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Chanter I 

Introduction

1*1) Analysis Methods

Structures composed of members with varying section properties 

are quite often encountered in engineering practice. Two reasons 

for this aro,firstly the more elegant appearance of the structure 

resulting from the use of non-uniform members,and secondly a more 

efficient use of materials, as the profile of the members can 

reflect more honestly the distribution of stresses throughout the 

structure. The variation in section can be along the full length 

of the member* as in precast concrete or welded steel portal frames 

which have tapered legs and rafters, or the member may vary in 

section only at the ends when haunch stiffeners are employed. Largo 

,multispan bridges often consist of longitudinal girders with a variation 

in depth giving an elegant arch like appearance to the structure. In 

the case of large bridge structures where dead weight forms a greater 

proportion of the load, the improved structural efficiency resulting 

from the use of varying section members, can reduce the overall weight 
of the structure thereby making further savings in the cost of 

the supporting structure and foundations.

Before the availability of electronic computers the analysis 

of all but the simplest forms of structures with varying section
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properttes required considerable time and skill. Many of the 

established methods of structural analysis can be applied to frames 

composed of varying section members and many modifications have been 

introduced to enable specific types of structure to be analysed by hand.

Column analogy can easily bo applied to beams and portal 

frames with stepped members or members with a linear variation in the 

moment of inertia* The method becomes tedious and lengthy as the 

variation in moment of inertia becomes more complicated* Kobinson (3) 

demonstrated the method of semi-graphical integration which can be 

applied to non-prismatic members in plane framos, but again any complex 

variation in the moment of inertia will make the calculations extremely 

laborious. The moment distribution method can be applied to varying 

section members once the distribution and carry over factors have been 

obtained. Many standard text books contain tabulated values of stiffness 
and carry over factors, and values of fixed end moments for beams with 

straight, prismatic or parabolic haunches. Computer programmes have 

also been written to calculate these coefficients (4). The method 

can be applied to continuous beams or plane frame structures, although the 
rate of convergance is sometimes rather slow where members have compara

tively high carry over factors. A method proposed by Fok and Mosuro 

(5) uses the tabulated values of stiffness and carry over factors to form 
three moment equations, which are solved to give the redundant moments*
The method is only suitable for ccntinuous beams and offors little
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advontage over the normal moment distribution process* Diwan (6) 

also uses the three moment equations to derive bonding moments, and 

demonstrates that influence linos can be obtained by applying unit 

displacements to the ends of members, The application is ¿gain 

restricted to continuous beams. Sami (7) has evolved a method of 

solution by using redundont coefficients, which are presented in 

tabular form and substituted into a sot of redundant moment equations,
A computer programme has been written to derive the coefficients.

A different set are required for v.ach degree of redundancy and for each 

set of span ratios. The method has also been restricted to 

prismatic beams with parabolic depth variation. Without considerable 

amounts of tabulated data the use of this method is limited.

All the preceding methods have been developed and presented 

as hand methods for the analysis of plane frame structures. All of the 
methods make simplifying assumptions or rely on tabulated data to enable 

acceptable results to be obtained. In.all cases only bending strains 
have been consüered,but to obtain an accurate solution in all cases 

It is necessary to also consider axial strains, Sawlco has shown (8) 
that in the case of a vierendael girder, an error in the value of 
bending moment of up to is committed when axial strains are nog*.

.looted# .

Another important class of structure often requiring analysis 
is the grid frame. Because the high degree of indeterminancy makes an
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exact solution by hand extremely lnbdkrious, several other 

methods have been developed but, ns far as is known» only two of 

these make provision for non-prioraatic members. The most widely 

used method is that by Guyoh and Massonet in which the grillage 

is considered as an orthotropic plate of equivalent flexural and 

torsional stiffness. Mo rice and little (9) produced a design pro

cedure and presented the coefficients in graph form*. The method 

has since been used by Goldstein, Lightfoot and Sawko (10) to analyse 
three span continuous grillage bridges with varying section properties, 

by vising the simply supported span technique, A discrete girder is 

first analysed under the action of the total load to determine the

bending moment along the beam, points of contraflecturo and deflected
*

profile. The central portion of the deck between the points of 

contrailecturo, assumed to lie at right angles to the longitudinal 

girder, is considered as an equivalent simply supported slab. The 

variation in moment of inertia is small at the centre of the 

bridge and an average value is considered when calculating the bending 

and torsional stiffness parameters. Distribution coefficients are then 
obtained which,when multiplied by the average moment per girder, give the 
distribution of longitudinal bending moment. The deflected profile 

is also obtained using the distribution coefficients but the deflections 
obtained are related to the line of contraflecture and not the original 

position of the deck. Because only the first term of the loading 
series is considered, an increase of 10^ to the maximum values of bending
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moment nnd deflection is recommended. The seme coefficienta obtained 

for the middle of the central span are assumed to apply to all other 

parts of the bridge,and hence,bending moments over the piers and in 

the end spans are obtained. Coefficients con be obtained to give the 

transverse bending moment distributions at any point in the quasi slab, 

but no recommendations arc given for the treatment of side spans.

This method has been used for the design of a right bridge (10) and 
a Zk° skew bridge (¿2), although in the latter case model tests were 

also conducted as on additional check on the results.

The Hendry Jaeger method (11) relies upon the application of 

harmonic and basic function analysis. This method is more powerful 

than the former; grids supported on two, three or four sides nay be 

analysed with fixod or free support conditions. The method can bo 

applied to both skew and continuous grillages and it also allows 

for some variation in longitudinal stiffness. Basic function analysis 
is used for any type of grid with any boundary conditions, whereas the 

harmonic analysis, can be used only for simply supported grids. Co

efficients presented in the form of charts and graphs make the method 
easy to apply. A comparison between the Hendry Jaeger method and tho 
Distribution Coefficient method by Sawko and Saha (12) has shown that 

the results given by the former method were 8# higher in the case of 

longitudinal bending moment and 19# higher in tho case of transverse 
bending moment for a single span uniform bridge deck. No comparison



is arailabl© for continuous grillages with varying section properties.

The methods outlined above for the analysis of grid and plane 

frame structures are all hand methods and,although they aro suitable 

for use in a design office in slide rule calculations, the methods 

are not easily programmed to give a general solution using the electronic 

computer. The advent of the computer brought about a change in struct

ural analysis methods. Although matrix methods had been known for 
many years,their use had been restricted to very simple structures > 

because of the large amounts of repetitive numerical manipulation involved 

The computer is,however, able to perform this type of work extremely rap

idly. :

Madu (13) has applied a finite difference approach to plates 

of varying dopth?using an electronic computer to solve the equations«

The method has been applied to grid frames with a variation in depth 

but the application was restricted to simply supported right grillages*

Prom the use of matrix methods two different approaches have 
emerged. The flexibility method, (l^) renders the structure statically 

determinate by applying stress resultant releases. The displacement 
discontinuities can then be removed by the application of bi-actions.
The values of the redundant3 ore then determined by the solution of 

a sot of *n* simultaneous equations, where ’n* is the degree of 

indeterminancy. The solution of the problem is reduced to a series of 
methodical matrix operations. By malting use of the matrix intorprotive
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scheraes available aa part of tho softwoar of most computers* these 
operations can be performed rapidly and accurately. In this case the 

structure is reduced to its statically determinate state ted the 

basic matrices formod, by hand. It is for this reason that the flexibilty 

method is not easily programmed to give a general solution. It is however* 

possible to programme specific cases and this method is used to 

calculate member properties in the program described in Section 

(2.3).

Hie stiffness method (15) renders tho structure kinematically 

determinate by clamping each of tho nodes. This usually results 

ingress resultant discontinuities at these nodes. Tho discontinuities 

can then bo removed either by iteration,as in HardyCross moment 

distribution* or by solving a set of linear simultaneous equations* 

as in slope deflection. Krynicki and Mazurktrwics (16) have shown 

how slope deflection equations can bo applied to the solution of frames 

consisting of solid bars of varying cross section. The method relies 

upon tabulated coefficients and is,therefore,a hand method which cannot be 

used to give a general solution.

The computer can bo used to set up and solve a generalised 
set of slope deflection e a; rations, and in this way on automatic solution 
can bo programmed. Unlike the flexibility method, the degree of indet

erminacy need not bo known and the data need consist only of details of 
the frame geometry, applied loading and support conditions. Programmes



have been written to analyse grid and plane frameworks (17, l8) using 

this method, but previously mainly prismatic members have boon considered 

It is possible to simulate a varying section member by considering it 

as a series of shorter uniform members,thus forming a stepped member. 

This procedure has the disadvantage of increasing the number of joints 

and henco the time for solution. Existing programmes have also been 

adapted to analyse specific cases, Litton, Roper and Thompson (19) 
describe a method of modification to consider members with sloping 
haunches at each end. The members are considered in terras of equivalent 

section properties, but each member is roquired to have two values of 

moment of inertia to give the correct bending and shearing stiffnesses#

A method by which standard computer programmes for the analysis of 

frames with uniform members, may be used for the analysis of frames con

sisting of symmetrical non-unform members,has been derived by Sawko (35) 

The member stiffness and carry over factors are first obtained by hand 

calculations or from standard tables. By using the published graphs 

an equivalent member is obtained,which has uniform haunches at each 

end. The dimensions of the haunches are obtained so that the equivalent 
member can be analysed exactly,by considering it as three separate 
uniform members? additional joints have to bo inserted at the points 

of discontinuity. The two preceding methods ore restricted in 

application to the particular types of non-fmiform members for which 

they wero specifically written.
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After considering oil the methods outlined above, it was 
apparent that there was a need for a method capable of analysing 

structures composed of varying section members, in which no res

triction^ would be placed upon either the type of members,or degree 

of variation in section along the members# The existing hand methods 

are only suitable for small structures and many of the methods also 

impose*restrictions upon the type of members. The computer programmes 

could in certain cases produce aru•exact’ analysis,but in other cases 
it was necessary to introduce certain simplifying assumptions. The 

flexibility method, whilst providing on accurate means of analysis, 

becomes cumbersome when applied to highly redundant structures 

because of the nature of the necessary data.

Within this thesis computer programmes are developed for tho 

accurate analysis of structures with varying section members. Two 

types of structure are considered; the plane frame and tho grid frame. 
Programmes to calculate influence lines or surfaces for those two typos of 

structures are also developed. The main application of these pro

grammes is thought to be in the analysis of building frames and 

bridges. If the facilities are available to analyse accurately 
structures where the members may have any required variation in 

section, tho engineer will not bo deterred from producing an elegant 

and efficient structure, for fear that it cannot bo analysed with 
sufficient accuracy. This is particularly the case with bridge enginee
ring, where modern techniques in prostresaed concrete and welded steel



Yiava enabled endnoerB to build largo multispan bridges of slender 
proportions,and therefore, on accurate method of analysis is required 

to ensure adequate safety.

A series of model tests are described,which were conducted 

to investigate the accuracy of the grid frame programme,and the 

degree of approximation involved when tho grillage with varying sections 

is used as a mathematical model to simulate plated structures.

In a recent paper (20) the author and his supervisor Mr.F.

Sawko have demonstrated how tho computer techniques developed in the 

investigation can be applied to bridges with varying section properties.

1,2) Design Methods

Since the advent of the electronic computer, programmes have j
been developed to analyse many types of structures,so that at the 1

present time it is possible for the majority of structures to bo

analysed either *exactly* or by using a convenient mathematical model, :

In the normal design process these programmes aro used for tho analysis !
' !

of trial systems. There is no direct method of designing statically j

indeterminate structures and a ’trial and error* approach must lo j
adopted. The structure is first designed approximately by hand, to j.... I
obtain a set of dimensions and section sizes, It is then analysed,using j 

an electronic computer to determine the stress distribution. If at | 
any point the strucutrc is overstresaed the section sizes are modified 
and tho structure is re-analysed, told-ng into account the changes In j

- 10-
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member stiffnesses. When using a computer to check trial systems 

it is usual to accept a solution which is over designedTas being 

practically correct. The initial design of a largo structural syetom 

is a lengthy process involving a considerable amount of hand calculation. 

This process is often the most expensive part of the design, as 

computer analysis is now very rapid and economical.

Consideration of these facts led to the development of 

automatic design programmes, the computer being ideally suited to this 
type of work. It is able to perform repetitive calulationa extremely 

rapidly and a large number of trial and error cylea can be applied to 

statically indeterminate structures, thereby arriving at on economical 

solution* Many of the routine preliminary calculations can be per

formed by the computer, so that the overall cost of the design is also 

. reduced.

During the first decade that computers were available, efforts wore 

concentrated upon writing programmes for the analysis of structures 

and it is only recently that automatic design programmes have been 
written. This is mainly due to the large amounts of random access 

store that is required by a design programme. The design process is 
usually on iterative procedure of trial and error analysis, and therefore, 

the full analysis procedure must bo contained v/ithin tho program, in 

addition to many other instructions. ' During tho running of tho program 

'the computer is also required to calculate and store largo amounts of 
information, and it is only in tho past few years that computers of cuffi*. 

ci$nt e t c ^  fcavo b -vn ^vallnbla.
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" . Using modern computers many design programmes have

been developed. Almost all of those programmes consist of elastic or 

plastic design of frame structures composed of uniform members and 

these were therefore considered to be outside the scope of this work.

The design of structures with varying section properties 

presents particular problems, as there are an infinite number of possible 

solutions to any one structural problem. So far very little work has 
been carried out on the automatic design of these structures. The 

Portland Cement Association (21) developed a design procedure for 

continuous prestressed concrete bridge beams with varying section pro

perties* This approach was originally intended for use as a hand 

method but it was later used by Aziz (22) as the basis of a computer 

programme for the automatic design of bridge beams. The programme 

developed will design a single continuous prestressed concrete bridge

girder, subjected to the HA loading specified by BS 153 (l)*and the 
design produced is in accordance with CP 115 (2), The programme

calculates relative El values at all points along the girder and

derives a set of influence , lines for bending moment based upon the
relative X values. The flexibility method is employed and the influence
lines are formed by placing Unit point loads cat successive points along

the girders. Using the influence lines,maximum and minimum live load

bending moments ore obtained. A ratio of doad/live bending moment
is assumed and an initial set of section sizes is derived. From the
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actual sizes the bending moment ratio is checked and the section re

designed if necessary. . The magnitude of the prestressing force 

is calculated and the cut off points for the cables established.

The upper and lower bounds of the limiting zone are calculated and 

a cable profile designed,such that the line of thrust acts within 

this zone. The programme also calculates the total cost of the 

girder based upon the quantities of concrete, steel and shuttering.

By using this programme the effects of span and depth ratios upon the 

cost of a bridge, were investigated. The programme produces a rigorous 

design for the HA loading and, as this loading acts on all girders 

in a bridge, the design need only consider a discrete girder* In 

order to examine the effects of the abnormal vehicle HB loading, the 

■complete bridge must be considered, taking into account th® distribution 

of load across the deck. The programme written by Aziz is unable to 

consider these effects because when the programme was developed a suffiw’ . 
ciently large computer was not available.

The latter part of this work consists of an investigation into 

the problems of writing a comprehensive programme capable of automatically 
designing raultispan highway bridges,with varying section properties, 
subjected to both IIA and HB load systems. A study of the effects of 
variation in span lengths and relative EE values is described. The 

whole of the deck is considered under the action of both loading 
systems,and a range of parameters is investigated to determine the 
least weight design.
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Chapter 2.

Computer Programs Tor The Analysis of Grid and Plane, Frameworks 

2*1) Introduction

The first program for the analysis of rigid jointed 

plane frames was devised by Idvesley in 1953 (17) for the Ferranti 

Hark 1 machine at Manchester University. Several other plane frame 

programs were later written by different authors,including a program 

by Rooney, then of Babcock and Wilcox Ltd., for the Ferranti-Pegasus 

machine. The similarities between plane frameworks and grid frameworks 

were appreciated by Lightfoot and the program by Rooney was transcribed 

by Sawko to analyse grid frames in 1958 (18).

Although grid and plane frame structures are different in type 

the internal organisation of the programs is very similar. Both 

-can be considered to be special cases of a general space frame structure, 
each one taking into account the relevant strains. The basic difference 

is therefore in the stiffness matrix elements for individual members.

In order that the programs developed should be as efficient as 

possible they were written specifically for the KDF9 machine, which at 

present forms the basis of the installation at the Leeds University 
Computing Laboratory. The language Algol 60 (34) has been used for 

all programs. Algol is a more universally accepted language and one 

that the KLF9 compilers are able to translate efficiently. In rewriting 

the grid and plane frame programs in Algol, facilities were

i
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incorporated to deal accurately with varying section members. The 

internal organisation was also considerably modified,to produce a 

version making efficient use of the storage capacity of the computer, 

and also reducing the amount of data required, Only the grid 

framework program is described in detail because of the similarities 

between the two types of program, A copy of the grid framework 
program».is contained in Appendix One,

2,11) The Electronic Computer

Computing Laboratory uses,as a basic machine,the English Electric Loo 

Marconi KDF9* which is a medium sized simultaneous digital computer.

For Host of the period of this research a main store of 16K, (16 x 1024 

words) of 48 bit core store, was available. This has recently been 

increased to 32K units of main store, althou^inot all of this is 
normally available for uso by one program.

The times for the basic operations are as follows

The installation at the Leeds University

Multiply 13 »
Add micro

Divide 26 ” h

The main store has a cycle time of 6 microseconds and

characters can be transferred between the main store and the 

arithmetic unit at 1,3 x 10^ per second.
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In addition to the main control machine there are 

several peripheral devices. Magnetic tape decks are used as 

additional storage units,as well as holding the range of soft- 

wear. Information is recorded simultaneously on 16 tracks across 

a l" wide tape, with a density of 400 characters per inch. The 

transfer rate is 40,000 characters per second, which is considerably 

slower than within the main machine. The physical operations 

Involved in using magnetic tape also greatly Increase the time.

The acceleration and deceleration of the tape takes 2-4 milli

seconds and the rewind time for a 2300 foot tape is 4 minutes.

Paper tape readers have an input rate of 1000 characters per 
second and paper tape output punches have a process rate of 110 

characters per second, or 12 words per second. This slow output 

rate has the effect of 'holding up' the central processing unit and 

an alternative faster method is to output results on to magnetic 
tape at a rate of 4000 words per second. The magnetio tape is 

processed through an off line printer, which has a maximum 

operating speed of 1000 lines per minute.

The central processing unit has the fastest operating 
speed and must, therefore, be adjusted through tho input/output 

devices to accommodate the slowest piece of peripheral equipment 

in use. This means for the majority of the time it is being used 

at less than maximum efficiency. To overcome this deficiency 
the facility of time sharing can be used,
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whereby more than one program can be run 'simultaneously'. Whilst 

one program is transferring data from one phase to the next, the 

central processing unit takes over another program, thus alternating 

between several programs which are operating at the same time. This 

is why the whole of the fast store is not normally available for use 

by one program only; efficient use of the installation dictates that 

at least two programs should be running together.

Befbre the program can be obeyed by the computer, it must 

first be translated from the program language, in this case 

Algol, to the machine code. The KDF9 softwear contains two 

compilers to do this. Hie Whetstone compiler translates a programe 

rapidly,in a matter of seconds, and during this process performs a 

thorough check on the syntax of the Algol program. The resulting 

translation is, however, obeyed relatively slowly under the Whetstone 
controller. The Kidsgrove translator,by contrast,produces a 

translation which will be obeyed ten or more times faster, but the 
time taken to produce this more efficient version can be as much 

as ten minutes. The failure messages output under the Kidsgrove 
system are far less informative.

To make efficient; use of both these compilers the program 

is first run using the Whetstone compiler, and use made of the 

comprehensive failure messages., until the author is satisfied



that the program is entirely correct. It can next be translated 

using the Kidsgrove compiler and the resulting translated version 

stored on magnetic tape. It can then be used subsequently, without 

the need* for a lengthy re-translation and the results are also 

produced in the quickest time. The program is given a unique 

title and placed in a common library of programs. Any data to 

be run with a program stored on magnetic tape is headed by a 

‘call’ sequence,which causes the computer to search for the 

required program and transfer it into the main store.

All the programs described in later chapters are 

available in Kidsgrove binary versions and the operating times 

quoted are obtained using this compiler#

2.2) Assumptions

The programs analyse rigid jointed structures 

composed of straight members of either varying or uniform section 

properties. The structures are considered to be linear, i.o i n  

which all displacements and internal loads are linear functions of 

the applied loads.
2The bending theory equation Eld y M 'is assumed

' dx ,
to apply So that slope deflection equations can bo written for 

every member in the frame. The frame is analysed in its undoflocted 
form so that the small deflections, induced through the curvature of the

v^18---- c -
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membcrs under load,are neglected and direct forces in grillages 

arc not considered* The effects of axial loading, in plane 

frameworks, upon the stiffness and restraint factors is similarly 

neglected. Force equilibrium equations are set up for each joint, 

taking into account bending and torsional moments and shear force 

for grid frameworks,or axial and shear force and bending moments 

for plane frameworks. Consequently external loads have to bo 

considered as acting at joints only. Any system of loads* can, 

however, be expressed in terms of fixed end moments and shears. 

The final forces are calculated by superimposing the local member 

effeats on to the results obtained from the computer.

2,3) Basic Framework Equations

2,3.1) Grid Framework

Consider a general member 1-2, as shown 

in Fig. (2.1) forming part of a grid framework. The member is 

considered relative to its own co-ordinate system where axis p 

runs along the member, axis q at right angles and the z axis 
normal to tho plane.

Applying the basic slope deflection equations to member 
12 At end %i-

Mql2= IS.2ei+C21K2ie2” ( ^ " ^ A l )  ^d?.l"6g,2 j ....(2.1)
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in. which Kid

'id

is the bending stiffness at end i

is the carry over.factor from end i to end j.

For a uniform member the bending stiffness i.e.j moment
4FTto produce a unit rotation with the far end fully fixed, is >

where E is Young's modulus and I is the effective second moment 

of area about the bending axis,and L is the length of the member. 

The value of carry over for a uniform member is ■§«

The torsional moment can bo expressed as :«

V  - * V V . . .  (2.2)

in which T is the torsional stiffness of the member.

For a uniform member T equals GJ,where G is the rigidity
L

modulus, J is the .effective second moment of area about the torsion

axiSjand L is the length of the member.
Similarly at end 2*-

I1q21=K2ie2+G12K12ei ~ K£1+C12K12) (6zl~6z2̂  ... (2.3)
L

Shear force

and F » ~F _ ~ z21 zl2

The above equations are summarised in matrix form in 

Table (2.1) which can bouexpressed briefly as:-



• • • (2.W

F1 * + ^ 2 D2 

*2 = R 2?l + K21D2

in which K. . is tho stiffness matrix, ij
is the restraint matrix, 

or simply as;-

M  ■ M M  ... (a.?).

These equations refer to moments and forces relative 

to the individual member displacements. In order to relate all 

the members of the frame, it is necessary to be able to express 

moments and forces relative to an arbitrary system of general 

co-ordinates, denoted by x and y.

If member 12 is inclined at an angle <* to the general 

co-ordinate system as shown in Fig. (2«2a) it can be seen that:-

Mxi ■ V a  cosc< - V  olnt‘<

M . « M , 0 sinc< + M , _ cos c< yl pl2 q!2

The force F remains unchanged as it acts normal to tho z

axis of transformation.

Tho transformation matrix T thus becomes:-
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cos -sin 0

sin cos 0

0 0 1

and the transformed member forces can be expressed briefly as:

Similarly the relationship between displacement vectors 

can be expressed as:-

Tliis may be done by contragradience or from geometrical 

considerations.

By substituting Eqn. (2.7) to Eqn. (2.5)

t g - r a t f D g ... (2.8)

and by substituting Eqn. (2.8) to Eqn. (2,6) the transformed 

moments and forces can be expressed as:-

t g  * m i * ]*  r g

Thus Equations (2.*f) can be written:- 
t i t i t

F1 * , Da d2
t • I • IP2 d1 + k2 1 d 2

.•. (2.9)

(2.10). . .
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where “ [T][ K][ T]T

and R^' - [T][R][T]T (i.J » 1.2)

The complete set of generalised slope deflection equations are 

given in Table (2,2)

£If the external forces acting upon Joint one,are 

considered together with all members meeting at Joint one. the 

conditions of statio equilibrium may be writtens-

piE -Sfes’K  +2(r12V )  ....... <2-n >.
Equations can be formed in the same way for every Joint 

in the frame thus enabling all the equivalent external forces to 

be related to the various displacements in the general form

[F] -■[KjD] .....  (2.12)

where[f] represents the force vector, [k] is the stiffness 

matrix for the whole structure and M  represents the displacement 
vector.

It is therefore possible for a solution to this equation 

to be found to give Joint displacements in the frame. Terminal 
forces and moments in the x, y directions can be calculated by back 
substitution in the equations given in Table (2.2) and by simple 
resolution the forces and moments in the member direction are 

found. Alternatively the displacements can be resolved into the 
individual member directions and back substituted Into equations 
given in Table (2.1) to give the same final result.
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2.3*2) Plano Framework Equations

Consider a general member 1-2,

forming part of a plane framework, as shown in Fig. (2.3)* In 

the some way that equations wore set up for bending and shear in 

a grid framework, slope deflection equations can also be set up 

for bonding moment and shear force for a member in a piano 

framework. As the load is now acting in the plane of the structure 
there will be no deformations due to torsion. There will however, 

be deformations caused by the axial loads in members and these 

may be expressed as:-

S12 * A(Spl - V ’

and « -S^2

where A is the axial stiffness of the member which would be 

for a uniform member,where’s1 is the cross sectional area*

The slope deflection equations for an individual momber 

are summarised in Table (2.3)

As before it is necessary to be able to refer to a 
momber relative to a general system of co-ordinates. If member 
12, as shown in Fig (2.4) is inclined at an anglee? to the general 

co-ordinate axis then it can bo seen that:-

Sxl ■ spl2 C0B* -  «P12 0ln0<

V  ' V a slno<+ V  co° *
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The moment remains unchanged by the transformation. 

The transformation matrix T is therefore

cos - sin 0

sin cos 0

0 0 1

Equations (2.10) are still valid and the full set of 

generalised slope deflection equations can be calculated as before. 

Those are shown in Table (2.W.

By considering every member in the frame a set of 

equations can be built up,finally culminating in the forms-

M  - T K I » ]

The solution of this equation gives the joint displacements 

which are back substituted in the equations in Table (2.^) to give 

the forces and bending moment in the x,y directions. These are 

resolved to give the terminal forces and moments in the p,q directions

2»Jf) Determination of Member Properties and Fixed Rid Moments

For every member in a frame it is necessary to know the 
bending stiffness and carry over factor at each end. The torsional 

stiffness and axial stiffness are also required in the case of grid 

frameworks and piano frameworks respectively. These properties aro 
required in order to set up the slope deflection equations and are 
calculated using strain energy to derive influenco coefficients for
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the end conditions. The derivation given here is based upon that 

given by Morico (31).

Consider a fixed ended beam as shown in Fig, (2.5a). The 

structure is two times statically indeterminate and is released 

by relaxing the end fixities. The end fixing moments are then 

made arbitrary constants x^ and x2« The bonding moments caused by 

unit values of x^ and x2 will bo as shown in Fig, (2,6b) and (2.6d). 

The total bending moment acting at any point on the beam will bo 
that duo to the applied loading on the released structure plus 

that due to the arbitrary constants:-

M .

The total strain energy in the beam will be:- 

U * ■ / V  ,
j  El ds* . . .  (2.13)

By applying the theorum of least work,two equations for 

the determination of x^ and can bo obtained:-

3 J L
*i " l  A  G& )ds

9 u  f  iL. ( j £  )dB
3 x 2 " ;; I 3x2 ^20. ••• (2.1*0

Replacing M by its components,equations (2,1*0 become:.

9 U
9*1

m.

El1 (mo+m^x^+m2K2^ <is * 0
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a u
Bx, ®2U  (m ^Xj+m^Xg) ds a 0 ... (2.15)

Expanding, equations (2.15) become
2i m.

*1 “*1 f raim2
s EC ds + x2 J s "e T  ds +

nnm
EI—  ds a 0

*1 mira2-tS- ds + x- s Ex 2
rru f m?m
IHrds + Js“il ds = 0 ••• (2.16)

Consider now Castigliono*s second theorem, vizs-

9 u  .
9 x

and apply it to the displacement 6^ at the position and in the 
direction of x^:-

e 3 U
3 ^  m *1

2
EI ds + x2 V 2

EI ds +
m. ra

ds ... (2.1?)

If the applied load mQ = 0 and x^ * O theni-

6i ■ *i "i
EI ds

(say) ... (2.18)

Thus the rotation of the released structure undor the 

action of a unit bending moment x^ only, is:-

0, m
. JLieJsEI ... (2.19)

If the applied load mQ = 0 and x^ » Q thonî-
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61 - XZ
/S al

. . .  (2.20)

Thus for a unit value of applied at end 2 the rotation 

at end 1 will be:-

( X .‘12 ralm2
is El ds ... (2,21)

I f  x^ * X.J « 0 then 

6. * J m.m
8 ds * ^  (say) ... (2.22)

Thus is tho displacement at the position and in .the 

direction of x^ due to the applied load.

The first equation (2,16) can thus be written5-

fllXl + f12X2 * (2.23a)

Similarly the second equation relating to x2 can be

written;

f0,x_ + f-s-pc-, » ~u0 21 T. 22T 2 2 ... (2.23b)

where fg^ * iJLmp
fa El 03 **21

22 “a.
EI ds Q„

Equations (2.23) con be written in matrix form thus*-.
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fll + f12 *l‘
m «■

' \

f21 f22 x2 ... (2.23c)

The solution these two simultaneous equations gives the 

values of arbitrary constants and and because mQ * 0 at 

the supports these will be the actual values of fixed end moments 

at end 1  and 2 respectively.

The stiffness and carry over factors can also bo 

derived from the factors already calculated. Consider the member 12 

simply supported at end 1 and fully fixed at end 2 as shown in 

Pig. (2.7a). The application of a unit bending moment at end 1 will 

cause a fixed end moment to act at end 2. The value of moment 

required to ensure foil fixity will b e a s  given by Eqns, (2,19)

and (2.2 1). This ratio is the carry over from end 1 to end 2^thus:-

12
mlP2
El
„2IQ
EI ds

2 2
C22

... (2.2*0

and similarly ■ - EI
2

”1
EI

f*
fli

... (2.23)
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The effect of the moment being applied at end 2 will cause

a rotation at end 1 which will equal f ¿a
0. * 1

Therefore the total rotation at end 1 due to the application

of unit moment at end 1 with end 2 fully fixed^is:-
2P 2 P 1s “l , mlm2 ,

VB El ds ' *  —  d s .
p 2nu 2

El ds

thus 6X » fxx " fi5 

f22
••• (2#26)

Similarly for in Fig. (2.7b):-

2
62 * f22 “ f12 

fll

The bending stiffness of a member is the moment required 

to produce a unit rotation at the applied end with the remote end 

fully fixed, .

Hence stiffness at end 1 is:--

fu  “ hz/'zz
Stiffness at end 2 is:-

. * * (2.27)



31-

K21 1

t22~iiz/i11
... (2.28)

In order to calculate the stiffness, carry over factors 
and fixed end moments it iq necessary to integrate the various 
bending moment diagrams. This is most easily accomplished by 
dividing the span of the beam into an even number of equal 
parts and by applying Simpson's rule to the ordinates of bending 
moment and values. The accuracy of this method is discussed 
in Section (2.7).

2.5) Organisation of the Programs.

2.5.1) Standard Versions.

The basic operations can be summarised 
in the form of a flow diagram and are shown in Fig, (2.8).

The data is prepared in the standard way, as described in 
Section (2.6), and read into the computer as required by the 
program. It is not necessary to store the whole of the data within 
the computer before calculations begin.

Quantities are stored within the computer in one of two 
ways. 'Integers' are stored as fixed point numbers having on 
exact value. Any arithmetic operations ore carried out exactly 
and the result Is not subject to rounding off. Other variables 
which are 'real' numbers are stored in floating point form and
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are subject to rounding off errors. Values may be stored as 

single numbers! referred to by •identifiers’, or in blocks.

The Algol language has the facilities to store blocks of 

numbers that can be referred to by subscripted variables. These 

may hold vectors and matrices or sets of numbers and are called 

'arrays’. Arrays may be either of type 'integer' or'real'.

Upon commencement the computer reads in the basic 
parameters of the frame, consisting of: 'm' the number? of members,'n' 

the number of joints, *x' the number of typos of members.

Using these integers storage space can be alloted to contain the 

member list and member properties. The following eight 

properties are required for each member: vostf, sin&<, L,

T, Kjpt K2^4 lathe case of plane frameworks the

coefficient T is replaced by the axial stiffness A, These 

properties are also later required to sot up the individual 

member slope deflection equations to calculate tho final 
forces.and are stored in array P. To economise on storage 

space tho members are grouped into sets in which all 
the members have the same properties. It is then only 
necessary to store one set of properties for each typo of 

member. The sizo of array P is therefore 8xx, Tho members 

are denoted by the joints they connect and a list of members is 
stored in array M,which has 3 x m elements of store. Because



these joint numbers are later required to locate the positions 

of the elements in the stiffness matrix» they must not bo 

rounded off and array M is therefore of type integer. The columns 

of M hold: joint at end 1» joint at end 2, type number of 

member.

The values of E and G are input and remain constant 

throughout the program. If any members in the frame have a 
different E or G .value this can bo allowed for by proportionately 

altering the I and J values for that member. The data for the 

first member is read in* the joint numbers being placed in array 

M and the x and y ordinates being placed in the first two 

columns in the P array. The number of members of this type,

'd'is also noted. The length L in inches is then calculated,being 

L » 12 x/x +y^, and placed in the third column* Using L the 

x and y ordinates are then converted to cost* and sino< respectively.

As mentioned previously the stiffness and carry over
factors are calculated from the influence coefficients of the

beam. Although at this stage the fixed end moments are not
calculated the ^  values along the beam will later be required
and are stored in array F. Array F is a vector occupying only

1one row. As before only the jrj? values for each type of member 

are stored.

The computer next reads in the number of stations at *



- M -

whiclr I and J are specified. This quantity is denoted by *t* and 
is stored in army T. The next 't' numbers are now read into 

array HF. The m^ and values are formed in array H and the 

Simpson's rule factors in array Q. The influence coefficients 

i'll» *12' "*22 aro tlien calc^ ate<i by using Jensen's device 
which is a 'procedure.1 for finding the innerproduct of two 

vectors. A procedure is a sub-routine within the program that 

can be entered at any time by writing the name of the procedure 

followed by its parameters. The innorproduct procedure is given 

the name ’dot' and is included at the beginning of the program 

thus j-

real procedure dot (atb,p,q,r)j 

valuo p,qj real a,b; 

integer p,q,r? 

begin real s; s:=oj 

for r:«p step 1 until q do s:*s+axb; 

dott a s; 
end:

The stiffness and carry over factors can now bo 
calculated using Equations (2.2k) to (2.28) and are stored in 

the last four places in the row of the P array.

The computer then reads the next H* numbers from the
data tape,being.the corresponding J values at each 'station'
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The torsional stiffness is then calculated by summing the values 

along the length using Simpson's coefficients. For a plane frame 

the axial stiffness A is evaluated in the same way using the area 

at each 'station*.

The remaining members of this type are now input. As 

the properties for these members have just been calculated it is 

not necessary to specify any further data other than the joint 
numbers at end 1 and end 2. Hence in introducing economies of 

storage space,considerable time is also saved in data preparation.

The next d-1 pairs of numbers are then read into array 

M and are allotod a type number. Integer 'd' being the number 
of members of this typo.

The process is continued until all the member properties 

have been calculated and stored in the property array. If any 

member in the frame is of uniform section the properties for that 

member are inserted directly into the appropriate storage positions. 

In this case only ono value of I and J (or A) are required to
aexdescribe the member and * 0.5»»

or A Ea
L

The next section of the program sets up the stiffness 
matrix for the structure. The contributions from each member are 
inserted in turn, the members being considered in the order they appear
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in tho M array. The computer selects the next member i j , in the 

M array and loc-ates its corresponding properties in the P array.

The diagonal terms are first calculated and placed in the stiffness
i tmatrix,. and being placed in the locations corresponding 

to the ith and jth joints respectively. The computer then checks 

to ascertain whether tho joint at end 1 is smaller than the joint
'iat end 2. If this is so the off diagonal terra is placed in the 

corresponding joint locations on the ith row and under the jth 
column. Alternatively, if the joint at end 1 is greater than the

ijoint at end 2 then the R,^ term is used^ being placed in the same 

position. In this case the member is in effect reversed*

This process is repeated for every member until the 

stiffness matrix for the complete structure has been formed*

A general joint forming part of a framework is shown in 
Figure (2.9) and the corresponding stiffness terms for members 
13j 35 and 3& are shown inserted into the stiffness matrix.

In examining Tables (2,2) and (2.^) it will be noticed that
■ i « ■■■■■■■•■■■■ i ■matrix *s the transpose of matrix that matrices

tand are symmetrical about their diagonals.

Thus when the stiffness matrix is formed for the complete 

structure it is symmetrical about tho leading diagonal.

If the form of the stiffness matrix is further examined it 
will be noticed that the physical form of tho structure is reflected



in the arrangement of the elements. If there is a member connecting
i tjoints i and j,the and K21 terms will lie on the diagonal 

corresponding to the ith and jth joints respectively, and also the
i

R^2 terra will lie off the diagonal in the jth column, indicating 

a member connecting joints i and j. The form of the stiffness 

matrix is shown in Figure (2.10) whoro an asterisk represents a 

3 x 3  matrix element. As the matrix is symmetrical about the 

leading diagonal, only the terms above and including the diagonal 
have been indicated. It can bo seen that the elements form a 

band along the diagonal and the width of the band is dependent 

upon the width of the structure, being determined by tho greatest 

difference between joint numbers. All terms lying outside the 

band are zero.

Utilising those facts, considerable savings can be made 

in the amount of Bjpace required to store the stiffness matrix, 

Bocauso of symmetry only half the matrix need bo stored. This can 

be further reduced, however, by only storing tho elements that 
constitute the top half of tho band. If a framework containing 

25 x 3 joints is taken as an example. The Btorage capacity for the 

complete matrix would bo (3 x 75) a 50625» there boing three 
displacements at each joint. Storing only the upper half of the 

matrix band the space require will be 75 x b x 3 * 2700,
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Comparlng this vdth the total number of 50625 elements it can be 

seen that, in this particular case, only about %  of the original 

space is required to define the stiffness matrix.

When alioting the numbers to joints in a frame it is 

therefore advantageous to arrive at the system that will give the 

narrowest band. In the case of a grillage this is achieved by 
numbering across the narrowest width of the frame as demonstrated 
in Fig. (2.11).

As the computer is only able to store rectangular arrays 

the matrix band must bo stored vertically as an array of Bizo 3n * w, 

where fn' is the number of joints and *w’ is the width of the matrix 

band.

The width *w* is next calculated by the computer. Each 

member is considered in turn and the greatest difference between tho 

joint numbers is found using tho Algorithm:*

for i: * 1 step 1 until to. do
if abs (K[i,l]- Mfi,2])>w/3 - 1 then
w: » (abs CM[i,l]« M[i,2])+l)x3;

Having calculated »w1, an array S is declared to accommodate 

the stiffness matrix band containing 3n x w elements. All elements 
are given an initial value of zero. The computer then inserts the 
stiffness matrix terms for each member to build up tho stiffness
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matrix for the complete structure. In placing the elements

in array S due care is taken of the way the matrix is orientated.

The form of the stiffness matrix and method of storage within the

computer are shown in Fig, (2.12), where an asterisk represents
* »one element in a K or H matrix.

The next operation is to form the loading vector* The 

program is able to analyse more than one loading case and so the

loading vectors are stored in an array B, If ‘y* is the number of
* i

loading cases,arrayB can be declared requiring 3nxy storage units. 

All spaces are initially given a value zero.

The terms in the loading array are formed by setting up

equations (2.23) for each loaded beam,thereby finding the values

of fixed end moments. The »free1reactions are calculated and then

corrected using the fixed end moments to restore statical

equilibrium* The influence coefficients are reformed, as
1described previously, the ^  values for each beam having been 

stored for each type of member. To fora the u^ and values 

the free bending moment diagram ordinates are required at each 
’station’, The computer calculates these values automatically, 

first considering the UDL, if any, acting on the beam:-

o r y .  Wlf (a-D ^l-ts-U A n-U )lilsi(n-xr
where W * load per foot
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s » no. of stations 

n « total number of stations

The contributions from point loads are now added being for 

ordinates to -the left of the load:-

Ord « P (L-l) (n-1) 
ra

where 1 » distance from L.H. end.

and for ordinates to the right of the point load

The total free bending moment ordinates at each ’station' 

are held in array 'N,

In this way the total free bending moment ordinates are 

built up by taking contributions from each load on the member.
Only the ordinates at stations are considered therefore if a point 

load lies between two stations the bending moment peak will not 
be considered. This leads to slight local inaccuracies♦ which aro 

discussed further in section (2.5).
iUsing procedure ’dot’ matrices H F and'N are multiplied 

together giving the and values. These values are calculated 

for every loaded member and for each loading case^and aro printed 

out in tabular fora. This enables the local effects of bending 
moment and shear to bo superimposed on to the general results output
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by tho computer.

There now exists a set of simultaneous equations with the 

stiffness matrix forming the left hand side and the loading vectors 

on the right hand side. Before a solution is possible tho conditions 

of zero deformations have to be incorporated, otherwise the structure 

is capable of rigid body movemont and a unique solution is not possible. 

If a particular deformation is zero,the equation governing the 

deformation can be removed» together with all tho terms that are 

multiplied by the deformation. The corresponding loads are also 

made zero. Thus the number of equations remains equal to the 

number of unknowns. To allow continuity in the process of solution 

it is necessary for the diagonal pivot term to remain in tho 

stiffness matrix. Since there is now only one term on the loft hand 

side being equated to a zero load tho resulting deformation will 

become zero.

The joints having zéro displacements ore read from tho data 
tape and the corresponding terms in tho stiffness and loading arrays 

sot to zero. If at joint 3 in a frame the vertical displacement is 

zero then the third term corresponding to joint 3 would be modified

as shown in Fig. (2.12).

For the solution of the equations tho ’Square-root' method 

is employed being a modification of tho Choloski method (23)*
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As matrix S is symmetric it can bo resolved into two 
triangular matrices one of which is the transpose of the other!

i.o. S = u ’u

where U is an upper triangular matrix.

-The elements of TJ can be evaluated by considering the 

rules for multiplying two matrices:

v  *  Di i ,v u2 i ’i2 j + • • •  +oi i V  :

v  * V *  (i-3> •

Hence the elements U. . can be determined thus:-ij
7 1--;------------

sii - Z  uti2 - (i>°> (2.29)

v -  v -  S w
(j>l) ... (2.30)

Uii

Solving the system is the same as solving two triangular 

systems, thus:- SD » F

can bo written:-
il 0
VlC * F and ’&D o K

The elements in the K vector are determined by recurrent 
formulas analogous to the formulae for U_^, Namely:-
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*1 F,
ü.11

ütiKt’ (i>l) ... (2.31)

by the formulae

... (2.32)
wil '

The actual programming of the solution takes only a 

few lines and illustrates the power of the Algol programming 

language. Using the procedure ‘dot* the upper triangular 

matrix is formed thus:-

for i: « 1 step 1 until 3xn do

begin S[ifl]! * sqrt (S[i,ll-dot (S[r,i-r+:fl$2f 1, 

if l>w then i-w+1 else 1, i-1, r))j

k:» ¿f 3*n-i>w-l then w else 3xn-i+l|

for ;jt*s2 step 1 until k do

S[i,j]î* (*S[i,;)]- dot (S[r,i-r+l], S[r*j+i-r]* if 
¿+t> w+1 then j+i-w else 1, i-1, r ))/S[i,l3|

end formation of upper triangular matrlxj

The final solution is formed

D « TC n n
Unn

n

h ‘ h - t  D« Bt
t=i+l_______
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The loading vectors B are now transformed in the same way.*-

for j: = 1 step 1 until y do 

for is * 1 step 1 until 3xn do

= (B[i,j]- dot (S [r,i-r+l], if i>w

then i-w+1 else l,i-l,r))/S£itl];

Back substitution now loads to the final solution of the 

set of equations. As the deformations are evaluated they are 
placed into the positions originally occupied by the loads.

Therefore array B eventually holds the values of deformation 

at each joint and for each loading case,

for j: » 1 step 1 until y do
herein B[3xn, j]!« Bf3xn» j]/S[3xn,l];
for i:»3xn»l step-1 until 1 do
B[l,j]s*(B[ifj]-dot (S[i,r«i+l]t B[r,j],
i+1. if 3xn-i>w-l then i+w-1 else 3xu,r))/S[i,l];

end back substitution;

It should bo'noted that the extra amount of calculation 

involved when the number of loading cases is increased is quite 
small. The main body of calculation is involved in forming the 

upper triangular matrix U. Onco this has boon evaluated any 

number of loading cases can be dealt with as alternative right 
hand sides. In running the program the additional time for 
calculation of additional loading cases and the corresponding
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increaso in cost* is quite small, A large structure with many 

loading cases will have considerable final output and for an 

economical solution these results should bo first placed onto 

magnetic tape and later processed through an off line printer.

The deformations are then back.substituted into the 

slope deflection equations in Table (2.2) to give the forces 

in the x and y directions. Those are then resolved into the 

member directions giving the forces viz. bending moments at 
each end* torsion moments, (or axial load for piano frameworks) 

and the shear force, for each member in the frame.

For each loading case the computer prints out in 
tabular form the forces preceoded by the member location. The 
values of deformation are also output. Although only values 
of deflection ore normally of practical use the values of 
rotation are included for completeness. An example is given in 
Section (2.9).

2,5.2) Partitioned Grid Framework Program,

Computers are currently being manufactured with largo 
fast store capacities and it is likely that in the future larger 

machines will be built thus enabling frameworks of several 

hundred joints to be analysed. The installation at the Leeds 
Computing Laboratory has recently been increased to contain 32K 
♦words' of fast store which enables grid frameworks of up to 450
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joints to be solved. The aore store will, however, always remain 
finite, thus placing a theoretical restriction on the size of 

problem that can be solved as a complete frame. By using the 

technique of partitioning any size of frame can be analysed? 

provided it can be reduced to a series of linearly connected sub- 

frames. A partitioned version, of the grid framework program has 

therefore been written.

The basic method of solution is similar to that employed 
for the standard version. The difference occurs in the method of 

storing the various matrices. Data is prepared in the way described 

in Section (2,6.2). The basic operations are summarised in the flow 
diagram shown in Fig, (2.13).

In forming the upper triangular matrix and back substituting 

to obtain final deflections, only the terms on the proceeding fw' 

lines are required - where 'w* is the width of the matrix band.

Thus once the first 'w1 lines of the upper triangular matrix have 
been formed?to form line w+1, line one is not required and could 

be transferred from the fast store on to magnetic storage tape.
As it is more efficient to transfer several lines at any one time 
the lines are moved in sub-frame blocks. To form the stiffness 

matrix it is necessary to have access to the previous sub frame in 

order to include the terms from members common to both sub-frames.
It is also necessary to impose zero displacements twice for each 

sub-frame as an initial zero may have been overwritten when terms
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from the common members have been added. Hence two adjacent 

sub-frames have to be stored in the fast store whilst the stiffness 

matrix is being formed. It is this fact that determines the size 

of individual sub-frames. The structure has to be sub-divided such 

that no two adjacent sub-frames exceed the available fast store.

Once a structure has been partitioned there is a marked 

increase in the time required for solution as the use of magnetic tape 
is a . comparatively slow method of storing information. A recent 

set of data for a frame of 1?0 joints having 5 loading cases,took 

25 minutes for solution. When using this program on a time sharing 

machine, only the effective time used is normally taken into account 

when charging for computer time used. Thus although the elapsed 

time may be higher1 the time in terms of cost will only be slightly 

more than quoted in Section (2.8).

2.6) Preparation of Data

2.6.1) Standard Programs.

Each data tape is headed by a ’call' 

sequence containing the program's unique identifier. This causes 
the computer to select the correct program and to transfer it into 

the computer store. Following the 'call' sequence is a title 

describing the particular problem, which is transferred directly to 

the head of any output.
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The basic frame parameters follow and consist ofs- 

Total number of joints in the frame.

Total number of members in the frame.

Number of types of member

Number of previous loading cases analysed.

Modulus of elasticity, E,

Torsional constant, G, (for grid frames only).

The number of previous loading cases is included to allow 

sets of output for the same frame to run consecutively. Thus if 

five loading cases have already been analysed the output will 

commence at Loading Case No, 6,

The member properties are next specified. They are first 

sorted into types in which all properties are identical and these 

properties given for the first member of each type. They consist of:- 

joint number at end 1, joint number at end 2, number of members of 

the type, x and y ordinates in feet, number of stations at which 
sectional properties are given, member properties. The ordinates 

are individual member ordinates, that is the relationship of end 

2 to end 1, Sectional member properties consist of moment of 
inertia (insS and either torsional rigidity (ins^) for grid

pframeworks or cross sectional area (ins ) for plane frameworks, As 

Simpson’s rule is used to integrate the various functions,member 
properties should bo specified at an odd number .of points along the 

member. All other members of this type are now given and consist
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solely of the joint at end 1 and the joint at end 2,

The number of loading cases is stated and each loading 

case specified. Loads consist of a TJDL acting along the full 

projected length of the number and/or a series of point loads 

acting at a distance from end 1. Each loading case has the 

following data:- number of loaded members; for each loaded 

member- joint at end 1, joint at end 2» UDL per foot of 
projected length, number of point loads, for each point load - 

load, distance from end 1 (ft). In the case of plane frameworks 

loads can act in both x and y directions and the loads on each 

member are therefore described twice, first in the x direction 

and second in the y direction.

Next the number of zero displacements in the frame is 

given. These are specified as the joint number followed by an 

integer to describe the direction of restraint, as given in 

Table (2.5)

TABLE (2.5)

Grid' Framework Plano Framework

Integer Direction Integer Direction

1 0 1 6X X
2 6 2 6

y y

3 6* 3 ' e
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In setting out the data, spaces and new lines may be used 
wherever necessary as these symbols are ignored by the compiler.

Each item of data must be followed by a terminator which may consist 

of any symbol, other than a letter of the alphabet, digit, or 

decimal point. A semi-colon is generally used for this purpose.

The whole of the data is terminated by an 'end message1 symbol.

2*6*25 Pgrltioned Grid..Erafflework»

The structure is sub-divided into 

frames such that no joint is common to more than two sub-frames.

The joint numbers must also run consecutively within each sub-frame.

The data is headed by the 'call' sequence followed by the 

title. The basic parameters for the frame are stated in the order 

given below;-

Number of joints in complete structure.

Number of sub-frames.

Number of loading cases.

Number of loading cases previously analysed.

Maximum number of zeros imposed In any one sub
frame.
Matrix band width.

Maximum depth of stiffness matrix required for any 

two adjacent sub-frames.



For each sub-frame is stated the number of mombers, 

number of joints and number of types of members. The aub^*frame 

data is then given in the same way as for the standard grid frame 

program viz# member data, loading data, impose zeros. All loading 

cases must be included in every sub-frame. If a particular ldading 

case does not act on a sub-frame a zero is entered as the number 

of loaded members. Similarly if a sub-frame has no zero displacements 
the number of imposed zeros is entered as zero. The data is terminated 

by an end message symbol#

2.7) Accuracy.

Simpson's Rule, used to determine stiffness, carry 

over factors, fixed end moments and shears, is a central difference 

formulae which can bo expressed in the forms

y^+ify^+y^^ h « distance between 

J  *1 ordinates

if fourth and higher powers are neglected.

Any discontinuities should preferably occur at odd ordinates 
although this is not always possible in the case of point loads#

Fig. (2.15) shows that for a part parabolic member, stiffness and 
carry over factors are calculated to within 1% if nine »stations' 

are used. The discrepancy is virtually eliminated by using thirteen 
'stations'. It can also bo seen that more points are required to

- 51-
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specify tho loading than stiffness and carry over factors. The 
choice of ordinates must then depend upon circumstances. As few 

as three ordinates are required for a member whose moment of 

Inertia varies linearly, and which is unloaded. It has been 

found in practice that little benefit is gained by selecting more 

than thirteen ordinates.

2.8) Capacity and Running Time of Programs.

Multispan continuous

bridges frequently have largo numbers of joints. The design 

engineer must know if the standard program has sufficient capacity 

or whether other techniques, such as partitioning need to be 

employed.

The amount of computer store required for the solution 

of a framework problem is given by the inequality.

4m + 8t + 3j [ 3 (g+l)+ 1 ] + 6250 <  X
where m ■ no. of members.

t ■ no. of types of members, 

j » no. of joints.
g => no. of girders (or 5(g+l) * band width).
1 = no. of loading cases, 

x = storage capacity of computer.

Tho quantity 6250 is made up of the size of the program 
itself and the director which is a control routine program
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always present in the store.

The majority of the store is used to hold the stiffness 

matrix for the complete structure and it is this that largely 

governs the size of framework able to be solved. As shown in 

Section (2.*f) the geometry effects the matrix band width and 

subsequently the size of the stiffness matrix for any given 

structure. The maximum number of joints based upon the number 

of main girders are shown in Fig. (2.1*f) where storage is 
measured in K units. *fK « 6k * *K)96 'words' of core store.

For example it can be seen that using 16K store a grid framework 

with eight main girders may have up to 90 joints, whersae a 

grid frame with four main girders may have up to 130 joints. The 

capacity of the plane frame program* is derived in the same way,

Tho running time for the grid frame program is similarly 

dependent upon tho total number of joints and the width of the 

structure. The run time is given approximately thus:

t * nxW 
180

where the time •t' is in minutes, 'n' is the total number 
of joints,V is tho number of main girders across the structure, 

assuming tho joints to be numbered across the frame as shown in 
Fig. (2.11b), The elapae time will be approximately one minute 
longer, as this includes the time to read in the data and output 
results through an on lino printer.
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2.9) Example.

A 3 bay portal frame as shown in Fig, (2.16) was 

analysed using the plane frame program. The members are uniform 

apart from a haunch at the column ends of the rafters. It is 

quite common to include such haunches for additional ‘stiffness 
but the effects are often omitted from hand calculations. The 

increase in stiffness can be quite large and have a noticeable 

effect on the deflections and distributions of bending moments.

A copy of the data is given in Table (2,6) which follows 

the system given in Section (2.5). The loading acts only in the 

y direction therefore the loading to each rafter consists of:

zero U.D.L, in x direction

zero number of point loads in x direction

value of U.D.L, in y direction

zero number of point loads in y direction

Tho member properties for the rafters must tic givan at 
an equidistant number of points. As the length of the haunch i* 

6'0" the rafter was divided into ten equal sections, each 3,0" feet 
long and member properties specified at 11 points along each rafter. 
The columns are uniform in section and therefore require only 
one value of I and A.

The complete computer output of results is given in 

Table (2,7)» the total time token was 28 seconds. The fixed end
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moments and shear given in the first section must be superimposed 

on to the member forces given in the second section. The final 

bending moment distribution has been obtained in this manner and 

is plotted, together with the deflected form in Fig. (2.19). The 

frame was also analysed neglecting the effects of the haunches.

These results are also plotted in Fig, (2.17) being the values in 
square brackets.

In general it can be seen that the haunches have the 

effect of ’attracting* more bending moment towards the columns.

The values of deflections are reduced by up to 30% and in one case 

at joint 9 the inclusion of the haunches causes an upward deflection.

Thus it can be seen that although the additional material 
is relatively small, quite a large reduction in deflections is obtained* 
Without using the plane frame program for varying 'section members 
it would not be possible to benefit from this redistribution of 
bending moments and reduction in deflection values.



FIG.  2. 1 F o r t e s  and Di s p l a c e me n t s  f or  Gr i d Framework 
Member R e l a t e d  to Me mber  Axes.

FIG,  2.3 F orces and Di spl acement s f or Plane Framework 

Me mb e r  R e l a t e d  to Me mber  A x e s ,
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3 * BAY * PORTAL*FRAME. j
105 11 j 43
13ÜOQI
13 23 0 3\OJ 05 +22.55 15
105 115
45 55 25 05 +22.55 15
75 85

+30.05 +8.0325 35 33

55 65
85 95

+30.05 -8.0535 55 35

65 85
95 115

385.51 1 0 . 2 9 5  

41.95 5.935
113 7055 4743 196.25 196.25 196.25

196.25 196.25 196.2; 196.2;
196.25 196.25 8.35 8.05 6.475
6.475 6.475 6.475 6.475 6.475
6.475 6.475 6.475

11 196.25 196.25 196.25 196.25
196.25 196.25 196.23 196.2s

196.25 4745 7055 6.475 6.475
6.475 6.475 6.475 6.473 6.47
6.475 6.475 8.03 8.33

35 05 05 -0.16665 05
55 03 05 -0.16665 05
65 05 05 -0.16665 05
83 05 05 -0.16665 05
95 05 05 -0.08335 03

115 05 05 -0.08335 03

83
15 15 
15 25 
45 13
45 25 
73 13
75 25 
105 15 
105 25

Table 2 ,6 . Computer Data for Plane Frame Analysis.



PLANE FRAMEWORK - VARYING SECTION MEMBERS 
F.S.and B.K.W. Leeds University 16/6/6 5. 3 BAY PORTAL FRAME.
LOADING CASE No. 1MEMBER REACTIONS TONS END MOMENTS TONS FTFORCE IN X-DIRECTION Y-DIRECTION
No. MEMBER END 1 END 2 END 1 END 2 END 1 END 2

1) 2 — 3 +0.00 +0.00 +2 . 6 9 +2.30 +16.530 -1 0 . 6 9 32) 3 - 5 +0.00 +C.00 +2.30 +2 . 6 9 +10.693 -r 16.530
3 5 - 6 +0.00 +0.00 +2 . 6 9 +2.30 +l6,530 -10.6934} 6 - 8 +0.00 +0.00 +2.30 +2 . 6 9 + 1 0 . 6 9 3 -16,530
5 ) 8 - 9 +0,00 +0.00 +1.35 +1.15 +8 . 2 6 5 -5.3476) 9 - 11 +0.00 +0.00 +1 . 1 5 +1.35 +5 . 3 4 7 -8 . 2 6 5

LOADING CASE No. 1
FORCES TONS MOMENTS TON FTMEMBER AXIAL SHEAR END 1 END 2

1 - 2 +4.683 -1.597 +0 . 0 0 0 -35.926
10 - 11 +2.430 + 1 . 0 8 6 +0 . 0 0 0 +24.4274 - 5 +10.557 +0.097 +0 . 0 0 0 +2 . 1 8 0
7 - 8 +7 . 3 2 0 + 0.414 +0 . 0 0 0 +9.319
2 - 3 +2.055 +1.511 +1 9 . 3 9 6 +27.516
5 _ 6 +2 . 106 +2 . 0 7 8 +3 6 , 1 1 2 +28.4058 - 9 +1.364 +0 . 9 0 0 +20.295 +7,6533 - 5 +2 . 2 1 8 -2.120 -27.516 -38.2926 - 8 +1 . 9 8 0 -1 , 6 0 2 -28.405 -2 1 . 3 4 99 - 11 +1.328 -O. 7 6 7 -7.653 — 16. 1 6 3

DISPLACEMENTS RADIANS AND INCHES.
JOINT ?: !. X DIRECTION Y DIRECTION

1) +O.ÜÜOÜÜÜÜO +0,00000000
2) -0.10764072 -0.00945228
3) +0.65260635 -2.894324894 +O.ÜÜÜOÜÜÜÜ +0,00000000
5 +1.4o479938 : -O.O369747I6) +2.21241488 -3.10031994
1) +0.00000000'■■ +0.ÜÜÜ0000Ü
8 +3.02361219 -0.02563696
9 +2.95382104 +0.2135589610) +0.00000000 +0.00000000
11) +2.88971474 -0.00490494

ROTATION 
+0.00426977 -0.00734354 
+0.00260518 
-0.00736413 -0 . 0 0 0 8 8 0 6 2  -0.00204954 -0.02043681 
+0.0J727793 -0.00054932
-0 .0 13334 75-0.00543844

T a b l e ’ 2 ,  ? . ;  C o m p u t e r  O u t p u t f o r . ;  P l a n e  F r a m e  ;■ A n a  l y s i s .
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Chapter 3

Computer Programs For Determining Influence T.lnes and Surfaces 

3.1) Introduction

Although the design engineer has the facilities 
to analyse grid and plane frame structures accurately, he is still 

confronted with the problem of finding which loading system will 

produce maximum stresses. Previous experience is sometimes 

sufficient to enable these loading positions to be selected but 

often they are not so obvious. Multispan bridges with varying 

flexural rigidity present particular difficulties. The abnormal 

vehicle of up to 180 tons in weight can bo placed virtually any

where on a complex structural system. The problem is often made 

more complicated by the bridge being skewed on plan. In the early 

stages of design*influence lines or surface«are therefore extremely 

useful in selecting loading cases for rigorous analysis,

3.2) Theory

There are two methods of determining influence linos
«r surfaces:

1) Unit point load methods.

A unit load is placed at successive points along the structure. 

The stresses or stress resultants at the required section are then
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plotted to give the influence line. This method is suitable when 

the number of points for which influence lines are required are 

large,and the number of point loads relatively small. If standard 

computer programs are used for this analysis the output will 

consist of stresses and stress resultants at all sections. The 

required influence lines have to be extracted from those results, 

a process which con be long and tedious. Programs to output only 

the relevant Information have been written for determining influence 

lines for members with varying section properties (2k,25)* The method 

of analysis employed is the •flexibility* approach. In using this 

method the degree of indeterminacy must be known and a system of 

releases derived to first render the structure statically determinate. 
Unit point loads are then placed upon the reduced structure and the 

ordinates of the free bending moment diagrams calculated and input as 
data. It is for these reasons that the method is not suitable for 

programming to give a general solution for highly redundant structures 
and examples have been confined to single girders.

2) Unit deformation methods.

These methods ore based upon the Hüller-Breslau theorura.
The influence line for a stress resultant at any point is given by 

the deflected shape of the structure if a unit deflection is applied 

in the line of action of the stress resultant. This approach has 

been used by Sawko (8) using the ’stiffness' method of analysis to
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determine influence lines and surfaces for structures composed 

of prismatic members. In employing the 'stiffness* method the 

degree of redundancy need not bo known and therefore this method 

is most suitable for grid frameworks. The approach used by Sawko 

is here extended to include for the effects of varying flexural 

rigidity. As before the method is explained for a grillage only, 

as the application to plane frameworks is similar.

A structural member 1-2 shown in Fig, (3.1a) subjected

to torsion and bending moments and and a shear force FP <1 z
undergoes deflections 6 * 0^ and 6^ at the two ends, as in Fig, 

(3.1b). The relationships between forces and displacements are 

as given in Table (2.1), These equations can be expressed briefly 

as:—

F1 - V i + V z

K2iD2
(3.1)

Similar equations can be written for every member of 

the structure. Suppose the influence line for bending moment is 

required at end 1 of member 1-2. End 1 must now undergo a unit 
displacement in the piano of bending whilst the displacements 

and 6z remain unchanged. All other members in the structure are 

not affeotod by this displacement and remain unaltered. In the 

equations governing member 1-2 the rotation 0^ becomes (0^-1) as
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shovm in Fig. (3*2)

Similarly,unit deflections can be induced in the planes

of torsion and shear resulting (0 -1) and (6 -1) respectively,P ^

By substituting (D^-l) for D^ in equations (3*1)* that

is (0 -1, 0 - 1 i 6 -1) for (8 , 0  > 6 ) and expanding, the P q z p q z  ■
equations becomes-

F1 “ K12D1 * E12D2 “ IC12xl

F2 « R21D1 + K21D2 * V *
(3.2)

and are written fully in Table (3*1)•

Those equations apply to moments and forces in the 
individual member axis. To form the stiffness matrix for tho 

complete structure, forces must be expressed in relation to a 

general system of co-ordinates denoted by x and y (Fig, 3.3)

Using a transformation matrix T the member forces and 

displacements in Fig, (3.1a) can be related to tho general co-ordinates,

D »  Td V and F *» TF*‘ for ends 1 and 2 of the member.

Substituting in equations (3.2)

TIi ' V ° i  * - h z

TF2 . + k^ td;  - Eal
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or
t »

F1 - *12 \  * P12 D2 - h i "

®21 D1 + ̂  D2 " *21
u (3.3)

* -1where = T K±^

h i '  -  T ' , R i J T (i, j - 1, 2)

Ku T ^ K

Ru =. T~1R

These equations are given in Table (3.2)

The equations for all other members in the frame are as 
shown in Table (2.2) and the complete set of equations can be 
summarised in the form:

M  - [#) -[]£] o .w
where [k] represents the stiffness matrix for the 

complete structure, M  is the displacement vector and|^ujaro as 

defined above. Vector [f J holds the sum of internal forces at 

every node and is normally equal to the external loading applied 
to the structure. In this case however, there is no external 

loading and force vector [f ] must equal aero. Equations (3**0 con

therefore be written as: V ;V '

■ Vi -..vv: v :
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[ S j - 'M M  (3 .5 )

rKui
The values of the!gulvector are given in Table (3.1) but can 

also be obtained by considering the physical properties of the 

member. A cut is made at end 1 of member 1-2 and forces applied 

to induce a unit displacement whilst end 2 remains fixed.

To apply a unit rotation 6^ * 1 at end 1 the force 

required will equal tho stiffness K̂ ., at end 1. The force 

required to prevent any rotation at end 2 will be tho stiffness 

at end 1 multiplied by the carry over from end 1 to end 2, K ^ .

Shear forces K12^1+C12^ act at end 1 ^  end 2 of raemtQr#— -

The forces required to produce unit displacements are given in 

Fig, (3.^) and are identical to those values obtained from Table 

(3.1).

After undergoing a unit displacement in tho required 
direction the member is rejoined to the structure. Upon 1releaseV 

the structure behaves as if under load: the joints translate and 

rotate to take up a position of equilibrium to give tho influence 

lino required.

The assembled stiffness matrix for any structure doo3 not 

depend upon the unit displacement imposed as it is defined uniquely 

by tho geometry of the structure. As tho unit deflection vectors
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are treated as loads^several influence lines can be determined 

simultaneously by treating the deflection vectors as alternative 

loads«

3.3) Computer Programs.

The stiffness matrix for the complete frame is identical 

to that set up for the analysis of the structure under the action 

of loading. The method of specifying the geometry of the structure 

and evolving the stiffness matrix is therefore the same as for 

plane or grid frame analysis programs. In place of the loading 

data the members for which influence lines are required, are 

listed each followed by two integer parameters. The first is 

either 1 or 2 and indicates which end of tho member is to be 

considered, the second gives the stress resultant required as 

summarised in Table (3.3) below;

TABLE 3.3

Grid Framework Plane Framework

Integer Stress fiesultant Integer Stress Bosultant

1 Torsional Moment 1 Thrust
2 Bending Moment 2 Shear

3 Shear. 3 Bending Moment
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As explained previously the displacement vectors can 

be obtained from the member properties. These have already been 

calculated in order to form the stiffness matrix and are stored 

in array P*

The zero displacements are imposed upon the set of 

equations and the solution obtainod using the »square root' 

method as before.

The output consists of three displacements at each 

joint. Normally the vertical ordinates only are usod.but the 

horizontal displacements for piano frameworks can bo used to 

find the effects of horizontal forces,such as accelerating or 

braking vehicles. Rotations are sometimes useful in plotting 

results When a greater degree of accuracy is required.

Because member forces are not calculated, the time 

taken for solution of any problem is slightly faster than would 
be required for a full analysis.

. Example,

A 3 span continuous bridge with varying section 
longitudinal girders and skewed 45° on plan, as shown in Fig.

C3.5)is considered to obtain tho influence surface for bonding 

moment in the edge girder over the support i.e, at end 2 of
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member 30-35* This example has been analysed by Sawko (8) where 

the varying section girders were considered ns consisting of a 

aeries of stepped uniform sections. The uniform sections were 

taken as acting between the joints indicated and average values 

of I and J were used for analysis purposes.

Using the program described earlier in this chapter* 

this example was recalculated taking into account the variation 

in longitudinal stiffness. Member properties were specified at 

five points along each longitudinal member and at one point for 

the uniform transverse members. A copy of the data is given in 

Table(3.4) and the computer output is given in Table (3.5). The 

time taken for tho analysis was 1 min. 10 secs.

These results are plotted in Fig, (3,6) together with 

those obtained by Sawko - shown in square brackets. It can bo 

seen that at the maximum ordinate at joint 30,tho results due 
to Sawko underestimate those obtained by more rigorous analysis, 

by almost 8$, Thus by taking averago values of member properties, 

the stiffness of the members at the supports is underestimated 

leading to an apparent reduction in bending moment at these 
points. A corresponding increase in midspan beading moments 

can bo expected when using the latter method.



The accuracy of results obtained using the program 

for uniform members can be increased by increasing the number 

of joints. The change in section at joints is then reduced 

resulting in a truer approximation of the actualglrder profile. 

Unfortunately this has the disadvantage of increasing the time 

for solution of the problem, as this is dependent upon tho 

number of joints. By using the varying section program the 

members can bo considered in terms of their actual stiffness 

and restraint factors, and henca a more accurate solution is 

obtained without any increase in time.
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a) F orces.

F I G .  3 . 1  Forces and Displacements Related to Member Axes.
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F I G .  3.2 Unit D i s p l a c e m e n t  for Bending Mo ment ,

I w My 2i

F I G .  3.3 Forces and D i s p l a c e m e n t s  R e l a t e d  to G e n e r a l  Axes.
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FIG,  3.4 Forces and Moments to Produce Unit displacement ot End 1
of Me mb er  1 - 2 .
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tENCE SURFACE ORDINATESFRAMEWORK - VARYING SECTION MEMBERSND B.K.W. Leeds University 7/12/65.
N SKEW BRIDGE DECK. 
No. 1

RADIANS AND FEET X ROTATION Y ROTATION+0.00343721 +0.00109802 
-O.OO5 0 2 0 7 5  
-O.OI888783 
-O.0285093Ö 
+O.OO269713+0,00628464 
+O.OI3 1 2 II5 +0.02164S10 +0.02435490 
-O.OO585738 
-0.00139476 +0.00942582 +O.0 3 4 6 5 6 7 8  
+O.O5 8 6 8 0 9 9  -0.01704487 -0.02266941 -0 .0 3 3 6 9 4 4 4  
-0.03053976 
-0.00583793
-0.01693383 
-0.03851797-0.10755876
-0 . 1 9 1 9 3 2 1 7-0.18866953-0 .0 0 4 1 7 3 4 6
-0.02328205
-0.11621265-0 ,3 7 0 2 9 2 3 2
-0.40328865+0 .0 0 4 7 1 1 7 8
-0.00095138-0 .0 3 4 1 1 6 7 1
-0.02249580
+0 .1 9 5 2 6 0 4 9+0.01105815 +0.01740052 
-0.00232912 
-0.13416130 «0.23014448 +0.00113940 
+0.01155385 
+0.01507492 
-0.06763574 
-0.18892473

+0.00390273
+0.00098091
-0.00622825
-0.01960471
-0.03992787+o.ooo3352b
-0.00018197-0.00154634 
-o.oo412670 
-o.oo8i4199 
-0.00606759 
-0,00129298 
+0.01096872 +0.03484151 +0.07305845 
-0.00926937 
-0.00153338 
+0,02087765 
+0.07151782 
+0,14696993 
-0.00106814 
+0.00029743 +0,00855945 
+0.05083586 
+0.13095021 
+0.00962023
+0.00195997-0.02312124
-0.08374469
-0.04957389+0.00691014-0.00318846-0.02275532
-0.05713980+0.36208904
- 0.00155218
-0.00384415-0.00204650
+0.03896811-0.02758954
-0.00180307 +0.01123594 
+0.01830181+ 
-0.05663361 
-0.19962443

VERTICAL
+0.00000000
+0.00000000
+0.00000000
40.00 00000 
+0.00000000 
+0.05531440 
+0.01043356 
-0.10002036 
-0.31326880 
-0.62674123 
+0.00000000 
+0.00000000 
+0.00000000 +0.00000000 
+0.00000000 
-0.17078284 
-0.03539301
+0.33077474
+1*09681780
+2.32126748
-0*30156091-0.05674638
+0.68270073 
+2,52087129 
+5.39189581 
-0.19753113 
-0.03308580 
+0. 47305517 
+2.27503851 
+6.44161922 
+0.00000000 +0.00000000 
+0,00000000 
+0.00000000
+0.ÜÖÜ0Ü000
+0.05228439 
-0.11728300 
-0,30541806 
+0.34806665 +2.83728386 
+0.00000000 
+0.00000000 
+0.00000000 
1-0 .00000000  
+0.00000000

Ta\>le 3.5 Computer Output - Influence Surface Ordinates*,.
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Chapter

Experimental Tests«

^.1) Introduction»

In order to examine the accuracy of the programs, and the 

degree of approximation involved when the grillage with varying section 
members is used as a mathematical model to simulate plated structures, 

a comparison of practical and theoretical results was thought 

desirable. There are very few recorded results of tests carried 
out on structures with varying section properties. Madu (13) con
ducted tests on aluminium bridge decks, but confined the investi

gation to simply supported spans containing only three longitudinal 

girders. Model tests were carried out as part of the design pro
cedure for the Clifton Bridge, Nottingham (32). A perspex model 

of one of the cantilever end span grillages was tested to obtain 
deflections for load and prestress, but no values of bending moment 

were obtained. A close correlation of deflections does not nec
essarily indicate the same agreement in bending moments, and there
fore these results were considered to be inadequate. The Cement 
and Concrete Association have carried out a series of model tests 
on the cantilevers of the Medwey Bridge using a prestressed concrete 
scale model. The bridge deck consists of three hollow box girders 
with 12* 0" side slabs. The girders are hollow throughout their 

lengths without transverse diaphragms and therefore it was felt that



the grillage analogy could not be applied with any degree of 

accuracy.

In view of the lack of suitable experimental results, it 1 

was decided to carry out a series of model tests as part of this j

research, A three span continuous model bridge, having a para- [

bolic variation in longitudinal depth, was chosen. The model 
was fabricated from standard perspex sheets, cemented at the ji!
joints. Although the use of perspex assisted greatly during ]

the fabrication of the model, certain problems arose during [1
the testing. Perspex is a non-elastic material that creeps under 

sustained loading and therefore' the loads had to be kept relatively j 

small and they could only be applied for short periods* ^

During the fabrication of the model it was possible to 

test it at three stages of construction and so apply the method 
of grillage analysis as a mathematical model to various types 

of structures. The model was also analysed using the simply 
supported span technique so that the tests also provided a means 
of comparing the two methods of analysis.

The model was built and tested in three stages*

Starre One consisted of an open grillage with a variation in section 
in longitudinal members, as shown in Plate 1. In this form the 
structure is closest to the mathematical model analysed, and was 
used to verify the accuracy of the computer program. The
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restriction in width of the members made it impractical to attach 

strain measuring devices and only deflections were measured at 

this stage.

Stage Two consisted of a torsionally weak system of interconnected 

tee beams formed by the addition of a top plate to stage 1, Elec
trical resistance strain gauges were fixed to the top plate and 

strains and deflections were measured.

Stage Three consisted of a cellular deck of interconnected hollow 

box beams varying in longitudinal stiffness, as shown in Plate 

This was achieved by the addition of bottom plates to the model 

in the previous stage. The structure at this stage is ft three 

dimensional assemblage of plates and quite far removed from the 
mathematical model of an open grillage used in the computer solution. 

Strains and deflections were again obtained,

^¿2,) Description of Model and Testing,

A three span continuous bridge with a longitudinal 
variation in depth was represented by a perspex model. After con
struction the dimensions were checked and these are shown in Fig, 
(4-.1), A depth of approximately -J" at the centre varying para- 

bolically to 2” over the support gives a variation in the moment 
of Inertia of 1t6k for the open grillage and It 15,6 for the grillage 
plus top and bottom deck plates, . The main diaphragms are 

thick and the top and bottom decks 1/8" thick. To facilitate
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easier construction and alignment of the main grillage, positioning 

grooves were machined into the main girders* All diaphragms 

were a tight push fit so that this form of construction should 

not lead to a reduction in the effective sections at these 

points*

The assembly of the grillage took several hours and 

consequently it was necessary to use a jointing cement that, as 

well as providing sufficient strength, also remained workable 

for the whole of this period* Several types of adhesive were 
investigated and it was found that Tensal No* 3(26) best suited 

these requirements. It is an all acrylic cement that remains 

in a liquid state until hardened by polymerisation* The manu
facturers claim a 'bond strength» of 6000 lb/sq*ins* The cement
was prepared in the ratio seven parts stabilised methyl metha
crylate monomer liquid to one part methyl methacrylate monomer 
powder* The powder contains a proportion of photo-catalyst*
The mixture was allowed to stand in a dark place for 2h hours 
before use* Hardening was effected by light polymerisation 

using mercury vapour fluorescent tubes, .A special cabinet 

was built containing three tubes held in position one foot 
above the model, as shown in Plate At each stage of 
assembly the model was exposed for approximately twelve hours 
to the ultra violet light*

The deck is supported along four lines of support each
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capable of rotation; the end supports also prevent upward dis

placement# The end support columns are rigid at one end and 

pinned top and bottom at the other thus allowing any horizontal 

movement to take place unimpeded. The central supports are 

adjustable to ensure contact along the lines of support. The 

model is mounted about seven inches above a steel plate base 
giving a rigid support and also allowing magnetic based de

flection gauges to be fixed underneath.

Loads are applied to the deck through n pinnod. lovor 
arm which has a hanger to receive weights. The point of con
tact is through a sliding ferrule, as shown in Plate 2. Any 

load applied is increased because of the lever arm effect, 

which accounts for the apparent lack of uniformity in the applied 
loads given in the results.

Vertical displacements were measured at each stag© of 

testing to give transverse deflection profiles at the centre of 

the main and end spans. Dial gauges measuring to 0*0001" were 
used for this purpose. It was found necessary to lightly tap 
the model at dial gauge points after the application of each 
load to improve the response.

Strains were measured in stages 2 and 3 and bending 
moments calculated using the relationship

E
M » y2 e

I
• * • (A.l)



where E Is the modulus of elasticity - taken as ¥+0,000 lbs./

eq. In.

y^ is the distance from the neutral axis to the extreme
fibre.

S is the measured strain*

I is the moment of inertia at the centre of the gauge.

Saunders Rowe •£" linear foil strain gauges were used, 

attached to the model with Eastmans 901 adhesive and GA - 1A1 

accelerator. The strain gauges were connected to a multiway 

junction box and readings taken on a Peeke! strain indicator, 

type B10j5U. Only one dummy gauge was used for all readings.

It was found during testing that the model tended to 
creep under sustained loading, therefore readings were token 

in groups of four only, the load being released and reapplied 
each time. Each loading was repeated four times and the experi

mental results plotted in Section (k,k) of this chapter eire the 
average of these readings.

1+.3) Material Properties.

To establish the material properties of the perspex, a 
test specimen Was cut from the sheet used to fabricate the main 
girders. Ten E.R. strain gauges were attached in pairs on 
opposite sides of the specimen as shown in Fig. (*+.2) and the 
specimen tested in a HomsfLeld tensomoter. The load is applied

-71-
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through aretool plate spring and registered as a mercury column 

in a graduated tube. The average results «re plotted in Fig,

(^,2) from which it was established that the modulus of elas
ticity E ** ¥+0,000 lb/sq. into, and the modulus of rigidity 

a = 157,000 lbs/sq. irî .

Tests were also carried out to ascertain the strength 

of Tensol No, 3 cement. Tensile specimens gave erratic results 

which seemed to be due to the specimens being loaded eccentrically* 

Bond tests proved to be more regular and an average of ¥225 lb/sq* 
in. was recorded. The specimens consisted of a perspex block 

cemented between two side pieces* The whole was clamped in a 

frame to prevent horizontal movement and the centre block pushed 
out. In some cases the parent perspex fractured in preference 
to the cemented joints. Therefore it was felt that although 

the strength claimed by the manufacturers had not been attained, 
Tensol No, 3 could reliably be used for all joints in the model*

Results*

The experimental deflections were obtained direetly from 
the dial gauge readings and the bending moments were calculated 

using Eq, (*ul). The values of I11 this equation were obtained 
from the results of the computer program given in Appendix 2*

Computer results were obtained using the grid framework 
program described in Chapter 2, Moments of inertia were cal-
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culated in the normal way, taking the effective width of beam 

flanges to be equal to the centres of webs, i.e. 1” for longi

tudinal beams and 2-|" for transverse beams. The torsional 

constants for stages 1 and 2 were derived using the formula»

J * 2  kbd3 ' (^.2)

The contributions from the top plate in stage 2 were 

reduced by half to include for the overall continuity in the 

transverse and longitudinal directions, of this plate.

The torsional constants for the box girders were cal

culated using the formula for thin walled sections:-

hP?
J ••• CA*3)

The sectional properties were specified at nine points 
in each section of longitudinal girder. A short computer program 
was written to calculate member properties and the results are 
given in Appendix 2* For the purpose of this program the factor 
k in Eq. (k,2) was evaluated using the expression stated by Kantoro
vich and Krylov (27):

k ** [l mJ " ^  |[ tanh-^/^ J /5 ... (**■•**)

The centre lines of the webs were used as the layout 

of members for grillage analysis. This is an obvious choice for 
stages 1 and 2. At stage J the moments of inertia were easily



- 7 4

calculated as I sections about the web centre lines, and the 

torsional constants were assumed to be concentrated along webs«

Half of this value was taken for the outer girders«

As the model is symmetrical only half of it, (consist

ing of ?2 joints), was considered for computer analysis. The 
loading for the symmetrical and anti-symmetrical cases was pro

portioned such that the superposition of the two sets of results 

- -  correct solution for the whole frame i.e. + §  ♦ § and 
^  For the symmetrical case zero rotations were Imposed

along the centre line and zero vertical displacements for the 
anti-symmetrical case« The total time taken for the analysis 

of three loading cases was slightly less than minutes« The case 
of a unit load was analysed at each loading position and these 

results scaled linearly to coincide with the exact load applied 
to the model« Bending moments were calculated at the centres 

of strain gauges by interpolating linearly between the terminal 
moments for the member.

The simply supported span technique was also used to 
derive bending moments and displacements for the model. The 
modified approach outlined in Chapter 1 was used. The values 
of average bending moment and deflection were obtained by placing 
an equal load at each joint along the centre of the deck and 
analysing this case with the computer program.
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hmk*Z) Discussion of Results,

Sta^e One,

The ¿¿flection profiles are shown in Figs. (̂ +*3 «** ^.6). 

Initially, section properties of the perspex grillage were used 

for computer analysis and the agreement between computer and
■ y

model was not very good# The model appeared to be torsionally 

stiffar than predicted theoretically. The reason for this was 

thought to be the omission of the contribution to the torsional 
stiffness of the f" square bearing strips at the central supports* 

Because of the high steel/perspex modula ratio these strips have 

the effect of considerably increasing the torsional stiffness 

of the transverse girders over the central supports, and these 
effects were included in all subsequent calculations. Fig*

(ki3) shows the marked improvement in agreement# The agree
ment between computer results and experimental values at the 
centre of the main span is very good, but the equivalent simply 
supported span technique does not give an accurate assessment 
of maximum deflections and, because these values are plotted 

from the line of contraflexure, they do not follow the actual 
deflected profile.

With the load applied in the end span the correlation 

between grillage and model was not as close. The model appeared 

to be more flexible, although this could have been caused by 
slight deflections in the ■J" dia* supporting rod. It was found
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at this stage that when loads were applied to the end span the 

far intermediate support tended to lift* This was remedied 

by placing weights along this line to re-establish contact 

with the roller* The distribution coefficients largely 

overestimate the maximum deflections in the side span.

The discrepancies between analytical and experimental 

results are probably due to the model being unable to exactly 

simulate the program support conditions# The end supports 

are assumed to rotate about the mid depth of the transverse 
girder. In reality the axis of rotation is at the centre 

of the r̂M dia* steel rod*

Staple Two*

The model at this stage consisted of a system of Inter
connected tee-beams* The deflection profiles are plotted in 

Figs. (b#7 - ^*10) where there is good agreement between measured 

deflections and computer results* When the load is applied to 
the side spans there is an improvement in the correlation of 
results, compared with stage one* In this case the deck is 
torsionally stiffer and the effects of the steel support rod 
are probably less noticeable# As before the distribution 
coefficients do not predict the maximum deflections or deformed 
profiles* When the load is placed at the centre of the deck at 
X there is reversal of curvature at the edge of the deck, shown
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clear ly In Figs, (*+.8 and *+.10). This is probably the Poisson’s 

ratio effect which cannot be reflected in the computer results 

as the tee-beams are assumed to act independently and the overall 

continuity of the top plate is not considered.

The bending moments in the longitudinal direction are 
shown in Figs. (*+,11 - *+,l8). There is generally good corre

lation between the grillage analysis and experimental values#

No definite trend can be seen in these results as the computer 

both overestimates and underestimates the experimental values#

If the correctness of the computer results are accepted it 

appears that the discrepancies are due to normal variations in 

experimental readings. The distribution coefficients however, 
consistently overestimate the values of maximum bending moments 
by as much as 100$ in Fig. (*+.15). With the load placed at 

the mid-span point X there is almost a complete redistribution 

of negative moment over the internal supports. The computer 
analysis is able to predict tliis redistribution whereas by 
applying the raid span coefficients at the support the simply 
supported span technique is unable to do this, as shown in Fig. 

(*+.l*+).

Transverse strains were also measured and from these the 
bending moments in the diaphragms were calculated using the 
full section as being effective at each point. This was an 
invalid assumption because in the vicinity of the concentrated
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load the effective width will be very much smaller* Figs*

(4.20 and 4.22) show that a much larger bending moment than 

predicted by the computer, is obtained when measured strain is 

assumed to act across the full section. Figs. (4.19 and 

4.21) show that when the load is applied to a longitudinal 

girder, thus avoiding local stress concentrations, a much 

better agreement'is obtained. The grillage analogy can 

predict the average stress occurring in a member but is unable 

to indicate local stress concentrations when loads are placed 

between the main girders. The simply supported span tech** 

nique does not make provisions for calculating the distribution 

of transverse bending moment in the side spans.

Stage Three.

The addition of the bottom plates to the model of stage 
two produced a cellular deck varying in longitudinal depth.

The deflection profiles are plotted in Figs. (4.23 - ¿*.26).
In the initial interpretation of Equation (4.3) the area and 
the perimeter of the hole were used to determine the torsion 

constants as recommended by Morice and Little (9). As can be 
seen from Fig. (4,2*+) this led to a underestimate of the tor
sional strength of the deck. The grillage was then re-analysed 

assuming the median line to lie on the centre lines of the flanges 
and web, which Increased the torsional stiffness quite 
considerably and gave a much better correlation with the model
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as shovm in Fig. (4.24). After a recent investigation of 

this problem Acton (28) arrived a similar conclusions. The 

agreement of displacements in the side span is again not very 

good. This is probably due to the nature of the supports.

Longitudinal bending moments are shown in Figs,

(4,27 - 4.34) where there is generally good agreement between 

experimental and computer values. Fig, (4,27) shows again 

the improvement in agreement by using the modified torsion 

constants. The same »e-distribution of hogging moment seen 

in stage two is again evident in Fig, (4,30), The deflection 

profile for a load placed at X shows a slight reverse in 

curvature at the edge of the deck in Fig, (4,23), This 
effect is also reflected in the longitudinal moments in Figs, 

(4,28) and (4,32) and shows again quite clearly the Poisson*s 
ratio effect present in continuous plated structures. When 

using the simply supported span technique the bending moments 
are again overestimated.

Transverse bending moments are plotted in Figs, (4,35 
4,38) where it can be seen that the same localised stress con
centrations occur when the load is placed at point X,

4,5») Conclusions.

By considering the eats of results obtained from the 
three different types of model the following conclusions have
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been drawn?

(1) The computer program for analysing grid framework structures 

composed of members with varying section properties gives 

accurate results for thus type of structure, provided 

member properties are specified at sufficient stations to 
enable accurate values of stiffness and restraint factors

to be obtained,

(2) The grillage is also a valid mathematical model for anal
ysing grillages composite with top slab and fully torsional 

cellular structures. The analysis is able to predict the 

maximum values of bending moment and deflection. , but is 

unable to indicate local effects viz, localised stress 

concentrations and Poisson’s ratio effects. The latter 

phenomenon is likely to be particularly noticeable in a 

perspex structure which has a high Poisson’s ratio

y -=ar 0,35 compared with concrete where y ~  0,15»

(3) The equivalent simply supported span technique does not 
give acceptable results. In some cases the values of 
maximum deflections were underestimated and in all cases 
the values of bending moments were overestimated by as much 
as 100$, The recommended increase of 1C$ to maximum 
value is therefore either insufficient or unnecessary.
The method assumes that the simply supported span rests



on straight unyielding supports at right angles to the 

span. Fig. (4,37) shows this'assumption to be untrue 

especially for loads placed at the edge of the deck, an 

effect first observed by Sawko (29), The use of this 

method would lead to a design which was *on the safe side* 

but also quie uneconomical.

(4) When interpreting the formula for torsion constants of 

cellular sections the median line should be taken to lie 

on the centre lines of the webs and flanges*

(3) The Cement and Concrete Association recommendations that 

the full slab width between web centre lines should be 

considered effective, gave good agreement for both moments 
and deflections and is therefore valid.
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jfetQr ‘5
Automatic Design Programme for Mnlttsmn Bridges 

5.1) Introduction

The considerable increase in the construction of motor

ways in this country over the past decade has led to a corresponding 

increase in the number of multispan bridges. The electronic 

computer has already played a large part in the advancement of 

bridge analysis techniques. Now that computers are available with 

sufficient storage space, it is logical that the role of the com

puter should change to one in which a greater proportion of the 

design calculations are performed automatically. The problems 

involved in writing a programme capable of automatically designing 
a multispan bridge are investigated here.

Analysis programmes are capable of determining stresses 
and deflections for ma-ystructures of the samo type. Thus a grid 

framework programme is capable of analysing bridge decks, grid 
floor systems, foundation rafts, plates, etc. The nature of the 
loading and geometry aS Restructure are fully specified in the 

data. A largo structure will therefore have a largo amount of 
data. Automatic design programmes are written specifically to 
design one class of structure* The structural form and the

applied loading are written into the prolamine and therefore the 

amount of data can be considerably reduced by sacrificing some of
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ths generality.

Before the general propotype for the class of bridge to be 

designed could be derived, several factors had to be considered. The 

most usual form of multispan bridge is the three span type,raedto cross 

a river or similar obstruction. The relative span legnths ore generally 

predetermined by the site conditions,where aritificdal obstructions 

such as railways, roads and buildings, or natural effects sucn as 

foundation peculiarities, influence the final choice. If the designer 

has a free choice the span ratios can be chosen to obtain the most 

economic structure, and obviously this will depend upon many factors.

Aziz (22) has investigated the effects of varying span ratios and 

stiffnesses, upon the cost of the superstructure of bridges that are 
subjected to HA loading.

Using the programme described in this iSmptor for the design 

of a complete bridge, the effects of span ratio and relative EC values 

are investigated for bridges subjected to both HA and HB load systems. 

This investigation is described in Chapter 6.

The aesthetic quality of the structure is largely a matter 

of individual taste. Qnphaeis can be placed upon many factors,such as 
the structural system, the profile, the overall efficiency, patterns 
of light and shade, etc. Although some conditions can bo satisfied by 
non-structural elements,the profile still has an important Influence upon 

the final appearance. It was therefore decided that the final ratio
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of girder stiffnesses should be specified ns part of the data. A 

parabolic profile has been chosen,but the design remains general as 

a zero rise will give uniform section beams.

The transverse section is determined by structural efficiency 

and economy of construction. The hollow box girderhas been chosen 

to satisfy these two conditions. The girders are assumed to be 

continuous at the soffit,as shown in Fig.(5.1), giving a dock that is 

torsionally very stiff, thus giving the maximum redistribution of loads.

The overall economics of the bridge should also be considered.
It is felt that the structural system of continuous varying section 
longitudinal box girder results in a .highly efficient structure, which is 

also relatively simple in construction, and that this system is com

putable with the economic requirements, as a minimum of materials ore 

employed.

The prototype of the bridge was therefore established as a 

three span, cast in-situ prestressod concrete, continuous bridge with 

hollow box girders varying in section in the longitudinal direction* 
Transverse diaphragms are incorporated forming trapezoidal transverse 

box beams. It was also assumed to be supported on rollers at each support 

and tho whole restrained against horizontal movement. The bridge is 
designed to withstand the full loading specified by BS 153(1)«

5.2) Basic Approach

The method of design is summarised in tho flow diagram shown
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in Fig. (5*2). A single longitudinal continuous girder is first 

designed to carry the HA loading,and the maximum positive and nega

tive bending moments are determined. The complete bridge deck is 

then analised under the HB loading condition, talcing into account the 

distribution of load across the deck. The abnormal vehicle is placed 

on the edge of the deck,at the centre of the midspan section,to give 

maximum longitudinal moment, and at the centre of the midspan to give 

maximum transverse moment. The maximum longitudinal moments from 

the HA and HB loading conditions are compared,and the worst condition 

used to determine the final section sizes and prestressing force.

5*3) Organisation and Theory of the Programme

5.3.1) Relative Section Properties

The programme first considers a single girder under the HA 

loading. As there are an infinite number of varying section girders 
capable of carrying this load,it is assumed that the relative moments

of inertia in all spans are given by the relationship;- *
. . . 2 2 ' ' ' 1 
I « (1 + R 0 1  (5.1)
lc

1^ a I at point x distance from l.H. end
I ; a , I at centre of.midspan ,;

E * Ratio I. J I* - I e 0 + <?) v■■■ -- 1
1» “  I  or!- inner ■sfcojaporK.

This by assuming I s ■ 1 ; it is possible to obtain rolative
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values of I at all points along the girder. X

5«3»2) Derivation of Influence Lines

Using the relative I values given by Equation (5*l)» a 

set of bending moment influence lines are calculated. The method 

used is that described in Chapter 3» in which the influence line is 
given by the deflected profile of the girder» caused by the application 

of a unit displacement at the point being considered. The ordinates

of deflection are given at joints only, and in order to obtain on

accurate set of influence lines for a 3 span girder, it is necessary

to sub-divide each span into a series of shorter members,connected
by imaginary joints. Each span is divided into 20 shorter members

and the joints are numbered automatically from 1 to 61, as shown in

Fig# (5*3)« The stiffness and carry over factors are calculated using

the method described in Section (2.4)» each member having five stations

at which relative I values are evaluated. The member properties

are stored in a«hy P, and consist of C^» Kj^, length. The

girder is considered acting in its own axis only, and oach joint
is capablo of rotation 8 and deflection 6 . The general forceq z
displacement relationships, given for a member considered relative to 

its own co-ordinate system in Table (2#l), are therefore applicable.

The torsion moment will bo zero at all points along the girder, 
so that the K and E terms in Table (2.1) can be reduced to 2 x 2 
elements. The stiffness matrix for the complete girder is then

formed as described in Section (2,k). The members are linearly
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connected resulting in a band width of and therefore the 

stiffness arrays will always be 122 x k for the 6l joint girder, 

eaoth joint being capable of displacement in two directions only.

Influence lines for', beading moment are calculated at 21 
points along the girder. In the end spans, which are generally shorter, 

odd joint numbers are considered from 1 to 21 and each joint in the 

centre span from 22 to 31 incli. Only one half of the girder is

considered because of symmetry. The loads to produce unit rotations,

0q » 1, as in Pig, (3*^), are formed in array B, which has 122 x 21 

units of store. Zero vertical displacements are imposed at the 
four supports, i,e, at joints,l, 21, *¡-1 and 6l, and the corresponding 

terms in the stiffness matrix mid loading vectors modified. The 
set of simultaneous equations can now be solved to give the dis

placements at 6l joints along the girder, for each of the 21 bending 

moment influence lines required. Solution Is by the tequare root1 

method,described in Section. (2,3), The design programme requires 
the solution of two sets of simultaneous equations,stored In banded 

form,and so the solution has been programmed as a special procedure, 

and given the name ‘solve’. As the solution proceeds, the loads In 
arrayB are replaced by the corresponding joint displacements, and 
therefore array B finally holds the ordinates of the required influence 

lines.

• *
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5,3«3) Calculation of Loading

The H.A, loading is specified by B,S,153v Table 1, (l) 

and is dependent upon the span of the bridge or base length of the 

influence line. The influence line for bending moment always maintains 

the same sign in any span, being zero at the supports. Therefore 

a set of loads based upon each span length, can be calculated which 

also apply to the influence lines,

The loading can be approximated by the following formula 
stated by Aziz (22) s-

K

y m tr.D,L. per linear foot"

X ss length of influence line

* ■ K S 3  ■ constant
20 000 for 75 X 400
21 000 for too X 500

23 000 for 300 X 1900
■load of 4.7% at X » 550

Maximum underload of -2,98$ at x » 150 

Average overload * 1 ,78$
Average underload *» 1,66%

neglecting values that 
agree with tabulated loading.

For x » 20 -»-75 y « 2200 lb/ft.
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The load per square foot equals y/10, for lane widths 

of less thaalO feet, and y/la, where ’la' is the lane width greater than 

10 feet. In addition to the U.D.L, a line load of 27»000 lbs« per 

lane acts anywhere in the span to produce the worst effect, which is at the 

maximum influence line ordinate.

The weight of surface finishes has also been included 

in the 11*90 load,to produce the greatest range of bending moment.

An average value of 37*5 lb/sq.ft. has been taken as acting across 

the full width of the deck.

The H.B. loading consists of an abnormal vehicle of up to 

^5 units (180 tons), carried on a system of four axles, as shown in 

Jig. (5*W* One lane is loaded with typo H.B. loading only and 

all other lanes are loaded with one third H.A. loading.

5.3*^) Design of Discrete Girder Under H.A.Loading.

The maximum positive and negative bending moments at the 21 

points along the girder are next calculated. Simpson’s rale is 
used to determined the area enclosed by the influence line for each 
span, which is then multiplied by the U.D.L. for that span* Tho 

maximum ordinate is multiplied by the line load and the total moment 
added to awqy Ml* The positive values are held in column 1 and tho 
negative values in column 2, thus after all spans havo boon 
considered the total maximum and minimum live load moments at tho 

21 points along the girder, nro known« As tho influence lines have



been derived from assumed relative I values and the Hue loading 

is dependent upon the span lengths, these values of bending moment 

will be valid throughout the whole design process.

The centres of webs are fixed as - longest span/30, but 

not less than 6* 0". The final sizes might be slightly less than 
these figures, in order to make up the bridge width of oquidis tant 
webs.

The thickness of the top flange is uniform over the whole width 

of the bridge and was determined by placing two ll^ ton wheel loads 

at 3 feet centres, at the critical point between the webs i.e,, so 

that the centre lino of the slab is midway between the centroidof the 

load system of the first wheel. The section was considered to 

be fully fixed at the webs and assuming a permissable concrete 

stress of 1000 lbs/sq.ins. the following thicknesses were derived

6” for cs < 6

7" for 6 <cs < 8
8" for Oo A 0 01 < 10

9" for 3.0<cs<12

12” for ía^cs

os w centrts of webs in feet.

The thickness of'tho■web is determined oither by the minimum 

width required to contain tho prestressing cables allowing sufficient 
cover, or tho minimum width able to withstand the principal tensile
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stress, The formula fox* approximate web thickness givonBy Stans and 

Bennett (30) is used s-

t„ > (5<2)
°t >

where V a ultimate shearing force.

« permissible tensile strength of concrete.

D a overall depth.

The maximum shear stress is assumed to occur at point 

and a load factor of 2 is applied to live plus dead load, to obtain 

V^, The two values of web thickness are compared and the computer 

selects the highest value,which is then rounded off to the nearest 
inch above.

The design of the sections along the girder is based upon 
standard prestressed concrete theory, and follows the procedure given 

by Evans and Bennett(50).

The prestress in the concrete section is

3? 3?©At bottom of section £. ** *r - sr—  » (5*3)D A /'

At top of section i. = r + tt"“W 4% O A )
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where P » prestressing force at transfer

e » cable eccentricity - negative when below N,A, 

A » cross section area of concrete.

There are two loading conditions at which the concrete 

stresses are critical. The first occurs when the minimum bending 

moment is combined with the maximum prostress, to give the stress 

condition :«
■M

At bottom of section f. min
*L

<  '*
M

At top of section ■r j .  - m j . j i  w
rt * 2L ?  '

ct

( - . 
mint

(5.5)

(5.6)

where f ^ * permissable compressive stress at transfer 

i'mint ■ permissable tensile stress at transfer.

The second loading condition occurs after the maximum loss of 

prestress has occured, in conjunction with the maximum bending moment 
. where the following stress conditions can be written s-

M ' 1
At bottom of section Ro fb -

M
At top of section R f. + S  t* O t u* N 1cw

(5.7)

(5.8)

whore f » permissable compressive working stress 

^minw ** tensile working stress
Rq m ratio of loss in prestressing force.



The minimum section moduli con now he found# 

Eliminating f^ from inequalities (5.5) and (5*7) *-
M _ » R M ,o minw„

>  B f . - f , o ct minw

Eliminating f. from inequalities (5.6) and (5,8)

(5.9)

M
Z2 >  t

w B M .
—fi— JfflSLU- H f . .cw o mint (5.10)

In deriving inequalities (5.9) and (5.10) it has been 
assumed that the bending moment is positive (sagging moment). 

When the bending moment is negative (hogging moment) the formula 

for minimum section moduli must bo rewritten thus

M
*1 > W o min (5.10a)

fcw “ B * 4 4. o mint

>V Mv - a m  .o min (5.10b)
zz / B f , - t ...

From these two formuli,it is clear that the dimensions of the 
concrete are dependent upon the range of loading! the permissablo stress 

and the loss ratio. At this stage in the design,the bending moment 

due to dead load is not ioiown,but the numerator of inequalities (5*9) 
and (5.10) can be written aa (M live.max + M live.min). When
the loss in prestress is zero, i.o,* » lt this valuo will corres

pond to that given by the inequalities, but normally will have a value 

of less than one resulting in a slight error. Hence approximate values
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for the minimum section moduli are obtained. By assuming the 

bottom flange is equal in thickness to the top flange and neglecting the 

web contribution, it is possible to arrive at an approximate depth 

for the section. The distance from the neutral axis to the 

centroid of the flange is given by the quadratic root

+ z2 + Ve» H-f2 

4 ¿« .H-f

where ttf - 

cs »

thickness of top flange 

centres of webs in inches

(5.11)

Hence D « 2 x y + (+f

The depths at the supports and centre of the main span con 

thus be found. As the ratios of moment of inertia must satisfy equation 

(5*1) the depths are also checked to ensure they conform to the relation
ship

d ** d (l + R) s c (5.12)

where d « depth of innorsupport 8
d„ “ depth of centre of main span.

If this equation is not satisfied either d„ or is increasedc
proportionately, in whichcase the maximum permicsablo stresses will not
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ba attained at that section.

Hence an approximate trial section has been derived,with 

the dimensions known at the internal supports and centre of the 

main span. The variation in depth is parabolic, so that the section 

in any point along the girder can be calculated. Before the section 

can be finalised the design of the prestress has to bo completed,which 

is dependent upon the dead load bending moment.

These trial sizes are used to determine the position of 
the prestressing force. By combining equation (5.5) with (5«7) 
the magnitude of the prestress will be given

Bottom of section
r .  hmlnw w-g—  + —
o

M .min
Rq 2̂  < fb ^ fct + 2̂

H
Top of section mint NAt V  R

M
R Z0 0 2

The lowest value of prestress will normally be chosen :m  that 
the two formulae can be shortened to i-

fb >
fmlnw
R

Mw
R Z_ o 1

M ,
ft >  fmint " Zg

(5. 12)

(5.13)

These equations are for positive values of bonding moment and 

must be rewritten for negative bending moments



- 9 6 -

fb > fmint
^min+ _ _ (5.12a)

ft >
£ ■minw
R

Mw
R Z_ (5.13a)

The values of dead load bending moment at the 21 joints along 

the girder, are found by integrating the dead weight and influence line 

ordinates at the 6l points along the girder, using Simpson’s factors.

The dead load moments are placed in the third column of array Ml. The

exact thickness of the bottom flange is known only at the centre of the 

main span and at the inner supports,and so for the purpose of calculating 

the dead load, the bottom flange thickness is assumed to vary para- 

bolically*

By eliminating P from equations (5«3) and (5.^), the position 

of the prostressing force can bo expressed i-

Z_ Z„ <f^ - f, )■ 1 2  t b
o * A (f^ z1 + £t 'z2) O M

The minimum bending moment usually occurs with the dead 

weight acting together with live load in the remote spans. In long span 
bridge beams the dead load is often largo compared with the live load, 
which decreases as the span increases, A largo prestrossing force is 
therefore required to counteract the minimum moment stresses. When the 

minimum moment exceeds a certain critical value, the position of tho 

prestressing foroe given by equation (5.11*) falls below tho soffit
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of the section,in order to achieve on ideal prestress in the con

crete at the top and bottom of the section. In practice the cable 

must be located at the lowest practical limit and increased in mag

nitude to maintain the same prestress at the bottom of the section (f^)» 

Thisi however} results in a reduced negative prestress at the top of 

tho section} so that under minimum moment the stress in the concrete 

is increased. The minimum concrete stress f^ ^ ,is therefore greater 

than it need be#

The minimum concrete stress at transfer can bo found by 

substituting for f^ and ffc from equations (5.3) and (5* A), in equations 

(5,6) and (5,7)} and eliminating P from the resulting two equations

mint
+ Ae)

■*- fmlnwy (5#15)

If the value of minimum stress fmin .̂ Is greater than originally 

used, the value of given by equation (5*10) is recalculated, using 
the new value#

There is no direct method of finalising the section because 

the exact magnitude of the dead load is not known. The programme 
therefore,proceeds by successive correction. The preliminary dimensions 
are based upon the required section modulus end top flange thickness#

From these dimensions the total dead load and dead load. bending 

moment are calculated. By using equation (5#lA) the position
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of the prestressing force is calculated. If this falls below 

the practical limit of 3" above the soffit (allowing for cover 

to the cables) the position is fixed at this lower limit. The 

minimum concrete stress is recalculated using equation (5*15) and

and Z_ do not have the same
C,

valuo and in order to obtain a more efficient section the thickness 

of the bottom flange is fixed by the ratio«

tbf = (5.16)
z2

a new value of is calculated.

where tbf ** thickness of bottom flange.

With the -values of Z^, Z^ tfcf and tbf known at the su-ports and 

centre of the main span, an approximate depth of soction can be found.

If the web contributions are neglected, the distance from the section 

centroid to the top flange centroid is given by the quadratic root i-

l 7.A
_ a
z* + ^ ( t t f  z2 ttf/2

2 c s ( t t f  + ttf  V  tbf ) (5.17)

A provisional depth to tho nearest inch above is calculated, 

which will be greater than necessary to providd the minimum values of 
Z^ and Z^,because tho web contributions wore neglected. The moment of 
inertia and centroid position is now calculated using tho known flange 

thicknossos and assumed depth, from which the actual values of Z_ and Z,
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are found, A ’ procedure1 to calculate the roomont of inertia 

and centroid depth is written into the programme, and given the same 

•find I s, The actual Z values are compared with the minimum required 

values given by equations (5.9) and (5.10)• If the actual values 

are higher than the required values the depth is reduced by •£", and 

by again using procedure •find:!’, new values of actual 2L and 2L

are calculated. This cycle continues until either one of the 

actual Z values fallB below the minimum required Z value. The 

depth is then increased by so that the depth is fixed to the 

nearest above the minimum required depth. In this way, the 

depths at the centre of midspan and at the internal supports are 

calculated. The ratio of moments of inertia is then compared with 

that given by equation (5*1)• If this relationship is not satisfied, 

the depth at either inner support or centre of main span is increased* 

If the moment of inertia at the support is insufficient to satisfy 

equation (5*l), a new value is found s-

bo found, Th® distance from the centroid of the section to the centroid 

of tha top flange is given by s<-

Isupport a Icentre (5.1a).

Neglecting the web contributions,on approximate depth can

cs ttf + cs ttf^y a (5.18)
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By successively reducing the depth in ■£" increments 

and using procedure ’find IJadepth to the nearest above is 

found,to give the required value of moment of inertia* The 

section at this point will be understressod at maximum load con

ditions.

Using the set oT dimensions calculated,the total dead 

weight of the girder is calculated and compared with the assumed 

value. If the discrepancy is greater than l#,tho programme 

recalculates the section sizes based upon the current weight* The 

design of the actual sizes is written as a procedure and given the 

name ’prelim sizes’. Because it is possible to arrivo at a 

sot of trial dimensions based upon minimum 3 values independent of 

tho dead load, the section design cycle converges very quickly.

It has been found that generally only three or four cycles are 

required. ■■■

At this stage in the programme, a single girder has been 

designed to withstand the HA uniform loading. The depths of the 
section and thicknesses of the bottom flanges are known at the 
inner supports and at the centre of tho midspan. All spans must 

satisfy equation (5.1) and therefore the section dimensions at the 
outer supports will bo tno same as at tho midpoint of the centre

span.
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5.3-5 ' Effects of IIB Loading on Bridge Deck

The HB loading consists of an abnormal vehicle of up
rn

to 45 units (l80 ) in weight, carried on a system of four axles 

as shown in Fig* (5*^), One lane is loaded with typo HB load 

only, and all other lanes are loaded with one third HA loading.

To obtain the maximum longitudinal moment the abnormal vehicle 

is placed as near to the edge of the deck as possible. The 

width of the wheels is 15” and the centre of the edge wheel is 

placed 12n from the edge of the carriageway i.e,, 4J” clearance.

To produce the maximum moment the centre line of the bridge should 

be midway betwoen tho centroid of tho load system and the first 

axle, as shown in Fig, (5.4a), This presents an unsymmctrical 

case for analysis which necessitates tho whole of the bridge 

being analysed, Tho available core store is insufficient to 

enable this to be done and in the programme the load is placed 
symmetrically upon tho bridge, together with one third HA load 
in the remaining lanes,in the centre span, as shown in Fig,(5.4b),
BS 153 (l) allows the pormissablo stress to bo increased by 25% 

under tho abnormal vehicle loading condition. In order that the 

HA and HB loading condition may be compared in the final seotion sizes 
design, the abnormal vehicle has been reduced in magnitude by 20%,

Tho valuo of maximum bending moment obtained in this way will
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differ only slightly from the actual maximum bending moment 

because the centro span is generally large compared with the 

dimensions of the abnormal vehicle. In this wayj considerable 

savings in both storage space and time for solution,are effected.

To obtain maximum transverse moment the load is placed centrally 

in the carriageway at the centre of tho midspan» One third HA 

loading is applied to tho deck on either side, although theso areas 

do not necessarily correspond to the actual lone widths» as shown 

in Fig» (5*1+c)*

Despite the fact that only half of the bridge is con

sidered, tho available fast store is still insufficient for this an

alysis, To reduce the number of joints in the equivalent Grillage, 

the transverse diaph ragms have been replaced by sovon diaphragms 

of equivalent stiffness. This procedure has been usod previously 

in tho analysis of a continuous varying section grillage, by 

Goldstein, Lightfoot and Sawko (10), where no noticeablo loss in 
accuracy was incurred. It is assumed that the centres of tho dia
phragms are 2,5 x centres of webs. Equivalent properties about the 

seven imaginary centre lines are calculated* The longitudinal mombors 

of the equivalent grillage ore considered to act at the centres of 
tho box girders i.e,, midway between the webs* The equivalent grillage 

for tho analysis of HB loading is shown in fig. (5*5)*
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Ehw programme employs the method of analysis described in.

Chapter 2, but instead of using information from a data tape the

computer derives all the required data automatically» From the

design of a discrete girder, the dimensions at the supports raid at the

centre of the midspan,are known. The depth of the girders varies

parabolically and the depth of the bottom flange.is again assumod

to vary parabolically. The centres of the equivalent grillage

members are known,so that the programme is able to automatically

number the gtillago joints and calculate the member properties

for each type of member. The numbering proceeds across the

deck commencing at the outer support, as shown in Fig, (5,5b). As
there are seven transverse diaphagms the total number of joints

is 7 (nw - 1), where 'nw* is the number of webs. The member joint

and type numbers are stored in orrpyM, The eight member properties

Viz., cos a, sin a, L, T, C^» C^, K^, are calculated for each

type of member. The transverse members are considered first. The
depths of the girders at the seven transverse diaphragms are found
and I and J values calculated using this depth. The J values are found

using Equation (A«3) for thin walled box sections, tho rnodian lino

acting at the midpoint of the flanges and webs. Only one valuo of
I and J is required to calculate the bonding and torsional stiffness, 

if EX QJbeing and respectively for uniform members, At any one 

diaphragm all the members will have tho same properties, therefore, 

there are seven types of transverse numbers. The properties
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for the longitudinal members are determined by calculating the 

flexibility Influence coefficients for each'typo of member# The 

members are divided into twelve equal sections and the values 

calculated at thirteen stations. Simpson's rule is used to 

integrate the various functions and the final member properties are 

derived using Equations (2.24) to (2.28), Each section of longitudinal 

member across tho bridge is the some type and,as there are always 

seven transverse members,there are six types of longitudinal girder. 

There ere a total of thirteen typos of members in tho half of the 

bridge being analysed.» The eight mombor properties are stored in 

rprmy?, which has 13 x 8 elements.

After calculating tho member joint numbers and properties, 
tho programme then proceeds to set up the complete stiffness matrix 

for tho half of the bridge being considered. The upper half of 

the stiffness matrix band is stored in array S, Following the joint 
numbering system shown in Fig,(5«5b)5 tho band width is 3 x no. of webs? 
the total number of joints is 21 (nw - l) and total number of elements 
in array S is 21 (nw - l) x 3 nw. The individual member slope 

deflection equations are given in Table (2.2), where tho x and y 
axes lie along and across tho bridge respectively, as shown in Fig, 
(3*5b). The members are considered in the order they are stored 
in array M and tho Etiffncss matrix terms inserted into the S array? 

as described in Section (2,4),
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Tho loading can only be applied to the grillage joints, 

and therefore it is necessary to express all the applied loading 

as an equivalent system of loads,acting at joints only# Normally 

the loading is expressed as end moments and shears, but to simplify 

the programme only the shear forces have been considered hero.

This does not load to a significant error when considering long 

span bridges with the abnormal vehicle placed at the centre of 

the main span# The omission of the applied end moments will cause 

slight local discrepancies, which will be small in comparison with 

the overall bending moment. The applied loading is transferred to 

the joints by statics. The loads are first transferred to the 

longitudinal girder# For each girder a value of UDLjduo to 

one third HA loading,ia held in array HA,and the values of'point 
loads from the abnormal vehicle are held in array AV, The loads 

on the longitudinal girder are then transferred by statics to the 

joints. The two loading vectors i.e#, abnormal vehicle on edge 
of deck and abnormal vehicle at the centre of deck, are stored in 

array B#

The zero displacement conditions are next imposed, boing at 

the piers a zero vertical displacement and along the transverse 
centre line a zero rotation about the y axis. The set of simultaneous 
equations are solved using procedure »solve1. The elements in the 
loading array B are replaced by the corresponding joint displacements
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for the two loading cases. The displacements are substituted into 

the individual member slope deflection equations in Table (2«2)? to 

obtain the terminal moments and forces for each member . The com

plete set of results for the two loading cases aru printed out in 

tabular form,

5»3*6) Pesirm. of Final Section Sizes,

The maximum values of bending moment,produced by the HA and

HB loading conditions,are now compared. If the greatest bending

moment is produced by the HA loading condition the sizes already

derived will be the final sizes. If» however» the HB load produces

a higher moment, the section sizes must bo redesigned* The

procedure *prelira sizes* is activated using the new values of live

load bending moment. The first cycle calculates the dead load

bending moment from the section sizes derived to carry the HA loading#
The programme continues in the design loop until the assumed dead 
weight of a single girder is to within 1# of the actual dead weight,w

The section sizes are derived by considering the bending 
moments at the intermediate supports and centre of midspan only. To 

design the prestressing force at -other sections along the girders 

a bending moment envelope is required. This has already been 
established at 21 points along the girder under the HA conditions, 

but it is not known for the HB loading condition, as the abnormal 
vehicle has only been placed at the midspan of the bridge. If the
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HB Leading condition is the criterion,a bending moment envelop© 

is obtained by applying the same percentage increase that occurs 

at midspan» to the positive values of bending moment occurring at 

the 20 other points along the beam. The percentage increase 

at the inner support is similarly applied to the negative bending 

moment values.

The final section is designed at the 21 points along 

the girder up to the centre line. Using equation (5.1) the 

required I values at these points can bo found. The thiclcnoss 

of the top flange is uniform overall the bridge and tho depth of 

the section varies parabolically between midspan and supports, so 

that the only variable is the thickness of the bottom flange. This 

is found by commencing with the thickness of the bottom flange equal 

to the greatest thickness, either at midspan or support, and 

reducing this amount by 0.2 inches until tho actual value of I becomes 

less than the required value, given by equation (5*1). The previous 
value of thickness is token, therefore the bottom flange thickness is 

calculated to the nearest 0.2 inches above* The procedure 'find I* 
is used to calculate the actual I value at each stage. The depth of the 

centroid is also found at each trial,so that the value of and 
can be calculated for the final section. In this way, the section 
dimensions and properties are calculated at the 21 points along the 
girder and placed into array Ml,
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The magnitude of the prestressing force is obtained by 

eliminating c from equations (5.3) and (5«^) J-

P (5.18)

The values of f^ and ffc being the required prestress, are

found from equations (5.12) and (5.13). The interpretation of these

equations depends upon the sign of the bending moment i.e*, hogging or

saggingi which is determined by the sign of the dead load bending

moment. In this way the required prestress at 21 points along the

girder is found. This value will vary at each point, depending upon

the required stresses and Z values at that point. Tho variation in

prostress Is developed by curtailing tho cables as they are no longer

required. The prestress at each point is provided by a number of

cables which» it is assumed, are all equally stressed. Therefore, the

actual prestress will be slightly higher then that required by equation

(5.18), being equal to the number of cables multiplied by the force
ain each. Where there is/perraisaable zone in which tho lino of 

action of tho cable should lie,this should not effect tho stress 

conditions but at the critical intermediate support or mldspnn section, 
whore the cable probably has a unique position,there is a danger of 

overstreesing immediately after the prestress is applied and before 

the losses havo occurred. In practice the whole of the prostross 

is not applied simultaneously and thoroforo a percentage loss will
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have taken place before the last cable is stressed.

The cable eccentricity must satisfy four conditions in 

order that the permissable stresses shall not be exceeded. These 

conditions are obtained by substituting for f̂. and f^ from equations 

(5.3) and (5*^), in the relations (5.5) and (5*8). For positive 

bending moments i-

e > hA - 2 i 5 a -
P

\ l n
P

0 > A
Z f

+ p w* S a *p

e <  *VA
\  fmin
R P 0

Mw
R P 0

a <  - Z2
A

* Z2 fcw
R P 0

Mw
* R : 0

(5.19)

For negative bending moments !»

e < ~ 2
A + “f — -

e < zi
A "

^l^mint : — * »
M .min
P

0 > - hA
. Z2 fminW 

R P "
Mw
R P0 0

0 > \ V o w Mw
A , R P R P (5*19a)
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By using inequalities (5»19) the upper and lower limits of the 

line of action of the cable are found. These are placed into array 

Ml,which, finally holds in the columns: l) positivo live load moment

2) negative live load moment, 3) dead load moment, *f) Z^, 3) Z^ 6) 

cross sectional area of concrete, 7) prestressing force, 8) lower 

cable limit 9) upper cable limit, 10) thickness of bottom flange,

11) overall depth.

5*3« 7) Deslan of Cable Profile

The zone in which the prostrossing force must act is given 

by equations (5,19), but because of the indeterminacy of the girder, 

secondary bending moments act, which cause the line of action of the 

cable to be displaced. Therefore, although the actual cables lie with

in the required zone, the displaced line of thrust may lie outside this 

zone.

The resultant line of thrust is fcund using influence co

efficients, the method used is that given by Morico (3l) and is similar 

to that used to determine the member properties, described in Section (2«3*^)* 
The girder is rendered statically determinate by removing the continuity 

over the intermediate supports,as shown in Fig,(5»6a). Arbitrary 

moments x^ and x^ are applied at those joints to produce moments mp 
and m^jUs shown in Fig,(5#6b). The free bending moment upon the 
released structure mQ is obtainod by multiplying the prostressing 

force by the eccentricity at each station. Two simultaneous equations 

for the solution of x^ and x^ are derived,which can bo written in the 
-form
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B
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3
m

V ?
EC

ds

(5. 20)

V o
EC

da

u- m0m ¿ o
EC da

Tho solution of equations (5*20) gives the value of arbitrary 
constants and xg. In this particular case x^ and x-> will have the 
samo valuó bocauso the girder and loading are symmetrical.
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The final moment distribution is given by

M b m o + Vi + m2

but m » Ex o henco o
iG O + Vi +

p~
*2 * 2* v «MMM

(5*21)

where o is the actual cable eccentricity

o' is the lino of action of the cable 

P is the value of prestrossing force.

If the cable was placed along the line of o \  there would 

bo no secondary moments caused and the line of thrust would correspond 

to the actual cable position. This is known as the concordant cable 

profile.

The cable profile cannot bo derived directly, so that the 

computer must proceed in a series of trial and error' steps. An 
initial cable profile is chosen to have aero eccentricity at the outer 

supports,and lie at centre of the prestressing zono at the inner supports 

and centre of the midspan. If the cable zone passes outside the 
section tho cable is located midway between the maximum practical 

eccentricity and tho limit within the section, , The cablo is assumed to
w m 7  ? .................. .

be straight between these fixed points. Tho lino of action is then 

found by sotting up equations (5.20) and solving fcr and x^,which are
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then substituted into equation (5#2l), The eccentricity of the lino 

of thrust at the inner supports and midspan is then checked to see if 

this falls within the prostrc-ssing zone. If those conditions aro not 

satisfied the cable is then either raised or lowered at the outer 

supports, according to the required direction, in 2” increments until the 

line of action of the cables falls within the cable zone. The final 

position can bo adjusted by hand^as the cable may be raised or lowered 

at the inner supports by any required amount. The resultant lino of 

thrust is not affected by this transposition.. This important property 

of continuous prestressed concrete beams, first enunciated by Guyon,may bo 

stated as follows.

"In a continuous prestressed concrete beam, if the prestrosslng 

force is displaced vertically at any of the intermediate supports by any 

amount, but without alteration to the Intrinsic shape of the line of 

tho forco between the supports, tho resultant line of thrust is unchanged."

5*b) Preparation of Data

The data is headed by a title describing the current bridge to 
be designed and this title is printed at the head of the computer output, 

Tho remainder of tho data consists of 5-
1) For each span is given - tho length of the spans followed by the

base length of the full parabola for that span. Thus end spans con 

bo any division of parabola but usually thoy aro ona half for 

appearance. The centre span and parabola base length will bo tho
same
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2) Ratio *R* of moments of inertia at inner support and centre of

main span. From Equn* (5.1) Isupport
centre

(1 + R)4

3) Total width of deck. If is assumed that the deck carries one

way traffic only. Bridges with two carriageways have to be designed 

carrying the same load in both halves and can therefore bo considered 

as a one way bridge by talcing onehalf the total width of deck.

4) Width of traffic lanes. It is assumed that all lines ore of equal 

width.

5) Number of traffic lanes» including hard shoulder, if any.

6) Width from inner edge of deck to first lane or hard shoulder.

7) Width from outer edgo of deck to traffic lane.
T8) Number of units of abnormal vehicle. Maximum load « 45 units ** 180

9) Modulus of Elasticity E.

10) Modulus of Rigidity G •

11) Minimum thicknoss of web required to accommodate prestressing .cables.
12) Pormissablo compressive stress at transfer.
13 ) Permissable tensile stress at transfer.

14) Permissable compressive stross under working load,

15) Pormissable tensile stress under working load.

16) Permissable principal tensile stross at ultimate load,
17) Percentage loss of prostress in cables,

18) Prostrossing force per cable.
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5*5) Computer Output

1)

2)

3)
A)

5)

6)

The full output consists of s- 

Full analysis of structural model under both HD leading 

conditions«

Thickness of top flange 

Thickness of webs 

Centres of webs

Details of section at 21 points along the girder
I •»%.«'• 0 i «.¿A.Position of prestressing cable, , {} ' " .

■C* . v * -
Item (l) enables the designer to calculate the required 

reinforcement in the transverse direction. The second loading case, 

with the abnormal vehicle placed at the centre of the deck, produces 

the maximum transverse moment. The bending moment is given at the 

points of the equivalent diaphragms, shown in Fig.C^«^), and the joint 

numbering follows the system,shown in Fig,(5*^)* Item®) gives in

tabfcjkar form tho section details at 21 points along the girder. Points 

1 to 11 and 11 to 21 correspond to ten equidistant soction along the end 
span and centre span respectively! point 11 being tho inner support. At 

each point is given the overall depth» prestressing foce, upper and 

lower prestressing zone and thickness of bottom flange, Item (6) gives 

tho position of the prostressing force at tho supports and centre of tho 
midspan. Although the line of tho cables has been assumed to be 
straight between those points,the cable profile will bo relatively flat 

and in practice a slight curvature would bo introduced to, facilitate 
easier positioning of tho cables.

I w*
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5.6) Calculation Time

The total size of the design program is 5*KX) •words1 when 

using the Whetstone translator. The storage required to use the 

Kidsgrove translator is approximately 10,000 words, which is in excess 

of that permitted by the KDF9 machine. Consequently, all development 

work had to be run using the slower Whetstone translator and it was found 

that the complete design of a bridgo could not be accomplished in 

less than minutes. This amount of time is impractical and 

expensive for normal running of such a program. The English Electric 

Loo Marconi Co. are at present preparing the necessary softweor to enable 

large programs to be accommodated within the available store. To do 

this it is necessary to divide the program into smaller segments, which 

are stored on magnetic tape. The segments of the program are transferred 

into the fast store of the machine as required and it is not necessary 

to hold the complete program within the store, which results in a saving 

of space. At the time of writing the design program, the segmentation
ki
softwear was not available and the program had to bo segmented manually, 
as a temporary measure, The program was divided into throe separate 

programs. The results output from one program form the input data for 

the next stage, and in this way it is posslblo for tho complete analysis 
to be accomplished using approximately ten minutes of computer time, Tho 

amount of data preparation and total time required are considerably in

creased by using this method.



- 1 1 7 -

Some runs of tho compléta program wore also obtained using the
1 \

Atlas machine, operating at tho National Institute for Research in Nuclear 

Scienco, Chilton, Berkshire. The compiled version produced by this 

machine is extremely efficient and operates at some sixty times faster 

than under tho Whetstone controller. A complete design can be obtained 

in approximately two minutes,including the time required for translation.

5.7) Conclusions and Future Work.

After developing tho program for tho automatic design of three 

span prestressed concrete bridges, the following conclusions have been 

drawn. These observations are also applicable to all large design 

programs.
1) The program is able to produce a comploto design extremely rapidly 

and economically. The short time required for solution is the main 

advantage, although tho solution obtained is not exact because certain 

simpiJyfing assumptions have boon made. Several alternative design 

eohemes con be investigated In a short space of time, and ft ’best* 

solution obtained,
2) In order to run the program economically,a computer with a large 

fast random access store is required. This is to contain tho trans

lated .version of tho program and large amounts of information evolved 

by tho program during calculation. If insufficient store is available 
to produce an efficient machine code version, tho time required for 

solution will mako tho program impractical for normal use.

3) An efficient design can bo producod for statically Indeterminate 

structures. The design is inherently difficult since the answer In
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effect must be known» or assumed, beforehand. The program employs

a method of successive correction for solution and is able to rapidly
\ ■ .3

perform a sufficient number of cycles to obtain an accurate solution,

*0 The programs have to be written specifically to design one type of 

structure and they are not as general in application as are analysis 

programs# The amount of data required for the computer is, however, 

substantially reduced,

5) The development of design programs is both lengthy and costly, A large 

amount of computer time is required for testing and correctingeach section. 

It Is unlikely that such programs will be developed and used exclusively 

, by one organisation because of the limited application and expensive dev

elopment costs. Large design programs could bo a practical proposition, 
if made available t© a large number of users through national computing 

centres and program libraries.

The role of electronic computers in all breaches of civil 

engineering is gradually changing, as larger machines with increased hardwenr 
become available. The automatic design program for three span bridges In its 

present form can be extended to accommodate a varying number of spans and also 

allow for the effects of skew, Once this has been achieved, one program 

will be able to design many types of bridges, fromslngle to multispan, uniform 
or parabolic profile, right or skew. From programs of this typo, in which the



number of spans» span ratio, girder profile, girder spacing and diaphragm 

spacing are all fixed either by the data or within the program, the future do 

volopment will bo towards programs which produce on optimum design for 

the problem under consideration. The data would consist of the overall'/; 

length of the bridge and current materialcoets. From this data the pro
gram will examine the effects of the number of spans, span ratios, relative 

stiffnesses, girders spacing and profile, upon the cost of the bridge; 

and produce the most economical design for the given problem. This design 

would then form the basis of the actual design as other factors,such as 
appearance and construction techniques,need also to be considered*
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s»ss*bi,'bf5» dsj-jbew-. ¿s.
i

— —

■̂TfTrTTOt , -t;' j TTP"' «tSt KS-Sj “S*.- ¿sssr. IS j ÏSSfc. «MW MRWM
..
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Chapter 6

Investigation into Least Weight Dealro of Three Scan 

Prestressed Concrete Bridges.

6,1 ) Introduction

The total cost of a bridge is governed by many interdependent 

conditions which cannot be studied in isolation from each other, The 

design must satisfy several conditions apart from structural safety} 

the structure should be aesthetically pleasing and the system of con- 

struction must be fensable• The cost of the superstructure is dependent
upon many variable factors» namely « geographical location» relative costs of 

various materials and labour,method of construction* complexity of structural 

geometry, Imposed site conditions, degree of standardisation and available 

plant.

For each multispan bridge there will be an optimum layout for the

number of spans, relative lengths of spans, relative stiffness of spans

and spacing of girders and diaphragms. These parameters are influenced
by the relative cost of materials, and therefore the determination of the 

»
most economical system can only be achieved for individual schemes. The 

initial choice of layout parameters does, however, determine to «Jorge 

extent the overall cost of a bridge structure. An investigation into 
tho offocts of relative span lengths and eti'dhesses upon the cost of 

individual bridge girders has boon carried out by Azia (22), Tho invest

igation was carried out using a program for the design of a discrete three
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6pck£t prestroasod concrete bridge girder under the action of the HA 

loading condition only. The quantities of concrete and prostressing 

cables were calculated and a cost derived from these items. Two ratios 

of unit cost were considered! the cost of the steel per ton being 9*72 

and 7.0 times that of the concrete cost per ton. In this case it was 

found that the span ratio had the most influence upon cost and that an 

optimum value of 0,3 l,e,, the end spans being 0,3 x overall length! 

produced the most economical design over a wide range of span stiffness 

tfaluos. The span stiffnesses were found to have a lesser effect upon the 

total cost. It was also found that, within the range investigated, t#ast the 

change in relative unit costs had little effect upon the choice of other 

parameters.

The investigation was based upon assumed costs of steel and 

concrete and therefore the results must be interpreted for theso 

values only. The program used was only able to consider the effects of 

the HA loading upon a discrete girder, and the.’effects of the abnormal vehicle 

KB loading were not considered in the investigation.

By using the program described in Chapter 5,it was possible 

to undertake a more rigorous study of the effects of span ratio and

relative stiffness,upon the overall efficiency of a bridge. The total
■■■■ as

weight of the bridge has been usod/a measure of efficiency and a sot 

of ’least weight1 parameters have been determined. It should bo stressed 

that the least weight design is not necessarily the most economical, as 
only the volumo of concrete has been considered.
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6,2) Investigation

For the investigation all the bridges were of the same form^ 

consisting of three span symmetrical prostressed concrete right decks, 

composed of hollow box girders. The overall span was 500 feet and the 

width 43 feet. The bridges comprised three traffic lanes, each 13 feet 

wide, on edge strip at the left hand side of 5 feet to the traffic lone and 

an edge strip of 4 feet at the right hand side. This was considered to be a 

'typical* single carriageway bridge being part of a motorwy system. It 

was assumed that the carriageway carrying the traffic in the opposite dir» • 

action was structurally Independent.

The spans of the bridge were chosen to give a range varying from 

three equal spans, to the end span being half the centre span. The 

variation In span lengths was expressed as the ratio of end span * 1’ to 
the total span *L*, so that i-

<* - - r  '

The range of spans investigated is given in Table (6,1 )

Table 6.1.

Span End Control
Ratio Span Span

....................... Ft. .... . ....

0,25 125 250
0,275 137.5 225
0.3 150 200
0,33 166*6 1.66,6



The range of stiffnesses investigated for each span ratio 

were| from R « 0 to R « hj where R is the ratio of moment 

of inertia at the centre of the main span to the support, as given

by Ecp. (5.1) thus

Support
I ™ "cenure

(X + R)2

The range of depths thus varied to give a bridge composed 

of uniform girders when, R « 0, to a bridge consisting of arch like 

girders when, R » k,

/til other variable parameters in the design were fixed, so that the 

effects of span ratio and relative span stiffnesses could be studied 

In isolation. The centres of the main girders were 8 feet and the 

thickness'Of the webs 18 inches in all cases.

6.3) Results

The complete set of results obtained are given in Table (6*2), 

The variation in weight for a changing R value and fixed 0 value, are 

plotted in Fig,(6.1),

6.4) Discussion of Results.

From Fig.(6,1 ), it can be seen that the least weight for 

all span ratios is given when the variation in moment of inertia 

R a 0,5 -*“1#0* This range of R values results in a bridge with only
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a slight curve in the longitudinal direction., the depth at the inner 

support being approximately 1 .5  to 2*0 times that at the centre of the 

main span* Within thlsrange• the structure is able to develop the 

greatest stresses at all points along the girder and the most efficient 

use of materials is obtained.

If h continuous girder of uniform depth is employed over large 

spans the structural efficiency decreases considerably. The total weight 

when B w 0 is 8,25%  greater than the minimum weight when 0 » 0*33 end 

13*3^ greater when 0 * 0*23. This decrease in structural efficiency 
is likoly to be particularly noticeable in long span continuous briclgo 

girders, as the majority of the load is due to self weight. Hence any 

materials^which are not being subjected to the maximum possible stresses, 

will add unnecessarily to the design bending moments. It was found 

that for a central span of 250 feet the dead load bending moment was 

approximately twice the live lead bending moment. Titus it can be seen 

that quite large economies in concrete quantities cart be effected by intro- 

ducing only a slight variation in depth along tho boom such that 
K a  0,5. It is probable that,In this case,tho shuttering costs would 

be slightly higher but this increase should be moro than offset by the 

saving in concrete quantity.

As the ratio of moment of inertia at Inner support to moment 

of inertia at centro of main span is Increased above E * 1  ̂tho total 

weight of the bridge begins to increase above the minimum value indicating 
that tho structural efficiency is decreasing. Within the range of B
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values investigated,It was found that when R *»4 the total weight 

of the bridge, when compared with the minimum value, was Increased 

by 6,85̂  when 0 » 0.25 and 11,75# when 0 » 0,33. The value of 
R « 4 will give an inner support depth equal to approximately five 

times that at the centre of the main span,which would probably exclude 

such a bridge for aesthetic, as well as economic, reasons.

The effec t of the span ratio 0 can be seen clearly from fig» 

(6.1)* The least weight is obtained when all three spans are of 

equal length, resulting in the minimum bending moment in all spans.
In pracfi.ee it is seldom possible to arrange the spans in this way, and 

therefore, the central span should be made as near to one third the total 

span, as possible. Even if a span ratio of 0 * 0,25 is chosen,the 
total weight when R * 1 is still less than the total weight when 

three equal spans are used,vith a uniform depth continuous girder.

Throughout the whole range of span and depth ratios Investigated, 

it was found that for the type of bridge deck employed (continuous soffit 
slab giving a torsionally stiff bridge deck), the HA uniform loading 

condition always produced the maximum bonding moments, A bridge of 

total length 200 feet and having a central span of 100 feet, was also 

designed by the program where again it was found that the HA loading 
was the criterion. Bridges of 200 feet overall length or loss are 

unlikely to be constructed with three spans,as this would bo uneconomical. 

Therefore^ for all largo three span bridges,the HA loading is always going
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to produce the maximum longitudinal bending moment, provided the deck 

is fairly stiff transversely. Morice (36) has also found that,for 

simply supported spans of over feet,the normal uniformly distributed 

loads produce the greater longitudinal moment and it has been shown 

In Chapter ^,that a continuous grillage provides a greater redistribution 

of loads than a simply supported slab. The maximum transverse moment 

will be produced by the abnormal vehicle HB loading system. This 

case is automatically analysed by the design program.

6.5) Conclusions

From the results obtained the following conclusions have 

been drawn for the range of bridges investigated.
1) The least weight design is obtained when a bridge of three equal 

spans is employed with a moment of inertia ratio of R « 1,0.

2} The choice of R value has the greatest influence upon the total

weight of tho bridge. A variation in total weight of up to 13»!5$ 

can occur depending upon the value given to R.
3) The ratio of^jan lengths has a largo influence upon the total weight, 

which may vary by up to 1 1 . depending upon the value given to 0. 
k) The uniform HA loading produces the maximum longitudinal bending 

moments for largo multispan bridges having torsionally stiff deck 

■ systems.

Before definite trends can bo established,it will bo necessary 

to carry out further investigations over a wider range of variables. For 

three span bridges the study should include overall spans of between 100 

foot and 1000 feet. For those results to bo applied in practice,it will 
also bo necessary to investigate four and five span bridges. Such



investigations require many runs of computer programs, and therefore, 

they are quite time consuming.
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Table 6.2

0 R Total Woight
Kips

0 8OOO
0.5 7050
1.0 7030

0.25 1,5 7100
2*0 7î6o
3.0 7360

V#. 4*o 7230

P 74?0
Oo5 6800
1.0 6820

0.275 6900
2.0 6980
3.0 7200
4.0 7340

0 7150
0.5 6600
1.0 6630

0.30 1.5 6730
2.0 6850
3.0 7100
4.0 7300

0 7100
0.5 6540
l.o 6530

0.33 1.5 6640
2.0 6750
3.0 V 7000
4.0 7300
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Chapter 7.

General Conclusions and Future Work 

7*1) . General Conclusions

7.1.1) The series of model testa carried out^ show that the 
analysis programs are capable of accurately analysing structures 

with varying section properties. The grillage is also a valid model 

for the idealisation of continuous plated grillages and cellular 

structures, having a spanwise variation in depth* The programs son 
accommodate any variation in section, occuring throughout the full 

length of the member or only at certain sections along the member,

The programs make efficient vise of storage space and have a high 

operational efficiency. The preparation of data is relatively straight 

forward and the user is not required to have a knowledge of how the 

programs operate.

7.1.2) The bridge design program is able to produce automatically 

an accuate design inwhich all the design conditions have been considered. 
The calculations fire performed extremely rapidly by tho computer and 

consequently it is possible to obtain a far more accurate design, than
if hand methods wore employed. The design value of dead load bonding 
moment Is evaluated to within 1$ of the actual dead load moment and, 

because of this, an efficient design is produced,in that tho minimum 
of materials are employed.
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Automatic design programs cannot normally bo as general in 

application as analysis programs, because the layout of the structure 

and applied loading are contained within the program. The amount of 

data can be quite small and the complete list of design data can be 

specified by less than twenty parameters. The length of the program 

will, however, be quite largo, and it is this fact that has largely 

prevented the advancement of design programs in the past. The auto

matic design program is therefore limited inapplication and costly to 

develop. To obtain economical useage of such programs it is necessary 

that they should be available to a large number of users, either through 

computer manufacturers,or at national computing centres.

Recent developments in computer softwear have'led to the

development of ‘problem orientated languages'• These new systems are
' ■ ; j

written specifically for one class of user, unlike Algol which is a 

'universal* language that can bo used for many problems in allifields 

of science and technology. A structural analysis and design system 
1ms been developed at the Massachusetts Institute of Technology, and is 

and is known as STRUDL (38). By using this system, an engineer is able to 

design many types of structures. It is not necessary for the user to 

have knowledge of complicated programming languages,as all the program 
instructions are given in familiar terminology. The system is unable to 

carry out a design fully automatically and the user must insert further 

instructions as the program proceeds. He must, for instance, ask for the 

stresses to be computed at critical points and, if necessary, adjust the 
structural sizes and re-analyse. Such design work would be carried out
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through a remote terminal facility, possibly in the design office 

itself, and in this way the engineer has an extremely powerful tool 

to assist in his design work* Hie system has to be able to deal with 

many types of structures and problems, and this wide application leads 

to some loss in efficiency* By contrast, the automatic design program 

described here, is only able to consider onetypo of structure, viz. 

three span bridges« The design is, however, carried out completely
v, ' 7 3 1 „ ' ? > ■ „

automatically and rigorously and the completed design is very accurate 

and detailed. It is possible to prepare detail drawings from results, 

all dimensions and prestressing cable dotails being given. The main
■ ■ or®

advantagesof such programs &  that the solution is obtained completely 

automatically, and that it is very detailsd.

It is felt that both these basically different design approaches 
have a place in future design operations. The design system because of 

its general applicability and theautomatic design program because of its 

rapid and accurate solution,

7*2) Future Work.'.

7*2.1) The basic grid frame and plane frame programs can be

extended to tako into account several other effects. One such modification, 
to enable influence linos and surfaces to bo derived,has been carried 
out and reported here, Sawlso (37) has shown how the grid frame program 

can be extended to allow for the effects of elastic retraint at joints.

The use of this program would be beneficial when analysing foundation
rafts and earthwork .structures.
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Facilities can be incorporated which would take into 

acoount the effects of pinned ended members and pinned joints. The 

latter case exists in bridge decks consisting of simply supported suspended 

slabs with cantilever supports. Although, in this case,the bridge has 

an overall statical detcrrainacy, the individual elements are still 

highly redundant and the complete bridge must be considered for an 

accurate analysis.

The method of analysis employed by the piano and grid frame 

programs con bo used for solution of space frame structures with vary

ing section members. Such a program would bo applied to the analysis of 

building frames, when the interaction between plane frames has to be 
considered, or in bridges,, where it is necessary to take into account the 
effects of elastic displacements of column or frame supports, A useful 

modification ijo the grid frame program would allow for certain joints 

to have six degrees of freedom,whilst all the remaining joints would 

still only have throe degrees of freedom. Such a program would bo 
capable of analysing bridge decks in which the displacement at 

supports could be taken into account. The amount of additional storage 

space required in this case would be quite small,os only those joints 
capable of three dimensional movement would require additional terms 

in the stiffness matrix, ,

The programs described in this thesis all mako important 

economics in tho method of staring the stiffness matrix elements, only
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the top half of the diagonal matrix band being held. This band does* how

ever, contain zero elements and further economies in storage space could 

be introduced,bystoring 6nly the non-zero stiffness matrix elements.

When a structure is analysed by computer program it is usual 

to consider several cases of alternative loading. This usually consists 

of dead load and several alternative live load cases. The output 

for each of these cases is given separately, and tho alternative loading 

cases are combined by hand to obtain the worst case. By storing the 

output for each loading case within the computer, it would be possible 

for tho results to give the combined effect of two, or more, alternative load

ing cases.

7,2.2) The design program for the design of three span brUgos

can be extended,to include for varying numbers of spans, from one up to 

five. The effects of skew could also be included. Those modifications 

would produce a program with a wider field of application. Future design 
programs are likely to undertake more of the Intial planning and layout 

work* To obtain an optimum scheme for a bridge many factors of cost 

and prevalent conditions have to be considered. Computers are ideally 

stilted to this type of work, as they are able to operato at high speeds 
and consider many alternative sbhemes in a short space of time,

Tho range of computer hardwear is gradually increasing, and tho 

use of this equipment will enable automatic design programs to perform 
more of tho routine work, normally undertaken in tho design office. Tito 
use of graph * plotters will enable design programs to produce certain



results to the form of ‘working d r a w i n g s T h e s e  machines are also 

able to plot results in the form of bending moment and shear force 

diagrams# The programs themselves can be increased in scope, but this 

will also bring about an increase in program size# At the moment it 
is the size of such programs, that is governing development*
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begin comment A program for the elastic analysis of grid frameworks consisting of members with varyingsection properties3library AO#A6,A14j 
real ff/Q 1Integer m,nipc,dv,x,y| real procedure dot(a,b,p,q,r)J value p, q j

reaT a,b j Integer p,q,rjcomment lnnerproduct with lower and upper bounds! begin real sj si«Q3for r:*p step 1 until q do s :«s+axbj dot :«s| end dot >
dv:»70! open(dv)j open(2 0)jwrite text(dv,1 SslQHID^PHAMEWOHK*-*VARYING*SECTION 

*MEMBEltSlcIL8slF. S. AND*B»K. W. ****Leeds* 
Ifalverslty***»3o/3/65*[c3[8a33)i copy text (2 0,dv,X.|<X) |m:*read(2 0)| m«read(2o3| xs«read(2 0)| pc:«read(2o)\ E:»read(20)| G:»read(2o)|

begin array PC 1 :xiT1811F[1ix,1:13 31Integer array Ml 1tm,1:4 3,Tl1:x 3 3 ¡Hteger aTcTa, f, g, 1 , j, r, t,w, 2 1 real Li i:«03w :«0 3

for g : » 1 step 1 until x do 
v begin real H  Is »1+ 13 •for J:»1 , 2  do M[l,j]:«read(2 0 ) 5 

M[i73T.-g| d: «read (2 0 31 ’ do-'̂ P[g,i] ;«read(20)| ' ,pfg,3 3:«L:«Ttxsqrt(P[g,1]t2+PLgJ23t2)j PLg,1 :«12xP[g,l3/L!P(g#2j:«12xP[g,2j/L| t;«read(2 0)j If t> 1 thenbegin array**Wri :2 , 1 :t3iH[ 1 :2, 1 it],
real f 1 1 ,f1 2,f223 
TlgTT«t|f°£ J! “ 1 stejD 1 until t do HP[ 1, j] thread(2 0) for.i :»1 step 1 unttyt do J[ J 3 i«read (2o) j for .1 :« 1 step 1 until t“cfoE m  h iH[2# J J!»( y/(t""1) 3end 5
• W T h - Q [ t ] : - l sfor ji« 2 step 2 until t- 1 do Q[j] : « 4 3  for ji“3 sE'ep 2 urrETlT t**2 (to Q[ J i**2|



for j:«1 step 1 until t do
■OTriij3sWHPi§,j]T=rxT^j3>a^r/(ESKHP|;i,j3x3x(t?-i)>for J : » 1  step 1 until t do F [ g , jJ : * * H F [  1 ,  j  j  | 
for cj»1#̂ 3 ofor i:®1 step 1 until t do

f11:*dot(HFtl,2 f12:-dotlHFM,j f22:«dot(HF[2,J #H,2, jj, 1, t, J) |
»Hf 2* j J j1#t»J/S

p[g>53:«f12/f22|
P[g,6] ! - f 12/f11J
P U ' Z  ^l/(f11-P[g,53xf12)l
PLg,8j i« l/ ( f22-l>[g#63x f 12)l

for .1:»1 step 1 until t do 
THf]:»(Gxtrt^xQ[JI77T3x(’p 1  )xL) Plgj^3;«dot(J[43,1,i*t,i)j end elsebegin t:®T[gJ :=*13l
PLg*5,
n s ij,
Fig,1, F g,2, F[g,3.

^P[g,61 :=*o.5l “Fig*8]:«4xExread(2Q)/Ll »Gxreadf20)/Ll 
“F[g,13J *“1Jg,41 ;«PFg, 6] :-P[g,8] j«P[g, K)]:-F[g, 12] 

g,5j :“Flg,73 J“Fig,9j :“Plg, 11J :«=2iendj 
r :«ijfor c:*»1 step 1 until d-1 dommm* M ■ mmmmmmmrnm «oaMMiMMiM« HMMbegin 1 s*»r+c 1for J:«1,2 do M[i,j]:*read(20)l

W[l,3 3:*g| end 1■ ■end %rray P holds (1)cos,(2)sln,(3)L,(4)T,(5)C12,(6)C21, ~  (7)K12,(8)K21i
for i:»1 step 1 until ra do .if ahsWi* l7^Mrr,2]1>w/3-1 then w:«(abs(M[i,13-Mli* 2])+1)x3lcomment Above statement calculates the width of the stiffness band,
begin array S[1:3xn#1:w]jfor i:=>1 step 1 until 3xn do"for J:=»1 step 1 ufvtTT w do^l 1, .1 ] {»01

for l:**1 step 1 until m do"begin Integer Mil^l real*Tl jP2jP3»P41P3jP6«P7, P8?
g:=Hil73Tl ■

to
«



SfMlJ3-2,1 
S[Mij3-2,2_ 
S[Mij3-2,3]
S[Mij3-1,2]

P1;»P[g,l3j P2:wP[g,2]j P3:*P[g,33j P4:«P[g,4] 
P5:*P[g,53j P6:*P[g,6]| P72»Ptgj,T]I P8*.«PCg,8] 
Mij3:»3xM[I,1]j

»S[MiJ3-2,1]+PlT2xP4+P2f2xP7!
-SLMi J3-2,21+P1x P2x (P4-P7)j 
«St M1J3-2,3J-P2x (P7+P6x P8)/P3I 
■SLM1J3-1,1]+P2T2x P4+P1T2XP7I 

nxjj-1 ,c.j i«S[Mlj3-1|2J+Pix(P7+P6xP8)/P3l 
SIM1J3,1J:«S[M1J3,13+(P7+P6xP8+P8+P5xP7)/P3T2j 
, MlJ3:»3xM[i,2]|

S[MiJ3-2,11 .•»S[MiJ3-2,1 3+F1f2xP4+P2T2XF8!
SI MiJ3-2,21 :«SfMiJ3-2, 2j+PlXP2x(P4-P8) J 
SlMiJ3-2,3j:»SfMij3-2,3J+P2x(P8+P5xP7)/P3l 
SLMIJ3-1,1]:«SLMij3-l,l]+P2t2xP4+P1T2xP8| 
S[Mij3-1t23:*S[MlJ3-1,2J-Plx(P8+P5xP7)/P3j 
S[Mij3,1J:»SCMij3,t]+(P7+P6xP8+P8+P5xP7)/P3t2| 
comment above statements set up diagonal elements 

In the S matrix J
t :»3xabs (M[ i, 1 ] -M[ i, 2]) | 
if M U j k M C i ^ ]  then

r:- 3xM(i;iTj • ^ n
r-2,t+13 :»~P112xP4+P2t2xP6xP8j 
r-2,t+2j;«-P1xP2x(P4+P6xP8)j 
r-2,t+33;»+P2x(P7+P6xP8)/P3l
.r-1,t]PlXP2x(P4+P6xP8),
>-1,t+t3i»-P2T2xP4+P1T2xP6xP8| 

s:r-1,t+2J:»-Plx(P7+P8xP6)/P33 
S f r ,t-13«»-P2xP8x(1+P6)/P3 j 
s [ r , t ]:*P1xP8x(1+P63/P3|
Sir,t+13;«-(P7+P6xFO+P8+P5xP7)/P3T2$

end 
eYse
begin r:®3xM[i,23j

rr-2,t+13:®-P1T2xP4+P2t2xP5xP7 3 
'r-2,t+2Jt— P1XP2X(P4+P3XP7)I 
.r-2, t+3JP2x(P8+P5xP7)/P3| 

P1XP2x(P4+P5xP7); 
tr-1,t+l3i«-P2T2xP4+PlT2xP5xP7i 
, r-1, t-+2 3: «+P1 x (P8+P5XP7) /P3 3 
.r,t-1j:*+P2xP7x(1+P5)/P3|
:r,t3i— P1XP7X(1+P5)/P3|

S[r,t+13:«-(P7+P6xP8+P8+P5xP7)/P3T2|
; ■ ends

end above statements set up off diagonal elements! 
y:«read(20)!
begin array B[1:3xn,1:y3j integer k,sj 

for i:»1 step 1 until 3xn do 
for J:»1 step 1 untTT y do~l?[l,.l3
for fi«1 step 1 until y do 

begin integer P,Q! x*t$3.X @ X S
write text (dVj [ [c 3E8s ]LOADING*CASE*No« *l)s



write fdv» format ( [ nd 1). f+pc3 l 
write text(dv,ff2cJTBslMEMBEH^REACTIONS***TONS 

[14s 3. [ 4s ]FlWD*END*MOMENTS**^TONS*PT[_2c][8s ]No. [4sTME3&EH[7s 1 END*1 ['7s}END*2MOslENt)*T* 
£7sTEND#2£cjJJ I 

2 i»readI2 0)|for c :«1 step 1 until z do beg;in p :=read (20jf q:*=reaH' (20) j 
for i:=1 step 1 until m do if"p=M[ i,Tj and *q «MITi. 2T*then 
Jegln es-MtiTSTi t:-T[g]j L:-F[S.3]Jend l'begin array N[ 1 s13. HF[ 1:2,1 ;t3* H[ 1:2,1 ;t ] 5 reaITTl,f 12, f22,m1, m2, Ml, M2#R1,R2,S1,S2,WJ for i:*1 step 1 until t do N[i] :=03 

VT:*read(2o)]for a:»1 step 1 until t do
W £ ]  :«WxLfSfa-l7xI1r (a-T7/(t-l))/(24x(t.l))R1 :«R2:**Wxl/24j 
h:»read(20)jfor e:«1 step 1 until h do keg in W :«read"(2oT ¿’T: »reacT(20) j l:=*12xlj 

:«R1+Wx(L-l)/l4 R2:»R2+Wxl/L|for a:»1 step 1 until t do if (a-*1 )xI7 (t-1 )Ti""’tlTen HTa 3 *-N[ a 3 +WX (L-I)xTarT)/{ t -1) else N[a]:*N[a]+Wxlx(t-a)/(t-l)J. end I
for J:»1 step 1 until t do
S i n  «

end I
-dotiHFtliJhHCUJliljtjJ,»dot HFf 1,j1,HE2,J ,1,t,J, »dot(HF[2#i3,H[2#j3,1it,l

f 11f 12:
f22:ml:m2:
Ml:M2:SI:S2;

(ml*-*...,(m1-f11xM1)/f12|
+R1+(M 1-M2)/L$
+R2-(M1-M2)/LJ

12T2/f22)



write (dv, format ([4s tnddd • dd1 ), S1 ) 3 
write {dv, format [T4s tnddd. ddT). S2 ) 3 write (dv,format (T[6s4nddd• ddajj. -M1/12) 3 write (dv, format (J3s +nddd.ddde]}, M2/12} |

]-P[g,2lxM1|]+Plg,1jxMlj *

!4"Pis 2 lx M 2 0
-P[|iljxM2j

B[3xq,f] s«=B[3xq, f ]+S2|end Iend |
end calculation of fixed end moments and shears j

B[3xp-2,f]:»B(3xp-2,f 
BL3xp-1.f]:«B[3xp-1,f B 3xp,f]:»B[3Xp,f]+S1 
B[3xq-2,f1:»B[3xq-2,f

xj*read(2 0 ) 3
for 1 : » 1 step 1 until x dobeg in t:«Sxreadf^blY.r:»read(2 0);for j:«1 step V until y do B[t+r-3, j] *«03 for s:®1 step 1 until t+r-4 do if t+r-s-2 <w then & [ sTt+r-s-gJ: «*0 J for i:«2 step 1 until w do S[t+r-3i.l3 end above statements^impose zero deflexions where x®no. of imposed zeros3

solution of equations: for i:®1 step 1 until 3xn do 
"Begin S[i7TW*sqrtWl,l]-iôt(S[r,i«r-fl3T2.1, if i>w then i-w+1 elae -1,i-1,r))| ki»lf 33ci-i>w»r'then w else 3xn~l+1 1 for j :*»2 step 1 until k“*do“'

3ÎÏ, J 3 s- (sfi,d 3 -dctTSE r, i-r+1 3#s[r, J+i-rJ-H>w-H then J-frl-w else 1,i-1,r end formation of triangular matrix. 1,1

back substitution:for J:»1 step 1 until y dobegin for i:«1 step i until 3xn do.■^[P7]:»(B[T73T-dotPTr,i-r+TT, Btr.il.if i>w then i-w+1 else 1,i-1,r)}/S[ i, 1 ] j 
B[ 3>Cj 3 :«BT3xn, 13/S[ 3^vTT3 3  for i:*3xn-1 step -1 until 1 do B[T, 3 3:»(B[ i,TRTot {STTTr^i+lTTBEr, j 3, i+1,if 3Xn-l>w-1 then i+w-1 else 3xn,r))/S[i,13J end back substitution,

for J;»l step 1 until y do’begin integer p,q I real Mic1,My1^tK2t%2.Fz»Ma1 »Mq2,Mp; 
ê rI^etext(dv,niq3].83j>LOADING*CASE*No. *2) | write (dv, fomatTjndT), pc+J) 3write text (dv , jEl2cJToslME^ER[ 3slP0RCES * * TONS [ 15sl 
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Appendix 2 .
Member Properties of Perspex Model.
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MEMBER PROPERTIES.
PERSPEX MODEL STAGE 1
LONGITUDINAL GIRDERS.

STATION 
1
2 ’

I
910*

11
12'

\ l  
1 
1
19
20 
21 
22
23
24
25
26 
27 2
29
30
31
32
33

I
0.1667 
o. 1449 
o . 1256 
o . 1087 
0.0939 
0.0810 
o. 0697
0.0598
0.0513
0.0439
0,0375
0 .0321
0.0274
0.0233
0.0199
0.0170
o , o i 4 5
0.0124
0.0106
0,0091
0.0079
0.0069
0.0060
0.0053
o . o o 4 7
0.0042
0.0038
0,0035
0.0032
0.0031
0,0029
0.0029
O.OO28

y2
1.000
0.954
0.910
0,867
0,826
0.786
0.748
0,711

s i t e
0.608
0,577
0.548
0.519
0.492
0.467
0,443
0,421
o.4oo
0.380
0,362
0.345
0.330
0.316
0 . 3 o 4
0.293
0,284
0.276
0.269
0,264
Ü.260
0,258
O .2 5 7

J d
0.0096 2.000
0.0091 1.909
O.OO87 1.820
0.0082 1*735
0.0078 1.652
O.OO74 1 .5 7 2
0.0070 1.495
0,0066 1.421
0.0062 1.350
0.0059 1.282
0.0055 1,217
0.0052 1.154
0,0049 1.095
o.oo4o 1.038
0.0043 0.985
o,oo4o 0,934
0.0038 0.886
0.0036 0.841
0.0033 0,799
0.0031 O.760
0.0029 0.724
0.0028 0,691
0.0026 0.660
0.0025 0,632
0.0023 0.6o8
0.0022 0.586
0.0021 0,567
0.0021 O.55I
0.0020 0,538
0.0019 0.528
0.0019 0,521
O.OOI9 O .5 16
0.0019 0.515

transverse girders.
STATION I y2 J d

1) 0.1667 1.000 0.0096 2,000
9) 0.0513 0.675 . 0,0062 1.350

17) 0,0145 0,443 0.0038 0.886
25) 0.oo47 0,304 0.0023 0.608
33) 0.0028 0.257 0.0019 0.515



MEMBER PROPERTIES.
PERSPEX MODEL STAGE 2
LONGITUDINAL GIRDERS.
STATION

I
1
9

10
11
12

15
16 
1 
1
19
20 
21 
222 2
25
26  
2 2
2930
3132
33

I
0.2797 
0.2474 
0.2186 
0.1928 
0.1698 
o. 1494 
o . 1313 
0.1153 
0.1011 
0.0886 
0.0776
0.0679
0.05950.0521
o. o456
o.o4oo
0.0351
0.0309
0.02720.02410.0214
0.0191
0.01710.0154 o.oi4o 
0.0129 
0.0119 
0.0111 
0.0105 
0.0101 
0.0098 
0.0096 
Ü.0095

y2
0.912
0.868
0 .8 250.784
0.745
0.706
0.6700.634
0.601
0.5690.538
0.5090.481
0.455
0.431
o.4o7
0.386
0.366
0.347
0.329
0.314
0.299
0,2860.2740.2640.254
0,246o.24o
0.234
0.230
0.227
0.225
0.225

J
0,0105
0 .0 1 0 0
0.0095
0.0091
0.0087
0.0082
0.0078
0.0075
0.0071 
0.0067 
0.0064 
Ü.0061 
0.0058 
0.0055 
0.0052 
o.oo49 
o.oo47 
o.oo44 
0.0042 
o.oo4o 
0.0038 
0.0036 
0.0035 
0.0033 
0.0032 
0.0031 
0.0030 
0.0029 
0.0029 
0.0028 
0,0028 
0.0027
0,0027

d2. 125
2.034
1*945I. 8 6 0
1.7771.697
1.6201.546
1.4751,4071.342
1.279
1.220 
1.163
1.110
1.059
1.011 
0.966 0.924 
0.885 0.849 0,815 0.785 0.757 0.733
0.711 
0.692 0.67 6 
0.663
0.6530.6460.641o.64o

TRANSVERSE GIRDERS.STATION I y2
1 ) 0.3842 O . 7 1 6
9 0.1400 0 » 446
17) 0,0481 0 . 2 7 2
25) 0 , 0 1 8 8 0 . 1 8 2
33) 0 , 0 1 2 6 0 . 1 5 6

J  d  
0.0110 2.125 
0,0076 1.475 
0.0052 1.011 
0.0037 0.733 
0.0032 o .64o



MEMBER PROPERTIES,
PERSPEX MODEL STAGE 3.
INTERNAL 
STATION 

1 2

i :

9
10
11
12
1?14
1§
16
1 
1
19
20 
21 
22 
2

25
26
27
28
29
30
31
32
33

LONGITUDINALI
0.4492
0.4037
0.3624
0.3252
0.2916
0.2613
0.2341
0.2096
0.1877
0.1680
0.1504 
0.1347 
0.1207 
0,1083 
O .0972 
0.0874 
0.07Ö7 
0,0711 
0.0644 
0.0584 
0.0533 
0.0487 
o,o448 
o. o415 
0.0386 
0.0361 
0.0341 
0.0324
0.0311
0,0300
0,0293
0.0289
0.0288

GIRDERS.y2
1.125
1 . 0 7 9
1.035
0.992
0.951
0.911
0.873
0.836
0.800
0.766
0.733
0.702
o', eli
0.617 
0.592 
0.568 
0.546 
0*525 
0.505 
0.487 
0.470 
0,455 
0.441 
0.429 
o.4i8 
o.4o9 
o.4oi 
0.394 
0.389 
0.385 
0.383 
0.382

J d
0.4105 2.250
0.3889 2.159
0.3680 2.070
0.3480 1.985
0,3286 1.902
0.3101 1.822
0.2923 1.745
0.2753 1.671
0.2591 I.600
0.2436 1,532
0.2289 1.467
0,2149 1.405
0.2017 1.345
0.1892 1,289
0.1775 1.235
0.1665 1.184
0.1562 1.136
0.1467 1,091
0.1378 1.049
0.1297 1.010
0.1222 0,974
0.1154 0.940
O.IO93 0.910
0.1038 0.882
0.0989 0.858
0.0946 0.836
0.0909 0.817
0.0879 0,801
0.0854 0.788
0.0834 0.778
0.0820 0.771
0,0812 0.766
0.0809 0.765

TRANSVERSE
STATION

GIRDERS.
y2 ■■ J

1) 0.8730 1.125 0.6641
9} 0.3922 0,800 0.3778
17) 0.1751 0.568 0.2038
25) 0.0894 0.429 0.1174
33) 0.0677 0.382 0.0926

d
2.250 
1.600 
1.136 
O .858 
0.765



Appendix 3

Automatic Design Program



¿eKln comment Automatic design program for 3 span prestressedconcrete bridges Jlibrary AO.A6.A14 °
realh .if. la. f c t.few,fmint.fminw.tw.es. tbfs .tbfc.v 1 ,x1,h,h1, 

ttf,Z1c,Z2c,Z1s,Z2s,y1c,y2c,y1s,y2s,Ic,Is,y,ds,dc, tf,Weight1 ,Weight2,ft,fb,Ac,e,fx,fpt,Ro,E,G,I,we,wc, nl,Pi,Mpos,Mneg,PsJ
integer d,dv,f,i,j,k,r,s,st,w,x,nw,nu,g,m,t;real procedure dot(a,b,p,q,r)J value p,q,real a,b; Integer p,q,rjcomment innerproduct with lower and upper bounds, begin real s j s:=0 ;

for ri^p step 1 until q do s:=s+axb, dot:=sÿ end dot ; .
procédure solve(s,b,n,w,Ids)j value lds,n,w3 array s,bj lr^e^er n,w,ldsj loegin Integer i,J,kjfor i :=*1 step 1 until n do

"Begin s[i, 1 J :=sqrFTsTi, I’pdot (s [r, i-r+1 3?2 ,1,if i>w then i-w+1 else 1,1 -1 ,r))l ki=»lf n-i>w- 1 then w else n-i+lf for“T : » 2 step 1 until it ' do 
all, j3 «»(in, Jj-dQt(s[r,I^r+1 ],s[r.i +l-r ], if, 3+l>w+1 then J+i-w else 1 ,i-1,r))/s [i, 1 ] | end formation of triangular matrix; back substitution: for j ;=* 1 step 1 until Ids do begin for~T7°i st'ep T  untll"n do

*~T[ 1 # J 3 :=twi, jT~dot (s[r,i-r+1 ],b [ r ], if l>w then 1 -w+l else 1,1 -1,r))/a[l,1 ]jWh, J 3 :*bln, j 3/s [n,TjT for i:®n- 1 step - 1 until 1 do
^TT, J 3 î» (b [ï7TT“dotl^rî7n-i+T]. b[r. J 3 » i+1,if n-i>w- 1 then l+w- 1 else n,r) )/a Li, 13 g end solution of equationsj end; ■procedure find I(dp,inertia,tfb,width,centroid);’value tfb,dp,widthj real dp,tfb,width,inertia,centroidI comment calculates moment of inertia from section sizes 3 begin rea1 At,Ayt»Adt,It lprocedure sum area(breadth,depth,ctr)3 • value breadth,depth.ctr;reaT~breadth,depth,ctr3 begin real A,I,Ay,Ad I . ” "TV:”'breadthxdepth| At:=»At+A;;I :«AxdepthT2/ 123 It:«It+I| ■.Ay:*»Axctrj Ayt:»Ayt+Ay3 Ad:*=Ayxctrj Adt :=»Adt+Adj . end sum area;



At :=Ayt :*=Adt ;*=It :=0j 
sum area(width,tfb,tfb/2 ) 3 
sum area(tw,dp,dp/2+tfb)3 
sum area (width, ttf,dp+tfb+ttf/2 ) 3 y:»Ayt/At| It:=It+Adt-AtXyT2; 
inertia :=* It j centroid:«yj end find I;procedure prelim sizes(ml,I1,qs,b) 3 array m 1,1 1 , b 3 integer array qs3comment designs size of section from range of bending momentJ begin for j := 1 1 , 2 1 do
begin Weight 1 :«Q, ml[3,1 3 * * 0 3  for f:» 1,2 * 3 dobegin h*=4x(t15fs-tbfc)/l1 tf ,2];

hi :«4x(ds-tbfs-dc+tbfc)/luf ,2] 3 t for i :®1 step 1 until d+1 do begin if f»i andTITf'/l ]<IlTirj2 ] then 
~ x M = 1 1 [f ,fFll if, 1 l+U- 1 5/dxTTIT, 1 ] else x 1 :®(i-1 )/dxl1 [f,1 3 | tf;=hx(x1-x1t2/l1[f,2 J)S tf:«tbfs-tf3 yl :*=hlx(x1-x1t2/l1 [f ,2J) | y 1 :=ds-ttf-tbfs-y13

x1:«(12xcsx(ttf+tf)+twxyl)x0.15x18[f,1]/(432xd) ml[3,l3:=m1[3,j3+x1xqs[i3xb[2x(i-r(f-1 )xd),l3 3 if J*=21 then Weight 1:«Welght1+x1Xqs[i33
e n d :

e n d ;end j
Zlc:»12x(m1[1,21]+m1[3,21]-Rox(m1[3,21]+ml[2,21]))/ (Hoxfct-fminw)|
Z2c:*l2x(m1[1,21]-Hn1[3,21 j-Rox(m1[3,2l3+m1[2,2l3))/ (fcw-Roxfmlnt)Jg1s:«-12x(m1[3,11]-hn1[2,11]-Rox(ml[3,113+mlC 1,11]))/ (fcw-RoXfmint)I ■Z2ss— 12x(m113,113+ral[2,11]-Rox(m1t3,113+m1[1,113))/ (Roxfct-fminw)| 4ft:*fmint-12x(m1[2,213+ml13,213)/Z2c| 
fb:«fminw/Ro+12x(m1 [ 1,21 ]-Hn1[3,213 )/(RoxZ1c) 3 Ac:*=twx(dc-tbfc-ttf5+12xcsx(ttf+tbfc) o e;«Z1cxZ2cx(ft-fb)/(Acx(fbxZ1c+ftxZ2c))3 
if e<-y1c+3 then ’Begin e :=-y 1‘¿V3T' ~ ^ rx:«12x(m1[3,2l3+m1[2l21])/Z2c+(Z1cx(Z2ctAcxe))/

(RoxZ2cx(Z1c-Acxe))xf12x(m1t1,21]+m1[3,21])/Z1c+fminw)5 Z2c :w12x(m1 [ 1 ,213+ml [3,21 3-Rox(mt [3,21 J+mu2,213))/(fcw-RoXfx)?tbfc :=*Z1c/Z2cxttf 3 if_ tbfc<4 then tbfc :»43 tbfc rentier(loxtbfc+o.5 ) / 1 0 3



y2c:® (Z2c+sqrt(Z2cT2+48xcsx ((ttf+ttfT2/tbfc)xZ2cXttf 
/2 )) )/(24xcsx(ttf+ttfT2/tbfc))$ dc :=y2c+ttf/2+y2cXttf/tbfc+tbfc/2ii dc ;=entler (dc+1) J 

recal:find l(dc-ttf-tbfc,Ic,tbfc,12xcs,y)j 
if Ic/y>Zlc or Ic/(dc-y)>Z2c then begin xl :«Icl y1c:*=y| y2c:=dc-y3 dc:*=dc-0.5j goto re cal, »-end i
I c 7 = x 1 1
ft:=fminw/Ro-12x (m 1[3, 11]+m1[2.11])/(RoxZ2s)| fb:«fmint+12x(m1L3,11 J+mUl, 11 j)/Z1s|Ac:=(ds-ttf-tbfs)xtw+12xcsx(ttf+tbfs)| e:»Z1sXZ2sx(ft-fb)/(AcX(fbxZ1s +ftxZ2s))3 if e>y2s-3 then 'Begin e :»y2s j fx:

Z1s
if

-12x(m1 [3,11 ]+m1 [1,11] )/Z1s'+{Z2sx(Z1s-Acxe) )/(RoXZ1 x(Z2s+Acxe))x(-12x(m1[3,11J+m1 [2,11 ])/ Z2s+fmlnw) — 12x(m1 [3,11]+m1[2,11 ]-Rox(m1 [3,11 ]+m1 [ 1, 113))/ (Roxfct-fx)3Z1s>Z2s then tbfs:«ttfxZ1s/Z2sjT^fs:*entier HOxtbfs+0.5)/10,end jy1s:«(Z1s +sart(Z1s r2+48xcs X((tbfs + tbfs 12/ttf)XZ1sxtbfs/ 2)))/(24xcsx(tbfs+tbfsr2/ttf) ) 3  ds :«®y1s+tbfs/2+v1sxtbfs/ttf+ttf/2j ds :»en&iLer(ds+1) Jrecall:find I(ds-ttf-tbfs,Is,tbfs,1 2xcs,y) 3 if Is/y>Z1s or Is/(ds-y)>Z2s then "begin x 1 :«I3 jy1s ;«yj y2s:«ds-y3 ds:«ds-0 .5 j goto recalljend I 
Is;»x13if Is<Icx(1+R)T2 then begin Is :«Icx( 1+R') t2T

y2s :=>sqrt(ls/(12xcsXttf+12xcsxttfT2/tbfs))j ds :*=y2s+ttf/2+y2sXttf/tbfs+tbfc/23 
ds :=entier(ds+ 1 ) 3recal4: findl(d3-ttf-tbfs,x1,tbfs,12xcs,y)3 , if x1>Is then "Begin y1a:»yj y2s:«ds-y3dst^ds-O.Sj Is:«x1| goto recall

' end lds :**y2s+y1s3 end elseBegin To;«Is/(1+R)t2;y2c:«sqrt(lc/(12xcsxttf+12xcsxttft2/tbfc))j dc:csy2c+ttf/2 ty2cxttf/tbfc+tbfc/2 j dc rentier (dc+1 ) 3 recal5 : findI(dc-ttf-tbfo,x1,tbfc,12xcs,y)3
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vŜpL* —* Pi*
-r^ iop » ’* P  x  •—3- f \ v*
C O X ’- W X H A - H W  
r o o  ro»—•!-**—» p  —*«—»
X  01
H X s^ j9 ,- , t^ fM oa v»
v»o p  ■■■ *> —»*• ro

\o«
p *< p  —*■— rol-»l «4 h-t) u-i 
4* •» •• Vao

■—*

p  H fi p
n  p  p sr— ĉa o* ro
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If x1>Ic then
begin y1c:=yj y2c:*=dc-yj dc:«dc-0.5j 

Tc :=oc1 j goto recal5| 
ends



for f:«1,2,3 do ,H ^ n  l:=Llf,TT/d|for 1 :=* 1 step 1 until d do begin for j:**1 step"" f until st do 
*” begin If fwT"and L"tf, i ]<CL[

x1:=2x(L[f,2 ]-L [f,1]+ (j-1
then

;-1 }+(l~1 )xl) 
■1)xl)jelse xl:«2x((j-1)xl/(st~1)+( T^Tl+Rx(1-xl/Ltf,2] T2)T2s 

HF[1,J];=HP[2,J]:»(Q[J]X1)/(IX12), 
endj v ;■ for k:=1,2.dofor J :=»1 step 1 until- st do HF[k, J] :«HF[k,, j3xH[k,J3
f11:®dot(HF[1,Jj,1,st,j)l 
f12i-dot{HP[1jJ],H[2,j],1,st#J, f22i«dot(HP[2,j],H[2,j],1,st,J.
k:=»(f ~1 )xd+l|

, 1 ]:®f12/f22j

ends

p[k,2ji-f12/f1lS P [ k , 3 ] T 1 - P [ k , 1,xf12)J 
Pfk,4]:=l/(f22-P[k,23xf12)1 PLk,5j :»ll

end:
begin array S[1;122,1;w],D[1;122,1:213j for l";=»1 step 1 until 122 do Tjegln for” ‘.l";«1,2,3 s 4 "do S[TTj 3 {»0Sfor Ji«1 step 1** until 21 do B[i,j];«0iends

for f:*1,2,3 do for l:»1 stepT  until d do begin k :=’(f-T)xd+i'j
S[2xk-1, 1] J«S[2xk -1, n + P p #3] 5
S[2xk-1,2] :»S[2xk-1 .t- 
S[2xk,1J:«S[2xk,1]+(P

+P [k,
S[2xk+1,13:«S[2xk+1#1

k,3jx(l+P[k,11)/P[k,5 k i33+Plk,2]xP[ki4J+P[k,43
3 xP{k̂  3 3 5/P[k,51T2 *

I t  I  J  J t I  J + P [ k s  4 3  j  /

S[2xk+1 , 2 3 i«s[2xk+1s23-(P[k,43tP[ksl3xP[k,33)/primal*
xP[k,4l+

+P
ic;4 f t

l3xP[k,-S[2xk+2,13:=S[2xk+2,l3+(P[k,33+P[k,2:P[k,4S[2xk~1,3] ;»P[kj2j> . , ., sf2xk~1*43 :*s-(P[k,33+P[k,23xP[k#41 )/P[1c,511 s[2xk,2 1 ;«P[k»43x?1+P[k,2])/P[ks33 1 S[2xk,33:«~(PLki3j+PCki23xP[ki43+P[kJ43
+P[ksl3xP[k,33)/P[k,5)t2i 

end formation of stiffness matrix 1

,53T2l



for k 
begin :»1

is*
step 
’i+Tlf

2 until 21,22 step 1 until 31 do
B[2xk-1.i]:=P[k,33j BL2xk,lj :=*(P[k,33+P[k,23xP[k,43 )/P[k,53 j B[2xk+1 ,i] :=P[k,23xP[k,43 j 
Bl2xk+2,iJ:«-B[2xk,iJJend formation of influence line loading vectors|

for k:=1,21,41,61 do
begin for J:=1 step 1 until 21 do B[2xk,j]:®Q?for J jag1 step T until w do S[2xk, j 3 :*=GJ for x:*»1 step 1 until 2xk-1 do if 2xk-x+1<w then's [ x, 2xk‘~x+13 :~0J> end imposition o'F zero displacements|
solve(S,B,122,w,21)?
begin real span? Integer k1jif LI V, 11<L[2T2 J then span:**L[2,2] else span:«L[ 1,1 3 3 Tf span>200 then cs ;«span/30 else cs':”«6'.5j 

nw:«entier (W/cs+Q.5) +1 j cs : =W/(nw-1)» if la<10 then Pl:=2.7xcs else Pl:«=27xcs/lai
for f 5=1,2,3 do■Begin if L[f,TT<75 then UDL[f ] :=2.2 elsebegin if L[f, 13575~and L[f, 13<4t)olhen k1 :«20 IT L[f,11>4oo and L[f,1J<500"tHen k1:

If L[f,1]>500 bhen k1:»233
m t f 3 : « k l / s q r T ( i r f , l 3 ) i

9«21

end? .TF~la<10 then UDL[f3:«UDL[f3x0.1 else UbL[fTi^UDL[f3/la|
end j

©
3

for j:« 1 step 1 until 21 do 
B e g in real’'X,max,mini 

™ o F “fT=*1,2,3 do 
begin A:«max :=min:»0?for 1:®1 step 1 until d+1 do begin k:^TTf~l)xd+lTx2?

if B[k,J]>max then max:«B[k,j35 if B[k,.l3<mln then mln:«B[k,.1 J 3■ ■ end?7C;=dc c(B[2x((f-1)xd+r),j3jQaCr3,1 ,d,r)xLff, 13/(3xd A>0 then M1[ 1, j] :»M1[ 1,J]+(UDL[f]+0.0375JX
o *3 xnvix

else M1[2,J]:-M1[2,J]+(UDL[f3+0,0375)xcsXA+PlXmlnJend 3end jbegin if cs<6 then ttf:«SJ
if cs>6 an3~*cs*<8 then ttf :**7j lT cs>8 anof C3<[10 then ttf



if cs>10 and cs<12 then ttf:«9| if es>12 Then ttf:=12j ’
CTc:«12x(mTT,21]-M1 Z2c:=12x(M1[ 1,211 -Ml Z1s :»12x (M1[1,111-Ml 
■ Z2s:«l2x(M1[1,1l]-M1 if Z2c>Z1c then x1

[2,21] 
[2,21* 
2,11 
2,11] 
Z2c e

/(

se

Hoxfct-fmlnw, fcw-Roxfmint( fcw-HoXfmint Roxfct-fmlnw, 
x1:=Z1c.

end | for Tor

ft* * o u w n  a  i • t? io o a  i ***¿1109y :=* (x 1 +s qrt [x 1 T2+48xcsxt t'i f 5xx 1) )/(48xttfXcs) j dc;»2xy+ttf|if Z2s>Z1s then x1:«Z2s else xli-Z1s5 y :*»(x 1 +s qrt(x Tf 2+48xc sxtWfSxx 1))/(48xttfXcs) j ds:=2xy+ttf Jif ds<dcx(l+R) then ds :=dcx( 1+R) else do:«ds/( 1-fR) j 
cTc:=entier(dc+1 )3 isrentier (ds-M 7 1  x1 :»1.7xL[2,2]x(0.28xUDL[2]xos+0.006xttfXcs+(do+dcxR/8 )xtw/4ooo}/( (dc+dcxR/4)xfpt) J if x1>tw then tw:-xl$ tw rentier(tw+1) f t’bfc :»tbfs ;«ttfjy1c:*y2c.,!»dc/2| yls :=y2s :«ds/2j again: prelim sizes(M1.L,Qs,B);if abs(Weight2-Weight 1)/Weight1> 0.05 then goto againj
J :»1 step 1 until 21 do 
f :«1.2« 3 dobegin h;«4x(tWs«-tbfc)/L[f ,2] jjhi:®(ds~tbfs~dc+tbfc)/L[f,2]jfor 1;«1 step 1 until d+1 dobegin if t»1 and"X[f71 ]<L[TT2] then x1 :®L[f.23 -. ““Xtf, Il+Ti-I )/dxL[f, 13else x1 :»(l“1 )/dxL[f, 1] | tf :=hxtx1~x1 r2/L[f,2]̂ | j tf:=tbfs -tf j

end

y1 :«=h IX (x 1 **x 1 T2/L[ f, 2 j ) J y1 j»=ds -ttf-tbfs -y 1 j 
M1[3,,J] :=M1[3iJ]+(l2Xcsx{ttf+tf)+twxy1xO. 15xL[f, 1] xQstlJxB[2x(i+(f~l)xd),J])/(432xd)%

end:endj end; end;
x:»(nw-1)x6+(nw-2)x7; w:«nwx33 begin array M[1:x,1:33 *P[1:13,1:8],S[1:21x(nw-1),1:w],Ef1:21x(nw-1) 7TC£r,HF[1:2,1:133,H[1:2,1:13],J[1:13]] iStegw arrax. Q[ 1:133 j QlTJ :=Q[Tjn«13 r , ,for 1:=2 step 2 until 12 do Q[l] :=*4j for i:=*3 step 2 untiT 11 do QLl] :*»2| for i:«1 step 1 until 21xTnw~l) do begin for j :**1 sten. 1 until w do~^tii J 3 :®0;Tor J :«1,2 do Bl[l, J3T*»Q3



for j :**1 step 1 until 13 do
" 1 7 3 7 : «

H[;end l

y j  , | -■> M t V <*■ I ,
^ T l n  Hi lT3TT=f O T V l 2 

h [2,J]:»U-1)/123
v  *  j¿'or j :*1,2,3>4,5,6,7 do begin real I) If ffenbegin h:^4xTtbfs~tbfc)/L[ 1,2] j

hi:»4x(ds-tbfs-dc+tbfc5/L[1,2 3 $ 
x1i»(j-1)xL[1,1]/3+L[1,2]-L[1,1J j 
ls*=l | x:«3j-end |if j>3 thenbegin h';»4x(tbf3~tbfc)/L[2J2] jhi:=4x(ds-tbf3-dc+tbfc5/L[2,2lj x1 :=(J-4)xL[2,2]/6| 1 : » 2 3 x :*d^

end 3 *tbfs-tfj :«ds-ttf-tbfs-y11 
y)l

rj, 1 1 s«oi p [j ,2 3 s«iI
J>3 ] :*»1 2 xcs jJ,4] :=(4xGx(l2xL[l.11/x(yHttf/2+tf/2))T2)/(l2xL[l,1] 

/xx(12xL[l,1¡]/(xXttf)+Lf1,1]/(xXtf). / / ! . » / „ <  J1.Ì.J!» / f*\ \ /r\\ / i . . .  j j j^ j  Ov. ̂  \ a/ y 1 t j ■ j / w * ‘T'W 9 *4/ \-n>̂+( 4x (y 1 +ttf/2+tf/2 ) /tw ) ) x 12xcs ) j 
P[J,5]:»PU,èl:»0.53 ,PU,73 ¡-PÌJ,8] ;»4xExl/P[j,331If .1=»1 or J»7 then
S B S a S P ,'5l," f e l /2irP[j>73ì«PlJj83i«P[Ji7]/2jend g
for li*»1 step 1 until nw-2 do T̂) x (nwJ-Sy+l 1begin k :®T3Mfk, 1

end fend
M[k,3

;»M»1 W(nw~1 )+ljM[k,2̂  ;«(J-l5x(nw-l)+i+1|
* /»  r  t  *  *~i j  hM S

begin array HA[12,1:nw-1],AV[1;2,1;nw-1]J Integer g,sumj reaTdt, dt 1, db, f 11, f 12, f 22g 
for 1:«1,2 dofor j:»1 step 1 until nw-1 do begin HA[i“,J

AV[1,J]:-G{end jfor 1:»1,2 dobegin If i=H then dt:«wg-2-»0 3 / 2 else dt;®(W-ca)/2~7*5 : . " for g;*»1 step 1 until 4 do :begin dt :«b6f31 sum :«*03
• m



loop2: db:=*db+cs; sum:“sum+l3 if db/dt>1 then goto cald else goto loop23 calc!: AV [i,sum]:=AV[i,sum]tnuXOTSx(db-dt)/cs AV[i,sum+1]:=AV[i,sum+l]+nuxQ.2x(cs-db+dt)/csendl
ends

for Jî«1,2 , 3  do 
H S a l f  d = 1 thenbegin dt:=we+la-cs/2 3 dt1 :*dt+(nl-1 )xla| sura: »03 db:»0 | i:®1|

end 3 -
if J=2 then 
"begin d¥:*=we-cs/2 $

dt1 :=>(W-cs)/2-4.53 sum:=d; i:«*2 3 db:»03 
ends .if ¿=3 thenbegin dt := (W-cs)/.2+4.51dt1:**W-wc-cs/23 t:=23 sum:*0|

sum:=entier(dt/cs) 3 db:=sumXcsJend 3loop3 : db:=db+cs3 sum:*sum+l3 if db/dt .̂1 then poto calc2 else goto loop3 3 calc2 : if db>dti then goto calc3 else begin H3TTi, sura+1 ] :«HA [i,sum+1 ] + (db-dt} xUDL[ 2 ] /3 x(cs-(db~dt)/2 )/cs3
HA[i,sura]:«HA[1,sum]+(db-dt)XUDL[23/3x(db-dt)/(2xcs)j. dt:*»db3 db;=db+csj sum:=sum+1 j goto calc2 send 3calc3: HA[i,sum] :«HAf i,sum] + (cs-db+dt 1 )xUDI.l2]/3x(c3-(cs-db+dtd)/2 )/cs3 HA[ 1,sum+1 ] :«=HA[i,sum+13+ics-db+dt 1 )xUDL[ 2]/3 x(cs-db+dt1 )/(2xcs)3end 3

for f : « 1 ,2,3.4,5.6 do 
begin if f¿3 then x:=1 else x :*=23 

h ^ x  ( t bf s -1 bf o )/L [ x 75T3 
hi:=4x(ds-tbfs-dc+tbfc)/L[x,2 ]3 
for J: = 1 step. 1 until 13 dobegin if 2^3 then" xfT»"L[ 1,1 ]+(f «*1 )/3xL[ 1,1] +

TT=7>5<l c i 4 i ] / 3 í>(f-4)/eelse x1:»(f-4)/6xL[2.2]+(j-l)xL[2i2]/723 tTî^hx(x1-x1 T2/L[x,2] ) 3 tf :*»tbfs-tf | h 1x(x1-xlt2/L[x,2 ]Jyi y 1:«ds-ttf-tbfs~y13

V>
o V

¿> 3
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for i:=1 step 1 until m do
begin Integer Mlj31real”Tl , P2, P3> P4, P5j P6, P7, P8 ■; 

g : ^ T I 7 3 T |  ~ ~P1:«P[s;i|l P2:=P[g,2]! P3:=P[g,33I P4:»P[g 4]5 
P5:=F[g,53j P6:=P[g,63|P7:«P[g,73¿ P8:»P[gi83| Mlj3:-3xMtl,1]|
S[MIj3-2,11:=S[M1J3~2,1]+P1t2xP4+P2t2xP7j S[MlJ3-2,2]:=S[Mlj3~2,23+P1xP2x(P4-P7)|
srMlj3-2/33:«SEMlj3-2,33-P2x(P7+P6xP¿)/P3; 
S[M1J3-1,1J:*S[Mlj3-1,1]+P2T2xP4+P1t2xP73 S[M1J3-Íj2j:=S[M1J3-1,2j+P1x (P7+P6xP8)/P3! S[Mi¿3,13:«S[M1J3,1]+(P7+P6xP8+P8+P5xP7)/P3T23 Mij3:-3xM[l,2];

end

S[MIJ3-2,1]:«S 
S[M1;J3-2,2]:«S 
S[M1J3-2,3J:-S S[M133-I,1ji-S S[M1J3-1.2J:«S S
comment above

M1J3-2,1!+PlT2xP4+P2t2xP83 
Mlj3-2,2J+PlxP2x(P4-P8)j Ml¿3-2,3 3 +P2x(P8+P5XP7}/P3l Mij3-1,l]+P2t2xP4+P1T2xP8J M1J3-1>2j ~Plx(P8+P5xP7)/P31------- i  » " W l  J  *  i  7 / /  *:«S[Mlj3,1]+(P7+P6xP8+P8+P5xP7)/P3T2¡statements set up 
in the S matrix! diagona1  element s

t:»3xabs(M[i,1]-M[i,2])J 
r :«= 3xM[l,'13!S[r~2,t+1J:*-P1T2xP4+P2t2xP6xP8!S[r-2,t+2jj»-P1xP2x (P4+p6xP8) y  S[r-2,t+33:-+P2x (P7+P6xP8}/P3!Sir-1,13 :*=-P 1 xP2x(P4+F6xP8) 5 S[r-1,t-M 3:*-P2T2xP4+P1T2xP8xP8!
S[r-l,t+23;«-P1x (P7+P8xP6)/P3! S[r,t-1].*=-P2xP8x(1+P6)/P3!
Sir,tj:*P1xP8x(1+P6)/P3!S[r,t+1] ¡»-(P7+p.6xP8+p8+P5xP7)/P3t23 above statements set up off diagonal elements;

for 1:«*1 step 1 until nw-1,3x(nw-1)+1 step 1 until 4x(nw»l).6x(nw-T)+i a'te'p ' V until 7x(nw-1) do 
begin If Knw-1 then begin t :«3xi! r:=Jj end;If l>nw-1 and fi<bx(nw~-1) +1 then begin t:=*3xi! r:«3j end! If l>6x(nw-''H then begin t":»5xl$ r:*=2! end! for j:**l step!'Tunt'ilJ 'y' d‘o BI[t+r-3# j 3 :=0! for a:»1 step* 1 until t+r-4 do If t+r-s-2 <Vr

—  ---- therTSTs, t + r - s ^ ] ~ o ; ^for ¿ ;*2 step t until w do S[t+r-3. .11 :«0% end above statements Impose zero displacements!
solve(S,B^21x(nw-l)>3xnw,2)!



for j:«1,2 dobegin integer p,qj real Mx1 ,%1,Mx2,My2,Fz,Mq1 ,Mq2,Mpj ~ w r l t e " f e t  (dv,IBcIL8s UflADING*CASE*No. *1) i 
write (dv, form tyja^,T) 3

write text(dv, 8s lMEMBEHr 3s]P0RCES*%:iPSr 1 5al

:-PLg,l3x(P[g,7
«(Plg,7]+Pl@^

+P[gi6
xPig,8
i

_T2x P , _
xPre,|T5/p[gl3], .+Pigl8]+P[g,53

/Plgi3|T2j  ̂+P[g.2JT2xPfg,6 P[g,l]+pfg,&jxP +Plg.l]T2xP[gi6 g>9i;s. xP[g,8]

xP[g,7 g# 1 jT2xPig,*t gil]xP[gi2jx g 2jt2xP[gi4
g, l]s<(Pis.8 +PtK,7T)<P[g ,5 iV n 6 ,3 ]  3 
g>S TSxPlg,4 + P ls,1]T2xP[g.8!3
E.']xP[S|2]X (P[s,4]-P[g,8])r 
B,l]T2xP[g)4]+P[B»2]T2XP[B,8]3

p:=3xM[l.1]j q:-3xM[i,2]3p; = JAI'll i. 1 J }  4 «»JAnt 4-, C . J JMx 1: -d [ 1 3xB![ p-2, J ] +d [ 2 }xB|[ p-1, J }+d [3 ]x(Blfp,J]-B![q,J )^[73xD|[q.2,i3+<iC8]xEltq-1,j]
My1 :*di2]xB[p-2i j1+d[4lxBl[p-1, j]+d{53x
Fz:=*d

B
(B{p,j [3JXBI

q,j3)+d[Mx2 :»d
3My2s-d[8jxBI[p-2it}
7 3xBI[ p-2,3 3 +d]83 xB|[ p-1

u4-2ij]+4|9jxBl[q-l J(}3 J J+dCf IxiBfri, Jj- 
+dt 11 ]xBi[q-1, J J 3

: J J+dL 10]5*C| J  J T U i y j A M t  * 2 U 4 *U l  * u  j  A
) + d i  l 4 j x B l [ q - 2 ,  J  J + d [ 1 3 ] x B ] [ q - ] ,  j  ] 
+ d [ 9 3 x B i [ p - 1 ,  j 3 + d [  1 1 3x 
) +d [ ^3]x£3J[q-2, j  3+ d [ 1 23 xB lC q-1 ,  J  3

Mq1 :»(-MxlxP[g,2]+My1xP[g, 13)/l2jMq2 :«(-Mx2xP[g, 2 ]+My2xF tgi1 U / 1 2 5Mp:»(^1xP[g, Ij+MylxPtg,23 3 / 1 2 5for 1 jo] step 1 until nw-1 do’begin 1 f p«3x(nw-1) +i and q«*Fx(nw-l)+i and----  Mql<r€eg|lenrteegi-MqTTlf p**5x(nw-1 )+i and q«6x(nw-l)+i and
IWim OV R/Tmw a .<• i>U RAwM n « !\lf m D ■'

y  $ f  1 j*  c*j. 4 1 4. y 4 4vv ■ 1 / ? «b.Mq2>Mpos thenMpos :«Mq2,



write (dv,format ([8s nddJL)>i)j write text (dViX)T) |write(dv,format(XsnddX)iM[l,1]) 
write text(dv,i*-l) $ _  write dv, format ( ¿id

m d  3

--------- . W J ~ ^
write(dv,format 
write{dv,format 
write(dv,format 
write(dv,format

end j
write text(dv,

X8s Iy *r o t £
for 1:=T step i until 
begin write(dv,format write text{dv. 

write(dv,formatf write(dv,format 
write(dv,format

end i

5s+ndd.dddjj > Pz)l "%+nddd ♦ dddjj, Mp) i iRs+nddd *dddjj ,Mql;; _4s +nddd. dddcJJ > Mq2)

j j j *
$s+nd,dddddddd]),BC3xi-2, j 1) j5s+nd. ddddddddT), Bit 3xi -1, i1} 6s+nd.ddddddddcjj >Bl[3xi, j]

k ;a»0 ’if Mpos>M1[1,21] thenbegin x 1 :=Mpos/MlTT7^1]3 k:=k+1 j!~?or i : * 1 step 1 until 21 do M 1 [ 1,1 ] :**M1 [ 1,l]xx1 >
end jiF~Hieg<M1 [2 j 1 1j thenbegin x 1 :*=Mneg/Mit S7T1 ] 3 k:®k+l3‘" Tor is- 1  step 1 until 21 do M 1[2 ,i] :«M1[2,i]xxl 3
end3 ■■■■ ■
if k>0 then goto pickj pick: preTim sizes(M1,L,Qs,B) 3
if abs(Weight2-Weight 1)/Weight 1>3.05 then goto nicksfinal sizes: for do ---begin real l3TT:=4x(ds-dc)/L[f,2 ] 3

T:«lf f» 1 then L[1,l] / 1 0 else L[2 f2 ]/2 0| for i : - 1 step 1 until 11 Ho "begin if f» 1 then xT:=L[f TET]-L[f, 13 + (l- 1 )xl else x 1 :»Ti-T)xl3 HT^Tcx(1+Rx (1-x 1/Lf f, 2])?2) T23 tf:»iftbfc>tbfs then tbfc else tbfs% y 1 :«Elx(x1 -x1 t2/IT[T7 2 ]) 3 y’1 :=ds-y 13 loop: find I(y1-ttf-tf,I,tf,12xcs,y) 3 if I>h then begin tf:«tf-0»2 s goto loop!end 3H^(f- 1 )xl0+i3
MlMo,k] :-tf+o.2 j M 1 [ 1 2,k] :-ys M1[ 11,k]:*yl3 Ml[4,k]:»I/yj Mlf5 ik]i-l/(y1-y)3M u 6 ,kj :«l2xcsx(ttf+M1 [ 1 0,k] }+yixtwj if Ml[3,kl>0 then
begin ft:«fmiri¥^T2x(M1 [2,k] +M1 [3,k])/M1[5,k]; fb:»fminw/Ro+12x(M1[1,k]+M1[3»kJ)/(RoxM1f4, M1[7,k3:«M1 [6.k]x(fbxMll4.kj+ftxMU5#k]}/ r , (Mir4,k3+MU5,k]);
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bep;ln array H[ 1:2,1:31 ] ,HF[ 1 :2,1 ¡313 3 integer array Q[1;31]j for 1 ;« 1 j ¿ dofor .1 :-1 step 1 until 31 do H[lt.l]:«=0; 
for 1:«1 step 1 until 11 do
’begin H[ 17TJ; H[ 1,1+10H[2,i+10 H[2,1+20

i-ty/fj:
:«(1 1 -i) / 1 0 3  :-(l-1 )/l03 
:-(11-i)/l0$

end!
i m J  S-QE313 r , vfor 1;«2 step 2 until 30 do Q[i] ;4; 
for 1 :«=3 step 2 until 29 do Q[l] :=2\ for 1;«1 step 1 until 10 doOT1,32-1T7^[273^]:=HTT1,1]:«IIF[2,1] :=Q[1]xL[ 1,2]/ (M1[12,iJx120)j 
for 1;=1 step 1 until 6 doTIFT2,1+1 oT^ftPl2 7^ T 1 :«TIF[ 1,1+1 o] ;«HF[ 1,22-i] :«Q[ l]x L[2,2]/(120xM U 12,9+2xi])3 
for Ic •« 1,2 dofor J:=1step 1 until 31 do MF[k,j]:«HF[k,J]xH[k,j]jf 11 {«dot (hF[ 1, j ,H ! tyj ], 1,31, J 5 3

1,3

un1sll
l'1,3.2,3
.2,3],HL 1 , J[2,3total;«0!

,1,31,3
f12:«dot(HF f22{«dot(HF f21¡«dot(HF add {«e 1 {«0| uv e2 j«(M1 [8,1 1 Ì+M1 [9,11] ) / 2 5 e3 :=» (Ml [ 0,21 ]+M1 [9,21 ] )/23 again; e1;«e1+addj total;»total+ 1 3 for 1:«1 step 1 until 10 do 
Brr]:-B[3i^i-tfrr77T]x(eTF(e2.e1)x(i-1)/1o)i 
for 1:«1 step 1 until 6 do
^ tT o + l];«T W -i]*^ n i’3-e,5Tx(l-l)/lo+e2)xMl [7,9+2x13 3
a ! ; « d o t ( H F [ 1 , 1 , 3 1 , J ) 3
a2:»dot(HF[2,j],D[j],1,31,j)iMom:«-al/(f 11+f12) 3for 1{»1 step 1 until 11 do
eT^Momx ( i ^ T T / ( 10 x O T T T ,  13 ) Tfor 1¡«2 step 1 until 6 do 
i7^oni/MlT779+2xlTl
q *SSĴ  ] »jgQ ft
If e2+Mom/M1[7,H3>M1[9,11] or e3+Mom/M1 [7,21 ]>M1 [9,21 ] chen add;«+l else ad(fr«Q3
If e2+MoH7RT[7,113<M1*TB7Tl 3 or e2+Mom/M1 [7,21 ]<M1 [8,21 ] then add:»-1 eIse adHT«03 If add/o~anci total<!0 then goto again3 write tex’EXcTv, [Tolf8s rE^^ll^RTÙlTY^OF^CADLE^AT*

0UTER*^PTOlT«‘«*JL) 3


