference unless z were

also played. Since we are currently considering the two move case, we cannot have any

games in which x, y and z are all played, and so we do not need to distinguish the values

of y with f(y) = f(x) from other members of {y : x 6= y 6= f(x) and y 6= f(y) 6= x}. This

will be more precisely demonstrated in the proof of Lemma 32.

The above lists give at most 4 ∗ 23 = 32 possible characters that can arise at a point

x ∈ X (as we shall see, all of these but one are possible, though not simultaneously). Let

the unar-character of x be the tuple (n, i, j, k), where n ∈ {1, 2, 3, 4} indicates which of

the four possible conditions on f(x) holds, in the order listed above, and i, j, k ∈ {0, 1}
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indicate whether each of the latter three sets, respectively, is empty or inhabited. We

show that this is the appropriate notion of character to characterise 2-equivalence.

Lemma 32. Let (X, f) and (Y, g) be unars. Then (X, f) ≡2 (Y, g) if and only if for all

x ∈ X there exists y ∈ Y , and vice versa, such that x and y have the same character.

Proof. Suppose there is a1 ∈ X such that no member of Y has the same character. We

find a winning strategy for Player I. On her first move she plays a1, and suppose that

b1 ∈ Y is Player II’s response. By assumption, the characters of a1 and b1 must differ in

at least one component.

In each case we describe Player I’s second move and assume for a contradiction that

Player II can play in such a way that (a1, a2) ∼= (b1, b2).

First, suppose that the characters of a1 and b1 differ in the first component.

If the first component of character of exactly one of a1 and b1 is 1, we assume without

loss of generality that f(a1) 6= a1 and g(b1) = b1. On her second move, Player I plays

a2 = f(a1), and we let b2 be Player II’s response, which we suppose for a contradiction

does not lose. Since f(a1) 6= a1, it follows that b2 6= b1, and since RX(a1, a2), also

RY (b1, b2), where RX and RY are the relations on X and Y from which the functions f

and g respectively are constructed. Therefore g(b1) = b2 6= b1, which is a contradiction.

Next suppose (again without loss of generality) that f(f(a1)) = a1 and g(g(b1)) 6= b1.

Now Player I plays a2 = f(a1) (which may equal a1, though this would have been covered

in the previous case). In this case, we have both RX(a1, a2) and RX(a2, a1), so it follows

that RY (b1, b2) and RY (b2, b1). Therefore g(g(b1)) = g(b2) = b1, again a contradiction.

If instead f(f(a1)) = f(a1) but g(g(b1)) 6= g(b1), Player I again plays a2 = f(a1). This

time, RX(a1, a2) and RX(a2, a2), from which it follows that RY (b1, b2) and RY (b2, b2).

Therefore g(b1) = b2 and g(b2) = b2, which give g(g(b1)) = g(b1), a contradiction.

Finally, if a1 6= f(a1) 6= f(f(a1)) 6= a1, then we do not have b1 6= g(b1) 6= g(g(b1)) 6=

b1, so we must have at least one equality, and we can use the previous lines to get a

contradiction.

Now suppose that the characters of a1 and b1 agree on the first component, but differ

elsewhere. By swapping X and Y if necessary, we may suppose that there is a2 6= a1, f(a1)
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in X such that f(a2) = a1 (or f(a2) = a2, or f(a2) is unequal to a1, a2 in the other

cases, according to whether the second, third or fourth component of the character differs

respectively), but that there is no such member of Y corresponding to b1. Player I now

plays this a2, and again we suppose that b2 is Player II’s response, and that (a1, a2) ∼=

(b1, b2).

Since a1 6= a2, also b1 6= b2. We also have ¬RX(a1, a2) so it follows that ¬RY (b1, b2),

and so b2 6= g(b1). If f(a2) = a1 then RX(a2, a1) and therefore RY (b2, b1), giving

g(b2) = b1, which is contrary to the characters differing on this component, and similarly

if f(a2) = a2. Finally, if f(a2) 6= a1, a2, then both ¬RX(a1, a2) and ¬RX(a2, a2) hold,

from which it follows that ¬RY (b1, b2) and ¬RY (b2, b2) also hold, which again contradicts

the characters differing here.

Conversely, suppose that X and Y exhibit the same characters. Then it is Player II

who has a winning strategy. Whatever Player I’s first move, she may respond with a point

in the other structure which has the same character.

Let these two moves played be a1 ∈ X and b1 ∈ Y . By assumption these have the

same character, and in particular identical first components, so f(a1) = a1 ⇔ g(b1) = b1,

and similarly for the other possible values, 2, 3 and 4, of the first component. Player I’s

second move will give a pair of points in one of the structures which Player II wishes to

duplicate in the other structure. Suppose without loss of generality that Player I plays

a2 ∈ X on her second move. Since a1 and b1 were chosen to have the same characters,

there must be a point b2 ∈ Y witnessing the relevant component of b1’s character, and

this will give a winning strategy for Player II. We show how b2 ∈ Y can be chosen such

that (a1, a2) and (b1, b2) are isomorphic, by checking through the different options.

First, if a2 = a1 then Player II chooses b2 to equal b1, and the fact that (a1, a2) ∼= (b1, b2)

follows from f(a1) = a1 ⇔ g(b1) = b1. Similarly, if a2 = f(a1) 6= a1, then b2 is chosen to

be g(b1), and the equality of the first components of a1 and b1’s characters ensures that

correct relations are preserved under (a1, a2) ∼= (b1, b2).

Otherwise, a2 6= a1, f(a1), and so a2 inhabits one of the sets used in defining the

final three components of the character of a1. Since a1 and b1 were chosen to have the

same characters, it follows that there is a point b2 ∈ Y witnessing the corresponding
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component of b1’s character. To check that (a1, a2) ∼= (b1, b2), we note that RX(a1, a1)⇔

f(a1) = a1 ⇔ g(b1) = b1 ⇔ RY (b1, b1); the remaining 3 character components cover the

correspondences for RX(a2, a1), RX(a2, a2), and their negations, respectively.

This is a similar method to that which we applied to linear and partial orders earlier,

though the details of the appropriate character to use are different.

Since there are 32 possible characters and the set of these that arises precisely deter-

mines equivalence, there are at most 232 2-equivalence classes of unordered unars. In fact

there are only 133, as we shall show.

To determine which combinations of characters may occur, we investigate which con-

figurations of points must occur in the immediate vicinity of a point of each character. Let

a character with first component k be a type k character, and we call a point with such a

character a type k point. By Lemma 31 above, each component of a unar contains at most

one cycle, with optional anti-arborations directed towards each point of the cycle. Many

of the characters determine the length of the cycle which that point lies in or is next to.

Let the unar-character of a point x be (n,m1,m2,m3). If n = 1, then f(x) = x and x is in

a cycle of length 1. Depending on the values of the mi, there may be one or more points

leading into x, and/or points elsewhere of either or both of two different types. If m1 = 1,

then there is some point y 6= x with f(y) = x, if m2 = 1, then there is some point z 6= x

with z = f(z), and if m3 = 1, then there is some point w 6= x with w 6= f(w) 6= x.

If n = 3, then f(x) 6= x and f(f(x)) = f(x), and x is immediately before a cycle

of length 1. This of course implies the existence of a point f(x) of character (1, 1, ∗, ∗).

Again, there may be further points pointing to x and/or points elsewhere in the structure

of either 1-type, depending on the values of m1,m2,m3.

If n = 2, then f(x) 6= x, but f(f(x)) = x, and x is in a cycle of length 2, with f(x)

as the other point. As before, there may possibly be points pointing to x, and possible

points elsewhere of either type, according to m1,m2,m3.

Finally, if n = 4, then x 6= f(x) 6= f(f(x)) 6= x. So x is at the start of a chain of length

at least three, which may lie either in a finite cycle of length 3 or more, in an infinite

chain, or far enough from the end in a component ending in a 1- or 2-cycle. However,
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these possibilities are not always interchangeable. For example, a unar consisting only of

a 3-cycle is not 2-equivalent to a unar consisting only of a 4-cycle, since the latter has a

point x such that there exists a y with f(x) 6= y 6= x 6= f(y) and the former does not, but if

we append another component Z containing some z 6= f(z) to the structure we would find

that the disjoint union of Z with a 3-cycle is now 2-equivalent to the disjoint union of Z

and a 4-cycle. In terms of the unar-characteristic, the distinction is, as ever, that there are

those points with x 6= f(x) 6= f(f(x)) 6= x where {y : y 6= f(x) and f(y) = x} is inhabited

or empty, and either with or without the two additional 1-types of point occurring in the

structure. We also note that a point x of character (4, 0, 0, 0) is impossible in a unar.

The totality of f requires that f(f(f(x))) exist, but f(f(f(x))) 6= x, as x’s character has

second component 0 so x must have no predecessors. If f(f(f(x))) = f(f(x)), then x’s

character would have third component 1 to reflect this, and if f(f(f(x))) 6= x, f(f(x)),

then x’s character would have fourth component 1. It is therefore impossible for a point

to have character (4, 0, 0, 0), as this leaves no possible values for f(f(f(x))) to take.

In all of these cases, any character of the form (∗, 1, ∗, ∗), (∗, ∗, 1, ∗) or (∗, ∗, ∗, 1), or

for that matter any character of type 2, 3, or 4, implies the existence of points elsewhere,

which must of course have (validly co-occurring, but not necessarily distinct) characters

of their own.

Diagrams of points of each type may be found in Figure 6.4. The reader is encouraged

to recall or refer back to this during the proof of Theorem 33. The first component

of the character gives the “type” of point (describing the behaviour of f and f2), the

second indicates whether it has predecessors, the third indicates whether there are 1-loops

elsewhere and the fourth indicates whether there are non-1-loop points elsewhere.

The first two components of the character determine the shape of the unar locally,

while the latter two relate to more global behaviour.

Note that the third component of the character of most of the points must be identical,

in the following sense. If some point x ∈ X has character (∗, ∗, 1, ∗), then there is some

y ∈ X with f(y) = y and f(x) 6= y. But then y will also have this relationship to any

other point z 6= y, unless f(z) = y, and so any other point z meeting this condition must

also have character (∗, ∗, 1, ∗). Moreover, if there are two or more 1-loops, say f(y1) = y1
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1 2 3 4 4

Figure 6.4: The minimal unars realising points of types 1, 2, 3, 4 and 4 again respectively,

as labelled. The dotted lines and points are present if and only if the second component

of the character of the indicated point is 1. Points of type 4 may also arise in a triangle as

shown in the fifth diagram, in which case they always have second character component

1.

and f(y2) = y2, then no point can be equal to or a predecessor of both of these, and so

every point in the structure will have character (∗, ∗, 1, ∗), including y1 and y2.

Likewise, a witness to the fourth component of some character being 1 would typically

witness this for most of the points of the unar. If some point x ∈ X has character

(∗, ∗, ∗, 1), then there is some y ∈ X with y 6= f(y), x, f(x). Again, y will also have this

relationship to any other point z unless z = y or f(z) = y, and so any such point z will

have character (∗, ∗, ∗, 1). Unlike for the third component, it is possible to have two points

z1 6= z2 with z1 6= f(z1) and z2 6= f(z2) and still have a character of the form (∗, ∗, ∗, 0)

arise, if these are the only two such points and f(z1) = z2 (or vice versa), in which case z1

has character (4, 0, 1, 0). If there are three or more such points, however, no point can be

equal to or a predecessor of all of them simultaneously, and so for every point a there will

exist some b 6= a, f(a) with f(b) 6= b witnessing that the fourth component of a’s character

is 1.

We consider first the sets of pairs (x, y) for which a character of the form (x, y, z, w)

arises; and then determine what the possible values of z and w in each character are.



6.4. Unars 105

There are 4 possible values of x and 2 of y, which gives at most 28 = 256 possible sets of

(x, y) arising; in practice, some of these sets cannot arise, and most of them give only one

possibility for z and w due to the above described global behaviour of these components,

so the task is not quite as daunting as it may at first appear.

Theorem 33. There are 133 2-equivalence classes of unars.

Proof. We determine the possible sets of characters that may arise, each of which corre-

sponds to an equivalence class as shown in Lemma 32. The structure of this proof is as

follows: first, we systematically consider all sets of characters that include a type 3 charac-

ter, in Cases 1a−1e. Then, we consider sets of characters including a type 1 character but

no type 3 character in Cases 2a− 2c, and finally, we consider sets of characters including

only type 2 and 4 characters in Case 3. Note that because the presence of 1-loops changes

the third component of the character of all other points, Cases 1a and 1b are analogous

to Case 1c, Case 1d is analogous to Case 1e, and Case 2c is analogous to Case 3. The

relationship between the fourth components of characters is slightly less straightforward

and so this correspondence is less obvious.

If there is any point x of character (3, ∗, ∗, ∗), then we have both x 6= f(x) and f(x) =

f(f(x)), so certainly any point y 6= x, f(x), with f(y) 6= x, f(x) must have character

(∗, ∗, 1, 1). Note that we do not assume that the type 3 character arising in each case is the

only type 3 character present; rather, this condition precludes most 3-characters from co-

occurring, with the exceptions of {(3, 0, 0, 1), (3, 1, 0, 1)} and {(3, 0, 1, 1), (3, 1, 1, 1)} which

arise together in Cases 1d and 1e respectively. We consider each possibility in turn.

Case 1a If x has character (3, 0, 0, 0), then there are no other points than x and f(x),

so there is precisely one equivalence class of unar satisfying this. The unar with set {x, y}

and function f such that f(x) = y, f(y) = y is the sole example of this case, and the

characters arising here are {(3, 0, 0, 0), (1, 1, 0, 0)}.

Case 1b If x has character (3, 1, 0, 0), then again there are no other points than x,

f(x), and x’s predecessors, so this gives two equivalence classes. If x has precisely one

predecessor, then the characters {(3, 1, 0, 0), (1, 1, 0, 1), (4, 0, 1, 0)} are realised, for example

in the unar on {x, y, z} with f(x) = y, f(y) = y, f(z) = x. If x has more than one prede-



106 Chapter 6. Other structures

cessor, then the characters realised are {(3, 1, 0, 0), (1, 1, 0, 1), (4, 0, 1, 1)}, and an example

of this is obtainable by duplicating the point z in the previous example.

Case 1c If x has character (3, 0, 1, 0) or (3, 1, 1, 0), then all other points z 6= x, f(x)

(and f(z) 6= x) satisfy f(z) = z, and there must exist at least one such point. These z

cannot have a predecessor, or that predecessor would fail this condition, so their character

must be (1, 0, 1, 1). Therefore, {(3, 0, 1, 0), (1, 1, 1, 0), (1, 0, 1, 1)}, {(3, 1, 1, 0), (1, 1, 1, 1),

(4, 0, 1, 0)} and {(3, 1, 1, 0), (1, 1, 1, 1), (4, 0, 1, 1)} are the only possible sets in this case,

and these are each realisable by appending another point w with f(w) = w to the unars

from the previous three cases.

Case 1d If x has character (3, 0, 0, 1) or (3, 1, 0, 1), then every other point z 6= x, f(x)

must have z 6= f(z). The point f(x) is fixed by f , but is the only such point, so any other

point z must either have character (∗, ∗, 1, ∗) or satisfy f(z) = f(x). Likewise, any point

not immediately preceding x must have character (∗, ∗, ∗, 1). Points of type 1 may not

occur, apart from f(x) which must exist and has character (1, 1, 0, ∗).

If f(x) has character (1, 1, 0, 0), then every point z has f(z) = f(x) and the set of

characters arising is {(3, 0, 0, 1), (1, 1, 0, 0)}.

Otherwise, f(x) has character (1, 1, 0, 1), for which there are multiple options which

we now enumerate. First we consider any points y of type 2, if these exist. These satisfy

f(f(y)) = y, so they cannot have f(y) = x or f(y) = f(x). Their character, if present,

must therefore be of the form (2, ∗, 1, 1).

Now, we consider whether any points z of type 3 exist. All of the previously considered

(3, ∗, ∗, ∗) characters are incompatible with x and hence cannot arise, since x’s possible

characters (3, 0, 0, 1) and (3, 1, 0, 1) did not arise as a possibility in any of the preceding

cases. Points z of character (3, ∗, 1, 1) are also impossible, as they require at least two

fixed points of f . Therefore, z must have character (3, ∗, 0, 1).

Finally, considering type 4 points, we note that (4, 0, 1, 0) is an impossible character,

as it precludes x’s character from having final component 1, so type 4 points w must

have character (4, ∗, 1, 1) or (4, 1, 1, 0). If w has character (4, 1, 1, 0), then x has char-

acter (3, 1, 0, 1) and the whole unar is determined. We must have f(w) = x, since the

final component of the character of w is 0, and there must further exist a such that
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f(a) = w, and no other points. The set of characters arising in this case is therefore

{(3, 1, 0, 1), (1, 1, 0, 1), (4, 1, 1, 0), (4, 0, 1, 1)}.

This leaves only cases in which the character (1, 1, 0, 1) is present. As well as (1, 1, 0, 1),

at least one of (3, 0, 0, 1) and (3, 1, 0, 1) must arise, and optionally (2, 0, 1, 1), (2, 1, 1, 1),

(4, 0, 1, 1) and (4, 1, 1, 1). We now go through the equivalence classes arising from these.

The character (4, 0, 1, 1) only arises before a point of character (∗, 1, ∗, ∗), so can only

occur before either (4, 1, 1, 1), (2, 1, 1, 1), or (3, 1, 0, 1). Points of character (3, 1, 0, 1)

and (2, 1, 1, 1) must have predecessors of character (4, 0, 1, 1) or (4, 1, 1, 1). (Of course,

(4, 1, 1, 1) requires both a predecessor and a successor, but these can also be of character

(4, 1, 1, 1) and so no additional characters are necessary when this arises.)

Subject to these restrictions, examples may be easily constructed of all remaining

combinations, by adding in the desired points. Points of character (3, 0, 0, 1) may be

added before f(x), as can (3, 1, 0, 1) with their predecessor points. The character (2, 0, 1, 1)

may be added by adding a 2-cycle, (2, 1, 1, 1) by adding a 2-cycle where both points also

have another predecessor, (4, 0, 1, 1) by prepending it to whichever point it precedes, and

(4, 1, 1, 1) by appending a triangle to the unar. As there are many combinations, and

similar situations will arise later in the proof, we shall not explicitly describe examples

for each, but this method allows one to easily construct a member of any particular

equivalence class in this subcase and demonstrates that the above conditions on existence

of predecessors of (4, 0, 1, 1) and successors of (3, 1, 0, 1) and (2, 1, 1, 1) are sufficient as well

as necessary.

There are therefore 6 classes of unars without either (3, 1, 0, 1) or (4, 0, 1, 1), 6 classes

of unars without (3, 1, 0, 1) but with (4, 0, 1, 1), 8 classes of unars with (3, 1, 0, 1) but

without (4, 0, 1, 1), and 16 classes of unars with both (3, 1, 0, 1) and (4, 0, 1, 1). We also

recall that we already identified two other possible sets of characters earlier in this case:

{(3, 0, 0, 1), (1, 1, 0, 0)} and {(3, 1, 0, 1), (1, 1, 0, 1), (4, 1, 1, 0), (4, 0, 1, 1)}. This gives a total

of 2 + 6 + 6 + 8 + 16 = 38 equivalence classes containing a character of the form (3, ∗, 0, 1).

Case 1e In the final type 3 case, let x have character (3, ∗, 1, 1), which requires there

to exist both another z 6= f(x) with f(z) = z, and some other point y 6= x with f(y) 6= y.

If x has this character, then f(x) has character (1, 1, 1, ∗).
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Suppose first that f(x) has character (1, 1, 1, 0). Then every y has either f(y) = y or

f(y) = f(x), and there must exist at least one of each, by the third and fourth components

of x’s character. Therefore x must have character (3, 0, 1, 1), as it has no predecessor, and

the set of characters realised is {(3, 0, 1, 1), (1, 1, 1, 0), (1, 0, 1, 1)}.

We suppose for the remainder of this case that f(x) has character (1, 1, 1, 1). Then

there is some y with f(y) 6= y, f(x), as well as some z with f(x) 6= z = f(z). Then every

character present must be of the form (∗, ∗, 1, ∗), since no point w can give {z, f(x)} ⊆

{w, f(w)} ∪ {a : f(a) = w}. Similarly, the only way a point w can have a character

with fourth component 0 is if every point y with f(y) 6= y is equal to, a predecessor of,

or a successor of w. Having already established that x and f(x)’s characters have fourth

component 1, this implies that w is a predecessor of x, and in order for x’s fourth character

to be correct, all other such points must precede w. This gives us one equivalence class

of unars, realising the characters {(3, 1, 1, 1), (1, 1, 1, 1), (4, 1, 1, 0), (4, 0, 1, 1), (1, 0, 1, 1)}.

Otherwise, all characters must have the form (∗, ∗, 1, 1), and as in the previous case, we

have almost complete freedom as to which of these arise. The character (1, 1, 1, 1) must

exist by assumption, at least one of (3, 1, 1, 1) and (3, 0, 1, 1) must arise, and (2, 0, 1, 1),

(2, 1, 1, 1), (4, 0, 1, 1) and (4, 1, 1, 1) are optionally present.

If (4, 0, 1, 1) is present, then it must arise at a point preceding a point of character

(2, 1, 1, 1), (3, 1, 1, 1) or (4, 1, 1, 1), and (2, 1, 1, 1) and (3, 1, 1, 1) require predecessors of

character (4, 0, 1, 1) or (4, 1, 1, 1). The combinations are analogous to the previous case,

and so there are again 36 equivalence classes of this form, giving a total of 38 for Case 1e

and a grand total of 82 in Case 1.

Having categorised the 82 equivalence classes containing a point of type 3, we now

consider those with a point of type 1 but no point of type 3. If a point of type 1 had a

predecessor, then that predecessor would be of type 3, so in this case they cannot have a

predecessor and so their character must be of the form (1, 0, ∗, ∗).

Case 2a If x has character (1, 0, 0, 0) then x is the only point present and the characters

realised are {(1, 0, 0, 0)}.

Case 2b If x has character (1, 0, 1, 0) then there are only type 1 points present, but

at least two such, and the only characters realised are {(1, 0, 1, 0)}.
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Case 2c If x has character (1, 0, ∗, 1) then there are other points present of type 2

or 4. As in the previous two cases, if the third component of x’s character is 0 then it

is the only type 1 point present, and if it is a 1 then there is at least one other type 1

point present, but in either case only one type 1 character may arise. The other possible

characters are (2, ∗, 1, ∗) and (4, ∗, 1, ∗).

The character (4, 0, 1, 0) cannot arise in this case, since if z has this character then

f(f(z)) may be mapped nowhere but back to itself, and then f(z) is of type 3 which

is forbidden in this case. However, (4, 1, 1, 0) may arise, in which case f(f(f(z))) = z

(which was impermissible for (4, 0, 1, 0), which arises only at points with no predecessors).

This gives rise to four classes, depending on the third component of x and whether z has

another predecessor outside the triangle: {(1, 0, 0, 1), (4, 1, 1, 0)}, {(1, 0, 1, 1), (4, 1, 1, 0)},

{(1, 0, 0, 1), (4, 1, 1, 0), (4, 0, 1, 1), (4, 1, 1, 1)} and {(1, 0, 1, 1), (4, 1, 1, 0), (4, 0, 1, 1), (4, 1, 1, 1)}.

If (2, 0, 1, 0) is realised at a point z, then z is in a 2-loop with another point also of character

(2, 0, 1, 0), and no other points may arise, so the only sets of characters in which this may

occur are {(1, 0, 0, 1), (2, 0, 1, 0)} and {(1, 0, 1, 1), (2, 0, 1, 0)}. The character (2, 1, 1, 0) is

similar but has another predecessor, which must be of character (4, 0, 1, 1), so the possible

characters here are {(1, 0, 0, 1), (2, 1, 1, 0), (2, 0, 1, 1), (4, 0, 1, 1)} and {(1, 0, 1, 1), (2, 1, 1, 0),

(2, 0, 1, 1), (4, 0, 1, 1)}.

Having dealt with the characters with fourth component 0, the remaining equivalence

classes in this case realise only some subset of (2, 0, 1, 1), (2, 1, 1, 1), (4, 0, 1, 1), (4, 1, 1, 1),

and of course precisely one of (1, 0, 0, 1) and (1, 0, 1, 1). The by now familiar constraints

apply - if (4, 0, 1, 1) appears, then it has a successor of character (2, 1, 1, 1) or (4, 1, 1, 1),

and if (2, 1, 1, 1) appears, then it has a predecessor of character (4, 0, 1, 1) or (4, 1, 1, 1).

So for each of our two choices of type 1 character, there are six possibilities omitting

(4, 0, 1, 1), as in this case (2, 1, 1, 1) may only occur if (4, 1, 1, 1) occurs, and six realising

(4, 0, 1, 1), as in this case either (2, 1, 1, 1) or (4, 1, 1, 1) must also occur. As usual, examples

of each of these may easily be constructed by combining simple components realising the

desired characters. Adding these 24 to the eight classes already identified gives 32 cases

for Case 2c and a total of 34 for Case 2.

Case 3 Finally, we assume that there are no points of either type 1 or type 3, and thus
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all points are either of type 2 or 4. The attentive reader will recall, and the exhausted

reader will be relieved to note, that this case is analogous to Case 2. Appending a point z

with f(z) = z to any Case 3 equivalence class will yield a corresponding Case 2 equivalence

class, adding a second point y with f(y) = y will give a different Case 2 class, and removing

all type 1 points from a Case 2 class will likewise give a Case 3 equivalence class. The

characters of the points of types 2 and 4 will be unchanged in their first, second and fourth

components, but their third component is 0 in Case 3 and 1 in Case 2. Therefore, all 32

of the equivalence classes in Case 2c have a corresponding equivalence class omitting the

point of character (1, 0, 0, 1) or (1, 0, 1, 1) and changing the third component of all other

characters to 0. This map is two-to-one, so there are precisely 16 equivalence classes of

unars realising at least one character of type 2 or 4:

{(4, 1, 0, 0)}, {(4, 1, 0, 0), (4, 0, 0, 1), (4, 1, 0, 1)}, {(2, 0, 0, 0)}, {(2, 1, 0, 0), (2, 0, 0, 1),

(4, 0, 0, 1)}, and the twelve valid combinations of (2, 0, 0, 1), (2, 1, 0, 1), (4, 0, 0, 1), and

(4, 1, 0, 1).

These are all the equivalence classes where all points have type 2 or 4 and there is at

least one point present; to complete the proof, we must also count the equivalence class

of the unar realising no characters of these types - the empty unar, whose counterparts

under the above map are the unars containing only type 1 points, in Cases 2a and 2b.

This gives a total of 17 equivalence classes in Case 3.

We have identified the 82 equivalence classes realising a type 3 point, 34 classes realising

a type 1 point but no type 3 point, and 17 classes realising neither, for a total of 133

equivalence classes.

6.4.3 n-equivalence of unars

We remark that in unars, only local behaviour may be distinguished, in contrast to struc-

tures with an order relation or cyclic order relation. In a partial order, for instance, < is

transitive, and we may immediately determine that x < y (where this holds) even when

there are several or even infinitely many points in between x and y. In a unar, however,

if fm(x) = y for some m large relative to the number of moves n in the game (m > 2n,

for example), then x does lie “upstream” of y but this is not demonstrable within the
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time limit of the game. No single first-order sentence expresses upstreamness in general,

although the disjunction of the infinite family of formulae fm(x) = y for m ∈ N would

express this. With a finite game, however, we are only able to verify this for finitely many

m. Due to this behaviour, finiteness is not a distinguishable property. For example, an

infinite unar consisting of a chain {fk(x) : k ∈ Z} with f i(x) 6= f j(x) whenever i 6= j, is

n-equivalent to any sufficiently large finite cycle, such as the cycle {fk(x) : 0 ≤ k ≤ 2n}

with f2n(x) = x, which has length 2n.

Lemma 34. In unars, a cycle of length 2n−1 is n-equivalent to any longer cycle.

Proof. By Corollary 18, we can distinguish finite cycles in cyclic orders of lengths 1, . . . ,

2n−1−1, with cycles of length 2n−1 indistinguishable from longer cycles. We may translate

this result to unars by defining a cyclic relation R on a cycle C contained in a unar (X, f)

such that R(x, y, z) holds for x, y, z ∈ C if and only if ∃a(fa(x) = y) and (∀b < a)(f b(x) 6=

z). Since z is in C we will of course have f c(x) = z for some c > a. The relation R holds

when x, y, z occur in that order when following the arrows in the appropriate direction.

Note the positive direction here is the direction of f (as opposed to the direction of f−1),

rather than anticlockwise in any particular planar embedding of the directed graph of

(X, f). However, this still presents a cyclic order, to which we may apply Corollary 18

and discover that we may distinguish only the cases where C has size 1, . . . , 2n−1− 1, and

that cycles of length ≥ 2n−1 are mutually indistinguishable.

Therefore, only cycles of length 2n−1 or shorter may be distinguishable in unars.

It is possible to distinguish shorter cycles, however, and in fact we may distinguish the

number of small cycles with some granularity.

Recall that every unar consists of a union of finite cycles and infinite chains, with anti-

arborescences (downwards-pointing directed graph trees), attached to some of the points

of the cycles and chains. General equivalence of unars depends both on the lengths of

cycles and on the existence and structure of points in the anti-arborescences leading into

these cycles and chains.
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6.4.4 Injective unars

In the special case of injective unars, which have been studied in [1], these anti-arborescences

are just single points, and the whole unar is simply the union of finite cycles and infinite

chains, where the infinite chains may either have order type Z, in which case they are

infinite in both directions, or N, in which case they have a first element and are only

infinite in one direction.

We may therefore characterise the injective unars up to n-equivalence by the number

of 1, . . . , 2n − 1 cycles up to some number of maximum discernible depending on length

and n, and the number of copies of N (that is, infinite chains with an endpoint at the

beginning), again up to some maximum depending on n. Note that components of order

type Z are indistinguishable from finite cycles that are sufficiently large compared to n,

and so do not need to be considered separately.

One possible type of component in injective unars is a chain of order type N, that is,

chains {xi : i < ω} with f(xi) = xi+1 and where x0 has no predecessors. These are easy

to distinguish in injective unars (unlike in unars in general), because the x0 points at the

start of these chains are the only points without predecessors.

Lemma 35. If the injective unars X and Y are n-equivalent, then either X and Y have

the same number of chains of order type N, or they both have at least n−1 chains of order

type N.

Proof. We prove the contrapositive. Suppose that X has more chains of order type N

than Y , and that Y has fewer than n− 1 chains of order type N. Then Player I may play

a distinct point xi ∈ X without a predecessor on every move i ≤ n − 1. By assumption,

there are fewer than n − 1 chains of order type N in Y , so Player II cannot play n − 1

distinct points without predecessors. On her nth move, Player I may win by playing a

predecessor of one of Player II’s previous moves, and so X and Y are not n-equivalent.

The other possible type of component is a finite cycle. In the extreme case of 1-cycles,

an n-move game allows us to discern whether there are 1, . . . , n−1 many 1-cycles present,

or whether there are at least n. For 2-cycles, we can certainly verify that there are at least
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k many 2-cycles in 2k moves, by playing both of the points in each of k distinct 2-cycles.

In fact, k + 1 moves suffices, as we shall see.

Lemma 36. If the injective unars X and Y are n-equivalent, then for every cycle length

m ≤ n, either X and Y have the same number of m-cycles, or they both have at least

(n−m+ 1) many m-cycles.

Proof. We prove the contrapositive. Suppose that X has more m-cycles than Y , and that

Y has fewer than (n−m+1) m-cycles. Then Player I has a winning strategy in Gn(X,Y )

as follows: on her ith move for i ≤ (n −m + 1), Player I plays a point xi ∈ X that lies

in a distinct m-cycle to all previous xj . Since, by assumption, there are not this many

m-cycles in Y , Player II must at some point respond with a point yj ∈ Y that either does

not lie in an m-cycle, or lies in the same m-cycle as a point already played.

Player I then plays f(xj), f
2(xj), . . . , f

m−1(xj) on her remaining moves. If yj does

not lie in an m-cycle, then Player II is unable to respond with z1, . . . , zm−1 such that

f(yj) = z1, f(zj) = zj+1 for each j < m − 1, and f(zm−1) = yj . If yj lies in the same

m-cycle as a point ya already played on the ath move, for some a < j, then for some b < m

we have f b(yj) = ya, but f b(xj) 6= xa, because xj and xa lie in different cycles. Either

way, Player I wins, and so X and Y are not n-equivalent.

We remark that the above conditions are not sufficient, that is, pairs of unars satisfying

weaker conditions may be equivalent. For example, if Y is the union of precisely n − 1

many 2-cycles, and X is the union of n many 2-cycles, then Player I may win Gn(X,Y )

by playing a point in every 2-cycle. This happens because there are no other points in Y .

Another, more general issue with the strategy above is that it is not optimally fast, as

Player I unnecessarily wastes moves. To give a bound on the number of moves required,

it assumes that Player I may distinguish an n-cycle from any other length of cycle in n

moves, but this distinction may in general require fewer moves. For example, if Player I

plays n unrelated points in a cycle of size 2n, and Player II’s n unrelated responses do not

also lie in a 2n-cycle, then these responses cannot form a cycle of points exactly distance

2 apart, and so Player I may win on the n+ 1th move by playing the point f(x) between

some already chosen points x and f(f(x)) such that their counterparts y and z in the other



114 Chapter 6. Other structures

structure do not have f(f(y)) = z. This allows Player I to distinguish 2n-cycles in only

n+1 moves, rather than 2n moves. Of course, Player I may instead play every third point

of a cycle rather than every second, in which case she would play the two intermediate

points in whichever interval was not of size three in the other structure. Similarly, she

could play every kth point and then play the at most k points between the appropriate

pair, for a total of dmk e+ k moves to distinguish an m-cycle from an (m− 1)-cycle. This

strategy allows her to distinguish cycles of size quadratic in n within n moves, but again

we can do better by avoiding playing all of the k consecutive points within the interval. A

better strategy would be to repeatedly bisect the cycle to give an exponential relationship

between number of moves and size of cycle distinguishable, in a way roughly analogous to

an interval bisection strategy on finite linear orders, though the precise details differ due

to the difference in the relation under consideration.



Chapter 7

Pebble games

7.1 Pebble games

As well as considering ordinary Ehrenfeucht-Fräıssé games of various lengths, we can also

restrict the number of variables that may be bound at one time. The notion of investigating

which theories may be distinguished using a limited number of bound variables, which may

be re-assigned, was investigated by Immerman and Kozen [14]. In this system, we permit

reuse of variables in a formula, such as in the formula ∃x(∃y : y > x ∧ (∃x : x > y)),

which asserts the existence of a chain of three points, but manages to do so using only two

distinct variables - x and y. The x has been reused, or reassigned, when we could more

typically have used a new variable and written the formula as ∃x(∃y : y > x∧(∃z : z > y)).

Determining equivalence up to a limited number of reusable variables corresponds to

playing a modified Ehrenfeucht-Fräıssé game, known as a pebble game.

In the pebble game Gkn(A,B), each player is issued k pebbles, one of each colour

c0, ..., ck−1, and the game lasts for n turns. The players take turns to place pebbles on

points of A and B as in the normal Ehrenfeucht-Fräıssé game of length n on A and B. On

each turn, Player I may either place a pebble of a new colour, if any colours remain to be

played, or pick up a pebble that has already been played and move it to the new point. If

she moves a pebble that has previously been played, then its previous position is no longer

distinguished. The substructures whose equivalence is to be considered are those marked

by the pebbles, not a complete history of the pebbles’ previous positions. Moving the
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pebble to a new point in this way corresponds to reusing a variable in a formula. Player

II must respond to each Player I move by moving the pebble of the same colour, and the

remainder of the rules are as one would expect for an Ehrenfeucht-Fräıssé game. If Player

II has a winning strategy in Gkn(A,B), then we say that A and B are (n,k)-equivalent,

which we may also write A ≡kn B.

Lemma 37. For all n, k ∈ N, ≡kn is an equivalence relation.

Proof. We may see that it is reflexive, since A ∼= A so Player I certainly cannot have a

winning strategy in Gkn(A,A). Symmetry is also clear from the rules of the Ehrenfeucht-

Fräıssé game, as the games Gkn(A,B) and Gkn(B,A) are identical. To show transitivity,

suppose that X ≡kn Y and Y ≡kn Z, and consider Gkn(X,Z). If Player I makes a move

x in X, Player II can think of a “move” y ∈ Y according to her winning strategy σ in

Gkn(X,Y ), and then use y to find a move z ∈ Z according to her winning strategy τ in

Gkn(Y,Z). Or, if Player I makes a move z ∈ Z, then Player II finds y ∈ Y according

to τ and then x ∈ X according to σ. Because these moves come from composing the

winning strategies σ and τ which preserve relations, they must have the correct relation

to all previous moves, and must occur with the correctly coloured pebble. Repeating this

process each move therefore gives Player II a winning strategy on Gkn(X,Z), and so ≡kn is

transitive.

We remark that there must be finitely many ≡kn-equivalence classes, since there are

only finitely many inequivalent first order formulae of quantifier depth at most n that can

be expressed using at most k distinct variables, and also since these equivalence classes

are a coarser partition than the ≡n equivalence classes, of which we already know there

are finitely many by Lemma 7.

We note a few relationships between pebble games and standard Ehrenfeucht-Fräıssé

games. If n ≤ k then Player I could choose to use a new colour of pebble for every

move. It never harms Player I to keep all previously played pebbles in position, which is

what happens when she uses a new colour every move, so she has a winning strategy in

Gn+m
n (A,B) for m ≥ 0 if and only if she has one in the usual Ehrenfeucht-Fräıssé game

Gn(A,B). If n > k, then certainly any winning strategy for Player I in Gkn(A,B) would



7.2. Pebble games on linear orders 117

still induce a winning strategy in Gn(A,B), but the converse need not (and does not in

general) hold. That is, it is possible to have A,B such that A ≡kn B but A 6≡n B; however,

A ≡n B implies that A ≡kn B for all k.

We also note that if j < k, then A ≡kn B implies A ≡jn B, since any sequence of moves

that Player I might play in Gjn(A,B) could also be played in Gkn(A,B), and so Player

II’s winning strategy in Gkn(A,B) gives her a valid winning sequence of moves to play

in response. If we consider the subset of partial orders consisting of only the m-element

antichains for all m ∈ N (including 0), we note that there are (k+1) many ≡kn-equivalence

classes: one containing the empty antichain, (k − 1) classes each containing only one

nonempty antichain with size less than k, and one class containing all antichains of size

≥ k. Therefore, for j < k, ≡kn gives a strictly finer partition of the partial orders into

equivalence classes than ≡jn does.

7.2 Pebble games on linear orders

Immerman and Kozen show that three pebbles suffice to distinguish linear orders up to

elementary equivalence [14]. This also holds for coloured linear orders.

Theorem 38. Let A and B be coloured linear orders. Then A ≡n B if and only if A ≡3
n B.

Proof. If A 6≡3
n B then Player I’s winning strategy in G3

n(A,B) induces a winning strategy

in Gn(A,B) by disregarding the pebbles, so A 6≡n B.

Suppose that A 6≡n B. Then Player I has a winning strategy in Gn(A,B). We give a

related strategy for Player I in the pebble game G3
n(A,B), in which the same points are

chosen but only three colours of pebble are used. By a judicious choice of which pebble

to move at each of her moves, Player I may restrict play at each move of G3
n(A,B) to the

same sequence of intervals as in her winning strategy on Gn(A,B), and therefore win in

the same number of moves.

By Theorem 9, there exists a1 ∈ A (without loss of generality) such that for all b1 ∈ B

with F (a1) = F (b1), either a<1 6≡n−1 b
<
1 or a>1 6≡n−1 b

>
1 ; the first move of Player I’s strategy

is to place a red pebble on a1. Whatever Player II’s response b1, either a<1 6≡n−1 b
<
1 or
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a>1 6≡n−1 b
>
1 , without loss of generality suppose the former. Then Player I may again find

some a2 < a1 such that for all b2 < b1, either {a ∈ A : a < a2} 6≡n−2 {b ∈ B : b < b2} or

{a ∈ A : a2 < a < a1} 6≡n−2 {b ∈ B : b2 < b < b1}; this time she places a blue pebble, and

on her third move she places the green pebble.

For k > 3, there will always be a valid winning-strategy kth move for Player I in the

non pebble game Gn(A,B); we need only to show that the pebble moved may be chosen to

maintain the restriction to the same subinterval as the same move of the non-pebble game.

If the two pairs of pebbles that did not move on the (k − 1)th turn were at pa, qa ∈ A

and pb, qb ∈ B with pa < qa and pb < qb, then the (k − 1)th move ak−1 must be in either

{a ∈ A : a < pa}, {a ∈ A : pa < a < qa}, or in {a ∈ A : qa < a}. In the former

case, we move the pebble on qa on the kth turn; in the latter, we move the pebble on

pa. If Player I’s (k − 1)th move was to place a pebble on r ∈ {a ∈ A : pa < a < qa},

then we may determine the pebble to move on Player I’s kth move based on Player II’s

(k− 1)th move: any non-losing move b for Player I must lie between pb and qb, and either

[pb, b] 6≡n−k+1 [pa, a] or [b, qb] 6≡n−k+1 [a, qa]. In the former case, we wish to continue the

game on the subintervals [pa, a] and [pb, b], so Player I moves the pebble on qa or qb for

her kth move; in the latter case, she moves the pebble on pa or pb.

Player I is therefore able to select a pebble to move at each move of G3
n(A,B) such

that subsequent moves are restricted to the same intervals she uses to win in Gn(A,B).

Any valid sequence of moves for Player II will therefore also be valid in Gn(A,B), so since

Player II loses Gn(A,B) she also has no winning strategy in G3
n(A,B), and so A 6≡3

n B.

Given only one pebble, which would have to be moved every turn, it is clear that any

two nonempty linear orders would be equivalent in a game of any length. For two pebbles,

there is an interesting intermediate level of detail.

Let the upper point number uA of a linear order A be 0 if A has no greatest element.

If A has a greatest element a, and A\{a} has upper point number u, let the upper point

number of A be u+1. Let the lower point number lA of a linear order be the corresponding

notion concerning least elements. These point numbers are the size of the largest finite

initial and terminal segments. If there is no nonempty finite initial or terminal segment,
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we have uA = 0 or lA = 0. If there are initial or terminal segments of arbitrary finite size,

we take uA =∞ or lA =∞. We remark that, since the games have finite length, it is not

necessary to distinguish between cofinalities of different infinite sizes.

In the game G2
n(A,B), we care about the existence or nonexistence of the top n − 1

and bottom n − 1 elements, where n is the length of the game. Let the upper points

of A be UA = {a ∈ A : |{b : b > a}| < n − 1}, and similarly let the lower points

LA = {a ∈ A : |{b : b < a}| < n−1}. If uA ≥ n−1 then UA will have size n−1; otherwise

it will be smaller. If A has no largest element, then UA = ∅. Likewise, if lA ≥ n− 1 then

LA has size n− 1, and if A has no least element, then LA = ∅.

Theorem 39. Let A and B be linear orders, and n a positive integer. Then Player II

wins the two-pebble game G2
n(A,B) if and only if the following hold: min(uA, n − 1) =

min(uB, n−1); min(lA, n−1) = min(lB, n−1); |UA∩LA| = |UB∩LB|; and (A = LA∪UA

if and only if B = LB ∪ UB).

Proof. We assume the above conditions hold and construct a winning strategy for Player

II in G2
n(A,B), in the above cases. It is immediate from the equalities above that, for any

k ≤ n− 2, there is a point x ∈ A with precisely k points above it in A if and only if there

is a point y ∈ B with precisely k points above it in B, and likewise for belowness.

Moreover, a point x ∈ A can only be in both the first n− 1 points and the last n− 1

points if |UA ∩LA| > 0. This implies that |A| < 2n− 2 and in fact gives us a unique finite

linear order for A: uA = lA = m < n− 1 implies that |A| = m, and uA ≥ n− 1, lA ≥ n− 1

and |UA ∩LA| > 0 implies that A is the linear order of size 2n− 2− |UA ∩LA|. The above

equalities imply that B must be a linear order of the same size as A, and so we also deduce

that for any k1, k2 < n − 2, there is some point x ∈ A with precisely k1 points above x

and precisely k2 points below it if and only if there is some point y ∈ B with precisely k1

points above y and precisely k2 points below it.

We show that Player II can, on the mth move, match Player I’s moves in the first or

last (n−m− 1) elements, in the sense that Player II plays a point which is kth from the

top or bottom for some k ≤ (n−m− 1) only in response to a Player I move kth from the

top or bottom.
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If Player I plays a move x which is kth from the top of A for some k ≤ (n −m − 1),

Player II’s strategy is to respond with the point y ∈ B which is kth from the top of B.

Similarly, if Player I plays some x which is kth from the bottom of one structure, then

Player II should respond by playing the point kth from the bottom of the other structure.

Note that if Player I’s move is both k1th from the top and k2th from the bottom of A, then

the points k1th from the top and k2th from the bottom of B will be the same point, so

these requirements are mutually satisfiable. We observe that these moves give the correct

ordering with the other pair of pebbles whether the other pebbles are jth from the end

for j < k or whether they are further in the middle.

If Player I plays a move x on her mth turn which is not kth from the top or bottom of

A for some k ≤ (n −m − 1), then Player II responds by playing a point which is also at

least (n−m−1)th from the top or bottom, and which respects the ordering with the other

pebble. We show that this is always possible. On the first move, our condition A = UA∩LA

if and only if B = UB ∩ LB guarantees that there will be a point a ∈ A\(UA ∩ LA) if and

only if there is a point b ∈ B\(UB ∩ LB), and the other pair of pebbles have not yet

been placed, so a and b will be valid Player II moves in response to any Player I moves in

B\(UB ∩ LB) and A\(UA ∩ LA), respectively.

On subsequent moves, either Player I has only moved the pebble of the first colour, in

which case Player II responds as before, or Player I places a pebble of the second colour

while the pebbles of the first colour are still in play. Let the pebbles coloured c1 be on

a1 and b1, and let Player I play her pebble coloured c2 on her mth move. Since the c1

coloured pebbles were placed on the (m − 1)th move or earlier, they were not played in

the (n−m) highest or lowest points. This implies that there are at least (n−m) points

above a1, (n−m) points below a1, (n−m) points above b1, and (n−m) points below b1,

of which at most (n −m − 1) points from each of these sets are forbidden to be played

as Player II’s mth move. Therefore, whether Player I has moved the c1 coloured pebble

above or below a1 or b1, there exists a point above or below b1 or a1 respectively to which

Player II may (and should) move her c1 coloured pebble. This move gives the correct

ordering between pebbles and respects the desired exclusion zones.

Choosing Player II’s moves as described above always gives corresponding pebble or-



7.2. Pebble games on linear orders 121

derings between the two structures, and so this gives a winning strategy for Player II

whenever these equalities hold.

Now, we provide a winning strategy for Player I in case the four requisite equalities

do not hold. Suppose that min(uA, n − 1) 6= min(uB, n − 1). Then uA 6= uB and one of

these is smaller than n − 1, without loss of generality let uA < uB and uA < n − 1. But

then there is a point b ∈ B which is (uA+1)th from the top of B, but no point in A which

is precisely (uA + 1)th from the top of A (by definition of uA). Player I’s strategy is to

play b for the first move. If Player II responds by playing a point a ∈ UA, then Player I

plays the points which lie (uA + 2−m)th from the top of B as her mth moves for m ≥ 2,

alternating which colour pebble she moves. After uA + 1 moves this will have given an

increasing sequence of points in B of size uA + 1, so in order not to lose, Player II would

have had to play an increasing sequence of points in A of size uA + 1 beginning with a,

which is impossible.

If Player II instead plays a point in a 6∈ UA, then Player I selects an increasing sequence

of points above a of length n − 1 and plays those in increasing order, again moving one

colour pebble on even moves and the other on odd moves. In response, Player II is forced

to play an increasing sequence of points above b of length n − 1; however, there are only

uA < n− 1 points above b in B, and so Player II loses again.

The case where min(lA, n − 1) 6= min(lB, n − 1) is exactly analogous to that where

min(uA, n− 1) 6= min(uB, n− 1), with the orderings reversed.

For |UA ∩ LA| 6= |UB ∩ LB|, without loss of generality let |UA ∩ LA| > |UB ∩ LB|.

Then there must exist some a ∈ UA ∩ LA such that for some k1, k2 ≤ n − 1, a is k1th

from the top of A, a is k2th from the bottom of A, and there is no b ∈ B which lies both

k1th from the top of B and k2th from the bottom of B. (This is clear from a simple

counting argument - each element in UA ∩LA has a distinct (k1, k2), and so each element

in the smaller set UB ∩ LB may share its (k1, k2) with at most one element of UA ∩ LA.)

Player I’s strategy is therefore to play a on her first move, to which Player II’s response

b must either fail to be k1th from the top of B or to be k2th from the bottom of B,

without loss of generality assume the former. The rest proceeds as in the previous case -

if |{c ∈ B : c > b}| < (k1 − 1), then Player I plays consecutive points above a until Player
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II loses; if |{c ∈ B : c > b}| > (k1−1), then Player I picks an increasing sequence of length

k1 above b and plays that until Player II loses.

The final possible equality failure is that A = LA ∪ UA but B 6= LB ∪ UB (or vice

versa). In this case, Player I plays some b ∈ B\(LB ∪ UB). Player II’s response must

lie in A, so must be in either LA or in UA, so it must lie at most (n − 1)th from the

top or bottom of A (without loss of generality, assume the top). Since b 6∈ UB, Player I

may select an increasing sequence in B of length n − 1 and play this in increasing order

on subsequent moves, alternating which pebble is moved, and Player II cannot play an

increasing sequence in A of the same length, so this strategy wins for Player I.

Corollary 40. There are n2 + 2n− 1 (n, 2)-equivalence classes of linear orders.

Proof. By Theorem 39 above, the (n, 2)-equivalence class of A depends only on |UA|, |LA|,

|UA∩LA| and whether A\(UA∪LA) is empty. We may therefore enumerate the possibilities

using four cases:

Case 1: UA∩LA = ∅, A\(UA∪LA) 6= ∅, |UA| = x, |LA| = y. There are n2 equivalence

classes of this form, since 0 ≤ x, y ≤ n − 1 and each distinct (x, y) gives a distinct

equivalence class. One choice of representatives for these equivalence classes is y + Z+ x,

where x, y ≤ n− 1.

Case 2: UA ∩ LA = ∅ and A\(UA ∪ LA) = ∅. Then A = UA + LA, so either UA =

LA = A = ∅ or |UA| = n− 1, |LA| = n− 1 and A = 2n− 2.

Case 3: |UA ∩ LA| > 0 and |UA| < n − 1. Then UA = LA = A and A is just a small

finite nonempty linear order of size at most n − 2, so there are n − 2 equivalence classes

in this case.

Case 4: |UA ∩ LA| > 0 and |UA| = n− 1. Then also |LA| = n− 1, and A = UA ∪ LA

is determined by how much they overlap. A ∈ {n − 1, n, . . . , 2n − 3}, so there are n − 1

possibilities in this case.

This gives a total of n2 + 2n− 1 (n, 2)-equivalence classes.
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7.3 Pebble games on partial orders of bounded width

Pebble games are so effective on linear orders because placing at a pebble at one point has

a powerful effect - the pebble lies either above or below every other point. It is therefore

possible to specify an interval with only two pebbles, which is directly relevant to the

above proof. When playing pebble games on partial orders, this is no longer the case, and

pebble games may be much weaker than normal Ehrenfeucht-Fräıssé games if there are

too few pebbles to pin down play to an area on which Player I can win. One crucial factor

here is the width of a partial order - the size of the largest antichain. Partial orders of

width 1 are linearly ordered.

Given a non maximal point x in a partial order P of width w, we can construct

antichains X = {x1, ..., xm} such that xi > x for each i ≤ m, xi ≮ xj for each i, j ≤ m,

and m ≤ w, by picking arbitrary incomparable points of P>x and adding them to the set.

When the antichain is maximal (in the sense that no other points may be added to it to

give an antichain, rather than maximal in the sense of the ordering), it constitutes a set

X of size ≤ w such that for all y ∈ P , either y ∈ X, or there exists some z ∈ X with

either z > y or y > z. This set lies above x, and we may likewise construct in a similar

way a maximal antichain lying below any non minimal point in P .

If the number of pebbles is too few relative to the width of a partial order, then we

will be unable to construct maximal antichains, and so Player I may be unable to narrow

down play to ever smaller subintervals. However, even having small enough width does

not guarantee that two partial orders will be equivalent in a pebble game.

Theorem 41. There exist partial orders P,Q of width 2 such that P 6≡3 Q but P ≡2
n Q

for all n.

Proof. Let P = {ai : i ∈ Z} ∪ {bi : i ∈ Z}, with the relations ai < aj and bi < bj for any

i < j. Let Q = {ci : i ∈ Z} ∪ {di : i ∈ Z}, with the relations ci < cj , di < dj , ci < dj and

di < cj for any i < j.

Then P and Q both have width 2, since any antichain of P may contain at most one

ai and at most one bj , and likewise for Q.
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We give a winning strategy for Player I in G3(P,Q), the three-move game without

pebbles. Player I should play c0, c1 and d1. These form a V shape with c0 < c1, c0 < d1

and c1 ≮ d1 ≮ c1. No such triplet of points exists in P , so any strategy for Player II loses.

Therefore P 6≡3 Q.

However, there exists a winning strategy for Player II in G2
n(P,Q). Let her strategy

be as follows: for her first move, she plays any point, say a0 or c0. On subsequent moves,

suppose without loss of generality that the blue pebbles lie on ai and cj , for some i and

j, and that Player I places the red pebble.

If Player I places the red pebble on ak for some k > i, then Player II plays her red

pebble on cj+1. Then both red pebbles are above their respective blue pebbles. Likewise,

if she places the red pebble on ck for some k > j, then Player II plays hers on ai+1.

If Player I places the red pebble on ak (or ck) for some k < i, then Player II plays her

red pebble on cj−1 (or ai−1), and both red pebbles are below their respective blue pebbles.

If Player I places the red pebble on any bk, then Player II places her red pebble on dj ,

the point of Q which is incomparable to cj , and both pairs of pebbles are incomparable.

If Player I plays dj , the one point of Q which is incomparable to cj , then Player II

plays bi, which is incomparable to ai.

If Player I plays dk for some k > j, then Player II plays ai+1, and both red pebbles are

above their respective blue pebbles, and if Player I plays dk for some k < j, then Player

II plays ai−1, and both red pebbles are above their respective blue pebbles.

Since each sequence is indexed by Z, Player II will never run out of points to play, and

so she can use the above strategy to ensure that the 2-element substructures indicated

by the pebbles are isomorphic after each of her moves. Player II therefore wins G2
n(P,Q)

with this strategy, and so P ≡2
n Q.
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Conclusion

We have seen that it is possible to determine the equivalence classes of a number of

relational structures by determining an appropriate notion of character. The success of

this method depends on the structures in question, and the extent to which matters

are complicated by the interaction of local and global properties. The cases of graphs,

considered in Section 6.2, and linear orders in Chapter 3, represent in some sense the two

extremes of this spectrum. In the former case, the relations that a point may hold to the

other points of the structure may be chosen entirely independently, giving 2|G| ways to

append a point to a graph G, but in the latter case, most sets of relations are impossible,

and due to the linearity constraint there are only at most |L| + 1 sets of relations a new

point may hold to the existing points L.

Partial orders and trees lie somewhere between these two, due to the intermediate

strength of the constraints on relations. Trees of course behave slightly more like linear

orders than partial orders do, since the branching is in only one direction and the other is

rather linear.

Directed graphs are rather similar to graphs, though arrows on the edges permit more

possibilities. A new point has an entirely free choice of how to relate to the existing points.

Unars are different both in that the injectivity provides a much greater restriction on these

relations, and in that a point x may have f(x) = x. These result in the existence of several

mutually exclusive small configurations that may hold in the immediate vicinity of any

point, allowing us to categorise them into types.



126 Chapter 8. Conclusion

8.1 Future work

In theory there is a lot of possible future work determining further equivalence classes

for these structures, but some may be more tractable than others. Some suggestions for

future work include:

• Proving or disproving Conjecture 25 on the n-equivalence of trees, or at least ex-

tending our partial result Theorem 26 to some wider subclass

• Determining the 3-equivalence classes of finite trees

• Classifying the injective unars up to n-equivalence, using results like Lemmas 36 and

35 and considering the combinations of components

• Classifying the totalisable partial cyclic orders, as discussed in Section 5.5

• Considering coloured versions of the structures featured here

• Extending the work on pebble games to other structures

• Investigating the equivalence conditions of structures not explored here, such as

preorders, hypergraphs, tournaments, betweenness relations, B/C/D relations, par-

ticular kinds of partial order or graph, and other relational structures
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