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ABSTRACT

This thesis is primarily concerned with the theoretical modelling of steady, forward
roll coating systems under different degrees of starvation by the use of analytical and
numerical techniques.

The concept of ‘starvation’ in a two roll coater is introduced and three possibili-
ties identified: the fully-flooded, moderately-starved and ultra-starved situations. An
extensive literature survey of work related to the fully-flooded case is given, together
with a discussion of the difficulties associated with, and application of finite element
methods to, free surface coating flows.

Four models of ultra-starved roll coating are developed, the first of which neglects
the flux between the rollers. The analytical solution of this first ‘Zero Flux’ model
predicts streamlines and pressures that are in qualitative agreement with experiment,
This model is refined further: first of all to allow a small, non-zero flux, then to enable
prediction of the film thicknesses produced on the rollers during the forward case.
The theoretical film thickness predictions agree well with Malone’s [1992] experimental
data. The final model also allows a small flux between the rollers, but retains all other
assumptions of the ‘Zero Flux’ model. Streamline predictions from this last model
agree well with experiment.

A FORTRAN finite element code is developed to solve free surface coating flows
and is used to obtain film thickness ratio predictions in fully-flooded roll coating over a
wider velocity ratio range than previously reported. These predictions agree reasonably
well with Savage’s [1992] model.

A numerical model of starvation in roll coating systems is developed and the pre-
dicted velocity and pressure fields are in qualitative agreement with both experimental
observations and the analytical predictions for ultra-starved flow. Finally, numerical
film thickness ratio predictions are obtained over the gamut éf starvation: they are al-

most independent of the degree of starvation and are in good agreement with Malone’s

[1992] experimental data.
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NOMENCLATURE

In some cases the use of a symbol is local to a short section of the text and is not
listed here, in which case it is defined when first introduced. In certain other cases the -
same notation has been given interpretations which vary from one chapter to another.
Although the meaning should be clear from the text of the chapter concerned, the
number of the chapter to which the particular interpretation applies is given in brackets
after the explanation of the notation.

Unless otherwise stated, quantities written in upper case are physical, i.e. dimen-

sional, whereas those in lower case are dimensionless.

A* Dimensionless aspect ratio of a rectangular cavity (for flow in lid-driven

and open, driven cavities)

Ao Local triangle

C Position of the downstream fluid-air interface

Ca Capillary number

Ca* Critical value of Ca for ribbing

€ Spinal direction vectors

Hy Semi-nip width in a two-roll coater or minimum gap in a

flat plate/ roller geometry (Chapter 5)

H* Dimensionless cavity depth in the zero and small flux models

H(X) Roller separation

h(z) Dimensionless form of H(X)

h Spine heights

J Global Jacobian matrix

J° Element-level Jacobian

L; Area ’co-ordinates

N Quadratic shape functions’

p Fluid pressure

rp Dimensionless fluid pressure

p Average dimensionless pressure at the nip



Pa

Pn

Qla QZ

Rl’ R2

™ &

.
g
<

rC\"‘U

Re

Modified dimensionless pressure

Ambient air pressure

Dimensionless ambient air pressure

Upper right hand quadrant roots of sin2p, = 2p,
Flow rate

Fluxes on the upper and lower rollers respectively
Dimensionless flow rate in a slot coater

Radii of upper and lower rollers respectively

Average roller radius (2/R = 1/Ry + 1/R;)

Vector of finite element residuals

Radius of curvature of a fluid-air interface

radial co-ordinate

Dimensionless form of R ..,

Reynolds number

Velocity;wratio S = V1/V; or X co-ordinate of separation point (Chapter 1)
Stokes number

Upper right hand quadrant roots of sin2s, = —2s,

Average thickness of uniform layers on upper and lower rollers respectively
Average inlet thickness in forward roll coating

Surface Tension

Dimensionless forms of Ty, T3, To respectively

Velocities of flow in X ,Y, Z directions respectively
Dimensionless forms of U, V,W

Peripheral speeds of upper and lower rollers respectively
Peripheral speed of each roller in symmetric forward roll coating
Average roller speed (=(V1 + V2)/2)

Base line in mesh generati'on algorithm for roll coating
Dimensionless horizontal co-ordinate of X M

Global cartesian co-ordinates



I, Y2

Yp

R

Y ™ W

Q

Dimensionless global co-ordinates
Location of top of lower vortex in forward meniscus roll coating

Location of bottom of upper vortex in forward meniscus roll coating

Contact angle in the slot coater

Vector of finite element coefficients

Modified capillary number

Vector of finite element coefficients for the flow field

Fluid boundary

Newtonian viscosity or local co-ordinate (Chapter 4 and Appendix B)
or dimensionless vertical nip co-ordinate (Chapters 4 and 5)

Modified z co-ordinate or azimuthal angle used in corner expansions
(Appendix B)

Apparent contact angle

Local Jacobian matrix of an isoparametric mapping

Dimensionless flow rate in roll coating

Dimensionless fluxes on upper and lower rollers respectively
Eigenvalues in analytical solution of the zero flux model (= (n — 1/2)x)

Local co-ordinate

Functional used to generate streamfunction-vorticity finite element equations

Fluid density

Newtonian stress tensor

Dimensionless form of ;;

Even and odd Papkovich-Fadle eigenfunctions respectively
Streamfunction

Dimensionless streamfunction

Linear shape functions for'pressure

Fluid domain

Dimensionless vorticity
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Chapter 1

General Introduction

1.1 Applications of Coating Processes

Coating processes arise in many areas of the chemical engineering industry. These
include the coating of paper, fabrics and metal sheets as well as the production of
adhesive tapes, surgical dressings and photographic film. Coating flows are small-scale,
viscous, free sur;';ce flows in which a film of liquid is continuously deposited on a
deformable 01; rigid moving substrate (the web). The preferred flows are steady and
deposit a uniformly thin layer devoid of imperfections of any kind.

The problem of applying a thin liquid layer is by no means trivial since the specifi-
cations of coating thickness are often very strict and, for productivity reasons, a high
- speed of application may be required. Moreover, several discrete layers may have to be
applied simultaneously.

The geometry of the coating process varies with the application; industrial coating
operations come in great variety: dip-, bead-, knife-, forward and reverse roll-, sﬁde-
and curtain-coating are illustrated in Figure 1.1. Each one shares common features
such as free surfaces and/or wetting lines (see §1.3). Although this thesis is primarily
Concerned with an investigation of roll coating it is clear that the techniques developed,
in paxticﬁla,: the free surface code described in Chapter 4, will also be applicable to

Many different coating processes.
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1.2 The Two Roll Coater

1.2.1 Introduction

The two roll coating process, by which a thin liquid film is laid down on a moving
web, is illustrated in Figures 1.2 (a) and (b). The lower roller (often referred to as
an applicator roller) is immersed in a bath of liquid while the second, upper roller,
is aligned vertically above it such that there is a narrow, uniform gap between the
roller surfaces. When the lower roller rotates liquid is transferred onto its surface by
viscoﬁs lifting and flows into the ‘nip’ region (the ‘nip’ is the point of minimum roller
separation) between the web and lower roller. A fraction of this liquid is transferred
onto the web of material in contact with the upper roller and the remainder is returned
to the bath via the lower roller. In a typical industrial process‘ the liquid film on the
coated web is subsequently dried or cured.

Industrial roll coating systems can be categorized into several distinct groups. For
example, they can be operated in either forward (as shown in Figures 1.1 (e), 1.2 (a))
or reverse (Figure 1.1 (f)) mode and may have either (i) rigid (non-deformable), (ii)
deformable (rubber-coated), or (iii) gravure (knurled/engraved) rollers. The theoreti-
cal predictions and experimental measurements reported in this thesis pertain to the
forward mode of operation with rigid rollers. In this case it is observed that flow in the
nip-region and sufficiently far from the ends of the rollers is essentially two-dimensional

‘since the component of liquid velocity parallel to the roller axes, W, is small compared
to those, i.e. (U, V), perpendicular to these axes (see e.g. Coyle [1984], Carter [1985],
Malone [1992]). Moreover since it is the flow in the nip region which determines how
the liquid splits into the two films shown in Figures 1.2 (a) and (b), the analyses of
roll coating presented in this thesis are two-dimensional models of the flow in the nip
region.

The usual mode of operation of a forward roll coater is that in which the clearance
space at inlet is bathed in an ample supply of liquid; in this case the coater is sajd
to be ‘fully-flooded’. Figure 1.3 shows an experimentally-obtained view of the nip

region of a fully-flooded forward roll coater, along the axis of the rollers, due to Malone
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[1992]: the rollers are moving from left to right and the relatively bright regions are
indicative of the meniscus positions. This picture clearly demonstrates the existence
of a downstream, film-splitting meniscus and a bank of liquid extending far upstream
of the nip. Malone ’[1992] used a dye injection technique to elucidate the nature of the
flow in the upstream bank — see Figure 1.4. The presence of blue dye introduced into
an optically clear oil revealed the existence of large eddies in the upstream bank.

A consequence of using fully-flooded roll coating is that, by a conservation of mass
argument, the thickness of the films Ty, T, produced on the web and lower roller
respectively are necessarily of the same order of magnitude as the minimum roller
separation. However, practical engineering constraints limit this minimum separation
to the order of 100 micrometres (10~4m) (see Malone [1992]). Since all previous roll
coating analysts have assumed that the inlet is always fully-flooded, this would seem to
label roll coating as unsuitable for the production of uniform films whose thicknesses
are significantly less than 100 micrometres. Fortunately, a different roll coating regime
can be used which, although used in industry for a number of years, appears to have
escaped the attention of the coating community at large. When very thin films are
desired, for example, as in the manﬁfacture of obtical data storage equipment, it is
possible to operate the roll coater under conditions in which the supply of liquid at
inlet is less than that required to flood the inlet. In this case the coater is said to be
‘starved’ (c.f. Dowson and Taylor’s [1979] work on the lubrication of bearings).

In fact it is possible to generate liquid films whose thicknesses are an order of
magnitude less than the gap width by using the same coating geometry but with a
much reduced inlet flux. This situation is illustrated in Figure 1.5, which shows that
reducing the supply of liquid leads to the disappearance of the upstream bank giving
rise instead to a second, inlet meniscus upstream of the nip and a ‘bead’ of liquid
suspended in the nip region. In this case the coater is said to be ‘ultra-starved’.

It is convenient to classify forward roll coating according to the inlet conditions.
Three cases can be identified: ‘fully-flooded’, ‘moderately-starved’ (in which the supply
of liquid is only slightly less than that required to flood the inlet) and ‘ultra-starved’

(when the supply has been significantly reduced), which are illustrated schema.ticallyv
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in Figures 1.6 (a)-(c), respectively. Previous work related to, and the salient features

of, each case are now discussed.

1.2.2 The Fully-Flooded Case

Fully-flooded forward roll coating has been studied extensively. From his experiments,
Taylor [1963) suggested that the flow field divides naturally into two parts : a two-
dimensional portion in the immediate vicinity of the downstream, film-splitting menis-
cus, and a nearly rectilinear portion elsewhere. These observations have been repro-
duced by Malone [1992] - see Figure 1.7 — by injecting blue dye into the inlet film of a
fully-flooded forward roll coater. In those regions which are relatively clear, little dye
has been entrained; this indicates the presence of a recirculation in the flow. Hence
the existence of eddies near the downstream meniscus is clearly demonstrated and the
assumption of rectilinear flow is seen to be valid upstream of this recirculation region.

In fully-flooded roll coating the extent of the liquid upstream of the nip is large
compared to (RHo)? - a typical length scale in the X-direction - where R is an ‘average’
roller radius defined by '
PHERE)
and Hp is the semi-nip width. Therefore it is usual to assume that the liquid extends
to ‘infinity’ upstream of the nip and, as a result of this, lubrication theory is used to
model the flow in a semi-infinite region extending from far upstream of the nip to the
downstream recirculation region (Taylor [1963], Savage [1977 a, b]). In the symmetric
case, with equal roller speeds, Savage [1984] employed Reynolds’ lubrication equation

for the pressure distribution P(X,Y):

9 [mn22] + 2 [02E] = 1272

Where P is the liquid pressure, V the speed of each roller, 7 is the Newtonian viscosity
and H(X) the roller separation. In hydrodynamic lubrication, the normal procedure is
to solve Reynolds’ equation subject to two boundary conditions on liquid pressure. As-

Suming that the pressure is ambient sufficiently far upstream yields the first (upstream)
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pressure condition

P(-o0) = 0 (1.3)

The second pressure condition is usually given by considering the balance of normal
stresses at the downstream free surface (e.g. Greener and Middleman [1975], Savage
[1982, 1984], Coyle, Macosko and Scriven [1986]). Referring to Figure 1.8 this condition,
whicﬁ relates the liquid pressure at X = C to surface tension pressure at the liquid-air

interface, yields (Batchelor [1985] pp 60-70)

T
RCU"U

P(X = C) = - (1.4)

where 7 is the surface tension of the liquid and Rcyry is the effective radius of curvature
of the downstream liquid-air interface at its leading edge.

Unfortunately, the location of the meniscus is unknown and in order to obtain a
solution a further boundary condition is required. A major difficulty in applying the
lubrication approximation to flow where a liquid-air interface forms, lies in supplying
boundary conditions at the point of formation of the interface that are consistent with
the lubrication approximation (Taylor [1963]). The first attempt to model a liquid-air
cavity was made by Reynolds [1886] when he suggested the following conditions at

rupture of the liquid film
' oP

P=0, 3%

=0 (1.5)

Swift [1931] and Steiber [1933) independently derived the same condition as Reynolds
and (1.5) is often referred to as the ‘Sivift-Steiber’ condition. A new approach to mod-
elling liquid-air interfaces was introduced by Birkhoff and Hays [1963], who suggested
that the lubrication regime terminates at the ‘separation’ point (S,Y) - see Figure 1.8

= which marks the onset of the reverse flow region and where both

oU

ie., velocity and shear stress are zero. These ‘separation’ conditions are often used
in conjunction with the additional assumption that the liquid pressure is constant

throughout the reverse flow region § < X < C (see e.g. Savage [1982], Carter [1985]).
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Pitts and Greiller [1961] also used lubrication theory for the rectilinear flow por-
tion and attempted an approximate solution near the meniscus by using experimental
evidence which suggested that the meniscus had a parabolic profile. They were able
to predict regions of recirculation upstream of the coating meniscus and the position
of the separation point was in satisfactory agreement with their experimental data.
Williamson [1972] adopted a similar approach when studying the problem of the tear-
ing of an adhesive layer between two flexible tapes wound around adjacent rollers. By
approximating the shape of the meniscus as a sixth order polynomial he was able to
predict the existence of eddies behind the meniscus similar to those observed by Pitts
and Greiller.

Greener and Middleman [1975] analysed the symmetric problem, shown in Figure
1.9, in which roller speeds (V') and radii (R) are equal. Their model is based on
the assumption that the liquid extends over a semi-infinite domain terminating at a
liquid-air interface where there is a stagnation point and where symmetry conditions
imply that the gradient of velocity is zero, i.e. 8U/8Y = 0. Since the uniform layers
attached to each roller have the same thickness, Ty = T3 = T, they showed how the

dimensionless film thickness T/Ho (Hp is the semi-nip width) varied with 8 a modified

EE e

Benkreira, Edwards and Wilkinson [1981] performed 1500 fully-flooded forward roll

capillary number defined by

coating experiments using sets of rollers with size ratios in the range 0.5 < R;/R; < 2.0,
to measure the ratio of the film thicknesses on upper and lower rollers, i.e. Ty /T;. From
their data they found T3/T; to be independent of the size ratio R;/R;, but strongly
dependent on the velocity ratio S = V;/Va. They summarized their results by the

functional relationship

T _ 087595 for 0.03< § < 14.9 (1.8)

2
Note that (1.8) gives an asymmetric split even in the symmetric case of § = 1; they

suggested that this was due to the effect of gravity.
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Savage [1982] extended the work of Greener and Middleman to the general coating
situation which involves rollers of arbitrary size and speed. He determined the coating
thickness T on the upper roller by formulating two mathematical models for the pres-
sure distribution over a semi-infinite domain : the Reynolds and Separation models. In
the Reynolds model, the pressure curve terminates at a point at which the Reynolds
conditions (1.5) apply; in the Separation model these conditions are replaced by the
separation conditions (1.6). Taylor [1963] and Dowson and Taylor [1979] pointed out
that the Reynolds conditions are appropriate when high liquid pressures are generated
and the film is split by cavitation within the liquid; this situation is characterized by
the rollers being highly loaded against each other. Since, in this thesis, attention is
restricted to the case of rigidly fixed rollers in which the film splits by flow separation
rather than cavitation, it is only the Separation model which is relevant. A typical
pressure profile arising from the solution of the Separation model is shown in Figure
1.10. The overall shape of this curve, which features a sub-atmospheric pressure loop
ﬁnmediately upstream of the interfa,ce; has been experimentally verified by Floberg
[1965], Smith [1975], and, more recently, Malone [1992] — see Chapter 5.

Coyle et al [1986] solved the full asymmetric forward roll coating problem using
the finite element (F.E.) technique (see §1.5). They found that their numerical film
thickness ratio predictions could, in the absence of gravity, be fitted by T /T, = 5965
in agreement with Benkreira et al [1981]. The discrepancy between film thickness ratio
predictions from Savage’s [1982] Separation model (which predicted Ty/T, = 5§°%),
and those of Benkreira et al [1981] and Coyle et al [1986], prompted Savage [1992] to
question the validity of the zero tangential shear stress assumption, i.e. 8U/8Y = 0,
when S # 0 or 1. This has resulted in a more rigorous mathematical model in which
the lubrication regime terminates at the first stagnation point downstream of the nip

where U = V = 0; the predictions of his ‘stagnation-point’ model may be summarized

as: ;
Ty _ S(5+3)
5 = (1+35) (1.9)

The inability of lubrication theory to model the two-dimensional flow near the
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downstream meniscus has led to the development of powerful computational techniques
based on the F.E. method. These techniques are discussed in §1.5. In Chapter 5,
numerical predictions of Ty /T3 for fully-flooded forward roll coating are obtained over a
wider range than reported by Coyle et al [1986], and are compared with Malone’s [1992]
experimental data, equation (1.9) and Benkreira et al’s [1981] functional correlation
(equation (1.8)).

In contrast to the forward case, fully-flooded reverse roll coating, shown in Figure
1.1 (f), has received little attention to date. This is surprising because it is a common
coating method due to its versatility, speed and precision. Ho and Holland [1978] and
Greener and Middleman [1981] have presented simple lubrication-type models for this
which are useful over a limited, yet important, range of parameters. More recently,
Coyle, Macosko and Scriven [1990 a] have obtained F.E. solutions of the Navier-Stokes

equations for the flow in the entire gap exhibiting good agreement with experiment.

1.2.3 The Moderately-Starved Case

In the analyses of roll coating described in §§1.2.2, it is assumed that the clearance space
at inlet is fully-flooded in the sense thét there is a rolling ‘bank’ of liquid upstream
of the nip - see Figure 1.4. In this case the resulting liquid flow/pressure distribution
is similar to that found in hydrodynamic bearings. If the supply of liquid is reduced,
however, the inlet becomes ‘starved’ and the ‘bank’ of liquid gradually disappears — the
situation depicted in Figure 1.6 (b).

Although there appears to be no previously published work in the literature relating
to either moderately- or ultra-starved roll coating, the effects of moderate-starvation
on the load carrying capacity of bearings has been widely studied (see Dowson and
‘Taylor [1979]). On the basis of his experimental findings for a flat plate loaded against
a rotating flywheel, Lauder [1966] proposed that in a moderately-starved inlet the
lubricant pressure builds up at a location where U = 8U/8Y = 0, which he named the
‘zero-reverse-flow’ boundary condition. Wolveridge, Baglin and Archard [1971] studied
the effect of moderate-starvation on the load carrying capacity of two cylinders in

both the rigid and elastohydrodynamic (E.H.L.) cases. They modelled the degree of
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starvation by simply altering the distance from the point of minimum roller separation
at which the boundary condition P = 0 is applied. This was considered to be the
point at which the lubricant pressure builds up; the outlet boundary conditions were
the Reynolds conditions (1.5). A typical pressure profile which they obtained for the
rigid case is shown in Figure 1.11.

In his study of starved E.H.L. bearings, Saman [1974] realised that it is important to
define precisely what is meant by a starved inlet and proposed that a system is starved if
all the lubricant supplied at inlet passes uni-directionally through the conjunction (i.e.
there is no reverse flow at inlet or in the nip; that is to say the rolling bank of liquid
is no longer present). Unfortunately, Saman’s starvation criterion has only limited
application in roll coating since it cannot differentiate between cases of ‘moderate’-
starvation, in which the supply of liquid is only slightly less than that required to flood
the inlet, and ‘ultra’-starvation in which it has been significantly reduced ~ see Figures
1.6 (a)-(c).

1.2.4 The Ultra-Starved Case: Meniscus Roll Coating

In §§1.2.1 we saw that it is possible to dperate a roll coater under conditions in which
the supply of liquid at inlet has been substantially reduced from that needed to flood the
inlet - see Figure 1.5 for the forward case. This ultra-starvation, shown schematically
in Figure 1.6 (c), results in the additional complications of a second, upstream meniscus
which meets the web/upper roller at a dynamic wetting line. Owing to the existence
of two meniscii in this case, one on either side of the nip, ultra-starved roll coating is
henceforth referred to as ‘Meniscus Roll Coating’.

The complications introduced by the existence of the inlet meniscus and dynamic
wetting line are common to many coating operations - in the following section they are

discussed in the wider context of general coating flows.
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1.3 Complications Associated with Free Surface Coating

Flows

1.3.1 Free Surfaces

By their very nature, coating flows are free surface flows. Free surfaces are meniscii, i.e.
fluid-fluid interfaces. A meniscus is a layer of finite thickness in which the density varies
rapidly from that of the bulk liquid to that of the bulk gas. However, since the meniscus
thickness is usually no more than a few tens of Angstroms and is therefore negligible in
comparison with fluid mechanical length scales, it is convenient to approximate meniscii
as mathematical surfaces (see Chapter 4). The steep density gradient at a meniscus,
which is effectively a discontinuity, gives rise to a property known as surface tension
which produces an isotropic capillary stress within the meniscus not unlike that in a
stretched rubber membrane.

The presence of one or more free surfaces greatly complicates flow field analyses
because their location, and thus the flow domain, must be determined as part of any
solution. Moreover the boundary conditions which are applicable at free surfaces -
see Chapter 4 — are highly non-linear which means that any solution technique must
necessarily be iterative. As a result, viscous free surface problems cannot be solved by

~ standard analytical techniques and recourse must be made to numerical methods (see

§1.5).

1.3.2 Contact Lines

Coating flows invariably contain three-phase contact lines, formed at the intersection

of two immiscible fluids with a solid boundary. Contact lines can be either:
e Static, if the apparent point of contact is stationary (relative to the solid surface).
¢ Dynamic, if the apparent point of contact translates (relative to the solid sur-
face).

Dynamic contact lines are also referred to as wetting lines. Every coating flow has a

wetting line since liquid must come into contact with, and displace air from, a dry web,
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i.e. the sheet being coated. The wetting line in the forward meniscus roll coater is
illustrated in Figure 1.12.

Despite their practical importance, very little is known about the physical mech-
anisms by which one fluid displaces another at a dynamic wetting line either from a
molecular or a continuum point of view (Dussan V [1979]). During coating, liquid
displaces air from the surface of the substrate at the three-phase contact line where
air, liquid, and solid meet (see Figure 1.12). When this region is magnified and viewed
through an optical microscope, the liquid-air interface appears to intersect the sub-
strate at a well-defined angle 6.. This angle is termed the apparent dynamic contact
angle. Burley and Kennedy [1976] carried out an experimental investigation of the
behaviour of a dynamic wetting line, with particular reference to the mechanism of air
entrainment. At very low speeds (of the order of millimetres/ sec) the apparent dy-
namic contact angle equals the static contact angle. As speed is increased, the apparent
dynamic contact angle monotonically increases, ultimately reaching a nominal value of
180°. At sufficiently high speeds thereafter, air bubbles are entrained. Burley and
Kennedy present an experimental correlation for the critical velocity V, above which
air is entrained, in terms of fundamental liquid properties. In coating flows therefore,
it is generally necessary to avoid this critical condition, and consequently the factors
which determine the dynamic contact angle are of great interest.

Modelling of the flow near the three-phase contact line is complicated by the ‘appar-
ent breakdown’ of the classical hydrodynamical equations and/or boundary conditions
in this region. Huh and Scriven [1971], for example, modelled a dynamic wetting line
by assuming that the fluid-fluid interface was planar, see Figure 1.13. Their analysis
was essentially a generalisation of that of Moffatt [1964] from a vacuum-fluid system
to a fluid-fluid one. Unfortunately their model, in which the wetting line movement
was approximated by the equations of creeping flow, predicted a physically unrealistic
non-integrable stress singularity at the dynamic wetting line. They suggested that the
most likely cause of this anomaly was the inapplicability of the conventional no-slip
condition very close to the wetting line but they did not discoupt other explanations

such as non-Newtonian fluid effects, breakdown of the continuum model or elasticity
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of the solid. However recent work by Savage [1992] suggests that their singularity is
caused by imposing the contact angle, ., to a value other than 180°, i.e. the singularity
disappears when 6, = 180°,

In the absence of any clear understanding, many authors have made ad hoc mod-
elling assumptions to overcome the problem of the non-integrable stress singularify.
Most analyses have achieved this by postulating slip between liquid and solid in the
immediate vicinity of the wetting line (Dussan V [1976], Hocking [1976, 1977], Cox
[1986]) but they suffer from the disadvantage that they do so at the expense of intro-
ducing an unknown slip length scale, measuring the distance from the contact line over
which slip occurs.

A proper treatment of the flow near a dynamic wetting line requires a knowiedge
of physical chemistry and in the light of the small length scales involved it is perhaps
not surprising that there have been so few papers proposing mechanisms for slip near
a dynamic wetting line. However, notable exceptions are those due to Ruckenstein and
Dunn [1977] and Ruckenstein and Rajora [1983] which have proposed mechanisms in
terms of a chemical potential in the liquid along a solid-liquid interface.

Nevertheless, in practice, the most cbmmonly used expedient to remove the singu-
larity which arises if the no-slip condition is used right up to the wetting line, is to
simply impose a slip velocity distribution which satisfies the requirement that there
should be perfect slip between solid and liquid very close to the wétting line. A bound-
ary condition for the free surface is also required. At present there appeafs to be two
alternatives (see for example, Kistler and Scriven [1983], C’hen and Higgins [1988]): (i)
the position of the wetting line is prescribed and the apparent dynamic confact angle
0. has to be determined, or (ii) 0. is specified (from experiméntal observation) and the
wetting line position is a variable to be evaluated. It is evident, frorﬁ the above discus-
sion, that much work still remains to be done on the modelling of flows near dynamic

wetting lines.
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1.3.3 The Behaviour of a Thin Liquid Film on a Rotating Roller

In meniscus roll coating the liquid which passes into the bead is transported from
the ba.th by the viscous lifting action of the lower (applicator) roller — see Figure
1.2 (a). It is important to examine the ‘inlet’ film which enters the bead since (i)
the degree of starvation of the system, and (ii) the film thickness T3 produced on
the web, are critically dependent on the flux entrained by the applicator roller. Most
previous roll coating analysts seem to have assumed that a thin liquid film on a rotating
roller undergoes a rigid body rotation — unfortunately in most cases this assumption is
simply not justifiable. Therefore the aim of the present section is to describe the key -
theoretical results relating to the behaviour of a thin liquid film on a rotating roller
and to discuss the practical problems encountered when measuring the film thicknesses
produced during roll coating.

Yih [1960] appears to have been the first to study thin film flow in a roll coating
context: he studied the behaviour of a liquid film on a single roller in order to under- _
stand the liquid flow on the rollers of a paper-making machine. Moffatt [1977] reviewed
previous work in this area and analysed the flow of a viscous film on the outer surface
of a horizontal roller using lubrication theory. He concluded that the liquid layer expe-
riences substantial shear and the motion can certainly not be approximated by a rigid
body rotation.

In view of its practical importance, it is surprising that the subject of viscous lifting
of liquid onto a rotating roller has received so little attention to date. However the
closely related ‘drag-out’ problem in which a thin liquid film is entrained by the steady
withdrawal of a sheet from a bath of liquid (see Figure 1.14) has been extensively
studied. The work of Landau and Levich [1942] initiated a series of detailed theoretical
and experimental studies of this problem. Their theory was extended by White and
Tallmadge [1965] to a wider capillary number (Ca = V,/T) range, while the effects
of liquid inertia have been considered by Soroka and Tallmadge [1972] and Esmail
and Hummel [1975]. Wilson [1982] consolidated the work of the previous authors and

demonstrated that the Landau and Levich result is an as‘ymptotic solution valid as
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the capillary number tends to zero. Tharmalingham and Wilkinson [1978] adapted
the aforementioned theories to predict the liquid flux picked up by a rotating roller
partially submerged in a Newtonian liquid and the variation of film thickness around
the periphery of the roller — the ‘free-coating’ problem, see Figure 1.15 (a). Their
analysis involved the numerical integration of the momentum equation in the dynamic
meniscus region (region 2 of Figure 1.15 (a)) and the matching of the surface curvature
with that derived for the static meniscus region (region 1) near the ‘liquid surface. Their
predictions compare well with experiment for low capillary number (up to about 0.1),
but thickness predictions for higher values are much too large because of the neglect of
liquid inertia in their analysis. ‘

Tekic and Jovanovic [1982] used a two-dimensional non-linear theory to obtain a
correlation for predicting the liquid flux picked up by a pamtially submefgéd roller
during free coating. In their ‘Inclined-Plane’ model they assumed that at the point at
which the roller leaves the liquid, the situation can be approximated by a flat surface
being withdrawn at the same angle of contact, as shown in Figure 1.15 (b). Wau, Weng
and Chen [1985] also adopted an ‘inclined-plane’ model and, using the flow regions
proposed by Landau and Levich, they included inertia force terms and more realistic
two-dimensional boundary conditions at the free surface to produce reasonably accurate
film thickness ratio predictions over a wide range of capillary number.

Even if the difficulties in anal\ysing the entrainment of liquid onto fhe surfacé of a
partially submerged roller are ignored, it is important to account for the behaviour of a
thin liquid film on a roller in any attempt to measure film thickness at a specific point
(Malone [1992]). Consider the paxtia.liy submerged roller shown in Figure 1.15 (a); at
no time does the liquid film achieve an asymptotic thickhess. In fact the thickness
decreases as 6, increases. In éimple terms, the explanatibn involves tile faét that the
component of gravity in the direction of motion changes as the orientation of the layer
is changed: the liquid farthest away from the roller surface is affected most, and this
determines the velocity profile across the depth of the liquid layer. |

Tharmalingham and Wilkinson [1978] present results of predjéted film thickness for

variations of system parameters. In particular their Figure 5 shows how the film thick-
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ness varies around the roller for a range of capillary numbers. Their results predict that
the variation in thickness around the periphery of the roller increases as Ca increases

and, furthermore, for §; in the range —90° to 60° with 6, = 120° (refer to Figure 1.15
(2),

e At Ca = 0.01, film thickness varies by 10%

e At Ca = 0.1, film thickness varies by 20%

e At Ca = 0.5, film thickness varies by 40%

Now under typical fully-flooded roll coating conditions, Ca = 1.0. Therefore, single
point film thickness measurements will not give a typical average film thickness reading,
unless the operator can equate the position of measurement with the velocity profile
there (MaloPe [1992]). »

Howevér, viscosities of liquids for industrial meniscus roll coating applications are
low (of the order of 1 X 10~3 Nm~2s) compared with those used in fully-flooded roll
coating where visc;;ities can range from 0.05 — 500 N m=2s, | This fact, coupled with
the slower rollex; speeds necessary to maintain the bead, means that a typical capillary
number in industrial meniscus roll coating is given by Ca < 0.01, This alleviates the
problems caused by film thickness variation around the roller since for this range of
capillary number the variation is predicted to be less than 10%. In the experimental
measurements quoted in this thesis (which are due to Malone [1992]), a Newtonian oil,
Shell Tellus R5, was used whose viscosity at the laboratory temperature of 20°C was
8.4 X 10-3Nm~2s - higher than that of typical industrial coating liquids. Fortunately,
Malone [1992] circumvented any possible film thickness variation problems by employing
a scraper collection method on both rollers, which involves removing the liquid film from
a roller surface using a scraper blade. This gives the fluxes of the films on each roller,

which are easily converted to average film thicknesses since average thickness equals

the ratio of flux to roller speed.
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1.4 The Phenomenon of Ribbing

The main purpose of this thesis is to investigate steady roll coating processes which
produce uniform films (uniform in the sense that there is no variation along the axes of
the rollers) under different degrees of starvation. It is important, however, to realise that
all industrial coating processes are susceptible to instabilities which limit the possible
operating conditions since there are usually stringent tolerances on the uniformity of
films required. In the case of the fully-flooded forward roll coater the speed of operation,
for a givéﬁ liquid a.nd geometry, is limited by the appearance of the ‘riibbing’ instability
at high roller speeds. This is demonstrated by Carter’s [1985] experiments at Warren
Spring Laboratory, an example of which is shown in Figure 1.16. The ribbing instability
is characterised by a periodic, i.e. waved, variation in film thickness along the axes of
the rollers. There exists an extensive literature on the ribbing phenomenon, the salient
features of which are summarized below.

The first documented observation of ribBing seems to have been made by Hoare
[1937) in which he-;eported the formation of ribs when forward rolling is used to tin
metal sheets. Péarson [1960] was the first person to undertake a theoretical investigation
of this class of proBlem. He examined the effect of a small perturbation of the form
€ e* cos(nZ) on the position of the liquid-air interface and solved for the velocity
field describing the motion of a viscous liquid under a wedge-shaped spreader - see
Figure 1.17. Unfortunately his analysis lacked a complete set of boundary conditions.
Consequently the distance, C, from the centre of the spreader to the free surface had
to be determined from experiments and as such the theory in itself did not yield an
explicit criterion for the onset of the instability.

A second, important theoretical contribution to this problem was made by Pitts
and Greiller [1961]. They investigated coating in the system shown in Figure 1.9 and
analysed the liquid motion by means of a linear stability analysis. This contribution was
at two levels of sophistication. The ﬁrst, also considered by Savage [1977 a), involved

a relatively crude stability analysis in which the equilibrium of the liquid-air interface
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was considered and shown to remain stable to small disturbances provided

T
RC“!‘U

% [P + ——]<0 (1.10)

where P is the liquid pressure immediately upstream of the interface, 7 the surface
tension of the liquid, and R.yr, the radius of curvature of the interface. However,
though necessary, (1.10) is not sufficient to predict the onset of ribbing. Using (1.10)
Pitts and Greiller obtained conditions for the onset of ribbing involving the Capillary
ﬁumber, Ca = nV /T, and the geometry parameter, Ho/R which enabled prediction of

the critical Capillary number, Ca*, above which ribbing can be expected. This took

the form ‘ :
* Ho) ‘
Ca* = 5.0 ( T (1.11)
Subsequently using a second, more sophisticated stability analysis they obtained the
result
H
Ca* =~ 14.0 (—f) (1.12)

Both of these predictibns were in poor agreement with their experimental data to which

they fitted the line

. H
Ca* = 31.0 (—R—") (1.13)

A more refined experimental study was carried out by Mill and South [1967] in which

they used rollers of equal speed but with different radii. They found the critical Cap-

illary number to be given by
. H0)3/4 , ,
Ca* = 173 | =
a ( i (1.14)

Greener, Sullivan, Turner and Middleman [1980], using rollers of equal size and speed,

found the following criterion for ribbing

- -HO 2
Ca® = 1875.0 —
a ( R) (1.15)

Cheng [1981] and Savage [1984], noting these widely differing theoretical predictions,
also observed that the experimental data reported fell into separate regions of the

(Ca, Ho/R) plane. Following a suggestion of Cheng, Savage [1984] performed a linear
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stability analysis for both the flat plate/ roller (see Chapter 5) and equal speed two
roll coater geometries using the separation boundary conditions. This analysis yields
a criterion for ribbing involving the two dimensionless parameters (7 /nU)(Ho/R) and
(T/nU) (Ho/R )t. For the case of the equal speed two roll coater, theoretical pre-
dictions exhibit remarkably close agreement with the experimental data of Pitts and
Greiller [1961], Mill and South [1967] and Greener et al [1980] for 0 < Ca < 1 which is
almost the whole region of interest for coating problems. Carter and Savage [1987] and
Carter [1985] have conducted an analytical and experimental study into the effect of
varying the peripheral speeds of the two rollers, in a roll coater, on the onset of ribbing.
They were able to determine the approximate value of the capillary number at the onset
of ribbing for a given speed ratio and roll coater geometry. Their predictions agreed

well with data from Carter’s [1985] experiments at the Warren Sp;ing Laboratory.

1.5 Numerical Methods For Free Surface Flows : Finite
Elements

The last twenty-five years has seen many theoreticians working in the area of coating
and free surface flows turn to computers as a means of obtaining numerical solutions to
their problems. In any numerical solution, the differential equations governing the flow
are written in an approximate, discrete form resulting in a system of algebraic equations
whose solution yields the physical quantities of interest — for example, the streamfunc-
tion and vorticity or the fluid velocity and pressure - at a number of points (the nodes)
within the flow domain. The primary difference between numerical techniques lies
in the way in which the governing equations are recast into algebraic equations (Chen
[1991]). Once these equations have been derived, they are solved by an efficient solution
algorithm. ’

In the finite-difference (F.D.) method, which is widely used in Computational Fluid
Dynamics, the differentials arising in the governing equations are approximated by fi-
nite differences - see for example Hirsch [1988]. Unfortunately this method is prone to

difficulties when solving flows in domains of irregular shape, as is the case in general
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for free surface flows, because of the problem of constructing finite difference approx-
imations to these differentials on irregular grids. For this reason the F.D. method is
not a natural choice for the solution of free surface problems; nevertheless Ryskin and
Leal [1984] have tackled this interpolation problem by using a numerically generated or-
thogonal co-ordinate system which is ‘Boundary-Fitted’ in the sense that all boundaries
coincide with a co-ordinate line of the co-ordinate system.

A second method that has been employed for free surface flow problems is the
Boundary Element (B.E.) technique, used by Kelmanson [1983] for the ‘die-swell’ prob-
lem in extrusion, shown in Figure 1.18. The B.E. technique has two advantages over the
F.D. method: it has the topological flexibility required for the solution of free surface
problems and is cheaper since only boundary information is evaluated. It has, how-
ever, serious limitations. It is restricted to the limiting cases of zero Reynolds number,
where the governing equations are the linear Stokes’ equations, or inviscid, irrotational
flow where the equations reduce to Laplace’s equations for a velocity potential. In this
method, fundamental solutions of the linear governing equations are used to reduce
the general n-dimensional problem to the solution of a set of (n-1)-dimensional integral
equations. |

The finite element (F.E.) technique is the most commonly used numerical method
for solving free surface problems. It is more expensive than F.D. or B.E. methods, but
this is more than compensated for by its inherent advantages of being able to combine
the desirable features of the F.D. method, namely an ability to include the effects of
non-linear fluid inertia, three-dimensionality and time dependency, with the topological
flexibility of the B.E. method. In the light of these benefits, all free surface problemsA in
this thesis are solved by the F.E. method; the basic philosophy behind F.E. is described
in Chapter 4 and in Appendix B.

Many computational methods in fluid mechanics use either the streamfunction or
the streamfunction and vorticity as computational variables in incompressible flow
problems - see for example Olson and Tuann [1978] and Burggraf [1966). In these
methods the streamfunction is calculated first and the pressure must be recovered via

a separate computation. This is a serious drawback when solving free surface flows
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because the conditions at the free surface are given in terms of the stress components
which involve the pressure explicitly. It is therefore pfeferable to choose a F.E. scheme
with fluid velocity and pressure, known as the ‘primitive’ variables, for the solution of
free surface flows.

The F.E. method, with its traditional predominance in the area of stress analysis,
only really began to attract the attention of computational fluid mechanicists after
Zienkiewicz [1977, first published 1967] and Heubner [1975] showed that it could solve
flow problems which up until then had been beyond the scope of F.D. methods. For
example, Thompson, Lawrence and Fong-Sheng [1969] solved the problem of a liquid
being squeezed between two flat plates, giving a fairly detailed account of the F.E.
techniques used. These early techniques were gradually extended to accomodate the
effects of a free surface — the first published F.E. solutions of free‘surface flows (both
involving liquid jets) were those of Nickell, Tanner and Caswell [1974] and Tanner,
Nickell and Bilger [1975]. Tanner et al [1975] also solved problems involving Poiseiulle
flow and contraction effects in a tube from which they were able to test the reliability
of their program before applying it to more complex free surface flows.

However, there still remained a considérable restriction oﬁ further progress due to
the large amounts of storage required by the F.E. method. Hence, in addition to the
increased power and efficiency of modern computing machines, the advent of frontal
solution programs, first developed by Irons [1970] and later refined by Hood [1976} and
Beer and Haas [1982], was a second important factor influencing the growth of research
in the area of free surface flows. These Frontal Methods greatly improved the efficiency
of computer storage for F.E. programs and the principle behind them is explained in
Appendix C.

Iterative methods of various kinds are required when solving free surface flows since
the free surface position is unknown a priori. In the first few papers on this subject,
successive approximation techniques which proceeded in a three part cycle were used:
(i) a free surface shape is assigned, (ii) a flow field within that shape is found from
the Navier-Stokes system with one of the free surface boundary conditions omitted,

(iii) the free surface is updated to satisfy as closely as possible the previously omitted
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boundary condition. This method, although fairly simple to implement, experienced
severe convergence difficulties: convergence, if at all, was slow and depended on the
choice of omitted boundary condition (Silliman and Scriven .[1980]).

Ruschak’s [1980] boundary location method, which he called the ‘Boundary Sup-
ports’ technique, led to a significant improvement in the parametrisation of free surface
boundaries by the F.E. method. He succesfully applied this free surface representation,
shown in Figure 1.19, to the flow of a liquid from a slit which agreed well with Richard-
son’s [1970] analytical solution. Following the work of Silliman and Scriven [1978,
1980], Saito and Scriven [1981] used a simpler version of Ruschak’s boundary location
method to analyse the slot coating problem shown in Figure 1.20. They introduced
a new solution technique based on Néwton iteration which dramatically improved the
convergence characteristics — in particular the convergence rate — for free surface flows.
In this Newton iteration procedure, the shape and location of the free surface, and the
velocity and pressure fields are all calculated simultaneously.

Figure 1.21 (a) illustrates the F.E. grid Silliman [1979] used to analyse a slot coating
problem. Using the method described by Ruscha.k [1980], the vertical co-ordinates of
the nodes were given as fixed ratios of the height, H, of the vertical line on which the
node lay, thus giving an even distribution of elements at each iteration. Unfortunately
as the Reynolds number and Capillary number increased for a fixed flow rate or the
flow rate was decreased for fixed Reynolds or Capillary numbers, the curvature of the
free surface increased until an invading meniscus occurred. This led to singularities in
Silliman’s formulation which Saito and Scriven [1981] and Carter [1985) were able to
avoid by parametrising the free surface into two separate regions — see Figure 1.21 (b).

In the region where the curvature of the meniscus is large, the radial distance
between a polar origin O (outside the liquid) and the free surface is parametrised by
r. The co-ordinates of the nodes within this region are given as fixed ratios of the
distance between the free surface and a fixed point in the liquid. This representation
is successfully applied to the slot coater in Chapter 4.

Ruschak [1982] seems to have been the first to seek a numerical solution of the full

two-dimensional flow between a pair of partially submerged counter-rotating rollers (the
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situation first studied by Pitts and Greiller). He realised that the difficulty in applying
the lubrication approximation lies in the specification of boundary conditions at the
point of formation of the liquid-air interface. He obtained a solution by the method
of matched asymptotic expansions in which the first term of the outer expansion is
generated from the lubrication approximation; the first term in the inner expansion
describes the two-dimensional flow in the vicinity of the interface. These inner equations
are analytically intractable, so he obtained approximate solutions by the F.E. method.
Matching between inner and outer expansions provides conditions on the pressure and
pressure gradient which allow the completion of the outer, lubric#tiqn flow. Ruschak’s
asymptotic analysis is restricted to flow between a pair of rollers in the limit Ho/R — 0,
i.e. the limit of parallel roll surfaces at the film splitting ;egion. This asymptbtic
analysis has been extended by Coyle et al [1986] to the asymmetric case.

Coyle, Macosko and Scriven [1982] developed a generally applicable F.E. analysis
of fully-flooded flow between rollers with flux splitting for the relatively simple case of
symmetric flux splitting. They obtained good agreement with the experimental results
of Pitts a.nd‘Greiller for the position of the interface over the range 0.05 < Ca < 0.4 and
zero Reynolds number. Though primarily iﬁterested in Newtonian liquids, they were
able to predict that a shear-thinning rheology has the effect of increasing the size of the
eddies as well as causing the posjtion of the meniscus to move away from the nip. This
method has been extended to: (i) asymmetric forward roll coatihg of Newtonian (Coyle
et al [1986]) and non-Newtonian (shear-thinning) '(Coyle, Macosko and Scriven [1987))
liquids, (ii) reverse roll coating (Coyle et al [1990a]), (iii) forward roll coating with
deformable rollers (Coyle [1988, 1990]), and‘(iV) to analyse the stability of symmetric
forward roll coating (Coyle, Macosko and Scriven [1990b]). Note that in all of these
analyses the flow is assuxﬁed to be fully-flooded at inlet. Examples of computational
grids used in the solution of these problems are shown in Figure 1.22.

All of these studies of roll coating have been based on the ‘Spine Method® developed
by Kistler [1983] from Ruschak’s boundary location technique. The ‘Spine Method’ is
described in the excellent review of Kistler and Scriven [1983]. This work discusses

at length (i) how the free surface is represented; (ii) techniques for handling contact
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lines (static and moving); (iii) outflow and inflow conditions. These ideas are further
extended from the case of aliquid-gas interface to the treatment of the interface between
two viscous liquids, as is required for example in multilayer printing processes.

The theory and practical application of the ‘Spine Method’ to the solution of free

surface flows is discussed at length in Chapter 4.

1.6 Outline of The Present Work

This thesis considers the steady roll coating, principally in the forward mode of opera-
tion, of a Newtonian, incompressible liquid under different degrees of starvation. The
main aim of Chapter 2 is to develop a simple, analytical model of meniscus roll coating.
In order to aéhieve this two related flow problems, namely the flow in (i) a lid-driven
cavity and (ii) an open, driven cavity are modelled as creeping flows in rectangular cav-
ities and are solved analytically in the form of a truncated biharmonic series. The main
features of these two problems are incorporated into a simple model of meniscus roll
coating (the Zero Flux i\;Iodel) in which the curvature of the meniscii and flux through
the bead are neglectéd. The analytical solution of this model, which also takes the form
ofa trunc#ted biharmonic series, predicts streamline patterns and pressure profiles rad-
ically different from those observed in the fully-flooded case. The analytically-obtained
streamline patterns are compared with numerical ones obtained from a streamfunction-
vorticity F.E. method (see Gaskell, Savage and Thompson [1991}). |

In Chapter 3, the results of Chapter 2 are used to further simplify the flow in the
central ‘core’ of the meniscus roll coating bead, i.e. the region sufficiently far from
the meniscii. The core flow is modelled as a combination of Poiseiulle and Couette
flow with a small flux through the bead and a film thickness model is developed to
predict the average film thicknesses produced on upper and lower rollers in forward
meniscus roll coating as a function of the operating parameters. These film thickness
predictions a.ré compared with experimezitally obtained results due to Malone [1992]
and then utilised to develop a simple model for the flow in the entire liquid bead when

a small flux passes through the nip. This extended model is solved numerically by
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the streamfunction-vorticity F.E. method. Streamlines obtained from this numerical
solution are compared to those seen experimentally.

The full two-dimensional flow near free surfaces, including the effects of surface
tension, can only be analysed by computational means. In Chapter 4, a FORTRAN
F.E. code based on Kistler’s [1983) ‘Spine Method’ is developed and applied to flow
problems of gradually increasing complexity. The code is validated against previously
obtained results for the slot- , symmetric forward roll- , and asymmetric forward roll-
coating free surface problems.

In Chapter 5 the code is used to obtain numerical predictions of the film thick-
ness ratio T} /T for a fully-flooded forward roll coater over a wider range of velocity
ratio than previously reported. The code is then extended to investigate the effects
of starvation in two closely related roll coating geometries. The ﬁrst of these, known
as the flat plate/roller geometry, is chosen since experimental pressure profiles may be
obtained. The second is the familiar two roll system. Numerically obtained velocity
vectors and pressure profiles are plotted as a functionlof the degree of starvation in
both cases and compared with Malone’s [1992] experimental results for similar flow sit-
uations. Finally, numerical predictions of thé dependence of the average film thickness
ratio 71 /T; on the velocity ratio S for both the moderately- and ultra-starved cases are
compared with Malone’s [1992] experimental film thickness results, Benkreira et al’s
[1981] experimental correlation and Savage’s [1992] analytical prediction.

Chapter 6 summarizes the main results of the work presented in this thesis and
looks at ways in which it might be extended, including some suggestions for future
work.,

Appendix A describes the theory developed by Smith [1952]) and Joseph and Sturges
[1978] which is used in Chapter 2 to obtain analytical solutions for the flows in lid-driven
and open, driven cavities by the method of biorthogonal series expansions. Appendix
B describes the streamfunction-vorticity F.E. technique used in Chapters 2 and 3 with
Particular reference to the application of boundary conditions and the treatment of

corner nodes by expanding the solution about the corners. Appendix C contains a basic
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introduction to the Banded-Matrix and Frontal Solution methods for solving the F.E.

equations.
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Figure 1.1: Selected Coating Operations (Kistler and Scriven [1983]): (a) Rimming
flow; (b) dip coating; (c) bead coating; (d) knife coating; (e) forward roll coating; (f)

Teverse roll coating; (g) slide coating; (h) curtain coating
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Figure 1.2: The Two Roll Coating Configuration; (a) three-dimensional oblique view,

(b) cross-section showing the nip region
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Figure 1.3: An Experimentally-Obtained View of the Nip Region of a Fully-Flooded

Forward Roll Coater (Malone [1992])

Figure 1.4: The Upstream Bank of Liquid Characteristic of a Fully-Flooded Forward

Roll Coater (Malone [1992])

Flgure 1.5: An Experimentally-Obtained View of the Nip Region of an ‘Ultra-Starved’

Forward Roll Coatcr (Malone [1992])
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Figure 1.6: Inlet Conditions for a Forward Roll Coater: (a) fully-flooded, (b) moder-

ately-starved, (c) ultra-starved
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Figure 1.7: Flow Visualisation of a Fully-Flooded Forward Roll Coater (Malone [1992])

Figure 1.8: Flow Near the Film-Splitting Point in Forward Roll Coating
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Figure 1.9: Symmetric Film Splitting in Forward Roll Coating
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Figure 1.10: A Typical Pressure Profile from the Separation Model
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Figure 1.11: A Typical Pressure Profile with Reynolds Conditions at Outlet (Wolveridge

et al {1971])
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Figure 1.12: The Dynamic Wetting Line in Forward Meniscus Roll Coating
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(a) (0)

Figure 1.15: The Free Coating Problem; (a) for a rotating roller, (b) for a flat plate

analogy

Figure 1.16: The Ribbing Phenomenon (Carter [1985])
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Figure 1.18: The Die-Swell Phenomenon
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Section of a grid showing three boundary supports.
Each support starts at a node fixed in space (o) and
ends at a moveable node on the free surface (@)

Free Surface

Figure 1.19: Ruschak’s [1980] ‘Boundary Supports’ Free Surface Representation
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Figure 1.20: The Slot Coater
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Figure 1.22: F.E. Grids Used in Numerical Solutions of (a) asymmetric forward roll

coating (Coyle et al [1986]), (b) teverse roll coating (Coyle et al [1990a])
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Chapter 2

The Zero Flux Model of

Meniscus Roll Coating

2.1 Introduction

In Chapter 1 it was noted that roll coating may be operated under different degrees of
starvation. In the fully-flooded case., the inlet is bathed in an ample supply of liquid,
whereas in the moderately- and ultra-starved (meniscus roll coating) cases, insufficient
liquid is picked up to flood the inlet — see Figures 1.6 (a)-(c). It is possible to define
‘starvation’ in terms of a dimensionless fluz A = Q/2V Hy, where Q is the total flux
between the rollers, V = (V1 + V2)/2 is the average speed of the rollers, and Hy the
semi-nip width. In Chapter 4 it will be seen that in the fully flooded, symmetric (equal
speed and radii rollers) case ) lies between 1.3 and 1.4, so any value of A below that
for the fully-flooded situation corresponds to a starved case.

The purpose of this and the following chapter is to mathematically model the two-
dimensional flow in the bead of the meniscus roll coater, shown experimentally in Figure
1.5. However, Before one can develop a mathematical model of a physical process it is
important to examine all the factors which influence it. In aliquid flow problem, such a
survey should consider (i) the rheological and physical properties of the working liquid,
(i) the competing forces in order to determine which are dominant, and (iii) the shape

of the liquid domain. The task of the mathematical modeller is to use the results of

41
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this survey to develop a model which includes only those features which are dominant.
Having developed a model, its predictive power must be tested against experiment
in order to validéte and establish its range of applicability. A good correspondence
suggests that the key features of the flow have been captured, otherwise either the
existing model must be refined or a new one developed incorporating additional physics.
Clearly the development of a mathematical model may be viewed as an iterative process.

Turning now to meniscus roll coating; in §§1.2.4, §1.3 we saw that ultra-starvation
has important implications for the flow since it leads to the appearance of a second,
highly curved meniscus on the upstream side of the liquid bead. Moreover because thé
domain of interest (i.e. the liquid bead) has an irregular shape, the full low problem
cannot be solved ﬁsing classical analysis. In practical terms, this means that simple
modelling is limited to the flow in the central ‘core’ of the bead, sufficiently far from
the meniscii — see Figure 2.1. Although the principal aim of this chapter is to déve10p
a simple model for meniscus roll coating, it is instructive to first focus attention on two
related problems. These are the flows in (i) a lid-driven cavity, (ii) in an open, driven

cavity; both are ‘cavity-driven’ flows which form part of a sub-class of problems known

as ‘creeping’ (or Stokes) flows.

2.2 The Equations of Creeping Flow

The steady flow of a Newtonian, incompressible liquid of constant density p and vis-

cosity 7 is governed by the Navier-Stokes equations, viz -
pUNVU = =VP + VU (2.1)
0 = VU ‘ ‘ ~ (2.2)
where I and | P are the ﬁquid velocity and pressure respectively. Suppose that flow is
‘slow’ in the sense that the liquid inertia term, given by the left hand side of (2.1), is

negligible compared to the viscous and pressure terms, then the Navier-Stokes equations

reduce to th‘e Stokes equations for creeping flow

0 = -VP 4+ oVU (2.3)
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0 = V.U (2.4)
Taking the curl of (2.3) eliminates the pressure gradient term VP leaving
0 = curl(V3U) (2.5)

For a two-dimensional, incompressible flow it is possible to define the vector
¥ = (0,0,¥(X,Y)) such that U = curl (2). Replacing U by curl¥ in (2.5) yields

-—

the biharmonic equation for the streamfunction ¥(X,Y):

ViT =0 (2.6)

2.3 Flow in a Lid-Driven Cavity

The first creeping flow problem to be considered is that inside a ‘lid-driven’ cavity,
iNustrated in Figure 2.2 (a). It is the steady, two-dimensional flow induced in a solid-
walled, rectangular cavity by shearing the liquid on top by a uniformly moving plate.
This problem, a simple illustration of a flow with closed streamlines, has received much
attention in the literature. Indeed it has become a benchmark problem for the testing
of ’numerical schemes in fluid mechanics ~ see Gaskell, Lau and Wright [1988).

Since in this thesis we are assuming that the liquid is Newtonian and incomp:essible
then, referring to Figure 2.2 (a), the dynamic behaviour of this flow may be described
in terms of a cavity Reynolds number Re = p U D/ n, where p and n are the liquid
density and viscosity respectively, while the effect of the cavity geometry is described
by the aspect ratio 4* = D/L. In his paper Burggraf [1966) obtained finite-difference
(F.D.) numerical solutions for the flow in a square cavity (A* = 1) for 0 < Re < 400.
Pan and Acrivos [1967] presented a clleta.iledvF.D. numerical solution for the creeping
flow case (Re = 0) for cavities with aspect ratio 0.25 < A* < 5. Their fundamental
Paper also includes experimental data taken in cavities with A* = 1 and A* = 10
over the range 20 < Re < 4000; their flow visualisatipns were in good agreement with
Streamline predictions fro;n Burggraf’s numerical solution. Other experimental and
theoretical studies of flows in lid-driven cavities include those of Ghia, Ghia and Shin

[1982] and Prasad, Perng and Koseff [1988].



Chapter 2: The Zero Flux Model of Meniscus Roll Coating 44

The flow in a lid-driven cavity is commonly reformulated in terms of a boundary
value problem for the streamfunction (see e.g. Burggraf [1966]). In order to achieve
this, the boundary conditions shown in Figure 2.2 (a) must be rewritten in terms of
the streamfunction.

Boundary Conditions

{a) No-Slip Conditions

The no-slip hypothesis of conventional fluid mechanics states that the liquid velocity
at a solid surface is equal to the velocity of the solid surface. It may be shown that
if ¥ is the streamfunction of a flow and U = (U, V) are the cartesian components of
liquid velocity then

oy v = ¥

v=3 0 V= ox

o~ (2.7)

Hence relations (2.7) enable the no-slip conditions in Figure 2.2 (a) to be written in
terms of derivatives of the streamfunction.

(b) A Closed Liquid Domain

In the lid-driven cavity flow, the liquid domain is closed, i.e. no liquid crosses the
boundaries. However, the difference in value of the streamfunction at two different
Points represents the net liquid flux between these pointys. Therefore if there is no net
liquid flux between two points, then the streamfunction has the same value at these
points. This means that the streamfunction is constant on the boundaries of a closed
liquid domain; this constant is usually taken to be zero.

Now focus attention on the case in which the lid velocity U is so small that the
governing equations are those of creeping flow (equation (2.6)). Introducing the dimen-
sionless quantities (refer to Figure 2.2 a)u =U/lU,z = X J(L]2),y = Y/(L]2),
Y = ¥/(UL[2), and 4* = D/L (the cavity ‘aspect ratio’), enables the slow flow
in a lid-driven cavity to be reformulated as the dimensionless boundary value i)roblem
shown in Figure 2.2 (b). Since the flow field is closed, it is convenient to take ¢ = 0 on

all four boundaries. From equation (2.7) the boundary conditions on the side walls are

p(21y) = Lit1y) = 0 (2.8)
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while those on the upper and lower walls yield

%ﬁ;’.(z,zy) = 1, ¢¥(z,24") = 0 (2.9)
oy _ -
-5;(3:,0) = 0 ’ ¢(x,0) =0 (2‘10)

Joseph and Sturges [1978] postulated a solution to this boundary value problem in the
form of a biharmonic series

¥ = f: {A,. etn(v-24%) 4 B, e""”} —-——————-¢"‘(:,’ n) (2.11)

n=—co
where (A, B,) are (complex) constant coefficients, s,, are complex eigenvalues and the
functions 4} are even Papkovich-Fadle eigenfunctions — see Appendix A. The eigenval-
ues s, are chosen so that the side wall conditions (2.8) are automatically satisfied.

The complex coefficients (An, Bn) are evaluated using a truncation technique em-
ploying Smith’s [1952] biorthogonality relation. This is described in Appendix A. When
the coefficients have been determined the streamfunction at any interior point of the
liquid may be obtained by simply summing the series (2.11). Table 2.1 shows values
of the streamfunction (¥) and hori;;ntal component of liquid velocity (84 /8y) on the
upper and lower lids of a cavity with A* = 5, calculated by truncating (2.11) after 20
terms. The convergence to the boundary conditions (2.9), (2.10) is satisfactory. Note
that at the upper right hand corner, which is formed at the junction of the moving
lid with the right Hand side wall, the liquid velocity is zero. This is a consequence of
Selecting the eigenvalues s, in order to satisfy the conditions (2.8). In fact the exact
nature of the flow near this junction cannot be determined; this point is expanded upon
in Appendix B, which deals with numerical techniques for modelling junctions of this
kind.

It is possible to compare the streamfunction values obtained from the semi-analytical
solution (2.11) with those from a corresponding numerical solution obtained using the
‘Streamfunction-vorticity’ F.E. method for creeping flows, described in Appendix B.
Numerical solutions are oﬁtained using triangular elements, for the reasons described
in §B.2, while the storage requirement needed to solve the F.E. equations (equations

(B.20), (B.21) of Appendix B) is reduced by using a ‘banded-matrix’ solver from the
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NAg F.E. library of subroutines - see Appendix C for the philosophy behind this solu-
tion technique. It is important, however, to check any F.E. solution since its accuracy
depends on (i) the degree of refinement of the computational mesh; (ii) the numerical
integration (in this case Gaussian Quadrature) schemes chosen. For the former, it is
sometimes possible to use theoretical error analysis, e.g. the ‘Patch Test’ (see Carter
{1985] pp 145-148), but in the present application it is more convenient to simply ob-
tain solutions on two or more grid levels, and then test whether the solutions are in
reasonable agrecment. A similar process must also be carried out to test the effect of
vthe quadrature scheme on the solution’s accuracy.

Numerical solutions were obtained using the 3 grids shown in Figure 2.3: grids
(2) and (b) are symmetric about the vertical cavity centreline, z = 0, and consist of
144 elements (329 nodes) and 216 elements (481 nodes) respectively. Grid (c) also
has 144 elements and 329 nodes, but is asymmetric about the cavity centreline; this
enables us to examine the effect of grid asymmetry on the numerical results. All
grids are refined at the upper corners due to the indeterminate nature of the flow
Dear these points. Numerical results were oi;;ajned using each grid and every possible
combination of quadrature schemes for afea integrals (i.e. (A), (B), (C), (D) of Figure
B.6) and boundary integrals ((a), (b), (c) of Figure B.7) described in Appendix B. Close
examination of these results showed that solutions obtained using any of the above
combinations were in agreement to the third decimal place with an analytical solution
obtain;zd by truncating (2.11) after 30 terms (see Gaskell, Savage and Thompson [1991)]),
regardless of which grid was used. However as expected, grid (c) introduced a slight
* asymmetry (about the line z = 0) into the ﬁumerical solutions.

When scheme (D) (with one negative weight) was used, the numerical sqlutions
Were in extremely poor agreement with the analytical solution (2.11). Thisisa problem
identified by previous authors (e.g. Smith [1982], Carter {1985]) and is thought to be a
Product of using a quadrature scheme with a negative weight, ’which can lead to severe
rounding errors during the computation. Changing the quadrature scheme had only a
minor effect on execution times for the numerical solutions: those obtained using grids

(i‘) and (c) took approximately 70 c.p.u. seconds (all computations were performed on
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an AMDAHL 5860 computer), compared with 110 c.p.u. seconds when grid (b) was
used. On the basis of these numerical results it was decided that all streamfunction-
vorticity F.E. solutions presented in this thesis would be calculated using the 4-point
scheme (A) for area integrals and the 2-point scheme (a) for boundary integrals.
Figure 2.4 shows streamlines computed (a) analytically (with 20 terms in the series
(2.11)) and (b) numerically, using grid (a) of Figure 2.3, and (c) due to Pan and Acrivos
[1967] for a square cavity (4" = 1). The agreement between the analytical, numerical
and published solutions is excellent; note that truncating the series after 20 terms is
sufficient to resolve the corner eddies. Figure 2.5 shows streamlines for a cavity with
A* = 5. The analytical results agree well with those from Pan and Acrivos’ [1967]
numerical study; again the corner eddies are resolved by taking 20 terms in the series
(2.11). Note the interesting prediction that the vortex structure depends on the cavity
aspect ratio A*. This suggests a possible extension to the work presented here, namely
a study in order to determine the exact nature of the transition in the vortex structure

as A" is increased.

2.4 Flow in an Open, Driven Cavity

The next problem to be studied is the slow flow of a Newtonian, incompressible liquid
in an open cavity generated by the steady rotation of a cylinder, shown in Figure 2.6
(a). This problem has received recent attention from Canedo and Denson (1989]. In
their mathematical model of this flow, they augmented the assumptions, used in §2.3,

of a creeping, steady, two-dimensional flow, with the following additional ones:
(1) Neglect the curvature of the roller.

(ii) Neglect the influence of the thin lubrication film attached to the roller which flows

from the cavity at the bottom and re-enters at the dynamic wetting line.
(iii) Assume a planar liquid-gas interface.

(iv) The gas above the liquid remains at uniform pressure P, and its viscosity is

pegﬁgible compared with the liquid viscosity.
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Assumption (i) results in the cross-section of the flow, shown in Figure 2.6 (b), having
a rectangular shape, whereas (ii) is equivalent to assuming a closed liquid domain. In
Chapter 1 it was noted that meniscii, including the effects of surface tension, cannot be
modelled by purely analytical means. However with assumption (iii), Canedo and Den-
son made the problem tractable by imposing a simple meniscus shape. Unfortunately
by doing so, it is no longer possible to satisfy all (three) — see Chapter 4 — free surface
boundary conditions. For a steady flow, two of these conditions stipulate that both the
normal and tangential stresses must balance. In their model, Canedo and Denson chose
to balance the shear, i.e. tangential, stresses at the planar interface and accept the fact
that the normal stresses are unbalanced. Of course in practice the interface is curved
and these normal stresses are balanced by surface tension stresses due to this curvature
(see §§1.2.2). This condition may also be expressed in terms of the streamfunction ¥.

(c) Balance of Shear Stress at a Planar Liquid-Gas Interface

If n, ¢t are unit vectors normal and tangential to the liquid-gas interface respectively

(see Figure 2.7), then in the general situation the equation expressing the equilibrium

-

of this interface (Batchelor [1985] p 69) is

T
o= Zgn + n (2.12)

== Rewrv™

fit4

where I, £, are the stress tensors of the liquid and gas respectively, T is the surface
tension of the liquid, and R.,,, the radius of curvature of the liquid-gas interface. For

a Newtonian liquid the stress tensor is given by

oU; oU;
where §;; is the Kronecker delta symbol
1 ifi=j
6ij = (2.14)

0 otherwise

In Canedo and Denson’s model, the liquid-gas interface is planar with n = (0,1) and

t =(1,0). It can be shown that balancing shear stresses there yields

oU | v\ _ _ (oU, = oV,
”(aY + aX) = T (79—17 + '5)7) (2.15)
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where the subscript g refers to the gas. However by assumption (iv) /7 < 1, so

equation (2.15) reduces to a ‘zero-shear stress’ condition, namely

oU v
W+-5—f=0 atY:O (2.16)

Using relations (2.7), this may be written in terms of the streamfunction, giving

2r o

577~ 333 = 0 Y =0 (2.17)

Since the liquid domain is closed (assumption (ii)), ¥ is constant on the liquid bound-
aries 50 ¥ /80X = 0?¥/0X? =0 atY = 0. Therefore this zero shear stress condition

may be rewritten as
0%y
aY?

=0 atY=0 (2.18)
All the remaining boundary conditions are of the form (a), (b) or (c) described above.
For tbhe purposes of the analysis it is convenient to scale lengths by D, liquid velocities
by U and the streamfunction by UD. In this case the aspect ratio A* = L/D is
also the dimensionless cavity width. This non-dimensionalisation, coupled with the
creeping flow and geometry assumptions described above, enables the slow flow in an
open, driven cavity to be reformulated as the dimensionless boundary value problem
shown in Figure 2.8. Once again, for convenience the streamfunction is set equal to
zero on the boundaries.

Canedo and Denson [1989] solved this problem numerically using a F.D. scheme
and have presented an analytical solution only valid for infinitely deep cavities of finite
width. It is, however, possible to obtain a semi-analytical solution valid for all values

of aspect ratio by using a truncated biharmonic series similar to that described in §2.3

for the lid-driven cavity flow. Postulate a solution of the form

Y = i (Cne”"("".) + D,.e“”"’) ____¢'1‘(y,p,.) (2.19)

n=—oo i
where (C,, D,) are complex coefficients, d'>'1‘ are odd Papkovich-Fadle eigenfunctions,
and p,, are complex eigenvalues chosen to satisfy the conditions at the bottom lid and
the planar liquid-gas interface. The coefficients are obtained by using a modified form

of Joseph and Sturges’ truncation technique, the main points of which are summarized
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in Appendix A. Asin §2.3, it is found that truncating the biharmonic series (2.19) after
20 terms gives satisfactory convergence to the boundary conditions on the side walls —
see Table 2.2 for analytical results for a square cavity with A* = 1. As in the lid-driven
cavity flow case, the no-slip conditions on the moving wall are inapplicable very close
to the cavity corners because this would lead to mathematical singularities there — see
Appendix B.

Streamlines obtained from a semi-analytical solution of this problem, truncated after
20 terms, are shown in Figure 2.9 (a); they agree well with those obtained numerically by
the streamfunction-vorticity F.E. technique (Figure 2.9 (b)), and Canedo and Denson
[1989] (Figure 2.9 (c)). As in §2.3, the corner eddies may be resolved by taking only
20 terms in the series (2.19). The two F.E. grids used in the streamfunction-vorticity
solutions of this problem are shown in Figure 2.10: grid (a) consists of 144 elements and
329 nodes, whereas grid (b) has 216 elements and 481 nodes. Both grids are refined at
the right hand side corners in order to alleviate inaccuracies due to corner singularities
there. Once again it is found that grid (a) is sufficiently refined for this application.
The F.E. equations (B.20), (B.21) are solved i)y the same banded matrix solver as
was used in §2.3. Solutions obtained using grids (a) and (b) had execution times of
approximately 70 and 110 c.p.u. seconds respectively.

The semi-analytical solution (2.19) has many advantages over numerical solutions
to this problem: in addition to the obvious ones such as convenience, cost-effectiveness
and an ability to resolve corner eddies, it is possible to calculate the (unbalanced)
normal stresses at y = 0. This is useful because one can then, in principle, postu-
late a small perturbation to the liquid-gas interface from the assumed, planar shape
(which corresponds to the hypothetical case in which capillary number Ca = nU/7T is
zero) to one with small disturbances from a planar shape (corresponding to a small,
finite Ca). This could be achieved by balancing the normal stresses in the liquid by sur-

face tension stresses due to interface curvature. However this point is not pursued here.
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2.5 The Zero Flux Model of Meniscus Roll Coating

2.5.1 Introduction

In this section a mathematical model for the flow of a Newtonian, incompressible liquid
in a meniscus roll coating bead is developed. In order to make the problem tractable
to analysis, a number of simplifying assumptions are made. The value of considering
the ‘cavity-driven’ flows described above will soon become apparent since the model
of meniscus roll coating developed here, and termed the ‘Zero Flux Model’, is strongly
influenced by them.

In an initial survey of meniscus roll coating there are many interesting observations
to be made. The first is that, under normal operating conditions, the flow in the bead
does achieve a two-dimensional, steady state V(Ma.lone [1992]). Now in fully-flooded
roll coating the liquid inertia terms in the governing equations (equations (2.1), (2.2))
are rarely important compared to the viscous and pressure terms (see e.g. Savage
[1982], Coyle et al [1986]). In §§1.3.3 we noted that meniscus roll coating is operated at
lower speeds and with liquids of lower viscosity than in the fully-flooded case. Although
these lower liquid viscosities tend to increase the relative importance of the liquid inertia
terms in meniscus roll coating, the lower roller speeds mean that the Reynolds numbers
Re = pUL/n (where U, L are characteristic velocity and length scales respectively),
measuring the significance of the inertia terms in the flow, are of similar magnitudes
to those encountered in the fully-flooded case (Malone [1992)). Consequently it should
also be valid to assume that liquid inertia effects are negligible in meniscus roll coating.
For this reason the creeping flow approximation used in §2.3, 2.4 is also employed in
the Zero Flux Model.

Another important feature of meniscus roll coating is that the dimensionless flux A,
defined in §2.1, is small compared to a typical fully-flooded value where 1.3 < A < 14.
A key assumption of the Zero Flux model therefore, which explains the origin of its
name, is to neglect the flux through the bead; this is equivalent to assuming a closed
liquid domain as in the two previous problems. In §1.3 we saw that other important

factors complicating analyses of meniscus roll coating are: (i) the existence of two
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meniscii, one on either side of the bead, and the shape of the rollers. These features
are modelled as in §2.4, i.e. the meniscii are represented as planar interfaces on which
a condition of zero shear stress is imposed, and the rollers as flat lids.

These assumptions enable the flow to be modelled as shown in Figure 2.11: the
liquid bead is rectangular and the flow is generated by the motion of the lids. The

analysis is simplified by introducing the following dimensijonless quantities
w=UVa,z = X/(L2), y = Y/(L/[2) (2.20)

¥ = Y/(V,L[2), S = Vi/Va, H* = 2Ho/(L/2) (2.21)

where L is the bead width, V; the bottom lid velocity, S the velocity ratio of the
lids and H* the dimensionless cavity depth (2H, is the separation of the lids). This
non-dimensionalisation, coupled with the creeping flow assumption, enables the Zero
Flux Model and associated boundary conditions to be reformulated as the boundary
value problem shown in Figure 2.12. Note that since the liquid-gas interfaces are now
vertical planes with n = (£1,0), t = (0,F1), the zero shear stress conditions are

modified, giving
7Y
oz?

0 atz==%1 (2.22)

in contrast to expression (2.18).

It is found that this boundary value problem is much simpler than those in §2.3,
§2.4 since it can be solved using the ‘natural’ eigenfunctions of the biharmonic equation,
namely

oo
v =) {(y — B*)(Ape*=H") 4 Be™ V) 4 D, (e — exu(u—2H‘))} cos(Ant)
" (2.23)
where ), are eigenvalues and (An, Bn, Dy) are constant coefficients to be determined
from the boundary conditions. In fact the form of this solution is the same as that used

by Harper and Wake [1983] to model the flow in the earth’s mantle. The conditions on

the side walls may be satisfied if cos A, =0V A,, giving

An = (n - -;—)w forn=1,2,.. (2.24)
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Note that these eigenvalues, and consequently the coefficients also, are real in contrasf
to those given in Appendix A. The unknown coefficients are determined by satisfying
the boundary conditions on the lids and it may be shown that these conditions reduce
~ the search to a standard Fourier expansion problem. Of course, it is only possible to
inciude a finite nﬁmber of terms in the series (2.23) in practice, so it is important to
determine the number of terms which need to be taken to ensure that the series has
converged satisfactorily. Since expression (2.23) is an even function of z, the conver-
gence characteristics may be investigated by considering streamfunction values in the
right half of the bead only. Table 2.3 shows the values of the streamfunction calculated
from (2.23) for the flow in a liquid bead with H* = 0.25 and S = 1 and 2 by truncating
the series after (i) 20 and (ii) 50 terms. These values agree to the third decimal place
and the streamfunctions satisfy the conditions 1 = 0 on the upper and lower lids to six
decimal places. Of further interest is the convergence of the analytical expression for
the horizontal liquid velocity (obtained from the streamfunction (2.23) by the relation
u = 0 /dy) to velocity conditions on the moving lids. Table 2.4 shows horizontal ve-
locities on the lids for flows with (a) H* = 0.25,. S =1,(b) H* =0.25, S = 2 obtained
by truncating the series for u after (i) 20, (ii) 50 terms. These results show that by
taking only 20 terms of the biharmonic geries, the convergence to the velocity boundary
conditions is satisfactory. The agreement improves as more terms are taken; this is to
be expected because as noted earlier, the convergence to the boundary conditions will
have the same properties as the convergence of a Fourier series on an interval. In fact,
in all cases studied it was found to be sufficient to take only 20 terms of the biharmonic
series (2.23) in order to attain satisfactory convergence to the lid velocity conditions
In §§1.2.4 we saw that in meniscus roll coating there is one dynamic wetting line
where the inlet meniscus meets the web/upper roller (see Figure 1.12). However in
the zero flux model, there are dynamic wetting lines at all four corners of the liquid
bead. At each of these corners, the form of the solution (2.23) ensures that 8¢ /0y =0
thére, i.e. zero liquid velocity; this means that a condition of perfect slip between solid
and liquid at these corners is implicit in the model. This feature _of the model, which

is important in any numerical solution of the boundary value problem, is discussed in
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Appendix B.

2.5.2 Predictions of the Zero Flux Model

(i) Streamline Patterns

In a liquid flow, curves on which the streamfunction is constant are known as ‘stream-
lines’. Since they trace out the actual paths of liquid particles in a steady flow, stream-
line plots provide a useful means of representing a flow field. Indeed one of the major
objectives of the zero flux model is to predict the streamline patterns that arise during
mensicus roll coating.

In Figure 2.13 streamlines obtained from (i) an analytical solution (expression (2.23)
truncated after 20 terms), and (ii) 2 numerical (streamfunction-vorticity F.E.) solution
of the boundary value problem shown in Figure 2.12, are presented for the 3 cases in
which H* = 0.5 and $=1, 2 and -1. Numerical solutions were obtained using grids (a)
(160 elements, 369 nodes) and (b) (232 elements, 521 nodes) shown in Figure 2.14. Both
grids are refined at the four cavity corners in order to alleviate problems caused by the
dynamic wetting lines which exist there in the zero flux model. The numerical results
obtained using either grid were in excellent agreement with the analytical solution -
those illustrated in Figure 2.13 employed grid (a) as the computational mesh. As before
the F.E. equations (B.20), (B.21) are solved by a banded-matrix solver from the NAg
F.E. library, solutions obtained using grids (a) and (b) taking approximately 80 and
120 c.p.u. seconds respectivély.

In the unit velocity ratio case (S = 1), the predicted flow consists of a double vortex
structure in which the eddies are of equal size and separated by a dividing streamline.
Note that the existence of this streamline separating flow in the upper and lower regions
of the bead is an inevitable consequence of imposing a condition of zero net flux across
the bead. When S is increased to 2, the double vortex vortex structure changes: the
upper vortex is now twice the size of the lower one, although they are still separated
by a dividing streamline. For the reverse case with S = —1, i.e. lids moving with equal
speeds but in opposite directions, the double vortex structure is replaced by a single

vortex without a dividing streamline.
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These interesting streamline predictions can be compared to Malone’s flow visu-
alisations of meniscus roll coating in similar situations — see Figure 2.15. In Figure
2.15 (a) Malone injected blue dye into the inlet film of a forward meniscus roll coater
with § = 1. As noted in §§1.2.2, the regions which are relatively clear indicate the
'presence of recirculations in the flow. Hence the prediction of two large recirculations
in the forward case is borne out in practice. Since the dye is injected into the inlet
film before it reaches the bead, the darker liquid region indicates the path taken by
the liquid which originated in the inlet film. Note that there cannot be a dividing

streamline in reality, as predicted by the zero flux model, since there must be a net flux

across the bead in the forward case. Malone’s experiments reveal that the liquid in the
inlet film splits into two parts. The lower part flows straight out of the bead in a layer
attached to the lower roller. The path of liquid in the upper part is, however, far more
complicated. This liquid moves in an ‘S’-shaped motion between the two large eddies
and eventually flows out attached to the upper roller. Although it is difficult to get
a complete appreciation of this complex motmn with Figure 2.15 (a), the presence of
dark liquid between the eddies indicates the sna.kmg of liquid between them.

In Figure 2.15 (b) the velocity ratio of the rollers has been increased to 2. Again
the existence of two large eddies is clearly demonstrated, with the liquid coating the
upper roller moving in an ‘S’-shape between them. The larger eddy is that associated
with the upper (faster moving) roller. This is also in qualitative agreement with the
predictions of Figure 2.13 (b) with § = 2.0. Finally, Figure 2.15 (c) presents Malone’s
experimental flow visualisation for a reverse meniscus roll coater with § = —1.0. As
in the corresponding theoretical prediction, the flow is seen to be essentially that of a
single eddy. In his thesis Malone [1992] presents far more detailed flow visualisations
of meniscus roll coating than those reported here.

The effect of liquid bead aspect ratio H* on the streamline patterns predicted by
the zero flux model with $=1, 2, -1 is investigated in Figure 2.16. Since the agreement
between all analytical and numerical solutions is excellent, onl'y analytical solutions
with (2.23) truncated after 20 terms are presented. The predicted streamline patterns

are qualitatively unchanged for aspect ratios in the range 1.0 < H* < 4.0.
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(ii) Liquid Velocities in the Bead

We have already noted that liquid velocities in the bead can be predicted from the
streamfunction (2.23) by using the fact that v = 9vy /8y, v = -8y /dz; Table 2.5
presents theoretical v and v values for a bead with H* = 0.5 and § = 1. Within
each box, the upper and lower results have been obtained by truncating the relevant
series after 50 and 20 terms respectively. They are in very good agreement, which
suggests that it is sufficient to take only 20 terms in the u and v series in order to
obtain predictions for the liquid velocities in the bead. Moreover they show that the
flow in the central ‘core’ is essentially one-dimensional, i.e. horizontal, and uniform. In
Table 2.6, horizontal components of liquid velocity are obtained for flows with H* = 0.5
and S$=2, -1; again the flow in the core is uniform in both cases. Finally, Table 2.7
presents horizontal components of liquid velocity for flows with § = 1 and H*= 0.1,
1.0. These results predict that the flow in the core is also uniform for cavities of
dimensionless depth in the range 0.1 < H* < 1.0. The prediction that the flow in the
bead core is uniform is extremely important and will be exploited in Chapter 3 during
the development of a simple model for the core flow in the case of a small flux passing
through the bead.

(iii) Pressure Gradient/ Pressure Profiles in the Bead

In the results of the Zero Flux Model presented so far, attention has been restricted
to consideration of streamline patterns and liquid velocities. However, in roll coating
the horizontal pressure gradient is also of fundamental importance as it is this gradient
which provides the mechanism driving the flow. In §1.2 we saw that a typical pressure
profile in fully-flooded roll coating has both a pressure maximum and a minimum - see
Figure 1.10. It is now possible to obtain pressure gradient/pressure profile predictions
in meniscus roll coating by using the analytical solution (2.23) of the zero flux model.
If we define the dimensionless pressure p = PL/27V, where P is the physical pressure
and L, V; have been defined earlier then, under the creeping ﬂow assumption, the

dimensional horizontal pressure gradient dp/dz is given by the Stokes’ equation:

op 2 3y 3y
o _ - 2.25
oz Viu ay? + 8220y (2.25)
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where u is the horizontal component of liquid velocity and ¢ is the streamfunction.

Substituting (2.23) into (2.25) yields

dp o= 2 An(y-H® ~2n
3. = 2> A2 (A,,e (w-H*) | Be ”) cos(Anz) (2.26)

n=1
for flow governed by the assumptions of the zero flux model. Fortunately the coefficients
(An, By) and the eigenvalues A, have been defined above so the expression (2.26) may
be conveniently calculated. Table 2.8 shows the values of 8p/dz calculated from the
zero flux model for a liquid bead with H* = 0.5 and § = 1 by taking either 20
or 50 terms in the pressure gradient expression (2.26). The agreement between the
predictions obtained using 20 and 50 terms in the series is reasonably good, suggesting
that sufficiently accurate values of Op/dz may be obtained by truncating (2.26) after 20
terms. These predictions are very interesting since they suggest that p/dz is uniform
in the bead core.

Table 2.9 presents values of dp/8z obtained by truncating (2.26) after 20 terms for
the cases of H* = 0.5 and S =0.5, 1.5, 2.0 and -}.0. In all cases dp/dz is uniform in the
bead core; in fact there is a discernible pattern to the valucs of the uniform pressure
gradient since for $=0.5, 1.0, 1.5, 2.0 and -1.0, 9p/dz is equal to 36.0, 48.0, 60.0, 72.0
and 0.0 respectively — these values are proportional to the value of (1 4+ S) where S is
the velocity ratio of the lids. There is, however, another parameter on which 8p/8z
depends. Tables 2.10 gives predicted values of p/dz (with (2.26) truncated after 20
terms) for flows with S=1 in which H* assumes values equal to 0.1, 0.2, 0.8 and 1.0.
Once again 8p/dz is uniform in the bead core in all cases, taking values equal to 1200,
300, 18.75 and 12 for H*= 0.1, 0.2, 0.8 and 1.0 respectively. In this case the pattern is
that these values are proportional to 1/H*2. Combining these two observations about
the predicted values of 8p/dz, suggests that the magnitude of the horizontal pressure

gradient in the bead core predicted by the zero flux model is such that

p o (1+5)
Oz H*2

(2.27)

This finding is also of crucial importance for the development of the small flux model

in the next chapter.
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Expression (2.26) for the horizontal pressure gradient may be readily integrated
with respect to z to give
oo
p =2 Z An (A,,e’\"(”’H.) + B,.e”\"") sin(A,z) 4+ constant (2.28)
n=1
Unfortunately, the value of this constant of integration cannot be determined by this
simple analysis because it neglects the curvature of the meniscii — see Chapter 5 for a
full explanation of this point. However it is still possible to show the predicted shape of
the pressure profiles in meniscus roll coating since this is unaffected by the value of this
constant. In Figure 2.17 dimensionless pressures on the bead centreline, i.e. equidistant
from the upper and lower lids, are obtained by truncating (2.28) after 20 terms. They
are plotted against horizontal position in the bead or flows with (a) H*=0.5 for S=1,
2, 3; (b) S=1 with H*=0.25, 1.0 and 2.0. The indeterminate constant of integration
is set to zero for convenience. As is to be expected from the above observations that
- Op/dz is uniform in the bead core, these pressure profiles are linear in all cases. They
do, however, lose their linearity as the liquid boundaries are approached — this is not
surprising since the assumptions of the zero ﬂu‘J; model are certainly not valid close to
the liquid boundaries.
The prediction of a linear pressure profile in the central core of a meniscus roll
coating bead stands in marked contrast to those observed in the fully-flooded case -
see Figure 1.10. Subsequent experimental and numerical investigations (in Chapter 5)

confirm the validity of this prediction for ultra-starved flow. The information given in

this chapter will now be used to refine the Zero Flux Model to include a small flux .
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Figure 2.1: The Central ‘Core’ of a Forward Meniscus Roll Coater
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Figure 2.2: Flow in a Lid-Driven Cavity: (a) a two-dimensional cross-section, (b)

dimensionless boundary value problem for the creeping flow case
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Figure 2.3: F.E. Grids used in Numerical Solution of Flow in a Lid-Driven Cavity: (a)

144 elements, 329 nodes; (b) 216 elements, 481 nodes; (c) 144 elements, 329 nodes
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Figure 2.4: Streamlines of Creeping Flow in a Lid-Driven Cavity with A* = 1.0: (a)

Semi-hAnalytica.l (20 terms in series), (b) numerical (F.E.), (c) Pan and Acrivos [1967]
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CORNER RECIRCULATING FLOW - SEMI-ANALYTICAL SOLUTION
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Figure 2.5: Streamlines of Creeping Flow in a Lid-Driven Cavity with A* = 5.0: (a)

Semi-Analytical (20 terms in series), (b) Pan and Acrivos [1967)
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Figure 2.6: Flow in an Open, Driven Cavity (Canedo and Denson [1989]): (a) the
cavity-cylinder system showing the principal geometric parameters, (b) the simplified

two-dimensional flow domain
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Figure 2.7: Normal and Tangential Vectors at a Liquid-Gas Interface
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Figure 2.8: Canedo and Denson’s [1989] Dimensionless Boundary Value Problem for

Creeping Flow in an Open, Driven Cavity



Chapter 2: The Zero Flux Model of Meniscus Roll Coating 65

r‘“

(2)

(b)

=
f .
-9001 0902 006 20 O (c)

AN

CORNER RECIRCULATIONS + SEMI-ANALYTICAL PREDICTIONS

~o .90

~095

<i.o

0.00 0.05 0.10

Figure 2.9: Streamlines of Creeping Flow in an Open,Driven Cavity with A* = 1.0:

(a) Semi-Analytical (20 terms in series), (b) Numerical (F.E.), (¢) Canedo and Denson
[1989) |
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Figure 2.10: F.E. Grids Used in Numerical Solution of Creeping Flow in an Open,

Driven Cavity: (a) 144 elements, 329 nodes, (b) 216 elements, 481 nodes
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Figure 2.11: The Zero Flux Model of Meniscus Roll Coating
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Figure 2.12: Dimensionless Boundary Value Problem from thé Zero Flux Model of
Meniscus Roll Coating
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Figure 2.13: Streamlines From the Zero Flux Model with H* = 0.5 and (a) S = 1, (b)

§=2,(c)S=-1

\\

§/

WY

/

(b)

=

Figure 2.14: F.E. Grids used in Numerical Solutions of the Zero Flux Model: (a) 160
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elements, 369 nodes, (b) 232 elements, 521 nodes
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Figure 2.15: Flow Visualisations of Meniscus Roll Coating (Malone [1992]): (a) 5 = 1,

(b)5=2()5=-1
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Figure 2.16: Streamlines From Analytical Solution of the Zero Flux Model ~ Depen- -
dence on Aspect Ratio for flows with § =1, 2 and -1: (a) H* = 1.0, (b) H* = 2.0, (c)

H* =40
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CASE (2) - H=0.5

(1) S=1.0

(2) S=2.0

(3) $=3.0

CASE (b) - S=1.0

(1) H=0.25

2) H=1.0

() He2.0

Figure 2.17: Dimensionless Pressure Profiles on the Horizontal Bead Centreline — De-

pendence on Velocity/Aspect ratio (Constant of Integration set to Zero)
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T ¥(z,10) Y(z,0) 9y /0y(z,10) | 0vy/08y(z,0)
0.00 | +1.704 x 10~* | —1.100 x 10-1¢ 1.081 3.807 x 10~°
0.05 | —1.656 x 10~* | +1.058 x 1016 0.920 3.787 x 10~°
0.10 | +1.512 x 10~4 | —9.289 x 10~17 1.076 3.725 x 10~°
0.15 | —1.278 x 10~4 | +7.221 x 10~17 0.932 3.625 x 10~°
0.20 | +9.607 x 10~° | —4.435 x 10~17 1.058 3.486 x 10~
0.25 | —=5.736 x 10~° | +1.101 x 10~*° 0.956 3.312 x 10~°
0.30 | +1.335x 10~° | +2.622 x 10~* 1.028 3.106 x 10~3
0.35 | +3.366 x 10~° | —6.438 x 10~17 0.991 2.872 x 10~°
0.40 | —8.068 x 10~° | +1.004 x 10~1¢ 0.988 2.614 x 10~°
0.45 | +1.239 x 104 | +1.297 x 10~1¢ 1.035 2.339 x 10~°
050 [ —1.587 x 1074 | +1.473 x 1071 0.941 2.051 x 10~
0.55 | +1.795 x 10-4 | —1.466 x 10~ 1.081 1.756 x 10~°
0.60 | —1.812x 1074 | +1.212 x 10716 0.899 1.462 x 10~°
0.65 | +1.545 x 10~% | —6.481 x 10~'7 1.111 1.176 x 10~°
0.70 [ —=9.799 x 10~=° | —2.504 x 10~ %7 0.893 9.046 x 10~°
0.75 | +1.073x 10~° | +1.422 x 10~1° 1.079 6.555 x 1019
0.80 [ +9.631 x 10=5 | +3.083 x 10~ ¢ 0.896 2.544 x 1010
0.85 | —1.910 x 104 | +3.083 x 10~ 0.897 2.544 x 10~1°
0.90 | +2.082x 10~4 | —1.580 x 10~1¢ 1.264 1.170 x 10-10
0.95 | —8.245 x 10> | —2.615 x 10~1¢ 0.673 3.059 x 10~
1.00 0.000 0.000 0.000 0.000

72

Table 2.1: Convergence of the Semi-Analytical Solution For Creeping Flow in a

Lid-Driven Cavity to the Boundary Conditions — A* = 5.0 and 20 terms in series

y ¥(0,) ¥(1,9) 9¢/9z(0,y) | 9¢/9z(1,y)
0.00 0.000 0.000 0.000 0.000
-0.05 | —5.327 x 10~ | —4.645 x 10~° | +4.725 x 10~° 1.183
-0.10 | +8.632x 10™° | 4+8.764 x 10~° | —-8.734 x 10~% 0.894
-0.15 | —1.372x 1078 | ~1.187 x 107* | —1.092 x 10~7 1.080
-0.20 | +1.266 x 10~% | +1.353 x 10~% | +2.393 x 10~7 0.930
-0.25 | —1.587 x 1073 | —1.346 x 10~% | —9.680 x 10~7 1.068
-0.30 | +9.321x 1077 | +1.148 x 10~* | +1.395 x 10~° 0.930
-0.35 | —9.649x 10~° | —7.685x 10> | —2.799 x 10~° 1.076
-0.40 | —8.120 x 1010 | +2.266 x 10~° | +3.727 x 106 0.917
-0.45 | +2.954 x 107° | +4.138 x 10> | —5.720 x 10~5 1.091
-0.50 [ —1.294 x 1078 | ~1.076 x 10~* [ +7.278 x 10~¢ 0.902
-0.55 | +1.398 x 1072 | +1.639x 10~* | —9.724 x 10~¢ 1.102
-0.60 | —1.714 x 1078 | —1.975x 10~% | +1.167 x 10~3 0.900
-0.65 | +1.065x 1073 | +1.931 x 10~% | —1.428 x 10-5 1.089
-0.70 | -1.013x 107° | —1.398 x 10~% | +1.593 x 10~5 0.938
-0.75 | —1.594x 1078 | +3.424 x 10~> | —1.734 x 10-5 1.013
-0.80 | +3.247x 1078 [ 41.061 x 10~% | 4+1.558 x 10~3 1.064
-0.85 | =3.777x 10°% | —2.290 x 104 | —7.902 x 10-F 0.829
-0.90 | +1.299 x 1078 | +2.350x 10~% | —1.914 x 10~5 1.281
-0.95 | +4.630x 10~° | —4.719 x 10~° | 4+1.012 x 10-7 0.783
-1.00 0.000 0.000 0.000 0.000

Table 2.2: Convergence of the Semi-Analytical Solution For Creeping Flow in an Open,

Driven Cavity to the Boundary Conditions — A*

= 1.0 and 20 terms in the series
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(a) H* =0.25, § =1

(i) series truncated after 20 terms

T = 0.0 0.25 0.5 0.75 1.0
y=0.25 0.000000 0.000000 0.000000 0.000000 | 0.000000
y=0.1875 | -0.023148 | —0.024358 | —0.023410 | —0.023495 | 0.000000
y = 0.125 0.000000 0.000000 0.000000 0.000000 { 0.000000
y = 0.0625 0.023148 0.024358 0.023410 0.023495 { 0.000000
= 0.0 0.000000 0.000000 0.000000 0.000000 | 0.000000

(i1) series truncated after 50 terms
Tz = 0.0 0.25 0.5 0.75 1.0
y = 0.25 0.000000 0.000000 0.000000 0.000000 | 0.000000
y = 0.1875 | —0.023437 | —0.023438 | —-0.023438 | —0.023449 | 0.000000
y =0.125 0.000000 0.000000 0.000000 0.000000 | 0.000000
y = 0.0625 0.023437 0.023438 0.023438 0.023449 | 0.000000
y=10.0 0.000000 0.000000 0.000000 0.000000 | 0.000000

(b) H* =0.25, S =2

(i) series truncated after 20 terms
T = 0.0 0.25 0.5 0.75 1.0
y = 0.25 0.000000 0.000000 0.000000 0.000000 | 0.000000
y = 0.1875 | —0.058594 | —0.058594 | —0.058596 | —0.058740 | 0.000000
y=0.125 | -0.031250 | —0.031250 | —0.031254 | —0.031452 | 0.000000
y = 0.0625 0.011719 0.011719 0.011717 0.011616 | 0.000000
y=0.0 0.000000 0.000000 0.000000 0.000000 | 0.000000

(ii) series truncated after 50 terms
T = 0.0 0.25 0.5 0.75 1.0
y=0.25| 0.000000 | 0.000000 | 0.000000| 0.000000 | 0.000000
y = 0.1875 | —0.058555 | —0.058636 | —0.058542 | —0.058834 | 0.000000
y = 0.125 | —0.031249 | —0.031251 | —0.031253 | —0.031453 | 0.000000
y = 0.0625 | 0.011699 | 0.011740 | 0.011690| 0.011653 | 0.000000
y=0.0 0.000000 0.000000 0.000000 0.000000 | 0.000000

Table 2.3: The Convergence of the Analytical Solution for the Zero Flux Model
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(a) H* =0.25, S =1

(1) series truncated after 20 terms

T = 0.0 0.2 0.4 0.6 0.8

1.0

u(z,H*) | 0.984 | 0.983 | 0.980 | 0.973 | 0.949

0.000

u(z,0) | 0.984 | 0.983 | 0.980 | 0.973 | 0.949

0.000

(ii) series truncated after 50 terms

T = 0.0 0.2 0.4 0.6 0.8

1.0

u(z, H*) | 0.993 | 0.993 | 0.992 | 0.989 | 0.979

0.000

u(z,0) | 0.993 | 0.993 | 0.992 | 0.989 | 0.979

0.000

(b) H*=0.25, S =2

(i) series truncated after 20 terms

T = 0.0 0.2 0.4 0.6 0.8

1.0

u(z, H*) | 1.968 | 1.966 | 1.961 | 1.946 | 1.898

0.000

u(z,0) | 0.984 | 0.983 | 0.980 | 0.973 | 0.949

0.000

(i1) series truncated after 50 terms

z= 0.0 0.2 0.4 0.6 0.8

1.0

u(z, H*) | 1.987 | 1.987 | 1.984 | 1.980 | 1.960

0.000

u(z,0) | 0.993 | 0.993 | 0.992 | 0.989 | 0.979

0.000
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Table 2.4: Horizontal Components of Liquid Velocity Predicted by the Zero Flux Model

- Convergence to the Lid Velocity Conditions

(a) Horizontal Components (50 terms upper, 20 terms lower)

z= 0.0 0.2 0.4 0.6 0.8
y=10.5| 0.99363 | 0.99331 | 0.99213 | 0.98917 | 0.97944
0.98409 | 0.98328 | 0.98035 | 0.97300 | 0.94910

y=0.4 | 0.04000 | 0.04000 | 0.04006 | 0.04008 | 0.01634
0.04016 | 0.04017 | 0.04025 { 0.04033 | 0.01675

vy = 0.3 | -0.44000 | -0.44000 | -0.44008 | -0.44028 | -0.41248
-0.44000 | -0.44000 | -0.44008 | -0.44028 | -0.41248

y = 0.2 | -0.44000 | -0.44000 | -0.44008 | -0.44028 | -0.41248
-0.44000 | -0.44000 | -0.44008 | -0.44028 { -0.41248

y=0.1{ 0.04000 | 0.04000 | 0.04006 | 0.04008 | 0.01634
0.04016 | 0.04017 { 0.04025 | 0.04033 | 0.01675

y=0.0| 0.99363 | 0.99331 | 0.99213 | 0.98917 | 0.97944
0.98409 | 0.98328 | 0.98035| 0.97300 | 0.94910

Bead with H* =05, S=1

Table 2.5: Liquid Velocity Predictions in the Central Core of Meniscus Roll Coating
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(b) Vertical Components (50 terms upper, 20 terms lower)

T = 0.0 0.2 0.4 0.6 0.8
y = 0.5 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000
0.00000 | 0.00000 | 0.00000 | 0.00000 { 0.00000
y = 0.4 | 0.00000 | 0.00000 | -0.00008 | 0.00014 | 0.03698
0.00000 | -0.00001 | -0.00011 | 0.00008 | 0.03675
y = 0.3 | 0.00000 | 0.00000 | -0.00007 | 0.00042 | 0.03179
0.00000 { 0.00000 | -0.00007 | 0.00042 | 0.03179
y = 0.2 { 0.00000 ; 0.00000 [ 0.00007 | -0.00042 | -0.03179
0.00000 | 0.00000 | 0.00007 | -0.00042 | -0.03179
y = 0.1 | 0.00000 | 0.00000 | 0.00008 | -0.00014 | -0.03698
0.00000 | 0.00001 { 0.00011 | -0.00008 | -0.03675
y = 0.0 [ 0.00000 { 0.00000 [ 0.00000 { 0.00000 | 0.00000
0.00000 | 0.00000 [ 0.00000 { 0.00000 | 0.00000
Table 2.5 (continued)
() §=2.0
z = 0.0 0.2 - 0.4 0.6 0.8
y=0.5| 1.96819 | 1.96656 | 1.96070 | 1.94601 | 1.89817
y=0.4| 0.36041 | 0.36088 | 0.36271 | 0.35932 | 0.25043
y = 0.3 | -0.55993 | -0.55969 | -0.55904 | -0.56243 | -0.55965
y = 0.2 | -0.76007 | -0.76032 | -0.76120 | -0.75840 | -0.67779
y = 0.1 | -0.23995 | -0.24039 | -0.24195 | -0.23832 | -0.20019
y=0.0| 098409 | 0.98328 | 0.98035 | 0.97300 [ 0.94910
(b) S=-1.0
z= 0.0 0.2 0.4 0.6 0.8
y = 0.5 { -0.98409 | -0.98328 | -0.98035 | -0.97300 | -0.94910
y = 0.4 { -0.60036 | -0.60127 | -0.60467 | -0.59764 | -0.45062
y = 0.3 | -0.20015 | -0.20063 | -0.20216 | -0.19596 | -0.11814
y=0.2| 0.20015| 0.20063 | 0.20216 | 0.19596 { 0.11814
y=0.11] 0.60036 | 0.60127 | 0.60467 | 0.59764 | 0.45062
y=0.0] 0.98409 | 0.98328 | 0.98035 | 0.97300 | 0.94910

Roll Coating Bead — Dependence on Velocity Ratio for H* = 0.5
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Table 2.6: Horizontal Liquid Velocity Predictions in the Central Core of a Meniscus
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(a) H* =0.1
T = 0.0 0.2 0.4 0.6 0.8
y=0.10{ 0.98409 | 0.98328 | 0.98035 | 0.97300 | 0.94910
y=10.08] 0.04168 | 0.04176 | 0.04207 | 0.04286 | 0.04552
y = 0.06 | -0.43695 | -0.43680 | -0.43624 | -0.43486 { -0.43050
y = 0.04 | -0.43695 | -0.43680 | -0.43624 | -0.43486 | -0.43050
y=0.02| 0.04168 | 0.04176 | 0.04207 | 0.04286 | 0.04552
y=0.00 ] 098409 | 0.98328 | 0.98035 | 0.97300 | 0.94910
(b) H*=1.0
r= 0.0 0.2 0.4 0.6 0.8
y=1.01 098409 | 0.98328 | 0.98035 | 0.97300 | 0.94910
y=0.81] 0.04036 { 0.04014 | 0.03704 | 0.01634 | -0.05909
v = 0.6 | -0.44050 | -0.44036 | -0.43710 | -0.41249 | -0.29742
y = 0.4 | -0.44050 | -0.44036 | -0.43710 | -0.41249 | -0.29742
y=0.21] 0.04036 { 0.04014 | 0.03704 | 0.01634 | -0.05909
y=0.0] 098409 0.98328 | 0.98035{ 0.97300 | 0.94910

-

(a) series truncated after 20 terms

Roll Coating Bead ~ Dependence on Dimensionless Depth for § =1

T = 0.0 0.2 04 0.6 081 1.0
y=0.5]-77.66 | -84.13 | -107.34 | 166.45 | -368.72 | 0.00
y=04| 47.78 | 47.76 47.70 47.45 52.43 | 0.00
y=03| 48.00 | 48.00 48.00 48.25 49.42 | 0.00

y=0.25| 48.00 | 48.00 48.01 48.30 48.33 | 0.00
y=0.2| 48.00) 48.00 48.00 48.25 49.42 | 0.00
y=0.1} 47.78 | 47.76 47.70 47.45 52.43 | 0.00
y=0.0]|-77.66 | -84.13 | -107.34 | -166.45 | -368.72 | 0.00

(b) series truncated after 50 terms

T = 0.0 0.2 0.4 0.6 081 1.0
y=0.5]-266.16 | -282.33 | -340.33 | -487.44 | -978.31 | 0.00
y=04 48.00 48.00 47.98 47.83 53.08 | 0.00
y=03 48.00 48.00 48.00 48.25 49.42 | 0.00

y=0.25 48.00 48.00 48.01 48.30 48.33 | 0.00
y=102 48.00 48.00 48.00 48.25 49.42 | 0.00
y=0.1 48.00 48.00 47.98 47.83 53.08 { 0.00
y=0.01]-216.16 | -282.33 | -340.33 | -487.44 | -978.31 | 0.00

Central Core of A Meniscus Roll Coating Bead for H*=0.5and S =1
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Table 2.7: Horizontal Liquid Velocity Predictions in the Central Core of a Meniscus

Table 2.8: The Convergence of Dimensionless Pressure Gradient Predictions in the
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(a) S=0.5

T = 0.0 0.2 0.4 0.6 0.8} 1.0
y=0.5{-26.84|-30.06 | -41.43 | -70.06 |-171.71 | 0.00
y=0.41{ 3588 3590 36.04 36.19 36.60 | 0.00
y=03]| 36.00]| 36.01 36.07 36.27 35.61 | 0.00

y=0.25| 36.00| 36.00 36.00 36.26 36.25 | 0.00
y=02{ 36.00 35.99 35.94 36.10 38.51 | 0.00
y=0.11{ 35.77 } 35.73 35.51 34.98 42.04 | 0.00
y=0.01]-89.65}|-96.14 | -119.58 | -179.61 | -380.78 | 0.00

T = 0.0 0.2 04 0.6 08| 1.0
y=0.5]|-128.48 | -138.20 | -173.25 | -262.84 | -564.94 | 0.00
y=04 59.65 59.61 59.35 58.70 68.25 | 0.00
y=103 59.99 59.99 59.94 60.23 63.22 | 0.00

y = 0.25 60.00 60.00 60.01 60.37 60.42 | 0.00
y=0.2 60.00 60.01 | - 60.03 60.40 60.32 { 0.00
y=0.1 59.77 59.78 59.89 59.91 62.83 1 0.00
y=00]| -65.67| -72.17| -95.09 | -153.29 | -355.87 | 0.00

(c) S=2.0

z= 0.0 0.2 0.4 0.6 0.8] 1.0
y=0.5}-49.30 | -192.98 | -239.16 | -359.22 | -761.55 | 0.00
y=0.4] 71.54 71.46 71.01 69.96 84.08 | 0.00
y=03] 72.00 71.97 71.87 72.21 77.02 | 0.00

y=0.25} 72.00 72.00 { .72.01 72.45 72.50 | 0.00
y=02] 72.00 72.02 72.15 72.55 71.23 | 0.00
y=0.1]| 71.77 71.81 72.68 72.38 73.22 1 0.00
y=0.0]-58.69| -60.81| -82.86}-140.13 | -343.42 | 0.00

(d) S=-1.0

T = 0.0 0.2 0.4 0.6 081 1.0
y=0.5] 125.62 | 132.17 | 156.30 | 219.09 | 418.13 | 0.00
y=04 0.23 0.35 1.07 0.24 | -10.86 | 0.00
y=103 0.00 0.05 0.28 0.34 -5.79 | 0.00

y = 0.25 0.00 0.00 0.00 0.00 0.00 { 0.00
y=0.2 0.00 -0.05 -0.28 -0.34 5.79 | 0.00
y=0.1 -0.23 -0.35 -1.07 -0.24 10.86 | 0.00
y=10.0]-125.62 | -132.17 | -156.30 | -219.09 | -418.13 | 0.00

Table 2.9; Dimensionless Pressure Gradient Predictions in the Central Core of A Menis-

cus Roll Coating Bead with H* = 0.5 — Dependence on Velocity Ratio
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(a) H*=0.1

= 0.0 0.2 04 0.6 08} 1.0
y=0.10| 8858} 869.7| 811.7| 665.5| 1834 | 0.0
y=0.08 | 1186.4 { 1185.7 | 1183.2 | 1176.9 | 1156.2 | 0.0
y=0.06 | 1199.4 | 1199.4 | 1199.2 | 1199.0 | 1198.1 | 0.0
y=0.05]}1199.8 | 1199.7 | 1199.7 | 1199.6 | 1199.2 | 0.00
y=10.04 | 1199.4 | 1199.4 | 1199.2 | 1199.0 | 1198.1 | 0.00
y=0.02 | 1186.4 { 1185.7 | 1183.2 | 1176.9 | 1156.2 | 0.00
y=0.00| 8858 | 896.7| 811.7| 665.5| 183.41 0.00

(b) H* = 0.2

z= 0.0 0.2 04 0.6 0.8} 1.0
y=0.201-14.2 | -30.3 | -88.3 | -234.5} -717.3 | 0.0
y=0.16 | 299.4 | 299.9 [ 299.3 | 299.0 } 297.7| 0.0
y = 0.12 { 300.0 | 300.0 | 300.0 { 300.0} 300.3 | 0.0
y = 0.10 | 300.0 | 300.0 | 300.0 { 300.0 | 300.4 | 0.0
y = 0.08 | 300.0 | 300.0 | 300.0 | 300.0{ 300.3| 0.0
y=0.04 | 299.4 j 299.9 | 299.3 | 299.0 | 297.7| 0.0
y=10.00} -14.2 | -30.3 | -88.3 | -234.5 | -717.3 | 0.00

(c) H* = 0.8

LzT= 0.0 0.2 0.4 0.6 08| 1.0
y=0.80|[-295.4|-311.6 { -369.9 | -517.8 | -1000.6 | 0.0
y=064| 18.74 | 18.72 | 18.68 | 19.28 2791 | 0.0
y=048| 18.75 | 18.77 | 18.89 | 19.27 17.74 | 0.0
y=040| 18.75| 18.78 | 1891 19.14 1643 | 0.0
y=0.32| 18.75| 18.77 | 18.89 | 19.27 17.74 | 0.0
y=0.16| 18.74 | 18.72 | 18.68 | 19.28 2791 0.0
y=0.00{-295.4 | -311.6 | -369.9 | -517.9 | -1000.6 | 0.00

(d) H*=1.0

T = 0.0 0.2 0.4 0.6 08| 1.0
y=1.0]-302.2 | -318.5 | -377.0 | -524.9 | -1010.8 | 0.00
y=0.8| 11.96 | 11.95| 12.03 | 13.27 20.61 | 0.00
y=06| 12.02 | 12.06 | 12.22 | 12.35 10.32 | 0.00
y=05] 12,03 | 12.07| 12.21 | 12.08 9.30 | 0.00
y=04] 12,02 | 12.06 § 12.22 | 12.35 10.32 | 0.00
y=02} 1196 | 11.95| 12.03 | 13.27 20.61 | 0.00
y=0.0]-302.2 | -318.5 | -377.0 | -524.9 | -1010.8 | 0.00

Table 2.10: Dimensionless Pressure Gradient Predictions in the Central Core of A

Meniscus Roll Coating Bead with S = 1 — Dependence on Aspect Ratio
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Chapter 3

The Small Flux Model of

Meniscus Roll Coating

3.1 Introduction

Mensicus roll coating is characterized by having a much reduced dimensionless flux (as
defined in §2.1) compared to the fully-flooded situation. In Chapter 2, this observation
motivated an analysis of the problem based on the simplest of models - the Zero Flux
model. As we have seen this model reveals the key features of the flow field (vortex
structure) within the bead as speed ratio and aspect ratio are varied, yet in its present
form it is unable to predict the film thicknesses produced during the actual coating
operation. The ultimate goal of the present chapter is to refine the Zero Flux model in
order to enable film thickness predictions to be made.

The first step towards this goal is to refine the Zero Flux model to include a small,
non-zero flux passing through the bead. This is achieved using Richardson’s [1988]
suggestion, which is supported by the theoretical results given in §§2.5.2, that the flow
in the central core of the bead can be modelled as a combination of Poiseuille and
Couette terms under the assumption of a constant pressure gradient. This proposal
leads to the development of a simple model for the flow in the central ‘core’ of a meniscus
roll coating bead, i.e. the region sufficiently far away from the curved meniscii, as

indicated in Figure 2.1. The next stage is to extend the ‘Poiseuille plus Couette’ small
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flux model to predict the average film thicknesses produced on upper and lower rollers
during forward meniscus roll coating.

In §1.2 we saw that there are many film thickness theories for fully-looded roll
coating (e.g. those of Savage [1982], Coyle et al [1986]), all of which attempt to locate
the ‘dividing streamline’ - see Figure 1.8 — which separates the liquid coating the upper
and lower rollers. More recently, Savage [1992] proposed that the liquid coating the
upper and lower rollers is divided by a stagnation point; in §3.3 the predictions of this
‘stagnation-point’ theory are compared with Malone’s [1992] fully-flooded roll coating
data. However, until now no film thickness theory has been developed for the meniscus
roll coating situation. Such a film thickness model for forward meniscus roll coating
(see Figure 1.6 (c)) is now developed which takes account of parameters such as the
roller speeds, minimum roller separation, and the magnitude of the flux passing through

the bead. The predictions of this model are validated against experiment.

3.2 Formulation of the Small Flux Model

The results of §§2.5.2 for the Zero Flux Model predict the flow in the central core of
the bead to be one-dimensional with a constant pressure gradient. These observations
are now developed further to produce of a simple model of the core flow for the case of
a small, non-zero flux.

The flow visualisations in Figure 2.15 (a), (b) demonstrate that the curvature of the
rollers is small in the region of interest (i.e. the central core of the bead). Hence, for
convenience, in this chapter we shall describe the theory for the special case in which
we assume that, in the bead core, the roller separation is equal to the minimum roller
separation. This is equivalent to modelling the rollers as flat lids, but note that the
following models can easily be extended to accomodate the effects of a variable roller
separation, H(X), (as is the case in practice) by simply replacing the nip width, 2Ho,
by H(X) (see later, §§ 4.5.2). The other assumptions of the Zero Flux model (see §2.5)
are retained with one modification: the assumption of planar liquid-gas interfaces is no

longer relevant because the model only deals with the flow in the ‘core’, sufficiently far
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away from the meniscii and lids. It will be seen that the idealised situation of zero flux
arises as a special case.

In a private communication Richardson [1988] suggested that, even in the case
of small, non-zero flux, the pressure gradient would be constant. Using the non-
dimensionlisation of §2.5 (i.e. equations (2.20), (2.21)), the Stokes equations governing

this creeping flow reduce to their one-dimensional form:

o _ O op

= =0 .
or oy? ' 0y (3.1)

Assuming that dp/dz is constant and applying the no-slip boundary conditions on the
lids, see Figure 3.1, u = S at y = H*, u = 1 at y = 0 yields

Poiseuille

Uil Couette
10p

= ‘2'5;1/(3/—}1 )+ (§-1)

~

y
7= T 1 (3.2)

Expression (3.2) is a combination of Poiseuille and Couette terms. The Poiseuille term,
which depends on dp/dz, models the flow due to an external pressure gradient. In
meniscus roll coating this external pressure 'g‘radient arises due to the difference in
curvature of the upstream and downstream meniscii, as shown in Figure 1.6 (c); this
feature is discussed further in Chapter 5. The Couette term is much easier to interpret:
it is the flow generated by the motion of the lids.

In §2.1 the flux through the bead Q was non-dimensionalised by 2V H, where V'
is the average roller speed. For the purposes of this chapter, however, it is convenient

to define the dimensionless flux A past any station z (which by continuity of flux is

constant) by A = Q/2V,Hy, where V; is the lower roller speed. This yields

e 2 _ B u(y)dy _ _H?9p + (5+1) (3.3)
~ 2WhH, H* 12 oz 2
Equation (3.3) may be rearranged to give
i) 6
55 = g ((5+1) - 2)) . (34)

which, when substituted in the velocity profile (3.2), yields

u(y) = 113'2 (S+1 - 22 (2 - H*y) + (s-1)-};—’; + 1 (3.5)
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"The Poiseuille plus Couette model treats the idealised situation of zero flux as a special
case. Indeed by setting A = 0 in (3.4) and (3.5) we obtain estimates for the pressure

gradient (8p/dz)o and velocity profile up in the case of zero flux:

9p _ 8(5+1)
(5;)0 = 25 (3.6)
w = %(5-{-1)(3{2 - Ey 4 (S-1)% +1 (3.7)

Note that expression (3.6) agrees with the prediction of the Zero Flux model that the
horizontal pressure gradient in the core of a meniscus roll coating bead is proportional
to the value of (1 + §)/H*? (see equation (2.27)). In fact Table 3.1 shows that the
values of the pressure gradient, dp/8z, given in §§2.5.2 are in exact agreement with
those predicted by equation (3.6) in the zero flux case. Further evidence for equivalence
of the zero and small flux models in the idealised case of zero flux is provided by the
horizontal velocity profiles shown in Table 3.2. There is exact agreement between those
obtained (i) by truncating the series for u obtainable from equation (2.23) after 20

terms, (ii) from the Poiseuille plus Couette profile (3.7).

3.3 The Prediction of Film Thicknesses in Forward Menis-

cus Roll Coating

In this section the small lux model is extended to tackle a question of fundamental
practical significance: how is the inlet liquid film, which is entrained by the viscous
lifting action of the applicator roller during forward meniscus roll coating, eventually
distributed between the upper and lower rollers? In particular we develop a model for
predicting the dimensionless fluxes Ay, A2 of the films produced on the upper and lower
rollers respectively when a known, small flux A flows through the bead. Once the fluxes
A1, A; have been determined, they are easily converted to average film thicknesses on
the rollers for comparison with Malone’s [1992] experimental data. It is not, however,
the aim of our analysis to predict J, i.e. the flux through the bead under a given set of
circumstances, as this can be achieved by applying the theory of Tharmalingham and

Wilkinson [1978] (see §§1.3.3).



Chapter 3: The Small Flux Model of Meniscus Roll Coating 84

The complex nature of the flow in the bead of a forward meniscus roll coater has al-
ready been described (see §§2.5.2 and Figure 2.15): the liquid in the inlet film eventually
splits into two parts; the upper one ‘snakes’ between the eddies before coating the upper
roller, while the lower one simply coats the lower roller. Although this ‘flux-splitting’
actually occurs near the downstream meniscus where the flow is fully two-dimensional,
it is still possible to predict A; and A, without analysing the flow near the film split
point. Figure 3.2 illustrates the model for flow in a meniscus roll coating bead devel-
oped here. As in the Zero Flux model, it pertains to the creeping flow of a Newtonian,
incompressible liquid in which the rollers are modelled as flat lids, but it also has the
additional assumption that the flow across any vertical cross-section (in the bead core)
is given by the Poiseuille plus Couette profile (3.5). It is important to realise that the
analysis which follows is only valid in the case in which the the dimensionless flux A
passing through the bead is so small that terms O(A?) are negligible. As in the actual
situation, liquid flows into the bead in a thin film (A <« 1) which eventually splits into
upper (shaded) and lower (unshaded) films of dimensionless fluxes (thicknesses) A;, A,
(t1, t2) respectively. Note that due to its snaking motion, liquid in the upper film lies
in three regions of every vertical cross-section of the flow: between (i) the lower (un-
shaded) film and lower eddy, (ii) the top of the lower eddy (y = Y;) and the bottom of
the upper eddy (y = Y;}), and (iii) the top of the upper eddy and the upper lid. Since
these regions all form part of the same film, then by continuity of flux the magnitudes
of the fluxes across each of them must equal A;. An important consequence of this
is that it is possible to predict A; by examining the ‘reverse jet’ between the eddies
(region (i1)) since the flux in this jet, Fjet, equals A;. Indeed the problem of predicting
A1 and A; reduces to that of determining the positions Y, Y;; since Fje; could then be
obtained by integrating the assumed velocity profile (3.5) between these limits, i.e.

| 1Y udy

A] = I‘jct = ——LT{'—-— (3.8)

Note also that the flux on the lower roller A\, follows immediately, once A; has been

determined, since the total flux ) is known and by continuity of flux

A=A+ XN (3.9)
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3.3.1 Determination of Y

The top of the bottom eddy, y = Y}, is located by considering the flux beneath it.
Figure 3.2 shows that below Y7 there is an inlet film of flux A and a closed eddy, which
by definition has zero net flux across it. This means that the total flux beneath Y

equals A, or
Y‘
Sl udy _
i = A (3.10)
where u is the Poiseuille plus Couette velocity profile (3.5). This condition yields a

cubic equation for Y7, the relevant solution of which is

1 S(S +3)
(1+S)  (1+S)?

Yi(5,\) = H‘( ,\) + 0(3) (3.11)

The other solutions for Y7 are (i) Y7 = A corresponding to the top of the inlet film and

(ii) Y7 = H* corresponding to the upper lid.

3.3.2 Determination of Y

This is far more difficult than the determination of Y7. In §2.5 we saw that in the case
of zero net flux, the flow consists of upper and lower eddies separated by a dividing
streamline (see Figures 2.13 (a), (b)). In this idealised situation the locations ¥;* and
Y coincide and the reverse jet, which flows between the eddies when A # 0, degenerates
into a dividiﬁg streamline, y = Y,* say, where

Y = (—1% (3.12)
This enables (3.11) td be reinterpreted: when a small flux A flows through the bead,
the top of the lower vortex, y = Y[ (S, ), is displaced downwards by the O()) amount
H*S(S + 3)A/(1 + S)%. This shows that the problem of determining Y} is equivalent
to finding the amount 6(S,A) by which Y;} is displaced from Y,;* when a non-zero flux
A passes through the bead, i.e.

Ht

s + 8(5,7) (3.13)

Y5(S,A) =

Since this theory is neglecting the effects of gravity, the model must satisfy the sym-

metric film splitting condition
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(i) M(1,2) = A(1,A) = A/2
and in the asymptotic limits

()AM—=ArasS— o

(iii))d—=XasS—0
Since both Yy; and Y} are displaced from Y;* by an O(A) amount, the thickness of the
reverse jet, Y;; — Y7, is also O(A). Hence by a simple order of magnitude argument the
O(A) flux in the reverse jet (which equals A, by hypothesis) is determined by considering
only the O(1) liquid velocity in the jet at the location Y, uje say. Now substituting
(3.12) into the profile (3.5) yields ujey = —S/(S + 1), so equation (3.8) gives

S Y5-Y7)

Fier = “(S+1) H*

(3.14)

From (3.11) it can be shown that for a small flux A, condition (i) gives §(1,A) = 0
while conditions (ii) and (iii) yield §(S,A) — 0 as S — o0, 0 respectively. These results
motivate the key assumption of the film thickness model developed here: postulate that
6(5,A) = 0 for all S and A. Under this hypothesis

 J

1+9)

Y5(S,A) = for all S and A (3.15)

i.e. when any small flux A flows through the bead Y;j remains at the same position (as
at A = 0) and Y}’ drops by an amount H*S(S +3)A/(1+ §)? to accomodate the reverse

jet.

3.3.3 Predictions of the Film Thickness Model

Combining equations (3.9), (3.11), (3.14) and (3.15) yields

5%(S +3)
(1+5)3

_ (1+38)

ho= = @rsyp

A, A A (3.16)

If Q;, Q, are the actual fluxes on the upper and lower rollers respectively, (3.16) is

easily rewritten in terms of, @, the actual flux through the bead:

_ 55 +3) _ (1+35)

Q: = WQ y Q2 = -(T-_{-—.S‘_):‘Q (3.17)

In §§1.3.3 we noted that it is more precise to talk about average, rather than asymp-

totic, film thicknesses during meniscus roll coating owing to possible variations in film
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thicknesses around the periphery of the rollers. It is a simple task to convert (3.17)

into average film thicknesses T}, T; since by definition
Qi = Vilh , Q2 = VOT; (3.18)

It is easily demonstrated that equations (3.17), (3.18) combine to predict

T, _ 5(5+3)
T,  (1+38)

(3.19)
This result is very interesting because it is identical to the prediction of Savage’s [1992]
‘stagnation point’ model for the fully-flooded case. It also begs another question which
will be addressed here: is the ratio T7/T; the same in both fully-looded and ultra-
starved forward roll coating?

In Figure 3.3 the prediction (3.19) is compared with Malone’s average film thickness
data for both meniscus- and fully-flooded forward roll coating. Malone estimates that
the degree of starvation in his meniscus roll coating results is such that A (=Q/2V H,
where V is the average roller speed) = 0.1 compared to his fully-flooded results where
13<A<14. Although the ultra-starved data only extends over the range 0.2 < § <
2.0 (owing to an inability to maintain a liquid bead outside this range), it is possible
to conclude that the agreement between theory, i.e. equation (3.19), and experiment is
quite poor at low S, improves as S increases, and is, in fact, reasonably good for flows
with S > 1. Malone noted the discrepancy between theory and experiment at low S and
has attributed this to the effects of gravity, which are neglected in the theory, but he has
also highlighted the experimental difficulties in measuring the low fluxes (with T}, T; =
10 micrometres typically) in this range. Indeed he has even suggested that there may be
appreciable losses due to liquid evaporation off the upper roller in this range, although
he admits that this effect is difficult to quantify. The close agreement between Malone’s
data for the ultra-starved and fully-flooded cases confirms the hypothesis that Ty /T3 is
very similar in both instances. This result is completely unexpected, given the major
differences in their flow structures. There is no apparent reason why this should be
s0. In Chapter 5, (3.19) will be compared with film thickness ratio predictions from a

numerical simulation of forward meniscus roll coating.
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Although the film thickness ratios Ty/T, are similar, there are, of course, many
differences between the fully-flooded and ultra-starved cases. For example, when the
speed of the lower roller is increased during meniscus roll coating, the flux passing into
the bead, the thickness of the inlet film and, more significantly, the dimensionless flux
A (defined by equation (3.3)) also increases (see e.g. Tharmalingham and Wilkinson
[1978], Figure 4). This increase in the dimensionless flux, which also results in increased
average film thicknesses Ty and T3, means that they depend not only on the ratio of the
roller speeds but also on the magnitude of the lower roller speed V,. This contrasts with
the fully-flooded situation where the extra liquid picked up when V; increases cannot
pass through the nip; consequently in this fase T, and T, depend only on the ratio of
the roller speeds, not their magnitudes. A second difference, which arises for similar
reasons, lies in the dependence of the individual film thicknesses on the minimum roller
separation 2Hy. In meniscus roll coating the inlet thickness Tp <« 2Hg (see Figure
1.6 (c)) so Ty, T; are almost independent of Hp, whereas in the fully-flooded case the
amount of liquid passing through the nip (and hence the film thicknesses Ty, T3) is
limited by the roller separation. In his meniscus roll coating experiments Malone has,
in fact, convﬁrmed the independence of Ty, T, from Hp.

Since it is impossible to keep all operating parameters in an industrial coating
process exactly constant, it is important to be in a ‘stable’ operating environment in
the sense that small changes in the operating parameters do not radically alter the
film thicknesses obtained. We have already seen that the velocity ratio $ is extremely
important since it can be used to alter the industrially important film thickness T3,
i.e. the one which coats the final product. In practice it is convenient to adjust S by
simply increasing the upper roller speed whilst fixing the speed of the lower one. This
means that Tp, an average inlet film thickness where Q = V,T,, is (almost) fixed so
variations in T} as S changes can be measured by variations in the average thickness
ratio Ty /To. The latter ratio can also be predicted by the model developed here by

simply rearranging the film-splitting results (3.17) in terms of Tp to yield

i _ S(5+3) T, _ (1+395)

To ~ (1+5P ' To  (1+5)° (3.20)
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The predicted T} /T ratio is tested against Malone’s [1992] experimental meniscus rbll
coating data in Figure 3.4 (a); again the agreement between theory and experiment is
poor at low S but improves as S increases until for § > 1 the agreement is reasonable.
Of greater interest, however, is the predicted graph of T} /T; in the range 1 _<_ s$<10
shown in Figure 3.4 (b) It predicts T (for a fixed Tp) to be extremely senmsitive to
small variations in S in the range 0 < S < 2, but relatively insensitive when § > 3.
Commercial considerations dictafe that the flow should be operated with S as high as
possible in order to maximise the amount of coated product and in fact it is possible,
using industrial coating liquids different from the Shell Tellus R5 oil used by Malone
[1992], to operate with S as high as 10. Unfortunately because the bead becomes
unstable if S is too high (see Malone [1992], Chapter 7), it is necessary to reach a
compromise between commercial aspirations and practical constraints. In practice § =
3 is found to offer a suitable compromise.

Finally, in Figuré 3.5 the predicted graph of T3/Ty, i.e. ratio of outlet to inlet
average ﬁim thicknesses on the lower roller, is compared with Malone’s [1992] meniscus

roll coating data. The theoretical prediction and experimental data agree well over the

entire velocity ratio range.

3.4 Streamline Patterns: Non-Zero Flux

In Chapter 2, we saw that streamline patterns obtained from the Zero Flux model of
meniscus roll coating showed many of the experimentally observed characteristics, but
were limited to the idealised case of zero net flux across the bead (see Figure 2.13). In
this section we show how the assumption relating to the neglect of flux through the
bead may be relaxed whilst retajnin‘g all the other assumptions of the Zero Flux model
(see §2.5). This enables streamlines to be obtained in the more interesting case in which
2 small, non-zero flux passes through the bead, by means of a numerical solution.
The basicidea of this small flux model is illustrated in Figure 3.6. The bead is again
Tectangular in shape, but it is no longer closed; instead an inlet film of dimensionless

thickness to meets a planar liquid-gas interface, on which the usual assumptions apply,
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at the point P with the result that a small, non-zero flux A flows into the bottom left
hand corner of the bead. Meanwhile liquid is allowed to flow out of the bead in upper
and lower outlet films of dimensionless thicknesses ¢y, ¢ and fluxes A;, A; respectively.
These outlet films meet an outlet planar liquid-gas interface at Q and R respectively.

In principle one could impose any relationship between Ay, A; and A provided they
satisfied the continuity of flux condition (3.9), but in this model A is assumed to split
according to the forward meniscus roll coating prediction (3.16). The boundary value
problem shown in Figure 3.6 cannot be solved by analytical means and must be solved
numerically instead. Before describing this numerical solution it is necessary to focus
on the form of the inlet and outlet films.

Without loss of generality consider the inlet film of thickness f and flux A which
meets the planar interface at P. Assuming that the flow in the inlet film is horizontal and
one-dimensional, the equations governing the flow in the film are the one-dimensional
Stokes equations (3.1); expressed in terms of the local co-ordinates (£,7) shown in

Figure 3.7, they reduce to

%:%,%:0 (3.21)
where ;.. is the inlet velocity profile and p is the dimensionless pressure defined in
§2.5.

At first one might propose a fully-developed ‘plug’ flow inlet velocity profile in this
film. However this would not be compatible with the conditions at the inlet planar
interface at P, which are that both the horizontal component of liquid velocity and

shear stress should vanish (see §2.5). Therefore for the inlet velocity profile, uintet, to

be compatible with these conditions, it must satisfy

Uinlet = ag = 0 at 37 =1y (322)

Moreover the no-slip condition at the bottom lid, u;niee = 1 at § = 0, enables 8p/0% to

be evaluated and yields

)

Uintet(§) = (-y- - 1)2 | (3.23)

to
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the so-called ‘semi-parabolic’ velocity profile. By imposing the velocity profile (3.23)

at inlet, the total influx into the bead is

A = foto Uinlet dg - 1o
- H* 3H*

(3.24)

Note that if a ‘plug’ flow profile was imposed at inlet we would have A = to/ H* instead.

It is now possible to calculate the values of the streamfunction and vorticity at each
point of the inlet film from equation (3.23). In §2.3 it was noted that the difference
in value of the streamfunction at two different points in a liquid represents the flux
between them. In the boundary value problem shown in Figure 3.6 it is convenient to
take the streamfunction 1 = 0 on the bottom lid so the value of the streamfunction at

a point § = ¢’ of the inlet fluid film is ¥' where

i di AN
wr - fo uI:l[n:et dy — A{l - (l — -t:'{;) } (3.25)

Moreover since, by assumption, there is no flux across the planar interface, the stream-
function is equal to A along it. The vorticity w, defined by w = —V?24, at any point

of the inlet film is given by w = —8ujniet/39. Hence at a point § = § of this film, the

, 2 (¢ ‘
==L - 3.26
w " (to ) (3.26)

The velocity profiles in the outlet films are also semi-parabolic. The values of the

vorticity w' is given by

streamfunction and vorticity at points of the outlet films may be obtained by using
expressions similar to (3.25) and (3.26).

The boundary value problem shown in Figure 3.6 is solved using the streamfunction-
vorticity F.E. method described in Appendix B. In this solution, the values of the
streamfunction and vorticity at nodes touching either the inlet or outlet flow boundaries
are imposed to values given by expressions of the form (3.25) and (3.26). At the upper
left hand corner, where the inlet planar interface meets the upper lid, there exists a
dynamic wetting line of exactly the same form as existed for the Zero Flux model.
The techniques for treating this wetting line have been used earlier in §2.5 and are
described in Appendix B. Numerical solutions of this boundary value problem were

btained using the two F.E. grids shown in Figure 2.14, having execution times of 80
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and 110 c.p.u. seconds when grids (a) and (b) were used respectively. As in §§2.5.2, the
coarser grid (grid (a)) was found to be sufficiently refined for the present application,
and streamlines presented here are derived from numerical solutions employing grid
(a).

Figure 3.8 (a) shows streamlines obtained from a numerical solution of this bound-
ary value problem (see Figure 3.6) with § = 1, H* = 0.5 and t, = 0.05, for which
(3.20) gives t; = t; = 0.025. They capture the essential features of those obtained
experimentally in Figure 2.15 (a): the effect of allowing a small flux through the bead
is to separate eddies of roughly equal size by a thin jet of liquid which moves in an
‘S’-shape between them. In Figure 3.8 (b), streamlines are presented for the different

case in which § =2, H* = 0.5 and t5 = 0.05. In this case (3.20) gives
t, = 10/27 X 0.05 , t; = 7/27 x 0.05 (3.27)

The eddies are once again separated by a thin jet of liquid which flows between them
before coating the upper lid. In this case, however, as in the corresponding zero flux
prediction (Figure 2.13 (b)), the upper edd;"kis roughly twice the size of the lower one,
in qualitative agreement with Malone’s [1992] experimental observation, as shown in

Figure 2.15 (b).

3.5 Conclusions

In this chapter we have developed the first predictive model for the film thicknesses
produced on upper and lower rollers during forward meniscus roll coating, It is based
entirely on the flow in the céntra.l ‘core’ of the bead, sufficiently far from the curved
meniscii. The model predicts that Ty /T3 = S(S + 3)/(1 + 3S) — a function of velocity
ratio S only — which is identical to Savage’s [1992] prediction for fully-flooded forward
roll coating. Malone's [1992] forward meniscus roll coating data is in reasonable agree-
ment with the theory developed here and also shows a close correlation with his data
for the fully-flooded case.

As the model is unable to account for the effects of the curved meniscii which exist

cn either side of the meniscus roll coating bead, it is possible that the accuracy of
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prediction may be improved by a numerical simulation of the problem which includes
these effects. This hypothesis is tested in Chapter 5 where numerical predictions of
T1/T; are compared with the analytical result (3.19) and Malone’s experimental data.

No doubt a conspicuous feature of this chapter is the lack of a predictive film thick-
ness theory for reverse meniscus roll coating. This may seem surprising in view of
the relative simplicity of its flow structure compared with the forward case (compare
Figure 2.15 (c) with Figure 2.15 (a)). Regrettably, the analysis of the forward case
developed here cannot be extended to the reverse case because there is no reverse flow
between eddies during the latter. Therefore at present it appears that further informa-
tion on reverse meniscus roll coating may only be furnished by numerical solutions of

the problem.
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(a) Dependence on Velocity Ratio S with H* = 0.5

S = 0.5 1.0 1.5 2.01 -1.0
Zero Flux 36.0 | 48.0 { 60.0 | 72.0 0.0
Poiseuille + Couette | 36.0 | 48.0 | 60.0 | 72.0 0.0

(b) Dependence on Dimensionless Depth H* with § =1

H* = 0.1 0.2 0.5 0.8 1.0
Zero Flux 1200 | 300 | 48.0 | 18.75 | 12.0
Poiseuille 4+ Couette | 1200 | 300 | 48.0 | 18.75 | 12.0

Table 3.1: Dimensionless Horizontal Pressure Gradients in the Central Core of the Bead
- A Comparison between Predictions from the Zero Flux and ‘Poiseuille plus Couette’

Models

(a)S=1, H*=0.25

] Zero Flux { Poiseiulle + Couette
0.25 1.0 1.0
0.20 0.4 0.4
0.15 -0.44 -0.44
0.10 -0.44 -0.44
0.05 0.4 0.4
0.00 1.0 1.0

(b) S=2, H*=0.25

y | Zero Flux | Poiseuille + Couette
0.25 2.0 2.0
0.20 0.36 0.36
0.15 -0.56 -0.56
0.10 -0.76 -0.76
0.05 -0.24 -0.24
0.00 1.0 1.0

Table 3.2: Horizontal Velocity Profiles Across the Bead in the Zero Flux Case
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Chapter 4

The Development of the Free

Surface Code

4.1 Introduction

In the two previous chapters, meniscus roll coating has been analysed using simple,
lubrication models for the flow in the central ‘core’ region (see Figure 2.1). Although
these analytical models have successfully predicted the main features of the flow field,
its dependence on velocity ratio, and the average film thicknesses produced on up-
per and lower rollers during forward meniscus roll coating, they are still, in some
senses, incomplete. This is because they are unable to elucidate the nature of the two-
dimensional, surface tension-dependent flow near the meniscii. Since Malone’s [1992]
forward meniscus roll coating experiments clearly demonstrate that the flux-splitting
Process actually occurs near the downstream meniscus, it is possible that a fuller anal-
ysis of the problem, including the flow near the meniscii, may lead to more accurate
film thickness predictions. However the task of modelling these meniscii and the at-
tendant dynamic wetting line (see Figure 1.6 (c)) is extremely difficult since they lead
to the liquid domain having a non-standard shape. Nevertheless, these difficulties,
Which are intractable to traditional mathematical analysis, may be surmounted using
modern computational techniques (see §1.5) in which the meniscii are represented as

mathematical boundaries known as ‘Free Surfaces’. In the present chapter we describe

101
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a popular finite element (F.E.) approach for solving steady, two-dimensional flows with
free surfaces, and illustrate some of the practical difficulties encountered, e.g. in mesh
generation for flows with highly curved meniscii. It is not, however, the intention to
discuss the programming methodology behind the F.E. technique itself in any detail for
two reasons: (i) this would form a thesis in its own right, (ii) there are a.l;eady many
excellent texts dealing with this topic — see for example Cook [1981], Carter [1985] or
Chen [1991].

In §1.5, we concluded that the most suitable numerical technique for solving steady,
free surface flows is that employing the F.E. method in conjunction with a ‘primitive
variables’ (u — v — p) formulation. It will soon become apparent that even the develop-
ment of a computer code to solve steady free surface flows is a formidable undertaking

because the following non-linear boundary conditions
(i) Zero normal velocity - the kinematic condition

(ii) Zero tangential (shear) stress

x x

(iii) Normal stress is balanced by surface tension stresses and atmospheric pressure

must be applied at the unknown, and often highly curved, free surface locations.

In the FORTRAN code described here, the free surface formulation is based on
Kistler’s [1983] ‘Spine Method’. During its development a programme of work was
devised in which flow problems of increasing complexity are solved, beginning with
flows in which there are no free surfaces present. At each stage the F.E. predictions are
validated against either analytical results, previously published numerical solutions or

experimental data.

4.2 The Galerkin Finite Element Method

4.2.1 The Divergence Form of the Equations of Motion

The motion of a Newtonian, incompressible liquid of constant density p and viscosity
7, over the solution domain 2, is governed by the Navier-Stokes equations (see §2.2).

Following Kistler and Scriven [1983], these equations can be non-dimensionalised by
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scaling lengths with D, a length scale appropriate to ; velocities by U, a charac-
teristic velocity; and pressure and viscous stresses by nU/D. It is also convenient to
introduce the dimensionless groups Re = p U D/n, the Reynolds number, which gives
a measure of the relative magnitude of inertial to viscous forces and §t = pgD?/nU,
the Stokes nuﬁlber, which indicates the relative importance of gravity to viscous forces
(g is the gravitational acceleration). Under this non-dimensionalisation, the Navier-

Stokes equations, expressing local conservation of linear momentum and mass, may be

written as
ReuVu = V.g + Stf (4.1)
Vu = 0 (4.2)
where ¥ = (u,v) is the dimensionless liquid velocity, f is the unit vector in the

direction in which gravity acts, and g is the dimensionless stress tensor. From equation

(2.13) we see that for a Newtonian liquid
g = —pl + [Va + (Vo)T] (4.3)

where [ is the unit tensor and p is the dimensionless liquid pressure. Note, that as the
effects of gravity are neglected in this thesis, the Stokes number St is set equal to zero
in equation (4.1). For the purposes of the analysis, it is convenient to introduce the

tensor uu which is the diadic product of u with itself such that
(y_ﬁ),-j = ul; (4.4)

This enables the governing equations (4.1), (4.2) to be cast in ‘divergence form’ (Kistler
and Scriven [1983])
ReV.(uu) = V.g; Vau = 0 (4.5)

from which the F.E. equations for the approximate solution of such a system can be
derived.
4.2.2 The Galerkin Finite Element Equations

In Appendix B the philosophy behind the F.E. method is described in relation to the

3olution of the creeping flow equations by a streamfunction-vorticity method. Unfortu-
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nately, this method is unsuitable for the solution of general free surface flow problems
because (a) the normal stress condition (iii) cannot be conveniently formulated in terms
of the 3, w variables, (b) no variational principle exists for flow at non-zero Reynolds
number (see Carter [1985] p 117). These problems can, however, be solved by the
‘Galerkin Method of Weighted Residuals’ in which the Navier-Stokes equations are for-
mulated in terms of the primitive variables. In this formulation the dependent variables
are the nodal values of (u,v,p).

In Chapters 2 and 3, numerical solutions of the creeping flow equations employing
6-node triangularl elements with quadratic shape functions for both the streamfunc-
tion and vorticity have been seen to give acceptable results. However when primitive
variables are used the question of the order of the shape functions ﬁsed to interpolate
the velocity and pressure fields is an important one because the lack of an explicit
equation for the pressure coupling can lead to severe numerical difficulties. For exam-
ple, an improper combination of velocity and pressure interpolations may lead to an
ill-conditioned global matrix which yields @ spurious pressure solution, or, in extreme
cases, no solution at all because of the singular nature of this matrix (see Chen [1991]
pp 39-40). The explanation for such occurences is given by Olson et al [1978] in terms
of the existence of zero éigenvalues, a phenomenon that is often referred to as pressure
modes, see Sani, Gresho, Lee and Griffiths [1981).

An approach which overcomes these difficulties is the ‘mixed-interpolation’ formu-
lation introduced by Hood and Taylor [1974]. They used elements with different order
shape functions for fluid velocities and pressure in order to curb the oscillatory pressuie
solutions that resulted from employing equal order interpolations. In the literature, el-
ements which have different order interpolations for fluid velocity and pressure are
known as ‘mixed elements’. In certain cases, even mixed elements may give a spurious
mode; for example an improper arrangement of mixed elements for certain boundary
conditions may also result in a ‘locking’ problem as explained by Hughes [1987].

It is now generally recognized that in the primitive variable F.E. formulation of the
Navier-Stokes equations, the pressure should be interpolated at least one order lower

than the velocities; see for example Fortin and Thomasset [1979)], Huyakorn, Taylor,
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Lee and Gresho [1978], Lee, Gresho and Sani [1979]). Theoretically speaking, if a mixed
element satisfies the so-called Ladyzenskaya-Babuska-Brezzi, or LBB stability condition
(see Babuska and Aziz [1972]) with the pressure interpolation one order lower than that
for the velocities, the rate of convergence is said to be ‘optimal’ and no locking will
occur. Unfortunately it is a rather complex procedure to verify whether an element
satisfies the LBB condition — a detailed description of the mathematical aspects is given
by Oden and Carey [1984]. The most widely used elements that appear in the literature

which satisfy the LBB condition are shown in Figure 4.1 (a)-(d), they are

(a) Triangular: Six node velocity - three node pressure (V6/P3)
(b) Quadrilateral: Nine node velocity - one node pressure (V9/P1)
(c) Quadrilateral: Nine node velocity - three node pressure (V9/P3)

(d) Quadrilateral: Nine node velocity - four node pressure (V9/P4)

In their study, Kistler and Scriven [1983] used quadrilateral V9/P4 elements. Here,
however, triangular V6/P3 ones are preferred for the same reasons given in Appendix

B, namely
(i) it is much easier to locally refine a particular grid

(ii) (important in the early development of the code) the F.E. equations produce a
global stiffness matrix with a smaller bandwidth, thereby reducing the storage

requirement (see Appendix C)

If Ni represents a 6-node biquadratic shape function for the velocity field u and ¢y a

three node bilinear one for the pressure field p, then (see §B.5)

1 at node k 1 at the Ith pressure node
0 at all other nodes 0 at all other corner nodes

(4.6)

fu, = tux + jor (k=1,...,K) are the values of the velocities at the velocity nodes
and m(l=1,...,L) are the nodal values of the pressure, then the F.E. approximation

to the velocity and pressure fields are written in terms of these nodal values

K L
u= > wNe,p=> pmw (4.7)
k=1 =1
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Note that equation (4.7) is of the same form as the F.E. approximation to ¥ and w
given in Appendix B.

The local node numbering scheme used in the primitive variable formulation is
shown in Figure 4.2. It differs from that used in Appendix B since the first 3 local
nodes are the corner nodes. This convention simplifies the problem of incorporating
pressure freedoms into the code (see Carter [1985] pp 199-200). As in Appendix B tﬁe
shape functions N and ¥y associated with a particular element may be conveniently
expressed in terms of local ‘area’ co-ordinates. If Ny is the velocity shape function
associated with the kth local node (under the local node numbering scheme shown in

Figure 4.2) and Ly, L3, L3 are defined by equation (B.33) then

N] = L1(2L1—1) N N4 = 4L1L2
N2 = L2(2L2—1) ’ N5 = 4L2L3 (48)

N3 = L3(2L3-1) , Ng = 4L1L3
while the ¢y shape functions associated with the /th corner node are simply,
vr = Ly, Y2 =Ly, 3 = Ly (4.9)

Note that at any point in the element, these shape functions satisfy the relationship

6 3
Y N&n) = Y w6 =1 (4.10)
k=1 =1 )

Now for the theory. We illustrate Galerkin’s method of weighted residuals by de-
scribing how it can be used to solve a relatively simple fluid flow problem in which
the fluid velocity on the boundary 99 is known - additional theory needed to solve
more complicated free surface flow problems will be described in subsequent sections.
The idea is very simple: the 2K + L equations needed to determine the 2K + L un-
knowns, i.e. the nodal values of u, v, and p, are provided by weighting residuals of the
momentum and continuity equations with the shape functions Ny and iy respectively,
and setting them equal to zero — see Kistler and Scriven [1983] p 261. Note that if we
weighted the momentum and continuity residuals by 1y and Ny respectively this would

provide only 2L + K equations, not the requisite 2K + L. Weighting the momentum
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equation of (4.5) with each Nj and setting it equal to zero gives

Rt = /n Ni(Re V.(us) — V.g)dQ = 0 (4.11)
Using the fact that
Ni V.(uu) = V.(Niuy) — VNi.(uu) (4.12)
and
N Vg = V.(Nig) — VNi(2) (4.13)

enables (4.11) to be rewritten as
Rt = /Q [ReV.(Niuu) — ReVNi(uw) + VNig — V.(Meo)] dQ = 0 (4.14)
Finally, applying the divergence theorem to the purely divergent terms yields
Bt = /ﬂ [VNi.(~Rewu + o)] d — /a _Nin(-Rewy + g)ds = 0 (4.5)

Equation (4.15) provides the 2 scalar algebraic equations needed to determine the
velocity freedoms (ug,vx) which are associated with node k.

There are two contributions to each momentum residual, namely those due to (i)
the domain Q, (R%,)q, and (ii) the boundary 89, (R%;)an. The latter contribution is
only important in free surface flows and does not need to be evaluated in the present
simple problem for the following reasons. Since we are assuming that u is prescribed
on 99, the velocity freedoms (uk,vk) associated with each of the (K} say) boundary
nodes are already known. This means that the only weighted residuals which need to
be evaluated are those associated with the K’ (=K — Kj;) nodes which do not lie on
the boundary. From the properties of shape functions given in (4.6) it follows that each
N associated with the K’ inteﬁor nodes is identically equal to zero on 8. Therefore

their associated momentum residuals _]_Eﬁ,, simply reduce to _Ij}‘w = (_I_Z_ﬁ,,)n where
(Rf)a = /n VNi.(—Reuu + g) dQ (4.16)

As these domain residuals have to be evaluated in all subsequent solutions, we describe

their form in detail.
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Since V.u = 0, it is easily shown that VNy.(uz) = (VNi.u)u which may be written

in the following vector form

_ (0N, 2N
VN (uw) = (u AL ay) (u,v) (4.17)

For a Newtonian fluid, g is given by (4.3) and after algebraic manipulation, the contri-

bution VNi.g may be split into z and y components since

ONr OudNy OvONg OudN,
(VNp.g)s = —p 92 + ay Oy + 2z Oy +28z—8m (4.18)

ON; ﬁaNk @3]\% _@aNk

(VN.g)y = —p——ay + 97 Oz + oy Oz 3y 9y (4.19)

In the F.E. code, it was found convenient to introduce arrays X1(K),..., X5(K) and
Y1(K),..., Y5(K), such that the contributions to the z and y components of the mo-

mentum residuals (4.15) due to the domain Q, (RX,)q,r and (R%,)q,, respectively, are

(Rllcw)ﬂ,z

/n [ -ReX1(K) + X2(K) + X3(K) + X4(K) + X5(K)]dQ (4.20)
and
(RE)a, = /0 [ -ReY1(K) + Y2(K) + Y3(K) + Y4(K) + Y5(K)]dQ (4.21)

where

2ONe | Nk

XUK) = u e 3y y, YUK) = w—>—+ v By (4.22)
i}
X2K) = 05, YoK) = - %"-Vyi (4.23)
Ou N ., _ OvON; , '
X3(If) = 79—3; ay y Y3(Il) = a_z"fT"c_ (4.24)
. Ov AN}, ., _ OudNy
X4(Il) = -a—z"'"a'y— ’ Y4(IX) = —az—a-;- (4.25)
X5(K) = 2%:—-(2;—\;’5 , Y5(K) = g—s%ﬁ (4.26)

The F.E. equations needed to determine the L pressure coefficients in (4.7) are
provided by the ‘Continuity Residuals’, obtained by weighting the continuity equation

of (4.5) by the presssure shape functions :

9 0
R = /(; W (5.5 + 5%) dQ =0 (4.27)
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4.2.3 Solution of the Galerkin F.E. Equations: Newton Iteration

Now that the F.E. equations (4.15), (4.27) have beed obtained, it is necessary to solve
them. In this work, a solution technique based on Newton iteration, which was first used
by Ruschak [1980] and Saito and Scriven [1981), is chosen because the convergence rate
is much faster than alternative methods based on successive approximation techniques
(see §1.5). Although in the present simple problem there are Dirichlet conditions (i.e.
where the value of the variable itself is prescribed) on the boundary node velocities
(ug, vi), it is more convenient to describe Newton’s method under the assumption that
all 2K + L freedoms have to be found; we will then describe how the theory is altered
to take account of these boundary conditions.

Newton’s method requires the evaluation of the derivatives of the momentum and
continuity residuals with respect to the finite element coefficients {ug, vk, p1}. In the
present simple flow problem, the vector of F.E. coefficients @ can be subdivided into

uf = [uy,...,uk), 2T = [v1,...,vx] and pT = [py,...,pL] Where

-

T = [ET»QT’ T] (4'28)

I~

Similarly, the weighted residuals of the momentum equations, R%,, have z and y com-

ponents (RK,)s, (R%,), so
By = (RE)i + (Ri)ud (4.29)

where 7 and j are unit vectors in the z and y directions respectively. The residuals
(R4)z) (Ry)y can be combined with the continuity residuals Rf; in a vector of weighted

residuals, R(a), given by
_-E;T = [(.B.M)Z', (&M)g'9£g (4'30)

where (ﬂM)Z = [(R}W),, o w(R)’\\:I)r]’ (QM)Z = [(R}w)yv .o w(RII\(/I)u] and
EE:[R‘C,...,Rg]. |
The Newton iteration process finds the updated coefficients a,,; from the last

computed set, g,,, by solving the linear system of equations given by

Jlans—an = LAan = -R(a,) (4.31)



Chapter 4: The Development of the Free Surface Code 110

where the Jacobian i is defined as

(a=an) (4.32)

i~

]
(SSY A5
IR Il:v

Now for the boundary conditions. The Dirichlet conditions on boundary velocities
(uk,vi) (referred to as essential conditions in F.E. terminology) are imposed by (i)
setting the velocity freedoms associated with boundary nodes to their known values; (ii)
deleting the momentum residuals (4.15) formed from those shape functions N; that are
associated with boundary nodes from the equation set (4.31); (iii) deleting derivatives
OR/da; with respect to those a; which are known (in this case the boundary velocities
(uk,vk)). In other words the size of the Jacobian J is actually (2K' + L)x(2K' + L)
rather than (2K + L)x(2K + L).

In §B.5 we saw that the practical problem of computing the F.E. equations in flows ’
with elements of general size and orientation (as is definitely the case in free surface
flows) can be alleviated by isoparametrically mapping a standard element, defined in
local co-ordinate space, into each of the deformed elements in the flow domain. This
technique enables the residuals and their derivatives with respect to the F.E. coefficients
to be evaluated in the local (€,7) space, shown in Figure 4.2,’ by invoking equations
(B.41‘)(—(B.43). As in the streamfunction-vorticity method, the full residual vector R
and global matrix J are assembled from contributions at element level. These element-
level contributibns take the form of either area or boundary integrals and are again
evaluated usi’ng Gaussian quadrature. The matrix J is stored in a ‘banded-matrix’
form in order to reduce the storage requirement — see Appendix C.

As Newton’s méthod is an iterative technique, we have to decide on an initial ap-
proxima;cion and a convergence criterion. The former is, of course, prdblefn dependeﬁt
and must be tailored to the s"peciﬁc problem of intefést, whereas the suitabilify of the
latter should always bé evaluated by comparison with different criteria. However, the

author’s experience suggests that both the maximum change among the unknown coef-

and the largest among the unknown residuals |R'(a,)| __ are

. i i
ficients, |al,, — o}, maz

mazx

useful indicators for viscous, free surface flows. It can be shown that Newton iteration |

‘converges quadratically as a solution is approached (see Isaacson and Keller [1966))



Chapter 4: The Development of the Free Surface Code 111

which means that if n — 1, n, n + 1 refer to successive iterations, then

2

< C |a-a', (4.33)

i i
Ian+l - Qy,
max mazx

for some constant C when n is large. This convergence rate means that Newton it-
eration not only offers a drastic improvement on convergence rates of alternative suc-
cessive approximation techniques, it also affords a useful test of the correctness of
the Jacobian and the iteration procedure: if the convergence rate is not quadratic as
the solution is approached then the Jacobian has been evaluated incorrectly (Kistler
and Scriven [1983}). In the work carried out here, an iteration was terminated when
|ofys = o], < 10710

The theory developed so far has not considered free surface flow problems; the
additional theory needed to solve them will be discussed in subsequent sections. Nev-
ertheless, the power of Galerkin’s method is amply demonstrated in the next section,

in which primitive variable solutions are obtained for the 3 creeping flow problems

developed in Chapter 2.

4.3 The Solution of Cavity-Driven Flows

4.3.1 Flow in a Lid-Driven Cavity

The flow in a lid-driven cavity is of exactly the same form as the hypothetical problexﬁ
used in §§4.2.2 to illustrate Galerkin’s weighted residual method. It provides a suitable
initial test problem when developing a fluid mecha;xics code because the boundary
conditions are simple, the liquid domain is a regular shape, and there are ﬁo free
surfaces to complicate the analysis. The problem is non- dJmensmnahsed as in §2.3,
leading to the dxmensxonless boundary value problem shown eaxher in Fxgure 2.2 (b);
note that the essentlal boundary conditions on liquid veloc1ty, in terms of the prmutlve
variables, are shown in brackets They are imposed by the techmque descnbed in
§§4.2.3. Once again the Reynolds number, Re = p U D/n, is assumed to be so
small that inertia effects are negligible. In this section, solutions for this creeping flow

problem are only presented for the special case of a square cavity.
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The iterative procedure begins from a start-up approximation in which only the
(known) liquid velocities at the boundaries are imposed. All other unspecified freedoms,
namely the liquid velocities at internal nodes and every pressure freedom, are initialised
to zero. In §2.3 we learned that it is important to check the accuracy of any F.E.
solution since its accuracy depends on the degree of refinement of the computational
grid and also the numerical integration schemes chosen. For this reason primitive
variable solutions to this problem are obtained using every combination of the 3 grids
shown in Figure 2.3 and quadrature schemes (A)-(D) for area integrals shown in Figure
B.6. In the numerical results presented here, the F.E. equations (4.31) are solved
by the same ‘banded-matrix’ solver as was used earlier in Chapter 2. Once again
changing the number of quadrature points had only a minor effect on the execution
time of an iteration: results obtained using grids (a) and (c) taking approximately 70
c.p.u. seconds, whereas those employing grid (b) took 110 c.p.u. seconds. In all cases,
converged solutions from the start-up approximation were obtained in 3 iterations.

Table 4.1 shows (a) horizontal comporents of liquid velocity on the vertical cen-
treline z = 0.0, (b) vertical components of liquid velocity on the horizontal centreline

= 1.0 obtained from (i) the semi-analytical solution (2.11) truncated after 20 and
40 terms, (ii) primitive variable F.E. results using grid (a) of Figure 2.3 and schemes
(A) and (D) of Figure B.6. Results from schemes (B) and (C) are not shown as they
agree with those of scheme (A) to the sixth decimal place. It may be seen that results
obtained from the semi-analytical solution converge to 3 decimal places after 20 terms
are taken and are in good agreement with primitive variable results obtained using all
four quadrature schemes. Table 4.2 compares primitive variable F.E. results (obtained
using grid (b) of Figure 2.3 and scheme (A)) with semi-analytical results derived from
the series (2.11), truncated after 40 terms, The agreement is good, but not apprecia-
bly better than with those obtained using grid (a), thereby suggesting that grid (a) of
Figure 2.3 is sufficiently refined for the present application."

In the results presented so far, we have chosen to compare the velocities generated in
primitive variable F.E. solutions with those obtained analytically by representing them

in tabular form. In most instances, however, it is far more convenient to represent
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velocities as a set of velocity ‘vectors’ whose sizes are proportional to the magnitude
of, and directions parallel to, the velocity at the arrow’s tail. Figure 4.3 shows velocity
vectors (i) from a primitive variable solution using grid (b) and scheme (A), (ii) derived
from the semi-analytical solution (2.11), truncated after 40 terms. This velocity vectors
representation of the results immediately emphasizes their close agreement since they
are visually indistinguishable. The velocity vectors representation is used extensively
in the remainder of this thesis.

Finally, when the asymmetric grid (c) of Figure 2.3 is used, a slight asymmetry
in the numerical solutions is observed. Nevertheless, these results are still in good

agreement with liquid velocities derived from the analytical solution (2.11).

4.3.2 Flow in an Open, Driven Cavity

In this section the Galerkin F.E. method is extended to solve Canedo and Denson’s
[1989] model of flow in an open pool of a Newtonian, incompressible liquid generated
by a slowly moving side wall. The problem is non-dimensionalised as in §2.4 with the
result that it reduces to the dimensionless boundary value problem shown in Figure
2.8 in which Re = p U L/7n. The only case considered here is that of creeping flow
(Re = 0) in a square cavity with A* = 1.0.

At the bottom and side walls, the liquid velocity is known; these are essential
conditions and are imposed in the usual way (described in §§4.2.3). At the planar
liquid-air interface, however, there are two different conditions: v = 0 and the zero
shear stress condition du/8y = 0. The former is an essential condition on the vertical
c&mponent of liquid velocity, hence the y-components of those momentum residuals
(4.15) associated with upper boundary nodes can be discarded. The latter is different,
it is not an essential condition. In this case it is necessary to evaluate (R%,)s 00, the
contributions to the z-components of those momentum residuals (4.15) associated with
upper boundary nodes due the boundary 0f2.

Since u.n = 0 on all boundaries, (E’fu)an may be simplified to

(Rip)sn = - ./a 0 Ni n.g ds (4.34)
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From equation (2.12) we see that n.g represents the dimensionless stress exerted on a
boundary due to the liquid motion, hence at the upper boundary nodes the zero shear
stress condition may be interpreted as (n.g), = 0. Consequently, from equation (4.34),
the z-component of (wa)an is equal to zero for those nodes on the upper boundary.
Hence the only non-zero contribution to the z-components of momentum residuals
associated with upper boundary nodes is that due to the domain, i.e. (R%;)q. When
this residual is included into the equation set (4.31), the Newton iteration can begin.

In view of the close agreement between analytical and numerical solutions observed
in §§4.3.1, the numerical solution presented here is obtained using quadrature scheme
(A) of Figure B.6 for area integrals and grid (a) of Figure 2.10. The iteration is begun
using an initial estimate in which only the essential conditions are imposed, all other
velocity and pressure freedoms being initialised to zero. The F.E. equations (4.31) are
again solved by the NAg F.E. ‘banded-matrix’ solver. A converged solution is obtained
from the start-up approximation in 3 iterations, each iteration having an execution
time of approximately 70 c.p.u. seconds. ..

Table 4.3 shows a comparison between (a) horizontal components of liquid velocity
on the vertical centreline z = 0.5, (b) vertical components of liquid velocity on the
horizontal centreline y = —0.5 obtained from (i) the semi-analytical solution (2.19)
with 20 terms in the series, (ii) the primitive variable F.E. solution of this problem.
The agreement between them is very good. Velocity vectors from the two solutions are

plotted in Figure 4.4, once again they are indistinguishable from one another.

4.3.3 The Zero Flux Model of Meniscus Roll Coating

In this section Galerkin F.E. solutions of the Zero Flux Model of meniscus roll coating
are compa;ed with those obtained analytically from equation (2.23). The problem is
non-dimensionalised as in §2.5 with the result that it reduces to the boundary value
problem shown in Figure 2.12. The only cases considered here are those for a cavity in
which the lid speeds V3, V; are so small that the creeping flow approximation is valid.

The boundary conditions on the lids are essential conditions on the liquid velocity

" and are imposed in the usual way. The conditions on the vertical liquid-air interfaces
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are similar to those given in §§4.3.2, namely v = 0 and the zero shear stress condition
0v/8z = 0. The former is an essential condition on the horizontal component of liquid
velocity, imposed by discarding the z-components of those momentum residuals (4.15)
associated with nodes on the side walls. In this problem the zero shear stress condition
can be interpreted as (n.g), = 0 on the side walls and is imposed by a method
exactly analogous to the one described in §§4.3.2. This means that the only non-zero
contribution to the y-components of those momentum residuals (4.15) associated with
side wall nodes is that due to the the domain Q, i.e. (R%,),=(R%,),q This completes
the equation set (4.31) for this problem.

The Galerkin F.E. results presented here refer to the cases of a cavity with H* = 0.5
and S = 1, 2. They are obtained using quadrature scheme (A) for area integrals and
grid (a) of Figure 2.14 as the computational mesh. The problem is initjalised and solved
as for the previous two flows. A converged solution was reached in 3 iterations, each
taking approximately 80 c.p.u. seconds.
| Liquid velocities, derived from the analytical solution (2.23) truncated after 40
terms, are compared with those obtained by the Galerkin F.E. method in Table 4.4.
The solutions agree well in both the S = 1 and § = 2 cases. Veiocity vectors from both
solutions are plotted out in Figure 4.5. Although the flow fields are not as clear as they
are in Figures 4.3, 4.4, close inspection reveals that the analytically- and numerically-

generated flow fields are indistinguishable from one another.

4.4 The Slot Coater

4.4.1 | Introduction

In the above sections, we have shown how Galerkin’s weighted residual method can‘
be used to solve simple flows in rectangular geometries with straightforward boundary
conditions. In the remainder of this chapter, we describe the special techniques needed
to enable the method to be extended to (i) incorporate the 3 free surface boundary con-
ditions (see §4.1) and (ii) represent the variable free surface locations mathematically,

" as is required in the solution of more complicated viscous free surface flow problems.
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In the present section these techniques are illustrated by applying them to the solution
of a relatively simple free surface flow, that of the ‘slot coater’.

The slot coater has been studied by many authors, see for example Coyne and Elrod
[1970, 1971], Saito and Scriven [1981] and Carter [1985]. The geometry of this process,
shown in Figure 1.20, consists of a flat substrate (the web) moving with constént
velocity Uyep from a slot of constant width H. The upper edge of the slot consists of
a rigid wall terminating at the point X = 0, Y = H. Liquid moves under pressure in
the slot and separates from the upper edge, relaxing far downstream to uniform ‘plug’
flow. The problem is non-dimensionalised by introducing the following dimensionless
quantities

u=UlUpb » vV = V/Upeb » p = HP/9Uye - (4.35)

q = Q/UwebH y T = X/H y ¥ = Y/H (4'36)

where Q is the actual flux through the slot. The dimensionless boundary conditions
used here follow those given by Carter [1985, pp 113-116] in his study of slot coating.

Referring to Figure 1.20 these are

At Inflow (z — 00,0< y < 1)

vu=g(y) , v=0 (4.37)

where g(y) represents fully developed Poiseuille-Couette flow subject to the no-slip

conditions at the web and upper edge, namely
9(0) = -1 ,9(1) =0 (4.38)
Since the dimensionless flux, g, is given by
1
q = - /0 9(y) dy (4.39)
the inflow conditions may be rewritten as
u=g(y) =(06g -4 -9+ -"1,0=0 (4.40)

At Outflow (z = —00, 0 < y < h*°)

©t=-1, v=20 (4.41)
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where h*® = g, the so-called ‘plug’ flow conditions far downstream.

At the Upper Wall (y =1, z > 0)

u=0, v=0 (4.42)

On the Web (y = 0)

u= -1, v=20 (4.43)

The above boundary conditions are all essential conditions on the liquid velocity and

are imposed in (4.31) by the usual method; the free surface boundary conditions are,

however, quite different.

4.4.2 Incorporation of Free Surface Stress Conditions into the Galerkin

Equations

In §4.1 we saw that in a steady free surface flow there are three conditions to be satisfied
at the unknown free surface location. The kinematic condition, u.n = 0, which
expresses the fact that there should be no flux of liquid across a steady free surface, is
discussed in greater detail in the following section. Instead we focus attention here on
the two remaining conditions which stipulate that the normal and tangential stresses
must balance.

In the usual situation where the free surface represents a liquid-air interface, the
fact that air has a viscosity which is negligible compared to that of most liquids means
that the tangential stresses at the free surface must also be negligible (see equation
(2.15)). In this case the normal and tangential stress balance may be expressed via the

single vector relation (Kistler and Scriven [1983])

1 =n
——— — n
Ca rc“r" v pd

n. (4.44)

S}

where Ca = nU/T (U is a suitable velocity scale for the flow) is the dimensionless Cap-
illary number measuring the relative importance of viscous to surface tension stresses;
Pa the dimensionless ambient air pressure; n the outward pointing (with respect to the

liquid) unit normal; and r.,,, the dimensionless radius of curvature of the free surface.
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Ruschak [1980] demonstrated that by coinbining the useful result that

dt n
Pl — (4.45)

where ¢ is the unit tangent vector pointing in the direction of increasing arc length, s,
along the free surface, with a measurement of pressures relative to the ambient pressure
achieved by the transformation p — p — p,, it is possible to rewrite the stress balance

(4.44) in the following computationally convenient form

1t
Ca ds

_TLg__ = (4.46)

This result is extremely important since it enables the contributions to the momentum

residuals (4.15) due to the free surface, (R%/) .., to be evaluated where
(s = - [ Mn(-Rewu + g) ds (4.47)

Now using the kinematic condition, n.u = 0, and (4.46) yields

1 dt
k — - — —_—
(B3)ts = ca Jya Ny I ds (4.48)

which may be integrated by parts (Ruschak [1980]) to give

Ey, _1_/ aNe o L _
(E-M)f‘ - Ca 1.8 i ds ds Ca [Nk 11 Nk !0] (4'49)

where ; and t; are the unit tangent vectors to the beginning and end of the free
surface respectively. Note that although boundary integrals are usually taken in an
anticlockwise sense, in practice it is possible to choose the arc length s to increase in
either an anticlockwise or a clockwise sense, provided that one is consistent in taking ¢
to be in the same direction.

Any numerical simulation of a free surface flow problem requires the specification of
a mathematical relationship between the free surface position and a set of ‘free surface
parameters’, whose values determine its actual location (e.g. in order to determine ¢
and s in equation (4.49)). The precise form of this relationship, of course, depends on
the mathematical representation chosen. In this thesis free surfaces are represented by
Kistler’s [1983] ‘Spine Method’, the main features of which are described in the next

section.
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4.4.3 Free Surface Representation: The Spine Method

The basic idea of the Spine Method is to parametrise a free surface by its location along
a series of conveniently placed, independent spines. In the spinal representation of the
slot coater shown in Figure 4.6, each spine is defined by a fixed base point ;‘b and a
fixed direction vector ¢;. In this representation the ‘free surface parameters’ are the
spinal distances {h;} along each spine between its base and free surface nodes.

Since the free surface location is not known a priori, the spine distances (called
‘heights’ h;) become additional unknown coefficients which have to be det‘ermined. As
a result the vector of F.E. coefficients o defined in (4.28) must be expanded to include
the free surface parameters {h;}; hence for the slot coater aT = [uT s o7, T, A7)
where h = {h;}. The additional equations needed to determine these spine heights are
furnished by weighting the kinematic condition, n.u = 0, which must be satisfied at
a free surface, by the shape functions Ny associated with the free surface nodes. These

extra equations are given by (Kistler and Scriven [1983] p 262)

R = } Nenuds = 0 (4.50)

which means that in this case the algebraic equation set (4.31) is composed of equations
(4.15), (4.27) and (4.50).

The computational grid used in this section is similar to those used by Saito and
Scriven [1981] and Carter [1985]. This grid is shown in Figure 4.7 (where for reasons
of clarity it is scaled vertically by a factor of 2) and consists of 90 elements and 215
nodes, 27 of which are free surface nodes. It divides naturally into three regions. In
region 3 the position of all nodes is invariant throughout the iteration. In regions 1 and
2 however, i.e. the free surface regions, the triangular elements adjust with the free
surface position during the iteration procedure. In region 2, where the curvature of the
meniscus is large, the spines pass through a polar origin O outside the liquid; and in
region 1 the spines are vertical.

All nodes in regions 1 or 2 lie on a free surface spine. The ith spine is defined by
(i) the (fixed) position vector of its base node, z¥, (ii) a unit vector ¢; specifying its

- direction. The spine ‘height’ h; is the distance along the spine between the base node
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and the node which also lies on the free surface, known as a ‘free surface node’. On each
spine, between its base and free surface nodes, lie other nodes whose distances from
the base node are prescribed proportions w; of its associated spine height h;. In fact
if node k is the jth node on the ith spine, then its position vector z; may be expressed

mathematically by the relation
ze = 2p + wihig (4.51)

In the grid shown in Figure 4.7, there are 7 nodes on each spine, i.e. including the base
and free surface nodes, and the proportions w; are equal to 0, 1/6, 1/3, 1/2, 2/3,5/6
and 1. Expression (4.51) directly links the location of the nodes to the positions of the
boundaries.

The F.E. equations (4.15), (4.27), (4.50) are solved by Newton iteration. As before,
the global Jacobian matrix is assembled from the element-level Jacobians. Since ele-
ments in region 3 are unaffected by the free surface shape their element-level Jacobians
only contain derivatives with respect to their associated velocity and pressure freedoms.
These derivatives are straightforward; they are evaluated as in §4.3 on ‘cavity-driven’
flows.

However, nodes in regions 1 and 2 move according to equation (4.51) as the free
surface parameters {h;} are updated during an iteration. Therefore the element-level
Jacobians of elements in regions 1 and 2 must also contain derivatives with respect to
the (three) spine heights on which they depend. This is by far the most difficult part
of the solution process because residuals depend on A not only through the integrands,
but also on the limits of integration since 2 is also a function of h.

It is at this stage that the power of the isoparametricvmapping (B.40) is again
apparent. The momentum, continuity and kinematic residuals consist of combinations
of integrals of the form

I(,h) = /A 4y @8R dedy and (4.52)

L(B,h) = /S ) G(z,B,h) ds  (4.53)
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where _ﬂ_T = (uT,uT,pT) is the vector of F.E. coefficients for the flow field, A(h) is
the liquid domain and S(h) the boundary. Derivatives of (4.52) with respect to h are

obtained by noting that (see §B.5)

1en = ¥ {[ Fapsn i) ) (4.54)

elements

where J is the Jacobian of the element-level isoparametric mapping (B.40). This

eradicates any dependence of the domain of integration on the spine heights {h,} so

Ea—i{'- = X /A %{F(E’Q’Q) \71} dédn (4.55)
! elements o '

where the derivatives of the integrand may be obtained analytically.
The practical evaluation of free surface integrals of the form (4.53) and their deriva-

tives with respect to the F.E. coefficients is the subject of the following section.

4.4.4 Evaluation of Free Surface Integrals

In §B.5 a technique, based on the isoparametric mapping (B.40), was described which
enables integrals along fluid boundaries to be evaluated in terms of local ‘area’ co-
ordinates. This technique is now extended to evaluate those free surface integrals,
i.e. equations (4.49), (4.50), required in Galerkin F.E. solutions of free surface flow
problems.

In the slot coating grid shown in Figure 4.7, the free surface is composed of a series
of sides of those ‘free surface elements’ which contain three free surface nodes. One such
side and its associated free surface element is shown in Figure 4.8. Suppose that without
loss of generality the global node numbering scheme is such that the side along the free
surface contains local nodes 1, 3 and 6 with respect to the local node numbering scheme
shown in Figure 4.2. Then under this assumption if N; denotes the shape function
associated with the ith local node, the area co-ordinate L =(N; = Ng = Ng)= 0
along the free surface side. Hence the other (non-zero) area co-ordinates along this side

Ly, L3 satisfy the relation
Ly + Iy = 1 (4.56)
which means that the non-zero shape functions N, N3, Ng collapse to quadratic

" functions of a single, independent area co-ordinate. Now in the slot coating results
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presented here, the direction of integration was chosen to be in the downstream direction
from the separation point P to the outflow boundary — see Figure 1.20. In this case it is
more convenient to parametrise the shape functions in terms of the area co-ordinate L,
because it increases along the side of the element in the direction of integration. The
form of the isoparametric mapping (B.40) means that along the free surface side, the
global free surface position is the following simple function of the global co-ordinates

(z1,1), (%6, ¥s6) and (z3, y3) of local nodes 1, 3 and 6 respectively:

T = I Nl(Ll) + 6 Ne(Ll) + z3 N3(L1) (4.57)

y = 1 Mi(L1) + ys Ne(L1) + ya Na(Ly)
where (see equation (B.49))
Ny =Ly (2L = 1), Ne = 4L (1 = L) , N3 =1 - 3L, + 2L} (4.58)

Equation (4.57) is of crucial importance since it allows the unit tangent vector ¢ and

unit normal n to take on simple and computationally convenient forms

_ (dz/dL, i + dy/dL, j)
Y AR AD (4.59)
o _(=dy/dLii + dz/dL, j) (4:60)
=7 V(dz/dLi)? + (dy/dL,)?)) '

where dz/dL,, dy/dL; are obtained by simply differentiating (4.57) with respect to L,

(see also equations (B.52), (B.53)).
To aid the calculation of dNi/ds in (4.49), we use the result that along the free

surface (with parameter L,) (Kistler and Scriven [1983] p 261)

ﬂ-k- = t.VN; ONi dLy

2 - VYN = 5o (4.61)

where ds/dLy = /{(dz/dLy)? + (dy/dL,)?}. These results enable the free surface

stress integrals (4.49) to be calculated since

' (dz/dL dy/dL
/ td—des=E/L (dz/dLy i + dy/ 1])5deL

=0 ds/dL, oL, (4.62)

sidea

where the summation is over all sides forming part of the free surface. Moreover, in

" (4.62) there is no longer a dependence on h in the limits of integration; consequently,
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derivatives of (4.62) with respect to h; are also simplified since
1 dz/dLyi + d j
3 / e g =E/ 0 ((dz/dLyi + dy/dL, j) N,y
Oh; S(r) ~ ds L

(=0 Oh; dsjdL, oL,
Note that the integrand on the right hand side of (4.63) may be evaluated analytically

sides

(4.63)

by using the isoparametric mapping (B.40) in conjunction with the spine relation (4.51).

Now for the kinematic residuals. It can be shown that if (u;,v;), (us,ve) and
(u3,v3) are the fluid velocities associated with local nodes 1, 6 and 3 respectively, and
(u,v) the fluid velocity at any point of a side forming part of the free surface, then the

kimematic residuals (4.50) may be written more conveniently as

’ 1 dz dy
Rl = Nenuds = 5 [ m( ( ) dL, (464
£ Jow TEEEE \‘:‘ oo Nell) \vgpr - vgg) 4l (464)
where (see equation (4.7))

u = uy Nl(Ll) + us Ne(Ll) + u3 N3(L1) (4.65)

v = M N](L]) + vg Ns(Ll) + v3 N3(L1)

The right hand side of equation (4.64) is useful because there is no longer a h dependence
in the limits of integration. As u;, vi, h; are independent parameters with du;/8h; =

9v;/0h; = 0 for all i and j, derivatives of (4.64) with respect to h; are given by

0 L 0 (dz 8 [ dy '

- . = N —_— =) - y—

o Jog VrEEd = 2 Jreo Mo {og (55) = v (a22)} 2
(4.66)

Similar expressions can also be obtained for derivatives of (4.64) with respect to u,;, v;:

0 { 1 dy

9 Ninuds = - / Ne N ar } 4.67

Ou; Js(n) k0 ,%, Li=0 kgL o (4.67)
8 1 dzx :
2 N nauds = {/ N N,-—dL} 4.68
v Js(n) b RLES ,%. Ly=0 , S dl ! ( )

The results of this section show that the free surface integrals (4.49), (4.50) and the
derivatives with respect to their associated parameters can be written as a combination
of integrals over the x:egion [0,1]. These one-dimensional integrals are also evaluated

numerically using Gaussian Quadrature — see §B.6.
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4.4.5 Finding an Initial Approximation

The techniques described above allow the full Jacobian matrix (4.32), containing deriva-
tives with respect to the full set of F.E. coefficients a7 = (QT, hT), to be evaluated.
This brings us to the problem of finding a start-up approximation, i.e. an initial ap-
proximation @, when no solutions of related cases have previously been calculated.
This is far more difficult for a viscous free surface flow than it is for the ‘cavity-driven’
flows in §4.3, because neither the flow field nor the free surface location is known a
priori.

The domain of convergence of the Newton iteration procedure, (4.31), from a so-
lution with a given set of parameters (Re,Ca,etc), is a measure of the maximum
increment that can be made to any of these parameters before the iteration diverges,
i.e. mno solution is found. For viscous free surface flows the domain of convergence
of Newton iteration generally depends much more on position and shape of the free
surfaces than on the flow field within the domain because the non-linearity produced
by the free surface(s) is usually much strc;;nger than those due to fluid inertia at modest
Reynolds numbers (see Kistler and Scriven [1983] p 278). In practical terms this means
that it is important for the start-up approximation ey to have a good initial estimate
of the freé surface shape, although the domain of convergence from g, can sometimes
be enlarged by ‘under-relaxing’ the iteration process, i.e. by applying only fractions of
the updating changes called for by equation (4.31). |

In general, the free surface shape would be estimated from experimental observa-
tions; however, in slot coating it is fortunate that published free surface profiles already
exist (e.g. those of Saito and Scriven [1981], Carter [1985]). In this study the first so-
lution to slc;t coating was obtained by approximating the grid to the solution given in
Carter [1985] for the case of Re = 0.0, Ca = 0.4, ¢ = 0.25

- Once the first converged solution is obtained the calculation of related solutions for
nearby parameter values or boundary configurations is mlich easier. This is achieved
by zero order continuation, i.e. using the solution for one set of parameters in order to

begin Newton iteration for a not-too-dissimilar set of parameters.
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4.4.6 Results and Discussion

All the slot coating results presented here have been obtained using the F.E. grid
shown in Figure 4.7 in which (following Carter [1985]) the polar origin O, used to
define the tessellation of region 2, is placed at (-0.5, 1.0). Changing the number of
quadrature points (see below) had only a minor effect on the execution time required
for an iteration, each iteration taking vapproximately 20 c.p.u. seconds. During each
iteration the Galerkin F.E. equations (4.31) were solved by the NAg F.E. ‘banded-
matrix’ solver; most converged sol’utions were obtained in 4 or 5 iterations.

Before accepting any results there are three key issues to be addressed. The first
of these is the effect on the solution of the Gaussian quadrature scheme chosen to
evaluate the free surface integrals. Converged solutions weré obtained for parameters
set to Re = 0.0, Ca = 0.4, ¢ = 0.25 in which the area integrals were evaluated using
the 4 point quadrature scheme (A) and the free surface integrals using each of the 2-,
3-, 4- point quadrature formulae, i.e. schemes (a), (b), (c) respectively of Appendix B,
for one-dimensional integrals. Computed*r‘esults show that in changing from a 2- to the
3- point scheme, the maximum change in any coefficient was less than 1% ; whereas in
changing from a 3- to the 4- point scheme, the maximum change was less than 0.01%.
In both cases there was no discernible change to the free surface profiles.

The second issue relates to the evaluation of the area integrals. Converged solutions
for Re = 0.0, Ca‘= 0.4,¢ = 0.25 were obtained by using the 3 point scheme (b) for vfree
surface integrals and each of the four quadrature schemes (A), (B), (C), (D) for area
- integrals described in Appendix B. The computed results showed that in changing )
scheme (A) — (B), (ii) (A) — (C), the maximum change in any coefficient was less
than 1%,0.3% respectively, both of which had no appreciable éffeét on the free surface
profile obtéjned. However when scheme (D) (with one negative weight) was used, no
converged solution to this problem could be found. This is contrary to what might be
expected, given the good agreement between analytical aﬁd numerical results (ﬁsing
scheme (D)) repdrted in §§4.3.1, but it suggests that rounding errors incurred when

scheme (D) is used (see §2.3) are exacerbated by the presence of a free surface. Given
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the above results it was decided to calculate all subsequent numerical solutions using
the 4 point scheme (A) for area integrals and the 3 point scheme (b) for free surface
integrals.

Returning to the boundary conditions for the slot coater, the inflow and outflow
conditions are, in theory, applied at an infinite distance upstream/ downstream of the
separation point P respectively. In practice, of course, they are imposed at a finite
distance from P. It is, therefore, very important to check the sensitivity of computed
solutions to the positions of the inflow/ outflow boundaries. An initial investigation
confirmed Carter’s [1985] observation that the results are not sensitive to the upstream
end of the grid but that the length of the grid in the downstream direction is important.
A grid extending over —16 < z < 1 was found to be adequate for the range of parameter
values considered here.

Figure 4.9 shows velocity vectors and free surface profiles for a flow with Re =.
0.0, Ca = 0.4, ¢ = 0.25 obtained (a) in this work (b) in Carter [1985]. The free surface
profiles are in very good agreement. Carter’s results were, however, obtained using a
variational method limited to the creeping flow case, unlike those of Saito and Scriven
[1981] which were obtained using a version of Galerkin’s method of weighted residuals
similar to that described here, but with quadrilateral as opposed to triangular elements.
For this reason it was deemed more appropriate to compare the results of this work
with those of Saito and Scriven [1981]. Figure 4.10 shows the dependence of free surface
profiles on the Capillary number for the case of Re = 0.0, ¢ = 0.25 for (a) this work,
- (b) Saito and Scriven [1981]. These profiles are in excellent agreement in all cases; the
effect of increasing Ca is to make the free surface recede into the gap.

An appealing feature of the Galerkin F.E. method is that it is capable of solving
the fﬁll N avier-Stoicés équations with fluid inertia, i.e. at non-zero Reynolds number.
Figure 4.11 shows a comparison between velocity vectors obtained in this section and
those predicted by Saito and Scriven [1981] for slot coaters with (a) Re = 50, Ca =
0.125, ¢ = 0.13, (b) Re = 50, Ca = 0.125, ¢ = 0.25; excellent agréement is obtained
in both cases. Figure 4.12 investigates the effect of changing the liquid flux in slot

coating, with Re = 50 and Ca = 0.125 constant. Once again, the results from this
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work are in excellent agreement with those of Saito and Scriven in all cases. They show
that decreasing ¢ has the effect of increasing the free surface curvature, until the free
surface profile eventually recedes past the separation point P and into the gap.

In all the computed solutions presented here, the contact angle between the free
surface and upper plate at P is determined as part of the solution. Michael [1958]
studied the problem of the separation of a viscous free surface at a straight edge and
from his analysis he concluded that for the viscous stress to be bounded at the point of
separation, the contact angle @ = 180°. The ‘apparent’ contact angle, i.e. the contact
angle observed macroscopically, does not satisfy this condition in any of the computed
solutions. Kelmanson [1983] postulated that the contact angle changes rapidly from
180° to the observed value over a small distance § say. However this hypothesis defies
intuition ﬁ/hen the meniscus recedes past the separation point P and into the nip (see
e.g. Figure 4.11, case (a)). A recent analysis by Savage [1992] predicts 2 possible
contact angles, namely o = 0° and a = 180°, of which the former is more sensible
when the meniscus recedes into the slot. Unfortunately, a more detailed understanding
of the separation process is required before a satisfactory study of the region can be
completed. |

Despite all the complications described above, slot coating is a simple example
of a coating flow because there is no flux splitting, dynamic wetting lines or awkward
geometry in which the solution is to be found. Fully-flooded roll coating is more difficult

to analyse and is considered next.

4.5 ‘The Symmetric, Fully-Flooded, Forwafd Roll Coater

4.5.1 Introduction

In the previous section we obtained numerical solutlons of the slot coatmg problem,
which are in excellent agreement with previously pubhshed solutlons, by mcorporatmg
the spmal’ free surface representation into a genera.hsed version of Galerkin’s weighted
residual F.E. method. However, as the raison d’etre of the present chapter is to establish

. the expertise needed to develop a numerical model for meniscus roll coating which
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includes the effects of curved meniscii, it is now necessary to tackle the more challenging
roll coating problem.

Owing to its relative simplicity, we consider the symmetric, fully-flooded, forward
case first. As we shall see, the problem of representing the free surface is complicated,
even in this relatively simple case, by the sensitivity of the downstream free surface
location to the values of the operating parameters, and particularly to that of the
capillary number. In such situations, Coyle et al [1986] showed that the key to resolving
this difficulty lies in the adoption of a mesh generation algorithm in which all elements
depend on the free surface location.

In the present section we obtain numerical solutions of Coyle et al’s [1986] model
for the symmetric situation by extending the slot coating code, developed above, to
include a mesh generation algorithm similar to those described by Coyle et al [1986].
The salient features of their model and mesh generation algorithm are described in

detail in the next section.

4.5.2 Coyle et al’s [1986] Modei

In the symmetric case, the rollers are of equal radii and move with equal speeds in the
same direction through the nip. In their F.E. analysis of this situation, Coyle et al

introduced dimensionless variables defined by

s = X/\(RHo) . v = Y/\/(REo) , p = P\(RHo)/nV (4.69)

U/v , v=Vv/V (4.70)

u

where (X,Y), (U,V), P, V, R, Hp are the global co-ordinates, global liquid veloci-
ties, liquid pressure, speed of each roller, roller radius, and semi-nip width respectively.
Since the problem is symmetric, it is possible to reduce the cost of computations by
restricting attention to the flow in the lower half of the domain, i.e. between the sym-
metry plane and lower roller. The boundary conditions for this ‘half-problem’, which

are shown in Figure 4.13, are discussed below.
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(i) On the Symmetry Plane

Both the vertical component of liquid velocity and the shear stress will vanish,
v =0, (ng): =0 (4.71)

The first condition is an essential boundary condition and is imposed in the usual way;
the zero shear stress condition is imposed by the method described in §§4.3.2, 4.3.3.

(ii) At the Roller Surface

The no-slip condition yields an essential condition on liquid velocity: u = t where t is
‘the unit vector tangential to the roller surface.

(iii) At the Free Surface

The usual kinematic and stress boundary conditions are imposed by the techniqueé
described in §§4.4.2, 4.4.3.

(iv) At the Outflow Boundary

In slot coating, the flux was imposed as a parameter. Fully-flooded roll coating is diﬁ'erf
ent since the flux through the nip has to be determined as part of the solution. In such
cases Kistler and Scriven [1983] found that the imposition of a uniform ‘plug’ ﬂo?v con-
dition at outlet could lead to conflicts with overall mass and inomentum conservation,
unless the outflow boundary is placed far downstream. Unfortunately, this coﬁrse of
action can lead to computational costs becoming excessive. Kistler and Scriven [1984]
and Coyle et al [1986] found that a suitable alternative is to use the ‘no-traction’ condi-
tion, n.g = 0, at the outflow boundary. They found that this condition; which may be
interpreted physically as specifying that there should be no diffusive momentum flux
in the streamwise direction (Kistler and Scriven [1984]), may be applied closer to the
main body of the flow without appreciable loss of accuracy. Indeed this is borne out
by the author’s own experience.

The no-traction condition is impqsed by deleting the term Joq Nk n.gds from the
momentum residuals (4.15) associated with t‘he nodes on the outflow boundary (seé
equation (4.47)). As a result the boundaxy’term at ’these nodes is simply given by

Jsq Ni Re(u.n)uds, which is non-zero in general since u.n # 0 at an outflow boundary;
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(v) At the Nip
In §1.2 we noted that the lubrication approximation provides an accurate description of
the flow in the nip region during fully-flooded forward roll coating, see e.g. Greener and
Middleman [1975], Savage [1992]. Coyle et al [1986] used this fact to derive boundary
conditions at the nip which enable the computational domain to be reduced further;
their analysis is summarized below.

If the dimensionless co-ordinates (z,y) are chosen so that y = 0 on the symme-
try plane and z = 0 at the nip, it is both valid and convenient to approximate the

dimensionless half-gap width, h(z), by a ‘parabolic approximation’
N .
Ho 2 .1:2
y = =h(z) = - (-1-2—) (1 + 'é-) (4.72)

Moreover by introducing transformed spatial co-ordinates 6, 7, a modified dimension-

less pressure, p*, and the dimensionless flux A where

6 = tan~!(z/V2) , 5 = g_-lt—(-%ﬂ (4.73)
. K _Q
p —\P R ’ A et ZVH() (4'74)

it may be shown that, in the limit of the lubrication approximation, the balance of

z-momentum reduces to

0%u 22\ ? op*
22 = (1 + -é—) - (4.75)

Now, the no-slip condition at the roller surfaces gives u(n = 2) = u(n = 0) = 1, so

integrating (4.75) twice with respect to 7 gives

1 z?\’ ap*, 4
u = -2' (1 + —é_) E—(n —272) + »1 (4.76)

When this velocity profile is substituted into the following rearranged expression for
: y 1

A= {1+ — / u dn (4.77)
2 0

= Gt - (8.78)

the dimensionless flux

we obtain
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At this stage of the analysis, it is convenient to re-express (4.76) and (4.78) in terms of

0, the transformed z co-ordinate, which yields

u = -Z— (1= Acos?8)(n* - 27n) + 1 (4.79)
dp* _ 2 4
o= 3v/2(cos? 8 — A cos? §) (4.80)

In fully-flooded forward roll coating, it is usual to assume that the pressure in the liquid
decays to atmospheric far upstream of the nip, i.e. p*(=%) = 0, so integrating (4.80)

subject to this condition yields

A 3 ( SA) (0 sin 20 7r)
. = -2 1-22) (2 il .
p"/3V2 4sml?cos 0 + n 2+ n +4 (4.81)
Hence, at the nip (8 = 0)
. 32 3\
p = T?l’ (1 - T) (482)
Therefore thev boundary conditions at the nip in terms of the F.E. variables are
3 2
u = 5(1— An*=-2n9)+1 (4.83)
v = 0 (4.84)
3V2r R 3\
P = 4 ‘I'{; (1 - —4—) (485)

Expressions (4.83), (4.84) are essential conditions on the liquid velocity and are imposed
in the usual way. Condition (4.85) is different, its implementation will be discussed
later.

(vi) At the Symmetry Line P

The symmetry of the problem means that at the symmetry line P, formed where the
symmetry plane meets the downstream free surface, the following conditions abply:
(i) the liquid velocity is zero, i.e. P is a stagnation line, (ii) the free surface slope is
vertical. The former are essential conditions on the liquid velocity, v = v = 0, and
are imposed in the usual way, whereas the latter condition is different. In practice it
is imposed in the form 3.t = 0, where { is the unit horizontal vector and t is the unit
tangent vector to the free surface at P, calculated in terms of those F.E. variables which

specify the position of the downstream free surface (see next section).
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4.5.3 The Computational Mesh For the Symmetric Forward Roll

Coater

The task of choosing a mesh generation algorithm for the forward roll coater is com-
plicated by the fact that the (downstream) free surface location is much more sensitive
to variations in the operating parameters (particularly the capillary number Ca) than
in the slot coater. This characteristic means that if a spinal free surface representation
similar to the one employed in §§4.4.3 for the slot coater, with fixed base points z¥
and direction vectors ¢;, is used to represent the downstream free surface of a forward
roll coater, elements within the grid may become distorted from their triangular shape
when the operating parameters are varied. It is important to avoid element distortion,
if possible, because it can have a seriously detrimental effect on a numerical solution’s
accuracy (see later, §§4.5.5). Since, in the author’s opinion, there is inadequate cdver—
age of the practical problems caused by meshing a forward roll coater in the literature,
we devote this section to a detailed description of a mesh generation algorithm which
can limit element distortion in forward roll coating. The mesh generation algorithm
described here forms the basis of the F.E. grids used in all the solutions which remain
to be presented in this thesis.

The first solution to symmetric forward roll coating which was attempted here (for
a flow with parameters Re = 0.0,Ca = 0.1, R/Hy = 100) employed the tessellation
shown in Figure 4.14; it consists of 102 elements, 245 nodes with 21 spines and 21 free
surface nodes. Spine 1 is horizontal and lies on the plane of symmetry between the base
line XM and the symmetry line P. In practice it is more convenient to parametrise the
film-split location P in terms of the position of the line XM (whose z co-ordinate is
Xm) rather than with the value of hi, the spine height associated with spine 1. This
means that the value of A, is fixed and X, is the film-split location parameter which
needs to be determined instead.

The grid is split up into two regions: regions 1 and 2 ‘consist of all nodes upstream
and downstream of the base line X M respectively. Element distortion in region 1 is

alleviated by defining the z co-ordinates of all nodes in this region to be fixed frac-
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tions of the (current) value of X,,. This prescription results in the elements in region
1 undergoing a ‘concertina’-type motion as the value of X,, changes throughout an
iteration. This is illustrated in Figure 4.14, in which there is a series of 14 vertical lines
upstream of X M on each of which lie 7 nodes evenly distributed between the symmetry
plane and the bottom roller. For reasons of clarity, the positions of the vertical lines
are represented below the roller surface.

In region 2 the positions of all nodes are parametrised by the base line XM and a
series of free surface spines {h;}. As in regions 1 and 2 of the slot coater (see Figure
4.7), each node lies on a free surface spine defined by the position of its base node
g‘b and a direction vector e;; once again h; represents the distance along the ith spine
between its base.and free surface nodes. There are a total of 7 nodes, i.e. including
the base and free surface nodes, on each spine whose distances along the spine from
the base nodes are prescribed proportions w; of h;; in this thesis wj# 0,1/6,1/3, 1/2,
2/3,5/6 and 1.

The first 7 spines have their base points evenly distributed along X M between the
symmetry plane and the roller surface. Their direction vectors are parallel to lines
drawn from their base points to a polar origin O which 1iés on the plane of symmetry
outside the liquid. The z co-ordinate of O is chosen to be a fixed increment from
Xm, with‘the result that its position also changes throughout the iteration; the actual
increment used has to be specified in the mesh generation algorithm (see later). The
remaining spines, in this case spines 8 to 21, have their base points on the lower roller
at positions whose z co-ordinates are fixed increments of the current value of Xp,; the
values of these increments also need to be specified in the algorithm. In subsequent
sections, it will be seen that the choice of direction vectors for these spines is the most
troublesomé feature of the discretisation. At present this can only be done by empirical
means, the best guide being visual observation, and must be tailored to the particular
problem of interest.

There are many differences between this grid a,nd’ the one usedAin slot coating; they
are (i) the positions of the base nodes and direction vectors of free surface spines are

functions of X,, and change during an iteration; (ii) all elements depend on the free
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surface position; (iii) the only nodes whose positions are fixed are those at the nip, all
the others are functions of X,,.

An initial estimate for the first solution attempted here (for the parameter set
Re = 0.0, Ca = 0.1, R/Hy = 100) was obtained by matching the free surface profile
to a solution published by Coyle et al [1982] for the same set of parameters. After
visual observation it was decided to use the grid shown in Figure 4.14, in which the

parameters for the mesh generation algorithm described above should be as follows:

(i) the z co-ordinate of the 14 vertical lines of nodes upstream of XM are located
at FRAC(I)X X, where FRAC(I)= 0, 1/14, 1/7, 3/14, 2/7, 5/14, 3/7, 1/2, 4/7,

9/14,5/7,11/14, 6/7 and 13/14.

(ii) the z co-ordinates of the base nodes of spines 8 to 21 are at X,,,+XINC(I), where
XINC(I)=0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.375, 0.45, 0.525, 0.6, 0.8, 1.0, 1.2 and

14
(iii) hy, the distance between XM and P, should be fixed and equal to 0.4.
(iv) the distance between XM and the polar origin O is set equal to 1.0

(v) spines 8 to 17 are made to pass through the polar origin O, and spines 18 to 21

are made normal to the roller surface.

The specification of (i)-(v) completes the mesh generation algorithm for the grid shown
in Figure 4.14. All the grids subsequently used to solve symmetric forward roll cbating
are based on this tessellation; the only differences being in (i) the number of vertical
lines of nodes upstream of XM (and consequently the values of FRAC(I)); (ii) the
number of free surface spines; (iii) the values of XINC(I) and the directions of their
associated spines.

The equation set for the symmetric forward roll coater is slightly different from that
obtained for the slot coater since the film-split location and dimensionless flux must
also be determined. The kinematic residual associatéd with P would normally provide
the equation needed to determine Xy, (which has replaced h; as the film-split location

parameter); however, in this case the kinematic condition, u.n = 0, is automatically
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satisfied at P since it is a stagnation point. Hence another equation is needed to
replace this kinematic residual. This extra equation is provided by the symmetry of
the problem which implies that the free surface must be vertical at the symmetry line
P. Hence

it = 0 atP | (4.86)

where i is the unit horizontal vector and ¢ is the unit vector which is tangential to the
free surface at P. In the mesh generation algorithm described here, ¢t is a function of the
film-split parameter X,, and the 3 spines associated with the element shown in Figure
4.15,i.e. hy, hy and h3. This enables (4.86) to be rewritten in the form of a residual,
R,ymmetry (Xm,h1,ho, h3) = 0, as is required in Galerkin’s F.E. method.

One more equation is needed to enable the dimensionless flux A to be evaluated.
This is provided by the lubrication theory nip pressure condition (4.85). Following
Coyle et al [1986] this is modified to

_ 3 .- R 3
P = 4{% T (1 - T) (4.87)

where P is the average of the F.E. pressures at the nip, evaluated using the pressure
shape functions 1. Since the grid of Figure 4.14 has 3 elements evenly spaced across
the bottom half of the nip — see Figure 4.16 — with pressure freedoms p;, p3, ps, p7 at

nodes 1, 3, 5, 7 respectively, it can be shown that equation (4.87) yields

e [1-22
6 VT \l 3

(p1 + 2p3 + 2ps + p7) - Ef R ( 3’\) (4.88)

Equation (4.88) is also rewritten in the form of a residual Ry(p;, p3, ps,p7,A) = 0 and
inserted into the row of the Jacobian (4.32) associated with the unknown A. Wilen
allied to the F.E. equations for the velocity and pressure freedoms and the kinematic
residuals associated with spines 2 to 21, (4.86) and (4.88) close the equation set.

It is imp.ortant to realise that not all of the F.E. coefficients for this problem,
given by aT = (u7,7,pT,hT,Xm, ), are independent, For example, the velocities
associated with nodes on the roller surface, at which u = ¢, are specified by the value of
the film split parameter X,,. Consequently the momentum residuals (4.15) associated

with these velocity freedoms are no longer required, so in practice we discard these
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residuals and rewrite derivatives with respect to these velocities in terms of derivatives
with respect to X,,,. Similarly the horizontal velocity freedoms associated with those
nodes at the nip, which assume values given by equation (4.83), are also dependent
freedoms because they are functions of the dimensionless flux A.

Once again, the F.E. equations (4.31) are evaluated by assembling all the element-
level contributions. Before describing the numerical solutions obtained by solving these
equations, it is instructive to examine the structure of the element-level Jacobian, J¢,
for the symmetric forward roll coater since it is identical to all those which arise in all

subsequent roll coating problems considered in this thesis.

4.5.4 The Structure of Element-Level Jacobians in Forward Roll

Coating

We begin by describing the structure of the element-level Jacobians, J¢, which ariée
in numerical solutions of symmetric forward roll coating. It is important to realise
that the number of residuals and F.E. coefficients associated with a particular element
varies according to its position within the grid shown in Figure 4.14, although there
are features common to all elements.

For example, all elements depend on the value of X,,, the film-split parameter, and
have associated with them u°, 2° and p°, the velocity and pressure freedoms (e is the
element number), and R}, R, R, the contributions to the z and y components of

“the momentum residuals (4.15) and continuity residuals (4.27) arising from integration

over that element or its edges. As a result of this dependence, the Newton iteration
procedure (4.32) requires the evaluation of the derivatives of R;, R and R% with
respect to u®, v°, p° and X,, — see Figure 4.17.

If, however, the element lies downstream of the base line X M, it is also necessary to
evaluate derivatives of R, Ry and RE with respect to the (three) spine heights, h° say,
on which it also depends (see equation (4.51)). Moreover in the special case in which
one of its sides forms part of the the free surface (see Figure 4.8), it also contibutes to 3

kinematic residuals Rf which means that it is necessary to evaluate these contributions

and their derivatives with respect to the associated velocity freedoms u®, v, The
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situation is different when the element touches the nip instead of the free surface. In
this case the element is associated with the lubrication nip pressure condition (4.88)
and consequently its Jacobian must also contain derivatives with respect to .

Finally, consider the free surface slope condition i.2 = 0. This condition only
affects the element-level Jacobian of the element shown in Figure 4.15, which means
that only its Jacobian contains derivatives of §.t with respect to X,,, hy, hs and h3. The
most general form of an element-level Jacobian arising in the symmetric forward roll
coater (with triangular V6/P3 elements) is shown in Figure 4.17. The above discussion
shows that Figure 4.17 contains every conceivable type of contribution to an element-
level Jacobian for elements in the grid shown in Figure 4.14. The reader is referred to
Kistler and Scriven [1983] pp 270-272 for a description of the element-level Jacobians
which arise when V9/P4 elements (see Figure 4.1) are used.

The fact that the entire mesh adjusts with the free surface position has one im-
portant effect on the structure of the equations (4.31) for forward roll coating: .they
are no longer ‘banded’ in the sense desgfibed in Appendix C, since in every row of the
Jacobian (4.32), except that associated with the residual Ry (equation (4.88)), there is
a non-zero contribution due to a derivative with respect to X,,. Consequently, there
is no longer a storage saving accruing from the use of a banded-matrix solver, as there
has been in all problems solved up to now. This constitutes an unacceptable constraint
on the size or problem that can be solved by this technique and for this reason it is
necessary to implement an alternative technique to solve equation (4.31). Fortunately,
the Frontal Solution Method, described in Appendix C, (see also Kistler and Scriven
[1983], Carter [1985]) does not suffer from the bandedness constraint and is therefore
suitable for the present application. Although requiring a significant investment in time
to implement it, the Frontal Method offers many advantages over the banded-matrix
technique, including (i) the ability to solve problems in which the storage requirement
would otherwise be excessive; (ii) reductions of up to 80% in computational costs. In-
deed such is its suitability that the Frontal Method is used to solve the F.E. equations
in this and all subsequent free surface problems. |

A condensed flow chart for the code used to solve this problem, in which the F.E.
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equations are solved by the Frontal method, is shown in Figure 4.18. Zeroth order con-
tinuation is used, i.e. the iteration is begun with a,,, a converged solution corresponding

to a set of parameters which are ‘close’ to those for which a solution is desired.

4.5.5 Results and Discussion

The first solution to symmetric, fully-flooded, forward roll coating attempted here was
for the parameter set Ca = 0.1, Re = 0.0, R/Ho = 100 and used grid (a) of Figure
4.19. An initial investigation confirmed that the outflow boundary was sufficiently far
downstream so that the solutions were insensitive to changes in its position. To test
the sensitivity of the calculated flows to the discretisation used, solutions were obtained
using the 3 grids shown in Figure 4.19. Grid (a) is that shown in Figure 4.14 with 102
elements; 245 nodes and 21 spines; grid (b) has 132 elements, 315 nodes and 21 spines;
-and grid (c) has 208 elements, 477 nodes and 23 spines. In all cases, converged solutions
were obtained from a start-up approximation after 5 iterations, each iteration taking
10, 12 and 14 c.p.u. seconds when grifif (a), (b) and (c) were used respectively. The
most sensitive variables, namely the film-split location and the pressures at the nip,
changed by less than 0.1% in changing from grids (a)-(c) which indicates that all 3
grids give sufficiently accurate solutions. In fact all the numerical results presented in
this section employ grid (b) as the computational mesh.

Figure 4.20 shows a comparison between solutions obtained for flows with Re =
0.0, R/Hp = 100 and Ca = 0.1, 0.2, 0.5 for (a) this work, (b) those presented in Coyle
et al [1982] using quadrilateral elements. Unfortunately the velocity vectors are difficult
to interpret, but an inspection of the velocity fields reveals the gradual disappearance
of eddies near the downstream free surface as Ca increases from 0.1 to 0.5. This
prediction agrees weil with the results presented by Coyle et al [1982]). Figure 4.21
shows the dependence of the free surface profiles on the Capillary number for Re = 0.0
and R/Hg = 100; the units of the vertical scale are in terms of Hp, the semi-nip width.
The results of this work are in excellent agreement with those previously obtained by
Coyle et al [1982].

So far, no mention has been made of the F.E. pressures which are generated in
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any solution. This may now be rectified by considering the pressures generated on
the plane of symmetry in symmetric, fully-flooded, forward roll coating. In Figure 4.22
pressures upstream of the nip (z < 0) have been obtained from the lubrication theory of
§§4.5.2, whereas those downstream of the nip have been generated by the F.E. method.
These dimensionless pressures have been converted to physical pressures (pounds per
square inch) in the case in which viscosity 7 = 1 X 10" Nm~2s and surface tension
T = 6x10"2Nm™!; the horizontal scale is that of Hy, the semi-nip width. The pressure
profiles predicted by F.E. theory seem to match well those of lubrication theory and
exhibit the characteristic pressure maximum/minimum profile observed in roll coating
- see Chapter 5. The profiles obtained in this work (with triangular elements) agree
well with those of Coyle et al [1982] (quadrilateral elements).

In their experiments on symmetric fully-flooded forward roll coating, Pitts and
Greiller [1961] measured the position of the downstream mensicus and tabulated the
ratio, og, of the vertical roller separation at the symmetry line P (see Figure 4.13)
to the nip width, 2H,, for flows with a range of capillary numbers Ca and geometric
parameters R/Hgy. Their experiments showed that o is sensitive to the value of Ca,
but almost independent of R/Hp. In Figure 4.23 their experimental data is compared
with theoretical predictions of og by the F.E. method with Re = 0.0 and the geometric
parameter R/Ho = 100. The experimental results and theoretical predictions agree
well over this range of Ca. Note that Figure 4.23 does actually provide a reliable
comparison between theory and experiment since predictions of oy (at Re = 0.0) over a
range of values of R/ Hy agreed with Pitts and Greiller’s observation that oq is almost
independent of R/Hj.

The final results presented here pertain to the prediction of the dimensionless flux
A as a function of Capillary number and geometrical parameter R/ Hy for Re = 0.0. In
Figure 4.24 F.E. predictions of A obtained here (with triangular elements) for Re = 0.0
and R/Ho = 100, 1000 are compared with those of Coyle et al [1986] (quadrilateral
elements); note that the circles (0) in Coyle et al’s results relate to their asymptotic
solution, valid in the limit R/Ho — oco. The F.E. predictions are in good agreement

and predict that 1.3 < A < 1.4, which corresponds well with the experimental data
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of (i) Pitts and Greiller [1961) (1.26 < A < 1.38), (ii) Benkreira et al [1981] who
found an average value of A (based on 1500 experiments, with a standard deviation of
0.4%)=1.31. However, a conspicuous feature of Figure 4.24 is that no results are shown
for the case of R/Hy = 100 and Ca < 0.03; this omission will now be explained as it
illustrates an important difficulty in analysing flows with highly curved meniscii.

All the solutions shown in Figure 4.24 were easily obtained by zeroth order con-
tinuation from the first converged solution. Unfortunately, converged solutions for
flows with Re = 0.0, R/Hy = 100 and Ca < 0.03 could not be obtained by sim-
ply performing zeroth order continuation on the capillary number Ca. In a second
attempt at obtaining solutions in this range, zeroth order continuation was carried
out on the geometric parameter R/Hy, beginning with the converged solution for
Re = 0.0, Ca = 0.01, R/Ho = 1000. This also failed when R/H, was decreased
below 400. After inspecting the computational grids of solutions in this range, the
author has formed the firm opinion that these convergence difficulties are caused by
element distortion in the downstream {egion (i.e. region 2) of the computational mesh.
Typical element distortions are illustrated in Figure 4.25, which shows elements in re-
gion 2 for converged solutions with parameters: (a) Re = 0.0, Ca = 0.03, R/H, = 100;
(b) Re = 0.0, Ca = 0.01, R/Hp = 400; (c) Re = 0.0, Ca = 0.01, R/Hg = 1000. These
elements exhibit two kinds of distortion (i) a high ‘aspect ratio’ (i.e. ratio of the max-
imum and minimum lengths of an element’s sides), (ii) loss of element triangularity.
The author’s experience suggests that the latter is the primary cause of convergence
difficulties, whereas the former has a deleterious effect on the solution’s accuracy. In
fact the observation that the accuracy depends on the aspect ratio of elements used
has been proved theoretically — see Chung {1978] p 133-138.

At this point one may think that employing quadrilateral rather than triangular
elements could alleviate these convergence difficulties because Coyle et al [1986] have
obtained converged solutions for Re = 0.0, R/Hp = 100, Ca = 0.01 with the former.
However this is debatable because Coyle et al [1986] have also reported convergence
difficulties with quadrilateral elements; their success in obtaining solutions in this pa-

rameter range is probably due to greater skill in tessellating grids of this kind rather
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than an intrinsic superiority of the quadrilateral element. Even though these obser-
vations do not enable the errors in a numerical solution to be quantified, they are
nevertheless useful diagnostics since they suggest when the accuracy of a numerical
solution should be questioned and, if possible, the computational grid refined.
Although the convergence difficulties experienced here could be remedied by packing
more elements into the grid in region 2 or changing the the relative orientation of the
downstream spines, convergence problems are an unavoidable feature of the remainder
of this thesis. This is because the mesh generation algorithms used above, which
are relatively primitive, are only suitable over a limited parameter range and should
therefore be tailored to the parameter range of interest. The inescapable conclusion
from this discussion is that it is unwise to accept the accuracy of a F.E. solution if any

elements in its computational grid exhibit the two kinds of distortion described here.

4.6 The Asymmetric Fully-Flooded Forward Roll Coater

4.6.1 Boundary Conditions and Computational Mesh

In this section, the theory developed for the symmetric forward roll coater is extended
to tackle the asymmetric problem. For convenience it is assumed that the asymmetry
is introduced by having different roller speeds and that the radii of the upper and lower
rollers are equal. Before describing the relevant boundary conditions, it is necessary to
describe the computational meshes used for the asymmetric problem.

Since the flow is asymmetric, it is no longer possible to solve the problem in a
half-domain, so the entire low domain must be tessellated into elements. Quite simply,
the nodal co-ordinates in the upper half of the mesh are generated in exactly the same
way as the lower co-ordinates. As before, the entire grid is specified by a base line
X M, spine heights h and the algorithmic parameters FRAC(I), XINC(I). This is best
explained by inspecting the mesh shown in Figure 4.26. Although, in the asymmetric
case, the plane which is equidistant from both rollers is no longer a plane of symmetry,
it is still convenient to fix the spinal height associated with the spine which lies on

it. This enables the film-split location to be specified in terms of X,, alone, as in the
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symmetric case.

The boundary conditions for the asymmetric problem are shown in Figure 4.27.
At the roller surface, free surface and outflow boundaries the usual no-slip, kinematic,
stress, and zero traction conditions respectively are applied. The non-dimensionalisation
used in this instance is, however, slightly different from that given by equations (4.69),
(4.70). As in §§4.5.2, lengths are scaled by \/{RH,) where R = R; = R; is the radius
of each roller and Hy the semi-nip width, but in the asymmetric problem it is more
appropriate to scale velocities and pressures by V = (V; + V3)/2 (the average roller
speed) and nV/\/(RH,), respectively and define a generalised dimensionless flux ),

where

9
2V H,

(4.89)

Once again, the origin of the dimensionless (z,y) co-ordinates is placed at the centre
of the nip so that the upper and lower rollers are at y = th(z) respectively where h(z)
is given by (4.72), and the transformed spatial co-ordinates (6, 7) are given by (4.73).

It can be shown (Coyle et al [1986]) that a lubrication analysis exactly analagous

to that described in §§4.5.2 yields the following boundary conditions at the nip

P N ($-1) 2
u = 5(1 N0 -219) + (s+1)"+ 51D (4.90)
v = 0 (4.91)
p = g\/inﬂio(l_i}) . (492

where S = V,/V} is the velocity ratio of the rollers and A is given by (4.89). Note that
the no-slip conditions at the roller surfaces are

2 28
= (1+$)§’ u(n=2) = (1+S)£.

u(n=0) (4.93)

where ¢ is the unit vector tangential to, and in the same direction as, the motion of
the roller surface. Equations (4.90), (4.91) and (4.93) yield essential conditions on the
velocity of the liquid which are imposed by the methods described for the symmetric
case. The lubrication theory nip pressure condition (4.92) is also imposed in the form
given by equation (4.88) in §§4.5.3, but note that in this case J refers to the average

pressure across the entire nip.
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Finally, note that the asymmetry of the problem means that the flow is no longer
symmetric about the plane equidistant from the roller surfaces. Consequently, the
stagnation and slope conditions (4.86) are no longer applicable at the free surface node
which also lies on this plane (formerly the node at P in Figure 4.13). Instead the
equation needed to determine the value of the film-split parameter, X,,, is provided by
the kinematic residual (4.50) associated with this node, thereby completing the equation
set for an asymmetric, fully-flooded, forward roll coater. In all solutions presented in

the following section, equations (4.31) are solved by the Frontal Method.

4.6.2 Results and Discussion

The first solution attempted using the newly developed asymmetric code was actually
for the symmetric case of § = 1, Re = 0.0, Ca = 0.1 and R/Hy = 100. This was a
convenient initial problem since the half-domain solution for the same set of parameters
provided an excellent start-up approximation for the free surface shape and flow field.
The solution was obtained using the grid shown in Figure 4.26 which consists of 204
elements, 469 nodes and 41 spines — the earlier convergence study of §§4.5.5 suggests
that this grid is sufficiently refined for this problem. A converged solution was obtained
from the start-up approximation after 2 iterations, each iteration having an execution
time of approximately 20 c.p.u. seconds. V
The numerical results obtained using the full asymmetric grid were in excellent
agreement with those from the corresponding half-domain solution. In fact the maxi-
mum change in any F.E. coefficient between the two solutions was less than 0.01% of its
previous value, which provided strong evidence to suggest that the modiﬁcationé that
had to be made to the symmetric code to enable it to solve thé asymmetric problem
had been implemented correctly.; |
| Figure 4.28 shows F.E. predictions of the film thickness ratio T /T; (ratio of upper
to lower film thjcknesses) for Ca = oo and R/Hy = 200 as a function of velocity ratio
S, obtained by zeroth order continuation on S and Ca from the above initial solution.
The F.E. grid used in these solutions has the same mesh generation algorithm as the

one shown in Figure 4.26. Note that the results are presented on a logarithmic scale to
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facilitate a convenient comparison with Coyle et al’s [1986] F.E. results and Benkreira
et al’s [1981] experimental correlation (equation (1.8)). As in Figure 4.24, the circles (o)
relate to Coyle et al’s asymptotic solution for the limiting case of parallel roller surfaces,
i.e. R/Hg — oo. The results from this work (obtained using triangular elements) agree
reasonably well with those of Coyle et al [1986] (quadrilateral elements) and Benkreira
et al [1981), and moreover seem to support their proposal that T3 /T, « $%65 for
1 € § < 10. Unfortunately it was not possible to obtain converged solutions for
S > 6.75 using the grid shown in Figure 4.26. The computational grids for converged
solutions with (a) Re = 0.0, S = 1, Ca = oo, R/Hy = 200, (b) Re = 0.0, S =
6.75, Ca = oo, R/Hy = 200 are shown in Figure 4.29. In view of the discussion of
§84.5.5, since the grid for § = 6.75 is severely distorted, the convergence difficulties

experienced here are probably due to element distortion.

4.7 Conclusions

In this chapter we have developed a computer code for solving free surface flow problems
by combining Galerkin’s weighted residual method with Kistler’s ‘Spine Method’ of
representing a free surface. In most cases, the numerical results obtained from this
code are encouraging since they agree very well with previously published numerical
and experimental results.

The cases for which converged solutions could not be obtained were also very illumi-
nating because they demonstrated that mesh generation problems are often extremely
important in free surface flows. We have identified two kinds of element distortion
which it is desirable to avoid in a F.E. grid: (i) high aspect ratio elements, (ii) loss
of element triangularity. Unfortunately as the downstream free surface is often highly
curved in general roll coating situations, these distortions may be unavoidable. In such

cases one should always question the solution’s validity.
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These mesh generation problems are also prevalent in the next chapter, in which the
code is used (i) to obtain F.E. predictions of T} /T in fully-flooded forward roll coating
over a wider velocity ratio range than previously published and (ii) to investigate the

effects of starvation in forward roll coating.
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Re = 0.0, Ca = 0.4, ¢ = 0.25: (a) this work, (b) Carter [1985]
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Figure 4.10: Free Surface Profiles For a Slot Coaterk— Dependence on Capillary Number

for Re = 0.0, ¢ = 0.25: (a) this work, (b) Saito and Scriven [1981]
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Figure 4.11: Slot Coating Results with Re = 50, Ca = 0.125 and (a) ¢ = 0.13, (b)
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Figure 4.12: Free Surface Profiles for a Slot Coater with Re =

= 50, Ca = 0.125 -
Dependence on Flux: (a) this work, (b) Saito and Scriven [1981]
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ing
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Figure 4.14: A Typical F.E. Grid Used in Numerical Solutions of Symmetric, Forward

Roll Coating
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Figure 4.15: The Free Surface Representation Near the Symmetry Line P
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Figure 4.17: The Structure of an Element-Level Jacobian in Symmetric, Forward Roll

Coating
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Figure 4.18: A Condensed Flow Chart of the Algorithm to Solve Viscous Free Surface

Flow by the F.E. Method
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Figure 4.19: F.E. Grids used in the Numerical Solution of Symmetric, Fully-Flooded,
Forward Roll Coating: (a) 102 elements, 245 nodes, (b) 132 elements, 315 nodes, (c)
208 elements, 477 nodes
(a) : (b)
(1) Ca =0.1

LI TEE L4

Figure 4.20: The Effect of Capillary Number on the Flow Field in Symmetric,
Fully-Flooded Forward Roll Coating with Re = 0.0, R/Hy = 100: (a) this work,

(b) Coyle et al [1982]
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Figure 4.21: The Effect of Capillary Number on Free Surface Profiles in Symmetric,
Fully-Flooded, Forward Roll Coating for Re = 0.0, R/Ho = 100: (a) this work, (b)

Coyle et al {1982]
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Figure 4.24: F.E. Predictions of the Dimensionless Flux in Symmetric, Fully-Flooded,

- Forward Roll Coating: (a) this work, (b) Coyle et al [1986)
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_Figure 4.25: Element Distortions in Region 2 with Re = 0.0 and (a)
Ca = 0.03, R/Ho = 100, (b) Ca = 0.01, R/Ho = 400, (c) Ca = 0.01, R/Hy = 1000
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Figure 4.26: A Typical F.E. Grid Used in the Numerical Solution of Asymmetric For-

ward Roll Coating
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Figure 4.27: Boundary Conditions for Asymmetric, Fully-Flooded, Forward Roll Coat-

ing
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(a) Horizontal Components of Liquid Velocity on the Vertical Centreline ( z = 0.0)

y= Semi-Analytical | Scheme A | Scheme D
N=20| N=40
2.000 1.082 0.947 1.000 1.000
1.875| 0.651 0.651 0.653 0.666
1.750 | 0.355 0.355 0.363 0.353
1.625 | 0.127 0.127 0.136 0.146
1.500 | -0.032 -0.032 -0.021 -0.028
1.375 | -0.132 -0.132 -0.121 -0.113
1.250 | -0.186 -0.186 -0.176 -0.174
1.125 | -0.206 -0.206 -0.197 -0.190
1.000 | -0.205 -0.205 -0.198 -0.192
0.875 | -0.192 -0.192 -0.187 -0.181
0.750 | -0.171 -0.171 -0.167 -0.164
0.625 | -0.147 -0.147 -0.145 -0.143
0.500 | -0.123 -0.123 -0.120 -0.119
0.375 | -0.097 -0.097 -0.095 -0.095
0.250 | -0.070 -0.070 -0.069 -0.068
0.125 | -0.039 -0.039 -0.039 -0.036
0.000 | 0.0000 | 0.0000 0.0000 0.0000

(b) Vertical Components of Liquid Velocity on the Horizontal Centreline ( y = 1.0 )

= Semi-Analytical | Scheme A | Scheme D
N=20}| N=40 ‘
—1.000{ 0.000 0.000 0.000 0.000
-0.875 | 0.095 0.095 0.094 0.083
—-0.750 0.156 0.156 0.152 0.152
-0.625 | 0.183 0.183 0.178 0.170
—0.500 0.179 0.179 0.174 0.172
-0.375 | 0.152 0.152 0.147 0.142
-0.250 | 0.109 0.109 0.106 0.104
-0.125 | 0.057 0.057 0.054 0.053
0.000 0.000 0.000 0.000 0.000
0.125 | -0.057 | -0.057 -0.054 -0.053
0.250 | -0.109 { -0.109 -0.106 -0.104
0.375 -0.152 -0.152 -0.147 -0.142
0.500 -0.179 -0.179 -0.174 -0.172
0.625 -0.183 -0.183 -0.178 -0.170
0.750 | -0.156 | -0.156 -0.152 -0.152
0.875 -0.095 -0.095 -0.094 -0.083
1.000 | 0.0000 | 0.0000 0.0000 0.0000

Table 4.1: Liquid Velocity Components in Lid-Driven Cavity Flow (4*=1.0) - Com-

parison between Semi-Analytical and Numerical (u — v — p) Results
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(a) Horizontal Components of Liquid Velocity on the Vertical Centreline ( z = 0.0 )

y = | Semi-Analytical (N = 40) | Numerical
2.0 0.94721 1.00000
1.9 0.71745 0.71918
1.8 0.46597 0.47092
1.7 0.25549 0.26178
1.6 0.08984 0.09829
1.5 -0.03245 -0.02387 .
14 -0.11642 -0.10765
1.3 -0.16890 -0.16067
1.2 -0.19703 -0.18971
1.1 -0.20730 -0.20059
1.0 -0.20519 -0.19990
0.9 -0.19496 -0.19089
0.8 -0.17979 -0.17626
0.7 -0.16186 -0.15913
0.6 -0.14255 -0.14027
0.5 ‘ -0.12259 -0.12095
0.4 -0.10213 -0.10078
0.3 -0.08081 -0.07987
0.2 -0.05778 -0.05788
0.1 -0.03157 -0.03116
0.0 - 0.00000 0.00000

(b) Vertical Components of Liquid Velocity on the Horizontal Centreline (y = 1.0 )

-

z = | Semi-Analytical (N = 40) | Numerical
~1.0 0.00000 0.00000
-0.9 0.07813 0.07740
-0.8 0.13566 0.13345
-0.7 0.17068 0.16779
-0.6 0.18411 0.18066
-0.5 0.17885 0.17521
-0.4 0.15869 0.15563
-0.3 0.12751 0.12464
-0.2 0.08880 0.08707
-0.1 - 0.04549 0.04404
0.0 0.00000 0.00000
0.1 -0.04549 -0.04404
0.2 -0.08880 -0.08707
0.3 -0.12751 -0.12464
0.4 -0.15869 -0.15563
0.5 -0.17885 -0.17521
0.6 -0.18411 -0.18066
0.7 -0.17068 -0.16779
0.8 -0.13566 -0.13345
0.9 -0.07813 -0.07740
1.0 0.00000 0.00000

Table 4.2: Liquid Velocity Components in Lid-Driven Cavity Flow (A*=1.0) obtained
using Grid (b) of Figure 2.3
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(2) Horizontal Components of Liquid Velocity on the Vertical Centreline ( z = 0.5 )

Yy = | Semi-Analytical (N = 20) | Numerical

8.0000 0.30575 0.29553
. 0.0626" 0.29550 0.28636
~0.1250 0.26638 0.25853
- 0.1935" 0.22260 0.21616
0. 2500 0.16931 0.16536
~0.3128 0.11120 0.10834
~0.3%D 0.05168 0.05125
~0.4335" -0.00704 -0.00681
- 0 5000 -0.06341 -0.06100
- 0.562¢ -0.11581 : -0.11125
e 0250 -0.16180 -0.15712
0. 6895 -0.19741 -0.19124
- 0.3500 -0.21685 -0.21093
- c.g12¢ -0.21276 -0.20706
-0.¢3s0 -0.17766 -0.17308
L0 9315 -0.10659 -0.10496
L (- 0060 0.00000 0.00000

(b) Vertical Components of Liquid Velocity on the Horizontal Centreline ( y = —0.5 )

z = | Semi-Analytical (N = 20) | Numerical
0.0000 -0.00001 0.00000
0.0625 0.06090 0.05946
0.1250 0.10761 0.10518
0.1875 0.14431 0.14110
0.2500 0.17361 0.16949
0.3125 0.19668 0.19184
0.3750 0.21340 0.20769
0.4375 0.22225 0.21589
0.5000 0.22007 0.21253
0.5625 0.20188 0.19294
0.6250 0.16067 0.15150
0.6875 0.08757 0.07845
0.7500 -0.02732 -0.03634
0.8125 -0.19295 -0.19927
0.8750 -0.41442 -0.41914
0.9375 -0.69350 -0.68828
1.0000 -0.90219 -1.00000

Table 4.3: Liquid Velocity Components for ihe Flow in an Open, Driven Cavity

(A*=1.0) - Comparison between Semi-Analytical and Numerical (u — v — p) Results
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Case (a): $S=1, H*=0.5

(i) Horizontal Components of Liquid Velocity on Vertical Centreline ( z = 0.0)

Velocity on Horizontal Centreline ( y = 0.25)

y = | Analytical | Numerical
(N = 40)
0.5000 0.99204 1.00000
0.4375 | 0.34377 0.35043
0.3750 | -0.12500 -0.11354
0.3125 | -0.40625 -0.39182
0.2500 { -0.50000 -0.48455
0.1875 | -0.40625 -0.39182
0.1250 | -0.12500 -0.11354
0.0625 0.34377 0.35043
0.0000 0.99204 1.60000
(ii) Vertical Components of Liquid
z = | Analytical | Numerical
(N = 40)
0.000 0.00000 0.00000
0.125 0.00000 0.00000
0.250 0.00000 0.00000
0.375 0.00000 0.00000
0.500 0.00000 0.00000
0.625 0.00000 0.00000
0.750 0.00000 0.00000
0.875 0.00000 0.00000
1.000 0.00000 0.00000

Case(b): S=2, H*=0.5

s

(i) Horizontal Components of Liquid Velocity on Vertical Centreline ( z = 0.0)

Velocity on Horizontal Centreline ( y = 0.25)

y= | Analytical | Numerical
(N = 40)
0.5000 1.98409 2.00000
0.4375 0.89074 0.90072
0.3750 0.06262 0.07979
0.3125 | -0.48429 -0.46266
0.2500 | -0.75000 -0.72683
0.1875 | -0.73446 -0.71280
0.1250 | -0.43762 -0.42040
0.0625 0.14058 0.15057
0.0000 0.99204 1.00000
(ii) Vertical Components of Liquid
z = | Analytical | Numerical
(N = 40)

0.000 0.33541 0.34719
0.125 0.08578 0.08593
0.250 0.00153 0.00049
0.375 | -0.00113 -0.00113
0.500 0.00000 0.00000
0.625 0.00113 0.00113
0.750 | -0.00153 -0.00049
0.875 | -0.08578 -0.08593
1.000 | -0.33541 -0.34719
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Chapter 5

Further Results in Forward Roll

Coating

5.1 Introduction

In Chapter 4 a F.E. free surface code was developed and applied to flow problems of
gradually increasing complexity. At. ;ach stage, the numerical predictions were vali-
dated against, and in most cases ‘agreed very well with, previously published data. In
this chapter we modify this F.E. code in order to obtain theoretical predictions for
fully-flooded and starved forward roll coating in regions of operating parameter space
for which no previous results have been reported.

For example, previously published F.E. predictions of the film thickness ratio Ty /T
in the fully-flooded case (due to Coyle et al [1986]) were limited to the velocity ratio
range most widely used in industry, namely 1 < § < 10. In the next sectfon, F.E.
predictions of T} /T are obtained over the range 0.1 < S < 40 in order to evalnate the
suitability of (i) Savage’s [1992] theoretical prediction and (ii) Benkreira et al’s [1981]
correlation for § > 15. In subsequent sections, the code is also used to investigate
the effects of starvation on the associated velocity and pressure fields, and film thick-
ness ratio T}/ Tg in forward roll coating sytems. Thié is achieved by monitoring how

the F.E. predictions of these quantities change as the dimensionless flux A is reduced

from its fully-flooded value. These numerical predictions are compared with Malone’s
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[1992] experimental flow visualisation, pressure and average film thickness ratio data

for starved roll coating.

5.2 The Fully-Flooded Forward Roll Coater

In this section we return to the problem of fully-flooded forward roll coating with
variable speed rollers. Once again, for convenience, attention is restricted to the case
in which the roller radii are equal so that asymmetry is due only to unequal roller
speeds. The boundary conditions for Coyle et al’s [1986] model of this situation are
shown in Figure 4.27.

In their F.E. study of this problem, Coyle et al [1986] published predictions for
the dependence of the film thickness ratio T, /T, oh the velocity ratio in the range
1 < § < 10 (see Figure 4.28). They concluded that, in the absence of gravity, T} /T =
5065 which is in qualitative agreement with the empirical formulation of Benkreira
et al [1981]. However these prédictions are limited to the hypothetical case in which
Ca = oo (i.e. negligible surface tension), while in practice Cd is non-zero. Moreover,
the value of Ca changes when the roll coater is operated at different velocity ratios S
- in practice the lower roller speed is fixed whilst the upper one is changed (Malone
[1992]) - so it is also necessary to test whether the F.E. predictions of T} /T, have a
Ca dependence. In the present section this is achieved by.obta.ining F.E. pfedictions
of T /T, against S for a fixed value of Ca, and then repeating this process for a range
of values of Ca.

Figure 5.1 shows F.E. predictions of T} /T for the case of fully-ﬁooded forwaxd‘roll
coating. Results for three different values of Ca, namely Ca = 0.1, 0.5 and 2.0, are
compared with Malone’s [1992] experimental data, Benkreira et al’s [1981] experimental
correlation and Savage’s [1992] ’stagnation-point’ model (equation (1.9)). Note that,
as in Figure 4.28, it is preferable to present results on a logarithmic rather than a
normal scale because this (i) facilitates a convenient comparison with Benkreira et al’s
correlation, (ii) permits results to be shown over a wide range of velocity ratio. The F.E.

results presented here employed the computational grid shown in Figure 4.26 and were
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obtained by zeroth order continuation from results given in §§4.6.2. Once again, the
F.E. equations are solved by the Frontal method, each iteration taking approximately
20 c.p.u. seconds. In most cases converged solutions were obtained after 5 iterations.

The results divide naturally into two regions: 0.1 < S < 15 and § > 15. In the
former, the F.E. predictions of Ty /T, are independent of Ca and agree reasonably well
with Savage’s prediction that Ty/T2 = S(S + 3)/(1 + 3S). Moreover, since they are
almost parallel to the solid line representing Benkreira et al’s correlation, they also
agree extremely well with Coyle et al’s proposal that T} /T, = $°5. Of course a proper
assessment of the merits of any model can only be made by comparing its predictions
with experimental data. However, in contrast to Benkreira et al who obtained data for
the fully-flooded situation up to § = 14.9, Malone [1992] found that he was unable to
obtain accurate data using Shell Tellus R5 oil outside the range 0.2 < S < 4.0. He has
attributed this to the differences in the physical properties between the liquid he used
(n = 0.008 Nm2s, T = 0.03 Nm™!) and those used by Benkreira et al [1981] (0.06
<7< 1.68,0.032 < T < 0.066). Nevertheless his data agrees reasonably well with (i)
Benkreira et al, (ii) the F.E. predicti;ls, and (iii) Savage [1992] over this limited range.

When S is taken above 15, the F.E. predictions begin to exhibit a significant Ca
dependence, most notably for Ca = 2.0. In the range 15 < S < 20, this Ca dependence
is only weak and the F.E. predictions are still in reasonable agreement with Savage’s
result, but they begin to show a palpable departure from the solid line correlation.
When § > 20 this Ca dependence becomes stronger, with the result that the F.E.
predictions are in poor agreement with the correlation, although they remain in broad
agreement with Savage’s prediction. Unfortunately there is an upper limit on the
velocity ratio range over which F.E. predictions are achievable, for a given value of
Ca, usingvthe grid shown in Figure 4.26. For Ca = 2.0, F.E. results were obtainable
for § < 26, whereas for Ca = 0.5 and 0.1 this upper limit increased to 30 and 40
respectively. The reasons for these convergence difficulties become apparent when we
inspect elements in region 2 for flows with high veloci’ty ratios.

Figure 5.2, for example, shows how elements in region 2 of the grid shown in Figure

4.26 are distorted for flows with Re = 0.0, R/Hy = 200 and (a) Ca = 0.1, S = ‘40.0,
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(b) Ca = 0.5, S = 30.0, and (c) Ca = 2.0, S = 26.0. Even though, in Figure 5.2, it is
impossible to resolve the shape of those elements in the lower, thin film, it is evident
that increasing S has the effect of increasing the curvature of the free surface portion
near to the lower roller. Close inspection of these grids reveals that elements near
this high curvature region have lost their triangularity. The author believes that the
gradual loss of element triangularity, in this high curvature region, as the velocity ratio
is increased explains why there is an upper limit on the velocity ratio range over which
F.E. predictions are achievable: it leads to a critical situation at which the Jacobian
of the transformation (B.40) vanishes with the result that the isoparametric mapping
is no longer invertible. This idea is illustrated in Figure 5.3, which describes Strang
and Fix’s [1973] analysis of the relatively simple case in which two element sides are
fixed and the mid-side node (P) of the third side can move. They showed that the
isoparametric mapping (B.40) becomes singular when P moves into the shaded region

in which either 0 <z <1/4 or 0<y<1/4.

5.2.1 Difficulties in Meshing Flows with Highly Curved Free Sur-

faces

In previous sections we have emphasized that the accuracy of any F.E. solution whose
computational grid contains distorted elements should always be questioned unless
there is corroborating evidence to validate its predictions. For example, in Figure 5.1
the numerical predictions of T) /T2 up to S = 14.9 are supported by data from Benkreira
et al’s [1981] extensive experimental study. However above § = 14.9, there is no'
experimental evidence to confirm the F.E. predictions, although they are in qualitative
agreement with Savage’s [1992] theoretical prediction. In the present section we discuss
the accuraéy of the F.E. solutions for § > 14.9.

A first option would be to follow Coyle et al [1986], who seem to have assumed
that if a solution is grid-independent for one set of parameters when a particular mesh
generation algorithm is used, then solutions for a different set of parameters obtained
using the same algorithm will also be grid-independent. The issues raised by this as-

sertion will be discussed shortly. A second option might be to obtain a theoretical
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error estimate for solutions with high S. Unfortunately most error analyses (e.g. the
‘Patch Test’) can only furnish global error estimates for solutions obtained on reason-
ably uniform F.E. grids. Consequently they are inapplicable for solutions obtained on
the highly non-uniform grids used here. The other alternative, which has been used in
earlier sections, is to obtain solutions on grids whose mesh generation algorithms differ
from the one shown in Figure 4.26.

Of course, in practice it is simply not feasible to reproduce each of the F.E. solutions
shown in Figure 5.1 on a number of different grids because the computational costs
are prohibitively high. Instead we compromise by examining the effect of changing
the number of elements and algorithmic parameters such as XINC and the spine
orientations (see §§4.5.3) on one particular high velocity ratio solution. We actually
chose to obtain F.E. solutions for the parameter set Re = 0.0, Ca = 0.1, R/Hy = 200
and S = 30.0 as this is representative of the high velocity ratio solutions shown in
Figure 5.1. This should therefore indicate whether solutions in this parameter range
are sensitive to the exact form of the grid chosen.

Testing the suitability of region 1. xs easy: we found that adding more elements into
region 1 of the grid shown in Figﬁre 4.26 had no effect on the solution, which suggests
that it is already sufficiently refined. However, evaluating the suitability of region 2
is far more difficult. Altering the grid in region 2 is very time-consuming because
converged solutions for the chosen parameter set can only be obtained by zeroth order
continuation from the initial solution (whose T} /T, value is shown in Figure 5.1) when
the grid is changed by small increments. Moreover the author’s experience shows that
the question of whether a grid is suitable for flows with high S is influenced far more
by the relative orientation of the spines and the parameters XINC than it is by the
number of elements packed into region 2. Indeed, grids with inappropriate choices for
the former are useless for flows with high S, regardless of how many elements are packed
into region 2.

The last point illustrates the crux of the convergen’ce difficulties experienced for the
types of flow problems encountered in this thesis: the tesselation of region 2 by these

primitive mesh generation algorithms is more of a ‘black art’ than a science. Ideally



Chapter 5: Further Results in Forward Roll Coating 175

one might circumvent these problems by packing many more elements into a uniform
tessellation of region 2, but regrettably we are prevented from doing so here due to
practical constraints on available storage (even with the Frontal method). Therefore
the only useful test of the suitability of the tessellation in region 2 is to add more spines
into the basic tessellation shown in Figure 4.26. When this was done, the predicted
value of T /T; was found to be surprisingly insensitive to the number of extra spines
added, which suggests that the tessellation of Figure 4.26 may be sufficiently refined
for the chosen flow parameters.

We conclude this section by noting that although the heuristic test described above
can be useful in some circumstances, its lack of mathematical rigour means that the high
velocity ratio predictions shown in Figure 5.1 cannot be considered to be other than
speculative in the absence of corroborating experimental data. Hence the simplicity of
Savage’s [1992] analytical result may render it to be of greater practical value than the
F.E. results shown here; furthermore, at present it is impossible to determine whether
the Ca dependence at high S is caused by mesh generation problems or actually occurs
in reality. Finally, we have concen;;ated in this section on the inadequacies of the
mesh generation schemes used in this thesis. It is also important to emphasize its not
inconsiderable achievements. If the algorithmic mesh generation parameters for region
2 are chosen wisely, the F.E. method is able to predict the velocity and pressure fields
and film thicknesses T}, T3 for flows with highly curved meniscii. At the present state
of knowledge, these techniques provide the only means by which free surfaces, including
the effects of surface tension, can be adequately incorporated into models for flow in

this parameter range.

5.3 The Flow in a Flat Plate/ Roller Geometry

5.3.1 Introduction

In Chapters 2 and 3 we saw that the flow in a forward roll coater is transformed
when the supply of liquid at inlet is substantially reduced below the level required to

flood the inlet. In the remainder of this chapter, we show how the numerical methods
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developed in Chapter 4 can be used to obtain theoretical predictions for the flow field
in a starved roll coater over the entire range of starvation from fully-flooded to ultra-
starved flow. These numerical predictions, which are compared with the analytical
predictions obtained earlier and Malone’s [1992] experimental data, reveal interesting
transitions in both the velocity and pressure fields as the flux is decreased from its
fully-flooded value.

An important goal of the analysis presented here is to establish the validity or
otherwise of the prediction of the Zero flux model that the pressure profile is linear in
the central core of a meniscus roll coater (see §§2.5.2). Of course, this validation requires
experimental data with which to compare the theoretical predictions. However, from
an experimental viewpoint it is far more convenient to measure pressures in a simple
variant of the two roll system, consisting of a stationary upper plate and a moving lower
roller (see Figure 5.4), because this can be achieved by inserting ‘pressure tappings’
into the plate — see also Chapter 6 of Malone’s thesis. Note that the pressures in this
simplified ‘flat plate/ roller geometry’ are still relevant to the two roll system since this
configuration can be regarded as a sp;;ial case — namely the upper roller stationary and
of infinite radius. Furthermore it forms a link between the forward and reverse modes
of roll coating, so the pressure distribution in this geometry should be characteristic of
both modes as the upper roller speed tends to zero (Adachi, Tamura and Nakamura
[1988]). For the above reasons, it is convenient to begin our investigation into the effects
of starvation by considering the flow in a flat plate/ roller geometry.

Despite its relative simplicity, the flow in this geometry has received much less at-
tention than the two roll system and moreover all authors seem to have restricted their
analyses to the fully-flooded situation. An important early contribution was made by
Hopkins [1957] whose lubrication model of the flow in the nip region was terminated
at separation boundary conditions. Meanwhile Sullivan and Middleman’s [1979] study
had a different emphasis: they considered the case in which the plate is aligned verti-
cally and investigated how gravity affects the coating thickness produced on the roller.
Their analysis is similar to that of Hopkins, but they terminated the lubrication regime

by Reynolds conditions (1.5) instead. The only numerical solutions of this problem
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which have appeared in the literature to date are those given by Coyle et al [1986].

Their numerical predictions agree reasonably well with those of the aforementioned
lubrication theories and the experimental data of Sullivan and Middleman [1979] and
Adachi et al [1988).

In the following two sections we describe models for flow in a flat plate/ roller
geometry which can be solved numerically, using the techniques developed in Chapter
4, to yield theoretical predictions of the velocity and pressure fields over the entire range
of starvation. The first of these models, which pertains to the fully-flooded situation, is
actually a modified version of that given by Coyle et al [1986] for the two roll system.
In each of these models, the flow problem shown in Figure 5.4 is non-dimensionalised
by scaling liquid velocities by V, the velocity of the roller, while the length and pressure
scalings are given by equation (4.69). Note that there is, however, one modification
to the non-dimensionalisation used in §§4.5.2 because, for the present application, it is
more convenient to define Hg to be the total nip width between the plate and roller

rather than the semi-nip width.

5.3.2 A Numerical Model of Fully-Flooded Flow in a Flat Plate/

Roller Geometry

The (dimensionless) model for fully-flooded flow in a flat plate/ roller geometry devel-
oped here is illustrated in Figure 5.5. There are many similarities between this model
and the one described in §§4.5.2 for the two roll situation because once again we invoke
lubrication theory in order to restrict the analysis to the flow region between the nip
and the downstream free surface. In fact, the boundary conditions at the roller surface,
free surface and outflow boundaries are identical to those shown in Figure 4.13 while
those at the plate, nip and static contact line (where the downstream free surface meets
the plate) differ from conditions (i), (v) and (vi) of §§4.5.2 respectively. In the present
application they are replaced by

(i) On the Plate

The no-slip condition yields a stagnation point condition: u = 0 which is imposed in

the usual way.
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(ii) At the Nip

As in §§4.5.2, it is possible to derive boundary conditions on the liquid velocity and
pressure at the nip by a lubrication analysis of the flow in the nip region. This analysis
is slightly different to the one presented in §§4.5.2 due to the different definition of Ho;
in the flat plate/ roller geometry it is more natural to define the dimensionless flux A

by
_ @
VH,

(5.1)

rather than by equation (4.74). The transformed nip region co-ordinates (#, ) and
the modified pressure, p*, have the same definitions as those used in equations (4.73),
(4.74) but note that n = 1 on the plate and » = 0 on the roller surface. In terms
of these dimensionless quantities it may be shown that the pressure gradient (4.78) is

replaced by
o _ —6—(1+22/2—2A) (5.2)
9z = (1+232p |
which may be integrated subject to the usual fully-flooded assumption that pressure
decays to atmospheric far upstream of the nip (i.e. p*(—o0) = 0), to yield an expression

for the pressure at any point of the nip region in terms of A. It is easily shown that the

boundary conditions on velocity and pressure at the nip (§ = 0) reduce to

v o= 31-2))("n%-1n) + 1-79 (5.3)

v = 0 - (5.4)
3V2r R 3\

P = = m(1——2-) (5.5)

These conditions are imposed in the numerical solution by the method described in

§§4.5.3.

(iii) At the Static Contact Line P

The downstream free surface intersects the stationary plate at a static contact line P
where the contact angle 6, shown in Figure 5.5 is unknown in general. Consequently
there are two parameters associated with the contact line, namely its position (which is

parametrised by X, see §§4.5.3) and the contact angle 6., which must be determined
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in any full solution of the problem. However in any numerical simulation a compromise
must be reached because there is only one equation - the kinematic residual (4.50)
associated with P ~ to determine the two unknowns 6. and X,,. There are two possible
courses of action that can be taken: (i) impose the position of the contact line, i.e.
impose X,,, as a parameter and allow the contact angle 8. to be determined as part of
the solution, or (ii) impose the contact angle . to a value measured experimentally.

In the solutions presented here we follow Coyle et al {1986] and choose alternative
(ii). As explained in §§4.5.2, since there are stagnation point conditions on liquid
velocity, u = v = 0, at P the extra equation needed to determine 6. is not actually a
kinematic residual, but instead takes the form i.t = cos ., where i is the unit horizontal
vector and ¢t is the unit tangent vector to the free surface at the contact line, calculated
in terms of those F.E. variables which specify the position of the downstream free
surface. This completes the equation set for the fully-flooded case.

In the following section we show how this fully-flooded model can be refined to

accomodate the effects of starvation.

5.3.3 A Numerical Model of Starved Flow in a Flat Plate/ Roller

Geometry

The success of the analytical film thickness model for forward meniscus roll coating
supports the hypothesis that lubrication theory provides an accurate description for
the flow in the nip region of a forward roll coater in both the fully-flooded and ultra-
starved cases. This observation motivates the key assumption of the starved model
adopted here: we postulate that the flow in the nip region is well approximated by
lubrication theory over the entire range of starvation , i.e. including the moderately-
starved case.

In the above model for the fully-flooded situation, the equation needed to determine
A (equation (5.5)) is provided by a lubrication analysis of the flow in the nip region sub-
ject to the fundamental fully-flooded assumption that pressure decays to atmospheric
far upstream of the nip, i.e. P(-~oc0) = 0. However, Malone’s {1992] experimental

observations show that this assumption is no longer valid when the inlet is starved
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because the upstream free surface moves much closer to the nip — see Figure 5.6 for a
typical ultra-starved situation. Therefore in the starved case, it is no longer possible
to provide a pressure condition at the nip as is required if A is to be predicted.

Consequently, any analysis of starved flow in a flat plate/ roller geometry which
seeks to determine the flux A must necessarily include the effects of the upstream free
surface, its associated static contact line and the inlet film. Such an analysis is beyond
the scope of the present work. Fortunately, there is a simpler alternative which once
more allows the analysis to be confined to the flow between the nip and the downstream
free surface: simply impose A as a parameter, thereby removing the need for a nip
pressure condition.

It can easily be shown that, under the non-dimensionalisation used in this section,
the small flux model (equations (3.4), (3.5)) furnishes the same velocity profile across
the nip as that given by the lubrication equations (5.3), (5.4). Hence, under the key
assumption described above, the model of starvation adopted here is to simply impose
A in the latter conditions to a value which is less than that predicted by the fully-
flooded analysis of §§5.3.2. This provides a simple mechanism for altering the degree
of starvation in the flow.

Apart from the condition at the nip, all other boundary conditions for the starved
case, namely those at the roller surface, outflow boundary, flat plate and static contact
line, are identical to those for the fully-flooded situation. In the following section
we present theoretical predictions obtained by solving the above models numerically
using the Galerkin F.E. method and compare the major features of the predicted flow

transition with those observed experimentally.

5.3.4 Results and Discussion

The first F.E. predictions for the flow in this geometry were obtained for the fully-
flooded case with Re = 0.0, Ca = 0.1, R/Hy = 100 and a co;xtact angle 6, = 90°
in order to make the geometry identical to that of the ‘half-domain’ solution for the
symmetric, fully-flooded, forward roll coater. The grid used in this first solution consists

of 245 nodes, 102 elements and 21 spines; region 2 of this grid is shown in Figure 5.7
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(a), while region 1 is identical to that of grid (a) shown in Figure 4.19. The start-up
approximation for this grid was estimated from the solution obtained in §§4.5.5 for the
symmetric, fully-flooded, forward roll coater with the same set of parameters. However,
in practice it was necessary to experiment with many different ‘guesses’ of the contact
line location parameter X,, before the first converged solution was actually obtained.

To test the sensitivity of the calculated flows to the discretisation used, this initial
solution was compared against solutions obtained using 2 finer grids whose downstream
regions are shown in Figure 5.7: grid (b) with 357 nodes, 150 elements and 27 spines,
and grid (c) with 567 nodes, 248 elements and 33 spines. Note that the upstream regions
of grids (b), (c) have tessellations which are identical to those shown in Figures 4.19 (b),
(c) respectively. Meanwhile a series of numerical results, in which the outflow boundary
was placed at a number of different locations, were obtained on all 3 grids in order to
ensure that the solutions were insensitive to changes in its position. It was observed that
in all solutions obtained using grids (a), (b) and (c), each iteration took approximately
10, 12 and 14 c.p.u. seconds respectively. Moreover those numerical results which
were insensitive to changes in the ;;o;sition of the outflow boundary revealed that in
changing from (i) grid (a) — (b), (ii) grid (b) — (c) the most sensitive variables (X,
and the pressures at the nip) changed by less than 3% and 0.01% respectively of their
previous values. This suggested that grid (b) was suitable for flows with parameters
in this range; consequently the next two sets of results are obtained by zeroth order
continuation from a suitable initial solution obtained using grid (b).

Figure 5.8 examines the effect of the imposed contact angle 6. on the predicted
downstream free surface profile for this flow. It shows that the position of the static
contact line is very sensitive to the value of the contact angle; in particular, when 6,
increases the downstream free surface recedes towards the nip. This prediction concurs
with those shown in Figure 18 of Coyle et al [1986]. Another interesting prediction
relates to the flow rate through the nip. Note that as the effects of gravity are neglected
in the theoretical predictions (i.e. St=0 in equation (4.1)), the film on the lower roller
achieves an asymptotic thickness whose value is proportional to the flux through the

nip. Therefore since this thickness is insensitive to . in the range 70° < 6, < 140°, so
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toois A. Actually the predicted values of A in the solutions shown in Figure 5.8 satisfy
0.64 < A < 0.66, which are in reasonable agreement with Coyle et al’s [1986] F.E.
predictions (note that the A values given in their Figure 17 are double those defined
by equation (5.1)) and the experimental data of Sullivan and Middleman {1979], who
measured 0.55 < A < 0.65, and Adachi et al [1988) who found the average value of A
to equal 0.6. |

In his experimental study of the flow in a flat plate/ roller geometry, Malone [1992)
measured the position and shape of the downstream free surface under different degrees
of starvation. His free surface profile in the fully-flooded case (for which he estimated
Ca = 0.05 and R/Hy = 110) displayed an apparent contact angle §. = 33° - quite
different from those considered so far. Numerical predictions for fully-flooded flow with
this set of parameters (and Re = 0.0), obtained using grids (b) and (c) of Figure 5.7,
demonstrated that this low value of 8. results in element distortion near the contact line
P; this feature is illustrated in Figure 5.9, where elements in region 2 of these two grids
are shown. Previous experience suggests that these distortions may render grid (b)
unsuitable for flows with 6, in this ;;mge, but the computed results suggest otherwise
because they reveal that in cha,ﬁging from grid (b) — (c), the most sensitive variable
(Xm in this case) changes by less than 0.3% of its previous value. Moreover, since
Malone’s experimental profiles had 6. = 33° over the entire range from fully-flooded
to ultra-starved flow (see later), all subsequent F.E. solutions presented in this section
have been calculated using grid (b).

Figure 5.10 examines the effect of changing the capillary number, Ca, on the pre-
dicted downstream free surface profile for a flow with Re = 0.0, R/Hy = 110 and a
fized 8. = 33°. As in the symmetric, fully-flooded, forward roll coater the free surface
position is very sensitive to the value of Ca: increasing the value of Ca results in the
free surface receding towards the nip (compare with Figure 4.21). Once again, the
asymptbotic film thicknesses, and consequently the dimensionless fluxes ), are reason-
ably insensitive to changes in Ca; more precisely, the solutions shown in Figure 5.10
have 0.6 < A < 0.66. In the remainder of this section, Malone’s [1992] experimental

measurements of the free surface profiles, pressures and flow field in a flat plate/ roller
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geometry, over the entire range of starvation, are compared with F.E. predictions for
similar flow situations. However, any comparison between theory (F.E.) and experi-
ment is only meaningful if the low parameters Ca, R/Ho, 0. and A, which are required
as input into any F.E. solution, can be estimated accurately. Hence, before presenting
any theoretical results, it is worthwhile highlighting some of the practical difficulties
Malone faced in estimating these parameters, because this promotes a more realistic
appraisal of the agreement between theory and experiment which can be expected.

We consider the downstream free surface profile measurements, which were obtained
on an experimental rig with the roller radius R=25mm, first. Estimation of the capillary
number, Ca = nV/T, is relatively straightforward because the physical properties are
known and the roller speed V can be measured accurately. On the other hand, the
inaccuracy in the measurement of 6. is expected to be greater than that in Ca, but is
probably no greater than those caused by the empirical treatment of the contact line.
However, inaccuracies in the measurement of the nip-width Hy, which impact upon
the two remaining parameters R/Ho and ), are of far greater practical significance.
Malone measured Hp using a ‘feelel"“guage’ with 50 micrometre increments and found
that while he could push the guage through the nip when it was set to 200 micrometres,
he was unable to do so when the guage setting was increased to 250 micrometres. He
subsequently estimated Hg to be the average of these two values, i.e. 225 micrometres.
This method, which was the best available to him, produces an uncertainty in Hp of
11% which, even after ignoring the error in estimating the flux Q, leads to a potential
error in both A and R/H, of the same order of magnitude.

Malone estimated that his free surface profile measurements for the fully-flooded
case related to a flow with parameters Ca = 0.05, R/Hp = 110, 6, = 33° and A = 0.5.
Note that this value of the dimensionless flux is significantly lower than the value,
A = 0.66, given by the corresponding numerical solution of the fully-flooded model
(with Re = 0.0 also) and the previously cited data of Sullivan and Middleman [1979]
and Adachi et al [1988]. This discrepancy is surprisix'lg since it cannot be explained by
even the most optimistic scenario of a 10% under measurement of A - see discussion

above. This may be the result of inertial effects becoming significant (for the low
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viscosity Shell Tellus R5 oil) at the higher roller speeds needed to entrain larger fluxes
A, since both Tharmalingham and Wilkinson [1978] (p 1158) and Wu, Weng and Chen
(1985] (p 250) have reported that inertial effects can limit the amount of liquid entrained
by the roller surface.

It was deemed more appropriate to compare the fully-flooded experimental data
with theoretical predictions from both the fully-looded model (where A is determined)
and the starved model with A set equal to 0.5. These results are shown in Figure 5.11
(a). The data agrees well with the fully-flooded prediction, whereas the agreement
with the starved solution is at best only reasonable. The secohd, and final, free surface
profile comparison is for an ultra-starved flow in which Malone estimated that Ca =
0.0065, R/Ho = 110, A = 0.13 with 8. once more equal to 33°. Figure 5.11 (b) shows
that the corresponding F.E. prediction from the starved model agrees reasonably well
with his experimental data.

We now seek to determine the nature of the flow transition that occurs in a flat
plate/ roller geometry when the flux passmg through the nip is gradually reduced from
a fully-flooded to an ultra-straved value The strategy adopted here is to compare
theoretical predictions for the ﬁow, obtained from numerical solutions of the starved
flow model for a range of values of the dimensionless flux A, with Malone’s experimental
measurements for similar flow situations. Now, in his experiments Malone found it
expedient to reduce the flux through the nip by simply reducing the roller speed V
with the result that A, Ca and 6. all varied simultaneously. Fortunately, the F.E.
predictions of the flow field over a range of Ca and 6, values exhibit essentially the same
transitional characteristics when A is reduced. Therefore it is possible to illustrate the
flow transition predicted by the F.E. method by the more convenient device of obtaining
solutions in which only A is changed, leaving Ca and 6, fixed. Indeed this is the strategy
adopted here.

Figﬁre 5.12 demonstrates the theoretical transition between fully-flooded and
moderately-starved flow predicted by the F.E. method by presenting velocity vectors
and dimensionless F.E. pressures generated on the surface of the plate obtained from

numerical solutions for the parameter set Re = 0.0, Ca = 0.05, R/Hy = 110, §. = 33°
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with A = 0.66 (fully-flooded), 0.55, 0.5, 0.45, 0.35 and 0.25. Note that in order to ensure
that the velocity vectors are clearly visible, it was necessary to present each solution on
different scales sincé unilaterally reducing the flux actually results in the downstream
free surface receding towards the nip. This point is illustrated in Figure 5.12 (g) where
the free surfaces are drawn on a common scale. These results predict that starving the
flow results in the recirculation next to the downstream free surface extending closer
to the nip. Note that for A = 0.25, the recirculation actually extends upstream of the
nip because the lubrication velocity profile condition (5.3) imposes reverse flow at the
nip for A < 1/3.

The pressure transition is, perhaps, more interesting. Each point in a given pressure
profile indicates the (dimensionless) F.E. pressure generated at the position on the plate
immediately above that point — no pressure scales are shown here since we are only
interested in the shape of the pressure profile (see later). Note also that the solid line
denotes the atmospheric pressure level (p = 0), which means that pressures below it are
sub-ambient. In the fully-flooded case, the pressure profile shows the characteristic sub-
ambient pressure loop demonstrate(i in Figure 1.10. As the flux is reduced, the pressure
at the nip (i.e. the one shown in the figure immediately below the nip) falls and by
A = 0.5 there no longer exists a turning point in the entirely sub-ambient pressure
profile. When the flux is reduced still further from A = 0.5 to A = 0.25, it is possible
to identify two qualitatively different, but adjoining, regions of the pressure profile. In
the first region, which begins at the nip, the profile is reasonably linear whereas in the
second, which extends up to the meniscus, the pressure is almost constant.

Figure 5.13 illustrates the theoretical transition between moderately-st#rved and
ultra-starved flow in a flat plate/ roller geometry predicted by the F.E. method. As the
flow parameters in Malone’s free surface profile measurements of ultra-starved flow,
shown in Figure 5.11, were estimated to be Ca = 0.0065, R/H, = 110, 6, = 33°
and A = 0.13, it was deemed appropriate to exemplify this theoretical transition by
presenting numerical solutions for the parameter se‘t Re = 0.0, Ca = 0.0065, §. =
33°,R/Hy = 110 with A = 0.2, 0.13 and 0.07. These results predict that gradually

reducing the flux A from a moderately-starved to an ultra-starved value strengthens
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the recirculation until the flow becomes essentially eddy flow coupled with a thin film
of liquid attached to the roller. Once again note that reducing the flux unilaterally
results in the downstream free surface receding towards the nip — a point illustrated in
Figure 5.13 (d). Finally, the ultra-starved pressure profiles are qualitatively similar to
those shown in Figure 5.12 for A < 0.45, although the constant pressure region extends
further upstream towards the nip when A is reduced to an ultra-starved value.

These theoretical flow transition predictions are now compared with Malone’s ex-
perimental findings for similar flow situations. We consider the flow visualisations,
which he performed on the same experimental rig as was used in his free surface pro-
file measurements, first. Figures 5.14 (a)-(d) show typical flow visualisations which he
obtained for starved flow in a flat plate /roller geometry where the starvation increases
from fully-flooded (Figure 5.14 (a)) to ultra-starved (5.14(d)). In each of these situa-
tions, he injected blue dye into the inlet film (the roller is moving from left to right)
with the result that dark blue dye regions indicate the path taken by the majority of the
liquid entering the nip; whereas those which are relatively clear indicate the presence
of a recirculation. Note that the downstream meniscus positions are not shown in these
photographs — unfortunately Malone was unable to capture a sufficiently wide enough
field of view to include all features of the flow field. These visualisations are in qualita-
tive agreement with the theoretical transition predicted in Figures 5.12 - 5.13 because
they clearly demonstrate that the recirculation extends further upstream towards the
nip as starvation is increased. Moreover, ultra-starved flow is seen to consist of a large
recirculation which extends upstream of the nip coupled with a thin liquid film (i.e.
the dark region of Figure 5.14 (d)) attached to the lower roller.

We now compare the above theoretical pressure transition predictions against ex-
perimental pressure measurements. In order to measure the pressure profile in a flat
plate/ roller geometry over the entire range of starvation, Malone inserted a series
of ‘preésure tappings’ (at 2mm intervals) into the plate of a second, larger experi-
mental rig with R = 0.13m and Hj (estimated by the ‘feeler guage’ technique outlined
above)=325 micrometres. In Figure 5.15 (a), his pressure data for the fully-flooded and

moderately-starved situations have been converted to units of Pascal (N/m?) while the
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horizontal distance from the nip in the downstream direction, X, is measured in mm.
Once again, the experimental measurement of A = 0.503 for the fully-flooded case,
which agrees extremely well with the value, A = 0.5, obtained earlier on the smaller
rig, is significantly lower than the predicted value (A = 0.66) and the data of Sullivan
and Middleman [1979] and Adachi et al [1988]. Since, on this larger rig, the maximum
error in A which can be attributed to uncertainty in measuring Hy by the feeler guage
method (where Hg = 325 + 25 micrometres) is only 8%, this divergence cannot be
explained by experimental error.

These pressure profiles show that reducing the flux from a fully-flooded value results
in a fall in both the upstream pressure maximum and the pressure at the nip so that
pressures downstream of the nip are entirely sub-ambient. They have the same general
characteristics as those shown in Figures 5.12 - 5.13 except for the fact that there is
still a pressure minimum when A = 0.388 which disagrees with both the F.E. method
and the lubrication theory pressure gradient (5.2), which predict that there should be
no turning points, i.e. points at which 8p/8z = 0, for a flow with A < 0.5. Finally, note
that when the flux is reduced the downstream contact line position is almost invariant
whereas the upstream one moves closer to the nip. The former is contrary to what
one might expect given the effect of reducing A shown in Figures 5.12 (g) and 5.13 (d),
but the reason for this is that Malone reduced A by simply reducing the roller speed
so the consequent decrease in Ca (=nV/7T) counteracts the usual effect of reducing A
(see Figure 5.10).

Malone’s data for the pressure transition between moderately- and ultra-starved
flow in a flat plate/ roller geometry is shown in Figure 5.15 (b). These profiles are in
qualitative agreement with the theorétical profiles for moderately-starved flow shown
in Figure 5.13 because they are entirely sub-ambient and consist of an (almost) linear
region near the nip adjoining a constant pressure region near the downstream free
surface. Furthermore, the size of the latter increases as A is decreased to an ultra-
starved value. Note that these findings are consistent with the analytical prediction
of the zero flux model that the pressure gradient is constant in the central core of a

meniscus roll coating bead.
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In contrast, however, the experimental results show that the downstream pressure
minimum disappears when A = 0.3 rather than at the predicted value of A = 0.5. Asin
the moderately-starved cases, the downstream contact line position is almost invariant,
but the extremely low speeds needed to attain an ultra-starved condition result in the
upstream contact line actually moving away from the nip. This surprising featufe of
ultra-starved flow is discussed at greater length in Chapter 6 of Malone [1992].

So far the comparison between theory and experiment has been qualitative in na-
ture. It is possible, however, to give a quantitative comparison by converting the dimen-
sionless pressures, p, which are generated in any F.E. solution to actual pressures, P, by
the transformation P = 7nV/ (RHO)% p. For example, in Figure 5.16 (a) experimental
data for a fully-flooded flow, in which Malone estimated the flow parameters to be given
by A = 0.503, Ca = 0.067, R/Hy = 400 and 6, = 33°, is compared with theoretical
predictions for the same set of parameters (and Re = 0.0) from (i) the fully-flooded
model, (ii) the starved model with A set equal to 0.5. Theoretical predictions from
the former (where A is predicted to equal 0.66) agree well with the experimental data,
although there is .a discrepancy bet\;v;en their contact line positions. Meanwhile, those
from the latter show a marked divergence from the data near the nip — this is to be
expected since their shapes are quite different when A = 0.5 - but they agree reasonably
well near the downstream contact line. The pressures shown in Figure 5.16 (b) relate
to an ultra-starved flow with parameters Ca = 0.0087, R/Hy = 400, 6, = 33° and
X = 0.139. In this case the agreement between the F.E. predictions and experimental
data is excellent, except in the region close to the nip. Note that the magnitudes of the
pressures shown in Figures 5.15 - 5.16 are O(100 Nm™2) which is extremely sfnall com-
pared to atmospheric pressure (2 X 105 Nm=2). We conclude this section by proposing
a physical mechanism which explains why the pressures in the dtra—st;rved case are
entirely sub-ambient.

In Chapter 4 we saw that at a curved surface equilibrium is maintained by a balance
of normal stresses due to viscosity, surface tension ar;d atmospheric pressure. Since, in
most situations, the contribution to the viscous term due to liquid velocities near the

free surface is small compared to the liquid pressure (see Batchelor [1985] p 100), this
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normal stress balance is usually written as

T
RCIH‘II

P-P =- (5.6)

P, P,, T and R, having been defined earlier. Consequently, there is a ‘pressure
drop’ across the free surface of magnitude 7 /R,y due to the surface tension of the
liquid.

In a typical fully-flooded situation, the magnitudes of these pressure reductions
due to surface tension are negligible compared to the magnitudes of the hydrodynamic
pressures generated by the ‘squeezing action’ of the converging geometry on the inlet
side and the converse effect due to the diverging geometry on the downstream side.
However, in a typical ultra-starved case the lower roller speeds and viscosities (see
§§1.3.3) mean that the ‘squeezing action’ is drastically curtailed with the result that
the hydrodynamic pressures are only the same order of magnitude as the negative
pressures caused by surface tension effects (see Malone [1992], Chapter 6). Now because
Figure 5.6 demonstrates that the radius of curvature of the upstream free surface is
much smaller than that of the downstream one in an ultra-starved flow, it also implies
that the liquid pressure near the former is significantly lower (i.e. more sub-ambient)
than it is near the latter. This observation, allied to the fact that the magnitudes of
the hydrodynamic pressures due to liquid motion are fixed for any given ultra-starved
flow, led to the hypothesis that the free surface positions (and hence their curvatures)
adjust until the difference in the sub-ambient pressures (=7 /Ry ) between the free
surfaces can be bridged by these monotonically increasing, hydrodynamically-generated
pressures. Moreover, in Chapter 7 of his thesis, Malone [1992] develops this irgument
to explain his experimental observation that the upstream free surface is more prone

to instability than the downstream one; however this point is not pursued here.
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5.4 The Effects of Starvation in Forward Roll Coating

5.4.1 Introduction

In previous sections, we have obtained theoretical predictions for the flow in a forward
roll coater, under the two extremes of starvation, which agree reasonably well with
experiment. We are now able to undertake the first sytematic investigation into the
flow field transition that occurs in a forward roll coater as the flux is reduced from a
fully-flooded to an ultra-starved value. This is achieved by monitoring how the velocity
and pressure fields, obtained from numerical solutions of a starved flow model similar
to the one described in §§5.3.3, change as the dimensionless flux )\ is decreased over the
entire range of starvation, i.e. also including moderately-starved flow.

These F.E. predictions exhibit interesting transitions in both the velocity and pres-
sure fields as the flux is reduced from its fully-flooded value which are compared with the
analytical predictions given in Chapters 2-3 and Malone’s flow visualisations of fully-
flooded, moderately-starved and ultra-starved forward roll coating. Unfortunately, the
fact that both rollers are moving meant that he was unable to measure pressures in the
two-roll system, so the F.E. pressure predictions are compared with the experimental
data for the flat plate/ roller geometry instead. Finally, F.E. predictions of the film
thickness ratio Ty /T; for S # 1 are obtained over the whole starvation range in order

to test the hypothesis of §§3.3.3 that T\/T;, is all but independent of the degree of

starvation.

5.4.2 A Numerical Model of Starved Flow in a Forward Roll Coater

The model of starved forward roll coating adopted here is strongly influenced by the
model described in §§5.3.3. Once again we assume that lubrication theory gives an
accurate description of the flow in the nip region, regardless of the degree of starvation,
and impose A (defined now by equation (4.89)) as a parameter into the nip lubrication
velocity profile (4.90), thereby removing the need for a nip pressure condition (see
§§5.3.3). Asin §4.6, we restrict attention to the case in which the roller radii are equal,

i.e. any asymmetry is due only to unequal roller speeds.
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Apart from the conditions at the nip, all other boundary conditions for the starved
case, namely those at the roller surfaces, the downstream free surface and outflow
boundaries are identical to those for the fully-flooded situation shown in Figure 4.27.
In the next section we present theoretical predictions obtained by solving this starved
forward roll coating model numerically by the Galerkin F.E. method and compare the

main features of the predicted flow transition with those observed experimentally.

5.4.3 Results and Discussion

In this section we investigate the nature of the flow transition that occurs in a for-
ward roll coater when the flux passing through the nip is gradually reduced from a
fully-flooded to an ultra-starved value. As in §§5.3.4, this is achieved by comparing
theoretical flow predictions, obtained from F.E. solutions of the starved flow model
over a range of values of the dimensionless flux A, with Malone’s experimental findings
for similar situations. Once again, we are able to illustrate the flow transition predicted
by the F.E. method more conveniently by simply presenting solutions in which only A
varies since the transition is qualitatively unchanged by variations in either Ca, S or
R/Hq (cf. Figures 5.12, 5.13).

The computational grids/ mesh generation algorithms chosen to tessellate the flow
domain, which as before extends between the nip and the downstream free surface,
are similar to those used in §4.6 for the asymmetric, fully-flooded, forward roll coater.
However, when the flux A is reduced, continuity considerations imply that the film
thicknesses on the upper and lower rollers will also be reduced accordingly. This ef-
fect can cause meshing problems because it is possible that those elements which are
downstream of the film-splitting location may become so long and thin that their high
aspect ratios pose a threat to the accuracy of the solution (see Chung [1978] pp 133-
138). Hence it is possible that the asymmetric forward roll coating grid shown in Figure
4.26 (with 204 elements, 469 nodes and 41 spines), which was shown to be suitable for
the fully-flooded flow with Re = 0.0, Ca = 0.1, S = 1 and R/Hp = 100 in §§4.5.5,
may not be suitable for moderately- and ultra-starved applications.

In order to test this hypothesis, numerical solutions were obtained in which A was
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gradually reduced from its fully-flooded value, A = 1.35, to an ultra-starved value of
0.3 by performing zeroth order continuation on A — the effect that this ultra-starvation
has on the elements in region 2 is shown in Figure 5.17 (a). This solution was then
compared with the corresponding solution obtained on a second, finer grid — shown in
Figure 5.17 (b) - consisting of 300 elements, 683 nodes and 53 spines. Note that in the
solutions obtained using grids 5.17 (a), (b), each iteration took approximately 20, 26
c.p.u. seconds respectively. This study revealed that in changing from grid (a) to (b),
the most sensitive variable was the film-split parameter X,, which changed by less than
0.1% of its previous value. We conclude from this that the grid shown in Figure 4.26
is suitable for flows with Ca = 0.1, S = 1, R/Hg = 100 in the range 0.3 < A 5‘ 1.35,
and can be used to demonstrate the theoretical transition between fully-flooded and
moderately-starved forward roll coating.

Figure 5.18 illustates this transition by presenting velocity vectors and dimensionless
F.E. pressures generated on the symmetry plane (which is equidistant from the upper
and lower rollers, see Figure 4.13) obtained from numerical solutions with A = 1.35
(fully-flooded), 1.15, 1.0, 0.9, 0.75 and 0.6. Once again, for clarity of presentation
each solution is shown on different scales since unilaterally reducing A results in the
downstream free surface receding towards the nip - see Figure 5.18 (g) where the free
surfaces are drawn on a common scale. Meanwhile each point on a given pre;;sure
profile indicates the (dimensionless) F.E. pressures generated at that position on the
symmetry plane immediately above the point. As in §§5.3.4, no pressure scales are
shown here because we are only interested in the shape of the pressure profile and the
solid line denotes the atmospheric pressure level (p = 0), i.e. pressures below it are
sub-ambient.

The flow field transition predicts that starving the flow between A = 1.35 and
A = 0.6 results in the recirculations next to the downstream free surface (which are
indicated by the presence of small velocity vectors) extending further upstream towards
the nip. The pressure profile transition is also similar to that observed in the flat
plate/ roller geometry: in the fully-flooded case the pressure profile has the familiar

sub-ambient pressure loop, but as the flux is reduced the pressure at the nip falls a.rid for
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flows with A < 1.0, the profile is entirely sub-ambient and without a pressure minimum.
Furthermore, the pressure profiles for A < 0.9 possess the linear pressure and constant
pressure regions identified earlier in §§5.3.4.

In the forward roll coating results presented so far, the starvation is only moderate.
We now investigate the effects of increasing the starvation further until the flow becomes
ultra-starved. Although the transition between moderately-starved and ultra-starved
flow in a forward roll coater could be exemplified by presenting solutions for the same
parameter set, in which A is decreased to an ultra-s.tarved value, this could lead to
meshing problems as the downstream free surface recedes ever closer to the nip - see
Figure 5.18 (g). For this reason it is preferable to counteract this consequence of
unilaterally reducing A to an ultra-starved value by decreasing Ca to a more realistic
value for meniscus roll coating because this strengthens the effect of surface tension
and tends to ‘push’ the free surface away from the nip (see Figure 4.21). Since Malone
estimated that Ca &~ 0.017 in his meniscus roll coating experiments, it was deemed
appropriate to illustrate this transition by presenting solutions with Ca = 0.017. In
order to test whether the grids sho;n in Figure 5.17 are suitable for ultra-starved flow
with Ca = 0.017, numerical soluﬁons for A = 0.2 were obtained using each tessellation
shown in Figure 5.17. A comparison between these solutions showed that in changing
from grid (a) — (b), the most sensitive variable (X,,) changed by less than 0.3% of its
previous value, which implies that both these grids are suitable for ultra-starved flow in
this parameter range. However, owing to the fact that F.E. solutions for ultra-starved
flow were required over a wide velocity ratio range (see later), it was decided to use
grid (b) to obtain all ultra-starved solutions.

Figure 5.19 illustrates the theoretical transition between moderately-starved and
ultra-starved flow in a forward roll coater predicted by the F.E. method by presenting
velocity vectors and dimensionless F.E. pressures generated on the symmetry plane for
A =0.4, 0.3 and 0.2. These results predict that an effect of decreasing A in this range
is to strengthen the recirculations until they evenh'xally pass through the nip, while
the effect on the downstream free surface position is shown in Figure 5.19 (d). Note

that for A = 0.3 and A = 0.2, these recirculations actually extend upstream of the nip .
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because the lubrication velocity profile condition (4.90) imposes reverse flow at the nip
for A < 1/3 when S = 1. Finally, the ultra-starved pressure profiles are similar to
those shown in Figure 5.18 for A < 0.9, although their constant pressure regions extend
further upstream from the free surface towards the nip.

These flow transition predictions are now compared with Malone’s experiments for
similar flow situations which he performed on an experimental rig where the radius
of each roller=25mm and Hj (also estimated by the feeler guage technique)=225 mi-
crometres. We consider the velocity field transition first. A typical flow visualisation
for the fully-flooded situation, already shown in Figure 1.7, agrees with G.I. Taylor’s
[1963] observation that the flow field divides into two parts: a two-dimensional portion
in the immediate vicinity of the (downstream) coating mensicus and a nearly rectilinear
portion elsewhere.

The flow visualisations of starved forward roll coating shown in Figures 5.20 (a),
(b) (with the rollers moving from left to right and starvation in the latter greater
than in the former) form the link between the fully-flooded (Figure 1.7) and ultra-
starved (Figure 2.15 (a)) situations'.“ They clearly demonstrate that the recirculations
extend further upstream towards the nip when the starvation is increased, which is in
qualitative agreement with the predictions of Figure 5.18, 5.19. Finally, when starvation
is increased further from the level in Figure 5.20 (b) the recirculations eventually pass
through the nip, leading to the ultra-starved (meniscus roll coating) situation depicted
in figure 2.15 (a) where the existence of two large eddies is apparent.

 Turning now to the pressures for starved forward roll coating, it is evident that
the theoretical pressure transition in this case shares all the features of thatvpredicted
in the flat plate/ roller geometry, except that in the former the ‘critical’ value of A
marking the disappearance of a downstream pressure minimum is A = 1.0 (note that
this is also predicted by the pressure gradient (4.78)) compared to A = 0.5 in the
latter. Consequently, the F.E. predictions for the two roll system are also in qualitative
agreement with the experimental pressure profiles éiven in Figure 5.15, although the
theory predicts a more rapid disappearance of the pressure minimum than is manifested

by the data. The free surface curvature argument given in §§5.3.4 can also be invoked
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to explain the existence of entirely sub-ambient pressures in the meniscus roll coating
situation — see Figure 1.5. Finally, we note that both the F.E. pressure predictions and
experimental data support the analytical prediction of the zero flux model that the
pressure gradient is constant in the central core of a meniscus roll coating bead.

The next set of F.E. predictions investigates how the velocity field of a forward roll
coater is affected by changing the velocity ratio S. For presentational purposes, it is
convenient to illustrate this feature by reducing A and Ca below those values which
have already been used in Figure 5.19 because this reinforces the ‘double-eddy’ structure
of meniscus roll coating. After a process of trial and error, it was decided that this
characteristic is amply demonstrated by the velocity vectors from numerical solutions
of ultra-starved flow with parameters Re = 0.0, Ca = 0.002, R/Hy = 100, A = 0.08
with §=1, 2 and 3. These results, shown in Figure 5.21, clearly demonstrate the
‘double-eddy’ structure of forward meniscus roll coating and predict that the ratio of
the sizes of the upper and lower eddies increases when S increases - in agreement with
the experimental and analytical predictions shown in Figures 2.15, 2.13 respectively.

The last two sets of numerical rt;;ults exhibit F.E. predictions for the film thickness
ratio Ty /T; in forward roll coatiﬁg over the entire range of starvation from fully-flooded
to ultra-starved flow. Figure 5.22, for example, shows F.E. predictions of T} /T; for flow
with Re = 0.0, Ca = 0.1, R/Hp = 100 in the velocity ratio range 0.1 < S < 4.0 where
the inlet is (i) fully-flooded (A =1.35), (ii) moderately-starved (A=1.0, 0.6). These
results, which have been obtained using grid (a) of Figure 5.17, are compared with
Malone’s average film thickness data, Benkreira et al’s [1981] correlation and Savage’s
[1992] ’stagnation-point’ model, all of which relate to the fully-flooded situation. Note
that once again the results are presented on a logarithmic scale in order to expedite a
convenient compa:isoh with Benkreira et al’s correlation. These results are e?xtremely'
interesting since the F.E. predictions are almost independent of the degree of (moder-
ate) stérvatiou. Moreover, they are in good agreement with the fully-looded predic-
tions, shown in Figure 5.1, for the same velocity rat'io range (i.e. they closely satisfy
T1/T, ~ 5§965) and are also in reasonable agreement with Malone’s fully-flooded data

and Savage’s theoretical prediction.
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Finally, Figure 5.23 shows F.E. predictions of T} /T for flows with Re = 0.0, Ca =
0.017, R/Ho = 100 in the range 0.1 < S < 2.0 where A=0.4, 0.3 and 0.2. These F.E.
predictions, which in this case are obtained using grid (b) of Figure 5.17, are similar
to the moderately-starved results shown in Figure 5.22 (i.e. once again T} /T, ~ §065)
and agree reasonably well with Malone’s average film thickness data for meniscus roll
coating, except near S = 0.2. Note that they also support the analytical film thickness
model for meniscus roll coating, developed in Chapter 3, since these F.E. predictions

satisfy Th /T = S(S + 3)/(1 + 35) over the entire velocity ratio range.

5.5 Summary of F.E. Predictions for Starved Flow

A summary is now given of the main features of above F.E. predictions for starved flow
in roll coating systems and a more precise definition of ultra-starvation than has been
possible up until now is proposed.

Consider the velocity field predictions first. In the fully-flooded case, the flow field
divides into two regions: a two-dimensional portion in the immediate vicinity of the
downstream meniscus and a nearly rectilinear portion el_sewhere. Meanwhile when the
flux is reduced from its fully-flooded value, the relative sizes of the two-dimensional and
rectilinear portions increases until the recirculation region eventually extends upstream
of the nip. This theoretical transition is supported by Malone’s flow visualisations in
both the flat plate/ roller and two roll systems. |

The transition in the pressure field, predicted by the F.E method, is also very
interesting. In the fully-flooded case, the profile exhibits the familiar sub-ambient
pressure loop, but as the flux is reduced the pressure at the nip falls until the profile
has no minimum point and is entirely sub-kambient. When the flux is reduced below the
critical point at which the downstream pressure minimum disappears - A=1.0, 0.5 fof
the two roll and flat plate/ roller systems respectively — the profile quickly assumes a
shape in which a linear pressure region near the nip is connected to a constant pressure
region which extends up to the downstream meniscus. These predictions are in broad

agreement with Malone’s experimental profiles for flow in the flat plate/ roller geometry,
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although the downstream pressure minimum disappears more rapidly when the inlet is
starved in the former than it does in the latter. Furthermore, the linear experimental
profile measurements in the central core of ultra-starved flow in a flat plate/ roller
geometry provide strong evidence in support of the linear pressure profile predictions
from the zero flux model and consequently lends credence to the assumptions of the
small flux model developed in Chapter 3.

The F.E. film thickness ratio predictions for starved roll coating shown in Figures
5.22, 5.23 agree reasonably well with available experimental data (except for low S
values) and are almost independent of the degree of starvation, appearing to be pro-
portional to $965 in their respective velocity ratio ranges. Hence, notwithstanding the
inevitable meshing problems caused by, and consequent unreliability associated with,
numerical predictions for ultra-starved flows with low velocity ratios, these predictions
seem to support the hypothesis of §§3.3.3 that T} /T3 is unaffected by starvation. Actu-
ally, the F.E. predictions can be summarized more succinctly by noting that, owing to
the neglect of gravity in the numerical solutions, if the predicted ratio for a flow with
S > lis a say, then the correspon({i;lg ratio for a flow with velocity ratio 1/S should be
equal to 1/a. Indeed this is the case in all the F.E. solutions reported here. Hence, by
the above argument, even though the F.E. predictions shown in Figures-5.22, 5.23 only
extend over the ranges 0.1 < 5§ < 4.0 and 0.1 £ S < 2.0 respectively, they encapsulate
information over the range 0.1 £ 5 < 10.0. Therefore these predictions encourage one
to speculate that the F.E. method yields T} /T; ~ §965 for 0.1 < § < 10 over the entire
range of starvation, although greater confidence in this assertion can only be provided
by a more extensive F.E. study with more robust numerical methods. |

Finally, we are now in a position to give a more precise definition of ultra-starvation
which allows it to be distinguished from cases of moderate-starvation. This is simpl);
that a flow becomes ultra-starved when the recirculations first touch the upstream free
surface — the situation depicted in Figure 5.20 (b). Unfortunately, since our starved flow
models are restricted to the region between the nil; and the downstream free surface,
they are unable to predict when this critical point arises in practice. Nevertheless,

owing to the fact that the upstream free surface is close to the nip in the meniscus roll
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coating situation (see Figure 1.5), a useful indicator for the onset of ultra-starvation is
when the recirculations first pass upstream of the nip. This feature can be predicted by
the starved flow models since they show that the recirculations extend past the nip in
(i) a flat plate/ roller geometry, (ii) the two roll system with S = 1 when A (defined in
their respective sections) < 1/3 because their associated velocity profiles, (5.3), (4.90)

respectively, impose reverse flow at the nip.
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FULLY-FLOODED EXPERIMENTAL DATA (MALONE [1992])
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Figure 5.1: F.E. Predictions of T} /T; in Asymmetric, Fully-Flooded, Forward Roll

Coating with Re = 0.0, R/Ho = 200
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(2)

Figure 5.2: Element Distortion in Region 2 of Asymmetric Roll Coating Grids with
Re = 0.0, R/Hy = 200: (a) Ca = 0.1, S = 40.0, (b) Ca = 0.5, § = 30.0, (c)
Ca =20, S = 26.0 ‘
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Figure 5.2 (continued)
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Figure 5.3: The Effect of Element Distortion on the Invertibility of an Isoparametric

Mapping (Strang and Fix [1973])
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Stationary Plate

Downstream
Free Surface

Upstream
Free Surface

Figure 5.4: The Flat Plate/ Roller Geometry

..............

Nip : lubrication
conditions

Roller surface : v=t

Figure 5.5: A Simplified Model For Flow in a Flat Plate/ Roller Geometry (Coyle et

al [1986))
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Figure 5.6: Typical Free Surface Positions in an Ultra-Starved Flow in the Flat Plate

/ Roller Geometry

(2)

(b)

(c)

Figure 5.7: Elements in Region 2 of Grids used to Obtain F.E. Solutions of Flow with
Re = 0.0, Ca = 0.1, R/Hy = 100, 6. = 90°: (a) 102 elements, 245 nodes; (b) 150

elements, 357 nodes; (c) 248 elements, 567 nodes
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Figure 5.8: The Effect of Imposed Contact Angle 6. on Downstream Free Surface

Profiles for Flow in a Flat Plate/ Roller Geometry (Re = 0.0, Ca = 0.1, R/Hp = 100)

Figure 5.9: The Effect of Imposing 6. = 33° (and Re = 0.0, Ca = 0.05, R/Ho = 110)

on Elements in Region 2 of (i) grid (b), (ii) grid (c) of Figure 5.7
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Figure 5.10: The Dependence of the Downstream Free Surface Profile on Capil-

lary Number, Ca, for Fully-Flooded Flow in a Flat Plate/ Roller Geometry with

Re =0.0, R/Hy = 110, 6, = 33°
(a)
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Figure 5.11: Comparison Between Theoretical Prediction and Experimental Mea-
surements of Downstream Free Surface Profiles in a Flat Plate/ Roller Geome-
try: (a) Fully-Flooded (Ca = 0.05, R/Hy = 110, 8. = 33°), (b) Ultra-Starved

(A = 0.13, Ca = 0.0065, R/H, = 110, 6. = 33°)
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Figure 5.12: The Effects of Starvation on Flow in a Flat Plate/ Roller Geometry I: Mod-
erate-Starvation with Re = 0.0, Ca = 0.05, R/H, = 110, . = 33°; (a) Fully-Flooded
(A = 0.66); (b) A = 0.55; (c) A = 0.5; (d) A = 0.45; (e) A = 0.35; (f) A = 0.25; (g)

Effect on Downstream Free Surface Profile
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Figure 5.12 (continued)
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Figure 5.12 (continued)
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Figure 5.13: The Effects of Starvation on Flow in a Flat Plate / Roller Geometry II:
Ultra-Starvation with Re = 0.0, Ca = 0.0065, R/H, = 110, 6, = 33°% (a) A = 0.2; (b)
A = 0.13; (c) A = 0.07; (d) Effect on Downstream Free Surface Profile
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Figure 5.13 (continued)
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(b)

©
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Figure 5.14: Malone's Experimental Flow Visualisations of Flow in a Flat Plate/ Roller
Geometry: (a) Fully-Flooded; (1) Moderately-Starved; (c¢) Moderately-Starved; (d)

Ultra-Starved
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Figure 5.15: Malone’s Experimental Pressure Profiles in a Flat Plate/ Roller Geom-
etry: (a) Fully-Flooded to Moderately-Starved Flow; (b) Moderately-Starved to Ul-

tra-Starved Flow
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Figure 5.16: A Quantitative Comparison Between Theoretical (F.E.) and Exper-

imental (Malone [1992]) Pressure Profiles in a Flat Plate/ Roller Geometry: (a)

Fully-Flooded - Ca

= 0.067, 6. = 33°, R/Hy = 400, (b) Ultra-Starved -

Ca = 0.0087, 6, = 33°, R/Hp = 400
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Figure 5.17: F.E. Grids Used in Ultra-Starved Forward Roll Coating with
Re =0.0, Ca =0.1, R/Hg =100, A = 0.3, § = 1.0: (a) 204 elements, 469 nodes, (b)

300 elements, 683 nodes
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Figure 5.18: The Effects of Starvation in a Forward Roll Coater I: Fully-Flooded
to Moderate-Starvation with Re = 0.0, Ca = 0.1, S = 1.0, R/H, =‘ 100; (a)
Fully-Flooded (A = 1.35); (b) A = 1.15; (¢) A = 1.0; (d) A = 0.9; (e) A = 0.75;
(f) A = 0.6; (g) Effect on the Downstream Free Surface Profile
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Figure 5.18 (continued)
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Figure 5.18 (continued)

(2)
(1) FLOV FIELD

(2) DIMENSIONLESS F.E. PRESSURES ON SYMMETRY PLANE

NIP
ATMOSPHERIC PRESSURE LEVEL

Figure 5.19: The Effects of Starvation in a Forward Roll Coater II: Moderate- to
Ultra-Starvation with Re = 0.0, Ca = 0.017, § = 1.0, R/Hg = 100; (a) A= 0.4; (b)

A =0.3; (c) A = 0.2; (d) Effect on the Downstream Free Surface Profile
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Figure 5.19 (continued)
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Figure 5.20: Malone’s Flow Visualisations of Starved Forward Roll Coating
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Figure 5.21: Forward Meniscus Roll Coating - Dependence on Velocity Ratio For
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Figure 5.22: F.E. Predictions of T\/T; in Moderately-Starved Forward Roll Coating
with Re = 0.0, Ca = 0.1, R/Hy = 100
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Figure 5.23: F.E. Predictions of T|/T; in Ultra-Starved Forward Roll Coating with

Re = 0.0, Ca = 0.017, R/Ho = 100
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Chapter 6
Conclusions

6.1 General Discussion

The aim of the preéent chapter is to provide a brief review of the work contained in this
thesis and to discuss (i) how it complements previously published work on roll coating,
(ii) how it might be extended to provide further insights into the fluid mechanics of roll
coating processes.

In Chapter 2, the flows in lid-driven and open, driven cavities were modelled as
‘creeping’ flows in rectangular domains. Both problems were formulated aé boundary
value problems for the streamfunction and solved in a semi-analyticai form. Stream-
lines obtained from the sémi-analytica.l solutions were found to be in excellent agree-
ment with (i) previously published results, (ii) solutions obtained numerically using
a streamfunction-vorticity F.E. method. These flows pointed the way to a model for
meniscus roll coating under the assumption that the flux through the bead cén be
neglected — the Zero Flux Model. Streamline patterns obtained both aﬁalytically and
numerically for this problem predicted that, in the forward case, ‘the ﬁdw consists of
two eddies of which the largest eddy is associated with, and adjacent to, the faster lid.
This prediction agrees well with Malone’s experimental flow visualisations of forward
meniscus roll coating in which he observed two eddies whose relative sizes depended on
the velocity ratio.

This ‘double-eddy’ streamline pattern is significantly different from that observed

225
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in the fully-flooded case in which the flow in the nip region is uni-directional. Moreover
the Zero Flux model predicts that in the central ‘core’ of the bead, i.e. sufficiently far
from the meniscii, the flow is horizontal and has a constant pressure gradient whose
value is proportional to (1 + §)/H*? - this is in marked contrast to that observed in
fully-flooded roll coating which has pressure maxima and minima.

In Chapter 3 the prediction that there is a constant pressure gradient in the cen-
tral ‘core’ of the bead led to the development of a simple model for the ‘core’ flow
when a small, non-iero flux passes through the bead — the small flux model. This
‘Poiseuille+Couette’ model, combined with the experimental observation that in for-
ward meniscus roll coating the eddies are separated by a jet of liquid moving in an
‘S’-shape between them, enabled a predictive model for the average film thicknesses in
forward mensicus roll coating to be developed. This model predicts that the ratio of
average film thicknesses on the upper and lower rollers T} /T; = S(S + 3)/(35 + 1) -
a function of the roll-speed ratio only ~ and agrees well with Malone’s experimental
data. Surprisingly, this is the same result as was obtained by Savage [1992] for the
fully-flooded case; there is no obvious reason why they are the same. These film thick-
ness ratio predictions were used to refine the boundary value problem arising from the
‘Zero Flux model to incorporate a small flux through the bead. Streamlines obtained
from a numerical (F.E.) solution of this refined boundary value problem agreed well
with Malone’s flow visualisations of forward meniscus roll coating,.

Unfortunately, the analytical models of meniscus roll coating developed in Chapters
2 and 3 are unable to properly account for surface tension effects at a curved free
surface. As a result, a F.E. free surface FORTRAN code, based on Kistler’s [1983]
‘Spine Method’, was developed in Chapter 4. It was applied, at first, to relatively
simple problems, namely the flows in lid-driven and open, driven cavities, and to the
Zero Flux model. As explained in Appendix B, the practical problem of evaluating
the F.E. equations was alleviated by Isoparaxﬁetrically mapping each element into a
standard shape; F.E. results were obtained using different quadrature schemes in order
to evaluate their suitability.

The code was then extended to accomodate the ‘Spine Method’ for solving free
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surface flow problems and the practical complications introduced by the presence of
free surfaces (e.g. balancing stresses at the free surface and the need to evaluate free
surface integrals) discussed. This method was described by solving the relatively simple
slot coating problem and the F.E. results obtained using the code developed here are
in excellent agreement with previously published results. The slot coating code was
then modified to solve Coyle et al’s [1986] model of fully-flooded forward roll coating
in which the flow upstream of the nip was simulated by the imposition of lubrication
conditions at the nip; the relatively simple symmetric case was solved first.

Owing to the extreme sensitivity of both the position and shape of the downstream
free surface in forward roll coating to the operating parameters, it was necessary to
employ a mesh generation algorithm due to Coyle et al [1986] in order to produce an
even tessellation of the flow domain into elements. This algorithm, coupled with the
‘Spine Method’, enabled predictions for (i) the velocity and pressure fields as a function
of Ca, (ii) the dimensionless flux through the nip, and (iii) the film-splitting position
to be obtained, all of which were in excellent agreement with previously published ex-
perimental data and F.E. predictions. However, it was apparent that a particular mesh
generation algorithm cannot be suitable for every conceivable set of flow parameters
since severe convergence difficultics were experienced for high velocity ratio flows. A
poséible mechanism for the cause of these difficulties was proposed in terms of element
distortion in the downstream region of the F.E. grids. The code was then modified to
accomodate asymmetry: F.E. predictions of the film thickness ratio, T /T, were found
to be in reasonable agreement with the F.E. predictions of Coyle et al (1986]. Asin
the symmetric case, the range of velocity ratio values over which solutions could be
obtained, using F.E. grids based on Coyle et al’s {1986] mesh generation algorithm, was
limited by element distortiop.

Chapter 5 began with a more extensive investigation into the relationship between
the film thickness ratio Ty /T and the velocity ratio S (in the range 0.1 < S < 40) during
fully-flooded forward roll coating. In the range 0.1 < § < 15, the F.E. predictions for
T /T, are proportional to $%° - in good agreement with Benkreira et al [1981], Coyle

et al [1986) and reasonable agreement with Savage’s [1992] model - but for § > 15 the
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predictions begin to exhibit a Ca dependence and diverge from the $%6% power law.
Even though the F.E. predictions for § > 15 are in broad agreement with Savage’s
[1992] analytical result, we concluded that there is a need for more robust numerical
techniques and fuller experimental data before these high velocity ratio predictions can
be accepted with any degree of confidence. Attention was then turned to the effects
of starvation in roll coating, beginﬁing with the simplified flat plate/ roller geometry.
Models for both fully-flooded and starved flow in this geometry were described, in
which the flow domain extended between the nip and downstream free surface, and the
resulting free surface boundary value problems solved by the F.E. method. Theoretical
predictions for the downstream free surface position and pressure profile in the bead
for examples of both flows are in reasonable agreement with experiment.

A numerical (F.E.) study into the effects of starvation in the flat plate/ roller
geometry produced many interesting predictions. For example, the velocity field was
found to experience a transition in passing from a fully-flooded to an ultra-starved
inlet condition. In the former, the flow field divides into two adjoining portions with
rectilinear flow in the nip region and a recirculation region in the immediate vicinity
of the downstream mensicus. As the flux is reduced, the ratio of the sizes of the
two-dimensional and rectilinear portions increases until the recirculation eventually
extends upstream of the nip and the ultra-starved situation is achieved where the flow
field consists of a single eddy above a thin film of liquid attached to the roller surface.
These predictions are borne out by Malone’s experimental flow visualisations for similar
situations.

Meanwhile, the predicted transition in the pressure field showed a transformation
from the characteristic fully-flooded profile, with pressure maxima and minima, to the
ultra-starved case where the pressure field is entirely sub-ambient and consists of a
linear pressure region near the nip adjoining a constant pressure region near the down-
s-trea,m meniscus. This prediction is also in acco;'d with Malone’s findings, although the
prédicted disappearance of the downstream pressure ﬁxinimum (af A = 0.5) occurs more
rapidly than is manifested by the data (A =~ 0.298). A mechanis‘m for the e‘xistence of

an entirely sub-ambient pressure field, in the ultra-starved case, was proposed in terms
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of the observation that the curvatures of the upstream and downstream free surfaces
are quite different.

Chapter 5 concluded with a simple model of starved flow in forward roll coating
in which, as in the model of starved flow in a flat plate/ roller geometry, the flow
domain is restricted to the region between the nip and downstream free surface. The
numerical (F.E.) solutions of the resulting free surface problem predicted transitions
in the velocity and pressure fields similar to those obtained in the flat plate/ roller
geometry. For example, in the former reducing A also had the effect of increasing the
relative sizes of the rectilinear and two-dimensional portions, but for the two roll systein
the ultra-starved flow field consists of upper and lower eddies with liquid flowing in a
reverse jet between them. This transition is also in qualitative agreement with Malone’s
flow visualisations of the two roll system. The theoretical transition in the latter is
basically the same as that predicted for the flat plate/ roller geometry, although in the
two roll system the ‘critical’ value of A (defined now by equation (4.89)) marking the
disappearance of the pressu.r:a minimum is predicted to be at around X = 1.0.

Finally a F.E. investigation into how the film thickness ratio T} /T2 depends on
the degree of starvation for S in the range 0.1 < § < 10 was performed. The F.E.
predictions are almost independent of the degree of starvation, with T /T; = S5, and
agree well with Malone’s data for fully-flooded and ultra-starved forward roll coating.
They are also in good agreement with the analytical film thickness model developed in
Chapter 3 since the F.E. predictions satisfy Ty /T, ~ S(S + 3)/(35 + 1) in this velocity
ratio range. Nevertheless, we concluded that these F.E. predictions still need to be

corroborated by alternative ones obtained using more robust numerical techniques.

6.2 Suggestions for Future Work

An important feature of the work presented in this thesis has been the interdependence
between analytical, computational and experimental analyses of roll coating. The fol-
lowing suggestions for future work, although directed to the theoretician, would be

meaningless without reliable experimental data against which theoretical predictions
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can be compared.

(@)

(if)

(iii)

(iv)

Although the Zero Flux and small flux models described in Chapters 2 and 3
respectively are applicable to both the forward and reverse modes of roll coating,
the film thickness model given is only valid in the forward meniscus roll coating

case. An analytical film thickness model is still to be found in the reverse case.

The instabilities to which meniscus roll coating are susceptible have not been
described here, but those described by Malone [1992] may prove to be tractable
to a simple analytical model, perhaps similar to those given by Savage [1984] and

Carter and Savage [1987] for the fully-flooded case.

The greatest difficulty experienced in the F.E. analysis of roll coating presented
here is due to element distortion under certain circumstances. What is needed
is a systematic means of mesh generation in which the positions of the nodes
are chosen to sétisfy rigorous mathematical criteria; ideally this should include a
facility to refine the grid locally, for example near a dynamic wetting line, and
the flexibility to handle elements with different shapes, for example triangular
and quadrilateral, in the same tessellation - see Shephard [1988] for an extensive
review of mesh generation techniques. If this can be done, then the ultimate
objective of a ‘universal’ grid, in the sense that it is suitable for most conditions

which occur in practice, may be achievable.

The F.E. analysis should be extended to include both upstream and downstream
free surfaces, and the dynamic wetting line where the upstream free surface meets

the upper roller. This ought to be feasible since Coyle et al [1990 a] have sur-

- mounted similar difficulties in their F.E. analysis of fully-flooded reverse roll coat-

ing. Once this has been achieved the analysis should then be extended to the full

reverse meniscus roll coating problem.

Bixler [1982] and Coyle [1984] have developed a technique for analysing the sta-
bility of coating flows based on the F.E. method. Their technique, which has

been recently applied to the fully-flooded case (Coyle et al [1990 b)), should also
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be applicable to mensicus roll coating.

(vi) In this thesis the liquid in the roll coater is assumed to be Newtonian; however
most industrial coating liquids are non-Newtonian. Hence the F.E. analysis should
be extended to embody a non-Newtonian rheology (see e.g. Schunk and Scriven
[1990]). This has already been done for a shear-thinning rheology (Coyle et al
[1987]) and may be possible for liquids with, for example, elastic or thixotropic

properties.

(vii) In the work reported in this thesis the rollers have been assumed to be rigid and
of equal size. A final suggestion for an extension to tile theory developed here
is to have deformable rollers of unequal size. The latter is easy to implement
whereas the former presents greater difficulties, although at first the analysis of
flows with deformable rollers could proceed along the lines of the work presented

by Coyle [1988].
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Appendix A: Biorthogonal Series Solutions of Cavity-Driven Flows

A.1 - Smith’s Biorthogonality Relation
A.2 - The Flow in a Lid-Driven Cavity

A.2.1 - Determination of the Expansion Coefficients
A.3 - The Flow in an Open, Driven Cavity

Table A.1
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Biorthogonal Series Solutions of

Cavity-Driven Flows

A.l Smith’.s Biorthogonality Relation

In his [1952] paper, Smith examined the bending of a thin, semi-infinite strip using the
method of Biorthogonal Series Ezpansions. The equation governing this bending is the

biharmonic equation

Viw =0 (A.1)

where w is the normal deflection. This equation is solved in the region y > 0,

—~1 < z < 1 subject to the ‘Clamped-Edge’ boundary conditions:

w = o= = atz=41 (A.2)

He proposed to separate variables and write the variables 82w /dz2, 82w/dy? as

w n s 8w
Fri Y cndl(zy8n)e™ 5 = Y cndi(z,8n)e*"Y (A3)

an n
where the eigenfunctions ¢7(z,3n), ¢5(z,3,) and the eigenvalues s, are determined

subsequently. Equation (A.1) allied to the compatibility relation

w  dw
0y20z? ~ 9z2dy?

(A.4)

233
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may be rewritten as a single vector equation

a? | o 0 -11)¢7
zi—x-z- ! + 83. ! =0 (A5)
¢z 1 2 ?7
The ‘clamped-edge’ conditions become
?zf?_lso at ¢ = +1 (A.6)

The form of the expression for 82w/8y? may be readily integrated to yield

e"’ny

w = E cndt(2,80) —— (A7)

84
He now faced the problem of determining the coefficients ¢,. In order to achieve this

he introduced a generalized Wronskian W given by

do? [dx n
W o= (47,97 i/de | _ (dy§ [dz, dy [ da] i’ (A.8)
d¢p /dz 3

where ¥[*, ¥7* are defined below. It may easily be shown that

dW -d?¢7 [dz? o1

- = [yl = [d*y]/dz?, d*y [dz?] (A.9)
d*¢3 /dz? o3
By definition [¢7, #3]T is a solution of (A.5) hence
0 -1 n
BV~ L2t vy v @upsat,upa | | (a0
dz 1 2 o n

At this stage define the equation adjoint to (A.5) as

I
o

d2 m m m
m[?ﬁl Rl B LA [T (A.11)

1 2
If W is to vanish whenever ¢} = d¢]/dz = 0, then ¢f* = dyJ"/dz =0 also. The
boundary conditions adjoint to (A.6) are

dm
vy = —g% =0 atz==1 (A.12)

Now if [¢*(z), ¥5*(z)] is an eigenvector of (A.11) corresponding to s2, and [¢7(z), #3(z)]T

is an eigenvector of (A.5) with boundary conditions (A.6) corresponding to s, then

0 -1 n ~\
(o3 — s2) [¥1", ¥7'] . %—f- (A.13)
1 2| ¢ o
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Integrating and using the boundary conditions (A.6), (A.12) yields

+1 0 -1 or
(2 - o) [ [ vg] NERL (A.14)
-1 1 2 o
Therefore
o -1 ¢ e
[.1 (¥ ¥7) _ 4 dzr = 0if s}, # s2 (A.15)
2

This is the ‘biorthogonality’ relation and will now be used to solve creeping flows in

lid-driven and open, driven cavities (see §2.3, 2.4 respectively).

A.2 The Flow in a Lid-Driven Cavity

The boundary value problem shown in Figure 2.2 (b) is even. Hence the eigenfunctions
#?(z, sn) in the solution of this problem must also be even; they are even ‘Papkovich-

Fadle’ eigenfunctions defined by

ot(z,8,) = .s,, 5in 8, COSSpT — ST COSS, §in 8,z (A.16)
¢5(2,8,) = —(snsinsp + 2€088,)co88,2 + s,TCO8S,sins,z  (A17)
PP(2,80) = (80 sinsn — 20088,)CO88,T — spzcosspsins,z  (A.18)
V3(T,8,) = Sp8iN8,C088,T — S,TCOSSuEINS,T = @F (A.19)

The parameter s,, is determined from the conditions (A.6) which yield the eigenvalue

equation for s,:

sin 28, = —=2s, (A.20)

The solutions, s,, of this eigenvalue relation are complex and must be determined.
Robbins and Smith [1948] have published a table of the first 10 roots of (A.20) in the
upper right hand quadrant in increasing order of |s,|. In practice, these roots may be
conveniently determined by using the simple Newton iteration procedure described by
Robbins and Smith [1948]. For large |s,], the nth root of (A.20) with positive real and

imaginary parts is approximated by

28, =~ (2n+1.5)r + ilog(4n + 3)r (A.21)
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This is a convenient start-up approximation for the Newton iteration. The first 40
upper right hand quadrant solutions of sin 2s,, = —2s, (where s, = u,, +iv,,) are given

in Table A.1.

A.2.1 Determination of the Expansion Coeflicients

The technique described in this section is due to Joseph and Sturges [1978]. The
proposed solution to the lid-driven cavity flow at zero Reynolds number is of the form
[o o] . n
$(z,y) = 3 (Ane™@24) 4 Bemony) 9‘—(:2—3'2 (A.22)
-0 n
where ¢}(z, s,,) is an even Papkovich-Fadle eigenfunction and s, are roots of (A.20).
If the streamfunction is to be physically meaningful then it must be real. Therefore
as ¢;"(z) = 75’1'(1:) where — denotes complex conjugate, reality of the 'streamfuncfion
implies A_,, = A.,B_, = B,.
The boundary conditions on the upper and lower lids (see §2.3) mean that the

coefficients A,,, B, must be selected to match

[= o]

1= zojo (An = Bne™°4%) 40 /s, (A.23)
0 = i;o (An + Bue~2oA%) g /g2 (A.24)
0= i;o (Ane” 24" _ B.) ¢7/sn | (A.25)
0 = i;o(A,,e-%A‘ + Ba) $1/sh | (4.26)

The critical step in determining A,, By, is to apply the biorthogonality relation (A.15)
to these 4 equations. To prepare for this application, first differentiate (A.24) twice
with respect to z, using the relation that d?¢7/dz? = s2¢8(z) to eliminate ¢7. It is

then possible to write (A.23) and the twice differentiated (A.24) as

M) 2 St By [ ] 4 [elizsa) _ g o ()] 8
0 —00 d)g 3n Sn 0
(A.27)
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Similarly, (A.25) and twice differentiated (A.26) are combined to give

") = St my [ ) g [agerrea Co) Bt o)) {
0 —00 ¢g Sn Sn 0
(A.28)
0o - . ) .
The operator ffll(tl){,tﬁ%) dz is then applied to (A.27) and (A.28)
1 2 .
yielding
ot = [ A=) o e (L 5) _
(A1 + Bie™*"* )K1 + —zo:o {[An P B,e '——8n M, =4(A.29)

) = Cgape (1= 1+ s,
(4”4 + B)K; + 3 {[Ane marll=tn) _p (L4 )] Ml.n} = 0(A.30)

Sn

where
I

0 -1
K = / " vl U e = —acosts (A.31)
-1 1 2

l
2

and

+1 I n
Ml,n = /1 1/)2¢1d$=

sin(s; + s,)  sin(s — s
818,{2 cos sy cos 8y, (sz+s,,)g - (s;—sn);)]'*'

(1 + cos(s; — 8n) cos(8; + 8n)) [(31 —13,,)2 e 4-13")2]} (A.32)

for I # n and for l = n,

2
Ay o= —cos? s (5812 + cos? 31) (A.33)

(A.29) and (A.30) form an infinite set to be solved for the coefficients Ay, B, for
n = +1,+2,... which of course cannot be solved in practice. However, they may be
solved if the streamfunction is truncated after N terms. In this case (A.29), (A.30)
yield 4N equations for the 4N unknowus, ie. the real and imaginary parts of 4,, B,

for n = 1,...,N. This enables the truncated solution to be found.

A.3 The Flow in an Open, Driven Cavity

The eigenfunctions ¢} used in §2.4 for the solution of the flow in an open, driven ca\?ity

are odd; they are defined by

‘27'11(?/’ pn) =  Pn COS Py, sin PnY = Pn¥y sin p, co8 pny | (A'34)
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J"z'(y,Pn) = —(pncosp, — 2sinp,)sinp,y + ppysinpacosp,y  (A.35)
Y1 (¥, Pn)

$2(¥,Pn) = PaCOSPaSiNPaY — Pnysinpncosp.y = Gt (A.37)

(pncospn + 258inp,)sinp,y — prysin p, cosp,y (A.36)

The parameters p, are determined from the condition gr = dér/dy =0at y = —1

giving the following eigenvalue relation for p,
sin2p, = 2pn (A.38)

The solutions p,, of this equation are complex. Hillman and Salzer [1943] have published
a table of the first ten roots of (A.38) in the upper right hand quadrant. These roots

may be determined by Newton iteration using the approximation
2p, = (2n+0.5)r + ilog(4n + )7 (A.39)

for the nth root with positive real and imaginary parts. The first 40 roots of (A.38)
(where p, = z, + iy,) are given in Table A.1. As noted earlier, the streamfunction 1
(see equation (2.19)) is real hence C_, = Cp, D = D,,. The boundary conditions on

the side walls (see Figure 2.8) mean that the coefficients C,, and D,, must be selected

to match
1= _i: (Cn - Dw“’“‘)% (A.40)
0 = i (Cn + D,.e""‘"');;%- (A.41)
0 = _f: (Coe™P4" — Dn)%i | (A.42)
0 = i (Cae~P4" 4 D,.)%’g- | (A.43)

Using the same technique as in §A.2, these equations are prepared for the application
of a biorthogonality condition giving

= E (Cn + Dne_PHA‘) ¢l + (M - Dne'PnA‘ (1 + pn)) ¢?
Pn Pn 0

0 - %
(A.44)

bad : . <23" | - in
= E (Cne-p"A + Dn) ~l + (Cne"'PnA‘ (1 Pn) - Dn(l + Pn)) ¢1
0 -00 ¢;‘ DPn Pn 0

(A.45)
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In this case, apply the modified biorthogonality operator

0 4 0 .
/ (1, 92) dy (A.46)
-1 1 2 .

to the equations (A.44), (A.45). This can be shown to give

2 —cosp; — 1/ cospy = (C1+ DiePA%) K,

>, Cn(1- o4+ (1 .
+ { [——————( Pa) _ p,empnd* (11 20) p")] M,,,.} (A47)
—o0 Pn Pn
. . «(1- .
0= (Cle—p’A + D[)I([ + Z { FCne—p"A ( » Pn) - D, (1 ‘;pn)] Ml.n} (A.48)
—co Vb n n
where i
. o ., . 0 -1 J)’
K= /1(¢i’ ) J;’l dy = —2sintp (A.49)
- 1 2 5

Y 0 -+ sin n) [ — si in D :
Min =/1¢5¢§'dy=pzpn{ (21 + p) ( SApSnpn sm(pz+p,.))

(21 + pn)? (o1 + pn) 2
sin(pn — p1) (__ sinpn sinp; | sin(p — pn))
(pn — )2 (m1 = pn) 2
S cos(py + pn) , cos(p; — Pn))
n 510 .
oinpnsing (o0 4 L)) (4.50)
forl#nandforl:n,r
2 [ ]
Ay = —sin’p (% + = p’) (A.51)

This infinite system of equations is truncated after N terms so that (A.47), (A.48) yield
4N equations for the 4N unknowns, i.e. the real and imaginary parts of Cn, D, for

n=1,.N.
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() sin2s, = =238, 8p = up + iV,

(b) sin 2pp = 2Pn: Pn = Tn + iYn

n Un Un Tn Yn

1 2.10620 | 1.12536 | 3.74884 | 1.38434
2 5.35627 | 1.55157 | 6.94998 | 1.67611
3 8.53668 | 1.77554 | 10.11926 | 1.85838
4 | 11.69918 | 1.92940 | 13.27727 | 1.99157
5 | 14.85406 | 2.04685 | 16.42987 | 2.09663
6 | 18.00493 | 2.14189 | 19.57941 | 2.18340
7 | 21.15341 | 2.22172 | 22.72704 | 2.25732
8 | 24.30034 | 2.29055 | 25.87338 | 2.32171
9 | 27.44620 | 2.35105 | 29.01883 | 2.37876
10 | 30.59130 | 2.40501 | 32.16362 | 2.42996
11 | 33.73581 | 2.45372 | 35.30790 | 2.47640
12 | 36.87989 | 2.49810 | 38.45180 | 2.51890
13§ 40.02363 | 2.53887 | 41.59539 | 2.55807
14 | 43.16709 | 2.57656 | 44.73873 | 2.59439
15 | 46.31032 | 2.61161 | 47.88187 | 2.62825
16 | 49.45337 | 2.64436 | 51.02484 | 2.65997
17 | 52.59627 | 2.67510 { 54.16766 | 2.68979
18 | 55.73903 | 2.70407 | 57.31037 | 2.71794
19 | 58.88168 | 2.73144 | 60.45297 | 2.74459
20 | 62.02424 | 2.75740 | 63.59549 | 2.76988
21 | 65.16671 | 2.78207 | 66.73792 | 2.79396
22 | 68.30912 | 2.80558 | 69.88029 | 2.81694
23 | 71.45145 | 2.82804 | 73.02260 | 2.83890
24 | 74.59373 | 2.84953 | 76.16486 | 2.85994
25 | 77.73597 | 2.87014 | 79.30706 | 2.88014
26 | 80.87815 | 2.88993 | 82.44923 | 2.89954
27 | 84.02030 | 2.90897 | 85.59136 | 2.91823
28 | 87.16241 | 2.92731 | 88.73345 | 2.93624
29 | 90.30449 | 2.94500 | 91.87552 | 2.95362
30 | 93.44654 | 2.96209 | 95.01755 | 2.97042
31| 96.58856 | 2.97861 | 98.15956 | 2.98667
32| 99.73056 | 2.99461 | 101.30155 | 3.00241
33 | 102.87253 | 3.01010 | 104.44351 | 3.01768
34 | 106.01449 | 3.02514 | 107.58546 | 3.03249
35 | 109.15642 | 3.03973 | 110.72739 | 3.04687
36 { 112.29834 | 3.05391 | 113.86930 | 3.06085
37 | 115.44025 | 3.06770 | 117.01119 | 3.07445
38 | 118.58213 | 3.08112 § 120.15307 | 3.08769
39 | 121.72401 | 3.09418 | 123.29494 | 3.10059
40 | 124.86587 | 3.10692 | 126.43680 | 3.11317

Table A.1: The first 40 Upper Right Hand Quadrant Roots of (a) sin2s, = ~2s, and

(b) sin2p, = 2p,
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Figures B.1 - B.7



Appendix B

The Streamfunction-Vorticity

F.E. Method

B.1 Introduction

The purpose of this appendix is to introduce a linear F.E. technique for flows with
negligible fluid inertia (known as the Streamfunction-Vorticity method) and to describe
how it can be used to obtain numerical solutions of the 3 boundary value problems
derived in Chapter 2. The philosophy behind and practical implementation of this
method is discussed with particular reference to the treatment of the corner singularities
that exist in each boundary value problem.

'However, before describing the streamfunction-vorticity method, it is necessary to

introduce the concept of a ‘variational principle’.

B.1.1 Variational Principles

Often continuum problems have different but equivalent formulations - a differential
formulation and a variational formulation. In the differential formulation the problem
‘is to integrate a differential equation subject to given boundary conditions. In the
variational formulation, however, the problem is to eztremize, i.e. make stationary, a

functional, II say, subject to the same boundary conditions (Heubner [1975] p 67). The
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functional II is defined as an integral form over the domain 2 and boundary 99,

m= [ F@ar+ [ Gla)ds (B.1)

in which g is the unknown function and F and G are specified operators. The solution

a is that which makes II stationary with respect to small changes §a. Hence we require
I =0 (B.2)

In fact the problem of finding stationarity with respect to the parameters g is an old
one and is associated with the names of Rayleigh [1870] and Ritz [1909]. In §B.3 we will
obtain functionals II for each of the 3 boundary value problems described in Chapter

2 and show how they enable the F.E. equations to be obtained.

B.2 The Philosophy of the F.E. Method

Let © be a fluid domain with boundary 0Q in which the solution of the governing
eqﬁations, subject to known boundary conditions, is sought. The basic idea of the F.E.
method is to reduce the .o‘riginal continuous flow problem to a discrete analogue by
subdividing the domain into a number of elements. Within each element the solution
of the governing differential equations (in this problem 1 and w) are approximated by
low-order polynomials which are functions of the values of ¥ and w at a finite number
of points (the nodes) touching that element. By combining many small elements we
obtain a global approximation to the solution of the governing equations in terms of the
nodal values of ¥ and w. If there are a total of N nodes and the values of ¥ and w at

node k are ¥, @i respectively then this polynomial approximation takes the following

form
N - _ N
’([)(.’L‘, y) = Z Nk(x’ y)'lbk ] w(x’ y) = E Nk(z, y)wk (B3)
k=1 k=1 '
The interpolating functions Ni(z,y) (known as ‘shape functions’) are chosen to satisfy
1 at nodek
Ni = (B.4)

0 at all other nodes
Equation (B.4) is important because it means that Ny = 0 inside any element which

node k does not touch. In practice this leads to a considerable simplification to (B.3)
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enables equation (B.6) to be rewritten as
2
I(Yp,w)= /n [V.(&/)Vw + 6wV ) = V(§9).Vw - V(6w). Vi + 8 (%)] aQ (B.8)

Applying the divergence theorem to the purely divergent terms yields

I= / [ V(6%).Vw — V(«Sw)V¢+6( )] o + / (w -g%)ds (B.9)

Since V is a linear operator,
V(§¥) = 6VY, V(bw) = éVw (B.10)

which means

I($,w) =6 {/ [—Vw Vuw + ] da} + /8 (w—— + 5w‘;”’) ds  (B.11)

This is almost a variational principle — unfortunately we also need to be able to write
the boﬁnda:y integral term as 611 for some II. However this can be achieved when the
boundary conditions for the 3 boundary value problems of interest a,ré included. In
each problem the boundaries consist of either solid walls, at which no-slip conditions
apply, or planar fluid interfaces, at which a condition of zero shear stress is applied.
Note that since ¢ = 0 on each boundary, é% = 0 on 8Q, so the boundary integral term -

in equation (B.11), Ian‘, reduces to
Isq = / 6w—ds (B.12)

(i) At the Solid Boundaries

The tangential boundary velocity, Vi = 8¢/0n, is prescribed. Hence if 3Q! denotes the
portion of the boundary formed by solid walls, then the contribution to the boundary

term in (B.11) due to Q! is simply

oo bw Vids (B.13)

(ii) At Planar Zero Shear Stress Boundaries

In §2.4 we saw that 8u/dy + Ov/dz represents the (dimensionless) shear stress at a
planar fluid boundary . Hence in terms of the velocity componentvs u = 9y /dy,v = '
-9y [0z,

Ty _9v _9¥ . (B.a4)
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Since the boundary is flat this enables us to show that either 82¢/8z2 or 8% /dy? is

zero, depending on the orientation of the boundary. However it has been seen that

2 2
P ) @15)

Hence, at a planar fluid boundary, the zero shear stress condition is equivalent tow = 0.
Therefore in the boundary value problems shown in Figures 2.8 and 2.12 we impose
the condition w = 0 at.the planar ‘free’ surface. Consequently §w = 0 also on the fluid
boundary so if Q12 denotes the portion of the boundary at which the zero shear stress
condition is imposed, the contribution to the boundary term in (B.12) due to 902 is

Zero.
This means that, in each boundary value problem, the boundary integral term

(B.12) is simply given by (B.13), which may be rewritten as
6 {/ Vi w ds} (B.16)
nt
This impli.es that

I(v,w) =6 {/ﬂ [—Vz/;.Vw+ 821] dQ + /anl Vi wd.s} (B.17)

so we have demonstrated the existence of a variational principle for each problem where

the functional II is defined by
2
(y,w) = / [—V¢.Vw+ ﬁ-] aQ + / Vi wds (B.18)
Q 2 ant .

Substituting the F.E. approximations (B.3) into (B.18) yields

N B
— N;N, —
(v;, k) = Z {/ﬂ< 12 k UjWk — VN;.VN Uklﬁj) dﬂ}
Jik=1

N .
+ Y { / NV, w,-ds} (B.19)
j=1 /o0

The F.E. equations are obtained by requiring stationarity of (B.19) with respect to
each of the nodal parameters ¥;, @i (see e.g. Heubner [1975] p 77, Zienkiewicz [1977]

p 66). Stationarity with respect to & yields

ol

o,

N
=3 / [MN@e ~ VNLYNGB]Q + / NiVids = 0. (B.20)
& Ja ant



Appendix B: The Streamfunction-Vorticity F.E. Method 247

Stationarity with respect to ¥ yields

1l N / |
—_— = - VNI VN, G dQ = 0 B.21
o ?—:1 f (821

Equations (B.20), (B.21) provide 2N F.E. equations for the 2N unknowns

(-J;k, Wk k=1,..N).

B.4 Corner Singularities

In the cavity-driven flows of Chapter 2, there are difficulties in analysing the flow near
the corners of the cavity. These corners may be conveniently categorized into 3 types:
those formed at junctions of (i) a moving wall and a planar ‘free surface’; (ii) a moving
and a stationary wall; and (iii) two stationary walls, '

Junctions of type (iii) offer no special difficulties however those of types (i) and (ii)
are troublesome because under the assumption of no-slip between solid and fluid, the
fluid velocity is undefined. This leads to the prediction of unphysical singularities in
the stress and vorticity at the corner (Moffatt [1964], Huh and Scriven [1971)). In fact
a junction of type (i) 1s an example of a dynamic wetting line, the subject of which has
been discussed in §§1.3.2.

In the past, in the numerical solution of problems with corner singularities of types
(i) and (ii), the inevitable inaccuracies introduced into the solution have been alleviated
by fine resolution of the computational mesh near thesé corners. This has pro&eﬂ fo
be reasonably effective in limiting any numerical error to a small neighbourhood of the
corners, but it can be tedious as more effort has to be expended in producing the mesh.

In this thesis the corner singularities are handled by using a method develox;ed by
Moffatt [1964] in his classic paper in which he presented simple similarity solutions to
the creeping flow of a viscous fluid near a sharp corner between two planes. In this
method, the problem of prescribing boundary conditions on the vorticity very near the
corners is solved by expanding the streamfunction in a series of separated solutions

which are functions of r, the distance from the corner and an azimuthal angle 6. This



Appendix B: The Streamfunction-Vorticity F.E. Method : 24¢

expression takes the form

P = Z rpfp(O) (B.22)

P

where p > 0 and is increasing. Sufficiently close to the corner the leading order term,
given by 1, = rf1(8), is dominant and in the following analysis it will be obtained for
examples of both types of corner singularity.

Type (i) Singularity

A type (i) singularity (dynamic wetting line) is formed at the junction of a moving wall
with a ‘planar’ free surface. An example is illustrated in Figure B.2. In this example
the moving lid is at & = 0 and the ‘planar’ free surface, at which a condition of zero
shear stress is imposed, is at § = 7 /2.

The streamfunction ¥ in the vicinity of the corner is given by the solution of the
boundary value problem shown in Figure B.2. Following Dean and Montagnon [1949],
Moffatt [1964) showed that the first order term ¥;, may be written as = £(0)
where

fi(8) = Acosf + Bsin@ + ClOcosf + DOsind (B.23)

Note that the boundary conditions may be rewritten in terms of derivatives with respect
to r and @ (see Batchelor [1985]); in particular, the condition of zero shear stress is

expressed by the condition

o ‘ | -
—5-0-5- =0 at 0=7r/2 (B.24)

The first order solution to the boundary value problem shown in Figure B.2 is

Y1 = Ursind (1 - 26/7) , (B.25)
In polar co-ordinates :
2, _ 10 ( dY 10%) |

VY =15 ’797)+;55'@7 . (B26)

50, the first order vorticity defined by w; = —V?2y; is

4U cos @
Tr

W =

(3.27)
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.

Note that the vorticity on the free surface is already known to be zero, therefore the

only condition on vorticity needed is that for the moving lid (8 =0)

U

“E T (B.28)

In the F.E. solution of a flow with a type (i) singularity, the magnitude of the vorticity
at the node on the lid closest to, but not at, the corner is given by (B.28). The actual
sign of the vorticity depends on the relative orientation of the moving lid and the free
surface. At a corner node we impose w = 0 since it lies on the zero shear stress planar
‘free surface’. |

Type (ii) Singularity

A type (ii) singularity is formed at the junction of a moving and a stationary wall. An
example is illustrated in Figure B.3. The moving (velocity U) and stationary lids are
positioned at 8 = 0, 7 /2 respectively. The first order solution to the boundary value

problem shown in Figure B.3 is

. Ur .
by = m(nzmnﬂ ~ 48 cos 6 — 2r6sin §) (B.29)
 with ;
U .
wy = m (47I'C050 - 881119) ‘ (B.30)

Hence the appropriate boundary conditions on vorticity for the lids are

(a) Moving Lid (8 = 0)

_ 44U
“r = (72 - 4)r , (B'31)
(b) Stationary Lid (8 = 7/2)
. sU
Y ETE T (B.32)

In the F.E. solutions of lows with a type (ii) singularity, the magnitude of the vorticity
at the node closest to, but not at the corner of (a) the moving lid, (b) the stationary
lid is given by the magnitudes of (B.31) and (B.32) réspectively. The actual sign of the
vorticity depends on the relative orientation of the moving and stationary lids. At the

corner, r = 0 so it is not possible to use the above conditions on vorticity. In §§1.3.2

we saw that in mnct thonratiral analean. €3
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Note that the vorticity on the free surface is already known to be zero, therefore the

only condition on vorticity needed is that for the moving lid (8 = 0)

4U ‘
w = -7r—r- (B.ZS)

In the F.E. solution of a low with a type (i) singularity, the magnitude of the vorticity
at the node on the lid closest to, but not at, the corner is given by (B.28). The actual
sign of the vorticity depends on the relative orientation of the moving lid and the free
surface. Af a corner node we impose w = 0 since it lies on the zero shear stress planar
‘free surface’. -

Type (ii) Singularity |

A type (ii) singularity is formed at the junction of a moving and a stationary wall. An
example is illustrated in Figure B.3. The moving (velocity U) and stationary lids are
positioned at 6 = 0, 7/2 respectively. The first order solution to the boundary value

problem shown in Figure B.3 is

Ur

2 . .
W = m(w sinf — 46 cos 6 — 270sin §) (B.29)

with

U .
wy = m (4mcosf — B8sinf) (B.30)

Hence the appropriate boundary conditions on vorticity for the lids are

(a) Moving Lid (8 = 0)

4nU
S = o (B.31)
(b) Stationary Lid (6 = x/2)
8U , ,
W = -m (B.32)

In the F.E. solutions of flows with a type (ii) singularity, the magnitude of the vorticity
vat the node closest to, but not at the corner of (a) the moving lid, (b) the stationary
lid is given by the magnitudes of (B.31) and (B.32) respectively. The actual sign of the
vorticity dependé on the relative orientation of the moving and stationary lids. At the
corner, r = 0 so it is not possible to use the above conditions on vort‘icity. In §§1.3.2

we saw that in most theoretical analyses of dynamic wetting lines the singularity is
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removed by allowing perfect slip at the wetting line; this condition may be reinterpreted
as requiring zero shear stress at the wetting line. This device is also used here to remove

a type (ii) singularity, i.e. we impose w = 0 at the corner.

B.5 Local Co-ordinates: The Isoparametric Mapping

The computation of the F.E. equations (B.20), (B.21) would seem to present an onerous
task because for elements of general size and orientation the shape functions N become
very complicated functions of the cartesian co-ordinates. The purpose of this section is
to describe how this problem can be alleviated by isoparametrically mapping a standard
element, defined in local co-ordinate space, into each of the deformed elements in the
flow domain. The precise definition of the shape functions depends on the shape of the
element being used and the local node numbering scheme adopted (see Carter [1985]
pp 199-200). Since 6-node triangular clements are used in this thesis, we will limit this
section to the details for this type of element.

Figure B.1 shows the standard triangular element in local co-ordinate (£, n) space,
henceforth known as Ag, and the local node numbering scheme used in this aLpplication.
Carter [1985] has shown that the shape functions N; may be conveniently expressed
in terms of local ‘area’ co-ordinates L,, Lz, L3. Referring to Figure B.4, let the
whole element have area A whilst each of the smaller, separate triangles have areas
A,, Az, A3. The ‘area’ co-ordinates Ly, Ly, L3 are defined as

il_ Aj As

L1 = A y L2 = -;1‘ N L3 = 7 ‘ (B.33)
and are not independent variables since
Ly Ly + Ly = 1 | (B.34)

Carter [1985) showed that in the local triangle A,
1 1 Rt
Li=3(1+2), L =30 -¢+ V3, Ly = 3(1 - £ - V3n) (B33)

and if Ni denotes the shape function associated with local node k, under the local node

numbering scheme of Figure B.1, then

Ny = Li(2Ly-1) , Ny = 4L,L, (B.36)'
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N3

Ly(2Ly—1) , Ny = 4L,L, (B.37)

Ny

L3(2L3—1) , Ng = 4L,Ls (B.38)

It can be seen that these shape functions not only satisfy requirement (B.4), but also
yield
6
:/:1 Ni(&,n) = 1 (B.39)
at any point of the element.

In §B.2 we saw that if (¥, @k) denote the values of the streamfunction and vorticity
at the kth local node, the value of ¥ and w at any point inside the element is given
by (B.3). If zF = (zk,yx) are the global co-ordinates of the kth local node, then an
element is said to be isoparametric if any point in the interior of the element is given

by (Kistler and Scriven [1983], Carter [1985])
6

z = k; =" Ni(€,7) (B.40)

i.e. the expressions for z and y involve the same shape functions as the dependent
variables. This isoparmetric relation is of crucial importance because it enables the

equations in global (z,y) space to be evaluated in local (¢, 7) space via the relation

[ fewdady = [ fe(&m)u& )1l dedn (B.41)
elemen o
where |J| is the determinant of the Jacobian of the transformation, 7, defined by

_ Azy) _ 9z [0¢ Oz[an
A& dy/oE dy/on

Note that dz/d€, 8z/dn, dy/dE, dy/9n follow directly from the isoparametric map-

J (B.42)

—

ping (B.40), namely

oz 6. 0Ny 8z N 0N
= = —_— = = = .
o€ ,;z 9€ ° n ,; an (B.43)

Now in the F.E. equations we need to evaluate N /0z and ON;/0y. These may be

obtained in terms of derivatives with respect to the local (§,7) co-ordinates via the

relation (see Kistler and Scriven [1983] p 274)

w1 (2000 000N

= = 171\6n o€ " o€ oy (B44)
ox, 1 (_9soNs , 0sot '
5, ~ 7i\"om e T 9 on (B-45)
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To complete the F.E. equations it is necessary to evaluate the line integral

/am N;V; ds (B.46)
where 80! is the portion of the boundary formed by solid walls and V; is the velocity
of the wall. This is trivial for all nodes which do not lie on 9Q! because (B.46) will
equal zero.

However, when node j lies on Q! this integral is more conveniently evaluated in
local rather than global (z,y) space by using the isoparametric mapping. In practice,
(B.46) is calculated by adding all the contributions along element sides which lie along
a0, Without loss of generality suppose that node j lies on Q' and on the side of an

element containing local nodes 1, 5 and 6, see Figure B.5. Along the solid boundary,
Ly = N = N3 = Ny =0 (B.47)
hence from equation (B.34) Ly and L3, which are non-zero along this side, satisfy
Ly + L3 =1 - (B.48)

This means that the bicuadratic shape functions N; collapse to.quadratic functions of a
single area co-ordinate. Since the direction of integration in (B.46) is anticlockwise, it is
convenient to choose to parametrise the shape functions along this side solely in terms
of L, because it increases along the element boundary in the direction of integration,
ie. dsfdLy > 0.

Along this element side it is easily shown that
Ny = Li(2L1-1) , Ne = 4li(1-L1) , Ns = 1-3L; 2L} (B.49)

Moreover, if (z1,%1), (26, ¥6)s (z5,ys) are the co-ordinates of local nodes 1, 6 and 5

respectively then the isoparametric mapping (B.40) yields

z = n1Ni(L1) + zeNe(Lr) + z5Ns(Ly) (B.50)
y = yNi(L1) + veNe(L1) + ysNs(Lh) | (B.51)
and in particular
a‘% = (4L -1z + (4=8L)ze + (4L1-3)os (B.52)
49 (L -Dm + (4-8Low + (41~ 3 (B.53)

dLy
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This enables the integration along the element side to be completed since

Li=1 ds

ViN.d =] VN 35
WNyds = f Njgp-dls (B.54)

side
where ds/dL, = /{(dz/dL1)? + (dy/dL1)?) can be calculated from (B.52), (B.53).
Therefore the actual value of (B.46), which is calculated by adding up all the contri-

butions along element sides which lie along 991, is

L=1 d
NVids = { / V,N,'d—z:dL,} (B.55)

ont sides L=0

B.6 Numerical Integration

In order to evaluate the F.E. equations we need to evaluate element-level contributions
of the form

/czemena fz.v) dedy /u'de 9(s) ds | (B.56)
In the previous section we saw how these integrals can be evaluated in local co-ordinate
space since

[ feydsay = [ &) 11dean (B.57)

where |7] is the determinant of the J acobian of the isoparametric mapping and

[ 9 ds = /0 l 9(L.');;%dL.' (B.58)

where L; is an area co-ordinate. In F.E. methods it is usual to perform this integra-

tion numerically using Gaussian quadrature. For area integrals, this method involves

approximating (B.57) by
[ Flem dedn = 3 Fleamdu (B.59)
0 =1
where F(£,7) =‘ f&, M7l & 7;) are n specified points (called Gauss points), and w;

are n specified constants (called the weights). For boundary integrals, replace (B.58)

by

-

/ ‘G de = 3 Gléws (B.60)
=1

where G(£) = g(£) ds/dLi and &, wi (i = 1,...n) are the Gauss points and weights

respectively for this one-dimensional integral. Most text books on F.E. methods contain
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tables of these values. The Gaussian quadrature formulae are derived by approximating
the integrand by a polynomial; the order of the integrand for which the scheme is exact
increases with the number of Gauss points. However they are not unique, even for a
particular order of accuracy.

In practice before one can have any confidence in the F.E. results obtained using
a particular quadrature scheme, they must be compared with results obtained using
different schemes and, if possible, results from an analytical solution of the problem.
The quadrature schemes for area and boundary intergals used in this thesis are shown
in Figures B.6 and B.7 respectively. Note that the area integral schemes refer to the
integration over the standard triangular element Ao, defined in local (£, n) co-ordinate
space (see Figure B.1). Scheme A is obtained from the NAg F.E. library whereas
schemes B, C and D are modified versions of those given by Zienkiewicz [1977 p 201].
All the boundary integral schemes, however, are for integrals over the interval [0,1);
they are modified forms of schemes given by Zienkiewicz [1977 p 198] for integration

over the interval [-1,1].

B.7 Solution of the F.E. Equations

The F.E. equations (B.20), (B.21) are solved using a ‘banded-matrix’ solver from the
NAg F.E. library of subroutines; the banded-matrix solution method is described in
Appendix C. The bandwidth of these equations is minimised by a judicious node num-
bering scheme developed by Gaskell and Mobbs {1985). This successfully reduced the

bandwidth of the equations to a manageable size.
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Figure B.1: Six Node Triangular Elements with Local Node Numbering Scheme and
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Figure B.3: A Type (ii) Singularity

Figure B.4: Subtriangles of a Triangular Element — ‘Area Co-ordinates’
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Figure B.5: Local Node Numbering Scheme Along a Solid Boundary
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Scheme (A) - 4 quadrature points (all positive weights) ab
| Iy L, ILj w
al 1 0 0 3/16
bl o 1 0 V3/16
cl 0 0 1 V3/16
d|1/3 1/3 1/3 9V3/16
>

Scheme (B) - 3 quadrature points (all positive weights) j(:

| Ly L, I3y w

a|1/2 1/2 0 V3/4
b|{ 0 1/2 1/2 V3/4 b
cli/2 o 172 V34

Scheme (C) - 7 quadrature points (all positive weights)

L] L2 L3 w
1/3 1/3 1/3 w
a H b w
h o H w
B B ay w2
a2 P2 P w3
B @ B2 ws

B2 B2 az w3 b

d

0] = ® L O

€

™.
>t

>

where
a; = 0.05971587
ap = 0.79742699
b1 = 0.47014206
f2 = 0.10128651
and
wy = 0.29228357
wy = 0.17198505
w3 = 0.1635998

Scheme (D) - 4 quadrature points (one negative weight)

, Ll -L2 LS w
al| 1/3 1/3 1/3 —wy
bJ11/15 2/15 2/15 W
C
d

d
2/15 11/15 2/15 we b"
2/15  2/15 11/15 1w,
where w; = 0.73070893 and w; = 0.67658235

Figure B.6: Gaussian Quadrature Schemes For Area Integrals
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Scheme (a) - 2 quadrature points

| ¢ w
a | 0.21132487 1/2
b | 0.78867513 1/2

Scheme (b) - 3 quadrature points

| ¢ w
a | 0.11270167 5/18
b 0.5 4/9

c | 0.88729833 5/18

Scheme (c) - 4 quadrature points

¢ w
0.06943184 w,
0.33000948 wq
0.66999052 1w,
0.93056816 un

aa T

where w; = 0.17392742 and wz = 0.32607258
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Figure B.7: Gaussian Quadrature Schemes For Boundaiy Integrals
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Appendix C: F.E. Storage Algorithms

C.1 - Introduction

C.2 - The Banded-Matrix Solution Method

C.3 - The Frontal Solution Method
C.3.1 - The Philosophy of the Frontal Method
C.3.2 - The Front

Figures C.1- C.4
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F.E. Storage Algorithms

C.1 Introduction

It is desirable to have an efficient storage method for large global matrices, coupled of
course with an efficient algebraic solver. Two techniques have been used in this thesis,

the pertinent features of which are outlined below.

C.2 The Banded-Matrix Solution Method

Since any global matrix produced by the F.E. method always has a non-zero banded
structure, it has become a common practice to store only those terms faliing within tlﬁs
band. For a symmetric matrix the stored array will have a size equal to the total number
of variables multiplied by the half-bandwidth of the matrix, while for a non—symmetric
matrix the stored array size will be the product of the total number of variable;s and
the bandwidth. Both are illustrated schematically - see Figure C.1 (a) and (b) for a
system with 8 unknowns.

Clearly, the smaller the bandwidth, the more efficient the storage. The bandwidth
relies heavily on the global node numbering procedure adopted. In order to achieve the
minimum bandwidth, the difference between the biggest and smallest node number, for
any element, xﬁust be kept as small as possible. |

As regards the solver, Gauséian Elimination is used, modified in accordance with

the band storage (see e.g. Bohte [1975], Hager [1988]). The present work employs a

261
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subroutine from the NAg F.E. library which incorporates pivoting via row interchange.

C.3 The Frontal Solution Method

The banded-matrix technique used in the solution of ‘cavity-driven’ flows is ineffective
for problems such as roll coating because every element moves with the free surface,
thereby destroying the banded structure of the global matrix. Another method exists
which is ideally suited to the solution of F.E. problems: the ‘Frontal Solution Method’.
This technique is also based on Gaussian Elimination but is more efficient in terms of
storage space than the banded-matrix method.

In 1970, Irons published a ‘Frontal Solution Program’ for use in finite element
analysis. However, it was restricted to uée with symmetric matrices and it was not
until 1976 with a paper by Hood that it was adapted to solve problems producing
matrices which are not symmetric. It is the formulation due to Hood which is followed

here.

C.3.1 The Philosophy of the Frontal Method

This can briefly be summarized as follows. We commence by assembling each of the
element stiffness matrices in turn (i.e. element 1, element 2, etc) until the storage
area allocated to the solution routine is full. Then with the assembled part of the
complete matrix, a pivotal search is made to determine the largest entry from those rows
and columns to which there will be no further contribution from subsequent element
assembly. Gauss elimination is then used (with the pivotal row) to eliminate all the
coefficients in the pivotal column. The pivotal row is then stored in an external file. The
elimination process is repeated until sufficient storage is available to assemble further
stiffness matrices. Finally, when all the elements have been assembled, the solution is
obtained via a back substitution process. This is best illustrated by considering the
simple 3-element problem shown in Figure C.2.

After assembling the equations for element 1 say, we have the following local stiffness
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matrix.
aj, aj; aj3 I b1
a} a3 a 2 | = | b (Ca)
a:ln a:lzz al, I3 b}

where the superscript refers to the element number. At this stage it can be seen that
there will be no more contributions to the equation for z; and hence a;; may be used
to eliminate z; from all the equations so far assembled. Equation 1 is then stored in
an external file. Note at this stage, equations 2 and 3 are not complete and may not
be eliminated until further elements have been assembled. We are now left with the

following matrix equation.

ol a! 1 al at al Bl
a%z - A7 a3 — —Uid 2 b; -2
%1 amn — a), (C 2)
1 .1 1 .1 Y .
1 a;,a 1 _ a0 ) 1 al. b
R SRCEE DVACVARTEE -

Within the program we actually retain the (3x3) matrix and move the remaining entries
back one column and up one row as illustrated below.
X X X X X O
NN
O X X || X X O
0O X X O 0 O

Row 3 and column 3 are now free for the assembly of element 2.

Note It was seen earlier that node numbering was important to keep the bandwidth
of the matrix as small as possible. This does not matter here since the equations are
stored in the order in which they are formed. However, element numbering is important

(see later).

We can now add the element stiffness matrix from element 2 to the global matrix.
The only extra variable introduced is z4. Equation 4 is assembled in the now vacant
line 3 and the coefficients of z4 in column 3. Hence using the same notation as above

we obtain the element stiffness matrix for element 2.

2 2 2 2
az;, Qa3 a3y z2 b3
2 2 2 — 2
a3z, a3z a3z, z3 = b3

2 2 2 2
Qg2 Q43 Gy4 T4 bs
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The global matrix now becomes

(a%z - gialﬁh + 032) (“%3 - g%ﬁh + a%a) a3,
(a:lsz - gi:ﬁh + a§2) (053 - 55:}9;{1 + 0:233) a3
af, a3 a%4
Since assembly of element 3 contributes nothing to the equation for z; we can eliminate
r, in the same way as we eliminated x;. The solution process continues in this way
until all the elements are assembled.

In practice it is possible to assemble many elements before being required to elimi-
nate. Hence, when we come to eliminate we may have several fully assembled equations
and may choose to use total pivoting. This is preferable to partial pivoting since there
are a limited number of equations to pivot on. By choosing the largest pivot we will in-

crease the stability of the solution process. Descriptions of the method of total pivoting

can be found in most text books on numerical methods.

C.3.2 The Front

Consider the finite element mesh shown in Figure C.3. Let us suppose that elements
1 to 7 have been assembled. The ‘active’ variables, i.e. the ones not yet fully summed
are known collectively as the front. The minimum number of equations required to be
assembled before elimination can proceed is known as the front width. In order to save
storage we need to minimise the front width. In practice this is achieved by keeping
the range of element numbers surrounding any node as small as possible. The Frontal

Solution Process is summarized in Figure C.4.
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Figure C.1: Banded-Matrix Storage Method For (a) Symmetric, (b) Non-Symmetric

Matrices
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Figure C.2: A Simple 3-element probleni
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Figure C.3: A Simple F.E. Mesh

Let,

(i) NE= total number of elements

(ii) NELL= number of elements assembled

(iii) KROW= number of rows already assembled
(iv) NCRIT= the maximum number of rows to be
assembled before storage space is full
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Figure C.4: A Flow Chart of the Frontal Solution Process
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