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Abstract

Despite the best efforts of programmers and component manufacturers, software does

not always work perfectly. In order to guard against this, developers write test suites that

execute parts of the code and compare the expected result with the actual result. Over

time, test suites become expensive to run for every change, which has led to optimisation

techniques such as test case prioritisation. Test case prioritisation reorders test cases

within the test suite with the goal of revealing faults as soon as possible.

Test case prioritisation has received a lot of research that has indicated that prioritised

test suites can reveal faults faster, but due to a lack of real fault repositories available

for research, prior evaluations have often been conducted on artificial faults. This thesis

aims to investigate whether the use of artificial faults represents a threat to the validity

of previous studies, and proposes new strategies for test case prioritisation that increase

the effectiveness of test case prioritisation on real faults.

This thesis conducts an empirical evaluation of existing test case prioritisation strategies

on real and artificial faults, which establishes that artificial faults provide unreliable

results for real faults. The study found that there are four occasions on which a strategy

for test case prioritisation would be considered no better than the baseline when using

one fault type, but would be considered a significant improvement over the baseline when

using the other. Moreover, this evaluation reveals that existing test case prioritisation

strategies perform poorly on real faults, with no strategies significantly outperforming

the baseline.

Given the need to improve test case prioritisation strategies for real faults, this thesis

proceeds to consider other techniques that have been shown to be effective on real faults.

One such technique is defect prediction, a technique that provides estimates that a class

contains a fault. This thesis proposes a test case prioritisation strategy, called G-Clef,

that leverages defect prediction estimates to reorder test suites. While the evaluation

of G-Clef indicates that it outperforms existing test case prioritisation strategies, the

average predicted location of a faulty class is 13% of all classes in a system, which shows

potential for improvement. Finally, this thesis conducts an investigative study as to

whether sentiments expressed in commit messages could be used to improve the defect

prediction element of G-Clef.

Throughout the course of this PhD, I have created a tool called Kanonizo, an open-

source tool for performing test case prioritisation on Java programs. All of the experi-

ments and strategies used in this thesis were implemented into Kanonizo.
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Chapter 1

Introduction

Computer software has become a major part of global industry, with an estimated

$439 billion being spent on enterprise software in 2019 and a steady year-on-year in-

crease of around 9% [3]. Almost all businesses, whether they have 10 employees or

100,000 employees, can make use of computer software to make their jobs easier. Using

software instead of paper-based alternatives is often quicker, easier, more reliable and

more scalable.

The global demand for computer software has had a knock-on effect in the software

development industry. In the United Kingdom alone, there are an estimated 338,000

programmers and software development professionals employed as of 2018, compared

with 224,000 in 2011 [4].

Unfortunately, in practice, software does not always perform perfectly. This may be as

a result of incorrect logic used in the code (i.e. a “defect”), a component malfunction

(i.e. a “failure”) or the result of a human using the software incorrectly (i.e. an “error”).

While bugs are inevitable, companies aim to minimise the number of bugs that exist

in software. In particular, software bugs can be remembered because of their financial

cost (e.g. the Knight banking group $440m error [5]), because of the disaster involved

(e.g. the Ariane 5 Flight 501 [6]) or because they are simply funny (e.g. the Windows 98

crash during demonstration [7]). One of the most common ways to guard against bugs is

to write automated test cases. Test cases should execute a small part of the program as

a user would do, and ensure that the expected behaviour occurs. Software testers have

to attempt to envisage every possible way in which the software will be used in order

to cover every use case to ensure that there are no scenarios in which buggy behaviour

occurs.

1



Chapter 1 2

1.1 Regressions

Regressions are a specific type of software bug that occur when a change results in an

unintended side-effect somewhere else in the code [8]. Consider a small example that

involves a method divide(int x, int y) which returns the value of x
y , and a second

method invert(int x), which returns the value of 1
x , and internally calls divide(1,x).

The invert method may assume that divide returns an integer value regardless of the

input passed in, but a developer makes a change that states if(y==0) return null.

This change in itself may not change any observable behaviour for the divide method,

but may result in a regression when trying to use invert with the argument 0.

The existence of regressions causes a big problem in software testing. Since programmers

cannot assume that the development process is linear, and that new bugs can appear in

old parts of the code, it becomes necessary to re-execute all existing test cases whenever

a change is made, in order to provide confidence that previous issues have not resurfaced.

Whenever a regression is found, a developer will have to fix the code and add a new

regression test case to show that the fix has dealt with the regression. This test case will

then remain a part of the test suite indefinitely, such that if the regression re-occurs, the

test case should flag it to a developer.

In the above example, a test would be added to the test suite that executes invert(0)

and ensures that the correct behaviour is observed. This means that, in future, even

if the behaviour of divide is changed, the invert method is still shown to be working

correctly in this scenario.

Over time, regression test suites grow as software grows, for example in the case of

Apache Geode, where the release build can run in excess of 18 hours [9]. In order

to combat the growing cost of testing for regressions, a family of test optimisation

techniques have been proposed in the literature [10]. The first technique is test case

selection, which aims to identify a subset of relevant test cases to execute based on

changed code or code that uses the changed code. The second technique is test suite

minimisation, which aims to identify redundancies in the test suite, finding test cases

that are very similar and removing them from the test suite, while aiming to retain all the

fault-finding capability of the test suite. The final technique is test case prioritisation,

which aims to reorder test suites in order to reveal faults as soon as possible, with the

most “fault-revealing” test cases placed at the start of the test suite.
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1.2 Limitations of the State of the Art for Test Case

Prioritisation

Given the excessive time that it can take to test for regressions, a successful test case

prioritisation strategy could be very beneficial. Previous research has frequently shown

that re-ordering test suites can lead to savings either in the number of test cases (e.g. [10–

12]) or in the time taken to detect faults (e.g. [13–15]).

Due to the difficulty in accumulating a large repository of real faults, researchers have

been forced to use artificial faults when investigating test case prioritisation strategies [10,

11]. There are two main types of artificial fault: seeded faults are introduced manually

by someone who has a reasonable understanding of how the program should work, while

mutants are faults generated procedurally according to a ruleset (e.g. changing a “+”

to a “-”). While seeded faults offer a more realistic experience, they are still hard to

obtain in large numbers, resulting in a standard set being used for a large number of

previous studies. Conversely, it is easy to generate a large number of mutant faults

for any program using a tool such as Major [16]. However, these faults are very often

simple, sometimes resulting in no change in behaviour to the program under test, which

is referred to as an “equivalent mutant” [17].

While it is perfectly possible that strategies proposed in previous studies will translate

perfectly well in practice, there is a clear gap in the knowledge about how real faults

compare with artificial faults in evaluations of test case prioritisation strategies. If test

case prioritisation strategies perform significantly better when reordering test suites for

artificial faults than for real faults, then this thesis must also try to devise a new strategy

that will be more effective for real faults.

Furthermore, it is common for businesses to utilise version control systems (VCS)

and continuous integration (CI) as part of their development process. CI servers are

constantly running full “builds” of a program as new changes are made, specifically

ensuring that the new version compiles and passes all existing test cases. As a result,

developers very rarely trigger the test suite to run, instead relying on a CI server to

notify them if one of their changes has resulted in a test case failure.

As a result of this practice, it is also necessary for any test case prioritisation strategy to

integrate with these systems so that there is no requirement for developers to manually

execute test case prioritisation. For example, the Maven Surefire plugin1 runs the test

suite as part of the build and allows the specification of the order, according to a limited

number of pre-set orderings (e.g. alphabetical), in which to run the test cases. This

1https://maven.apache.org/surefire/maven-surefire-plugin

https://maven.apache.org/surefire/maven-surefire-plugin
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particular function could be extended to use the result of test case prioritisation as the

preferred order of running test cases.

1.3 Aims of this Thesis

The primary aim of this thesis is to develop test case prioritisation strategies that are

more effective in practice. This thesis aims to empirically evaluate the differences

between real and artificial faults when prioritising test cases, before proposing and

evaluating new test case prioritisation strategies in the current state of the art to assess

their effectiveness.

1. To empirically evaluate the comparative effectiveness of test case prioritisation

strategies on real and artificial faults.

While there have been a number of previous studies in test case prioritisation that

have shown the technique to be effective, they have been forced to use artificial

faults due to the difficulty associated with obtaining large numbers of real faults.

This raises questions about the validity of the results, since it is not necessarily

guaranteed that real faults behave in the same way as artificial faults. Chapter 3 of

this thesis proposes an empirical evaluation comparing the effectiveness of existing

test case prioritisation strategies on real and artificial faults.

2. To develop new strategies for test case prioritisation that will be more effective at

prioritising test suites for real faults.

Since Chapter 3 shows that test case prioritisation strategies are relatively ineffective

for real faults, one of the key issues that must be addressed is improving test case

prioritisation strategies for real faults. One technique that has been shown to

be effective on real faults is defect prediction [18], which estimates the likelihood

that files in a program are faulty. Chapter 4 proposes and evaluates a test case

prioritisation strategy that uses defect prediction to reorder test cases. Finally,

Chapter 5 investigates possible improvements to the defect prediction used in

Chapter 4.

1.4 Organisation and Scientific Contributions of this

Thesis

Given the prevalent problems faced in test case prioritisation, particularly with regards

to the use of real faults in empirical evaluations, this thesis focuses on improvements



Chapter 1 5

to test case prioritisation, specifically how to increase the practical effectiveness of the

technique. This thesis begins with a comprehensive literature survey in Chapter 2,

including discussions about previous test case prioritisation strategies and where they

have been successful. Where available, Chapter 2 discusses the use of real faults in

previous empirical studies. Since Chapter 2 identifies a lack of research comparing the

effectiveness of test case prioritisation strategies on real and artificial faults, Chapter 3

presents a large scale empirical evaluation of eight existing test case prioritisation strategies

on up to 262 real faults and mutants. This research reveals key insights into the use

of real faults in empirical studies, and questions the reliability of experiments that do

not use real faults. In particular, Chapter 3 finds that existing test case prioritisation

strategies perform poorly on real faults, in many cases barely outperforming random

orderings. As a result, Chapter 4 proposes and evaluates a new test case prioritisation

strategy based on the technique of defect prediction. The results of this research show

a promising connection between defect prediction and test case prioritisation, but also

indicate that further improvements can be made. One of the potential improvements is

investigated in Chapter 5, which investigates whether sentiment in commit messages can

be used to indicate whether the commit is faulty or not, with the intention of devising

a test case prioritisation strategy that would utilise commit messages to determine how

to reorder the test suite. Finally, Chapter 6 recaps how the aims and objectives of this

thesis have been met, and suggests a number of ideas for future work to investigate.

Chapter 2: “Literature Review” — This chapter presents a comprehensive review

of the previous studies in test case prioritisation. This begins with an overview of

automated software testing and an introduction to the problems faced when automatically

testing for regressions, before giving the formal definition of test case prioritisation [10].

Following this, I introduce many of the previous test case prioritisation strategies. This

chapter identifies the shortcomings of previous studies in terms of the type of fault

used, motivating the work in Chapter 3, and identifies defect prediction as a candidate

solution for improving test case prioritisation on real faults, which is investigated further

in Chapter 4 and Chapter 5.

Chapter 3: “Using Controlled Numbers of Real Faults and Mutants to

Empirically Evaluate Coverage-Based Test Case Prioritisation” — One of

the key problems identified in Chapter 2 is that, at the time of writing Chapter 3, there

was no indication as to whether strategies that were previously evaluated on artificial

faults would also be effective on real faults2. This is largely due to a lack of repositories

containing real faults, and no studies that have demonstrate how real faults compare

with artificial faults when evaluating test case prioritisation strategies.

2Luo et al. [19] have since conducted an empirical evaluation on this topic, but the research presented
in Chapter 3 was conducted and published at AST before Luo et al. had published their findings.
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Chapter 3 presents an empirical evaluation of existing test case prioritisation strategies

on real faults and mutants. Previous studies using artificial faults have indicated that

test case prioritisation strategies can result in faults being found using fewer test cases.

This experiment questions these results using 262 subject programs from the Defects4J

dataset [20], a large repository of subject programs that contain real faults. Furthermore,

Defects4J contains a version for each subject that does not contain the real fault (a

“fixed” version), allowing the introduction of artificial faults. This experiment evaluates

eight test case prioritisation strategies categorised as either “coverage-based” or “history-

based”. This results in the following contributions.

Contribution 3.1: A comparison of how coverage-based test case prioritisation

strategies perform on real faults and mutants

Contribution 3.2: A comparison of how history-based test case prioritisation

strategies perform on real faults and mutants

Moreover, the primary metric for evaluating the effectiveness of test case prioritisation

strategies, called “Average Percentage of Faults Detected” (APFD) and introduced in

Section 2.7, includes the number of faults as part of the equation. Many previous

studies have assumed that changes to APFD are independent of the number of faults

that is present in a program, and thus have contained very different numbers of faults

in subject programs, ranging from 1 [21] to 500 [22]. In order to investigate whether the

number of faults is an independent factor in changes to APFD , this chapter conducts

an evaluation on programs that contain 1, 5 and 10 faults respectively, observing the

impact that increasing the number of faults has on APFD , resulting in the following

contribution.

Contribution 3.3: A comparison of how the number of faults present in a program

affects the performance of test case prioritisation strategies

Some of the key findings from this research are that (a) it is important to use real faults

when evaluating test case prioritisation strategies to ensure validity of results and (b)

the performance of existing test case prioritisation strategies on real faults is notably

poor, with most strategies barely outperforming random orderings.

Chapter 4: “An Empirical Study on the Use of Defect Prediction for Test

Case Prioritisation” — Given the findings of Chapter 3, it is clear that improvements

are needed to test case prioritisation when evaluating on real faults. One technique

that has been shown to be effective at predicting the location of real faults is defect

prediction [18, 23–25]. Defect prediction aims to predict the likelihood for all files in a

repository that the file will contain a fault, leveraging software metrics [25] or version
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control history [26] to produce a numeric score representing the likelihood of a fault

occurring for each file in a program. In Chapter 4, I propose a test case prioritisation

strategy that leverages defect prediction scores.

The first contribution of Chapter 4 is a parameter tuning experiment to discover how

effective a particular defect prediction implementation, named Schwa [26], can be.

Chapter 3 demonstrated the importance of using real faults in evaluations of test case

prioritisation strategies. Therefore, for this chapter, I use Defects4J [20], a repository

containing 395 real faults, to provide subject programs for this study. The first contribution

of this chapter is a parameter tuning study to discover the best configuration of Schwa

for the Defects4J subject programs.

Contribution 4.1: A parameter tuning study to determine the best parameters for

defect prediction to find real faults in Defects4J

Following this, I propose a test case prioritisation strategy, called G-Clef, that leverages

defect prediction scores in order to prioritise test cases. Firstly, the strategy ranks all

classes in the system by their defect prediction score. Then, for all classes, it identifies the

set of test cases that cover the class, and uses a “secondary objective” (e.g. coverage)

to order this set of test cases before placing them in a prioritised suite. G-Clef is

implemented into Kanonizo (see Appendix A), resulting in the following contribution.

Contribution 4.2: An implementation of a new test case prioritisation strategy, G-

Clef, that leverages defect prediction

There are two available parameters for G-Clef. The first is the secondary objective,

discussed in Section 4.4.1. A secondary objective receives a set of test cases as input

and returns an ordering. I implemented four secondary objectives, two of which use code

coverage to reorder test cases, one that uses a constraint solver to attempt to maximise

coverage, and one that simply returns a random ordering.

The second parameter in G-Clef is the number of classes to consider as a “group”. If

the defect prediction is not perfect, it may be the case that the class that contains the

fault is ranked outside the top 5 classes. In this case, G-Clef can consider “grouping”

classes together, so instead of considering the test cases that cover one class, G-Clef

could consider 1% of all classes. This chapter therefore conducts a second parameter

tuning experiment to see which combination of secondary objective and class grouping

performs best, resulting in the following contribution.

Contribution 4.3: A parameter tuning study to determine the best parameters for

G-Clef
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Finally, this chapter contributes an empirical evaluation of G-Clef using the same subjects

and strategies that were used in Chapter 3, which led to the following contributions.

Contribution 4.4: An evaluation of G-Clef against existing coverage-based strategies

Contribution 4.5: An evaluation of G-Clef against existing history-based strategies

This chapter reveals that defect prediction can be a more effective strategy for test case

prioritisation than existing coverage and history-based strategies. In the experiments

G-Clef performed significantly better than six out of the eight strategies it was compared

against, and was never significantly outperformed by any strategy. However, this research

also demonstrated that there was even higher potential for defect prediction to improve

test case prioritisation. In particular, despite Schwa being successful at predicting the

location of real faults, the average position of the faulty class was 13% of the total

classes for each subject. This indicates that improvements to defect prediction could

yield significant improvements to test case prioritisation.

Chapter 5: “Using Sentiment in Commit Messages to Predict Whether a

Class is Faulty — An Investigative Study and Implications for Test Case

Prioritisation” — One of the key findings of Chapter 4 is that there is potential

to increase the effectiveness of test case prioritisation through improvements to defect

prediction. Furthermore, as previously mentioned, there is a need for test case prioritisation

to integrate with VCS and/or CI systems in order to be useful in practice. In particular,

every VCS involves commit messages that are written by developers to describe every

change that they make. While commit messages are intended to be short and objective,

it is possible that developers may express feelings against particularly badly written files.

In this way, commit messages may act as a surrogate for defect prediction, indicating

which files are most likely to be faulty through opinionated commit messages. Chapter 5

of this thesis conducts an evaluation of sentiment in commit messages, in particular

aiming to discover whether faulty files can be identified by their commit history. Since

Defects4J contains information about bug-fixing commits and provides a list of files

that have been faulty through the repository history, Chapter 5 begins with an analysis

of sentiment and subjectivity scores of over 17,000 commit messages extracted from

Defects4J subject programs, resulting in the following contribution.

Contribution 5.1: An evaluation of sentiment and subjectivity in Defects4J commit

messages

For each of the 395 faults in Defects4J, there is a file that contains the commit hash,

which is a long, unique string of characters that represents a commit to version control.

This allows the commits to be filtered by those that fix a bug, and those that do not.
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Since it is useful to be able to predict from a commit message whether it fixes a bug, I

compare the sentiment scores of bug-fix commits with non-bug-fix commits, resulting in

the following contribution.

Contribution 5.2: An evaluation of sentiment and subjectivity in bug-fix commits

against non-bug-fix commits

Additionally, for each of the faults in Defects4J, there is a list of files that are changed

as a part of the fix. From this, I can filter the commits to see whether sentiments

change when developers are working on faulty files when compared to non-faulty files.

If developers feel strongly negative about files that are faulty, or strongly positive about

files that are not faulty, this could result in an effective defect prediction strategy that

ranks classes based on the set of associated commit messages. This in turn could help to

improve G-Clef with more accurate defect estimates. Therefore, Chapter 5 contributes

an evaluation of sentiments present in commits to faulty files and non-faulty files to

investigate whether a defect prediction strategy could leverage this information.

Contribution 5.3: An evaluation of sentiment and subjectivity in faulty files against

non faulty files

While this research did not strongly support a test case prioritisation strategy based on

the sentiment scores of commit messages, there are a number of promising improvements

that could be made in the future. For example, a better sentiment analysis model that

is specific to programming terms could improve the results.

Chapter 6: “Conclusions and Future Work” — The final chapter of this thesis

summarises the work presented throughout. Additionally, this chapter describes a

number of ideas for future work arising from this thesis, including further improvements

to test case prioritisation.

Appendix A: “Kanonizo” — Throughout the course of this thesis I have developed

an open-source test case prioritisation tool called Kanonizo (which means “arrange”

in Greek). All of the strategies used in the Chapter 3 and Chapter 4 were implemented

into Kanonizo. Appendix A gives details about the inner workings of Kanonizo and

demonstrates the benefits it can provide to the research community.



Chapter 2

Literature Review

This chapter breaks down previous literature, starting with key definitions that will be

used throughout this thesis. Following this, this chapter looks into software testing,

before introducing test case prioritisation with a motivating example. This chapter then

looks at the available metrics for evaluating test case prioritisation, before introducing

the approaches that have been presented in previous literature. Next, this chapter looks

at the type and number of faults that have been used in previous evaluations of test

case prioritisation. Finally, this chapter introduces the related techniques that will be

used in Chapter 4 and Chapter 5, firstly motivating the use of defect prediction in test

case prioritisation and linking previous studies that have considered defect prediction

for test case prioritisation, before introducing sentiment analysis and discussing how it

can potentially be used to improve defect prediction.

2.1 Definitions

In software testing, there are a number of key terms that must be defined — in particular,

each of the following terms will be used frequently throughout this thesis. While they are

easily confused and sometimes used interchangeably, the formal definitions are provided

below to distinguish between different words.

Bug

A bug in software is probably the most generic way of describing a program doing

something that it shouldn’t. Patton [27] defines a bug as occurring when one or more

of the following conditions is met:

10
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1. The software doesn’t do something that the specification says it should do

2. The software does something that the specification says it shouldn’t do

3. The software does something that the specification doesn’t mention

4. The software doesn’t do something that is not mentioned in the specification but

should be

5. The software is difficult to understand, hard to use, slow, or in the eyes of a

software tester, would be viewed by an end-user as “plain not right”

The IEEE Standard Glossary of Software Engineering Terminology [28] states that the

term “bug” is synonymous with “error” and “fault”, but in practice “bug” is an umbrella

term for those terms (“error” and “fault”), each of which is subtly different.

Defect

A defect is an “imperfection” or “deficiency” in a work product where the product does

not meet its requirements or specifications and needs to be repaired or replaced [29].

Every fault is a defect, but not every defect is a fault. A defect is not a fault if it is

detected prior to executing the software (e.g. through static analysis or inspection).

Error

An error in software is a human action that causes an incorrect result [29].

Failure

A failure occurs in software when a product is no longer capable of performing a required

function or an event in which a system does not perform a required function within

specified limits [29]. A failure may be caused by a fault, and a fault may cause multiple

failures.

Fault

A fault is the manifestation of an error in software [29].
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Test Case

A test case (or test) is an activity in which a system or component is executed under

specified conditions, with the results observed and an evaluation being made [28]. An

example of a test case is given in Figure 2.2.

Test Suite

A test suite is an unordered list of test cases [8], or a group of related test cases for a

particular feature in software [27].

Regression

A regression in software occurs when a developer makes a change to software that causes

an unintended side effect in an unmodified part of the program [28]. A regression can

also be the re-occurrence of a bug that was previously thought to be fixed [27].

2.2 Unit Testing

A unit test case is a (typically small) snippet of code that exercises some functionality

of the program, and includes assertions about the program behaviour that compare the

expected output of the program with the actual output. It is typically the role of a

developer to assert what the “expected” output of a program is, since they have the

best understanding of the code, and can provide examples of what should happen under

different circumstances. An example of an implementation of a substring method,

which starts with a string and returns a smaller chunk of the string using a “from”

index (inclusive) as the start point and a “to” index (exclusive) as the end point (e.g.

substring("hello",1,3) ⇒ "el"), is given in Figure 2.1. Note that this implementation

contains several bugs that can be discovered through test cases. An example test case

for this method given in Figure 2.2. This test starts by setting up some variables and

preconditions that are required in order for the test to run (lines 3 and 4). The test

then executes a single method of the program on line 5 with a single input (“Hello

world”), storing the result in a new variable. Finally, line 6 contains an assertion, which

checks whether the expected output of the program matches the actual output. This

demonstrates the typical structure of test cases, which should be small and should only

execute a small part of the program, in order to pinpoint any failures should they occur.



Chapter 2 13

1 public String substring(String in, int from , int to){

2 String substring = "";

3 for(int i = 0; i < in.length (); i++){

4 if (i < from || i >= to){

5 continue;

6 }

7 substring += in.charAt(i)

8 }

9 return(substring );

10 }

11

Figure 2.1: An example method under test

1 @Test

2 public void testSubstring (){

3 String s = "Hello world";

4 String expected = "Hello";

5 String actual = substring(s,0,5);

6 assertEquals(expected , actual );

7 }

Figure 2.2: An example JUnit test

One of the main challenges for developers writing software test cases is distinguishing

correct program behaviour from incorrect behaviour. In Figure 2.2, there is have an

expected value, which is determined to be “Hello”. Determining this as the “correct”

response is known as the test oracle problem [30], and usually requires a human with

understanding of the code under test. Furthermore, it is usually not feasible to test

methods with every possible input and output. In Figure 2.2, a developer would need to

write a separate test case for every possible string, with every combination of “from” and

“to” indices. Therefore, a key part of the testing process is identifying places where a

program could go wrong. If a developer was to write test cases for the method shown in

Figure 2.1, the first thing they may notice is that there is no checking on the values of the

“from” and “to” input variables. Assuming that a string will always have length >= 0,

anyone who uses this method should pass in values for “from” and “to” that are also

>= 0. Therefore, the developer may write a test case that calls substring("test", -2,

2). If the method is implemented correctly, this should result in an exception stating

that the input is not valid. However, in the implementation given in Figure 2.1, it will

return "te". Therefore, this test case would reveal a bug in the program. Intuitively, if

a user of this code is trying to create a substring with a “from” index and a “to” index,

it should also follow that the “from” index will be lower than the “to” index. Therefore,

the developer may also write a test case that calls substring("test", 4, 2). This

case should also result in an exception, but in Figure 2.1, it returns an empty string.
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Moreover, a developer may wish to test what happens if the “to” index exceeds the length

of the input string (e.g. substring("test", 2, 10)). Note that none of these use cases

are given in the method specification, making them fall under definition 4 of Patton [27],

that the software “doesn’t do something that is not mentioned in the specification but

should be”. Finally, according to definition 1 in Patton [27], a bug occurs when the

software doesn’t do something the specification says it should do. Therefore, a tester

must show that, when given valid input, the method returns as expected. This leads

to the test case shown in Figure 2.2. Note that it is the job of a developer to recognise

scenarios in which code under test may return invalid output, and which inputs may

trigger faulty behaviour.

2.2.1 Coverage

One of the most common quality assurance metrics used with test suites is the coverage of

the suite. Coverage refers to the units of code in a piece of software that have are executed

by test cases contained within the test suite. Since it is impossible to detect a fault

without executing the line(s) on which the fault is manifested, there is an assumption

that increasing coverage implies higher quality in a test suite. However, considering the

earlier example in Figure 2.1, if the method is called substring(null,0,0), this will

reveal cause a NullPointerException to be thrown on line 3. If any non-null string is

passed to this method, the exception does not occur, but line 3 will still be executed.

Therefore, it is possible to execute a line of buggy code without revealing the bug.

Coverage can be measured at different levels within a program:

• Line/Statement Coverage - Each line of code written by a developer can be covered

by test cases

• Branch/Decision Coverage - Every time a program meets a conditional statement

(e.g. if), there are two branches the program can take — the "true" branch and

the "false" branch

• Block coverage - Similar to branch/decision coverage, blocks of code are sections

where the code should follow one execution path except in the case of an exception

• Function/Method coverage - Functions and Methods represent logical chunks of the

program, and measuring the coverage of methods requires less work than individual

lines/branches.

• Class Coverage - The simplest form of coverage is to see which classes are executed

by test cases
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A simple example of coverage can be seen in Figure 2.3. In this example, there is one

test case that only executes one half of the decision on line 4. The coverage tool used

in this instance highlights the decision in yellow to indicate that one of the branches

has been followed, but not the other. Lines highlighted in green have been executed by

the test case. One of the important things in Figure 2.3 is that while the test case has

achieved 71.4% line coverage, there is only 50% branch/decision coverage. This issue

leads to a discussion regarding which type of coverage is “best” to use in order to assure

program quality [31].

1 public void methodWithOneBranch(int x) {

2 System.out.println("The value of x is " + x);

3 x = (int) Math.sqrt(x);

4 if (x < 100){
5 System.out.println("The value of sqrt(x) is < 100");

6 } else {
7 System.out.println("The value of sqrt(x) is >= 100");

8 }

9 }
10

Figure 2.3: Coverage of a simple method - lines that have been executed are in green,
while lines that have not been executed are in red. Branches that have been partially

executed are in yellow

2.3 Types of Testing

In unit testing, test cases aim to execute small chunks of code that should be self-

contained and work without influence of any other code (i.e. units). Each unit in a

program should be tested as a part of unit testing. Unit testing also requires knowledge of

the implementation details, knowledge of the programming language used, and knowledge

of the structure of the program in order to effectively perform. These attributes form

what is generally known as white-box testing, in which the tester is fully aware of all

the implementation details of the software. The alternative to this is black-box testing,

which is a different type of testing involving no knowledge of the program structure or

style, using the program as a user would in order to test a specification. An example of

a black-box testing tool is QFTest1, where testers can set up sequences of clicks, menu

actions and keyboard actions to define a sequence of events in a way that a user might

interact with a system. They can then make assertions about the state of the program,

for example if a box should have appeared on screen, they can test for this. Testing

software in this way creates more complex inter-dependencies between parts of the code,

1https://www.qfs.de/en/qf-test

https://www.qfs.de/en/qf-test
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which can help to identify when behaviour is not correct, and can also be very crucial in

finding faults that would otherwise be detected by users. Patton [27] defines black-box

testing as any form of testing looking at data, logic or states (i.e. anything that would

be triggered and observed by an end-user), while white-box testing involves looking at

computation errors, control flow errors or input/output errors (i.e. the sort of mistakes

developers might make during implementation).

2.4 Test Suite Ordering

Depending on the programming language and the tools that are used, there may be

several ways in which a test suite can be run. In old versions of JUnit (before JUnit

4), developers created “Suite” objects, in which developers would specify the classes

that contain test cases, therefore creating a natural order. In Ant2, developers specify

patterns in an xml file that are used to recognise test cases, which internally uses the file

system to find test classes. Crucially, test suites should be independent [32], meaning

that there is no specific “default” ordering of a test suite.

2.5 Test Case Prioritisation

Test case prioritisation is a process that aims to reorder a test suite such that any

regressions that occur during software evolution are detected as quickly as possible. The

intention for test case prioritisation is to be run infrequently, and to re-use the prioritised

ordering for a long period, in contrast to test case selection, which is re-run every time

a new change is made.

Rothermel et al. [10] formally defines test case prioritisation in Definition 2.1. This

definition identifies a prioritised test suite (T ′) from the superset containing all possible

orderings of the original test suite (T ) that maximises the value of a function f . Ideally,

f would be a function that states exactly how good at detecting regressions a particular

ordering is. However, in practice it is not possible to know whether a change has caused

a regression until the entire test suite has been run. Therefore, f is an approximation

of fault detection — for this reason, finding an appropriate f has been the subject of a

lot of research in test case prioritisation to date. In Chapter 3, I evaluate how effective

existing approximations for f are when using real faults, while in Chapters 4 and 5, I

use defect prediction as a surrogate for the function f .

2https://ant.apache.org/



Chapter 2 17

Definition 2.1. Test Case Prioritisation

Requirements:

T , a test suite

PT , the set of permutations of T

f , a function that produces a score for a permutation PT

Problem: Find T
′ ∈ PT such that

(∀T ′′
)(T

′′ ∈ PT )(T
′′ 6= T

′
)[f(T

′
) ≥ f(T

′′
)]

Considering Definition 2.1, it is important to note that the concept of test case prioritisation

is not reliant on a particular software version, nor is it aware of any modifications to the

software.

2.6 Motivation

Although many different papers have given different interpretations as to why test case

prioritisation is needed, all of them largely revolve around the same concept. Table 2.1

presents a program that has 10 known faults and five test cases (A-E). Since test case C

detects seven of the 10 faults and test E detects the remaining three, all of the known

faults in this program can be detected by placing these two test cases first. Although

the remaining test cases do not reveal any known faults that are not revealed by test

case C or E, the ordering of these test cases may still be important for detecting future

faults. In practice, a test case prioritisation strategy would need to achieve this ordering

without knowing how many faults are actually detected by the test cases, since it is

not possible to know about the existence of faults before running the test suite. One

Test Case Fault

1 2 3 4 5 6 7 8 9 10

A X X
B X X X X
C X X X X X X X
D X
E X X X

Table 2.1: An example of how test case prioritisation can result in faster fault
detection, taken from [11]

of the assumptions that is commonly made in test case prioritisation is that each test

case has equal cost [14]. If each test case has equal cost then detecting faults using
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fewer test cases also means detecting faults using less time. In practice, it is most likely

that a company is more interested in saving time than running fewer test cases, so it

is important to verify this assumption or ensure that test case prioritisation strategies

also consider the time taken to find faults.

Another assumption that is made is that the time cost associated with actually prioritising

test cases is negligible [33]. If a prioritised test suite detects faults 20 minutes faster

than the original test suite, but the prioritisation took 30 minutes to run, then there is

a still a negative overall impact of using test case prioritisation. Malishevsky et al. [34]

proposed a model to calculate the total cost of prioritising test cases that incorporates

the cost of analysis (source code analysis, analysis of changes, code coverage calculation),

the cost of actually running the prioritisation strategy and the time saving achieved by

the prioritised ordering. Elbaum et al. [35] conducted an experiment in which they

considered several cost-benefit threshold values, which indicate by how much a compared

strategy must outperform the other in order to justify its cost. If the threshold was set

at 5% or higher, using random orderings were better than any of the other approaches

studied. Do et al. [33] conducted a similar experiment using the models proposed in

Malishevsky et al. to calculate the difference in total delay (total time taken to prioritise

- time savings as a result of prioritisation) between random orderings and prioritised

orderings. Furthermore, Do et al. [36] conducted a study in which the testing time

was restricted to set levels (25%, 50%, 75%, 100%) to see how this affected the cost-

benefit trade-off of running prioritisation. Their experiments concluded that some, but

not all, approaches are beneficial in spite of their costs when the testing resources are

constrained.

2.7 Evaluation Measures for Test Case Prioritisation

Given that the goal of test case prioritisation is to maximise the fault-detection capability

of test suites in the earliest possible stage, there should be an effectiveness measure for

a candidate solution that represents this early fault detection. Rothermel et al. [10]

introduced the measure of Average Percentage Faults Detected (APFD), an area under

curve score that represents how many faults have been detected at each point of the test

suite execution. While it is not possible to determine the location of faults in production

software without executing the entire test suite, in the presented empirical evaluations,

fault information is available to researchers in order to evaluate their approaches. The

equation for APFD is given in Equation 2.1 [11], where m is the number of faults, n is

the number of test cases, and TFi is the index of the test case in the current suite that
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(a) Test Ordering: A-B-C-D-E,
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(b) Test Ordering: E-D-C-B-A,
APFD = 64%
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(c) Test Ordering: C-E-B-A-D,
APFD = 84%

Figure 2.4: Examples of APFD for different test case orderings, replicated images
from Rothermel et al. [10]

discovers fault i.

APFD = 1−
∑m

i=1 TF i

n×m
+

1

2n
(2.1)

Figure 2.4 represents the APFD of 3 possible orderings of Figure 2.1. In the original

ordering, Figure 2.4a, the final fault is not detected until the very last test case is

executed, so the APFD score is low. However, in Figure 2.4c, the faults are discovered

much faster, with all 10 of the faults being discovered by the first two tests, in particular

with the first test discovering seven faults, so the APFD is much higher. This principle

is applied to a large number of test case prioritisation techniques to evaluate their

effectiveness. It is worth noting that the value of APFD can never be “perfect” —

in order to achieve an APFD score of 1, a test suite would need to identify all faults in

software before any test cases are run. The limit of APFD tends towards 1 if test suites

identify all faults by running a single test case.

2.7.1 Problems with the APFD Metric

APFD is not a perfect assessment of how effective a test case prioritisation technique

is. APFD assumes that all possible faults in a system under test have been found.

The impact of this is that in situations where not all faults are found, the actual

impact of finding faults is lessened, since the ‘pool’ of possible APFD scores is lessened.

Additionally, APFD does not punish test suites for failing to find faults at all. In

Figure 2.1, if TFi is undefined, it is assumed to have a value of 0, meaning faults that

are not discovered by any test case have no negative impact on the score, only failing to

contribute [37].
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2.7.2 NAPFD

NAPFD , or Normalised APFD , is a metric presented by Qu et al. [37]. NAPFD aims

to overcome one of the weaknesses of APFD described above, by calculating a value

p, which represents the ratio of total faults discovered by the entire test suite. This

equation was developed in the context of test suite reduction, in which the number of

faults detected by an entire suite, or the number of tests contained in the test suite, is

susceptible to change. By containing the p value, smaller test suites would be rewarded

for detecting the same number of faults as a larger suite.

NAPFD = p−
∑m

i=1 TF i

n×m
+

p

2n
(2.2)

The equation in Equation 2.2 is exactly the same as Equation 2.1, with the exception of

the p value. In practice, for test case prioritisation techniques that do not also reduce the

size of the prioritised suite, it is expected that this equation will reduce to the standard

APFD equation.

2.7.3 APFD c

APFDc is another extension of APFD , with a focus on prioritising test cases in a manner

that makes the prioritised suite cost effective. The advantage of this method is that a

prioritised suite is not only produced based on fault detection, but also execution cost.

If every fault has a severity attached fi, and every test case has a cost attached ti, then

the formula given by Equation 2.3 becomes the calculation for an APFDc score for a test

suite. This equation is provably reducible to Equation 2.1, as shown in Malishevsky et

al. [14], in the case where every test cost is one and every fault severity is one. Most of

the early techniques in test case prioritisation only focused on a single objective, whether

that would be code coverage, mutant coverage or some other heuristic. By considering

the combination of coverage and cost, the test case prioritisation problem becomes a

multi-objective problem.

APFDc =

∑m
i=1(fi × (

∑n
j=TF i

tj − 1
2 tTF i))∑n

j=1 tj ×
∑m

i=1 fi
(2.3)

2.7.4 Failing to Find Faults

Walcott et al. [13] discussed an APFD metric that would punish test suites for failing

to find faults in their study on Time Aware Test Suite Prioritisation. In their work,

the authors discussed another multi-objective test case prioritisation approach, with
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an addition to the APFD metric to deal with cases in which faults are not found. By

replacing TF i with |m|+1 (where m is the number of test cases) when TF i is undefined,

it becomes possible to punish test suites for failing to find faults. However, this situation

is unlikely to occur with most test case prioritisation strategies, since the whole suite

would be executed after being reordered, and therefore any faults that were detected

with the original ordering would still be detected by a prioritised ordering.

2.8 Coverage-Based Approaches

Each test case will exercise a series of statements and decisions that uniquely represent

a likely use case of the software. By tracking the statements and/or decisions that are

executed by individual test cases, coverage-based test case prioritisation approaches aim

to order the test cases in such a way that will execute the largest amount of code in

the smallest amount of time. Since coverage-based approaches can happen at several

different levels, from now on, I will refer to statements, branches, decisions, blocks,

methods etc. as goals.

2.8.1 Total Coverage

The simplest example of a coverage-based test case prioritisation approach is the total

coverage strategy. The total coverage strategy involves repeatedly taking the test case

with the highest number of goals covered, until there are no test cases left to select.

This approach generally serves as a baseline in the literature after first being proposed

by Rothermel et al. [10], since it is simple and easy to implement, and has been used

in almost all studies that look at coverage-based test case prioritisation (e.g. [11, 12,

14, 22, 38]). Table 2.2 shows how the total strategy would order the test cases given in

Table 2.1, and shows that the ordering that would be produced is sub-optimal, since test

B only discovers faults already found by test C. This shows one of the clear limitations

of the total coverage strategy.

Test Case Number of Goals Covered

C 7

B 4

E 3

A 2

D 1

Table 2.2: Ordering of test cases from Table 2.1 according to greedy/total algorithm
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2.8.2 Additional Coverage

In order to try and overcome the obvious flaws in the total coverage strategy, the

additional coverage strategy was defined by Rothermel et al. [10]. Additional coverage

builds on the concept of total coverage, but with the added concept of uncovered goals.

At each stage, the additional coverage strategy selects the test case that covers the

highest number of uncovered goals, then removes each goal covered by the selected

test case from the set of uncovered goals. In contrast to the total coverage strategy,

the additional coverage strategy does select the best possible ordering for the simple

example shown in Table 2.1. As with the total coverage strategy, almost every test

case prioritisation paper that looks at coverage-based test case prioritisation includes

additional coverage, since it is also simple and easy to implement, and outperforms the

total coverage strategy in almost all implementations.

Test Case Number of New Goals Covered

C 7

E 3

D/A/B 0

Table 2.3: Ordering of test cases from Table 2.1 according to additional algorithm

2.8.3 K-Optimal Coverage

The K-Optimal Greedy Approach is an approach to solving prioritisation problems by

selecting the k parts that, when combined, result in the largest number of goals covered

[39]. This enhances the total coverage strategy by attempting to eliminate the case

where multiple test cases have high coverage and a high overlap in goals covered. This

strategy was adopted by Li et al. [12], with k=2, to create the 2-optimal algorithm.

Starting with an empty test suite, this strategy repeatedly selects pairs of test cases

that cover the highest number of goals between them, and adds them to the prioritised

test suite.

As with the selection of single test cases, there are total and additional methods for

implementing K-Optimal. In Li et al. [12], the additional coverage strategy was adopted.

One of the negative aspects of the 2-Optimal Greedy algorithm is the associated cost

complexity. Using additional coverage requires re-calculation of the remaining coverable

goals after the selection of every two test cases. To consider every possible pair of tests,

including the re-adjusting of coverage information has complexity O(mn2) and this must

be repeated n times, meaning the overall complexity of this algorithm is O(mn3). As
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the number of test cases increases, the complexity associated with calculating the best

ordering increases exponentially. In their study, Li et al generated small and large

test suites for their subject programs, with small test suites ranging from 8-155 tests,

and large suites ranging from 228-4,350 tests. In the case of the larger test suites, the

complexity of the 2-optimal algorithm should lead to incredibly long running times.

However, the authors did not include the time taken to run the experiments in their

evaluations, instead including them as a threat to validity.

2.8.4 Optimal-Coverage Approach

One of the key assumptions in coverage-based test case prioritisation techniques is that

if coverage is maximised, then fault-detection capability of the test suite is maximised.

This assumption is investigated by Hao et al. [21], who presented the coverage problem

as an integer linear programming (ILP) problem. Integer Linear Programming takes a

series of constraints and variables, allowing for the maximisation of any single variable

by calculating the possible points that do not violate any constraints. In this case,

the variables included are execution order xij , 1 ≤ i, j ≤ n and statement coverage

yjk, 1 ≤ j ≤ n, 1 ≤ k ≤ m, while the constraints in place are that each test case can

only appear once, and that the statement coverage must be in accordance with the best

n test cases in T .

The authors conjectured that using optimal coverage would result in higher rates of

fault detection than using additional coverage approaches. To test this, they collected

eight C programs and 11 versions of two Java programs and prioritised them using both

the optimal and additional coverage techniques, before comparing the results of each

prioritisation technique. The effectiveness of each technique was measured by three

factors: impact on APxC metric, impact on fault detection, and difference in time

complexity for the different strategies. The results of this study show that, despite

additional coverage never outperforming optimal coverage in terms of APxC, there

are many cases where the optimal approach produces exactly the same value as the

additional coverage strategy. This implies that additional coverage is often the best

ordering of test cases in order to maximise coverage.

There are far more interesting results presented in regards to the second research question.

When calculating the effectiveness of test case prioritisation using APFD , additional

coverage significantly outperforms optimal coverage in a lot of the studied programs. The

effect is not significant for the studied Java programs, although the authors conjecture

a reason for this being that there are far fewer mutant groups and tests in the Java

programs than in the C programs. In addition to these comparisons, there is an
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additional comparison with the ideal strategy. The ideal strategy (sometimes referred to

as optimal) involves placing the fault-detecting test cases first. Obviously this strategy

is not available in practice since faults are not known, but it is often used to place

techniques between the worst case scenario and the best case scenario. When compared

to ideal test suites, most of the prioritised suites have higher APxC values, but perform

significantly worse in terms of fault detection. This result implies that pursuing coverage

beyond the levels already achieved by the additional coverage strategy may not be

worthwhile, since the increases in coverage do not guarantee any increase in APFD .

2.8.5 Coverage Granularity

Many studies investigating the effectiveness of coverage-based test case prioritisation

have considered many different levels of coverage granularity (e.g. [10–13, 38, 40, 41]).

Consider the method shown in Figure 2.5. Instrumentation can tell us several things

about whether or not this method was covered by a certain test case.

• Method/function coverage — This coverage granularity tells us whether or not a

test case entered the method shown — it does not care for the path taken by the

test case once the method has been entered

• Statement/line coverage — This will give the user a list of lines executed by a test

case that executes the method — in this case some subset of 2—8, based on which

if statements were followed

• Block coverage — Code encased within brackets is considered to be a block. Once

a block has been entered, under normal circumstances (e.g. no exceptions) it

should continue to execute the code in that block until completion, so this should

represent an improvement on raw line coverage

• Decision/Branch coverage — Since one of the key concepts in programming is

representing decisions and choices, this type of coverage looks at the decisions that

were made in a particular execution of a test case. For example, in Figure 2.5,

there are decisions on lines two, four and nine, each of which have two execution

branches, one where the if statement is true, and one where the if statement is

false.

However, it is not a general rule that the finer granularity coverage levels are objectively

better than coarser levels. As has already been mentioned, Rothermel et al. [10]

discovered that branch coverage performed better than statement coverage. Di Nardo et

al. [40] evaluated the differences between function, block, basic block and decision level
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1 public static float max(float a, float b) {

2 if (a != a)

3 return a; // a is NaN

4 if ((a == 0.0f) && (b == 0.0f) &&

5 (Float.floatToRawIntBits(a) == negativeZeroFloatBits )) {

6 // Raw conversion ok since NaN can ’t map to -0.0.

7 return b;

8 }

9 return (a >= b) ? a : b;

10 }

Figure 2.5: An example Java Method from the Math class

coverage, discovering that under most circumstances, basic block coverage provided the

largest benefit in fault detection. An additional observation from this study is that in

a total-coverage situation, decision and function level techniques were roughly similar,

whereas in the additional-coverage strategy, decision coverage performed much better

than the function level counterparts. Additional coverage strategies also introduced far

more variance in results, with total coverage having very small error bars compared to

the additional versions. Each of these different granularities of coverage can represent

distinct things relating to program execution, and as such it is important to investigate

what impact each of these granularities has on test case prioritisation. Rothermel et

al. [10] investigated the use of branch and statement coverage, specifically testing both

coverage types using the additional and total coverage strategies. In their paper, the

authors discovered that branch coverage outperformed statement coverage, although

they give no specific justification for why this effect is observed. Elbaum et al. [38]

proposed a research question to investigate the effect of finer granularity over coarse

granularity, specifically comparing statement and function level coverage. Elbaum et al.

[38] found that there was enough evidence in their data to suggest that statement level

coverage was more effective than function level. The authors conjecture that functions

can be completely variable in size, while statements are always statements. Covering a

function that only executes three statements is given the same weighting as covering a

function executing 100 lines.

2.8.6 Limitations of Coverage-Based Approaches

On the face of it, coverage-based test case prioritisation has several benefits. It is

reasonably simple to calculate coverage at any granularity, and there are a large number

of successful implementations of coverage-based test case prioritisation in previous studies,

including Di Nardo et al. [40], Rothermel et al. [10], Elbaum et al. [11, 38], Hao et al.

[41] and Li et al. [12]. However, there is one key assumption made in coverage-based

test case prioritisation that may not always be true: executing more code leads to the

detection of more faults. There are two reasons why this may not be true — the firstly,



Chapter 2 26

faults may exist anywhere in the code. Consider a method that has only five lines of

code, one of which is faulty. If unit tests are written for this method, they will have

very low coverage compared to other tests for much larger methods. A coverage-based

approach would result in this fault being extremely low priority. Moreover, as shown

in Section 2.2, it is possible for tests to execute lines of code without exposing a fault.

Developers sometimes neglect testing and only care about higher numbers of coverage

instead of thinking of potentially faulty scenarios.

There have been some studies investigating the correlation between code coverage and

test suite effectiveness. Inozemtseva et al. [42] created large numbers of artificial faults

(9,552-50,302) in five programs. In order to measure effectiveness, the authors took

random samples of the original test suite of different sizes (i.e. test suites with 3

tests, 10 tests, 30 tests, 100 tests etc.), then created a normalised effectiveness measure

which combined the number of faults covered to the number of faults detected. They

then proposed three research questions, relating to size, coverage and effectiveness

correlations. Their findings were that, while the test suites with higher coverage were

more effective than ones with lower coverage, some of this effect can be attributed to

simply having more test cases. When the test suite sizes were controlled, the correlation

was much less noticeable. That is to say, when comparing all test suites of size X on

program Y, the coverage had much less impact on the effectiveness of the test suite than

when the test suites of all sizes were considered. This implies that coverage had less

impact on effectiveness than the size of the test suite did.

Kochhar et al. [43] build on this work, applying the same principle to real faults to

see if the same observations could be made. Kochhar et al obtained 67 and 92 bugs

from HTTPClient and Rhino, two large software systems built in Java. These faults

were obtained by looking through the bug-tracking systems of each software package

respectively. The authors used Randoop3 to generate test suites for each buggy version

of code that was checked out from the repositories, and created test suites representing

0.2%, 0.5%, 1%, 5%, 10% and 100% of the original test suite size. The reason for

creating suites of different sizes is to see what impact the size of a test suite has on

its effectiveness. For each bug, only one test suite of each size was generated. In their

experiments, the authors found that there was a moderate correlation between test suite

coverage and effectiveness for HTTPClient, while the correlation was strong for Rhino.

While these results are less definite than in Inozemtseva et al, they still provide a reason

to doubt that covering code earlier will lead to faster fault detection.

One of the main problems with coverage-based test case prioritisation is the fundamental

reliance on executing the entire test suite in order to produce a prioritised test suite.

3https://randoop.github.io/randoop/

https://randoop.github.io/randoop/
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Since coverage information for all test cases must be known, all source code must be

instrumented. In their research, Tikir et al. state that executing instrumented code can

be up to 20 times slower than executing non-instrumented code [44]. Considering one

of the main reasons for attempting test case prioritisation is to lower the time taken

to discover faults in software, having to run the entire test suite every time software

changes is an unrealistic expectation.

A study by Lu et al [22] investigated the impact that software evolution has on prioritised

test suites. In their work, the authors produced prioritised suites based on coverage

information from various different versions of evolving software. The results of this

study showed that software changes have a large impact on prioritised test suites, and

more importantly that a prioritised test suite becomes much less effective as software

develops. This represents an ongoing challenge in test case prioritisation research, which

must improve the longevity of prioritised suites in order to be viable in industry.

2.9 Mutation-Based Approaches

Mutation is a technique designed to simulate real faults occurring in software [45].

“Mutants” are small, rule-based syntactic changes to the program. This section describes

how mutants can be used to demonstrate the quality of a test suite, and how mutant

coverage can be used by test case prioritisation strategies.

2.9.1 Mutation

The previous section reveals a flaw in using coverage as an indicator of test suite quality

— simply covering code is that executing a fault is not the same as revealing a fault.

There can be a series of pre-conditions and system state dependencies that mean a faulty

line can go undetected even if it is executed by several tests. One of the ways of solving

this problem is mutation testing. Figure 2.6 gives an example of a mutant that could be

created in a program. By creating many such changes to software, and evaluating the

test suite against each of these changes, it is possible to see how well the test suite is

able to deal with changes to the code.
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public void abs(int x){

if (x < 0){
return -x;

}

return x;

}

public void abs(int x){

if (x > 0){
return -x;

}

return x;

}

Figure 2.6: An example of a change that could be introduced by a mutation operator,
“<” replaced with “>”

Mutants are said to be “alive” at the point at which they are created [45]. Mutants are

“killed” if a test case that passed in the original version of a program now fails when

executed on the mutated version [45]. High quality test suites should be able to kill a

larger number of mutants, since it shows developers have considered a lot of potentially

faulty scenarios.

One of the downsides to using mutation testing is the high computational cost [46]. Many

mutants can be generated at a low cost, since the cost of analysing the source code is

relatively low. However, in order to kill mutants in isolation, every test case must be

executed with every mutant. As a result of this, the cost complexity of mutation testing

is O(mn), with m mutants and n test cases.

Another problem in the field of mutation testing is the equivalent mutant problem [17].

An equivalent mutant is a change in source code generated by an automated mutation

tool that exhibits identical behaviour to the original program. These mutants are not

killed by any test case since they are technically not faults. Yet, when a mutant is

not killed by any existing test, it is extremely hard to know whether this represents

an inadequacy in the test or an equivalent mutant. Figure 2.7 gives an example of an

equivalent mutant, taken from Jia et al. [45].

for(int i = 0; i < 10; i++){

// i is the same value

}

for(int i = 0; i != 10; i++){

// i is the same value

}

Figure 2.7: An example of equivalent mutation from [45]

Mutation analysis was first used in test case prioritisation by Rothermel et al. [10], in

a paper which introduced the concept of Fault-Exposing Potential, or FEP. Each test

case is assigned a FEP score based on the ratio of mutants it kills compared to the

number it executes. For this reason, FEP is sometimes referred to as a coverage-based

approach [47]. In order to accurately represent the FEP of each test case, it is important
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that every test case is able to execute at least some mutants, which means a large number

of mutants needs to be introduced into a program.

The calculation for Fault-Exposing Potential has changed a lot since its introduction

by Rothermel et al. [10]. In the early stages, FEP would be calculated for test case tk

as
∑|S(tk)|

i=1
killed(si)
total(si)

, where |S(tk)| is the number of statements executed by test case k,

killed(si) is the number of mutants killed on line si and total(si) is the total number

of available mutants on line si. In work by Chen et al. [48], the authors, including

two of the authors who had worked on Rothermel et al. [10] and Elbaum et al. [38],

the definition of the FEP estimate that a test case would find mutant x was given by

Equation 2.4. The Equation 2.4 calculates the FEP of a line of code x, that contains

m mutants and is executed by k test cases. For each of the test cases that execute this

line, ni is the number of mutants on line x that are killed by test i. To calculate the

FEP score of a test case is then calculated using the FEP scores of the lines that it

covers. While the original calculations were focused around specifically test cases, the

new approach is based around creating an FEP score for every executable statement in

the program. This helps make the process more consistent between test cases executing

the same statements.

FEPx =

∑k
i=1 ni

m× k
(2.4)

In their experiments, Chen et al. [48] mention that their results are not intended to be

necessarily applicable in real-world scenarios, since mutation analysis is expensive, only

that they are more interested in demonstrating that test suites that have better FEP

scores will also be better at detecting seeded faults. Crucially for test case prioritisation,

this means that a strategy based on FEP will be likely to be prohibitively expensive to

run frequently. Notably, in previous studies that have considered cost-benefit trade-offs

for prioritisation strategies, FEP has been absent from these evaluations [14, 35, 49].

Generating large numbers of mutants is very easy to do, and there are many available

tools that will generate large numbers as part of the compilation process and according

to a specification [16, 50]. However, when there are more mutants and larger test suites,

the problem becomes noticeably more complex. This effect is a result of having to

run every combination of test cases and mutants together to determine the number of

mutants killed by each test case. If the only interest is seeing the total number killed by

the entire test suite, mutant m can be ignored once a test case t has killed it. However,

if a ‘kill map’ (see Table 2.4) is needed, with every pairing of test case t and mutant

m, such as in the case of FEP, you cannot ignore any mutants regardless of their killed

status. As a result, the time complexity of mutation analysis is O(mn). In Table 2.4,
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mutant one is killed by multiple test cases, while the other mutants are only killed by

one test case. Kill maps become much more complex when there are more mutants and

test cases, but fundamentally they record a test case/mutant tuple representing a single

kill, and will record every test case that kills a mutant, not only the first test case.

Test Case Mutant

1 1

1 5

1 27

2 1

2 6
...

...

Table 2.4: An example mutant kill map

Jia and Harman [45] discuss the problems associated with mutation testing, including

the high cost of mutation analysis, and the oracle problem. The oracle problem refers

to the idea that a test case is ‘correct’, meaning if it fails, it identifies a fault in the

program. While this problem is not strictly related to the domain of mutation testing,

and is applicable in all testing, test case failures in mutation analysis will result in

killed mutants, while the mutant may actually have been exhibiting correct behaviour,

if the test case is written badly. Considering the equivalent mutant problem introduced

in Section 2.9.1, the inclusion of equivalent mutants in the FEP calculation leads to a

lower estimate of the actual fault-exposing potential than the real value, since equivalent

mutants are not killed by any test [48].

2.10 History-Based Approaches

While most of the code-based techniques described above have been shown to be effective,

they are often memoryless and do not take into consideration that regression testing

happens with every update to a program, rather than as a one-off process. In addition

to this, historical fault information can actually help us to find the likely parts of the code

that faults are going to appear in. Kim and Porter [51] suggested a test case prioritisation

model based on historical data collected from previous test suite executions. In their

work, Kim and Porter collected a set of previous test case execution data, which could

have been fault data, coverage data, or any other information that defines the test case,

and used a weighting value α to assign weight to the previous historical data.
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Specifically, for version 0 of the test case, the value would simply be 0 if the test case

passed, and 1 if the test case failed. Assuming a weighting α that determines the “decay”

of information (favouring more recent results over older results), and a version k, the

priority P of the test case is αPk + (1 − α)Pk−1, 0 ≤ α ≤ 1, k ≥ 1. Since all previous

information would be included in the calculation of Pk−1, this means that incrementally

all historical information would be included in the calculation of Pk.

Table 2.5 gives an example of some history-based information for a test case. This

example considers five versions of the same program and the results of the test case

Tk across all five versions — 7 indicates that the test case failed, while 3 indicates

that the test case passed. Assuming an α value of 0.6, Equation 2.5 gives an example

showing how the prioritisation for this test case would be calculated. This shows how

older results are less important due to the decay over time, and also how test cases that

frequently fail will be given high priority by this strategy.

Table 2.5: Table showing the history of a test case over five versions of software

Test Case Version 4 Version 3 Version 2 Version 1 Version 0

Tk 7 3 7 3 7

P0 = 1

P1 = α(0) + (1− α)P0 = 0 + 0.4(1) = 0.4

P2 = α(1) + (1− α)P1 = 0.6 + 0.4(0.4) = 0.76

P3 = α(0) + (1− α)P2 = 0 + 0.4(0.76) = 0.304

P4 = α(1) + (1− α)P3 = 0.6 + 0.4(0.304) = 0.7216

(2.5)

Kim and Porter compared their history-based approach to some known regression test

selection and minimisation techniques. In their experiments, test minimisation led to

the smallest number of test cases having to be executed, but also provided the worst

fault detection rate of all techniques. History-Based test case prioritisation provides

an adequate compromise between the retest-all test selection strategy, which involves

running every test case every time, and test suite minimisation, which had a negative

impact on fault detection.

Huang et al. [52] proposed a strategy that incorporates varying fault severity into history-

based test case prioritisation. Specifically, the paper introduces MCCTCP, a strategy

that prioritises the test case(s) that have detected the most severe faults in the software

history, using the APFDc metric. For example, in Java, a NullPointerException that
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causes a system crash may be considered more severe than a AssertionFailedError,

which may just be an outdated test case.

Lin et al. [53] built upon this work and extended it to create their own version of history-

based test case prioritisation, this time incorporating software version awareness. The

authors argued that the maturity of a specific section of the code had a great impact

on the likelihood that a fault occurred there, and as a result scaled down the impact

of the previous results, meaning software that has been changed and tested many times

becomes less likely to be highly prioritised, unless it has more recently revealed a fault.

In their experiments, Lin et al. found that their version-aware test case prioritisation

technique outperformed the previous research by Kim and Porter [51] in six of the eight

studied applications, indicating that using version-awareness aided the effectiveness of

prioritisation.

Marijan et al. [54] developed a strategy called ROCKET, which gives a higher priority

to test cases that have failed recently than those that have no failed for a long time.

ROCKET uses a value ω, where ω = 0.7 if the test case failed on its most recent

execution, ω = 0.2 if the test case failed on the execution before that, and ω = 0.1 for

any executions before that. Using this, the priority score for a test case is calculated by

summing the ω scores over the entire history for the test case.

Elbaum et al. [55] proposed a classifier based on three conditions to prioritise test cases.

There is a failure window (WF ) that tracks the amount of time since a test case last

failed, an execution window (WE ) that tracks the amount of time since a test case was

last executed, and an age variable (WN ) that tracks how long the test case has existed.

If a test case violates any of these criteria, it is assigned a priority score of 1, otherwise

the score is 0. In JUnit, it is common that all test cases are executed every time the

test suite is run, therefore it may be possible that WE is disregarded.

Cho et al. [56] described a statistical approach to prioritising test cases, based on the

expected number of consecutive failures for a test case. The approach, named AFSAC,

uses three values, calculated from the history of the test case. These are the maximum

number of consecutive failures for a test case Frmax, the minimum number of consecutive

failures for a test case Frmin, and the average number of consecutive failures for a test

case Fravg. Following this, the current number of consecutive failures k is calculated for

all test cases. If k < Frmin, the test case is assigned a value α, if Frmin ≤ k < Fravg,

the test case is assigned the value β, if Fravg ≤ k < Frmax, the test case is assigned the

value γ, and if k ≥ Frmax, the test case is assigned the value δ. The paper does not give

values for these weights, but states that α > β > γ > δ > 0.
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Another approach to using history-based test case prioritisation was in Gupta et al.

[57]. In their approach, Gupta et al. used the line coverage information of modified

code, in conjunction with historical test case information. This approach is based off

the idea that immediately changed code has the highest probability of being defective, so

test cases that cover the changed code should have the highest priority, followed by the

test cases that score highly using historical fault information, followed by the remaining

cases. Notably, this strategy blurs the lines between test case selection and test case

prioritisation, since it uses change information that is usually not considered in test case

prioritisation.

2.11 Other Heuristic Approaches

Up until this point, there have been several categories of strategy (i.e. coverage based,

mutation based, history based), and all strategies have fallen under one or more of these

categories. However, other approaches have been presented in previous literature that

do not fall under any of these categories.

2.11.1 Fault-Index (FI)

Fault-Index (FI) test case prioritisation is based around the idea that each line of code

does not have the same probability of containing a fault. In Elbaum et al. [38], the

authors state that there are many measurable attributes of code that can represent the

likelihood that it contains a fault. In order to generate the FI score for a function, the

authors use Principal Component Analysis to combine the numerous measurable code

quality factors. They then compare this with the fault-index value for a baseline version

of the software, in order to obtain an absolute value for fault-index, representing the

likelihood of a fault occurring based on the complexity of the changes introduced in this

version of the software. Since fault-index is representative of functions, it is possible to

use total and additional approaches to it.

In their experiments, Elbaum et al. [38] used 14 different combinations of test case

prioritisation techniques described in Table 2.6.

To combine FI and FEP, the authors first applied fault-index scores to all the functions,

and then in the case of a tie, FEP was used to determine the ordering of the remaining

cases. There is no mention of how many such ties occur in practice. In their results, the

authors discovered that statement FEP worked best overall, and had to conclude that the

inclusion of fault-proneness information had not significantly aided the fault detection
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Technique Description

Baseline

Original The order in which test cases are specified by
developers

Random Randomly arranged test cases

Coverage-Based

Total Statement Total coverage strategy at the statement-level
granularity

Total Function Total coverage strategy at the function-level
granularity

Additional Statement Additional coverage strategy at the statement-
level granularity

Additional Function Additional coverage strategy at the function-
level granularity

FEP-Based

FEP Statement Total Ordered by the Fault-Exposing Potential score
of each line

FEP Statement Additional Ordered by the Fault-Exposing Potential score
of each previously uncovered line

FEP Function Total Ordered by the Fault-Exposing Potential score
of each function

FEP Function Additional Ordered by the Fault-Exposing Potential score
of each previously uncovered function

Fault-Index

Fault-Index Function Total Ordered by the fault-index score of each function
covered by a test case, summed up

Fault-Index Function Additional Ordered by the fault-index score of each
previously uncovered function covered by a test
case

FI-FEP Based

FI-FEP Function Total Ordered by the combined FI/FEP score for each
function covered by a test case

FI-FEP Function Additional Ordered by the combined FI/FEP score for each
previously uncovered function covered by a test
case

Table 2.6: Description of techniques studied in Elbaum et al. [38]



Chapter 2 35

process. Even comparing function FI to simple function total coverage produced no

significant differences. Thus, the authors were forced to conclude that FI had not really

worked. One conjectured reason for why FI had performed so poorly was that a lot of

the faults that had been used in the experiments were simple, one line code changes,

which led the FI score to be low.

2.11.2 Diversity-Based Approaches

One of the key concepts of achieving high coverage as early as possible in a prioritised

test suite is to use a highly diverse set of test cases. Since a lot of developer-written test

cases will have similar execution paths through the program, it is possible to achieve

high coverage by creating clusters of test cases that cover similar parts of the program,

then select a representative test case from each cluster additively.

In general, distribution-based test case prioritisation is based on creating a representation

of a test case that can be compared with all other test cases. An example of this is used

by Yoo et al. [58], where the representation of a test case would be a binary string, where

each 1 or 0 represented a statement in the programs source code. While this can result

in highly complex binary strings for large programs, it is very easy to compare strings

using the Hamming distance. Once each test case has its representation, a clustering

technique can be used to create k clusters of test cases, where each cluster represents the

most similar test cases based on their representation. In both Yoo et al. [58] and Carlson

et al. [59], an agglomerative clustering technique was applied, whereby n clusters of one

test would start off, and at each iteration the most similar two test cases would be added

to a new cluster, until there is k clusters.

Once the clusters have been formed, a prioritisation process takes place within the

clusters, to find a better ordering for each test case that defines a cluster. In Carlson et

al. [59], this process is done using a code coverage approach, a code complexity metric,

fault history information or a combination of complexity and fault history. In addition

to this process, Yoo et al. [58] performed an additional step of prioritising all clusters,

based on a representative test case for each cluster, leaving them with an ordered set

of ordered clusters. Test cases are then selected from each cluster iteratively, switching

cluster after selecting a single test case, to produce a prioritised test suite.

In their experiments, Carlson et al. found that using a clustering approach to aid test

case prioritisation proved effective on an industrial piece of software. In all pairwise

comparisons of techniques (coverage vs clustered coverage, fault-based vs clustered

fault-based etc), the clustered version outperformed their non-clustered counterpart in

terms of Average Percentage Faults Detected of the prioritised suite. The authors also
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investigated the effect that a shorter running time had on the prioritised suites, finding

that in all cases reducing the suite running time by 25 or 50% resulted in fewer faults

being missed by the prioritised suites, implying that the suites were better suited in

lower run times. When reducing by 75%, three out of the four prioritisation treatments

were better on clustered versions than non-clustered versions.

Dickinson et al. proposed an approach to clustering test cases based around the observation

that failed tests are often observed in small clusters [60]. Their method, entitled failure

pursuit, repeatedly selects the k nearest neighbours of any failures found by running

the test suite, spreading to the k nearest neighbours of any failures, until no more

failures are found. This approach to clustering test cases exploits the idea that failing

tests cases are often small groups of ideal candidates for clustering. In Dickinson et

al. [60] and Leon et al. [61], failure pursuit performs reasonably well, justifying the

authors’ original concept. Leon and Podgurski authored a comprehensive review of

clustering techniques, amongst other distribution-based approaches, comparing them

with coverage-based approaches in a direct comparative empirical evaluation[61]. One

of the key findings of this study was that distribution-based approaches and coverage-

based approaches are good at detecting different types of faults, and as such they can

be complementary. In their work, the authors investigated different combinations of

clustering and coverage-based approaches, and found the best combination for their

subjects was basic coverage + one-per-cluster sampling + pursuit + random.

2.11.3 Human and Expert Knowledge

The most likely people to know the most important test cases in a test suite are the

people who wrote them. Developers have knowledge about the domain they work in, and

the test cases that they write, including which ones cover important parts of the code,

which ones cover error prone parts of the code, and which ones are simply there to boost

code quality metrics. In an ideal world, test case prioritisation would be performed

by developers simply deciding which tests they want to run first. In fact, developers

perform test case prioritisation a lot in their every day work. Every time a developer

runs a small subset of tests relating to a piece of code that they just changed, they are

prioritising the best tests to ensure that their product still works in the shortest amount

of time.

Unfortunately, for full suites of 2000 or more test cases, it is infeasible to ask developers

to sift through each individual test case and rank it comparatively to every other test

case. Tonella et al. proposed a machine learning algorithm called the Case-Based

Rank (CBR) system, which combines automatic approximation of test case ranks (from
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other metrics such as coverage, fault-proneness etc.) and user knowledge into a machine

learning model [62]. Given two test cases, the user is asked to judge which one should be

given higher priority. They are not asked to give a justification for why they gave a test

higher priority. There is also no assumption of any relationship between priority - that

is to say it is possible that a > b, b > c, c > a. Given a test suite of size n, a user will be

asked to make m comparisons between test cases to aid the prioritisation process. The

number of comparisons required to perform CBR depends on the number of ‘difficult’

comparisons that have to made (e.g. where other metrics result in a tie between two

test cases). In the case where users are being asked to provide judgements on pairwise

comparisons, there is a trade off present between the number of comparisons and the

quality of the produced model. Asking the users for more judgements means that the

model will be better, but requires more manual effort. The results of a study into CBR

indicated that there was potential for machine learning to become an important factor

in test case prioritisation, however, there were also clear issues with scalability. Even for

test suites under 100 tests in size, the number of comparisons asked for grew from 15

to over 700, with the results being presented on a logarithmic scale, clearly indicating

this issue.

One attempt at reducing the amount of work done by ‘experts’ in test case prioritisation

is Yoo et al. [58]. In their work, the authors combined the distribution-based test case

prioritisation clustering technique with expert knowledge to produce a new approach.

Using the Analytic Hierarchy Process, a matrix of test comparisons are built up, scaling

from one to nine, depending on the users response to a comparison. In cases where no

user response is available, coverage information is used to fill the matrix, but on a much

less extreme scale, allowing user responses to dominate the matrix. In this instance, the

clustering is performed to reduce the number of comparisons required from the user,

making the technique more scalable to larger programs and larger test suites.

2.12 Metaheuristic Approaches

All of the previously described approaches are referred to in the literature as heuristic

approaches. A heuristic approach involves there being a way of ranking each possible

test case in a test suite such that the next best test case can always be selected and

added to the prioritised suite. Heuristic approaches have been shown to be effective at

producing test suites with higher rates of fault detection.

However, heuristic approaches rely on a fundamental assumption that each test case

can be ranked in terms of some function measuring effectiveness. Heuristic approaches

will often result in the same ordering being produced given multiple runs of the same
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local optimum

local optimum

global optimum

Figure 2.8: An example of a local optimum problem faced in a local search

algorithm, although there can be some randomness in the case of ties. Metaheuristic

approaches aim to explore the search space (the space containing all possible solutions) of

the problem efficiently using some starting point and repeatedly making changes before

evaluating the current solution according to a fitness function [63]. A fitness function

can be anything that takes a possible solution and returns a score approximating where

the candidate solution fits in comparison to the global optimum. Changes made to

candidate solutions in a metaheuristic search should contain no assumptions, and as

such the only guide for a metaheuristic search should be the fitness function.

2.12.1 Local Search vs Global Search

Metaheuristic searches aim to make small changes to candidate solutions and improve

the score returned by the fitness function. In complex problems such as test case

prioritisation where there are n! possible different orderings for n test cases, the search

space of possible solutions is incredibly complex, with lots of points at which fitness

improves and many where fitness deteriorates. A local search generally considers a

single candidate solution and nearby solutions to increase fitness. In the case of test

case prioritisation, a nearby solution to a candidate ordering would be one including

one change (two test cases swap positions). The nearby neighbour with the best fitness

becomes the new candidate solution, repeated until either an optimal solution is found

or a search budget (a time limit or number of repetitions) has been used up. One of the

downsides of a local search is that sometimes a local optimum is found, which represents

the best possible solution in a set of nearby neighbours, without representing the best

solution available in the full search space. An example of this is given in Figure 2.8,

where two local optimum are visible that represent a sub-optimal solution in the search

space.
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A number of improvements have been made to local search algorithms in order to help

them try and find the global optimum in a search space. One of the improvements

involves using a population of candidate solutions rather than a single candidate solution.

By having many starting points in a search algorithm, it is possible that more of

the search space can be explored. Some of the population may reach locally optimal

solutions, however it is also possible that other candidates will reach better a better part

of the search space.

2.12.2 Genetic Algorithms

Genetic Algorithms (GAs) are an example of a population-based global metaheuristic

search [64, 65]. Genetic Algorithms use a Darwinian theory of Evolution in order to find

a candidate solution. In keeping with the biological name of this approach, candidate

solutions are often referred to as individuals or chromosomes. Initially, several possible

individuals are selected from the search space, and at each iteration, some individuals

are chosen to be evolved. An evolution can take a number of forms, but fundamentally

represents some change in the selected individual. After an individual has been evolved,

if it is fitter than some existing candidates then it is added to the population. As a

result, the fitness of the population should generally increase over time.

Two of the common evolutions that are used in GAs are mutation and crossover. A

mutation in a genetic algorithm represents some change to an individual. In the case of

test case prioritisation, where test suites are individuals in the population, this may mean

switching the position of two test cases. Crossover means taking part of the solution

from two different individuals (referred to as parents) and combining them to create a

new offspring individual that is contains parts from both parents, while representing a

new part of the search space.

Genetic Algorithms aim to mitigate the local optima problem in several ways. Firstly,

by including many individuals in its population, and ensuring the initial individuals are

highly diverse, the genetic algorithm should have a large number of points in the search

space to work from. Additionally, if points in the search space are represented next to

each other to represent ‘nearby’ solutions (i.e. one mutation away from each other), then

using crossover should allow for more free movement around the search space. Crossover

represents a large change from both the parent individuals selected, meaning that it can

be a completely different point in the search space. Thirdly, the selection process for

choosing individuals for crossover and mutation is not a purely random process. In

many GA implementations, the selection process is biased to be more inclined to select

fitter individuals for evolution, which should speed up the fitness improvement of the
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population. However, even a biased selection process still has the capability of selecting

weaker individuals in the population, meaning that it is possible to escape local optima

by using weaker individuals.

Algorithm 1 Genetic Algorithm

Require: Selection Function s, Mutation Rate m, Crossover Rate c

1: Randomly generate or seed initial population P

2: while Stopping Condition Not Reached do

3: Select Parents for Crossover according to s

4: Recombine parents according to c

5: Mutate offspring according to m

6: Evaluate fitness of offspring following changes

7: Select individuals for next population P ′

8: P ← P ′

9: end while

10: return p ∈ P such that (∀p′ ∈ P )(p 6= p′)[f(p) ≥ f(p′)]

2.12.3 Crossover

One of the most important concepts in maintaining diversity in a genetic algorithm

search is crossover. Crossover is the combining of two parent individuals to create two

new offspring individuals that contain partial solutions from both parents. There are

many ways in which crossover can be implemented, including single-point, two-point,

partially matched crossover (PMX) and three-parent crossover.

Single-Point Crossover

Single-Point Crossover is a simple crossover technique that simply splits the parent

solutions at an arbitrary point n, where 1 ≤ n ≤ k, and takes the first n genes from

parent one, and the remaining k − n genes from parent one. In cases where there is

not a pre-defined set of genes (for example a string searcher) may take partial solutions

from both parents without having to worry about keeping any structure or defined set

of genes. For example, consider “hello” and “world” as genes, with an intersection point

of one, the two offspring can be “horld” and “wello” without having any impact on

the potential usefulness of the solutions. However, in test case prioritisation and other

sorting-based problems where a genetic algorithm is applied, it is necessary to keep a set

of values (i.e. each test case should appear once and only once in a candidate solution).

In this case, crossover works differently. The first n solutions are taken from parent one,
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and the remainder of the solution is chosen by iteratively selecting the remaining test

cases from parent two in the order they appear.

t0 t3 t2 t1 t5 t4

Parent 2

t3 t5 t0 t1 t4 t2

Parent 1

t3 t5 t0 t2 t1 t4
Offspring 1

t0 t3 t2 t5 t1 t4
Offspring 2

Figure 2.9: Single Point Crossover

In Figure 2.9, the intersection point is three. To create offspring one, the first three test

cases are selected from parent one and copied over to the new individual (t3 t5 t0).

Since each test case can appear once and only once, the remaining test cases are selected

by iterating through the test cases in parent two, seeing if they exist in offspring one

and adding them if not. Since t0 and t3 already exist in offspring one, the first selected

test case is t2, then t1, ignoring t5 and finally selecting t4

Two-Point Crossover

Two-Point Crossover is very similar to Single-Point Crossover, with the only difference

being that two intersection points are chosen. Again, for some problems this is more

conceptually simple than for others. Considering “hello” and “world”, with intersection

points 1 and 4, the offspring become “horlo” and “welld”.

t0 t3 t2 t1 t5 t4

Parent 2

t3 t5 t0 t1 t4 t2

Parent 1

t3 t0 t2 t1 t5 t4
Offspring 1

t0 t3 t5 t1 t2 t4
Offspring 2

Figure 2.10: Two Point Crossover

In Figure 2.10, there are two intersection points (one and four). To create offspring one,

the first element of parent one is automatically added (t3), since it is before the first

intersection point. After this, the elements of parent two are considered. t0 is added,

t3 is ignored since it is already in offspring one, then t2 and t1 are added. Finally, the
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remaining test cases are added from parent one again. The only two remaining cases

are t5 and t4, which are added in the order they appear in parent one.

Uniform Crossover

Uniform crossover works in a slightly different way from single and two-point crossover.

Rather than taking a set of points at which to split the parent genes, uniform crossover

takes a ratio of genes that should be included from each parent, and selects each gene

in the offspring by applying the ratio. For example, if the ratio is 0.5, 50% of the genes

from each parent should be included in the new offspring.

t0 t3 t2 t1 t5 t4

Parent 2

t3 t5 t0 t1 t4 t2

Parent 1

0.117 0.239 0.504 0.351 0.608 0.94Random Number:

t0 t3 t0 t1 t4 t2
Offspring 1

Figure 2.11: Uniform Crossover

In the example given above, the ratio is set as 50% from each parent, so random numbers

that are generated below 0.5 will select the gene from parent one, while numbers above

0.5 will select from parent two. However, as with other crossover strategies, there is a

clear issue when using a fixed set of genes. In the example shown, t0 is selected as both

the first and third gene of the resulting offspring, while t5 is never selected. One of the

options to deal with this is to select only genes that are not already selected for the new

offspring. However, this would mean that if both genes are already in the candidate

solution, there can be missed selections. Alternatively, it is possible to replace the

duplicate genes with the unselected genes, either in place or at the end of the offspring

(i.e. place t5 in either gene three or gene six and shift the remaining test cases forward).

Three Parent Crossover

Traditionally, crossover takes two parent individuals and produces offspring individual(s),

much like its biological equivalent. By taking attributes from both parents into account

when creating the offspring individual, there is room for a lot of diversity in the produced

offspring, allowing the search to avoid local optima. One attempt at creating additional



Chapter 2 43

diversity in the population is to use three parents for creating new offspring. This

concept is described in Sivanandam et al. [66], and produces offspring by comparing the

bits in parents to create the offspring.

Partially Matched Crossover (PMX)

Partially Matched Crossover (PMX) is a technique for tackling the travelling salesman

problem described in Sivanandam et al. [66] and implemented in Yuan and Li [67],

whereby each city should be visited once and only once. This makes it extremely relevant

for test case prioritisation problems, since they are parallel to the travelling salesman

problem. In PMX, the concern is with identifying pairs of test cases from two parent

individuals that will be swapped around in the offspring gene. Similar to two point

crossover, two intersection points are identified, n and m. With parents P1 and P2,

m−n pairs are identified 〈P1iP2i〉, n ≤ i ≤ m. For each identified pair, those genes swap

places in the offspring solution. As a result, the offspring is similar to the parent, with

the pairs of test cases swapped around.

t0 t3 t2 t1 t5 t4

Parent 2

t3 t5 t0 t1 t4 t2

Parent 1

t5 t3 t2 t1 t4 t0

Offspring 1

t2 t5 t0 t1 t3 t4
Offspring 2

Figure 2.12: Partially Matched Crossover

In Figure 2.12, three pairs of test cases are identified, 〈t5, t3〉, 〈t0, t2〉 and 〈t1, t1〉
(obviously t1 can be ignored, since it cannot swap with itself). In the offspring, the

ordering from the corresponding parent will be taken (i.e. offspring one takes ordering

from parent one), but with the pairs of test cases switched. This results in a new ordering

that contains the exact same genes as the parent, but in a new ordering [66]. Crucially,

for test case prioritisation, this is the only form of crossover that can be utilised, any

crossover strategy must guarantee that the offspring have the same genes (test cases)

as the parents, and the other crossover techniques will result in offspring that contain

duplicate test cases and do not have all the required test cases.
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2.12.4 Genetic Mutation

Genetic Mutation (not to be confused with program mutation described in Section 2.9.1)

in metaheuristic algorithms refers to making some small, observable change to the state

of one or more of the individuals contained in the population. Generally speaking,

mutations are simple, non-guided changes that alter one or more properties. It is

important for mutations not to be guided, since guiding mutations can lead to hitting

a small part of the search space than general mutations. Also, if mutations are guided,

there is an implication that there is a “good” way of changing an individual to get to

the solution, in which case a metaheuristic is unsuitable.

A simple example of a mutation is to consider the string “hello”. There are a number

of mutations that can be applied to this string, including the addition of a letter,

removal of a letter or changing of a single letter. These mutations are examples of

how the nearby neighbours of an individual can be explored by a metaheuristic. In

test case prioritisation, a mutation can only be the re-ordering of some test cases. If

test cases can be added or removed, then the system becomes a metaheuristic for test

suite minimization. It is expected that there will be a mutation rate property that

controls how many mutations should, on average, be performed for every evolution in

a metaheuristic search, and once it has been decided that a mutation will take place,

each gene can be mutated with probability 1/n, where n is the total number of genes,

meaning there should on average be one mutation.

2.12.5 Properties required for Metaheuristic Search

Not every problem is amenable to a search-based approach. As described by Harman [64],

there are a number of properties that a problem must have in order to be approximated

using a search-based approach:

1. A representation of the problem that can be manipulated. In test case prioritisation

terms, this means that there must be a way for us to represent a test suite that

allows us to manipulate the ordering of the test cases.

2. A fitness function

3. A set of manipulation operators, such as crossover or mutation as described above.
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2.12.6 Challenges with Metaheuristic Searches in test case prioritisation

One of the main problems in implementing a genetic algorithm in test case prioritisation

is the difficulty in finding an effective fitness function. One field in which genetic

algorithms have been successfully applied is test suite generation [68–70]. Test suite

generation is the writing of test cases by a computer rather than by a human. Using

a genetic algorithm to perform test suite generation usually involves a combination

of coverage goals as a fitness function [68]. This works particularly well in test suite

generation because as new test cases are added, or as new statements are added, the

impact of these statements on the fitness can easily be calculated. Furthermore, the

evaluation of how effective the generated test suite is usually measured in the same way

as the fitness function. This situation is not possible in test case prioritisation. Firstly,

since it cannot be known whether a test case reveals a fault or not, fitness functions

cannot easily evaluate the fitness of an ordering of a test suite. In many previous

studies, this has led to an assumption of coverage being a surrogate for faults [12].

This results in the APxC metric (Average Percentage of x Covered), where x can be

a number of different coverage granularities. Moreover, in test case prioritisation, in

order to measure effectiveness, the faults must be known. This means that increasing

the fitness of a genetic algorithm will not necessarily result in an ordering that improves

fault detection.

2.12.7 Basic GA

The simplest form of search-based technique is proposed for test case prioritisation in

Li et al. [12]. This implementation of a genetic algorithm uses Average Percentage of

Statements Covered (APSC) as a fitness function, since it is unrealistic in practice to

know the value of APFD , and represents mutation as a single change to the test suite

ordering, while a crossover between two test suites is easily achievable via the techniques

discussed in Harman et al. [71]. In their experiments, Li et al. discovered that a GA

could perform equally as well as coverage-based techniques such as additional coverage,

where there was no significant difference between the additional coverage/genetic algorithm

APFD scores for small programs. However, one of the things this paper failed to analyse

was the change in fault-detection capabilities of the test suites subjected to prioritisation

via a genetic algorithm. No faults were analysed during this study, meaning that even

though the GA achieved similar levels of coverage to the additional greedy algorithm,

there is no indication of the impact this has on fault-detection.

One of the key points of this study into the effectiveness of genetic algorithms in the

application of test case prioritisation is that there is scope for many different approaches
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to evaluating the fitness of a test suite. This paper encouraged further research into

different configurations for genetic algorithms.

2.12.8 Weight-Based Genetic Algorithm

One way of modifying the genetic algorithm for test case prioritisation is to consider

multiple objectives. While a single-objective genetic algorithm only focuses on one

element of candidate solution fitness, such as Average Percentage of Statements Covered

in Li et al. [12], Weight-Based Genetic Algorithms allow multiple fitness functions to all

contribute to an overall fitness value for a candidate solution, with each fitness function

assigned its own weight. Murata and Ishibuchi [72] suggested a genetic algorithm with

random weights assigned to each fitness function. Since no fitness function should be

objectively better than any other fitness function, using random weights should lead

the solution towards a Pareto optimal score, rather than a score that satisfies all fitness

functions without exceeding in any particular way.

The equation for calculating the Random Weight GA (RWGA) fitness is given in Equation 2.6,

where f1, f2, ..., fn is a set of fitness functions and wi is the weighting of fitness function

i.

fitness =

n∑
i=1

fi × wi (2.6)

In a 2006 tutorial paper on multi-objective genetic algorithms, Konak et al. [73].

investigated the use of the RWGA. While the implementation of the RWGA is simple,

and the transition from single objective to multiple objective can be easily achieved

using RWGA, the candidate solutions can suffer when the Pareto front is non-convex.

That is to say, if the trade off between the fitness functions is not a standard curve over

all dimensions of the Pareto front, the RWGA can produce worse solutions.

In a 2016 study, Wang et al. [74] implemented a number of genetic algorithms for the

purpose of prioritising test cases, including a RWGA implementation, and compared the

results of RWGA with a Random Search on an industrial piece of software. The authors

created 4 fitness functions, including Time Taken, Prioritisation Density, Test Resource

Usage and Fault Detection Capability. It could be argued that using a Random Search

as an industry standard is not necessarily representative of the actual state of the art in

test case prioritisation, however, for industrial software, it is unlikely that any test case

prioritisation measures are in place. Importantly, in comparison to the other algorithms

investigated in the study, the RWGA outperformed every other algorithm studied.
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2.12.9 NSGA-II

NSGA-II is a multiple-objective genetic algorithm based on the idea of Pareto dominance

[75]. A Pareto representation of a problem involves having a dimension on a multi-

dimensional graph for each objective that is covered. If any solution is beaten in all

dimensions, it is considered to be Pareto-dominated. The NSGA-II algorithm outputs

a set of non-dominated solutions using a ranking algorithm to determine which solution

is best given the various dimensions. Wang et al. [74] implemented a variety of

different genetic algorithms, including the NSGA-II, and showed that the NSGA-II could

outperform a random search on an industrial piece of software.

Yoo and Harman [76] also implemented the NSGA-II algorithm in their work on test case

selection. In this study, an extension to the NSGA-II was also suggested, called vNSGA-

II, which kept sub-populations separate from each other in order to try and widen the

Pareto frontier. Yoo and Harman used two objectives, coverage and cost, to form the

Pareto landscape. From this, they determined that in multiple-objective settings, the

additional greedy algorithm does not perform as well as multiple-objective alternatives,

including when 3 objectives were used. In addition to this, the authors noted that the

additional greedy algorithm formed a part of the Pareto frontier, indicating that the

results from both the additional greedy algorithm and NSGA-II could be combined to

form a better solution in terms of Pareto optimality.

2.12.10 Epistatic Genetic Algorithm

Yuan and Li [67] presented the idea of using epistasis in a genetic algorithm. Epistasis

is a biological concept revolving around the impact of genes based on the values of other

genes. For example, the gene that determines the colour of someone’s hair is irrelevant

if there is also a present gene that means the person is bald. Thus, some genes matter

more than others.

In some cases, there will be an ordering of test cases that is a subset of the entire

test suite that achieves the full coverage. This does not mean that other test cases are

redundant, but once the maximum coverage has been achieved, there is no impact on

coverage metrics such as APSC no matter what the order of the remaining test cases

are. Given this, the authors present the idea of the Epistatic Test Case Segment (ETS),

which is the permutation of all test cases starting with the first test case and ending

with the test case that reaches the maximum coverage for that permutation.

As a result of using the ETS, the crossover function for an Epistatic GA changes.

Normally, in single point crossover, the first n test cases are kept from parent 1, and the
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remaining k − n test cases are selected in order from parent 2. In the case of epistasis,

changing the order of two test cases that exist outside of the ETS will have no impact

on the fitness. As the genetic algorithm evolves, the ETS should become shorter, and

so the chances of selecting a point outside the ETS becomes higher. To change this,

epistasis results in the keeping of the last k − n test cases from parent 1, and filling

the first n test cases from parent 2. This means that chances of changing the ETS are

higher.

In their experiments, Yuan and Li found that coverage could be achieved faster using

an epistatic genetic algorithm instead of a standard genetic algorithm. When compared

with Partially Matched Crossover (PMX), the epistatic crossover required fewer iterations

while still achieving a higher coverage value. There is, however, no indication from the

available literature whether this was studied in relation to fault-detection capability,

rather than simply achieving higher coverage at an earlier stage.

2.12.11 Memetic Algorithms and Hybridisation

One of the advantages of global searches over local searches is that they are less likely

to encounter local optimum problems. A local optimum occurs when there are no

neighbours to the current solution that provide an increase in fitness, but the best

solution has still not been found. An example of a local optimum is given in Figure 2.8.

Global searches attempt to overcome the local optimum problem by using a larger

population of seeded individuals such that individual fitness can increase to find the

global optimum, and by allowing crossover and mutation, which can move from one

part of the fitness landscape to a completely different part within the same population

Memetic algorithms combine the global search of a genetic algorithm with a local search.

Since a global search will quite often jump around the fitness landscape, the application

of a local search is intended to refine individuals to guide the search to its optimal

solution before it jumps off to another section of the landscape. Obviously, global

searches cannot result in a lower fitness score, so sometimes this diversion to a separate

part of the landscape can be beneficial. However, in cases where the optimal solution is

on the same “hill” as the current candidate, sometimes a global search will divert away.

Moscato and Cotta [77] give a description of a memetic algorithm.

Harman and McMinn [78] and Fraser et al. [79] implemented a memetic algorithm

for test suite generation, showing that the technique was applicable to search-based

testing problems. As with many techniques in regression testing, it appears that the

use of memetic algorithms is also applicable in test case prioritisation. Nejad et al.

[80] implemented a memetic algorithm for regression test case prioritisation. In their
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experiments, 4 different local searches were implemented to complement the genetic

algorithm being used, a Hill Climbing algorithm, a Random Iterative Improvement

Algorithm, a Stochastic Local search and a Simulated Annealing approach. Each of these

local searches, when combined with the use of a genetic algorithm to form a memetic

algorithm, provided an improvement in fitness at the same number of iterations when

compared to a genetic algorithm. Specifically, it was noted that the simulated annealing

approach was the highest increase in performance, which may be due to the fact that

simulated annealing can accept a temporarily worse solution according to a probability,

while hill-climbing can only accept better solutions, terminating if a better solution can

not be found.

2.12.12 Hypervolume Genetic Algorithm

In previous studies on using metaheuristics for test case prioritisation, surrogates for

fault detection rate have often been used to represent fitness. These types of coverage are

Area Under Curve (AUC) metrics, and represent simple 2-dimensional fitness landscapes.

By increasing the number of dimensions from 2 to n, it becomes possible to represent a

much larger number of fitness functions, thus making the algorithm able to search for

multiple objectives simultaneously, using a hypervolume to represent fitness. As with

the NSGA-II algorithm, this algorithm relies on finding non-dominated solutions.

Di Nucci et al. [81] created a hypervolume based genetic algorithm (HGA), using 3

objectives to form the multi-dimensional fitness landscape. The objectives used were

statement coverage, execution cost and previous fault detection information, while the

implemented algorithms included the hypervolume-based GA and a cost-aware additional

greedy algorithm developed by Yoo and Harman [76]. The authors compared the

outcome of the APFDc metric from the additional greedy approach with the HGA,

finding that for both 2 and 3 objective treatments, HGA outperformed the additional

greedy approach for 4 out of 6 studied programs. In addition to this, the HGA average

running time was significantly lower across all projects, indicating the potential for this

technique to be adopted as a quicker alternative than heuristic approaches.

2.12.13 Diversity GA

Another approach to multi-objective test case prioritisation is presented in Panichella et

al. [82], where the authors aim to improve a genetic algorithm by including diversity into

the search process. The authors state that previous studies into the use of multi-objective

GAs for test case selection may have been subject to a process called genetic drift,

whereby all produced offspring are too similar to their parents and so the population
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cannot effectively evolve to aid fitness. This leads to a situation where local regions

cannot be escaped.

In order to introduce diversity, the authors modified the NSGA-II genetic algorithm,

adding in the concept of an evolution direction, which represents the general trend

being observed by the current set of individuals, and an orthogonal population, which

are individuals representing a change from the current evolution direction. According

to an interval k, diversity would be injected by calculating the evolution direction

and orthogonal population of the current solution, including individuals from both

populations in the new solution.

In order to compare their technique with other multi-objective GAs, Panichella et al.

[82] decided to use the vNSGA-II presented in Yoo and Harman [76], alongside an

implementation of a multi-objective additional greedy search also presented in Yoo

and Harman [76]. Their empirical results indicated that for two and three-objective

problems, the proposed technique was able to outperform vNSGA-II.

2.13 Mutation Faults in Empirical Studies on Test Case

Prioritisation

In order to assess the effectiveness of any given test case prioritisation technique, it is

important to have programs that contain faults, in order to see whether these faults can

be detected faster as a result of test case prioritisation. It is possible to obtain faults in

one of three ways: the first is to obtain real source code or access to real bug repositories

such as Atlassian JIRA4. This process results in the discovery of real software faults,

which may aid in the validation of results, but is highly costly in analysing what is a

fault and finding the changes in source code that can be used to patch the fault. In

addition to this, real software repositories are not generally fond of their bugs being

widely known, so this information is often private. Finally, this technique normally

results in a relatively low number of faults being discovered. It is rare to find studies

that use real faults because of the difficulty in finding the faults, and the ease of the

alternatives. However, examples of studies on real faults are included in Kochhar et al.

[43], Just et al. [83] and Di Nardo et al. [40].

The second method for obtaining faults is to manually seeding them into a program. This

technique involves using people who know a reasonable amount about programming, and

asking them to manually create bugs in positions where real developers may accidentally

introduce bugs. While this technique normally results in ‘good’ faults, which again helps

4https://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira
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prove the validity of the results, it also usually results in a relatively low number of seeded

faults, and in large systems it can require a great effort from the developers involved

to understand enough about the code to manually seed good faults. Many previous

studies have included some usage of the Software-Artifact Infrastructure Repository

(SIR), including [10–12, 38]. While SIR does contain some examples of real faults, a lot

of the studies focus on the use of seeded faults, since this provides many more faults to

work with.

The third method of fault-generation is to use mutation. Mutation is a quick and easy

way to introduce large numbers of simulated faults into a program. There are many

examples of tools that can generate such mutants, for example Major [16] or PIT5.

Mutation tools often introduce large numbers of faults into programs. For example,

Major has eight possible mutation operators, and if all are defined, any time it is possible

to introduce a mutant, it will. On a version of the JFreeChart6, with all mutation

operators available, Major generated over 70,000 mutant versions of the program, which

contains 2,205 tests [20]. As discussed in Section 2.9, in order to know exactly which

test cases kill which mutants, all tests must be executed on all mutants, resulting in

over 154 million test case executions. This results in a very high computational cost to

perform mutation analysis on such large programs with so many mutants.

Do and Rothermel [49] performed an empirical study on the use of mutation faults in test

case prioritisation experiments, in which they looked to replicate previous studies using

mutation faults rather than seeded faults, in order to see whether similar results could

be observed from the use of mutation faults as was observed when using seeded faults.

In their experiments, Do and Rothermel used 4 java programs, generating between eight

and 2907 mutants. Mutants were removed if they resulted in no output from the test

suite for the version they were created on. Mutants were also only generated in parts of

the code that had changed in the current version, making the prioritisation somewhat

version aware, although tests were being prioritised based on their coverage information

rather than FEP or any mutation-based heuristic. The authors made the following

observations:

• There is more spread of results when using mutation faults rather than seeded

faults. The conjectured reason for this is that, with a higher number of faults

available, there is a higher spread of available APFD scores. The authors suggested

that repeating experiments with more seeded faults would mean there was a similar

landscape of APFD scores.

5http://pitest.org
6https://github.com/jfree/jfreechart

http://pitest.org
https://github.com/jfree/jfreechart
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• The program with the smallest number of seeded faults, jtopas, with just 8 faults,

had the largest variance from the seeded fault experiments. This gives rise to

doubt as to whether mutation is resulting in similar behaviour to real faults, since

this experiment is what should be closest to using seeded faults, but actually it is

the furthest away in terms of results.

• The authors detected that there was a relationship between the number of seeded

faults and the results of prioritisation. The programs that were used for Experiment

2 had larger numbers of faults injected than the programs from Experiment 1, and

provided more of a change from the results of using seeded faults.

Another study into the use of mutation faults in empirical studies was conducted by

Just et al. [83]. While this study is not in the context of test case prioritisation, it is

similar to Do and Rothermel in that it considers the difference between mutation faults

and real faults. In their study, Just et al. used Defects4J [84] to analyse whether

or not mutation was a realistic representation of the kind of faults observed in real

software. Firstly, Just et al. looked at whether real faults could be generated by using

mutation tools, which resulted in observing that 73% of real faults could be coupled to

changes made by mutation, with the most common mutation operators that matched real

faults being conditional operator replacement (i.e. replacing “||” with “&&”), relational

operator replacement (e.g. replacing “==” with “>=”) and statement deletion mutants.

Secondly, Just et al. investigated the types of real faults that are not coupled to mutants.

This question provides a valuable insight into the types of faults that can occur that

are highly context-specific, or require expert knowledge in the target language in order

to reproduce. Some of the examples presented in Just et al. [83] including changing

String::indexOf for String::lastIndexOf, two methods that are semantically similar

but not equivalent, and representative of a change that mutation could not introduce.

For things like Strings and standard Java API it may be possible to know which

methods can be semantically similar, but for user-created code it becomes much harder

to recognize. In total, Just et al. [83] classified 95 faults that were not coupled with

mutation techniques, indicating whether they could be fixed with an improvement to

an existing mutation operator, required a new mutation operator, or were unrealistic

scenarios for mutation to replicate.

Lastly, Just et al. considered the correlation between mutant detection and real fault

detection. This work is similar to the work in Do et al. [49], although omitting the step

of prioritising the test cases. In order to ascertain correlation between mutation score

and fault-detection rate, the authors used automatically generated test suites, including

at least one suite that would discover the fault, and at least one that would not. The
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scores of these test suites would then be compared to determine correlation. It was

found that there is a positive correlation between mutation score and fault-detection

rate, independent of the test suite coverage. The results of this study are significant

since they show that test suites that have a higher rate of mutant detection (i.e. a

higher mutation score) represent test suites that will also detect faults faster, in the

context of real software faults.

2.14 Real Faults in Empirical Studies on Test Case

Prioritisation

One of the key threats to construct validity across many studies in the field of test

case prioritisation has been the lack of real faults used. Although there have been

investigations comparing how real faults compare with mutation faults, including Do and

Rothermel [49] and Just et al. [83], there have been very few studies that actually use

real faults in the domain of test case prioritisation [19, 40]. One of the reasons behind this

lack of empirical studies is the difficulty associated with obtaining real fault data. Most

companies that produce software at the scale required for a large enough sample size do

not have open-source repositories containing their code, since they run for profit. Even

companies that do have open-source repositories often have no concrete identification of

what is a bug. This requires researchers to analyse bug tracking repositories, identify

the start and end-point for a bug, from being discovered to being fully fixed, associate

the bug with a commit or series of commits.

Defects4J is a bug-repository containing five Java programs and over 300 real faults

that have been encountered in software ranging from 22,000 to 96,000 SLOC, and

containing from 2,205 to 7,927 test cases [84]. These bugs were mined from open source

repositories such as JFreeChart7 or Apache Math8. As discussed in Section 2.15, many

studies have used a large number of faults to evaluate their techniques, which in itself

is a threat to the validity of their results. Defects4J allows each individual bug to be

checked out into its own working directory, with one real bug per working directory, to

allow studies to be done involving that will be more representative of an actual use case

in industry.

For the remaining chapters of this thesis, I use Defects4J as a source for subject

programs. This may limit how generalisable the results of my research are, since there

are many other datasets on which the proposed strategies could have been evaluated,

7https://github.com/jfree/jfreechart
8https://github.com/apache/commons-math

https://github.com/jfree/jfreechart
https://github.com/apache/commons-math
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such as the PROMISE dataset9, which has been frequently used as a source for subject

programs in the field of defect prediction [85, 86]. Additionally, open-source datasets

such as Eclipse10 and Mozilla11 provide a large number of real faults that could have

been used to widen both the number of subjects and the complexity of the subjects

used. One of the main motivations for choosing Defects4J is that it simplifies the

experimental process to one a single source for subjects, which ensures that the process

is consistent while still providing a range of subject programs. Additionally, Defects4J

is an “all-in-one” package, including bugs that have been mined from each subject

program using a documented bug-mining process. Defects4J also provides for each of

its subjects a list of “trigger tests” (fault-revealing test cases), as well as including the

Major mutation framework to allow the required artificial faults for Chapter 3. In order

to collect the required information for additional subject programs, I would have needed

to replicate each of these steps provided by Defects4J, with each step vulnerable to

possible implementation errors.

Additionally, the Bugs.jar repository [87] provides a large dataset comprising over 1,000

real faults collected from eight open-source Java projects. Like Defects4J, this repository

contains bugs that were mined using a documented process and, for each of the bugs

included in the dataset, includes a patch that can be applied to represent the “fix”,

and a log file containing the output from the tests that were collected at the time that

the bug was present. This framework is a little less complete in terms of utilities than

Defects4J, which provides command line tools to gather information in more useful

ways, but is much more complete in terms of the range of bugs included. This repository

only existed during the final period of my studies, and therefore the experiments had

already been conducted using Defects4J and there was not enough time to repeat

them using Bugs.jar.

Luo et al. [19] conducted an empirical evaluation using the Defects4J subjects, in

which they compared the effectiveness of test case prioritisation strategies on real faults

and mutants. In particular, this study aimed to evaluate the effectiveness of existing

strategies on real faults, assess how representative mutants are of real faults in test case

prioritisation studies, and investigate the properties of both fault types that can impact

the performance of test case prioritisation. This study asks similar questions to the ones

presented in Chapter 3 — notably, while the results obtained agree with the ones that

were found in Chapter 3’s experiments, the published version of Chapter 3 was released

before the work of Luo et al..

9http://promise.site.uottawa.ca/SERepository/datasets-page.html
10https://bugs.eclipse.org/
11https://bugzilla.mozilla.org/

http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://bugs.eclipse.org/
https://bugzilla.mozilla.org/


Chapter 2 55

2.15 Number of Faults used in Empirical Studies on Test

Case Prioritisation

One of the often overlooked factors in almost all studies in test case prioritisation is the

number of faults that are being evaluated. Since the most common use for test case

prioritisation is in regression testing, it is not expected that a test suite will be finding

multiple faults in a single run. As a result, experiments that are being conducted with

higher numbers of faults may not be representative of the actual use cases for test case

prioritisation. As an example, Elbaum et al. [38] generated 29 versions of each of their

programs under study, with each version using a random number of independent faults

from a fault-base, randomly choosing any number of bugs from one to the total number

in the fault base. Hao et al. [41] used mutant groups in accordance with Do et al.

[49] to create 20 different groups of five mutants. Malishevsky et al. [14] used seeded

faults generated by students to insert between one and nine faults into each version of

their subject program emp-server. Hao et al. [21] used a combination of seeded faults

and mutation faults, again in accordance with Do et al. [49] to create between one and

five faults for each program, originally generating five per program then removing any

unqualified mutants (mutants that could not be detected by any test in the programs

test suite). These papers are representative of the landscape of empirical studies in test

case prioritisation.

The number of mutants used in an empirical study can have a large impact on the results.

This is partially presented in Do et al. [49], where the authors conjecture that there is

a relationship between the number of faults inserted and the performance of test case

prioritisation techniques. This trend is particularly prevalent when using coverage-based

techniques. Since coverage-based techniques are reliant on covering as much of the code

as possible in the shortest amount of time, and the faults most susceptible to detection

by coverage-based techniques exist in parts of the code exercised by high-coverage tests,

using more faults increases the probability that at least one fault is exposed by chance.

Detecting just one fault early in the execution can have a big impact on the APFD

score.

Di Nardo et al. [40] contains an example of how the number of faults can also be used to

present a much more convincing case for a presented technique. In their work, Di Nardo

et al. used five versions of a program, containing a variable number of faults. In order

not to bias their results, they multiplied the APFD score obtained by their prioritised

test suite by the percentage of faults contained in that version. However, version one

of their subject program contained 30 out of the total 37 faults being studied, meaning

that version one contributed 30
37 = 81% of their overall results score. When combined
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with the fact that including more faults makes it more likely to achieve a good APFD

score by chance, this makes the results of the study weaker.

2.16 Defect Prediction

Defect Prediction (or fault prediction [88]) is a technique aimed at estimating the

likelihood of a particular file or function being faulty, typically using information from

the source code and/or version control [18]. Predicting the location of faults in a program

has the potential to be hugely beneficial for a test case prioritisation strategy, since test

that cover the areas of the code that are most likely to be faulty can be placed sooner.

Moreover, many of the previous studies on defect prediction have included real faults, and

have shown the technique to be effective when using real faults. Therefore, in this section,

I investigate defect prediction and its applicability as a test case prioritisation strategy.

Chapter 4 of this thesis conducts an empirical evaluation of a test case prioritisation

strategy that leverages defect prediction.

Graves et al. [23] studied a combination of nine aspects of software repositories that

could be closely linked with defect occurrence. These included the number of lines of

code, the complexity of the code, the number of past faults, the number of changes to

files over the repository history, the average age of the code in a file, the organisation

who developed the code, the number of developers who made changes, the connections

between modules in the code, and finally developed a weighted time damp model that

computes a modules fault potential by summing up previous changes, favouring more

recent changes over older changes.

In their study, Graves et al. found that the number of changes to a file, and the number of

times that a file has previously been faulty are good indicators of future faults. Notably,

Graves et al. discovered that, once the number of changes was taken into account, models

built around any measurable code quality metric (e.g. complexity, total lines of code)

could not improve on the model.

Sliwerski et al. [89] proposed a method designed to identify both bug-introducing and

bug-fixing commits. In order to identify a bug-fix, the approach, subsequently referred

to as the “SZZ algorithm” after the three authors on the proposing paper, combines

syntactic analysis of a commit message (e.g. looking for bug identifiers) and a semantic

step using bug-tracking software information such as whether a bug identifier has been

marked as fixed and whether the bug was assigned to someone who later committed code

with the bug identifier. In order to identify a bug-introducing commit, the algorithm

looks at all lines of code that were changed as part of a bug-fixing commit and identifies
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suspicious lines based on when bugs were reported. Using their algorithm, Sliwerski et

al. conduct an experiment using two open-source projects: ECLIPSE and MOZILLA,

comprising 180,000 commits. The authors conclude that bug-introducing commits are

generally larger than bug-fixing commits, and amusingly conclude that in order to avoid

bugs you shouldn’t program on Fridays, since commits on this day accounted for the

highest proportion of bug-introducing commits.

Similarly, Kim et al. [90] conducted a study in which they investigated fault prediction

based on four hypotheses — if an entity was changed recently, added recently or faulty

recently, it is likely that the entity will introduce faults soon. The fourth hypothesis is

that if an entity was faulty recently, other “nearby” entities will also have higher chance

of introducing faults. Kim et al. employed a cache-based system to store bug fixes and

predict future bug fixes, achieving a prediction accuracy of between 73-95% at the file

level, and between 46-72% at the function level.

Following this, Menzies et al. [24] proposed a prediction model based on 38 static code

features such as McCabe’s complexity [91] and the Halstead attributes [92]. Menzies et

al. considered three learners from the WEKA toolkit [93] to identify the most discriminatory

features and combinations of features. From their experiments, Menzies et al. were able

to achieve a prediction accuracy of 71% and a false positive rate of 25%.

Zimmermann et al. [25] conducted an experiment on three versions of the Eclipse project,

combining several code-based metrics at several granularities and calculating correlations

between code features and fault existence, concluding that complex code is more likely

to contain faults than less complex code.

Moser et al. [94] conducted a comparative study between the impact of code quality

metrics and change metrics and their effectiveness on defect prediction. In their study,

Moser et al. consider 31 code metrics, 18 change metrics, and three classifiers. From

these experiments, the authors conclude that change metrics are a very positive indicator

of defects, achieving an accuracy of 7̃5%, and a false positive rate of < 30%.

Kim et al. [95] predicted defects on changes, rather than specifically on source files,

providing a classifier with bug-introducing and clean commit messages in order to classify

future commit messages as either bug-introducing or clean. In their experiments, the

change-classification approach predicted bugs with between 64-92% accuracy depending

on the project.

Hassan et al. [96] proposed two models for analysing code changes - the Basic Code

Change (BCC) and Extended Code Change (ECC) models, which map previous changes

to a complexity score and use these scores to predict the complexity of future changes
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involving specific files. From their experiments, Hassan et al. found that prior faults are

a better indicator of future faults than simply modifications alone.

Rahman et al. [97] built upon the work of Kim et al., evaluating the “FixCache” approach

described in [90], and proposing a näıve approach that simply ranked files by the number

of times they had been involved with a closed bug. In their evaluation, they found the

näıve approach to be roughly as effective as the previously proposed approach, such that

in a blog post, Google Engineering Team referenced their usage of this information [98].

D’Ambros et al. [99] conducted an exhaustive evaluation of defect prediction techniques,

taking these techniques and others and comparing them across a standard set of five

applications. From this they conclude that the Moser et al. [94] approach is highly

effective, and discover that the best performers overall are process, entropy of source

code, and churn of source code metrics.

2.16.1 Machine Learning Approaches

In addition to these approaches, researchers have also employed machine-learning approaches

to train defect prediction models. Wahono [85] conducted a systematic literature review

of defect prediction approaches, in particular focusing on the methods and the datasets

used in published studies. In this evaluation, Wahono includes 71 studies that almost

exclusively use a model-based approach, with the most commonly adopted approaches

being Näıve Bayes (used 14 times) and Decision Tree (used 11 times). A further study

by Hall et al. [86] comprising 208 papers shows that Logistic Regression and Näıve

Bayes are the two most popular modelling approaches, accounting for 56 and 33 papers

respectively.

One such example is Okutan and Yildiz [100], who used a Bayesian network to predict

the location of defects in 12 subject programs using eight code features to determine

the likelihood that a class is faulty. The results of Okutan and Yildiz show that their

approach is effective, and identifies the code features “Response For Class”, “Lines of

Code” and “Lack of Code Quality” as the three most useful features for identifying

defects. Conversely, the study shows that the “Number of Children” and “Depth of

Inheritance Tree” are unreliable code features and should not be trusted to provide

accurate predictions.

Ma et al. [101] proposed a technique for a cross-company defect prediction model, arguing

that previous studies had used training data from a single company and therefore the

results of the model were overfitted and would not generalise to other companies. In their

experiments, Ma et al. train a defect prediction model using five subject programs and
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17 code features and test their model on three versions of a different subject program.

In their analysis, Ma et al. show that their proposed approach outperforms existing

approaches when using cross-company subjects for training and testing.

He et al. [102] conducted an empirical study using a simplified set of metrics in order to

evaluate whether a predictor built using a simple metric set can perform as well as those

built using complex metric sets. The evaluation consists of 34 releases of 10 open-source

projects and combinations of 20 different code features. In their work, He et al. discover

that a model built using simplified metrics could perform nearly as well as one built

using all metrics, as the simplified model was not significantly outperformed in terms of

precision, recall or F-measure.

Bowes et al. [103] proposed a tool in order to aid the adoption of defect prediction by

industry. The ELFF tool proposed in this paper is an IntelliJ plugin that visualises the

results of defect prediction to developers by turning code that is likely to be defective

yellow in the IDE. ELFF uses an implementation of the SZZ algorithm in order to collect

historical defect information for a project through its version control system (SVN or

Git), collects static code metrics and then performs defect prediction using one of a

number of machine learning algorithms to calculate the probability that a class or a

method is buggy.

Similarly, Borg et al. [104] provided an open implementation of the SZZ algorithm

referred to as “SZZ Unleashed”. This implementation collects 16 code features and

includes an evaluation against the Jenkins dataset. The main contribution of this

paper is the openly available implementation of the SZZ algorithm, in the hope that

researchers will not need to re-invent the wheel and risk introducing mistakes in their

own implementations.

There are two ways in which a defect prediction technique can report its dependent

variable — a categorical classification will determine for a unit U in a code base whether

it is “faulty” or “non-faulty” [86], whereas a continuous classification will often report

the number of faults it predicts are contained within a unit of code [86]. In a categorical

classification, it is easy to measure the precision (number of correctly reported faulty

units vs total number of reported faulty units), recall (number of correctly reported

faulty units vs total number of actual faulty units) and F-measure (combination of the

previous two metrics). Classifiers that have a high precision will only report a few units

as faulty, but the ones it does report will usually be correct reports, whereas classifiers

with a high recall will report a lot of classes as faulty, identifying the actual faulty units

but also misclassifying a number of non-faulty units as faulty. Such results are referred to

as false positives — a defect prediction thought they were faulty but in reality they were
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not. Table 2.7 describes the four types of result that can be obtained from a categorical

classification.

Predicted faulty Predicted non-faulty

Observed faulty True Positive (TP) False Negative (FN)

Observed non-faulty False Positive (FP) True Negative (TN)

Table 2.7: Confusion matrix

2.16.2 Parameter Tuning of Machine Learning Algorithms

One of the downsides of using machine learning approaches such as Näıve Bayes and

Random Forest algorithms is that they have configurable parameters, the choice of

which may have considerable impact on the performance of the classification accuracy.

Tantithamthavorn et al. [105] conducted a study in which they employ four automatic

parameter optimisation techniques to 26 classification techniques to observe the impact

on classification accuracy. Previous work by Hall et al. [86] has shown that simply

adopting the default parameters may lead to sub-optimal results. In their results,

Tantithamthavorn et al. show that the performance of some classifiers can be boosted by

up to 40% by optimising the parameters for the classifier. This impact is not consistent

across all classifiers, with some benefitting more from the optimisation than others. This

indicates that using the correct parameters is essential for both the reliability and the

replicability [106] of studies on defect prediction.

2.16.3 Studies Linking Defect Prediction and Test Case Prioritisation

Finally, there have been a few studies that have linked defect prediction and test case

prioritisation. Li et al. [107] considered 32 code features to identify sub-systems that

were most likely to fail. Srikanth et al. [108] considered requirements reported by users as

most likely to contain failures, while Wang et al. [109] proposed a test case prioritisation

strategy based on software quality. Finally, Mirarab et al. [110] used software quality

metrics in a Bayesian model that supported test case prioritisation. Notably, all of

these studies use software quality metrics as a surrogate for fault existence, rather than

looking at change metrics described by other papers.
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2.17 Sentiment Analysis

In Chapter 4 of this thesis I present a test case prioritisation strategy that uses defect

prediction information in order to identify classes that are likely to contain faults,

and then test cases that cover those classes. In particular, I use the Schwa defect

prediction tool [26], which mines Version Control Systems (VCS) repositories to identify

information such as the number of changes a file has received, the number of unique

authors who have made changes, and the number of fixes that are related to a file. The

success of this strategy raises questions about other information that is relevant to VCS’

that may also aid test case prioritisation. One such piece of information is a commit

message. When a developer makes a change to a program and commits their work to

a central repository, they must include a brief description about what has changed and

why, such that other developers can understand the changes that have been made when

they pull changes from the central repository to their local machines. If developers are

particularly angry when they have made changes, it could be an indicator that they

have worked on badly designed program files, which could also be an indicator of future

bugs.

In Chapter 5 of this thesis, I conduct an evaluation of opinions in commit messages, in

particular aiming to correlate strong opinions with faulty files or bug fixes. If there is

a correlation between sentiment and faults (i.e. developers write more negatively about

files that contain bugs), then a test case prioritisation strategy can be developed that

leverages commit message information to reorder test cases.

When presented with a large body of text, such as a product review, the goal of sentiment

analysis is to judge whether the person who wrote the review was feeling positive,

negative, or neutral towards the product. For example, consider the following product

review, taken from Liu and Zhang [111]:

I bought an iPhone a few days ago. It was such a nice phone. The

touch screen was really cool. The voice quality was clear too.

However, my mother was mad with me as I did not tell her before I

bought it. She also thought the phone was too expensive, and wanted

me to return it to the shop.

Looking at this review, it is clear to a human reader that the reviewer was happy with

their purchase. However, it is impractical for humans to read every review written about

a product to determine whether it was received well or not, particularly in cases where

products may have thousands of reviews. Therefore, it is the task of sentiment analysis

techniques to automatically infer sentiment through a variety of approaches.
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Challenges

There are a number of key challenges in sentiment analysis that must be overcome in

order for it to be effective. Firstly, analysers must consider negations, which invert the

sentiment of surrounding words. For example, “good” is a positive sentiment while “not

good” is a negative one. Recognising negators in bodies of text is very important as it

could completely invert the polarity of the sentiment. However, since negations come in

many forms (e.g. “un”, “not”, “n’t”), recognising them correctly is an issue.

Secondly, there is the issue of identifying the subject who holds a particular opinion.

Using the earlier example, there are two people mentioned during the review — the

reviewer and the reviewers mother. While the reviewer holds a positive sentiment,

the reviewers mother holds a negative one. It is important when analysing text data

to correctly understand the subject who holds a particular opinion in order to avoid

confusion.

Furthermore, reviewers may speak sarcastically in reviews. Consider a review for an

airline that states “I REALLY enjoyed the 6 hour delay”. This is a positive sentiment

(enjoyed) accompanied by an intensifier, which is a word that increases the strength of

the previous work (really), but it is referring to something negative (a delay). In this

instance, a sentiment analysis strategy has to figure out that this is a sarcastic review

and that the reviewer is speaking negatively.

Applications of Sentiment Analysis

The primary purpose of sentiment analysis is to help people to gather a picture of a

general reaction when there are a large number of responses and analysing each one

individually would be too large a manual effort — for example understanding discussion

about a topic on Twitter [112, 113], understanding movie reviews where no specific

rating is given [114, 115], and understanding the feeling towards political figures [116]. In

short, the online profile of millions of people can be analysed in order to understand their

emotions, what they feel strongly positive about and what they feel strongly negative

about. There is possibly no more famous case than that of Cambridge Analytica, who

harvested the profiles of 50 million Facebook users and used the information gained

in order to influence people towards supporting campaigns it was working on, notably

the campaign for Britain to leave the European Union and the Donald Trump election

campaign [117–119].
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Social networks, specifically Twitter12 provide ideal candidates for sentiment analysis

— posts on Twitter are usually publicly available unless the author has specifically

protected their account, can be downloaded in large numbers using an API13, are

generally short in length (≤ 280 characters for Twitter), and usually express opinions

about current events. Go et al. [120] conducted a study in which they collected 1.6

million tweets using Twitter’s API in order to train a 3 machine learning models to

classify tweets as either positive or negative and categorise tweets by subject into one

of seven categories (e.g. Product, Person, Movie etc.). Go et al. then evaluate their

approach against a hand-annotated dataset of 216 tweets. The results of this study

showed that models could be highly effective, achieving an accuracy of 82% in the

best case. Pak and Paroubek [121] collected 300,000 texts from Twitter to train a

Näıve Bayes classifier, before evaluating on the same hand-annotated dataset used by

Go et al.. Bermingham and Smeaton [122] collected over 60 million posts using the

Twitter API and manually classified a number of tweets into one of seven categories. In

particular, this paper was aimed at discovering whether the shorter nature of “microblog”

posts (such as those found on Twitter) could be more accurately classified than longer

“blog” posts. In general, the sentiments of microblog posts could be more accurately

identified than longer blog posts, and interestingly, the most discriminatory words for

microblogs were much more generic than those in blog posts, for example “amazing”

and “love” were highly discriminatory in microblogs whereas for blog posts the most

discriminatory words were almost exclusively names, for example “reese witherspoon”

and “heath ledger”. Agarwal et al. [112] use a dataset of 11,875 manually annotated

tweets to construct a classifier that achieved up to 75% accuracy — like Bermingham

and Smeaton, the authors discovered that the most discriminatory words include terms

like “love”, “great” and “hate”. Barbosa and Feng [123] use a dataset of roughly 200,000

tweets to evaluate their “TwitterSA” tool, discovering that it had a lower error rate than

competitors.

Twitter is not the only place that sentiment analysis approaches have been applied to.

Given the highly valuable information that can be gained from customers or consumers,

the reviews market is also an ideal target for such techniques. Consider a company who

release a new product and within a few days they have 10,000 reviews on a product

review site. Even if the site offers a “star rating” system to allow reviewers to quantify

their satisfaction, these may not always match up perfectly with the actual text of the

review. A company can gain a huge amount of valuable information by understanding

its customers — which individual features did people like and which ones did they not

like [124]?

12https://www.twitter.com
13https://developer.twitter.com/en/docs/tweets/search/overview

https://www.twitter.com
https://developer.twitter.com/en/docs/tweets/search/overview


Chapter 2 64

Fang and Zhan [125] collected a corpus of 5.1 million product reviews from Amazon.com

between divided into four major categories: beauty, book, electronic and home. From

this data, they trained three separate models to identify sentiment in product reviews.

They compared this with a machine-annotated dataset that used a simple classifier to

identify the number of positive and negative words in a review. This approach was

shown to be reasonably accurate, achieving an F-measure score of over 80% in the best

case. Guzman and Maalej [124] conducted a finer grained study delving into the specific

features that were either popular or unpopular. Using review data from the Apple App

Store and the Google Play Store, the authors identify features using a strategy that

identifies groups of two or more words that frequently occur together in the reviews

(e.g. “user” and “interface”). The authors selected seven applications from a range

of different categories across both app stores to total 32,210 reviews, including 2,800

manually annotated reviews. Following this, they trained and evaluated a model for

feature sentiment recognition, achieving an average precision of 60% in the best case.

Kasper and Vela [126] proposed an approach to classify hotel reviews based on a model

trained on 1,559 hotel reviews scraped from the internet, achieving up to 67% accuracy

in the best case. Similarly, Elango [127] built models using 8,000 TripAdvisor reviews

for hotels, achieving up to 79% accuracy in the best case.

Supervised Approaches

In supervised learning, a large amount of testing data must be collected that contains the

full input data (e.g. text reviews) and an output label (e.g. positive, negative, neutral).

In the domain of product reviews, reviews are often accompanied by a star rating for the

product, between 1 and 5 stars. It is therefore possible collect a large corpus of training

data by classifying 4/5 star reviews as positive, 3 star reviews as neutral, and 1/2 star

reviews as negative. Once the training data is collected, a supervised learning classifier

(e.g. Näıve Bayes) is used to generate a model that recognises the key “features” that

identify positive and negative reviews. When confronted with new data, the model will

use the same classification approach that was learned from the training data to classify

the new review.

There have been a number of previous studies that have adopted supervised approaches

to sentiment analysis [128]. Kang and Yoo [129] proposed an improved Näıve Bayes

classifier that deals with the bias towards positive classification accuracy over negative

classification accuracy, showing that this approach was more consistent between the

two output classes. Hernández and Rodriguez [130] used a Bayesian Network to try and

model the attitude of a reviewer using three different target variables — will to influence,
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subjectivity and polarity, showing an improvement in accuracy over existing sentiment

analysis approaches. Chen and Tseng [131] use a Support-Vector Machine (SVM) with

over 51 features extracted from each review, in addition to an “information quality”

metric of their own definition to analyse 3000 reviews of digital cameras and mp3 players,

achieving a high level of accuracy. Li and Li [132] also used an SVM to perform sentiment

analysis on information collected from Twitter about three companies (Google, Microsoft

and Sony) and three products (iPhone, iPad, Macbook), achieving comparable levels of

accuracy with previous research. van de Camp and van den Bosch [133] conducted

experiments on data collected from the Biographical Dictionary of Socialism and the

Labour Movement in the Netherlands, using both an SVM and a Neural Network (NN)

to classify relations between people in the data as either positive, negative or netural.

Unsupervised Approaches

Part of the problem that supervised learning approaches face is that they require a

labelled set of data. For product reviews, it may be the case that there is a star rating

to work with, but in many other cases there may be no indication about the sentiment

except for in the text itself. This then requires significant manual effort to annotate each

review as positive, negative or neutral, or requires the use of an unsupervised technique,

which is designed to extract the opinion without the use of a pre-determined fixed model.

He and Zhou [134] proposed a weak supervised approach that started by labelling

documents using a lexicon to recognise sentimental words, and then inferred a set of

features based on the information gain from each word in the labelled documents. Their

approach was shown to be more accurate than other state of the art weak supervised

approaches.

Turney [135] proposed an unsupervised approach based on Pointwise Mutual Information

(PMI), which identifies statistical dependence between words based on whether they co-

occur. This information can be used to infer the presence of one word when another is

observed. Turney utilised this information to define a semantic orientation (SO) of a

phrase based on whether it had a higher PMI score for the word “excellent” (positive)

or “poor” (negative). Read and Carroll [136] also used PMI alongside other weak-

supervision approaches to classify articles from the Newswire site, comparing against

supervised approaches.
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Lexicon Approaches

One of the simplest approaches to sentiment analysis is to use a pre-defined lexicon

of sentimental words. A lexicon will contain lots of examples of words that express

sentiment, and an estimate for their polarity (i.e. an indication as to whether the word

is positive, negative or neutral). For each word in a sentence, its polarity is extracted

and adjusted if necessary (for example if a word is preceded by a negator), and then

the average polarity for the sentence can be calculated. This approach has a major

shortcoming in that it can not recognise context — for example the word “quiet” may

be a positive word when referring to a car or a washing machine, but a negative word

when referring to a speaker [111].

Hu and Liu [137] proposed a classifier that contained word orientations for each word

in a sentence, where 1 was positive, 0 was neutral and -1 was negative. Furthermore,

this approach identified specific features of the product in question (e.g. for a digital

camera features include “picture”), and identify whether sentences contain sub-phrases

that specific opinions about specific features. Kim and Hovy [138] also built a lexicon of

sentimental words and considered the holder of an opinion when making decisions about

the overall sentiment.

2.17.1 Sentiment Analysis on Version Control Messages

Although previous studies have been limited, there are a few examples of previous

research that has calculated sentiment analysis in relation to version control systems

(VCS) or continuous integrations (CI). Guzman et al. [139] conducted a study in which

they analysed over 60,000 commit messages from 90 separate projects to determine

whether sentiment was influenced by the programming language, time of day, day of

week, geographical distribution or project approval. In most cases there was very little

significance to their results, although it was shown that Java projects involve more

negative sentiments than other programming langauges. Souza et al. [140] conducted an

experiment that attempted to determine whether negative commit messages were more

likely to result in continuous integration build failures, concluding that there is a slightly

higher chance of a broken build following a negative commit message. Islam et al. [141]

conducted a study that focused on bug-introducing and bug-fixing commits, aimed at

determining whether such commits were generally more positive or negative. In their

study, Islam et al. discovered that both bug-introducing and bug-fixing commits have

significantly higher positive emotion scores than negative scores. Notably, none of the

previous studies have considered comparing bug-fixing with non bug-fixing commits, or

considered whether negative emotions are more likely to be associated with faulty files.
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While it does not specifically concern commit messages, Binkley et al. [142] conducted

a study in which they introduce the QALP (Quality Assessment in the large using

Language Processing) score metric, which attempts to determine the likelihood that

code contains bugs based on the cosine similarity between comments in a module and the

code. This process involves creating a language-specific list of words (for example while,

strcpy in C), and then splitting each document into two, one containing comments and

the other containing code. In their experiments, Binkley et al. train a model using only

three features: QALP, LoC and SLoC. This is done in order to avoid the possibility the

that QALP feature would be ignored completely in favour of other metrics. Using the

Mozilla dataset and a proprietary program, Binkley et al. discover that for Mozilla, the

optimal model produced did not incorporate the QALP score in its calculate for defect

prediction. However, for the proprietary program, the QALP score was included. This

shows promise for using natural language techniques in order to predict defects in code,

something this thesis will investigate further in Chapter 5.

More recently, Binkley et al. [143] conducted a study on the need for software-specific

natural language techniques, in which they used a variety of both software-engineering

and non-software-engineering datasets to determine the differences between software-

specific models and non-software-specific models. The paper concludes that “further

improvements in search related tasks within the SE domain will require moving beyond

the black box application of IR techniques”. This will also be further investigated in

Chapter 5.

2.18 Conclusions

Methods for improving the performance of regression testing have received a lot of

attention in software engineering research. There are many contributing factors to why

so much research has been focussed in this area:

1. Regression testing is inherently an industrially relevant problem. Large software

systems and large test suites take a long time to execute and detect regression

faults, meaning that any performance improvement can positively impact businesses.

2. There are many aspects of regression testing that are interesting for researchers

to explore, including automated test suite generation [69], test suite minimisation

[76], test case selection [76] and test case prioritisation [10]

3. Regression testing, despite previous attempts to improve performance, is still slow.

Fundamentally, it is necessary to have large regression test suites for large software
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systems to ensure no regressions occur, but running large suites can be closer to

days than simply a few minutes

Test case prioritisation is a technique for improving the performance of regression testing

by generating an ‘optimised’ ordering in which to run the test cases that should allow

for the highest number of faults to be detected as early as possible. It differs from test

suite minimisation, which aims to reduce the cost of testing by removing unnecessary or

unimportant test cases from the test pool, and from test case selection, which aims to

use information about the current version of the program to select a subset of test

cases to run. Test case prioritisation was introduced in 1999 by Rothermel et al.

[10], who included basic coverage-based and mutation-based approaches to prioritising

test suites. In the early stages of test case prioritisation research, generally coverage

and mutation-based techniques were the commonly covered ground, alongside separate

heuristics including Fault Index [11], History-Based [51] and, more recently, Expert

Knowledge approaches [62]. Metaheuristics opened up a new field of possibilities for

test case prioritisation as introduced by Li et al. [12]. From this, many studies have

been conducted assessing various fitness functions, multiple objectives [74], epistasis [67]

and hypervolumes [81]. Finally, the work of Burke et al. [144] has presented a new

opportunity in test case prioritisation through the use of hyper-heuristics, whereby the

specific heuristic used to evaluate a single test case prioritisation application is not fixed

and can be flexible to take into account various conditions, allowing for a new area of

exploration into heuristics for test case prioritisation.

2.18.1 Gaps in existing literature

Despite the considerable amount of research that has been conducted in test case

prioritisation, there are still some gaps in the literature that can be considered as

important threats to external validity.

1. Firstly, at the time of writing Chapter3, there was no research investigating the

effectiveness of test case prioritisation on real faults14. Additionally, Di Nardo et

al. [40] conducted a study using real faults, but included varying numbers of faults

in their research and had a clearly biased metric towards systems with more faults.

In related fields, [43] investigated the correlation between coverage and test suite

effectiveness evaluating real faults. Until recently, it has been difficult to conduct

research on real faults because large repository of real faults substantial enough to

conduct empirical research on did not exist. With the introduction of Defects4J

14Luo et al. [19] conduct an empirical evaluation on this topic, but it had not been conducted at the
time of writing Chapter 3
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[20], this has now become a possibility. In addition to containing large numbers

of real faults, Defects4J comprises entirely of large software projects similar to

those used in industry, including projects by Apache Commons. This addresses

one of the key threats to validity presented in many previous studies, where it may

not be true that results on the experimental subjects are applicable to real-world

large applications.

In Chapter 3, I conduct a large-scale empirical evaluation of eight existing test

case prioritisation strategies with up to 262 real faults. Importantly, from this

evaluation, I conclude that evaluating test case prioritisation strategies on mutants

may lead to invalid results, as well as discovering that existing test case prioritisation

strategies perform poorly on real faults.

2. Despite promising research showing the effectiveness of defect prediction techniques

on real faults, there has been no attempt to evaluate how well a test case prioritisation

strategy based on defect prediction would work.

In Chapter 4, I propose a new test case prioritisation strategy, named G-Clef, that

uses defect prediction scores to rank classes by their likelihood of containing a

fault. I evaluate G-Clef against existing test case prioritisation strategies on real

faults, significantly outperforming six of the eight compared strategies.

3. Finally, there is an opportunity to better understand how version control commit

messages correlate with the existence, introduction and fixing of real faults, since

this could have implications in test case prioritisation.

In Chapter 5, I conduct an evaluation of sentiment analysis in over 17,000 commit

messages, with the intention of building a test case prioritisation strategy that

would leverage sentiment scores. Despite the results not strongly supporting a

test case prioritisation strategy, improvements to some of the tools could lead to

a successful strategy in the future.
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Using Controlled Numbers of

Real Faults and Mutants to

Empirically Evaluate

Coverage-Based Test Case

Prioritisation

The content of this chapter is based on work undertaken during this PhD by the

author, which has been published at the Workshop on Automation of Software Test

2018 [1]. The work presented in this chapter extends the published work with a

much larger number of subjects and algorithms

3.1 Introduction

In the previous chapter, I explored the various approaches that have been proposed

for prioritising test cases. While many of these have been shown to be effective, in

many cases the evaluation took place on ‘artificial’ faults, which can be either mutant or

seeded faults, under the assumption that artificial faults behave in the same way as real

faults would in practice. Importantly, it may be the case that the research community is

overestimating the effectiveness of prioritisation strategies as a direct result of the type

of fault on which it was evaluated.

In addition to this, the primary metric for measuring the effectiveness of test prioritisation

strategies is Average Percentage of Faults Detected (APFD). This metric is designed to

70
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handle programs that contain at least one fault, and is calculated using the area under

a curve when plotting the percentage of faults detected against the percentage of test

cases run. While other studies have shown that the APFD value increases when using

some test prioritisation strategies, they have assumed that the number of faults is an

independent factor in any changes to APFD . Furthermore, in continuous integration,

where the software is built and tested for every developer change, it is likely that the

number of faults introduced will be low, while previous studies have used up to 500 faults

in a single subject program [22]. This chapter aims to address these issues through an

experiment to test how the effectiveness of test prioritisation strategies varies between

different fault types (i.e. real faults and mutants), and between controlled numbers of

faults. These experiments use the Defects4J [20] dataset, which is comprised of 395

real faults collected across six open source Java programs to obtain a large corpus of

real faults. Since Defects4J isolates each fault in to its own minimal patch file, it is

possible to find out the patch(es) that are “compatible” with each other (that is to say,

faults that can co-exist in the codebase without causing compilation problems). This

allows for the creation of programs with multiple real defects at the same time. In

addition to this, I used the Major mutation framework [16] to create large numbers of

mutants which were sampled at random to create programs with controlled numbers of

mutant faults. Once I had programs with the desired number of faults, I applied eight

frequently used test prioritisation strategies to the programs to observe the impact on

APFD values. Specifically, I aim to answer the following research questions:

RQ1: How does the effectiveness of coverage-based test case prioritisation

compare between a single real fault and a single mutant?, RQ2: How does

the effectiveness of history-based test case prioritisation compare between a

single real fault and a single mutant? and RQ3: How does the effectiveness

of test case prioritisation compare between single faults and multiple faults?.

By answering these three research questions, I can make important observations about

previous experiments and establish guidelines for future experiments. Notably, similar

research has subsequently been conducted — Luo et al. [19] also used Defects4J

subjects to evaluate the performance of test case prioritisation strategies on real faults,

and investigate how representative mutants are of real faults in evaluations of test case

prioritisation. While this study also compared APFD scores of test case prioritisation

strategies evaluated on real faults and mutants, it does not compare strategies against

the baseline to see whether the conclusions would differ as a result of the fault type.

Luo et al. also investigate the specific mutation operators that are most representative

of real faults. This additional research shows the importance of the research presented

in this chapter.
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In particular, the contributions of this chapter are as follows:

Contribution 3.1: A comparison of how coverage-based test case prioritisation

strategies perform real faults and mutants

Contribution 3.2: A comparison of how history-based test case prioritisation

strategies perform real faults and mutants

Contribution 3.3: A comparison of how the number of faults present in a program

affects the performance of test case prioritisation strategies

The remainder of this chapter is structured as follows. In Section 3.2 I discuss how the

experiment was formed, how the subjects were chosen, how I created programs with

controlled numbers of both real faults and mutants, and the prioritisation strategies

that were implemented into the Kanonizo tool. In Section 3.3 I discuss the results

of the experiments. Section 3.4 discusses the implications of the results and detail

some interesting examples that occurred during the experiment. Finally, this chapter is

concluded by Section 3.5

3.2 Methodology

In order to investigate whether the effectiveness of test case prioritisation is different

between real faults and mutants, I design an experiment through the following process.

3.2.1 Subject Programs

One of the challenges associated with evaluating test case prioritisation strategies with

real faults is the lack of real faults that are readily available. In particular, no previous

studies have tried to combine multiple real faults together. Therefore, I require a large

repository of real faults, all of which must be isolated and available as patches, such

that I can start with a fault-free codebase and incrementally add faults until the desired

number is reached. In addition, any repository used for this experiment must have a full,

developer-written test suite, containing at least one test case that reveals each isolated

fault. The Defects4J repository meets all of these requirements.

3.2.2 Creating programs with multiple real faults

Since one of the research questions relies on having programs that contain multiple

faults simultaneously, I designed a method for combining real faults from Defects4J.
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diff --git a/source/org/jfree/data/time/Week.java b/source/org/jfree/data/time/Week.java

index 8228589..3 cc4138 100644

--- a/source/org/jfree/data/time/Week.java

+++ b/source/org/jfree/data/time/Week.java

@@ -172,7 +172,7 @@ public class Week extends RegularTimePeriod implements Serializable {

*/

public Week(Date time , TimeZone zone) {

// defer argument checking ...

- this(time , zone , Locale.getDefault ());

+ this(time , RegularTimePeriod.DEFAULT_TIME_ZONE , Locale.getDefault ());

}

/**

Figure 3.1: The patch required to fix Chart v8, which includes API that is
incompatible with previous versions

Algorithm 2 describes the automated process that I used to determine real fault patches

that were compatible with one another. It is important to note that Defects4J

contains patch files which contain each of the faults present. For each subject version in

Defects4J, the script started by checking out the version into a clean directory. For

all other patches except the one currently being investigated, the script attempted to

apply the patch for the other fault. This process revealed some incompatible patches,

for example patches that changed files that did not exist by this point in the repository.

If the patch successfully applied, the script then attempted to compile the code with

the new fault. This also revealed a few incompatible patches such as the one shown

in Figure 3.1, which referred to a variable (RegularTimePeriod.DEFAULT TIME ZONE)

that did not exist until a later version of the program. If the program could compile

with both faults present, the patch number was added to the set of compatible patches.

The directory was then reset before attempting any further patches to avoid additional

dependencies. This process produced an output file similar to the one shown in Table 3.1,

from which I randomly sampled the desired number of real faults where possible.

Project Version Compatible patches

Chart 1 2:3:4:6:8:9:11:13:16:17:23
Chart 2 3:4:6:8:9:11:13:16:17:23
Chart 3 4:6:8:9:11:13:16:17:23
Chart 4 6:8:9:11:13:16:17:23
...

...
...

Table 3.1: Example output from Algorithm 2 showing real faults that were compatible
with each other
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Algorithm 2 Process used to determine compatible real faults

Require: Set of Projects P , Set of versions for each project V

1: for all p ∈ P do

2: for all v ∈ V do

3: compatible patches ← ∅
4: checkout(p, v)

5: for all v′ ∈ V \ v do

6: patch file ← get patch file(p, v′)

7: apply patch

8: if patch successful then

9: compile(p, v′)

10: if compile successful then

11: compatible patches ← compatible patches ∪v′

12: end if

13: end if

14: reset(p, v′)

15: end for

16: write(compatible patches)

17: end for

18: end for

It is important to note that the history-based approaches used in this chapter’s experiments

could not be used on programs that contain multiple real faults. Table 3.2 demonstrates

why this could result in a problem — if the version vn−2 in this table represents one

of the real faults in the Defects4J dataset, the test history analysis process described

in Section 3.2.5 would record the test failure at version vn−2. Any programs resulting

from the process described in this section should be simulating a “current” version of

the program, and therefore any prioritisation strategy should not know the outcome of

any test on the current version before prioritising the tests. If the fault from version

vn−2 is selected during the random sampling of the result of Algorithm 2, this results

in the test case history for tm containing information about a fault that is present in

the current version. Any history-based approach would then utilise the fact that test

tm failed recently to give it a high priority. In reality, the approach should not know

about the previous failure since it is expecting the fault to only be present in the current

version. This presents an unfair advantage to a history-based approach, and as a result

these experiments do not include multiple real faults when comparing history-based

approaches.
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Test Number Result in Program Version

vi vi+1 . . . vn−2 vn−1 vn

tm 3 3 . . . 7 3 3

Table 3.2: Collecting historical test data of a fault included in Defects4J

3.2.3 Creating programs with multiple mutant faults

In addition to real fault versions, this experiment required the generation of program

versions that contained multiple mutant faults. Given a program p and a version v

and a desired number of mutants n, Algorithm 3 describes the automated script that I

created to create programs with multiple mutant faults. Consider a situation in which

I am trying to generate a version of Chart-2 that contains five mutant faults. In the

corresponding version containing real faults, Chart-2 contained the patches from Chart-

6, Chart-9, Chart-13 and Chart-17. Firstly, I identified the class(es) for that version

that contained the real faults and generated all possible mutants for that class.

Version Class Name

2 org.jfree.data.general.DatasetUtilities

6 org.jfree.chart.util.ShapeList

9 org.jfree.data.time.TimeSeries

13 org.jfree.chart.block.BorderArrangement

17 org.jfree.data.time.TimeSeries

Secondly, I ran a “simple” mutation analysis across the generated mutants to identify

those that were “killed” by at least one developer-written test case. This is crucial to

the experimental setup, since if a mutant causes no observable change to a program

and cause a test case that previously passed to fail, the mutant may be equivalent,

and therefore useless in this experiment. After running this simple analysis, the script

identifies mutants that were detected by at least one test case. For each of the faulty

classes, the script then selected a killed mutant from that class at random.

Version Class Name Mutant Selected

2 org.jfree.data.general.DatasetUtilities 13

6 org.jfree.chart.util.ShapeList 16

9 org.jfree.data.time.TimeSeries 7

13 org.jfree.chart.block.BorderArrangement 35

17 org.jfree.data.time.TimeSeries 105
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Finally, the script ran a “detailed” mutation analysis of this mutant, to produce a list

of test cases that kill the mutant, which become the “trigger tests” (fault-revealing test

cases) for that mutant.

Version Class Name Mutant Selected Killing Test Cases

2 org.jfree.data.general.DatasetUtilities 13 ...

6 org.jfree.chart.util.ShapeList 16 ...

9 org.jfree.data.time.TimeSeries 7 ...

13 org.jfree.chart.block.BorderArrangement 35 ...

17 org.jfree.data.time.TimeSeries 105 ...

I ran this script on the University of Sheffield High Performance Computing (HPC)

Cluster [145], and allocated the maximum permitted runtime of 168 hours for mutation

analysis to be run. Despite the extensive runtime and memory allocations, the Closure

project could not run mutation analysis due to memory constraints, owing to the large

number of mutants and test cases that need to be executed in order to conduct mutation

analysis. Therefore, the Closure project was excluded from all experiments. In addition

to this, the bug Chart-10 can not have mutants due to the fact that the class has no

possible mutation targets [146], and the Mockito project has issues with mutating certain

bugs [147].

Algorithm 3 Process followed to create programs with multiple mutant faults

Require: Program p, Version v, desired number of mutants n
1: checkout(p, v)
2: target classes ← get faulty classes(p, v)
3: mutate(target classes)
4: run mutation analysis()
5: killing tests ← ∅
6: for all c in target classes do
7: killed mutants ← get killed mutants(c)
8: target mutants ← sample(killed mutants, 1)
9: for all m in target mutants do

10: run detailed mutation analysis(m)
11: killing tests ← killing tests ∩ get killing tests(m)
12: end for
13: end for
14: write kill map(killing tests)

3.2.4 Test Case Prioritisation

In order to prioritise test suites, I created the Kanonizo tool [148]. Kanonizo, which

means “arrange” in Greek, is an open-source tool for prioritising test cases in Java, into
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which I implemented the eight strategies described below. More details about Kanonizo

can be found in Appendix A.

Coverage-based approaches

Firstly, I selected the four most common coverage-based strategies from previous literature,

namely the greedy algorithm [10], additional greedy algorithm [10], genetic algorithm

and random search. For the genetic algorithm, I use the APLC fitness function proposed

by Li et al. [12], which optimises the ordering of test cases for early line coverage. For

further descriptions of these strategies, see Chapter 2.

History-based approaches

In addition to the coverage-based approaches described above, I also implemented four

history-based approaches — ROCKET [54], MCCTCP [52], AFSAC [56] and Elbaum et

al. [149]. For the AFSAC algorithm, the original proposal by Cho et al. does not give

specific values for four configurable parameters with which to run the algorithm —

α, β, γ and δ. These values are used to determine the priority of test cases based on

which category they fall into (i.e. failed more times consecutively than ever before). The

actual value of these four parameters will not impact the overall ordering of the test suite

provided it follows the constraints given in the original proposal — α > β > γ > δ > 0.

For the experiments below, I use values of α = 1, β = 0.7, γ = 0.4 and δ = 0.1.

Section A.1.4.1 gives details on how these algorithms were tested in Kanonizo to ensure

that they were faithful to the original proposals.

3.2.5 Test History Analysis

In order to run history-based test prioritisation strategies, it is necessary to collect

information about previous executions of test cases. In particular, the strategies above

may need to know how many times each test case has been executed, how many times it

has failed in its lifetime, or how long each test execution takes. In order to collect this

information, I wrote a script that uses version control information to iteratively check

out a previous version of the software, starting at the most recent version and working

back as far as the version control allows. For each version, the script compiles the code,

runs the developer written test suite and record the test result, execution time and, if

necessary, cause of failure. In some cases, previous versions of the program may not

compile due to either mistakes in the commit, or due to a missing library that is no

longer required by the more recent versions. In cases where compilation failures occurs,
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the script retries up to five preceeding versions. If none of these versions compile, the

script terminates the history analysis at this point. In total, the script analysed over

150,000 commits from the Defects4J subjects.

One interesting facet of the Defects4J dataset is that each bug must have a developer-

written test case that exposes it. However, some of these test cases only existed after

the bug was discovered, and exist in Defects4J thanks to a manual process where

a “special commit” is created for Defects4J purposes. When mapping Defects4J

bugs back to the last known commit before the bug was fixed, sometimes the triggering

test case is not present, meaning that the test case was written specifically with the

knowledge that the bug exists, and for the sole purpose of preventing the bug returning

as a regression. However, test case prioritisation requires the test case to be present in

order to evaluate how effective the test case prioritisation technique is. For this reason,

I exclude faults from the analysis where the trigger test was not present for at least

one previous execution before the bug was fixed, leaving a total of 82 faults remaining

for the analysis in RQ2. This avoids a potential bias in favour of certain history-based

techniques which leverage information about the number of previous executions.

3.2.6 Evaluating the effectiveness of test case prioritisation

As discussed in Section 2.7, the most common metric for evaluating test case prioritisation

strategies is APFD . The sooner all faults in a program are found, the higher the APFD

score will be for a test suite ordering. As a result, the aim of a test case prioritisation

strategy is to maximise this value. Since APFD is designed to handle multiple faults, it

is an appropriate metric to use in this experiment. Since all test cases in will be retained

in the prioritised test suite, the NAPFD metric proposed by Qu et al. [37] would give the

same result as APFD . Furthermore, in this experiment, over 98% of test cases execute

in under one second, and all faults in Defects4J are assumed to have identical severity,

meaning APFDc would also give the same score as APFD .

3.2.7 Statistical Analysis

The experiments presented in this chapter utilise three strategies that make random

choices during their execution (genetic algorithm, random search and random baseline).

Whenver such strategies are employed, there is a chance that positive results can occur

as a result of stochastic decision making. In order to minimise this risk, I apply statistical

testing in accordance with Arcuri et al. [150]. Firstly, the experiments concerning

stochastic algorithms were repeated 30 times, in order to ensure an adequate sample

size from which to draw conclusions. Secondly, I conduct two forms of statistical testing
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to the results of the experiments. The first statistical test is the Mann-Whitney U-

Test. The Mann-Whitney U-Test, given two samples of data, calculates the likelihood

that they originated from the same distribution, returning a p-value representing this

probability. A p-value is < 0.05 estimates that there is a 5% chance that the samples

could originate from the same distribution. Such a result referred to as a significant

result. In the plots in Section 3.3, each boxplot is annotated with either a 3 or a 7,

representing if the result displayed in the corresponding boxplot is significant or not.

While the Mann-Whitney U-Test is a good indicator of whether or not two samples are

significantly different, it does not give an indication of how different the samples are.

Therefore, in addition to the Mann-Whitney U-Test, I also apply the Vargha-Delaney Â

Test to measure the magnitude of the difference between the sample. Specifically, given

two samples A and B, the Vargha-Delaney Â Test calculates the percentage of occasions

on which you would expect sample A to outperform sample B. Furthermore, Vargha

and Delaney quanitifed and categorised the Â value as None (|Â −0.5| < 0.06), Small

(0.06 ≤ |Â −0.5| < 0.14), Medium (0.14 ≤ |Â −0.5| < 0.21) or Large (|Â −0.5| > 0.21).

In the boxplots in Section 3.3, the Vargha-Delaney Â Test score is represented by an

N/S/M/L at the top of the plot.

3.2.8 Threats to Validity

This study consider bugs taken from five large, open-source Java projects that are

included as a part of Defects4J. While these programs vary in their total lines of

code, number of test cases and number of years under development, it may be possible

that these results do not generalise to other programming languages or other subjects

with different characteristics. I aim to address this threat by including as many subjects

as possible, but future experiments could include subjects with different languages and

different test suite styles. Additionally, since the experimental process makes some

random choices on how to combine real faults, repeating these experiments with different

combinations of faults may also lead to different results.

This paper makes use of eight prioritisation strategies, divided into coverage-based

strategies [10] and history-based strategies [149]. While these strategies have been

frequently used in previous studies [10], there are a number of other prioritisation

strategies that have been proposed that are not considered, for example a number of

genetic algorithms [12], clustering algorithms [59], and static code-based approaches [151].

Running these experiments with any of these algorithms may lead to different results.

However, it is important to note that the purpose of this chapter is not to determine
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which test case prioritisation strategy is best, but to establish any relationship between

different fault types when applying prioritisation strategies.

The coverage-based strategies used in this chapter primarily use line coverage as the

primary input data for these strategies. However, there are other types of coverage that

could lead to different results, for example branch coverage [37] or mutant coverage [49].

While the Kanonizo tool does provide support for other types of coverage, the purpose

of these experiments was to identify differences between fault types rather than differences

between coverage types, which can be found in previous research [12].

One of the fundamental assumptions involved in test case prioritisation is that test

cases can be reordered freely without impact to the outcome of the test cases. This is

referred to as the test independence assumption [32], and has been empirically shown

to not always hold in practice. While the subjects in Defects4J use JUnit, which

should guarantee that test cases are atomic and independent, there are some test cases

in Defects4J that modify system state. However, Kanonizo collects coverage before

test cases are re-ordered, and Defects4J provides the information about which test

cases reveal failures. The outcome of the test case after prioritisation is not critical in

order to evaluate effectiveness. Crucially, it should be noted that for JUnit tests the

responsibility for ensuring test independence lies with the developer rather than with

any test case prioritisation strategy, since it is difficult to know about test dependencies

without extreme combinatorial testing [152].

When working with mutation, there are a few important considerations. Firstly, it

is important to consider the possibility of equivalent mutants, which are changes to a

program that cause no semantic difference despite modifying syntax. In these experiments,

I only include mutants that cause at least one of the developer written test cases to fail,

ensuring that all mutants that are included are not equivalent to the original program.

Additionally, Papadakis et al. [153] wrote about the dangers of using duplicate mutants

or subsumed mutants and the effect that these types of mutants can have on mutation

scores. In these experiments, I consider only a single mutant from each selected class,

meaning that it is not possible that the experiments will contain duplicate mutants.

Furthermore, while subsumed mutants can impact mutation score, for the purposes of

these experiments a subsumed mutant is equally as important as any other fault, and

as such no extra measures were taken to remove these mutants.

Finally, since I use my own tool Kanonizo and created all the experimental scripts

myself for the purpose of these experiments, it is possible that defects in the tools may

lead to invalid results. While developing Kanonizo I always developed a JUnit test

suite that goes alongside the tool to ensure that the results obtained are correct. As

discussed in Appendix A, Kanonizo is available as an open source tool [148], and
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all analysis scripts used are available [154] to allow for the external replication and

verification of these results.

3.3 Results

3.3.1 RQ1: How does the effectiveness of coverage-based test case

prioritisation compare between a single real fault and a single

mutant?

Figure 3.2 shows the APFD scores produced by running four coverage-based prioritisation

strategies on a single real fault and a single mutant. The figure immediately reveals a

clear difference in the effectiveness of test case prioritisation strategies between real faults

and mutants, producing higher APFD scores for programs containing mutants for every

project and every prioritisation strategy. In most cases, the difference is significant, with

only 5 comparisons out of 25 that are not statistically significant according to the Mann-

Whitney U-Test (Chart/Total Statement, Lang/Additional Statement, Lang/Total Statement,

Mockito/Additional Statement, Time/Total Statement). Notably, the only cases where

the result is not significant are those where experiments were not repeated 30 times to

account for random choices, and therefore the fact that these samples have fewer data

points may have contributed to lack of significance [150]. In each case, it is clear from

looking at the boxplots that the APFD scores for mutants are higher, with even one case

of a large Â score (Mockito/Additional Statement) despite not being a significant result.

This is supported by Table 3.3, which reports the mean number of test cases required in

order for the two fault types to be exposed. In all cases, there are more test cases required

in order to find a real fault than a mutant. The difference reported in Table 3.3 represents

the raw difference represented as a total percentage of the test suite. For example, for

the Chart project an average of 698 test cases are required in order to find a real fault,

whereas 566 are required to find a mutant, leaving a difference of 132 test cases. When

represented as a percentage of the 1823 test cases this project has on average, this results

in with 7.24% more test cases. From this, it is clear conclude that mutants are easier

to find than real faults, a phenomenon that is further discussed in Section 3.4. While

this result indicates that researchers should be wary of exaggerating the effectiveness of

test case prioritisation strategies when using mutants as subjects, this result alone does

not explicitly imply that mutants are inappropriate subjects for such experiments. In

Figure 3.2, the significance values were calculated across fault types. For example, for

the Chart project with the Total Statement strategy, the samples provided to the Mann-

Whitney U-Test were data from Chart/Total Statement/Real Faults and Chart/Total

Statement/Mutants. By contrast, Table 3.4 considers statistical significance calculated
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Figure 3.2: APFD scores for programs containing one real fault (white) and one
mutant (grey) prioritised with coverage-based strategies. A 3 indicates a significant result
according to the Mann-Whitney U-Test at a 5% confidence level, while a 7 indicates the reverse. An
annotation N/S/M/L indicates the Â score, None (|Â −0.5| < 0.06), Small (0.06 ≤ |Â −0.5| < 0.14),

Medium (0.14 ≤ |Â −0.5| < 0.21) or Large (|Â −0.5| > 0.21).
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Table 3.3: Mean number of test cases required to find faults, for real faults and
mutants respectively

Project Real Mutant # Test Cases % Difference

Chart 698.38 566.31 1823.71 7.24
Lang 924.14 751.38 1885.38 9.16
Math 1216.60 768.58 2739.26 16.36

Mockito 460.08 292.63 1375.69 12.17
Time 1397.45 964.29 3915.67 11.06

as it would appear in a paper proposing a new technique. For example, for the Chart

project with the Total Statement strategy, the samples provided to the Mann-Whitney

U-Test are Chart/Total Statement/Real Faults and Chart/Random/Real Faults. In

Table 3.4, an Â score of > 0.5 indicates that, on average, the listed strategy should

outperform a random ordering in terms of APFD score, while an Â of < 0.5 indicates

the reverse. From Table 3.4, it is clear that there are number of results that would

change if mutants were used in place of real faults. For example, when evaluating the

Additional Statement strategy on the Chart project, using real faults would lead to the

conclusion that the strategy provides no real benefit over random ordering, while using

mutants indicates a significant improvement over the baseline. Conversely, evaluating

Total Statement on the Math project shows no real difference for real faults, whereas

using mutants leads to the conclusion that this strategy is significantly worse than the

baseline.

These results are consistent with Luo et al. [19], who demonstrate that for all strategies

considered in their evaluation, the APFD score is higher for mutants than it is for real

faults. While their study does not include a baseline to compare against, the mean

APFD presented for each strategy are similar to the ones presented in this chapter.

Furthermore, Luo et al. state, as this research question does, that there is no guarantee

that results observed on mutant faults will correlate to similar levels of performance on

real faults.

Table 3.4: Significance values of coverage-based strategies compared against their
respective baseline

Additional Stmt Total Stmt GA Random Search
Real Mutants Real Mutants Real Mutants Real Mutants

Chart (N) 0.49 (M) 0.69 (N) 0.45 (N) 0.48 (N) 0.50 (N) 0.50 (N) 0.49 (N) 0.50
Lang (S) 0.39 (M) 0.34 (S) 0.39 (M) 0.34 (N) 0.50 (N) 0.49 (S) 0.39 (M) 0.34
Math (N) 0.55 (N) 0.55 (N) 0.53 (S) 0.43 (N) 0.50 (N) 0.49 (N) 0.50 (N) 0.48
Mockito (N) 0.50 (S) 0.61 (N) 0.46 (S) 0.40 (N) 0.50 (N) 0.49 (N) 0.50 (N) 0.48
Time (S) 0.58 (L) 0.73 (S) 0.59 (N) 0.55 (N) 0.51 (N) 0.50 (N) 0.50 (N) 0.50
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RQ1: Using mutants to evaluate coverage-based test case prioritisation strategies leads

to a significant increase in APFD, and may reverse the conclusions when compared to

real faults.

3.3.2 RQ2: How does the effectiveness of history-based test case prioritisation

compare between a single real fault and a single mutant?

Figure 3.3 shows the APFD scores of programs containing real faults and mutants when

prioritised using history-based strategies. It is important to note that, in accordance

with Section 3.2.5, Figure 3.3 contains data from fewer programs than Figure 3.2 (60

faults instead of 232 — See Appendix B for details about the subjects included in

these experiments). From Figure 3.3 it is apparent that there is a much more varied

distribution of results. Whereas in Section 3.3.1 the results are generally consistent,

with history-based strategies there are some cases where the APFD for real faults is

higher than the APFD for mutants (e.g. Chart/ROCKET), as well as some cases where

it is lower (e.g. Lang/MCCTCP). Notably, there are no cases where the APFD is

significantly lower for real faults, and only one case where it is significantly higher

(Chart/MCCTCP).

Table 3.5 shows the average number of commits, the percentage of commits in which

the trigger test is present, and the percentage of occasions on which the trigger test

has failed for each of the projects in Defects4J. Table 3.5 shows that, for the Chart

project, the trigger tests have a high number of failures in their history. This means

that the history-based strategies have a high chance of prioritising these test cases well,

and therefore leads to the result shown in Figure 3.3, in which the Chart project has

very high APFD scores for real faults. Conversely, for the Time project, despite the

trigger tests being present in every single commit, there are no failures in the history of

the trigger tests, resulting in the low APFD scores observed for this project.

Table 3.6 shows the results of the Mann-Whitney U-Test and Â scores for history-

based strategies when compared against the baseline. As with Section 3.3.1, this shows

Table 3.5: Number of commits, percentage of commits in which the trigger test is
present, and percentage of occasions on which the trigger test has failed in its history

Project # Commits % Occurences % Failures

Chart 24.33 72.78% 66.67%
Lang 159.33 87.16% 5.11%
Math 382.61 77.38% 5.56%
Mockito 105.33 65.20% 19.12%
Time 35.67 100.00% 0.00%
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Figure 3.3: APFD scores for programs containing one real fault (white) and one
mutant (grey) prioritised with history-based strategies. A 3 indicates a significant result
according to the Mann-Whitney U-Test at a 5% confidence level, while a 7 indicates the reverse. An
annotation N/S/M/L indicates the Â score, None (|Â −0.5| < 0.06), Small (0.06 ≤ |Â −0.5| < 0.14),

Medium (0.14 ≤ |Â −0.5| < 0.21) or Large (|Â −0.5| > 0.21).
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Table 3.6: Significance values of history-based strategies compared against their
respective baseline

AFSAC ROCKET MCCTCP Elbaum et al.
Real Mutant Real Mutant Real Mutant Real Mutant

Chart (L) 0.82 (N) 0.56 (M) 0.71 (S) 0.56 (L) 0.87 (S) 0.38 (M) 0.68 (S) 0.62
Lang (L) 0.73 (N) 0.52 (S) 0.59 (N) 0.45 (N) 0.50 (N) 0.51 (N) 0.48 (N) 0.53
Math (S) 0.60 (M) 0.29 (N) 0.46 (M) 0.31 (N) 0.54 (M) 0.32 (N) 0.47 (M) 0.33
Mockito (L) 0.75 (M) 0.64 (S) 0.64 (N) 0.48 (N) 0.46 (S) 0.43 (S) 0.59 (L) 0.72
Time (L) 0.24 (L) 0.29 (M) 0.35 (N) 0.44 (L) 0.24 (L) 0.29 (N) 0.54 (S) 0.40

significant differences between real faults and mutants. For example, with MCCTCP

on the Chart project, using real faults would lead to the conclusion that the strategy

is highly effective, while using mutants would result in the opposite conclusion. For

the Math project, every strategy has very similar results with no significantly better or

worse results for real faults, whereas for mutants every strategy is significantly worse

than the baseline. Notably, in Table 3.6, there are no cases where a project/strategy

combination is significant for both fault types.

RQ2: History-based strategies are more effective than coverage-based strategies for some

projects and less effective for others. As with Section 3.3.1, there are clear differences

in the effectiveness of all strategies when using different types of faults.

3.3.3 RQ3: How does the effectiveness of test case prioritisation compare

between single faults and multiple faults?

Figure 3.4 shows the APFD scores for programs containing different numbers of real

faults. One of the immediately noticeable trends is that as the number of faults in a

program increases, the variance in APFD scores decreases. This is because with only a

single fault present, there are some situations in which test case prioritisation performs

very well, and some where it performs poorly. As the number of faults increases, there

is a higher probability that the variance exists within a single program, with some faults

being found quickly and some faults requiring more test cases. This means that the

APFD scores tend to normalise towards a single value, which causes the lower variance.
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Figure 3.4: APFD scores for programs containing single real faults (white) through
to programs containing 10 real faults (grey). A 3 indicates a significant result according to
the Mann-Whitney U-Test at a 5% confidence level, while a 7 indicates the reverse. An annotation
N/S/M/L indicates the Â score, None (|Â −0.5| < 0.06), Small (0.06 ≤ |Â −0.5| < 0.14), Medium

(0.14 ≤ |Â −0.5| < 0.21) or Large (|Â −0.5| > 0.21).
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In addition to this, in most cases the median APFD score decreases as more faults

are included (e.g. Chart/GA), although there are some cases where the median APFD

increases (e.g. Math/Additional Statement). The reason for this is that the APFD

metric requires detection of all faults in a program rather than just a small subset. In

cases where there is only a single fault, the APFD scores can be heavily influenced by

a single well-placed test case, however as the number of faults increases the probability

of finding all faults quickly becomes lower.

Table 3.7 shows the significance values of the coverage-based test case prioritisation

strategies when compared against their respective baselines. As shown in the table, as

the number of faults in a program increases, the Â scores and significance values become

more extreme, with 13 significant values for programs with 10 faults, compared with

only four significant values for programs with 1 fault. Furthermore, as the number of

faults increases, the performance of test case prioritisation strategies tends to decrease

when compared with the random baseline. When using only 1 fault, 13 out of 20

project/strategy combinations have an Â score of ≥ 0.5, while when the programs

contains 10 faults, only 8 out of 20 programs have an Â score of ≥ 0.5.

RQ3: In addition to the type of fault, the number of faults present in a program can

make a significant difference to the APFD scores — with more faults present in a

program, there is a higher likelihood of obtaining a significant result

3.4 Discussion

One of the important results observed in Section 3.3 were that test case prioritisation

performs very differently depending on the fault type that is included. Additionally,

while previous literature has suggested that the genetic algorithm can provide benefits

in test case prioritisation [12], there is little evidence of that based on these experiments

— in most cases, the genetic algorithm had an identical performance to the baseline.

This section investigates these results.

3.4.1 Real Faults vs Mutants in Test Prioritisation

While Section 3.3 reveals that there are clear differences between real faults and mutants

when it comes to how effective test prioritisation is, these results do not develop an

understanding concerning the syntactic and semantic differences between fault types that

may be the root cause. Just et al. [83] conducted a detailed study in which they compared

real faults and mutants, in particular investigating whether mutation operators could

be used to generate the same real faults that occur in practice. These experiments show
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Table 3.7: Significance values of different numbers of real faults, compared against
their respective baselines

Additional Stmt
Project 1 5 10

Chart (N) 0.49 (N) 0.55 (M) 0.66
Lang (S) 0.39 (L) 0.23 (L) 0.17
Math (N) 0.55 (M) 0.65 (L) 0.84
Mockito (N) 0.50 (N) 0.44 (S) 0.40
Time (S) 0.58 (S) 0.43 (N) 0.52

Total Stmt
Chart (N) 0.45 (S) 0.39 (M) 0.29
Lang (S) 0.39 (L) 0.20 (L) 0.17
Math (N) 0.53 (N) 0.56 (L) 0.77
Mockito (N) 0.46 (S) 0.37 (L) 0.04
Time (S) 0.59 (L) 0.73 (L) 0.82

GA
Chart (N) 0.50 (N) 0.48 (N) 0.49
Lang (N) 0.50 (N) 0.49 (N) 0.50
Math (N) 0.50 (N) 0.49 (S) 0.43
Mockito (N) 0.50 (N) 0.51 (N) 0.54
Time (N) 0.51 (N) 0.50 (N) 0.52

Random Search
Chart (N) 0.49 (N) 0.49 (N) 0.47
Lang (S) 0.39 (L) 0.23 (L) 0.17
Math (N) 0.50 (N) 0.50 (S) 0.42
Mockito (N) 0.50 (N) 0.50 (N) 0.47
Time (N) 0.50 (N) 0.49 (N) 0.47

that for the 262 real faults considered, on average 2.23 lines of code were added (max.

added lines 33), while on average 6.26 lines of code were removed (max. removed lines

49) in order to fix a real fault. When working with mutants, a maximum of one line of

code can be added, and a maximum of one line of code can be removed. This shows the

relative complexity of real faults when compared to mutants.

Furthermore, Figure 3.5 shows an example of a patch required to fix a real fault and

a patch required to fix a mutant. This shows the complexity associated with fixing a

real fault, since there is a huge amount of contextual knowledge required to understand

that the if statement included is causing an issue and therefore must be removed. By

contrast, the mutant is very clearly wrong from the first inspection, and would be highly

unlikely to ever occur in practice. Luo et al. [19] also provide an example that shows

how different fixing real faults and mutants are. In particular, the example in Luo et al.

shows that APFD scores from strategies evaluated on real faults and mutants have low

correlation when mutants do not properly reflect real faults occurring in a program.
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diff --git a/source/org/jfree/chart/plot/CategoryPlot.java b/source/org/jfree/chart/plot/CategoryPlot.java

index 5d831f7 .. dc7d06b 100644

--- a/source/org/jfree/chart/plot/CategoryPlot.java

+++ b/source/org/jfree/chart/plot/CategoryPlot.java

@@ -2163,9 +2163 ,6 @@ public class CategoryPlot extends Plot implements ValueAxisPlot ,

markers = (ArrayList) this.backgroundDomainMarkers.get(new Integer(

index ));

}

- if (markers == null) {

- return false;

- }

boolean removed = markers.remove(marker );

if (removed && notify) {

fireChangeEvent ();

@@ -2448,9 +2445 ,6 @@ public class CategoryPlot extends Plot implements ValueAxisPlot ,

markers = (ArrayList) this.backgroundRangeMarkers.get(new Integer(

index ));

}

- if (markers == null) {

- return false;

- }

boolean removed = markers.remove(marker );

if (removed && notify) {

fireChangeEvent ();

diff --git a/source/org/jfree/chart/plot/XYPlot.java b/source/org/jfree/chart/plot/XYPlot.java

index 243 f94b ..50 cf416 100644

--- a/source/org/jfree/chart/plot/XYPlot.java

+++ b/source/org/jfree/chart/plot/XYPlot.java

@@ -2290,9 +2290 ,6 @@ public class XYPlot extends Plot implements ValueAxisPlot , Zoomable ,

markers = (ArrayList) this.backgroundDomainMarkers.get(new Integer(

index ));

}

- if (markers == null) {

- return false;

- }

boolean removed = markers.remove(marker );

if (removed && notify) {

fireChangeEvent ();

@@ -2529,9 +2526 ,6 @@ public class XYPlot extends Plot implements ValueAxisPlot , Zoomable ,

markers = (ArrayList) this.backgroundRangeMarkers.get(new Integer(

index ));

}

- if (markers == null) {

- return false;

- }

boolean removed = markers.remove(marker );

if (removed && notify) {

fireChangeEvent ();

(a) Patch required to fix real fault Chart-14

diff --git a/src/main/java/org/joda/time/Days.java b/src/main/java/org/joda/time/Days.java

index 116 cc7d ..0007 de3 100644

--- a/src/main/java/org/joda/time/Days.java

+++ b/src/main/java/org/joda/time/Days.java

@@ -46,7 +46,7 @@ public final class Days extends BaseSingleFieldPeriod {

/** Constant representing one day. */

public static final Days ONE = new Days (1);

/** Constant representing two days. */

- public static final Days TWO = new Days (2);

+ public static final Days TWO = new Days (0);

/** Constant representing three days. */

public static final Days THREE = new Days (3);

/** Constant representing four days. */

(b) Patch required to fix mutant fault Time-18

Figure 3.5: Patches required to fix different fault types

This is also reflected in the number of test cases that detect the faults. Since real faults

are highly specific and targeted, there are often very few test cases that reveal them. On

average, 2.37 test cases detect the real faults, compared to 10.9 test cases that detect

mutants. This in turn contributes to the inflated APFD scores that were observed for

mutants in Section 3.3.
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3.4.2 The Results with the Genetic Algorithm

One of the more prominent trends in Section 3.3 was that the Random Search and

Genetic Algorithm strategies had very poor performance for both real faults and mutants,

in both cases very rarely improving upon random orderings. Given that the genetic

algorithm is initialised with a population of random orderings and can only make changes

that improve the overall fitness, it stands to reason that the minimum performance of

the genetic algorithm should match the baseline, and there should be cases where the

orderings produced are much better than the baseline.

One possible reason for this failure is the choice of fitness function for the genetic

algorithm. Li et al. [12] use a fitness function called Average Percentage of Lines

Covered, which aims to order tests in such a way that covers the most lines as early as

possible. One of the downsides of this fitness function is that it is incredibly expensive

to calculate, particularly for large systems with lots of test cases. For every coverable

line of code, the APLC function must identify the index of the first test case in the

prioritised suite to execute that line, which can result in millions of checks. Practically,

this makes it unlikely that a user would achieve a high number of generations during a

reasonable runtime (e.g. 60 seconds). These experiments achieved 10,000 generations,

and yet were still not able to achieve good test suite orderings. As discovered by Hao et

al. [21], in most cases the best possible solution for maximising coverage is produced

by the additional statement strategy, which produces near-optimal or optimal levels of

coverage. Therefore, the genetic algorithm with the APLC fitness function is never

likely to outperform additional statement coverage regardless of how much time or how

many iterations are allocated in its budget.

3.5 Conclusions

In this chapter I have investigated the effect of using different fault types and different

numbers of faults when attempting to evaluate the effectiveness of test case prioritisation

strategies. Through an experimental analysis, I have discovered that using mutant faults

can lead to inflated APFD scores, and may in some cases result in opposite conclusions

when compared to real faults, that is to say using real faults indicates that strategy A

is significantly more effective than strategy B, while evaluating on mutants would result

in strategy B being more effective. This is partly due to the fact that real faults are

harder to detect than mutants, which in turn causes fewer tests to reveal real faults.

I have also discovered that the inclusion of many faults may cause differences when

compared to single faults. While it is not the purpose of this chapter to determine the
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more likely scenario in practice, it is important to note that when programs contain

more faults, the resulting APFD scores may suffer due to only finding a subset of faults.

Furthermore, as the number of faults in a program increases, there is a higher likelihood

of obtaining a significant result.

Finally, this chapter has shown that existing test case prioritisation strategies are not

very effective at prioritising test suites to detect real faults. When using real faults, there

were only six combinations of project/strategy (40 combinations total) that resulted in

statistically significant results, and of those, there were three examples where random

orderings were significantly better than orderings produced by one of the strategies. This

clearly shows the need for an improved test case prioritisation strategy for real faults.



Chapter 4

An Empirical Study on the Use of

Defect Prediction for Test Case

Prioritisation

The content of this chapter is based on work undertaken during this PhD by the

author, which has been published at the International Conference on Software

Testing, Verification and Validation 2019 [2].

4.1 Introduction

In Chapter 3 I investigated the effects of different fault types on the effectiveness

of various test case prioritisation strategies. Some of the most positive results for

detecting real faults were history-based techniques — in particular, the JFreeChart

project from Defects4J. However, there were also a number of instances where history-

based techniques performed poorly, due to trigger tests having no historical failures.

In particular, one of the important findings of the previous chapter was that it is

important to evaluate on real faults, since using artificial faults for evaluation may lead

to incorrect conclusions. One technique that has been shown to be effective at finding

real faults is defect prediction [18, 23–25]. Defect prediction estimates the likelihood

that file within a software system is buggy, and leverages software metrics or version

control information to produce these values.

In this chapter, I present a test case prioritisation strategy, called G-Clef, that uses

defect prediction data to reorder a test suite such that the classes that have the highest

chance of being buggy are covered first. I present a large parameter tuning experiment

93
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to investigate how to maximise the performance of my defect prediction tool, and an

empirical evaluation of the proposed strategy using real faults from the Defects4J

dataset, and compare against the state-of-the-art coverage-based and history-based

strategies. Specifically, I aim to answer RQ1: Which configuration of G-Clef is

the most effective?, RQ2: How does G-Clef compare to previously proposed

coverage-based test case prioritisation strategies at prioritising manually-

written test cases? and RQ3: How does G-Clef compare to previously proposed

history-based test case prioritisation strategies at prioritising manually-written

test cases?.

The contributions of this chapter are as follows:

Contribution 4.1: A parameter tuning study to determine the best parameters for

defect prediction to find real faults in Defects4J

Contribution 4.2: An implementation of a new test case prioritisation strategy,

G-Clef, that leverages defect prediction

Contribution 4.3: A parameter tuning study to determine the best parameters for

G-Clef

Contribution 4.4: An evaluation of G-Clef against existing coverage-based

strategies

Contribution 4.5: An evaluation of G-Clef against existing history-based strategies

The remainder of this chapter is structured as follows. Section 4.2 introduces defect

prediction, before Section 4.3 discusses the Schwa defect prediction tool. In Section 4.4

I introduce G-Clef and discuss challenges of using defect prediction data to prioritise

test cases. Section 4.4.3 talks through the setup and execution of the experiments,

before 4.5 presents the results of the empirical evaluation. Finally, Section 4.6 concludes

the findings of this chapter.

4.2 Defect Prediction

As explored in Chapter 2, defect prediction is a widely studied area within the field

of Mining Software Repositories (MSR). Defect prediction typically uses either software

quality metrics (e.g. [24]) or software repository information (e.g. [26]) to decide whether

a class is buggy or not. There are two types of classification for this — the first is
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a binary classification per-file as to whether the file is faulty or not. This approach

is typical of machine learning models and particularly of models that use static code

features, since these models typically analyse the static features associated with each

file and return a “yes” or “no” answer determining whether it believes the file is faulty

or not (e.g. ELFF [103]). The second approach is to return a numeric score representing

the probability that a given file is faulty for every file in a software project.

4.3 Schwa

Given a Git1 repository of a Java project, the Schwa tool2 [26] extracts information from

each commit, such as its message, author, timestamp, list of all modified files, and the

changes performed (i.e., the diff). It performs a defect prediction computation based on

three metrics that have been shown to be effective at predicting defects: 1) revisions [23]

(how often a Java class has been changed), 2) fixes [25] (how often a Java class has been

fixed), and 3) authors [99] (how often a Java class has been modified by more than

one developer). Schwa is robust, readily available software that is not language specific,

making it a suitable choice for many subjects.

Rather than considering each commit as equally likely to have resulted in an issue, Schwa

uses a value “Time-Weighted Risk” (TWR) [26, 155], to estimate how reliable a Java

class is:

TWR(C) =
1

1 + e−12α+w
(4.1)

For each commit (C) in the repository, the value TWR(C) for the commit is calculated

based on how recently the commit was added — the oldest commit in the repository

has an α value of 0.0, while the most recent commit has an α of 1.0, with every commit

in between having an α increased by a fixed interval based on the total number of

commits. The value w is used to weight the importance of newer commits as opposed

to older commits. Lewis et al. [155] suggested w = 12 as a good value to score the files

of two Google projects by their bug-propensity. Rather than a fixed value, Schwa uses

w = 2 + ((1− TR)× 10), where TR represents the time-range of bug fix commits: TR

values close to 0.0 indicate will give more favour to newer commits, whereas TR values

close to 1.0 will allow older commits to have a slightly higher TWR. It is important to

note that if TR = 0.0, then w is equal to 12, the original value suggested by Lewis et

al. [155].

1https://git-scm.com/, accessed March 2020.
2https://github.com/andrefreitas/schwa, accessed March 2020.

https://git-scm.com/
https://github.com/andrefreitas/schwa
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Schwa estimates the likelihood that a Java class c contains a bug using Equation 4.2,

in which each of the three factors (i.e., revisions, authors, and fixes) is calculated and

modified by a weight, where the sum of all weights must be equal to 1.

βc = RevisionsWeight ×
∑
Rc∈R

TWR(Rc)

+ AuthorsWeight ×
∑
Ac∈A

TWR(Ac)

+ FixesWeight ×
∑
Fc∈F

TWR(Fc)

(4.2)

∑
Rc∈RTWR(Rc) is the sum of all TWRs in which c has been modified.

∑
Ac∈ATWR(Ac)

is the sum of all TWRs in which a new author has modified c.
∑
Fc∈F TWR(Fc) is the

sum of all TWRs in which c has been involved in a fix operation. R, A, and F represent

the revisions’, authors’, and fixes’ timestamps in which c has been involved. The value

βc is normalised to [0, 1] and estimates the defect probability of c, defectc = 1 − e−βc .
Intuitively, a Java class c with a higher defectc value is less reliable (i.e., is more likely

to contain a bug) than those classes with a low defectc value.

4.4 G-Clef

Algorithm 4 illustrates the procedure of G-Clef, which integrates defect prediction into

a test case prioritisation strategy. If G-Clef were to adopt a categorical classification

approach, such as the one used by Arisholm et al. [156], it would simply take the test

cases that execute code in the classes that the defect prediction approach has determined

are faulty, place those test cases first in the prioritised suite, and then add the tests for

“non-faulty” classes. In the case of a false negative (i.e. a class that is faulty but is

determined by the defect predictor to be clean), the impact of this would be huge, since

there is no natural ordering of the “non-faulty” classes. As an example, consider a

program with 2,000 classes and 20,000 test cases. If a defect predictor suggests that

five of the classes are faulty, and G-Clef adds the tests covering those five classes to the

prioritised test suite, we are left with 1,995 classes and (e.g.) 19,000 test cases, with no

way of deciding which of the 1,995 classes we should choose next. According to Hall et

al. [86], most classification approaches for defect prediction have a recall score of around

55-75%, meaning that classes that contain faults are misclassified as non-faulty between

25 and 45 percent of the time. As a result, for G-Clef, Schwa is a suitable choice of

defect predictor since it provides a natural ordering of classes, reducing the impact of a

false negative.
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Algorithm 4 G-Clef

Require: Classes Under Test C = 〈c1, c2, ..., cn〉
Test Suite T = {t1, t2, ..., tm}
Function to return defectc score for class ci, b(ci)
Function to determine classes covered by test tj , s(tj)
Secondary Objective Function g
Group Size G

Ensure: Prioritised Test Suite T ′

1: C ← Sort(C, b)
2: T ′ ← 〈〉
3: while C 6= 〈〉 do
4: A← sublist(C,G) // Take first G elements from C
5: C ← remove(A,C) // Remove all elements of A from C
6: T ′′ ← 〈〉
7: for all ci ∈ A do
8: T ′′ ← T ′′ · 〈tj ∈ T |ci ∈ s(tj)〉
9: end for

10: T ′ ← Unique(T ′ · Sort(T ′′, g))
11: end while
12: return T ′

In order to prioritise test cases using Schwa, G-Clef first orders the classes in a program

by the defect prediction score produced by Schwa (line 1). Until the list of classes is

empty, G-Clef iteratively takes the next group of G classes (see Section 4.4.2 for details),

and identifies the tuple of test cases T ′′ ⊆ T that execute lines of code in each class.

Since this process returns many test cases, G-Clef applies a secondary objective g (line

10), discussed in the following subsection, to order T ′′ using an alternative heuristic

(e.g., coverage). Finally, G-Clef places the ordered test cases into the prioritised suite

(T ′) (line 5). Since G-Clef starts with the class that is most likely to be faulty, and

selects all tests that cover this class, better bug prediction will directly result in faster

fault detection during test suite execution.

To illustrate how G-Clef works, consider a small example program with 3 classes —

ClassA has 100 test cases and a defectc score of 0.8. ClassB has 30 test cases and a

defectc score of 0.35, while ClassC has 1000 test cases and a defectc score of 0.1. G-Clef

starts by selecting all the test cases for ClassA, since this is the most likely to contain a

bug. Following this, the secondary objective decides how the 100 tests for ClassA should

be ordered. A good secondary objective will place first the test case that detects the

fault.

Now consider a bug report that incorrectly assigns ClassC a defectc score of 0.9. Since

G-Clef takes all the tests for ClassC first, there are now 1000 test cases being executed

before they detect a bug. To address this problem, G-Clef groups classes together based
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on their likelihood of containing a fault. In this instance, a group size G of 2 would

include ClassC and ClassA in the first group of classes, meaning the secondary objective

has the combined set of tests from ClassC and ClassA (i.e., 1100 tests) from which to

choose. Note that this selection process only involves iteratively selecting the class that

is next most likely to contain a fault, rather than applying a clustering approach to

decide which classes are more similar to each other.

4.4.1 Secondary Objective

G-Clef utilises a secondary objective to determine the ordering of test cases given a set

of tests that cover a target class. It is important to note that G-Clef could use a linear

combination of primary and secondary objective using a weighting function to avoid

the need for a two-phase sorting process (i.e. sorting classes by defectc score and then

sorting by secondary objective). For example, could assume that the score for a test case

t is 4× defectc + secondary objective(t) — this would mean that the primary objective

(i.e. defect prediction score) is still weighted much more heavily than the secondary

objective, but that a high secondary objective score could outweigh poor defectc scores.

In the case where multiple classes are covered by t, an average could be taken of the

defectc scores of all classes covered by t. Since the focus of this chapter is primarily using

defect prediction, I investigate the impact of sorting classes by the defectc score, using

four secondary objectives to prioritise test cases once G-Clef has established a subset

based on defect prediction: greedy (or total statement) orders test cases by the total

number of statements covered, additional greedy (or additional statement) keeps a

track of the combined set of lines covered by the prioritised suite, selecting the test that

covers the most previously uncovered lines, random returns a purely random ordering

for test cases, ensuring diversity of the prioritised test cases. Finally, similar to the

work by Hao et al. [21] and Campos and Abreu [157], I apply a constraint solver,

representing the lines of code as constraints that must be covered by one or more test

cases and finding the minimal set of tests that satisfies all of the constraints, thereby

covering all of the lines of code.

4.4.2 Grouping Classes

In addition to the secondary objective, G-Clef may also need to group classes together. If

a bug prediction report incorrectly assigns a high defectc score to a class with many test

cases, G-Clef may suffer as a result. In this thesis, I investigate four different settings

for grouping classes, with the default behaviour of G-Clef being the use of a single class.

In addition, I run experiments using 5%, 10%, and 25% of the total classes that exist in
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each subject program. To avoid bias for or against subject programs that contain more

classes than others, I use a percentage of the classes in the chosen project.

4.4.3 Experimental Setup

The intention of G-Clef is to outperform existing test case prioritisation strategies when

evaluated on real faults. Therefore, I designed an empirical evaluation of G-Clef to

compare against existing coverage-based and history-based strategies.

4.4.4 Subject Programs

To automatically perform an experimental analysis, the selection of subject programs

used in this empirical evaluation adhered to the following requirements: 1) the programs

used should be developed in Java (as the test prioritisation tools used only support Java),

2) it must be possible to “roll-back” changes from the repository (i.e., obtain previous

versions of the source code) in order to support the collection of test history data for

the history-based strategies, and 3) it must be possible to detect faulty behaviour in the

current version of the program using a test suite. One particular collection of subject

programs that meets all of the aforementioned requirements is Defects4J [83]. All

Defects4J projects were collected from version control systems, meaning that it is

possible to identify, check-out, and execute tests on previous versions of the software

using a version control tool such as Git. Finally, Defects4J provides a developer-

written test suite for each program in the repository, which includes at least one test

that triggers the faulty behaviour of the current version of the software, which are

referred to as the trigger tests.

4.4.5 Coverage Analysis

One of the challenges in using defect prediction to order test cases is that defect prediction

estimates the likelihood of faulty behaviour in source code, whereas G-Clef is specifically

working with test cases. Therefore, G-Clef must map test cases to source classes using

code coverage. For each test case in the system, G-Clef must know the set of classes that

are executed during the course of the test case. For this, I used GZoltar [158, 159]. One

of the important features of GZoltar is that it executes the test cases using the same

build tools that developers would be using (e.g., Ant, Maven, and Gradle), meaning

that the code coverage collected is as similar as is possible to a “natural” execution of

test cases by a developer. Additionally, since GZoltar produces a serialised coverage
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file, experiments can use the same file across test case prioritisation strategies to better

ensure consistency.

4.4.6 Test History Analysis

Since these experiments also utilise test-history, I follow the same procedure described

in Section 3.2.5 to collect historical execution data for all test cases in this experiment.

4.4.7 Schwa

The default configuration of Schwa uses these weights: 0.25 for revisions and authors, 0.5

for fixes, and 0.4 for TR. As each software project is unique in terms of, for instance,

repository history and development model, these weights may vary in suitability for

different projects. For example, the “authors” metric is irrelevant if only a single

developer contributed to a project. For RQ1, I performed a tuning study of Schwa’s

weights and the TR value. As Schwa’s feature weights and TR value are in the range

of 0.0 and 1.0, I chose all values in this range with interval 0.1. Although there are

13310 different combinations, the sum of all weights must be equal to 1, leaving 726

valid combinations.

To assess the effectiveness of each combination at ranking a class that is buggy, an

automated process randomly selected 5 faults of each of Defects4J’s [83] projects (a

total of 30 faults), and executed Schwa on the repository history of those faults. While it

may have been possible to achieve higher performance by tuning Schwa’s parameters per

project rather than using a global value, this would limit how generalisable the results

would be, since anyone wishing to use G-Clef would have to conduct a parameter tuning

experiment on their own project before running it. By using all projects, I am able to

find the best parameters for all projects without being biased towards any individual

project.

As Schwa returns a defectc value for each class of the software under test, I ranked all

classes by this value and identified, for each combination, the ranking position of the

known buggy class. The best combination of weights and TR would rank the known

buggy class first, on the other hand, the worst combination of parameters would rank

the buggy class last.
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4.4.8 Test Case Prioritisation

As in Chapter 3, I use the Kanonizo tool to conduct test case prioritisation experiments.

Since the tool already provides implementations for the four coverage-based and four

history-based strategies used in these experiments, I only had to extend Kanonizo by

adding G-Clef.

4.4.9 Evaluation Measurements

For RQ2 and RQ3, I compare the effectiveness G-Clef to that of the existing test

prioritisation strategies. The most commonly used evaluation metric in this field is

APFD . However, this chapter considers 395 program versions, each containing a single

fault. This reduces APFD to the percentage of tests that were executed before the fault

was detected. Defects4J provides a list of the trigger tests that detect each fault.

To compare the strategies in the experimental evaluation, I calculate the percentage of

each prioritised test suite that was placed higher than the trigger test for the subject

program. For example, if the trigger test is the 50th test case out of 1000 test cases, the

suite is scored as 5%. As a result, in the plots presented in the following section, a lower

score is indicative of better performance, rather than a higher score.

4.4.10 Analysis Procedure

I analysed all of the data resulting from the experiments by following well-established

guidelines [150]. For instance, all algorithms that make random choices were repeated

30 times. Additionally, I use the Mann-Whitney U-Test to compare two different data

sets, obtaining a p-value representing the likelihood that this data was observed as a

result of chance. For the Mann-Whitney U-Test, I adopt a 95% confidence interval,

meaning p < 0.05 indicates that the result is statistically significant. In addition, I

use the Vargha-Delaney Â test to compare G-Clef with existing strategies. For this, Â

values closer to 0 indicate that G-Clef, on average, is expected to outperform the existing

strategy, while a value closer to 1 indicates that the previous prioritisation strategy, on

average, is expected to outperform G-Clef.

4.4.11 Threats To Validity

Despite the fact that this study uses a high number of real faults from six different

Java programs, this chapter’s results may not generalise to other programs with either

different characteristics or types of test suites or faults. Although I evaluate prioritisation
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strategies on manually written test suites, it is conceivable that the use of different test

suites could improve the results for some prioritisation strategies, while degrading the

results for others — in such cases, the results and conclusions presented in this chapter

would not be generally valid.

Even though there is no evidence to suggest that this would occur, future work should

further study prioritisation effectiveness for different types of test suites (e.g., automatically

generated test cases from tools such as EvoSuite [68] and Randoop [160]). Additionally,

even though Defects4J’s programs have fast tests for which prioritisation is less necessary,

my experiments yield useful insights when, for instance, tests run in a continuous

integration environment (e.g., [55, 161]).

Moreover, this chapter does not consider the runtime of test cases when evaluating

prioritisation strategies. It is possible that with long running test cases, new orderings

may actually be slower to detect faults, even if they require fewer tests. However,

approximately 98% of tests ran in under one second, making it unlikely that this would

occur in practice.

G-Clef prioritises tests from an entire test suite rather than using a test case selection

approach to identify relevant test cases. While this is consistent with many previous

approaches (e.g., [10, 11, 55]), it is conceivable that using subsets of test cases may

lead to different results. Future work should also examine the effectiveness of a hybrid

approach that selects subsets of test cases in conjunction with defect prediction.

Additionally, the random sample of 30 faults used to tune Schwa’s parameters in RQ1

may not have resulted in the best overall parameters for this tool, and thus using different

subjects may have resulted in different parameters. To mitigate this, bugs were chosen

from each of the projects in Defects4J, thereby avoiding bias towards any particular

project. Next, I selected the test case prioritisation strategies used in the experiments as

a representative sample of previous history-based approaches. Since this evaluation is not

exhaustive, it is possible that using other strategies may lead to different results. This is

mitigated by using a range of strategies from the literature that require different input

and process the test execution history in different ways. One of the considerations when

running Schwa is the number of commits that it analyses when calculating prediction

scores. If Schwa can analyse the entire repository history, while a history-based strategy

only has a small number of commits available due to reasons discussed in Section 3.2.5,

then it may give G-Clef an unfair advantage. Therefore, I also conducted experiments

in which the number of commits available to Schwa was limited to the number used by

the history-based strategies, observing no significant differences in the overall results.
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The bug prediction described in Section 4.2 uses the commit history of a repository as a

black box. It has been shown, for example, that modelling commit authors could improve

the effectiveness of identifying which commits introduce a bug, thereby improving the

effectiveness of bug-predictors [162]. With that said, this chapter’s main goal is to

evaluate how leveraging defect prediction in test case prioritisation could lead to faster

regression detection — and not what is the best defect prediction approach for this

particular problem. Similarly, since the only requirement for a secondary objective

is that it provides a numeric value for sorting test cases, any of the history-based

approaches used in this chapter could also be used as secondary objectives, which

may have been more effective than the secondary objectives investigated. Finally, as

described in Section 4.4.1, a linear combination could be used in conjunction with the

secondary objective to remove the need to sort by both defectc score and the secondary

objective. While the experiments in this chapter do use groups of classes to determine

whether including more classes in the secondary objective affects performance, we do not

investigate whether a linear combination would perform better or worse than keeping

the two objectives separate. Future work will investigate further secondary objectives

in order to find the best combination of defect prediction and secondary objective.

The Schwa [26] tool does not consider static code features from the software, instead

opting to use repository information to model the classes that make up the software

under test. It has been shown by other studies that using code features can give a

strong indication of whether software is faulty or not — for example, Menzies [24] built

a prediction model based on 38 static code features to obtain a high precision score, while

the ELFF tool [103] uses static code features collected from the JHawk3 tool including

cyclomatic complexity and line counts to provide its prediction scores. Moreover, the

identification of a bug-fixing commit by Schwa is done using a regular expression inspired

by GitHub documentation 4, rather than using the SZZ algorithm [89] that many other

defect predictors use [103, 104]. As a result, the use of Schwa may inhibit the results of

this research where using another tool would have provided better results.

A final validity threat is potential defects in the tools used during experimentation (i.e.,

Kanonizo [1] and Schwa [26]). Used without error in prior experiments, both of these

publicly available tools have been extensively tested. Moreover, all of the data presented

in this chapter and the scripts needed to reproduce the experiments are available at

https://bitbucket.org/josecampos/history-based-test-prioritization-data/.

3http://virtualmachinery.com/jhawkprod.htm
4https://help.github.com/en/github/managing-your-work-on-github/linking-a-pull-

request-to-an-issue

https://bitbucket.org/josecampos/history-based-test-prioritiz ation-data/
http://virtualmachinery.com/jhawkprod.htm
https://help.github.com/en/github/managing-your-wor k-on-github/linking-a-pull-request-to-an-issue
https://help.github.com/en/github/managing-your-wor k-on-github/linking-a-pull-request-to-an-issue
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4.5 Results

4.5.1 RQ1: Which configuration of G-Clef is most effective?

Since G-Clef relies on the Schwa tool, this research question first investigates how to get

the best defect prediction estimates from Schwa, before considering how to configure the

two available parameters in G-Clef to maximise its performance. This research question

also considers a situation where, instead of Schwa, a defect prediction tool exists that

perfectly predicts the location of the buggy class (i.e. the first class considered by G-

Clef always contains a bug). This is used to compare the performance of the secondary

objectives without other external factors.

RQ1.1: What are the best parameters for Schwa?

Table 4.1 reports the three best and the three worst of Schwa’s configurations identified

during tuning. For the 30 randomly selected faults, Schwa works best, on average, with

a revision weight of 0.6, fixes weight of 0.1, authors weight of 0.3, and a TR value of

0.0, which lines up with Graves et al. [23] finding that recent changes have a higher

impact on the likelihood of code being buggy. A TR value of 0.0 means that w, as

given in Equation 4.1, is equal to 12, which is the same value suggested by Lewis et

al. [155]. Notably, the fixes weight is low for the three best configurations, and high for

the worst three. This indicates that previous failures have low influence when it comes

to predicting future failures. Furthermore, the revisions weight is high for the three best

configurations, and low for the worst three, indicating that the more times a file has

been changed, the more likely it is to be associated with defects.

Table 4.1: Parameters of top and bottom three Schwa configurations. For each
configuration I report the revision, fixes, and authors weights, TR value, average, standard deviation
(σ), and confidence intervals (CI) using bootstrapping at 95% significance level of the ranking position

of the known buggy class.

Revision Fixes Authors Time Avg. Std. Dev. Conf. Inter.
Weight Weight Weight Range Pos. σ CI

top 3
0.6 0.1 0.3 0.0 46.53 49.12 [27.71, 63.97]
0.7 0.1 0.2 0.4 46.57 49.49 [29.00, 62.93]
0.6 0.1 0.3 0.4 46.73 49.26 [27.90, 63.33]

bottom 3
0.1 0.6 0.3 1.0 88.07 109.20 [43.82, 125.10]
0.1 0.7 0.2 1.0 90.73 112.25 [46.46, 127.09]
0.1 0.8 0.1 1.0 91.43 109.50 [52.14, 125.59]
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Table 4.2: Relative ranking position of buggy classes reported by the best Schwa
configuration. We report the average number of classes (ranking size), minimum, maximum, average,
and standard deviation (σ) of the relative ranking position of a buggy class, and the average defectc

value of a buggy class (def ).

Ranking Relative Ranking Position
Project Size min max avg σ def

Chart 1016 0.1% 56.0% 16.6% 19.9 0.39
Closure 1478 0.1% 90.4% 9.2% 15.6 0.89
Lang 344 0.3% 52.3% 12.8% 14.3 0.96
Math 1069 0.1% 94.0% 17.7% 21.3 0.91
Mockito 1018 0.1% 86.6% 10.6% 19.7 0.85
Time 585 0.1% 67.6% 12.6% 17.1 0.80

Overall 1046 0.1% 74.5% 13.0% 18.0 0.86

One of the interesting values in Table 4.1 is the standard deviation column, which shows

for all 6 configurations that the standard deviation is higher than the mean, despite

the fact that the “position” value must be > 0. Looking at the best configuration,

of the 30 subjects, 18 subjects had a position below the mean position (i.e. position

< 46.53). Of these 18 subjects, 14 had a position < 20, and 9 had a position < 10.

Although there were only 12 subjects that had a position value higher than the mean

position value, 6 of these subjects had a position > 100. Conversely, considering the

worst configuration, 19 out of 30 subjects had a position better than the mean position,

11 subjects had a position < 20, and 8 had a position < 10. The biggest difference for

the worst configuration was that when Schwa failed to identify the buggy class correctly,

the resultant position was much worse. In the worst configuration, 11 subjects had

their buggy class ranked > 100, with two subjects having a position > 200 and two

more subjects having a position of over 300. These negative results bring down the

performance of the worst configuration, despite still achieving positive results for the

majority of the subjects.

With 99% confidence, according to the Anderson-Darling statistical test [163], the

ranking position of each buggy class of any Schwa configuration is not normally distributed.

While some configurations outperform others in terms of average number of classes

required, there is no single configuration that outperforms all others. For the following

experiments, I continue using the top configuration as the input for Schwa.

RQ1.1: For the 30 faults randomly selected from the Defects4J’s dataset, Schwa

works best with the following parameters: revision weight of 0.6, fixes weight of 0.1,

authors weight of 0.3, and a TR value of 0.0.
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Figure 4.1: Relative ranking position of the buggy class.

RQ1.2: How effective is the best Schwa configuration at ranking a buggy

class?

Given that the configuration determined above was calculated through a parameter

tuning study of 30 bugs, it is possible to evaluate the configuration on the remaining

365 bugs that were not used in the parameter tuning experiment. Using the configuration

found in Section 4.5.1, I calculate the ranking position, which is the index of the “true”

buggy class in the ordering produced by Schwa. This value is then normalised across

projects with different numbers of classes, which prevents bias against projects that have

a larger number of classes. This value is referred to as the relative ranking position, which

is calculated by dividing the ranking position by the total number of classes. Table 4.2

and Figure 4.1 report the relative ranking position of buggy classes. On average, the

buggy classes of the Closure project appear in the first 9.2% of classes, with a total of

1478 classes, and a defect value of 0.89. As shown by Figure 4.1, a total of 267 bugs were

correctly estimated within the top 10% of all classes in the subject programs. In fact,

for 17 faults, Schwa ranks the buggy class as the most buggy one, and for 281 faults the

relative ranking position of the buggy class is lower than the average value.

RQ1.2: Schwa ranks the buggy classes of all projects in the top 13.0%, with an average

defectc value of 0.86.

RQ1.3: Assuming either an ideal or a non-ideal bug-prediction report, what

are the best parameters for G-Clef?

As described in Section 4.4, G-Clef can be instantiated with different secondary objective

functions and grouping classes values. To assess which combination of parameters works

best (i.e., requires the execution of fewer test cases), I ran G-Clef on 365 faults with
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four different secondary objective functions (i.e., greedy, additional greedy, random, and

constraints) and four grouping classes values (1, 5%, 10%, and 25%). As G-Clef relies

on the outcome of a bug-prediction tool, I also defined two different scenarios to assess

the influence of the underlying tool: 1) an ideal scenario in which a bug-prediction tool

always places the buggy class first and 2) a real scenario when a bug-prediction tool

ranks classes as previously described.

Table 4.3 reports the total number of test cases that must be executed in order to trigger

the faulty behaviour of each real fault. For each configuration/project, Table 4.3 also

reports the ranking position of each configuration at prioritising the fault revealing test

case. For instance, if a configuration A ranks the trigger test in 3rd and configuration B

ranks it in 16th, configuration A is ranked first and configuration B is second. In case of

a tie, all configurations are ranked in the same position. As an example, for the Closure

project the configuration requiring the execution of the fewest tests is constraints as a

secondary objective and a grouping classes value of 1 (which ranked 5th, on average,

among all configurations).

Overall,for the real bug-prediction scenario, G-Clef performs best with constraints as

a secondary objective (5 out of 6 projects) and grouping classes value of 1 (3 out of 6

projects). On the other hand, for the ideal bug-prediction scenario, G-Clef works best

with additional greedy as a secondary objective for 3 out of 6 projects (Chart, Lang,

and Mockito).

The reason why the constraint solver performed relatively poorly with ideal bug prediction

is that it also applies a minimisation to the test set. For example, if the buggy class

is covered by 100 tests (including the trigger test), but the constraint solver finds a

minimised set of 80 tests completely covers the class but does not include the trigger

test, then G-Clef will not prioritise the trigger test until it covers another class. Future

work could enhance the constraint solver secondary objective to ensure that all tests

are used. Although G-Clef with constraints as a secondary objective only works best

for 2 out of 6 projects (Closure and Time), overall it is ranked 2.4 (nearly the same

as additional greedy). The overall configuration ranking, for both the real and ideal

scenarios, is statistically significant according to the Friedman test.

RQ1.3: Assuming a perfect bug-prediction tool exists, G-Clef works best with

constraints as a secondary objective and a grouping classes value of 1; for a real bug-

prediction report additional greedy is the best secondary objective for G-Clef.



Chapter 4 108

T
a
b
l
e
4
.3
:

T
es

t
ca

se
p

ri
or

it
is

at
io

n
re

su
lt

s
of

G
-C

le
f

w
it

h
d

iff
er

en
t

se
co

n
d

a
ry

o
b

je
ct

iv
e

fu
n

ct
io

n
s

a
n

d
g
ro

u
p

in
g

cl
a
ss

es
va

lu
es

.
T

h
e
α

co
lu

m
n

re
p

re
se

n
ts

th
e
gr
o
u
p
in
g
cl
a
ss
es

p
a
ra

m
et

er
(s

ee
S

ec
ti

o
n

4
.4

.2
fo

r
m

o
re

d
et

a
il
s)

,
#

t
st

a
n

d
s

fo
r

th
e

n
u

m
b

er
o
f

te
st

ca
se

s
th

a
t

h
a
v
e

to
b

e
ex

ec
u

te
d

in
o
rd

er
to

tr
ig

g
er

th
e

fa
u

lt
y

b
eh

a
v
io

u
r,

a
n

d
R

is
th

e
ra

n
k
in

g
p

o
si

ti
o
n

o
f

a
co

n
fi

g
u

ra
ti

o
n

.
F

o
r

th
e

o
v
er

a
ll

ra
n

k
in

g
p

o
si

ti
o
n

o
f

ea
ch

co
n

fi
g
u

ra
ti

o
n

th
e
χ
2

a
n

d
p

-v
a
lu

e
o
f

th
e

F
ri

ed
m

a
n

te
st

is
a
ls

o
re

p
o
rt

ed
.

C
h
ar

t
C

lo
su

re
L

an
g

M
at

h
M

o
ck

it
o

T
im

e
O

ve
ra

ll
S
ec

.
O

b
j.

α
#

t
R

#
t

R
#

t
R

#
t

R
#

t
R

#
t

R
#

t
R

R
ea

l
b
u
g
-p

re
d
ic
ti
o
n

d
a
ta

—
χ

2
=

20
1.

1
1,

p
−

va
lu

e
<

0
.0

00
1

G
re

ed
y

1
62

6.
8

(3
4.

9%
)

9.
3

34
04

.2
(4

7.
1%

)
10

.4
70

1.
7

(3
7.

3%
)

8.
3

10
03

.7
(3

5.
1%

)
8.

7
5
28

.5
(4

6.
1%

)
9
.9

91
0
.7

(2
3
.2

%
)

7
.8

1
1
9
6
.0

(3
8
.1

%
)

9
.3

G
re

ed
y

5%
69

1.
4

(3
8.

5%
)

10
.3

34
36

.3
(4

7.
6%

)
10

.1
6
96

.4
(3

7
.0

%
)

7.
7

92
7.

6
(3

2.
4%

)
7.

3
5
40

.5
(4

7.
1%

)
10

.1
95

4.
6

(2
4
.4

%
)

8
.0

1
2
0
7
.8

(3
8
.5

%
)

8
.8

G
re

ed
y

10
%

70
3.

9
(3

9.
2%

)
9.

6
34

36
.4

(4
7.

6%
)

10
.1

67
0.

9
(3

5.
6%

)
7.

7
93

4
.5

(3
2
.7

%
)

7.
7

54
0.

5
(4

7.
1%

)
1
0.

0
96

7
.0

(2
4
.7

%
)

8
.5

1
2
0
8
.9

(3
8
.5

%
)

8
.9

G
re

ed
y

25
%

79
0.

6
(4

4.
0%

)
11

.5
34

36
.0

(4
7.

6%
)

10
.1

6
91

.7
(3

6
.7

%
)

8.
2

94
8.

7
(3

3.
2%

)
8.

3
5
40

.5
(4

7.
1%

)
10

.1
93

2.
1

(2
3
.8

%
)

8
.1

1
2
2
3
.3

(3
9
.0

%
)

9
.2

A
d
d
.

G
re

ed
y

1
60

5.
8

(3
3.

7%
)

7.
7

26
35

.9
(3

6.
5%

)
7.

6
71

1
.8

(3
7.

8%
)

8
.9

10
3
2.

0
(3

6.
1%

)
9.

2
43

9.
3

(3
8.

3%
)

6.
8

9
87

.1
(2

5
.2

%
)

7
.6

1
0
6
8
.6

(3
4
.1

%
)

8
.2

A
d
d
.

G
re

ed
y

5%
55

9.
1

(3
1.

1%
)

7.
3

27
83

.2
(3

8.
5%

)
7.

9
71

3
.6

(3
7.

9%
)

8
.4

99
8.

7
(3

4.
9%

)
8.

8
37

5
.2

(3
2
.7

%
)

6.
5

1
16

4.
0

(2
9
.7

%
)

9
.4

1
0
9
9
.0

(3
5
.0

%
)

8
.2

A
d
d
.

G
re

ed
y

10
%

61
4.

1
(3

4.
2%

)
7.

9
27

87
.5

(3
8.

6%
)

8.
6

74
8
.2

(3
9.

7%
)

9
.2

10
2
4.

0
(3

5.
8%

)
9.

2
38

3.
7

(3
3.

5%
)

7.
0

11
84

.5
(3

0
.2

%
)

1
0
.5

1
1
2
3
.7

(3
5
.8

%
)

8
.8

A
d
d
.

G
re

ed
y

25
%

67
5.

0
(3

7.
6%

)
10

.0
27

69
.8

(3
8.

4%
)

9.
5

82
5.

0
(4

3.
8%

)
9.

9
10

70
.8

(3
7.

4%
)

9.
6

3
96

.8
(3

4.
6%

)
7
.9

11
41

.9
(2

9
.1

%
)

1
0
.4

1
1
4
6
.6

(3
6
.5

%
)

9
.5

R
an

d
om

1
61

1.
3

(3
4.

1%
)

8.
2

28
70

.2
(3

9.
7%

)
9.

1
71

2
.4

(3
7.

8%
)

9
.0

10
1
6.

7
(3

5.
6%

)
9.

1
43

2.
6

(3
7.

7%
)

7.
2

10
23

.6
(2

6
.1

%
)

8
.8

1
1
1
1
.1

(3
5
.4

%
)

8
.8

R
an

d
om

5%
57

6.
4

(3
2.

1%
)

7.
5

28
06

.9
(3

8.
9%

)
9.

5
72

6
.1

(3
8.

5%
)

8
.8

98
6.

5
(3

4.
5%

)
8.

7
40

1
.5

(3
5
.0

%
)

7.
6

1
17

6.
6

(3
0
.0

%
)

9
.8

1
1
1
2
.3

(3
5
.4

%
)

8
.9

R
an

d
om

10
%

55
3.

5
(3

0.
8%

)
7.

1
27

86
.3

(3
8.

6%
)

9.
5

72
5
.9

(3
8.

5%
)

9
.1

10
2
7.

1
(3

5.
9%

)
9.

2
41

0.
2

(3
5.

8%
)

7.
2

12
05

.9
(3

0
.8

%
)

1
0
.2

1
1
1
8
.2

(3
5
.6

%
)

9
.1

R
an

d
om

25
%

59
4.

5
(3

3.
1%

)
9.

0
27

34
.5

(3
7.

9%
)

9.
3

76
1
.1

(4
0.

4%
)

9
.8

10
8
6.

2
(3

8.
0%

)
9.

9
41

0.
8

(3
5.

8%
)

8.
4

12
11

.6
(3

0
.9

%
)

1
0
.2

1
1
3
3
.1

(3
6
.1

%
)

9
.5

C
on

st
ra

in
ts

1
70

1.
0

(3
9.

0%
)

7.
2

16
91

.3
(2

3.
4%

)
5.

0
70

8
.6

(3
7.

6%
)

7
.6

87
5.

9
(3

0.
6%

)
7.

1
45

2
.0

(3
9
.4

%
)

8.
4

77
3.

8
(1

9.
7
%

)
5
.9

8
6
7
.1

(2
7
.6

%
)

6
.5

C
on

st
ra

in
ts

5%
64

0.
0

(3
5.

7%
)

6.
8

18
22

.9
(2

5.
2%

)
5.

8
78

0
.5

(4
1.

4%
)

7
.6

93
5.

5
(3

2.
7%

)
7.

5
44

4
.7

(3
8
.8

%
)

9.
2

78
5.

7
(2

0.
0
%

)
6
.0

9
0
1
.6

(2
8
.7

%
)

6
.9

C
on

st
ra

in
ts

10
%

64
0.

5
(3

5.
7%

)
7.

3
18

10
.1

(2
5.

1%
)

6.
5

78
9
.7

(4
1.

9%
)

7
.5

93
8.

0
(3

2.
8%

)
7.

6
44

7
.3

(3
9
.0

%
)

9.
7

76
1.

9
(1

9.
4
%

)
6
.6

8
9
7
.9

(2
8
.6

%
)

7
.3

C
on

st
ra

in
ts

25
%

68
6.

1
(3

8.
2%

)
9.

1
17

90
.4

(2
4.

8%
)

7.
1

82
4
.2

(4
3.

8%
)

8
.3

94
5.

6
(3

3.
1%

)
8.

2
43

2
.2

(3
7
.7

%
)

9.
8

78
1.

7
(1

9.
9
%

)
8
.1

9
1
0
.1

(2
9
.0

%
)

8
.0

Id
ea

l
b
u
g
-p

re
d
ic
ti
o
n

d
a
ta

—
χ

2
=

39
.6

3,
p
−

va
lu

e
<

0
.0

00
1

G
re

ed
y

1
51

.9
(2

.9
%

)
3.

2
13

94
.8

(1
9.

3%
)

3.
2

3
6.

9
(2

.0
%

)
2
.5

81
.4

(2
.8

%
)

2.
7

22
9.

6
(2

0.
0%

)
2.

8
42

2
.4

(1
0
.8

%
)

2
.5

3
6
9
.5

(1
1
.8

%
)

2
.9

A
d
d
.

G
re

ed
y

1
15

.7
(0

.9
%

)
1.

8
87

9.
7

(1
2.

2%
)

2.
3

28
.4

(1
.5

%
)

2.
2

78
.9

(2
.8

%
)

2
.4

18
1.

2
(1

5.
8
%

)
2.

0
43

1.
6

(1
1.

0
%

)
2
.9

2
6
9
.2

(8
.6

%
)

2
.3

R
an

d
om

1
25

.1
(1

.4
%

)
2.

5
83

9.
8

(1
1.

6%
)

2.
5

29
.6

(1
.6

%
)

2.
5

75
.2

(2
.6

%
)

2
.3

16
7.

8
(1

4.
6
%

)
2.

2
53

9.
4

(1
3.

8
%

)
2
.6

2
7
9
.5

(8
.9

%
)

2
.4

C
on

st
ra

in
ts

1
31

4.
8

(1
7.

5%
)

2.
5

11
54

.1
(1

6.
0%

)
2.

0
34

9
.3

(1
8.

5%
)

2
.8

43
9.

0
(1

5.
4%

)
2.

6
33

5
.7

(2
9
.3

%
)

3.
0

37
7.

0
(9

.6
%

)
2
.1

4
9
5
.0

(1
5
.8

%
)

2
.4



Chapter 4 109

Table 4.4: Test case prioritisation results of G-Clef and coverage-based strategies. For
each prioritisation strategy I report the total number of test cases (#t) that have to be executed to

trigger the faulty behaviour, and its ranking position when compared to the other strategies.

Chart Closure Lang Math Mockito Time Overall
Strategy #t R #t R #t R #t R #t R #t R #t R

χ2 = 110.70, p− value < 0.0001
Greedy 859.1 (47.9%) 3.7 3439.4 (47.6%) 4.2 623.4 (33.1%) 2.6 909.5 (31.8%) 2.9 540.1 (47.1%) 4.1 970.0 (24.7%) 3.1 1223.6 (39.0%) 3.5
Add. Greedy 740.4 (41.2%) 3.6 1955.3 (27.1%) 2.6 939.8 (49.9%) 3.9 1046.2 (36.6%) 3.1 408.2 (35.6%) 3.1 953.1 (24.3%) 3.0 1007.2 (32.1%) 3.1
GA 719.4 (40.1%) 3.7 2817.6 (39.0%) 3.9 840.4 (44.6%) 3.9 1287.9 (45.0%) 4.1 423.9 (37.0%) 3.3 1385.3 (35.3%) 4.1 1245.8 (39.7%) 3.9
Random 674.6 (37.6%) 3.5 2811.0 (38.9%) 3.9 826.1 (43.8%) 3.6 1271.9 (44.5%) 4.1 425.5 (37.1%) 3.6 1410.2 (36.0%) 4.4 1236.6 (39.4%) 3.9
Rand. Search 717.7 (40.0%) 3.7 2828.7 (39.2%) 3.9 829.4 (44.0%) 3.6 1267.3 (44.3%) 4.0 422.1 (36.8%) 3.4 1400.6 (35.7%) 4.3 1244.3 (39.7%) 3.9
G-clef 701.0 (39.0%) 2.8 1691.3 (23.4%) 2.5 708.6 (37.6%) 3.3 875.9 (30.6%) 2.8 452.0 (39.4%) 3.5 773.8 (19.7%) 2.1 867.1 (27.6%) 2.8

4.5.2 RQ2: How does G-Clef compare to previously proposed coverage-

based test case prioritisation strategies at prioritising manually-

written test cases?

As stated in Section 4.4.8, Kanonizo has implementations for four coverage-based

strategies that are commonly used in test case prioritisation evaluations, as well as

a completely random ordering. Thus, for this research question, I compare G-Clef to

these strategies. Since I use 30 subject programs for the tuning study in RQ1, those

subject programs are eliminated from this RQ to avoid bias, leaving a total of 365 real

faults. For each of these subjects, a script runs Kanonizo with each of the coverage-

based strategies and the best configuration of G-Clef found in RQ1, and evaluates the

prioritised test suite by the percentage of the test suite that is executed before the fault

is found. Table 4.4 reports the average number of tests that are required to be executed

before a fault is found across all projects and strategies, with the percentage of the

test suite required reported in brackets. As shown by Figure 4.2, G-Clef often requires

the fewest overall test cases in order to detect a fault (Closure, Math, Time). For the

remaining three projects, in two cases (Chart and Lang) G-Clef was only beaten by a

single other strategy.

Table 4.5: G-Clef vs coverage-based strategies. The # column reports the number of bugs

for which G-Clef performed better than X and the total number of bugs per project, Â column reports
the effect size of X vs. G-Clef (a value lower than 0.5 means X performed worse than G-Clef, and
a value greater than 0.5 means G-Clef performed worse than X ), and p column reports the p-value
of the Mann-Whitney U-test. Statistically significantly results at 95% significance level are given in

bold-face.

Chart Closure Lang Math Mockito Time Overall

Strategy # Â p # Â p # Â p # Â p # Â p # Â p # Â p

Greedy 14 / 21 0.41 0.30 97 / 128 0.29 0.00 25 / 60 0.55 0.34 49 / 101 0.50 0.97 21 / 33 0.43 0.33 14 / 22 0.44 0.52 220 / 365 0.42 0.00
Add. Greedy 12 / 21 0.47 0.72 63 / 128 0.50 0.97 38 / 60 0.41 0.09 54 / 101 0.47 0.41 14 / 33 0.53 0.66 16 / 22 0.44 0.50 197 / 365 0.48 0.35
GA 14 / 21 0.44 0.48 96 / 128 0.25 0.00 33 / 60 0.41 0.10 73 / 101 0.28 0.00 13 / 33 0.48 0.79 18 / 22 0.23 0.00 247 / 365 0.31 0.00
Random 14 / 21 0.44 0.53 93 / 128 0.26 0.00 35 / 60 0.42 0.14 72 / 101 0.29 0.00 16 / 33 0.48 0.81 19 / 22 0.22 0.00 249 / 365 0.31 0.00
Rand. Search 14 / 21 0.44 0.48 98 / 128 0.26 0.00 32 / 60 0.42 0.14 73 / 101 0.28 0.00 17 / 33 0.48 0.80 18 / 22 0.24 0.00 252 / 365 0.31 0.00
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(a) Chart Project Statistics
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(b) Closure Project Statistics
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(c) Lang Project Statistics
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(d) Math Project Statistics
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(e) Mockito Project Statistics
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(f) Time Project Statistics

∗ represents the mean average % of test cases that have to be executed to

trigger the faulty behaviour.

Figure 4.2: Test case prioritisation results of G-Clef and the coverage-based strategies.
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Furthermore, as reported by Table 4.5, there are a number of cases in which G-Clef

significantly outperformed other strategies, as reported by the Mann-Whitney U-Test.

For the Closure project, G-Clef significantly outperformed all other strategies except

additional greedy, while for both Math and Time, G-Clef significantly outperforms a

further three strategies. Notably, there are only four combinations of project/strategy

with an Â score of > 0.5 (meaning on average the alternative approach is expected to

outperform G-Clef). Overall, of the 1,825 combinations of subject/strategy included in

this study, G-Clef performs best for 1,165, and significantly outperforms four of the five

coverage-based strategies it was compared against.

RQ2: G-Clef performs better than any other coverage-based strategy, statistically better

than 4 out of 5 strategies.

4.5.3 RQ3: How does G-Clef compare to previously proposed history-

based test case prioritisation strategies at prioritising manually-

written test cases?

As with RQ2, RQ3 involves the execution of G-Clef compared against four history-based

approaches described in Section 3.2.4. In the Defects4J dataset, there are a substantial

number of subject programs for which the test case that detects a fault has no execution

history. This may cause an unnecessary bias either in favor of or against certain history-

based strategies, since some strategies rely on the number of prior executions and/or

failures. In order to give a fair opportunity to all strategies, I only include bugs where

the trigger test has at least one prior execution before the current version of the subject

program. This means that this RQ considers 82 bug s. Table 4.6 reports the average

number of tests that have to be executed before a fault is found across all projects and

strategies. For four of the six projects (Closure, Lang, Math, Time), G-Clef had the

lowest number of test cases required of any strategy. Additionally, as shown by Table 4.7,

G-Clef was significantly better for five project/strategy combinations, and was only

significantly outperformed once (Chart/MCCTCP [52]). For the Time project, while

the Vargha-Delaney Â effect size was 0.00 for three of the four competing approaches,

due to only having three bugs for this project, I was unable to achieve a significant result

for this project.

Table 4.6: Test case prioritisation results of G-Clef and history-based strategies.
(Please refer to Table 4.4 for an explanation of each column.)

Chart Closure Lang Math Mockito Time Overall
Strategy #t R #t R #t R #t R #t R #t R #t R

χ2 = 15.87, p− value = 0.003
G-clef 854.7 (46.3%) 3.7 1576.0 (21.6%) 2.0 437.6 (24.0%) 2.2 931.0 (33.5%) 2.5 344.7 (26.6%) 3.8 439.7 (11.0%) 1.0 763.9 (24.1%) 2.5
ROCKET [54] 243.0 (13.2%) 3.8 2873.1 (39.4%) 3.3 628.3 (34.4%) 2.8 1270.3 (45.8%) 3.3 162.0 (12.5%) 3.0 2842.7 (71.2%) 3.7 1336.6 (42.1%) 3.2
Elbaum et al. [55] 151.2 (8.2%) 2.7 2452.2 (33.6%) 2.9 984.9 (54.0%) 3.7 1474.3 (53.1%) 3.4 392.3 (30.3%) 3.0 1521.3 (38.1%) 2.7 1162.7 (36.7%) 3.2
MCCTCP [52] 147.2 (8.0%) 1.9 2849.1 (39.1%) 3.3 734.9 (40.2%) 3.2 956.7 (34.5%) 2.5 169.3 (13.1%) 2.2 2619.7 (65.6%) 3.8 1246.1 (39.3%) 2.9
AFSAC [56] 165.7 (9.0%) 2.9 2854.6 (39.1%) 3.5 694.1 (38.0%) 3.1 980.2 (35.3%) 3.2 198.0 (15.3%) 3.0 2619.7 (65.6%) 3.8 1252.0 (39.5%) 3.2
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(a) Chart Project Statistics
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(b) Closure Project Statistics
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(c) Lang Project Statistics
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(d) Math Project Statistics
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(e) Mockito Project Statistics
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(f) Time Project Statistics

∗ represents the mean average % of test cases that have to be executed to

trigger the faulty behaviour.

Figure 4.3: Test case prioritisation results of G-Clef and the history-based strategies.
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Table 4.7: G-Clef vs history-based strategies. (Please refer to Table 4.5 for an explanation

of each column.)

Chart Closure Lang Math Mockito Time Overall

Strategy # Â p # Â p # Â p # Â p # Â p # Â p # Â p

ROCKET [54] 2 / 6 0.76 0.15 15 / 20 0.34 0.08 12 / 21 0.43 0.42 15 / 26 0.39 0.16 2 / 6 0.78 0.13 3 / 3 0.00 0.08 49 / 82 0.42 0.09
Elbaum et al. [55] 2 / 6 0.78 0.13 13 / 20 0.36 0.15 15 / 21 0.27 0.01 19 / 26 0.32 0.03 3 / 6 0.56 0.81 3 / 3 0.22 0.38 55 / 82 0.38 0.01
MCCTCP [52] 2 / 6 0.86 0.04 16 / 20 0.25 0.01 16 / 21 0.32 0.04 15 / 26 0.46 0.63 1 / 6 0.67 0.38 3 / 3 0.00 0.08 53 / 82 0.39 0.02
AFSAC [56] 2 / 6 0.81 0.09 16 / 20 0.25 0.01 15 / 21 0.37 0.16 15 / 26 0.45 0.55 1 / 6 0.64 0.47 3 / 3 0.00 0.08 52 / 82 0.40 0.02

Yet, G-Clef overall achieved significantly better results than three of the four history-

based strategies evaluated in this paper, and outperformed ROCKET for 49 out of the

82 bug s used in this evaluation.

Figure 4.3 contains a boxplot showing the percentage of test cases executed before the

trigger test. One of the most noticeable results in Figure 4.3 is how effective history-

based strategies were on the Chart project. On average, only 10.5% of the total test

cases were required to find a fault, and for four of the six Chart subjects used, at least

one of the history-based strategies was able to detect the fault in fewer than 10 test

cases.

RQ3: G-Clef performs better than any other history-based strategy, statistically better

than 3 out of 4 strategies.

4.6 Conclusions

This chapter presents a new strategy for prioritising test cases, called G-Clef that

uses defect prediction for test case prioritisation. I present a large parameter tuning

experiment in which I aim to maximise the performance of defect prediction on real

faults from Defects4J, and a large empirical evaluation of G-Clef in which I compare

against four coverage-based strategies and four history-based strategies. This chapter’s

results indicate that G-Clef is effective at prioritising test suites to find real faults,

requiring the fewest test cases in most of the experiments, and never being significantly

outperformed by any other strategy.

While the results of this paper show a promising link between defect prediction and test

case prioritisation that can be leveraged, there is still a lot of room for improvement.

For example, the defect prediction tool on average predicted the “true” buggy class as

13.0%. As defect prediction strategies improve, G-Clef will be able to find faults faster.



Chapter 5

Using Sentiment in Commit

Messages to Predict Whether a

Class is Faulty — An

Investigative Study and

Implications for Test Case

Prioritisation

5.1 Introduction

The previous chapter identified that repository information, specifically that the number

of changes, authors and fixes, can be useful determiners of future faults in software

repositories. Using this information, I developed a test case prioritisation strategy G-

Clef that utilised the defect prediction tool Schwa, and conducted an empirical evaluation

of its effectiveness against a number of existing strategies. In particular, Chapter 4 shows

a connection between defect prediction and test case prioritisation, and demonstrates

that an improved approach to defect prediction could result in benefits for test case

prioritisation.

In this chapter, I investigate whether commit messages to Version Control Systems

(VCS) can be used to predict defects in faults. Similar to the work of Binkley et

al. [142], who used the cosine similarity between comments in code and the code itself

to predict whether the code was likely to contain faults, this chapter aims to identify

114
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whether developers write commit messages that are contain strongly positive or negative

emotions, and to identify whether emotions within commit messages correlate with

either bug-fixes or faults. If developers write more negatively about faulty files, then

a prediction model could identify the files that are likely to contain faults through

the set of commits associated with the file. There are a number of possibilities that

could arise from this — in particular, in line with the rest of this thesis’ work, a test

case prioritisation strategy could be developed that would rank all files according to

the sentiments associated with them, and then identify test cases that cover the most

negative files.

This chapter aims to answer the following research questions: RQ1: Do commits

in Defects4J contain sentiment or subjectivity?, RQ2: Can sentiment or

subjectivity in commit messages be used to predict whether a commit fixes

a bug? and RQ3: Can sentiment or subjectivity in commit messages be used

to predict whether a file contains a fault?

The contributions of this chapter are as follows:

Contribution 5.1: An evaluation of sentiment and subjectivity in Defects4J commit

messages

Contribution 5.2: An evaluation of sentiment and subjectivity in bug-fix commits

against non-bug-fix commits

Contribution 5.3: An evaluation of sentiment and subjectivity in faulty files against

non faulty files

The remainder of this chapter is organised as follows: Section 5.2 introduces the background

of this chapter, specifically focusing on sentiment analysis and repository mining, which

are both used in this study. Section 5.3 introduces the experiments conducted. Section 5.4

describes the results, before Section 5.5 presents a discussion about features of bug-fix

commits and faulty files. Furthermore, Section 5.5 discusses whether commit messages

could be used in test case prioritisation. Finally, Section 5.6 concludes this chapter.

5.2 Background

When working in large software teams, developers often make use of version control

systems (VCS) in order to collaborate and ensure that changes to files are kept. VCS

allow many developers to work on projects simultaneously, with developers “checking

in” changes frequently. With every VCS check in, there is an associated message, which
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is supposed to contain an explanation from the developer about the changes that have

been made, and sometimes justifications for why the changes have been made.

The intention of commit messages is to inform other collaborators on the project about

what is different — at a glance, developers should know roughly which files have been

changed and why. However, sometimes developers will use emotive language when

describing the changes they have made. For example, in the Apache Commons Math

project1 there is a commit with the message "Greatly improved multiplication

speed for sparse matrices. Jira: MATH-248". This is encouraging for two reasons:

firstly, it motivates the idea that sentiment may be present in commit messages (“greatly

improved”), and secondly, this commit appears to be associated with a bug fix, as it

references an issue number in the bug-tracking software JIRA2. Conversely, the Mockito

project3 contains a commit with the message "remove this ugly mockito.iml that

is a pain in the ass!!!! --HG--". This clearly shows that developers may write

emotively about specific files that may have caused problems in the past.

5.2.1 Repository Analysis

The term Mining Software Repositories (MSR) refers to the process of extracting information

from VCS, such as Git, incorporating changes to source code alongside metadata such

as the commit author, commit date or commit message. There are many ways in which

mining repositories can be useful, for example in studies how test code evolves with

source code [164], how code smells change over time [165] or even locate real faults from

software repositories, such as Defects4J [20].

5.2.2 Sentiment Analysis

Given a string containing a message that was entered alongside a commit, the goal of

sentiment analysis is to identify the overall emotion associated with the string. Sentiment

analysis has its origins in online review platforms, for example movie reviews from people

who have seen them [166–168], or product reviews from people who have bought things

from online retailers such as Amazon [125, 169–171]. For producers, being able to see

what real customers are saying about them is useful, and being able to automatically

determine the general impression of the entire customer base without having to manually

read all reviews, is highly useful.

1https://commons.apache.org/proper/commons-math/
2https://www.atlassian.com/software/jira
3https://site.mockito.org/

https://commons.apache.org/proper/commons-math/
https://www.atlassian.com/software/jira
https://site.mockito.org/
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The literature survey of this thesis reveals three main ways in which sentiment analysis

is performed. The first is a supervised approach, whereby a large amount of data is

manually tagged as one of two classes (i.e. positive/negative), and used as training data

for a classification approach. The classifier may then produce rules that dictate what

sort of phrases or words appear in both classes. When these rules are applied to new

data, the classifier determines automatically which class the new data belongs to [172].

The second approached identified in previous literature is an unsupervised approach,

which attempts to infer opinion words based on the words they are most closely associated

with [135].

The third approach involves the creation of a large lexicon of “opinion” words, each of

which is tagged with an approximation of how polarising the word is. For example, the

word “great” is a strongly positive word, while “good” is only slightly positive. With

the lexicon of words and their associated polarity scores, a sentiment analysis approach

will sum up the polarity scores of all words contained in a piece of text [172].

Some of the crucial challenges associated with sentiment analysis are the use of intensifiers

and negators. For example, if something is described as “really good”, the sentiment

is strong than simply being described as “good”. This example shows the use of an

intensifier, a word that increases or decreases the strength of the subsequent word.

Conversely, negators reverse the opinion of the following word, for example “not good”

has the opposite meaning to “good”. Identifying the use of intensifiers and negators in

sentences is crucial to the success of a sentiment analysis approach.

Sentiment analysis of commit messages has received some previous attention in research.

Guzman et al. [139] conducted a study in which they compared the sentiment of commit

messages to the programming language used, the day/time at which the commit was

made, the location of developers and the project approval. Souza et al. [140] conducted

a study that correlated sentiment of commit messages with Travis CI builds breaking,

finding that strongly negative sentiments in commits are more likely to lead to broken

builds. Islam et al. [141] conducted a study in which they considered bug-introducing

and bug-fixing commits, aiming to discover if those specific commits are more likely to

be positive or negative, and how bug-introducing and bug-fixing commits compare in

terms of sentiment. Additionally, while it does not concern commit messages, Binkley et

al. [142] conducted a study in which they used comments in code to predict the likelihood

that files contained faults. This chapter conducts similar experiments using commit

messages rather than code comments.
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5.2.3 Using sentiment in commits to predict fault-fixing commits

In Chapter 4, I demonstrate the effectiveness of a test case prioritisation strategy based

on defect prediction. Specifically, for each class, defect prediction gives an estimate

that the class contains a fault. While the experiments in Chapter 4 were successful,

they indicated further improvements were possible through a better defect prediction

strategy.

As software evolves and developers make changes, they commit changes to a VCS with a

message explaining what has changed and why, allowing other developers to understand

when they “pull” the most recent changes. Over time, every file that makes up a program

will have an associated set of messages. This effectively forms a “profile” for the class.

Sliwerski et al. [89] have previously attempted to model bug-fixing commits with the

SZZ algorithm — in their approach, they used regular expressions to pick out certain

keywords in the commit message (e.g. “fixes” or “defects”), as well as recognising bug

numbers that could correspond to a bug-tracking system like bugzilla4 or JIRA5. For

each recognised feature, Sliwerski et al. add one to a syntactic confidence that a commit

fixes a bug. If this chapters experiments demonstrate that the use of sentimental or

subjective language in commit messages can be used to aid the identification of commits

as bug-fixing, then this could be used to extend the syntactic confidence in the SZZ

algorithm [89].

If the set of commit messages for a class shows that developers often write negative

messages, it could be a sign that the class is frustrating, tricky to understand, or

badly designed. Since badly designed software can lead to more bugs [24], I design

an experiment that aims to investigate whether negative commit messages can be used

to predict classes that may be faulty. This could be used to integrate into the SZZ

algorithm further syntactic confidence that a commit is bug-fixing. Notably, if commit

messages can be used to predict faulty classes, G-Clef proposed in Chapter 4 can be

extended to utilise this information.

5.3 Experimental Setup

This section describes the experimental design, including subject programs, analysis

steps and the research questions this study answers.

4https://www.bugzilla.org/
5https://www.atlassian.com/software/jira

https://www.bugzilla.org/
https://www.atlassian.com/software/jira
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5.3.1 Subject Programs

This chapter has two main aims: identifying whether bug-fix commits are associated

with stronger sentiment than non bug-fix commits, and identifying whether faulty files

are associated with stronger sentiment than non-faulty files. In order to achieve this,

I required subject programs with known faults, where it must be possible to identify

the bug-fixing commit, and must be possible to identify which file(s) in a program are

faulty. Defects4J provides the required information for this study. For each project,

Defects4J contains a file that has, for each fault in the program, a row of data in the

form <bug id>,<last faulty commit hash>,<bug fix commit hash>. In addition, for

each bug, Defects4J contains a file that lists the classes that were modified as part of

the bug fix. By combining this information, there is a complete set of faulty files, and a

set of commit hashes that were involved in bug-fixes.

5.3.2 Repository Analysis

In order to analyse subject programs in Defects4J, I required a way to extract all of

the commit messages for each program. There are a number of tools available for this,

for example git log, which comes pre-packaged with Git version control. In addition, I

needed to know for each commit the set of files that was changed as part of the commit.

This can also be achieved with pre-packaged Git tools, using git show.

However, there are also several libraries for analysing repositories in different languages

(e.g. GitPython [173], JGit [174]). Specifically, the PyDriller library [175] is an easier

way of analysing Git repositories in Python. PyDriller provides simple APIs for iterating

through commits in a Git repository and for extracting information about individual

commits, including the name of the developer, the set of files changed, the date of the

commit and the message associated with the commit.

In Defects4J, five of the six projects use Git as a VCS by default. However, the

JFreeChart project is built using SVN as its VCS. While I could have used another

library to analyse the SVN repository, for consistency purposes I instead applied a

patch6 that converts the JFreeChart repository to Git using the Git-SVN tool 7.

Finally, since the Chart, Lang, Math and Time projects in Defects4J have been

converted from SVN to Git at some point, there is some metadata added by the Git-SVN

tool that allows mapping of Git commits back to its SVN origin. This is usually a line at

the bottom of the commit of the form git-svn-id: <url>. Since this information adds

6Patch: https://github.com/jon-bell/defects4j/commit/c8b3d3792331bd989d512bda893e23b21b0aae6e.patch
7Git-SVN: https://git-scm.com/docs/git-svn

https://github.com/jon-bell/defects4j/commit/c8b3d3792331bd989d512bda893e23b21b0aae6e.patch
https://git-scm.com/docs/git-svn
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noise to the sentiment analysis process, these lines of commit messages were removed

prior to running sentiment analysis.

5.3.3 Sentiment Analysis

This chapter’s experiments look at how sentiments in commit messages are associated

with either bug-fixes or faulty files. There are a large number of sentiment analysis

packages available for developers, including NLTK8, TextBlob9, SentiStrength10,

SentiWordNet11 and IBM’s Watson Natural Language Understanding (formerly Alchemy)12.

Jongeling et al. [176] conducted a study in which they used the some of above packages

to determine whether consistent results could be achieved from each of them, collecting

over 95,000 bug reports from four different sources and analysing each of them with all

of the tools to see if they agree on the sentiment present in bug reports. From their

analysis, the authors could not define a clear “best” tool since they did not compare the

accuracy of the tools, but did note that the use of different tools may lead to different

conclusions.

In order to analyse the sentiments associated with each commit, I used the TextBlob

library [177]. TextBlob has been used in a number of studies [178, 179] and is built on

top of NLTK, which has been used in many further studies [180–182].

TextBlob has a large corpus of “opinion” words combining both hand-tagged and inferred

examples. All words contain a polarity p, a score −1 ≤ p ≤ 1 which indicates whether

the word is strongly negative (p = −1) to strongly positive (p = 1), a subjectivity

score s where 0 ≤ s ≤ 1, which indicates whether the word is objective (s = 0) or

subjective (s = 1), an intensity score i, where 0.5 ≤ i ≤ 2 that indicates that the

following word should have a modifier i applied to it (e.g. very good, slightly better).

TextBlob also contains negations, by default these are “no”, “not”, “n’t” and “never”.

These words change positive polarity for subsequent words to negative and vice-versa.

Finally, TextBlob contains multiple definitions for the same word that can apply in

different contexts, for example the word “ridiculous”, which can be interpreted as either

pitiful or humorous.

For every sentence, the TextBlob library tokenises the sentence, grouping together

negators, intensifiers and opinion words together. For example, for the sentence “some

really great sample text, a good example and a not bad negation”, TextBlob will group

8https://www.nltk.org/
9https://textblob.readthedocs.io/en/dev/

10http://sentistrength.wlv.ac.uk/
11http://sentiwordnet.isti.cnr.it/
12https://www.ibm.com/cloud/blog/announcements/bye-bye-alchemyapi

https://www.nltk.org/
https://textblob.readthedocs.io/en/dev/
http://sentistrength.wlv.ac.uk/
http://sentiwordnet.isti.cnr.it/
https://www.ibm.com/cloud/blog/announcements/bye-bye-alchemyapi
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the words “really”/“great”, and “not”/“bad”, since these words must be considered

as a pair rather than individuals. TextBlob also identifies the word “good” as a word

expressing sentiment, while the remainder of the sentence is discarded. Each of the

tokens is then associated with a score, based on the combined polarity and subjectivity

of the components within the token. In this example, “really great” has p = 0.8 and

s = 0.75, “good” has p = 0.7 and s = 0.6, and “not bad” has p = 0.35 and s = 0.6.

The sentiment for the whole sentence is then calculated by taking the average of the

polarity and subjectivity scores for each of the tokens, resulting in this sentence having

a polarity of 0.616 and a subjectivity of 0.672.

5.3.4 Experimental Setup

This study aims to answer three research questions:

1. RQ1: Do commits in Defects4J contain sentiment or subjectivity?

With this research question, I investigate the commits in Defects4J subject

programs. Some other studies (e.g. Guzman et al. [139]) have considered the

impact of different programming languages on the amount of sentiment present.

This research question extends this previous research with new subjects.

2. RQ2: Can sentiment or subjectivity in commit messages be used to predict

whether a commit fixes a bug?

Defects4J provides a set of commit hashes that were involved in bug-fix commits.

Using these commit hashes, it is possible to compare on a per-project basis whether

commits that fix real faults have higher sentiment or subjectivity scores than those

that do not. If commits with higher sentiment scores usually result in bug fixes, it

may be possible to automatically classifying commits based on this information,

which could aid the field of MSR. While Islam et al. [141] conducted a study of

the sentiments of bug-introducing and bug-fixing commits, their focus was only on

whether each type of commit was usually more positive or negative. Their study

did not include a comparison against the remaining commits to see if there were

any differences.

3. RQ3: Can sentiment or subjectivity in commit messages be used to predict

whether a file contains a fault?

With this research question, I consider the files that are part of the source code of a

system under test. Every file in a system will have a minimum of one commit, the

one in which it was introduced, and may be involved in a number of changes. This

research question aims to discover whether there is a difference in how developers

feel about files that are faulty compared to those that are not. This has potential
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applications in the fields of defect prediction or test case prioritisation if, for

example, developers often write negatively about files that contain faults than

those that do not. For example, a defect prediction strategy may, for each file

in the system, look at either the average or the most extreme commit messages

associated with the file, and determine the likelihood of faulty behaviour based on

these numbers.

5.3.5 Analysis Procedure

For each of the six projects in Defects4J, there is have a series of commits. For each

commit, there is a commit message, and a set of files changed. For this chapter, I created

a script that used PyDriller to obtain all commit messages for a subject program, and

used TextBlob to analyse the sentiment and subjectivity scores. The script also used

Defects4J to identify bug-fixing commits and faulty files, resulting in a file similar

to the one in Table 5.1. These examples are selected for readability, and as such were

selected due to having short message lengths. In additon, the file changed field has

been shortened to only include the final part of the path.

project commit hash commit msg file changed sentiment score subjectivity score bug fix commit is faulty class

Chart a99d91 Tidy up. /DefaultKeyedValuesTests.java 0.60 0.80 FALSE FALSE

Math b7d598 Raw type /MathParseException.java -0.23 0.46 FALSE FALSE

Chart b53ed3 Clean up. /MovingAverage.java 0.37 0.70 FALSE FALSE

Chart b9d789 New test. /RelativeDateFormatTests.java 0.14 0.45 FALSE FALSE

Chart 6b1346 New test. /LogFormatTests.java 0.14 0.45 FALSE FALSE

Table 5.1: Example data collected in this study

For RQ1, I only consider the sentiment score and subjectivity score fields. For

RQ2, I also consider the bug fix commit field, while for RQ3, I add the is faulty class

field. RQ2 and RQ3 also require the use of statistical tests to determine whether the

difference in sentiment and subjectivity are significant between bug-fix and non bug-fix

commits, and between faulty and non-faulty files. For this, I use the Mann-Whitney

U-Test, and the Vargha-Delaney Â score is used to quantify the size of the difference.

5.3.6 Threats to Validity

There are a number of potential threats to the validity of this study. Firstly, this study

only considers programs that are built in Java, which may not necessarily generalise to

other programming languages. Indeed, Guzman et al. [139] looked at several programming

languages to determine whether the language of a project had a significant impact on

the sentiments attached, discovering that Java programs have more negative sentiments
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than other languages. However, this does not impact this study, which aims only to

show the differences in sentiment between bug-fix and non bug-fix commits, or between

faulty files and non-faulty files.

Secondly, all of the subject programs from Defects4J are from professional organisations

and are all mature programs (>= 5 years development). This may make it less likely that

commits express strong sentiments, since organisations may have standards that must

be observed for every commit to keep commit messages clean and objective. Future work

will investigate this threat by repeating experiments with more subjects from GitHub.

This study assumes that the set of bug-fix commits reported by Defects4J is complete,

and therefore that all other commits in the repository do not fix faults. This assumption

may not hold, since there are other commit messages in the dataset that refer to bug-

trackers. Defects4J includes a subset of the total faults present in a repository, and

only includes those that can be clearly identified by at least one test case. To mitigate

this, I also tested what happens if commits that contain either “JIRA” or “fix” and do

not fix a bug are omitted, observing no significant differences in the results.

The TextBlob library uses a lexicon-based approach for sentiment analysis — this means

that there is no training process required in order to produce estimations for sentiment

and subjectivity. However, given the specific context of the dataset used (i.e. commit

messages), an approach that includes a training step using manually annotated data,

for example NLTK, may have yielded better results. Although time constraints meant

that it was not possible to manually annotate a corpus of training data, future work will

investigate whether this can result in a more positive classification process.

Finally, since this study makes use of external tools, it is possible that bugs in the

external tools may result in errors in my evaluation. Despite being a relatively new tool,

the PyDriller tool has received some attention from other researchers (e.g. [183–185]).

Additionally, the TextBlob library has been used for sentiment analysis in research [186–

188]. Since it is possible that I may have misused the libraries available, the scripts used

to produce and analyse the data are also made publicly available, such that external

researchers can reproduce and verify the results obtained in this study13.

13https://github.com/djpaterson/commit sentiment analysis

https://github.com/djpaterson/commit_sentiment_analysis
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Project Positive Negative Neutral Total

Chart 186 44 683 913
Closure 810 357 1720 2887
Lang 605 440 2533 3578
Math 1183 748 2948 4879
Mockito 617 243 2207 3067
Time 201 115 1369 1685

Table 5.2: Number of
positive, negative and neutral
commit messages per project

Word Count Average Sentiment

handy 12 0.38
tidy 39 0.38
great 22 0.31
nice 33 0.22
good 37 0.22
crash 35 0.06
cool 2 -0.13
missing 381 -0.15
stupid 5 -0.28
bad 51 -0.32
nasty 7 -0.62
terrible 1 -1

Table 5.3: Sentimental
words found in commits

5.4 Results

5.4.1 RQ1: Do commits in Defects4J contain sentiment or subjectivity?

Table 5.2 shows the number of positive, negative and neutral commit messages from the

17009 commits considered in this study. One of the apparent trends in this table is that

in most cases, commit messages do not contain much, if any, sentiment. In total, 11460

(67.38%) commits returned a sentiment score of 0, indicating complete neutrality in

these messages. This is not altogether surprising, since the purpose of including commit

messages is to convey objectively the changes that have been made in the commit.

However, there are clear exceptions to this. The Closure project has 810 positive commit

messages out of 2887 total (28.06%), while Math has the highest percentage of negative

commits with 748 (15.33%). In particular, commits for the Math frequently refer to

missing tags, methods or comments, which results in largely negative commits, while

commits for the Closure often refer to more useful or better approaches.

Another trend that is apparent in Table 5.2 is that it is more common for commit

messages to be positive than negative, with every project containing a higher number

of positive messages. Table 5.3 displays a number of words that were found in multiple

positive and negative commit messages respectively. A large number of positive commit

messages contained the word tidy, with a number of commits for each project that

claimed to either tidy some documentation, comments, or methods. Furthermore, for

some of the most negative commit messages, the sentiment analysis tool failed to pick

up the fact that the word fix was present alongside a negative word such as bad or

stupid. For example, commit hash 1aba91 in the Closure project contains the message

Fix a bug where we wouldn’t warn about bad parameters — despite being picked

up as a negative sentiment, this should actually be positive as it is addressing an issue.
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Despite the word “fix” being present in 1172 commit messages, the average sentiment for

messages that contained the word “fix” was 0.04, showing that on its own, the word fix

is not enough to indicate a positive or negative message. Moreover, while the word cool

appears in two commits, it has a negative average sentiment score. This is because one

of the commits in which the word is included contains the message -ant doesn’t work

yet :( -refactored some names -rename : src/org/mockito/Matchers.java =>

src/org/mockito/CrazyMatchers.java rename : src/org/mockito/CoolMatchers.java

=> src/org/mockito/Matchers.java (Mockito commit da791d). In this instance, the

overwhelmingly negative sentiment of Ant not working, causes a deeply negative score,

while the word cool isn’t counted since it is part of a longer string.

Finally, Figure 5.1 shows the comparison of subjectivity scores with sentiment scores for

the commit messages analysed. From Figure 5.1, it is clear that as commit messages

become more subjective, there is a higher distribution of sentiment scores. This indicates

that is difficult to compose commit messages that are objectively stating facts whilst

not giving any opinions. Of the nine commits that contain positive sentiment without

any subjectivity, the word useful appears in eight commits. For example, Time commit

fc46ba contains the message DayOfWeek not that useful, which is stated as an objective

fact. Conversely, of the seven commits that have negative sentiment without any

subjectivity, the phrases not useful and harder appear two times each. In most cases

however, it is not possible to achieve a high sentiment score without also having a high

subjectivity score. By contrast, there are 193 cases where the subjectivity score is 1 while

the sentiment score is 0. By inspecting these cases, the word final appears in 66 of those

cases. This shows a contextual difference in how sentiment in general text may compare

with sentiment in programming (as with fix), since the ‘final’ keyword in Java is applied

to variables and methods and may, according to certain style guides, even be required 14.

RQ1: Most commit messages (67.38%) do not contain sentiment. The amount

of sentiment in commits may depend on several project factors — the number of

developers, the age of the project, the organisation in control of the project etc.

Although many commits may contain negative sentiment, this may be a limitation of

the sentiment analysis tool, since the word “fix” is not considered a positive one.

5.4.2 RQ2: Can sentiment or subjectivity in commit messages be used

to predict whether a commit fixes a bug?

This section compares the sentiment and subjectivity scores of commits that fix bugs

in Defects4J and commits that don’t. Figures 5.2 and 5.3 show the sentiment and

14https://checkstyle.sourceforge.io/apidocs/com/puppycrawl/tools/checkstyle/checks/
coding/FinalLocalVariableCheck.html

https://checkstyle.sourceforge.io/apidocs/com/puppycrawl/tools/checkstyle/checks/coding/FinalLocalVariableCheck.html
https://checkstyle.sourceforge.io/apidocs/com/puppycrawl/tools/checkstyle/checks/coding/FinalLocalVariableCheck.html


Chapter 5 126

●●

●●

●

●

●

●●

●

●●
●

●●●

●

●

●

●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●

●

●

●●●●●● ●●●●●●●● ●●●●●●

●●

●●●

●

●●●●●●●●● ●●●●

●

●●

●

●●●●●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●●

●

●

●●●

●

●●●●

●

●●●●

●

●●●●●●●

●

●●●●

●

●●

●●●

●

●●

●●

●

●

●●●●●●●●●

●

●●●

●

●

●

●●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●

●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●

●

●

●

●●●

●

●●

●

●●●

●

●●●●●

●

●●●

●

●●

●

●●●

●

●●●

●

●●●

●

●

●

●●●●●●●●

●

●●●●

●

●

●

●●

●

●

●●●●●●●

●

●●●●●●●●●● ●●●●

●

●●

●

●

●

●●●●●●

●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●

●

●●

●

●●●● ●●●●

●

●●●●●

●

●

●

●●●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●

●

●

●●●

●●

●●●●●●

●

●●●

●

●

●

●

●

●●●●

●●

●●●

●

●●●

●

●●

●

●●●●

●

●●●●●

●

●

●

●●

●

●●●●

●

●●●●●●●●●● ●

●

●●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●●●●●●●●●●●

●

●●

●●

●

●●●●●●●●●

●

●●●●

●●

●●●●

●

●

●

●●

●

●●●

●

●●●●●●●●

●

●

●●●●

●

●●●

●

●●●●●

●

●

●

●●●●●●●●

●

●●●●●

●

●

●●

●

●●●●●●●●●●●●●

●

●●●

●

●

●●●●●

●

●●●●●

●

●

●

●

●

●●●●●●●●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●●●

●

●●●

●

●●●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●● ●●●●

●●

●●●●●

●

●

●●●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●●●●●
●

●●●●

●

●

●

●

●●●

●●

●●

●●●●●●●

●

●●●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●●●●●●●●●●

●

●●●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●●●

●

●●

●

●

●

●
●

●●

●

●●●
●

●●●●

●

●●●●●

●

●●●

●

●●●●

●

●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

● ●

●

●

●
●

●

●

●

●

●● ● ●●

●

●

●

●

●

●

●●●

●

●●●●

●

●

● ●●●

●

● ● ●●●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●●● ●●●●

●

●

●

●●

●

●

●●●●●●

●

●●

●

●

●

●

● ●

●

●

● ●●●●

●

●

●

●

●

● ● ●●●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●●● ●●● ●●●● ●●●●

●

●

●●●

●

●

●

●● ●● ●

●

●●

●

●

●●

●

●

●

●

●●●● ●

●

●

●

●

●●

●

● ●●●

●

●●●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●●● ●●●

●

●●

●● ●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●● ●●

●

●●

●

●
●

●

●●●

●

●

●● ●●

●

●

●

●

●

●

●

●

●●●● ●

●

●

●

●

●

●

●●●

●

● ●●●●

●

●

●●

●

● ● ●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●●●

●

● ●

●

●●●●

●

●

●

●●

●●

●

●

●

●●●●

●

●●

●

●●●●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

● ●

●

● ●●

●

●

●

●

●●

●

● ●

●

●●●●●

●

●●●

●

●● ●●

●
●

● ●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●●●

●

●●●

●

●

●

●●●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●
●

● ●●●

●

●

●

●●

●

●●●● ●●

●

●

●

●●●

●

●●●

●

● ●

●

●●●

●

● ●

●

●

●

●●● ●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●
●

●

●

●

●

●● ●●●●●●●

●

●●

● ●

●

●

●●●●

●

●

●

●●●

●

●●

●

●●● ●●

●

●

● ●

●

●● ●

●

●●

●

●● ●

●

●

●●●●●● ●●●●

●

●●

●

●●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●● ●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●● ●●●●●●●

●

●

●

●

●● ●●

●

●

●

●

● ●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●●●

●

●

●●●

●

●

●●

●

●●

●

● ●●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●● ●●●
●

●

●

●

●●●

●

●

●●
●

●

●

●

●

●

●

●

● ●●

●

●
●

●●

●

●
●●

●

● ●●● ● ●

●●

●●● ●●● ● ●●●

●

●●

●

●

●
●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●●

●● ●

●

●●

●

●

●

●

●

●

●● ●●●●

●

●●●

●

●

● ●

●

●

●

● ●

●

●

●●

●

●

●● ●

●

● ●●●●●●●

●

●

●

●●

●

●●●

●

●●

●

●●●●

●

● ●

●

●

●●

●

●●●

●

●

●

●

●

●● ●

●

●●●●●●

●

●

●● ●●

●

●

●

● ●●

●

●● ●●●

●

●●●● ●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●●●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●●●

●

●●
●

●●

●

●

●

●

● ●

●●

●

●●●●

●

●●●●

●

●

●

●● ●●●●

●

●●●●

●

●

●

●

●●

● ●●

●

●

●●●

●

●●●

●
●

●● ● ●●●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●●● ●●●●●●

● ●

●●●

●

●

●

●

●

●

●●

●

●

●

●● ●●● ●●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●●●

●

●●●●●●●●

●

●● ●●●

●

●

●●

●

●●●●● ●●●●●●●

●●

●●

●

●

●

●● ●●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●
●

●

●

●●●●

●

●

●

●●●●● ●

●

●

●

●

●●●●
●

●

●● ●●

●

●

● ●●

●

●●

●

●●

●

● ●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●●●
●

●

●●●

●

●

●

● ●

●

●●

●

●●●●● ●●

●

●●●

●●

●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●●●

●

●

●

●

●

● ●

● ●

●

●●

●

●●

●

●●●●●●

●

●●●

●

●●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●●●●

●

●●

●

●

●

●●●● ●

●

●●

●

●●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●●●

●

●●●●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●●●●●●

●

●●●●●●●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●●●●●

●

●●●●●

●

●

●●

●

● ●

●●●●
●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

● ●

● ●

●
●

●

●

●

●

●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●● ●

●

●

●

●
●

●

●●●

●

●●

●
●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●●● ●

●
●

●

●

●●●●●

●

●● ●

●

●
●

●

●
●

●

●

●

●

●

●● ●●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●● ●●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

● ●●

●

●●

●●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●●●●●●● ●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●●●

●

●

●

●●

●

●

●

● ● ●●●

●

●●●●●●●●

●

●

●

●●

●

● ●

●

●

●●●●

●

●●●●● ●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●●●●●

●

●●●●●

●

●

●

●

●●●●

●

●● ●●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●

● ● ●

●

●●

●

●● ●●● ●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●●●

●

●● ●●

●

●●● ●

●

●● ●●●●

●

●

●

●

●

●

●

●●●●

●

●

● ●●●

●

●

●

●

●

● ●● ●●

●

●●●●●●●● ●

●

●

●

●●●●

●

●● ●

●

●●

●

●

●●

●

●

●

●

●●●
●

●

●

●

●

●●●●

●

●●

● ●

●

●

●

●

●

●

●

●●●●●

●

●

●

● ●●●●●●

●

●
●

●●●●

●

●●●● ●●●●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●●● ●

●

●●●●

●

●●

●

●

●

●

●●

●

●●● ●●

●

●

●●●●

●

●●

●

●

●

●

●

●● ●●

●

● ●●●●

●

●●●●

●

●

●

● ●

●

●●●●●

●

●

●●●●

●

●

●●●

●

●

●● ●

●

●

●

●

● ●●●

●

● ●●●●●●●

●

●●

●

●●●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●● ●●●

●

●

●

●

●

●●●●

●

●●

●

● ●
●

●●●●

●
●

●●

●

●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●

●●

●

●●

●

●●
●

●

●

●●●●●●

●

●

●

●●●●
●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●

●

●

●●●●●●●●●●● ●●●

●

●●●●

●

●●●● ●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●●

●

●●●●●

●

●●

●

●

●

●●●●●●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●●

●

●● ●●● ●●

●●

●

●

●●

●

●●●

●

●●●●

●

●●●●

●

●●● ●●

●

●

●●●

●

●●●●

●

●

●

●

●

●●●●

●

●●●
●

●● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●●●

●

●●●

●

●●

●

●

●●●●●●

●

●●●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●●●●●

●

●

●

●

●●●●

●

●

●●

●

●●●●●●● ● ● ●●●●●

●

●●●● ● ●

●

●

●
●●

●

●●●●

●

●●●

●
●

●●●

●

●

●

●●●

●

●●●●●●●● ●●●●

●

●●●

●

●●●

●

●

●

●

●

●●● ●●●●

●

●●●●●

●

●●

●

●

●

●●●● ●●●●●●●●●●●

●

●

●●●●●●

●

●●

●

●●●●

●

●

●●●

●

●

●●●

●●●

●

●

●●●●●●●

●

●

●

●●●

●

●●●● ●●●●

●

●

●

●

●●

●

●●● ●

●

●

●

●

● ●

●

●● ●●●●●●

●

●

●

●

●

●

●●●●

●●

●● ●●

●

●●

●

●●●●●

●

● ●

●

●

●

●●●●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●● ●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●

●

● ●

●

●

●

●

●●●●●●●

● ●

● ●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●●●●●●
●

●●●

●

●

●

●●

●

●●●

●

●

● ●

●●

●

●●

●

●●●●●●●● ●●

●

●●●●●●

●

●

●

●

●●●●●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●
●●●●

●

●● ●●

●

●●●●

●

●

●

●●●●●●

●●

●

●

●

●

●●●

●

●

●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●

●

●

●●●●●●

●

●● ●

●

●●

●

●●● ●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●

● ●●●

●
●

●

●

●●●●●●●

●

●●●

●

●●●●●●●●

●

●●●

●●

●

●

● ●

●

●●●

●

●●●●

●

●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●●

●

●●●

●

●●

●

●●

●

●●●●● ●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●●●●●●

●

● ●●●

●

●●●●

●

●●●●●

●

●●●●

●

●

●

●● ●

●

●●● ●●

●

●●●●

●

●●●

●

●

●

●

●

● ●●●

●

●

●

●●

●

●● ●

●

●

●

●

●● ●●●●●

●

●●

●

●●●● ●●●●●●●●●● ●

●

●●●●●

●

●

●

●

●

●●

●

●

●●●

●

●●●●●

●

●

●● ●

●

●●●●●●●●●●●●●●●●●●

●

●

●

●● ●

●

●●●●●●●

●

●
●

●

●

● ●●●●●●●

●

●●●● ●

●

●

●

●

●

●●●●●● ●●●●●●

●

●

●

● ●●●●●●●●● ●●

●

●

●● ●●●●●●●● ●● ●

●

● ●●

●

●●

●

●●●●●●

●

●

●

●

●

●

● ●● ●●●●

●

●

●●●●●●

●

●●●●

●

●

●

●

●●●●●● ●●●●●●●

●

●●

●

●

● ●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

● ●●●●● ●

●

● ●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●● ●

●

●

●●●

●

●

●

●

●●

●

●● ●● ●●

●

●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●●

●

●●●●●

●

●

●

●●●●●

●

●

●

●

●●
●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●● ●

●

●

●

●●● ●●●●●

●

●

●

●●●●

●

●

●

●●

●

●●●●●●●● ●●●●

●

●●●●

●

●

●●●●●

●

●●● ●

●

●

●

●

●

●●●●

●

●●

●

●

●
●

●●

●

●

●

●●

●

●

●●●●

●

●●●●●

●

●●● ●●

●

●

●●●●●●●

●

●● ●

●

●

●

●●

●

●●●●●

●

●●●●●●●●●

●

●●●●●

●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●

●●●● ●●

●

●

●●●●

●

●●● ●●●

●

●●●

●

●●

●

●●● ●●

●

●● ●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●●● ●

●

●

●

●

●

●

●

●●● ●●●●●●●● ●●●●

●

●

●●

●

●

●

●●

●

●

●●

●

●●●

●

●●●●

●

●●

●

●

●

●●●●●●●●

●

● ●

●

●●●●●

●

●●

●

●●●● ●●●●●●● ●●●

●

●●●

●

● ●●●

●

●

●

●● ●●●

●

●● ●●●●●

●

● ●

●●

●
●

●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●●●
●

●● ●●●

●

●●

●

●●

●
●

●●

●

●●●●●

●

●

●●

●

● ●●●●●●

●

●●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

● ●●●●●●● ●

●

●●

●

●●

●

●●●

●

●●●●●●●

●

● ●

●

●

●● ●●

●

●

●●

●

●

●

●●●

●

●●●● ●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●●●

●

●

●

●

● ●●●●

●

●●

●

●●●●

●

●

●●●●●●●● ●●

●

●

●●●●●●●●●● ●●●●●●

●

●

●●●●●●●●

●

●●●

●

●

●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●●●● ●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●●●●●

●

●●●

●

●

●

●●

●

●

●

●●●● ●

●

● ●●●● ●●●●●●●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●●●●●●

●

●

●

●●● ●●●●●●●●●

●

●●

●

●●●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●

●

●●●●●●●●

●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●●●●●●

●

● ●●

●

●

●●

●●

●●●●

●

●

●

●●

●

●

●

●

●●● ●●●●●●●

●

●●●●●●●●

●

●

●●●● ●

●

●

●

●
●

●●

●

●●● ●●

●

●

●

●●●●●

●

●

●

●

●●●●●●●●

●

● ●●

●

●●●●

●

●●●

●

●

●

●●

●

●●●●●●

●

●

●

●● ●●●●●● ●● ●

●

●●●●●●

●

●●

●

● ●●●●●●

●

●

●

●●●

●

●●

●

●●●

●

●

● ●

●

●●●

●

●●●●●●●●●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●●●●● ●

●

●

●

●●

●

●

●●●●●●

●

●●●

●

●●

●

●●

●

●

●

●● ●● ●●

●

●●

●

●● ● ●●●●●

●

●●

●

●

●●●

●

●●●●●●

●

●

●●●

●

●●

●

●●● ●

●

●●●

●

●●

●

● ●●●●●

●

●●● ●●

●

●

●

● ●● ●
●●

●

●

●

●

●●●●●

●

●
●●●●●●●●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●● ●●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●●●●●●●

●

●●●

●
●

● ●●●●

●

●

●

● ●●●●●●

●

● ●●

●

●●●●●●●●

●

●

●

●

●● ●●●●●●●

●

●●

●

●●●●

●

●

●

●●●●

●

●

●

●●●●●●

●

●●●

●

●

●●●

●

●

● ●

●

●

●●●●●

●

●●●●●

●

●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

● ●●●●

●●

●●●●●●●●

●

●

●●●●●●

●

●

●●●

●

●●●

●

●●●

●

●●● ●●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

● ●●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●●●●●

●

●●●● ●●

●

●●●●

●

●●●

●

●

●●●●●●

●

●●●●●●

●

●

●●

●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●●

●

●

●●

●

●●●

●

●●

●

●●●●● ●●●●

●

●

●●

●

●●

●

●

●●

●●●

●

● ●●●●●

●

●●●●●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●●●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●

●
●

●●

●

●●

●

●

●●●

●

●●●●

●

●

●

●

●

●●●

●

●●●●●

●

●●

●

●●

●

●

●

●●●●●●

●

●●●●

●

● ●●●

●

●●●●●● ●●●● ●●

●

●● ●● ●●●●

●

●

●

● ●●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●●●●

●

●

●

●● ●●●● ●●● ●

●

●

●

●

●

●●●

●

●

●

●●● ●●●●

●

●●●●

●●

●

●●●

●

●●●●

●

●●●●●●●

●

●●●

●

●●●

●

●●●● ●●●●

●

●●●●●●●●

●

●

●●●●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●●● ●●●●

●

●●

●

●●●

●

●●●●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●

●●●●

●

●

●

●

●●● ●●

●

●●

●

●

●●●●●

●

●●

●

●

●

●

●●

●

●●

●

● ●●

●

●●

●

● ●

●

●

●●●●●●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●

● ●

●●

●

●●●●●●●●●

●

● ●

● ●●●●

●

●

● ● ●

●

●●●●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●●●●●●●●●●

●

●●●●●●● ●

●

●●

●

●

●

●

●●●●●●●●

●

●●●●●

●●

●●●

●

●

●

●●●●●●

●

●●●●

●

●●● ●

●

●●●●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●●●●●●

●

●●●●

●

●

●

●●● ●

●

●●●

●

●●● ●●

●

●

●

●●

●

●●●

●

●

●●●●

●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●●●●●●

●

●●●●●●● ●● ●

●

●●●●●●

●

●●●●●●

●

●●

●

●

●●

●

●

●

●

●● ●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

● ●●●

●

●

●●

●

●

●●●●●

●

● ●

●

●●

●

●

●●

●

●

●

●●
●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●● ●

●

●

●

●●

●

●●●

●

●●

●

●●●

●

●

●●●
●

● ●●●

●

●

●

● ●

●●●

●

● ●●

●

●

●

●●●

●

●●●

●

● ●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●●●●●

●

●●● ●

●

●

●●●

●

●

●●● ●●

●

●

●

●

●

●

●

●●

●

●● ●●●●

●

●●● ●●● ●●●

●

● ●●

●

●

●●

●

●● ●●

●

●

●

●

●

●
●

●

●

●

●●●●●

●

●

●

●●

●

●

●● ●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●

●

●●●

●

●●●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●● ●

● ●

●●●●

●

●

●

●●●

●

●●●●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

● ●● ●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●●●

●

●●

●

●

●●●

●

●●●●●

●

●

●●●●●●●●

●

●●●●●

●

●

●

●

●

●●●

●

●

●●●

●

●●●●●

●

●●●●

●

●●●●

●

●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●● ● ●●●●●●●
●

● ●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●

● ●

●

●
●● ●

●

●

●

●

●●

●

●

● ●●●●

●

●

●

●

●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

● ●

●
●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●● ●●●●●●●●●

●

●●●

●

●●●

●

●

●●●

●

●

●

●●

●

●●●●●

●

●

● ●●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

●●●●●●

●

●

●

●

●

●

●●

●●●●●● ●

●

●●

●

●

●●

●

●●

●

●

●

●●●

●

● ●●●

●

●●●●

●

●●

●

●

●

●

● ●

●

● ●●

●

●●●

●

●

●●●

●

●

●●●●

●

●

● ●●● ●

●

●

●●

●

●●

●

●

●

●

●

●●● ●●●●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●●

●

●●●● ●

●
●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

● ●

●

●●●● ●●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

● ●

●

●●●●
●

●

●

● ●●●●●●

●

●●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●● ●●●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●●●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●●

● ●

●

●●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●●●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●● ●

●

●

●

●●

●

●●●●

●

●●●● ●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●●●

●

●

●

●●

●

●

●

● ●●●

●

● ●●●

●

●
●

● ●

●

●

●

●

●

●

● ●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●

●

●
●

●

●

●●● ●

●

●

●●

●

●

●

●

●● ●●

●

●
●

●

●●●●

●

●●

●

●

●

●●

●
●

●●

●

●

●

● ●●●●●●●● ●●●

●

●●

●

●

●
●

● ●●●

●

●●●●●
●

●
●

●

●●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●●● ●●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●● ●●●●●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

● ●●●

●

●●● ●

●

●●

●● ●●●

●

●

●

●

●

●●●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●●●

●●

●

●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●●●●

●
●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●● ●●●●●●●

●

●

●

●●●

●

●

●

●

●
●

●●●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●●●

●

● ●●●

●

●●●

●

●●●●●

●

● ●●

●

●

●●●● ●

●

●

●

●●

●

● ●●● ●●●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

● ●●●

●

●●●

●●

●

●●

●

●

●

●

●●

●

● ●●

●

●

●●

●

●

●

●

●

● ●●

●

●●●●●●● ●●●

●

●

●

●

●

●

●

●

●

●

●●●● ●●●
●

●●

●

● ●●●

●

●●● ● ●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●●●●

●

●●●

●

●●

●

●

●

●

●●

●

●

●●●●

●

●

●●●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

● ●●●

●

●●●●

●

●●●

●

●●●● ●●

●

●●●

●

●

●●●●●●●●●●●●

●

●●●

●

●●

●

●

●

●

●●

●

●●●●

●

●●●●●●

●

●

●

●●●●●● ●

●

●●

●

●

●●●●●●

●

●●●

●

●

●●

●

●●●●●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●

●

●

●●●

●

●●●

●

●

●

●

●●

●

● ●●●

●

● ●

●

● ●●●●

●

●●●●●

●

●

●

●

●

●●

●●

●

●●

●

●●●

●

●●

●

● ●●●●●●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●●● ●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●● ●●●●●●●●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●●● ●●

●

●

●

●

●

● ●

●

● ●●

●

●

●

●

● ●● ●●

●

● ●●●

●

●

●●●●●

●

●

●

●●●●●

●

●

●

●●● ●

●

● ●●

●●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●

●

●

●

●
●

●

●

●

● ●● ●●

●

●

●

●

●

●

●● ●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●●● ●

●

●

●
●

●
●

●●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●●●●

●

●

● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●

●●●●●

●

●

●

●●●

●

●

●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●●

●

●●●● ●●

●

●

●

●●●

●

●

● ●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●●

●

●

●

●

●●●●

●

●

●

●

● ●●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●●●●

●

●

●

●

● ●●

●

●● ●●

●

●●

●

●

●

●

●

●

●

●
●

●●●●●●●●●

●

●

●

●

●●●●

●

●

●●●

●

● ●

●

●

●●●●

●

●

●

●●●●●

●

●

●

●●●●●● ●●●

●

●

●
●

●●

●

●

●

●

●●● ●●●

●

●

●●● ●●● ●

●

●●●●●●●●

●

●●●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●●●●● ●

●

●●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●●●

●

● ●●● ●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●●

●

●

●

● ●●●● ●● ●●

●

●

●

●

●● ●●●● ●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●●● ●●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

● ●●●

●

●●

●

●

● ●

●

●

●

●

●●●●●●●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●● ●

●

●

● ●

●

●

●●●

●

●●
●

●●●●● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●●●● ●

●

●●●●●

●

●

●

●●●●●●●

●

●● ●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●●●

●

●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

●

●●

● ●●

●

●●●●●●●●●

●

●

●

●

●●●

●

●

●

● ●●●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●●●●

●

●

●

●

●●

●

●●● ●●●●

●

●●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●● ●●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●

●

● ●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●●●●●

●

●●●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

● ●●

●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●
●● ●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●● ●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●● ●●●●●●●●●●

●

●●●●●

●

●●● ●●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●

●●●

●

●

●

●●●●

●

●●●

●

● ●●● ●●●●

●

●

●

●

●

●●

●

●● ●● ●

●

●●●

●

●

●

●●

●

●●●●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●●

●

●●

●

●

●

●●●

●

●●●

●

●● ●

●

●●

●

● ●

●

●

●

●

●

●

● ●●●●● ●●●●

●

● ●

●

●●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●
●

●●

●

●

●

●● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●●

●

●

●

●

●●●●●●

●

●●

●

●

●●●

●

●

●

●●●●

●

●●

●

●●●

●

●

●

●●

●

●

●●

●
●

●●

●

●

●●●●●

●

●

●

●

●● ●

●

●

●

●

● ●●●
●

● ●

●

●●● ●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●●●●● ●● ●●● ●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●●●●

●

● ●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●●●

●

●

● ●

●

●

●

●● ●●●●●

●

●●

●

● ●●●●●●●●●

●

●●

●●

●

● ●●
●

●●●●●

●

●

●●●

●

●●

●

●

●

●●●●

●

●●●●

●

●●●●

●

●

●●●

●

●

●●

●

●●

●

●●●

●

●●

●

●

●

●

●●●

●

●
●

●●●●

●

●●●● ●

●

●●

●

●

●

●●

●

●●●

●

●

●●●●● ●●●

●

●● ●●

●

●

● ●●●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●●●●

●

●

●

●●●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
● ●●

●
●

●● ●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●● ●●●

●

●

●

●●●

●

●●●
●

●

●●

●

●

●

●

●

●●●●

●

● ●●●●

●

●

●

●

● ●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●●●●●●● ●

●

●

● ●●●●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●●● ●●●●●

●

●

●

●

●●●

●

●
●

●

●

●

●

● ●●●●●●●●●●●●

●

●●● ●● ●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

● ●●●●

●

●●●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●●●●●

●

●●

●

●

●●●●●

●

●

●●●●

●

●●

●

●●

●

●

●●

●

●

●

●●●●●

●

●●

●

●

●

●

●●●●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●●●● ●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●●●● ●

●

● ●

●

●

●

●

●●●●

●

●

●
●

●●●●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●●● ●●●

●

●●●● ●●●

●

●● ●●

●

●●

●●

●●●●●

●

●

●

●

●●● ●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●

●

●●●

●

●●●

●

●

●●●
●

●

●

●●●●

●

●

●●●

●

●

●

●

●

●● ●●●● ●

●

●

●● ●●

●

●

●

●

●

●

●●●●● ●●●

●

●●●●

●

●

● ●

●

●

●●● ●

●

●

●

●●●

●

●

●

●

●

●●● ●●●●●●●●● ●●●●●●

●

●

●

●

●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●
●

●●●●

●

●●●●●●●● ●●●●●●● ●●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●●●●

●

●●●●●

●

●●●

●

●●●●

●

●

●

●●

●● ●

●●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●●● ●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●

●●●●● ●●●●●●●●●●●

●

●●●●●●●

●

●

●

●●●

●

●●●●

●

●

●

●

●

●

●●●●●●●● ●●●●●

●

●

●

●●● ●●●●●

●

●● ●●●●●●●● ● ●●●●

●

●
●

●●●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●●●● ●

●

●●●

●

●●●●

●

●●

●

●

●●●●●

●

●●●●

●

●●●●

●

●

●●●●●●●

●

●

●

●●●

●

●●●●

●

●

●

●●●●● ●● ● ●●●●●●●

●

●

●● ●●●●

●

●●

●

●●

●

●

●

●●●●●●●●

●

●

●

●

●●●

●

●●

●

●●●●

●

●

●

●●
●

●

●

●

●

●

●
●●

●
●

●●

●

●
●

●

●

●●●●●●●

●

●

●

●

●●● ●●● ●●● ●●

●

●●

●

●●●●●

●

●●●●●

●

●●●●

●

●●●●●●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●●●●●●●●

●

●

●●

●

●

●
●

●

●

●●●●●●

●

●●●●

●

●

●●●●

●

●●●●●●●

●

●

●

●●●

●

●

●

●

●●● ●●●●
●

●

●

●● ●

●

●●●

●

● ●●●●●

●

●●

●

●

●●●●●●●●
●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●● ● ●

●

●

●

●

●

●

●

●●●●●

●

● ●
●

●●

●

●

●

●●●●●●

●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●● ●●●●●●●

●

●

●●●●●●●●●

●

●●●

●

●●●●●●●●●●●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●

●●●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●●●

●

●

●

●●●●●●●●● ●●

●

● ●●●●●●

●

●●

●

●

●●●●

●

●●

●

●

●

●●●●●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●●●

●

●

●●● ●●●

●

●

●●●

●

●●●

●

●

●●

●

●●●●●●●●

●

●●●●●

●

●●●

●

●●●

●

●●●●●●●

●

●

●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●

●

●●

●

●●●

●

●●● ●●

●

●●

●

●

●

●

●●●●●●●

●

●

●

●●●●

●

●●●●●●●

●

●●

●●

●

●

●●● ●●●●●●

●

●●

●

●●●●●●

●

●●●

●

●●

●

●

●

●
●

●●●

●

●●

●

●●●●●●●●●●

●

●

●

●

●●

●

●

●

●●

●

●●●●●

●

●●

●

●

●

●●●

●

●

●●●●●●

●

●●●●●●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●

●

●●

●

●

●

●

●●

●

●●●●

●

●● ● ●●●●●

●

●●●●●●●●●●●

●

●●●●

●

●●●

●

●●●

●

●

●

●●●●●●●

●

●

●●●●

●

●●

●

●●

●

●●●●●

●

●

●●

●

●●●●●●

●

●●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

● ●●●●●● ●●

●

●●

●

●●

●

●

●●●

●

●

●

●

●●●●●●

●

●

●●●

●

●

●●

●

●
●● ●●

●

●●●●●●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●

●●●●●

●

● ●●●

●

●

●

●

●●

●

●●● ●●●● ●●

●

●●●●●●●

●

●

●

●●

●

●● ●●●●●●●●

●

●●●●

●

●

●

●●●●

●

●●

●

●●

●

●

●

●●●●●● ●●●

●

●

●

●●

●

●●●●●●●●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●●● ●●●●

●

●●●●●●●●●●

●

●

●●● ●●●●●

●

●● ●●

●

●●●●●●●●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●●●●

●

●●

●

●

●●

●

●●●●●●●●● ●●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●●●

●

●●●●●●●

●

●●

●

●

●

●●●●●●●●

●

●

●
●●

●

●●●●

●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●

●

●●● ●

●

●

●

●● ●

●

●
●

●●●●●●●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●
●

●●

●

●

●●●●●

●

●●●●● ●●

●

●●

●

●●●●●●●●

●

●●

●

●●

●

●

●

●●●●●●

●

●●●●

●

●●

●

●●●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●●● ●●●●

●

●●●

●

●

●●

●

●●●

●

●

●

●●●●

●

●

●●●

●

●●●

●

●●●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●

●

●●

●

●●

●

●

●●

●

●

● ●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●●● ●●●●●

●

●

●

●●●

●

●

●

●●●

●

●●●

●
●

●●●●●

●

●

●

●

●

●

●●●

●●

●

●

●●●●●●

●

●●●

●

●●

●

●●●●

●

●●●

●

●

●●●

●

●

●

●●●●●●●

●

●●●

●

●●

●

●

●

●●● ●

●

●

●●●●●●●●●●●●

●

●●

●

●●

●

●

●
●

●● ●●●●●● ●

●

●

●

●●

●

●●●●●●●

●

●●●

●

●

●

●

●

●●●

●

●●●● ●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●● ●

●

●●●●●

●

●●●●●●●

●

●

● ●

●

●●●

●

●

●●

●

●●●

●

●

●

●
●●

●

●

●●●●●●●

●

●●●●●

●

●●●

●

●●●●

●
●

●

●

●●●●●●●

●

●

●

●

●

●●●

●

●●●●●

●

●

●

●●●●●●●●●●●●

●
●

●

●

●
●

●

●

●

●

●

●●●●●

●

●●

●

● ●●

●

●● ●●

●

●

●●●

●

●●

●

●●●●● ●●● ●●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●●●●●●
●

●

●

●

●

●

●●●

●

●

●

●● ●●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●●

●

●●●●●

●

●

●

●●●●

●

●●●

●

●●●●●

●

●

●●●●●

●

●●●

●

●●

●

● ●●●●●

●

●

●

●

●

●

●

●

●

●● ●●●●●

●

●
●●

●

●

●

●

●

●

●●●

●

● ●●●●●●●●●

●

●

●

●●

●

●

●

●

●●●●

●

●● ●●●

●

●

●●●●●●●● ●

●
●

●●●●●●●

●

●●

●

● ●● ●

●

●

●●●

●

●●●● ●●●●●

●

●●

●

●

●

●●●●●●●●

●

●●●●

●

● ●●●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●

●●

●

●●●●

●

●●●

●

●●●●●●●

●

●

●●●●●●

●

●●●● ● ●

●

●

●

●●●

●
●

●

●

●

● ●

●

●

●

●●●●

●

●

●

●● ●●● ●●●●●●●

●

●●●●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●● ●●●●

●

●●●

●

●●●●●

●

●

●

● ●

●

●●

●

●

●

●●

●

●●●●●

●

●● ●●●●●●●●

●

●

● ●●

●

●

●

●●●●●●●●●●●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●●●

●

●●
●

●●●

●

●

●

●

● ●●●

●

●

●●

● ●

●

●●●

●

●

●

●●●●●●●●

●

●● ●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●●●

●

●●●●

●

●

●●

●

●

●●

●

●●●●●●●●●●●●●

●

●

●

● ●●●●

●

●

●

● ●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●

●

●

●

●●●●●

●

●

●●

●

●●●●●●●●●●●

●

●

●●●

●

●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●●

●

●● ●● ●

●

●●

● ●

● ●●

●

●

●
●

●

●●

●

●●●●●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●● ●

●

●

●●

●

●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●
●●

●

●●● ●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

● ●●●●●●●●●●●●●

●

●●●●

●

● ●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●

●

●●●

●

●

● ●●

●

●

●●●

●

●●●●●●

●

●

●

●

●●

●

●

●

●

● ●●●●●●●●●

●

●●●

●

●●●●●●

●

●●●●●●●●●●

●

●

●

●

●

●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●●●●

●

●●●●●

●

●

●

●●

●

●

● ●●●●●●●●

●

●●●●●●●●●●● ●●●● ●●●●

●

●●●●

●

●

●●●

●

●● ●

●

●●●●● ●●●●●●●●

●

● ●●

●

●

●

●

●●● ●●●●●●●

●

●

●●

●

●●●

●

●●●●●●●●●

●

●●●●●

●

● ●●

●

●●●●●●

●

●

●● ●●●

●

●●●●●

●

●●

●

●●●

●

●●●●

●

●

●●●●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●●

●

●●●●

●

●●●●●●●●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●●●

●

●

●●●●

●

●●●●

●

●●●

●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●

●

●●

●

●

●

●

●●●●●

●

●

●

●●●●

●

●●●

●

●

●●●●

●●●

●●● ●●●●●●●●●●

●

●●●●

●

●●

●

●

●●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●● ●

●

● ●●●●●●●

●

●●

●

● ●

●

●●

●

●● ●●●●●

●

●

●

●

●●●●●●●

●

●●●●●●● ●●●●

●

●● ●●●●●●●●●●●●●

●

●●●●

●●

●●●

●

●

●●●●●

●

●●●●●● ●

●

●●●●

●

●●

●

● ●

●

●

●●

●

●●●

●

●●●●●●●● ●

●

●●●●●●●

●

●●
●

●

● ●

●

●●●●●●

●

●●●●●

●

●

●

●●●●

●

●

●●●●●●●●●●
●

●● ●●●

●

●

●

●

●●●●● ●●●●●●●●●●●●●

●

●●●●●●●● ●●●●●

●

●

●

●●●●●●●

●

● ●

●

●●●●●●●●●●●●●● ●

●

●

●●●●●●●●

●

●

●●●●●

●

●

●

●●●

●

●

●

●●●●●

●

●●●●●●●●●●●

●

●●●●

●

● ●

●

●●●

●

●●●●●●●● ●●●

●

●●● ●●

●

●

●

●●●

●

●●

●

●●●●●●

●

●●● ●●●

●

●●

●

●●●●●●● ●●●●●●●●●●●

●

●●●● ●

●

●● ●

●

●●●●●●●●●●● ●●

●

●●●●●●●●

●

●●●●

●

●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●●●

●

●

●

●

●●

●

●●

●

●●● ●●●●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●● ●●●●

●

● ●●●● ●●●

●

●

●

●●●

●

●

●

●●●

●

●

●●●●●●●●●●●●

●

●●●●●●●●● ●●●●●

●

●

●● ●●●

●

●

●●●●

●

●

●

●●●

●

●●●●●

●

●●

● ●

● ●●●●●●

●

●●●●●●●●

●

●

●

●

●●●●●

●

●●

●

●●●●●

●

●●●●●●

●

●●●

●

● ●●●●● ●●●●●●

●

●●●●

●

●●●●●●●● ●●●●●● ●●●●●●●● ●●

●

●●●●●

●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●

●

●●●●

●

● ●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●

●

●●●●●● ●

●

●●●

●

●●●●●

●

●●●●●

●

●●

●

●●●●●●●●●

●

●●●●●●

●

●●

●

●●●●●●●●

●

●

●●

●

●

● ●●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●●●●●

●

●●●●●

●

● ●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●●●●

●

●

●

●

●

●

●● ●●●●●●

●●●

●●●●●●●

●

●●

●

●●●

●

●●●●

●

●●●●●

●

●●

●

●●●

●

●●●●●● ●●●● ●●●●●●●●

●

●●●●●

●

●●●

●

●●●●●●●

●

●●

●

●

●●● ●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●●

●

●●●●

●

●●●

●

●●●

●

●●●●●●●

●

●●●●●

●

●

●●

●

●

●●●●●● ●●●●●

●

●

●

● ●

●

●●●●

●

●

●

●●●

●

●●●

●

●●●●

●

●●●●●

●

●●●
●

●●●●●●● ●●●

●

●

●●●●●

●

●

●

●

●●●●●

●

●●●●●

●

●●●●

●

● ●●●● ●

●

●

●●●●●●

●

●●●●●●●●●●●●●

●

●●●●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●● ●●●●●●

●

●●●●●

●

●●●●

●

●●

●

●●●●●●●●●

●

●

●

●●

●

●●●●●●●●

●

●●●

●

●

●●

●

●●●●●●●●●●●●●● ●● ●●●●

●

●●●●●●● ●●●●●●●

●

●●

●

●

●

●●●●●

●

●

●●●●●●●

●

●●●

●

●●

●

●●●

●

●

●●●●●● ●●●●

●

●●

●

●

●

●

●

●●

●

●●

−1.0

−0.5

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
Subjectivity

S
en

tim
en

t

Figure 5.1: Subjectivity score of commit messages compared with sentiment score
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Figure 5.2: Sentiment scores of
messages from commits that fix faults

and commits that do not
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Figure 5.3: Subjectivity scores of
messages from commits that fix faults

and commits that do not

subjectivity scores respectively of each project analysed during this study. From this, it

is clear that in most cases, the sentiment scores and subjectivity scores of commits that

fix faults is higher than the scores of those that do not. The only exception to this is the

sentiment score of the Closure project, which has a very slightly higher sentiment score

for non-bug fix commits than for bug fix commits. Figures 5.2 and 5.3 also contain the

results of the Mann-Whitney U-Test and Vargha-Delaney effect sizes for each project.

This displays a large variance in the results. For example, in Figure 5.2, the Math

project has a p value of 0.00, indicating that sentiment score may be a good indicator

of whether a commit fixes a bug. However, the Lang shows the complete opposite, with
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Figure 5.4: Sentiment scores of
commits from files that contain faults

and files that do not
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Figure 5.5: Subjectivity scores of
commits from files that contain faults

and files that do not

a p value of 0.51.

Figure 5.3 shows that, for four out of the six projects, the difference in sentiment scores

for bug-fix commits and non bug-fix commits is significant. Furthermore, for the Math

project, there is a high Â score (0.72). This indicates that subjectivity, rather than

sentiment specifically, is a better indicator of a commit containing a bug-fix. In both

cases, the word fixed is the most discriminatory, appearing in 994 out of 16,579 non

bug-fixing commits (5.99%), and in 67 out of 430 bug-fixing commits (15.58%). The

word fixed adds a subjectivity score of 0.2 and a sentiment score of 0.1, resulting in

higher subjectivity scores for bug fix commits that contain this word more frequently.

Following this, the next most discriminatory word is new, which adds a subjectivity

score of 0.45 for every occurrence. new appears in 25 out of 430 bug-fix commits (5.81%)

and 587 out of 16,579 non bug-fix commits (3.54%). This also adds to the difference in

subjectivity scores between bug-fix and non bug-fix commits.

RQ2: In a number of cases, the subjectivity and sentiment scores are higher for bug-fix

commits than non bug-fix commits. Subjectivity score is a better determiner of whether

a commit contains a bug than sentiment score, although neither are completely reliable

and the results vary per project.
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File Positive Negative Neutral Faulty

com.google.javascript.jscomp.TypeCheckTest 109 47 139 FALSE
org.mockito.Mockito 109 26 195 TRUE
com.google.javascript.jscomp.DefaultPassConfig 79 24 115 FALSE
com.google.javascript.jscomp.Compiler 75 22 91 TRUE
com.google.javascript.jscomp.NodeUtil 67 20 79 TRUE
org.mockito.exceptions.Reporter 63 12 104 TRUE
com.google.javascript.jscomp.TypedScopeCreator 59 16 57 TRUE
common deplo 57 25 75 FALSE
org.apache.commons.lang.StringUtils 51 17 140 TRUE
com.google.javascript.jscomp.CompilerOptions 48 11 97 FALSE

Table 5.4: Number of Positive, Negative and Neutral changes per file

5.4.3 RQ3: Can sentiment or subjectivity in commit messages be used

to predict whether a file contains a bug?

This research question leverages the information provided by Defects4J about the files

that have been included in fault-fixes. Specifically, for each of the bugs in the dataset, I

identify the set of files that was changed in order to fix that fault. With this information,

I separate the commits messages into those that contain a faulty file, and those that do

not.

Figures 5.4 and 5.5 show the average sentiment and subjectivity scores respectively of

files that are known to contain faults and those that are not. Figure 5.4 shows that in

most cases, the average sentiment for all files is close to 0 regardless of the project. with

high sentiment scores in both directions being rare. One reason for this is that sentiment

scores can be both positive and negative, and therefore over the lifecycle of a file it will

go through positive and negative changes. This is further indicated in Table 5.4, which

shows the top 10 files containing positive changes, and indicates whether those files are

known to be faulty or not. Table 5.4 shows that all files go through a number of positive,

negative and neutral changes during their lifecycle, with positive changes usually slightly

outweighing negative ones. While there is a high number of files in this table that are

faulty, this is due in part to the fact that these files are also the most frequently changed

within their own projects, making it more likely that at some point they will have

contained a bug. While the results of the Mann-Whitney U-Test in Figure 5.4 show

that there is a difference in sentiment scores for faulty classes vs non-faulty ones, the Â

scores indicate very little practical significance to these differences.

Furthermore, as shown by Figure 5.5, the difference in subjectivity score for faulty classes

vs non-faulty classes is in most cases negligible, despite significant differences for every

project. This indicates that the sentiment and subjectivity scores associated with a file

are not a strong indicator of whether the file contains a fault.
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RQ3: Sentiment and subjectivity scores are generally higher for files that are known

to have contained real faults than those that have not. While these differences are

statistically significant, the practical significance is negligible in most cases. Sentiment

or subjectivity scores cannot be used to accurately predict whether a file is likely to

contain a fault

5.5 Discussion

One of the notable results in Section 5.4 was that bug-fix commits are not easily

identifiable from non-bug-fix commits. One of the reasons for this may be a shortcoming

in the TextBlob lexicon. In total, the TextBlob lexicon contains 1528 words, of which

528 are classified as positive (p > 0), 620 are classified as negative (p < 0), and the

remaining 380 are neutral (p = 0). This section looks at how a the language used in

bug-fixing commits could be leveraged to produce a prediction model for whether a

commit fixes a bug or not, and whether the same is true of faulty files.

5.5.1 Identifying bug-fix commits

In total, the experimental data collected for Section 5.4 contains 430 bug-fix commits,

containing a total of 10,415 words (1,977 unique). Using a python script, I identified the

most frequently used words that appear in these commits. Ignoring commons words like

“the” and “by”, the most common word that appears in bug-fix commits is “issue”, which

appears a total of 201 times. Following this, the word “fixes” appears 180 times, while

other varieties “fix” and “fixed” and “fixing” appear 97, 73 and 11 times respectively.

Unsurprisingly, “added” (169 occurrences), “changed” (161 occurences) and “deleted”

(158 occurrences) are common words. The word “jira” appears in 59 bug fixes. This is

likely due to the fact that when the JIRA bug-tracking system is used and an issue is

created through a JIRA webpage, referencing the issue identifier within a commit causes

the commit to appear on the bug reports webpage. Finally, the word “bug” occurs 30

times.

However, just because a word is used frequently does not identify that a commit fixes

a bug. In addition to looking at bug-fix commits, I also analyse non-bug-fix commits

to identify words that appear frequently. In total, there are 16,579 non-bug-fix commit

messages in the dataset, comprising 223,829 words (12,614 unique). As with bug-fix

commits, I ignore common words. In non-bug-fix commits, the most frequently used

word is “added” with 3,982 occurrences, followed by “created” (2,694 occurrences),

“java” (2,588 occurrences) and “changed” (2,389 occurrences). This shows that these
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words cannot be used to discriminate commit messages as either bug-fix or non-bug-fix,

as they occur frequently in both types of commit.

The word “issue” appears 193 times in bug-fixing commits (44.88% of all words) compared

to 546 times in non-bug-fix commits (3.29% of all words) — the fact that the word

“issue” accounts for 44.88% of all words in bug-fixing commits is a strong indication

that the word “issue” can be used to discriminate bug-fix commits against non-bug-

fix ones. Despite the dataset containing far fewer examples of bug-fixing commits, the

word “fixes” represents a higher proportion of words in bug-fixing commits (6.5% of

all words) compared to non-bug-fix commits (1.36%), again indicating that the word

“fixes” can be used to discriminate whether a commit fixes a bug or not. The presence

of discriminatory words indicates that a supervised sentiment analysis approach could

result in an effective model for classifying bug-fix commits. Interestingly, while “fixes”

appears as one of the keywords adopted by Sliwerski et al. [89] in the SZZ algorithm,

the word “issue” is not.

5.5.2 Identifying Faulty Files

In Section 5.4, one of the key aims is to identify whether “at-risk” files can be identified

by commit messages. Specifically, if files that at risk of containing faults can be identified,

then a test case prioritisation strategy can be built similar to G-Clef described in

Chapter 4 that identifies test cases that cover the class.

In this study, I use a total of 298 faulty classes from Defects4J containing a total

of 438 real faults. A total of 203 classes only contain one fault through the repository

history. In Chapter 4, the parameter tuning study revealed that the best configuration

of the Schwa tool gave a low weight to previous faults — this is reflected in this result,

since most of these files only contain one fault and then remain fault free.

Table 5.5 shows the number of commits that are made to files, separated by whether

the file contains a fault or not. This also reflects the findings from Chapter 4, which

indicated that the number of revisions is important when predicting whether a class is

faulty.

When comparing bug-fix and non-bug-fix commits, there were clear examples of discriminatory

words that could be used to determine whether the commit was bug-fixing or not (“issue”

makes up 44.88% of bug-fixing commits compared to 3.29% of non-bug-fixing ones).

Commits to faulty files contain a total of 103,622 words (7,777 unique), while commits

to non-faulty files contain a total of 177,647 words (11,092 unique). By conducting a

similar analysis of commit messages to files that are faulty and files that are not, I



Chapter 5 131

Table 5.5: Table showing the average number of commits to files that contain faults
vs files that do not

Project Non-Faulty File Commits Faulty File Commits

Chart 4.23 12.04
Closure 7.13 45.52
Lang 11.26 39.00
Math 6.48 24.16
Mockito 5.03 45.18
Time 8.01 32.05

identify that discriminatory words are less common for identifying faults in files. The

word “delta” appears 1,349 times in commits to faulty files (1.3%), and 1590 times

in commits to non-faulty files (0.9%). Additionally, the word “changed” appears 1487

times in commits to faulty files (1.44%) and 1858 times in commits to non-faulty files

(1.05%), a difference of 0.39%. This indicates that creating a linguistic model to predict

faults in files would be very difficult and unlikely to have much success.

5.5.3 Test Case Prioritisation based on Sentiment Analysis

One of the key motivations for studying commit messages was that, if commit messages

can be used as a proxy for defect prediction, it would be possible to create a test case

prioritisation strategy that would rank files based on the likelihood of them being faulty,

using the commit messages associated with each file to provide these estimates.

The possibility of having a test case prioritisation strategy that integrates effectively

with a VCS is a very useful one, since it would at least partially address one of the

barriers preventing test case prioritisation being used in industry.

However, given the results presented in Section 5.4 and the discussion presented in

Section 5.5.2, it does not appear that a prioritisation strategy based on sentiment

analysis would be very accurate, making it unlikely to be successful.

5.6 Conclusions

This chapter conducts an in-depth analysis of commit messages to version control

systems, focused on positive or negative emotions associated with either bug fixes or

faulty files, with the intention of developing a test case prioritisation strategy that uses

sentiment analysis as a proxy for defect prediction.
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When considering bug-fixing commits, these experiments indicate that there are significant

differences in both sentiment and subjectivity scores between commits that fix faults

and commits that do not. However, these differences do not result in high Â scores,

indicating that the practical significance is low. Further investigation into bug-fixing

commits identifies key words that are particularly discriminatory for identifying bug-

fixing commits (e.g. “issue”, “fixes”), indicating that a linguistic model of commit

messages could be successful at detecting bug-fixing commits.

When looking at files that have contained faults, there are significant differences in

sentiment score for four out of five projects, and significant differences in subjectivity

score for all five projects. However, since most of the Â scores are close to 0.5, it is

unlikely that faults can be accurately predicted from the commit messages associated

with a file. Furthermore, while there are a number of discriminatory words for identifying

bug-fixing commits, the same cannot be said of faulty files — words that appear frequently

in commits to faulty files also appear frequently in commits to non-faulty files. This

makes it unlikely that a linguistic model for predicting faults using commit messages

would be successful, and in turn makes it unlikely that a test case prioritisation strategy

based on sentiment analysis would be effective.
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Conclusions and Future Work

This section rounds out the thesis by recalling the aims and objectives laid out in the

introduction, stating how these objectives have been met through the work presented in

this thesis, and identifying avenues for future work.

6.1 Summary of Contributions Made by this Thesis

In Chapter 1 of this thesis, I outlined two main aims that I intended to achieve throughout

the course of my studies.

1. To empirically evaluate the comparative effectiveness of test case prioritisation

strategies on real and artificial faults.

2. To develop new strategies for test case prioritisation that will be more effective at

prioritising test suites for real faults.

The following sections outline how these aims have been met through the research

conducted throughout the duration of this thesis.

6.1.1 Empirically evaluating the effectiveness of test case prioritisation

strategies on real and artificial faults

In Chapter 3, I conducted an investigation into the comparative effectiveness of existing

test case prioritisation strategies on controlled numbers of real and artificial faults.

Specifically, this chapter questions an assumption held in previous studies on test case

prioritisation that if a new strategy results in an increase in APFD for artificial faults,
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that the same increase would be observed with real faults. In the evaluation, I used eight

existing test case prioritisation strategies categorised as either coverage-based or history-

based, and up to 262 real faults from Defects4J. This led to the first contribution of

my thesis:

Contribution 3.1: A comparison of how coverage-based test case prioritisation

strategies perform on real faults and mutants

One of the most noticeable trends from this experiment is that the performance of test

case prioritisation strategies is inconsistent when different fault types are used. That

is to say, when using mutants, strategy A may outperform strategy B, while using

real faults would indicate the reverse. Additionally, when using real faults, there were

no significantly positive results for any coverage-based strategy. This result forms the

second contribution of my thesis:

Contribution 3.2: A comparison of how history-based test case prioritisation

strategies perform on real faults and mutants

When using history-based strategies in place of coverage-based ones, the results remain

inconsistent between different fault types, further strengthening the idea that it is critical

to use real faults when evaluating test case prioritisation strategies. However, there are

some more positive results that indicate that software history can be a useful source of

information for predicting future failures.

Finally, in Chapter 3, I conducted an evaluation investigating the effect that the number

of faults in a program can have on the effectiveness of test case prioritisation. In previous

research, the number of faults in a program has been assumed to be an independent

variable, having no impact on the effectiveness of test case prioritisation strategies.

The results of the empirical evaluation indicate that the number of faults present in

a program can significantly affect the spread of APFD scores. With fewer faults in

a program, the APFD scores are more varied as some subjects achieve good APFD

scores and others achieve poor ones. As the number of faults in a program increases,

it becomes more likely that a single program will have some faults detected early and

others detected late within the test suite, meaning that the extreme APFD scores are

lost in favour of more average scores. Therefore, the third contribution of my thesis is

listed below.

Contribution 3.3: A comparison of how the number of faults present in a program

affects the performance of test case prioritisation strategies

Overall, Chapter 3 provided valuable insights into test case prioritisation evaluations,

making it clear that future evaluations should use real faults to ensure reliable results.
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Furthermore, Chapter 3 shows that state-of-the-art test case prioritisation strategies

struggle when prioritising test suites for real faults, creating a need for improved strategies.

6.1.2 Developing new strategies that increase the effectiveness of test

case prioritisation on real faults

Having established in Chapter 3 that test case prioritisation strategies struggle to prioritise

test suites effectively for real faults, it was clear that a new test case prioritisation

strategy must be developed. Chapter 4 proposes a new test case prioritisation strategy

based on defect prediction, a technique that has been shown to be effective for real

faults. Using the defect prediction tool Schwa, Chapter 4 begins by contributing a

parameter tuning study to show how effective Schwa can be at detecting the real faults

in Defects4J.

Contribution 4.1: A parameter tuning study to determine the best parameters for

defect prediction to find real faults in Defects4J

Since the parameter tuning study revealed that Schwa can effectively predict the likelihood

of classes being buggy, I developed G-Clef and implemented it into Kanonizo (Appendix A).

Contribution 4.2: An implementation of a new test case prioritisation strategy, G-

Clef, that leverages defect prediction

G-Clef also has runtime parameters, which can take multiple values. Therefore, in order

to determine the best configuration, this thesis contributes a parameter tuning study on

30 Defects4J subjects.

Contribution 4.3: A parameter tuning study to determine the best parameters for

G-Clef

Finally, I evaluated G-Clef on 395 real faults from Defects4J and compared it with

the eight existing test case prioritisation strategies used in Chapter 3 to determine

whether G-Clef had made improvements over these strategies, resulting in the following

contributions.

Contribution 4.4: An evaluation of G-Clef against existing coverage-based strategies

Contribution 4.5: An evaluation of G-Clef against existing history-based strategies

In the evaluation, I discover that G-Clef significantly outperforms six out of the eight

strategies it was compared against, and was not significantly beaten by any existing

strategy. However, while the results were positive, they also indicated a much greater
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potential for defect prediction that could yield further benefits for test case prioritisation

if more accurate predictions can be made.

Therefore, in Chapter 5, I attempted to develop a defect prediction strategy that

leverages sentiment analysis scores from commit messages. This is motivated by the

idea that developers may write more opinionated commit messages when working with

files that are badly written, and therefore have a higher chance of being buggy. If

there is a correlation between sentiment of a commit message and files being faulty, this

can be leveraged by test case prioritisation to create a strategy based around analysing

commit messages, and specifically identifying files that are likely to be faulty through

how developers write about them. Firstly, I analyse the Defects4J subject programs to

see if there is sentiment or subjectivity in the commit messages, leading to the following

contribution.

Contribution 5.1: An evaluation of sentiment and subjectivity in Defects4J commit

messages

Despite there being a high number of commit messages that do not have any sentiment

associated with them, this is due in part to using a lexicon-based sentiment analysis tool,

which does not recognise “fix” as being a positive word in programming. Following this,

I looked specifically at commits that fix bugs in Defects4J. This led to the following

contribution.

Contribution 5.2: An evaluation of sentiment and subjectivity in bug-fix commits

against non-bug-fix commits

This evaluation returned some interesting and surprising results. Firstly, commit messages

contain much more subjectivity than sentiment, due partly to the high subjectivity/low

sentiment score of words like “fixed”, “final” and “new”. Secondly, for four out of six

Defects4J projects, the subjectivity score is significantly higher for bug-fix commits

than non-bug-fix commits according to the Mann-Whitney U-Test, with Â scores varying

from 0.61-0.72. Finally, I considered files in Defects4J that have previously contained

faults.

Contribution 5.3: An evaluation of sentiment and subjectivity in faulty files against

non faulty files

Due to the potential implications in test case prioritisation, this contribution was important

in determining whether a new test case prioritisation strategy should be developed that

uses sentiment or subjectivity scores to determine the likelihood of a file being buggy.

While the results do indicate that subjectivity scores are significantly different for all
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Defects4J projects, the Â scores are lower than those reported for bug-fix vs non-bug-

fix commits (0.46-0.67). While this indicates that a test case prioritisation strategy based

on sentiment analysis may not be effective, there are a number of potential improvements

that could be made to the tools that could, in the future, lead to a test case prioritisation

strategy based on commit messages.

6.2 Future Work

There are a number of avenues for future work arising from the topics investigated

throughout this thesis.

6.2.1 Improvements to test case prioritisation strategies

Despite the advances made in Chapter 4, there are still a number of potential improvements

to test case prioritisation that could be effective for real faults.

Test case prioritisation for evolving software

As shown by Lu et al. [22], as software evolves, prioritised test suite orderings become

much less effective in only a few software evolutions. Future work could investigate if

any more recently developed strategies, such as G-Clef presented in Chapter 4 of this

thesis, are more effective in evolving software, and if not, should focus on developing

new strategies that produce orderings that are resistant to software evolution.

Test case prioritisation in Continuous Integration

One of the key barriers that prevents test case prioritisation becoming an industry

practice is the lack of integration with industry-standard build tools such as Maven1

or Gradle2. Liang et al. [189] conducted a study in which they prioritised builds in

a continuous integration system by considering the likelihood that individual builds

would fail. In most cases however, it is unlikely that a CI or build server will ever have a

queue of enough builds to make this technique relevant. Future research should involve

integrating test case prioritisation strategies with build and/or continuous integration

systems to see whether the benefit of test case prioritisation outweighs the cost, and

for how long prioritised test suites can remain useful before developers need to re-run

prioritisation.

1https://maven.apache.org
2https://gradle.org

https://maven.apache.org
https://gradle.org
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Hyper Heuristics

The majority of the work involved in metaheuristic approaches to test case prioritisation

has revolved around finding a fitness function that accurately represents fault-detection

capability. Li et al. [12] began using a simple APxC approach, while more recent

approaches including Di Nucci et al. [81], Konak et al. [73] and Wang et al. [74]

have adopted multiple objective approaches using more complex objectives than simple

coverage. Throughout this thesis, the performance of the genetic algorithm in Kanonizo

that uses APLC as a fitness function has been poor. The main reason for the poor

performance, as discussed in Section 3.4, is that the fitness function used is both

expensive to calculate and guides the search towards sub-optimal orderings. This raises

the question “How do we find the right fitness function to use for test case prioritisation?”.

There may be no simple answer to this question, in fact there may be no single fitness

function that is objectively the best fitness function for test case prioritisation, meaning

that using any single heuristic or combination of heuristics can leave us with a sub-

optimal set of results for any given problem. More generally, including other research

fields within Computer Science, fitness functions tend to be designed to guide searches

related to the problem they are created for. For example, a fitness function that is

designed to optimise a test suite for test case prioritisation would be useless in the field

of test suite generation, which is described in Wolpert and MacReady’s “No Free Lunch

Theorem” [190].

In 2003, Burke et al. [144] introduced the concept of hyper-heuristics. Hyper-heuristics

can be thought of simply as applying a search for a fitness function by which to guide a

search. This adds a layer of generality to any potential problem solver, since the fitness

functions are no longer a part of the implementation design, instead being searched for,

meaning different fitness functions will be discovered given the context of the problem

and the search. Harman et al. [191] further discuss this concept in their investigation

into a technique called “Dynamic Adaptive Search-Based Software Engineering”. In

their work, Harman et al. [191] describe the need for a more holistic SBSE, indicating

that there are too many searches designed at solving just one problem when the focus

should be on creating more general solutions.

Dynamic Adaptive SBSE

Modern software engineering has led many programs that are being developed by programmers

to be highly flexible, customisable and extensible. This means, in simple terms, that all

pieces of software come with lots of options that will determine how the program behaves

at runtime. For example, in a genetic algorithm implementation, it makes sense to allow
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the mutation rate and crossover rate to be configurable, rather than hard coded, since

different values for these parameters can have a large impact on the overall performance

of the system.

Parameter tuning is a technique designed to choose the “best” values of runtime arguments

in systems such as genetic algorithms in order to maximise performance. Since more

complex systems have large numbers of “tuneable” parameters, it is infeasible to try

running each possible combination of parameters. An example of this is given in

Arcuri and Fraser[192], where running possible combinations of five parameters on 20

programs led to over one million experiments, requiring over two weeks of computational

time on a high-performance computing cluster to complete. This can be seen as one

simple explanation of the goals of Dynamic Adaptive SBSE [191], deploying a program

that itself has some ability to control its own parameters based on the output it is

observing, allowing a program to become “self-adaptive”. The vision for Dynamic

Adaptive SBSE stretches further than this, to programs that can adapt themselves to

changing environments, taking multiple factors into account and deciding what changes

should made in order to provide the best performance.

6.2.2 Improvements to Mutant Faults

In Chapter 3, one of the main discoveries is that test case prioritisation strategies are

more effective for mutants than for real faults. When investigating this phenomenon, I

discovered that one of the main reasons why test case prioritisation is more effective for

mutants is that mutation operators generate unrealistic faults. Just et al. [83] conducted

a study in which they investigated existing mutation operators to determine whether

the real faults in Defects4J could be generated using any existing mutation operators.

In their paper, Just et al. discover that a number of real faults could not be generated

using existing mutation operators, and suggested improvements to mutation operators

for example recognising language-specific methods that are semantically similar (e.g.

indexOf and lastIndexOf). Furthermore, Luo et al. [19] investigate the impact of

different mutation operators on APFD scores, showing that some mutation operators

produce more realistic faults than others. If better mutation operators are developed,

faults generated by mutation tools could become much more realistic, which could mean

that evaluations of test case prioritisation strategies could use mutants in place of real

faults without it affecting the results.
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6.2.3 Improvements to Defect Prediction

In accordance with Chapters 4 and 5, future work should continue in the areas of defect

prediction to continue to make improvements to test case prioritisation strategies. G-

Clef, described in Chapter 4 is currently configured to use the Schwa defect prediction

tool, but could easily be swapped out for better tools as new defect predictors are

developed.

Improvements to Sentiment Analysis for Test Case Prioritisation

There are a number of avenues for future work arising from Chapter 5. Firstly, while my

approach used a lexicon-based sentiment analysis strategy, this could be improved by

creating a lexicon for sentiment analysis that incorporates programming terms with the

correct context. For example, a fix should be considered a positive emotion, whereas

the keyword final should be considered less subjective in this context. Additionally,

other approaches to sentiment analysis, named supervised (e.g. Chen et al. [131]) or

unsupervised methods (e.g. [136]). Secondly, there is clearly potential to use classifiers

and machine learning techniques to learn from the corpus of commit messages in Defects4J,

and to create a model to predict defective classes based on the text in the commit

message.

6.3 Concluding Remarks

This thesis has aimed to improve the effectiveness of test case prioritisation strategies

in practice. Firstly, through an empirical evaluation using real faults and mutants,

this thesis demonstrates that using artificial faults can represent a threat to validity in

evaluations of test case prioritisation strategies, since it may lead to a different conclusion

than if real faults were used.

Secondly, this thesis proposes a new test case prioritisation strategy, G-Clef, that improves

upon the state of the art by using defect prediction estimates to reorder test suites.

Finally, this thesis investigates whether the defect prediction used in G-Clef could be

improved through the use of sentiment analysis, in particular investigating whether

commit messages to version control could be used to predict whether a file contains a

fault or not.

There are still a number of improvements that can be made to test case prioritisation

to make the technique more effective. In particular, one of the areas of future work
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identified by this thesis is to find techniques that increase the longevity of prioritised

suites. However, this thesis has advanced the state of the art in test case prioritisation by

establishing important experimental guidelines and through the proposal and implementation

of G-Clef.
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Kanonizo

Over the course of my PhD, I have been developing the test case prioritisation tool

Kanonizo, which prioritises test suites using a number of existing and newly developed

strategies. The tool is open-source (https://github.com/kanonizo/kanonizo), written

in Java (version 8) and requires 3 command like arguments in order to be run. -s, or

--source represents the directory in the file system that contains all of the source code of

the program under test. This is used, amongst other things, to calculate the lines of code

covered when executing the test cases. -t, or --tests points to the folder containing all

of the test cases that are to be executed. Test cases can be recognised in a number of ways

— firstly, any test cases that are annotated with the @Test annotation are extracted

using the annotation (excluding those with the @Ignore annotation). Parameterised

test cases are recognised thanks to their @RunWith(Parameterized.class) annotation.

Secondly, test cases written in JUnit 3 style, which must be public methods with no

arguments, and must start with the word test are included. Finally, the JUnit 3

“suite” pattern, where there is a class containing all test suites, which themselves can

be test suites, are recognised. This is to prevent any order violations when running the

test cases that occur in certain Defects4J subjects when running tests alphabetically.

Finally, the -a or --algorithm argument represents the strategy that will be used to

reorder the test suite.

A.1 Kanonizo Process

Kanonizo begins by scanning the command line arguments, ensuring that each of the

arguments is valid (i.e. source directory exists, strategy exists). After this, it identifies

any required libraries, specified either through the -l command line option or by using

142

https://github.com/kanonizo/kanonizo


Chapter A 143

Maven1, and adds these libraries to the classpath. Following this, it moves through

the source directory recursively, identifying all files with the .class extension and

loading them through an Instrumenter, so that coverage can be calculated from the

test cases. Next, it identifies the test cases as described above, before delegating to the

Instrumenter to collect the code coverage

A.1.1 Instrumentation and Coverage Collection

Many of the strategies implemented in Kanonizo come from previous literature (e.g. [10]),

and therefore use code coverage to reorder the test suite, motivated by the idea that

higher coverage implies higher fault detection. In order to collect code coverage, Kanonizo

uses an Instrumenter at runtime to execute the test cases. The Instrumenter interface

contains 18 methods that each relate to code coverage of specific test cases or classes

under test. The default implementation of the Instrumenter interface is the

ScytheInstrumenter class, which uses the Scythe2 code coverage tool to collect line or

branch coverage. Many of the strategies in Kanonizo require the coverage of individual

test cases, and the ScytheInstrumenter implementation resets code coverage after each

test case is executed. Assuming the methods described in the Instrumenter interface

are overriden, any instrumenter can be used with Kanonizo to provide code coverage

information to the strategies. If coverage is not required in order to make a strategy

work, the NullInstrumenter class can be used, which disables the running of test cases

at runtime to speed up the process.

A.1.2 Prioritising Test Cases

Once the required coverage information has been collected, the next step is to start

the prioritisation strategy. There are two main categories of strategy in Kanonizo—

firstly, it has TestCasePrioritiser strategies, which use information about individual

test cases to rank test cases. These strategies typically pick a single test case at a time,

and use the selected test cases to build up a suite one test at a time. Any class that

implements the TestCasePrioritiser interface must implement the selectTestCase

method, which takes a List of test cases as an argument and returns a single test case,

and may optionally implement the init method, which takes a List of test cases as an

argument and can be used to set an initial ordering or execute any steps that must come

before prioritisation occurs.

1https://maven.apache.org
2https://github.com/thomasdeanwhite/scythe

https://maven.apache.org
https://github.com/thomasdeanwhite/scythe
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The second category of strategies are TestSuitePrioritiser, which look holistically at

the entire suite, and involve an evolution step to get from one test suite to the next.

These strategies are defined by their fitness functions, which evaluate how “good” the

ordering of the test suite is, and help to guide the prioritiser to a better solution by

discarding orderings that are less “fit”. In addition, these strategies typically need one

or more stopping conditions, which determine when the algorithm has reached a good

enough solution to report its results, either when a certain fitness value has been reached,

or after a certain length of time, number of iterations etc. Any class that implements the

TestSuitePrioritiser interface must implement the generateInitialPopulation

method, which returns a List containing one or more orderings for the test suite, and

the evolve method, which also returns a List or test suite orderings. They may also

optionally add EvolutionListener objects, which notify subclasses when an evolution

has finished.

By default, Kanonizo has implementations for seven TestCasePrioritiser strategies

(Greedy [10], Additional Greedy [10], G-Clef [2], MCCTCP [52], ROCKET [54], AFSAC [56]

and Elbaum et al. [55]) and two TestSuitePrioritiser strategies (Genetic Algorithm [12]

and Random Search), but allows other implementations to be added.

A.1.3 Reporting

One of the important tasks in Kanonizo is reporting the results of the prioritisation.

Kanonizo produces a number of output files that represent the ordering of the prioritised

test suite, along with statistics about test runtimes, test outcomes, and other miscellaneous

statistics. All output is written in CSV, and new writers can be added using the

CsvWriter class and the Framework::addWriter method.

A.1.4 Configuration

One of the key facets about a number of strategies in Kanonizo is that they are require

a number of parameters, which should be configurable from the command line (i.e.

not hard-coded values). For example, the genetic algorithm has a population size, a

time limit and an iteration limit. Importantly, Kanonizo does not assume these to be

default values. Using the command line version, there are 74 configurable parameters

by default that can all be changed using the command line. For example, to increase

the time limit for the genetic algorithm, users can add -Dmax execution time=100000

to allow a search budget of 100000ms. Using the GUI, selecting a strategy causes all its

parameters to be displayed on the GUI to allow configuration before running.
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A.1.4.1 Testing

In order to ensure that the implementation of the methods was faithful to the original

papers, I developed a suite of unit tests alongside Kanonizo in order to simulate a

number of scenarios.

For the Elbaum et al. [55] approach, any test that has either failed recently or only been

added recently is given a higher priority. To test this, I created three mocked test cases

using the Mockito3 framework for Java. For each of these test cases I created a history

where either the test had failed recently or only been added recently, asserting that after

running the algorithm, this test case is at the beginning of the test suite.

ROCKET [54] considers how recently a test case failed as part of its priority. In order to

test this I first constructed a scenario in which one test has failed recently, asserting that

it is returned first by the algorithm. Additionally, I added a test case that demonstrates

that a test that failed more recently is returned before a test that failed longer ago in its

history. Finally, I considered a scenario in which two test cases failed at the same point

in their history, and show that the original order is retained under these conditions.

For MCCTCP [52], the severity of the failure determines the priority of the test case. To

test this, I constructed a scenario in which two test cases failed in the same execution, one

with a NullPointerException and the other with an AssertionFailedError, showing

that the test with the NullPointerException is given higher priority.

Finally, the AFSAC [56] algorithm has four main calculated values - frmin, fravg, frmax

and the current number of consecutive failures. The priority of each test case depends on

how the current number of consecutive failures compares with the three other calculated

values. I wrote test cases to show what happens when the current number of consecutive

failures falls into each of these categories.

A.1.5 Future Work

Kanonizo has a number of strategies implemented already, including history-based,

coverage-based and metaheuristic. These can all be extended, overwritten, or configured

to fine-tune the performance of each strategy given the subject. There are a number of

other strategies that could be added to Kanonizo that would also improve performance.

Furthermore, a plug-in for IDEs such as Eclipse4 or IntelliJ5 could allow for users to

actually run the test cases in the order provided by Kanonizo. Furthermore, integration

3https://site.mockito.org/
4https://eclipse.org
5https://www.jetbrains.com/idea/

https://site.mockito.org/
https://eclipse.org
https://www.jetbrains.com/idea/
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with build tools such as Maven6 or Gradle7 could allow persistent orderings of test cases

that would be retained between runs and could allow prioritisation to become a part of

the build process.

6https://maven.apache.org/
7https://gradle.org/

https://maven.apache.org/
https://gradle.org/


Appendix B

Subject Information

In Chapter 3, I conduct experiments in which I use a variety of coverage-based and

history-based test case prioritisation strategies to prioritise test suites of programs

containing either a single real fault or a single mutant. In Tables B.1-B.6, I summarise

the faults from Defects4J that were included and excluded from these experiments.

For Section 3.3.1, I consider coverage-based strategies evaluated on real faults and

mutants. In order for a subject to be included in these evaluations, there must be a

data point for both a real fault and a mutant for that subject. Therefore, Chart-10

and Chart-15 were excluded from this evaluation as we did not have a version of these

subjects containing a single mutant. This means that, while Table B.1 shows 26 subjects

for the Chart project, Figure 3.2 only shows 24 subjects. For some of the subjects, it was

not possible to generate any mutants at all (e.g. Chart-10), while for others there were

no mutants that were revealed by any of the developer-written test cases (e.g. Chart-

15). In Tables B.1-B.6, these subjects are denoted as 7 in the “1 mutant (coverage)”

column. For some of the Mockito subjects, it was not possible to collect any coverage

information due to the way Mockito manipulates the Java ClassLoader — these cases

are marked with “NA” test cases and were not included in any experiments.

For Section 3.3.2, I consider history-based strategies which utilise the previous results

of test case executions in order to determine how likely they are to fail again. For

these experiments, I required that the fault-revealing test case had a least one previous

execution prior to the current version of the software — this ensures that the history-

based strategies were not given an unfair advantage due to a test case having no historical

information to leverage. In Tables B.1-B.6, the columns “1 real (history)” and “1 mutant

(history)” denote subjects that did meet (3) and did not meet (7) this requirement

respectively. As with coverage-based strategies, there are some cases that did meet this

requirement, but for which no mutants could be generated (e.g. Chart-10).

147
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Table B.1: Chart Subjects

Project Bug Id # Test Cases 1 real (coverage) 1 mutant (coverage) 1 real (history) 1 mutant (history)

Chart 1 2201 3 3 7 7

Chart 2 2199 3 3 7 7

Chart 3 2195 3 3 7 7

Chart 4 2187 3 3 3 3

Chart 5 2040 3 3 7 7

Chart 6 1894 3 3 7 7

Chart 7 1820 3 3 3 3

Chart 8 1820 3 3 3 3

Chart 9 1820 3 3 3 3

Chart 10 1812 3 7 3 7

Chart 11 1810 3 3 7 7

Chart 12 1806 3 3 7 7

Chart 13 1798 3 3 7 7

Chart 14 1794 3 3 7 7

Chart 15 1789 3 7 7 7

Chart 16 1787 3 3 7 7

Chart 17 1746 3 3 7 7

Chart 18 1744 3 3 7 7

Chart 19 1723 3 3 7 7

Chart 20 1649 3 3 7 7

Chart 21 1645 3 3 7 7

Chart 22 1644 3 3 7 7

Chart 23 1623 3 3 3 3

Chart 24 1620 3 3 7 7

Chart 25 1615 3 3 7 7

Chart 26 1589 3 3 3 3

Totals: 26 24 7 6
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Table B.2: Lang Subjects

Project Bug Id # Test Cases 1 real (coverage) 1 mutant (coverage) 1 real (history) 1 mutant (history)

Lang 1 2291 3 3 7 7

Lang 2 2287 3 3 7 7

Lang 3 2286 3 3 7 7

Lang 4 2285 3 3 7 7

Lang 5 2271 3 3 7 7

Lang 6 2263 3 3 7 7

Lang 7 2261 3 3 3 3

Lang 8 2205 3 3 7 7

Lang 9 2200 3 3 7 7

Lang 10 2198 3 3 7 7

Lang 11 2138 3 3 7 7

Lang 12 2137 3 3 7 7

Lang 13 2135 3 3 7 7

Lang 14 2073 3 3 3 3

Lang 15 2047 3 3 3 3

Lang 16 2046 3 3 3 3

Lang 17 1903 3 3 7 7

Lang 18 1902 3 3 3 3

Lang 19 1877 3 3 7 7

Lang 20 1876 3 3 3 3

Lang 21 1827 3 3 3 3

Lang 22 1825 3 3 3 3

Lang 23 1825 3 3 7 7

Lang 24 1822 3 3 3 3

Lang 25 1821 3 3 7 7

Lang 26 1790 3 3 7 7

Lang 27 1785 3 3 3 3

Lang 28 1763 3 3 7 7

Lang 29 1760 3 3 3 3

Lang 30 1733 3 3 7 7

Lang 31 1721 3 3 7 7

Lang 32 1670 3 3 3 3

Lang 33 1670 3 3 3 3

Lang 34 1670 3 3 3 3

Lang 35 1644 3 3 7 7

Lang 36 1628 3 3 3 3

Lang 37 1627 3 3 7 7

Lang 38 1624 3 3 7 7

Lang 39 1618 3 3 3 3

Lang 40 1643 3 3 7 7

Lang 41 1624 3 3 3 3

Lang 42 1872 3 3 7 7

Lang 43 1871 3 3 7 7

Lang 44 1848 3 3 7 7

Lang 45 1846 3 3 3 3

Lang 46 1798 3 3 7 7

Lang 47 2658 3 3 7 7

Lang 48 2593 3 3 7 7

Lang 49 2580 3 3 3 3

Lang 50 1785 3 3 7 7

Lang 51 1696 3 3 3 3

Lang 52 1696 3 3 3 3

Lang 53 1689 3 3 7 7

Lang 54 1681 3 3 7 7

Lang 55 1681 3 3 7 7

Lang 56 1662 3 3 7 7

Lang 57 1661 3 3 3 3

Lang 58 1660 3 3 7 7

Lang 59 1658 3 3 7 7

Lang 60 1655 3 3 7 7

Lang 61 1654 3 3 7 7

Lang 62 1652 3 3 7 7

Lang 63 1642 3 3 7 7

Lang 64 1637 3 3 7 7

Lang 65 1604 3 3 7 7

Totals: 65 65 22 22
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Table B.3: Math Subjects

Project Bug Id # Test Cases 1 real (coverage) 1 mutant (coverage) 1 real (history) 1 mutant (history)

Math 1 5064 3 3 3 3

Math 2 5037 3 3 7 7

Math 3 4901 3 3 7 7

Math 4 4885 3 3 7 7

Math 5 4820 3 3 3 3

Math 6 4813 3 3 7 7

Math 7 4804 3 3 7 7

Math 8 4721 3 3 7 7

Math 9 4697 3 3 7 7

Math 10 4453 3 3 7 7

Math 11 4431 3 3 7 7

Math 12 4417 3 3 7 7

Math 13 4405 3 3 7 7

Math 14 4404 3 3 3 3

Math 15 4134 3 3 7 7

Math 16 4132 3 3 7 7

Math 17 4047 3 7 3 7

Math 18 4042 3 3 7 7

Math 19 4036 3 3 7 7

Math 20 4035 3 3 7 7

Math 21 3997 3 3 7 7

Math 22 3989 3 3 7 7

Math 23 3967 3 3 7 7

Math 24 3966 3 3 7 7

Math 25 3932 3 3 7 7

Math 26 3853 3 3 3 3

Math 27 3853 3 3 7 7

Math 28 3852 3 3 7 7

Math 29 3690 3 3 3 3

Math 30 3646 3 3 7 7

Math 31 3531 3 3 7 7

Math 32 3522 3 3 7 7

Math 33 3504 3 3 7 7

Math 34 3488 3 3 7 7

Math 35 3479 3 3 7 7

Math 36 3469 3 3 7 7

Math 37 3498 3 3 3 3

Math 38 3208 3 7 7 7

Math 39 3207 3 3 7 7

Math 40 3147 3 3 7 7

Math 41 3142 3 3 7 7

Math 42 3121 3 3 7 7

Math 43 3101 3 3 7 7

Math 44 3067 3 3 7 7

Math 45 3022 3 3 7 7

Math 46 2945 3 3 7 7

Math 47 2945 3 3 7 7

Math 48 2943 3 3 3 3

Math 49 2902 3 3 7 7

Math 50 2900 3 3 3 3

Math 51 2889 3 3 7 7

Math 52 2866 3 3 7 7

Math 53 2473 3 3 3 3

Math 54 2368 3 3 7 7

Math 55 2349 3 3 7 7

Math 56 2348 3 3 3 3

Math 57 2331 3 3 7 7

Math 58 2302 3 3 7 7

Math 59 2235 3 7 3 7

Math 60 2218 3 3 3 3
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Table B.4: Math Subjects (Cont).

Project Bug Id # Test Cases 1 real (coverage) 1 mutant (coverage) 1 real (history) 1 mutant (history)

Math 61 2366 3 3 3 3

Math 62 2365 3 3 3 3

Math 63 2282 3 3 3 3

Math 64 2274 3 3 3 3

Math 65 2273 3 3 3 3

Math 66 2261 3 3 7 7

Math 67 2255 3 3 3 3

Math 68 2186 3 3 3 3

Math 69 2186 3 3 7 7

Math 70 2184 3 3 7 7

Math 71 2169 3 3 7 7

Math 72 2140 3 3 3 3

Math 73 2140 3 3 3 3

Math 74 2131 3 3 3 3

Math 75 2135 3 3 3 3

Math 76 2135 3 3 3 3

Math 77 2129 3 3 3 3

Math 78 2106 3 3 7 7

Math 79 2104 3 3 7 7

Math 80 2102 3 3 7 7

Math 81 2101 3 3 7 7

Math 82 2056 3 3 7 7

Math 83 2055 3 3 7 7

Math 84 2054 3 3 7 7

Math 85 1983 3 3 7 7

Math 86 1894 3 3 7 7

Math 87 1893 3 3 7 7

Math 88 1880 3 3 7 7

Math 89 1691 3 3 7 7

Math 90 1691 3 3 7 7

Math 91 1671 3 3 7 7

Math 92 1507 3 3 7 7

Math 93 1503 3 3 7 7

Math 94 1500 3 3 7 7

Math 95 1300 3 3 7 7

Math 96 1271 3 3 7 7

Math 97 1095 3 3 7 7

Math 98 1094 3 3 7 7

Math 99 1552 3 3 7 7

Math 100 1179 3 3 7 7

Math 101 1177 3 3 7 7

Math 102 1146 3 3 7 7

Math 103 1014 3 3 7 7

Math 104 1003 3 3 3 3

Math 105 887 3 3 7 7

Math 106 875 3 3 7 7

Totals: 106 103 27 25
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Table B.5: Mockito Subjects

Project Bug Id # Test Cases 1 real (coverage) 1 mutant (coverage) 1 real (history) 1 mutant (history)

Mockito 1 1388 3 3 3 3

Mockito 2 1397 3 3 7 7

Mockito 3 1388 3 3 3 3

Mockito 4 1388 3 3 7 7

Mockito 5 1377 3 3 7 7

Mockito 6 1367 3 7 7 7

Mockito 7 1366 3 3 7 7

Mockito 8 1365 3 3 7 7

Mockito 9 1362 3 3 7 7

Mockito 10 1341 3 3 7 7

Mockito 11 1330 3 7 7 7

Mockito 12 NA 7 7 7 7

Mockito 13 NA 7 7 7 7

Mockito 14 NA 7 7 7 7

Mockito 15 NA 7 7 7 7

Mockito 16 NA 7 7 7 7

Mockito 17 NA 7 7 7 7

Mockito 18 1387 3 3 7 7

Mockito 19 1387 3 3 7 7

Mockito 20 1379 3 3 3 3

Mockito 21 1359 3 3 3 3

Mockito 22 NA 7 7 7 7

Mockito 23 NA 7 7 7 7

Mockito 24 NA 7 7 7 7

Mockito 25 NA 7 7 7 7

Mockito 26 NA 7 7 7 7

Mockito 27 NA 7 7 7 7

Mockito 28 NA 7 7 7 7

Mockito 29 NA 7 7 7 7

Mockito 30 NA 7 7 7 7

Mockito 31 NA 7 7 7 7

Mockito 32 NA 7 7 7 7

Mockito 33 NA 7 7 7 7

Mockito 34 NA 7 7 7 7

Mockito 35 NA 7 7 7 7

Mockito 36 NA 7 7 7 7

Mockito 37 NA 7 7 7 7

Mockito 38 NA 7 7 7 7

Totals: 15 13 4 4
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Table B.6: Time Subjects

Project Bug Id # Test Cases 1 real (coverage) 1 mutant (coverage) 1 real (history) 1 mutant (history)

Time 1 4041 3 3 3 3

Time 2 4041 3 3 7 7

Time 3 4038 3 3 7 7

Time 4 4014 3 3 7 7

Time 5 4013 3 3 7 7

Time 6 3998 3 3 7 7

Time 7 3980 3 3 7 7

Time 8 3970 3 3 3 3

Time 9 3970 3 3 3 3

Time 10 3954 3 3 7 7

Time 11 3949 3 3 7 7

Time 12 3936 3 3 7 7

Time 13 3916 3 3 7 7

Time 14 3906 3 3 7 7

Time 15 3894 3 3 7 7

Time 16 3893 3 3 7 7

Time 17 3883 3 3 7 7

Time 18 3873 3 3 7 7

Time 19 3871 3 3 7 7

Time 20 3868 3 3 7 7

Time 21 3866 3 3 7 7

Time 22 3830 3 3 7 7

Time 23 3828 3 3 7 7

Time 24 3826 3 3 7 7

Time 25 3810 3 3 7 7

Time 26 3806 3 3 7 7

Time 27 3749 3 3 7 7

Totals: 27 27 3 3
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