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Chapter 1
q;a;;odggt;ag
1.1) Analysis Methods

Structures composed of members with varying section properties
are quite often encountered in engineering practica. - Two reasons
’fbr this are,firstly the more elegant appe#rance of fhe structure
résulting from the use of nbh-ﬁniformvmémbefékand secondly a ﬁora'
efficient use of materials, as the profile of the membcrs can 1/
reflect more honestly the distrlbution of stresses throughout the
structure. The variation in section can be along the full length
of £he member; as in precasbk concrete or welded steel portal fremes
which have tapered legs and rafters, Or the member may vary in

scction only at the ends when haunch stiffeners are employed. Largo

multispan bridges often consist of 1ongitudinal girders with a variation‘ifff“

in depth giving an elegant arch like appearance to the structure.  In ';i“i
the case of large bridge structurea where dead weight forms o greater k
proportion of the load, the improved structural efficiency resultiné

from the use of varying section members, can reduce the ovarall weight 'f“
of the structure thereby maLing further savings in the ccst of  ;”

the supvorting structure Jnd foundations. '

Before the availability of electronic computers the analysis

of all but the simplest forms of structures with varying secticn :l’;3i ;~,»:w




-l -

properties required considerable time and skill, Many of the
established methods of structural analysia can be applied to frames
composed of varying section members and many modifications have been

introduced to enable specific types of structure to be analysed by hand.

Column atalogy can easily be applied to beams and portal
frames with stepped mombers or members with a linear variation in the
moment of inertia,  The method becomes tedious and lepgthy as the |
variation in moment of inertia becomea more complicated,  Robinson (3)
demonstrated the method of gemi-grophical intepgration which can be
‘applied to non-prismatic members in plene framés,‘ﬁﬁﬁ aéain:any compl&x’
variation in the moment of inartiiiwill nake the éaléulatiqna'extiémely_
1ab6rious; ‘The moment distfibutionyméthod éan/be applied to iarying‘
section members once the distribution and carry over factors have been
‘obtained,  Many standard text books contain. t&bulated values of stiffnesa:f
‘and caxrry over factors,and values of fixed end moments for beams withj;g;;5~7
-atraight, prismatic or parabolic haunches.‘ Computer progrommes hﬁve’
‘also been written to calculate theae coefficients (4).‘ The method
con be applied to continuous beams or planafrnme atructures, although thek;f 
rate of conwergance is sometimas rather slow where members have compara-‘V f 
tively high carry over factors. & method proposed by Fok nnd Moauro iy
;(S)uaes the tobulated values of stiffness and carry cver factors te form
three moment eqyations which are. solved to give tha redundant moments. ‘i,;J;

'The method ia only suitable forcxmminuous beams and offers littlo
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advantage over the normal moment distribution process. Diwan (6)
also uses the three moment equations to derive bending moments,and
demonstrates that influence lincs can be obtained by applying unit
displacements to the ends of members, The application iscgain
restricted to continuous beams. Sami. (7 haa'evolved o method of
solution by using redundent coefficients, which are presented in
tabular form and substituted inip a set of redundant moment equations.
A computer programme has been written to derive the cpdfficients.

A different set are required for .ach degree of redundancy and for each
set of spon ratios, = The method has also been restricted to
prismatic beams with parabolic depth variation.  Without consideratle

amounts of tabulated data the use of this method is limited.,

A1l the preceding methods have been developed and’ presented

as hand methods for the analysis of plane frame structures, . All of the e

methods make simplifying assumptions or rely on tabulated data to emable =

acosptable results to be obtained;+‘ In a1l cases only bending strains

have boen conaidered, but to oStnin an accurate ‘solution Ln ALl coses i
it 1s necessary to also consider axial’ strains. Séwkn hasVSden’(B)if: 
that in the case of a vierendeel girder, an error in the value of

‘bending moment of up to 34% 1s comnitted when axial strains are ncg~«;uri”;~w

. lectod,

Another important clasa of structure often requiring analysis

'is the grid frame. Becauae the high degree of indeterminancy makes an H"l'ff
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exact solution by hand extremely labourious, several other

methods have beon aéveloped but, as far as is known, oniy’two of

these moke provision for non»priémotic members, The most widely

used method is that by Guyon and Massonet in which tho grillago

is considered as an orthotropic plate of equivalent flexural and
torsional otiffncss. Morice and Little (9) produced a design pro~ |
cedure and presented the coefficients in graph form.‘ The method

has since been used by Goldstein, Lightfoot and Sawko (10) to analyaa
three span continuous grillage bridges with varying aection properties,
by using the simply supported span technique. A discrete girder is
first analysed under the action of thé‘totél lood tofdotermine the
bending moment along the beam, points of contraflecturc and doflected
profile. - The central portion of the deck between the points of :
contraflecture, assumed to lie at right angles to}the longitudinal"’
girder, 1s considered as an equivaient simply supported slab; The
variation in moment of inertia is small at the centre of the '

bridge and an average value is considered'when culculatingjtha’bendiﬁg‘

and torsional stiffnecss parameters,  Distribution COéfficients?aréithen

ebtained which, when multiplied by the average moment per girder, give theik3tw

aistribution of 1ongitudina1 bending moment. The daflected profile

is also obtained using the distribution coefficients but the deflactiona et

obtained are related to tho line of" contraflectuxweand not the originﬂl f;;rQE

position of the deck. } Bocause only the first term of tho 1oading

geries is considered. an increase of 10% to the maximum values' of bendingﬁf )
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moment and deflection is recoﬁmended. The seme coefficlents obtained
for the middle of the central span are assumed to apply to all other
parts of tho bridge,and hence, bending moments over the plers and in
the end spans are obtained., Coefficients can be obtained to give the
transverse bending moment distribuiions at any point in the quasi slab,
but no rccommendations are given for the treatment of side spans.k\
This method has been used for the design of n right bridge (10) and

a 24° skew beidge (32), although in the latter case model tests were

also conducted ns an additlonal check on the resulis.

The Hendry Jaeger method (11) relics upon the applisation of
harmonic and basic function analysis. This method is more xbwerful
than the former* grids supported on tWO, three or four sides nay be
oannlysed with fixed or free support conditions. The method can be
applicd to beth skew and continuous grillapges and 1t also allous |
for some variation in longltudinal stiffness. - Bﬁsid function'analySia
is used for any type of grid with any boundary conditions, whereas the
_harmonio analysis can be used only for aimply supported grids.;f w}gf
efficients presented in the form of churts ond graphs make the mothod
easy to apply. A comparison between the Hendry Jaeger methcd anu tha;
Distribution Coofficient method by Sawko and Saha (12) haa ahown that

the results given by the former method were 8% highervin the case or '

1ongituuinal bending moment und 15% highcr in the casa of trwnsvorsaix e

bending moment for a single span uniform bridge deck. ‘ Nb comparison fjJif;j
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is arailable for contipuous grillages with varying section properties,

The methods outlined above for the analysis of grid and plane
freme structures are all hand methods and,although they are suitable
for‘use in a design office in slide rule calculations, the methods
are not easily programmed to give a generol solution using the eloctronic
compﬁter. The advent of the computer brought about a change in struct-
ural anolysis methods,  Although matrix methods had been known for
many years, their usce had beenlrestricted to very simple structures
because of the large amounts of repetitive numerical mandpulation 1nvolved;
The computer is,however, able to perform this type of work extremely rap-
idly. |

Madu (13)vhas applied a finite differéhca'aﬁproaéh'td platos’
of varying dépth,using an electronic comﬁute} to solve the*equéfiéna.“i
The method has been applied to grid frames with a vnriation in dapth

but the application was restrieted to. simply aupnorted right grillages. ‘  1,;

From the use of matrix methods tWG different npproaehaa have _“ ‘ |
emeiged. " The flexibility method. (14) rendera the structure atatically“;*‘
determinate by applying stress resultant releases, The displacement
discontinuitios can ‘then be romoved by the application of binactions.
The values of the redundanta are then determined by the solution of
a sot of 'n! simultaneous equations.fwhere 'n' is the degree of~’

indeternindnCQ; The solution of tho problem is reducod to a seriea cf

mﬁthpdical matrix °P°rati°n5' Bw mnking use of tho matrix interpretive‘f‘
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schemes nvailable as part of the softwear of most computora; these
operotions can be performed rapidly and 'o.ccurately. In this case kthe
structure is reduced to ite statically determinato state &nd the |

basic matrices formod, by hand, It is for this reason that th.e floxibilty
method 1s not easily programmed to give a general solution. It is howevor,
possible to progra.mme specific cascs and this me-thod is used to |
calculate member proiserties in the program described in Secti‘on‘

(2.3). .

The stiffness method (15) renders tho structure kinematicolly
dotermimte by clamping e'tch of the nodcs. | This usually results |
ind:ress resultcm.t discontinuities at theao nodcs. ; Tha discontinuitiea
con then be removed elther by iteration, as in HordyCross momont
distribution. or by solving a set of 1in\.ar simultanoous equntions, SR
as in slcpe deﬂection. Krynicki and Mazuridirwles (16) have shown S "
how slopo deflection equations can be applied to the mlution of x'ramea .
cons:}.sting of aolid ba.rs of varying cross section. 'I‘he method roliea ‘ ’,11 =
upon tabulated cotrficienta o.nd is,therefore a hand method which ca.nnot be

used to [;ive a general solution.

. The computer can be used to set vup\o.nd golve a genemlis’ed«f :

' set of olope defloction eo 'ationo, and in this way an: automatic solution

can be programmed. Unlike the tloxibility method. the dogrea or 1ndet-
erminaoy need not be known and the dato. need oonsist only of detaila of

the framo geometry, applied loading and support oondj.tions. Programmes
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Inve been written to emalyse grid and plane frameworks (17, 18) using
thié method, but previously mainly prismatic members have boen considered.
It is possible to simulate a varying section member by considering it

as a series of shortcr uniform members, thus forming a stepped member,
This procedurc has the disadvantage of increasing the number of joints
and hence the time for solution., Existing programmes have also been
adapted to analyse specific cases, Iitton, Roper and Thompson (19)
describo a mothod of modification to consider members with'slbpihg
nounches at oach end, The members are considered in terms of equivalent
scction properties, but each member is rdquired to have two faluoa of
momenflof'inertia to give the corrcect bending and sheéring stiffnesscs,
A method by which standard computer programmes for the analysis’of |

frames with uniform members,may be used for the analysis of frames con= =

- sisting of symmetrical non-unform members,has becn‘dﬁrived by Sawko (35).-‘;ff

Tho ‘momber stiffness and carry over factors are first obtained by hand
caléulationa or from standard tables, By using th° pub1ishe& Gfapha e

coan equivalent member is obtalned, which has uniform haunches at each

end., The dimensions of the haunches are obtained 80 that the eqpivalent» , : 

member can be analysed exactly, by considering 4t as three aeparate

uni form members; additional Joints have to bo insorted at the pointa i
of discontinuity. The two preceding methods are restricted in 4
application to the particular types of non-uniform members for which
’they wero specifically written.l k
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‘ After considering all the methods outlined above, it was
apparent that there was a need for a method capable of emalysing
structures composed of varying section members, in which no res-
triction.would be placed upon cither the type of members,or degree
of variation in section along the members, The existing hand methods
oare only suitable for small structures and many of the methods also
impose. restrictions upon the type of members., The computer programmos
could in certain cases produce an.'e:act' analysis,but in other cases
it was necessary to introduce certain simplifying assumptions. The
flexibility method, whilst providing an accurate means of analyais.
becomes cumbersome whon applied tc highly redundant structurea |

because of the nature of the necessary data.

Within this thesis computor programmes are devcloped for tho -
accurate analysis of structures with varying section members. My ‘
types of structure are considereds the plane frame and the grid;frame; fiLj t”
;Programmesto cnloulate influence lines or surfncea for those twb types of“i ;
structures arc. also developed. “The main appliCation of theaa pro—‘:'" |
gracmes is thought to be in the analysis of building frmmes and»"°  _  1i  1¢
bridges., If the facilitics are available to &nélyae accurately L
structures where the membors m&y have any required Vﬂriation in
'section, ‘tho engineer will not bo eeterred from rroducing an elegwnt

'and efficient structure,for fear that it cannot be analyﬁed with

 sufficient accuracy, This is particularly the case with bridge ex_xginae.‘.

ring,where modern techniques in prestressed concrote and?weIQad;ﬁtéélf"
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have enmhled enginocers to build large multispan bridges of slendor
proportions,and thereforo, an accurnte method of analysis is required

to ensure adequate safety.

4 series of model tests are described,which were conducted
to investigate the accuracy of the grid frame programme,and the
deg%ee of approximation involved when tho grillage with varyling sectioﬁa

is used as a mathematical model to simulate plated structures,

In o rccent paper (20) the author and his suporvisor Mr,F, =

Sawko have demonstrated how the computer techniques developed in the

investigntion can be applied to bridges with varying section properties.

1.2) Desipn Methods

Since the advent of the electronic computer,'pfogrammea‘have {

been developed to analyse many types of structures,so that at the \ e

prosent time it is possible for the majority of structurcs to Lo
analysed either 'exactly' or by using a convenient mathematical ﬁbdel.'
 In the normal design process these programmes are used for the analysia

of trial systems. There is no direct method of dosigning statically _7

e o o e

ingeterminate structuree and a ‘trial and errort approach must he
adopted,  The struature is first designed approximately by hand, to ;;?fr
obtain o sot of dimensions and section aizea. T It is then analyaed,uains o

an electronic computer to getermine the stress distributian. If at

_ any point the strucutre is overstressed the eection aizea are mcdified

‘ and the atrucbuxe ia re—analysed. taLing into accounh the chnngea in
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member stiffnesses. When using a computer to check trial systems %
it is usual to accept a solution which is over designed,as belng

practically corrects The initial design of o large structural system

is a lengthy process involving a considerable amount of hand calculation.

This proccss is often the most expensive part of the design, as

computer analysis is now very rapid and economical,

Consideration of these facts led to the development of
automatic deasign programmes, the computer being ideally suited to this
type of worke It 1s able to perform repetitive calulations extremely
rapldly and a large number of trial and error cyles can be appliea to
statically indeterminate structures, thereby arriving at anfeccnomicdl
solution, Many of the routine preliminary calculations can be per-
formed by the computer, so that the overall cost of the desipn ia'also

reduced,

During the first decade that computers were available,efferts wore »’
concentrated upon writing programmes for the analysis of atructurea
and it is only recently that automatic design programmes hnve been
written. Tﬁis ie mainly due to the large ﬁmounts of random access
’stone thut is required by o design programme. ’ The design prooess is ‘ ‘
usually an iterative procedure cf trial and error ahnlysis,and thorefore,;' 2j“
ktao full Mnnlysia roccdare mnst bo contﬂine“ within tho 1ro“r.u,‘in **;‘  k’1i
’c”iition to nwny cther instructions. During the runninu Of tha *rOSTﬁmj *? !

ftn» cc mﬁuter ia 1150 reg, uir»u to c*lcul;to 1nd storc largc nmounts of j/ﬁgw;i

information,“nm 1% is only in the }3ﬂt fow yotrs thmt cock uera cf suffio Y

c:iam"t atom mw b - ﬁmilnble.
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R . Using modern computers many design programmes have
been developed. Almost all of these programmes consist of elastic or
plastic design of frame structures composed of uniform members and

thesoe were thercfore considered to be outside the scope of this work,

The design of structures with varying section properties
presents particular problems,as there arce an infinite number of possible
solutions to any one structural problem. So far very little work has
been carried out on the automatic desipgn of these strgétures. The
Portland Cement Association (21) developed a design procedure for
continuous prestressed concrete bridge beams with varying section pro-
perties, This approeach was originally intended for usc as a hand:
method but it was later used by Aziz (22) as the basis of a computer
programme for the automatic designkqf;bridgg beams. TheApxogrammq
developed will desipgn a single continuous prestressed concrete bridge ;,"

girder, subjected to the HA Roading specified by BS 153 (1), and the
design produced is in accordance with CP 115 (2), The programme

caleulates relative EI values at all ﬁoints along the girdér and

derives o set of influence.‘lines~for bending moment based upon‘the7’ f'

relative I values, The flexibilityvmethod 1a'empléyed and the influence

lines are formed by placing unit point loads at successive points along

the girders; Using the influehce iihcs,maiimumﬁand minimﬁh iivé'load

bending moments are obtained. . A ratio of'déad/iiﬁé:bending’mément’ et

is assumed and an initial set of éection sizes is'derived."*Frpm'the“ e




actual sizes the bhending moment ratio is checked and the sccetion re-
designed if necessary. . The magnitude of the prestressing force
is coaleulated and the cut off points for the cables established,
The upper and lower bounds of the limiting zone are calculated and
a cable profile deslgned,such that the line of thfﬁst acts within
this zone. The programme also calculates the total cost of the
glrder based upon the quantifies of concrete,’steel and shuttering.
By using this programme the effects of span and depth ratios upen the
cost of a bridge, were invcstigated. The programme produces a rlgorous
design for the HA loading and, as this loading acts on all girders
in a bridge, the design nced only consider a discrete girder. In
order to oxaminé theeffécts of the abmormal vehicle HB loading, the
.complete bridge must be considered, taking into account the distribution :
of load across the deck. The programme written by Aziz is unable to
consider these effects because when the programme was devéloped a suffie’ .1f
clently large computer was not available, | |

The latter part of this work consists of an invostigation into
the protilems of writing s comprehensive programme capable of automatically
designing multispan highway bridges,with varying section propertiea,
subjected to both HA\and HB 1qu4syst¢m§,u A study of the effects of-

variation in span lengths and relative EI values is desc:ibeq, The -

whole of the deck is considered under the aétion of both lqadipgv.;;ff7~“*“5l*ﬁ

systems,and a range of parameters is investigated toidetermine‘the;,MT,..fff[ﬂ

leoast weight»design.“




Chapter 2.i

ggmpggggﬂggéggams Por The Analysis of Grid and Plane Frameworks
2,1) Introduction |
The first program for the analysis of rigid jointed

plane frames was devised by Iivesley in 1953 (17) for the Ferranti

Mark 1 machine at Manchester University. Several other plane frame
programs were later written by different authors,including a program
| by Rooney, then of Babcock and Wilcox‘Lﬁd., for the Ferranti;Pegasus
machine. The similarities between plane frameworks and grid frameworks‘
were appreciated by Lightfoot and the program by Rooney was transcribedi

by Sawko to analyse gria'frames in 1958 (18),

Although grid and plane frame atructLres are different in type |  7,1;
the internal organisation of the programs is very similar.‘ Both o
-ﬁan be considered to be special cases of a general space Irame structura;;iﬂ;:
each one taking into accoumm the relevant strains. The basic difference;3 [Qf

is therefore in the stiffness matrix elements for individual members“,‘

In order that the programs developed should be aa efficient aa ;i i ?Lf
possible they were written epecifically for the KDF9 machine. which at . .}i 
present torms ‘the basis of the installation at the Leeds University 4

'Computing Laboratory. Tho language Algol 60 (34) haa been used for  }lfff'f4ﬂ

all programs. Algol is a more universally accepted 1anguaga and one o
’ that‘the KDF9 compilers are able to tranalata efficiently.v In rewriting}f°

',]\ the grid and plane frame prograns in Algol. facilitiaa were  ﬁf11"!"
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incorporated to deal accurately with varying section members. The
internal organisation was also considerably modified,td produce a
version making efficient use of the étorage capacity of the cbmputer,
and also reducing the amount of data roquired, Only the grid
framework program 1s described in dctail because of the similarities
between the two types of program, A copy of the grid framework

program.is contained in Appendix One.

2.11) The Flectronic Computer

The installation at the Leeds University

Computing Laboratory uses,as a basic machine, the English E&Gctric Lao ‘ ~*1

Marconi KDF9, which is a medium sized simultaneous digital ccmputer.j,
For most of the period of this research a main store of 16?, (16 X 102#
words) of 48 vit core store, was available. This has recently been
incrcased to 22K units of main atore. althouginot all of this 13 -

‘normally available for uso by one program. S

.4The times for the basic cperatiqns are as foilows:- i

Ada % micro seconds A e S |
| Multiply 13 o ‘for 4B bit nuwbers,
k'Divide ‘ 25; :ﬂ‘ ’ " i

The main store haa a cycle time of 6 micnoseconda and;,,. o

characters can be transrerred between the wain atore and the ’f?€’ {; 

arithmetic unit at 1.3 x 106 per second. -;,,-,¢$fx;aé«;;:<*
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In addition to thg‘main control machine there are
several periphergl devices. Magnetic tape decks are used as
additional storage units,as well as holding the range of soft-
wear, Information is recorded simultaneously on 16 tracks across
# 1" wide tape, with a density of 400 char#oters per inch. The
trahsfer rate 1s 40,000 characters per second, which is considerably
slower than within the’maiﬂ machine. The ph&sical operations
involved in using magnetic tape also greatly 1ncrea§e the time.
The acceleration and déceleration of the tépe takes‘3~4 mil11-
seconds and the rewind time for a 2300 foot tape 13 & minutes.‘
Paper tape readers have an 1nput rate of 1000 characters per
second .and paper tape output punches have a process rate of 110
characters per second, or 12 words per second, This slow outputf ik

rate has the effect of ‘holding up' the eentral processing unit and i

an alternative faster method 1s to output results on to magnetio PP R

tape at a rate’ of 4000 words per seoond. The magnetio tape 18
processed throush an off line printer,which has 8 maximum * ”k ,.

operating Speed of 1000 lines per minute.

The central processing unit has the fastest operating

Speed and must, therefore, be adJusted through tho 1nput/butput

devic°s to accommodate the 8lowest piece of peripheral equipment ;i tj:'

in use. This means for the maJority of the time it is being usedf:?"\" o

at less than maximum efficiency.  To overcome this defioienny

the raoility of time sharing can be used,
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whereby more than one program can be run 'simultaneously'. Whilsﬁ
one program 1s'transferring data from one phase to the next, the
central processing unit takes over another program, thus alternating
between several programs which are operating at the same time., This
is why the whole of the fast store is not normally available for use
by one pfogram only; efficlent use of the installation dictates that

at least two programs should be running together.,

| Befbre the program can be obeyed by the computérbit must-
fifst be translated from the program language, in this case
Algol, to the machine code. The KDF9 softwear cohtainé two
compilers to do this. The Whetstone compiler translates a pfdgramer
rapldly,in a matter of seconds, and during this process performs a
thorough eheck on the syntax of the Algol program. The resultingf
translation 1s, howcver, obeyed relatively slowly under the Whetstone; 
controller, The Kidsgrove translator,by contraat produces a ‘ |
translation which will be obeyed ten or more times faster. but the
time taken to produce this more efficient version can be as much
as ten minutes. The failura messages output under the Kidsgrcve

.system are far 1ess 1nformative.

To make efficienu use of both these compilers the prcgram
© 18 first run using the Whetstane compiler,and use made of the »

comprehensive failure messages, until the authar is aatisfied
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T, ’v“ls_‘___-_‘ ;_._...,

that the program is entirecly corrcct. It can next be translated
using the Kidsgrove compiler and the resulting translated version
stored on magnetic tape. It can then be used subsequently, without
the needs for a lengthy re-translation and the results are alsg |
produced in the quickest time, The program is given a uniﬁue

title and placed in a common library of programs. Any data to

be run with a program stored on magnetic tape is headed by a

'call' sequence,which causcs the computer to scarch for the

requircd program and transfer it into the main store.

All the programs described in later chapters are
available in Kidsgrove binary versions and the operating times

quoted arc obtained using this compiler;

2.2) Assumptions

The programs ‘analyse rigid jointed struétgrga
composed of straight members of eithcr varying or uniform sectibn
propertics. The structures are considered to be 1inear,i.e.,in
which all displacements and internal 1oads are 1inear functions of

the applied loads,

Tho benting theory equation H&%y _  1is sesumed

de

to apply Bo that slope deflecticn equations can be written for e

~every member in the frame. The frame is analysed in its undoflected

~ form so that the small deflectiona,induced through the curvature of thefj{




members under load,are neglected and direct forces in grilloges
arc not considereds The effects of axial loading, in planc
frameworks, upon the stiffncss and restraint factors is similarly
neglected. Force equilibrium equations are set up for each Joint,
taking into account bending and torsional moments and shear force
for grid framcworks,or axial and shear force and bending moments
for plane frameworks. Consequently oxtecrnal loads have to be
considered as acting at joints onmly. Any system of loads. can,
‘however, be expressed in terms of fixed end momenfs and shears,
The final forces are calculated by superimposing the local member

effcats on to the results obtained from the computer,

2.,3) Basic Framework Equations

2.3.,1) Grid Framework

‘ Consider a general member le-2, as shown
in Fig. (2.1) forming part of a grid framework. The member is
considered relative to its own co-ordinate system where axis p‘
runs along the member, axis q at right angles and the z axis

normal to the plane.

Applying the basic slope deflection equations to member

12 At end 1t~

Moo= K12"’1*"21‘{.2:1.92 (Kla*calxal) (_gg.;gg) ssesl2d) 0o
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in which K.ij

Cij is the carry over.factor from end i to end jJ.

is the bending stiffness at ond 1

For a uniform member the bending stiffness i.e.,moment
to preduce a unit rotation with the far end fully fixed, is &%g,
vhere E is Young's modulus and I‘is the effective socond moment
of arca about the bending axis,and L is the length of the member,

The value of carry over for a uniform member is %.

The torsional moment can be expressed as i~

Mao =T (8,)-€,5) | e (22)

pl "p2

in which T is the torsional stiffness of the member,

For o uniform member T equals GJ,wherc G is the rigldity
L . :
modulus, J is the effective second moment of area about the torsion

axis,and L 18 the length of the member.
S8imilarly et end 23«
Moo1=Ko18%01 Ky 281 = KppCyKp) (806,00 1 (o,3)

Shear force leaya M 12+M 21
) "Jl‘fTT£L—_»~

and anl = ’lez

The abovékéqﬁationa are summardsed in matrix fqrm”in ffﬂ 5

Table (2.1) which can borexpressed briefly asie
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Fl = Klle + %QDZ

see (2.4)

FZ = R QPI + 1{21D2

in which Kij is the stiffness matrix.

Ri j is the restraint matrix,

or simply as:- .
[qu] N [K][Dpa] L eee ‘(2.5) 

These equations refer to moments and forces relative
to the individual member displacements. In order to relate all
the members of the frame,it is necessary to be able to express
moments and forces relative to an arbitrary system of goneral

co~ordinates, denoted by x and y.

If member 12 is inclined at an angle &« to the general

co-ordinate system as shown in Fig. (2.2a) it can be seen that:s

l"

Mxl = Mpla cos « M

ql2 sino<

Myl = Mplz sino, + Mqla ToleY-¥.%¢

The force Fz remains unchanged as it acts normal to the

axis of transformation.

The transformation matrix T thus becomes:iw
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cos -5in 0
sin cos 0
0 0 1

and the transformed member forces can be cxpressed briefly asi-
F T see (2.6
[7d = [2]7, ] 6)

Similarly the relationship between displacement vectors

can be expressed ast-
[ q] = [T] [ ] : eee (2:7)

This may be done by contragradience or from geometrical

considerations.
By substituting Eqn. (2.7) to Eqn. (2.5):~
o .
[F,q) = [x][=]7[r,] . ees (2,8)

and by substituting Eqn. (2.8) to Eqm. (2.6) the transformed

moments and forces can be expressed asie

[5,] = [T [ny] | | .s.'vvcz.9>

Thus Equations (2.4) can be written:-
e Yotr "D -
1 =82 R, D

r.' o "wx. " C eee (2410)
2 = Ry Dy #Ky Dy - ves LR
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where Kyy' =[] k][ 7"
and RU' - (&))" g 1,2)

The complete set of generallsed slope deflection equations are

given in Table (2.2)

If the external forces FlE aecting upon Joint one,are
consiéered together with all members meeting at joint one, the

conditions of statlc equilibrium may be written:-

F S )n +Sen) e )

Equations can be formed in the same way for every Joint
in the frame thus enabling all the equivalent external forces to
be related to the various displacements in the general form:-—
[ =[x]r] ceeees (2:12)
where[F] represents the force vector, [K] is the stiffness’
matrix for the whole structure and [D] represents the displacement

vector.

It ié therefore possible for a solution to this equation
to be found to give Joint displacements in the frame., Terminal
forces and moments in the x, y direotions can be calculated by back
substitution in the equations given in Table (2. 2) and by simple
resolution the forces and moments in the member direotion are
found. Alternatively the displacements can be resolved into the
1nd1v1dua1 member directions and back'substituted into equations

glven inyTablg (2.1) to glve thg same final result,:
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2.3.2) Plane Framcwork Equations

Consider a general member l-2,
forming part of a plane framework, as shown in Fig. (2.3), In
the some way that equations were set up for bending and shear in
a grid framework, slope deflection equations can also be set up
for bending moment and shear force for a member in a planc
framework, As the load is now acting in tho plane of the structure
there will be no deformations due to torsion. There will however,
‘be deformations caused by‘the axial loads in members and these

may be expressed asi-

and SZl = -512

where A is tho axial stiffness of the member which would be %?
for a uniform mcmber,where'a'is the cross scctional arca. |

The slope deflection equations for an individual momber

arc summarised in Table (2.3)

As before it is necessary td be able to refer to a
member relative to a general system of co—ordinates. If membor
12, as shown in Fig (2. 4) is inclined at an angleX to the genernl

co-ordinate oxis then it can be seen that
Sa ® 52 °°'f‘°"‘, U2 “Bi’;,‘“\

le = Sp12 sinot + Qpl?_ cos o
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The moment hl remains unchanged by the transformation.

The tronsformation matrix T is therefore;-

¢cos = sin 0
sin cos 0]

0 0 1

Equations (2,10) arc still valid and the full set of
gereralised slope deflection equations can be calculated as before.

These are shown in Table (2.4).

By considering every member in the frame a set of

equations can be built up,finally culminating in the formsie

[¥] = [K][ D]

The solution of this equation gives tho joint diaplacements
which are back substituted in the equations in Table (2.4) to give
the forces and hending moment in the x,y directions.. These are

resolved to give the terminal forccs and moments in the p,q directions.

2.4) Determinntion of Member Propertics and Fixed End Moments

For every member in a frome it is nccessary to know the
bending stiffness and carry over factor at each end. The torsional
stiffness and axinl stiffness are also required in the caso of grid
frameworks and plano framoworks respectively, These propertiea aro ‘
required in order to sct up the slope deflection equaticns and are

caleculated using strain cnergy to derive influenca coefficients for‘,
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the end conditions. The derivation given here is based upon that

given by Morice (31),

Consider a fixed cnded beam as shown in Fig. (2.5a). The
structufe is two times statically indcterminate ond is releoased
by relaxing the end fixities. The end fixing moments are then
made arbitrary constants % and X5e The bonding moments caused by
wif values of x, and x, will be as shown in Fig, (2.6b) and (2.64).
The total bending moment acting at any point on thq beam will be
that due to the applicd loading on the réleased structure plus

that due to the arbitrary constants:-

M= m°+m1x1+m2x2

The total strain cnergy in the beam will bei-

U = ‘I ME; ds. ‘ . XX (2013)

By applying the theorum of least work,two oquations for

the determination of xi and X, can be obtainedi-

3‘2‘; - ,‘;.Lax1 (E&Ei')ds = ©

20 e
a—-);; = [axz (ZE]. )ds = O sen (2‘1#). ,
s : -

Replacing M by its components,cquations (2.14) beeome : -

lo)

(Q)

a";; '3 fﬁl. , ,(m°+u5_x1+manz)’ ds =  o
| s R
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2 m,
9%, = ) ik (m | HIL X X Yds = 0 .., (2.15)

Expanding, equations (2.15) become:=

2 .
m . m m
xlfﬁ%ds-!-xz Elffgds+fm%m° ds = O
Js Js s

v | .
Xl fs 3]‘512 ds + X f —'v""dS +f;’-%i2 ds = 0 ,4,, (2-16)

Consider now Castigliano's second theorem, viz.~ '

3U

= b

and apply it to the displacement 61 ot the position and in the

direétion of xlz-‘
‘aU . . . m i . ; . a
S N N
1 D ds + "2 =S g + | == d8  eee (2,17)
i ET - Js TEE s © BRI

If the applied load m, =0 and x, = O theni=

Thus the rotation of the roleascd structure under the

action of a unit ben&ing moment x, only, ist=

If the applied 1oad m = 0 and x1 = 0 thent= -
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6, = X m
1 2 \j: mélz s = % T3 (say) eos (2420)

Thus for & unit value of x

5 applied at end 2 the rotation

at end 1 will beie
K., = m
12 e |
\f; """""EI ds XX} (2021)

If xl = X, = 0 then

6, = m.m :
1 \/: %m° ds = w (say) ... (2.22)

Thus u is the displacement at the position and in the

direction of % due to the applied load.

The first equation (2.16) can thus be written:=-

fllxl + flaxz = ""ul B s XY (2-23&)

Similarly the sccond egquation relating to x, can be

written:

%y + TpsXy = wUy e (20230)
where f = m .
21 Mo
./: i 4 Xy

Ty, = | , mazrf 3 | :
T Ee e

Equations (2.23) can be written in matrixkfbnm thuase
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£ * 55l ™ bl

I Iyl % % ves (2.23¢)

The solution these two simultaneous equations gives the

values of arbitrary constants % and and because m, = 0 at

*2
. the supports these will be the actual values of fixed end moments

| at end 1 and 2 respectively;

The stiffness qnd carry over factors can also be
aerived from the factors alrcady calculated, Consider the member 12
simply supported at end 1 and fully fixed at cnd 2 as shown in |
Fige (2.70)s The application of a unit bending moment at end 1 will
cause a fixod end moment to act at end 2, The value of moment
required to ensure full fixity will be,, as given by Equs, (2,19)
: )

, N
and (2,21). This ratio is the warry over from end 1 to end 2,thusi~

. : mlma .
Co==| Eo = fHp L (22

and stotlarlyCy = f |

8
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The effect of the moment being applied at end 2 will cause
m,m
a rotation at end 1 which will equal (X \r-—§ ds
| wetar e 7
92 1

Therefore thoe total rotation at end 1 due to the application

of unit moment Ml at end 1 with end 2 fully fixed,isi-

2 2
5. = M )
1 fs o ds = ds

s EI
2
2
f i 4
8
thus &, = f £ 2
WS it ha vee (2,26)
T,
Simildrly for 6, in Fig. (2.70):=
L3
2
b5 = I = &,
2

The bending stiffness of a member is the moment required"
to produce a unit rotation at the applied end with the remote end

fully fixed. .

Hence atiffness at end 1 istw

b
1 , 2
S it Ry

fon

Stiffness at end 2 ia:-'k
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1
K m T g 1
21 " b, - Z/f ees £2,28)
22 12/ 11

}
In order to calculate the stiffness, carry over factors

and fixed end moments it 1§ necessary to integrate the various
bending moment diagramsQ This is most easily accomplished by
dividing the span of the beam into an even number of equal

parts and by applying Simpson's rule to the ordinates of bending
moment and %f valuces, The accuracy of this metth is discussed ‘
'in Section (2.7).

2.5) Organisat;onkof the Programs.

2.5.1) Standard Versions.

The basic operations can be summariaed

in the form of a flow diagram and are shown in Fig. (2 8).

The data is prepared in the standard way, as described in

Section'(2.6).k&nd read into the computer as required by the

programe. It is not necessary to storc the whole of the data Within,,' /

the compﬁter before Calculations begin; '

Quwntities are stored within the computer in one of two
wayse 'Integers are stored as fixed point numbers having an
,exact value, Any arithmetic operations are carried out exactly

and the result is not subject to rounding off. ‘Other variables ;v

. - which are 'rcal' nnmbers are stored 1n flcating point form nnd ,  1‘
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are subject to rounding off errors. Values may be stored ns
single numbers, referred to by ‘'identifiers', or in blocks.

The Algol language has the facilities to store blocks of
numbers that can be referred to by subscripted variables. These
may hold vectors and matrices or sets of numbers and are called

'arrays'. Arrays may be either of type ‘integer' or'reall,

Upon commencement the computer reads in the basic
parameters of the frame, consisting of: 'm' the number. of members,'n'
‘the number of joints, 'x' the number of types of ﬁ»embers.
Using these integers storage space can be alloted to contain the
mémber list and member properties. The following eight
properties arc required for each member: vos«, sini, L,
T, Cla’ Cal, KIZ' Kzls In the case of plane frgmeworks’the A
coefficient T is replaced by the axial stiffneoss A, Theée .
properties are also later required to sct up the individual
member slope deflectioh oquations to caldulate tho finnl
forces.and arc stored in array P, To_economise on storage
spaco’the members are grouped into sets in which all . -
the members have the same proportics. It ié‘then only
necessary to st&ré one sct qf propertics fof eachftypa:b£-  1; J
memher, The sizoybf érraykP is thérefbrekak; Thgbnéﬁgéfé ﬂ"
k“are deﬁoted by the jéintsithej ¢0nnectkdﬁd a iiét of mémberé 15}.if “

‘stored in array M,which hns 3 x m clements of store. Bocause




these Jjoint numbers are later required to locate the positions

of the elements in the stiffness matrix, they must not be

rounded off and array M is therefore of type integer. Tho columng
of M hold: joint at end 1, joint at end 2, type number of

member.

The values of E and G are input and remain constant
throughout the program. If any members in the frame have a
different E or G.value this can bo allowed forby proportionately
‘altering the I and J values for that member., The\data for the
first member is read in, the joint numbers being placed in array
M and the x and y ordinates being placed in the first two
columns in fhe P array. The number of members of this type,

'a'is nlso noted, The length L in inches is then calculated,being
L = 12 x/x?+y°, and placed in the third column. Using L the

x and y ordinates are then converted to cosx and sinx reépectiveiy.

As mentidned previously:the stiffness énd'carry over .
factors are calculated from the influence coefficiéntskdf,the‘;
" beam,  Although at this stage the fixed end moments are not
calculated the %f va;ues‘qlong the beam will lqter‘pg;requirég"fvf *v “””
and are stored in array ?.‘ Array F 1; a‘veqt9r o¢gqpying qﬁly‘x
one row. As before only the %f‘yalues fo::eq¢h type of member:;:“a
are sfored.~ o i | | |

~ The computer next rgads'inithe numpep_pfksﬁatioqs‘atJf;i{“7':”'"‘9
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whick I and 3 are specified. This quantity is denoted by 't!' and
is stored in array T. The next 't' numbers are now read into
array HF, The my and m,, valucs are formed in array H and the
Simpson's rule factors in array Q. The influcnce coefficients
ll’ f faa are then caleylated by using Jensen's device

which is a 'procedure! for finding the innerproduct of two
vectors. A procédure is a sub-routine Qithin the program that
can be entered at ony time by writing the name of the procedure
followed by its parametors. The 1nnerproduct procedure is given
the noame 'dot' and 1s included at the beginning of the program
thus:- A o | | |

real procedure  dot (a,byp,q,r);
valuo pyq; real a,b;

integer PeQsX}
egi real s; ::=o-

for r.sp stop 1 until q do 52 =S+axb§ R ’; : }
dot: = s:

ends
droviy o

The stiffness and varry over factors can now bo ,
calculated using Equations (2.24) to (2 28) and are atored in

the last four places in the row of the P array. _a

The computor then reads the next e numbers from the

: data tape boing‘the corresponding J values at each 'station'
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The torsional stiffness is then caleculated by summing the values
along the length using Simpson's coefficients. For n plane frame
the axial stiffness A is cvalunted in the same way using the area

at each 'station!,

The remaining members of this type are now input. 4s
the properties for these members have just been calculated it is
not necessary to spccify any further data other than the joint
numbers at end 1 and end 2. Henco in introducing economies of

sborage space,oonsiderable tiﬁo is nlso saved in data preparoﬁion.

The next del paira of numbers are thon rcad into arrny
M and are allotod & type number. Integer " being the number

of members of this type.

The ﬁrocess is continued until all the member proporties,‘
have been calculatod and stored in the propeity airay.‘ If any
member in the frome is of'uniform section the propertias‘fofmthotf
member are inserted dircctly into the appropriato storaga positions. A

In this case only ono value of I and J (or A) are required to

4EI

describo the member and °1a'f 021 = 0.5., Kiz = K 5 ,‘;

aJ Ea
T = I~ or A= T

The next sootion of tho progrom seta up the atifrnosa ~og e

matrix for the atructure. Tho contributions from each mombor aro

' insertvd in turn. the members boing considered in tho order they appoar |
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in the M array. The computer selects the next member ij, in the ;
H array and loﬁates its corresponding properties in the P array.
The diagonal terns are first calculated and placed in the stiffness
matrix,. Klz’.and Kzi' being placed in the locations corresponding
to the ith and jth joints respectively. The computer then checks
to ascertain whether the joint at end 1 is smaller than the joint
at end 2. If this is so the off diagonal term Rla' is placed in the
corresponding joint locations on the ith row qu under the jth
column. Alternatively, if the joint af end 1 is greater thankthe
joint at end 2 then the Ral' torn is used,being placed in the same
~ position. In this case the member is in effect reversed,

This process is repeated for every member until the |
stiffness matrix for the completé structure has beenkformed; :

A generai jéiht fdrming part of & fraﬁeﬁork’is éh6wniih‘”‘
Figure (2,9) and the correépbnding stiffness taima'for memﬁéré

13, 35 and 38 are shown insarted into tho stiffness matrix. “V;ff

In ex&mining Tables (2, 2) and (2 b) it will ve noticea that r{*

matrix R ie the transpose of matrix Rla and that matriccs Kl2

21
and K21 are symmetricnl about their dingonals. ’

Thus whon the stiffness matrix ia formed for the ‘complote g

‘Structure 1t is aymmetrical about tho 1G&ding diagenal. j‘ _.&},'-»;»,;.ré

If the form of the stiffnesa matrix is further exnminad it ,ff5

k‘will be noticcd that the physical form of tha structura ia reflected:
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in the arrangement of the elements. If there is a member connocting
Joints i and j, the Kla' and K21' terms will lie on thevdiagonal
corresponding to the ith and jth joints respectivoly;ﬁnd also the
Rl?_' term will Iie off the dingonal in the jth column,indicating
o member connecting joints 1 and j. The form of the stiffness
matrix is shown in Figurc (2,10) whore an asterisk represents a
3 x 3 matrix clement. As the matrix is symmetrical about the
~leading diagonal, only the terms above and including the diagonal
have been indicated. It can be seen that the olements form a
band along the diagonal and the width of the band is depéndent
upon the width of the structurc, being determined by tho greﬁtest
difference between joint numbers. 4All terms lying outsido the

band are zero.

Utilising these facts, considerable savingé caﬁ be méde
in the amount of Bpace required to store the stiffness matrix,
Because of symmetry only half the matrix nged be stored. Thié con
be furthoer reduced, however, by only storing the elements that |
conotitute the top half of the band, If a fr.mework containing
25 x 3 joints is taken &s an example., The storage capacity for tha“
completc matrix would bo (3 x 75)2 50625, there being three
displacemehts at each joint. Storing only the upper half of the

matrix band the space require will be 75 x & x 3 . 2700. ‘
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Comparing this with the total number of 50625 clements it can be
seen that, in this particular case, only about 5% of the original

space is reéuired to define the stiffness matrix.

When alloting the nuﬁbers to joints in a frame it is
therefore advantageous to arrive at the system that will give the
narrowest band. In the case of a grillage this is achioved by
numbering across the narrovwest width of the frame as demonstrated

in Fig. (2.11).

As the computer is only able to stdre rectangular arrays
the matrix band must be stored vertically as an array of size 3n x W
where 'n' is the number of joints and 'w' is the width of the matrix

band.

The width 'w' is next calculated by the computer. Each
member is considered in turn and the groatest differente betwcen the o

Joint numbers is found using tho Algorithmis

+y

or 4: =1 step 1 until @. do
“abs (uf1,1]- M[1,2]bw/3 - 1 tho 3 o
= (abs (1,1 M[i a])+1)x3, |

t:‘;

w

-

Having calculated 'w, an array 8 is decl&red to accommodate

the stiffness matrix band containing 3n X W elements. All elements 515V5 

are given an initial value of zerc. The computer then inserts the

s atiffness matrix terma for oach mombcr to build up the atifrness *Ef‘i*
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matrix for the complete structure, In placing the elements

in array 8 due care is taken of the way the matrix is orientated.
The form of the stiffness matrix and method of storage within the
computer are shown in Fig. (2.12),where an asterisk represents

'R v
one element ina K or R matrix,

The next opcration is to form the loading vector, The
program is able to analyse more than one loading case and so the
loading vectors arc stored in an array B. If 'y' is the number of
loading cases,arrayB can be declared requiring Bﬁ;y storage units,

All spaces are initially glven a value zero.

The terms in the loading array are formed by setting up
equations (2.23) fér each loaded beam,thereby finding the values
of fixed end moments. The ¥free'reactions are dgléulated,and theh'
corrected using the fixed end moments to restprelptatical,;m,
eqpilibrium.k,The influence coefficients are,reformed. as
described previously, the %E values for each,beam hdving béen ‘;
stored for each type of mcmber, fo’form’the ulfand,uz.valués
the free bending moment dlagram ordinates are required at each
‘station', The computer calculates these values automatically.

first considering tho UDL, if any, acting on tho beum:—

. Ordmvu _Wﬁ Se= 4w g T ) i
o 2 n=i) :

~ vhere W = load per footx  - 1“
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5 = no, of stations

n = total number of stations

The contributions from point loads are now added being for

ordinates to the left of thoe load:i-

Ordm « P (L.1) (n-1)
t-1

where 1 = distonce from L.H. end.

and for ordinates to the right of the point load
mqn;g%g%l
t=L
The total free bending moment ordinates at cach 'station'

are held in array 'N,

In this way the total frece bending méﬁent ;rdinatcskﬁre;‘
built up by taking contributions from each load on the member.
Only the ordinates at stations are considered therefbre if n point; e
load lics between two stations the bending moment peak wili not v
be considered. - This léads to slight local inaccuraciéé. which are \2;:
discussed further in section (2.5)s -
Using’pro¢edure tdot! matrices H'F dnd“ngre muifibiiéd;;ifj* “
‘together giving thé\al‘andﬁzé values.k‘These valuas‘éré‘caléﬁlatcd}* i
for‘every loaded member;and'for-each loading caseéand d£e ipr1nted?tf}%;
out in‘tabﬁlar form, Thié enébles the 1oéal,eff§ctéiof,bending ; -

moment nnd‘shedr to'be'superimposed on to thé‘geherdl :eéﬁits butputffjl
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by tho computer.

There now exists a set of simultaneous cquations with the
stiffneés matrix forming the left hand side and the loading vectors
on the right hand side, Before a solution is possible the conditions
of zero deformations have to be incorporated,otherwise the structure
is capable of rigid body movement and a unique solution is not possible,
If a particular deformation is zero, the equation governing the
deformatién can be removed, together with all the terms that are
multiplied by the deformation. The corresponding loads are also
made zero. Thus the number of equat;ons remains equal to the
nunber of unknowns. To allow continuity in the prdcess of solution

it is necessary for the diagonal pivot term to remain in the

stiffnees matrixe. Since there is now only one term on the 1eft‘hand

side being equated to a zero load the resulting deformation will

become zero,

The joints having zdro displaccements are read from the data
tape and the corrcsponding terms in tho stiffness and loading arrays
set to zero. If at joint 3 in a frame the vertical displacement is

as shown in Flg. (2.12).

For the solutlon of the equations tho ’Square-root‘ method

1s employed boing a modification of the Choleskd mothod (23).
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Ag matrix S 4s symmetric it can be resolved into two

triangular matrices one of which is the transpose of the other:
' '
1.0. s=UU
where U is an upper triangular matrix.

The clements of U ean be cvaluated by considering the

rules for multiplying two matrices:

Sij' = Ulivlj-kUinaj + eee ¥U,,T 43" §§>j)
2 2 2 2
S ]4/ +U21 "‘o vee +Uii [ (iad)

Hence the elements Uij can be determined thus:- ‘ : ‘
1=l ’
Uii / t% Uti : ' (170) 0601(2;29) ’

BT

Solving‘theisystpm is the S§mé aé sbivihgrtwoﬁffiaﬁgul&rf
systems, thusi= 8D = F'; ' i k

can be writtente o S
W R IR SR
\slczF and ‘é\n‘ax o
The elements in the K vector are determinod by recurrent{,Hrz«u

: formulaa analogous to the formulae for Uij Nﬂmely:-,‘«"'




e h
U1y
' e
Ki 2 Fﬂ. - tgl Util\.tg (i?l) LY (2'31)
Upy

,z:z:a._._._. S '... (2.32)

The actualiprogramming of the solution takes only a
few lines and illustrates the power of the Algol programming
langunge. Using thc proceaure 'dot! the upper triangular

matrix is formed thuss=

for i. =1 sten 1 until 3xn do

og;n S[i,l]. = sqrt (3[1 l]-dot (S[r.i»r+ﬁ§2. 1.

if dow then 1-w+1 else 1, 1-1, r));
k.c if 3xn-i>w~1 then w else an-1+1;

 for ji=2 gtep 1 until k do .
8[y3)i= (é[i.j}- dot. (S[r.i~r+l]. S[r,j+i-r]; £
3H> wil then j+i-w else 1. i-l. r ))/B[i 1];

end formation of upper tritncular matrix;




The loading veetors B are now troansformed in the same wayi-

for j: =1 step 1 until y do

for 1: =1 step 1 until 3xn do

B1,3]: = (B[1,3]- dot (8fr,i-r41], Bry3), Af 1ow
then i-w+l clse 1,1i-1,r))/SEL,1];

Back substitution now lcads to the final solution of the -
set of equations. As éhe deformations are evaluated they are
placed into the positions originally occupicd by the loads,
Therefore array B eventually holds the valucs of deformation

at each Joint and for each loading case,

for §: =1 gtep ) wnbll y do

begin B[3xm, 3] := B[3xm,3]/5(3m,1];

for 1i=3xnel gzgpfl until 1 do

B{L,3) t=(ByJ)-dot (S[1,7=141), Brysl,

1+1, 12 Zxn-iyw-l then 1+w-1 else an,r))/ﬁ[igl];

end back substitution; ,

It should bo'noted that tho extra pmount of caloulation
involved when’the nﬁmber1of loadihg caséé‘is’increased:is quité f,‘} “
smalls The main body of caleulation is involved in forning the L
upper trionguler matrix U, Once this has becn evaluated any ,‘7T e
number of loading ‘cases can be dealt with as alternative right
~hand sides. In running thc program tha additicnal tine for 3¥*’!;  

- calculation of additional 1oading cases and the corresponding
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increase in cost, is quite small, A large structure with mony
loading cases will have considerable final output and for an
economical solution these results should be first placed onto

magnetic tape and later processed through an off line mrinter.

The dcformdtions are then back substituted into the
siope deflection equations in Table (2.2) to give the forces
in the x and y dircctions. These are then resolved into the
member directions giving the forces viz. bending moments at
each end, torsion moments, (or axinl load for planc framcworks)

and the shear force, for cach member in the frame.

For each loéding case the computer printskout:in
tdbular forﬁ the forces‘préceeded by the member location. The
values of deformation are also output, Althoﬁgh ohly'values i
of deflection are hormally of practical use the values of -
rotation are included for completeness. An example is given in

- Seetion (2.9).

2.5 2) Pﬂrt__ipnad Gringrhmework Progrgﬂ; ::k
Computurs are currently being manufactured with large
fast store capacitiea and it is 1ikely thnt 1n the future 1arger s

“machines will be built thus enabling framoworks Qf aoveral

hundred Joints to be amlysed. | v’l‘he installation a’c th I.eeds

'Computing Laboratory has recently been increased to ccntain 32K Ll

| 'words' of fast store which enables grid frameworka of up to #503}; =
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Joints to be solved. The aore store will, however, always remain
finite, thus placing a theoretical restriction on the size of
problem that can be solved as a complete frame. By using the
technique of partitioning any size of frame can be aralysed,
provided it can be reduced to a series of linearly connected sub=-
frames. A partitioned version of the grid framework program has

therefore been written.

The basic method of solution is similar to that employed
for the standard version. The difference occufs in the method of
storing the various matrices., Data is prepared in the way describved
in Section (2,6.2)., The basic operations are summarised in the flow
diagram shown in Fig. (2.,13).

- In fotming the upper triangulér matrix and béckﬂsubétitming
to obtain ¢inal deflections, only the terms on‘the.preceeding "t
lines are required - wherek'wf is the width of the mntfix band. -
Thus onee the first 'w'ylines of the upper triangular maﬁrix have
been formed,to form liné wtly line one is not required and‘coﬁldi
be transferred from the fast stora on to magnetic storage tape;a 
As 1t is more efficient to tranafer several lines at any one tima CEr
the 1ines are moved in sub-frame blocks.,vTo form the stiffneas |
matrix it is necessary to have access to the previous sub frame in  _;¢;}2}
order to include the terms from members comman to both subnframea.f&li-:

It is also necessary to impose zero displacementa twice for each

—subaframe as an initial zero may hava been overwrittsn when terma'ff
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from the common members have been added. Hence two adjacent
sub-frames have to be stored in the fast store whilst the stiffness
matrix is being formed, It is this fact that determines the sizo
of individual sub-frames. The structure has to be sub;divided such

that no two adjacent sub~frames exceed the available fast‘store.

Once a structure has been partitioned there is a marked
increase in the time required for solution as the use of magnetic tape
1s a . comparativoly slow method of storing information. A recent.
set of data for = frame of 170 joints having 5 loading cases, took
25 minutes for solution, When using this program on a time sharing
machine, only the effective time used is normally taken into account
when charging for computer time used. Thus although'the elapsed
time may be higher, the time in terms of cost will only:be’alightly -

more than quoted in Section €2.8), .

2.6) Preparation of Data
2.6.1) taggagd Programs.

Each data tape ia headed by a 'call' L
sequence containing the program's unique iﬂentifier.i This causea
the computer to select the correct program and to transfer it intof; ]iff 
the computer store. Following the 'call' sequence ia a title ‘
describing the particular problem, which 18 transferred directly tc777; t°’

the head of any output. Lo
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The basic frame parameters follow and consist of:-
Total number of joints in the frame,

Total number of members in the frame,

Number of types of mamber

Number of previous loading cascs analysed.

Modulus of elasticity, E,

A~ Torsional constant, G. (for grid frames only).

The number of previous loading cases 1s included to allow
sets of output for the same frame to run consecutively. Thus if
five loading cases have alrecady been analysed the output will

commence at Loading Case No, 6.

The member properties are next specified. They are first
sorted into types in whiéh all properties are identical and these
properties given for the first member of each type. They consist ofi=
joint number at end 1, joint number at end 2, number of members of
the type, x and y ordinates in feet, number of stations at which
sectional properties are given, member properties. The ordinates
are individual member ordinates. that is tho relationsﬂip of end
2 to end 1., Sectional member pfopertiés conéist of moment of
inertia (ins“) aﬁd'éither‘tdrsional‘rigidity (i§sa) for’giid :
frameworks of cross séctional aréa (insz) for plane frameworks, 'As.'
Simpsonts rule is used to integrate the various functions member ri
propertics should be specifled at an odd number of pointa alona the

 member. All other members of thisvtype are now given andvconsiat,:vi’?ﬁ’
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solely of the joint at end 1 and the joint at end 2.

The number of loading cases is stated and each loading
casc specificd, Loads consist of a UDL acting along the full
projected length of the number and/or a series of point loads
acting at a distance from end 1. TIach loading case has the
following data:- number of loaded members; for each loaded
member- joint at end 1, joint at end 2, UDL per foot of
projected length, number of point loads, for cach point load =-
load, distance from end 1 (ft). In the caso4of plane frameworks
loads can act in both x ang y directions anﬁ the loads on each

member are therefore described twice, first in the x direction

and second in the y dlrection.

Next the number of zero displacements in the frame 1s
given, These arc specificd as the joint number followed by an
integer to describe the direction of restraint, as given in

Table (20 5)

TABLE (2,5)

Grid Framework | Plane Framcwork
Integer | Dircction| Integer Directioé
1 o, 1 b,

2‘ X Gy 2 ! b&
3»} by 3 79 g
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In setting out the date, spaces and new lines may be used
wherever necessary as these symbols are ignored by thé compiler,
Each item of data must be followed by a terminatar which may consist
of any symbol, other than a letter of the alphabet, digit, or
decimal point. A semi-colon is generally used for this purpose.

The whole of the data is terminated by an 'end mecssage' symbol.

2. 6 2) Paritioned Grid Framewor g.

The structure is sub-divided into
frames such that no joint is common to more than two sub=-frames.

The joint numbers must also run consecutively within each sub-frame,

The data is headed by the 'call' sequence follbwed'by'thé
title., The basic parameters for the frame are stafed in the ob&er

given below:-

Number of jbints in complgte structure,.
Number of sub-frames.’ | | |
Number of loading cases.
mNumber of 1oad1ng cases previously analysed.
Maximum number,of Zeros imposed in any one sub-m
bpa ‘ o o .
 Matrix band width, \_
Maximum depth of stiffness matrix required for anyljﬁyJ !

two adjacent sub-framea.
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For each sub-frame is stated the number of members,
number of joints and number of types of members. The mubaframe
data is then given in the same way as for the standard grid frame
program vize .member data, loading data, impose zeros. All loading
cases must be included in every sub-frame, If a particular léading
case does not act on a sub-frame a zero is cntered as the number
of loaded members. Similarly if a sub-framo has no zoro displacements
the number of imposed zeros is entered as zcro. The data is terminated

by an end message symbol.

2.7) Accuracy.

Sinmpson's Rule, used to determine stiffness, carry
over factors, fixed end moments and shoars, is a contral difference
formulae which can bo expressed in the form:

! n(
=3 (yld-uyo'*}r_l) h = distange betwoen
1 » ordinates

if fourth and higher rawers are neglected,

Any discontinuitics should preferably éccur at odd ordinates
although this is not always possible in the case of point‘}cadé.".
Fig. (2.15) shows that for a part parabolic‘hembér, stiffness and:
carry over factors are_calculated to within 1% if‘nine"étations‘;’
are usede. The discrepgncy is virtually eliminated by using thirféen :

'stations's, It can also Be‘seen that more ppinfs’ure required to
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specify the loading than stiffness and carry over factors. The
choice of ordinates must then depend upon circumstances. As few
as three ordinates are required for a member whose moment of
inertia varies lincarly, and which is unloaded. It has been
found in practicethatlittle benefit is gained by selecting more

than thirteen ordinates.
2.8) Capac and Running Time of Programs,

Multispan continuous
bridges frequently have large numbers of joiﬁts._ The design
engineer must know if the standard program has sufficient capacity
or whether other techniques, such as partitioning nced foybe

employed.

The amount of computcr store requiréd for the solution

of a framework problem is given by the inequality.

Lm + 8t +3:]f3 (g+‘l)+1]+ 6250 < X
where m = no. of members.

t = no. of types of members.

J = no, of aoints.

g = no. of girders (or 3(g+1) = band width). :

1 é no. of loading cases., |

x = storage capacity of computer.

The quantity 6250 is made up of the size of the program‘f

1tse1f and the director which ie a control routine program
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always present in the store,

The majority of the store is used to hold the stiffness
matrix for the complete structure and it is this that largely
governs the size of framework able to be solved, As shown Iln
Section (2;u) the geometry effects the matrix band width and
subsequently the size of the stiffness matrix for any given
structure., The maximum number of joints based upon the number
of main girders are shown in Fig. (2.14) where storage is
measured in K units, 4K = 64° = 4096 *words' of core store.,

For example it can be seen that using 16K store a grid framework
with elght main girdars may have up to 90 joints, wheraas a
grid frame with four main girders may have up to 130 Joints.’ The

capacity of the plane frame programg is derived in the same way,

The running time for the grid frame program is simildrly
dependent upon the total number of joints and the width of the

structurc. The run time is given approximately thus:

t = %%%

where the fime 't! is in minutes, 'n' is the totaanume; v{’

of jointshw'is the number of main girdersbacross‘the stru§tura. :
assuning the Joints té be nuﬁbéréd across‘the frame as showﬁ in
Fié. (2.11b), The elapse time will be approximately one'minutév
.1onger, as this includes fhe time to read in fhé ﬁdt& and oufpﬁt“rkb

results through an 6n 11ne'prmnter.




:~;V Table (2 7) the total time taken was 28 seconds. The fixed end~

209) Eb(&mgle-

A 3 bay portal frame as shown in Fig, (2.16) was
analysed using the plane frame progrom. The members are uniform
apart from a haunch at the column ends of tho rafters. It is
quite common to include such haunches for additioml} ‘stiffness
but the effects are often omitted from hénd Caléulaﬁions. The
increasc in stiffness can be quite large ané hdve a noticeable

cffeet on the deflections and distributions of hending moments.

A copy of the data is given in Table (2.6) which follows -
the system giVen inkSeétion (2.5)s The loading acts only in the ~

y direction therefore tho loading to each rafter consists of.

zer0 U.D,L, in x direction
- 2ero number of poihf‘ioads in x direction
value of U.,D.L, in y direction

zero number of point loads in y direction

Thé‘member propértiés for the. rarters must bc'givaﬁ at Q 

on equidistant aunber of points. As the length of the haunah 1s

6'0" the rafter was divided into ten -equal secticns. ench 300 feet
long nnd member properties specified at 11 points along ‘each rafterogaff
The columns are uniform in section and therefore requira only |

one value of I and A.

 The complete computer output of results is given in ;ii
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moments and shear given in the first section must be superimposed
on to the member forces given in the second section. The finalk
bending moment distribution has been obtained in this manner and
is plotted, together with the deflected form in Fig. (2.19).  The
frame was also analysed neglecting tho effects of the haunches,

- These results are also plotted in Fig, (2.17) being the values in

‘square brackets.

In general it can be seen that the haunches ‘have the
effect of 'attraoting' more bending moment towards the columns.,
The values of deflections are reducod by up to 20% and in one cage -

at joint 9 the inclusion of the haunches causes'an'upward deflection§“‘“‘

Thus it can be seen that although the additional mﬂterial S
is relatively amall. quite a large reduction in deflections is obtained. :
Without using the plane frame program for varying section members : ﬁ .
it would not be possible to benefit from this redistributionqu -

bending moments and reduction in deflection valucs. ey
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3*BAY*PORTAL*FRAME. ;

105 115 43

] 3000 9

13 23 23 03 +22.5; 13 385,53 10.29;

55 25 05 +22.55 13 41.9; 5.93;

5 33 +30.03 48.03 113 7055 4743 196,25 196.25 196,23
196,235 196.2;5 196.2; 196.2;
196 23 196.23 8.33 8,05 6.47;
473 6,473 é 4736473 6.47;
6 47s 6,475 6,475

55 63
85 9

35 53 33 +30.03 =8.03 113 196.23 196.2; 196.2; 196.2;
106.23 26 .25 196, 23 196,23
796 29 743 7059 RYSET ﬁ?»
6.475 6,475 6,473 6. Lr; 6.473
6.47; 6. 479 8.05 8.3;

L4

635 8;
95 113
15
65
2; 33 03 03 =0.16665 03
35 53 03 03 <0,16663 03
5; 63 03 03 =0.16665 03
6; 85 0; 03 =0.1666; 03
85 95 03 03 =0.0333;5 03
95 113 03 03 «0.08335 03
H
15 13
15 23
bhs 13
4s 23
75 13
3 23
103 13
105 23
-

Table 2,60, Computer Data for Plane Frame Analysis.



PLANE FRAMEWORK - VARYING SECTION MEMBERS

F.S.and B.X.W. Leeds Unlversity

3 BAY PORTAL FRAME.
LOADING CASE No. 1

MEMBER REACTIONS  TONS |

FORCE IN X-DIRECTION
No., MEMBER END 1 END 2
1 2 - 3 +0, 00 +0. 00
3 5~ 6 +0, 00 +0. 00
4 6 - 8 +0.,00 +0,00
5 8 - 0 +0, 00 +0.00
6 9 - 11 +0.00 +04 00

IOADING CASE No. 1

MEMBER
No.

COwtO~NoWN =N —

—

FORCES TONS

MEMBER AXTIAL SHEAR

1 - 2 +4,683 ~-1.597
0 - 11 +2.430 +1,086
4 . 5 +10.557 +,097
7~ 8 +7.320 +0. 414
5 6 +2. 106 +2.078
8 - 9 +1.364 +0, 900
3. 5 - +2.218 -2, 120
6 - 8 +1.980 -1,602
9 - 11 +1.328 =04 767

16/6/65.
END MOMENTS
Y-DIRECTION
END 1 END 2 END 1
+2.69 +2.30  +16,530
+2,30 42,69  +10.693
+2.69 +2.30 +16,530
+2, 30 +2.69 +1o.693
+1.35 +1,15 +8.265
+1.15 +1,35 +5,347

MOMENTS TON FT

DISPLACEMENTS RADIANS AND INCHES.
X DIRECTION

JOINT,: -

= COOIOWIEW N —

Table 2.7, Conpuber Output for. Plane Frans.

+0 1+ 00000000
-0. 10764072

- +0,65260635

+2.889714Th

+0, 00000000
+1. 40479938

+2.21241488

+0. 00000000

C+3,02361219

+2, 95382104

+0, Q00000Q0

Y DIRECTION
+0, 00000000

-, 00845228

"20 89
+0, 00000000

. =0,03697471
-~ =3.10231994

40, 00000000

-0,02563696

+0.21355896

+0. 00000000

 Zo.50lig0hsh

32489

END 1
+0, 090,
H0L,000
+0, 000
+0, 000

+19,396

+36,112

k{+c0 + 295

«516
~2 JAos5
-T.653

ROTATION

“H0. 0042697

-0, 0073435

+0.00260518
- =0,00736413

~0, 00088062

L =0.00204954 0
S =0,02043681

- H0,00727793
- =0.,00054932 .
~0,31333475

-o 00543844

Analysis.

TONS FT

END 2
-10,693
“!16c530
-10.693
«16.530

=5.347
. "'8¢265
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Chapter 3

Comguger Programs For Determinigg Igfluénce Lines_And Surfaces

3,1) Introduction

Although the design engineer has the facilitics
to analyse grid and\plaﬁe frame structurcs accufately. he is still
confronted with the problem of finding which loading system will
produce maxinum stresses. Previous experience is sometimes
sufficient to enable theso loading positions to be selected but
often they are not so obvious. Multispan bridges with vwrying :
flexural rigidity present particular'difficultieé. The abnormal
vehicle of up to 180 tons in weight can be placed virtually any- .

where on a complex structural system. The problom is often made U

more complicated by the bridge belng skewed on plan. In the early
stages of design‘influence 1ines or surfaceaawa therefore extremely

 useful in solecting loading cases for rigorous analysis.

3-2> Iheory

There are two methods of determihing ihfluénéejlihéé' -

or surfaces:

1) Unit point»load methods.

A unit load is placadat successive p01nta alang the atructuré;‘

' fiThe atressea or strese resultanta at the required aection are then
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rlotted to give the influence line, This method is suitable when

the number of points for which influence lincs are required are
large,and the number of point loads relatively small, If standard
computer programs are used for this anatygsis the output will

consist of stresses and stress resultants at all sections. - The
required influence lines have to be extracted from those results,

a process which can be long and tedious, Programs to output only

the relevant information have been written for determining intluence
lines for members with varying section propertles (2# 25)¢ The method
of analysis employed is the 'flexibility‘ approach. In using this
method the degree of indeterminacy must be known ond a system of
releases derived to first render the structure statically determinate. ,
Unit point loads aore then placed upon the reducod structure and the
ordinates of the frec bending moment diagrams calculated and input as -

data, It is for theSe reasons that the method is not suitablc'for

programming to give a general solution for highly redundant structuree‘f""f

and examples havo been confined to single girders,

2) Unit deformatiog methods.'

These methoda ore based upon the Mﬁller-Breslau theorum. »l | o ;f

The -influence line for a stress resultant at any point is given by

the daflected shape of the structure if a unit deflection is appliad 3

~in the lite of action of the stress resultant. Thia approach has e

fo'been uaed by Sawko (8) uaing the 'stiffness' method of annlyaia'toiifi‘l
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determine influence lines and surfaceé for structures composed
of prismatic members. In employing the 'stiffness' method the
degrec of redundancy nced not be known and therefore this method
is most suitable for grid frameworks, The approach used by Sawko
is here extended to inelude for the effects of varying flexural
rigidity. As before the mothod is explained for a grillage only,

as the application to planc frameworks is similar. .

A structural membef 1-2 shown in Fig, (3.la) subjected
to torsion and bending momght§'ﬂ§ apd Mq and a shear force Fz
undergoes deflections GP, Gq and bz'at the two ends,as in Fig.
(3.1b), The relationships between forces and displacements are :
as given in Table (2.1). These equations can be expressed ﬁriefly

gt
Fp =KD+ R12D2

F, = R_.D. + KD

| ()
2 2171 212 :

Similar equations can be written for every member of

the structure. Suppose the influcnce 1ine for bcnding momcnt is '71,4; i

required at end 1 of member 1-2. End 1 must now undorgo a unit\

displacement in the pla.n@ of bending whilst the dmplacements 9 e

and 6 remain unchanged.- All other members in the structure are'}, l=~ g

not affectcd_by this displacement and remain unaltered¢~_In_th@lkgéjiﬂgﬁ,“

cquations governing member le2 the rotation ép bccomqs (9p~1? a5 “, ,..V




shown in Fig. (352)

Similarly,unit deflections ean be induced in the plancs

of torsion mnd shear resulting (Gp—l) and (62-1) respectively,

By substituting (D;-1) for D, in equations (3.1)5 that

is (Gp ~1, Gq—l, bz—l) for (ep,;eq, 62) and expanding, the

equations becomei~

=20+ 8P - K oxt

FE = RElQl + KZlDZ - RZIXl

(5,2)

and are written fully in Table (3.1).

These equations &pply to moments and forces in the ,
individual member axis. To form the stiffness matrix for the
complete structure, fprces must be expressed in relation to a

general systom of co-ordinates denoted by x and y (Fige 3.3)

Uslng a transformmtion matrlx T tha member farﬁea and ‘

displacements in Fig. (3.1a) can be relatod to the general CO~0rdin&t@8v;‘
D= TvD‘vand‘ F . TF"’ for ends 1 and 2 "of the mémbe‘r;; e
'"Substituting in oquations (3.2)

‘TI" ssKl R.L

“mm] rm
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or

KIZQ +R12 z Ty

L (303)

u
Fé = RZl Dl + K21 s - R21

¢ -1
where Kij =T KijT

L
R = T—"R

il

RY RFT-iR

These equations are given in Table (3,2)

The oquations for all other members in the frame are as
shown in Table (2.2) and the complete set of equations can be

sunmarised in the form:

[F] - [KE) -[‘éﬁ] B ZIW(’;._#)

whero [K] represents tho stiffnces matrix for the
u)

complete structurc, [D) is the diSblaCémént‘beCtor and gu are a§  i‘jf:fi

defined above. Vector [F] holds the sum of internﬂl forcea at
every node and is normally equal tc the external 1oading &v.pr):!.:!.(:cifi
~ to the structuro. In this case however. there is nc extcrnal |
loading and prece vectcr [F] must equal zero. Equations (3;4) coan

therefore be writtcn as._f‘_‘ci~’
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[&}d (5.5

a ; v
The values of the{%p]vector are given in Table (3,1) but can
also be obtained by considering the physical properties of tho
member., A cut is made at end 1 of member l-2 and forces applled.

to induce a unit displacement whilst end 2 remains fixed.

To apply a unit rotation eq = 1 at end 1 the force -
required will equal thd'stiffnesa‘Kia at end 1. lThe force‘
reqﬁired to prevent any rotation at end 2 will be the stiffness
at end 1 multiplicd by the carryover from end 1 to end 2, xl'acla.
Shear forces Kié(1+012) act at end 1 and end 2 of the member.,

_— _

The forces required to produce unit displacements are given in'
Fig. (3.4) and are identicel to those values obtained from Table
(3.1). | PN

Aftér undeigoiﬁg d ﬁnit displacémenﬁvin ihélreQﬁirédky‘
direction the member is rejoined to the structure. Upbn)‘rcldaaé5. o
the structure behaves as if under load: the jcinta translate and ;‘ e
rotate to take up a position of equilibrium to give the influonce~“ }' g

line rcquired.'

The assombled stiffnesa matrix for any structura doea natfl’7“*f

depend upon the unit displacemcnt 1mposed as it is defined uniquely

o by the geometry cf the structure. As tho unit deflection vectora~ 5
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are treated os 1oadsgseveral influence lines can be determined
simultaneously by treating the deflection vectors as alternative

loads.

3.3) Computer Programs.

The stiffness ﬁatrix for fho completevframe ié idontical
to that set up for the analysis of the struétuﬁe under tho action
of loading. The method of speccifying the geometry of the structurc
and evolving the stiffness matrix ié therefore the same'as for
plane or grid‘frame analysis programs. In placc of the loading
data the membors foi which influcnce lines are required,nré |
listed each followed by two integer parameters, The first isk
either 1 or 2 and indicates which cnd of the member is to be |
considered, the sccond gives the stress resultant reqﬁircd as}:

summorised in Table (3.3) below:

CTABLE 3,3

Grid Fromework | Plone Framework

Integer | Stress Resultant |Integer | Stress ReSultant] k

1 | Torsional Moment | 1 | Thrust
‘2 | Bending Moment | 2 | Shear

3 Shear. 3 ;Béﬁdiﬁg Momgnt‘H :f
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As oxplained previously the displacement vectors can
be obtained from the member propecrties. These have already been
calculated in order to form the stiffness matrix and are storcd

in array P.

The zero displacements arc imposed upon the set of
equations and the solution obtained using the ¥square root!

method as before.

The output consista of three displacements at each
joint. Normally the vertical ordinates only are used but the
horizontal displacements for plane frameworks can be used to
find the effects of horizontal forccs such as accelerating orf'
'braking vehicles. Rotations are sometimes useful in,plotting ,

results when a greater degree of accuracy is reqnired.’_k‘; :

Bocause momber forces nre not calculwted, the time
tnken for solution of any problem is slightly faster than would

“be required for a full annlysis.v"k

: 3-4) E)Cégﬂalen

A 3 span continuous bridge with varying eection T
1ong1tudinal girders and skewed bSo on plan, as shown in Fig;r’

(3.5)15 considcred to obtain tho influcnce aurface for bending‘k

: nomont in the edge girder over the support i.a. at end 2 of ;f;if;fii‘fi
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member 30-35. This example has been analysed by Sawko (8) where
the varying section girders were considered as consisting of a
gcrices of stepped uniform sections. The uniform sections were
taken as acting between the joints indicated and average values

of I and J were used for analysis purposes,

Using the program described earlieflin‘this chapter, |
this example was recaleculated taking into accounfﬂthe variation
in 1ongitudinal stiffnéss. Member properties were specified at
five points along each longitudinal membcr and at one point fork
the uniform transverse members. A copy of the data is gilven in
Table (3.4) and the computer output is givén in Table (3.5)s The

time taken for the analysis was 1 min. 10 secs,

These results are plotted in Fig, (3,6) togother with
those obtained by Sawko - shown in square brackets.,‘lt con be

scen that at the maximum ordinate at joint 30, the results duc

to Sawko undercstimete those obtained by'morc rigorous analysia,:'"":"”:z

by almost 8&. Thus by taking average valuea of membor propcrtios.J, ij§ -

the stiffneas of the members at the supports is underestimated

leading to an apparent reduction in bending moment at these |

points. A corrcsponding increaso in midspun bending moments -~'«7 .

can bo expected when using the latter methode
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The accuracy of results obtained using the program
for uniform memberﬁcan‘be increased by incrcasing the number
of joints.’ The change in section at joints is then reduced
iesulting in a truer approximation of the actual girder profile,
Unfortunately this has the disadvantage of increasing the time
for solution of the problem. as this is dependent‘updn the o
nunber of joints.k By using the varying sectioh~progrnm the
members can be considered in terms of their actual stiffness
and restraint factors, and henca’a more acgﬁrabe solﬁtion is

obtained without any‘increasc in time.




a3l Forces.

bl Displocements.

G 3.1 Forces ond Displacements Related to Member Axes
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INFLUENCE SURFACE ORDINATES
GRID FRAMEWORK -~ VARYING SECTION MEMBERS

F,S.AND B.K.W, Leeds Unlversity 7/12/65.
3 SPAN SKEW BRIDGE DECK.
CASE NO. 1 '
DEFLEXIONS RADIANS AND FEET
JOINT X ROTATION Y ROTATION VERTICAL
1 +0., 00343721 +0.00390273 +) . 00000000
2 +0.00109802 +0. 00098091 +0., 00000000
3 <0, oosozog 0. 00022825 4+, 00002000
4 -0.018887 g -0,01960 g +0,00 00000
5 -0,0285093 -0,039927 Z +0. 00000000
6 +0,00269713 +0. 0003 52 C +0.05531440
g +0, 00628464 «0, 0001 9Z +0. 01043356
+0.01312115 =0,0015463 ,-o 10002 g
9 +0.02164510 -0, 00412670 g g 26880
10 +0.02435490 -0.00814199 v 2674123
11 - =0,00585738 ~0, 00606759 +o Q0000
12 -0.0013 g6 -0, 00129298 ; 40, 00000000
1 +0.00 2 T 40.01096872 40, 00000000
1 +0.03 65678 , 40, 0348&12 +0, 00000000
15 40, 058680 g +0,07305845 - 40, 0000V000
16 -0, 01704487 -0, 0092693g -0, 17078284
1 «0,02266941 ~0,0015333 - =0, 03539301
1 ~0.03369444 +o 02087765 +0,330774 go
19 =0.03053976 Z151782 +1,096817
20 =0, 00583793 96993 +2,32126748
21 -0,01693383 ~-o 0010681 ' - -0:30156091
22 -0, 03851g | +0.00029743 ~0.05674638
-2 =0, 10755876 +0.00855945 4, 68270073 0
2 -0,19193217 +0,. 05083586 +2,52087129
25 -0,18866953 40, 13095021 +5.39189581
26 «0. 00417346 +0.00962023 = «0,19753113
27 -0.02328205 4+0,0019599 T -0.03308580
28 -0.11621265 - =0,0231212 047305517 -
29 -o 70292%2 -0,08374469 12, 21503851 .
30 40328865 «0. 04957383. o 46.448161922
31 +o 00471178 +0.006 9101 4+0,00000000 1
32 -0.00095138 =0,00318846 ), 00000000
3 -0.03411671 -0, 022755% , +0,00000000
3 ~ =0,02249580 -0, 057139 0 +0.00000000
©35) 0 40.19526049 +0.36208904 ¢ +0,00000000
36 +0,01105815 -0.,00155218 +0,05228439
-3 +0,01740052 T ~0.00384415 :»-0.13728300.¢
38)  -0.,00232912 -0,00204650 ~;-0 30541806
9 ~«-o.1341613 Rt +0.03896811 §u806665»
40 -0.23014448 =0.,02758954 3728386
41 4+0.00113940 . =0.00180307 {-+0 QOOOVOO0
b2 +0.01155385  +0,01123584 = . 4+0.00000000 - . -
4 - 40, 01507492" U 40,01830184 0 40,00000000
4 «0, 06763574 ~0.05663361 - 40,00000000 -
, -0.18892473 . -0.19962uu3 . 10.00000000

Table 3 5 Compuﬁer Dutput - Influence Surface Ordinatas
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Chagter “’.

Experimental Tests,

" 4,1) Introductions

In order to examine the accuracy of the programs, and the
degree of approximation involved when the grillage with varying section
merbers 18 used as a mathematical model to aimﬁlate plated structures,
a comparison of practical and theoretical results was thought
desirable.s There are very few recorded results of teéta carried
out on structures with varying section prOperties.k‘ Madu (13) con= .
ducted tests on aluminium bridge decks, but confined the investi= .
gation to simply supported spans containing only three longitudinal
girders. Model tests were carried ocut as part of the design pro=
cedure for the Clifton Bridge, Nottingham (32), A perspex model
of one of the cantilever end span grillages was tested to obtain
deflections for load and prestress, but no values of banding moment
were obtained. A close correlation of deflections does not nec=
essarily indicate the same agreement in bending moments and thare- |
fore these results were considered to be inadequate. The Cement |
and Concrete Assoclation have carried out’a'sérieskéfbmodel tests 3
on the cantilevers of the Medwey Bridge uéing a preatreésed'gonéretev
séalé model. The bridge deck consists of three hollow box girders
with 12¢ O" side slabs, The girders are hellow throughéﬁt'their -
lengths without transverse diaphragms and therefora it’was‘feit'thétv'

§:
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the grillege analogy could not be applied with any degree of

accuracy.

In view of the lack of suitable experimental resuits, it
was decided to carry out a series of model tests as part of this
research, A threc¢ span continuous model bridge, having a para=
bolie variation in longlitudinal depth, was chosen. The model
was fabricated from standard perspex sheets, cemented at the
Joints, Although the use of perspex assisted greatly during
the fabrication of the model, certain probleﬁs arose during
the testing., Perspex is a non-elastic material that creeps under
sustained loading and therefore the loads had to be kept relatively

small and they could only be applied for short periods,

During the fabrication of the model it was possible t§
test it at three stages of construction and so0 apply tﬁevmethéd
of grillage analysia as a mathematical model to various types
of structures, The model was also analysed using the simply
supported span technique so that the tests also provided & means

of comparing the two methods of analysis,

The model was built and tested in three stagess

Stage One consisted of an open grillage with a iariationfin aection‘

in longitudinal members, as shown in Plate 1. In this form the
atructure_ia closest to the mathematical model analyséd;tuuiwas' -

used to verify the accuracy'of the computerryrogram;  5The, ,'

AR st s P
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restriction in width of the members made it impractical to attach
strain measuring devices and only deflections were measured at

this stage.

Stage Two consisted of a torsionally weak system of interconnected
tee beams formed by the addition of a top plate to stage 1. Elecw
trical resistance strain gauges were fixed to the top plate and

strains and deflections were measured,

Stage Three consisted of a cellular deck of interconnected hollpw
box beams varying in longitudinal stiffness, as shown in Plate k&,
This was achieved by the addition of hottom plates to the model

in the previous stage. The structure at this stage is & three
dimensionalyaséemblége of plates and quite far removed from the
mathematical model of an oben griliaée used in the combuter solﬁtioﬁ.

Strains and deflections werebagéin obtained.

4,2,) Description of Model and Testing,

A three span continuous bridge with a hongitudinal -
variatlon in depth was represented by a perspekaodei. After con= -
struction the dimensions were checked and these are shown in Fig._"
(4,1)s A depth of approximately 3" at the centre varying para=
bolically to 2" over the support giveé a variation inlthe moment;
of inertia of 1:64 for the open grillage andk1:15.6 fcr‘the‘grillage
plus top and bottom_dock ﬁi&toa. . - The main diaphiagma are " ‘k‘

thick and the top and botton decks 1/8 thick, To facilitate
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easier construction and alignment of the main grillage, positioning
grooves were machined into the main girderss All diaphrapgms

were a tight push fit so that this form of construction should

not lead to a reduction in the effective sections at these

points.

The aasembly of the gfillago took severol hoursbénd
oooééquentky it was necossary to use a joinfihé.cemeot:that, as
well as providing sufficient strength, also remained workable
for the whole of this periods Several types of adhesive were
investigated and it was found that Tensél‘No. 3(26) best suited
these requirements, It is an all acrylic cement that‘remaino
in a liquid state until hardened by polymerisation, Tha manu- ’
facturers claim a 'bond strength! of 6000'lb/aq.1n5; The cement tf .
was prepared in the ratio seven parts stabilised methyl methaw |
crylate monomer liquid to one part methyl methaorylata monomer
powders  The powder contains a proportion of yhotouoatalyat. '

 The mixture was allowed to stand in a dark place for 2l hours -
before uses : Hardening wag effected by light polymerisationof
using mercury vapour fluorescent tubes. LA apeoial cabinet ;. _‘o-‘
was built containing three tubea held in position one foot A
above the model, aa shown in Plate }‘ ‘ At each stage of ;V
assembly the model was exposed for approximately twelve hours o

~ to the ultra violet light. o

"»o The deck is supported along four lines of support each E
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- capable of rotationy; the end supports also prevent upward dise
placements The end support columns are rigid at one end and
pinned top and bottom at the other thus allowing any horizontal
movement to take place unimpedede The central supports are
adjustable to ensure contact along the lines of supporte The
model is mounted about seven inches above a steel plate base
giving a rigid support and also allowing maénetic based dew

flection gauges to be fixed underneath,

Loads are applied to the deck through a pinned lover
arm which has a hénger to recoive welghts. . The point of con=
tact is through a sliding ferrule, as shown in Plate 2.~ Any
load applied is increased because of the lever arm eftect,
which accounts for the apparent lack of uniformity‘in the applied

loads given in the results.

Verticél disPIacements were measured at each atage of
testing to give transverae deflection profiles at the centre of
the ‘main and end spans. -Dial gauges measuring to 0.0001" were
used for this purpose.v It was found necessary to lightly tap o
the model at dial gauge points after the application of each _ |

1oad to improve the response.

Strains were meaaured in stages 2 and 3 and;bending

'momenta oalculated using the relationship

B yékﬁ
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where E 15 the modulus of elasticity = taken as 440,000 1lbs./
8qe 11,
Y, is the distance from the neutral axis to the extreme
fibre.
£ 1s the measured strain,

I 1s the moment of inertia at the centre of the gauge.

Saunders Rowe 3" linear foil strain;gaugea were used,
attached to the model with Eastmans 901 adhesive and GA = 1Al
accelerator, The strain gauges were connected to a midtiway
Jjunction box and readings taken on a Peekel strain indicatdr,
type B103U, Only one dummy géuge was used for all readings,

It was found during testing that the model tended to
creep under sustained loading, therefore readings were t&ken

in groups of four only, the load being released and reapplied

each time. Each loading was repeated four times and thehexpari-‘

mental results plotted in Section (4.4) of this chapter are the

average of these readings.

4,3) Materiag'ggogerties-‘

To eatablishbthe'mQterial properties cf thé‘perépet,‘§ _;

test specimén was cut from the sheet used to fabricate,the main

girders. Ten E.R. strain gouges weve attached in pairs ch"

opposite sides of the ‘specimen as shown in Fig. (4 2) and the ,’J

- specimen tested’in a Haunsﬁeli tensometer. The 1oad 15 appliedi;fzg
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through & stoel plate spring ;nd registered as a mercury column
in a graduated tubes The average results are plotted in Fig,
‘(4.2) from which it was established that thé modulus of elns=
ticity E » 440,000 1b/sqe ink. and the modulus of rigidity

G = 157,000 1bs/aq. ing.

Tests were also carried out to asce;tain the‘strength
of Tensol No. 3 cement, = Tensile specimens gave erratic results
which seemed to be due to the specimens being‘léaded eccentrically,
Bond tests proved to be more regular and an average of 4225 1b/sqe
in, was recorded. The specimens consisted’of'd perspex block
cemented between tyo side plecess The whple’Was’clnmped iﬁ a
frame to prevent horizontai movement and the centre block pushed
out. - In some cases the parant @erspex fracbured in preferenca
to the cemented joints, Therefore it was felt that although
 the stfength claiﬁed by the manufacturers had not been attained,
Tensol Noe 3 could’reli&bly be used for all joints in thé modele

kD) nemm.’

The experimental deflections were obtained directly from
the dlal gauge readings and the bending moments were calculated :
using Eq. (h2), The values of y, in this equation were obtained»~‘~-

. from the results of the camputer program given in Appendix 2. :; .;'f

Gomputer results were obtained using the grid framework

progran described in Cha9ter 2- i Moments of inertia ware cal-*f}  e
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culated in the normal way, taking the effective wldth of beam
flanges to be equal to the centres of webs, i.es 1" for longiw
tudinal beams and 23" for transverse beams, The toraional \

constants for stages 1 and 2 were derived using the formulas

J = Z kbd3 'Yy (’*oz)

The contributions from the top plate in stage 2 were
reduced by half to include for the overall continuity in the

transverse and longitudinal directicns, of this plate."

The torsional constants for the box girders were cale

culated using the formula for thin walled seotions:; .
B 3---7-“{;54c - e (3

The sectional properties were apecified at nine pcints
in each section of longitudinal girder. A short ccmputer program
was written to calculate member properties and the results are
given in Appendix 2,  For the purpose of this program the factcr :
" in Eq. (4.2) was evaluated using the expreesion stated by Kantora-
vich and Krylov (27): s | e

k = [1 .;\/g,'g tanh g -d'] /3 e (lhlr) | 4\

The centra lines of the webs were used aa the layout

- of members for grillage analysia. | This ie en obvious chsice far lv:'i‘f

e stagea 1 and 2.¢‘ At atage 3 the moments Qf inertia were aaaily
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calcilated as I sections about the web centre lines, and the
torsional constants were assumed to be concentrated along webs,

Half of this value was taken for the ocuter girders.

As the model is symmetrical only half of it, (consist=-
ing of 72 joints), was considered for computer analysis. The
loading for the cymmetrical and anti-symmetfical cases was pro=
portioned such that the superpositlon of the two sets of results
gave the correct solution for the whole frame i.e. é'g-+-g and .
gf~ ga For the éymmetrical case zero rotations were imposed
along the centre line and zero vertical displacementé for the
anti-symmetrical case, The total time taken for the analysis
of three loading cases was slightly less than 4} minutes, = The case
of a unit load was analysed at each loading position and these
results scaled linearly to coincide with the;éxacf load applied
to the model. Bending moments were calculated at the cgntrea:
of strain gauges by 1nterpcldting linearlyjbétﬁeén the férﬁinai‘
moments for the member;* e | |

The simply supported span technique was also used to

' derive bending momenta and diaplacementa for the model. ‘ The ~: ' o

modified approach outlined 1n Chapter 1 was used. The valuea e

of average bending moment and deflection were obt&ined by placing

an equal load at each joint along the centre of the daok and

analysing this casa with the computer program.




: ‘to be more flexible, although this could hava been caused by

,-ﬁ’S—
.

kolyy2) Discussion of Results,

Stage One,

The déflection profiles are shown in Figse (4¢3 w. 4e6),
Imtially, section properties of the perspex grillage were used
for computer analysis and the agreement between computer and
model was not very goodes The model appearéd to be torsionally
stiffer than predicted theoretically, The reason for this was
thought to be,theyomission of the contribution to the,taréional
stiffness of the 3" square bearing strips at the central supportsc
Because of the high steel/perspex modula ratio these strips have
the effect of considerably increasing the torsional stiffness
of the transverse girders over the central supporta, and these
effects were included in all subsequent calculations.fr "Fige
(443) shows the marked impvovement in agreement. The agreen
ment between computer results and experimental values at ‘the ‘
centre of the mnin span is very good but the equivalent aimply”;:” k
supported span tacbnique does not give an accurate asaessment i
of maxLmum deflections end , because these values are plotted
from the line of contraflexure, they do not follow the actual

deflected profile,

’ With the 1oad applied in the end span the correlation

between grillage and model was not as close. | The model appeared ‘fj’ : ;; 

slight deflecticns in the %" dia. aupporting rod. It was found
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at this stage that when loads were appllied to the end span the
far intermediate support tended to lift, This was remedied
by plaging weights along this line to rewestablish contact
with the roller, The distribution coefficients largely
overestimate the maximum deflections in the side aspan.

The dimcrepancies betwaen'analytical and experimental
results are probably due to the model‘being‘unéble to exactly
sigulate the program support conditions. The end supports
 are assumed to rotate about the mid depth of the transverse

girder. In reality the axis of rotation is at the centre
of the 3" din, steel rode
Stage Two;

. The model at this stage consiétea of a ay§¥§ﬁ 6f‘1n£er-
comnected teesbeams, mhe'denection profiles are plc‘:tted\in )
Figs. (b.? 4,10) where there is good agreement between measurad‘
deflections and complter results. , When the load is applied to
the side spans there is an 1mprovement in the correlation ar
results, compared with stage one, In thia case the deuk is  ;

’torsionally stiffer and the effects of tha steel support rod

are probably less noticeable. As before the diatribution ~""'
- coefficianta do not predict the maximum detlections or defcrmed

" profiles, When the load :ls placed at the c:entra sf the deck at

X there ia reversal of curvature at the edge of the deck, shown




= kinvalid assumption because in the vicinity of the concentrated

-

clearly in Figse. (4.8 and 4,10). This is probably the Poisson's
ratlo effect which cannot be reflected in the computer results
as the tee-beams are assumed to act independently and the overall

continuity of the top plate is not considered.

The bending moments in the longitudinal directlon are
shown in Figs. (4,11 - 4,18), There is geherally good corre-
lation between the grillage analysis and experimental values.

No definite trend can be seen in these results as the computer
both overestimates and underestimates the experimental valuese

If the correctness of the computer results are gécepted it
appearé that the discrapancies are due to normal variations in
experimental readings, The dilstribution coéfficienté‘however,f’
consistently overestimate the values of maucimum benddng moments
by as much as 100% in Fig. (L4.15), With the load placed at
the mid-span point X there is almost a cémpleta rgdiStfibpfion

of negative moment over the internal 8upp6rts; k”The cémputef' 
analysis is able to predict this redistribution whereaa by
applying the mid span coeffioients at the support the simply

supported span technique is unable to do this, as shownlin_rig.r,f’wff:“

(Lall),

- Tranaverse etraina were alsc measured and from these thei :, < S

bending momenta in the diaphragma were calculated uaing the ,fJ" 
~fu11 aection as being effectiva at each pcint' This waa an
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load the effective width will be very much smaller, TFigs.
(4420 and 4422) show that a much larger bending moment than
predicted by the computer, is obtained when measured strain is
assumed to act across the full section, Figs, (4,19 and
L,21) show that when the load is applied to a 1ongitudinal
girder, thus avoiding local stress concentrations, a much
hetter agreement is obtained. The grillage analogy can
predict the average stress occurring in a member but 15 unable
to indicate local atress concentrations when loads ars placed
hetween the main girders.  The simply supported span techn
nique does not’make\prdviéions for calculating the distribution

ef transverme bendiﬁg moment in the side spans,

Stage Three.

The addition of the bottom plates tolﬁhe model of stage
two produced a cellular deck varying in longitudinalydepfh.
The deflection profiles are plotted in Figs.*(4-23’~74.26>4k"
In the initial interpretation of Equatibﬁ (H.B)fthg area‘énd;
the perimeter of the hole were used to determine the’toréionj* m

constants as recommended by Morice and Littlé (9).fﬁ-As can be o

seen from Fige (4.24) this led to a underestimate of the'fcr« '7-3 i

sional strength of the deck. The grillaga wag then raaanalysed

assuming the median line to 1ia on the centre linaa of the flangea' i

and web, which increased the torsional atiffness quite

consmderably and gave a much better correlation with the model L
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as shown in Fig, (4.24). After a recent investigation of
this problem Acton (28) arrived a similar conclusions, The
agreement of displacements in the side span is again not very

goodse This is probably due to the nature of the supports.

Longitudinal bending moments are shown in Figs.
(4427 = L4434) where there is generally good”agreement between -
experimental and computer values, Fige. (4.27) shows again
the improvement in sgreement bybusing the modified torsion
constants,  The same we=distribution of‘hogging,moment ééenyn
in stage two is again evident in Fig., (4.30)s The deflection
profile for a load placed at X shows a slight reverse in
curvature at the edge of the deck in Fig. (4,23), This
effect is also reflected in the longitudinal moments in Figse. .
(4,28) and (4.32) and shows again quite clearly.fhe,Poiasén’é;“
ratio effect present in continuous plated atrﬁétures. Whén
using the simply supported span technique the bendiﬁg moments
areragaip Qvgrestimated.

Transverse bending moments are,plotted in Figa.‘(4;35b~

4,38) where it can be seen that the same iOcaliaedfstress ¢cnﬁl;*E ;'

centrations occur when the load 1s placed at pointfxg'

L.5,) Conclusioﬁs;

By considering the sets of results abtained from the
| three different types of model ths following conclusiana have .




been drawng

(1)

(2)

(3)

. The method asaumes that the simply supported 5pan resta

The computer pbogram for analysing grid framéwork structures
composed of members with varying seotibn properties gives
accurate results for thus type of structure, provided
member properties are specified at sufficient stations to
enablekaccﬁrateyvaiueé of stiffness and restraint factors

to be obtained,

The gfillage is aiso a valld mathematical model for aﬁai-
jsing griliégés coﬁposite with top slab éﬁd fﬁlly torsional
cellular structures, The analysis is able to predict the
maximum values of bending moment and deflection , but is
unable to indicate local effects viz, lopalised stress
concentrations and Polsson's ratio effectss The latter f
phenomenon is likely to be particularly noticeable in a
perspex structure which has a high Poisson'a ratio

po .35 oompared with concrete where B 0.15.

The equivalent aimply supported span technique does not
give acceptable results.v In somo cases the values of jl

maximum deflections Mere undereatimated and in all casea

~ the values of bending moments were overestimated by as muchL ~?i fj7

a8 100%. The recommended increase of 1Q% to maximum

value is thererore elther inaufficient or unnacessary.‘




(W)

(5)
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on straight unyielding supports at right angles to the
span.  Fig. (4.37) showsrthis‘éssumption to be untrue
especially for loads ﬁl&ced at the edge of fhe deck;"an
effectkfirst observed by Sawkb (29). The use of this
method would lead to a design which was 'on the safe side'

but also quié uneconomical.

When interpreting the formula for torsion oonstants of
cellular sections the median line should be taken to lie

on the centre lines of the webs and flanges. =

The Cement and Concrete Association recommendations that

the full slab width between web centre lines should be

considered effective, pave good agreement for both moments

and deflections and ias therefore'valid;




Plate 1. Perspex Model Stage 1

Plate 2 Method of Testing Stage 1
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Zhapter's
Automatic Desigm Programma_Sor Multispan Bridges

'5 1) Introduction

| The conszderable increase in the construction of motor~
‘ways in this country over the past decade has led to a corresponding
increase in the number of multispan bridges. ; The eleotronic
computer has already played a large part in the advancement of ’
_bridge analysis techniques. Now that computers are available withk
‘sufficient storage space,it is 1ogical that the role of the comwe;
puter should change to one in which a greater proporticn of the
design calculatmons are performed automatically. The problems
involved 1n writing & programme capable of automatically designing

a multispan bridge are investigated here. :

Analysie programmes are canable of determining Btreesee |

,and deflections for maﬂystructures of the samo type. | Thus a Sridjlf"'
' frame"°rk Pr°8ramm° 1s capable of analysing bridge decks. erid
floor SYstems. foundation rafts, platee, etc. The nature of the ”eo?r
loading and geometry od EWestructure are fully speoifiod in the‘f' Sy
‘5data. A large struoture will therefore haVe a 1erge emount of 1Tffjjg"
'déta"’ Automatic deeign pro“rammcs are written EPecifioally to

| deSiSn ono class of struoturea- The structural form end the "m;Y:ﬁ'

' applied loading are written into the programme and therefore the -
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the generality.

Before the general propotype for the class of bridge to be
designed could be derived, several factors had to be considered., The
most usual form of multispan bridge is the three span typeuaedto cross
a river or similar obstruction. The relative span legnths are generally
predetermined by the site conditions,where aritificﬂalobstructions
such as railways, roads and buildings,or natural effects such as ﬂk
foundation peculiarities, {nfluence the final choice.v If the desizner
has a free choice the span ratios can be 6hosen”to"obtain the most
economic structure;and obviously this will depend upon many fdptors{
Azig (22) has investigated the effects of varying spéh ratios and
stiffnesses, upon the cost of the superstructure of bridges;thaﬁ are

subjected to HA loading.

B Using the programme described in this Emnptmryfor the design

of a complete bridge the effects of span ratio &nd relative ET values

are investigated for bridges subjected to both HA and HB laad aystems;i e

This investigation is describad in Chapter 6. D FRE T bR e

The aesthetic quality of the structure is 1argely a matter

of individual taste, Emphasis ﬂn be placed upon many factora,such aa ;t,;ff;

the structural Bystem.the profileo tha overall afficiencY» p&tterna o

of light and shada, etc. Although some conditiona can be satisfied by

non-structural elamants,the profile st111 has an important influence upon‘55°a

the final apPBQ?&nga.q It was therefere decided that the final<ratio<“"'?"7*7*
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of girder stiffnesses should be specified as part of the data, A
parabolic profile has been chosen,but the design remains general as

a zero rise will glve uniform section beams,

The transverse section is determined by structural c¢fficiency
and cconomy of construction.  The hollow box pgirderhas been chosen
to satisfy these two conditions. The girders are assumed to be
continuous at the soffit,as shown in %ig.(ﬁ.l},giving a deck that is

torsionally very stiff, thus giving the mexcimun redistribution of liada.

The overall economics of the bridge should also be considercd.
It is folt that the structural system of continuous varying scction
longitudinal box girder #esults in & highly efficient structuro,which is
also relatively simple ;n gonstruction,and that this system is com-
patable Qith fﬁé écdnomic requiréménts,aa a minimum of'matcrials are
employed. | : | | | e o

The prototype of the bridge was therefore established a8 a.

three span, cast 1n-situ prestressed concrete. continuous bridga with

hollow box girders varying in section in the 1cngitudinal direction‘

Transverse diaphragms are incorporated forming trapezoidal transvcrse o

box beama. It wa.s also assumed to be aupported on rallers at each aupport :
and tho whole restrained against horizontal movement. - The bridge ia .
designed to withstand the full loading specified by BS 153(1).,~q o

‘5.2) Basic Approaoh ‘

The method af design ia summariaed in tha flow diagram ﬁhown””‘"‘“
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in Fig. (5.2). A single longitudinal continuous girder is first
designed to carry the HA loading,and the maximum positive and nega-
tive bending moments are determined, The gomplete bridge deck_is
then analised under the HB loading condition, taking into account the
distribution of load across the deck, The abnormel vehicle is placed
on the edge of the deck,at the centre of the midspan section,to give
maximum longitudinal moment, and atﬂﬁhé &anre of the midspan to give
maxximum transverse moment ., The maximum ionﬂitudinal momenta from

the HA and HB loading conditions are compared nnd the wcrst condition

used to determine the final section sizes and prestressing forca. ‘

5¢3) ‘SMﬁnnisdtion and Theory of the Progrnmmo °

5.3.1)“Re16£iéé Section Propertics

The programme first considers a single girder under the HA
loading. Aa there are an infinite number of vnrying saction girders :
cwpable of carrying this load it is assumod that the relative momenta

of incrtia in all spans are given by the relationahip. v

Ly (1 ¥ (’1 o ) ) i e B
I
c

‘I = I atpoint x  dlstance me.n.iena«, o

?Io'ﬁa I at ccntre of midspan v

R = RatioI I, st,... I - I (u?)

I, = I ot lnnu -suppor{"

. This by assuning Ic*,? 1 it is poasible to obtain ralative]:f ;fﬁf
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values of Ii at all points along the girder.

5¢3.2) Derivation of Influence lineg

Using the relative I values given by Equotlon (5.1), a
set of bending moment influence lines are calculated. The method
used is that described in Chapter 3, in which the influcnce line 1s
given‘by the deflected profile of the girdgr, caused by the appiication
of a unit displaccment at the point Being considered., The ordinates
of deflcction are given at jolnts only and in order to obtain an
accurate set of influence lines for a 3Lspan‘girde:5it ia:necessary
to sub-divide each span into a series of shorter membéré,connacted
by imaginary joints.,  Each span is divided into 20 shorter membérs
and the,joihts are numbcred automatically from 1 to Gi,as;shaﬁﬁ in-
Fige (5.3)s The stiffness and carry over facﬁ&rs are caléulatédkﬁsing
the mothod described in Section (2. le), each mermber having fiwe stations
at which relative I values are- evaluated.f The momber propcrtiﬁs
are stored in aﬂny P and consist of 012. 021' Kla' KEl’ langtha Tha |
girder is considered acting in its own axis onlyg nnd each joint V
is capablo of rotation 9 and deflection b £l The general force
_ displacement rolationships,givcn for a member con31dered relutive to: 
ite own co~ordinate system in Table (2.1), nru thorafore applicable,ff
The torsion moment Mp will be zero at all points ulong the girdex;‘ :
so that tho K and R terwa in Table (2.1) can be reduced to 2 x 2
elements. ‘ The stiffness matrix for the comnlete girder is then  k

"'formed as described in Section (2 #). : The membara are 1inear1y
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connected resulting in a band width of 4, and therefore the
stiffness crrayS will always be 122 x 4 for the 61 joint girder,

sash joint being capable of displacement in two directions only.

Influence lines for' bending moment are éalcuiated at 21
peints along the girder. In the end spahs, vhich are generally shorter,
odd joint numbers are considered froﬁ 1 to 21 and each joint 1la the
centre span from 22 to 31 inck. Only one half of the girder is
considered because of symmetry, The loads to produce unit rotations,

8q = 1, as in Fig. (3.4% are formed incunmw-B; which has 122 x 21
wmits of store. Zero ver%ical displacements are imposed at the k
four supports, i.e. at‘joints,l. 21, 41 and 61; and the correspcnding
terms in the stiffness @atrix and 1§éding vectors»modified. The
set of simultanéous equations caﬁ now be éoivedbfo glve the dis-
placements at 61 joints along the girdur for each of the 21 bending
moment influence lines required. Soluticn is by the bquare roab'
method, described in Section (2. 3). rr'he design programme requires
the solution of two sets of simujraneous equations,stored in banded
form and so the solution has been programmed as a special proceduru
and given the name 'solve" As the solution proceeds the loads in
arrayB are replaced by tua correspond*ng joint displacements nnd ;.,,11
thereforea:wny'B finally holds the ordinates of the required influence{

lines,
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5. 3 3) Calculation of Loading

The H.A, loading is specified by B. s 153, Table 1, (1)
and is dependent ‘upon the span of the bridge or base length of the
influence 1ine. The influence line for bending moment always maintains
the same éigﬁ in any span, beiné gzero at the supports. Therefore
a set of loads based upon each spnn length, can be calculated which

also apply to the influeuwe lines. “

The loadlng can bu approximated by the following fornula

stated by Aziz (22) $e

Y= AX

'y = U.D,L. per linear foot "
% = " length of influcnce line
K = constant
20 000 for 75 x kO
e e e
, E 23 OOO for 500 x ,1906‘; |
Maximum ‘overload of h.?% at X = 550 :
Maximum underlaad of =24 98% at x =150, . ey
Average overload = 1. 78% ueglncting valu thnt ﬁ;}l?‘w; ﬂ‘ih‘ i |
- Average underload = 1, 66% 4ngrce with tabulated 1oading.”;iiﬂ'i £i ¥'"‘“‘ 

For x = 2075 y = 2200 1b/ft.
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The load per square foot equals y/10,for lanc widths
of less thanl0 feet,and y/1a, where 'la' is the lane width greater then
;0 feet, In addition to the UD,L, a line load of 27,000 1bs, per
lane acts anywhere in the span to produce the worst effect,which is at the

mexcimum influence line ordinate,

~ The weight of surfaco finishes has also been included
in the liwe load;to produce the greatest rangoe of bending moment.
An average value of 37.5 1b/éq.ft. has been taken as acting across

the full width of the deck.

The H oBa loading consists of an abnormal vehiclo of up to
45 units (180 tons), carried on a system of four axles,as shown in
Fige (5.4)s  Onme lane is loaded with type H.B, loading only and

all other lanes are 1oadcd with one third H A. 1oading. N

Se3e4) Desien of Discrete Girder Under H.A, ndggg

The mascimum positive nnd‘negative bending momeﬂta*af the 21\
poinﬁs along the girdor are ncxt 0alculéted;‘”‘SimPSOn'svfglc is
used to determined the area enclosed by the inflaence line fbr‘cach\, .
span, which is then multiplied by the U,D.L. for that span. Tha"“ il
 maximum ordinate‘is‘multipliedfby'thé 1inc load and the totailﬁcﬁéﬁ£  33; 519
added to amﬂﬁ-Ml. *The positivo values are held in column 1 and theg,:i~fItL 

negative values in column 2. thus after all spans hava been '

considered the total maximum and minimum livﬂ load moments at tha |

a points ulong the girder,are known. | Aa the influence lines hmve s
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‘been derived from assumed relative I values and the live loading
is dependent upon the span lengths, these valueé of bending moment

will be valid throughout the whole design process.

The esntres of webs are fixed as - longest span/30, but
not less than 6' 0", The final sizes might be slightly less than
these figures,in order to make up the bridge width of oquidis tant

wcbs,

The thicknéss of £he top flange is uniform over the whole width
of the bridge and was determined by placing two 113 vton wheel loads
at 3 feet centres, at the critical point between the webs dl.644 80
that the centre line of the slab is midway between the centroildof the
load system of the first wheel., ' The sectioﬁ'vm.s considered to
be fully fixed at the webs and assuming a pormissable concrete
stress of 1000 1bs/sq.ins. the following thiclmcsées WCI‘E; dcrived:-

6" for cs < 6
Al for_6 <cs £8
8"  for 8<es10
9" for 10<cag 12
12" for l2gos
.08 ’w centrcs of wébs ‘in feét;

‘The thickness of tho wob is detormined eithcr by the minimum ,‘; ’

width required to contain the pres’cresaing cables allowing sufficien'by.fi

omr. or the minimum w:x.dth able to withstand the principal tensile
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stress, The formula foi approximate web thickness slvonby Brans and

Bennett (30) is used te-

tw > 0,85V, (5.2)

Ct ’D

ultimate shearing force.

#

where Vu ”
cf = permissable tensile strength nf concrete.

D overall depth.

1]

The meximum shear strcss is assumed to 6ccur at & point
and a 1oaddfaqtor;o£’2:is applied‘to Liva plus déad,loﬁd; to ébtain
Vu. The two §a1ues of webd thickness qfé compared and thg computer
selects tho highest valus,which is then rounded off to the noarcst

inch above.

The design of thoe sections along the girder is based upon
standard prestressed concrote thedry,and_follcws'thé proceduro given

by Bvans and Bemmett(30).

The pfestresa in the concrete séctibn 18 1=

‘ o v - "r ’, ,
P »Pb"

Rotopofeectionty = 7 * g7 G
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where P = prestressing force at transfer
e = cable cccentricity - negative when below N.A,

A = cross section area of concrete,

Theve are two loading conditions at which the concrete
stresses are critical, The first oceurs when the minimum bending
moment is combined with the maximum>prcstrese,to glve the stress

condition i~

At bottom of ‘sec'c‘ic?p ;b - ~z-i~ <’ V#"t . (5.5)
ﬂ o Mmin | o
At top of section - £, o+ mm D> E L (5.6)

2
where £, = permissable corpressive stress at transfer
fmintk ’n pqrmisga‘ble tensile stress at tronsfor,
The sccond loading condition occurs after the mximum loss of

prestress has occured :Ln conjm:scﬁon with tho mescd mum bonding moment

vhere the :t‘ollowin‘, strcsa conclitions can be written :-

Lt - N SO i R
| \m; bottom of section Rd 'rb - -Z-lﬂ- > L dony (5.?):.vf-‘ i
At top of section - R, £, * -4-'-2 < :‘?“i fa (5.8)7 S

whbere‘x;w = pemissable ccmpr»ssive wcrking stress N

| "frﬁinvw - pemissable tensile workinc; atress

:_’_Ro om ratic o! 1oss in prestressing force o G
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The minimum section moduli can now be found,

El.iminating £, from inequalities (5.5) and (5.7) t-

M -~ R N
z > wa o__mn (5.9)

ot = Totnw

Eliminhting ft from inequalities (5.6) and (5.8) :-

M, - RN
w min
2 > T TRL (5,10)

cw o “mint
In deriving inequalitiés‘(5.95 and (5,10) 1t has been
assumed that the bending moment is positive (sagping moment).

When the bending moment is negative (hogging moment) the formula

for minimum soctibn moduli'must be rewritten thus =

M - R M
> g TR -~ ~ (5,10a)
ow o “mint |
ML = ROOM e
,Za pg Rw""‘ -.0 min - e R (50101‘})»
o o “ct PETOAIECEES I S 10

; Fr@m“theseyiﬁokfor@ﬁli.it'iévéiééf'éhwt:gﬁefdimensiohé cfﬂﬁhé 5  f‘j
‘concrete are dependent upon the ranga of 1oading the permissabié stross
and the loss ratio. ‘ At thia stage in the dasign,the bending momont o
due to dead load is nnt known,but the numerator of inequalities (5.9)
and (5.10) can be writter ag 1= (M live.,max + M 11ve.min)., \lhen f,flfﬁ:?
the loss in prestress is zerO: i.o¢~ R ,\9' 1, this valuo will aorreﬁw.}; 

pond to thab given by the inequalities,but normally R will have a value_.};w

of less than one resulting ina slight error.‘; Henae approximata valueaf
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for the minimum section modull are obtained., By assuming the

bottom flange is equal in thickness to the top flange and neglecting the
web contribution, it is possible to arrive at an aprroximate depth

for the section. Tho distance from the neutral axls to the

centrold of the flange is given by the quadratic root iw

¥ i ﬁ + 27+ hes W2z o (5.11)
e 4&%&% ' R |

vhere Hf = thickness of top flange
¢s = centres of webs in inches
Hence D = 2xy + Hf

The depths at the supports and centre of the main span can

thus be found, As the ratios ci‘ moment of incrtia must aatisfy aquation _

(5.1) the depths are also checked to ensure txey conform to the relatiop-
Ship HE : oL |
a = a, G +  N )
where a, = dep’ch of inn rsupport

dé = depth of cen‘cre of main spa.n

If this equation is not satisfiad either d or d .i,a increased’:

proportiomtely, in Wthhd:LSe the maximum pormissable sﬁresses will nat
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ba attained at that section.

Hence an approximate trial section has been derived,with
the dimensions known at the internal supports and centre of the
main span. The variation in depth is parabolic, so that the section
in eny point along the girder can be calculated, Before the section
can be finalised the design of the prestress has to be completed,which

1s dependent upon the dead 1oad‘bending moment,

These trial sizes are used to determine the position of
the prestressing force. By combining equation (5,5) with (5.7)

the magnitude of the prestress will ve given im

S 3 M e M
minw W min
Bottom of section + <. <2, +
R R & b ct 4
 orin M oy Fe | e
Top of soction  fny = 3, <% <R - RZ,

e
The lowest value of‘prestress wiilvnormaliy be chosen n that

the two formulae can be shortened to &=

ming w o : ; .
,fb > LR + R ’ ; (5&2)
. T T . ‘ s
f> e B Ga

These equations are’forkpositivé_vdluQS‘of‘beﬁding moment and

‘must be rewritten for negative bending moments -




Mmin
> Pt 7 -~ (5.120)
g, > -EML M (5.13a)
o} o 2

‘The values of dead lond bending moment at the 21 joints along
the girder,are found by integrating the dead weight nd influence line
ovdinates at the 61 points along the girder, using Simpson's factors.

The dead 1oad moments are plac»d in the third colum ofazwmyMl. The
exact thicknesa of tho bottom flange is known only at the centre of the
main span and at the inner supporﬁs,and so for the purpoad of caleulating
the dead loag, the bottom flange thickness is assumed to v.ry paraw
bolically. | o

By eliminating P from equations (5.3) and (5.4) the position

of the prestressing force can be cxpreased S

v z Z (f ~£) e : i
. PETIED . eaw

v 2t

. The minimum bending mopent usually occurs with the dead
‘weight acting together with live load in the‘temdta‘spané.'5wlnf;gﬁg,spaﬁ 3
: bridge beams tha dead 1dad 15 often idrge”compared Qith the‘livayldad;f }7’\51

which decreases as the span incruasea. A large prestres&ing foraa ia

‘therefore required to courteract tha minimum moment streasea.:v When the '?*!1 3

minimum momont excceds a ccrtain critical value, tha poaition of thu   “

: prestresaing force given by equation (5.1#) falls belaw tha 80ffit" A
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of the section,in order to achieve an ideal prestress in the con~
crete at the top and bottom of the section. In practice the cable
mist be located at the lowest practical 1limit and incrensed in mage-
nitude to maintain the same prestress at the bottom of the section (fb).
Tris, however, results in a reduced negative prestress at the top of
the section, so that under minimﬂm moment the stress in the concrete
1a increased., © The minimum concrete‘stress fmint’is therefore greater

than it need bee.

The minimum concrete stress at transfer can be found by

substituting for £, and £, from cquations (5.3) and (5,4), in equations

(5.6) and (5.7), and eliminating P from the resulting two equationsi=

;M‘ 7. (3. + he) (!4 | | ) -
mi 12 , ’ £ .: ‘
£ = Rk ; £+ fninw] (5.,15)
mint 22 Ro 22 (Zl - Aﬁ) Zl b A

If the’value of minimum StrGSs fmint is grcnter than origlnalxy
used, the value of Z, given by cquation (5.10) is recalculatod usinb

the new value,

Thore is no dlrect method of finalising the section becwuse 1’
the exact magnitude of the dond load is not known. The programme
therefbrq,proceeds by suChessive correctmon. : The preliminnry dimenaiens
are based upon the. required section modulus and top flange thickncss.. 
From thesa dimensicns the total dead load ond cend 1o“d., bending

 “mament‘arQ’ca1¢ulated. By using Lqu&tion (5.14) the positﬁvn :

SR
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of the prestressing forcoc is calculateds If this falls below

the practical limit of 3" above the soffit (allowing for cover

to the cables) the position is fixed at this lower limit, The
minimum conercte stress is recalculated using equation (5.15) and

a new value’of Z2 is calculated, Zl and Z. do not have the same

2
value and in order to obtain a more efficient scction the thickncess

of the hottom flange is fixed by the ratio!

* Z ) : ‘ v
T R CETS
2 3 o |

.. vhere thf = thickness of bottom flange.

| W1th the vwlues of Zl’ Z ttf ond tbf known at tho su¢gorts and

centre of the main span,an approximate dopth of soction can be found.
: If the web contributions are neglocted, the distwnce from the aection
\centroid to the top flange centroid is given by the quadratio root t-
Z Jz + hes (et m:f /M)z ttf./
2:.5(1;&6 + tf%/ tbe ) 2 (5.27)

A provisional depth to the nearest inch above ie calculwted,
which will be grtater than necessary to providé the minimum valuss ef |

él and 22 bucause thc web contrlbutions were neglected. The mcment cf  ;5353

inertia and centroid positicn is now calculated using tho known flunpa “ﬁ

thicknesses and assumed depth, from which the nctunl values or Z1 and Za__}”
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are found, 4 ! procedure! to calculate the moment of inertia
and centroid depth is written into the programme, and given the same
'find I'.  The actual Z vasnes are compared with the minimum required
values given by equations (5.9) and (5,10). if the actual values
are higher than the required values the depth is reduced by 3", and
by again using procedure "find.I', new vg;ueg of aqtual Zl and Za
are caleulateds This cycle continues until‘eithor one of the
actual p/ values falls below the minimum ruquired Z vqlue. Tha
depth is then increased by %" so that the depth 1s fixed to the
nearcst %" above the minimum rcquired uapth./k‘ln_this”way,thq .
depths at the centre of midspan and at the intornnl supports are |
cauculated. The ratio of momcnta of inertia ia then compared with
that given by equation (5.1) If this rclationmhip 1s not satisfi@d,
the depth at either inner supncrt or oantre of main span ia incremseu.k
If the moment of inertia at the support is insufficient to santlsfy
equation (5.1) o new value is found = o :
| ‘Lisupﬁofﬁv,§ iIcentre (I * R)g s i;:,;ﬂgﬁéid)f :

Neglecting tﬁe Wéb:chtriﬁufiéﬁs;ah;hpﬁfoximdfé deﬁ£h cdﬁ

be found. : Thasdistance from the centroia of the section to tha centroid

of ﬁho dop flange is Bivbh by ’"{“

'Ipeqd

y =[ves ttf +’c3jttFa e
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By successively rcducing the depth in 3" increments
and using procedure ffind’I;adepth to the nearcst A" above is
found, to give the required value of momeﬁt of‘inertia. : The
section at this point will be understresscd ét moxcimu load con-

ditions.

Using the set ol?dimensiogs calculated, the total dead
weight of the pgirder is calculated and compared with the assumed
value,  If the discrepancy is greater than 1%,th§ programms
recaleulates the section sizes based upon the current woight. -~ The
deslgn of the actunl sizes is written as o procedura‘and glven the
name 'prelim sizes'.  Bocause it is poseibdle to arrive at a
sot of trial dimensions based upon minimum % valuos indépend@ntyof
the dead load.’the scction desipgn cyclé conyerges vory quiokly.

It hoa been found that generally only three or four cycles are "

required. S

o ;nt this stage in the pro~ramme, a aingle girdcr hna been

dosigned to withstand the HA uniform load ing. L The dapths of the e

section and thicknesaes of the bottom flangea are kncwn at the

inner supports end ot the centre of the midspan. : All spanﬂ muat

satisfy equation (5.1) arﬂ thcrefore the section dimenﬁions at thef75?""l‘ 'yi

outer supports will bo tne snme 08 at the midpoint ot the contre f1 

spa. .
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5.35) Effects of HB Loading on Bridre Deck

The HB loading consists of an abnormal vchicle of up
to 45 units (180°) in weight, carricd on a system of four axles
as shown in Fig. (5.4a),  One lane is londed with type HB load
only,and all other lanes are londed with one third HA londing.
To obtadn the maximum 1ongitudinalrmoment‘the abnormal vehicle
is placcd as near to the edge of the deck as possible, The
width of the whecls 1s 15" ond the centre of the edge wheel is
placed 12" from the edge of the carrlagewny 1.0, 43" clearance,
To produce the maximum moment the centre line of tho bridgo should
be midwqy botwocn tho ccvtroid of tha lond system and the first
axle, os ShOW1 in Fig. (5.ha). This prosants an unsymmotrical
case for analysis which nﬁcessitabxsthe whole of the bridga
beinw nnalyseu.4 The available core store is insufficiont to
unaalu this to be done and in the programme the 1oad is placod
symmctrically upon tho brid*e, togethcr with one thix'd HA load S
in the remaining lwnes in the centre span,as shown in Tig.(ﬁ.#b).{g_

- BS 153 (l) allows tho permissable stroas to be increased by 25%

undor tho abnormnl vehicle lo&ding conaition. ' In ordor that the
BTy and HB loading condition may be campared in the final sectien aizesi

design, the abnormal vehicle hns baen reduced in ﬁagnltude by EO%"; . i;,¥;_;

Z\Thevvaluo;of_maximum bending moment,qbtained in,this way willaff.ipl;I?
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differ only slightly from the actual maximum bending moment

because the centrs span is gencrally large compared with the
dimensions of the abnormal vehicle, = In this way, considerable
savings in both storage space and time for solution,are effected,
To obtain maximum transverse moment the load is placed centrally
in the carriageway at the centre of the midspan, Ono third HA
loading is applied to tho deck on either side, although these areas
do not necessarily correspond to the actual lans widths, as shown

in Figo' (5040)0

Despite the fact that only half of the bridge 1s con=
sidered, the available fast store is still insufficient for this ane
alysiss To reduce the number of joints in the equivalent grillage,
the trahsvcrse dlaph ragms have been repleced by soven diaphragms
of equivalent stiffness. This procedure has been usod breviously N
in the analysis of a continuous v&rying scction grillage by
Goldstein, Lightfoot and Sawko (10),where no noticeablo loss in
accuracy was incurred., It is assumed'thatktho centres of thc'é;g; .
phragms are 2.5 x coentros ofﬁWeba.:'EQuivnlént propéftiés”about the -
séven‘imagindry ccnfrovlinés arércalcuiated. The longitudinal members

of the eguivalcnt grillage are considered to act at the centres of

the box girders i.e.. m*away botween the webse The ecuivqlont grillnge : :-.{

for tho analysis of HB 1oa\inb 18 shown in Fige (5.5)s
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The programme employs the method of analysis described in
Chapter 2, but instead of using information from & data tape the
computer derives all the rcquired data automaticallys From the ’
design of n discrote girder, the dimensions at the supports and at the
centre of the midspan,are known., The depth of the girders varies
parabolically and the depth of the bottom flange is again assumed
to vary parabolicallye The centres of the equi#alent grillage
members are known,so that the programme is aﬁle to automatically
number the gfillage joints and calculate the member,propertioa
for each type of member, - The numbering proceeds across the
deck commencing at the outer support, as shown in Fig, (5,50). As
there nre seven transverse diaphagms the totwl number of jointa
is 7 (nw - 1), wheré fnw! is thé humbef of webs. The momber joint;
and type numbers are stored in arrgyM. The eight member properties
viz., cos a, sin Oy L, T. 12! 021, Kia, K ' are calculated for ench
type of member. rhe transverse members are considered‘first. The
depﬁhs of the girderé at“the se#éﬁ g;qnsvérse diaphrégms are found
and I and J values célculétéd ﬁsing thié de%fh.‘ The J vnlués are found
’using Equation (4.3) for thin walled box soctions, tho modiun 1ine
acting at tho midpoint of the flanuea and weba. , Only one vwlue of |
I and J is ro~uired to calculato the bending and torsional stiffneas.»j-kv“ 
Vbeing 3@2 ﬁnd kg% respectively for uniform members. ;At any one ;.) o
diaphragm all the members will hnva the same propartioa, therefore,f»“‘

thcre are seven types of transvcrse numbers. : The propartiea
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for the lengitudinal membors are determined by caleculating the
flexibility influence coefficients for each type of member. The
members arc divided into twelve equal sections and the _%E values
calculated ot thirteen stations, Simpson's rule is used to

integrate the various functions and the final member properties are
derived using Equations (2,24) to (2,28). Each section of longitudinal
member across the bridge is the same typo and,as therc arc always

seven transverse members,there are six typeé of longitudinal girder,
There ara a total of thirteen types of membgrs in tho half of the

bridge being analyseds - The eight member propertics arce stored in

oy P, which has 13 x 8 elements.

After calculating the member joint nunhers and pféperties,
the prograume then procceds to sct up the comrlete stiffnuss mntrix
for the half of the bridge being considercd. The uprer half of
the stiffness matrix band s stored in arrdy Se - Following théijoint
nuibering system shown in Fig.(5o5b),th6 band width 18 3 x no, of webaj
the total number of joihts 1s 21 (nw - 1) and'tbtéi'humbér éf élementé,
in arréy Sis 21 (nw - 1) x 3 nw. Tho individual member slépe
doflection equations are given in Tnbls (2 2), where the Xxand y
| axcs lie slong and across the bridge respectively;aa shown in Fig.
| (5.5b). The members are considered in the order they are stored
in array M and tho stiffness matrix terms inserted into the S array,

as described in Section (2.4).L
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The loading can only be applied to the grillage Joints,
and therefore it is necessary to express all the applied loading
as an cquivalent system of londs,acting at joints only. Normally
the loading is expressed as end moments and shears, but to simplify
the programme only the shear forces have been consldered herc,
This docs not load to a significant error when considering long
span bridges with the abndrmal vehicle placed at the centre of
the main span, | The omission of the applied end nomants will causo
slight local discrepancies,which will be small in comparison with
thc ovgrall}bending moment, The applied loading is transferred to
the joints by stéticé. Thé lodds are first‘trwnsferred t§ the
longluudinal girder,s For each girder a value of UDL due to ‘
one third HA loading,ia held in array HA and the values of point
loads i“om the abnormal vehicle are huld in array AV. The loads
on the loncitudinal 5ird°r are thon tran ferrod by statics to tha
joints.,_ Theitwo loading vegtorqvi,e.; abnorqal vohiclekon edjze !
of deck nnd abnormal v¢hicle at the centre of deck, are sforod in
rerey ﬁ. F R v o e I

The zero displacement conditions are noxt imﬁosed, being at
the piers & 2ero vertical displacemcnt and along the transverse
centre line a zero rotation about the y axis. The set of aimultaneoua :

equations are solved using procedure 'solve' : The elements in the

1oading array B are replaced by the corresponding joint displncements T




~166~

for the two loading cases. The displacements are substituted into
the individual member slope deflection equations in Table (2.2), to
obtaln the terminal moments and forces for each member . The com-
plete set of results for the two loading cases arc printed out in

tabular form.
5.3{6) Deg of Final Section Sizes

The maximum values of bending moment, produced by the HA ond
HB loading conditions,ar¢ now compared. If the greatest bending
moment is produced by the HA loading condition theisizea already
derived will be the final sizes. If; however.‘the HB load’ produces
a hipgher moment, the section sizes must be redosipgneds  The
procedure 'prelim sizea! is activated using the new values of live
load bending moments The first cycle calculates the dead load
bending moment from the section sizes derived to carry the HA loading,
The programme continues in the design loop until the assumed dead’
welght of a elngle girder 1s to within 1% of the actual dend weight.

Thevsectién sizés are derived by coﬁsidering thebbénding
moments at the intermediate supﬁorts ond éentre of midapan only.’?To‘
design the prestresaing force at other sections along ‘the girdera
a bending moment envelope is required, This nas already been S
established ot 21 points along ‘tho girder wnder the HA conditions,

but 1t is not ¥nown for the HB loading condition,aa the abnormal

vehiele hasronly been placed at the midspan of_the b:idge. , If,the ;.7_?'wi.§
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HB ldading condition is the criterion,a bending moment envelope
is obtained by applying the same percentage increase that occurs
at midspan, to the pesitive values of bending moment occurring at
the 20 other points alongz the beanm. The percentage increaso
at the inner support is similarly applied to the negative bending

moment values,

The final section is designed at the 21 points along
the girder up to tho centre line, Using equation (5.1) the
required I valueg at these points»can be found, _The thickness
of the top flange 1s uniform overall the bridgeland’tho depth of-
the scction varies parabolically between midspan and supports,so
that the only variable is the thickness of the bottom flange This
is found by commencing with the thickness of the hottom flange equal
to the greatest thickness, either at midspan or aupport, a_n ‘
reducing this amount by 0,2 inches until the actual value of I becones
less thon the required value, given by equation (541)s  The previous
value of thicknesa 1s token, thoreforo,the bctccmlflnnpc thicknésé is
caleulated to the neafcst 0.2,,1nchea above, Tha prcccdure 'find I'
is used to calculate the actual I value at each stage. , Tha depth of the
centroid is also found at each trial so th&t the value of Z1 and Za
can be calculated for the rinal section. i In this wny;the mection |
dimensions and properties are calculated at the 21 pointa along tho“‘“év

girder and placed into array Ml.
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The magnitude of the prestressing force is obtained by

eliminating ¢ from equations (5.3) and (5.4) :-

A (£ + £, 2.)
P wu b A t.2 - - (5.18)

Zl + 22,

The values of fb and‘rt being the required prestress, arc

found from equations (5,12) and (5.13), The interpretation of these

equations depends upon thé'sign of fheibending moment 1.e4 hogging or
sagging, which is determined by the slgn of the dead load bonding

moﬁent. ~In this way the required prestress at 21 péints along the
girder is féund; This value will vary at each point,depending upon

the required strosses and 2 values at that point. ' The variation'in
prostress is developed by curtailing the cables as they are no longer
required, The prsstress at each point is provided by a number of |
cables which, it is assumed, are all enually stressed.- Ther~for», the  ‘
actual prestress will be slightly hiﬁher than that ruqﬁired by equaticn -
(5.18), being equal to the punber of cables mul’ciplied by the fcrca e

in each. Where there isj%ermissﬁble zone in which tho 1ine of »
‘ action of the cable should lic,this shauﬁd not effuct the stresa ‘w .
:conditions but at the critical intarmediute aupport or midspan saction,ﬁiif
ﬁhere the cable probably haa a uniaue poaition,thera is a danger of o

v°rstreasing immediately after the preatress ia appliad and befora

the losses have occurrad.r’ In practice the whole of the prcstresa **f"'

,‘ie not applied simultaneoualy and thorefara a percentage lcaa Will
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have taken place before the last cable is stressed.

The cable eccentricity must satisfy four conditions in
order that the permissable strcsses shall not be exceededs These

conditions are obtained by substituting for ft and fb from equations

(5.3) and (5.4), in the relaticns (5.5) and (5.,8). For positive

bending moments =

Q > ﬁ - Z1f2§ - Mmi:;
A P P
, =& | ?imint ' Mmig |
e > " + S - S
P2 il.... ..Z..l fmin* M..____..W
e < % ~ R P - R P
0 o
: Z 2., ¢t M
2 2 “cw W
e " A + R P . - R P o (5019)
. For nepative bending moments: 3
2 ‘ t min
o<~ -+ FE - 0
z £, . ¥ |
0.5 ,Z,g + ZZ fﬁin# .1:4.."1..
- A R P T RP
o " S0
‘ “1ew W g S
0" > A : B R -Tv RP. . AN (5’1%) R




-110-

By using inequalities (5,19) the upper and lower limits of the
line of action of the cable are found. These are placed into array
Ml,which finally holds in the columné: 1) positive live load moment
2) negative live load moment, 3) dead load moment, &) Z., 5) Z, 6)
cross sectional area of concrete, 7) prestressing force, 8) lower
cable limit 9) upper cable limit, 10) thickness of bottom flange,

11) overall depth,

5e3¢T) Desiym of Cable Profilo

The zone in which the prestressing force must act is given
by cquations (5,19), but because of the indeterminacy\of the girder,
secondary bending moments act, which cause tho line ofkaction of the
eable to be displaced. Thereforc, althouch the actual cables 1lic withe
in the requircd zone, the displaced liné of thruét nay lie outside this

7ZOoNO0 .,

The resultant line of thrust isbund using influencelco~
efficients, the mothod used 1s that given by Morico (31) and is similer
to that used to determine the member nropertics,gescribod in Section (2.3.4).
The girder is rendered statically dvterminato ty removing the continuity |
over the intcrmediate supports,as shown in ri60(5063)0vv Arbitrary
,moments xl and x, are aprlied at thoaa joints to produce moments my

2

and m as shown in Fig.(5.6b). The froo bending moment upon the

"2
releaoed structure m is obtainod by multiplying tho prestressing

force by the eccentricity at onch station. Two simultaneoua equntions L
for the solution of *1 and xa are derivod which can bo written in tha  niﬁff;
'form :~g ' L " - ' L Ly
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1 o™ - o™
f21 fza x2 U.2 (5020)
2
i N
, ET 8
where fll =
8
,m )
—l.. Us
f22 = | Er
8
e
e = Ty - z«:r_,
m
"‘10 dn
“EX
m.,m
20
‘r B ds
S

Tho aolution of equations (5.20) "inS the vulue of arbitrary

constants xi ‘and Xpe In this pnrticul“r caso x, and xa will hava tho . "'

samo valua bccauae the cirder and 1oading are aymmetrical. .
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The final moment distribution is given by -

M = mb + mlxl + m2 xa
but moy = Px ¢ henco

° = 0o + mx + my X, (5.21)
ki

where o i1s the actual cable eccentricity

q' is the line of action of the cable

P 1s the value of prestressing force.

If tho cable was placéd along the line of e', there WOﬁld
be no sccondary moments caused and the line of thrust would correspond
to the actunl cable position, This is known &s the concordant cable
profile, | ‘ S -
The cable profile cannot be derived directly, so that the

computer must proceced in a series of %rial and error' stepa.y An ;

initial cable profile is chosen to have zero cccentricity at tho auter

supporta and lie at centre of the prestressing zone at the 1nner supports ‘ -

and centre of tho_midspgn." Ir tho cable zonae passes outsida the
scction tho cable is lodated midway between the maximum practical :
cecentricity and the 1limit within the section. . Tha cwble is aasumed to !

W $4 \/ ? B
be straight betwoen these fixed points. -, Tho line of aotion ia then

et e g

found by BGtting up equations (5.20) and SOlVinu fcr *i ﬂnd Xa which are ;  ?;:t

i
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then substituted into equation (5,21), The eccentricity of the linc

of thrust at the inner supports and midspan is then checked to sce if

this falls within the prestrossing zone,  If these conditions are not
satlsfied the cable is then cithor raised or lowercd at the outer
supports, according to the roquired diroction; in 2" increments until the
line of action of the cables falls within the cable zone, The finai
position can be adjusted by hand,as the cable may be raised or lowercd

ot the inner supports by any required amount., The rcsultant line of
thrust is not affected by this transposition.. This important property
of continuous prestressed concrote beams, first enunciated by Guyon,may he

stated as follows,

"In a continuous prestrcssed cenerete beam, 1f the prestrossing
force is displacod ertically at any of tho intermediate supports by any
amount, but w1thout alteration to the intrineineMapoof the line of

the forco between the supports, the rcesultant line of thrust is unchanged.”

S.4)  Preparation of Dnta

‘ The'dnta is headed by a title aescribing the current bridge to
be desimned and this title is printod at the head of the computer output ¢
The rcmwindor of the data consists of z- | |
1) Fbr each spon is given - the length of the spans followed by the

baso length of the full parabola'for that span. Thus end spans can
:bc any diﬁision of paraboia‘but'usuaily fhéy.are one half for Y
ﬂPPOarande. The centre span and pnrabbia base leﬁgth wiil,be;thq\;v “;Jl:

 pome.




2)

3)

4)

5)
6)

7

8)

9)
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Ratio 'R' of moments of inertia at inncr support and centre of
main spans From Equne (5,1) I
_i_u'g'SUEQOI"t - (1 + R)E
centre

Total width of decks, If is assumed that the deck carries one

way traffic only. Brilges with two carriageways have to be designed
carrying the same load in both halves and can therefore be considered
as a onc way bridze by taking onehalf the total width of decke
Widtﬁféf‘traffic lones, Tt is assumcd that all lanos are of oqual
width, | o

Nunber of traffic lanes, including hard shouidef. if any.

Width from inner edge of deck to first lane or hard shoulder,

Width from outer edge of deck to traffic lane,

Number of units of abnormal vehicle., Maximum lood = 45 units = 180"

Modulus of Elasticity E.

10) Modwlus of Rigidity G.

11) Minimum fhickncss of web rbquiied to accommodﬁte'prestreésing,cablea.

12) Pormissablo compressive stress at transfor.

13) Permissable tensile stress at tronsfer.

14) Permissable compressive stross under working load.

15) Permissable tensile stress under working load, =

16) Permissable principai tensile stross at ultimate load, =

17)‘Pefcenta¢a loss of prestresé inlédbles{

18) Préstressing force per cable,
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5¢5) Computer Output

The full output consists of :=
1) Full analysis of structural model under both HD lcading
conditions. |
2) Thiclmess of top flanpe
3) Thickness of wobs
4) Centres of webs

5) Detadls of section at 21 points along the girder
le -"rtk ne ‘g ?‘Agﬁ‘{azw &Mé(l{

6) Position of prestressing cable, & o

Luw*{ﬁ p—_— { ot as sl
¢ .

N\

item (1) enables the nesigner to calculate the required
roinforcement in thoe transverso direction. | The sccond loading case,
with the abnormal vehicle placed at the ccntro of the deck produces
the maximum transverse moment . The bendlng moment is given at tho
points of the equivalent dlaphragns,shown in Fig.(S.ha) and the joint
numbering follows the system,shown in Fig.(B.hb). Itcun@) givos in
tabtlor form tho section details at 21 points alonr» the g:l_rder. Points |
1 to 11 and 11 to 21 corruspond to ten equidiatnnt soction along the end
span nnd centre apan respectively, point 11 being thc inncr support. Aﬁ
each noint is given the ovcrall dcpth, prestressina fccc, uppor nnd A.'H
lower prcstressing zona and thicknoss of bottom flwnue. Itcm (6) gives‘z
tho position of the prcs+ressing rorce at the supports and centre of the»‘}:'

midspan. » Although the 11ne of tho cables has been asaumed to be

'atraight betwcen these points,the cnble profile will be relatively flnt M‘; v5

and in practice a slight curvature would be introduced to,facilitnta

easier positioning of the cnbles. :
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5¢6) Calculation Time

The total size of the design program is 5400 'words! whon
using the Whetstone translater, The storage rcquired to use the
Kidsgrove translater is approximately 10,000 words, which is in excess
of that permitted by tho KDF9 mnchire., Conscquently,all devolopment
work had to be run using the slower Whetstone translater and 1t was fouad
that the complﬂto desim 6f dvbridgo could not be accomplishod in
less than 45 minutcs,  This amount cf fimo‘is impfdcticdi and |
expensivé fob normél rﬁnning of sﬁéh d Progre . Tﬁe English Electric
Loo Marconi Co.:nre nt‘pr;senf préparing'the necesesary éoftwenr to enable
1argé pfogrnns td be accommodnted within the avallable storees To do
this it is nocessary to divide the program into smallor sagnpnts,which
are stored on magnetic topes The segments of the program ore trnnsferrad
into the fast store of the machino as required and it is not neccsaary
to hold tho complete program within tho store, which results in a saving
qf spacé. At the time of Writing.tho déSign pfogram,théﬁséémcntdfion‘
ngftwear'wns not avnilable and‘tho prdgram had to bo segmented manually&  ‘

a8 o tempofary meusurec The prosram was divided into throe sepnrate :

programs. Tho rcsults output from one program form the input dota for ‘”‘H:

the next stnge,and in this way it is possiblo for tho compl te annlysia 1;

to be accomﬁlished using apvroximately ten minutca of cemputer time. The ‘1f

amount of data proparation and totﬂl timc rocuired are conaiderwbly in~ o

creased by usinp this method.




-117~

Some runs of the complete program were also obtained usings the
Atlas machine, operating at the National Iﬁstitnto for Resecarch in Nuclear
Scienco, Chilton, Berkehire. The compiled version produccd by this
machine is extremely efficient and operatesat some sixty times faster

than under the Whetstone controller., A complete design can be obtained

in approximately two minutes,including the time rcquired for translation.

547) Conclusions and Future Wo;k.

Aftcr dé?oloping the progrom for the automatic design of three

spon prostressed concrete bridges,the follnwing conclusions havo beon

4urawn. These observations are also o licaole to all 1arve desi"n

programo.

1) The program is obie to produce a com*leto design oxtfcme’& fapi*ly‘
'dnd oconomically. The short timeo 1ecuirod for solution is the main
advantane,althouuh the solution obt ined is not exact‘bec ause eertain |
simprflng assumptions have been made.’ Severdl altofnntive design
sehenes con be investigdted'in oyshort opace of fibé,and’aiibest’
‘solution obtained, o S

2) In order to run the program eoonomically3a computer with a l&rpe
fast random access store is requircd. This 1s to contain tho trans-{k'
lated vorsion of the program and 1o£&e amounts of information evolved'i s
by tho progran durinﬂ oalculation. . If insufficient Btore ia "vailable ,f?
to produce an officient machine code vorsion, tho time roquired for ‘f‘L;ﬁ
solution will make tho program imﬂructical for normal uso. | S

3 i efficient design can be proouccd for statically indotcrminato

-St’“°tu?°ﬁ- The deSiBn 15 inhorently difficult aince the answer in .
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effect must be lmown, or assumed, beforchand, The program employs
a method of successivc corrcction for solution and is able to rapidly

b
perform a sufficient number of cycles to obtain an accurate solution.

L) The programs have to be written specifically to design one type of
struqture and they are not aé general in épplication as are annlysis
proprrans, The amount of data rgquired for the computer is,yhowevcr,
substuntially reduced, | o o | | |

5) The development of design progroms is both lengthy and costly. A 1&rge

| amount of computer time is requircd for testing and correctﬁ;geach secticng
It is unlixely thwt such nrograns will be developed und used exclusively

. by one org%nisation bccauoe of the limited applic~ tion and expensive dev-
elopment costs, Large design programs could he a,practical propositicn,
if made availabletm a loarge nuaber of users through national comuuting
centres and progranm 1ibraries. . '

The'role of electronic éomvufefs in aiijbrﬁﬁéhééﬂof éiﬁilL‘ e
engineerinb is gradually changing,as 1nrgcr machines with inﬂreased haruw;ar .
become available. Tho nutomatic design praﬂrwm for three spwn bridges in its?jk
present form can be extended to accommodate a varying number Qf spans and alsaf;f

allow for the effects of SKGWa“ OnCB this has been achieved,one progrﬂm

will be “ble to desirn nany types of brid'es,fromsingle to multisﬁun. uniform”:;i
or parabolic profile. ri&ht or skew.' From programs of thia typo in h&ioh tha i
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number of spans, span ratio, girder profile, g}rder spacing and diaphragm
spacing are all fixed either by the data or within the programy the future dee-
velopment will be fowo*ds programs which producé an optimum design for

the problem under consideration, The data would consist of the overall' .
length of the bridse and current materialcosts. ‘F%om this data the pro-

gram will examine the effects of“the nﬁmber 6f sﬁans, spah ratlios, relative
stiffnesses, girders spacing and profile, upon the cost of the bridge,

and p¥oducé the most economical deéign for fhe given prohlem. This“deﬁign :
wculd then form the basis of the actual design as other fnbtors,such ag.

appearance and construction techniques,need also to be considered,
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| Chapter 6
Investipation into least Weipht Desirm of Three Span

Prestressed Concrete Bridges.

6.1) Introduction

Thektotal’cost of a bridge ingoﬁefned by many inferdependent
conditions which cannot be studied 1n isolation from ench othur. The
design must satisfy sevcral conditions apart from structural safety;
the structure should be aesthetlcally pleasinﬁ and the syatam of con~
struction must be feasable.— The cost of the auperatructure ia dopeﬁdont |
upon many vnriable factors, nanely geographical 1oc tion, rolntive costs of
various mwtcrimls and labour,mcthod of construction. eomplexity of structurnlv é
goometry, imposed site qonditions, degree Qf standardisation and availabla  1
sLant, ‘ R A R o

Fbr each multispan bridge there will be an optimum 1ay0ut for tha

’number of spans, relative 1en&ths of Sﬁans, relative: atiffness of snans :f]f; i

- and s*)acinb of girders and diaphragms. These parnmeters are influencca

by the rel&tive cost of. materials,and thereforc the detcrmination of the “5*”

;~most econcmical system can only be achieved far individual sehemes.‘, The

»_exteut the overall cost of a bridve structuru. ‘ An investigmtion inta1r
'_the affocts of relhtive £pan 1en¢tha and sti&&cssea uﬂon the cqat of | o
"1ndividual bridge girdcrs has been cnrried out by Azia (22).: Theyinvest-v

"ignticn was carried out uaing~a "rogram for the design of a discrete thraa
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span prestressed concrete bridge girder under the anction of the HA
loading conditlon only, The quantities of concrete and prestressing
ﬁables were colculated and o cost derived from these items. Two ratios
of unit cost were considercd, the cost of the steel por ton being 9,72
and 7.0 times that of the concrote cost per ton. In this cose it was
found that the span ratio had the most influcence upon cost and that an
optimum value of 0,3 1.,e,, the eﬁ& spans baing 043 x overall length,
produced the most economical design ovcr a wide ronge of span stiffness
$2luos. The spmne&iffnessqsworo found to have a IQSSbr ‘effoct upon the
total coste It was also found that,within the rangc invcstigated,ﬁ&mt the
change in rclative unit costs had 1little effect upon the choiée oﬁ,other
parameteré. ~ ‘

- The investigation was based upon assumed costs of'atéelidnd
concrete and therefore the results must be interprete&"for theso
values only. The program used was only able to éohaidar the/effccts of
the HA 1oading upon a discrete girder;and thu'effecta of the abnormal vchiclé‘i 

HB loading were not considered in the investigation.‘,‘;;:

By using the proaram doscribed in Chapter S,it wis possible b “1 7?“?ji

to undertake a more rigorous stuuy of tha effects of spnn ratic ana

relativa stiffness,upon the overall efficiency of a bridge.‘ The total
a8 Ll
weight of the bridge haa beon used /n measure of efﬁicienoy and a aet ‘?;/~,

b‘; of 'least welght' paramot»ra have been detcrmined. , It ahould be atreased

' kthat the 1caat weight deaign is not necoscarily the most oconomical,aa ’ *”

A“:only the vclumc of ccncrete hns been considered,'
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6.2) Investigotion

For the investigation all the bridges were of the same fcrm)
consisting of three span symmetrical prestréssed concrete ripght decks,
composed of nollow box girderse The overall span was 500 feet and the
width 43 feet. The bridpges comprised three traffic lanes, each 13 feet
wide, an edge strip at the left hand side of 5 feet to the traffic lono and
an edge strip of 4 feet atkthe right hand side, This was considered to be g
ttypical! single carriugeway bridge being part of a motorway system., It
was assumed that thu carri geway cnrrying the traffic in the ovﬂosite ddre: -

ection was structurally indenendent.

The sgans of the hridge were chosen to give a range Vﬁryinn fron
three equal Sﬂans,ta the end span being half the ccntre apa . The
variation in spon lengths was exnrusaed as the ratio of end apan 8 1! to

the total snan 'L, s0 that $en

The range of spans investig@ted is given,ihkTablay(6.l)ﬁ; S

nble 6,;.
spm | ma | Contrml
Ratio = -} - 'Span . Span
033 | 1666 | :




"
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The ronge of stiffnesses investigated for ecach span ratio
werey, from R = 0 to R = \4, where R is the ratio of noment

of inerfia at the centre of the main span to the support, as given

by Em. (5,1) thus

Isupport (1‘ + R)

centre

The range of depths thus varied to give a bridge composed
of uniform girders when, R = 0, to a bridge consisting of arch like
girders when, R, R e | k
A1l other vardable parameters in the design were fixed go that the
effects of span ratio and relative span Btiffnesses could be studied
in isolation. The centres of the main glrders were 8 feet and the

thiekness 0f the weba 18 inches in all enses,
6.3) Pesults iﬂ

The eomwlete aet of results obtained aro glven in Table (5.2)

The vwriation in weight ror n changing R value and fixad ﬁ value,are‘”

: plotted in Fig.(6.1). B

6ul) Discﬁssion‘of Reéults.,;.

: From Fig.(G.l),yit can be saen thmt the 1east weight for ffjfit f;

: “11 ﬂPﬂn ratima 1s given when the variﬂtion in momcnt of inertim T
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a slight curve in the longitudinal direction,the depth at the inner
support being approximatély 15 to 2.07£imes that at fhé centre of the
main spane Within thisrange.;the strﬁcture is able to develop the
greatest stresses at all points along the girder and the mest efficient

use of’materials is obtained.

If & continuous girder of uniform depth islemployed over large
spans the structural efficioncy decrcases consiuer“bly. The totnl weight
when R = 0 is 8. 25% greater thhn the minimum welght when ﬁ = 0.33 and
13.5% greater when ﬂ = O 25. This decrease in atructural efficiency
is likoly to be narticularly noticeaole in long Syﬂh contl@&nusbriano
girders,as the majority of the load ia due to salf weight. Hence any
materials which are not being subjcoted to the maximum possible stresseﬁ’
will add unneccsuarily to tho aesign bending moments.;} It was found
that for a central span of 2;0 feet the dead 1oad bending momont was
approximately twico the 1ive load benaing mcment. Tuus it can ba seen
that quite large economics in concrete qun,ﬁties cnn beeffected by 1ntro-

, ducing only a slight vwriation in depth alonp tha boam such that ; ‘”7
R = 0,5, It ie prohable thkt in this case,the shuttering couts would  ﬂi‘ﬂ¥

be sliqhtly hibher but this incre&se should be more thnn offset by the

'saving in concrete Qunntityo j s ey
“a the ratio of momcnt of inertia at inner support ta memant

o of inertia at centro of main span is increased above R ‘- 1 the toﬁal

. wcight of the bridga begins te incraasa ahove the minimum valua indicating

o w*thin the rnnge of R

: §v that the atructural efficiency is deorensinu.!
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*total 1ength 200 feet and having a oentral apan o:ﬁ 100 feet. was also
was the criterion. ‘ Bridges oi’ 200 feet overall length or lesa a:.ra

_‘ Therefare for all large three spau aridges the HA loading :La always gai:ng
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values investigated,it was found that when R w=4the total weight

of the bridge, when compared with the minimum value, was increased

by 6.8% when # = 0,25 and 11,75% whon § = 0,33, = The value of

R = 4 will give an inner support depth equal to approximately five
timés £hat at the centre of the main span,vwhich would probably exolude

such a bridge for aesthetic, a"a well as economic, rcasonss

The effect of the span ratio o can be seen clearly from Fig.
(6,1), The least weight is obtained when all. threa apans are oi’

equal 1ength, resulting in the minimum bending mc:mont 1n all spans.

In pracﬁice it is seldom possible to arrange the apana in this way, and

therefore, the central span should be made as near to one third thu total
span, as possible. Even if a span ratio of 55 - 0‘25 1s chosen, the
total weight when R = 1 1s atill less ‘chan the total wei(;ht when

three equal spans are used »"lth a unifom depth continuoua g’irder.  ,

7 Throughout the whole range oi’ span and depth mt:l.cs investigated,
1t was found that fcr the type of br:l,dge deck empleyed (continuoua soffit‘ ;’
slab giving 2 toraionally stiff bridga dcck) the HAuﬁform laading |

condition alwaye prcduced the maximum bendim* moments. A bride;e o:t‘

desie;ned by the progr'\m whﬁre e.gain it was fou:nd that the HA 1oading

unlikely to be constructea with three epans, a8 th:l.s wculd be unaconcmic:al
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A”B)‘k‘The ratio ofspan lengths has a large influonce upon the total weight,ﬁv?iﬁ

: to carry out further investigations over a wider range of variablea. i Fd$
‘"_ three span bridges the study ohould include overall apana of batwean lﬁﬂ
G feot and 1000 feet. 7 For these results to be appliad in praotioo,it wil

”Paleo be neceoaary to inveatigate four and fiv
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to produce the maximum longitudinel bending moment, provided the deck

is fairly stiff transversely. Morice (36) has also found that, for
simply supported spans of over 40 feet,the normal uniformly distributed
loads produce the greater longitudinal momonﬁ and it has been shown

in Chapter 4,that a continuous grillage provides a greater redistribution
of loads thanka simply supported slab, The maximum fransvcrse moment
w1l be produced by the abmormal vehicle HB ;oaaing cystem. This

case is automatically analysed‘byythe'design progr&m.o

6.5) Conclusiong

From the rosults obtained tho following conclusions have
been drawn for the runge of bridgea investigatod.
1)  The least weight design is obtained when a bridge of throe equal
spans is employed with a moment of inertia ratio of R - 1.0.,7 ,'i
2) The choice of R value has tho greatest influence upon tho total |
 weight of the bridge. A variation in total weight of up to 13 5%

ﬂcan occur depending upon the vnlue given to R. ;ul,u

| which may vary by up to 11.75%,depending upon the VQIUu given to ¢.7f1 j;ff
&) The uniform HA 1oad1ng producea the maximum 1ongitudinal bending -

,‘moments for 1arge mul*ispan briagea having torsionally atiff dech

= systems. 1 -

, Bofore definite trenda can bo. establiahed it will be nocassary




-1217-

investigationﬁ require many runs of computer programs,and therefore, '

they are quite time consuming







Table 6.2

i o Total Weight
] g . Kips

AQO : 73[*0 -

1 iy it fegag
| o 1 15 | &0 .
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Chapter 7,

General Conclusions and Future Work

7+1)  General Conclusions

7e1le1) The scries of model tests carried out, show that the
analysis programs are capablejof:accurately‘analysing‘structurea

with varying section properties, ~ The grillage is*also a valid model
for the idealisgtion of4continuous plated'grilla@es‘andi6cllu1ar o
structures, having a spanwise variation~iﬁ depfhuf ‘The programs gan
‘accommodate any variation in section, occuring throughout the full
1ongth of the member or only at certain sections alonu the member.

The programs make efficient use of storage spnce and have a high
operational efficiency. The preparation of data is relatively straight
forward and the user is not required to have a knowledge of how the
‘programa operate. /

“Pale 2) ' The bridge design program is able to produce nutomaticmlly“ff

 an accuate design inwhich all the desirn conditions h e been considerad.”fff

The caucalationa are pcrformed uxtremely rapidly by the computer and

?consequently it is possible to obtnin a far more accurate design,than ,f?

| jif hand methods were amploycd; The design VQlue of dead load banding fij(v

 Jmoment is evaluated to wﬂthin 1% of the actual dead 1oad mcmont and,
 'because ot this, an efficient deaign is prcduced in that the minimum .

:of materials are employed. 'f
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Automatic desipgn programs cammot normally be as generzl in
application as analysis programs, because the layout of the strusture
and applied loading are contained within the program.  The amount of
data can be quite small and the complete list of design data can be
specified by less than twenty parameters,  The length of the program
will, however, be quite large,and 1t is this fact that has largely
prevented the advancement of design programs in the paste:  The auto~_
matic design progrom ig therefore limited inapplication and ccstly’to
develop, ' To obtain economical useage of such progroms it is_neceasary
that they should be availabie:to a large number of users,clther through

ccmputer manufacturers,or at national computing centres,

" Recent developments in computer softwear have led to the
development of 'problem orientated langunges!. These new BYstems aro.
written speqfically for one clnss of user, unlike Algol which is

luniversal! language that con bo used for meny problema in all fields S

of science and technology. A structural analysis ond design aystem
has becn developed at the Masaachusetts Instituta cf Technologm;and is ’
and is known as STRUDL (38). By uaing this system,nn engineer is abla to o

design many types of structurea. it ia nct neOGBSer for the user tc‘k 

: have knowledre of complicated pro ramming 1angu1ges,as all the “r°Gram e
instructions are given in familiar terminology. Th@ Eystam 1& unable to e

,carry out a design fully automatically mnd the uuCr must insert further .

- instructions as the program prncaeda. He muat fcr instance,aak fer the

streases to be computed at critical points and if nacessary;d&just the

'atructural aizes and re-analyse.

Such design wcrk wnuld ha carriad\a
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through a remote terminal facility, possibly in the design office
itself, and in this way the engineer has an extremely poworful tool

to assist in his design worke The system has to be able to deol with
many types of structures and problems,and this wide application leads
to some loss in efficiency, By contrast, the automatic~design progran
described here, is oaly able'to consider onetype of structure, viz,
three span bridges, The design is. however, carried out completely

20y LA
autometically wnd\rigorovsl; éhd the completed design is very accu§a£o '
and detalled, It is possible to prepare detall drawings from results,
all dimensions and prestressing cable dotails being glven. ‘Thae main
advantagesof such programsa;; that the solution is obtained completely

automatically, and that it is very detallsd.

It is felt that both these basically differcnt design”approachéa
 have a place in future desicn operationé."’The design eystem because of

1ts general applic&bility,and’theautdmatic‘deSign/prégram‘bécdusé of its
rapid and accurate solution, i

7.2) thure Worgm

7 2.1)  ' o The basic grid frame nnd plane frame progrnms can ba ‘~g[~‘*»‘
' exten‘ed to takﬁ into uccount several cther effects. 1 Ona such,mOMifia %ian,
- to enable influence 1ines and aurfacea to bo derived hns beon carried ’
out and reported here. , samko (3?) ns shown. how the ;rid frmme program

can be extended to nllow for the efrecta of ela&tic retrﬂint nt jqinta.:ﬂ{iif

o The use of this propram wculd be beneficial when annlyaing rcundation'

"*rafts and eauﬁbwork stru,tures.



-151-

- Facilities can be incorporated which,would take into
account the effects of pinned ended members and pinned Joints. The
latter case exlsts in bridge decks consisting of simply supported suspended
slabs with cantilever supports.  Although,in this case,the bricdge has
an overall statical doterminacy, the individual elencnts arve still
hishlJ redundant and the complete bridge must be considered for an,

accurate analysis.

~ The method of analysis employed by the plane and grid frame
programs con be used for solﬁtiog of space frame structurcs with vary-
ing scction members,  Such a program would be applied to the analysis of
building frames, when the interaction betwaen plane frdmes’has to be
ponsidere or in bridgeq,where it is n;cossary to take into account theb
effects of elsstic displﬂcements of column or frame supports. A useful
’modification mo the grid frame prowram would allow for ccrtaiﬁ joints S
to hnve six degrees of freedom,whilst all the remaining jointawnuld 'L’N
still only have three degrﬂes of freedom.‘ Such a pragr:m wauld be f”iC 
Jcapable of analyainD bridge decks in which the displocemant at | yblﬁ\
. eupports could be taken into account. ’ The nmount of ndditionql atornge |  }
Fspace required in this case would be quite smﬁll a8 only those dcinta e

k capable of three dimensionnl movement wculd requiro aﬂditional terms';%f*f?5

in the stiffness matrix.

Tha Programs 6escribed in this thesis all make imPOrtnnt DR

o ecohomica in the method of atoring the stiffness mat'ix elemants, ”7
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the top half of the diagonal matrix bond being helds  This band does,how=
cver, contain zero elements and further cconomies in storage space could

be introduced, bystoring énly the non-zero stiffness matrix clements,

When a structure i3 analysed by computer program it le usual
to consider several cases of alternative loading. This usually consists
of dead load and several alternative live load casea. The output
for cach of these cases is glven separately;and tho alternative loading
cases are combined by hand to obtain the worst case, By storing the
output for cach loading case within the éémputer,it would be poésibie
for the resuita to give the combined effect of two, or more, alternative load-

ing cases,

7e2e2) : The design program for,the design of three span brilges
can be extended,to include for varyiﬁg nﬁmbers of spana,fro@ one up to
five, The effects of skew could also be included, These modifications
would produre a program with a wider field of arplicﬂtion. Future desigﬁ;%ft
programs arc likely to undertﬂke more of the 1ntial planning mnd 1aycut o
vork. To obtain an optimnm acheme for a bridse many factora of cost

and prevalent conditions have to be considered. Cemputera ara ideally

sulted to this type of work,aa they are able to oper&te at high speeda

. and consider many alternative sbhemea 1n a ahort apace of time.

~ The range of computer hardwear is gradually increasing,and the‘!
1 use of this equipment will enable automatic dcsign prorrams to parfnrm L'

‘ more. of tha routine work normally undertaken in tha aesign offi@e. -

7?:!use of graph plottera will en&bl&’deaign programa ta proauca aertuin
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resulta in the form ofi'wdrking drawingst. Thesc machines are also
able to plot results in tho form of bending moment and shear force
diagrams; The progroms themselyes can be increased in scope, but this
will aiéojﬁriﬁg about an inc:eaéeyin program size, At the moment it

is the size of such programs, that is governing development.
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' Appendix 1.

Grid Framework Program.




begin comment A program for the elastic analysls of grid
frameworks consisting of members with varying

section properties;
library A0,A6,A14; :
Tea L E,G,

Integer m,n,pC.dv,x,ys
real procedure dot(a,b,p,q,r),

value p,q}
real a,b} integer p,q,r;
comment innerproduct with lower and upper bounds

begin real s; s'=O,
?or ri=p step T until q do s'ws+axb,
doti=s3

end dot;

dv:=T0; open(dv); open(20)°
write text(dv,[(8s]GRID*FRAMEWORK¥ ~*VARYING*SECTION
» *MEMBERS[ ¢ ][ 8s ]F. 5. AND*B, K, W.****Laeds*
, Universityxs*¥ 0/3/65. ijLﬁsjj_
copy text(20,dv,[;]1);
m:=read 203, nzsreadgeog, x:nread(ao), poi=read(20);

E'=read 20 s=pread (20

begin array Pl1:x, 12 88 F[1.

~ Integer array M[ 1:m,1 :L] T .x],
iﬁteger 8,C, ,f,g, 1, J,r,t,w,zg
rea

iz“o)w:u()g :

for g:ulfste 1 until P4 do
\ begin real L; 1t=i+l; |
g for Ji=1,2 do M[i,dgznread(eo),
- M[i??T-«g, d'areadseo
for Ji=1,2 do Plg, j]:=read(20 e
“Ple,3 'zL:mTﬁksqrt P[g,T]Ta+P g,a]re),
- Plg,1]=12xP[g, 11/L;
. P g,e -“12)(:? g,e /Lg
; ~ti=read(20);
o i1f t>1 then S '
, begin array"HFr1 2,1 t] H[1 2, :t],
T =3t31 tep 1 unﬁil ta HF[1 ] d(ao)‘é"
Por J:=1 ste 0 impea g
i orj'n] gtep 1 umt do J[JJ‘ﬁrg&d(EO) j:

l

N
P ¥
>

T

h_.Jn._;

Ji=1 step 1 until t do
e 1n H[1 i =(t= t~17” Dt
(2,4 ~“(J 1 )3 ‘jif“

S "QTszwQ[t]:u1, s
. for Ji=2 step 2 until t
or J=w3wate342 unﬁil t-

o c‘
S:Jm
o

}-b

'i

3




for Ji=1 step 1 until ¢ do

TFL1) 3] 1008, 3 T5= (L3 IXEY/ (B Gl 1,4 1x(51));
for Ji=1 step 1 until t do Flg,J 1,3]
for ci=1,2 do ‘
Tor J:=1 step 1 until ¢ g_
HFle, 3]s ﬁ[c,J]xﬁF[c,J]
f11:ndot§HFt },1,t,3§
£12:=dot (HF| 1, 3 2136,

»10t,3

P[g;5]’”f12/f22 o
Plg,6]:=f12/F113 o
P s,g '=1/if11-P[ ,5} f12;;,
Plg,8):=1/(r22-P(g,6[x£12)}

f22:=dot (HF(2, J
£ =1 gt t1l
T}Qr'] Ju(GxBlTl 3 ixQ[unZﬂ Y7 (3><(E"1 IXL) 3

1,
Hl2,]
H{2,J

wo 0o s

4] :mdot J[J], P ,J):

T{ ]’”133 . ‘

,7 n“P g,8 .ﬂLlXEXread(QO)/L,

2 4) s=Gxread (20)/L;
1

3

’2

23

:=Flg,13]1=1; :
1= g,#},aFEg,6]:aFEg,8]:wFEg,10].»F{g,12] tmli 2
t=F t=Flg,9]:=Flg, 11]:=23 R

_;“F SJS gy 7

tep ! until d-1 do

s L
’o do M[i,J]'sread( 0)51
3v

end Array P hold (1)0 s,(2)sin,(3)1u(4)T,(5)C12,(6)cg1, ‘ i;§
| (7)K12, 8)K215 | R

- for 1i=1 step ! until m do ;
T Af awvs(M[4,1T-MI,2 w/ -1 then |
‘=(abs(M[i,1]-M[i,2 )+1 X33T e e
‘kcomment Above statement calculates the width of the T
o h stiffness band, S , b

"’begin arra S[l 3Xn .w] ,“‘ ' » f ‘{‘  , !
£ *”?8% 1:=1 gtep | v Ee e Gt
‘ B r Ji=1 ateE 1 Wntil w dd"S(i;d]'no,ug

m

H

- for 1 =1 stap 1 until m.d
‘Tepin int&ger MiJB, reaI”?? PQ,P3,P&,P5,P6,P7,P8,
i g:“ ¢




P1:=P[g,1]; P2:=P[g,2]; P3:=P{g,3]; P4i=P(g,4];
P5:=P[g,5 B; P6:=P[g,6]; P7:=P(g,7]; PB:=P{g,8];

ML33:=3xM[1, 1]
S[M133-2, 1} 1=S| M133-2,1 +P1T2xP4+P2T2XP7,
+P IXP2X (P4 ~P

S{ML33-2,2] =S MiJ3~2, ;
S[M133-2,3]:=5[ M133-2,3]-P2x(P7+P6xP8)/P3;
S{M133-1,1]):=8[M133-1, 1]+P212xPu+P1?2xP7,
S[M133-1,2] t=S[M133-1,2]+P1x (P7+P6xP8)/P3;
S Mi&§33j ;S&?ij3j1]+(P7+P6XP8+P8PP5xP7)/P3T2,
=3xML 1,2
s[ML33=2, 17 :=S[ M133-2, 1 +P112xPL4+P212XP8;
S[M133-2,2] :=S[ M133-2, 2]+P1xP2x (PL4~P8) 3
SIM1J3-2,3]:=5[M133~2, 3| +P2Xx(PB+P5XPT7 /P3,
S[M133~1,1]:=8[M133-1, 1]+P212xPL+P112XP8}
S{M133-1,2]1=5[ML]3-1, 2] ~P1X (PB+PSXPT)/P3;
s{M133, 1] :=S{ ML 43 11+ (P7+PoxPB+PEIP5XPT)/P312;
comment above statements set up diagonal elements
in the S matrix,

=3xabs§M[i,1]—M[1,2]),

1f M(1,1]<M[1,2] then | \

begin ri= 3xM 1,117 ,
S{r-2, t+1 s~P172xP4+P272xP6xP8“-
S[r-2,t+2 m~P1xP2x(Pu+P6xP8)'
Slr-2,t+3] s=+P2X P7+P6xP8é/P39
S{r-1, t]-u-P1xP2x(PA+P XP ,

S[ra1, t+1%'=—P2T2XP#+P1TEXP&XP8

S r—1,t+2 'w~P1x(P7+P8xP6)/P3,

Slr,t= 1]-=-szP8x(1+P P33 -

S[r,t]:=P1xP8x(14P %

Slr,t+1]: n-(P7+P6xP +P8+P5xP7)/P3T2,

end
%Iég 3] 1300
in pri= XM 1 2 3
r~2,t+1 'n—P1TQXPh+P2T2xP5XP79'
Slr=2,t+2] t==P1xP2%x(PU+P5SXPT) 3
Slr-2,t+3 'n~P2x(P8+P5xP7)/P3,
- S[r-1,t]:=-P1xP2x (P4+P5XPT) ; :
S[r-1, t+1}‘a-P2T2xP4+P1T2xP5XP7,-
- Sl{r-1,t+2 =+PIX(P8+P5xP7)/P33
8 r,t -1] -«+PEXP?X(1+P5 P3,
Slr,t]i=-PixP7x(1+P5)/ =
. d-S[r,t+1].a-(P7+P6xP8+P8+P5xP7)/?3T2, .
: -eng_{_ S
end above statements set up. off diagonal elementa,
Yi=read(20); [" } Pact k - Oy
begin array Bl 1 SXn, .y 3 nteger ,33
— . for {i=1 step 1 until 3 do ' e
~Tor J: at step 1 until y dd“E[i,Jj*mQ,,_,fV;

for fzul atep 1 until y do

begin integer p,qQs . - ,;
'—‘&.‘.m" 5 AL
"“be texbidv,ilpjlﬁsl;ﬂADI

NG*GASE#Nf_T‘”




write tex?t dv, MEMBER*REACTIONS***TONS
[t4s].[4s]F MENTS¥XHTONSWTT[ 20 ][ 8 ]
No [AsTME o 781END*1L751END*2L1081E
[7s EN *Qqul
zi=read (20)}
for c:=1 gtep 1 until z do
begin p:=read (2073 q: nre"a(eo),
for 1:=1 step 1 until m 4o
I"—b=M{i, e and q =M 1,2T then
begin g:=M1,37; t:=Tlgl;
L:=Plg,3];
ng ;

begin array N[{1:t], HF[1:2,1:t], H[1:2,1:t];
rea 1, f12,f22,m1,m2,M1 M2,R1,R2,81,82,W;
for 1:=1 gtep 1 until t dqg Nti].=0,
Wi=pread(20);
for a:=1 gtep 1 until

| NT”]'=WXLT§?(a-1)x(T (aJTT/(t~1)) (24x(t~7));

write(dv,forma %i f+pc ;
ND*

o

R1:=R2:=WX

hi=pread (20);
 for e:=1 gtep 1 until h do
begin Wi=read (2073 li=read(20); 1.a12x1,
| 1s=RIHUX(L-15/25
R2:=R2+WX1/L; |
for ai=1 step 1 until t do
it §a~§ x] ! (I.é) hen \/(6=1)

s=N{a ] +Wx (L-1)x{a="1) 1

else N[a]:wN[a]+lex(t )/( -1)3

ﬂ
engs

(f11:cdot HF 31,
o fl12i=dot(HF[1,]]),
< fe2:i=dot (HF
o ‘|a==dotiHI"[1 ’
- m2i=dot (HF 2;d y
Mis=(mi~-£12xm2/f
U M2im(ml-f1IXMT) /1
; 1*u+R1+{M1~M2 /L3y -
' 32 ={4R2-(M1=-M2 /L;

,{;fwrite(dv,format( 8sndql),c),

. write text(av,[) :
;:J'.write(dv,fermat( sndql),p),‘f

-1 write text dv,%, Ly

"y;;;write(dv,forma QLnddl) q),‘

LY. (\}-a—a
5 a—n A N A

e Nt PO )




write (dv, format ([ 4s+nddd.dd g;
write (dv, format (] 4s+nddd.dd 3
write(dv, format (] 6s+nddd.dd - 1/123;
write (dv, format ([3snddd.ddde §,M2/12)3

B 3Xp—2,f].nB[3Xp~2, }nP{g,2}XM15
B 3xp=1, £] :=B[ 3xp=1, £]+Plg, 1 ]xM1;
B 3xp, £] 1=B[3xp, £1+51;

B[ 3xq-2, } :=B[ 3xq-2, §+P%g, }XMEB

- B[3xq~1,r]:=B[3xq-1,£]~-Plg, 1]xM2;

3Xq, "‘B[BXCJ.: ]'*'523 ‘ ‘

end;
end°

end calculation of fixed end moments and shears ;

xt=read (20); B |
for 1:=1 step 1 until X do i R
begin t:=3xread(207; ri:=read(20);
“‘g'?br Ji=1 step 1 until y do Bft+p-3 11:=0;
for s:=1 step 1 until t+r-4 do if t+r~s~2 U
then s,t+r-s-§I'nO"
for Ji=2 step 1 until w do’ S[t+r-3,3]~ao:

end above stafements impose zero deflexions ‘
where ano. of 1mposed zerosg

solution of equations. i R
for 1.=1 ste 1 until 3xn do
begin S[1, QFETsri,1]46“£(s[r,1-r+1]ra 1,

1r 1>w then i-w+! else 1,1=1,1));
ki=1f IXn-id>w-1 then w eTEE“an-1+1,
for J:=2 step 1 tntil k do - ' |
ST, 31 :=(5T1, 9] -dot (8l r, I Tor+1], S[rod+i~rg | ;
: J+1>w+1 then J+i-w else 1,1-1,r 573T1,1], ;
end formation of triangular matrix, &

back substitution. Ay Eh
for J:=1 step 1 until “dg
E_E~§ in for i:=1 gtep 1 uﬁ"Tl 3Xn do
[I‘"] =(B[1 3i~do (87, L-r+ ,B[r g
if I>w then i1-w+1l else 1, 1— ,rS
?[3x?,3%-=823 " J]/?[ng, }i S
or sem ANl - ste - un
B[, 3):=(Bl4,] ot(S[i,r-i+1T"B{r,J] 1+1, e
o1 3 Xn-i>w~1 then 1+w—1 else 3xn,r))/S[1,1},'g,
end back substitutiona S e . ‘

}%[1,1], i

for Ji=1 step 1 untily do = S
Yegin integer p,qs. real ﬁ?i, 1, sz Mye Fz, | qu,
—write text(dv, §;§a LDADING*CASE*No.ii

write(dv,forma
write text(dv,

c+ :
= MEMBE FORCES**TONS[ 158
,>,1«~_ - MOMENTS*TO No., us 1EMBEBL751§ AR
sl e LﬁsJTORSIONLﬁs E!

ajE




for

1:=1 step 1 until m do

Yegin array dal1:70]; m.madu 31;

3[TT:=Flg, 1]1oxPlg, 4 +mﬂm 2{roxple, 713
al2]i=plg, 1]xPLe, 51x(P Wl w
d[3]:==P m.muxﬁmmmy +mwm.muXm 2,8 w\ »313
e B R

: s 11X ’ 29 & 2313
mmmw" @ m ,:tu F wxw @m?%m.mﬁi%& ’

wwﬁm T23

a7y :mﬁm,d ﬂmeﬂm 1345 ﬁm 2lroxple,6]xPlg,8];
d[8]:=-P{g, 1]xPlg, 2 1% (P S%E.mmxw m.%?
a{9]:=-Plg,2)rexblg, DL xPlg, 81
3170] 7 bln 20 mnm x:+1 6))/2 30
Al 11]imPl e Ix (Pl o B 4Pl e, TIxPLEs 51 ) /P2, 315
af 1o} mtE el it e, o

= ) X - %h
al 14]:=P m~g amxwmm.k +P mamuameﬂm mu

s=3xM{1, 1] q:=3xM[1,2]; ‘
%u:wuuam“wxﬂuwﬂﬁmmuum&_“mmvwmmﬁ!:u +d[3])x
(Blp, 3)-Blaq, 31)+d[7]1xBlq-2, 3 ]1+d[8]xB[q=1,3];
My 1s=d m_xw?..m..um&?mxmg..i +a[5]x
Ammﬁu u!wﬁ uuuv& 8 XB Dlmauua @mxw !Ayuua
Fz:=d[3]xBlp-2, 1]+d[5]1xB[p~1, 3 )+aL6]x mﬂvguua
Blq, 3])+d[10]xBlq~2, 3]+d[ 11]xB ﬁw.; il:
Mx2 mdl 71xBlp-2, 3]+ B]1xBlp=1,4 1+l 10{x
b ST M ) S
= D=c, D=

8?2.&5.3?@@& xB[q~2, u?.& 12]xBlq-1 L?
Mql:=(-Mx 1XP[g,2]+My 1xP[ g, 1])/12;
zmm.nm..zxmem memxwmm ww\ﬁ
Mp o= (Mx 1Pl g, 1] ﬂxzm mt\dm
sw»dmﬁm<.nowsmwﬁ m za 1)

write text(dv,[)])s
sapdmaafwoﬁamﬁ m:aﬁ.v z:;::
write text(dv, JPV V

write(dv, forma ppv zmu vw‘

nd;
rit

ia'

‘write(dv,format (] #s+nddd.ddd mzﬁdw

supdma<swo%awa m+snm mamﬂwv
write (dv, format (T bs+nddd.ddd]}, Mpfs

write m<hwow§ma 4s+nddd.ddde, zamw

e text(dv JOINT{ 4s x%oﬁﬁaz
o @g L T
n

step 1 u 1l n do
Sﬁwamﬂm<~woa§mdAhmmsaﬁkvvuv“ G
write text(dv,[) . S
idudm dv, format wm+ﬁn aa&&&a&m mwX#imuu wm
write (dv, format (1 6s+nd.dddddddq]), B[ 3x1=1 w m
write aﬁwoﬂéﬁ [654nd. d444dddda, w LB[3%1,]




Abﬁendix‘z;

Member Properties of Perspex Model.
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MEMBER PROPERTIES.
PERSPEX MODEL STAGE 1.

LONGITUDINAL GIRDERS .

STATION y2 J d
1 0. 1667 1,000 0. 0096 2,000
2 0. 1449 0.954 0. 0091 1. 909
3 0.1256 0,910 0. 0087 1.820
0.1087 : 0.862 0.0082 1.735
5 0.0939 0.82 O 0078 1.652
6 0.0810 0.786 0.0074 1.572
g 0. 069 o 748 0, oogc 1.495
0. 059 11 0.0066 1.421
9 0.,0513 o. 5 0, 0062 1.350
10 00,0439 0.6 1 0. 0059 1.282
1 0.0375 o. 608 0.005% 1.217
12 0.0321 Zg 00,0052 1.154
1 0,0274 0. 0049 1.09%
1 0.0233 o 519 00,0046 1. 088
15 0.0199 0. 492 0,043 0.9 g
16 0.01Z 0,487 0, 0040 0,93
1 0,01 2 0. 443 0.0038 0.886
1 0.012 0. 421 - 0,0036 0,841
19 0.0106 = 0,400 10,0033 0.799
20 0.0091 0.380 0. 0031 0.760
21 0.0079 0.362 0.0029 0. 724
22 0.0069 0.345 0. 0028 0.699
2 0.0060 0,330 0.0026 = 0,660
2 0.0053 0.316 0.0025% 0,632
25 0, 0047 0.304 0.0023 0,608
26) 0.0042 0.293 D.O022 - 0.586
2 0,0038 0,284 0. 0021 0.567
29 0.0032 0. E o 0.0020 0.538
30 00,0031 0.26 S 0.0019 0 0.528
31 0,0029 0. 260 L 0.0019 0.521
.33 0.0028 0.257 0.0019 0.515
TRANSVERSE GIRDERS. o ‘ e
STATIDN I , y2 ‘ J 4
1 = 0.1667 1 ooo 85,0096 2,000
9) 0.0513 KS L 0.,0062 ',1.%50
17 , 0.0145 S 0.0038° 0,886
25) 0.0047 ;0 304 0.0023 0,608
0.51

33 0.0028  0.25T7 0.0019




MEMBER PROPERTIES.
PERSPEX MODEL STAGE 2

IONGITUDINAL GIRDERS.

STATION I y2 J d
1 0.2797 0.912 0,0105 2.12
2 0.2474 0.868 0,0100 2,03
2 0.2186 0.822 0.0085 1.945
0. 1928 0.78 0, 0091 1.860
5 0. 1698 0. 745 0.0087 1.777
6 0. 1494 0,706 0.0082 1.697
g 0.1313 0.670 0. 0078 1.620
_ 0. 1153 0,634 0.,0075 1.546
9 0. 1011 0,601 0.0071 1,475
10 0, 0886 0.569 0.0067 - 1,407
11 0,0776 0.538 0.006 1.342
12 0.0679 0.209 0.0061 1.279
1 0.0595 0,481 0.0058 1.220
1 0.0521 0.455 0, 0055 1,163
15 0.0456 0. 431 00,0052 1.110
16 0., 0400 0. 407 0. 0049 1.059
1 0.0351 0.386 0. 004 1.011
1 0.0309 0,366 0.004 0.966
19 0.0272 0.347 0,0042 0,924
20 0.0241 0.323 0.,0040 0.885
21 0. 0214 0.31 0. 0038 0,849
22 0.0191 0,299 0.,0036 0.815
2 0.0171 0.286 10,0035 0.785
2 0.0124 0. 274 0.0033 0,757
25 0.0140 0.264 0.0032 0.733
26 0.0129 0.254 0.0031 0. 71
2 0.0119 0,246  0,0030 0.692
2 0.0111 0.240 0.0029 = 0.676
29 0.0105 0.234 0.0029 - 0,663
30 0. 0101 0.230  0,0028 0,653
31 0.,0098  0.227 0.,0028 0,646

33 0.0095 - 0.225 . 0.0027 0.640

TRANSVERSE GIRDERS.

STATION I 2 J B
1) . 0.3842 0.216 001100 2,125
9) - 0,140 - 0.446 0, 0076 1.475
7 0,0481 o.egz S 0,0052 - 1,011
25 - 0,0188 - 0.182 00,0037 0.733
O. 156 0.0032 - 0.64

33)  0.0126




MEMBER PROPERTIES.
PERSPEX MODEL STAGE 3.

INTERNAL\LONGITUDINAL GIRDERS.
STATION I ye J d

1 0. 4492 1,125 04105 2,250
2 0;4031 1.079 0.3889 2,159
ﬁ 0.362 - 1.035 0.3680 - 2.070
0.3252 ‘0,992 0, 3480 1.985
5 0.2916 0.951 0. 3286 1,902
6 0.2613 0.911 0.3101 1.822
g 0.2341 0. 873 0.2923 1.745
0. 2096 0,836 0.2753 1.671
9 O, 18&7 0.800 0.2591 1. 600
10 0.16 0 O 766 o 0.2436 1,532
1 0. 1504 ;o 733 0.2289. 1,467
12 0.1347 Z - 0,2149 1. 405
13 0,1207 Zﬁ : 0.2017 1.345
14 0.1083 . 0,189 1,289
15 ‘ 0.0972 O. 617 0. 1%%5, 1.235 .
16) 0.0874  0.592 1184
1 0.0787 0.568 o 1 62 1,136
1 0,0711 . 0.546 0.1467 - 1,091
20) O, 0584 0, 20 041297 0 1.010
21) 00,0533 041222 0,974
e2) 0.0487 o 47a o 0.1154 0 0.9h0
2 0,0448 25 o 0.1093 0,910
2 . 0.0415 Uo. .o 0,1038 0 0,882 0
25) 0,0386  o,429 0,0989 0,88
26)  0.0361 0,418  0.0946 0.836
27) 0 0.03%1 0,409 00,0909 0.817
28) 0.0324 0,401 C0.0879 0 0,801 5
30) 0.0300 0,389 . 0.,0834% 0,778
31y 0,0293 0 0,38 00,0820 0,77V
- 32 0.0289 0,383 0,0812 0,766
,33 oy 0. 0288. vio.382 oo 0,0B09 . 0.765 .
TRANSVERSE GIRDERS, = e
,STATION BRTEI PR ye oo d d
1 0.8730 1,125 . 0.6641 2,250
.9) 0,392 0,800 0.3778 = 1,600
- ,17 00175 0.268 0.2038 1,13
25 : 10,0894 0.359 0.117u; 0,858
O. .

.33 (00877




’V ;A§néndix~3 :¢'

 lutomatic Design Progrem  ,7f' L




Eégig_comment Automatic design program for 3 span prestressed
concrete bridges;

library A0,AG,A14;
real E,W,la,fct,fcw,fmint,fminw,tw,cs,tbfs,tbfc,y1,x1,h,h1,
ttf,21c,22¢,218,228,ylec,y2c,y1s,y2s8,1c,Is,y,ds,dec,
tr,weight1,weightE,ft,fb,AC,e,fx_'fpt,RO)EgG;I)WG,WQ;
nl, P1l,Mpos,Meg,Ps;
integer d,dv,f,1,J, k,r,s,st,w,x,nw nu,g,m,t;
real procedure dot(a b, Psqsr) 3
va lue P,q;
real a,b; Integer p,q,r;
comment innerproduct with lower and upper bounds;
begin real sj 8:=0;
for r:=p step 1 until q gg s i=gtaxb;
dOt'“Sp '
end dot;
proc"aﬁ%e solve(s, b,n,w,lds)
va%ue lds,n,w; array s,b
integer n,w,lds;
beein Integer 1,3,k;5 ,
for 1l:i=] step_l until n do
begin s[i,lj T=s3qrt (sli, 1T-dot (s [r, ~r+1]T2 1,'
if i>w then 1-w+l else 1,11 ,r)),
i=1f n-i>w=1 Then w else n~1+1,
for—I'we step 1"until k do
8lT, 3] :=(sTT, J]-doth[r,TrH] s[r +-v],
if J+idw+1 then J+i-w else 1, 33/6[1,1],
end formation of triangular matrix;
back substitution:
for Ji=1 step 1 until 1ds do
begin for 1:=1 gtep T until n do
Tol1,3]:=(0l1,iT-dot (s [T, 1-r+1],0[r, 3],
if i)w then 1~w+1 else 1,1~1 ,rS) /8 1,1]3 -
YIn,1:=bn, 31/snyTT5 | R R
for 1:=n-1 step =1 untill 1 do R
Bl1,3]:=(b "‘?-—dot'('" I,r-1%T],blr, 31, 1+1; S
if n—i>w-1 then 1+w=-1 else n,rS)/ t 1, ] :
d end solu%ion of equaEIEhsg,m : G
end;”
Erooedure find I(dp,1nert1a,tfb,w1dth,centroid),
value tfb,dp,wlidth; =
. Teal « dp,tfb,w.dth inertia,centroid, B e
comment calculates moment of 1nert1a from section sizcs, i
begin real At,Ayi,Adt,It; e S
rocedure sum area(breadth depth,ctr)g ‘rg'“f
value breadth, depth,ctr, P I
~real breadth depth,ctr,
~ begin real A I,Ay,Ad; : - :
- I*ébreadtthepthg At uAt+A A R T e
'qudepth72/12, It: aIt+I,‘__‘ﬁvy R R
vi=AXetr; Ayti=Ayt+Ay; - . o o o
i Ad:»Ayxetr, Adt'wAdt+Ad, s

[
2
[3
2




At :=Ayt :=Adt =Tt =03
sum areaéwidth ,tEh, tfb/z),
sum area(tw dp,dp/2+tfb)3
sum area(width,ttf,dp+tfo+ttf/2) 3
y i=Ayt/At ; It.—It+Adt~AtxyT2, ‘
inertia:=It; centrold:=y;
end find I;
procedure prelim sizes(ml,11,qs,b);
array ml,11,b; 1nteper array qs;.
comment designs size of section from range of bending moment,
begin for J:=11,21 do -
begin Weiwht1:=d, mi[3, j] :=0j
TSE1n n i tbfs-tb£) /11 [£,2]
begin h:=4x(tbfs~tbfec)/11(f,2
Rl t=bx(ds -tbes-derebre),/11(£,2]3
for 1:=1 step 1 unt111d+11%% ‘j
Pegin 1f T=T andIT[f, 1)< 2 then .
x1i=11[f,2]-11{F, 1 }+(1 1S/deTTF 1]
else xli=(1~1)/ax11[f,1];
Triohx(x1-x112/110 7, ei}' tfi=tbfs=tf} |
y1'~h1x(x1-x1T2/l1Sf 2]); yli=ds-ttf=tbfa-y1;
x1 n(laxcsxéttf+tf +tWXy1)XO.15x1ﬂ[f 1]/(432xd),
m1(3,3):=m1[3,Jl+xIxqa[L]xvl2x(1+(£=1 xd),J]
if J=21 then Welghtl:i=Welght1+xixqs[1];

;‘!‘ v;

- Zles=12x(m1[1, 21]+m1[3 21]-Rox (m1[3,211+m1{2,211))/
(Roxfct-fminw 5
Z2¢:=12x(m1{1,21]4m1[3,21)~Rox(m1[3,21]+m1[2, 21]))/
fow-Roxfnint ) 3
gm-uAb«m13n1hmﬂz11iﬁmdmw3n1me1 n]ﬂ/
’ fcw-Roxfmint)
Z2s s==12x(m1[3,11]+m1[2, 1] —Rox(m1[3,11]+m1[1 11]))/
(Roxfect-fminw) 3
fti=fmint-12x(m1{2,21]4m1 3,211)/2z2¢;
b :=rmin/Ro+12x(m1[1,21]1+mi[3, 21])/(Roxz1c),
Ac’=th(dc-tbfc-ttf)+12xesx(ttf+tbfc) :
_ e.=ZIcxzzcx(ft-fb)/(Acx(fbe1c+ftXZEc$)g
if ed=-ylc+3 then : _ ‘
ngin e:=-ylctys A
=12x(m1[3 21]+m1[2 212)/22c+(21cx522c+Acxe))/ i
(Roxzecx§u1c-Acxe))xE12x mi{1,21]+m1(3 21)%/Zlc+rm1nw),
z2c:=12x(m1[1,21]+m1(3,21] ~RoX (m1[3,21]+m1 21]))/ ;
fow-RoXex) 3 e
tbfe:=Z1e/Z2exttr; Lf tbfedh then tbfc'aﬂ
4 tbfc:mentier(ioxtbfc+o 5)/1037 ,
en ena, - : _ )




y2c: =(22c+sqrt(22c72+48xcsx((ttf+ttf72/£brc)x22cxttf
/2)))/(28xesx(ttL+tter2/tofe) ) ;
de :=y2c+ttf/2+y2exttf/tbfettbfe/2; dc,~entier(dc+1),
recal:find I(dc-ttf—tbfc,lc,tbfc,12xcs,y),
ir Ie/y>Zlc or Ic/(de~-y)>Z2¢c then
begin x1:=Ic] ylei=y; y2c:i=de=y; dei=de=0.53
goto réecals te
end ;
'I_é—-'-‘-x‘l 5

£t :=fminw/Ro-12x(m1[3,11]+mi[2 n])/(Roxzes)g
bimfmintt12x(m113, 113+m1[1,113) /218
Ac :=(ds-ttf-tbfs xtw+12xcsx(ttf+tbfs§’
:=Z18x2Z2sX(ft-£v)/ (Acx(fbx21s+ftxzzs§)5
%g.e>y23-3 then | a
egin e 1=y23 =35
fx:=-12x(m1[3,11}+m1[1,11])/le+SZ2sx(le-Acxe))/(Roxz1s
x (Z23+Acxe } (=12x(m1[3,11]4m1[2,11])/ 2Z2s+fminw)}
Z1s:==-12x(m1[3,11]+m1[2, 11]-Rox(m1[3,11]+m1[1,11]))/
" (Roxfet-rx);
if Z18>Z2s then tbf8'=ttfx215/225,
tors: =ent1e‘TTﬁktbrs+o 5)/103
end'
°u(le+s rt(zvs|2+uaxcsx((tbfs+tbrs12/%tf)xz1sxtbrs/
?2uxcsx(tbrs+tbfsrz/ttr))
ds-=y1s+tbfs/2+¥1sxtbfs/ftf+ttf/e,
ds:=entier(ds+?
recall:find I(ds-ttf~tbfs,Is tbfs, 12%cs,y) ;
Af Is/y>21s or Is/(ds~-y)>22s then
begin x1:=Is3yla=y; y2s =ds—y; dsi=ds=0.53
goto rccall,

‘T =x1 ‘ ‘
i Is(ch(1+R)T2 then
Degin Is:=IcxX(1+R)T2;
T yesi=sqrt I//(1QXCsxttf+12xesxtth2/fbfs))J'
ds :=y2s+ttf +yesxttr/tbfs+tbfc/2,
ds :=entiler(ds+1)
. recall: findI(ds»ttf -tbrs,x1,tbfs, 12xes,y);
. if x13>Is then A -
begin ylst=y; y2s:i=ds-y; ‘
ds:=ds-0.53 Is ax\, goto reca14

1]

"end) .
- de wy25+y1s,',
end else . :
ET‘B?“TT“=Ia/{1+R)72 ' ‘ ‘
y2e:=sqrt (I (12xasxttf+12xcsxttf?2/%bfc))9; L
 des=y2ct+ttf/24yRexttf/tbfet+tbfe/2; dc'wentier(dc+1), L
. recals: findI(dc~ttf~bbfo,x1 tbfc,12XCS:Y): S




pw x1>Ic then
mHs ylei:=y; y2ci=de~y; dci=de-0,53
Te: =x15 goto recal5;
end;
ac“u%mo+ﬁgou
end 3
Welght2:=0;
for fi=1, m w do \/ ﬁ ]
dmmps hi=4x(tbfs-tbfe)/11 £,2]3 :
112U (ds~tbra~de+tbre)/11(1,21;
mwm . = dgmmwﬁw awd mm. 2] th 1:=11[r,2]
in 1f an £, 1JK11 ¢, en xli= 22 =
Hdﬁthqup dv\m 11[£,1]
else x1:=(1-1 w axii[e, 113
te:=hX{x1-x112/11{1, m_w, aw.udUngdwh
y1i=hix(x1-x1t2/11[¢, wm yli=dg=-ttf=-tbfs~y1;
SmpmSam.nzm»msam+A“memxAnah+dwv+asx<dvxC.dmx
Hdﬂw,duxaaﬁpu\A:wmxavw

=T03 Oﬁmsﬁm oﬁmsaa<vw -
zuaam text (dv, mm AUTOMATIC*DESIGN*QF*3%SPAN¥BRIDGE, [ ,
F,S.AND¥B, /.s.****bmmom*czH<mmee«****‘d\m\mm mmpppb
copy text(20, a<“h.Hvu
8 uuWh .ﬂmc m..a S mm L
begin array ties, 1 mHMGUbMA :s1, MI[1: 1,1 m“_b
nteger array Qs[1:d+1 R o
Qs{T):=Qs{d+1]t=13
ﬁ u J:=2 step 2 untll d do @mmum
J:=3 step 2 until d-T do Qs uu ;
Hs array HF[132, 1:8t], mdﬂ 2, .mﬁu @ﬁg.mﬁu mﬁg astd muu
real 1,I,f11, ﬂém fee; .

ti=

!"”!

Tor §:i=1 step 1 until st do

begin H[ 1] .uMmm Amﬁt4qh.

‘ mﬁmhu*“ w Amﬁ 1)

end; e ‘

for 1:= 1,2, w a e

for J:= 1,2 do mH.uu.nﬁmeA cvu seingen

R: HmmnﬁmoV,tis.nﬂmmnAmcv la t=read mc 3 s~“aﬁmmmﬁacve
zm.awmmaamcwm SQ.u&mmaAmcwu nui=read(20); Eisread(20)3
G:=read (20); twi=read(20); fet:=read(20)3 wawﬁa.awmech

£ 3

W%vw

hoz.n&mmaﬁmmvw wavs nwmmaﬁmcvw wﬁd awmwamacw mb.ﬁwmmaA
wo.uﬁdocnmov\MCC» zwom.EZﬁmm.xcu mm.nﬂmma 20 i

aﬁdu.npﬂmau.udu




for fr:=1,2,3 do
Begin 1:=L{?,TT/d;
for 1:= 1 gtep 1 until 4 do
begin for J:=1 step | untIl st do
begin if f=1 and Llf,1J<L%f"§] then
x1=2x(L[T,2]-L[f, 1]1+(J 1ng7‘(‘% 1g+(1-1)><1)
else xl'mzx(( ~1)x1/(st=1)+(1=1)x1
I“;T1+Rx(1«x1/L[f,2]ET2)72~
HF[ 1 J]-=HP[2,J]=a(Q J]xl)/(1x12):

[
3

®
£

n

i

Tor ki=1,2 do i

For J: a1 ’atep 1 until st do HP[k,J].=HF[k,J]XH[k,J],
'f11:udot HFE1 J%,i[1 231 1 »8%,3);

f12:=dot (HF[ 1, ,I{ i 1,8t,3)3

£22:=dot HF[Q J]: 1:3t:3 ]

k.a(f 1)xd+13

PEk,l] afle/fze,,
Plk,2]i=£12/£113

Plk, 3]-=1/ f11-P{k,1}xf12};
»P{k, }.31/ £22-Plk,2]x£12) 3
Pk5 ”19

begin array S[1.122, .w],B[1 122 13 21],
for 1:=1 gtep 1 until 122 do
Eegin for §+=1,273,0 do S[T73]:=0;
Tor 3 =1 stgg 1 until 21 do B[1,J]:=0;

-

3”1 :3

- r L do - ‘

T 1:=1 ste ”T'u t11 d do
-;Q_gin kKi= i?-i xd+i: ‘
R 2 1)

1, wSszk-1 1 {k,S 5.
;~s[2xk,1 wu[Exk,1]+z X, %+P k IxP| x +P k,
: +P[k k, 1]1xPlk,3] /P[k: ng b‘f
‘S[2xk+1, g s{exk+1,1 +P[k 3 |
5[2xc+1;2 S 2xc+1,2] - (B[ ,4f+?[k,1]x?[k 3]%{
H
s 2xk+2,1]'ws[2xk+2 Plk,3]+P [k, 2]xPk, 4]+
o [ Y % (SK: }XP[ :3]}/?§K: §72:«
S[2xi~1,3 zP[k,z xP[k,u §oEa ¢
s{oxk-1,4]:=-(P{k,3]+P{k, 2 P K, 4 )/P[k,5]g
5{2x, 2 § s=P I, 4]x 1+P{k,2] P k 5 a
‘ 2xk,3 o fk 3 +P[k 21xP u +P k,4]~f
| ¥P [k, 3><Puc i) Plk,5]72

,,  end rmation of stiffness matrix}



for k:=1 step 2 until 21,22 gtep 1 until 31 do
begin 1:=1+7;
B[2xk-1 1]:=P[k,3]1;
Blads,1 1152 (p Lk, 3148 [, 21 [k, 1) /PLic, 51 5
Bl2xk+1,1] :=P[k,2]xP k, 13
B[2xk+2 1]:=-B[2xk,1]; =
end formation of Influence line loading vectors,

for k:=1,21,41,61 do
begin for K =1 step | unbil 21 do B[EXK,J] =03
T for Ji=2 step T“EEEil w do S[2xk,3]:=0;
Qgg x:=1 8tep 1 until 2xk~1 do 1f 2xk~x+1gw
- then S[x,2xk~x+1] =03
end 1mposition o? ero . displacements,

solve(S B, 122,w, 21),’

begin real spanj inte er k1; :
Tr TIT, 11<L[252T then span: uL[e 2] else spani=L[1,1];
T?'span>200 then cs =span/30 else c8 i=0.5;
nw s=entier (W/cs+0. 5)+1g'as =W/ (nw=1) 3
Af 1ag10 then Pl:=2.7xcs glse Pl w27Xcs/la,

g iy %tg do<75 then UDL[f]:=2.2 else

) n Gn o elae

,*ﬁﬁgr1HL31WWmMLwn]mrT%nm:

' IF Llr, 1 D400Tand LIf, 500 then ki:
IF Lie1 >5oo Then k1:i=2

. UﬁL[f]‘nkT sqrt (ﬁ[f,1])s
\ end°

“F“La 10 then UDL[f]~=UDL[r]xo. |
else L[TT""UDL{f]/lag R

n a
3
* gax

213

!ﬂ)

ndj

|—b

or 1= 1 step 1 until 21 do PRt e
in real A,max,min; = .

;21

for £:=1,2,3 do s
E in A.amax:wmin°a)”
for 1:=1 step 1 gpt%12d+1 do
begin ke={(T=1)XdFL)X2; g
if B{k,d})max then max,wB%k,J}; a;~ i
If Blk, k3ls

xfndcu(B[ex((f~ )xd+r) J] Qslr] 1,d,r xL(f,l]/(
7 LE A0 shen 1L, adi=in(i, sl+{ubelr] 4ol 0373)x
£ csxA+Plea e
else M?[Q,J]'aM1[2Pii;(UDL[f]+O 0375)xesx

<min Ehan min =B

QE_ B :
1f es<6 then. ttf m63 il
£ cs»6 and cs, cs 8 then ttf‘n? i

T cs>8 ana 19" ghen ttf’ﬂég*

3
L
oo
o




i cs>10 and c¢s(12 then ttfi=9;
AT es>12 then ttrf:=
ZTe:=12% MTTT,21]-M1[2 21])/(Roxfet=-fminw
- Z2c:=12x(M1[1,21]=M1[2,21])/(fcw=Roxfmint
Z1s :=12X M1E1 11]-m1{2; 11]}/(few-Roxtmint
Z2s:=12x(M1[1,11] =M1 2,11 / (Roxfet=-fminw
if Z2c¢c>Z1c then x1:=22¢ else x1:=Z1¢;
=(x1+sqrtl 17 2+48xasxt”f”§kx1))/(ﬂéxtthGs)s
ﬁexy’*'ttfg
1f Z2s>Z1s then x1:=22s else x1:=Zl1s;
yi=(x1+sqrt{x1 2+M8xasxt TTexx1) )/(”éxttfos),
. ds s=2Xy+itf; .
1f ds<dex(14R) then ds'wdcx(1+R) else de: =ds/(1+R) ;
dec:=entler(de+1), ds:=entier(ds+1);
x1:=1.7xL[2, egx(o . 28xUDL[2]Xes+0. 006xtthCs+(dc+dcxﬂ/8
‘. Yxtw/8000) /(( dc+dcxﬁ/ﬂ)xfpt) |
1f x1>tw then tw'ux1g tw uentier(tw+1)
thfci=tbfa.=ttf;
yie=y2ci=de/2; y1s.wy23 ﬂds/a,
‘again: prelim sizes(M1,L,Qs,B);
Sif abs(Weight2—Weight15/Weight1> Q. 05 then goto again,
end;
or Ji=1 ste 1 until 21 do
f:é hili(t58s—tbe) /L[E, 2] 5
b n h=4x S c se] s
h1-a(ds-tbfs«dc+tbfc§/L[f,2] , | 4
%QE 2 RS E ?Zi[doel then x1:=L(f,2]
1 =1 an s 1 T, en xVi=L{f,2]~
TTLLE, 1THE(L-1) /axLe, 1] T
else xl:=(1=1)/axLi{f,1];
tf:=hX{x1-x1r2/L[f ,2]} tf.utbfs»tf' R
| yie=hix(x1-x112/L[£,2]); y1'wd3*ttf~tbfa~y1’~f W
S Mi(3,3) =M113 3% +( 12xcax éttf+tf;+thy1x0 15xL[f,1]&ﬂ
T xestiixelex(1+(r-1)xa /(s 32xd), G

e D9 Wy Ao

w.

end 3
: end 3
end ;
end;
endsy

x i 1)x6+(nw~2)x75 Wi nwxg

begin array M[1:x,1:3],P[1s1 nw 1) .w] 3(1 21X(nw~1 .
g HF[1:é,1. ’1:H[1: Yy )

1nteger[arra 1Q[1-13 3 ,p e
S v 3 : .
~ for 1:=2 step 2 until 12 do Q[i} =l
for 1:=3 step 2 tntil 11 do Q1
‘a‘%;u;‘i-a1 atep11 until 21x(nw=1)
s egi fo j:w teg 1 until W do
~ . Tor m't, :




for j:=1 step .1.until 13 do

begin Hl 1,J):=(1 123
{2: : é 19 12;

,4,5,6,7 do
5 1f 3<3 The
=H§TtbfsJ€de)/L[1 2

end ;
for J:=1 2,
begin real

begin

=lx(ds-tbfs-de+tbfc /L[1 2l
T(J -1)xL[1, 1}/3+L[1 2]—L[1,1]

5 x:=3;

%ng>3 Eh%g(tbr £ )/L[2 2

egin hi=4X s-tbfe
:=4x(ds-tbfs-dc+tbfcg/L[2 2

:=(J~4)XL[2 21/6; 1:=25 xi=

end
tf.— x1~x1r2/L[1 2]}= tfi=tbfs=tf;
v1i=h1x(x1-x112/L[1,2]} /y1o=ds-ttf-tbfs-y1;
find I(y1 I, tf,12xL[1, ﬁ 2Y) 3

PH’%% =) Plg,2li=ts
21 i Ok L 12X LI, 11/X (14668 /2+68/2) ) 12) / 12xL{4, 1
FLied }kﬁ(?éxL?iE11/%x§é¥f)+LS{,1]/(xi%f)) (12 :

Péux 1+gtg/2+tf/2)/tw) X12xes) s
P g’8§ ”NQEXI/?[J:3]9
PoJ ]? then ]/= | |
P[3,71:=P(] 8]»“P[J 71/e,v~ i

h
X
(

begin array HA[12,1 nw~1] AV[1 2, .nw~1],r

incteger g,sum;
; reai dt,dt db,f\l f12 f22,5; f*'
Tor i: ~1 2 dn

or J: ;A step 1 uhbil nw—T do
; AVEi J} “39

”l

=1,2 do B e i
: ‘Bg"in 1f 1mT“bnen dt wwe-ancs/é e1sa dt:u(w-ca)/9~7 5,
T for g:=1 step 1 until 4 do T : :
=dt¥33 3%7333 aumzmo, ,;;am;

Il

8 Q‘, “SE§1n At :




1oop2/ db1=d§+cs, sum: ==s~iur§1+1:,L
if db dt%l then goto calel else oto loop2;

calel: AV[i,sum] [1,sum]Fnuxo. dbudt;/csg
AV[i,sum+1]'aAV[1 sum+1]+nux0 2x(cs~db+dt)/cs 3
end ;
end ;
or 3:=1,2,3 do
begin if J=1 Then
begin dt:=we+la-cs/2;

Tt1:=dt+(nl~1)x1a3
sum:=0; db‘vOg 1:=1;
end;. e
it 3= 2 then ‘
begin dti=we-cs/2;
t1:=(W-cs)/2-4. 5§
umgdg 1 ﬁa; dbb

gin d ZW cs)/2+4 55
dtl'aw—wc—cs/ég 1: "22 sumi=0j
sum: —entier(dt/cs), r=sumXcs § -
end ; v
T33b3 db:=db+cs; sum: wsum+1°v f
ir db/dt>1 then goto cale2 else oto loop3;
calc?: if dbydtl hen oto calc3 else
begin HAT1,sum+1]7=HA [%TE“ +1]+(ab-dt)xUDL[2]/3
x(cs—(dbwdt)/a) es S
HA[i,sum].nHA[i,sum]+(db~dgixU?L[2]/3X(db-dt)
‘ e8)3
dt:=db; dbi=db+tcs; sum wsum+1g
goto calc29: L

- caIcS HA[i,sum]‘aHA 1,sum]+(cs-db4dt1)xUDL[R]/3
‘ X cs~(cs~db+dt1)/
HA[i,sum+1]'mHA[1,sum+1g 2cs~db+dt1)xUDL[23/3 ,
, -~ x(ca»db+dt1 /(2xes); - 4

a1 2,3, 4 5,6 do h '
n i %g then x:=1 else x wE,
né;ﬁ bfs-tbfe)/LlX, =
~hli=lx(ds-tbfs-det+tbfe /L[x,el3 SR a b
o for 'w1 ste 1 until 13 4 ‘

| the nL[1“§ -L[1 1]+(f~1)/3xL[1 1]+ ,;;

;xL[1 1]/ ‘ '

"~ else x1i= Foui Ttz 23+(3 1)%L(2, 23/723

L E?T;hx(x1-x1T2/L[x,zi £ imtbfs b0}
y1'mh1x(x1-x112/L[x, 5 y1:wds~ttf—tbfa~yl,

}:r* 3
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e m\ \Mq,m@wﬁmmmmqvvxﬁw mw»«+ w wmn. J)a
s :www u \Amm+c vxmﬂ.gwwww ,ﬂmeMw xmmgm :
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y m>+u uﬂm jo ,;39 X(1=J +x W
_aﬁszn+ﬁ+mﬁ;zcw =[P+ (1=Mu)X(1=F )+ N
§0+(1L=mu)x =1 f+ :3s X(1=J )+ z cﬁm m
op L-mu Hﬁpgs , do3s |=:[ I0J
. . h AN‘ 3.CV VAN..“&;
S(PegLeLe uhvponu:hn;>+uum
¢ \ﬁm Nuq sste

e/lLe ”chmsp €7 I1IX9E xm 1exo)=:[£1L

ovvmw Hau:ﬁ L mpm Fn h nom

: Mmegxﬂ@.>+gum mmmw\,a" .N+w
S(21ax[GL+I]g=113) /1= [LO4+T m
E CLLd/eLd=: 9 L+d]d
) = §23J mkmm“mm.p+mum
exX[z2lt mmﬁmfxﬁp~,uq Uous £od Ji=:[E°L+I]d
; men"ﬁm.>+umm Spe=e[1L+T]d
S(LeeL L [Ff2u’[Ff2)an)d0p=:22d
§ hamp._amﬁ.mwm. ﬂ._wmz 30P=:21LJ
S(PfeL L fPeriuc[FeL]au)aop=2113
Hﬂnxumxhﬁgxu&mu.ﬁﬁqxugm op €| Tyaun | do3s | =:{ JOJ
. ov gfl=tX a0

Anzy\Am\wp+m\upp+”hvx:+mu\moxm,+%pp\moxw,
VXmuxm,V\ANPAAm\hu+m\gpp+_hvx@oxmbpxqvn.ﬁhuh
w,x (gL/[2° mwg 98T®
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for 1:=1 gtep ! until m do

begin 1nte er M133; reaI"F1 P2,P3,P4,P5,P6,P7,P8;
gi=
Pl =P[g 15 e =P[g,2]; P3:=P[g,3]; Plh:=P[g,4];
P5ibla.5]] PGinbla,6]1PT; =Plg, 715 P8:=Plg,8];’

M133:=3xM(1, 1
s[iig3-2, 1% sfuty3-2, 1]+P1T2xP4+P2T2XP7,

S[M133-2,2] :=S[M133-2,2]+P1xP2x (Ph-P 3
EMIJB-Q,S]'nS{M1J3~2 23] ~P2x(P7+PEXP /P3;
+P212xP4+P112%P7 3

S{M133-1 1}-::8[1\4133 1,1
S[M133-1,2] :=8[M133=~1,2]+P1x(P7+P6XP8)/P3;
s{ML33,1 j’=S[M133,1]+(P7+P6xP8+P8+P5xP7)/P3T29
M133:=3xM[1,2];
S[M1J3-2, 1] =5{M133-2, 1]+P112xP4+P212xP8;
S[MiJS 2, 2].zS[MiJ3~2 2 2] +P1xP2x (P4~ P8}
S[M133-2,3] :=S[M133-2,3]+P2x(PB+P5xPT7) /P33
S{MiJB 1, 1% =S{M133 ~1,1]+P272xPU4+P112xP8 ;-
{MiJS -1,2) :=8[M133-1,2] -P1x(P8+P5xP7) /P3;
- S[M133, 1] 5=5[M133, 71+ (PT+POXPB+PE*P5XET) /3123
comment above statements set up dlagonal elements
‘ in the S matrix; ST
=3xabs(M[i,1]-M[i,2])3 .
ri= 3XM[1§ ]

[r-2,t+1 w-PTszPu+P2T2xP6xP8,;
[r-2,t+2 .=-P1xP2x(Pu+P6xP8), .

[r-2,t+3] 1=+P2%(P7+P6XP8 /?3

[1r=1,t] t=~P1XP2X ( P4+POXPS)

-1, t+1].z-P2T2xP4+P1T2xPéxP8

r-1, t+2].~-P1x(P7+P8xP6)/P39

[r,t-1] =.P2xP8x(1+P6)/P3, o

r,t].aP1xP8x(1+P6 /P33 e

[r,t+1] :==(PT+P6XP +P8+P5xP7)/P3T2, relE
end above statements set up. off diagonal elementsg R

mmmmmmmmm

for 1:=1 step 1 until nw~1 3x(nw~1)+1 atep 1 until ux(nw~1),f
‘ Ex(nw=T)+1 step | until Tx(nw=1)-da praR e :
egin if i&nw-1"then bepin ti=3x1; r:=3; end; -

if Dnw=-1 and 1<6x(nw~1)+1then bepin t.a«vf’;xi,9 .m33;ahd§4

. —————

IF 156x(nw=T1) then begin ti=3X17 ri=2j end;
, TEb J:=1 step ' Tuntil y do Blt+r<3,3]:=07
Ior s:=1 step 1until tFr-4 do if tir-s-2 Sw
T -then S[s,t+r=s=2]3=0; o
| “for J'=2 step T until w. do S[t+r~3,J] =03
: end anve statements impoae zero displacementsg

solve(s Bgalx(nw~1),3xnw,2)3




for Ji=1,2 do L
begin integer Psq; real Mxl My1 an M 2 Fz,Mq1,Mq2,Mp;
write text(dv, 8s LDADING*CASE*NO.‘E
write (dv,format ipd i
1f J=1 then write text dv,ll_JlﬁslABNDRMAL*VEHICLE*
ON*EDGE*OM*BRIDGE]) else write text(dv,iipliﬁal
ABNDRMAL*VEHICIE«& *UENTRE*OF*BRIDGE
write text(dv, s JMEMBER([ 3s ] FORCES*¥ 1)&1
MDMENTS*KI 8s INo. 45 GEMBEﬁlyslﬁ
83+TDRS ION[6s 1‘&
for 1: step 1 until m

| al 1 T ; |
,§§§gn_arfa ]rzir{aj §+P[ &efrexP[Z§7la

2 ::Eé%g,E?i %EE: +PTS: ]XP &4 f/P[g:B]J
:=P[g, }T%?P g,“+;P g, ;exrg S}%f s
: ’ s OIX ’ 13215
:v(P%g,7]+ % } g }+P£§JBT+P[8%5]

g 1 +P§%i;2:fﬁx?gx” o
;=P TEfogé R I 7AR I T T LA I
x(14B}g,6 T

§:§Pg%iex?§{%’8 +P[% 7§X$i§, %/P &,319‘
} MEIEAGA T

0
1
2]:w=Plg,2]12xP
E XPg,i
+P g,alr2xP[g,é]3

t=Plg,
t=P g:1 TQXP[g,

1]

. (B[ -Eﬁq, +d !;Cf 
- Fz =d%3 xBlp~2 31+d%5 ?,J]m ,“ “finy
‘ Blq,J] "rd“O 31 t LY el

+ B]XB[Q* 3332{ 2 

2

plé Gt d
]XH[ Q“" J] 37 .

Mx2:=d [TIXB[p~2

B‘ "B’ 3
Myz'idfgijﬁpE%,Jild{
(D‘pi “BKQ3

1Mq1-mi-Mx1xPE R
 Mp: n(waartg,1i+My1thg,el)/we; ;,,;>;,‘:;;;:
~for 1i=1 step ) until nw=-1 do iy e
Sagan if “”Sx(anTT$I and q=Ox(nw=-1)+1 and " . «
Ma1<MnéE then Mnegi=MqT;

1L prx(nwﬂl)+i and q=OX(nw=1)+1 and'f~‘

<;Mq >Mpos thenMpaa uMqQ; i

"endg'f'tv¢,m,




“°end,

‘write text(dv,[)
write(dv,rormaéx sndql) M,y o

write text(dv,[*- ‘ ;
write(dv, format([n ql) M[1,2]);
write (dv, format ({5s+ndd. dddl'i )

write(dv,format(ﬁ?s'ndql)i); . R §

- write(dv,format(]l4s+nddd.ddd Np$ ‘
write(dv,format({4s+nddd.ddd MQ?f

 write dv,formaty 4s4nddd .ddde qui
FeTte text(dv, 9s Jolmmtuslx*RDTATIDN N
" [8s ]Y*ROTAT o RTI L (el

for 1:=1 step 1 until g nwjl
~ begin write (dv format sndd]), 17
write téxt (av, S
writegdv,format§§?s+nd .4ddddddd i'£¢3x1~a 3333
]
3D

write(dv,format s+nd.ddddddad ), B3xi~1
write (dv,format (]6s+nd.dddddddde)),BI3x1 J
\ end ; : R PRI R
-~ endj
k=03
e Mpos>M1[1 21] then

~ begin x1: =Mpos/M1[l §11; k “k+1 : L = I
for 1:=1 step 1 until 21 do M1[1 i}-mM1{1 i]xK1’;._,,,m__

""T"Mneg<M1[2,11] then

k E%mJﬂnWwyMW?T”g“NM4V  " el sl
: for i.ﬂﬂ Bt&E 7 U.Yltil 21 dO M1[2 i].mM‘}[Q 1])(){12 : «‘

AT KO then goto pick" Penupg i i
'*“g%ckg %§ei m. Ziﬁes(M11§7QS’B) s
abs (Welght2-Weight Weight1>d 05 then oto
~+ . FTiInal sizes: for fi=1,2 do ,5""* pickﬂ*

. begin real lg'ﬁTkzuxfdamdc)/L[f ]

- Li=ifr=1 then L{1,1]/10 else L[e el/ewﬂ

for 1:=1 s¥ep 1 until 11-do
begin if F=T then x1: wL{f”?]vL[f,1]+(1*1)x

elge xli=(I=T)x1

o E';be(1+ﬁx(1~x1/1[r 2])72)799 |
tf.miftbfc)tbfs then tblfec else tbfa,
o yle=hTx(x1=x112/T1T,2]) 3 yTe=da-y1;
o loop: find I(y1-ttf~tf, tf,TQxea,y),
o 4f Iph then :
8 E:gég £Fi=tr-0. e,"
goto loop;:ekg;

~1)X10413
2,k)1=t840,25 Ml 18 k}-wya'

LI
w3
) {o
t‘wa

==x==x

1, k 'cyi
'K :"“I (Y?"'y)a
R ‘m!EXcsx(ttf+M1[13 k3)+y1xtw
1[3 k]1>0 then :
ft'mfmiﬁF:TEX(Mi{E k3+M1{3 k] /M
fb =fminw/Ro+12x(Mi{1, kg+M1§3 Jk1/
;N?[?,k].wM?[E k]x(fbe? 4 k]+0txM
e 104, k14m5,k]ys 0 O
{7,k1;mPsx antiag(w1;7€mf/

iy ey Py

3
".ZO“;U\J‘-"—‘—-‘

F%‘




. inteper totalj
.H‘.mg‘_;,m&%m mﬂd wﬁuu

1f x1>M1{8,k] then M1[8,k]:=x1;
MA¢nzdﬁ:“xm\zdwmqmu,zdﬁn“wuxwapssxAmoxzdﬂq.xu
O )=(mM1[3,k +zdﬁ_~xuv\Amoxzdﬁquxuv
zdﬁmsww"n:zﬂmm“xu\zdmm‘xw 5, xuxmnz\ﬂmoxzdﬁqhxuv
T3, K14M 11, %) 3/ (RoxM1 7, k1) 3
: mx.dizdmmuxw‘dzmz;zﬁﬁmgxu"uxdv SE
B S PE 1w /Ro~12x (M1 [3, 411 [ 2, 1] )/ (Rox1 5, k1)
beglin fti= w/Ro=12X ’ ’ oX s 3
Toi=fmint+12x(M1[3,k]+M1[2, xuw\zdmwkxu, ’
M1[7,k] :=M1[6,k]x(£oxM dmg.x_+wﬁxzdﬁm‘xwv\ ,
o(MA, k] [5,k]) 5
M1[7,k] :=Psx(entier zahm.xu\mmv+an |
x1:==M1[5,k]/M1[6,k]+M1[5,k]xfct/M1[7,k]
;-Mz;w Eé:;:\zﬁ ki3
M119,k] =M1 4, k] /m1E6,%]-mi (4, kIxem Hsd\zgmq wu; |
, Azgmu,xu+zdﬁ“vx w\z“mq,xum, ,
1 x1<KM1[9,%] then MI[0,k]t=x1;
XTe==M1[5,k]/MTTE, k]+M1[5,kIxfmi <\Amoxzquyxuu;i
S Agdﬂm.xw+zﬂﬁu‘xwv\ RoxM1[7, xuvw
M1 8,16 =M1 [, 1/ [0 3T M1 L4 i/ (Rosann | .rx:..,
,Az:m.j,vg:w.ﬁ\ Roxii1 17,11 :
Coae x1H>M1[8,k] then M1 muxu“uxdm_4;,a.;wug,\. i
,,msau -
‘write ﬁmdia<‘ mm emHowzmmm*oﬁ*eom*wﬁ>zom*a* vu ,
s%»dmﬁa<.wowsm .dd]),ttf); write wmxaﬁa<u *Hznmmwhhppvw
write text(dv, mpan Qmmm*om*zrmm*nﬁwvu

write(dv,format([nd.dd]),tw); write text( dv *Hznmmm ell)
write text(dv, m. amz mm*cq*zmwm*nﬁwvg ‘H. h.pp.u
~write(dv,format %b mp ye8) 3 write text( dv, wmme

- write dmxaha<. m****mwmmemmmmHza* »wﬁn*

hmmpmez S Wdemmpwomcmhmm. ‘mmhmmpwb

for 1:=1 step 1 until md
m begin zdpﬁmﬂm<.wowgmaﬁhmmspkv HVb
,saudm_amxaﬁm<.Hy

- write(dv,format snd.d WV ,MI[11 puu”
o write(dv,format(|4s+nds aawaaa wuzﬂmﬂ“
" write(dv,format(lU4s-nd.dd dd.wwxz
o oowrite{dv,format(l4s~nd.dd zqﬁagﬁp -M

write (dv, format (] 6s+nd. aﬁo s

2in veal nadhuﬂm.umm mmd“m“ wmhwé wﬂhmu zoaumaaw




begin array H[1 2 1.31],HF[1 2, 1 31]3 - i
' T integer array Q[1.3?]§ e s

. for 1i=1,2 do ey ‘ o
- For 3:=1 step 1 until 31 do H[i j] uQﬂ S
or i: =E ste 1 until 11 do :

H{1 i+1d §11~15 10,}

~H[2,1+10 s=(1-1)/1 [
H[2 1+20] 1= 11-1)/10,

§:=0 step 2 until 30 do Q[i]:uu RN
1:=3 step 2 untiL 297 do Q [1].m2; ot

| 1'a1 steE iT 19 do . e
o HF{T 32— = [2 32 ]‘aHI!] 1]'“HF[2,1] “Q[1}XL[1,2]/ﬁim
o “(M1[12,1]x120)5 o
- for i‘z} ste eauntii 6 %%[1 1+10] HF[1 22 1] { S

- T2, i+10Ti=HF[ 2,20-1] := = =
| AT 2],(120xM1312,9+2§1]) Q 1]X i

a8

Fuc

for k.a1 2 do

. For ji=1step 1 until 31 do HF k,J]'wHF[k,J]xH[k, ]
© TTTi=dot (WFLT, JISHIT59], 15310, , ded:
Sof12i=dot (HE T,J}:H[EJJ 31,3 ' A ;

f22:=dot (HF{2,] :HEE;J 21,3
f21:=dot (HF[2,3],H[1,] :133
addi=el:=0; total:=0; e
e2:m$M1[8,11%+M1[9511% /23
e3s=(M1[8,21]4M1[9,21])) /25
o again: eli=el+adds: tatal:mtotal+13“ :
i for L=l ste? 1 until 10 do
. E{ ]*“B[S "'1 - , X eﬁ(eQ-e")X(i 1)/10)

- for 1:=1 step 1 until 6 do

‘ s_ETTb+1]:a -1]7={({e3-e2)% (1~
i &1:=d0t$ J}:BEJ a1:3133; St

o me.a~a1/(r11+f12) ~~J.ﬂg<-f,;,ﬂ -

‘]'for 1:=1 gtep 1. until 11 gg

o EMomx (15T (10XMTT T, 1] 5,;
: fcr 1 =2 gtep 1 until b do -
e m/M1 +2xil
. = v:x]-”oﬁ' st

«;,1f ee+Mom/M1[7.11]>M1[9,11] or 93+Mom/M1{7,21]>M1[9,21}
e then addi=+1 else add:=0j; '

| \1r e2+Mom/MT{7, V1 IKMITE, T1] or ee+Mom/M1{7,21}<M1[8 21.
S then add:i=-1 else add:=0j3 . i
aejif add%d“”7§ tata1<1u then goto again;

. irite tex CITY*OF *CAELE
':”;fz_,, DUTER*&é?%éRT*nﬁl B




