

CLUSTard

An automated pipeline for metagenomic

clustering using read abundance over time

Annabel Cansdale

Master of Science (by Research)

Biology Department, University of York

January 2020

3

Abstract

Metagenomics, the study of genetic material generated from culture-independent shotgun

sequencing of environmental samples, facilitates the investigation of environmental

communities as a whole. However, in order to determine biological context from a

metagenomic assembly it is necessary to group sequences to allow for the study of the

community dynamics and individual organisms. This process, known as metagenomic

binning, is accomplished by utilising an aspect of the sequence’s composition. There is little

metagenomic binning software available that utilises the change in a community over time in

order to cluster metagenomes. Here, I present CLUSTard, an automated pipeline that

accomplishes metagenomic binning by utilising sequence abundance values over time, this

pipeline clusters large datasets efficiently and requires minimal user input or installation.

CLUSTard enabled the resolution of a previously undefined metagenomic dataset. The

pipeline allowed for reproducible analysis vastly reducing the time and effort required. I

found that the most important factor impacting the CLUSTard’s success of clustering was the

quality of the input assembly, with a highly contiguous Nanopore assembly polished by

Illumina sequences producing the best clustering result. The results demonstrate that the

use of abundance information enables efficient and accurate clustering and also highlights

the importance of a reproducible analysis pipeline. I anticipate this pipeline to be beneficial

for those who want to produce metagenomic clusters using time-series data and to provide a

starting point for further analysis.

 4

Table of Contents

ABSTRACT ... 3
TABLE OF CONTENTS .. 4
LIST OF TABLES ... 6
LIST OF FIGURES ... 6
ACKNOWLEDGEMENTS ... 7
DECLARATION .. 8
INTRODUCTION .. 10

MICROBIAL COMMUNITIES .. 10
ANAEROBIC DIGESTION ... 12
ASSEMBLY .. 13
CLUSTERING ... 15
SEQUENCING CLASSIFICATION .. 16
VALIDATION ... 17
WORKFLOWS .. 19
CLUSTARD .. 20

METHODS ... 23
CLUSTARD PIPELINE ... 23
CLUSTERING ... 25
CLUSTER ANALYSIS ... 26
HOW CLUSTARD IS RUN .. 28

Directory Organisation ... 29
DATA ACQUISITION .. 30

Sampling and Sequencing .. 30
Assembly .. 30

CLUSTER ANALYSIS ... 31
Pearson Correlation Coefficient Threshold ... 31

FURTHER VALIDATION .. 32
CONCOCT .. 32
Sharon dataset analysis ... 33
Kraken Databases .. 34

BIOLOGICAL ANALYSIS .. 34
RESULTS ... 36

DATA SUMMARY ... 36
ASSEMBLY STATISTICS .. 36
PARAMETER OPTIMISATION ... 37

Pcc Threshold ... 37
Using different raw reads ... 44

BINNING VALIDATION ... 49
COMPARING TO OTHER CLUSTERING SOFTWARE ... 49

Clustering another dataset ... 52
Kraken Databases ... 56

BIOLOGY .. 57
Abundance Changes ... 57
High-quality MAGs ... 60

DISCUSSION .. 64
ASSEMBLY .. 64
SNAKEMAKE .. 66

 5

PEARSON’S CORRELATION COEFFICIENT THRESHOLD .. 68
SEQUENCING TECHNOLOGY ... 71

Long-read polished versus unpolished ... 71
Long-read versus short-read .. 73

CONCOCT .. 76
SHARON DATASET ... 78
SOFTWARE ISSUES ... 81

Kraken Database .. 81
CheckM .. 83

BINNING ISSUES .. 84
BIOLOGY .. 87
CONCLUSIONS ... 91

APPENDICES ... 95
FIGURES .. 95
TABLES .. 100
CODE .. 101

REFERENCES ... 126

 6

List of tables
TABLE

 PAGE

1 SUMMARY STATISTICS FOR THE THREE ASSEMBLIES PRODUCED FROM THE NAB DATASET………………….. 37
2 BINNING STATISTICS FOR THE FOUR NAB LR CLUSTARD RUNS…………………………................................ 38
3 CLUSTER STATISTICS FOR FOUR COMPARABLE CLUSTERS OVER THE FOUR PCC THRESHOLDS……….......... 44
4 CLUSTER STATISTICS FOR THE CLUSTARD RUN WITH THREE DIFFERENT ASSEMBLIES……………………….. 45
5 CLUSTER STATISTICS FOR THE CONCOCT RUN WITH THE NAB LR-POL ASSEMBLY……………………………. 50
6 GENOME STATISTICS OF THE EIGHT HIGH-QUALITY METAGENOME-ASSEMBLED GENOMES PRODUCED IN THE

CONCOCT RUN OF THE NAB LR -POL ASSEMBLY ………………………………………………………………. 52
7 METAGENOME ASSEMBLY STATISTICS FOR THE SHARON ET AL. (2013) SHORT READ ASSEMBLY…………… 53
8 BINNING STATISTICS OF THE SHARON ET AL. (2013) DATASET WHEN RUN THROUGH THE CLUSTARD PIPELINE 53

List of figures
FIGURE

 PAGE

1 WORKFLOW OF THE CLUSTARD PIPELINE……………………………………………………………………... 24
2 THE DIRECTORY ORGANISATION PRODUCED AFTER A RUN OF THE CLUSTARD PIPELINE HAS BEEN

COMPLETED…………………………………………………………………………………………………… 28
3 THE PERCENTAGE OF DIFFERENT LENGTH CONTIGS BINNED OR UNBINNED AT THE FOUR PCC THRESHOLDS... 39
4 DISTRIBUTION OF THE N50 LENGTH OF THE CLUSTERS PRODUCED AT EACH OF THE FOUR PEARSON’S

CORRELATION COEFFICIENT THRESHOLDS……………………………………………………………………. 40
5 PERCENTAGE TAXONOMIC IDENTITY FOR EACH OF THE CLUSTERS AS DEFINED BY KRAKEN ………………….. 42
6 THE OUTPUT PLOTS CREATED BY THE CLUSTARD PIPELINE FOR THE LARGEST FOUR CLUSTERS PRODUCED

AT EACH OF THE FOUR PCC THRESHOLDS……………………………………………………………………. 43
7 THE PERCENTAGE OF DIFFERENT LENGTH CONTIGS BINNED OR UNBINNED FOR EACH OF THE CLUSTARD

RUNS WITH THE THREE ASSEMBLIES………………………………………………………………………….. 46
8 THE PERCENTAGE OF DIFFERENT LENGTH CONTIGS BINNED OR UNBINNED FOR EACH OF THE CLUSTARD

RUNS WITH THE THREE ASSEMBLIES………………………………………………………………………….. 47
9 PERCENTAGE TAXONOMIC IDENTITY AT GENUS LEVEL FOR EACH OF THE CLUSTERS AS DEFINED BY KRAKEN… 47
10 THE OUTPUT PLOTS CREATED BY THE CLUSTARD PIPELINE FOR THE LARGEST FOUR CLUSTERS PRODUCED

WITH EACH OF THE ASSEMBLIES………………………………………………………………………………. 48
11 DISTRIBUTION OF THE N50 LENGTH OF THE CLUSTERS PRODUCED BY CONCOCT WITH THE NAB LR-POL

ASSEMBLY…………………………………………………………………………………………………….. 50
12 PERCENTAGE TAXONOMIC IDENTITY AT GENUS LEVEL FOR EACH OF THE CLUSTERS AS DEFINED BY KRAKEN

FOR THE CONCOCT NAB LR-POL ANALYSIS……………………………………………………………………. 51
13 PERCENTAGE IDENTITY AT GENUS LEVEL OF THE SHARON_DS CLUSTARD CLUSTERS AS DETERMINED BY

KRAKEN……………………………………………………………………..………………………………….. 54
14 THE SEVEN HIGHLY COMPLETE CLUSTERS PRODUCED DURING THE SHARON_DS CLUSTARD RUN………….... 55
15 THE RELATIVE ABUNDANCE PROFILE OF THE CLUSTERS PRODUCED FROM THE SHARON_DS CLUSTARD RUN 55
16 THE PERCENTAGE IDENTITY AT GENUS-LEVEL OF THE NAB LR-POL 0.997 CLUSTERS AFTER CLASSIFYING

WITH KRAKEN USING BOTH THE KRAKEN_DB AND THE KRAKEN_GTDB INDEXES……………………………… 57
17 THE RELATIVE ABUNDANCE PROFILE AT GENUS LEVEL OF THE CLUSTERS PRODUCED FROM THE NAB LR-POL

CLUSTARD RUN, WITH THE GENERA DETERMINED BY KRAKEN……………………………………………......... 59
18 THE OUTPUT PLOTS FOR THE 20 HIGH-QUALITY METAGENOME-ASSEMBLED GENOMES IDENTIFIED FROM THE

NAB LR-POL CLUSTARD RUN.………………………………………………………………………………….. 61
19 PHYLOGENETIC TREE GENERATED BY AUTOMLST AND VISUALISED IN ITOL…………………………………... 62

 7

Acknowledgements

I would like to thank my supervisor, Prof. James Chong, for his support and guidance

throughout this project and for dealing with my thousands of questions. With thanks to Dr

John Davey, Dr Katherine Newling, Dr Sally James and Dr Peter Ashton from the

Bioinformatics facility at the University of York for the advice, support and biscuits.

With thanks to my Dad who read all of this despite “not understanding a word” and my

Mum and Reggie for the food and company. And with thanks to Laura, Heidi, Ali, Emma, and

Zainab for keeping me sane, and Kim, James R, and the rest of the Chong lab for doing the

opposite.

This project was undertaken on the Viking Cluster, which is a high-performance compute

facility provided by the University of York. I am grateful for computational support from the

University of York High Performance Computing service, Viking and the Research

Computing team.

 8

Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University. All

sources are acknowledged as References.

The bwa_Snakefile and para_Snakefile parts of the CLUSTard pipeline are based on

earlier work by Prof. James Chong. DNA extraction of the NAB dataset was done by Dr

Anna Alessi. The NAB Nanopore assembly and polishing were undertaken by the

Bioinformatics Core Facility at the University of York.

 9

 10

Introduction

Metagenomics, the study of genetic material generated from culture-independent shotgun

sequencing of environmental samples, proves an involved and time-consuming task when

analysing data from complex relatively unknown communities. Contiguous sequences

(contigs) from a metagenomic assembly can be grouped together into taxonomic bins based

on shared characteristics and then must undergo many further analysis steps in order to

validate these groups and determine community composition.

In this study due to existing datasets, it was first deemed necessary to develop a method

of metagenome binning which can deal with a mix of sequencing technologies and utilise the

information present in a time series dataset. Then to allow for further analysis, chain this

method of binning to other analysis steps in a reproducible workflow. Finally, the optimal

operational parameters for this method of binning needed to be determined and the binning

results validated.

Here a specialised binning strategy for time-series metagenomic datasets was developed

and then a metagenomic analysis pipeline developed around it. This pipeline, known as

CLUSTard, enabled reproducible and fast metagenomic binning and downstream analysis,

allowed for the optimal operational parameters of the binning strategy to be determined and

also ultimately enabled the straightforward analysis of a previously un-resolved large

metagenomic dataset.

Microbial Communities

The definition of a new bacterial species relies on the growth of the bacteria in pure

culture (Chan et al. 2012). Due to the challenges faced when attempting to culture bacteria,

(Stewart 2012) a great deal of the overall microbial diversity remains uncultured and

therefore many species remain undefined (Bernard et al. 2018). It is possible that these

uncultured organisms play important roles in specific microbial communities or for drug

 11

discovery (Stewart 2012). This so-called “microbial dark matter” has become somewhat less

dark following the emergence of targeted 16S rRNA gene sequencing, where the DNA

sequence could be obtained from an environmental sample by utilising PCR amplification,

and Next-Generation sequencing (Stewart 2012). 16S rRNA genes are well conserved,

occurring in all cells and organelles (Pace 2009) and contain hypervariable regions which

exhibit large sequence diversity among bacteria (Shah et al. 2011).

With the arrival of 16S sequencing the ‘candidate’ phyla emerged, which contains

organisms with no pure cultures to represent them (Rappé and Giovannoni 2003). Members

of this Candidate Phyla Radiation (CPR) which includes over 70 phyla, exist in many

different environments and contribute a significant portion of the diversity amongst them

(Danczak et al. 2017). One such microbe, a member of the Lokiarchaeota phylum,

Candidatus Prometheoarchaeum syntrophicum strain MK-D1 was recently isolated and

cultured (Imachi et al. 2019). The Lokiarchaeota phylum was first identified by Spang et al.

(2015) through a combination of 16S rRNA and metagenomic sequencing.

Whilst the use of 16S sequencing has enabled the resolution of many otherwise

unclassified organisms it is not without its shortcomings. As rRNA sequences are so well

conserved they cannot be reliably used to determine closely related species, such as

Escherichia coli and Shigella dysenteriae (Pace 2009). It has also been found that

phylogenetic analysis based on only the 16S rRNA gene proved unreliable when compared

to a phylogenetic tree built using a core genome (Chan et al. 2012) and 16S rRNA

sequencing is also impacted by PCR biases as it relies on targeted primers to amplify the

marker gene (Shah et al. 2011; Hillmann et al. 2018).

An alternative to 16S rRNA sequencing that enables the resolution of complex

communities containing uncultured microbes is the field of metagenomics. Metagenomics is

the study of genetic material generated from culture-independent shotgun sequencing of

environmental samples (Vollmers et al. 2017). While 16S rRNA analysis is cheaper both in

cost and computational time (Hillmann et al. 2018), the whole-genome sequencing (WGS) of

metagenomes provides the opportunity to capture the community dynamics at scale without

 12

a biased amplification step (Shah et al. 2011) and also to capture more of the overall genetic

material. As sequencing technology has become cheaper over recent years the field of

metagenomics has grown and enabled the simple resolution of previously uncharacterised

communities. For example, the production of 913 draft genomes, the majority of which were

previously unsequenced, from metagenomic sequencing of the cow rumen (Stewart et al.

2018) and over 150,000 genomes reconstructed from human microbiome metagenomes by

Pasolli et al. (2019).

Whilst capturing all sequences from all members of a microbial community is not realistic

(Zaheer et al. 2018), sequencing depth - i.e. the number of different reads that cover a base

in the sequences - is important when it comes to metagenomics. Deeper metagenomic

sequencing is potentially able to determine novel gene content that is not possible to obtain

from shallow sequencing (Hillmann et al. 2018). Deep metagenomic sequencing is often too

expensive for large-scale projects, whilst it can provide strain-level resolution, sequencing at

this depth is not necessary to acquire more reliable species profiles than 16S sequencing

(Hillmann et al. 2018). Along with the too shallow sequencing depth, often not deep enough

to capture rare species in complex populations (Shah et al. 2011) the field of metagenomics

also faces biases. Despite the lack of amplification bias with shotgun sequencing, biases

can be introduced by the DNA extraction or sequencing method (Morgan et al. 2010).

Anaerobic Digestion

Anaerobic digestion (AD) is a process that produces biogas from the anaerobic

decomposition of organic waste, an important aspect towards the production of green

energy (Treu et al. 2016). Whilst the operational conditions of anaerobic digesters have

been finely tuned to maximise efficiency, the microbial community less so (Peces et al.

2018). Microbes play an important part in the creation of biogas during anaerobic digestion

as different members of the microbial community perform different steps in the biologically

 13

mediated process (Campanaro et al. 2019). By harnessing the microbial potential, the

production of biogas could become more efficient.

Many studies into anaerobic digestion microbial communities are based on 16S rRNA

sequencing (Kirkegaard et al. 2017; McIlroy et al. 2017; Peces et al. 2018). The lack of

genome datasets means that a lot of information present in the community is missing,

including the metabolic information which is necessary to assign roles to parts of the AD

process (Peces et al. 2018). Campanaro et al. (2019) produced >1,500 metagenome-

assembled genomes (MAGs) of varying quality from publicly available metagenomic

anaerobic digestion studies. They found that few taxa were shared between different AD

systems - with most systems developing specialised microbial communities.

Assembly

Genome assembly is the process of joining the short fragments produced by DNA

sequencing (sequencing reads) into long contiguous sequences known as contigs

(Paszkiewicz and Studholme 2010).

Whilst Illumina sequencing revolutionised genome assembly due to the increased

throughput, the length of the short-reads produced by Illumina are insufficient in length to

resolve repeat regions present in many organisms (Treangen and Salzberg 2011). This has

led to many studies releasing unfinished genome assemblies with low quality and low

contiguity (Alkan et al. 2011). Illumina sequencing has an average read length of ~50-600bp

(Weirather et al. 2017) which is much shorter than Oxford Nanopore Technologies

sequencing (Nanopore), with an average read length of 1-100Kbp (Giordano et al. 2017).

The longer read length of Nanopore sequencing makes genome assembly easier as it can

provide clarity in areas of long repeats that were previously unpassable with Illumina

sequencing (Koren and Phillippy 2015). This has brought definition to areas of genomes that

have important functional roles, and which were previously challenging to sequence (Schmid

 14

et al. 2018), with Nanopore sequencing enabling the structure of an antibiotic resistance

island in Salmonella Typhi to be resolved (Ashton et al. 2015).

 Whilst the long-reads of Nanopore sequencing facilitates the resolution of repeat regions,

the higher error rates of Nanopore sequencing, ~10-15% compared to ~1% for Illumina

sequencing (Sović et al. 2016), proves challenging when it comes to genome assembly.

Popular genome assembly tools for Illumina sequencing - such as SPAdes (Bankevich et al.

2012) - rely on algorithms which fail with an error rate above 10% (Lin et al. 2016) and are

therefore unsuitable for Nanopore sequencing assembly. As assembly strategy varies

depending on the sequencing technology used, new assemblers have been built which

perform better with the error-prone long-reads of Nanopore, such as Canu and Flye (Koren

et al. 2017; Kolmogorov et al. 2019). De novo Long-read Nanopore assembly is still far from

perfect with sequencing errors often confounding the outcome (Fu et al. 2019) and therefore

often requires polishing with Illumina data (Giordano et al. 2017). This method combines the

ability of Nanopore long-reads to traverse regions of repeat with the more accurate Illumina

sequencing (Weirather et al. 2017).

Metagenomic sequencing adds an extra level of complexity to the assembly of

sequencing reads, due to the presence of multiple organisms in a metagenomics

sequencing sample and the depth of coverage required to resolve many of them (Ayling et

al. 2019). Most metagenomic datasets are large and diverse which presents a unique

computational challenge when it comes to assembling these sequencing reads into contigs

(Ayling et al. 2019). To produce high quality de novo genome assemblies from

metagenomes, sequencing reads need to span both intragenomic and intergenomic repeats

to prevent a highly fragmented assembly, the longer read lengths of Nanopore sequencing

prove advantageous in this (Somerville et al. 2019). The higher error rate makes the

assembly of Nanopore sequencing more challenging, with Canu taking twice as long to

assemble a Nanopore dataset compared to a comparable PacBio (another method of long-

read sequencing) dataset (Jain et al. 2018). To date no published tools are dedicated solely

 15

to the assembly of Nanopore long-read metagenomic data, however both Canu and

metaFlye have been shown to deal well with Nanopore metagenomic datasets (Latorre-

Pérez et al. 2019). Whilst Nanopore sequences are often polished using the raw signal to

improve the accuracy, the large metagenomic datasets make this more challenging

(Somerville et al. 2019). Somerville et al. (2019) assembled all dominant species of a small

metagenome using a combination of Nanopore, Illumina and PacBio despite the challenge

of de novo metagenome assembly, noting the importance of long reads and also the

importance of polishing with short reads to achieve contiguous and highly accurate

assemblies.

Clustering

Whilst it is possible to generate complete genomes from metagenomic assembly, many

factors including community size and complexity prevent this generating highly fragmented

assemblies (Alneberg et al. 2014). Because of this, it is necessary to group contigs into

clusters based on shared characteristics in order to reconstruct genomes (Sieber et al.

2018). This process is known as binning and can be achieved using multiple methods. One

such method is by using an element of sequence composition such as GC content or tetra-

nucleotide identity. For example, the popular program MaxBin which utilises tetranucleotide

frequencies along with one-sample coverage information to automatically bin contigs (Wu et

al. 2014). Many microbial species have vast differences in their GC content (Reichenberger

et al. 2015) which makes this a feasible method of clustering. Another common clustering

method is the use of coverage information as different organisms are present in different

quantities in an environmental sample (Alneberg et al. 2014) this can therefore be used to

separate contigs. Two popular binning programs, CONCOCT and MetaBAT, combine coverage

information and sequencing composition to reconstruct genomes (Alneberg et al. 2014;

Kang et al. 2015). It has been noted that binning based on differential coverage information

is more effective than binning based only on composition (Sieber et al. 2018).

 16

The existence of the multitude of different metagenomic binning software utilising different

binning techniques highlights the fact that metagenomic binning is far from perfect. The

program AMBER (Meyer et al. 2018) exists to enable evaluation and comparison of different

binning software. Meyer et al. (2018) found that MetaBAT recovered the most high-quality

bins when using the datasets provided by the CAMI challenge (Sczyrba et al. 2017).

However, as highlighted by Sieber et al. (2018), no single binning software produces optimal

results on every metagenome consistently. The program DASTool (Sieber et al. 2018)

provides a potential solution to this, enabling the combination of results from multiple

different binning software to produce the most high-quality bins (Meyer et al. 2018).

However, this requires multiple time consuming and computationally intensive programs to

be run on one dataset and may not provide much overall improvement.

Benchmarking and comparison of metagenomic binning has long been focussed on the

clustering of short-read assemblies and as outlined earlier, long-read metagenomic

assembly faces separate issues to short-read metagenomic assembly. The benchmarking of

metagenomic software has been achieved during the Critical Assessment of Metagenome

Interpretation (CAMI) challenge (Sczyrba et al. 2017) which was based on short read

metagenomic datasets and assemblies. Although a second challenge including long-read

sequencing is currently in progress, this had not been completed at the time of writing.

Sequencing Classification

After the clustering of metagenomic bins it is necessary for them to be taxonomically

classified in order to determine what organisms are present in the community. As this

information is usually not known at the time of sequencing, sequencing classifiers, such as

NCBI BLAST (Altschul et al. 1990), perhaps the most well-known method, classifies a

sequence by finding other close aligning sequences from a large database. Whilst this

method proves effective, it is extremely time-consuming and CPU intensive on large

 17

metagenomic datasets (Wood and Salzberg 2014). For this reason, much faster

metagenomic classifiers requiring less computational power, such as Kraken (Wood and

Salzberg 2014) or Centrifuge (Kim et al. 2016), can be used to accomplish this task.

Kraken works by creating a Lowest Common Ancestor database of k-mers (i.e. a sequence

of length k, the default length is 31bp). Any k-mers identified in the query sequence enables

a path in the classification tree to be traversed, ultimately identifying the lowest common

ancestor (LCA). The small database size and efficient classification strategy of Kraken

allows rapid classification of large metagenomic datasets (Wood and Salzberg 2014). The

program Centrifuge takes a similar strategy also resulting in a small database and fast

classification of sequences (Kim et al. 2016). Both Kraken and Centrifuge however, were

developed to determine species abundance information of raw sequencing reads and not

assembled metagenomic bins, despite them being commonly used in this way (Wood and

Salzberg 2014; Kim et al. 2016; Nicholls et al. 2019).

Most classification software is reliant on a database of reference sequences. Nasko et al.

(2018) found that taxonomic classification by Kraken is strongly influenced by the database

composition, with unknown species - i.e. those with no representation in the database -

resulting in an analysis bottle-neck. They also highlighted the problem of contamination and

misclassification in public databases which can cause errors due to the inconsistency of the

database which underscores the fact that metagenomic sequence classification is still far

from perfect.

Validation

 Once produced, the metagenome bins must be validated to determine if the

metagenome-assembled genomes are biologically real. If reference genomes are known for

a community, validation becomes an easier task. For example, with metaQUAST which

evaluates metagenomic assemblies using user-defined reference sequences (Mikheenko et

al. 2016). However, given the nature of metagenomic sequencing the members of a

 18

community are often unknown. Whilst metaQUAST can identify related species through 16S

rRNA sequences this only works for species with previously classified neighbours that are in

the database (Mikheenko et al. 2016). The existence of the so-called microbial dark matter

makes this challenging and therefore other methods of validation that are not based on

reference sequences are necessary.

One such method used to validate the assembly is determining the number of genes

present in an assembly or the coding density, i.e. the number of genes per 1Mbp of

sequence, as this indicates the completeness of an assembly (Olson et al. 2017). Prokka is

a popular software that performs rapid genome annotation by combining data from multiple

different sources in order to predict and identify genes in a prokaryotic genome (Seemann

2014). This can then be extrapolated to determine the number of genes present in an

assembly.

Gene presence or absence can also be used as a validation method. CheckM (Parks et

al., 2015) is a popular metagenomic tool that utilises this method to validate the results of

metagenomic binning. CheckM utilises 48 lineage-specific marker genes to place genome

bins within a reference tree and to determine the completeness and contamination values of

the genome bins given. However, as noted by Parks et al. (2015), eukaryotic and phage

genomes and also plasmids will be reported as highly incomplete as the CheckM marker

genes are only suitable to assess bacterial or archaeal genomes, and therefore must be

analysed for completeness by another software.

Standards for reporting bacterial and archaeal genome sequences exist and for

metagenomic binning the Minimum Information about a Metagenome-Assembled Genome

(MIMAG) is relevant (Bowers et al. 2017). The difficulty of verifying assembly quality when

there is a lack of ‘ground truth’ is highlighted by Bowers et al. (2017). It is therefore

recommended to report basic assembly statistics that do not rely on reference genomes,

including N50 length, total assembly size and maximum contig length. Completeness and

contamination values calculated by a program such as CheckM are also an important metric

 19

with metagenome-assembled genomes (MAGs) >90% complete, <5% contaminated and

that encode all rRNA genes and >18/20 tRNA genes which qualify them as “high-quality

draft MAGs” using the Bowers et al. (2017) categorisation. The latter rRNA and tRNA

completeness can be evaluated by a program like Prokka. Due to the small genomes of

symbiotic bacteria discovered no minimum assembly size is suggested (Bowers et al. 2017).

Any errors in sequencing or assembly would impact both the coding density of a genome

and the completeness and contamination values, as any errors could alter the gene

sequence and lead to it not being recognised or would result in premature stop codons or

frameshifts (Watson and Warr 2019). Watson and Warr (2019) highlights this issue

especially when dealing with Nanopore sequencing, which has a higher occurrence of

insertion or deletion errors when compared to Illumina sequencing.

Workflows

Because of the number of different tools available to analyse metagenomes, the speed at

which they are updated and the increasing popularity of metagenomic sequencing it is

necessary to develop methods of analysis that allow both comparison between

metagenomic datasets and to prove that the results are themselves reproducible (Tamames

and Puente-Sánchez 2018).

One such method to establish reproducible research during the data analysis stage is the

use of workflows and package managers which allow easy distribution of the analysis steps

and enable any variation between workstations e.g. operating system or different software

versions to be dealt with (Visconti et al. 2018).

Conda (conda.io) is one such package manager that is popular in the biological sciences

due in part to the channel Bioconda (bioconda.github.io) which carries many popular

bioinformatics software. Conda enables the easy installation of packages and dependencies

without administrative privileges which is an advantage when performing analysis within a

high-performance computing (HPC) cluster environment (Grüning et al. 2018). Docker

 20

(docker.com) is another platform that enables containerisation. Workflow managers are

another useful addition to the bioinformaticians arsenal, as not only do workflow pipelines

provide reproducible results but they also enable the easy analysis of alternate datasets.

The production of pipelines using Perl or the UNIX shell is common in bioinformatics.

However, these do not allow the pipeline to be restarted from previous checkpoints or

individual containerisation of different steps in the pipeline, something which modern

workflow managers do allow (Leipzig, 2017). Snakemake (Köster and Rahmann 2012) and

Nextflow (Di Tommaso et al. 2017) are two such modern workflow managers.

As outlined by Leipzig (2017), the choice of a workflow manager is primarily down to both

user preference and which is most appropriate for the specific use case. Snakemake is built

specifically for bioinformatics research and allows the integration of Python code directly into

the pipeline and the use of different Conda environments for each step of the pipeline. This

makes it easier to run different software that may require different dependencies (Köster and

Rahmann 2012). Because of this Snakemake is popular with many bioinformatics tools

utilising it for analysis such as VIPER (Cornwell et al. 2018).

CLUSTard

As outlined here, metagenomic assembly and analysis is a complex and time-consuming

process made even more challenging by the large datasets. Metagenomic assembly and

analysis can be achieved using many different strategies with a lot of third-party software

available for each step. It is sensible to undertake any bioinformatics analysis with the best

possible software for the specific user case. In the case of the datasets we produce as a

group, which are large time-series datasets with a variety of different sequencing

technologies, an assembly strategy that utilises the combination of long and short read

sequencing and a binning strategy that utilises this and the time-series information would be

most appropriate. Whilst binning tools that make use of time-series information are available

 21

as outlined earlier, they are far from perfect and it is not known how well they deal with a

combination of sequencing technology.

To enable both the results themselves to be reproduced and to simplify this analysis on

all appropriate datasets, this analysis should be made easily reproducible and portable by

employing an analysis pipeline. Many workflow pipelines to enable reproducible

metagenomic analysis have previously been released such as Anvi’o (Murat Eren et al.

2015), SqueezeMeta (Tamames and Puente-Sánchez 2018) and YAMP (Visconti et al.

2018). However, these pipelines are not appropriate for large scale metagenomic datasets

due to in part to memory constraints and available pipelines either struggle with the large

datasets, do not allow for the combination of sequencing technologies and do not allow the

user much, if any, flexibility in programs or parameters used. The lack of available pipelines

to correctly and efficiently analyse these large metagenomic datasets means that each

dataset requires user intervention at each step of the analysis process.

To overcome these challenges, I first sought to establish a method of clustering that

makes use of the time series information and then to integrate this method of clustering into

a pipeline of further metagenomic analysis steps. Following this to both evaluate this method

of clustering and also determine the parameters and assembly method which produce the

best clustering results. Finally, I sought to use this pipeline to analyse a previously un-

definable metagenomic dataset.

To bin contigs from a metagenomic assembly utilising time-series information, raw reads

from each time point are mapped onto contigs to determine the abundance values of the

contigs over time. Then using Python scripts, contigs with a similar abundance pattern,

determined by using pairwise Pearson's correlation coefficient analysis, are clustered

together if the correlation value is above a given threshold. This was all chained together

using a Snakemake workflow and further analysis steps were added to determine the validity

of the clusters produced and to provide biological context. This workflow enabled the

pipeline to be re-run using different datasets and under different parameters in order to

 22

evaluate the binning method and also how well the downstream tools perform given these

different situations. Once optimal conditions were determined, the CLUSTard pipeline

enabled the biological classification of a metagenomic dataset.

Here, data from an 18-month metagenomic study of four parallel industrial-scale

anaerobic digesters were investigated. The use of the CLUSTard pipeline enabled the

community composition of this dataset to be determined which was previously un-resolvable

due to its size. This provides an avenue for future research to link the community

composition with metabolic function and process operational conditions to produce important

information about how to maximise biogas production.

 23

Methods

CLUSTard Pipeline

The CLUSTard pipeline was built using the workflow manager Snakemake (Köster and

Rahmann 2012). Figure 1 shows the Snakemake pipeline diagram, the code is available in

the Appendix and on GitHub (github.com/ac1513/CLUSTard).

 24

Figure 1: Workflow of the CLUSTard pipeline. Showing the two main elements of the pipeline:
clustering and downstream analysis (outside boxes). The Snakemake files used in the pipeline in
the inside boxes. With the programs or Python scripts used at each step shown in this font.

 25

Clustering

The raw short-reads for each timepoint were mapped against the input assembly using

BWA mem (v.0.7.17) (Li 2013). Mapped reads are then converted to counts using SAMtools

(v.1.9) (Li et al. 2009) which determines the number of short reads at each timepoint

mapping to each contig. A Python3 script merges the counts for each timepoint into a single

file (merge_filecounts.py), before derive.py normalises count values to the first

timepoint providing an indication of relative abundance and calculates coverage values for

each contig. This also filters out any contigs below the contig length threshold (suggested

value is 1,000bp for long read assemblies). The next Python3 script (start_feeder.py)

calculates mean and standard deviations for the abundance values. The number of mapped

reads at each timepoint for each contig were used to calculate the sample Pearson

correlation coefficient by implementing Equation 1 in pairwise comparisons in the Python3

script bin_finder.py.

Equation 1: The pairwise Pearson’s correlation coefficient calculation, where 𝑛 is the
sample size, 𝑥# and 𝑦# are the individual sample points indexed with 𝑖, and 𝑥̅ and 𝑦' the
sample mean.

Here a cut-off value of the sample Pearson correlation coefficient can be chosen for

clustering. Prior to this step the count files are split into 10,000 contig long blocks, using the

Unix split function to facilitate the parallelisation of the pairwise comparisons in order to

speed up the correlation process. Here, the Snakefile in use changed to para_Snakefile

as the number of files produced by the split would not be consistent between different

CLUSTard runs. The separating of the pipeline was necessary as the dynamic function in

Snakemake, which allows Snakemake to run rules that would produce an unknown number

of output files, did not work in a computing cluster environment. The files produced in the

 26

parallel step are then merged using para_sets.py, parallel_merge_step2.py and

step2.py.

Once contigs have been clustered a separate FASTA file containing the contigs for each

cluster is produced using the script file_parser.py, the name of the largest contig in the

cluster is subsequently used as the cluster identity for the plots, csv file and FASTA file

produced.

Cluster Analysis

Once the cluster FASTA files have been produced they are passed into a separate

Snakefile to undergo downstream analysis.

First, the clusters are each run through Kraken (v 2.0.7) (Wood et al. 2019) using a user-

defined index for taxonomically classification. The top result at the user-defined taxonomic

rank (e.g. genus) for each cluster is determined using the Unix command:

find -name '{JOBID}*_report_kraken.out' -type f -printf '\n%p\t' -exec
sh -c 'echo {} | sort -k1nr {} | grep -P "\t{params.level}\t" | head -n1
' \; > {JOBID}_{params.level}_top_kraken.out

where {JOBID} is the user defined CLUSTard prefix and {params.level} is the user

defined taxonomic rank.

Each cluster is then run through Prokka (v.1.11) (Seemann 2014) for genome

annotation. Seqkit (v.0.10.1) (Shen et al. 2016) is also run on each cluster with the

parameter -a and -T to output tab-separated assembly statistics for each cluster. Finally,

CheckM (v. 1.0.13) (Parks et al. 2015) is run on each cluster first with the parameter

unbinned to determine the percentage of assembly contigs that have not been clustered.

Then with the parameter lineage_wf, to estimate genome completeness and contamination

- important statistics for metagenomics. Whilst these steps (other than Prokka) are all

utilised in the output of CLUSTard they also provide useful launchpads and information for

further analysis by the user as is highlighted later in “Biological Analysis”.

 27

The final step of the CLUSTard pipeline is to produce multiple plots. Each of the plots

have user-defined parameters to allow for the simple production of meaningful plots. An

overview plot is produced for each cluster (plot.py). These plots include information on

size, completeness, contamination, and Kraken2 classification. This information is also

saved to a csv file. Next, a plot is produced showing the size of contigs successfully

clustered (bin_plot.py). Finally, the Python3 script abun_plot.py produces a relative or

absolute abundance profile of the clusters produced using the un-normalised short-read

mapping counts and utilising the top Kraken2 classification information at the user specified

taxonomic rank. Here, the user can also specify if this plot should include all classification or

only the 19 most abundant and ‘other’ as otherwise this plot would end up complex for large

metagenomes.

 28

How CLUSTard is run

The use of Snakemake as a workflow

manager allows CLUSTard to be run

with minimal user-input and despite

entirely being run on the Unix

command line requires minimal

knowledge of the command line,

minimal installation and no root access.

If Snakemake is not already installed on

the user’s system, it should be installed

following the steps in the Snakemake

documentation.

First the code must be copied to the

users working directory. As the code is

available on the online repository

GitHub all that is required is the

command:

git clone https://github.com/ac1513/CLUSTard.git

This will create a directory named CLUSTard and all the analysis is done within this

directory. The data should be added to a subdirectory within the CLUSTard directory called

data. This should contain the raw read samples and also the metagenome assembly. The

sample order and grouping to be used for CLUSTard analysis is defined by the user in the

samples.tsv file. The location of the input data is then defined by the user in the

config.yaml file. Other parameters can also be defined by the user in this file including the

Pearson’s correlation coefficient threshold, options for the output plot including the

taxonomic level of interest. Once the input files have been edited so that Snakemake is

Figure 2: The directory organisation
produced after a run of the CLUSTard
pipeline has been completed.

 29

pointed to the correct dataset to be used Snakemake can then be run. If running on a

computing cluster this would preferably be within Screen on Unix to allow Snakemake to

continue sending jobs to the cluster without keeping a terminal window open. Due to

limitations of Snakemake within a computing cluster it was necessary to separate the pipeline

into three separate Snakefiles (bwa_Snakefile; para_Snakefile and

kraken2_Snakefile) with a wrapper Snakefile which enables all steps to still be run

consecutively from one command.

On a computing cluster CLUSTard can be run using the command

snakemake --use-conda --cluster "sbatch -t 48:00:00 --cpus-per-
task={threads}" -j 1000.

this runs the Snakemake pipeline using the specified Conda environments and runs each

job on the cluster with a maximum time limit of 48hrs and the number of threads specified in

the Snakefile(s), -j 1000 allows a maximum of 1000 cluster jobs to be sent to the queue

at once. Once running Snakemake will catalogue its progress on the command line.

Directory Organisation

The output of CLUSTard is split into multiple directories. Figure 2 shows the outcome from

a CLUSTard run from the CLUSTard directory which is produced when the git repository is

cloned. data is a user generated directory containing the input data for the CLUSTard run,

envs contains the information for Snakemake about the Conda environments and scripts

contains the Snakefiles and Python3 scripts necessary to run the pipeline. logs is a

directory generated during a CLUSTard run, this is where all program and cluster logs are

saved - which is useful to investigate if debugging.

The output directory is also automatically created during a CLUSTard run and contains

the following subdirectories. The alignment subdirectory contains the alignment SAM files

from BWA, clustering contains the intermediate files generated by CLUSTard and results

contains the cluster

30

FASTA files and the corresponding csv file of abundance values that is used for the plot.

The checkm, kraken and prokka directories contain the output created after the clusters are

run through those programs. Finally, all plots produced by CLUSTard are saved in the plots

directory.

Data Acquisition

The CLUSTard pipeline was developed and tested on a metagenomic dataset with both

long Nanopore reads and a time-series of raw Illumina short reads.

Sampling and Sequencing

Treated sewage sludge samples were taken from four industrial-scale anaerobic

digesters over a period of eight months. In total sampling from the digesters occurred 19

times, each approximately two weeks apart and the input feed was sampled five times

towards the end of the sampling period (see Appendix Figure 1 for date breakdown). DNA

from the samples was extracted using the DNeasy PowerSoil Kit. DNA from all 19 timepoints

for all four digesters and the five timepoints from the feed underwent library preparation and

sequencing on an Illumina HiSeq 3000 at either Novogene or Leeds Genomics.

DNA samples from timepoints 15 and 17 for all four digesters and feed were pooled and

underwent standard Nanopore ligation library preparation to be sequenced on a

PromethION at the University of York Genomics facility.

Assembly

The nanopore PromethION sequences were assembled and polished by the

Bioinformatics Core at the University of York. First using Canu (v.1.8) (Koren et al. 2017)

on Google Cloud to assemble the raw-reads. The assembly was then polished using the

Nanopore FAST5s by Nanopolish (v.0.11.0) (Simpson et al. 2017), then polished using

pooled Illumina raw-reads from timepoints 15 and 17, first by Pilon (v.1.23) (Walker et al.

2014) and finally polished by Racon (v.1.3.3) (Vaser et al. 2017) over four iterations.

31

The Illumina short reads were first adaptor trimmed using cutadapt (v2.3) (Martin

2011) with the adaptor sequence AGATCGGAAGAG. The Illumina-only assembly was then

assembled using all of the trimmed short-read sequencing data by MEGAhit (v 1.1.3) (Li

et al. 2015) using the parameter --presets meta-large and utilising the paired-end

information. MEGAhit was used over SPAdes (v.3.13.1) (Bankevich et al. 2012) as it was

not possible to run SPAdes on this dataset within the computing cluster time and memory

constraints.

SeqKit (v.0.10.1) was then used to determine assembly statistics with the parameter

stats -a. BWA mem (v.0.7.17) was used to map the raw-short reads back onto all

assemblies with the parameter mem and the percentage sequence mapping was calculated

using SAMtools (v.1.9) flagstat. Prokka (v.1.11) was used to determine the

presence of complete or partial 16S sequences.

Cluster Analysis

Pearson Correlation Coefficient Threshold

In order to investigate the optimal Pearson correlation coefficient (Pcc) threshold to run

the CLUSTard pipeline, CLUSTard was repeated using the polished nanopore assembly

(NAB LR-pol) and trimmed short-reads at four different Pcc thresholds: 0.97; 0.99; 0.997 and

0.999. The threshold 0.99 was initially determined systematically, then threshold values

were chosen around it. The threshold 0.90 was also chosen but timed-out during the

bin_feeder.py step after reaching the maximum time on the Viking computing cluster.

Other than the differing Pcc thresholds the same parameters were used for all other steps

of each run. As the alignment of short reads onto the long read contigs would not be altered

by a different Pcc threshold and to allow a comparison that would not be impacted by the

mapping success of BWA, the same alignments were used for all CLUSTard runs. After the

32

first CLUSTard run was completed the alignment directory was copied over into the

directories of the other runs which allowed Snakemake to skip the step as the output files

already existed.

After each CLUSTard run was completed SAMtools flagstat was used on the resulting

SAM file to determine the percentage of the assembly that was captured in the clustered

contigs. A script was written to parse the output of Prokka to determine the presence of

tRNA and rRNA sequences in each cluster, which is used to determine the completeness of

metagenomic bins and a required metric for high quality MAGs (Bowers et al. 2017).

Further Validation

Due to the lack of known truth for this dataset and the lack of time-series metagenome

datasets that utilise nanopore sequencing, validation of CLUSTard’s clustering method was

not straightforward.

First, it was deemed appropriate to bin the NAB LR-pol assembly using established

binning software. Two of the most popular binning software in use are CONCOCT (Alneberg et

al. 2014) and MetaBat2 (Kang et al. 2015). Unfortunately, there were issues installing

MetaBat2 on the Viking computing cluster so only CONCOCT could be run on this dataset.

CONCOCT

CONCOCT (v.1.1.0) was used to bin the NAB LR_pol, NAB SR, and NAB LR assemblies.

First the short reads were mapped against the assembly contigs then sorted and indexed

using SAMtools using the parameters sort and index. Then the basic usage steps from the

CONCOCT documentation (github.com/BinPro/CONCOCT) were followed.

Once the clustering had completed, the clusters were run through SeqKit with the

parameter stats -a to determine the binning statistics. Then CheckM, first with the

parameter unbinned to determine how many of the input contigs were binned and then with

33

the parameter lineage_wf to determine the completeness and contamination of the bins.

Kraken2 was also run with the same parameters as the CLUSTard NAB runs to

taxonomically classify the clusters. GC±SD of the clusters was determined using a custom

python script (gc_count.py). Prokka was run on the clusters to determine the number of

predicted genes and the presence or absence of rRNA sequences and tRNA sequences to

allow the classification of certain MAGs as high-quality. The 16S sequences identified by

Prokka from the MAGs that were classified as high-quality were then run through Silva

(Quast et al. 2013) to determine the 16S classification.

Sharon dataset analysis

Another time-series metagenomic dataset of an infant faecal microbiome from Sharon et

al. (2013) was chosen to be binned by CLUSTard in order to determine how successfully a

small metagenome would be binned and also allow the comparison of the binning to a well

characterised metagenome. This time-course was specifically chosen as it has also

previously been used to validate CONCOCT clustering, which enables a further comparison

between CLUSTard and CONCOCT. Although only 11 timepoints were mentioned, 18 libraries

of Illumina short reads were downloaded from SRA (SRA052203). Seven of these were re-

sequenced samples as the samples in the first run did not provide enough data (Alneberg et

al. 2014) however, no information about which samples these were, or the sampling order

was given. Whilst, a correct order is not necessary for CLUSTard’s clustering it is necessary

to interpret the results in a biological way - which was not the ultimate goal for the clustering

of this dataset.

Whilst an assembly already existed for this dataset it was necessary to reassemble the

raw-reads as metagenomic assemblers have developed rapidly since 2013. The short-reads

were first analysed by FastQC (v.0.11.8) (Andrews 2010) to check for the absence of

adaptor sequences and then assembled using SPAdes with the parameter --meta and

assembly statistics calculated using SeqKit stats -a. The presence of complete/partial

34

16S rRNA sequences was determined using Prokka. The CLUSTard pipeline (including the

analysis and plotting steps) was then run at a threshold of 0.997 and a contig cut-off value of

1,000bp.

Kraken Databases

Due to the success of the Kraken2 identification with the well characterised Sharon et al.

(2013) dataset it was deemed prudent to investigate alternate classification methods. As

Kraken2 can accept user-defined index databases, the GTDB_r89_4k database (dated

23/07/19) as outlined in Méric et al. (2019) was downloaded and used to classify the clusters

produced by the NAB LR-pol 0.997 CLUSTard run. This database (Kraken_GTDB) is built

from many MAGs using the taxonomic system from Genome Taxonomy Database (GTDB)

(Parks et al. 2018). To maintain consistency the database based on the NCBI taxonomic

system would have been preferable, however at the time of writing the NCBI version of the

Kraken2 database is missing the taxonomic information so the GTDB database was used

instead. GTDB taxonomy can be converted to NCBI taxonomy on the GTDB website.

Biological Analysis

Relative abundance plots were produced using the Python3 script abun_plot.py with

the Kraken2 output produced by Kraken_GTDB. A plot of the top 19 genera for all digesters

and feed was created and because much of the feed was classified as ‘other’ in this plot a

separate plot was created using only the data from the feed. The 20 high-quality MAGs that

were identified from the NAB LR-pol 0.997 CLUSTard run were further investigated by

comparing the size and GC content to the top classified species from both the Kraken_DB

and Kraken_GTDB indexes. The size and GC content for the reference species from

Kraken_DB was determined from the NCBI RefSeq genome browser (O'Leary et al. 2016),

the reference sequence taken from Kraken_GTDB was determined from the GTDB website.

If more than one genome was available, the most complete and/or the genome marked as

35

‘representative’ was chosen. The 16S rRNA sequences were identified by Prokka and then

run through Silva to determine if the 16S sequence matched the other taxonomy

information.

All 20 MAGs were also run through autoMLST (Alanjary et al. 2019) which detects closely

related genomes to the user-inputted query sequences to place them within a reference tree.

First all 20 MAGs were run at once with the options: select default nearest organisms

and concatenated alignment selected. As autoMLST only outputs 50 leaves the tree it

meant that in-depth context for each MAG was missing, therefore each of the 20 MAGs were

also run through autoMLST separately. The trees were then viewed in iTOL (Letunic and

Bork 2019).

36

Results

Data Summary

DNA extracted from each of the 19 timepoints were sequenced separately by Illumina

HiSeq, producing 198GB of raw sequencing data (351,735,338,778 bp). DNA extracted from

all four digesters and input feed at timepoints 15 and 17 were pooled and sequenced on a

PromethION using Oxford Nanopore Technology sequencing producing 55GB of raw

sequencing data (61,874,783,098 bp).

Assembly Statistics

Assembly statistics for all three assemblies produced from the NAB dataset - Illumina

only (NAB SR), Nanopore only (NAB LR), and Nanopore assembly polished with Illumina

raw reads (NAB LR-pol) - can be seen in Table 1.

Briefly, the NAB SR assembly produced over 17 million sequences (contigs) with an

average length of 802bp and an N50 length of 983bp. 96.79% of raw Illumina short reads

mapped back to this assembly. The NAB LR assembly produced 78,439 contigs with an

average contig length of 21,544bp and an N50 length of 38,925bp. 77.39% of raw short

reads mapped back to this assembly. After the Nanopore assembly was polished the

average contig length increased with to 21,895bp and the N50 length also increased to

39,579bp with no change in the number of contigs. The percentage of raw short reads

mapping also increased to 78.36%.

37

Table 1: Summary statistics for the three assemblies produced from the NAB
dataset. Illumina only (NAB SR), Nanopore only (NAB LR) and Nanopore assembly
polished with Illumina short-reads (NAB LR-pol).

Number of
sequences Total length (bp)

Mean
contig
length
(bp)

Maximum
contig
length (bp)

N50
length
(bp)

Raw SR
mapping
to asm
(%)

Complet
e 16S
sequenc
es
(partial)

NAB SR 17,833,222 14,294,830,142 802 688,912 983 96.79 140
(1489)

NAB LR 78,439 1,689,879,228 21,544 1,406,516 38,925 77.39 590
(301)

NAB LR-
pol 78,439 1,717,415,419 21,895 1,420,398 39,579 78.36 2556

(91)

In order to easily determine how the coding density between the three assemblies

differed the number of complete and partial 16S sequences were investigated. In the

Illumina assembly there were 140 complete 16S sequences and 1489 partial 16S

sequences. 590 complete 16S sequences were identified with the nanopore assembly,

increasing to 2556 complete 16S sequences when the assembly is polished. Partial 16S

rRNA sequences decreased from 301 to 91 when polished.

Parameter Optimisation

Pcc Threshold

To determine the optimal threshold value of the Pearson correlation coefficient (Pcc) for

clustering, the CLUStard pipeline was repeated using the polished nanopore assembly at

four different Pcc thresholds of 0.97; 0.99; 0.997; and 0.999.

Table 2 shows the binning statistics of the clusters produced at all four thresholds. As

seen in the table, as the Pcc threshold is increased the number of clusters produced

decreased as does the total size of the clusters.

38

Table 2: Binning statistics for the four NAB LR CLUSTard runs, at a Pcc threshold of
0.97, 0.99, 0.997 and 0.999.

Pcc Threshold

0.97 0.99 0.997 0.999

No. of clusters 931 594 327 153

Total size of clusters (bp) 1,155,485,978 801,125,977 383,836,160 186,596,516

Percentage contigs binned (%) 35.44 16.7 4.51 1.63

Percentage bases binned (%) 67.28 46.65 22.35 10.86

MAGs >90% complete 98 68 30 7

MAGs <5% contaminated 847 530 310 149

No. of high-quality draft MAGsA 32 24 20 4

Total size high-quality clusters (bp) 106,972,458 76,215,271 62,149,967 11,240,922

No. MAGs with a genome quality ³50 B 133 155 93 49

No. of clusters with a complete 16S 206 215 138 72

Predicted genes 210,018 216,734 132,318 65,784
A. As defined in Bowers et al. (2017) a high-quality draft metagenome-assembled genome (MAG) is

classified as over 90% complete and under 5% contaminated and should also encode 16S, 5S and 23S
rRNA genes as well as the tRNAs of 18 of the 20 amino acids.

B. As defined in Parks et al. (2017), genome quality of a MAG is completeness minus 5x contamination

It is also relevant to determine how much of the input assembly is actually captured by

the clusters produced at different thresholds. In order to determine this the original assembly

- in the case of Table 2, the Nanopore polished assembly (NAB LR-pol) - was mapped back

onto the clustered contigs. As seen in Table 2, both the percentage of contigs that are

binned, and the percentage bases binned decreased as the Pcc threshold increased. At a

Pcc threshold of 0.97 the percentage of bases binned is 67.28% and the percentage of

actual contigs binned is 35.44%. But at a threshold of 0.999 the percentage of bases binned

is 10.86% and the percentage of contigs binned is 1.63%.

39

Figure 3: The percentage of different length contigs binned (dark blue) or unbinned
(light blue) at the four Pcc thresholds; 0.97, 0.99, 0.997, and 0.999.

To further investigate the impact the change of Pcc threshold has on the results from the

CLUSTard pipeline it is necessary to look at which contigs are clustered. Figure 3 shows the

percentage of contigs clustered at the four different Pcc thresholds. The percentage of

unbinned contigs increases as the Pcc threshold increases. At all thresholds a lower

percentage of contigs <100kbp were binned when compared to contigs ≥100kbp. A

reduction in the percentage of contigs ≥100kbp binned is seen as the threshold is increased

however the biggest reduction in contigs binning is seen between a threshold of 0.997 and

0.999.

40

Figure 4: Distribution of the N50 length of the clusters produced at each of the four
Pearson’s correlation coefficient thresholds; 0.97, 0.99, 0.997 and 0.999.

In order to determine the success of binning at each threshold the N50 length of each

cluster produced was investigated. A threshold of 0.97 produced the largest number of

clusters (931) but as seen in figure 4, the N50 length distribution is skewed to the left,

meaning that the vast majority of clusters have an N50 length under 200,000bp (874/931

clusters). As the threshold increases the N50 lengths become less skewed to the left. With

0.999 having the highest proportion of clusters with an N50 length of over 200,000bp

(66/153 clusters).

In order to determine the effect that a changing threshold has on the quality of binning it is

necessary to use a variety of different binning metrics due to the lack of a known ground

truth for this dataset.

As defined in (Bowers et al. 2017) a high-quality draft metagenome-assembled genome

(MAG) is classified as over 90% complete and under 5% contaminated and should also

41

encode 16S, 5S and 23S rRNA genes as well as the tRNAs of 18 of the 20 amino acids. The

number of clusters passing this metric that can subsequently be classified as high-quality

draft MAGs decreased as the threshold increased - from 37 clusters passing this metric at a

threshold of 0.97, to four clusters passing this metric at a threshold of 0.999. However, at a

threshold of 0.997 the clusters classified as high-quality draft MAGs made up 16.19% of the

total bases binned compared to 9.51% at a threshold of 0.99, 9.26% at a threshold of 0.97,

and 6.02% at a threshold of 0.999.

In order to explore the effect that a changing Pcc threshold has on the gene

completeness of clusters the presence of complete 16S sequences in clusters was

investigated. As the threshold increased, the proportion of clusters with a complete 16S also

increased from 22% of clusters at 0.97 to 47% of clusters at 0.999.

Genome quality is an additional metric that has been proposed by Parks et al. (2017).

Quality is defined as completeness minus 5x contamination (both calculated by the program

CheckM) and only genomes with a quality score ≥50 were kept for additional analysis. Here,

the proportion of clusters with a quality score ≥50 increases as the threshold increases. With

133 (14%) of cluster at a threshold of 0.97 passing this criterion and 49 (32%) clusters at a

threshold of 0.999 passing this criterion.

The variation seen in GC content within contigs in a cluster is another metric that can be

used for clustering validation. The largest variation in GC was seen at a threshold of 0.99 at

±44.8%, at 0.97 the largest variation was ±17.5% and the largest variation seen at 0.997

was ±5.0% followed by 4.9% at 0.999. The average standard deviation was also impacted

as the threshold changed, with 0.97 having an average SD of ±2.37, 0.99 an average SD of

±3.09, 0.997 an average SD of ±1.40 and 0.999 an average SD of ±1.13.

Figure 5 shows the percentage classification from Kraken at genus-level at each of the

four thresholds. Whilst the classification percentages follow the same profile, 0.997 (yellow)

has the most clusters classified to 100% identity (63, when compared to 32 at 0.97, 44 at

0.99, and 38 at 0.999).

42

Figure 5: Percentage taxonomic identity for each of the clusters as defined by Kraken. At
different Pcc thresholds; 0.999 (dark grey), 0.997 (yellow), 0.99 (blue) and 0.97 (light grey).

Figure 6 shows the visual output from CLUSTard for the largest four clusters at each of

the four thresholds. Included in the visual output (Fig. 6) are other metrics that show

changes as the threshold increases. At the lowest two thresholds (0.97 and 0.99) the largest

cluster for each contains thousands of contigs with lower N50 lengths than the largest

cluster for each of the two higher thresholds. At 0.97 the largest cluster has 13,578 contigs

with a total size of 385Mbp and an N50 length of 40,307bp. The largest cluster for 0.99 is

made up of 3,623 contigs with a total size of 110Mbp and an N50 length of 41,756bp. In

contrast, at a threshold of 0.997 the largest cluster is made up of 21 contigs, at a total size of

6Mbp with an N50 length of 448,341bp and at a threshold of 0.999 the largest cluster is

made up of 14 contigs at a total length of 4.9Mbp with an N50 length of 386,138bp. At lower

thresholds a greater variation is seen in the abundance values (grey area) than when the

Pcc threshold is increased.

The largest clusters for both 0.97 and 0.99 also have much lower coverage, 66-fold (±47)

and 80.2-fold (±41.1) respectively, than the largest clusters for 0.997 and 0.999 at 723.8-fold

(±111.8) and 748.3-fold (±85.7) respectively.

43

Fi
gu

re
 6

: T
he

 o
ut

pu
t

pl
ot

s
cr

ea
te

d
by

 th
e

CL
US
Ta
rd

 p
ip

el
in

e
fo

r t
he

la

rg
es

t f
ou

r c
lu

st
er

s
pr

od
uc

ed
 a

t e
ac

h
of

 th
e

fo
ur

 P
cc

 th
re

sh
ol

ds
.

Th
e

fir
st

 li
ne

 o
n

ea
ch

 p
lo

t i
s

th
e

cl
us

te
r i

de
nt

ity
. T

he

se
co

nd
 li

ne
 s

ho
w

s
th

e
nu

m
be

r o
f c

on
tig

s
cl

us
te

re
d,

 th
e

co
ve

ra
ge

(±

1S
D

) o
f t

he
 c

lu
st

er
 a

nd

th
e

si
ze

 o
f t

he
 c

lu
st

er
 in

Kb

p.
 T

he
 th

ird
 li

ne
 s

ho
w

s
th

e
G

C
 c

on
te

nt
 o

f t
he

cl

us
te

r (
±1

SD
) a

nd
 th

e
fo

ur
th

 li
ne

 N
50

 le
ng

th
. T

he
n

th
e

co
m

pl
et

en
es

s
an

d
co

nt
am

in
at

io
n

va
lu

es
 a

re

on
 th

e
ne

xt
 li

ne
 a

nd
 th

e
to

p
Kr

ak
en

 id
en

tit
y

on
 th

e
fin

al

lin
e.

 T
he

 p
lo

t t
he

m
se

lv
es

sh

ow
s

th
e

re
la

tiv
e

ab
un

da
nc

e
of

 th
e

cl
us

te
r

ac
ro

ss
 a

ll
tim

e
po

in
ts

, h
er

e
th

e
co

lo
ur

s
co

rre
sp

on
d

to

th
e

fo
ur

 d
ig

es
te

rs
 (1

=
pu

rp
le

, 2
=b

lu
e,

 3
=g

re
en

,
4=

ye
llo

w
) a

nd
 th

e
fe

ed

(p
in

k)
. T

he
 g

re
y

ar
ea

 s
ee

n
on

 th
e

fig
ur

es
 s

ho
w

 th
e

ra
ng

e
in

 a
bu

nd
an

ce
 v

al
ue

s.

44

As the input data was used for each CLUSTard run the names of the contigs that remain

consistent meaning it is possible to compare clusters between thresholds.

For example, in Figure 6 the cluster c_002784 appears in 0.99, 0.997, and 0.999 but it

does not appear in 0.97. However, all contigs that are in Cluster_c_002784 at the threshold

0.99 are present in Cluster_c_00719 at 0.97 (this inconsistency is due to the fact that the

clusters are named based on the longest contig present).

These clusters are directly compared in Table 3. The number of contigs in the cluster and

the total size of the cluster decreased as the threshold increased and N50 length increased

as the threshold increased. The variation seen in the fold-coverage decreased as the

threshold increased as did the variation in GC content. Both completeness and

contamination decreased as the threshold increased. The number of predicted genes

decreased as the threshold increased.

Table 3: Cluster statistics for four comparable clusters over the four Pcc thresholds.

Pcc Cluster
ID

Contig

s

Size
(Mb
p)

N50
(bp)

Fold-
coverage

GC-content
(%)

Compl
etenes
s (%)

Contami
nation

(%)
Predicted

genes

0.97 c_000719 13,578 385 40,307 66.0 (±47.0) 51.7 (±13.4) 100.00 8339.33 5528

0.99 c_002784 213 7.8 53,522 50.1 (± 15.0) 60.8 (±2.4) 78.47 5.32 1397

0.997 c_002784 122 5.7 60,235 53.5 (±12.9) 61.5 (±2.0) 58.05 1.75 1144

0.999 c_002784 62 4.5 79,591 55.1(±1.7) 61.9 (± 1.7) 57.11 1.94 1013

Using different raw reads

To determine the impact that different sequencing technologies could have on the result

of clustering. The CLUSTard pipeline was then repeated using three different input

assemblies from the NAB dataset (NAB SR, NAB LR and NAB LR-pol) at a Pcc threshold of

0.997, with the same time-series Illumina raw-reads used for abundance clustering. Table 4

45

shows the binning statistics for the clusters produced from the clustering of each different

input assembly.

Table 4: Cluster statistics for the CLUSTard run with three different assemblies, NAB
Illumina assembly (NAB SR), NAB Nanopore assembly (NAB LR) and NAB Nanopore
assembly polished with Illumina reads (NAB LR-pol).

A. As defined in Bowers et al. (2017) a high-quality draft metagenome-assembled genome (MAG) is
classified as over 90% complete and under 5% contaminated and should also encode 16S, 5S and 23S
rRNA genes as well as the tRNAs of 18 of the 20 amino acids.

B. As defined in Parks et al. (2017), genome quality of a MAG is completeness minus 5x contamination

The Illumina-only (NAB SR) CLUStard run produced the greatest number of clusters

(2184) but binned a small percentage of total sequences (0.04%) and total bases (0.85%).

All clusters from the short-read only assembly had under 5% contamination, but none of the

clusters reached >90% completeness, meaning no cluster would pass the criteria necessary

to be classified as a high-quality MAG. However, seven clusters (0.32%) passed the Parks

et al. (2017) criteria.

The nanopore-only assembly (NAB LR) CLUSTard run produced 331 clusters, binning

3.62% of the total input sequence and 19.07% of total bases. After the nanopore assembly

 Assembly

 NAB SR NAB LR NAB LR-pol

No. of clusters 2184 331 327

Total size of bins (bp) 1,155,485,978 322,246,267 383,836,160

Percentage contigs binned (%) 0.04 3.62 4.51

Percentage bases binned (%) 0.85 19.07 22.35

MAGs >90% complete 0 0 30

MAGs <5% contamination 2184 323 310

No. of high-quality draft MAGsA 0 0 20

Total size high-quality clusters (bp) 0 0 62,149,967

No. MAGs with a genome quality ³50 B 7 2 93

No. of clusters with a complete 16S 7 113 138

Predicted genes 45,052 93,505 132,318

 46

is polished (NAB LR-pol) there are fewer total clusters but there was a slight increase in the

number of sequences (4.51%) and bases binned (22.35%). None of the LR clusters reached

>90% complete and therefore none could be classified as high-quality MAGs. After

polishing, 20 clusters can be classified as high-quality draft MAGs. With the LR unpolished

assembly two clusters passed Parks et al. (2017) criteria increasing to 93 clusters after the

assembly is polished. When polished the number of clusters with a complete 16S rRNA

gene increases from 113 to 138.

Figure 7: The percentage of different length contigs binned (dark blue) or unbinned
(light blue) for each of the CLUSTard runs with the three assemblies.

Fig. 7 shows the percentage of contigs that have been binned for each of the assemblies.

Although due to the large proportion of contigs in the SR assembly below 2000bp

(16,877,845) it was necessary to increase the minimum contig length used for clustering to

2000bp for the SR assembly due to the computational challenge performing pairwise

analysis for this many contigs. The CLUSTard run with the short-read assembly clustered a

similar percentage of reads >50kbp as the other assemblies, but a much lower percentage

of contigs ≥100kbp. Both long-read unpolished and polished assemblies have similar

clustering success at lengths of ≥100kbp. However, when the long-read assembly is

polished, contigs over 700kbp have clustered more successfully.

 47

Figure 8: Distribution of the N50 length of the clusters produced by CLUSTard with
each of the three assemblies.

The distribution of the N50 length for all clusters produced by each CLUSTard run can be

seen in Fig. 8. The short-read assembly CLUSTard run produced clusters with a lower N50

length when compared to the long-read assembly CLUSTard runs both before and after

polishing. A slight increase in N50 length is observed after the long-read assembly has been

polished.

The short-read CLUSTard run produced 18/2184 clusters with at least one complete 16S

rRNA gene. The nanopore-unpolished run produced 116/331 clusters increasing to 140/327

clusters with at least one complete 16S rRNA gene when the assembly is polished.

Figure 9: Percentage taxonomic identity at genus level for each of the clusters as defined
by Kraken. From each of the three NAB LR (dark grey), NAB LR-pol (yellow) and SR (blue).

Figure 9 shows the genus-level Kraken identity for each of the three assemblies. After the

NAB LR assembly was polished there was a slight increase in the Kraken classification,

 48

from 59 to 63 clusters at 100% identity. In contrast, 244 of the NAB SR clusters were

classified to 100% identity by Kraken.

Figure 10 shows the largest four clusters produced after each of the three assemblies

were run through the CLUSTard pipeline. The largest cluster produced by the short-read

CLUSTard run (SR) is made up of 22 contigs with a total size of 3.03Mbp and an N50 length

of 153,660bp, with a mean coverage of 17.5-fold (+-1x). The largest long-read unpolished

cluster is made up of 104 contigs and a total size of 6.95Mbp and an N50 of 131,201bp with

an average coverage of 134.6-fold (+-49.9). When the assembly is polished the largest

cluster is made of 21 contigs with a total length of 6.19Mbp and an N50 length of 448,341bp

with an average coverage of 723.8-fold (+-111.8).

Figure 10: The output plots created by the CLUSTard pipeline for the largest four clusters
produced with each of the assemblies. The first line on each plot is the cluster identity. The
second line shows the number of contigs clustered, the coverage (±1SD) of the cluster and the
size of the cluster in Kbp. The third line shows the GC content of the cluster (±1SD) and the
fourth line N50 length. Then the completeness and contamination values are on the next line and
the top Kraken identity on the final line. The plot themselves shows the relative abundance of the
cluster across all time points, here the colours correspond to the four digesters (1= purple,
2=blue, 3=green, 4=yellow) and the feed (pink). The grey area seen on the figures show the
range in abundance values.

 49

As three different assemblies have been used as the input for each CLUSTard run the

lack of coherence in contig names between each assembly makes the comparison between

the clusters challenging. However, based on the similar GC-content, the similarity of the

abundance change profiles and the similar Kraken identity seen in figure 10 it is highly likely

that tig016143 and c_00172 contain much of the same sequence and as do tig071031 and

c_01535. After polishing the tig00016143/c_0172 pair increases from 36.94% complete to

91.21% complete. With an increase in contamination from 0.06% to 2.20%. The total length

also increases from 5,910,400bp to 5,958,300bp and the N50 length also increases from

644,004bp to 650,147bp although the number of contigs does not increase from 11. When

polished the tig000071031/c_01535 pair increases from 25.53% to 76.57% complete and

from 0.02% to 0.16% contaminated. With a decrease in the total length from 5,986,000bp to

5,925,400bp and an increase in N50 length from 152,233bp to 155,012bp. Although both are

made up of 47 contigs.

Binning Validation

Comparing to other clustering software

In order to validate the clustering results of the CLUSTard pipeline, the NAB LR-pol

assembly was run through CONCOCT - a popular program used for metagenomic assembly

clustering. As seen in table 5, CONCOCT successfully binned all but one contig from the LR

Pol assembly - producing 368 clusters with a total size of 1,717,414,419bp. However, only

eight clusters passed the criteria necessary in order to be classified as a high-quality MAG at

a total size of 32,950,345bp.

 50

Table 5: Cluster statistics for the CONCOCT run with the NAB LR-pol assembly

 Concoct NAB LR-pol

Number of clusters 368

Percentage contigs binned (%) 100

Total size of bins (bp) 1,717,414,419

MAGs >90% complete (%) 161

MAGs <5% contamination (%) 145

High-quality draft MAGsA 8

Total size high-quality draft MAGs 32,950,345

No. MAGs with a genome quality ³50 B 51

% Assembly mapping back to clusters 100

Number of clusters with a complete 16S 258

Predicted genes 355,597
A. As defined in Bowers et al. (2017) a high-quality draft metagenome-assembled genome (MAG) is

classified as over 90% complete and under 5% contaminated and should also encode 16S, 5S and
23S rRNA genes as well as the tRNAs of 18 of the 20 amino acids.

B. As defined in Parks et al. (2017), genome quality of a MAG is completeness minus 5x contamination

The N50 length for CONCOCT clusters can be seen in Figure 11. When compared to the

CLUSTard_997 run on the same assembly (see Fig. 8) CONCOCT produced more clusters

with a lower N50.

Figure 11: Distribution of the N50 length of the clusters produced by CONCOCT with
the NAB LR-pol assembly

 51

Figure 12: Percentage taxonomic identity at genus level for each of the clusters as
defined by Kraken for the CONCOCT NAB LR-pol analysis.

The percentage identity of the Kraken classification at genus level from each cluster

produced by CONCOCT can be seen in Fig. 12. Only three clusters were classified to a 100%

identity and only 33/368 clusters were classified at ³50% identity.

Statistics for the eight clusters classified as high-quality MAGs can be seen in Table 6. In

comparison to the high-quality MAGs produced by CLUSTard, CONCOCT produced fewer high-

quality MAGs eight compared to 20. The majority of these clusters have many more contigs

than the MAGs produced by CLUSTard - and the only two clusters with a comparable

number of contigs are significantly smaller in size. While the majority of the clusters are

made up of more contigs than the CLUSTard run no outstanding difference is seen in the

total size of clusters, but a decrease is seen in the N50 size. These MAGs are also less tight

in GC content ranging from ±1.36% to ±4.83% SD when compared to ±0.5-2.2%. CONCOCT

MAGs were also identified at family level to a lower percentage than CLUSTard MAGs - with

only one cluster (129) reaching over 90% identity.

 52

Table 6: Genome statistics of the eight high-quality metagenome-assembled
genomes (MAGs) produced in the CONCOCT run of the NAB LR-pol assembly

Clust
ID

No.
Con
tigs

Size (bp) N50 (bp)
GC-

content
(%)

Com
plete
ness
(%)

Con
tam
inat
ion
(%)

Kraken Top
Genus ID

Pred.
genes 16S match

129 28 3,837,03
2

231,831 39.92
±1.35

96.58 0.26 85.71%
Petrimonas

1070 94.24%
Dysgonomonad
aceae

195 117 5,828,40
1

79,800 60.81
±1.86

96.02 2.27 4.27%
Streptomyces

1221 91.19% SGB-4

244 55 3,411,35
8

120,192 54.25
±4.64

95.45 2.73 20.00%
Anaerolinea

1122 92.31%
Anaerolineacea
e

276 20 3,193,48
4

242,872 52.09
±1.78

95.00 2.42 15.00%
Christensenella

1085 94.94%
Christensenella
ceae

331 54 5,703,50
7

250,817 65.92
±2.17

98.13 4.37 25.93% Rubrivivax 1899 98.15%
Burkholderiacea
e

368 39 5,048,25
8

202,618 53.96
±4.83

92.82 3.37 10.26%
Pseudomonas

1318 89.96%
Leptospiraceae

42 24 2,616,47
1

234,423 56.00
±3.90

91.59 3.03 20.83%
Dehalococcoides

975 93.95%
Christensenella
ceae

59 44 3,311,83
4

125,022 64.30
±3.49

92.32 4.60 15.91%
Streptomyces

1116 91.88%
Spirochaetacea
e

Clustering another dataset

To allow the comparison of CLUSTard’s clustering to a ‘known truth’ a well characterised

a time-series of a small metagenome dataset was chosen. This dataset from Sharon et al.

(2013) (Sharon_DS) is made up of an 11 timepoints of short-read sequencing of an infant

faecal microbiome. The raw-reads were reassembled using SPAdes (v 3.13.1) - assembly

statistics can be seen in table 7.

 53

Table 7: Metagenome assembly statistics for the Sharon et al. (2013) short read assembly

Number

of
sequenc

es

Total
length (bp)

Mean
contig
length
(bp)

Maximum
contig

length (bp)

N50
length
(bp)

% Raw SR
mapping

Complete
16S

sequence
s (partial)

Sharon_DS 42,330 45,307,024 1,070.3 1,069,435 16,398 94.27 0 (11)

The assembly was run through CLUSTard at a Pcc threshold of 0.997 with an estimation

of the sampling order (based on the abundance plots).

Table 8: Binning statistics of the Sharon et al. (2013) dataset when run through the
CLUSTard pipeline.

 Sharon DS

Number of clusters 79

% binned sequences 5.32

% binned bases 64.46

Total size binned (bp) 29,203,531

MAGs > 90% complete 7

MAGs < 5% contam 77

High-quality draft MAGsA 0

No. MAGs with a genome quality ³50 B 7

Number of clusters with complete 16S 0

Total no. predicted genes 9931
A. As defined in Bowers et al. (2017) a high-quality draft metagenome-assembled genome (MAG) is

classified as over 90% complete and under 5% contaminated and should also encode 16S, 5S and 23S
rRNA genes as well as the tRNAs of 18 of the 20 amino acids.

B. As defined in Parks et al. (2017), genome quality of a MAG is completeness minus 5x contamination

The binning statistics for the Sharon et al. (2013) dataset can be seen in table 8. In total

79 clusters were produced, binning 5% of sequences and 64.46% of all bases for a total

binned size of 29Mbp. The distribution of contigs binned and the N50 distribution of the

contigs can be seen in Appendix Fig. 2 and 3 respectively. In total seven MAGs pass the

 54

completeness and contamination criteria but not the gene completeness for a high-quality

metagenome.

Figure 13: Percentage identity at genus level of the Sharon_DS CLUSTard clusters as
determined by Kraken

Fig. 13 shows the percentage identity of the Kraken classification at genus level of the

Sharon_DS clusters. With the Sharon_DS CLUSTard run, Kraken was more successful, at

genus level classifying 76 contigs at ³50% identity, 67 of these contigs at 100% identity.

The output for the largest four clusters produced by the Sharon CLUSTard run can be

seen in Appendix Fig. 4. The seven clusters with CheckM completeness >90% and

contamination <5% can be seen in fig. 14. The seven clusters range in size between 1.80 to

2.86Mbp. All but one was classified to 100% identity at species level by Kraken. The

abundance variation (grey area) is high in some clusters NODE_75, NODE_161,

NODE_220 and NODE_342 in particular.

 55

Figure 14: The seven highly complete clusters produced during the Sharon_DS
CLUSTard run. The first line on each plot is the cluster identity. The second line shows the
number of contigs clustered, the coverage (±1SD) of the cluster and the size of the cluster
in Kbp. The third line shows the GC content of the cluster (±1SD) and the fourth line N50
length. Then the completeness and contamination values are on the next line and the top
Kraken identity on the final line. The plot themselves shows the relative abundance of the
cluster across all time points. The grey area seen on the figures show the range in
abundance values.

Figure 15: The relative abundance profile of the clusters produced from the
Sharon_DS CLUSTard run, with the species identity determined by Kraken.

 56

The abundance profile for the timepoints at species-level can be seen in figure 15, this

follows a similar pattern to what is seen in Figure 2 from the Sharon et al. (2013) paper.

Although the order of the samples for the CLUSTard run were estimated, some species

follow a similar abundance profile to those in the Sharon et al. (2013) paper. With

Enterococcus faecalis (purple) remaining largely abundant throughout the experiment,

Staphylococcus aureus (light blue) increasing in abundance at the end of the experiment

and Cutibacterium avidum (likely labelled as Propionibacterium Carrol in the Sharon el al.

(2013) paper) being abundant at the start of the experiment, decreasing in the middle days

and increasing at the end. However, Finegoldia magna is shown to be much more abundant

in the output from the CLUSTard run than in Sharon et al. (2013). Of the abundant and rare

species outlined in Sharon et al. (2013), 10/13 species were present in the CLUSTard

dataset.

Kraken Databases

As it is possible to use a different database with Kraken and due to the difference in

Kraken’s classification success between the datasets, and also the fact that many genomes

identified in metagenomes remain un-characterised. Kraken was run to identify clusters with

both the original Kraken index and a database that includes many MAGs identified from

environmental samples (here, termed Kraken_GTDB) (Méric et al. 2019).

 57

Figure 16: The percentage identity at genus-level of the NAB LR-pol 0.997 clusters
after classifying with Kraken using both the Kraken_DB (dark blue) and the
Kraken_GTDB (light blue) indexes.

As shown in Fig. 16 Kraken_GTDB classified more clusters at 100% identity (122) than

Kraken_DB (62) and also has classified many clusters at a higher percentage identity than

Kraken_DB, with 248 clusters at ³50% identity compared to 92 clusters with Kraken_DB.

Kraken_GTDB was more successful at all taxonomic levels, classifying 165 clusters to 100%

identity at family level compared with the 72 identified by Kraken_DB.

Biology

One of the main goals of the CLUSTard pipeline was to allow the quick and easy analysis

of large metagenomic datasets. Here, the CLUSTard pipeline enabled the NAB dataset to be

further analysed. Based on the earlier metrics the NAB LR-pol assembly that was clustered

with a Pcc threshold of 0.997 and classified by Kraken_GTDB was chosen to continue

analysis with.

Abundance Changes

 58

In order to investigate the community dynamics as a whole, the relative abundance of

each timepoint was explored. After the NAB_pol 0.997 clusters were classified to genus

level by Kraken using the Kraken_GTDB index the relative abundance changes of the 20

most abundant genera at each timepoint were plotted and can be seen in Figure 17. 169

different genera were identified by Kraken_GTDB in the NAB dataset in total.

Over time, a change in the abundance profile can be seen – this pattern is highly similar

between the four digesters. However, the abundance profile of the feed is vastly different –

with the top 20 most abundant genera overall not being overly abundant in the feed, only

Flavobacterium is present in a high level and this is not present to a particular high degree

within the digesters. As the top twenty abundant genera differ for the feed a second

abundance plot was produced with only the feed samples in order to accurately show what

was there, this can be seen in Appendix Fig. 5. In the feed only minor differences in

abundance were seen over time.

 59

Fi
gu

re
 1

7:
 T

he
 re

la
tiv

e
ab

un
da

nc
e

pr
of

ile
 a

t g
en

us
 le

ve
l o

f t
he

 c
lu

st
er

s
pr

od
uc

ed
 fr

om
 th

e
N

A
B

LR

- p
ol

 C
LU
ST
ar
d

ru
n,

 w
ith

 th
e

ge
ne

ra
 d

et
er

m
in

ed
 b

y
Kr
ak
en

 u
si

ng
 th

e
da

ta
ba

se
 K

ra
ke

n_
G

TD
B.

 T
he

to

p
19

 m
os

t c
om

m
on

 g
en

er
a

ac
ro

ss
 a

ll
sa

m
pl

es
 a

re
 s

ho
w

n
in

 th
e

pl
ot

, w
ith

 a
ll

o t
he

r g
en

er
a

co
nt

ai
ne

d
in

th

e
ot

he
r g

ro
up

 (g
re

y)
.

 60

High-quality MAGs

In order to investigate community dynamics and to determine the success of clustering,

the 20 high-quality MAGs produced by the CLUSTard 0.997 run (shown in Figure 18) were

further investigated by comparing the cluster size, GC content and 16S rRNA sequences to

related genomes - defined by the Kraken_DB and Kraken_GTDB classification. The

outcome of which can be seen in Appendix table 1.

The clusters c_03119, c_01295, c_63114, c_00486, c_000167, c_63008, and c_63947 all

have genome sizes within ±0.5Mbp of the Kraken_GTDB-identified related genome and the

related genome has a GC content that falls into ±1 SD of the MAG GC-content.

 61

Fi
g u

re
 1

8:
 T

he
 o

ut
pu

t
pl

ot
s

fo
r t

he
 2

0
hi

gh
-

qu
al

ity
 m

et
ag

en
om

e -
as

se
m

bl
ed

 g
en

om
es

(M

A
G

s)
 id

en
tif

ie
d

fr
om

th

e
N

A
B

 L
R

-p
ol

 C
LU
ST
ar
d

ru
n.

 F
irs

t l
in

e
on

 e
ac

h
pl

ot

is
 th

e
cl

us
te

r i
de

nt
ity

. T
he

se

co
nd

 li
ne

 s
ho

w
s

th
e

nu
m

be
r o

f c
on

tig
s

cl
us

te
re

d,
 th

e
co

ve
ra

ge

(±
1S

D
) o

f t
he

 c
lu

st
er

 a
nd

th

e
si

ze
 o

f t
he

 c
lu

st
er

. T
he

th

ird
 li

ne
 s

ho
w

s
th

e
G

C

co
nt

en
t o

f t
h e

 c
lu

st
er

(±

1S
D

) a
nd

 th
e

fo
ur

th
 li

ne

N
50

 le
ng

th
. T

he
n

th
e

co
m

pl
et

en
es

s
an

d
co

nt
am

in
at

io
n

va
lu

es
 a

re

on
 th

e
ne

xt
 a

nd
 th

e
to

p
Kr

ak
en

 id
en

tit
y

on
 th

e
fin

al

lin
e.

 T
he

 p
lo

t t
he

m
s e

lv
es

sh

ow
s

th
e

re
la

tiv
e

ab
un

da
nc

e
of

 th
e

cl
us

te
r

ac
ro

ss
 a

ll
tim

e
po

in
ts

, h
er

e
th

e
co

lo
ur

s
co

rre
sp

on
d

to

th
e

fo
ur

 d
ig

es
te

rs
 (1

=
pu

rp
le

, 2
=b

lu
e,

 3
=g

re
en

,
4=

ye
llo

w
) a

nd
 th

e
fe

ed

(p
in

k)
. T

he
 g

re
y

ar
ea

 s
ee

n
on

 th
e

fig
ur

es
 s

ho
w

 th
e

ra
ng

e
of

 a
bu

nd
an

ce
 v

al
ue

s.

 62

Figure 19: Phylogenetic tree generated by autoMLST and visualised in iTOL, placing all
20 high-quality metagenome assembled genomes (highlighted in blue) into phylogenetic
context.

All 20 MAGs were run through autoMLST to place them within a reference tree which can

be seen in Figure 19. As autoMLST only outputs 50 leaves, each of the 20 were separately

run through autoMLST to place the MAGs within a wider tree. This highlighted other MAGs of

interest – for example c_77547 which did not match any species at a high degree of

classification for either Kraken database and differed in GC content to the related species

but has been placed in the middle of a Flavobacterium tree (Appendix Fig. 6), with

Flavobacterium aquatile as the closest related species. This also allowed the cluster

c_03119, which matched the size and GC content of the Nitrospiria species identified by the

 63

Kraken databases very closely, to be seen in a tree of closely related Nitrospiria species in

Appendix Fig. 7. For certain MAGs AutoMLST was not particularly successful in placing them

in trees, this often matched the MAGs that Kraken_DB failed to highly classify, for example

the cluster c_00172, whose AutoMLST tree can be seen in Appendix Fig. 8.

 64

Discussion

Assembly

The assemblies required for this project proved to be a computational challenge not usual

for metagenomic assemblies, which are challenging often due to the large dataset sizes and

diverse population. Multiple challenges were faced by the Bioinformatics Core when

assembling and polishing the long-read nanopore assembly. The first challenge faced was

with the assembly software Canu (Koren et al. 2017) which requires a lot of memory and

would often time out on the computing cluster. Whilst this issue was circumvented by

completing the assembly on Google Cloud, this highlights the issue of memory when

assembling metagenomes and especially when dealing with long-read sequencing. This

area of bioinformatics is seeing rapid development, the software metaFlye (Kolmogorov et

al. 2019) has since been released and is reportedly 10 to 300-fold faster, with an increase in

assembly contiguity to Canu and is also capable of dealing with 150GB sequencing runs

(Kolmogorov et al. 2019).

Problems were also encountered when assembling the short reads, metaSPAdes is

purported to be the best option for short read metagenomic assembly (Vollmers et al. 2017).

However, it was not possible to run metaSPAdes successfully on this dataset as it either ran

out of memory or timed out before reaching even the first checkpoint. For this reason, the

NAB SR assembly was completed using MEGAHIT, which is recommended by Vollmers et al

(2017) where computational resources are limited. Although MEGAHIT completed the

assembly without issue, it is highly probable that the assembly is sub-optimal as MEGAHIT

has been reported to be biased towards lower abundant organisms (Vollmers et al. 2017).

Whilst other short-read metagenome assemblers exist it seems to be that this area is under

less active development than that of long-read metagenomics.

After all three assemblies; short-read; long-read; and long-read polished, had been

completed it enabled the comparison between them. Although the short-read assembly

 65

(NAB SR) produced a larger assembly it was less contiguous and therefore made up of

more contigs of a shorter size – which is to be expected with short-read only assemblies as

they cannot span regions of repeat (Goldstein et al. 2019). The total size of the Illumina

assembly is around eight times more than the long-read assembly (NAB LR) of the same

metagenome. This is probably because of both the increase in total size of the input raw-

reads and the sub-optimal assembly leading to redundancy within the contigs, because the

increase in size makes it much harder for the assembly software to assemble. As both

MEGAHIT and Canu are each specialised for short-reads and long-reads respectively, they

cannot be easily compared to each other. However, the overlap error correction step of Canu

(Koren et al. 2017) increases confidence in the results from Canu as there is no such pre-

processing step present in MEGAHIT (Li et al. 2015). However, it could be that the Nanopore

assembly is missing contigs or organisms that appear in the SR data and further research

should be done to either prove or disprove this.

The percentage of raw short-reads mapping back to the assemblies also indicates that

data could be missing. Unsurprisingly, as the assembly was produced using them, 96.79%

of the raw short-reads mapped back to the NAB SR assembly. However, even after the NAB

LR assembly was polished by the raw short-reads (NAB LR-pol), only 78.36% of the raw

short-reads mapped back to the assembly. There are many reasons that could cause this.

As mentioned earlier it could be that the NAB LR and LR-pol assemblies are not capturing

the entirety of the community. Only the later time points (T15 and T17) were long read

sequenced so it is possible that an assembly of these timepoints does not capture species

present earlier on in the time course. Another reason may be that some of the raw-reads did

not match closely enough to the nanopore assembly. Nanopore sequencing is much less

accurate than Illumina sequencing and prone to homopolymers (Goldstein et al. 2019).

These sequencing errors may remain in the assembly and decrease the percentage of reads

mapping back, especially as BWA is not built to deal with the increased error rates of

Nanopore sequencing (Li and Durbin 2009).

 66

Increased accuracy of the nanopore assembly was attempted by polishing the long-read

assembly with the raw short-reads. Due to computational limitations only the short reads

from time points 15 and 17 were used to polish this assembly. It may be possible to increase

the accuracy of the sequence and therefore the number of reads mapping back by polishing

the assembly with all available short reads.

16S sequences were used to represent gene completeness in the assemblies as these

sequences are well conserved across all bacterial groups (Janda and Abbott 2007) and

therefore easy to identify. The short-read assembly had fewer complete 16S sequences

when compared to the long-read assembly both before and after polishing, but many more

partial sequences. This indicates that the gene completeness of the Illumina sequence is

likely to be much worse which potentially caused issues downstream in the clustering

pipeline. This lack of gene completeness in the short-read assembly is in line with Goldstein

et al. (2019) and is likely caused by the more fragmented assembly.

Snakemake

Snakemake allowed the easy chaining together of different programs and python scripts

to build the CLUSTard pipeline. The use of Snakemake enabled the pipeline to be run with

minimal supervision and was relatively painless over the seven separate times it was run for

this project. Only one command was needed to run the entire pipeline once the configuration

file had been altered to show CLUSTard where to look for the input files.

Snakemake also enabled different steps to be run as a job on the cluster in parallel or

locally. This vastly decreased the real-time the pipeline took to run as certain steps in the

process took only seconds to run with minimal memory requirements. They could be

classified as local jobs and run locally without the need to wait in the computing cluster

queue which often makes up the majority of the analysis time. The option of running jobs on

the cluster in parallel and the fact that cluster jobs can be given different parameters for the

computing cluster further reduced the amount of downtime waiting in the computing cluster

queue.

 67

The use of Conda environments for containerisation in Snakemake meant that no

installation by the user was required for any of the packages used in the pipeline other than

the Snakemake package itself (which can also be installed via Conda, although this would

require user input) and any dependencies were also dealt with.

The pipeline was easy to re-run on a different dataset, or under different parameters as

Snakemake only runs jobs if the modification time of the input files is newer than the output

files, or if the output files are not present (Köster and Rahmann 2012).

As Snakemake is a Python-based workflow manager it provides an easy entry point.

However, as the pipeline got increasingly complex so did Snakemake. In comparison to

many programming languages and bioinformatics software Snakemake is currently lacking a

large online community or tutorials outside of the official documentation, which made

problem solving of issues encountered during the pipeline development challenging. One

such issue was related to the dynamic function in Snakemake which can be used when the

number of output files expected is not known before the job is run, for example the number

of FASTA files produced during the clustering. This feature could not be used in this pipeline

due to a file locking issue on our local computing cluster, which lead to the pipeline having to

be split up into multiple different “sub-workflows”.

Benchmarking the CLUSTard pipeline using these datasets would have been beneficial,

however how to benchmark within the Snakemake wrapper remains elusive. Snakemake

does have its own in-built benchmarking function but this was unhelpful as only wall-clock

time was given and not CPU hours which is much more useful when benchmarking jobs that

can run in parallel or across multiple cores on the computing cluster. It also was not

apparent if this included time spent waiting in a computing cluster queue or not.

Another issue faced was with certain programs that require a set-up step when run for the

first time. For example, when Snakemake first initiated the Conda environment for CheckM it

prompted the user to set up a database which could not be done whilst in Snakemake.

Therefore, in this pipeline a local installation of CheckM was used to circumvent this issue. A

 68

workaround for this issue should be implemented into the CLUSTard pipeline to enable

CheckM to be run inside a Conda environment and thereby allow it to be portable to any

system.

Pearson’s correlation coefficient threshold

As part of the testing process for CLUSTard an optimal threshold value for the Pearson's

Correlation Coefficient (Pcc) value needed to be chosen. This threshold meant that only

contigs with a correlation value above this were clustered together. It was, therefore,

hypothesised that a lower Pcc threshold would allow less stringent clustering, inevitably

clustering more contigs but potentially producing lower quality bins. Contrary to this, it was

hypothesised that too high a threshold would be too stringent and potentially filter out contigs

that should be clustered. Ultimately, of the four thresholds tested, the value of 0.997 was

chosen as a compromise between minimising data loss and the overall quality of clusters.

Although this threshold value did not produce the largest number of clusters (327 compared

to 931 at a threshold of 0.97) those clusters that it did produce were higher in quality as 6%

of clusters were classified as high-quality metagenome-assembled genomes (MAGs).

At all Pcc thresholds a small percentage of short contigs (<1Kbp) were successfully

clustered. This is probably because of the reduced number of short read sequences

mapping back to the contig and these smaller numbers cause greater variation between

abundance values impacting the correlation value. Larger contigs do appear to cluster better

than shorter contigs at all thresholds which is probably due to increased number of raw

reads mapping to the contigs meaning that less noise is affecting the correlation value.

However, a decrease in the percentage of larger contigs clustering is seen at a threshold of

0.999. This may be because these longer contigs would only need a couple of bases

different to other contigs in order to no longer be clustered together at this threshold. These

different bases or regions could be caused by the high error rate of nanopore sequencing,

an error in the assembly or inherent differences within the population. Also, any other related

contigs could be having the same problems hence compounding the issue.

 69

Another difference seen between the thresholds is the N50 length of the clusters, as the

threshold increased so did the average N50 length. This is probably because of the

decrease in the number of smaller contigs being clustered thereby increasing the overall

N50 length. This increased N50 length means that the clusters will be less fragmented which

indicates that the assembly software has performed better on the dataset. But ultimately N50

length only gives a somewhat biased representation especially when the estimated genome

size of the clusters is not known as it does not indicate the actual quality of the assembly as

long contigs containing erroneous sequences could be confounding this value (Castro and

Ng 2017). However, the N50 length can be compared here as it’s all the same dataset.

Another metric that changed as the threshold increased was the percentage classification

achieved by Kraken. At a threshold of 0.997 the greatest number of clusters were classified

to 100% genus level. This indicates that higher quality clusters were produced at this

threshold as any erroneous contigs in the cluster would pull the Kraken classification value

down.

The variation seen in GC-content within a cluster is also a good metric for clustering

validation. Whilst prokaryotic GC content varies massively the GC-content, between 15-75%

(Reichenberger et al. 2015), within a genome less so – although there are still regions with

very diverse GC content the overall variation within a genome is unlikely to be that high

(Bohlin et al. 2010). The average standard deviation in GC-content reduced from ±3.09 at a

threshold of 0.99 to ±1.40 at 0.997, reducing even further to ±1.13 at 0.999. This indicates

that a high threshold produced clusters of contigs with closer GC content probably due to

less contamination from sequences from different species. Although it is possible some of

this variation exists because of differing GC content across the genome, the high variation

seen within the GC content of some clusters produced at the thresholds 0.97 and 0.99 was

due to the presence of contigs with large regions of homopolymers in the cluster.

In order to directly compare the different thresholds, the clusters c_002784 (at 0.99,

0.997, and 0.999) and c_000719 in 0.97, which were identified as highly similar in

composition and therefore likely to be clusters of the same organism, were compared to

 70

each other. Ultimately, similar trends were seen between these clusters as were seen

between all the clusters - as the threshold decreased the N50 length increased, the variation

in GC content decreased and completeness and contamination also decreased. The less

contaminated clusters meant that analysis was easier - allowing Kraken to classify the

clusters to a higher degree which therefore meant that further analysis into the biological

nature of certain clusters would prove easier and more informative.

This cluster at a threshold of 0.97 (c_000719) is made up of 13,578 contigs at a size of

385Mbp with a CheckM contamination value of 8339%, which indicates that many different

species or strains are probably present in this cluster. This cluster seems to act as a catch-

all for many contigs that are clustered elsewhere when a more stringent threshold is applied.

These large ‘catch-all’ clusters seem to be common at lower thresholds with nine clusters at

0.97 and three clusters at 0.99 over 7.5Mbp with contamination values >100%. These

clusters also have a large grey area on the output plots produced meaning that they have a

large variation within the abundance of contigs.

 Overall, the choice of a Pcc threshold is ultimately a balance between the number of

useful clusters and the lack of contamination in the clusters produced. Although a higher

proportion of high-quality MAGs were produced at 0.997, it is possible that the 12 more high-

quality MAGs produced at the threshold of 0.97 could prove to be biologically meaningful

clusters that were not seen at 0.997. For this reason, those additional 12 high-quality MAGs

should also be investigated to determine if they hold any biological importance.

Whilst multiple Pcc thresholds were investigated it was by no means comprehensive,

thresholds should have been chosen stochastically over a wider range of values. However,

when the sPcc threshold of 0.90 was chosen, it timed out on this dataset before completing

the clustering step, showing this could end up with diminishing returns. Whilst, with more

time a result may be achieved at this threshold it is unlikely to cluster any better than 0.97

with a significant increase in time and computational power used. This may not be true for all

datasets, a smaller dataset or a better initial assembly may allow for clustering at lower

thresholds. It is also possible that other datasets may be clustered better at a different

 71

threshold depending on the diversity of the metagenome and a variety of other factors. It

would be wise to do the sPcc threshold analysis with another dataset - preferably one with a

known ground truth as the analysis done here was compounded by not knowing this.

Sequencing Technology

As this dataset was sequenced using both long-read sequencing and short read

sequencing it allowed the investigation into the effects that the type of sequencing

technology had on the CLUSTard pipeline and furthermore, the determination of which

sequencing technology would provide the best clustering results. Of the three assemblies

available for this dataset (SR, LR, and LR-pol), the assembly LR-pol was ultimately chosen

to continue analysis with. Comparison of the clustering results between the sequencing

technologies was hindered by the lack of coherence in contig names between different

assembly software, indicating the need for more consistency in contig naming methods

between assembly software.

Long-read polished versus unpolished

Initially, the LR-pol assembly was chosen over the unpolished assembly because of the

increase seen in the number of clusters with a complete 16S sequence and an increase in

the number of predicted genes in the clusters. This was not surprising as the number of

complete 16S sequences in the original assembly increased after polishing (from 590 to

2556). This indicates that genes can be more precisely predicted in the more accurate

polished assembly. As done with this dataset, polishing of Nanopore data with both short

and long raw reads is commonly done in order to overcome the higher error rate of

Nanopore sequencing whilst also maintaining the longer read length (Goldstein et al. 2019).

Similarly, the CheckM completeness values were poor prior to polishing with no clusters

reaching >90% completeness - meaning that no clusters could be classified as high-quality

draft MAGs. After polishing 30 clusters reached >90% complete. The reason behind this is

 72

also probably due to the increased error rate of the unpolished assembly as CheckM

completeness is calculated based on a series of marker genes. The errors present in the

assembly meant that the genes were not identified in the clusters.

Despite the increase in predicted genes and the decrease in sequence error after

polishing, only a minor increase was seen in Kraken classification value of 59 to 63 clusters

classified as 100% at genus level after polishing. This combined with Kraken’s success with

the short reads indicates that the algorithm for detecting the lowest common ancestors in

Kraken still struggles even with the reduced error present in the Nanopore polished

assembly.

An increased number of longer contigs were successfully clustered after the Nanopore

assembly was polished. Before polishing, the longer contigs were likely to contain more

sequencing errors. The reduction in the number of short raw reads mapping to the contig

would cause the contig to drop below the sPcc threshold required for clustering. The

reduction of sequence errors after polishing would therefore increase the likelihood of a long

contig being clustered. The increase in longer contigs being clustered together with the

overall increase of contig length in the polished assembly (the N50 increased from 38,925bp

to 39,579bp after polishing) meant that the cluster N50 lengths also increased after polishing

which produced more contiguous clusters.

Whilst the overall quality of the cluster increased after polishing, this increase was mainly

caused by the higher-quality input assembly that was achieved after polishing. As the

accuracy of Nanopore sequencing is likely to increase it is possible that high-quality

assemblies can be produced without requiring any short-read polishing, it is likely the same

could be possible with CLUSTard – requiring less data to produce an accurate assembly. As

the short reads already existed for this dataset no extra experimentation was required to

polish the assembly with short reads.

The sequencing technology used for the time-course data was not investigated here as

only short-read time series data were available for this dataset. Theoretically, the length of

 73

the reads used for the time course should not impact the clustering algorithm. However, the

increased error rate of the raw nanopore sequences would probably cause problems. A

different mapping software would have to be used (Minimap2 instead of BWA) in order to deal

with the higher error rates (Li 2017). Even with the different mapping software the increased

length of the reads would probably slow down mapping and the increased error rate would

probably still prevent the most accurate mapping, hindering the clustering process. The

reduced number of raw-reads produced with nanopore sequencing would also impact the

clustering process. Due to the amount of sequencing necessary for a time-course, cost

could also be a limiting factor as currently Illumina sequencing is less expensive than

Nanopore (De Maio et al. 2019).

The dataset available for the NAB metagenomic community combined both Illumina and

nanopore sequencing technologies. This combination of sequencing technologies could be

having unexplored effects on the efficiency of clustering. Nanopore and Illumina sequencing

have different error profiles (De Maio et al. 2019) and whilst the Nanopore assembly had

been polished by the short reads, meaning the error will have reduced, it is possible that any

error still present in the assembly will cause fewer short reads to be successfully mapped

onto the contigs which may confound the clustering of contigs. An advantage to the mix of

short and long reads used for clustering is cost. At this point in time Illumina sequencing is

cheaper than Nanopore sequencing (De Maio et al. 2019) and therefore a time course of

short-reads rather than long Nanopore reads would be lower in price. Due to the reduced

clustering success seen with the NAB SR CLUSTard run it was hypothesised that the biggest

factor in the success of clustering is in fact the quality of the assembly and not the

sequencing technology used. However, different combinations of sequencing technologies

should be investigated to determine the impact the choice of sequencing technology has on

clustering.

Long-read versus short-read

 74

The long-read polished assembly was chosen over the short-read assembly as the

clusters produced were deemed higher quality. Whilst there were fewer clusters produced

with the LR-pol assembly (327 compared to 2184 with the short reads) those that were

produced were a much higher quality. No clusters with a completeness over 90% were

produced by the short-read assembly. This incompleteness is mainly because the short-read

clusters are much smaller in size than the LR-pol clusters, with 41 clusters over 500Kbp in

length compared to 179 of the LR-pol clusters. The N50 lengths of the SR clusters are also

lower when compared to the N50 lengths of the LR-pol clusters, indicating much more

fragmented clusters. This low N50 length was seen in the input SR assembly and

fragmented assemblies are a common issue with short-read assemblies (De Maio et al.

2019). The largest cluster of the short-read assembly was 3.03Mbp compared to 6.19Mbp

from the long-read polished assembly and, although there is no set microbial ‘genome

length’ (Bowers et al. 2017) it is likely that there would be some organisms with genomes

larger than the largest cluster. This, along with the large number of clusters overall, indicates

that many organisms may be split over multiple clusters.

Kraken has identified many more clusters to a higher degree at genus level with the SR

assembly, with 244 clusters classified to 100% compared to the LR-pol assembly where 63

clusters were classified to 100% a genus level. This indicated that either the short-read

clusters are being binned more successfully or the Kraken classification level is not a good

indication of binning quality. The latter is more probable as the fewer errors in the SR

sequences will allow more accurate identification of lowest common ancestor k-mers present

in a cluster. The k-mer sequence is short which decreases computational time but means

that any error seen in the k-mer sequence will have a large impact (Nasko et al. 2018). In

the short-read assembly CLUSTard run issues with gene completeness have propagated

from the assembly to the clusters - with only seven of 2184 clusters containing a complete

16S sequence. Although Illumina sequencing is ultimately more accurate, fewer genes were

identified, probably due to the assembly being more fragmented. Therefore, the gene

sequences were split across multiple contigs and hence cannot be identified. It is possible

 75

that these contigs have ultimately clustered together but have not been identified as genes

due to this fragmentation.

Despite the larger number of clusters produced by the short-read CLUSTard run, a lower

percentage of the input assembly and overall sequences were captured by the binning

(0.04% of contigs were binned and 0.85% of bases were binned). This indicated that much

of the population may be missing from the bins. This is backed up by the small clusters

produced - rather than being highly fragmented they could be missing a lot of genetic

information that was not clustered. Much of these missing data was probably caused by the

requirement to only cluster contigs that were >2000bp in length, as due to the number of

contigs that fell into this category (16,877,845) and therefore the number of pairwise

comparisons necessary, clustering could not be completed because this proved to be a

computational bottleneck. Although contigs of this size did not cluster with much success in

the LR-pol run it is likely that a large amount of data is still being lost due to this.

Despite what was seen during the LR-pol assembly clustering, longer contigs were not

binned to the same degree with the short-read assembly run. The short-read assembly is

made up of fewer longer contigs overall but the majority of contigs over 500kbp were not

clustered successfully which although there were fewer contigs of this size, is surprising.

Despite the issues seen in the clustering of the NAB short-read assembly, as seen with

the Sharon dataset clustering, it is possible to get clusters which provide some biological

information from short reads. It is likely that the Sharon dataset clustered well because it

was a less complex metagenome with an increased depth of sequencing coverage. As a

result, the dataset was much smaller hence a more contiguous assembly was produced

using SPAdes, with an N50 length of 16,398bp when compared to the NAB SR dataset with

an N50 length of 983bp. This, and the fact that the long-read polished genome clustered

more successfully than the unpolished indicates that the quality of the input assembly is the

most limiting factor on the quality of the clusters produced.

In this dataset the assemblies were challenging to produce, mainly because of the size

and complexity of the metagenome. Here, in order to produce a better short-read assembly

 76

to ensure better clustering, random subsets of the short-reads available for this dataset

should have been run through the assembler SPAdes, then the separate assemblies could

have been merged and then de-replicated to remove any duplicate information. This division

of the input data would have enabled SPAdes to be successfully run, probably producing a

more contiguous assembly than the one produced by MEGAHIT and therefore allow more

contiguous clusters to be produced. The long-read assembly could be further improved by

polishing with all available short-reads. This should improve the sequence accuracy of the

clusters produced and therefore enable CheckM, Prokka and Kraken to produce more

accurate results.

Overall, a highly contiguous and relatively accurate assembly is required to properly

utilise this method of binning. Not everyone will have an assembly that fits the bill with an

associated time course but for those that do, this method of binning will be a fast and

effective way of dealing with the vast amounts of data.

CONCOCT

In order to compare the clustering results of CLUSTard to popular software the NAB LR-

pol assembly was run through CONCOCT - a well-used metagenomic binner that utilises

sequence composition and coverage over multiple samples to cluster contigs (Alneberg et

al. 2014). CONCOCT proved to be relatively easy to install as an up-to-date version is available

through Conda. However, although the installation proved to be simple running the software

was more complex with six different steps required. This does not include the necessary

step of mapping the raw-reads onto the assembly as no instructions for how to do this is

given.

 Here, the SAM files produced by BWA when the short reads were mapped to the NAB LR-

pol assembly were used for the coverage information. CONCOCT binned all contigs which had

the benefit of retaining data. This could be seen with the increase of clusters with a complete

16S between the CLUSTard NAB LR-pol run at 42% (138/327) to 70% (258/368) with

 77

CONCOCT. As CONCOCT clustered every contig this appeared to reduce the quality of clusters

as the CONCOCT clusters had lower N50 lengths than the CLUSTard NAB LR-pol run because

all of the smaller contigs were also clustered bringing down the N50 length.

Only eight high-quality draft metagenome-assembled genomes were produced compared

to 20 in the CLUSTard run with the same input data. This lower number of high-quality draft

MAGs is probably due to CONCOCT clustering everything, including low quality contigs, which

increased both the completeness and contamination values of the clusters. The

completeness increased because more of the sequence has been captured and therefore

the clusters will be more complete. The contamination increased because the inclusion of

low quality and possibly erroneous contigs will increase the number of sequences labelled

as contaminants by CheckM. Similarly, to this the Kraken classification values of clusters is

low, with three clusters reaching 100% classification at genus level and 33 clusters reaching

50% classification, whilst the increased error of the long-reads will probably have caused

some of the reduction in Kraken classification values. It is likely that the lower quality contigs

that have been clustered will confound the Kraken classification as they will have errors in

them preventing them from being classified to a high degree, or they have been classified or

even clustered erroneously. In the CONCOCT pipeline contigs under a certain length can be

filtered out but although the authors recommend filtering out contigs <1000bp, no mention of

it is made in the basic usage. The filtering out of shorter contigs would improve the N50

lengths of the clusters. However, even when filtering out the smaller contigs the issue of

CONCOCT clustering of all contigs regardless of quality still remains because longer contigs

are not necessarily any more accurate than short read contigs in Nanopore assemblies.

Another potential cause of the lack of high-quality draft MAGs produced is that short

reads were used for the mapping information and a long-read assembly was binned overall.

CONCOCT may not be able to deal with a mix of the two technologies or the long-read

assembly itself - which is more error prone than the short-read assemblies this software was

built for (Alneberg et al. 2014) - and therefore produce clusters of lower quality.

 78

Despite being from the same input dataset as the NAB LR-pol CLUSTard run the eight

high-quality draft MAGs created by CONCOCT could not be compared to the MAGs produced

by CLUSTard. This issue was compounded by the relatively poor Kraken identification of the

bins produced by CONCOCT. Comparison between different binning software is complex but a

tool such as AMBER (Meyer et al. 2018) could be used to simplify this comparison. Overall,

the fact that the clusters produced by CONCOCT were more contaminated and as there were

fewer overall high-quality draft metagenome assembled genomes in comparison to the

clusters produced by CLUSTard indicates that CLUSTard was more successful at binning

this dataset.

Sharon Dataset

To investigate how successful CLUSTard clusters other datasets and in order to validate

clustering by comparing the clusters produced to a known community raw Illumina

sequencing data from Sharon et al. (2013) was downloaded, assembled and the resultant

assembly run through CLUSTard. Although a time-course of raw-reads with associated

nanopore sequences would have been ideal, a dataset that fills these requirements was not

available at the time of writing. An issue with this dataset is the availability of 18 sequencing

runs for 11 timepoints, seven of the sequencing runs were re-sequenced although no

information was given about which ones or the order of the sampling (Alneberg et al. 2014).

For this reason, an estimation of the sequencing order was taken as clustering can be

completed regardless of the order of the samples which is only important if further analysis

based on the community dynamics was desired which was not in this case.

Given the lack of success of the NAB short-read clustering it was expected that Sharon

dataset would be similarly challenging to cluster. However, the CLUSTard run proved to be

somewhat successful. Similar to the other CLUSTard runs, the shortest contigs did not

cluster to as high degree as the longer contigs. However, the Sharon dataset contigs of

<50,000bp did cluster more successfully than those of that length in the other CLUSTard

runs. This increased success in binning the short reads is probably due to the more

 79

contiguous assembly which was in turn due to the smaller, less complex metagenome thus

enabling SPAdes to be run successfully. Also, the higher depth of coverage in this dataset

which meant that even the shorter contigs have many raw-reads mapping back to them.

With this dataset Kraken classification values had increased when compared to the other

completed CLUSTard runs with the NAB dataset. Here the majority (67/79) of clusters were

classified to 100% at genus level. As this is in line with the increase in Kraken identity seen

with the NAB SR, it is likely that Kraken performs better with the more accurate short reads.

It is also probable that Kraken classification performs better when faced with better

characterised communities (Almeida et al. 2019) as the species in these communities are

more likely to be present in the Kraken database.

 Overall, the Sharon dataset was binned well, nine clusters were produced with a total

length >500kbp. Of these, seven clusters were classified as >90% complete by CheckM and

under 5% contaminated. However, none of these clusters passed the rRNA gene

completeness required to be classified as a high-quality MAG. This is an issue that has

propagated from the assembly to the clusters, with a low number of predicted genes

identified and is related to the increased fragmentation of the short-read assembly (Denton

et al. 2014).

These seven clusters match to species identified in Sharon et al. (2013), with five of these

clusters corresponding in classification to all the “abundant species” and the other two

clusters corresponding to “rare species” identified, however some species have since

been reclassified and therefore are named differently. Although there are clusters that

correspond to the other rare species identified, these clusters are not particularly complete

which is probably because the sequencing depth was not high enough to capture the rare

species and therefore not enough data were available to assemble and subsequently bin the

rare species. In Sharon et al. (2013), four genomes were classified as “essentially complete”

although no information is given about the completeness of tRNA sequences which is

necessary to classify these as high-quality draft MAGs. When this dataset was subsequently

 80

run through CONCOCT (Alneberg et al. 2014) six “pure and complete genomes” were

identified. The seven high-quality MAGs identified by the CLUSTard run were either

comparable in size, coverage and N50 length or exceeded the genomes identified by

Sharon et al. 2013. Alneberg et al. (2014) did not provide statistics for the “pure and

complete genomes” produced. The abundance profile produced in the CLUSTard run was

similar to the one produced in Sharon et al. (2013). This indicates that CLUSTard has

captured the species diversity present in the metagenome in the clusters that have been

produced.

Many small clusters have been produced by the Sharon CLUSTard run (68 clusters

<100,000bp) and there are many reasons for this. The first being that they could be a

genetic element e.g. plasmid at a different copy number to the rest of the genome. Or

secondly the cluster is actually one of the phage identified in Sharon et al. (2013). As the

software used for the downstream analysis of the CLUSTard clusters (i.e. CheckM, Prokka

and Kraken) are not built for detection of phage it is probable that these would be missed.

It is also possible that these small clusters correspond to other clusters produced but they

have not successfully been clustered together (i.e. the binning is fragmented). The reason

for this could be the large drop in abundance at certain time points seen in the output plots

for many of these clusters. This reduced abundance could correspond to the samples that

were subsequently re-sequenced as “they did not provide enough data” (Alneberg et al.

2014) and as no information was given as to which of the samples these were, they were

included in the CLUSTard run. This reduction in raw sequencing data at certain time-points

could have caused these contigs to have a lower correlation with each other leading to them

being clustered separately. This issue could be rectified by decreasing the Pcc threshold

thereby enabling contigs with a lower correlation to cluster together.

The run of the Sharon dataset through CLUSTard not only shows that CLUSTard produces

similar results to other metagenome binning software but also highlights that the quality of

the assembly is the important factor for binning in CLUSTard. The short-read assembly of

 81

Sharon dataset was binned much more successfully than the NAB SR assembly mainly due

to the quality of the metagenome assembly. An interesting avenue of investigation would be

to run the metagenome assembly from Sharon et al. (2013), which was assembled using

outdated tools, through the CLUSTard pipeline to allow comparison of the binning success

between a good and a sub-optimal short-read assembly.

Software Issues

Kraken Database

Due to the comparable success of the Kraken classification on the Sharon dataset when

compared to the classification of the NAB dataset, Kraken databases were investigated.

The standard Kraken database is built with complete genomes from NCBI RefSeq using

NCBI taxonomy (Wood et al. 2019). Whilst this may work for many well characterised

microbial communities, in waste water AD many species remained either uncharacterised or

unculturable - so called “microbial dark matter” (Kirkegaard et al. 2017). These species are

therefore missing from the Kraken database which contains only complete genomes. These

missing genomes meant that much of the NAB dataset remained poorly characterised by

Kraken. Méric et al. (2019) outline this problem, proposing a purpose-built index database

containing many MAGs to increase the classification power of Kraken.

This custom index database was downloaded and run on the clusters produced in the

CLUSTard NAB LR-pol run. The database based around NCBI taxonomy would have been

more consistent and would have allowed better comparison between the default Kraken2

database (Kraken_DB) and the custom one. Unfortunately, as the file containing the

taxonomy information is missing, the database based on (GTDB) taxonomy had to be

downloaded. However, Méric et al. (2019) report that the number of classified reads

increased by using the “phylogenetically coherent” taxonomy of GTDB.

 82

Here, the use of the custom index (Kraken_GTDB) over the default database

(Kraken_DB) resulted in almost double (1.97x) the number of clusters being classified to

100% at genera level. The number of clusters being classified to over 50% at genera level

had a 2.70-fold increase after Kraken_GTDB was used. This increase in classification is

similar to what was seen in Méric et al. (2019), with a 2.2-fold increase in classified reads

from soil-metagenome which are similar in community complexity to sewage-sludge (Frisli et

al. 2013).

Although the use of Kraken_GTDB resulted in better classification for the NAB dataset,

this may not be the case for all datasets run through CLUSTard - depending on the

community of the metagenome. Well characterised metagenomes may be captured in the

default Kraken index database. As the use of the Kraken_GTDB requires the maintenance

of an external website in order to download the custom database, it will not be integrated

into the pipeline. It will, however, be easy for the user to integrate a different index database

and this should be communicated in the documentation.

Whilst the use of a custom Kraken index database meant that clusters were classified to

a higher degree, it is likely that Kraken is still struggling to deal with the error rates currently

intrinsic to nanopore assemblies. Kraken was initially built to deal with highly accurate raw

short-reads, although it is now used in many metagenomic studies to classify clustered

contigs (Nicholls et al. 2019), often due to its speed when dealing with large datasets. The k-

mer based method of classification Kraken, the very reason for its speed, will likely struggle

to correctly classify error prone sequences. As these short sequences (the default length is

31bp) have less room for sequencing error meaning that even a single base change will

easily confound the results.

Further research into the impact of long error-prone reads and contigs on the successful

classification of Kraken would be beneficial. Here, the clusters produced after the NAB SR

CLUSTard run should be re-classified using Kraken_GTDB to see if further increase in

classification is seen between the short read and long read assemblies. A custom database

 83

containing MAGs identified from anaerobic digestion metagenomes such as those from

Campanaro et al. (2019) could further increase classification accuracy. Méric et al (2019)

also built the database for the popular classification software Centrifuge. Therefore, this

database (Centrifuge_GTDB), along with the default index database for Centrifuge, which

is similarly fast and has low memory requirements of Kraken and was built specifically for

metagenomic studies (Kim et al. 2016), should be compared to the Kraken results to

determine if Centrifuge is better able to deal with noisy long-read assemblies. In Kim et al.

(2016) 17% of nanopore raw-reads were successfully classified, however this number may

increase after assembly and polishing.

Whilst easy and accurate classification is desirable in the pipeline, Kraken is primarily

used in the CLUSTard pipeline to give the user an indication into the taxonomy of the cluster

so that they can identify families or clusters of interest for in-depth and specialised

downstream analysis.

CheckM

The issues with the noisy long-read assemblies could have also caused a problem with

the CheckM assessment of CLUSTard’s bins as CheckM utilises lineage-specific collocated

marker genes to assess the quality of genomes (Parks et al. 2015). Again, although CheckM

is ubiquitous in long-read metagenomic studies no investigation or benchmarking into how

well CheckM deals with the increased error long-reads has been done. The high

contamination and low completeness seen in many of the clusters produced from long read

assemblies could in fact be because of the inherent noise present in the assembly (Watson

and Warr 2019), not an issue with the CLUSTard binning as a similar issue is seen in the

clusters from the long-read assembly with CONCOCT. The noise present may either lead to

marker genes not being identified and therefore reducing the completeness value of the

cluster or marker genes being incorrectly identified as a different lineage and therefore

increasing the contamination of the cluster. CheckM should also be benchmarked against

 84

both short-read and long-read assemblies to determine the effect, if any, long-read

assemblies have on the CheckM results.

Binning Issues

Perhaps the most important avenue for further research would be the clustering of a

synthetic or known dataset by CLUSTard. This would enable easy analysis into the success

and accuracy of the clustering algorithm. This was not done due to time restraints and the

challenge of producing a synthetic metagenomic dataset that follows a complex microbial

community over time. One experimental method of creating a known dataset to fill these

requirements would be to use a mock microbial community, such as ZymoBIOMICS

Microbial Community standards, to produce a time course with species at known abundance

and then sequence. As the ZymoBIOMICS standards have already been sequenced by both

Nanopore and Illumina sequencing (Nicholls et al. 2019), an easier and cheaper method

would be to use this publicly available dataset and build a synthetic time-series with it.

Not only would this allow the CLUSTard results to be easily validated against known

genomes and abundance levels, it would also enable further investigation into the effect

different sequencing technologies have on the success of the clustering of CLUSTard. As

only ten microbial species are present in the ZymoBIOMICS standard it is a small

metagenome (Nicholls et al. 2019). It would be beneficial to also run CLUSTard on a large

metagenome with a known truth to determine if the size of a metagenome has any effect on

the clustering of CLUSTard. A large synthetic metagenome should be built in order to do this

which could be produced using simulated reads from well characterised microbial genomes

created by software such as DeepSimulator (Li et al. 2018) for Nanopore sequences and

ART (Huang et al. 2012) for Illumina sequences.

The production of a synthetic metagenome would also enable analysis into other factors

that would impact the success of clustering. One such thing would be the optimal number of

timepoints necessary for meaningful results. Whilst CLUSTard has been run on fewer

 85

timepoints than the 80 available for the NAB dataset (for example the 18 timepoints used for

the clustering of the Sharon et al. (2013) dataset), it would be beneficial to determine the

minimum number of timepoints necessary for accurate clustering and also if there is a

maximum number of timepoints before the clustering becomes too computationally

intensive, or the results become confounded.

CONCOCT attempts to bin all input sequences given (Alneberg et al. 2014). Not only does

this increase the computational challenge due to the larger dataset but it also results in lower

quality clusters as erroneous or lower quality contigs are clustered with them. In CLUSTard,

contigs are filtered out based on a given size threshold (recommended 1,000bp with a long-

read assembly) and if they do not match to another contig. With the NAB dataset, the long-

read polished CLUSTard run at a threshold of 0.997 binned only 4.51% of the contigs from

the input assembly but 22.35% of the bases. This reduced dataset meant that the overall

computation power necessary for downstream analysis was reduced whilst still capturing

much of the diversity present in the assembly.

Due to the challenge of assembling large metagenomic datasets it is likely that many

metagenomic assemblies are suboptimal, containing redundant or erroneous sequences.

This means that clustering could be just as, if not more, effective when part of the assembly

is excluded.

Metagenomic assemblies will not always contain redundancies and as metagenomic

assemblers become more efficient the accuracy of the assembly will increase and become

less redundancy. Along with the increase in the accuracy of contigs the length should

decrease, this would reduce the number of contigs which would decrease overall

computational time and increase the accuracy of clusters.

Whilst this method of clustering seems to ultimately be successful, some issues in the

pipeline remain. First is the issue of ‘singletons’ - i.e. a single large contig that encompasses

an entire genome. As the genome has been completely assembled into one contig there are

no other sequences to correlate with. Therefore, despite its size this single sequence would

 86

not be recognised as a cluster and would remain unbinned by CLUSTard even though it

could potentially be a complete genome. This appears to be the case in the NAB dataset

with a contig of 1,303,796bp remaining unclustered. Steps should be integrated into the

CLUSTard pipeline to account for this. As all unbinned sequences are outputted to a FASTA

file by CheckM, it would be relatively simple to pull out all unbinned contigs over a certain

size (say 500kbp) and treat these “singletons” as their own cluster. Then they could be run

through the further analysis steps used in the pipeline (e.g. Kraken and Prokka) to

determine if they are of biological importance and if so, what organisms they are. The

abundance information that corresponds to these singletons could also be integrated with

the further analysis information in order to include these singletons in the output plot. It may

also be prudent to run these contigs through NCBI Blast (Altschul et al. 1990) to determine

if they match to any known species. Some of these long unclustered contigs could be

caused by long homopolymers which are a common issue in nanopore assemblies (Rang et

al. 2018). If this was the case this would become evident in the analysis steps.

Another issue seen with the CLUSTard pipeline is the poor clustering of short reads,

perhaps caused by the fact that they have fewer time-course raw reads mapping to them,

but there’s no obvious work around for this. This is not as much of an issue with long-read

assemblies as less of the assembly will be in short contigs, however this would remain an

issue with short-read input assemblies as the assembly is likely to be more fragmented

(Goldstein et al. 2019). This links back to the earlier point - the quality of the assembly is the

limiting factor in the quality of the bins.

The presence of small potentially fragmented clusters indicates that CLUSTard may not

be clustering to the highest efficiency. This could be caused by any number of reasons, such

as those previously outlined; poor quality assembly, the increased error in the contigs and

the mix of sequencing technologies. Once those issues have been resolved or limited, any

small clusters remaining should be investigated to determine if they are biologically relevant.

It is possible that they are viral or phage genomes, which are diverse in size (Hatfull and

 87

Hendrix 2011; Campillo-Balderas et al. 2015). To determine if this is the case it may be as

simple as using another Kraken database that includes viral (especially phage) genomes in

the pipeline. Alternatively integrating other software into the pipeline such as MARVEL

(Amgarten et al. 2018) to identify clusters containing potential bacteriophage and then

PHANOTATE (McNair et al. 2019) to annotate genes in any phage clusters. It is also possible

that these small clusters are other DNA molecules, such as plasmids - which are clustering

separately due to a difference in copy number. To ascertain this, any identified open reading

frames (ORFs) in the clusters it should be investigated to determine if they are plasmid

ORFs.

If, even after clustering as efficiently as possible and further analysis the small clusters

prove not to be biologically important, it would be possible to merge clustering bins that

share sequence characteristics, such as GC content or taxonomic classification, to obtain

meaningful clusters.

Biology

Twenty high-quality draft MAGs were produced from the NAB dataset after it was run

through CLUSTard. These 20 Mags encompass a diverse range of prokaryotic phyla. Some

of these MAGs appear to be close in composition to other defined species yet some do not.

Here, due to time and space constraints, only the results of a selection of clusters with well-

defined related species and with genome characteristics (i.e. GC-content and size) that

matched these related species are reported here. When closely related species are not

known, any further analysis becomes much more complex.

Here, cluster c_03119 was investigated. This cluster was identified both by

Kraken_GTDB and Silva as belonging to the Nitrospira genus, and the genome

characteristics also matched those of the Nitrospira species identified. This cluster was then

run through autoMLST in order to determine where the cluster sits within a Nitrospira tree.

Here, the closest related genome was identified as Nitrospira sp. strain ND1. Here this

 88

cluster is much more abundant in the feed timepoints but not in the digesters. This is to be

expected as while Nitrospira sp. strain ND1 had previously been identified in activated

sludge as Nitrospira, it is nitrite-oxidising which is an aerobic process (Ushiki et al. 2017) and

therefore unlikely to survive in an anaerobic environment.

Another cluster investigated was c_77547 which was identified as Flavobacterium by both

Kraken and Silva, however the exact species remained undefined. This cluster was also run

through autoMLST to determine related species, identifying Flavobacterium aquatile as the

closest relative, however, it is possible that this cluster is a previously undefined species.

The final cluster investigated in depth was c_63947, which was identified as Candidatus

Cloacimonas acidaminovorans by both Kraken and Silva. Candidatus Cloacimonas

acidaminovorans is thought to be widely present in many in anaerobic digesters, potentially

decreasing the methane produced (Solli et al. 2014).

A lot of useful biological information remains untapped in the NAB dataset and should be

further investigated in order to make sense of the microbial community. Much of this can be

undertaken in the same way as the analysis of the 20 high-quality draft MAGs, identifying

closely related genomes through Kraken, Silva and autoMLST. A further step would be to

align the related genome and the cluster together to determine the evolutionary relationship

between genomes at the nucleotide level. Where the identity of a cluster remains

inconclusive further steps should be undertaken. It is possible that the closest species are

not present in the databases used for Kraken, Silva, or autoMLST. This may be rectified by

using a custom Kraken database or by using the feature that allows user defined sequences

that are not present in the autoMLST database to be included in an autoMLST tree, for

example MAGs identified by Kraken_GTDB.

A further step to undertake would be the production of “finished” MAGs - defined as

“Single contiguous sequence without gaps or ambiguities with a consensus error rate

equivalent to Q50 or better” (Bowers et al. 2017). This could be achieved by mapping the

raw long reads back onto clusters, then pulling out the raw reads that map and only

 89

assembling them. This would reduce the computational demand on the assemblers and

hopefully produce a better-quality assembly however would be a time-consuming process.

Whilst CLUSTard has produced 20 high-quality draft MAGs it has also facilitated the

analysis of the microbial community as a whole. The composition of the microbial community

remained very similar across all four digesters. As seen in figure 17, each of the four

digesters had a very similar abundance profile. This relatively stable population is not

unexpected, Kirkegaard et al. (2017) observed similarity in the microbial community across

32 full-scale anaerobic digesters over a six-year period. However, with the NAB dataset, the

sampling strategy and lack of sequencing depth lends itself to capturing stable populations

as it would miss any short-term population booms and rare species.

 Overall the clusters recovered from the NAB dataset are very diverse, with 227

different species from 170 different genera present when GTDB taxonomy is used, or 202

different species from 139 genera when NCBI taxonomy is used.

The difference in the community make-up between the feed and the digesters is stark,

sharing only Flavobacterium and Streptomyces to a high degree. This indicates that the

clustering is robust even with large changes of community between the samples given.

However, the low abundance of otherwise common organisms may be introducing noise into

the clustering.

Kirkegaard et al. (2017) also found that much of the stable population seen in the

anaerobic digesters is due to potentially inactive populations immigrating with the feed. This

does not appear to be the case with the NAB dataset as the feed has very a different

abundance pattern to that of the digesters, with the most abundant genera in the feed

(Dechloromonas) not similarly abundant in the digesters. There are many things that could

be causing this - including the fact that these anaerobic digesters were initially seeded using

inoculum from an up-and-running AD community and that it is unlikely for the populations in

the feed to displace these established communities. However, it has been shown that

process operational conditions are the strongest driver of microbial communities over the

initial inoculum (Peces et al., 2018). It is also likely that the feed contains aerobic species

 90

that would not survive in an AD environment or species that are not well adapted to the

selective conditions present within the digesters, as was seen in cluster c_03119 which was

identified as Nitrospira.

 Whilst the community composition remains relatively stable, certain species do

experience changes in abundance both over time and between digesters. The genus

Candidatus Cloacimonas (UBA1032) experiences a large increase over time across all four

digesters but is less abundant in digester four (NAB4). Digester four is the most divergent of

the four digesters, although there is no obvious cause of this. Ideally, the changes in the

biological community could be linked to changes in quantifiable physical properties such as

gas production, gas composition, temperature or ammonia concentration, as these have

been shown to be important factors in the composition of microbial communities and also

indicate the health of the digesters (Kirkegaard et al. 2017). Process data of the anaerobic

digesters is available for this dataset however there is a lot of missing data and gaps. Whilst

filling these gaps using modelling would be possible it is beyond the scope of this project.

Despite the promising results seen in the NAB LR-pol clustering it is likely that the

clusters produced have only captured the most abundant data. This dataset only has limited

depth of sequencing with both the short reads and the long reads. This means that the lower

abundant species will have fewer sequencing reads corresponding to them, therefore any

sequence errors will be more likely to remain after assembly reducing the precision of the

clustering for rare species (Sims et al. 2014). The fewer short reads mapping to contigs of

rare species will also add challenges to the clustering. Along with this low depth of coverage,

the long-read assembly was produced from only two time-points (T15 and T17). As these

were late in the time-course it stands to reason that the CLUSTard run will only be capturing

the species that are abundant late in the time-course and probably not any species that were

abundant at the start of the time-course and then died out. This issue would be resolved by

sequencing some earlier time points with nanopore technology and then re-assembling with

all the data.

 91

Conclusions

This research aimed to produce a simple method to both cluster large time-series

metagenome datasets and to undertake reproducible further analysis. The CLUSTard

pipeline produced is a fast metagenomic binning and analysis pipeline that is comparable in

results to another popular metagenomic binning software. The pipeline allows for easy and

reproducible metagenomic binning and analysis, requiring minimal user input as all software

installation is handled by the workflow manager and the pipeline only requires one command

to run all steps on both a local machine and a computing cluster. This workflow makes it

simple for steps or for the whole pipeline to be reproduced. Ultimately this pipeline plays to

the strength of the datasets our research group produces by utilising both the time-series

information already present and also integrating both long and short raw reads when binning

metagenomic-assembled genomes. The CLUSTard pipeline is quick to run even on large

metagenomic assemblies, not only when producing metagenome bins but also when

completing further analysis steps and producing summary plots and files. This further

analysis undertaken enables a quick entry point to determine the composition and dynamics

of the community. Whilst CLUSTard was ultimately produced to be a tool used in-house, it

may be beneficial for other research groups to get the most out of their large time-series

metagenomic datasets. The use of a workflow manager which enables the easy portability to

other systems helps towards this goal.

The optimal Pearson’s Correlation Coefficient value for a cut-off threshold for clustering

was found to be 0.997. This threshold was ultimately a compromise between minimising

data loss, as a higher threshold meant that many contigs did not have a high enough Pcc

value and were excluded from clusters, and the overall quality of clusters, as a lower

threshold meant that more contigs were erroneously clustered together.

After investigating the use of different input assemblies in CLUSTard it became apparent

that the most important factor governing clustering success was the quality of the input

assembly, with longer more accurate contigs having the most success being clustered

 92

together. Because of this it is to be recommended that CLUSTard is run with the best

possible assembly available for the dataset. If only Illumina short-reads are available, then

an assembly produced by SPAdes is the recommended input in order to increase the

contiguity of the assembly. However, as seen with the NAB dataset used here, this may not

always be possible due to computational restraints. If only Nanopore long reads are

available, then an assembly produced by either Canu or metaFlye is recommended followed

by consensus sequence polishing, e.g. by Medaka (github.com/nanoporetech/medaka)

or Nanopolish. If both long and short reads are available, a long-read assembly produced

by Canu or metaFlye which is then consensus polished by both the long reads

(Medaka/Nanopolish) and the short-reads (Pilon) is recommended. This latter situation is

the ideal assembly for CLUSTard - combining the long read length of the nanopore

sequencing and the higher accuracy of the Illumina sequencing. As the nanopore technology

develops and the error rate reduces further to be comparable with the accuracy of Illumina

sequencing, it is probable that the need for consensus polishing will also reduce. As the

optimum assembly method is specialised depending on the input data and due to the

assembly process being computationally intensive the steps required for assembly will not

be integrated into the CLUSTard pipeline.

This pipeline enabled the definition of a large metagenomic dataset, determining the

dynamics of the community and the production of many metagenome assembled genomes

(MAGs), including 20 high-quality MAGs which could, with a little effort, become finished

MAGs. Further research should link the community composition with both the metabolic

function of the anaerobic digestion community with the process operation conditions to

produce important information about how to maximise biogas production by harnessing the

power of the microbial community.

Many of the improvements mentioned here are geared towards improving the quality of

the genome bins produced. Although it is useful to gain high-quality MAGs for previously un-

categorised organisms or those that prove a cultivation challenge, this is not the be all and

 93

end all of metagenomic studies. For many, the aim is to determine what is present in the

community and sometimes what happens to the community over time. The production of the

community relative abundance and cluster level abundance plots within the CLUSTard

pipeline facilitates the analysis of time-course sequencing projects easily and rapidly.

At the time of this project, the lack of comparison or benchmarking studies of many of the

common metagenomic or bioinformatic tools was a big issue. This was especially the case

in regard to how well these tools deal with Nanopore sequencing, as this presents its own

set of unique problems compared to Illumina sequencing (De Maio et al. 2019). This

information is lacking for many of the common tools, including those used here such as

CheckM, Prokka and Kraken, as Nanopore was not a popular sequencing technology at the

time of their release and few benchmarking studies have been done since. Further studies

should be done to validate the common metagenomic tools with nanopore sequencing. This

along with a comparison of tools would be beneficial to researchers building analytical

pipelines and the standardisation of metagenomic analysis as a whole.

 94

 95

Appendices

Figures

Ti
m

ep
oi

nt
 Digester

Date 1 2 3 4 F

T0 2017-08-08

T1 2017-08-22

T2 2017-09-05

T3 2017-09-13

T4 2017-09-26

T5 2017-10-10

T6 2017-10-17

T7 2017-10-31

T8 2017-11-14

T9 2017-11-22

T10 2017-12-05

T11 2017-12-20

T12 2018-01-03

T13 2018-01-10

T14 2018-01-23

T15 2018-02-06

T16 2018-02-27

T17 2018-03-14

Ap. Figure 1: Diagram of the sampling strategy for the NAB data. Showing timepoints and the
corresponding dates that samples were taken and from which digesters (1, 2, 3 or 4) or feed (F).
Purple filled squares indicate an Illumina sequencing sample and diagonal orange lines over a
purple filled square indicates both an Illumina and a Nanopore sequencing sample.

 96

Ap. Figure 2: The percentage of different length contigs binned (dark blue) or unbinned
(light blue) after the Sharon et al. (2013) dataset was run through CLUSTard. The gap
between 600-1,000kbp indicates that there were no contigs between these lengths.

Ap. Figure 3: The distribution of the N50 length of clusters produced when the Sharon et
al. (2013) dataset was run through CLUSTard.

 97

Ap. Figure 4: Overview plot of the four largest clusters produced when the Sharon et al. (2013)
dataset was run through the CLUSTard pipeline. The first line on each plot is the cluster identity.
The second line shows the number of contigs clustered, the coverage (±1SD) of the cluster and
the size of the cluster in Kbp. The third line shows the GC content of the cluster (±1SD) and the
fourth line N50 length. Then the completeness and contamination values are on the next line and
the top Kraken identity on the final line. The plot themselves shows the relative abundance of the
cluster across all time points. The grey area seen on the figures show the range in abundance
values.

Ap. Figure 5 (right): Relative abundance plot of
the feed only from the CLUSTard NAB LR-pol
0.997 run. The top 19 most common genera in the
feed are shown in the plot, with all other genera
contained in the other group (grey).

 98

Ap. Figure 6: Phylogenetic tree generated by autoMLST and visualised in iTOL, placing
cluster c_077547 (highlighted in blue) into phylogenetic context.

Ap. Figure 7: Phylogenetic tree generated by autoMLST and visualised in iTOL, placing
cluster c_03119 (highlighted in blue) into phylogenetic context.

 99

Ap. Figure 8: Phylogenetic tree generated by autoMLST and visualised in iTOL, placing
cluster c_00172 (highlighted in blue) into phylogenetic context.

 100

Tables
Ap. Table 1: Overview of the investigation into the 20 high-quality MAGs.

Top
Kraken_DB

species
identity

Top
Kraken_GTDB

species identity

Size (Mbp) GC (%) 16S Match

Clu
ste
r

Krak
en_D

B

Krak
en_
GTD

B

Clus
ter

Kraken_
DB Ref

GTD
B
ref

Cluster silva match

c_00172

9.09%
Desulfococcus
oleovorans

90.91% UBA2224
sp002348185 5.96 3.94 5.07

60.6
±0.9 56.20 63.85 90.83% Hydrogenedentes

c_03119
95.83% Nitrospira
defluvii

95.83%
Nitrospira_A
sp900170025 4.35 4.32 4.45

58.9
±1.5 59.00 58.87 99.66% Nitrospira

c_68001

15.38%
Flavisolibacter
tropicus

30.77%
Ferruginibacter
sp002352045 4.07 5.94 3.46

37.8
±0.9 41.50 37.67 95.34% Ferruginibacter

c_01295

94.44%
Simplicispira
suum

94.44%
Simplicispira_A
suum 3.80 4.15 4.15 64 ±0.8 63.29 63.29

All 3 >99.50%
burkholderiaceae

c_63114

26.67%
Draconibacterium
orientale

100% UBA1413
sp002304925 3.65 5.13 3.37

49.2
±2.1 41.31 49.83 (96.95% unclassified)

c_00486

6.25%
Rhodopseudomo
nas palustris

100% UBA1062
sp002316295 3.61 5.51 3.13

57.5
±1.2 64-66% 58.13

91.36% Deltaproteobacteria
(SAR324 Clade)

c_00480

55.56%
Phycicoccus
dokdonensis

44.44%
Phycicoccus
jejuensis 3.45

3.94
(incom
p) 3.99

70.7
±0.8 71.20 73.54

97.47/97.64%
Intrasporangiaceae

c_01929
3.7% Chlorobium
phaeobacteroides

3.7% Aeromonas
caviae 3.17

3.13/2.
74
(strain
s) 2.76

37.9
±1.2 48.4 61

82.91/84.02% Spirochaetes
(V2072-189E03)

c_00599

16.67%
Sphaerochaeta
globosa

16.67%
Flavobacterium
alvei 3.17 3.32 3.82

37.1
±0.6 48.9 34.39

88.4% Ignavibacteria
(OPB56)

c_77547

50%
Flavobacterium
psychrophilum

86.36%
Flavobacterium
sp002296885 2.95 2.86 2.40

34.6
±1.1 32.5 36.51 95.79% Flavobacterium

c_63587

13.33%
Desulfovibrio
vulgaris

26.67% UBA1062
sp001896555 2.86 3.77 3.31

59.3
±1.5 63.24 57.7 (86.71% unclassified)

c_63297

25%
Desulfococcus
multivorans

12.5%
Methanofastidiosu
m sp001587595 2.72 4.46 1.50

41.6
±0.8 56.8 33.52 (94.2% unclassified)

c_63204

22.22%
Defluviitoga
tunisiensis

11.11%
Agathobaculum
sp900291975 2.66 2.05 3.21

52.3
±0.6 31.4 56.40

79.15/.29/.37%
Petrotogaceae (SC103)

c_000167

100%
Methanothrix
soehngenii

100%
Methanothrix
soehngenii 2.63 3.03 3.03

51.9
±1.9 50.96 50.99 98.44/.54% Methanosaeta

c_63420

10%
Syntrophobotulus
glycolicus

100% UBA5389
sp002409965 2.50 3.41 3.23

59.4
±1.3 46.40 59.90

87.14/86.76/86.65%
Clostridia (DTU014)

c_63008
25% Bacteroides
coprosuis

100% UBA5429
sp002427605 2.46 2.99 2.11

38.3
±2.2 35.00

37.70

90.81% Bacteroidales
(M2PB4-65 termite group)

c_76920

77.78%
Sphaerochaeta
globosa

100%
Sphaerochaeta
sp001604325 2.46 3.32 1.75

58.2
±1.6 48.9 59.30

93.46/92.92/93.53%
Sphaerochaeta

c_63228

10%
Flavobacterium
gilvum

30% Bact-19
sp002412425 2.28 4.40 2.80

33.6
±0.8 35.2 30.73 (84.97 unclassified)

c_63947

100% Candidatus
Cloacimonas
acidaminovorans

100%
Cloacimonas
acidaminovorans 2.22 2.25 2.25

37.6
±0.5 37.9 37.87

93.3/94.32/95.08%
Candidatus Cloacimonas

c_64222

11.11%
Heliobacterium
modesticaldum

100% UBA1424
sp002329705 1.19 3.08 0.98

43.9
±2.2 57.00 46.33 (98.96% unclassified)

 101

Code

Snakefile

configfile: "config.yaml"

import pandas as pd
df_samples = pd.read_csv(config["samples"], sep ='\t', index_col = 0)
samples = df_samples["sample"].to_list()

JOBID = config["jobid"]
RAW_SR = config["RAW_SR"]
REFIN = config["REFIN"]
CONTIG_T = config["CONTIG_T"]
P_THRESH = config["P_THRESH"]
krakendb = config["krakendb"]
kraken_level = config["kraken_level"]
#for plotting
date_scale = config["date_scale"]
rel_or_abs = "a"
top20 = "n"

if 'y' in top20:
 out_abun = rel_or_abs + '_top20'
else:
 out_abun = rel_or_abs

subworkflow bwa_split:
 snakefile:
 "scripts/bwa_Snakefile"

subworkflow para:
 snakefile:
 "scripts/para_Snakefile"

subworkflow kraken2:
 snakefile:
 "scripts/kraken2_Snakefile"

rule all:
 input:
 expand("logs/{JOBID}_all_bwa_output.txt", JOBID=JOBID),
 expand("logs/{JOBID}_para_out.txt", JOBID = JOBID),
 expand("output/plots/1_{JOBID}_{kraken_level}_plot.png", JOBID = JOBID,
 kraken_level = kraken_level),
 expand("output/plots/{JOBID}_bin_contigs.png", JOBID = JOBID),
 expand("output/clustering/{JOBID}_read_counts_absolute.csv", JOBID = JOBID),
 expand("output/plots/{JOBID}_{out_abun}_abun_plot.png", JOBID = JOBID, out_abun
= out_abun),
 expand("output/{JOBID}_cluster_summary_stats.tsv", JOBID=JOBID)

localrules: test, para_out, plot, bin_plot, abs_derive, abun_plot

rule test:
 input:
 bwa_split(expand("output/clustering/{JOBID}_bwa_output.txt", JOBID = JOBID))
 output:
 "logs/{JOBID}_all_bwa_output.txt"
 shell:
 """
 more *.out > {output} 2> /dev/null
 rm *.out
 """

 102

rule para_out:
 input:
 clusters = para(expand("logs/{JOBID}_para_done.txt", JOBID = JOBID))
 output:
 "logs/{JOBID}_para_out.txt"
 shell:
 """
 echo "Done" >> {output}
 """

rule plot:
 input:
 file_out = expand("logs/{JOBID}_para_out.txt", JOBID = JOBID),
 checkm = kraken2(expand("output/checkm/{JOBID}_checkm.log", JOBID=JOBID))
 output:
 cluster_plot = "output/plots/1_{JOBID}_{kraken_level}_plot.png"
 params:
 files = "plot_in_files.txt",
 sample_file = config["samples"],
 kraken = expand("output/kraken/{JOBID}_{kraken_level}_top_kraken.out", JOBID =
JOBID, kraken_level = kraken_level),
 date = date_scale,
 seqkit = expand("output/results/{JOBID}_seqkit_stats.tsv", JOBID = JOBID)
 conda:
 "envs/py3.yaml"
 shell:
 """
 ls -S output/results/Cluster*.fasta > {params.files}
 sed -i "s/.fasta/.csv/g" {params.files}
 python scripts/plot.py {params.files} {JOBID} {params.sample_file} {params.date}
-k {params.kraken} -k_l {kraken_level} -cm {input.checkm} -sk {params.seqkit}
 rm {params.files}
 """

rule bin_plot:
 input:
 file_out = expand("output/plots/1_{JOBID}_{kraken_level}_plot.png", JOBID =
JOBID, kraken_level = kraken_level)
 output:
 contig_plot = "output/plots/{JOBID}_bin_contigs.png"
 conda:
 "envs/py3.yaml"
 shell:
 """
 cd output/results/
 cat Cluster*.fasta | awk '$0 ~ ">" {{print c; c=0;printf substr($0,2,100)
"\\t"; }} $0 !~ ">" {{c+=length($0);}} END {{ print c; }}' | sort | uniq >
{JOBID}_sorted_lengths.tsv
 cd ../../
 python scripts/bin_plot.py output/results/{JOBID}_unbinned_contigs_stats.tsv
output/results/{JOBID}_sorted_lengths.tsv {JOBID}
 """

rule abs_derive:
 input:
 expand("output/plots/{JOBID}_bin_contigs.png", JOBID=JOBID)
 output:
 csv = "output/clustering/{JOBID}_read_counts_absolute.csv"
 params:
 thresh = CONTIG_T
 conda:
 "envs/py3.yaml"
 shell:
 """
 python scripts/absolute_derive.py clustering {JOBID} {params.thresh}

 103

 """

rule abun_plot:
 input:
 count_in = expand("output/clustering/{JOBID}_read_counts_absolute.csv", JOBID =
JOBID)
 output:
 plot_out = "output/plots/{JOBID}_{out_abun}_abun_plot.png"
 conda:
 "envs/py3.yaml"
 params:
 roa = rel_or_abs,
 top_20 = top20,
 kraken_in = expand("output/kraken/{JOBID}_{kraken_level}_top_kraken.out", JOBID
= JOBID, kraken_level = kraken_level)
 shell:
 """
 cd output/results/
 for f in C*.fasta; do filename="${{f%%.*}}"; echo ">$f"; seqkit fx2tab -n $f;
done > {JOBID}_binned_cluster_contig.txt
 cd ../../
 python scripts/abun_plot.py {JOBID} {input.count_in}
output/results/{JOBID}_binned_cluster_contig.txt {params.roa} {params.top_20} -s
{samples} Coverage -k {params.kraken_in}
 """

rule clus_stats:
 input:
 expand("output/plots/{JOBID}_{out_abun}_abun_plot.png", JOBID=JOBID, out_abun =
out_abun)
 output:
 csv = "output/{JOBID}_cluster_summary_stats.tsv"
 conda:
 "envs/py3.yaml" #change clustering (below) when add counts folder..
 params:
 checkm = expand("output/checkm/{JOBID}_checkm.log", JOBID=JOBID),
 seqk = expand("output/results/{JOBID}_seqkit_stats.tsv", JOBID=JOBID)
 shell:
 """
 ls output/results/C*.csv > stat_input.txt
 python scripts/clus_stats.py stat_input.txt {JOBID} -cm {params.checkm} -sk
{params.seqk}
 rm stat_input.txt
 """

bwa_Snakefile

configfile: "config.yaml"

import pandas as pd
df_samples = pd.read_csv(config["samples"], sep ='\t', index_col = 0)
samples = df_samples["sample"].to_list()

JOBID = config["jobid"]
RAW_SR = config["RAW_SR"]
REFIN = config["REFIN"]
CONTIG_T = config["CONTIG_T"]
P_THRESH = config["P_THRESH"]
krakendb = config["krakendb"]
kraken_level = config["kraken_level"]

rule all:
 input:
 expand("{REFIN}.sa", REFIN=REFIN),

 104

 expand('output/clustering/counts_{samples}.txt', samples=samples),
 expand('output/clustering/{jobid}_read_counts.out', jobid= JOBID),
 expand('output/clustering/{jobid}_read_counts_derived.csv', jobid= JOBID),
 expand('output/clustering/{jobid}_values.csv', jobid = JOBID),
 expand('output/clustering/{jobid}_diffs.csv', jobid = JOBID),
 expand("output/clustering/{JOBID}_bwa_output.txt", JOBID = JOBID),

localrules: merge_filecounts, derive, start_feeder, split_file

rule bwa_index:
 input:
 ref = REFIN
 output:
 '{REFIN}.sa'
 threads: 20
 shell:
 """
 module load bio/BWA
 bwa index {input.ref}
 """

rule bwa_mem:
 input:
 fq1 = 'data/{samples}_R1.fastq.gz',
 fq2 = 'data/{samples}_R2.fastq.gz',
 ref = REFIN,
 ref_ind = expand("{reference}.sa", reference=REFIN) #waits for indexed reference
 output:
 counts = 'output/clustering/counts_{samples}.txt'
 params:
 bam = 'output/alignment/{samples}.bam'
 threads: 20
 shell:
 """
 module load bio/BWA
 module load bio/SAMtools
 mkdir -p output/alignment
 bwa mem -M -t {threads} {input.ref} {input.fq1} {input.fq2} | samtools view -buS
- | samtools sort -o {params.bam}
 samtools index {params.bam}
 samtools idxstats {params.bam} > {output.counts}
 """

rule merge_filecounts:
 input:
 test = expand('output/clustering/counts_{SAMPLES}.txt', SAMPLES = samples)
 output:
 txt = 'output/clustering/{JOBID}_read_counts.out'
 conda:
 "../envs/py3.yaml"
 shell:
 """
 python scripts/merge_filecounts.py clustering {JOBID} -l {samples}
 """

rule derive:
 input:
 expand('output/clustering/{JOBID}_read_counts.out', JOBID=JOBID)
 output:
 csv = "output/clustering/{JOBID}_read_counts_derived.csv"
 params:
 thresh = CONTIG_T
 conda:
 "../envs/py3.yaml" #change clustering (below) when add counts folder..
 shell:
 """

 105

 python scripts/derive.py clustering {JOBID} {params.thresh}
 """

rule start_feeder:
 input:
 expand('output/clustering/{JOBID}_read_counts_derived.csv', JOBID=JOBID)
 output:
 values = "output/clustering/{JOBID}_values.csv",
 diffs = "output/clustering/{JOBID}_diffs.csv"
 conda:
 "../envs/py3.yaml"
 shell:
 """
 python scripts/start_feeder.py clustering {JOBID}
 """

rule split_file:
 input:
 diffs = expand("output/clustering/{JOBID}_diffs.csv", JOBID=JOBID)
 output:
 touch("output/clustering/{JOBID}_bwa_output.txt")
 params:
 diffs = expand("output/clustering/{JOBID}_diffs", JOBID = JOBID)
 shell:
 """
 split -d -l 10000 --additional-suffix=.csv {input.diffs} {params.diffs}
 """

para_Snakefile

configfile: "config.yaml"

import pandas as pd
df_samples = pd.read_csv(config["samples"], sep ='\t', index_col = 0)
samples = df_samples["sample"].to_list()

JOBID = config["jobid"]
RAW_SR = config["RAW_SR"]
REFIN = config["REFIN"]
CONTIG_T = config["CONTIG_T"]
P_THRESH = config["P_THRESH"]
krakendb = config["krakendb"]
kraken_level = config["kraken_level"]

(job, part) = glob_wildcards('output/clustering/{JOBID}_diffs{PART}.csv')

rule all:
 input:
 expand("output/clustering/{JOBID}_output_{PART}.csv", JOBID = JOBID, PART = part),
 expand("output/clustering/{JOBID}_parallel_sets_{PART}.csv", JOBID = JOBID, PART =
part),
 expand("output/clustering/{JOBID}_parallel_merged.out", JOBID = JOBID),
 expand("output/clustering/{JOBID}_non_red_list.out", JOBID = JOBID),
 expand("logs/{JOBID}_para_done.txt", JOBID=JOBID)

localrules: para_sets, non_red_step, file_parser

rule bin_feeder:
 input:
 diffs = 'output/clustering/' + JOBID + '_diffs{PART}.csv'
 output:
 all = "output/clustering/" + JOBID + "_output_{PART}.csv",
 params:

 106

 thresh = P_THRESH,
 all_diffs = expand("output/clustering/{JOBID}_diffs.csv", JOBID = JOBID)
 conda:
 "../envs/py3.yaml"
 shell:
 """
 python scripts/bin_feeder.py {input.diffs} {params.all_diffs} {params.thresh}
{output.all}
 """

rule para_sets:
 input:
 bins = "output/clustering/" + JOBID + "_output_{PART}.csv"
 output:
 "output/clustering/" + JOBID + "_parallel_sets_{PART}.csv"
 params:
 thresh = P_THRESH
 conda:
 "../envs/py3.yaml"
 shell:
 """
 python scripts/para_sets.py {input.bins} {output} {params.thresh}
 """

rule para_merge:
 input:
 expand("output/clustering/{JOBID}_parallel_sets_{PART}.csv", JOBID=JOBID, PART =
part)
 output:
 "output/clustering/{JOBID}_parallel_merged.out"
 resources:
 mem_mb = 64000
 conda:
 "../envs/py3.yaml"
 shell:
 """
 python scripts/parallel_merge_step2.py -i {input} -o {output}
 """

rule non_red_step:
 input:
 expand("output/clustering/{JOBID}_parallel_merged.out", JOBID = JOBID)
 output:
 expand("output/clustering/{JOBID}_non_red_list.out", JOBID = JOBID)
 conda:
 "../envs/py3.yaml"
 shell:
 """
 python scripts/step3.py {input} {output}
 """

rule file_parser:
 input:
 expand("output/clustering/{JOBID}_non_red_list.out", JOBID = JOBID)
 output:
 touch("logs/{JOBID}_para_done.txt")
 params:
 contigs = REFIN,
 csv = expand("output/clustering/{JOBID}_read_counts_derived.csv", JOBID =
JOBID),
 wd = "results/",
 header = samples
 conda:
 "../envs/py3.yaml"
 shell:
 """

 107

 mkdir -p output/{params.wd}
 python scripts/file_parser.py {params.contigs} {params.csv} {input} {params.wd}
-l {params.header}
 """

kraken2_Snakefile

configfile: "config.yaml"

import pandas as pd
df_samples = pd.read_csv(config["samples"], sep ='\t', index_col = 0)
samples = df_samples["sample"].to_list()

JOBID = config["jobid"]
RAW_SR = config["RAW_SR"]
REFIN = config["REFIN"]
CONTIG_T = config["CONTIG_T"]
P_THRESH = config["P_THRESH"]
krakendb = config["krakendb"]
kraken_level = str(config["kraken_level"])

(CLUSTERS,) = glob_wildcards("output/results/Cluster_{CLUSTER}.csv")

rule all:
 input:
 expand("output/kraken/{JOBID}_Cluster_{CLUSTERS}_kraken.out", JOBID = JOBID,
CLUSTERS = CLUSTERS),
 expand("output/kraken/{JOBID}_{kraken_level}_top_kraken.out", JOBID = JOBID,
kraken_level = kraken_level),
 "tbl2asn_update.out",
 expand("output/prokka/Cluster_{CLUSTERS}/{JOBID}_{CLUSTERS}.err", JOBID = JOBID,
CLUSTERS = CLUSTERS),
 expand("logs/{JOBID}_slurm_prokka.log", JOBID=JOBID),
 "output/results/{JOBID}_seqkit_stats.tsv",
 expand("output/checkm/{JOBID}_checkm.log", JOBID=JOBID)

localrules: kraken_merge, tbl2asn, output, seqkit

rule kraken:
 input:
 "output/results/Cluster_{CLUSTERS}.fasta"
 output:
 report = "output/kraken/{JOBID}_Cluster_{CLUSTERS}_report_kraken.out",
 params:
 db = krakendb,
 output = "output/kraken/{JOBID}_Cluster_{CLUSTERS}_kraken.out"
 conda:
 "../envs/kraken2.yaml"
 threads:
 16
 resources:
 mem_mb = 4000
 shell:
 """
 kraken2 -db {params.db} --threads {threads} --report {output.report} --output
{params.output} --use-names {input}
 """

rule kraken_merge:
 input:
 report = expand("output/kraken/{JOBID}_Cluster_{CLUSTERS}_report_kraken.out",
JOBID = JOBID, CLUSTERS = CLUSTERS)
 output:
 "output/kraken/{JOBID}_{kraken_level}_top_kraken.out"
 params:

 108

 level = {kraken_level}
 shell:
 """
 cd output/kraken
 find -name '{JOBID}*_report_kraken.out' -type f -printf '\\n%p\\t' -exec sh -c
'echo {{}} | sort -k1nr {{}} | grep -P "\\t{params.level}\\t" | head -n1 ' \\; >
{JOBID}_{kraken_level}_top_kraken.out
 """

rule tbl2asn:
 input:
 expand("output/kraken/{JOBID}_{kraken_level}_top_kraken.out", JOBID = JOBID,
kraken_level = kraken_level)
 output:
 touch("tbl2asn_update.out")
 conda:
 "../envs/prokka.yaml"
 shell:
 """
 cd $(dirname $(which tbl2asn))
 rm tbl2asn
 wget https://github.com/tseemann/prokka/raw/master/binaries/linux/tbl2asn
 chmod +x tbl2asn
 """

rule prokka:
 input:
 clusters = "output/results/Cluster_{CLUSTERS}.fasta",
 wait = "tbl2asn_update.out"
 output:
 file = "output/prokka/Cluster_{CLUSTERS}/{JOBID}_{CLUSTERS}.err"
 params:
 dir = "output/prokka/Cluster_{CLUSTERS}/",
 prefix = "{JOBID}_{CLUSTERS}",
 prokka = "output/results/Cluster_{CLUSTERS}_short.fasta"
 conda:
 "../envs/prokka.yaml"
 threads:
 20
 shell:
 """
 awk '/^>/{{print substr($1,1,21); next}}{{print}}' < {input.clusters} >
{params.prokka}
 prokka {params.prokka} --outdir {params.dir} --prefix {params.prefix} --cpus
{threads} --force
 rm {params.prokka}
 """

rule output:
 input: expand("output/prokka/Cluster_{CLUSTERS}/{JOBID}_{CLUSTERS}.err", JOBID =
JOBID, CLUSTERS=CLUSTERS)
 output:
 "logs/{JOBID}_slurm_kraken2SM.log"
 shell:
 """
 cat *.out > {output}
 rm *.out
 """

rule seqkit:
 input: wait = expand("logs/{JOBID}_slurm_kraken2SM.log", JOBID = JOBID)
 output:
 "output/results/{JOBID}_seqkit_stats.tsv"
 conda:
 "../envs/py3.yaml"
 threads:

 109

 10
 shell:
 """
 seqkit stats -a -T -j {threads} output/results/*.fasta > {output}
 """

rule checkm:
 input:
 expand("output/results/Cluster_{CLUSTERS}.fasta", CLUSTERS = CLUSTERS),
 expand("output/results/{JOBID}_seqkit_stats.tsv", JOBID=JOBID)
 output:
 expand("output/checkm/{JOBID}_checkm.log", JOBID=JOBID)
 params:
 out = expand("output/checkm", JOBID=JOBID),
 input = "output/results",
 refin = REFIN
 threads:
 20
 #conda:
 # "../envs/checkm.yaml"
 shell:
 """
 module load bio/CheckM
 module load math/numpy
 module load lang/Python/2.7.15-foss-2018b
 checkm unbinned -x fasta output/results/ {params.refin}
output/results/{JOBID}_unbinned_contigs.fa
output/results/{JOBID}_unbinned_contigs_stats.tsv
 checkm lineage_wf -f {output} --tab_table -x fasta -t {threads} {params.input}
{params.out}
 """

merge_filecounts.py

#!/usr/bin/env python3
import os
import glob
import argparse

def firstFile(fileName):
 bits = fileName.readline().rsplit('\t',1)
 return (bits[0])

def otherFile(fileName):
 bits = fileName.readline().split('\t')
 return (bits[2])

parser = argparse.ArgumentParser(description='')
parser.add_argument('loc', help='location count files are in', type=str)
parser.add_argument('jobid', help='location count files are in', type=str)
parser.add_argument('-l', '--sample-list', dest='samples', nargs='+', default=[])
args = parser.parse_args()
loc = str("output/" + args.loc)
jobid = args.jobid
samples = args.samples

fname = []

for i in samples:
 fname.append(str(loc + '/counts_' + i + '.txt')) #change this to read in in the
right order
print ('files with data to be merged: '+str(fname))
count lines in one file (they should all be the same...)
count = 0

 110

f = open(fname[0], 'r')
for line in f:
 count +=1
f.close()

count is now set to the length of the file
print ('number of entries per file: '+str(count))
now need to read in all files
filedata = [open(file_name, 'r') for file_name in fname]
oo = open(str(loc + '/' + jobid + '_read_counts.out'), 'w')

for runthrough in range (0,count):
 start_marker = filedata[0]
 end_marker = filedata[-1]
 string_text = firstFile(start_marker)+'\t'
 for line_out in filedata[1:-1]:
 string_text = string_text + otherFile(line_out)+'\t'
 string_text = string_text + otherFile(end_marker)+'\n'
 oo.write(string_text)

for closer in filedata:
 closer.close()

print ('merged data saved in: '+jobid+'_read_counts.out')

derive.py

#!/usr/bin/env python3
function that adds all the count values together to get a total
def summer(x):
 total = 0
 for loop in x:
 total = total + int(loop)
 return(total)
function that divides each point by total counts for this contig
def deriver(x,y):
 answers=[]
 for loop in x:
 if y == 0:
 y = 1
 value = int(loop)/y
 answers.append(value)
 return(answers)

import csv as csv
import os
import argparse

parser = argparse.ArgumentParser(description='')
parser.add_argument('loc', help='location count files are in', type=str)
parser.add_argument('jobid', help='jobid - to name output', type=str)
parser.add_argument('thresh', help='minimum size of contig', type=int)
args = parser.parse_args()
loc = str("output/" + args.loc)
jobid = args.jobid
thresh = args.thresh

dir_name = str(loc + '/')
file_name = str(jobid + '_read_counts.out')

new_record=[[]]
nr=False

with open(dir_name+file_name, 'r') as data_store:

 111

 line = csv.reader(data_store, delimiter='\t')
 for i in line:
 if int(i[1]) >= thresh:
 counts = summer(i[2:])
 values = deriver((i[2:]), counts)
 coverage = (counts*150)/int(i[1])
 values.append(coverage) # add coverage to the end of the entry
 values.insert(0,i[0]) # add contig name to the front of the entry
 if nr:
 new_record.append(values)
 else: # identifies first entry in the list
 new_record = [values]
 nr = True

with open(dir_name + '/' + jobid + '_read_counts_derived.csv', 'w') as f:
 writer = csv.writer(f)
 writer.writerows(new_record)

start_feeder.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-
import pandas as pd
import argparse

parser = argparse.ArgumentParser(description='')
parser.add_argument('loc', help='location count files are in', type=str)
parser.add_argument('jobid', help='location count files are in', type=str)
args = parser.parse_args()
loc = str("output/" + args.loc)
jobid = args.jobid

df = pd.read_csv(loc + '/' + jobid + '_read_counts_derived.csv', header=None, index_col
= 0)

df2 = df #seem to need to have a copy of the df to calc mean

df = df.drop(df.columns[len(df.columns)-1], axis=1) # drop last column so don't include
it in stats - is still in df2..

df2["mean"] = df.mean(axis=1)
df2["sd"] = df.std(ddof = 1, axis=1)

diffs = df.sub(df.mean(axis=1), axis=0)

diffs.to_csv(loc + '/' + jobid + '_diffs.csv', header = False) #diffs
df2.to_csv(loc + '/' + jobid + '_values.csv', header = False) #diffs

bin_feeder.py
#!/usr/bin/env python3

import sys, getopt
import csv
import numpy as np
import argparse
import pandas as pd

def pcc(x, y):
 prod = np.sum(np.multiply(x,y))
 divx = np.sqrt(np.sum(np.square(x)))
 divy = np.sqrt(np.sum(np.square(y)))

 112

 result = prod/(divx*divy)
 return result

parser = argparse.ArgumentParser(description='')
parser.add_argument('cut_diffs', help='split diffs', type=str)
parser.add_argument('all_diffs', help='all diffs', type=str)
parser.add_argument('thresh', help='pr threshold', type=float)
parser.add_argument('output', help='output', type=str)
args = parser.parse_args()
cut_diffs = args.cut_diffs
diffs = args.all_diffs
write_file = args.output
thresh = args.thresh

df_diffs_all = pd.read_csv(diffs, header=None, index_col = 0)
df_diffs_cut = pd.read_csv(cut_diffs, header=None, index_col = 0)

with open(write_file, 'w') as sender:
 for contig_x, row in df_diffs_cut.iterrows():
 row = row.to_numpy()
 line_2 = int(np.where(df_diffs_all.index == contig_x)[0])
 for contig_y, row1 in df_diffs_all.iloc[line_2+1:].iterrows():
 row1 = row1.to_numpy()
 resp_val = pcc(row, row1)
 if resp_val >= thresh:
 line_out = (contig_x, contig_y, resp_val)
 writer = csv.writer(sender)
 writer.writerow(line_out)
 line_2 += 1

para_sets.py

#!/usr/bin/env python3

import sys, getopt
import csv
import json
import argparse

short_list = []
nr_list = []
final_list = []

parser = argparse.ArgumentParser(description='')
parser.add_argument('input', help='location of input', type=str)
parser.add_argument('output', help='location of output', type=str)
parser.add_argument('thresh', help='location of output', type=float)
args = parser.parse_args()
read_file = args.input
write_file = args.output
thresh = args.thresh

with open (read_file, 'r') as incoming:
 file_reader = csv.reader(incoming, delimiter=',')
 for row in file_reader:
 if float(row[2]) >= thresh:
 short_list.append(row[:2])

while short_list:
 top = short_list[0]
 first = set(top)
 short_list.remove(top)
 for entry in short_list:

 113

 if first & set(entry):
 first.update(entry)
 short_list.remove(entry)
 x = [list(set(first))] # convert set to list to make compatible with json
 final_list.extend(x)

with open(write_file, 'w') as outgoing:
 json.dump(final_list, outgoing)

parallel_merge_step2.py

#!/usr/bin/env python3

import sys, getopt
import csv
import json
import argparse

def set_default(obj):
 if isinstance(obj, set):
 return list(obj)
 raise TypeError

short_list = []
nr_list = []
final_list = []

parser = argparse.ArgumentParser(description='')
parser.add_argument('-i', '--input-list', dest='input', nargs='+', default=[])
parser.add_argument('-o', dest='output', help='location of output', type=str)
args = parser.parse_args()
list_files = args.input
write_file = args.output

open first file
first_file = list_files[0]

with open (first_file, 'r') as master:
print('opening '+str(master))
 master_list = json.load(master)
 l = master_list
 out = []
 while len(l)>0:
 first, *rest = l
 first = set(first)
 lf = -1
 while len(first)>lf:
 lf = len(first)
 rest2 = []
 for r in rest:
 if len(first.intersection(set(r)))>0:
 first |= set(r)
 else:
 rest2.append(r)
 rest = rest2
 out.append(first)
 l = rest
 master_list = out

open sequential files and merge into the master list if they match
for current_f in list_files[1:]:
 with open (current_f, 'r') as working_file:
 working_list = json.load(working_file)

 114

 for row_1 in master_list:
 x = set(row_1)
 for row_2 in working_list:
 if x & set(row_2):
 x.update(row_2)
 working_list.remove(row_2)
 for entries in working_list: # add any sets left to the end of the master list
 y = [list(set(entries))]
 master_list.extend(y)

l = master_list
out = []
while len(l)>0:
 first, *rest = l
 first = set(first)
 lf = -1
 while len(first)>lf:
 lf = len(first)
 rest2 = []
 for r in rest:
 if len(first.intersection(set(r)))>0:
 first |= set(r)
 else:
 rest2.append(r)
 rest = rest2
 out.append(first)
 l = rest
master_list = out

with open(write_file, 'w') as outgoing:
 json.dump(master_list, outgoing, default=set_default)

step3.py

#!/usr/bin/env python3

STEP 3 STARTS HERE:
make a non-redundant list from the sets
generated in step 2

import json
import argparse

parser = argparse.ArgumentParser(description='')
parser.add_argument('input', help='location of input', type=str)
parser.add_argument('output', help='location of output', type=str)
args = parser.parse_args()
input_file = args.input
output_file = args.output

final_list = []
with open(input_file ,'r') as in_file:
 master_list = json.load(in_file)

while True:
 test = master_list[0]
 working_list = test
 for test_list in master_list[1:]:
 if not (set(test_list).intersection(test)):
 a = False
 else:
 a = True
 if a == False:

 115

 next
 else:
 working_list.extend(test_list)
 master_list.remove(test_list)
 master_list.remove(test)
 x = set(working_list)
 x = list(x)
 final_list.append(x)
 if master_list == []:
 break

with open(output_file, 'w') as out_file:
 json.dump(final_list, out_file)

file_parser.py

#!/usr/bin/env python3
code requirements
import json
import re
import csv as csv
import argparse
from Bio import SeqIO
from Bio import SeqUtils as su
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord

file names - change these as required
parser = argparse.ArgumentParser(description='')
parser.add_argument('contigs', help='the files', type=str)
parser.add_argument('csv', help='read_counts_derived', type=str)
parser.add_argument('clusters', help='output from step3', type=str)
parser.add_argument('output', help='output directory', type=str)
parser.add_argument('-l', '--header-list', dest='header', nargs='+', default=[])
args = parser.parse_args()
contig_file = args.contigs
csv_file = args.csv
cluster_file = args.clusters
wd = str("output/" + args.output)
header = args.header

#add context to header columns
header = ['contig'] + header + ['cover', 'length', 'GC']
print(header) #testing...

dictionaries and lists

cluster_stats = [] # list of stats on cluster data for export to .csv
bun_dict = {}

open .fasta file containing contigs and store as dict
print('Opening contig sequence file')
contig_dict = SeqIO.to_dict(SeqIO.parse(contig_file, "fasta"))
print(str(len(contig_dict))+' sequences loaded')

open .csv file and store as list(?)
print('Loading abundance data from .csv file')

with open(csv_file, 'r') as abundance:
 bun_entry = csv.reader(abundance)
 bun_list = list(bun_entry)
 for bun_record in bun_list:
 bun_dict[bun_record[0]] = bun_record[1:]

 116

print('Loading cluster details')

with open(cluster_file, 'r') as clusters:
 working_cluster = json.load(clusters)
 for current_cluster in working_cluster:
 cluster_filename = (wd+'Cluster_'+str(current_cluster[0])+'.csv')
 fasta_cluster_filename = (wd+'Cluster_'+str(current_cluster[0])+'.fasta')
 fasta_entry = []
 with open(cluster_filename, 'w', newline='') as csvfile:
 csv_writer = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_NONE,
escapechar=' ')
 csv_writer.writerow(header)
 for cluster_name in current_cluster:
 csv_string = cluster_name, ', '.join(map(str, bun_dict[cluster_name])),
len(contig_dict[cluster_name]),su.GC(contig_dict[cluster_name].seq)
 csv_writer.writerow(csv_string)
 fasta_entry.append(contig_dict[cluster_name])
 SeqIO.write(fasta_entry, fasta_cluster_filename, 'fasta')

plot.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-
import statistics
import matplotlib
#matplotlib.use('pdf')
#%matplotlib inline
import matplotlib.gridspec as gsp
import matplotlib.pyplot as plt
import pandas as pd
import argparse
import re
import datetime
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()

===
Command line parsing
===
parser = argparse.ArgumentParser(description='usage = python in_file prefix -k
kraken_file -k_l kraken_level -cm checkm -sk seqkit_file samples_file date(y/n)')
parser.add_argument('in_file', help='the name of the file containing a list of csv
files', type=str)
parser.add_argument('prefix', help='prefix of the jobs', type=str)
parser.add_argument('-k', '--kraken', help = 'merged kraken input file', type=str)
parser.add_argument('-k_l', '--kraken_level', help = 'merged kraken input file',
type=str)
parser.add_argument('-cm', '--checkm_file', help = 'checkm output file - in tab format',
type = str)
parser.add_argument('-sk', '--seqkit', help = 'seqkit output file - in tab format', type
= str)
parser.add_argument('samples', help='samples.tsv file', type=str)
parser.add_argument('dates', help='plot date scale y/n', type=str)

args = parser.parse_args()
in_file = args.in_file
prefix = args.prefix
samples = args.samples

if args.kraken_level:
 prefix = str(prefix + "_" + args.kraken_level)
else:
 prefix = prefix

 117

===
Plot global settings
===
matplotlib.rcParams['lines.linewidth'] = 0.5
matplotlib.rcParams['ytick.left'] = True
matplotlib.rcParams['ytick.minor.size'] = 1
matplotlib.rcParams['ytick.minor.width'] = 0.25
matplotlib.rcParams['axes.linewidth'] = 0.5
colours = ["crimson", "purple", "tab:cyan", "seagreen", "darkorange", "tab:pink",
"darkslateblue", "darkgoldenrod", "teal", "darkolivegreen"]

===
Read in input file(s)
===
set_groups = set()
if "y" in args.dates.lower():
 df_samples = pd.read_csv(samples, sep ='\t', parse_dates = ["date"])
else:
 df_samples = pd.read_csv(samples, sep ='\t')

groups = df_samples["group"].tolist() #get rid of header

for item in groups:
 set_groups.add(item)
dc = {}
for item in list(set_groups):
 dc[item] = -1
for i in groups:
 dc[i] +=1

with open(in_file, 'r') as text_file:
 files = text_file.read().strip().split()

===
Plot
===
counter = 0
for i in range(0, len(files), 30):
 gs = gsp.GridSpec(5,6)
 gsplace = 0
 sub_files = files[i:i+30]
 counter += 1
 mean_df = pd.DataFrame(columns=df_samples["sample"].to_list())
 for file in sub_files:
 with open(file, 'r') as f:
 file = str(file)
 df = pd.read_csv(f, index_col='contig')
 av_cov = str('{0:.1f}'.format(statistics.mean(df['cover'].tolist())))
 sd_cov = str('{0:.1f}'.format(statistics.stdev(df['cover'].tolist())))
 tot_len = str('{0:.1f}'.format(sum(df['length'].tolist())/1000))
 av_gc = str('{0:.1f}'.format(statistics.mean(df['GC'].tolist())))
 sd_gc = str('{0:.1f}'.format(statistics.stdev(df['GC'].tolist())))
 na = str(file.split('/')[-1:][0].split('.')[0][8:])
 file_na = str(file.split('/')[-1:][0].split('.')[0][8:])
#df['length'].idxmax()
 nu = str(len(df))
 axes1 = plt.subplot(gs[gsplace])

 x_start = 0
 x_prev_start = 0
 x_prev_end = 0

 mean_list =[]

 for item in list(set_groups):

 118

 x_end = x_start + dc[item] + 1
 y_mean = df.mean()[x_start:x_end]
 mean_list.extend(df.mean()[x_start:x_end].to_list())
 #print(mean_list)
 top = df.max()[x_start:x_end]
 bottom = df.min()[x_start:x_end]
 #print(df.mean()[x_start:x_end])
 if "y" in args.dates.lower():
 df_samples["date"] = pd.to_datetime(df_samples["date"])
 if x_start == 0:
 x_data = df_samples["date"][x_start:x_end]
 else:
 x_data = df_samples["date"][x_start:x_end] + (x_data[-
1:][x_start-1] - df_samples["date"][0] + datetime.timedelta(days=5))
 else:
 x_data = range(x_start, x_end)
 plt.plot(x_data, y_mean, color=colours[item])
 plt.fill_between(x_data, top, bottom, facecolor='gray', alpha=0.5)
 x_prev_start = x_start
 x_prev_end = x_end
 x_start = x_end

 plt.tick_params(labelbottom=False)

 plt.semilogy()

 x1,x2,y1,y2 = plt.axis()
 plt.axis((x1,x2,0.0001,100))
 plt.axhline(y=0.01, ls='--', lw = 0.25, c = 'black')

 if args.seqkit:
 seqkit_df = pd.read_csv(args.seqkit, sep = '\t', index_col =0)
 file_fa = file.replace(".csv",".fasta")
 n_50 = seqkit_df["N50"][file_fa]
 if "y" in args.dates.lower():
 plt.text(df_samples["date"][1], 1.7, "N50: " + str(n_50),
fontsize=2)
 else:
 plt.text(0.5, 1.7, "N50: " + str(n_50), fontsize=2)

 if args.checkm_file:
 checkm_df = pd.read_csv(args.checkm_file, sep = '\t', index_col = 0)
 clus = file.split('/')[-1:][0][:-4]
 comp = checkm_df["Completeness"][clus]
 conta = checkm_df["Contamination"][clus]
 if "y" in args.dates.lower():
 plt.text(df_samples["date"][1], 0.7, str(comp)+'%: Complete ' +
str(conta)+'%: Contamination', fontsize=2)
 else:
 plt.text(0.5, 0.7, str(comp) + '%: Complete ' + str(conta) + '%:
Contamination', fontsize=2)

 if args.kraken:
 for line in open(args.kraken, 'r'):
 if re.search(file_na, line):
 cont = line.split('\t')[-1].strip()
 if './' in cont:
 cont = ' '
 else:
 per = line.split('\t')[1]
 per = per.strip()
 if "y" in args.dates.lower():
 plt.text(df_samples["date"][1], 0.3, per+'%: ' + cont,
fontsize=2)
 else:
 plt.text(0.5, 0.3, per+'%: ' + cont, fontsize=2)

 119

 if "y" in args.dates.lower():
 plt.text(df_samples["date"][1], 40, na, fontsize = 2, fontweight='bold')
 plt.text(df_samples["date"][1], 9, nu+' cov:'+av_cov+'+/-'+sd_cov + ', '
+ tot_len +'kb', fontsize=2)
 plt.text(df_samples["date"][1], 4, 'GC% '+ av_gc +'+/-'+ sd_gc,
fontsize=2)
 else:
 plt.text(0.5, 40, na, fontsize = 2, fontweight='bold')
 plt.text(0.5, 9, nu +', cov:'+av_cov+'+/-'+sd_cov + ', ' + tot_len
+'kb', fontsize=2)
 plt.text(0.5, 4, 'GC% '+ av_gc +'+/-'+ sd_gc, fontsize=2)
 plt.tick_params(axis='x', labelsize=2, pad=0, direction='out', length=1,
width=0.25)
 plt.tick_params(axis = 'y', labelsize=2, pad=0, direction='out', length=1)
 plt.tick_params(right=False, top=False)
 gsplace += 1
 mean_df = mean_df.append(pd.Series(mean_list, name = file, index =
df_samples["sample"].to_list()))

 plt.savefig('output/plots/' + str(counter) + '_' + prefix + '_plot.png', type='png',
dpi=600)
 print('Generated plot number ' + str(counter) + ' -> ' + str(counter) + '_' + prefix
+ '_plot.png')
 plt.close('all')

mean_df.to_csv(prefix + "_clus_means.csv")

abun_plot.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import rc
import argparse
import pandas as pd
import math
from scipy.cluster import hierarchy as hc
import re
import matplotlib.cm as cm
import numpy as np

===
Command line parsing
===

parser = argparse.ArgumentParser(description='usage = python prefix csv_in binned_in
plot(r/a) top20(y/n) -s sample_list -k kraken_file ')
parser.add_argument('prefix', help='prefix of the jobs', type=str)
parser.add_argument('csv_in', help='file containing absolute abundance counts for every
contig', type=str)
parser.add_argument('binned_in', help='file listing contigs in each cluster', type=str)
parser.add_argument('plot', help='relative or absolute abundance output (r/a)',
type=str)
parser.add_argument('top20', help = 'output top19 and other or output all y/n', type =
str)
parser.add_argument('-s', '--sample', dest='sample', nargs='+', default=[])

 120

parser.add_argument('-k', '--kraken', dest='kraken', help = 'kraken top output file',
type = str)

args = parser.parse_args()

prefix = args.prefix
csv_in = args.csv_in
plot = args.plot
binned_in = args.binned_in
sample = args.sample
top20 = args.top20

if args.kraken:
 kraken = args.kraken
 taxo = "y"
else:
 taxo = "n"

#Dendogram options
LinkMethod = "weighted"
metric = 'correlation'

===

===
df_abun = pd.read_csv(csv_in, index_col = 0, names = sample)
df_abun = df_abun.drop(columns='Coverage')
tot = df_abun.sum(axis = 0)
cluster_abun = pd.DataFrame(columns=df_abun.columns)
new_df_abun = pd.DataFrame(columns = sample).drop(columns='Coverage')
abun = pd.DataFrame(columns = sample).drop(columns='Coverage')

with open(binned_in, 'r') as binned_list:
 for line in binned_list:
 if taxo == "y":
 if line.startswith(">"): #get cluster info
 cluster = line.strip('>').strip()[:-6] #strip things
 with open(kraken, 'r') as kraken_f:
 for line2 in kraken_f:
 if re.search(cluster, line2):
 name = line2.split('\t')[-1].strip()
 if name =="":
 name = 'Unclassified'
 else:
 line = line.strip().split(' ')[0] #split may not work with NAB_997 -
check
 if line in df_abun.index:
 if name in new_df_abun.index:
 new_df_abun.loc[name] =
new_df_abun.loc[name].add(df_abun.loc[line])
 else:
 new_df_abun.loc[name] = df_abun.loc[line]
 else:
 if line.startswith(">"): #get cluster info
 cluster = line.strip('>').strip()[:-6] #strip things
 name = cluster
 else:
 line = line.strip().split(' ')[0]
 if line in df_abun.index:
 if name in new_df_abun.index:
 new_df_abun.loc[name] =
new_df_abun.loc[name].add(df_abun.loc[line])
 else:
 new_df_abun.loc[name] = df_abun.loc[line]
 else:
 print("something wrong here")

 121

if 'y' in top20:
 new_df_abun["sum"]=new_df_abun.sum(axis=1)
 top_df_abun = new_df_abun.sort_values('sum', axis=0,
ascending=False).head(19).drop(columns = "sum")
 other_df_abun = new_df_abun.sort_values('sum', axis=0, ascending=False).iloc[19:,]
 top_df_abun.loc["Other"] = other_df_abun.sum(axis=0).drop(columns="sum")
 new_df_abun = top_df_abun

for column in new_df_abun: #iterate over columns
 per = []
 for val in new_df_abun.loc[:, column]:
 if 'a' in plot:
 per.append(val)
 if 'r' in plot:
 per.append(((val/new_df_abun[column].sum())*100))
 abun[column] = pd.Series(per, name = column) #sort name out

abun_sum = abun.cumsum()

abun.index = new_df_abun.index.values.tolist()
if 'r' in plot:
 abun.to_csv(prefix + "_relative_counts.csv")

prev = ""
previous = pd.Series()

fig = plt.figure(1)

for i in range(0, len(abun.index.values.tolist())): #for each cluster i.e list of abun
index
 if not prev:
 plt.bar(abun.keys(), abun.iloc[i, :], label=abun.index.values.tolist()[i],
width=0.9)
 else:
 plt.bar(abun.keys(), abun.iloc[i, :], bottom=previous,
label=abun.index.values.tolist()[i], width=0.9)
 #print(abun.keys())
 prev = 'y'
 if i != 0:
 previous = abun.iloc[i, :] + abun_sum.iloc[i-1, :]
 else:
 previous = abun.iloc[i, :]

plt.xticks(abun.keys(), abun.keys(), rotation='vertical', fontsize = 4,
verticalalignment='center_baseline')
plt.legend(loc='upper left', bbox_to_anchor=(1,1), ncol=1, frameon=False, fontsize = 5)

if 'a' in plot:
 plt.margins(x = 0.01, y=0.05)
if 'r' in plot:
 plt.margins(0)
if 'y' in top20:
 plot = plot + '_top20'

fig.savefig(str("output/plots/" + prefix + '_' + plot + '_abun_plot.png'),
bbox_inches='tight', dpi = 400)
plt.show()

if 'y' in top20:
 colours = ['#502db3', '#008080', '#c200f2', '#f2c200','#36a3d9',
'#e6beff','#8c0025', '#f58231', '#bf0080', '#cad900','#911eb4','#e5001f','#0066bf',
'#000075','#338000', '#f032e6','#1bca00','#1d4010','#9a6324','#a9a9a9']

 abun_flip = abun.transpose()

 122

 abun_flip.plot.bar(stacked=True, legend = None, figsize=(15,10), color=colours,
width=0.9)
 plt.legend(loc='center left', labelspacing=-2.5, bbox_to_anchor=(1.0, 0.5),
frameon=False)
 plt.ylim(0,100)
 plt.tight_layout()
 plt.savefig('output/plots/' + prefix +'_' + plot +'_'+ 'abun.png',
bbox_inches='tight')

GenusData = abun

z = hc.linkage(GenusData.values.T, method=LinkMethod, metric=metric)

plt.figure(num=None, figsize=(20, 10), facecolor='w', edgecolor='k')
dendrogram = hc.dendrogram(z, labels=GenusData.columns, color_threshold=0.04,
leaf_font_size=10, leaf_rotation=90)
for key in dendrogram.keys():
 if key == 'ivl':
 DenOrder = dendrogram[key]
plt.savefig("output/plots/" + prefix +'_' + plot +'_'+ LinkMethod + metric
+'_dendro.png', bbox_inches='tight', dpi = 400)

GenusData = GenusData[DenOrder]
GenusData = GenusData.transpose()
GenusData.plot.bar(stacked=True, legend = None, figsize=(30,20), width=0.9)
plt.legend(loc='center left', labelspacing=-2.5, bbox_to_anchor=(1.0, 0.5))
plt.savefig("output/plots/" + prefix +'_' + plot +'_'+ 'ord_abun.png',
bbox_inches='tight')

clus_stats.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import statistics
import pandas as pd
import argparse

===
Command line parsing
===
parser = argparse.ArgumentParser(description='usage = python in_file prefix -k
kraken_file -k_l kraken_level -cm checkm -sk seqkit_file samples_file date(y/n)')
parser.add_argument('in_file', help='the name of the file containing a list of csv
files', type=str)
parser.add_argument('prefix', help='prefix of the jobs', type=str)
parser.add_argument('-cm', '--checkm_file', help = 'checkm output file - in tab format',
type = str)
parser.add_argument('-sk', '--seqkit', help = 'seqkit output file - in tab format', type
= str)

args = parser.parse_args()
in_file = args.in_file
prefix = args.prefix

===
Read in input file(s)
===
set_groups = set()
with open(in_file, 'r') as text_file:
 files = text_file.read().strip().split()

===
Stats

 123

===
stats_df = pd.DataFrame(columns=['no_seq','tot_len','av_cov','sd_cov',
'av_gc','sd_gc','n_50','comp', 'contam'])

for file in files:
 with open(file, 'r') as f:
 file = str(file)
 df = pd.read_csv(f, index_col='contig')
 av_cov = str('{0:.1f}'.format(statistics.mean(df['cover'].tolist())))
 sd_cov = str('{0:.1f}'.format(statistics.stdev(df['cover'].tolist())))
 tot_len = str(sum(df['length'].tolist()))
 av_gc = str('{0:.1f}'.format(statistics.mean(df['GC'].tolist())))
 sd_gc = str('{0:.1f}'.format(statistics.stdev(df['GC'].tolist())))
 na = str(file.split('/')[-1:][0].split('.')[0])
 nu = str(len(df))
 if args.seqkit:
 seqkit_df = pd.read_csv(args.seqkit, sep = '\t', index_col =0)
 file_fa = file.replace(".csv",".fasta")
 n_50 = seqkit_df["N50"][file_fa]
 if args.checkm_file:
 checkm_df = pd.read_csv(args.checkm_file, sep = '\t', index_col = 0)
 clus = file.split('/')[-1:][0][:-4]
 comp = checkm_df["Completeness"][clus]
 conta = checkm_df["Contamination"][clus]
 stats_df.loc[na] = [nu,tot_len,av_cov,sd_cov,av_gc,sd_gc,n_50,comp,conta]

stats_df.to_csv("output/" + prefix + "_cluster_summary_stats.tsv", sep='\t')

bin_plot.py

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
import argparse
import pandas as pd
import math

def bins(file, bins):
 data = open(file, 'r')
 counts = []
 for i in range(len(bins)):
 counts.append(0)
 x = data.readline()
 x = data.readline()
 while x:
 a = x.split(sep='\t')
 pos = 0
 for loop in bins:
 if int(a[1]) < loop*100000:
 counts[pos] += 1
 break
 else:
 pos += 1
 x = data.readline()
 data.close()
 gt = 0
 for i in counts:
 gt += i
 return counts

===

 124

Command line parsing
===
parser = argparse.ArgumentParser(description='usage = python entrez_down.py
file_list_of_queries')
parser.add_argument('unbinned_file', help='output from checkm unbinned', type=str)
parser.add_argument('binned_file', help='output from bash script', type=str)
parser.add_argument('prefix', help='prefix of the jobs', type=str)

args = parser.parse_args()

unbinned_file = args.unbinned_file
binned_file = args.binned_file
prefix = args.prefix

unbin_df = pd.read_csv(unbinned_file, sep = '\t')
bin_df = pd.read_csv(binned_file, sep = '\t', names = ["Contig", "Length"])
max_len = max(math.ceil(unbin_df["Length"].max()/100000),
math.ceil(bin_df["Length"].max()/100000))

groups = [0.02,0.05,0.1,0.2,0.5]
for i in range(1, max_len+1):
 groups.append(i)

unbinned = bins(unbinned_file, groups)
binned = bins(binned_file, groups)

x = []

for i in range(len(groups)):
 x.append(i)

bin_bars = []
unbin_bars = []

for i in range(len(unbinned)):
 total = unbinned[i] + binned[i]
 if total > 0:
 if binned[i] > 0 :
 bin_bars.append((binned[i]/total)*100)
 else:
 bin_bars.append(0)
 if unbinned[i] >0:
 unbin_bars.append((unbinned[i]/total)*100)
 else:
 unbin_bars.append(0)
 else:
 bin_bars.append(0)
 unbin_bars.append(0)

fig = plt.figure(1)
plt.bar(x, bin_bars, color='#25335d', edgecolor='none', label='binned', width=1)
plt.bar(x, unbin_bars, bottom=bin_bars, color='#abb9e3', edgecolor='none',
label='unbinned', width=1)
plt.legend(loc='upper left', bbox_to_anchor=(1,1), ncol=1, frameon=False)
plt.xlabel('Size (100Kb)', size=8)
plt.ylabel('% Contigs', size=8)
plt.xticks(x, groups)
plt.tick_params(labelsize = 7)
fig.savefig(str('output/plots/' + prefix + '_bin_contigs.png'), bbox_inches='tight', dpi
= 400)
counts = pd.DataFrame(index=groups)
counts["binned"] = binned
counts["unbinned"] = unbinned
counts.to_csv(prefix + "_bin_group_stats.csv")

 125

absolute_derive.py
#!/usr/bin/env python3

function that adds all the count values together to get a total
def summer(x):
 total = 0
 for loop in x:
 total = total + int(loop)
 return(total)
function that divides each point by total counts for this contig
def deriver(x,y):
 answers=[]
 for loop in x:
 if y == 0:
 y = 1
 value = int(loop)
 answers.append(value)
 return(answers)

import csv as csv
import os
import argparse

parser = argparse.ArgumentParser(description='')
parser.add_argument('loc', help='location count files are in', type=str)
parser.add_argument('jobid', help='location count files are in', type=str)
parser.add_argument('thresh', help='location count files are in', type=int)
args = parser.parse_args()
loc = str("output/" + args.loc)
jobid = args.jobid
thresh = args.thresh

dir_name = str(loc + '/')
file_name = str(jobid + '_read_counts.out')
new_record=[[]]
nr=False

with open(dir_name+file_name, 'r') as data_store:
 line = csv.reader(data_store, delimiter='\t')
 for i in line:
 if int(i[1]) >= thresh:
 counts = summer(i[2:])
 values = deriver((i[2:]), counts)
 coverage = (counts*150)/int(i[1])
 values.append(coverage) # add coverage to the end of the entry
 values.insert(0,i[0]) # add contig name to the front of the entry
 if nr:
 new_record.append(values)
 else: # identifies first entry in the list
 new_record = [values]
 nr = True
with open(dir_name + '/' + jobid + '_read_counts_absolute.csv', 'w') as f:
 writer = csv.writer(f)
 writer.writerows(new_record)

 126

References
Alanjary, M., Steinke, K. and Ziemert, N. (2019) ‘AutoMLST: an automated web server for generating multi-locus

species trees highlighting natural product potential’, Nucleic acids research, 47(W1), pp. W276–W282.
Alkan, C., Sajjadian, S. and Eichler, E. E. (2011) ‘Limitations of next-generation genome sequence assembly’,

Nature methods, 8(1), pp. 61–65.
Almeida, A. et al. (2019) ‘A new genomic blueprint of the human gut microbiota’, Nature, 568(7753), pp. 499–

504.
Alneberg, J. et al. (2014) ‘Binning metagenomic contigs by coverage and composition’, Nature methods, 11(11),

pp. 1144–1146.
Altschul, S. F. et al. (1990) ‘Basic local alignment search tool’, Journal of molecular biology, 215(3), pp. 403–410.
Amgarten, D. et al. (2018) ‘MARVEL, a Tool for Prediction of Bacteriophage Sequences in Metagenomic Bins’,

Frontiers in genetics, 9, p. 304.
Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at:

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Ashton, P. M. et al. (2015) ‘MinION nanopore sequencing identifies the position and structure of a bacterial

antibiotic resistance island’, Nature biotechnology, 33(3), pp. 296–300.
Ayling, M., Clark, M. D. and Leggett, R. M. (2019) ‘New approaches for metagenome assembly with short reads’,

Briefings in bioinformatics. doi: 10.1093/bib/bbz020.
Bankevich, A. et al. (2012) ‘SPAdes: a new genome assembly algorithm and its applications to single-cell

sequencing’, Journal of computational biology: a journal of computational molecular cell biology, 19(5), pp.
455–477.

Bernard, G. et al. (2018) ‘Microbial Dark Matter Investigations: How Microbial Studies Transform Biological
Knowledge and Empirically Sketch a Logic of Scientific Discovery’, Genome biology and evolution, 10(3), pp.
707–715.

Bohlin, J. et al. (2010) ‘Analysis of intra-genomic GC content homogeneity within prokaryotes’, BMC genomics,
11, p. 464.

Bowers, R. M. et al. (2017) ‘Minimum information about a single amplified genome (MISAG) and a metagenome-
assembled genome (MIMAG) of bacteria and archaea’, Nature biotechnology, 35(8), pp. 725–731.

Campanaro, S. et al. (2019) ‘The anaerobic digestion microbiome: a collection of 1600 metagenome-assembled
genomes shows high species diversity related to methane production’, bioRxiv. doi: 10.1101/680553.

Campillo-Balderas, J. A., Lazcano, A. and Becerra, A. (2015) ‘Viral Genome Size Distribution Does not Correlate
with the Antiquity of the Host Lineages’, Frontiers in Ecology and Evolution, 3, p. 143.

Castro, C. J. and Ng, T. F. F. (2017) ‘U50: A New Metric for Measuring Assembly Output Based on Non-
Overlapping, Target-Specific Contigs’, Journal of computational biology: a journal of computational molecular
cell biology, 24(11), pp. 1071–1080.

Chan, J. Z.-M. et al. (2012) ‘Defining bacterial species in the genomic era: insights from the genus
Acinetobacter’, BMC microbiology, 12, p. 302.

Cornwell, M. et al. (2018) ‘VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and
complete RNA-seq analysis’, BMC bioinformatics, 19(1), p. 135.

Danczak, R. E. et al. (2017) ‘Members of the Candidate Phyla Radiation are functionally differentiated by carbon-
and nitrogen-cycling capabilities’, Microbiome, 5(1), p. 112.

De Maio, N. et al. (2019) ‘Comparison of long-read sequencing technologies in the hybrid assembly of complex
bacterial genomes’, Microbial genomics, 5(9). doi: 10.1099/mgen.0.000294.

Denton, J. F. et al. (2014) ‘Extensive error in the number of genes inferred from draft genome assemblies’, PLoS
computational biology, 10(12), p. e1003998.

Di Tommaso, P. et al. (2017) ‘Nextflow enables reproducible computational workflows’, Nature biotechnology,
35(4), pp. 316–319.

Frisli, T. et al. (2013) ‘Estimation of metagenome size and structure in an experimental soil microbiota from low
coverage next-generation sequence data’, Journal of applied microbiology, 114(1), pp. 141–151.

Fu, S., Wang, A. and Au, K. F. (2019) ‘A comparative evaluation of hybrid error correction methods for error-
prone long reads’, Genome biology, 20(1), p. 26.

 127

Giordano, F. et al. (2017) ‘De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms’,
Scientific reports, 7(1), p. 3935.

Goldstein, S. et al. (2019) ‘Evaluation of strategies for the assembly of diverse bacterial genomes using MinION
long-read sequencing’, BMC genomics, 20(1), p. 23.

Grüning, B. et al. (2018) ‘Practical Computational Reproducibility in the Life Sciences’, Cell systems, 6(6), pp.
631–635.

Hatfull, G. F. and Hendrix, R. W. (2011) ‘Bacteriophages and their genomes’, Current opinion in virology, 1(4),
pp. 298–303.

Hillmann, B. et al. (2018) ‘Evaluating the Information Content of Shallow Shotgun Metagenomics’, mSystems,
3(6). doi: 10.1128/mSystems.00069-18.

Huang, W. et al. (2012) ‘ART: a next-generation sequencing read simulator’, Bioinformatics, 28(4), pp. 593–594.
Imachi, H. et al. (2019) ‘Isolation of an archaeon at the prokaryote-eukaryote interface’, bioRxiv. doi:

10.1101/726976.
Jain, M. et al. (2018) ‘Nanopore sequencing and assembly of a human genome with ultra-long reads’, Nature

biotechnology, 36(4), pp. 338–345.
Janda, J. M. and Abbott, S. L. (2007) ‘16S rRNA gene sequencing for bacterial identification in the diagnostic

laboratory: pluses, perils, and pitfalls’, Journal of clinical microbiology, 45(9), pp. 2761–2764.
Kang, D. D. et al. (2015) ‘MetaBAT, an efficient tool for accurately reconstructing single genomes from complex

microbial communities’, PeerJ, 3, p. e1165.
Kim, D. et al. (2016) ‘Centrifuge: rapid and sensitive classification of metagenomic sequences’, Genome

research, 26(12), pp. 1721–1729.
Kirkegaard, R. H. et al. (2017) ‘The impact of immigration on microbial community composition in full-scale

anaerobic digesters’, Scientific reports, 7(1), p. 9343.
Kolmogorov, M. et al. (2019) ‘Assembly of long, error-prone reads using repeat graphs’, Nature biotechnology,

37(5), pp. 540–546.
Koren, S. et al. (2017) ‘Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat

separation’, Genome research, 27(5), pp. 722–736.
Koren, S. and Phillippy, A. M. (2015) ‘One chromosome, one contig: complete microbial genomes from long-read

sequencing and assembly’, Current opinion in microbiology, 23, pp. 110–120.
Köster, J. and Rahmann, S. (2012) ‘Snakemake--a scalable bioinformatics workflow engine’, Bioinformatics,

28(19), pp. 2520–2522.
Latorre-Pérez, A. et al. (2019) ‘Assembly methods for nanopore-based metagenomic sequencing: a comparative

study’, bioRxiv. doi: 10.1101/722405.
Leipzig, J. (2017) ‘A review of bioinformatic pipeline frameworks’, Briefings in bioinformatics, 18(3), pp. 530–536.
Letunic, I. and Bork, P. (2019) ‘Interactive Tree Of Life (iTOL) v4: recent updates and new developments’,

Nucleic acids research, 47(W1), pp. W256–W259.
Li, D. et al. (2015) ‘MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly

via succinct de Bruijn graph’, Bioinformatics, 31(10), pp. 1674–1676.
Li, H. et al. (2009) ‘The Sequence Alignment/Map format and SAMtools’, Bioinformatics, 25(16), pp. 2078–2079.
Li, H. (2013) ‘Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM’, arXiv [q-

bio.GN]. Available at: http://arxiv.org/abs/1303.3997.
Li, H. (2017) ‘Minimap2: versatile pairwise alignment for nucleotide sequences’, arXiv [q-bio.GN]. Available at:

http://arxiv.org/abs/1708.01492.
Li, H. and Durbin, R. (2009) ‘Fast and accurate short read alignment with Burrows-Wheeler transform’,

Bioinformatics, 25(14), pp. 1754–1760.
Lin, Y. et al. (2016) ‘Assembly of long error-prone reads using de Bruijn graphs’, Proceedings of the National

Academy of Sciences of the United States of America, 113(52), pp. E8396–E8405.
Li, Y. et al. (2018) ‘DeepSimulator: a deep simulator for Nanopore sequencing’, Bioinformatics, 34(17), pp. 2899–

2908.
Martin, M. (2011) ‘Cutadapt removes adapter sequences from high-throughput sequencing reads’,

EMBnet.journal, 17(1), pp. 10–12.
McIlroy, S. J. et al. (2017) ‘MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of

wastewater treatment systems expanded for anaerobic digester groups’, Database: the journal of biological
databases and curation, 2017(1). doi: 10.1093/database/bax016.

 128

McNair, K. et al. (2019) ‘PHANOTATE: a novel approach to gene identification in phage genomes’,
Bioinformatics, 35(22), pp. 4537–4542.

Meric, G. et al. (2019) ‘Correcting index databases improves metagenomic studies’, bioRxiv. doi:
10.1101/712166.

Meyer, F. et al. (2018) ‘AMBER: Assessment of Metagenome BinnERs’, GigaScience, 7(6). doi:
10.1093/gigascience/giy069.

Mikheenko, A., Saveliev, V. and Gurevich, A. (2016) ‘MetaQUAST: evaluation of metagenome assemblies’,
Bioinformatics, 32(7), pp. 1088–1090.

Morgan, J. L., Darling, A. E. and Eisen, J. A. (2010) ‘Metagenomic sequencing of an in vitro-simulated microbial
community’, PloS one, 5(4), p. e10209.

Murat Eren, A. et al. (2015) ‘Anvi’o: an advanced analysis and visualization platform for ‘omics data’, PeerJ.
PeerJ Inc., 3, p. e1319.

Nasko, D. J. et al. (2018) ‘RefSeq database growth influences the accuracy of k-mer-based lowest common
ancestor species identification’, Genome biology, 19(1), p. 165.

Nicholls, S. M. et al. (2019) ‘Ultra-deep, long-read nanopore sequencing of mock microbial community
standards’, GigaScience, 8(5). doi: 10.1093/gigascience/giz043.

O’Leary, N. A. et al. (2016) ‘Reference sequence (RefSeq) database at NCBI: current status, taxonomic
expansion, and functional annotation’, Nucleic acids research, 44(D1), pp. D733–45.

Olson, N. D. et al. (2017) ‘Metagenomic assembly through the lens of validation: recent advances in assessing
and improving the quality of genomes assembled from metagenomes’, Briefings in bioinformatics. doi:
10.1093/bib/bbx098.

Pace, N. R. (2009) ‘Mapping the tree of life: progress and prospects’, Microbiology and molecular biology
reviews: MMBR, 73(4), pp. 565–576.

Parks, D. H. et al. (2015) ‘CheckM: assessing the quality of microbial genomes recovered from isolates, single
cells, and metagenomes’, Genome research, 25(7), pp. 1043–1055.

Parks, D. H. et al. (2017) ‘Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the
tree of life’, Nature microbiology, 2(11), pp. 1533–1542.

Parks, D. H. et al. (2018) ‘A standardized bacterial taxonomy based on genome phylogeny substantially revises
the tree of life’, Nature biotechnology, 36(10), pp. 996–1004.

Pasolli, E. et al. (2019) ‘Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000
Genomes from Metagenomes Spanning Age, Geography, and Lifestyle’, Cell, 176(3), pp. 649–662.e20.

Paszkiewicz, K. and Studholme, D. J. (2010) ‘De novo assembly of short sequence reads’, Briefings in
bioinformatics, 11(5), pp. 457–472.

Peces, M. et al. (2018) ‘Deterministic mechanisms define the long-term anaerobic digestion microbiome and its
functionality regardless of the initial microbial community’, Water research, 141, pp. 366–376.

Quast, C. et al. (2013) ‘The SILVA ribosomal RNA gene database project: improved data processing and web-
based tools’, Nucleic acids research, 41(Database issue), pp. D590–6.

Rang, F. J., Kloosterman, W. P. and de Ridder, J. (2018) ‘From squiggle to basepair: computational approaches
for improving nanopore sequencing read accuracy’, Genome biology, 19(1), p. 90.

Rappé, M. S. and Giovannoni, S. J. (2003) ‘The uncultured microbial majority’, Annual review of microbiology, 57,
pp. 369–394.

Reichenberger, E. R. et al. (2015) ‘Prokaryotic nucleotide composition is shaped by both phylogeny and the
environment’, Genome biology and evolution, 7(5), pp. 1380–1389.

Schmid, M. et al. (2018) ‘Pushing the limits of de novo genome assembly for complex prokaryotic genomes
harboring very long, near identical repeats’, Nucleic acids research, 46(17), pp. 8953–8965.

Sczyrba, A. et al. (2017) ‘Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics
software’, Nature methods, 14(11), pp. 1063–1071.

Seemann, T. (2014) ‘Prokka: rapid prokaryotic genome annotation’, Bioinformatics , 30(14), pp. 2068–2069.
Shah, N. et al. (2011) ‘Comparing bacterial communities inferred from 16S rRNA gene sequencing and shotgun

metagenomics’, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp. 165–176.
Sharon, I. et al. (2013) ‘Time series community genomics analysis reveals rapid shifts in bacterial species,

strains, and phage during infant gut colonization’, Genome research, 23(1), pp. 111–120.
Shen, W. et al. (2016) ‘SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation’, PloS one,

11(10), p. e0163962.

 129

Sieber, C. M. K. et al. (2018) ‘Recovery of genomes from metagenomes via a dereplication, aggregation and
scoring strategy’, Nature microbiology, 3(7), pp. 836–843.

Simpson, J. T. et al. (2017) ‘Detecting DNA cytosine methylation using nanopore sequencing’, Nature methods,
14(4), pp. 407–410.

Sims, D. et al. (2014) ‘Sequencing depth and coverage: key considerations in genomic analyses’, Nature
reviews. Genetics, 15(2), pp. 121–132.

Solli, L. et al. (2014) ‘A metagenomic study of the microbial communities in four parallel biogas reactors’,
Biotechnology for biofuels, 7(1), p. 146.

Somerville, V. et al. (2019) ‘Long-read based de novo assembly of low-complexity metagenome samples results
in finished genomes and reveals insights into strain diversity and an active phage system’, BMC microbiology,
19(1), p. 143.

Sović, I. et al. (2016) ‘Evaluation of hybrid and non-hybrid methods for de novo assembly of nanopore reads’,
Bioinformatics, 32(17), pp. 2582–2589.

Spang, A. et al. (2015) ‘Complex archaea that bridge the gap between prokaryotes and eukaryotes’, Nature,
521(7551), pp. 173–179.

Stewart, E. J. (2012) ‘Growing unculturable bacteria’, Journal of bacteriology, 194(16), pp. 4151–4160.
Stewart, R. D. et al. (2018) ‘Assembly of 913 microbial genomes from metagenomic sequencing of the cow

rumen’, Nature communications, 9(1), p. 870.
Tamames, J. and Puente-Sánchez, F. (2018) ‘SqueezeMeta, A Highly Portable, Fully Automatic Metagenomic

Analysis Pipeline’, Frontiers in microbiology, 9, p. 3349.
Treangen, T. J. and Salzberg, S. L. (2011) ‘Repetitive DNA and next-generation sequencing: computational

challenges and solutions’, Nature reviews. Genetics, 13(1), pp. 36–46.
Treu, L. et al. (2016) ‘Deeper insight into the structure of the anaerobic digestion microbial community; the biogas

microbiome database is expanded with 157 new genomes’, Bioresource technology, 216, pp. 260–266.
Ushiki, N. et al. (2017) ‘Nitrite oxidation kinetics of two Nitrospira strains: The quest for competition and

ecological niche differentiation’, Journal of bioscience and bioengineering, 123(5), pp. 581–589.
Vaser, R. et al. (2017) ‘Fast and accurate de novo genome assembly from long uncorrected reads’, Genome

research, 27(5), pp. 737–746.
Visconti, A., Martin, T. C. and Falchi, M. (2018) ‘YAMP: a containerized workflow enabling reproducibility in

metagenomics research’, GigaScience, 7(7). doi: 10.1093/gigascience/giy072.
Vollmers, J., Wiegand, S. and Kaster, A.-K. (2017) ‘Comparing and Evaluating Metagenome Assembly Tools

from a Microbiologist’s Perspective - Not Only Size Matters!’, PloS one, 12(1), p. e0169662.
Walker, B. J. et al. (2014) ‘Pilon: an integrated tool for comprehensive microbial variant detection and genome

assembly improvement’, PloS one, 9(11), p. e112963.
Watson, M. and Warr, A. (2019) ‘Errors in long-read assemblies can critically affect protein prediction’, Nature

biotechnology, pp. 124–126.
Weirather, J. L. et al. (2017) ‘Comprehensive comparison of Pacific Biosciences and Oxford Nanopore

Technologies and their applications to transcriptome analysis’, F1000Research, 6. doi:
10.12688/f1000research.10571.1.

Wood, D. E., Lu, J. and Langmead, B. (2019) ‘Improved metagenomic analysis with Kraken 2’, Genome biology,
20(1), p. 257.

Wood, D. E. and Salzberg, S. L. (2014) ‘Kraken: ultrafast metagenomic sequence classification using exact
alignments’, Genome biology, 15(3), p. R46.

Wu, Y.-W. et al. (2014) ‘MaxBin: an automated binning method to recover individual genomes from
metagenomes using an expectation-maximization algorithm’, Microbiome, 2, p. 26.

Zaheer, R. et al. (2018) ‘Impact of sequencing depth on the characterization of the microbiome and resistome’,
Scientific reports, 8(1), p. 5890.

