
Orthogonally Constrained Sparse
Approximations with Applications

to Geometry Processing

Sarah Anne Liddell

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

School of Mathematics

September 2019

iii

The candidate confirms that the work submitted is their own and that

appropriate credit has been given where reference has been made to

the work of others. This copy has been supplied on the understanding

that it is copyright material and that no quotation from the thesis may

be published without proper acknowledgement. The right of Sarah

Anne Liddell to be identified as Author of this work has been asserted

by Sarah Anne Liddell in accordance with the Copyright, Designs and

Patents Act 1988.

iv

v

Abstract
Compressed manifold modes are solutions to an optimisation problem involving the

`1 norm and the orthogonality condition XTMX = I. Such functions can be used

in geometry processing as a basis for the function space of a mesh and are related

to the Laplacian eigenfunctions.

Compressed manifold modes and other alternatives to the Laplacian eigenfunctions

are all special cases of generalised manifold harmonics, introduced here as solutions

to a more general problem. An important property of the Laplacian eigenfunctions

is that they commute with isometry. A definition for isometry between meshes is

given and it is proved that compressed manifold modes also commute with isometry.

The requirements for generalised manifold harmonics to commute with isometry are

explored.

A variety of alternative basis functions are tested for their ability to reconstruct

specific functions – it is observed that the function type has more impact than

the basis type. The bases are also tested for their ability to reconstruct functions

transformed by functional map – it is observed that some bases work better for

different shape collections.

The Stiefel manifold is given by the set of matrices X ∈ Rn×k such that XTMX = I,

with M = I. Properties and results are generalised for the M 6= I case. A sequential

algorithm for optimisation on the generalised Stiefel manifold is given and applied

to the calculation of compressed manifold modes. This involves a smoothing of the

`1 norm.

Laplacian eigenfunctions can be approximated by solving an eigenproblem restricted

to a subspace. It is proved that these restricted eigenfunctions also commute with

isometry. Finally, a method for the approximation of compressed manifold modes is

given. This combines the method of fast approximation of Laplacian eigenfunctions

with the ADMM solution to the compressed manifold mode problem. A significant

improvement is made to the speed of calculation.

vi

vii

To Bintou, the only person to literally be put to sleep by my

talking about maths.

viii

ix

“We are apt to think of mathematical definitions as too strict

and rigid for common use, but their rigour is combined with

all but endless freedom. The precise definition of an ellipse

introduces us to all the ellipses in the world...” – D’Arcy

Wentworth Thompson [1]

x

xi

Acknowledgements
The first of my acknowledgements must go to my supervisor, Kevin Houston, whose

support, guidance and suggestions have been invaluable. I am most particularly

thankful for his patience and ability to gently bolster confidence in times of great

doubt.

I am indebted to the people who inspired a passion for problem solving throughout

my school years. Most notably my appreciation is to Tracy-from-the-council, for

encouraging children into believing they had discovered Euler’s polyhedral formula;

Mr Taylor, for encouraging an attitude of “But how does it work?” and for the

important reminder to an obsessive teenager that there’s more to life than maths;

Mr Keddie, for preparing the way for university-level mathematics and inspiring a

positive no-nonsense approach to teaching.

This thesis is the product of four years spent sitting in a basement so thanks go

to all those who have supplied food/diversion/supportive ears/motivational pep

talks/prayer. Specifically, Jayne Bird, Tom Bird, Laura Bown, Katherine Edgar,

Ann Gilliam, reference-checkers Luke and Rosie Hatton, Freya Howden (and Mike),

Helen Hume, Ishbel and Lars Jeuken, Dela Kpeglo and the tower blocks of Little

London, Helen Stephenson, Leeds Concert Band – particularly the back-row flutes,

members of Thursday Salt Central – past and present, the congregation of West

Park URC.

Finally, thanks go to my family: Auntie Kath and Grandma for their quiet but

solid support; to my sister Ruth for her genuine interest in what I do and for,

more recently, brightening up days with baby photos; and to my parents who have

provided all of the above love, and more, in such an unfailing way.

xii

xiii

Contents

Abstract . v

Dedication . vii

Quote . ix

Acknowledgements . xi

Contents xiii

List of Figures xvii

List of Tables xxi

Notation xxiii

1 Introduction 1

2 Basics 4

2.1 Matrix Norms . 4

2.2 Matrix Decomposition . 5

2.3 Matrix Calculus . 8

2.4 Optimisation methods . 8

2.5 An Introduction to Discrete Differential Geometry 11

xiv

3 Generalised Manifold Harmonics 28

3.1 Background: Supplementary Basis Functions 29

3.2 Background: Compressed Manifold Modes 36

3.3 Generalised Manifold Harmonics . 60

3.4 Discrete Isometry . 65

3.5 GMHs and Isometry . 72

3.6 Summary and Future Work . 76

4 A Comparison Of Basis Methods For Reconstructing Functions 77

4.1 Function choice . 78

4.2 Function Reconstruction . 83

4.3 Basis Choice and Calculation . 86

4.4 Mesh Choice and Quality . 89

4.5 Function Reconstruction Experiments 91

4.6 Basis Reconstruction . 99

4.7 Summary and Future Work . 107

5 A Comparison of Basis Methods For Calculating Functional Maps109

5.1 Background: Functional Maps . 110

5.2 Measuring Quality of a Functional Map 125

5.3 Functional map comparison experiments 128

5.4 Summary and Future Work . 140

xv

6 Optimisation on Generalised Stiefel Manifolds 141

6.1 Generalised Stiefel Manifolds . 142

6.2 Background: Optimisation on Manifolds 153

6.3 Optimisation on Generalised Stiefel Manifolds 158

6.4 Sequential Optimisation on SM . 160

6.5 Approximating Sequential Compressed Manifold Modes 172

6.6 Summary and Future Work . 180

7 Fast Approximation of Compressed Manifold Modes 181

7.1 Fast Approximation of Laplacian Eigenfunctions 181

7.2 Extension to GLMHs . 188

7.3 Fast Approximation of Compressed Manifold Modes 189

7.4 Summary and Future Work . 200

8 Key Results and Conclusions 201

Appendices 205

A Assorted Short Proofs . 206

B Table of Mesh Details . 212

C List of pairs used in matching problem 215

D Reliability of Compressed Manifold Modes 216

E Additional figures . 218

F Properties of the projection P . 221

G Proof of the Woodbury Matrix Identity (theorem 6.1.17) 222

xvi

Bibliography 223

xvii

List of Figures

1.1 Compressed manifold modes . 2

2.1 The effect of the number of vertices on the resulting mesh. 15

2.2 Barycentres of triangles . 17

2.3 Circumcentres of triangles . 17

2.4 A barycentric cell . 17

2.5 A Voronoi cell . 17

2.6 A mixed Voronoi cell . 17

2.7 Construction of the cot Laplacian . 22

2.8 Laplacian matrices . 24

2.9 Laplacian eigenfunctions . 24

3.1 The effect of basis truncation on reconstruction 29

3.2 Localised manifold harmonics . 34

3.3 Orthogonality of LMHs . 35

3.4 The l1 norm in comparison to the l2 norm. 38

3.5 The effect of the sparsity parameter on CMMs. 46

3.6 The soft thresholding operator . 52

xviii

3.7 Alternative basis types . 59

3.8 Choice of weight matrix affects isometry 71

4.1 Extremal and central points on three meshes. 79

4.2 Functions based at a point . 81

4.3 Multi-scale functions . 82

4.4 Segment indicator functions . 83

4.5 Time taken to calculate various basis types 87

4.6 Failure to meet the GLMH orthogonality condition. 89

4.7 Mesh area comparison boxplots . 90

4.8 Mesh area uniformity examples . 91

4.9 A typical reconstruction error figure. 92

4.10 Reconstruction error when using the graph Laplacian. 93

4.11 Function reconstruction details . 94

4.12 Function reconstruction error across all basis types 95

4.13 Function set reconstruction errors by mesh 96

4.14 Average method error . 98

4.15 Average method error; scaled with constant function removed 98

4.16 Function reconstruction error boxplots 99

4.17 Distance between function space subspaces 104

4.18 Basis function reconstruction . 105

4.19 CMM Sparsity . 106

5.1 Functional map matrices . 113

xix

5.2 ICP refinement of a functional map 125

5.3 Simple transformation error – the effect of refinement. 131

5.4 Function transformation error – the effect of refinement. 132

5.5 Simple transformation error – comparing functional map direction. . . 134

5.6 Simple transformation error – comparing refined functional map

direction. 135

5.7 C-orthogonality error . 136

5.8 C-orthogonality error, GL basis removed. 136

5.9 C-orthogonality error (refined) . 137

5.10 Geodesic functional map error – the effect of refinement. 139

5.11 Geodesic functional map error – comparing refined functional map

direction. 139

6.1 Gradient descent on a manifold . 155

6.2 Step size choice . 155

6.3 Line search conditions . 157

6.4 Projection onto the ellipse via a line through the centre. 168

6.5 Projection onto the ellipse via periodic retraction. 169

6.6 Smoothed approximations of the modulus function. 175

6.7 Smoothed approximations of the modulus function close to zero. . . . 175

6.8 Gradients of smoothed approximations to the modulus function. . . . 176

6.9 The effect of small x values on the difference between f∗,ε and |x|. . . 176

6.10 Various approximation of CMMs. 177

6.11 Compressed eigenvalues for approximated CMMs 178

xx

6.12 A comparison of eigs eigenfunctions and sequential eigenfunctions . 179

7.1 A comparison of eigenvalues and restricted eigenvalues. 185

7.2 A comparison of eigenfunctions and restricted eigenfunctions. 186

7.3 A comparison of eigs and the fast approximation algorithm timings. 187

7.4 The restricted matrices . 195

7.5 CMMs calculated via fast approximation and unrestricted ADMM . . 199

D.1 CMM calculation details . 217

E.2 Failure to meet the GLMH orthogonality condition (all data points). . 218

E.3 Function transformation error (all data points) 219

E.4 Mesh area comparison boxplots – complete mesh set. 220

xxi

List of Tables

6.1 Smoothings of the l1 norm. 174

7.1 Table comparing ADMM with Fast Approximation for CMMs on

assorted meshes. 197

7.2 Table comparing the unrestricted ADMM and fast approximation

step times. 198

B.1 Mesh details. 212

xxii

xxiii

Notation
General

M, X – some matrix.

Mij – the ij element of a matrix M .

v, x – some vector (point).

α – some scalar.

θ – some angle.

e – the number e.

ei – the standard basis vector, 1 in the i-th entry, 0 elsewhere.

i, j – used as indexes. (Note, no imaginary numbers anywhere...)

I – an identity matrix of the appropriate size.

Λ – a matrix of Lagrange multipliers Λij.

L(·,Λ) – a Lagrange multiplier function.

λi – the i-th eigenvalue of a matrix.

δ, ε – small, positive numbers.

δij – the Kronecker delta.

tr(M) – the trace of the matrix M .

vec(·) – the vec operator.

� – the Hadamard product.

⊗ – the Kronecker product.

Π – a permutation matrix.

∇ – gradient.

diag(x) – the diagonal matrix with elements given by vector x.

EM – an ellipsoid defined via matrix M .

Im(·) – the image of a matrix transformation

Ker(·) – the kernel of a matrix transformation

dim(·) – the dimension of a vector space

Rank(·) – the rank of a matrix transformation (dim(Im(·)))
Null(·) – the nullity of a matrix transformation (dim(Ker(·)))

xxiv

Meshes

N , P – (smooth) manifolds.

N, P – meshes, discretisation of the manifolds N , P .

n, p – the number of vertices in mesh N, P ; a dimension.

VN – the vertex set for mesh N , stored as a n× 3 matrix of points in R3.

vi – an indexed vertex.

TN – the face set for a mesh N , stored as a (number of faces)×3 matrix. Each

row is a triple of vertex indices.

V1(vi) – the one-ring neighbourhood of a vertex vi

F(N,R) – the space of real-valued functions on the mesh N .

f – a function defined on the vertices, represented by n-dimensional vector.

T – a map between meshes, usually a bijection between vertex sets.

Adj(N) – the adjacency matrix of the mesh N .

Deg(N) – the degree matrix of the mesh N .

A(·, ·) – a function used to define an area matrix.

W(·, ·) – a function used to define a weight matrix.

LN – a Laplacian matrix for mesh N .

AN , WN – the area and weight matrices for Laplacian LN = A−1
N WN .

L, A, W – as above, when it is clear which mesh is being referenced.

Sκ(·) – the soft thresholding operator, κ ∈ R.

Bases

φi, ψi – basis functions.

Φ – a matrix with basis functions φi as columns.

Ψ – a matrix with basis functions ψi as columns.

Φk – a truncated basis matrix.

k, l – the number of basis functions.

µR – a parameter controlling localisation.

µ⊥ – a parameter controlling orthogonality.

xxv

µf – a parameter controlling weight of a specific function.

Norms and Inner Products

‖·‖F – the Frobenius norm.

〈·, ·〉M – the M inner product.

‖·‖F,M – the norm induced by the M inner product, also denoted ‖·‖M .

‖·‖1 – the `1 norm.

‖·‖2,1 – the `2,1 norm.

‖·‖2 – the `2 norm (for vectors).

〈·, ·〉c – the (generalised) canonical inner product (for Stiefel manifolds).

Functional Maps

F, G – function matrices with indexed functions (as columns).

f, g – the number of functions.

a, b – vectors of coefficients.

A, B, R, S – coefficient matrices, formed by sets of coefficient vectors (as

columns).

TF – a functional map via T .

C – a functional map matrix.

ON – an operator on the function space F(N,Rn).

ŌN – the matrix representation of ON .

Reconstruction

δr(p) – the delta function of radius r at point p.

HKSt(x) – the heat kernel signature of point x at time t.

WKS(x, t) – the wave kernel signature of point x at time t.

gt – a ground truth map.

Errf – the reconstruction error function, a vector.

xxvi

Err – the reconstruction error, a scalar.

ErrS – the simple transformation error.

ErrT – the function transformation error.

ErrGD – the geodesic functional map error.

Optimisation on Stiefel Manifolds

Sym(n) – the set of n× n symmetric matrices.

sym(M) – projection of M ∈ Rn×n into Sym(n).

Skew(n) – the set of n× n skew-symmetric matrices.

skew(M) – projection of M ∈ Rn×n into Skew(n).

S – a Stiefel manifold.

SM – a generalised Stiefel manifold.

TXSM – the tangent space of SM at X.

CTX – the Cayley transform.

TCTX – the Cayley retraction.

P – the set of n× n positive definite matrices.

L – the set of n× n lower triangular matrices with positive diagonal entries.

Chol(M) – the Cholesky decomposition of matrix M .

RChol
X – the Cholesky retraction.

Fast Approximation

d – the sample size.

U – a matrix of locally supported functions.

Abbreviations

LMHs – localised manifold harmonics.

CMMs – compressed manifold modes.

GMHs – generalised manifold harmonics.

GLMHs – generalised localised manifold harmonics.

1

Chapter 1

Introduction

Geometry processing applies the ideas and structures of differential geometry to

discrete surfaces called meshes. These surfaces can be constructed as a sampling

of smooth 2-manifolds. Meshes are widely used in computerised models, arising in

animation, medical imaging and computer aided design. Functions on meshes can

be represented as an n-dimensional vector where n is the number of known points,

called vertices. The number of vertices can be very large, and so, to store information

about functions data is compressed, using a truncated basis of the function space of

the mesh. Typically, this is a basis of eigenfunctions of a discrete Laplace-Beltrami

operator [2],[3],[4],[5].

Laplacian eigenfunctions are minimisers of a discrete Dirichlet energy, and commute

with isometry. These functions are also easy to calculate (as solutions to eigenvalue

problems are well studied), however alternatives have been suggested:

• Localised manifold harmonics [6];

• Hamiltonian eigenfunctions [7];

• Compressed manifold modes [8],[9].

The first and second of these are also solutions to eigenvalue problems, and are

designed to improve reconstruction on specific regions of the mesh. To construct

such functions the failure to reconstruct a specific function, for example vertex

2

positions, is used. Here the question is asked, does this have a negative impact on

the ability of the basis to reconstruct other types of function, say geodesic distance

functions?

Sparsity is a desirable property when dealing with storing data. Compressed

manifold modes are alternatives which are sparse, i.e. the functions are locally

supported (see figure 1.1), so can be stored as sparse vectors. They arise as solutions

to the orthogonally constrained optimisation problem

arg min
Ψ

tr
(
ΨTWΨ

)
+ µ‖AΨ‖1 subject to ΨTAΨ = I. (1.0.1)

This is made difficult to solve by the sparsity inducing term, the `1 norm. An

improved method to construct compressed manifold modes would lead to a rise in

their popularity.

Figure 1.1: Compressed manifold modes

The functional maps framework [5] uses truncated bases of Laplacian eigenfunctions

and reconstructions of functions to find maps between meshes, relying heavily on

the property that they commute with isometry. In existing work the quality of a

functional map is measured by extracting a point-to-point match and comparing

it to a known match [10],[11],[12],[13]. Given that functional maps allow the

transformation of functions without knowledge of a point-to-point match, questions

arise about which bases should be used when reconstructing and transforming

specific functions.

This work aims to evaluate the properties of alternatives to the Laplacian

eigenfunctions and to provide improvement to their calculation. Towards this a

new definition of discrete isometry is given (definition 3.4.8), allowing verification

that the alternative basis methods commute with isometry. In the same chapter a

3

general problem is posed which has all of the existing alternative basis methods as

special cases.

Following this, in chapters 4 and 5, the alternative basis methods are tested for

their ability to reconstruct functions. Two methods of function reconstruction are

evaluated, followed by a test of the ability of the basis types to reconstruct functions

after transformation by functional map.

The second part of the thesis focuses on the calculation of alternative basis functions.

In chapter 6 the `1 term in problem (1.0.1) is smoothed, and the problem viewed

as an optimisation on the generalised Stiefel manifold. Stiefel manifolds are matrix

manifolds of the form X ∈ Rn×k such that XTMX = I, with M = I. Known results

about Stiefel manifolds are generalised to the M 6= I case. A sequential algorithm

(algorithm 6) for optimisation on the generalised Stiefel manifold is presented and

applied to the calculation of compressed manifold modes.

Finally, chapter 7 gives a novel method for approximating compressed manifold

modes (algorithm 8). This is based on the method of fast approximation of Laplacian

eigenfunctions [14].

4

Chapter 2

Basics

This chapter provides details of some frequently used definitions and optimisation

results. Section 2.5 gives an introduction to discrete differential geometry including

the definitions of a mesh and the discrete Laplace-Beltrami operator which will then

be used throughout.

2.1 Matrix Norms

The following matrix norms appear in various places.

Definition 2.1.1: The Frobenius norm of a matrix X ∈ Rn×k is a function

‖·‖F : Rn×k → R defined by

‖X‖F =

(∑
ij

|Xij|2
) 1

2

= tr
(
XTX

) 1
2 .

Definition 2.1.2: The `1 norm of a matrix X ∈ Rn×k is a function ‖·‖1 : Rn×k → R
defined by

‖X‖1 =
∑
ij

|Xij|.

5

Definition 2.1.3: The `2,1 norm of a matrix X ∈ Rn×k is a function ‖·‖2,1 :

Rn×k → R defined by

‖X‖2,1 =
∑
i

‖xTi ‖2.

This is the `1 norm of the vector of `2 norms of columns xi of X.

Definition 2.1.4: Given symmetric positive definite matrix M ∈ Rn×n the M

norm of a matrix X ∈ Rn×k is a function ‖·‖F,M : Rn×k → R defined by

‖X‖F,M = tr
(
XTMX

) 1
2 .

When there is no chance for confusion the shorthand ‖·‖M is used for the M norm.

The M norm arises as the induced norm of the M inner product.

Definition 2.1.5: Let X, Y ∈ Rn×k. The M inner product is an inner product

〈·, ·〉M : Rn×k × Rn×k → R defined by

〈X, Y 〉M := tr
(
XTMY

)
,

where M is an n× n symmetric positive definite matrix.

2.2 Matrix Decomposition

This section details some methods of decomposing matrices into products of matrices

with specific properties.

The Singular Value Decomposition

Theorem 2.2.1: [15, 7.3.5],[16, chapter 7] Let M be any n× k real matrix. Then

M = UΣV T where U ∈ Rn×n such that UTU = I, V ∈ Rk×k such that V TV = I

and Σ ∈ Rn×k such that Σ is formed by a l × l diagonal matrix and a rectangular

block of zeros, where l = min{n, k}.

6

Definition 2.2.2: The decomposition of a matrix M via theorem 2.2.1 is called the

singular value decomposition (svd). The diagonal entries σi of Σ are called the

singular values of M .

Usually the svd is chosen such that σ1 ≥ . . . ≥ σl. Note that any singular value

decomposition M = UΣV T can be written in this way. Let Πn be a permutation

matrix which reorders the rows of Σ in an appropriate way, and let Πk be a

permutation matrix which reorders the columns of Σ in an appropriate way. Then

M = ŪΣ̄V̄ T with Ū = UΠT
n , Σ̄ = ΠnΣΠk and V̄ = VΠT

k .

The QR Decomposition

Theorem 2.2.3: [15, 2.6.1] Let M be an n× k matrix with n ≥ k. Then there is

an n× k matrix Q such that QTQ = I and a k × k upper triangular matrix R such

that M = QR.

Definition 2.2.4: The decomposition of a matrix M via theorem 2.2.3 is called the

QR decomposition of M .

The Cholesky Decomposition

Theorem 2.2.5: [15, 7.2.9] Let M be an n × n symmetric positive definite real

matrix. Then there exists a unique lower triangular matrix L with positive diagonal

values such that M = LLT .

Definition 2.2.6: The Cholesky decomposition (or Cholesky matrix) of a

symmetric positive definite matrix M is the unique lower triangular matrix L with

positive diagonal values such that M = LLT . Let Chol : P → L denote the map

defined by Chol(M) = L.

Proposition 2.2.7: Let M be a real symmetric matrix, then the entries of the

Cholesky matrix L can be defined via the following formulae:

7

• Ljj =
√
Mjj −

∑j−1
k=1(Ljk)2,

• Lij = 1
Ljj

(
Mij −

∑j−1
k=1 LikLjk

)
for i > j,

• Lij = 0 for i < j.

An algorithm for calculating a Cholesky decomposition is given in algorithm 1.

Algorithm 1 The Cholesky-Crout algorithm [17, section 51.4],[18]

1: Given n× n real symmetric positive definite M

2: Set L as an n× n zero matrix then

3: for j = 1, . . . , n do

4: Ljj =
√
Mjj −

∑j−1
k=1(Ljk)2

5: for i = j + 1, . . . , n do

6: Lij = 1
Ljj

(
Mij −

∑j−1
k=1 LikLjk

)
7: end for

8: end for

Example

M =

[
2 1

1 2

]

=

[
−1√

2
1√
2

1√
2

1√
2

][
1 0

0 3

][
−1√

2
1√
2

1√
2

1√
2

]
, the eigendecomposition,

=

[
1√
2

1√
2

1√
2
−1√

2

][
3 0

0 1

][
1√
2

1√
2

1√
2
−1√

2

]
, the svd,

=

[
2√
5
−1√

5
1√
5

2√
5

][√
5 4√

5

0 3√
5

]
, the QR decomposition,

=

[√
2 0

1√
2

√
3√
2

][√
2 1√

2

0
√

3√
2

]
, via the Cholesky decomposition.

8

2.3 Matrix Calculus

Often the aim is to minimise a function F : Rn×k → R. Let X ∈ Rn×k then when

F (X) can be written as a polynomial in the elements of X, the derivative of F is

given by

∂F (X)

∂X
=

∂F(X)
∂X11

. . . ∂F(X)
∂X1k

...
. . .

...
∂F(X)
∂Xn1

. . . ∂F(X)
∂Xnk

 .
The following derivatives of the trace function can be found listed in [19, section

2.5] and are used without reference in later chapters:

∂

∂X
tr(AXB) = ATBT , [19, (101)],

∂

∂X
tr
(
AXBXTC

)
= ATCTXBT + CAXB, [19, (118)].

2.4 Optimisation methods

Various optimisation methods are used to tackle problems, primarily the method of

Lagrange multipliers as referenced in the proof of proposition 2.5.33. Some of the

other frequently used optimisation methods and results are summarised here.

2.4.1 Least Squares Minimisation

Let A ∈ Rn×a and let B ∈ Rn×b. Least squares minimisation gives a way of finding

a solution X ∈ Ra×b to the over-determined system AX = B which minimises the

difference between AX and B.

Theorem 2.4.1: [16, via Theorem 4.1] Let A ∈ Rn×a with n > a, A full rank, and

let B ∈ Rn×b. Then the solution to

arg min
X∈Ra×b

‖B − AX‖F

9

is given by

X = (ATA)−1ATB.

Proof. First note that

arg min
X
‖B − AX‖F

= arg min
X
‖B − AX‖2

F

= arg min
X

tr
(
BTB

)
+ tr

(
XTATAX

)
− 2 tr

(
BTAX

)
.

Differentiating with respect to X and equating with zero gives

0 = 2ATAX − 2ATB

and so

ATAX = ATB.

When A is full rank ATA is invertible (see lemma A.1) and hence

X = (ATA)−1ATB.

2.4.2 ADMM

The alternating direction method of multipliers (ADMM)[20] can be used to solve

problems of the form

min f(X) + g(Z) subject to AX +BZ = C, (2.4.1)

whereX ∈ Ra×m, Z ∈ Rb×m, A ∈ Rn×a, B ∈ Rn×b, C ∈ Rn×m, f : Ra×m → R and g :

Rb×m → R. The ADMM algorithm splits the problem into two separate optimisation

problems which may have closed forms – solutions which can be evaluated in a

finite number of calculations. The subproblems are iterated between until some

convergence tolerance is reached. Algorithm 2 provides the general (scaled) ADMM

algorithm.

10

Algorithm 2 ADMM

1: Given functions f : Ra×m → R, g : Rb×m → R, linear constraint AX +BZ = C

2: Set initial values X0 ∈ Ra×m, Z0 ∈ Rb×m, U0 = 0 ∈ Rn×m

3: Set regularisation parameter ρ > 0

4: repeat

Xk+1 ← arg min
X

f(X) +
ρ

2
‖AX +BZk − C + Uk‖2

F (2.4.2)

Zk+1 ← arg min
Z

g(X) +
ρ

2
‖AXk+1 +BZ − C + Uk‖2

F

Uk+1 ← Uk + AXk+1 +BZk+1 − C

5: until convergence

The number of iterations required for the algorithm to reach convergence can be

improved by changing the regularisation parameter ρ in each iteration (see [20,

3.4.1],[21]). The convergence conditions are constructed by evaluating the following

quantities:

rk := AXk +Bk − C

sk := ρATB(Zk − Zk−1).

The value ‖rk‖F measures how well the linear condition is met and is minimised when

the linear condition is satisfied, i.e. when ‖rk‖F = 0. Given that Xk+1 minimises

equation (2.4.2), sk is the value of the derivative of the objective function evaluated

at Xk+1. A minimum of the objective function is found when the derivative is

equal to zero, and so ‖sk‖F must also be very small for convergence. Therefore,

algorithm 2 converges when

‖rk‖F≤ εpri and ‖sk‖F≤ εdual,

11

where

εpri :=
√
nmεabs + εrel max{‖AXk‖2, ‖BZk‖2, ‖C‖2},

εdual :=
√
amεabs + εrel‖ATρUk‖2,

εabs > 0 is an absolute tolerance,

εrel > 0 is a relative tolerance, [20, 3.3.1].

A convergence guarantee for a nonconvex and nonsmooth objective function is given

in [22].

2.5 An Introduction to Discrete Differential

Geometry

Discrete differential geometry aims to use the well-understood foundation of smooth

differential geometry and construct analogies to the discrete case. The major area

of application is computer science – animation, computer vision, medical imaging

software etc. – as computers cannot cope with the infinite nature of smooth results.

The research seeks to provide mathematical solutions to the problems computers

have with identifying, transforming and reconstructing shapes and images. Much

work focuses on discretised surfaces, or meshes, as motivated by prevalence of

the computer-based applications mentioned above, and is typically referred to as

geometry processing.

An introduction to geometry processing, beginning with closed simple planar curves,

is given in [23]. A more detailed introduction, focusing on handling individual

meshes can be found in [24].

Definition 2.5.1: A vertex v is a point v ∈ R3. A face f in R3 is a 3-tuple of

vertices, f = (v1, v2, v3). An edge e in R3 is a straight-line segment between two

vertices of a face. That is, for a face f = (v1, v2, v3) there exists an edge between

every pair of vertices.

12

A mesh N(VN , TN) in R3 is a collection of vertices and faces, such that all vertices

are contained in the set VN , and all faces are contained in the set TN (where faces are

constructed from the vertices of VN). Typically the mesh is denoted by just N and

the subscript on vertex and face sets suppressed unless necessary for distinguishing

between meshes. That is, for ease of notation, when meshes are denoted N , a vertex

v ∈ N means v ∈ VN and a face f ∈ N means f ∈ TN .

Definition 2.5.2: A mesh N(VN , TN) is connected if all vertices are contained in

at least one face and there does not exist a partition N(VN , TN) = N1(VN1 , TN1) t
N2(VN2 , TN2). Note that a set of edges can be constructed from the vertex and face

sets via a simple searching and listing process.

Definition 2.5.3: The one-ring neighbourhood of a vertex vi, denoted by V1(vi)

is the set of vertices vj such that there is an edge between vi and vj.

Definition 2.5.4: A path is a sequence of edges which join a sequence of distinct

vertices. Such a sequence of vertices is called the vertex sequence of the path.

Definition 2.5.5: A vertex vi is non-singular if for every pair vertices x, y ∈ V1(vi)

there exists a path between x and y such that all vertices within the vertex sequence

of the path lie in V1(vi).

Definition 2.5.6: A mesh is simple if

(i) an edge exists between at most two faces (no non-manifold edges),

(ii) no face intersects any other part of the mesh (no self intersection),

(iii) all vertices are non-singular.

Recall that an edge exists between pairs of vertices in a face so the first condition

means that no pair of vertices appears in more than two faces.

Definition 2.5.7: A mesh is closed if all edges exist between exactly two faces.

That is, there is no boundary edge.

13

A connected simple closed mesh is homeomorphic to a triangulation of a sphere

with handlebodies. Note that by the above definition meshes must have triangular

faces, and this is assumed throughout, however there are occasions when alternative

polygonal faces are preferred. For example, meshes with quadrilateral faces are

used in animation. This is because they can be aligned with principal curvature

directions and angles in quadrilaterals are less adversely affected by stretching in

certain directions [25].

There are a variety of lines of research into meshes and their construction:

• Smoothing: reducing noise or minimising change in some energy on the

mesh [26],[27],[28].

• Parametrisation: equipping a mesh with coordinates, e.g. for

representation in specific software packages, for mapping texture (colour) to

the mesh [29],[30],[31].

• Remeshing: improving quality for a specific application, e.g. quad-dominant

meshes for animation, meshes with vertices of equal valence, [32],[33],[34].

• Simplification/Approximation: constructing a new mesh with fewer

vertices, faces and edges than the original, but preserving specific properties

as well as possible, [35],[36],[37]

• Model Repair: from a computer model (e.g. generated via CAD) producing

a mesh which is closed, has no intersecting faces or overlaps etc [38],[39],[40].

• Deformation: ensuring that methods of user-controlled deformation, e.g. via

clicking and dragging, behave in a realistic or appropriate way, [41],[42],[43].

In applications, meshes can originate from CAD programs or as scans of physical

objects but to allow the transfer of theory from differential geometry it is assumed

that a mesh is constructed with reference to an underlying manifold (hence the

conditions about self-intersection).

Let N be a smooth 2-manifold without boundary, smoothly embedded into R3 via

isometric embedding γ : N → R3. Then the manifold N can be discretised to a

mesh N by defining VN as a set of n points vi ∈ R3 from a set of n points pi ∈ N

14

such that vi = γ(pi). Edges and faces can be defined as above, with reference to the

vertex set.

In practice, the vertices of a mesh N constructed from an underlying manifold N
may not lie exactly on N . This is in part due to the choice of vertex set depending

on the application. Some applications only require approximations of the underlying

shape, e.g. shape packing problems which given an initial mesh then use a mesh with

a reduced number of vertices to accelerate algorithms [44]. Also, depending on the

application, care must be taken to preserve the topology.

Many meshes are constructed by sampling a surface and it may be that a mesh

constructed via a small number of vertices and faces does not have the same genus

as a mesh constructed from the same underlying surface but with a much larger

number of vertices and faces. Figure 2.1 shows this via a re-meshing of the victoria17

mesh. The original mesh is shown on the left and a re-meshing via poisson surface

reconstruction [45] (executed in MeshLab) is shown on the right. The number of

vertices and faces are listed in the figure. Note the loss of the hole formed by the

left arm in the re-meshing.

Remark 2.5.8: From here it is assumed that meshes are connected, closed and

simple.

Let N be a mesh with vertices v1, . . . , vn, then a real-valued function f : N → R
can be represented as a vector f ∈ Rn such that the elements of f are defined by

fi = f(vi) .

The space of all real-valued functions on N is denoted by F(N,R). Since functions

can be described by n-dimensional vectors the function space F(N,R) is isomorphic

to Rn. Therefore, any basis for Rn also provides a basis for F(N,R).

2.5.1 Function space approximation

Let {φi} be an ordered basis for the function space F(N,R), represented as columns

of an n × n matrix Φ. Denote by Φk the matrix with the first k basis functions as

15

Figure 2.1: The effect of the number of vertices on the resulting mesh.

columns. This represents some truncation of the basis, and

Fk(N,R) := span{φ1, . . . , φk}

is a linear subspace of F(N,R).

Any function f ∈ F(N,R) written in vector form as f = Φa can be projected into

Fk(N,R), where a ∈ Rn is a vector of coefficients. In vector form the projected

function f̄ is given by

f̄ = Φ

[
Ik 0

0 0

]
a.

That is, f̄ = Φkā where ā ∈ Rk with elements āi = ai.

2.5.2 The discrete Laplace-Beltrami operator

An important operator in geometry processing is a discretisation of the Laplace-

Beltrami operator. A list of desirable properties for a discrete Laplace-Beltrami

operator is given in [46], along with a proof that there does not exist an operator

16

which satisfies them all simultaneously for all meshes. This means that there is

great flexibility in the definition and construction of a discrete Laplace-Beltrami

operator. Hence, here definition is via the product of two symmetric matrices,

generated via two functions, associating numbers to each vertex and to each pair of

vertices respectively.

A mesh N with n vertices can be considered as a graph with vertex set VN and edge

set defined via the faces of N . Recall the following definitions from graph theory:

Definition 2.5.9: The degree matrix Deg(N) is the n×n diagonal matrix where

the i-th diagonal element is equal to the number of neighbours of the vertex vi.

Definition 2.5.10: The adjacency matrix Adj(N) is the n×n matrix with entries

given by

Adj(N)ij =

0, if j = i,

1, if j 6= i and vertices vi, vj share an edge,

1, if j 6= i and vertices vi, vj do not share an edge.

Each vertex in a mesh has an area associated to it. This area can be chosen in a

variety of ways, and allows a discrete integral to be defined. The areas are stored

as elements of a matrix, for ease of calculation. One way of associating an area to

a vertex is construct a cell via properties of the adjacent faces.

Definition 2.5.11: The barycentre of a triangle is the point of intersection of the

straight lines connecting vertices and mid-points of opposing edges. (See figure 2.2.)

Definition 2.5.12: The circumcentre of a triangle is the point of intersection of

the perpendicular bisectors of each edge. (See figure 2.3.)

Note that the barycentre of a triangle always lies in the interior of the triangle, but

the circumcentre lies outside of the triangle for triangles with an obtuse angle.

Definition 2.5.13: The barycentric cell of a vertex vi is the set of points bounded

by the straight lines connecting the barycentres and edge mid-points of the triangle

with vi as a vertex. (See figure 2.4.)

17

Figure 2.2: Barycentres of triangles Figure 2.3: Circumcentres of triangles

Definition 2.5.14: The Voronoi cell of a vertex vi is the set of points bounded by

the straight lines connecting the circumcentres and edge mid-points of the triangle

with vi as a vertex. (See figure 2.5.)

Definition 2.5.15: The mixed Voronoi cell of a vertex vi is a Voronoi cell

constructed by replacing circumcentres which lie outside of obtuse-angled triangles

with the mid-point of the edge opposing the vertex vi. (See figure 2.6.)

Figure 2.4: A barycentric

cell

Figure 2.5: A Voronoi

cell

Figure 2.6: A mixed

Voronoi cell

Definition 2.5.16: Let N be a mesh with vertex set V and face set T . An area

matrix A is an n× n symmetric positive-definite matrix with entries defined via a

function A : V × V → R, such that

Aij = A(vi, vj) .

18

Examples 2.5.17:

(i) Let A : V × V → [0,∞) be defined via A(vi, vj) = rδij with r ∈ R+. Then

A = rIn. That is, each vertex is weighted with an equal area. This is called

the uniform area matrix.

(ii) Let A : V × V → [0,∞) be defined via

A(vi, vj) =

1
3

∑
t∈T(i) area(t) , if i = j,

0, otherwise

where T (i) denotes the set of faces with vi as a vertex and area(t) denotes

the area of the face t. Then A is the diagonal matrix where the i-th diagonal

entry is an area associated to the vertex vi.

(iii) Let A : V × V → [0,∞) be defined via

A(vi, vj) =

area(cell(vi)) , if i = j,

0, otherwise

where cell(vi) denotes any one of the cells defined in definitions 2.5.13 to 2.5.15.

Then A is the diagonal matrix where the i-th diagonal entry is an area

associated to the vertex vi, as in example (ii) above.

(iv) Let A : V × V → [0,∞) be defined via

A(vi, vj) =

the number of neighbours of vi, if i = j,

0, otherwise.

That is, A = Deg(M).

(v) Let A : V × V → [0,∞) be defined via

A(vi, vj) =

1
6

∑
t∈T(i) area(t) , if i = j,

1
12

(area(tij) + area(t̄ij)) , otherwise,

where tij, t̄ij are the faces which share the edge with endpoints vi and vj.

19

Note that the final example provides an area matrix which is not diagonal. The

property of being diagonal is often desirable as diagonal matrices are easy to invert,

are very sparse and are easy to use in calculations. To avoid the problem of non-

diagonal area matrices a sum can be used to obtain a diagonal matrix.

Definition 2.5.18: Let M be a square matrix. The lumped matrix M̄ obtained

from M is given by the diagonal matrix with entries M̄ii =
∑

jMij.

A diagonal area matrix gives a quick and simple approximation of an integral of a

real-valued function over the mesh. The integral can be approximated by summing

the value of the function multiplied by the associated area at each vertex. That is,

for 2-manifold N , ∫
N
f ≈

∑
vi∈N

f(vi)Ai (2.5.3)

where N is a mesh constructed from N and Ai is an area associated to the vertex

vi. (For convenience it is assumed that the vertices of N lie on the manifold N , so

that the function f can be evaluated on the vertices.) Note that the diagonal entry

Aii of the (lumped) area matrix A and the area Ai associated to the vertex vi for

the purpose of approximating the integral are assumed to coincide.

Remark 2.5.19: From here it is assumed that area matrices are diagonal (or

lumped).

Definition 2.5.20: Let N be a mesh with vertex set V and face set T . A partial

weight matrix Ŵ is an n×n symmetric matrix with entries defined via a function

W : V × V → (−∞, 0], such that

Ŵij =

W(vi, vj) , when i 6= j

0, i = j.

Let W denote the lumped partial weight matrix, then a weight matrixW is defined

to be

W := Ŵ −W.

20

That is, W has entries

Wij = Ŵij, i 6= j

Wii = −
∑
j

Ŵij

= −
∑
j 6=i

Wij.

Proposition 2.5.21: IfW is constructed as above thenW is symmetric and positive

semi-definite.

Proof. Symmetry is clear from the definition of W . To show that W is positive

semi-definite first note that W is real and symmetric so has real eigenvalues.

Hence, via Geršgorin’s theorem [15, theorem 6.1.1] all eigenvalues λ of W are such

that there exists 1 ≤ i ≤ n with

|λ−Wii| ≤
n∑
i=1
i 6=j

|Wij|.

That is, since Wij ≤ 0,

|λ−Wii| ≤
∑
i 6=j

−Wij

≤ −
∑
i 6=j

Wij

≤ Wii.

Therefore

−Wii ≤ λ−Wii

and so

0 ≤ λ.

That is, all eigenvalues of W are non-negative, and hence W is positive semi-definite.

21

Examples 2.5.22:

(i) Let W : V × V → (−∞, 0] be defined via

W(vi, vj) =

0, if vi is not a neighbour of vj,

−
(

cotαij + cot βij
2

)
, if vi neighbour of vj and i 6= j,

0, if i = j.

where αij, βij are the angles of the triangles with edge vivj, as shown in

figure 2.7. Then W has entries

Wij = −
(

cotαij + cot βij
2

)
, when i 6= j,

Wii = −
∑
i 6=j

Wij.

This is the weight matrix for the frequently used cot Laplacian (see

example 2.5.24.(iii)). The function W only maps to (−∞, 0] if the sum

cotαij + cot βij is positive. This is not true in general but can be guaranteed

by ensuring that a mesh has high isotropy, that is, triangles are close to being

equilaterals (see [24, section 6.1]). From here it assumed that meshes meet

this condition.

(ii) Let W : V × V → (−∞, 0] be defined via

W(vi, vj) =

−1, if vi and vj are neighbours,

0, if vi and vj are not neighbours,

0, if i = j.

Then W = DegN − Adj(N).

Definition 2.5.23: A discrete Laplace-Beltrami operator (LBO) L is given by

L = A−1W, (2.5.4)

where A is an area matrix and W is a weight matrix. It is common to refer to such

an operator as a Laplacian.

22

Figure 2.7: Construction of W(vi, vj)

Discrete Laplace-Beltrami operators can be used to emulate the behaviour of the

Laplace-Beltrami operator in the smooth case, but the above definition is extremely

flexible. By combining area and weight matrices from the examples above various

discrete Laplacians can be constructed.

Examples 2.5.24:

(i) The graph Laplacian is given by L = A−1W where A = I and W =

Deg(N)− Adj(N), [47, p.4].

(ii) The uniform Laplacian is given by L = A−1W where A = Deg(N) and

W = Deg(N)− Adj(N), [26],[24, 3.3.4].

(iii) The cot Laplacian is given by L = A−1W where A is given by some diagonal

area matrix and W is given by the W defined above in example 2.5.22.(i), [24,

3.3.4], [48].

(iv) The FEM Laplacian is given by L = A−1W where A is given by the non-

diagonal A defined above in example 2.5.17.(v) and W is given by the W

defined above in example 2.5.22.(i), [23, 3.1].

Note that the definition of a discrete Laplace-Beltrami operator does not include

the Tutte Laplacian [49] as it is not symmetric, but does include the symmetric

quasi-Laplacian of [50].

23

Remark 2.5.25: When A is diagonal, the entries of L are given by

Lij =
Wij

Aii
.

Figure 2.8 displays a small sub-matrix of the area, weight and resulting Laplacian

matrices defined in the above examples, calculated for the homer mesh. Note that

the area matrices for the graph and uniform Laplacians have not been scaled, and

the area matrix for the FEM Laplacian has not been lumped.

The discrete Laplace-Beltrami operator has some important properties. Let L =

A−1W be an n× n Laplacian and let x, y ∈ Rn.

Proposition 2.5.26: L is self-adjoint with respect to the A inner product. That

is, 〈Lx, y〉A = 〈x, Ly〉A.

Proof. See lemma A.2.

The Laplacian eigenproblem is given by

Lφ = λφ

or equivalently

Wφ = λAφ. (2.5.5)

Proposition 2.5.27: Eigenvalues of L are real and non-negative.

Proof. See lemma A.3.

The constant function has eigenvalue λ = 0. This is a consequence of the

construction of W . Figure 2.9 displays the first 7 Laplacian eigenfunctions

constructed for the homer mesh, using the Laplacians listed in examples 2.5.24.

Proposition 2.5.28: Eigenfunctions of L with distinct eigenvalues are orthogonal

with respect to the A inner product.

24

Figure 2.8: Area and weight matrices, and the resulting Laplacian, constructed via the

examples listed in 2.5.24. The matrices display only the upper left 25 × 25 square of

elements. The entries are coloured such that negative values are blue and positive values

are red. Paler shades indicate that the values are close to zero (coloured white).

Figure 2.9: The first 7 eigenfunctions for Laplacians constructed as in examples 2.5.24.

25

(For proof see lemma A.3.)

Remark 2.5.29: From here it is assumed that the eigenfunctions are sorted

according to the natural ordering such that λ1 ≤ . . . ≤ λn.

Proposition 2.5.30: The Laplacian eigenfunctions form a basis for F(N,R).

Proof. The result follows from the fact that F(N,R) ∼= Rn and that since the

eigenvectors are orthogonal and there are n of them then they form a basis for

Rn.

Denote by Λ the n × n diagonal matrix with entries Λii = λi then the Laplacian

eigenproblem, as in equation (2.5.5), can be stated in matrix form as

WΦ = AΦΛ

or, for a truncated set of eigenfunctions,

WΦk = AΦΛk (2.5.6)

where Λk denotes the k × k upper-left submatrix of Λ. Note that this leads to the

equality

ΦT
kWΦk = Λk. (2.5.7)

Let N be a mesh with Laplacian LN = A−1
N WN and eigenpairs (φi, λi). Let P be

a scaling of N such that LP = A−1
P WP with WP = WN and AP = µAN , µ ∈ R+.

(That is, the vertex positions of P have changed so the face areas have been scaled,

but the weight matrix does not change.) Consider the LP eigenproblem,

LPϕi = σiϕi,

then since LP = 1
µ
A−1
N WN ,

1

µ
LNϕi = σiϕi

LNϕi = µσiϕi.

Since the eigenvectors of LN are φi it must be that µσi = λi and hence σi = λi
µ

is

an eigenvalue of LP for eigenvector φi.

26

Remark 2.5.31: To allow comparison between meshes all area matrices are scaled

such that
∑

iAii = 1.

An important property of the Laplacian eigenfunctions is that they are critical points

of the Dirichlet energy. First consider the manifold case.

The Dirichlet energy for a real-valued function f :M→ R is given by

E(f) =

∫
M
〈∇f,∇f〉`2 [51], (2.5.8)

where the `2 inner product is defined by

〈p, q〉`2 := p · q (2.5.9)

for p, q ∈ Rn.

Green’s identity for manifolds without boundary states∫
M
〈∇f,∇g〉`2 −

∫
M
f∆g = 0 [52, chapter 2, theorem 5.13]

for functions f, g :M→ R. Using this as an alternative definition for the Dirichlet

energy,

E(f) =

∫
M
〈∇f,∇f〉`2 =

∫
M
f∆f.

Then, discretising to a mesh M constructed from M with discrete Laplacian L =

A−1W gives, via equation (2.5.3),

E(f) ≈
∑
vi∈M

f(vi) (Lf(vi))Aii

=
n∑
i=1

fi(Lf)iAii

= fTA(Lf)

= fTAA−1W f

= fTW f . (2.5.10)

27

Definition 2.5.32: Let f : M → R be a function defined on mesh M , represented

by the vector f ∈ Rn. Then the discrete Dirichlet energy E(f) is defined to be

E(f) := fTW f

where W is the weight matrix of the Laplacian associated to M .

Proposition 2.5.33: The Laplacian eigenfunctions are critical points of the

problem

min
x∈Rn

xTWx subject to xTAx = 1.

Proof. The Lagrange multiplier function is given by

L(x, λ) = xTWx− λxTAx.

Differentiating with respect to x and equating with zero gives

2Wx− 2λAx = 0.

Rearranging and simplifying leads to the Laplacian eigenproblem

Wx = λAx,

and hence, Laplacian eigenfunctions are critical points of the Dirichlet energy.

Corollary 2.5.34: The matrix Φk minimises

min
X∈Rn×k

tr
(
XTWX

)
subject to XTAX = I.

Proof. This follows from proposition 2.5.28.

Corollary 2.5.35: tr
(
ΦT
kWΦk

)
=
∑k

i=1 λi.

28

Chapter 3

Generalised Manifold Harmonics

The Laplacian eigenfunctions are widely used in geometry processing [2],[3],[4],[5].

Some related functions include the recent works of localised manifold harmonics [6]

and Hamiltonian eigenfunctions [7], which aim to construct additional functions to

combat the loss of information due to basis truncation, and compressed manifold

modes which include a sparsity inducing condition. These functions all have a

similar form, minimising a trace subject to an orthogonality condition. Background

to these alternative basis methods is provided in the first two sections. The section

on compressed manifold modes includes the addition of scaling by the area matrix

into the `1 norm, and comments on the errors in the method presented in [9].

Here a general problem for finding orthogonal functions is posed, with solutions

referred to as generalised manifold harmonics. The formulation has Laplacian

eigenfunctions, localised manifold harmonics, Hamiltonian eigenfunctions and

compressed manifold modes as specific cases.

An important property of the Laplacian eigenfunctions is that, in the smooth case,

they commute with isometry. This is a well-exploited idea in geometry processing,

particularly in shape matching (see section 5.1) but a definition of isometry in the

discrete case is brushed over. Here a definition of a discrete isometry is presented,

constructed via an analogy to necessary and sufficient conditions for isometry

between Riemannian manifolds. It is then proved that Laplacian eigenfunctions,

29

localised manifold harmonics, Hamiltonian eigenfunctions and compressed manifold

modes commute with discrete isometry.

Finally, the conditions required for generalised manifold harmonics to commute with

discrete isometry are discussed.

3.1 Background: Supplementary Basis Functions

The eigenfunctions of a Laplacian constructed for a mesh N provide a basis for

the function space F(N,R). Any function can be projected in to a truncation

of this basis, but high frequency information is lost. This loss of information is

visualised well by considering the effect of the reconstruction of functions which

have small local support (such as a highly peaked delta function) or which have

unique values which are very close together (such as the vertex position functions).

Figure 3.1 shows the effect of basis truncation on a delta function, made visible on

the original mesh by a marker (in red) and on the vertex positions. The red patches

show the dispersion of the reconstructed delta function and the error in in vertex

reconstruction respectively.

Figure 3.1: The effect of basis truncation on reconstruction of (a) a delta function, (b)

vertex positions.

There has been some recent work which aims to combat the problem of loss of

detail due to truncation of the spectral basis; a consequence of removing high

frequency eigenfunctions. This section combines the methods presented at SGP

30

2017 in the posters ‘Localized Manifold Harmonics for Spectral Shape Analysis’

(Melzi et al) [6] (section 3.1.1) and ‘Schrödinger Operator for Sparse Approximation

of 3D Meshes’ (Choukron et al) [7] (section 3.1.2). The associated papers are [53]

and [54] respectively. The methods are very similar, and section 3.3 provides a

generalisation.

The driving idea behind the aforementioned methods is to construct an additional

set of basis functions, based on the eigenfunctions of a Laplacian, which in some way

compensate for the loss in high frequency eigenfunctions following basis truncation.

Throughout this section L denotes a discrete Laplacian matrix, formed by area

matrix A and weight matrix W , such that L = A−1W . The matrix Φk is the matrix

of the first k eigenfunctions of L, where columns correspond to eigenfunctions and

rows correspond to the value of the functions at a specific vertex. In [6] the number

of additional functions l is taken to be k
2
.

3.1.1 Localised Manifold Harmonics

In [6], given a mesh N , the aim is to construct a set of l functions ψi, stored as

columns in a matrix Ψ, which are

(i) eigenfunction-like, i.e. critical points of the Dirichlet energy; (The Dirichlet

condition)

(ii) A-orthonormal, with respect to the first k Laplacian eigenfunctions φj and

with respect to each other; (The orthogonality condition)

(iii) localised to a specified region, R. (The localisation condition)

To construct a minimisation problem which has the ψi as solutions consider each

condition separately.

31

The Localisation Condition

Let R be a subset of the vertices of M .

Definition 3.1.1: A function f is localised to a specific region R if it has local

support, i.e. f(x) = 0 if x /∈ R ⊆M .

The region R can be described via an indicator function on the vertices x ∈M ,

u(x) =

1, x ∈ R,

0, x /∈ R.

When searching for functions ψi which are localised to a region R, described by

indicator function u, consider a quadratic penalty which must be minimised:

min
ψi

∑
x

(ψi(x) (1− u(x)))2Axx (3.1.1)

where Axx associates the penalty to the area around the vertex x as defined the

(lumped) area matrix of the Laplacian calculated for M . Define

v(x) := (1− u(x))2 (3.1.2)

and note that v(x) = 1 if u(x) = 0 and v(x) = 0 if u(x) = 1. Then equation (3.1.1)

can be rewritten as

min
ψi

∑
x

ψi(x) (A diag(v(x)))xx ψi(x)

= min
ψi

ψTi A diag(v(x))ψi.

For a set of l functions {ψi} expressed as a matrix Ψ this becomes the minimisation

of a trace,

min
Ψ∈Rn×l

tr
(
ΨTA diag (v (x)) Ψ

)
. (3.1.3)

A major advantage of this method is the ability to choose exactly the area of focus for

the localised functions, unlike compressed manifold modes where the local support

32

depends on many variables, including mesh density and parameters within the

optimisation problem (see section 3.2). In [6], R is chosen by reconstructing vertex

positions in the truncated basis Φk, and selecting vertices which do not lie within

a certain distance from their original position. (Note, R may not be connected, or

consistent across pairs of meshes when applied to the standard matching problem.)

The Orthogonality Condition

The functions ψi must be A-orthogonal to the functions φj. That is,

ψTi Aφj = 0 ∀ ψi, φj where 1 ≤ i ≤ k and 1 ≤ j ≤ n.

In matrix form this can be written as ΨTAΦk = 0l×k, and the aim is to minimise

(with respect to Ψ)

‖ΨTAΦk‖2
F = tr

(
ΨTAΦkΦ

T
kAΨ

)
. (3.1.4)

The functions ψi must also be A-orthogonal to one another: ψTi Aψj = δij. This will

be enforced by adding the condition that ΨTAΨ = Il×l to the minimisation problem.

The Dirichlet Condition

The Dirichlet condition aims to find ψi which minimise Lψi. Recall from

proposition 2.5.33 and corollary 2.5.34 that when ΨTAΨ = I the Dirichlet energy is

minimised by Laplacian eigenfunctions, and that in matrix form the condition can

be written as

min
Ψ∈Rn×l

tr
(
ΨTWΨ

)
subject to ΨTAΨ = I.

Combining the Conditions

The localisation, orthogonality and Dirichlet conditions can be combined into the

following minimisation problem:

min
Ψ

tr
(
ΨT
(
W + µRA diag(v) + µ⊥AΦkΦ

T
kA
)

Ψ
)

subject to ΨTAΨ = Il×l, (3.1.5)

33

where µR and µ⊥ are scalar parameters which control the weighting of the

localisation and orthogonality terms respectively.

This can be solved as an eigenproblem, another significant feature of this method

of basis construction. As a consequence, it is simple to define an ordering on the

LMHs, achieved by sorting the eigenfunctions ψi in relation to their eigenfunctions

λi. The eigenvalues λi are given by

λi = ψTi
(
W + µRA diag(v) + µ⊥AΦkΦ

T
kA
)
ψi.

Definition 3.1.2: Solutions to the optimisation problem (3.1.5) are called localised

manifold harmonics (LMHs).

An alternative set of basis functions for a (k + l)-dimensional linear subspace of

F(N,R) is given by the columns of X =
[
Φk Ψ

]
, formed by concatenation of the

Φk and Ψ matrices. Figure 3.2 shows the reconstruction of the vertex positions

using a truncated basis of 100 Laplacian eigenfunctions, 150 eigenfunctions and the

first 100 eigenfunctions supplemented by 50 localised manifold harmonics. The local

area R was located by measuring the failure to reconstruct the vertex positions. Red

patches show areas with greatest reconstruction error. Figure 3.3 shows the failure

to meet the ΦT
kAΨ = I orthogonality condition. The left-hand matrix show the

matrix XTAX where X is the matrix of basis functions. The right-hand matrix

shows I −XTAX, which would be the zero matrix if X were truly A-orthonormal.

The set of LMH functions is close to being orthogonal, but there is some error. This

error lies between the Laplacian eigenfunctions and the additional LMHs. (For more

on this failure to met the orthogonality condition see section 4.3.1.)

3.1.2 Hamiltonian Eigenfunctions

In [7], given a mesh M with truncated eigenbasis Φk and a potential function

represented by an n×n diagonal matrix V , the aim is to find a new orthonormal basis

for F(N,R) which improves reconstruction of areas with fine detail. Clearly the idea

is very similar to that of the localised manifold harmonics, but the formulation of

the minimisation problem is slightly different.

34

Figure 3.2: The effect of basis truncation on reconstruction of vertex positions, improved

by the addition of a set of localised manifold harmonics.

Definition 3.1.3: Let L be a Laplacian for a mesh N with n vertices and let

V ∈ Rn×n be diagonal. A Hamiltonian operator H is defined to be

H := L+ µV, (3.1.6)

where µ is a scalar. The matrix V is called the potential.

The parameter µ controls the impact of the potential V : small µ leads to solutions

which minimise the total energy; µ = 0 will result in Laplacian eigenfunctions φ;

large µ will promote solutions which are close to being zero on areas with a high

potential. Note that the usual definition of H is given by H = −L + µV . Since

the sign of L depends on a choice of definition for L (L = −A−1W or L = A−1W),

removing the minus sign allows a straightforward combination of the method of

Hamiltonian eigenfunctions with LMHs.

Similar to the choice of region in the work on LMHs, V is chosen to be a diagonal

matrix which weights vertices, according to the distance between the original

position of the vertex and the position of the vertex when reconstructed in a

truncated Laplacian eigenbasis. Vertices with a large reconstruction error have a

small weight and vertices with a low reconstruction error have a large weight. Then,

setting µ to be large will result in functions ψ which are close to being zero on areas

which are well reconstructed in the Laplacian eigenbasis Φk.

The eigenproblem Hψ = λψ can be reformulated by multiplying on both sides by

35

Figure 3.3: Orthogonality of LMHs, the maximum absolute value of any non-zero entry

in the right-hand matrix is of order 10−1.

A:

(W + µAV)ψ = Aλψ. (3.1.7)

Lemma 3.1.4: Let L = A−1W be a discrete Laplacian. Then, the operator H :=

L+ µV is self-adjoint, with respect to A.

Proof. Assume A, V are diagonal matrices and assume W is a symmetric matrix.

Let f and g be vectors, then

〈Hf, g〉A = fTHTAg

= fT
(
LT + µV T

)
Ag

= f t
(
WA−1 + µV

)
Ag, since A, V,W are symmetric

= f t (W + µAV) g, since AV = V A

= fTA (L+ µV) g

= fTAHg

= 〈f,Hg〉A.

36

This means that the normalised eigenfunctions of a self-adjoint H will form an

A-orthonormal basis for F (M,R).

Solutions ψi to the eigenproblem (3.1.7) satisfy (W + µAV)ψi = λiAψi and are also

solutions to the minimisation problem

min
f

tr
(
fT (W + µAV) f

)
subject to fTAf = 1. (3.1.8)

For a set of l solutions the problem can be given in matrix form as

min
Ψ∈Rn×l

tr
(
ΨT (W + µAV) Ψ

)
subject to ΨTAΨ = Ψ, µ ∈ R, (3.1.9)

which can be solved as a generalised eigenproblem.

Definition 3.1.5: The solutions to equation (3.1.9) are called Hamiltonian

eigenfunctions.

In [7] the Hamiltonian eigenfunctions Ψ are used to complement the Laplacian

eigenfunctions and orthogonality between the two sets of functions is promoted via

an iterative method of solution (SOMP [55]) which also solves for an optimum value

for µ. In section 3.3 Hamiltonian eigenfunctions and localised manifold harmonics

are combined into a generalised equation, to which they are specific solutions.

3.2 Background: Compressed Manifold Modes

Compressed modes, introduced by Ozolinš et al. [8] and applied to geometry

processing by Neumann et al. [9], provide an alternative to Laplacian eigenfunctions.

A sparsity inducing term is used to obtain functions which are sparse minimisers of

the Dirichlet energy. Sparsity is induced by the addition of an `1 term to the usual

eigenproblem and leads to functions which have localised support. This section

begins with a discussion of the `1 norm and sparsity, followed by a description of

the compressed mode problem and an algorithm for finding solutions.

37

3.2.1 Sparsity and the `1 Norm

The `1 norm, also known as the taxicab distance is used in regression

analysis [56],[57], popularised in LASSO [58], to prevent overfitting – the fitting of

model too closely to known data, which prevents reliable forecasting. For the same

reason, it is important in machine learning [59]. Applications in geometry processing

include splines (piecewise polynomial curves used by CAD packages) [60],[61];

surface reconstruction [62]; shape matching [63]; and compressed manifold modes.

Definition 3.2.1: Let X be an m × n matrix. Let z be the number of elements

equal to zero. The sparsity of X is the percentage of zero elements:

Sparsity(X) =
z

mn
× 100.

A matrix with sparsity greater than a specific value ε (say ε = 50) is called sparse

and a matrix with sparsity less than of equal to ε is called dense.

The higher the sparsity, the less storage is required on a computer. Using

sparse matrices in calculations can also have significant benefit to run times [64].

This makes sparse matrices desirable. Unfortunately, although the Laplacian

eigenfunctions are easy to calculate (as solutions to a generalised eigenvalue

problem), a matrix of eigenfunctions will be dense. This is because, in general,

eigenfunctions are supported globally across the mesh.

Recall from definition 2.1.2 that the `1 norm of a matrix X is defined to be

‖X‖1 =
∑
ij

|Xij|.

To see how the `1 norm induces sparsity consider a comparison with the Euclidean

norm the two-dimensional case. (This becomes Frobenius norm for matrices.) Let

v = (x, y) ∈ R2 be such that ‖v‖1 = |x| + |y| = r and let w = (a, b) ∈ R2 such

that ‖w‖2 = (a2 + a2)
1
2 = r. Some values for v and w for different r are plotted in

figure 3.4.

Proposition 3.2.2: Let v ∈ Rn, then ‖v‖2 ≤ ‖v‖1 ≤
√
n‖v‖2.

38

Figure 3.4: The l1 norm in comparison to the l2 norm.

Proof. To show the first inequality

‖v‖2
2 =

∑
i

v2
i

=
∑
i

|vi|2

≤ (
∑
i

|vi|)2

≤ ‖v‖2
1.

Therefore ‖v‖2 ≤ ‖v‖1. For the second inequality denote the n-dimensional vector

with all entries equal to one by 1n. Then

‖v‖1 = |v|T1n

≤ (|v|T |v|)
1
2 (1Tn1n)

1
2 , by the Cauchy-Schwartz inequality,

≤ ‖v‖2

√
n.

Proposition 3.2.2 generalises to matrices via the Frobenius norm.

Proposition 3.2.3: Let X ∈ Rn×k, then ‖X‖F ≤ ‖X‖1 ≤
√
nk‖X‖F .

39

Proof. To show the first inequality

‖X‖2
F =

∑
ij

X2
ij

=
∑
ij

|Xij|2

≤ (
∑
ij

|Xij|)2

≤ ‖X‖2
1.

Therefore ‖X‖F ≤ ‖X‖1. For the second inequality denote the nk-dimensional

vector with all entries equal to one by 1nk. Then, recalling the vec operator defined

in definition 5.1.4,

‖X‖1 = vec(|X|)T 1nk

≤ (vec(|X|)T vec(|X|))
1
2 (1Tnk1nk)

1
2 , by the Cauchy-Schwartz inequality,

≤ ‖X‖F
√
nk.

Define the n-dimensional ball of radius r by

B(n, r) := {v ∈ Rn : ‖v‖2 ≤ r};

the (n− 1)-dimensional sphere of radius r by

S(n−1)
r := {v ∈ Rn : ‖v‖2 = r};

the n-dimensional l1 ball of radius r by

L(n, r) := {v ∈ Rn : ‖v‖1 ≤ r}.

Proposition 3.2.4: For n > 1, L(n, r) ⊂ B(n, r).

Proof. Let s ∈ L(n, r), then s = (s1, . . . , sn) such that
∑

i |si| ≤ r. The point s has

one of two forms:

40

(i) si = ±r for one i, sj = 0 for all j 6= i,

(ii) |si| < r for all i.

Points of form (i) clearly lie in B(n, r). Let s be a point of form (ii) and consider

‖s‖2
2:

‖s‖2
2 ≤ ‖s‖2

1, via proposition 3.2.2,

≤ r2, since
∑
i

|si| ≤ r as s ∈ L(n, r) . (3.2.10)

It follows that ‖s‖2 ≤ r so s ∈ B(n, r) and L(n, r) ⊆ B(n, r).

To see that L(n, r) ⊂ B(n, r) consider the point b ∈ Rn with all entries bi = r√
n
.

Then

‖b‖2 =

(
n
r2

n

) 1
2

= r so b ∈ B(n, r) , but

‖b‖1 = n

∣∣∣∣ r√n
∣∣∣∣ = r

√
n so b /∈ L(n, r) .

Corollary 3.2.5: The intersection L(n, r) ∩ S(n−1)
r is given by the set of all points

of the form s = (s1, . . . , sn) such that si = ±r for one i, sj = 0 for all j 6= i.

Proof. Let s ∈ L(n, r) ∩ S(n−1)
r . Then, since s ∈ L(n, r),

(
∑
i

|si|)2 ≤ r2, via (3.2.10),∑
i

|si|2 +
∑
i 6=j

|si||sj| ≤
∑
i

s2
i , since s ∈ S(n−1)

r .

Therefore, since
∑

i |si|2 =
∑

i s
2
i , the sum

∑
i 6=j |si||sj| is equal to zero. This is only

possible when at most one of the si is non-zero, therefore s must be of the form

s = (s1, . . . , sn) such that si = ±r for one i, sj = 0 for all j 6= i.

Corollary 3.2.6: Minimisers of the problem

arg min
v
‖v‖1 subject to vTv = r2 (3.2.11)

41

are given by v of the form s = (s1, . . . , sn) such that si = ±r for one i, sj = 0 for

all j 6= i.

Proposition 3.2.7: Let D be a k × k diagonal matrix with Dii > 0 for all i. Then

the minimiser X∗ ∈ Rn×k of ‖X‖1 such that XTX = D is given by

X∗ = Π

[
D

1
2

0

]
,

where Π is an n× n permutation matrix.

Proof. First note that the condition XTX = D is equivalent XT
i Xj = Diiδij for all

(ij) pairs, where Xi denotes the i-th column of X, and that ‖X‖1 =
∑

i‖Xi‖1. This

means that ‖X‖1 can be minimised by minimising ‖Xi‖1 for each i, subject to the

conditions.

By corollary 3.2.6 ‖Xi‖1 is minimised by a column of form (i), with r =
√
Dii. To

enforce the XT
i Xj = 0 condition for i 6= j it must be that the index of the non-zero

element of Xi is distinct for each i. The non-zero element can appear in any row of

the n×k matrix solution but must correspond to the i-th element of the diagonal of

D. This can be expressed as as a permutation of the rows of the n× k block matrix

constructed by D
1
2 and an (n− k)× k zero matrix.

Let M be a symmetric positive definite matrix. Then the points x ∈ Rn such that

xTMx = 1 form an (n − 1)-dimensional ellipsoid. This can be used to generalise

proposition 3.2.4.

Definition 3.2.8: An n-dimensional ellipsoid with semi-axes lengths

{ 1√
λ1
, . . . , 1√

λn
}, is defined to be

EM = {x ∈ Rn+1 : xTMx = 1}, (3.2.12)

where M is a symmetric positive definite matrix with (non-negative) eigenvalues λi.

To see that this definition describes ellipsoids consider the diagonalisation of M :

M = QDTQT where Q is an n × n orthogonal matrix and D is an n × n diagonal

42

matrix with entries given by the eigenvalues λi of M . Any x ∈ Rn can be written

as x = QTy for y ∈ Rn and orthogonal Q. Then EM = {y ∈ Rn : yTQDQTy = 1}
where M = QDQT and it follows that EM is (n− 1)-dimensional ellipsoid.

Define the n-dimensional ellipsoidal ball by

EM := {v ∈ Rn : vTMv ≤ 1},

and define

b := max
i
{Mii}.

Note that since M is positive definite b is the largest element in M . (For proof

see A.4.)

Proposition 3.2.9: for n > 1, L(n, 1√
b
) ⊂ EM .

Proof. Let s ∈ L(n, 1√
b
) then s = (s1, . . . , sn) such that

∑
i|si| ≤

1√
b
. Then s has

one of two forms:

1. si = ± 1√
b

for one i, sj = 0 for all j 6= i,

2. |si| < 1√
b

for all i.

Point of form 1 lie in EM since

sTBs =
∑
ij

siMijsj = s2
iMii =

Mii

b
≤ 1,

since Mii ≤ b = maxi{Mii} for all i.

Let s be of form 2, then

sTMs =
∑
ij

siMijsj

≤
∑
ij

|si||sj|Mij

≤ b
∑
ij

|si||sj|, since max
ij
{Mij} = max

i
{Mii} = b,

< b · 1

b
, since |si| <

1√
b

for all i,

43

and hence, points of form 2 lie in EM .

To show that L(n, 1√
b
) is not equal to EM define for ease of notation

α =

√∑
ij

Mij

and define the vector v to be the n-dimensional vector with every element equal to
1
α

. Then v ∈ EM since

vTMv =
∑
ij

1

α2
Mij

=
1

α2

∑
ij

Mij

=
α2

α2

= 1.

Then, since M is positive definite not all entries of M are equal (see A.5 for proof)

and so ∑
ij

Mij <
∑
ij

b.

That is

α2 < n2b

therefore

α < n
√
n

and, as α, b > 0,

1√
b
<
n

α
.

The `1 norm of v is given by

‖v‖1 =
n∑
i=1

1

α

=
n

α

>
1√
b
.

44

Hence v /∈ L
(
n, 1√

b

)
and L(n, 1√

b
) ⊂ EM .

3.2.2 Compressed Manifold Modes via ADMM

The usual Laplacian eigenproblem (via equation (2.5.34)) can be altered to produce

functions which behave like eigenfunctions (minimising the Dirichlet energy) but

which are also sparse. This is achieved by adding an `1 term to the function which

is to be minimised.

Definition 3.2.10: Let A,W ∈ Rn×n with A symmetric positive definite and W

symmetric semi-positive definite. Let Ψ ∈ Rn×k with k ≤ n. Solutions to the

problem

arg min
Ψ

tr
(
ΨTWΨ

)
+ µ‖AΨ‖1 subject to ΨTAΨ = I, (3.2.13)

are called compressed manifold modes (compressed modes/CMMs). The

parameter µ is called the sparsity parameter.

Note that the `1 term differs from [9], using ‖AΦ‖1 instead of ‖Φ‖1. The weighting

by area more accurately represents the smooth case: Let M be a smooth manifold

and let f :M→ R, then the continuous `1 norm of f is defined to be

‖f‖L1
:=

∫
M
|f(x)|da

where da is the standard area element onM [65]. To discretise this let M be a mesh

obtained from M, then, via the discretisation of the integral,

‖f‖L1 ≈
∑
i

|f(vi)|Aii

where Ai denotes an area associated to the vertex vi. For a diagonal area matrix A

this is equal to ‖Af‖1. This is mentioned in [66],[63] and discussed in [65], which

also presents a weighting based on one-ring neighbourhoods of vertices. However,

it is shown that the alternative weighting is not significantly different [65, figure 2],

and hence the simpler area-based weighting is used here.

45

The sparsity parameter controls the weighting given to the `1 term. When the

sparsity parameter µ = 0 the solutions to the CMM problem are the Laplacian

eigenfunctions. A small µ prioritises the trace term. Recall that this is a

discretisation of the Dirichlet energy and minimising it promotes smoothness which

in the discrete case means the promotion of solutions which do not have extreme

difference between values at neighbouring vertices. A large µ prioritises the `1 term,

resulting in very sparse solutions, where there are extreme differences between the

values at neighbouring vertices. Choosing a µ such that a solution is both sparse

and Dirichlet energy-minimising results in a solution which focuses energy in local

regions. (See [67] for a smooth-case discussion of compact support varying with µ,

noting that their sparsity parameter is of the form 1
µ
.) Selecting such a µ is not simple

and usually involves some trial and error for each (N, k) pair, where N is a mesh

and k is the desired number of modes. Figure 3.5 shows the effect of the sparsity

parameter µ on the compressed manifold modes. Five modes were calculated via

ADMM for the homer mesh. Note that in the µ
n

= 1 case the algorithm did not

converge. For more on effect of the scaling of the `1 norm on the sparsity parameter

see remark 3.2.14.

46

Figure 3.5: The effect of the sparsity parameter on compressed manifold modes, calculated via ADMM for the homer mesh.

47

The addition of the `1 term makes finding solutions more complicated. Unlike

localised manifold harmonics there is no simple way to write ‖AX‖1 in the form

tr
(
XTQX

)
so the problem cannot be easily rearranged into an eigenproblem.

Despite this, in [65] an eigenproblem-based formulation of the CMM problem was

posed. Modes are calculated recursively; localisation is enforced via a potential

matrix, much as in LMH or Hamilton eigenfunction problems; orthogonality with

previously calculated modes is enforced via an `2 regularisation term. The paper is

vague on the construction of the potential matrix used to control sparsity, so this

method is not implemented here.

In [9] an algorithm for calculating compressed manifold modes via ADMM is given.

The algorithm, including explicit solutions for the ADMM steps is given below. The

algorithm has been generalised for the area-weighted `1 term.

To aid the splitting of the CMM problem, equation (3.2.13) is rewritten as

arg min
Ψ

tr
(
ΨTWΨ

)
+ µ‖AΨ‖1 + ι(Ψ) , (3.2.14)

where ι : Rn×k → {0,∞} is the indicator function defined by

ι(Ψ) =

0, if ΨTAΨ = I,

∞, otherwise.

This can then be split as in the ADMM algorithm, with the f(X) part given by

ι(Ψ); the g(Z) part is given by setting

Z =

[
E

S

]
, g(Z) =

[
tr
(
ETWE

)
µ‖AS‖1

]
,

and the linear condition is given by[
I

I

]
Ψ +

[
−I 0

0 −I

][
E

S

]
= 0.

Given an initial Ψ0, set E0 = S0 = Ψ0, UE
0 = US

0 = 0 ∈ Rn×k. The iterative steps of

48

the algorithm are then given by

The Ψ step: Ψk+1 := arg min
Ψ

ι(Ψ) +
ρ

2

∥∥∥∥∥
[

Ψ

Ψ

]
−

[
Ek

Sk

]
+

[
UE
k

US
k

]∥∥∥∥∥
2

F

, (3.2.15)

The E step: Ek+1 := arg min
E

tr
(
ETWE

)
+
ρ

2
‖Ψk+1 − E + UE

k ‖2
F , (3.2.16)

The S step: Sk+1 := arg min
S

µ‖AS‖1 +
ρ

2
‖Ψk+1 − S + US

k ‖2
F , (3.2.17)

The U step: UE
k+1 := UE

k + Ψk+1 − Ek+1,

US
k+1 := US

k + Ψk+1 − Sk+1.

The Ψ, E and S steps can all be solved via an explicit formula.

The Ψ Step: The optimisation in this can be rephrased as

arg min
Ψ

ρ

2

∥∥∥∥∥
[

Ψ

Ψ

]
−

[
Ek

Sk

]
+

[
UE
k

US
k

]∥∥∥∥∥
2

F

, subject to ΨTAΨ = I. (3.2.18)

For ease of notation define Ê = E − UE
k , Ŝ = S − US

k . First note that

‖Ψ− 1

2
(Ê + Ŝ)‖2

F = ‖Ψ‖2
F +

1

2
‖Ê + Ŝ‖2

F − tr
(

ΨT (Ê + Ŝ)
)

, by A.6.

(3.2.19)

Then the norm can be rearranged:∥∥∥∥∥
[

Ψ

Ψ

]
−

[
Ek

Sk

]
+

[
UE
k

US
k

]∥∥∥∥∥
2

F

= ‖Ψ− Ê‖2
F + ‖Ψ− Ŝ‖2

F , by A.7,

= 2‖Ψ‖2
F + ‖E‖2

F + ‖S‖2
F − 2 tr

(
ΨT (Ê + Ŝ)

)
, via A.6,

= 2‖Ψ− 1

2
(Ê + Ŝ)‖2

F − ‖Ê + Ŝ‖2
F + ‖E‖2

F + ‖S‖2
F ,

via (3.2.19),

= 2‖Ψ− 1

2
(Ê + Ŝ)‖2

F − 2 tr
(
ÊT Ŝ

)
, again via A.6.

Therefore the Ψ step problem (3.2.18) can be rephrased as

arg min
Ψ
‖Ψ− Y ‖2

F subject to ΨTAΨ = I (3.2.20)

49

by disregarding constant terms and scalars, and where Y := 1
2
(Ek +Sk −UE

k −US
k).

Let A = I and Y be full rank. Then, problems of the form (3.2.20) are minimised

by

Ψ = Y V D−
1
2V T (3.2.21)

where V DV T is the singular value decomposition of Y TY [68, Theorem 1]. To

generalise this for the A 6= I case, let LLT = A be the Cholesky decomposition of

A (see section 2.2) and substitute X = LTΨ in to problem (3.2.20) to get

arg min
X
‖(LT)−1X − Y ‖2

F subject to XTX = I. (3.2.22)

However the solution from [68] assumes L = I and does not generalise for any

diagonal matrix, as claimed in [9]. This error is noted in [66, section 7]. A similar

error is made in [69, equation 5.18], assuming that DΦ = ΦD for diagonal D.

A solution to equation (3.2.20) can be found in the A = rI case. The Lagrangian

equation is given by

L(Ψ,Λ) = tr
(
ΨTΨ

)
− 2 tr

(
ΨTY

)
+ tr

(
Y TY

)
+ tr

(
ΛΨTAΨ

)
− tr(Λ) ,

where Λ is a matrix of Lagrange multipliers. Differentiating with respect to Ψ and

equating with zero gives

2Ψ + AΨΛT + AΨΛ = 2Y.

When A = rI, r ∈ R, this can be rearranged to

Ψ(I +
r

2
(Λ + ΛT)) = Y. (3.2.23)

Then, since differentiating with respect to Λ gives ΨTAΨ, the product Y TAY is

given by

rY TY = (I +
r

2
(Λ + ΛT))TΨTAΨ(I +

r

2
(Λ + ΛT))

= (I +
r

2
(Λ + ΛT))T (I +

r

2
(Λ + ΛT))

= (I +
r

2
(Λ + ΛT))2.

50

That is,

(I +
r

2
(Λ + ΛT)) =

√
r(Y TY)

1
2

=
√
rV D

1
2V T

where V DV T = Y TY is the singular value of Y TY . Then, returning to equation

(3.2.23),

Ψ = Y (
√
rV D

1
2V T)−1

=
1√
r
Y V D−

1
2V T . (3.2.24)

Hence, it is possible to generalise for area matrices of the form rI, r ∈ R+, (L =
√
rI)

as the scalar will commute with the matrices. This could be an intentional choice

(as in example 2.5.17.(i)) but is unlikely to be the case from any other method of

constructing the area matrix, e.g. example 2.5.17.(ii).

Let n be the number of vertices, and set r = 1/n. Then, when the variance of the

elements of the area matrix is small (see figure E.4), the matrices rY TY and Y TAY

are almost equal. More formally, let ε = maxi{|Aii − r|}, then

(rY TY)ij =
1

n

∑
l

YliYlj

(Y TAY)ij =
∑
l

YliYljAii

≤
∑
l

YliYlj(r + ε)

=
1

n

∑
l

YliYlj + εn
∑
l

YliYlj

= (rY TY)ij + nε(rY TY)ij.

Therefore

‖rY TY − Y TAY ‖F ≤ ‖εnrY TY ‖F = εn‖rY TY ‖F , (3.2.25)

which tends to zero as ε tends to zero. Let the singular values for rY TY and

Y TAY be denoted by σi and σ̃i respectively. Then combining equation (3.2.25) with

51

the application of results from matrix perturbation theory (Mirsky’s theorem [70,

theorem 4.7]) gives

‖diag(σ1 − σ̃1, . . . , σk − σ̃k)|F ≤ ‖rY TY − Y TAY ‖F
≤ εn‖rY TY ‖F .

Therefore, in practice, the approximation A = 1
n
I is used. The output matrix can

be used to construct an A-orthogonal Ψ via application of Gram-Schmidt.

The E Step: The minimiser of (3.2.16) can be found by differentiating. Let Ê :=

Ψk+1 + UE
k , then

Ek+1 = arg min
E

tr
(
ETWE

)
+
ρ

2
‖Ê − E‖2

F

= arg min
E

tr
(
ETWE

)
+
ρ

2

(
tr
(
ÊT Ê

)
+ tr

(
ETE

)
− 2 tr

(
ÊTE

))
.

Differentiating and equating with zero gives

2WE +
ρ

2
(2E − 2Ê) = 0

and so

(2W + ρI)E = ρÊ

E = ρ(2W + ρI)−1(Ψk+1 + UE
k) [9, equation (17)]. (3.2.26)

The S Step: The S step can be solved explicitly by using the soft thresholding

operator, a specific case of proximal operator. This solution for A = I is given in [9,

(18)] and generalised here for the case where A is any diagonal matrix.

Definition 3.2.11: Let f : Rn → R be a real-valued function. The proximal

operator proxf : Rn → Rn is defined by

proxf (v) = arg min
x

f(x) +
1

2
‖x− v‖2

2 [71, equation 1.1]. (3.2.27)

52

Definition 3.2.12: The soft thresholding operator Sκ : R → R is defined, for

a, κ ∈ R, to be [20, 4.4.3]

Sκ(a) =

a− κ if a > κ

0 if |a| ≤ κ

a+ κ if a < −κ.

(3.2.28)

The soft thresholding operator is the proximal operator of the absolute value function

defined by x 7→ κ|x| for some κ > 0. Figure 3.6a shows the function f(x) =

κ|x| + 1
2
(x − a)2 for some values of a and figure 3.6b shows the value of the soft

thresholding operator as a varies.

(a) (b)

Figure 3.6: Sκ(a) = arg minx κ|x|+ 1
2(x− a)2

The following theorem generalises the soft thresholding operator for the matrix case

with a (diagonally) weighted `1 term.

Theorem 3.2.13: Let B be an n× n diagonal matrix with Bii > 0 and let X,C ∈
Rn×k. The minimisation problem

arg min
X

µ‖BX‖1 + σ‖X − C‖2
F

has solution X∗ given element-wise by

X∗ij = sgn(Cij) max

{
|Cij| −

µBii

2σ
, 0

}
.

53

Proof. First consider a one-dimensional problem: let x, c, b, µ, σ ∈ R, with b, µ, σ > 0

and consider the minimisation problem

arg min
x

µ|bx|+ σ(x− c)2. (3.2.29)

Define f(x) := µ|bx| + σ(x− c)2. To find a minimiser, differentiate with respect to

x and equate with zero.

Assume bx > 0 so sgn(x) = 1, resulting in

∂f

∂x
= µb+ 2σ(x− c) = 0

x = −µb
2σ

+ c,

therefore

0 < −µb
2σ

+ c, since x > 0.

µb

2σ
< c.

Assume bx < 0 so sgn(x) = −1, resulting in

∂f

∂x
= −µb+ 2σ(x− c) = 0

x =
µb

2σ
+ c,

therefore

0 >
µb

2σ
+ c, since x < 0.

−µb
2σ

> c.

That is, for x 6= 0 the value of c must be such that |c| > µb
2σ

. Consider, then, the

x = 0 case: when |c| ≤ µb
2σ

it must be that x = 0. Note that, since b, µ, σ > 0,

sgn(c) = sgn(x). In summary,

x =

sgn(c) (|c| − µb
2σ

), |c| > µb
2σ

0, |c| ≤ µb
2σ

= sgn(c) max

{
|c| − µb

2σ
, 0

}
. (3.2.30)

54

Now consider the matrix case:

X∗ = arg min
X

µ‖BX‖1 + σ‖X − C‖2
F

Expanding out the norms as sums of matrix elements gives

X∗ = arg min
X

µ
∑
ij

|(BX)ij|+ σ tr
(
(X − C)T (X − C)

)
.

Then, since B is diagonal and tr
(
ATB

)
=
∑

ij AijBij,

X∗ = arg min
X

µ
∑
ij

|BiiXij|+ σ
∑
ij

(Xij − Cij)2

= arg min
X

∑
ij

(
µ|BiiXij|+ σ(Xij − Cij)2

)
.

Therefore, a minimiser X∗ can be found by solving element-wise for X∗ij by

minimising µ|BiiXij|+ σ(Xij − Cij)2, and so, via (3.2.30),

X∗ij = sgn(Cij) max

{
|Cij| −

µBii

2σ
, 0

}
.

From this an explicit solution to the S step can be found, when A is diagonal. (If

A is not diagonal, replace A with the lumped area matrix, see definition 2.5.18.)

Let Ŝ := Ψk+1 + US
k . The minimiser of (3.2.17) is then given by the matrix S with

elements defined by

Sij = sgn
(
Ŝij

)
max{|Ŝij| −

µAii
ρ

, 0}. (3.2.31)

To summarise, the algorithm for calculating compressed manifold modes via ADMM

is given in algorithm 3.

Remark 3.2.14: Note that the only step of the ADMM algorithm influenced by

the sparsity parameter µ is the S step. This is also the only step which is affected

by the decision to include an area weighting in the `1 term. Hence, the choice to

weight by area has a direct impact on the choice of sparsity parameter.

55

Algorithm 3 CMMs via ADMM

1: Given Ψ0 ∈ Rn×k, µ ∈ R, area and weight matrices A,W ∈ Rn×n

2: Set E0 = S0 = Ψ0, UE
0 = US

0 = 0 ∈ Rn×k

3: Set regularisation parameter ρ > 0

4: repeat

Y ← 1

2
(Ek + Sk − UE

k − US
k)

V DV T = Y TY , the svd

Ψk+1 ←
√
nY V D−

1
2V T

Ek+1 ← ρ(2W + ρI)−1(Ψk+1 + UE
k)

(Sk+1)ij ← sgn
(
(Ψk+1 + US

k)ij
)

max{|(Ψk+1 + US
k)ij| −

µAii
ρ

, 0}

UE
k+1 ← UE

k + Ψk+1 − Ek+1

US
k+1 ← US

k + Ψk+1 − Sk+1

5: until convergence

56

Consider a set of modes constructed using sparsity parameter µ̄, and S step without

area weighting – the S matrix produced without area weighting has entries

Sij = sgn
(
Ŝij

)
max{|Ŝij| −

µ̄

ρ
, 0}.

Compare this with equation (3.2.31) – to get the same S matrix it must be that

µ

ρ
Aii =

µ̄

ρ
.

Then, using the Aii = 1
n

assumption as above,

µ

n
= µ̄

µ = µ̄n.

That is, to compare modes calculated with area weighting in the `1 term to modes

calculated without area weighting the sparsity parameter should be scaled by the

number of vertices.

At points, to aid comparisons, the value µ
n

is fixed and µ calculated accordingly.

(For example, see figure 3.5.)

Sequential ADMM for CMMs

In [72] a method for finding compressed manifold modes in a sequential way was

proposed. The method is based on the above ADMM formulation, with an alteration

in the Ψ step. In practice the algorithm is supplemented by an acceleration step.

The sequential CMM problem is as follows: Given k compressed manifold modes

ψ1, . . . , ψk, stored as columns of matrix Ψk, find the minimiser of

arg min
ψk+1

ψTk+1Wψk+1 + µ‖Aψk+1‖1 subject to ψTk+1Aψk+1 = 1, ψTk+1AΨk = 0.

(3.2.32)

Following the method of [9] this can rewritten as

arg min
ψk+1

ψTk+1Wψk+1 + µ‖Aψk+1‖1 + ι(ψk+1) , (3.2.33)

57

where ι : Rn → {0,∞} is the indicator function defined by

ι(ψk+1) =

0, if ψTk+1Aψk+1 = 1, ψTk+1AΨk = 0,

∞, otherwise.

This can be split in the same way as above, with identical E and S step solutions

(adjusted for vectors). The difference lies in the ψk+1 step, as the orthogonality

condition is made more complex by the condition that ψTk+1AΨk = 0.

There are several benefits to a sequential method: after constructing a set of k modes

further modes can be calculated if required; the parameter µ can be calibrated using

only one mode (or a small number of modes), a more reliable process than calculating

an entire set only to reject them because of a poor µ choice; calculation times may

be improved.

3.2.3 A canonical ordering for CMMs

As the solution to equation 3.2.10 can vary up to permutation of matrix columns

it is desirable to have a method of ordering modes. To do this requires a set of

“eigenvalues” – a number associated to each mode. A possible definition is provided

in [66] for the case where the `1 norm does not include a scaling by the area matrix.

A generalisation is provided here.

Recall that a matrix Ψ consisting of k CMMs satisifes

arg min
Ψ

tr
(
ΨTWΨ

)
+ µ‖AΨ‖1 subject to ΨTAΨ = I.

Then the Lagrange multiplier function is given by

L(Ψ,Λ) = tr
(
ΨTWΨ

)
+ µ‖AΨ‖1 − tr

(
Λ(XTAX − I)

)
.

(For proof see [66, lemma 4.1], generalised for A-orthogonality.) Differentiating with

respect to Ψ and equating with zero gives

2WΨ + µA sgn(Ψ)− 2AΨΛ = 0.

58

Then rearranging and multiplying on the left by Ψ gives

Λ = ΨTWΨ +
µ

2
ΨTA sgn(Ψ) .

Considering individual columns ψi of Ψ the number λi := Λii is given by

λi = ψTi Wψi +
µ

2
ψTi A sgn(ψ) .

Note that ψTi A sgn(ψ) = ‖Aψi‖1 and so

λi = ψTi Wψi +
µ

2
‖Aψi‖1,

and hence there is a number which can be associated to each mode, in a similar way

to eigenvalues and eigenfunctions.

Definition 3.2.15: Let ψ be a compressed manifold mode calculated for a mesh

M with Laplacian L = A−1W and sparsity parameter µ. The compressed

eigenvalue, λ, associated to ψ is the number

λ = ψTWψ +
µ

2
‖Aψ‖1.

Remark 3.2.16: From here it is assumed that compressed manifold modes

{ψ1, . . . , ψk} are sorted such that the associated compressed eigenvalues λ1 ≤ . . . ≤
λk.

Figure 3.7 shows a comparison of Laplacian eigenfunctions, localised manifold

harmonics and compressed manifold modes on the horse0 mesh. The LMHs were

calculated with reference to the reconstruction of the vertex positions.

59

Figure 3.7: A comparison of basis functions on the horse0 mesh.

60

3.3 Generalised Manifold Harmonics

A general problem can be constructed, which encompasses the alternative basis

methods of the previous sections.

Let Q and M be n × n matrices, and let Ψ be a n × k matrix. Consider the

minimisation problem

arg min
Ψ∈Rn×k

tr
(
ΨTQΨ

)
+ µff (Ψ) subject to ΨTMΨ = I (3.3.34)

where f (Ψ) is some function of Ψ and µf ∈ R.

Definition 3.3.1: Solutions to equation (3.3.34) are called generalised manifold

harmonics.

Examples 3.3.2: Generalised manifold harmonics have all the basis functions of

sections 3.1 and 3.2 as specific cases: Let L = A−1W be a Laplacian and let Q =

W + µVAV + µ⊥AΦΦTA, M = A. As before Φk denotes the matrix of the first k

Laplacian eigenfunctions and µV , µ⊥ ∈ R. Then the minimisation problem (3.3.34)

results in

(i) Laplacian eigenfunctions (equation (2.5.34)), when µV = µ⊥ = µf = 0;

(ii) localised manifold harmonics (equation (3.1.5)), when µf = 0 and V = diag(v),

where v is the region penalty function defined in equation (3.1.2);

(iii) Hamiltonian eigenfunctions (equation (3.1.9)), when µf = 0, µ⊥ = 0 and V is

diagonal;

(iv) compressed manifold modes (equation (3.2.13)), when µV = 0, µ⊥ = 0 and

f (Ψ) = ‖AΨ‖1.

Before considering the solutions to the generalised manifold harmonic minimisation

problem first note the following lemma:

61

Lemma 3.3.3: Let A and B be m × n matrices, then
∑

ij (A�B)ij = tr
(
ABT

)
,

where � denotes the Hadamard product.

Proof. ∑
ij

(A�B)ij =
∑
ij

AijBij, by definition of the Hadamard product,

=
∑
ij

Aij
(
BT
)
ji

=
∑
i

(
ABT

)
ii

= tr
(
ABT

)
.

Theorem 3.3.4: Solving the generalised manifold harmonic minimisation problem

(3.3.34) is equivalent to solving(
Q+QT

)
Ψ + µf∂f (Ψ) = MTΨΛ +MΨΛT , subject to ΨTMΨ = I, (3.3.35)

where ∂f (Ψ) := ∂f(Ψ)
∂Ψ

, and Λ is a k × k matrix of unknowns.

Proof. Solve (3.3.34) for Ψ via Lagrange multipliers, first noting that the condition

ΨTMΨ = I can be rephrased as k2 conditions of the form Pij = 0, where Pij =(
ΨTMΨ

)
ij
− δij = ψTi Mψj − δij, where ψi denotes the i-th column of Ψ. The

Lagrange multiplier function is then given by

L(Ψ,Λ) = tr
(
ΨTQΨ

)
+ f (Ψ)−

∑
ij

ΛijPij,

where Λ is a k × k matrix of variables Λij, so

L(Ψ,Λ) = tr
(
ΨTQΨ

)
+ µff (Ψ)−

∑
ij

(Λ� P)ij ,

where � denotes the Hadamard product,

= tr
(
ΨTQΨ

)
+ µff (Ψ)− tr

(
ΛP T

)
, by lemma 3.3.3

= tr
(
ΨTQΨ

)
+ µff (Ψ)− tr

(
Λ
(
ΨTMTΨ− I

))
= tr

(
ΨTQΨ

)
+ µff (Ψ)− tr

(
ΛΨTMTΨ

)
+ tr (Λ) . (3.3.36)

62

Then, denoting ∂
∂X
f (X) by ∂f (X),

∇ΨL (Ψ,Λ) =
(
Q+QT

)
Ψ + µf∂f (Ψ)−

(
MTΨΛ +MΨΛT

)
,

∇ΛL (Ψ,Λ) = Ik×k −ΨTMΨ.

This results in the following system of equations:

(1)
(
Q+QT

)
Ψ + µf∂f (Ψ) = MTΨΛ +MΨΛT ,

(2) ΨTMΨ = I.

Remark 3.3.5: For the specific case where where f (Ψ) = ‖AΨ‖1 as in compressed

manifold modes, ∂f (Ψ) = sgn (AΨ).

Proof. Let f (Ψ) = ‖AΨ‖1. Then,

∂f (Ψ) =
∂f (Ψ)

∂Ψ

=
∂‖AΨ‖1

∂Ψ

=
∂

∂Ψ
vec (AΨ)T vec (sgn (AΨ)) , by lemma A.8,

and, by considering the entries of ∂f (Ψ),(
∂

∂Ψ
vec (AΨ)T vec (sgn (AΨ))

)
ij

=
∂

∂Ψij

∑
ij

(AΨ)ij sgn
(

(AΨ)ij

)
= sgn ((AΨij)) .

Therefore, ∂f (Ψ) = sgn (AΨ) and the problem becomes

(1)
(
Q+QT

)
Ψ + sgn (AΨ) = MTΨΛ +MΨΛT

(2) ΨTMΨ = I

which can be solved via ADMM (see section 2.4.2).

63

Aside from the dimensional constraints the matrices Q and M are free from

restriction. First, note that Q + QT is symmetric by construction, and so consider

a symmetry constraint on M . This will simplify the system of equations obtained

in theorem 3.3.4.

Lemma 3.3.6: Let L (Ψ,Λ) be the Lagrangian multiplier function where Λ is the

matrix of λij associated to the equations ψTi Mψj−δij = 0. Then, if M is symmetric

so is Λ.

Proof. If M is symmetric then ψTi Mψj =
(
ψTi Mψj

)T
, since the product is a scalar.

Therefore ψTi Mψj = ψTj M
TψTi = ψjMψi. Then, since δij = δji the equations

ψTi Mψj− δij = 0 and ψTj Mψi− δji = 0 are equivalent, and are, therefore, associated

to the same Lagrangian variable λij. This results in the matrix Λ where λij = λji;

that is, Λ is symmetric.

When the symmetric matrix M is given by an area matrix it will always be invertible

(as area matrices are positive definite), so assume also that M is invertible. Then

when the parameter µf = 0 the generalised manifold harmonics problem can be

solved as an eigenproblem.

Theorem 3.3.7: Let µf be equal to zero and M be symmetric and invertible. Then

solution to the generalised manifold harmonic problem is given by the matrix with

columns ψi, where ψi are the eigenfunctions satisfying
(
Q+QT

)
ψi = λiMψi, and

λi are the k smallest eigenvalues. The matrix Λ is given by the diagonal matrix with

elements Λii = λi, 0 elsewhere.

Proof. Define Q̄ := 1
2
(Q + QT), then, via theorem 3.3.4, the solution Ψ is found by

solving the system of equations given by

(1) Q̄Ψ = MΨΛ,

(2) ΨTMΨ = I,

64

The proof is in two parts. Let the generalised eigenvalue problem Q̄f = λMf be

solved by eigenvalue/vector pairs (λi, ψi).

(i) The matrix Ψ̄ = (ψ1, · · · , ψk) is a solution to Q̄Ψ = MΨΛ̄ where Λ̄ is the matrix

with diagonal entries λi and all other entries equal to zero.

To see this, consider Q̄Ψ̄ = MΨ̄Λ, and solve for the values Λij. First, multiply by

Ψ̄T on the left, giving

Ψ̄T Q̄Ψ̄ = Ψ̄TMΨ̄Λ

then since Ψ̄TMΨ̄ = I (via lemmas A.2 and A.3), it must be that

Λij = ψiQ̄ψj

= ψi (λjMψj) , since Q̄ψj = λjMψj, by the initial assumption,

= λjψiMψj

= λjδij, since eigenfunctions of Q̄f = λMf are M -orthogonal.

That is, Λij = λi if i = j and zero otherwise.

(ii) If Λ is diagonal with entries λi then the columns of Ψ are eigenvectors and λi

are the corresponding eigenvalues.

To see this let Λ be a diagonal matrix, then consider QΨ = MΨΛ where columns

of Ψ are denoted by ψi. Then (Qψ1, · · · , Qψk) = (λ1Mψ1, · · · , λkMψk) so there are

k equations of the form Qψi = λiMψi, which is the generalised eigenvalue problem,

therefore (λi, ψi) are eigenvalue/vector pairs.

Corollary 3.3.8: Let M and Q̄ be symmetric m × m matrices, with M positive

definite, and Q̄ positive semi-definite. Then the eigenvalues of the generalised

eigenvalue problem Q̄f = λMf are non-negative.

Proof. By assumption, xT Q̄x ≥ 0 for all non-zero x, and yTMy > 0 for all non-zero

y. Consider an eigenvector f such that Q̄f = λMf . Multiplying by fT on the left

65

gives

fT Q̄f = λfTMf

fT Q̄f

fTMf
= λ,

which is non-negative for all f , as eigenvectors are non-zero.

Definition 3.3.9: Let Q,M ∈ Rn×n, with M symmetric and invertible. The

solutions to the problem

arg min
Ψ∈Rn×k

tr
(
ΨTQΨ

)
subject to ΨTMΨ = I (3.3.37)

are called generalised localised manifold harmonics (GLMHs).

3.4 Discrete Isometry

Given two meshes with the same number of vertices and a bijection between the

vertex sets, it is natural to ask if the meshes are in some way similar. In R2, with

the Euclidean metric, a set of points can be mapped via combinations of rotations,

reflections and translations without altering the distances or angles between any of

the points. These kinds of transformations are called isometries and the full set of

isometries in R2 is given by all rotations, reflections, translations, combinations of

reflections and translations, and the identity map. These types of translations are

often referred to as rigid motions. The notion of isometry becomes more complicated

when applied to surfaces, as the full set of isometries is not equal to the set of rigid

motions – there are more. To see this in an informal way, consider deforming a piece

of paper by adding a twist. The twisted paper is isometric to the original sheet, but

twisting is not a rigid motion.

The ideas of isometries between shapes are key to problems where the aim is to

find a map between shapes. However, in much of the shape matching literature the

language of an isometry between meshes is used, without giving a formal definition

of what is really meant. Informally, it is assumed that an isometry between meshes

66

takes faces to faces with the same shape and size. This assumption is used implicitly

in much of the existing geometry processing literature. The focus in applications is

often finding a map between meshes which are “near-isometric”, for example two

meshes representing the same animal in different poses (see figure 5.1). The following

list gives examples of occurrences of this informal assumption:

• Results are proved for isometries in the smooth case and presumed to carry

across to the “near-isometric” discrete case without issue [73],[5],[74];

• Ambiguous terminology – does “shape” mean manifold or mesh? [73],[75]; use

of “isometric” to mean “near-isometric” or “ε-isometric” [76],[77, section 3.4]?

• No reference to any definitions [78],[79],[12],[80],[10].

It is usually implied that an isometry between meshes is a map which preserves

geodesic distance between points, and this is the primary method of evaluating

quality of a point-to-point match [5],[78],[75],[81]. However, calculating geodesics

on meshes is demanding, and approximations can be calculated in a variety of ways,

see [82],[83],[84],[85].

In this section the definition of a discrete isometry between meshes is constructed

by analogy to the definition of an isometry between Riemannian manifolds, and is

related to the notion that an isomorphism between simple graphs can be represented

as a permutation [86, p.158]. This formulation of a discrete isometry is touched

upon in the proof of theorem 1 in the appendix of [87]. Here the assertion that an

isometry between meshes requires area and weight matrices to be equal is corrected

by inclusion of the permutation. Similarly, [88] uses an underlying graph to match

sets of voxels, recognising that isometry can be represented as a permutation of

the adjacency matrix, and constructing a matching based on the eigenbasis of the

adjacency matrix, with reference to [89].

Definition 3.4.1: Let (N , g) and (P , h) be Riemannian manifolds and let T : N →
P be a diffeomorphism. Then T is called an isometry if

g = T ∗h,

67

where T ∗h denotes the pullback of h by T . The manifolds N and P are said to be

isometric.

To discretise this definition a sufficient and necessary condition is exploited. This

first requires the following definitions:

Definition 3.4.2: Let (N , g) be a Riemannian manifold and let f, f̄ be functions

N → R. Then the L2 inner product is defined to be

〈f, f̄〉L2 :=

∫
M
ff̄dµR (3.4.38)

where dµ is the volume form.

Definition 3.4.3: Let (N , g) be a Riemannian manifold and let f, f̄ be functions

N → R. Then the conformal inner product is defined to be

〈f, f̄〉Nconf =

∫
N
〈∇f,∇f̄〉N`2dµ,

where dµ is the volume form. (Recall the `2 inner product from equation ??.)

Definition 3.4.4: Let (N , g) and (P , h) be Riemannian manifolds and let T : N →
P be a diffeomorphism. Then T is area-preserving if

〈f, f̄〉NL2 = 〈f ◦ T−1, f̄ ◦ T−1〉PL2 ,

where f, f̄ are functions N → R and T is conformal if

〈f, f̄〉Nconf = 〈f ◦ T−1, f̄ ◦ T−1〉Pconf ,

where f, f̄ are functions N → R.

Theorem 3.4.5: Let (N , g) and (P , h) be Riemannian manifolds and let T : N → P
be a diffeomorphism. Then T is an isometry if and only if T is area-preserving and

conformal. [90, chapter 8, theorem 5]

Note the similarity between the Dirichlet energy (equation (2.5.8)) and the conformal

inner product. The conformal inner product can be discretised by following an

68

analogous chain of reasoning (see equation (2.5.10)). That is, for meshN constructed

from N ,

〈f, f̄〉Nconf ≈ fTWN f̄ , (3.4.39)

where WN is a weight matrix for mesh N constructed from N and the vectors f , f̄

are constructed by evaluating the functions f, f̄ on the vertices of N . Similarly, via

equation (2.5.3), the L2 inner product discretises to

〈f, f̄〉NL2
≈ fTAN f̄ , (3.4.40)

where AN is an area matrix for N .

Let N and P be manifolds, with bijection T : N → P . Let N be a mesh constructed

from N , then a vertex set for a mesh P constructed from P can be obtained via

the restriction of T to VN . In this chapter we consider the map between vertex

sets (T : VN → VP). In later chapters, since the distinction between meshes and

manifolds is clear, this restriction is denoted by T : N → P .

Definition 3.4.6: Let N be a mesh with vertex set VN = {x1, . . . , xn}, let P be a

mesh with vertex set VP = {y1, . . . , yn} and let T : VN → VP be a bijection. Then

the permutation matrix representing T, denoted by Π, is an n× n orthogonal

matrix with entries defined by

Πij =

1, if T (xi) = yj,

0, otherwise.

Then composed function f ◦ T−1 discretises to ΠT f . Combining this with equations

(3.4.39) and (3.4.40) the notions of area-preserving and conformal can be carried

over to the discrete setting. That is, T is area-preserving if

fTAN f̄ = fTΠAPΠT f̄ , (3.4.41)

and conformal if

fTWN f̄ = fTΠWPΠT f̄ , (3.4.42)

69

for all vectors f and f̄ representing functions on N . Equation (3.4.43) is equivalent

to saying that AN = ΠAPΠT and equation (3.4.44) is equivalent to saying that

WN = ΠWPΠT and so the area-preserving and conformal properties are defined for

a discrete isometry as follows.

Definition 3.4.7: Let N and P be meshes with area and weight matrices AN ,WN

and AP ,WP respectively. Let T : VN → VP be a bijection represented by matrix Π.

Then T is area-preserving if

AN = ΠAPΠT , (3.4.43)

and conformal if

WN = ΠWPΠT . (3.4.44)

Definition 3.4.8: Let N and P be meshes with area and weight matrices AN ,WN

and AP ,WP respectively. Let T : VN → VP be a bijection represented by matrix Π.

Then T is a discrete isometry if

AN = ΠAPΠT and WN = ΠWPΠT .

Meshes N and P are said to be isometric.

The term isometry is used rather than discrete isometry since it is clear when maps

are between meshes rather than manifolds.

Remark 3.4.9: That T : VN → VP is an isometry depends on the choice of area

and weight matrices.

To see this consider the following simple example.

Example 3.4.10: The meshes M and N are the prisms shown in the first column

of figure 3.8. The mesh N is obtained from M by affine transform. The bijection

T between the vertex sets is given by the identity map, so Π = I. Assume that the

uniform area matrix is being used (see example 2.5.17.(i)), so AN = AP . Then for

T to be an isometry it must be that WN = WP . To display a weight matrix W as

70

function on a mesh each vertex vi is given a colour based on the value of Wii. If

the weight matrices are different the colours of the corresponding vertices will not

match. The second column of figure 3.8 shows the meshes coloured according to

the weight matrix of the cot Laplacian (example 2.5.22.(i)) and the third column

shows the meshes coloured according to the weight matrix of the graph Laplacian

(example 2.5.22.(ii)). From these colourings it is obvious that under the first choice

of weight matrix T is not an isometry, but under the second choice of weight matrix

T is an isometry. The weight matrix of the graph Laplacian is blind to changes

in angle, and it is clear that angles have been altered by the transformation. An

alternative choice of area matrix helps protect against this, The fourth column

shows vertices coloured by their mixed Voronoi cell weight (i.e. the area matrix is

constructed as in example 2.5.17.(iii)). Since the vertex colours do not correspond,

AN 6= ΠAPΠT and the map T is not an isometry.

It is known that in the manifold case that the Laplacian commutes with

isometries [91]. Using the above definitions this is easy to show for the discrete

case.

Proposition 3.4.11: Let N and P be meshes with area and weight matrices

AN ,WN and AP ,WP respectively. Let T : VN → VP be a bijection represented

by matrix Π. Then

LN = ΠLPΠT .

Proof. First note that since Π is orthogonal, AP = ΠTANΠ so

A−1
P = (ΠTANΠ)−1

= ΠTA−1
N Π. (3.4.45)

Then, since WP = ΠTWNΠ,

LP = A−1
P WP

= ΠTA−1
N ΠΠTWNΠ, via equation (3.4.45),

= ΠTA−1
N WNΠ

= ΠTLNΠ.

71

Figure 3.8: Choice of weight matrix affects isometry.

Proposition 3.4.12: Let T : VN → VP be an isometry represented by permutation

matrix Π. Let {φi} be the set of eigenfunctions of the Laplacian LN with eigenvalues

λi. Then the eigenpairs of LP are given by (ΠTφi, λi).

Proof. Since, via proposition 3.4.11, LN = ΠLPΠT ,

LPΠTφi = ΠTLNΠΠTφi

= ΠTLNφi

= ΠTλiφi

= λiΠ
Tφi.

72

3.5 GMHs and Isometry

One of the important properties of the Laplacian eigenfunctions is that they

commute with isometry. Although stated in [53, section 5] that localised manifold

harmonics commute with isometry in the smooth case, it is not proved and we are

unaware of any results about isometry for Hamiltonian eigenfunctions or compressed

manifold modes. In this section it is proved that the alternative basis types presented

in sections 3.1 and 3.2 commute with discrete isometry. Finally, the requirements

for GMHs to commute with isometry are described.

Proposition 3.5.1: Let T : VN → VP be an isometry between meshes, represented

by permutation matrix Π. Let QN = WN +µVANVN +µ⊥ANΦNΦT
NAN where VN is

a symmetric potential matrix for N and AN ,WN are the area and weight matrices.

Let ΨN be the matrix of GLMHs satisfying

arg min
Ψ

tr
(
ΨTWNΨ

)
subject to ΨTANΨ.

Then, if VP = ΠTVNΠ the GLMHs commute with isometry. That is, the GLMHs

ΨP on P are given by ΨP = ΠTΨN .

Proof. From theorem 3.3.7, and since QN is symmetric, the GLMHs on N are

eigenfunctions ΨN satisfying

QNΨN = ANΨNΛN , (3.5.46)

where ΛN is a diagonal matrix of eigenfunctions.

Since T is an isometry

AN = ΠAPΠT , WN = ΠWPΠT , and ΦN = ΠΦP .

Expanding QN via these expressions, along with the assumption that VN = ΠVPΠT ,

gives

QN = ΠWPΠT + µV ΠAPΠTΠVPΠT + µ⊥ΠAPΠTΠΦPΦT
PΠTΠAPΠT

= Π(WP + µVAPVP + µ⊥APΦPΦT
PAP)ΠT

= ΠQPΠT .

73

Therefore, since A−1
N = ΠA−1

P ΠT , equation (3.5.46) rearranges to become

ΠA−1
P ΠTΠQPΠTΨN = ΨNΛN .

So

A−1
P QNΠTΨN = ΠTΨNΛN

and hence the GLMHs on P are given by ΨP = ΠTΨN .

The above proposition encompasses both localised manifold harmonics and

Hamiltonian eigenfunctions. To consider compressed manifold modes first consider

the additional function which prevents solution as an eigenproblem.

Definition 3.5.2: Let f : Rn×k → R be a real-valued function, and let Π be an

n×n permutation matrix. Then f is permutation invariant if, for any M ∈ Rn×k,

f(ΠM) = f(M) .

Examples 3.5.3:

(i) The `1 norm is permutation invariant since multiplication on the left by a

permutation matrix permutes the rows of the matrix M and the entries of M

are in one-to-one correspndence to the entires of ΠM . Therefore

‖ΠM‖1 = ‖M‖1. (3.5.47)

(ii) The Frobenius norm is permutation invariant. This follows from lemma A.10,

since permutation matrices are orthogonal.

Another important fact to note is that when Π is a fixed permutation matrix,

independent of the function being minimised,

arg min
ΠY

f(Y) = Π

(
arg min

Y
f(Y)

)
(3.5.48)

74

Proposition 3.5.4: Compressed manifold modes commute with isometry. That is,

given isometry T : VN → VP represented by Π and CMMs ΨN on N , the CMMs on

P are given by ΠTΨN .

Proof. Let N have area matrix AN and weight matrix WN , and let P have area

matrix AP and weight matrix WP . The compressed manifold modes on N are given

by

ΨN = arg min
X∈Rn×k

tr
(
XTWNX

)
+ µ‖ANX‖1 subject to XTANX = I,

and the compressed manifold modes on P are given by

ΨP = arg min
Y ∈Rn×k

tr
(
Y TWPY

)
+ µ‖APY ‖1 subject to Y TAPY = I.

Since T is an isometry AN = ΠAPΠT and WN = ΠWPΠT the CMMs on N are given

by

ΨN = arg min
X∈Rn×k

tr
(
XTΠWPΠTX

)
+ µ‖ΠAPΠTX‖1 subject to XTΠAPΠTX = I.

As the `1 norm is permutation invariant this is

ΨN = arg min
X∈Rn×k

tr
(
XTΠWPΠTX

)
+ µ‖APΠTX‖1 subject to XTΠAPΠTX = I.

Substitute Y = PiTX, giving

ΨN = arg min
ΠY ∈Rn×k

tr
(
Y TWPY

)
+ µ‖APY ‖1 subject to Y TAPY = I.

Then since Π is a fixed permutation, making use of equation (3.5.48),

ΠTΨN = arg min
Y ∈Rn×k

tr
(
Y TWPY

)
+ µ‖APY ‖1 subject to Y TAPY = I.

That is, ΨP = ΠTΨN .

To prove an isometry result for generalised manifold harmonics note that the

previous results have relied upon the relationships between AN and AP , WN and

WP , resulting from the isometry.

75

Theorem 3.5.5: Let T : VN → VP be an isometry, represented by permutation

matrix Π. Let ΨP be generalised manifold harmonics on N such that

ΨN = arg min
X∈Rn×k

tr
(
XTQNX

)
+ µff(X) subject to XTMNX = I,

where QN ,MN ∈ Rn×k and f is a permutation invariant real-valued function. Then

if MP = ΠTMNΠ and QP = ΠTQNΠ, the GMHs commute with isometry.

Proof. Let the GMHs on P be given by

ΨP = arg min
Y ∈Rn×k

tr
(
Y TQPY

)
+ µff(Y) subject to Y TMPY = I.

Since it is assumed that MN = ΠMPΠT and QN = ΠQPΠT , the GMHs on N are

given by

ΨN = arg min
X∈Rn×k

tr
(
XTΠQPΠTX

)
+ µff(X) subject to XTΠMPΠTX = I.

Substitute Y = ΠTX, giving

ΨN = arg min
ΠY ∈Rn×k

tr
(
Y TQPY

)
+ µff(ΠY) subject to Y TMPY = I.

Since F is permutation invariant, this is

ΨN = arg min
ΠY ∈Rn×k

tr
(
Y TQPY

)
+ µff(Y) subject to Y TMPY = I.

Then, via equation (3.5.48),

ΠTΨN = arg min
Y ∈Rn×k

tr
(
Y TQPY

)
+ µff(Y) subject to Y TMPY = I

and hence, ΨP = ΠTΨN .

Of course, propositions 3.4.12, 3.5.1 and 3.5.4 are all special cases of theorem 3.5.5.

76

3.6 Summary and Future Work

A review of existing constructions of basis functions for F(N,R) with specific

properties was given. In the section about compressed manifold modes (section 3.2)

alterations were made to the solution of [9], to allow for the scaling by area matrix

in the `1 norm, and to allow for an orthogonality constraint of the form ΨTAΨ = I.

To achieve this, it is assumed that the area matrix A = 1
n
I. An alteration was also

made to the method of [66] for calculating compressed eigenvalues, to allow for the

scaling by area matrix in the `1 norm.

The alternative basis functions methods were combined into a general problem, with

solutions called generalised manifold harmonics (GMHs). The conditions required

to find GMHs as solutions to a generalised eigenvalue problem have been described.

A new definition for a discrete isometry between meshes has been given, as

an analogy to the necessary and sufficient conditions for an isometry between

Riemannian manifolds. Using this definition it has been proved that the specific

cases of Laplacian eigenfunctions, localised manifold harmonics, Hamiltonian

eigenfunctions and compressed manifold modes commute with discrete isometry.

Finally, the conditions required for GMHs to commute with isometry were discussed.

The sparsity parameter µ, used in the calculation of compressed manifold modes is

difficult to choose, and work is required to find a good method of selection, based on

the target sparsity. A potential start point would be a discretisation of [67], which

requires a formal definition for compact support for a mesh.

A map T between metric spaces (X, dX) and (Y, dY) is an ε-isometry if for x, x̄ ∈ X,

|dY (T (x), T (x̄)) − dX(x, x̄) | < ε and for every y ∈ Y there exists x ∈ X with

d(T (x) , y) ≤ ε. Our definition of discrete isometry avoids reference to geodesic

distance on the mesh. Is there a way to adapt this to define ε-isometry, in a way

which still tells us something about the distance between points?

77

Chapter 4

A Comparison Of Basis Methods

For Reconstructing Functions

The shape matching method of functional maps [5] relies on a set of functions

believed to correspond on two meshes. These functions are then represented in a

truncated basis of Laplacian eigenfunctions, via a matrix of coefficients. As discussed

in chapter 3, basis truncation leads to a loss of information, and it is important that

functions can be reconstructed accurately. (For background on the functional maps

framework see section 5.1.)

This chapter reconstructs a variety of functions using the basis functions of

sections 3.1 and 3.2. The function types include those regularly used when

calculating functional maps. Two reconstruction methods are evaluated, for speed

and accuracy. These are the least squares solution and a matrix product based on

a reconstruction method posed in [9].

Functions and bases have been calculated for a set of 26 meshes. The meshes

used appear in table B.1, marked by †. Information about the construction of the

functions and bases is provided, including calculation times and details about the

orthogonality of the localised manifold harmonics.

A weighted error for measuring function reconstruction is introduced. Using this,

we reach conclusions about which function and basis types should be avoided.

78

The difference between spaces spanned by the different basis functions are considered

and it is noted that Laplacian eigenfunctions and compressed manifold modes

span similar subspaces for some meshes. To investigate this further, the ability

to reconstruct one basis in another is examined. This raises questions about the

choice of the sparsity parameter µ.

4.1 Function choice

The theory of functional maps uses indicator functions on each vertex to allow

reconstruction of a point-to-point map (see section 5.1.4) but to use such a

large set of functions is computationally expensive. In many existing works

(e.g. [5],[92],[13],[11]) the heat and wave kernel signatures are used as, when taken

over various time samples, they provide information about both local areas and the

mesh as a whole. This is referred to as the multi-scale property. Other works use

indicator functions on segments (e.g. [10],[75]). Here the types of functions used in

the later experiments are described.

Definition 4.1.1: A function fp : N → R is called point-based if it depends

explicitly on a specified point p ∈ N . The function fp is based at p and the point

p is called a landmark.

Examples 4.1.2:

(i) A function which measures distance between any vertex v and the specified

vertex p, with

fp(v) = d(v, p) .

The distance function could be the geodesic distance between the points, or

the Euclidean distance, etc.

(ii) The indicator function of the point p, defined by

fp(v) =

0, x 6= p

1, x = p.

79

Landmarks can be chosen manually (see [93]) or as points which satisfy some

condition (see [94] where landmarks are chosen to be local maxima of the heat kernel

signature). As a quick method of selecting landmark points the vertex coordinate

functions can be exploited.

Definition 4.1.3: Let p be a vertex written as a point in R3, p = (p1, p2, p3). The

vertex p is called extremal if

pi ≥ vi or pi ≤ vi i ∈ {1, 2, 3}

for all vertices v ∈ N .

Definition 4.1.4: Define for i ∈ {1, 2, 3}

ai := max
p∈N

pi, bi := min
p∈N

pi, ri :=
ai + bi

2
.

Then a vertex p is called central if

|pi − ri| ≤ |vi − ri| ∀i ∈ {1, 2, 3}

for all vertices v ∈ N .

Figure 4.1 shows the central and extremal points on three meshes.

Figure 4.1: Extremal and central points on the chair 1, armadillo and hand 2 meshes.

80

Point-based functions are constructed for the set of points P containing all extremal

and central points. The following point-based functions are used:

GeoDists: Define a function f : N → R based at p by

f(v) = d(p, v) ,

where the distance function d is the shortest path along edges between the vertices p

and v. Such a path can be found via the Dijkstra algorithm for weighted graphs [95].

As the shortest path across the mesh may not be along the edges of the faces, but

instead across the interior of faces, this distance is an approximation of the geodesic

distance. In practice the function is scaled to have values in the range [0, 1].

Deltas: The Dirac delta function δ : R→ R is defined by

δ(x) =

0, x 6= 0

∞, t = 0

and can be constructed via the limit

δ(x) = lim
a→∞

1

|a|
√
π

exp

(
−
(x
a

)2
)
.

To construct a highly peaked point-based function related to the Dirac delta function

let f : N → R be defined by

f(v) =

1

|r|
√
π

exp

(
−
(
d(p, v)

r

)2
)
, d(p, v) ≤ r

0, d(p, v) > r

for a fixed r, where d(p, v) is the approximate geodesic distance function as described

above. The function is equal to zero on any point v which lies outside of a geodesic

radius of r from the point p. Here r is set to 0.01.

NormDist: Similar to the above function based on the Dirac delta function, a

function based on the normal distribution can be constructed. Define f : N →
R ∪ {∞} by

f(v) =

1√

2πσ2
exp

(
−
(
d(p, v)

2σ

)2
)
, d(p, v) ≤ r

0, d(p, v) > r

81

for a fixed r, where d(p, v) is the approximate geodesic distance function as described

above and the standard deviation σ is defined to tbe 1
3
×the maximum approximate

geodesic distance between p and any v. Here r is set to be 0.1 and the functions are

scaled so that f(p) = 1.

It is clear from the construction of the functions that the GeoDists functions

are globally supported whereas the Delta and NormDist functions are locally

supported around p. Figure 4.2 shows how the values of the above point-based

functions differ. The graph plots the approximate geodesic distance d(x, v) against

the value of f(v). Note that the natural log of the distance is taken to better display

how the functions differ for vertices close to x.

Figure 4.2: Functions based around a point on the bunny mesh.

An alternative to point-based functions are so called multi-scale functions which

appear in geometry processing as a method of feature detection [96],[97],[74]. Here

these are functions which depend on a time t. The following multi-scale functions

are used:

HKS: The heat kernel signature (HKS) function HKS : N × R+ → R is defined by

HKS(v, t) =
n∑
i=1

e−λitφi(v)2, [74]

where (φi, λi) are eigenvector/eigenvalue pairs of a discrete Laplacian. In practice,

a set of 30 HKS functions are calculated via the first 300 eigenpairs of the FEM

Laplacian for the mesh. Times t are taken as a logarithmically spaced sample of the

interval
[
log10

(
4 ln 10
|λn|

)
, log10

(
4 ln 10
|λ10|

)]
[74, section 5].

82

WKS: The wave kernel signature (WKS) function WKS : N × R+ → R is defined

by

WKS(x, t) =

(∑
k

Ckt

)−1 n∑
k=1

φ2
k(x)Ckt, [98]

where (λi, φi) eigenpairs of a discrete Laplacian for the mesh, Ckt = exp
(
−(t−lnλk)2

2σ2

)
,

σ = α(lnλ2−lnλn)
m+4α

and α = 7 [98, section 2.3]. In practice, a set of 100 WKS functions

are calculated via the first 300 eigenpairs of the FEM Laplacian for the mesh. Define

s := 7(lnλ2−lnλn)
number of time samples

, then times t are taken as a linearly spaced sample of the

interval [lnλ2 + 2s, lnλn − 2s].

Figure 4.3 shows the heat and wave kernel signatures for increasing t, from left to

right.

Figure 4.3: Multi-scale functions on the bunny mesh.

Additionally, the following functions are also used:

Constant: The constant function on the mesh, f(x) = 1, ∀x ∈ N .

83

Seg: A set of segment indicator functions. Meshes are segmented via persistence-

based segmentation [99]. Figure 4.4 shows the segment indicator functions for the

bunny mesh. Note that there are no segmentations for the fish or victoria meshes.

Verts: The vertex position functions. That is, the three vectors of coordinates

defining the positions of vertices in R3. Recall that these are the functions used

in [6] to construct localised manifold harmonics.

Figure 4.4: Segment indicator functions on the bunny mesh.

4.2 Function Reconstruction

Let Φ be a matrix representing a complete set of A-orthogonal basis functions for

F(N,R) and let Φk be the n× k matrix with the first k basis functions as columns.

Let a set of f functions represented by vectors in Rn be arranged as columns in an

n×f matrix F. The matrix F can be reconstructed in basis Φk such that F ≈ ΦkM

where M is a k × f matrix of coefficients. Let R denote the reconstructed vector,

with R = ΦkM . Two methods of solving for the matrix M are considered.

4.2.1 The least squares solution

Using least squares minimisation, M can be found as the solution to

arg min
M∈Rk×f

‖F− ΦkM‖F . (4.2.1)

84

That is, M = (ΦT
kΦk)

−1ΦT
kF, via theorem 2.4.1. (The matrix Φk is full rank as its

columns are linearly independent basis functions.) So, R is given by

R = Φk(Φ
T
kΦk)

−1ΦT
kF. (4.2.2)

This is the method that MATLAB’s backslash operator employs [100].

4.2.2 Reconstruction via matrix manipulation

Assume that F = ΦkM , then since ΦT
kAΦk = I multiplying both sides on the left

by ΦT
kA gives

ΦT
kAF = M. (4.2.3)

Therefore, R is given by

R = ΦkΦ
T
kAF. (4.2.4)

Note that this is the solution to

arg min
M∈Rk×f

‖F− ΦkM‖A.

This method was inspired by function reconstruction in [9, section 4]. The claim is

that a function f ∈ Rn has reconstruction r such that

r = ΦkAΦT
k f , (4.2.5)

where Φk is an n×k A-orthogonal matrix formed by columns of basis functions and

A is an n × n area matrix. Clearly this is incorrect as the matrix dimensions are

not compatible. When Φk is full (n = k) then the above reasoning can be used to

show that f = ΦkΦ
T
kAf . For both equation 4.2.4 and equation 4.2.5 to hold it must

be that ΦT
kAF = AΦkf . In general this is only true when n = k and A = αI for

some α ∈ R. Note that it is also claimed that reconstruction in this way can be

achieved ‘quickly’. The experiments below verify that this is false, when comparing

this method against least squares via backslash in MATLAB 2018a. Of course,

MATLAB is optimised for use of backslash, and this may not hold true when using

alternative versions.

85

4.2.3 The A = I Case

When the area matrix A is equal to the identity matrix (for example in the graph

Laplacian case) the two minimisation problems above are equivalent, and so the

reconstructions are equal. To see this consider Φ such that ΦTAΦ = I, with A = I.

Then

(ΦTΦ)−1ΦTF = ΦTF, since ΦTΦ = I,

= ΦTAF, since A = I.

4.2.4 Measuring Reconstruction Error

Reconstruction error for a single function is computed as the Euclidean distance

between the original function and its reconstruction. To measure the reconstruction

error between a set of f functions F and reconstruction R, consider the distance

of the reconstruction from the original function set per vertex, then find an average

value by taking the mean over the vertex set. This construction of an error value is

formalised in the following definitions:

Definition 4.2.1: Let F be a matrix representing f functions on n vertices, with

functions as columns. Let R be the corresponding reconstruction of F in a given

basis. Note that the value of the function j-th function in F evaluated at vertex vi

is represented by the matrix entry Fij. Then, the reconstruction error function

Errf is defined by

Errf (F,R, vi) =

√√√√ f∑
j=1

|Fij −Rij|2. (4.2.6)

As with other real-valued functions define for the vertices of a mesh this can be

written as an n-dimensional vector.

Definition 4.2.2: The reconstruction error is obtained as the mean of the

reconstruction error function, i.e.

Err (F,R) =
1

n

n∑
i=1

Errf (F,R, vi) . (4.2.7)

86

4.3 Basis Choice and Calculation

The space of real-valued functions on a mesh F(M,R) can be approximated via a set

of basis vectors. The classical choice is a truncated set of Laplacian eigenfunctions.

Here several additional basis constructions are also considered. The sets of basis

functions are as follows:

LBO: The first 150 eigenfunctions of the FEM Laplacian, calculated via MATLAB’s

eigs function.

GL: The first 150 eigenfunctions of the graph Laplacian, calculated via MATLAB’s

eigs function.

GLMH + (function type): Bases constructed from a set of the first 100 Laplacian

eigenfunctions, then 50 localised manifold harmonics. Localised manifold harmonics

were calculated by considering the reconstruction of the function types listed in

section 4.1, with µR = µ⊥ = 106. The Laplacian eigenfunctions used are the same

as the Laplacian eigenfunctions LBO above. These are all variants of LMHs, using

the different function types in the construction of the region indicator, however the

label GLMH is used, as in definition 3.3.9. Note that Q and M are as in equation

(3.1.5). The GLMH functions were calculated using a combination of MATLAB’s

eigs function and the Woodbury matrix identity to reduce computation complexity

(see theorem 6.1.17/appendix G).

CMM: Bases of compressed manifold modes calculated via the sequential method

described in 3.2, with µ = 50.

CMMs were calculated twice (allowing 10K/100K iterations), with a cap on the

calculation time after 150 minutes. The calculation times for basis/mesh pairings

are shown in figure 4.5. For the GLMH functions timings do not include the time

taken to calculate the initial set of Laplacian eigenfunctions, but do include the

time taken to locate the regions of localisation. Note that the y-axis is log-scaled,

that markers are slightly offset to allow for ease of reading and that CMM bases

may consist of fewer than 150 basis functions as the full set may have failed to

87

be calculated in the two-and-a-half-hour calculation period. (See appendix D for

further details on CMM calculation.)

As expected, the bases calculated using eigs are calculated faster than the CMMs

which are calculated by an iterative algorithm. The GLMH functions take longer to

calculate than the LBO of GL eigenfunctions, even though there are fewer of them

– 50 GLMH eigenfunctions in comparison to 150 LBO/GL eigenfunctions. This is

due to the time spent locating the region of localisation and the additional matrix

multiplication involved in the eigenproblem. The similarity between the subspaces

spanned by the different sets of basis functions is discussed in section 4.6.

Figure 4.5: Time taken to calculate various basis types

88

4.3.1 GLMH Orthogonality Failure

Recall from the construction of localised manifold harmonics that the aim is to

construct new functions which are both A-orthogonal to each other and to a set

of existing functions, where A is an area matrix. Let Φ denote the matrix of

existing functions (Laplacian eigenfunctions) and let Ψ denote the matrix of GLMH

functions. That the matrix Ψ is such that ΨTAΨ = I is a result of the matrix Ψ

being a matrix of A-orthogonal eigenfunctions. The condition that ΦTAΨ = 0 is

enforced in the formulation of the eigenproblem, via the priority parameter µ⊥.

To evaluate the failure to meet the orthogonality condition consider the norm

‖ΦTAΨ‖F . Figure 4.6 plots this error for each mesh/GLMH-type basis pair. To

aid reading the error is capped at 0.2. This means that the GLMH Delta errors for

the head1, head2 and victoria21 meshes have been omitted. The full figure can be

found in appendix E. As before markers are slightly offset for each basis type.

Figure 4.6 shows that the error is consistently worst for the GLMHs calculated

via the delta functions. GLMHs calculated via the WKS functions perform

inconsistently; there is not even a trend for meshes from the same collection –

large error for horse0 and horse6 but small error for horse10.

89

Figure 4.6: The failure to meet the ΦTAΨ = 0 orthogonality condition.

4.4 Mesh Choice and Quality

The meshes used have less than 50 000 vertices. (Smallest, screwdriver meshes

with 2 502 vertices; largest, victoria meshes with 45 659 vertices.) This is not a

particularly large number of vertices, but the variation in size of vertex set is chosen

to allow comparison between meshes of various sizes.

The area of faces in a mesh can cause problems in numerical calculations, e.g.

when an area is very small there can be errors when using the inverse area matrix.

Figure 4.7 shows a set of boxplots detailing the sizes of faces in the meshes used

in experiments. The areas used are taken from the (lumped) FEM Laplacian

calculated for each mesh, since this is the area matrix used in subsequent numerical

experiments. In all calculations meshes are scaled to have a surface area equal to 1.

90

Therefore, to view the face area in a consistent way, the area is multiplied by the

number of vertices in the mesh. That is, if the mesh has faces of a uniform size, the

faces will have a scaled area equal to 1 in the boxplot. The meshes with a small

range are more uniform. The cyan line provides a plot of area = 1 for comparison.

Note that the fandisk, table, chair and hand meshes are closest to being uniform. The

cat and victoria meshes have greatest variation and so are least uniform. Figure 4.8

shows the variation in area by assigning a colour to each vertex. Orange areas

indicate vertices with scaled area close to 1, red areas indicate vertices with small

associated area and blue areas indicate vertices with large associated area. The

zoomed-in snapshots show the variation in mesh faces. Appendix E contains the

box plot figure for all meshes featured in the thesis.

Figure 4.7: Mesh area comparison boxplots

91

Figure 4.8: Mesh area uniformity – close ups on table1 and cat0 meshes

4.5 Function Reconstruction Experiments

Function sets were reconstructed for the mesh set via a variety of basis types.

There were a total of 96 function/basis combinations (8 function types, 12 different

bases). Functions were reconstructed both via backslash/least squares and via

equation (4.2.4). Figure 4.9 shows a typical comparison of methods by basis type

(in this case, the basis is the classical Laplacian eigenbasis). Reconstruction errors

are plotted per mesh, for each function set. Solid markers denote least squares

reconstruction and unfilled markers denote reconstruction via matrix manipulation.

The unfilled markers are slightly offset to allow for ease of reading. The least squares

reconstructions tend to have smaller error (i.e. solid markers appear lower than

unfilled markers of the corresponding colour).

As expected the graph Laplacian basis reconstructs with the same error for both

reconstruction methods (as they are equivalent, see section 4.2.3). This can be seen

in figure 4.10 as the solid and unfilled markers appear side-by-side.

92

Figure 4.9: A typical reconstruction error figure.

To compare the reconstruction methods sets of functions for each mesh were

reconstructed in each basis for an increasing number of basis vectors. The time

taken to calculate the reconstruction and the function set reconstruction error

were stored. The results were normalised by the number of vertices in the mesh,

and then collated. Only the meshes with fewer than 24 850 vertices were used in

these reconstructions due to the time taken to compute multiple reconstructions

for larger meshes. Figure 4.11 shows two graphs based on this data. The left-

hand graph plots basis size against time taken, comparing the smallest and largest

values for each reconstruction method. Using backslash is faster: recall that

this may be a result of the optimisation of MATLAB for solving least squares

problems via backslash. The right-hand figure confirms that reconstruction via

least squares minimisation (backslash) gives a smaller error than when using matrix

manipulation reconstruction. The large jump in reconstruction accuracy in the

93

Figure 4.10: Reconstruction error when using the graph Laplacian.

matrix manipulation reconstruction at the basis size equal to 100 mark is due to the

large number of functions reconstructed in a GLMH basis. Recall that the matrix

manipulation reconstruction uses the assumption that the matrix ΦTAΦ = I where

Φ is the matrix of basis functions and A is the Laplacian area matrix. Recall also

that the GLMH functions are such that the first 100 basis functions are Laplacian

eigenfunctions (A-orthogonal), and the following 50 basis functions are A-orthgonal

to each other, however the two subsets of basis functions are not exactly orthogonal

(recall figures 3.3 and 4.6). Therefore the matrix manipulation reconstruction is

adversely affected by these basis types. From this point reconstructions of functions

are calculated using backslash.

The trends shown in the reconstruction error for each function type are consistent

across each basis type. This can be seen by considering the full set of reconstruction

error figures produced in the same way as figures 4.9 and 4.10 and is shown in

94

Figure 4.11: Function reconstruction details, taken as a mean of values from all tested

bases.

figure 4.12, where the function reconstruction error has been scaled to be between

0 and 1 for each basis type. To see this in an alternative way, figure 4.13 displays

a matrix of function set reconstruction errors for each mesh, with reconstruction

calculated via backslash. The elements of the matrix are represented by a colour,

using MATLAB’s colormap hot, which gives small values a pale colour, and large

values a dark colour. The rows of the matrices are indexed by basis choice, and the

columns are indexed by function type (for precise details see figure 4.14). Note that

since the fish and victoria meshes do not have a segmentation the GLMH Seg

bases do not exist, hence the corresponding cells in the matrix are marked by

strikethrough. Colours form noticeable vertical stripes, indicating that function

type has greater impact on quality of a reconstruction than basis type. Constant

functions are approximated very well – this is expected for the Laplacian-based

bases as the first eigenfunction is the constant function (in practice very close to the

constant function). The highly localised delta functions are also approximated well,

which is more surprising.

95

Figure 4.12: Function reconstruction error (via backslash) across all basis types

96

Figure 4.13: Matrices of function set reconstruction errors.

97

Figure 4.14 shows two matrices of errors where values have been averaged across

the mesh set. The left-hand matrix shows the unscaled data, which shows that the

WKS and Seg functions are reconstructed with greatest error, as was evident from

figure 4.12. The right-hand matrix has been scaled so that the columns sum to

1. This emphasises rows which have consistently low values and should highlight

variance between performance in basis type. The CMM bases do not reconstruct

the constant function well. Of course, this was expected, but it is interesting to

note that this is the only basis type which performs noticeably poorly for any of the

function types.

It was expected that the GLMH basis types would reconstruct the functions used

in their construction far better than any of the other basis types. To examine

this, figure 4.15 shows the right-hand matrix from figure 4.14 with the constant

function removed. A significantly lower error would be indicated by a pale cell in

the entry indexed by, for example, GLMH Verts and Verts. The only basis

types where this occurs are the GLMH bases calculated via the vertex position and

HKS functions. A row of evenly coloured cells indicates a basis type which performs

equally well for all function types – the best example being the GLMHs calculated

using the constant function.

A final visualisation of the quality of function reconstructions by basis type is

given in figure 4.16. It shows a set of boxplots, plotting function reconstruction

error values for each basis type. The lower the mean, the more accurate the

reconstructions. The smaller the interquartile range, the more capable the basis type

of reliably reconstructing functions as the reconstruction error is more consistent

across function types. The boxplots corroborate the assertion that choice of function

type is more important than choice of basis type in function reconstruction since

there are no bases which perform significantly better or worse than any other overall.

98

Figure 4.14: Average method error; unscaled (L) and scaled (R)

Figure 4.15: Average method error; scaled with constant function removed

99

Figure 4.16: Function reconstruction error boxplots, by basis type

4.6 Basis Reconstruction

Each set of k basis functions spans a k-dimensional linear subspace of F(N,R) =

Rn. Of course, these subspaces are not necessarily equivalent. To give a numerical

value to the difference between the subspaces a distance based on the Grassmanian

distance, altered for subspaces of different sizes, described in [101] is used.

Definition 4.6.1: Let U ⊆ Rn be a linear subspace of dimension k, with

orthonormal basis {φ1, . . . φk} represented as columns of matrix Φ. Let V ⊆ Rn

be a linear subspace of dimension l, with orthonormal basis {ψ1, . . . ψk} represented

as columns of matrix Ψ. Let m = min{k, l}. The principal angles between U
and V , denoted by θ1, . . . θm, are defined by

θi = cos−1 σi,

100

where σi is the i-th singular value of the singular value decomposition

UΣV T = ΦTΨ.

Proposition 4.6.2: The principal angles between linear subspaces U and V are

independent of the choice of bases for U and V .

Proof. Let {φ1, . . . φk} and {x1, . . . xk} be orthonormal bases for U , represented as

columns of the matrices Φ and X respectively. Then X = ΦM where M is a k × k
matrix of basis coefficients. Since the columns of Φ are orthonormal, ΦTΦ = I and

XTX = MTΦTΦM = MTM.

But, the columns of X are also orthonormal, with XTX = I, and hence MTM = I.

That is, M is an orthonormal matrix.

Similarly, let {ψ1, . . . ψk} and {y1, . . . yk} be orthonormal bases for V , represented

as columns of the matrices Ψ and Y respectively. Then Y = ΨN where N is a k×k
matrix of basis coefficients. As above, N is orthonormal.

From definition 4.6.1 recall that the principal angles between U and V are defined

via the singular value decomposition of the product ΦTΨ. Let UΣV T = ΦTΨ be the

singular value decomposition of ΦTΨ. Now, consider the alternative bases:

XTY = MTΦTΨTN

= MTUΣV TN.

Then since M and N are orthonormal,

XTY = ŪΣV̄ T

where Ū = MTU and V̄ = NTV . Therefore, the singular values of ΦTΨ are equal

to the singular values of XTY , and so the principal angles between U and V are

independent of the choice of bases.

Lemma 4.6.3: Let A be an n × n symmetric positive definite matrix and let U
and V be linear subspaces of Rn with A-orthonormal bases represented by Φ and Ψ

101

respectively. Then the principal angles between U and V are given by the singular

values of the singular value decomposition

UΣV T = ΦTAΨ.

Proof. Let L = Chol(A), then LTΦ and LTΨ are orthonormal matrices, representing

orthonormal bases of U and V respectively. Applying the definition of principal

angles gives the result,

UΣV T = (LTΦ)T (LTΨ)

= ΦTLLTΨ

= ΦTAΨ,

as LLT = A.

Definition 4.6.4: Let U ⊆ Rn be a linear subspace of dimension k and let V ⊆ Rn

be a linear subspace of dimension l, The Grassmanian distance between U and

V is defined to be

dGr(U ,V) :=

min{k,l}∑
i=1

θ2
i

 1
2

[101],

where θi are the principal angles between U and V .

The Grassmanian distance between U and V is such that dGr(U ,V) = 0 if and only

if U ⊆ V or V ⊆ U [101, lemma 13]. It follows that it does not satisfy the triangle

inequality, however, when the dimensions of U and V are equal, i.e. l = k, the

Grassmanian distance between U and V reduces to the geodesic distance on the

Grassmanian manifold Gr(n, k).

Figure 4.17 shows a matrix of Grassmanian distances for each mesh, where rows and

columns are indexed by basis type, listed as in figure 4.14. Again note that since

the fish and victoria meshes do not have a segmentation the GLMH Seg bases do

not exist, the corresponding cells in the matrix are marked by strikethrough. Paler

cells denote pairs of bases which span nearby subspaces of F(N,R).

102

It’s interesting to note that the subspace spanned by the graph Laplacian

eigenfunctions is furthest from all other subspaces. The variation between the

subspaces spanned by the GLMH functions shows that for some meshes the different

functions types used in their construction affect similar areas (see the fish1 figure,

all the GLMH bases span nearby subspaces); for other meshes the function types

are badly reconstructed in different areas, resulting in greater variation between the

subspaces spanned by the resulting bases (see the chair or screwdriver figures). For

the meshes head 1 to hand 2 the CMM bases span subspaces close to the subspace

spanned by the LBO eigenfunctions, as indicated by the paler matrix elements. To

investigate this further recall that the sets of basis functions can be reconstructed

in the same way as any other set of functions defined on the mesh. Functions which

lie in nearby subspaces should be reconstructed well by one another.

As the Grassmanian distance between subspaces spanned by Laplacian

eigenfunctions and compressed manifold modes is surprisingly small for some meshes,

the reconstructions of Laplacian eigenfunctions and CMMs are focused on. To do

this 150 compressed manifold modes were calculated for each mesh via ADMM, with
µ
n

= 0.008. Note that this is not the same as the CMM bases used previously in

the chapter as those were calculated via a sequential method. Reconstructions were

calculated for a matrix Φ representing one set of basis functions, so that Φ ≈ ΨM .

The coefficient matrix M was calculated via backslash and the number of basis

functions in the matrix Ψ increased incrementally.

Figure 4.18 shows the results of these reconstructions. The x-axis plots the

number of basis functions used in the reconstruction; the y-axis plots reconstruction

error; red lines denote CMMs reconstructed in LBO; blue lines denote Laplacian

eigenfunctions reconstructed in CMM. In each graph the line which appears lower

is the reconstruction with smaller error. When blue lines are lower compressed

manifold modes reconstruct the Laplacian eigenfunctions better than the Laplacian

eigenfunctions reconstruct the compressed manifold modes; when red lines are lower

Laplacian eigenfunctions reconstruct compressed manifold modes better than the

compressed manifold modes reconstruct the Laplacian eigenfunctions. When both

lines appear close together both bases reconstruct the other to a similar degree of

103

accuracy. Note that, as expected, the graphs where the reconstruction errors are

similar are for the same meshes as those where the basis functions spanned nearby

subspaces.

There are meshes where there is little difference between the performance of both

bases (see the third row of figure 4.18). Note that these are the meshes with 20-26K

vertices. As the choice of the sparsity parameter µ is difficult to make, due to the

lack of any real concept of what makes a “good” choice, it is suggested that µ was

“well-chosen” for these meshes. There are also notable plateaus in reconstruction

error as the CMM basis size increases for some meshes (see the first row). This is

due to a change in the sparsity of the modes as the basis size increases. To see this

figure 4.19 plots the area-scaled `1 norm ‖AΨk‖1 for matrix of basis functions Ψk

as k increases. A significant change in gradient of the line indicates a significant

change in the sparsity of the modes.

104

Figure 4.17: Matrices of Grassmanian distances between function space subspaces formed by different basis constructions.

105

Figure 4.18: Basis function reconstruction. Red lines denote CMMs reconstructed in LBO; blue lines denote Laplacian

eigenfunctions reconstructed in CMM.

106

Figure 4.19: The cumulative sparsity of compressed manifold modes calculated for the mesh set.

107

4.7 Summary and Future Work

A selection of GLMH functions were calculated along with sets of CMMs for a variety

of meshes. These truncated function space bases were used to reconstruct functions.

The reconstruction experiments compared performance of two reconstruction

methods, and the ability of the bases to accurately reconstruct different types of

function. The key observations are as follows:

• Least squares reconstruction is fast and accurate.

• The WKS and segment indicator functions are reconstructed poorly in all

bases.

• The constant function is poorly reconstructed by CMMs.

• Function type has greater impact on the quality of reconstruction than basis

type.

• The specifically localised GLMH functions do not perform as well as expected.

It was noted that for some meshes the compressed manifold modes span a similar

subspace to the Laplacian eigenfunctions. This was further investigated and a link

found with the sparsity of the modes. Due to the poor notion of what constitutes a

good choice for the sparsity parameter, we suggest that µ was well chosen in those

cases. As mentioned in section 3.6, further work is required to understand µ.

A potential issue with compressed manifold modes is that they fail to reconstruct

the constant function as well as the bases based on Laplacian eigenfunctions. This

could be remedied by the addition of a function b such that bTAψi = 1 for all CMMs

ψi; b
TAb = 1; with a further condition about the minimisation of the reconstruction

error of the constant function.

The poor performance of the localised manifold harmonics also requires future work.

It would be sensible to look at the specific vertices where reconstruction errors are

greatest. Is this failure a result of a loss of higher frequency functions? Similarly,

where are the vertices with greatest reconstruction error for the segment indicator

108

functions? We suspect that they will be at the boundary of the indicated region

due to the need for high frequency functions to approximate indicator functions

accurately.

109

Chapter 5

A Comparison of Basis Methods

For Calculating Functional Maps

Given two meshes N and P a matching problem (or shape correspondence problem)

is a problem where the aim is to find a map N → P . Matching problems might aim

to find a map between identical shapes [102]; deformed shapes [103]; similar areas

(partial matches), for example matches between a horse and a centaur [104]. For

a review on shape correspondence problems before the emergence of the method of

functional maps see the 2011 survey [105].

For shapes which are near-isometric, e.g. a set of meshes representing the same

person in different positions, it is intuitive that there exists some matching between

the shapes. Due to the non-rigid nature of the transformations - for example the

bending of limbs - finding the map between vertex sets is non-trivial and maps can

be very complex. Functional maps are linear maps between function spaces, which

can be calculated given two sets of functions known to correspond. The original or

underlying map between meshes can then be reconstructed. Here a background to

the original functional maps formulation [5] is given. Proofs of important properties

are given for the smooth case in the original work. Here the definition of discrete

isometry from chapter 3 is used to justify claims for the discrete case. This leads to

some simple proofs.

110

The prevalent method used to evaluate functional map quality is to extract a point-

to-point map and compare the position of the matched points to a known ground

truth match (see [5],[10],[11],[12],[13]). However, functional maps can be used to

transfer functions between meshes without the need for a point-to-point match or

refinement (this is noted in [80, 2.1.4]). Here two related errors for measuring the

ability of a functional map to transform functions are introduced. It is proved

that the most simple functional map transforms functions with the least error. The

alternatives to the Laplacian eigenbasis are used to construct functional maps. These

functional maps are then tested for their ability to transform the function types used

in the previous chapter.

5.1 Background: Functional Maps

This section provides an introduction to the original method of functional maps as

introduced by Ovsjanikov et al [5] and details some further developments.

Definition 5.1.1: Let F(N,R) denote the set of real-valued functions f : N → R
on the mesh N , and let F(P,R) denote the set of real-valued functions g : P → R
on the mesh P . Let T : N → P be a bijective map between N and P , then given

f : N → R, the corresponding function g : P → R is defined by the composition

g = f ◦ T−1. This can be written as TF : F(N,R) → F(P,R), where TF (f) = g.

The map TF is called a functional representation or functional map.

The function space of a mesh N can be equipped with an orthonormal basis {φi} so

that functions can be represented as linear combinations of basis functions:

f =
∑
i

aiφi.

Then TF (f) = TF (
∑

i aiφi) =
∑

i aiTF (φi).

If the mesh P has function space with basis functions {ψj} then TF (φi) =
∑

j cijψj

for some cij, so

TF (f) =
∑
i

ai
∑
j

cijψj =
∑
j

∑
i

aicijψj.

111

Note, cij is the j-th coefficient of TF (φi) in the basis {ψj}. If {ψj} is orthonormal

with respect to an inner product 〈·, ·〉, then

cij = 〈TF (φi), ψj〉. (5.1.1)

In the matrix notation of previous chapters

C = (ΠTΦ)TMΨ,

where Φ is that matrix with φi as columns; Π is the permutation induced by T ; and

Ψ is the M -orthogonal matrix with ψj as columns.

Definition 5.1.2: A matrix C representing a functional map is called a functional

map matrix.

There are several important properties. Let T : N → P be a bijection then:

(1) T can be recovered from TF . For a point a ∈ N consider the indicator function

f : N → R where f(a) = 1 and f(x) = 0,∀x 6= a. The image of this function

is given by g = TF (f) = f ◦ T−1 such that g(y) = 0 whenever T−1(y) 6= a and

g(y) = 1 when T−1(y) = a. Since T is a bijection T−1(y) = a for a unique

y. This means that g acts as an indicator function for T (a) and that if TF

is known T can be reconstructed by considering indicator functions for each

point.

(2) TF is a linear map between function spaces.

(3) For f represented by a vector a of coefficients ai, and g = TF (f) represented

by vector of coefficients b then

bj =
∑
i

aicij,

where cij is independent of f , as it is determined by the basis functions.

112

(4) Let T : N → P be an area-preserving bijection. If basis functions on P are AP -

orthogonal, where AP denotes the area matrix, then the matrix C associated

to the functional representation of T must be orthonormal. That is, the matrix

associated to the functional representation of the bijective map T−1 : P → N

is given by CT .

Proof. Denote by Φ the matrix formed by the taking the vectors of ordered

basis {φi} as columns, and denote by Ψ the matrix formed similarly via the

basis {ψi}. Recall from section 3.4 that T can be represented by permutation

matrix Π and that f◦T−1 can be written as ΠT f where f is a vector representing

the function f : N → R. Assume that Ψ is AP -orthogonal, then the functional

map matrix C is given by

C = (ΠTΦ)TAPΨ

= ΦTΠAPΨ. (5.1.2)

Since T is area-preserving, the area matrix AP is given by AP = ΠTANΠ (see

equation (3.4.43)), so

C = ΦTANΠΨ.

Now let S := T−1 : P → N be the inverse bijection, represented by ΠT and so

the reverse functional map is represented by matrix D where

D = ΨTΠTANΦ,

which is exactly CT . Since S ◦ T is the identity map it must be that DTCT =

CD = I and so CCT = CTC = I. That is, C is orthonormal.

(5) For a set of Laplacian eigenfunctions with no repeated eigenvalues and an

isometry T : N → P , C is a diagonal matrix.

Proof. Recall from proposition 3.4.11 that when T is an isometry Ψ = ΠTΦ.

113

So, via equation (5.1.2),

C = ΦTΠAPΠTΦ

= ΦTANΦ, since T is an isometry,

= I, by the properties of the Laplacian eigenfunctions.

For a near-isometry C is close to being diagonal, with more variation around the

higher-frequency eigenfunctions. This leads to a funnel shaped region along the

main diagonal of C, as displayed in figure 5.1.

Figure 5.1: Functional map matrices between horses calculated using 50 Laplacian

eigenfunctions, and a known bijection between vertex sets.

Notation 5.1.3: From here the matrix C is used to represent a functional map

based on a map N → P ; the matrix D is used to represent a functional map in

114

the opposite direction, P → N . The variable f is used as a scalar, representing the

number of functions.

5.1.1 The original Ovsjanikov formulation

Let N be a mesh with n vertices and let P be a mesh with p vertices. Let {φi} be

a basis for F(N,R) stored as columns of the matrix Φ and let {ψi} be a basis for

F(P,R) stored as columns of the matrix Ψ. Let F be an n× f matrix formed by f

vectors representing functions N → R. Similarly let G be an p × f matrix formed

by f vectors representing functions P → R. Written in terms of the bases {φi} and

{ψi}
F = ΦA and G = ΨB

where A ∈ Rn×f and B ∈ Rp×f are matrices of basis coefficients.

Let C be the matrix representing the functional map TF : F(N,R)→ F(P,R) then,

if the functions in F and G are known to correspond,

G = ΨCTA.

Then, given two corresponding matrices of known functions F = ΦA and G = ΨB

the functional map matrix C can be found by solving

arg min
C

||B − CTA||F . (5.1.3)

This can be solved via the method of least squares with

C = (AAT)−1ABT .

Note that to apply theorem 2.4.1 the matrix A must be such that f > n and must

be full rank. This is a natural consequence of a well-chosen set of functions. A rank

deficient matrix A will occur when the columns of A are not linearly independent,

i.e. when a function is repeated or a sum of other functions in the set. In practice

functional maps are not calculated between function spaces but instead between

lower dimensional subspaces spanned by a small number of basis functions (see

115

section 2.5.1), reducing the number of functions required to construct A. It’s also

important to note that the number of basis functions used can differ between the

meshes.

In the original Ovsjanikov work this formulation was augmented by a commutativity

condition: Let ON : F(N,R)→ F(N,R) and OP : F(P,R)→ F(P,R) be operators

on the respective function spaces and let T : N → P be an isometry which defines

a functional map TF : F(N,R) → F(P,R) via TF (f) := f ◦ T−1 for f ∈ F(N,R).

Then the operators commute with T if

TF (ON (f)) = OP (TF (f)) , ∀f ∈ F (N,R) . (5.1.4)

The operator ON can be represented by matrix ŌN . The functions given by ŌNΦ

can be represented in the basis Φ by some matrix of coefficients S, with ŌNΦ =

ΦS. Similarly, let ŌP be the matrix representation of the operator OP . Then the

functions given by ŌPΨ can be represented in the basis Φ via matrix of coefficients

R, with ŌPΨ = ΨR. Equation (5.1.4) can then be written in matrix form as

ΨCTS = ŌPΨC = ΨRCT .

The commutativity constraint can be written in matrix form as

CTS = RCT (5.1.5)

with reference only to the coefficient matrices and the functional map matrix. This

leads to the extended matching problem

arg min
C

||B − CTA||F + ||CTS −RCT ||F . (5.1.6)

Again, this can be solved via the method of least squares as the problem can be

rewritten as an over-determined system for the entries of C.

The Frobenius norm ||M ||F is minimised when the matrix M is the zero matrix,

hence a matrix C is sought such that

ATC = BT , (5.1.7)

STC − CRT = 0. (5.1.8)

116

Equation 5.1.7 is called the function constraints and equation 5.1.8 is called the

operator constraints. Each of these conditions gives a system of equations for the

entries of C. Converting the matrix equations into explicit linear systems requires

use of the Kronecker product and the vec operator:

Definition 5.1.4: The vec operator vec : Rm×n → Rmn transforms an m × n

matrix M with n columns denoted Mi into a vector by stacking columns:

vec(M) =

M1

...

Mn

Definition 5.1.5: Let A be an m×n matrix and let B be a p× q matrix, then the

Kronecker product of A and B is the mp× nq matrix

A⊗B =

A11B . . . A1nB

...
. . .

...

Am1B . . . AmnB

 .
Lemma 5.1.6: [19, equation 520] Let A and B be as above, and let X be a n× p
matrix. Then, vec(AXB) =

(
BT ⊗ A

)
vec(X).

Proof. Let the columns of B be donated by Bi, so that B = [B1 . . . Bq]. Similarly,

let X = [X1 . . . Xp] and let (Bk)j denote the j-th component of the vector Bk. The

k-th column of AXB is given by

AXBk = A

(
p∑
j=1

Xj (Bk)j

)

=

p∑
j=1

(Bk)j AXj, by properties of scalar and matrix multiplication

=
[
(Bk)1A . . . (Bk)q A

]
X1

...

Xp

=
(
BT
k ⊗ A

)
vec(X).

117

Therefore, considering all columns of AXB,

vec(AXB) =

(
BT

1 ⊗ A
)

...(
BT
q ⊗ A

)
 vec(X)

=
(
BT ⊗ A

)
vec(X).

Corollary 5.1.7: vec(AX) = Ip ⊗ A vec(X) and vec(XB) = BT ⊗ In vec(X).

Assume that functions are written in truncated bases, using Φk and Ψk instead of

Φ and Ψ. This means that

A,B ∈ Rk×f and C ∈ Rk×k.

The same sets of truncated basis functions are used to construct the operator

constraints. So

R, S ∈ Rk×k.

Clearly this ensures an overdetermined system of equations as f + k > k.

The above corollaries allow the constraints (equations (5.1.7) and (5.1.8)) to be

rewritten as (
Ik ⊗ AT

)
vec(C) = vec(B), (5.1.9)((

Ik ⊗ ST
)
− (R⊗ Ik)

)
vec(C) = 0. (5.1.10)

Note that vec(B) ∈ Rkf and the zero vector is in Rk2 . Let αF :=
(
Ik ⊗ AT

)
and

αOp =
((
Ik ⊗ ST

)
− (R⊗ Ik)

)
. The system of k(f + k) linear equations[
αF

αOp

]
vec(C) =

[
vec(B)

0

]
(5.1.11)

is then an overdetermined system for the entries of C. To simplify notation, let

α :=

[
αF

αOp

]
and let β :=

[
vec(B)

0

]
. The aim is then to find a vector x which

118

minimises ‖αx−β‖F , a least squares problem. The matrix α is full rank if A and S

are full rank. In practice the backslash operator is used in MATLAB to solve least

squares problems. See [106] for details of methods involving matrix decomposition

to solve least squares problems.

Note that minimising ‖αx − β‖F as constructed above is not equivalent to the

extended matching problem (equation (5.1.6)), but gives instead

arg min
C

(
||B − CTA||2F + ||CTS −RCT ||2F

) 1
2 . (5.1.12)

5.1.2 Coupled Bases

For near-isometric shapes the matrix C has a diagonal structure due to the fact that

when T is very close to being an isometry ψi ≈ φi◦T−1. This is not true when meshes

are non-isometric. To maintain the diagonal structure in the functional map matrix,

we seek a pair of new orthogonal function space bases {φ̂i}k̂i=1, {ψ̂i}k̂i=1, where k̂ is

the number of eigenfunctions used in the creation of the new basis. These new bases

will produce a functional map matrix with the desired near-diagonal structure, and

are constructed to be linear combinations of Laplacian eigenfunctions. The idea

originates in [107], [108] and applied to functional maps in [109].

Let

φ̂i =
k∑
j=1

qjiφj, ψ̂i =
k∑
j=1

rjiψj (5.1.13)

denote the new basis functions and k̂ be the number of basis functions in the new

bases. That is,

Φ̂ = ΦkQ and Ψ̂ = ΨkR

where the matrices Q and R are k × k̂ matrices of linear combination coefficients.

The aim is to choose new bases so that they are A orthogonal, with Φ̂TAN Φ̂ = Ik̂

and Ψ̂TAP Ψ̂ = Ik̂. Given that ΦT
kANΦk = Ik the orthogonality condition holds if

Φ̂TAN Φ̂ = (ΦkQ)T AN (ΦkQ) = QTΦT
kANΦkQ = QTQ = Ik̂

119

(and similarly RTR = Ik̂).

It is also desirable that the new basis functions behave like eigenfunctions of the

Laplacian. This happens if they minimise the Dirichlet energy, tr
(

Φ̂TWN Φ̂
)

, where

WN is the weight matrix of the Laplacian LN = A−1
N WN (see section 2.5.2). Using

the fact that Φ̂ = ΦkQ,

tr
(

Φ̂TWN Φ̂
)

= tr
(
QTΦT

kWNΦkQ
)

= tr
(
QTΛNQ

)
,

by equation (2.5.7), where ΛN is the diagonal matrix of the first k Laplacian

eigenvalues. (Similarly, tr
(

Ψ̂TWP Ψ̂
)

= tr
(
RTΛPR

)
.)

The following minimisation problem can be solved for the coefficient matrices Q and

R which define the new bases:

min
Q,R

tr
(
QTΛNQ

)
+ tr

(
RTΛPR

)
+ µ

∥∥QTA−RTB
∥∥
F

(5.1.14)

s.t. QTQ = I, RTR = I.

The matching problem can then be formulated as in equation (5.1.3) using the

function coefficient matrices Â and B̂.

5.1.3 Sparse Matching

Assume that the same number of basis functions are used to construct functions

for each mesh, resulting in a square C matrix. The above methods assume the

the correspondence is known between pairs of functions f and g and that they

are arranged consistently in the coefficient matrices A and B. If the functions are

not arranged consistently then there is a permutation on the columns of B which

correspond to the columns of A. Let Π be the f × f matrix representing this

permutation, then the functional constraint (equation 5.1.7) becomes

ΠBT = ATC.

However, it could be that the number of functions differs between meshes. Given

this set-up a possible method to find the functional map matrix is presented in [10].

120

Without loss of generality, let there be f functions fi defined on N and g functions gj

defined on P with f ≤ g. Now, instead of the one-to-one correspondences mentioned

above, Π is an f × g matrix which has some zero columns. To calculate Π assume

that all rows of AT are matched to some row in BT , and use a row-sparse f × l

outlier matrix O to remove any mismatches. That is,

ΠBT = ATC +O. (5.1.15)

To find Π and C, keeping in mind that C should be sparse and nearly-diagonal, the

aim is to minimise

1

2
‖ ΠBT − ATC −O ‖2

F +λ ‖ D�C ‖1 +µ ‖ OT ‖2,1 . (5.1.16)

where the norms are as defined in section 2.1. The matrix D ∈ Rk×k is used to

promote diagonal solutions. It consists of small valued Dij close to the diagonal, with

large valued Dij further away from the diagonal. The symbol � denotes element-

wise multiplication and the non-negative parameter λ controls the level of such

promotion. In summary – the first term aims to minimise the difference between

ΠB and (AC + O); the second term promotes diagonal solutions via the weighted

matrix D; the final term controls the row-wise sparsity of the matrix O, via the

non-negative parameter µ.

The minimisation problem (5.1.16) can be split into two problems. Firstly fix Π,

resulting in

min
C,O

1

2
‖ ΠBT − ATC −O ‖2

F +λ ‖ D � C ‖1 +µ ‖ O ‖2,1 . (5.1.17)

Secondly fix both C and O, resulting in

max
Π

vec((ATC +O)B) vec(Π) s.t.

Π1 = 1,(
ΠT1

)
i

= 1 for all i = 1, ..., f,
(5.1.18)

where 1 is the f -dimensional vector with each element equal to 1. Note that this

maximisation arises from minimising a trace where the only non-constant term is

− tr
(
BTΠT (ATC +O)

)
.

The following algorithm can be used to solve 5.1.17:

121

1: Fix Π, A, B, parameters λ and µ and step-size α.

2: Set initial values O0 = ΠBT and C0 = 0.

3: repeat

Ck+1 = P1((I − 1

α
AAT)Ck − 1

α
A(Ok − ΠBT))

Ok+1 = P2((I − 1

α
)Ok − 1

α
(ATCk − ΠBT))

4: until convergence

where

α ≤ the largest eigenvalue of

[
AAT A

AT I

]
, (5.1.19)

P1(C) = max{|C| − λ

α
W, 0} � sgn(C) , (5.1.20)

and the i-th row of P2 is given by

P2(O) = max{‖ oTi ‖2 −
µ

α
, 0} oTi
‖ oTi ‖2

, (5.1.21)

where oi denotes the i-th of row O. The Pi (·) terms come from the use of a

proximal gradient method [10, p.12]. (More details about the proximal operator

can be found in section 3.2, see definition 3.2.11.) An acceleration step is also used.

The solution to (5.1.18) can be obtained via an inverted Hungarian algorithm. This

is a method of finding an optimal cost, which allows the selection of the greatest

trace [110]. These two part-solutions are then alternated between until an overall

convergence is reached, solving the initial problem, (5.1.16).

5.1.4 Point-to-point maps from functional maps

Let function ιx : N → R be an indicator function such that, for all x̄ ∈ N

ιx(x̄) =

0, if x̄ 6= x,

1, if x̄ = x.

122

Let TF be a functional map. Then g = TF (ιx) is a function on P and the point y∗,

such that

y∗ = arg max
y∈P

g(y) ,

can be considered to be the corresponding point.

In matrix form, let ιx = Φka be the indicator function represented as a vector of

basis coefficients, then g = ΨlC
Ta and the index of the corresponding point is given

by maxi gi.

To do this for every vertex of N requires O(np) operations [5, section 6.1], expensive

for large meshes. Instead, as in [5] consider the coefficients of indicator functions

when represented in the function space basis. (Note that the paper references an

alternative proof.)

Proposition 5.1.8: The indicator function for vertex vj is given by

ιvj = AΦrTj

where rj denotes the j-th row of Φ.

Proof. First note that, given n×n Φ such that ΦTAΦ = I, Φ is invertible and hence

A = (ΦΦT)−1.

As A is positive definite, A is invertible so

A−1 = ΦΦT . (5.1.22)

Note also that (ιvj)i = δij. Then consider the i-th element of AΦrTj :[
AΦrTj

]
i

=
∑
k

(AΦ)ik(r
T
j)k

=
∑
k

(AΦ)ikΦjk

=
∑
k

AiiΦikΦjk

= Aii(ΦΦT)ij

= AiiA
−1
ij , by equation (5.1.22),

= δij.

123

Therefore the function given by

f := A−1ιvj = A−1AΦrTj

(called the scaled indicator function) has corresponding function

g := ΨCT rTj

on P . The matrix of all scaled indicator functions is given by

F := A−1I = (A−1A)ΦΦT

which maps via the functional map to

G := ΨCTΦT .

Following the above argument for the construction of scaled indicator functions on

N , the set of scaled indicator functions on P are given by ΨΨT . To find the point-

to-point match, for each column in G find the nearest column in ΨΨT . Let x = Ψa,

y = Ψb be vectors constructed as linear combination of basis vectors. Distance

between vectors can be measured as distance between coefficient vectors as

‖x− y‖A = ‖a− b‖2

(for proof see A.11). Therefore correspondence can be found by matching each

column of CTΦT with its nearest neighbour in ΨT . Note that since there are n

columns of CTΦT and p columns of ΨT this is not necessarily a bijection.

Definition 5.1.9: A ground truth match is a known matching between meshes.

The ground truth matching is usually defined as a point-to-point match between

the vertex sets. Again, it may not be a bijection. Some datasets are provided with

ground truth matches for testing purposes (e.g. [111], [112]).

124

5.1.5 Iterative Closest Point Refinement

Following [5], a given functional map C can be refined to make it closer to a point-

to-point map. Assume that there is an underlying point-to-point map. Then it must

be that each column of CTΦT corresponds to a column of ΨT , where notation is as

above.

Assume that the same number of basis functions are used to represent the

(truncated) function spaces of the two meshes, and assume that the meshes are

isometric. Then the matrix C is expected to be orthonormal (property (4)) so

refinement of C can be given by the following algorithm:

1: repeat

2: Match columns x of CTΦT to nearest column y in ΨT .

3: Find optimal orthonormal C̃ minimising
∑
‖C̃x − y‖2 (via singular value

decomposition).

4: Set C = C̃.

5: until convergence

Note that due to the potential for corresponding eigenfunctions to differ by a sign-

flip this method cannot be used without an existing estimate for C. This method is

analogous to the iterative closest point refinement (ICP) of [113], but takes place in

the function space rather than attempting an alignment of the mesh vertices, and

hence refinement is referred as being via ICP. In practice the refinement algorithm

is run for a fixed number of iterations.

Figure 5.2 shows a functional map matrix calculated between horse0 and horse10,

via the original Ovsjanikov formulation, then refined via ICP. Note how refinement

makes the functional map matrix more like the “true” functional map matrix, as

constructed in figure 5.1 (right).

125

Figure 5.2: A functional map matrix and the resulting refinement via ICP. (Displayed

is the upper-left 50 × 50 sub-matrix of the functional map calculated in chapter 5, using

the LBO basis.)

5.1.6 Further work

There is a considerable amount of other work on the method of functional maps for

shape correspondence problems. Reviews can be found in [114] and [115] (which also

provides a good general introduction). One significant work is [116] which considers

functional maps between shapes with holes or missing parts.

Alternative refinement methods with greater success in retrieving a point-to-point

match can be found in [75] and [79], the latter permitting point-to-face matches.

5.2 Measuring Quality of a Functional Map

Let N be a mesh with n vertices and AN -orthogonal (truncated) function space

basis represented as columns of an n × k matrix Φ, where AN is a (lumped) area

matrix. Let F be an n×f matrix with columns given by known functions evaluated

on the vertices of N . Let ΦA be the reconstruction of F in the basis Φ, where A is

a k × f matrix of coefficients.

Similarly, let P be a mesh with p vertices and AP -orthogonal (truncated) function

space basis represented as columns of p× k matrix Ψ, where AP is an area matrix.

126

Let G be an p× f matrix with columns given by known functions evaluates on the

vertices of P . Let ΨB be the reconstruction of G in the basis Ψ, where B is a k× f
matrix of coefficients.

Then, given a functional map between the (truncated) function spaces of N and

P , represented by matrix C, the difference between the known functions G and

the transformed functions ΨCTA can be measured in a simple way by taking the

Frobenius norm,

ErrS(C) := ‖G−ΨCTA‖F . (5.2.23)

Definition 5.2.1: ErrS(C) is called the simple transformation error.

An error based on the reconstruction error (see definition 4.2.2) can also be defined

as

ErrT (C) := Err
(
G,ΨCTA

)
=

1

p

p∑
i=1

√√√√ f∑
j=1

|Gij − (ΨCTA)ij|2. (5.2.24)

This calculates the distance between the known functions and the functions obtained

via the functional map at each vertex, then takes a mean.

Definition 5.2.2: ErrT (C) is called the function transformation error.

The simple transformation error gives an average error between the two sets of

functions on N , the known functions and the transformed functions. The function

transformation error takes an average over the vertex set, so is skewed by sets

of transformed functions which perform badly at specific vertices. That is, a low

simple transformation error and a large function transformation error implies that

the transformed functions are close to the known functions with large errors at

specific vertices.

The simple transformation error and the function transformation error are related

via the following lemma.

Lemma 5.2.3: Let S := ErrS(C) and let T := ErrT (C). Then

S2 = p2T 2 −
∑
i 6=j

‖Ei‖2‖Ej‖2, (5.2.25)

127

where Ei denotes the i-th row of G−ΨCTA.

Proof. Define E := (G = ΨCTA)T . Note that the Ei are given by the columns of E.

Then, since for any matrix M , ‖M‖F = ‖MT‖F , S = ‖E‖F . Consider the square of

the Frobenius norm which can be expressed as a sum of `2 vector norms:

S2 = ‖E‖F =

p∑
j=1

‖Ei‖2
2.

The value T can also be expressed in terms of the Ei, as

T =
1

p

p∑
i=1

‖Ei‖2

and so

p2T 2 =

(
p∑
i=1

‖Ei‖2

)2

=

p∑
i=1

‖Ei‖2
2 +

∑
i 6=j

‖Ei‖2‖Ej‖2

= S2 +
∑
i 6=j

‖Ei‖2‖Ej‖2.

Rearranging gives the result.

When a ground truth match is known between two meshes, let this define a map

gt : N → P . Extract a point-to-point match ρ : N → P from the functional

map (see section 5.1.4). Ideally the geodesic distance between gt(v) and ρ(v) for

every vertex v ∈ N would be calculated and averaged to obtain an error value.

However, calculating geodesic distance on meshes is computationally expensive so

instead approximate via average geodesic distance units, constructed by dividing the

Euclidean distance between the points by the average edge length. An error based

on the geodesic error (similar to that of [81, section 8.2]) can then be defined as

ErrGD(C) :=
1

average edge length

n∑
i=1

‖gt(vi)− ρ(vi)‖2 . (5.2.26)

128

Definition 5.2.4: ErrGD(C) is called the geodesic functional map error.

As the geodesic distance is used in existing works it is the obvious choice, even

if taking an approximation. One work which uses an alternative method for

comparison is [78] which uses the biharmonic distance [82].

5.2.1 Measuring Isometry Failure

Recall from the properties of functional maps, that given C representing TF :

F(N,R) → F(P,R) the reverse functional map T−1
F : F(P,R) → F(N,R) is

represented by CT (property (4)). Let D be a functional map matrix representing

the functional map in the opposite direction to that represented by C. Then the

failure of the functional map to meet this property can be evaluated via ‖D−CT‖F .

Given that the property that D = CT relies on the assumption that the meshes

are isometric this can be considered as a method of assessing how far from being

isometric a pair of meshes are.

Definition 5.2.5: The value ‖D − CT‖F is referred to as the C-orthogonality

error.

5.3 Functional map comparison experiments

A total of 300 functional maps were calculated (15 pairs of meshes (N,P), 10 basis

types, maps calculated N → P and P → N). The basis types used were the basis

types listed in section 4.3 as well as a set of compressed manifold modes calculated

using ADMM as in section 3.2.2, with µ = 0.008 (labelled CMM ADMM).

The original Ovsjanikov formulation of the problem was used (see section 5.1.1),

with functional constraints provided by a set of corresponding functions described

below. Commutativity constraints were constructed using the weight matrix W

of the calculated discrete Laplacian L. The weight matrix necessarily commutes

with isometry (see definition 3.4.8), and by considering the commutation of the

129

weight matrix rather than the Laplacian results in commutativity constraints with

a uniform weighting for each vertex. Functional map matrices were then refined

using ICP (see section 5.1.5).

5.3.1 Choice of functional constraints

Point-based functions such as delta functions were not used in the set of functional

constraints as the landmarked points were not guaranteed to correspond between

meshes. Instead 30 heat kernel signature functions, 100 wave kernel signature

functions and segment indicator functions were used to construct the functional

constraints. Despite the poor performance of segment indicator functions in chapter

4 using such functions helps avoid errors due to symmetry. These functions

were calculated as described in section 4.1. Segmentation indicator functions

were rejected if the segmentation resulted in a single segment or if there was no

clear correspondence between segments for a specific mesh pair. As mentioned in

section 4.1, the fish and victoria meshes do not have segment indicator functions

as the segmentation method resulted in a single segment; the chair meshes

have segmentation functions removed from the set of descriptor functions as the

segmentations did not have corresponding segments.

5.3.2 Expectations and Results

Refinement is likely to have a negative effect on the simple transformation error and

hence also the function transformation error. To see this consider the most simple

form of the functional map problem, where the functional map matrix C minimises

‖B − CTA‖F .

Theorem 5.3.1: Let B ∈ Rl×f , A ∈ Rk×f , with A full rank and let C be such that

C = arg min
X∈Rk×l

‖B −XTA‖F .

130

Let Ψ ∈ Rn×l and let Ψ be M -orthogonal for positive definite M ∈ Rn×n. Then if

Ψ is full rank, C also minimises

arg min
X∈Rk×l

‖ΨB −ΨXTA‖F .

Proof. First note that if Ψ is such that ΨTPsi = I (i.e. M = I) then proof is clear

(see lemma A.10). However this does not simply generalise for the M 6= I case.

Recall that via least squares minimisation (section 2.4.1) C is given by

C = (AAT)−1ABT . (5.3.27)

Now consider the matrix C̄ such that

C̄ = arg min
X
‖ΨB −ΨXTA‖F .

To solve for C̄ first note that

C̄ = arg min
X
‖ΨB −ΨXTA‖2

F

= tr
(
BTB

)
+ tr

(
ATXΨTΨXTA

)
− 2 tr

(
BTΨTΨXTA

)
= tr

(
BTB

)
+ tr

(
ΨXTAATXΨT

)
− 2 tr

(
XTABTΨTΨ

)
,

by the cyclic property of trace. Differentiating with respect to X and equating with

zero gives

2AATXΨTΨ− 2ABTΨTΨ = 0 via [19, equations (103) and (116)].

Rearranging gives

XΨTΨ = (AAT)−1ABTΨTΨ.

Then, since ΨTΨ is invertible (see lemma A.1), multiply on the right by (ΨTΨ)−1

to get

X = (AAT)−1ABT ,

which is exactly C from equation 5.3.27.

131

That is, the C which is obtained as a functional map matrix is the same matrix

which minimises the simple transformation error. Of course, when C is calculated

with the additional commutativity constraints as well as the functional constraints

this does not necessarily hold. Note that this reasoning is not dependent on the

refinement being via ICP, so remains true for alternative refinement methods.

Figures 5.3 and 5.4 corroborate this expectation. The solid markers show the error

calculated using the unrefined functional map matrix C and the unfilled markers

show the error calculated using functional map matrices refined via ICP. Markers

are slightly offset for ease of reading. The errors when using the unrefined matrices

are less than the errors when using the refined matrices, showing that refinement has

a negative effect on the accuracy of function reconstruction. The tight clustering

of the unrefined errors also implies that there is no significant difference in the

performance of each basis type.

Figure 5.3: Simple transformation error – the effect of refinement.

132

Figure 5.4: Function transformation error – the effect of refinement.

Theorem 5.3.2: Let T : N → P be an isometry between meshes. Let C the

functional map matrix representing TF : F(N,R) → F(P,R) and let D be the

matrix representing the inverse functional map T−1
F : F(P,R) → F(N,R). Then

ErrS(C) = ErrS(D).

Proof. Recall that when a pair of meshes are isometric and the functional map

matrices are constructed using A-orthogonal bases then D = CT and both D and

C are orthogonal (see property (4)). Therefore, due to the orthogonality of D,

‖B − CTA‖F = ‖DT (B − CTA)‖F , via lemma A.10,

= ‖DTB −DTCTA‖F
= ‖DTB − A‖F , since CCT = I and DT = C,

= ‖A−DTB‖F .

133

Define

E := B − CTA and H := A−DTB (5.3.28)

and note that

CTH = −E. (5.3.29)

Let Π be the permutation matrix representing T , then the isometry take functions

Φ to functions ΠTΦ on P . Equally, in the language of functional maps Φ maps to

ΨCT so

ΠTΦ = ΨCT (5.3.30)

Now consider the simple transformation error:

ErrS(D) = ‖Φ(A−DTB)‖F
= ‖ΦH‖F
= ‖ΠTΨCTH‖F , via equation (5.3.30)

= ‖ΨCTH‖F , via lemma A.10,

= ‖−ΨE‖F , via 5.3.29,

= ErrS(C) .

That is, for functional maps calculated in both directions between isometric meshes,

the simple transformation errors are equal. Therefore, for near-isometric meshes

it is expected that the transformation errors calculated in both directions are very

similar. This is verified in figure 5.5 which compares the simple transformation

error between the functional map C and the reverse functional map D. Solid

markers denote the originally calculated C matrices and unfilled markers denote

the D matrices calculated in the opposite direction. The solid and unfilled markers

appear side-by-side for many of the meshes, with the horse meshes as the best

example. Note that the meshes with greatest difference between the errors when

the map direction is changed are the fish and head meshes. These are pairs which

are not isometric – they do not have the same number of vertices.

134

Figure 5.5: Simple transformation error – comparing functional map direction.

Figure 5.5 also allows a closer look at the basis type clusters. There is no clear trend

in the performance of the basis types across the pairs, however trends do appear for

related meshes – consider the performance of the CMM bases for the horse pairs,

consistently resulting in the lowest error. This suggests that that different basis types

may perform better than others for specific shape collections. Following refinement

these trends are not as clear. This can be seen in figure 5.6 where solid markers

denote the refined C matrices and unfilled markers denote refined D matrices. It

can also be seen that although the errors have increased, refinement has brought

to C and D errors together for the head and fish meshes. This is to be expected

because the ICP refinement relies on the assumption that meshes are isometric.

Figure 5.7 plots the C-orthogonality error and shows extreme errors in the GL

basis, particularly for the pairs of meshes known not to be near-isometric. This

is because the graph Laplacian sees only the underlying graph structure of the

135

Figure 5.6: Simple transformation error – comparing refined functional map direction.

meshes. This provides a warning against testing only data sets where meshes are

constructed with the same underlying graph structure, as they lead to improvement

in results. Figure 5.8 shows the same data with the GL basis results removed.

If C-orthogonality error is increased following refinement this indicates that the

isometry assumption is flawed. Figure 5.9 shows the error after refinement. Note

that following refinement functional maps calculated via the GL basis no longer

stand out as performing poorly. As above there is no clear trend for a basis type

which performs best, but there are micro-trends across the groups of mesh pairs, for

example the superior performance of the LBO and GL bases for the horse meshes.

The aim of refinement is to improve the quality of a point-to-point map, measured

via the geodesic functional map error, and hence the expectation is that refined

functional map matrices reduce the geodesic functional map error. Figure 5.10

verifies this. The solid markers denote the geodesic functional map error using an

136

Figure 5.7: C-orthogonality error

Figure 5.8: C-orthogonality error, GL basis removed.

137

Figure 5.9: C-orthogonality error (refined)

138

unrefined C matrix, the unfilled markers denote error after refinement.

Figure 5.11 compares the geodesic functional map error for maps calculated in both

directions, allowing a closer look at the performance of each basis type. Solid markers

denote the refined C matrices and unfilled markers denote the refined D matrices

calculated in the opposite direction. Once again there is no clear basis type which

performs best across all pairs, but micro-trends appear for the groups of meshes –

consider the performance of the GL basis for both the screwdriver meshes and the

horse meshes, noting that it performs best for one but not the other.

139

Figure 5.10: Geodesic functional map error – the effect of refinement.

Figure 5.11: Geodesic functional map error – comparing refined functional map direction.

140

5.4 Summary and Future Work

Functional maps were calculated using a variety of bases. The ability of the

functional maps to reconstruct the functions used in their construction was tested.

The key observations are as follows:

• Refinement negatively affects transformation error. This is because the

least squares solution minimises transformation error. As a consequence any

refinement leads to an increase in transformation error. As refinement is often

used to improve geodesic error the result is that functions mapped using a

refined functional map matrix will have an increased transformation error.

• There is no basis type which consistently reduces error across the whole mesh

set.

• Some basis types may be better at reducing errors than others for specific shape

collections. However, this comes with a warning that the experiments were

unfairly skewed by meshes which have the same underlying graph structure.

In theorem 5.3.1 it was proved that the functions used in the construction of

the functional map should transform with least error. There is more scope for

investigation here as only the transformation and reconstruction of these functions

was tested. How do the functional maps perform when transforming other

functions?

141

Chapter 6

Optimisation on Generalised Stiefel

Manifolds

The Stiefel manifold is defined via the set of n × k matrices X such that XTX =

I, [117, example 3.5.2]. In the A = I case, the compressed manifold mode problem

can be considered as an optimisation problem on a Stiefel manifold. This chapter

gives an introduction to generalised Stiefel manifolds, defined via the set of n × k
matrices X such that XTMX = I, where M is symmetric positive definite. Known

properties and results for the Stiefel manifold are generalised for the M 6= I case.

Optimisation problems on the Stiefel manifold have been studied elsewhere. The

Stiefel manifold is a frequent example in [117]; optimisation algorithms are given

in [118]; accelerated algorithms are given in [119] and [120]. Optimisation requires

a retraction from the tangent space to the manifold. The recent works of [121],[122]

use a retraction based on the Cholesky decomposition. A proof is provided that this

is a retraction in the general case, noting the deficiency in the reference provided in

both [121] and [122].

Existing methods for optimisation on Stiefel manifolds also require the objective

functions to be smooth [118, p.330] or differentiable [119, section 3.3]. Here a

sequential method for optimisation on generalised Stiefel manifolds is presented.

It is applied to the CMM problem, approximating via a smoothing of the `1 norm.

142

Section 6.5 details some possible approximations (smoothings) of the `1 norm to be

used in the optimisation.

6.1 Generalised Stiefel Manifolds

This section follows a technical note [123], written to aid understanding of a notable

work about optimisation on Stiefel manifolds [120]. The theory is adapted for

the generalisation of Stiefel manifolds, altering the orthogonality constraints. It

is assumed throughout that M is an n × n symmetric positive definite matrix.

(Note that this means M−1 exists.) In addition, the following notation is used for

symmetric and skew-symmetric matrices:

Definition 6.1.1: Let Sym(n) denote the set of n× n symmetric matrices,

Sym(n) = {W ∈ Rn×n : W = W T}. (6.1.1)

Let Y ∈ Rn×n. Define the projection sym : Rn×n → Sym(n) to be

sym(Y) =
1

2
(Y + Y T). (6.1.2)

Definition 6.1.2: Let Skew(n) denote the set of n× n skew-symmetric matrices,

Skew(n) = {W ∈ Rn×n : W = −W T}. (6.1.3)

Let Y ∈ Rn×n. Define the projection skew : Rn×n → Skew(n) to be

skew(Y) =
1

2
(Y − Y T). (6.1.4)

Remark 6.1.3: Sym(n) is an 1
2
n(n + 1) dimensional vector space; Skew(n) is an

1
2
n(n− 1) dimensional vector space.

Definition 6.1.4: The generalised Stiefel manifold is the set

SM := {X ∈ Rn×k : XTMX = I}, (6.1.5)

where M is an n× n symmetric, positive-definite matrix.

143

That this is a manifold of dimension nk− 1
2
k(k+1) is a simple generalisation of [117,

pp.26-27].

The notation S without a subscript matrix M is used to denote the Stiefel manifold

where M = I.

Denote by TXSM the tangent space at X to SM . The tangent space can be described

by a specific relationship between tangent vectors and the basepoint X.

Lemma 6.1.5: [123, lemma 1, generalised] Any Z ∈ TXSM satisfies ZTMX +

XTMZ = 0.

Proof. Let Y : R → SM defined by Y (t) be a differentiable curve in SM . Then

Y (t)T MY (t) = Ik for all t ∈ R. Differentiating with respect to t gives

Y ′(t)T MY (t) + Y (t)T MY ′(t) = 0.

Setting Y (0) = X and Y ′(0) = Z gives ZTMX +XTMZ = 0.

Note that this means that the matrix ZTMX is skew-symmetric as

ZTMX = −XTMZ = −(ZTMX)T .

Proposition 6.1.6: Let X ∈ SM and Z ∈ TXSM . Then

(i) (X + Z)TM(X + Z) is a positive definite matrix,

(ii) The tangent space TXSM intersects SM only at X.

Proof. (i) Firstly,

(X + Z)TM(X + Z) = XTMX + ZTMX +XTMZ + ZTMZ.

Recall that Z ∈ TXSM means that ZTMX + XTMZ = 0 and that for any

X ∈ SM , XTMX = I. So

(X + Z)TM(X + Z) = I + ZTMZ. (6.1.6)

144

Since M is positive definite, the matrix ZTMZ is positive semi-definite,

therefore by equation (6.1.6)

vT (X + Z)TM(X + Z)v = vTv + vTZTMZv

≥ 0

for all v ∈ Rk, with equality if and only if v = 0. Hence (X + Z)TM(X + Z)

is positive definite.

(ii) Assume towards a contradiction that ∃Z 6= 0 with X + Z ∈ SM . The matrix

ZTMZ has (ij)-th entry given by zTi Mzj, where zi denotes the i-th column of

Z. Since Z 6= 0 at least one of the columns zi is non-zero. Then, at least one of

the entries zTi Mzi is non-zero as M is positive definite. Therefore, ZTMZ 6= 0,

and (X + Z)TM(X + Z) 6= I, a contradiction. Hence, TXSM ∩ SM = {X}.

To give an alternative description of TXSM proposition 2.3 of [121] is generalised.

Proposition 6.1.7: [121, proposition 2.3, generalised] Let X ∈ SM , then

(i) TXSM = {Z ∈ Rn×k : Z = WMX, W ∈ Skew(n)},

(ii) TXSM = {Z ∈ Rn×k : Z = M−1WX, W ∈ Skew(n)}.

Proof. Let Z ∈ TXSM . Then define the projection

PX := I − 1

2
XXTM. (6.1.7)

Define also the skew-symmetric matrix

WZ := PXZX
T −XZTP T

X . (6.1.8)

145

Then

WZMX = PXZX
TMX −XZTP T

XMX

= PXZ −XZTP T
XMX

= Z − 1

2
XXTMZ −XZTMX +

1

2
XZTMX

= Z − 1

2
XXTMZ − 1

2
XZTMX

= Z − 1

2
X(XTMZ + ZTMX)

= Z, since XTMZ + ZTMX = 0 as Z ∈ TXSM . (6.1.9)

Hence Z = WZMX. Therefore TXSM ⊆ {Z ∈ Rn×k : Z = WMX, W ∈ Skew(n)}.

Conversely, let Z be such that Z = WMX for some W ∈ Skew(n). Then

ZTMX +XTMZ = (WMX)TMX +XTM(WMX)

= XTMW TMX +XTMWMX

= XTMW TMX −XTMW TMX, since W = −W T ,

= 0.

So Z ∈ TXSM . Therefore {Z ∈ Rn×k : Z = WMX, W ∈ Skew(n)} ⊆ TMSM and

hence TXSM = {Z ∈ Rn×k : Z = WMX, W ∈ Skew(n)}.

The proof that TXSM = {Z ∈ Rn×k : Z = M−1WX, W ∈ Skew(n)} is similar.

The matrices PX and WZ will appear again later.

Given X ∈ SM , the columns of X are M -orthonormal vectors in Rn. Therefore,

an additional set of (n − k) vectors in Rn can be constructed to be M -orthogonal

to the columns of X. Let X⊥ denote the matrix with the additional vectors as

columns. Note that the combined set of vectors forms an orthonormal basis for Rn.

Let
[
XX⊥

]
denote the n× n matrix formed by concatenating X and X⊥.

Lemma 6.1.8: [123, lemma 2] The matrix
[
XX⊥

]
is an isomorphism of Rn×k.

146

Proof. (Tagare) Let W =
[
XX⊥

]
. Since the columns of W form a basis for Rn, W

is invertible. Similarly W−1R ∈ Rn×k ∀R. Consider P ∈ Rn×p, P 6= R. Assume

WR = WP . Multiplication on the left by W−1 gives R = P , a contradiction,

therefore multiplication by W is injective. Surjectivity is clear as when WR 6= WP

then R 6= P . As matrix multiplication is a homomorphism the action of W is an

automorphism.

Any element U ∈ Rn×k can be written as U =
[
XX⊥

]
C where C is an n×k matrix.

Let

C =

[
A

B

]
,

where A ∈ Rk×k and B ∈ R(n−k)×k. Then

U =
[
XX⊥

] [A
B

]
= XA+X⊥B. (6.1.10)

Lemma 6.1.9: [123, lemma 3, generalised] A matrix Z = XA+X⊥B is in TXSM
if and only if A is skew-symmetric.

Proof. Let Ω = {Z ∈ Rn×k : Z = XA+X⊥B, A = −AT} ⊆ Rn×k. The dimension

of Ω is determined by the matrices A and B, hence dim(Ω) = 1
2
k(k−1)+(n−k)k =

nk − 1
2
k(k + 1). Let Z ∈ TXSM . Since Z ∈ TXSM ⊆ Rn×k, Z can be expressed in

the form Z = XA + X⊥B and satisfies the condition that ZTMX + XTMZ = 0.

Then

0 =
(
ATXT +BTXT

⊥
)
MX +XTM (XA+X⊥B)

= ATXTMX +BTXT
⊥MX +XTMXA+XTMX⊥B

= AT + A since XTMX = I and XTMX⊥ = 0.

Therefore A is skew-symmetric and TXSM ⊆ Ω. To show equality consider the

dimension of TXSM :

dim(TXSM) = dim(SM) = nk − 1

2
k(k + 1) = dim(Ω) ,

therefore TXSM = Ω.

147

Definition 6.1.10: Let Z1, Z2 ∈ TXSM . Then define the Euclidean inner

product with respect to M as

〈Z1, Z2〉e = tr
(
ZT

1 MZ2

)
. (6.1.11)

This is just the M -inner product, as defined in definition 2.1.5, but here the

terminology of [118] and [120] is used to remain consistent with those works.

Consider 〈Z,Z〉e when Z = XA+X⊥B:

〈Z,Z〉e = tr
(
ZTMZ

)
= tr

(
(ATXT +BTXT

⊥)M(XA+X⊥B)
)

= tr
(
ATXTMXA+ ATXTMX⊥B +BTXT

⊥MXA+BTXT
⊥MX⊥B

)
.

Recall that XTMX = I, XTMX⊥ = 0, XT
⊥MX = 0, XT

⊥MX⊥ = I and hence,

〈Z,Z〉e = tr
(
ATA+BTB

)
=
∑
i>j

2A2
ij +

∑
ij

B2
ij.

The Euclidean inner product gives twice the weight to independent entries of A, so

consider a new inner product which weights coordinates equally:

Definition 6.1.11: Let Z1, Z2 ∈ TXSM . The (generalised) canonical inner

product is defined to be

〈Z1, Z2〉c = tr

(
ZT

1 M(I − 1

2
XXTM)Z2

)
. (6.1.12)

Check that this does indeed produce an equal weight for all coordinates: Let Z =

148

XA+X⊥B then

〈Z,Z〉c = tr

(
(ATXT +BTXT

⊥)M(In −
1

2
XXTM)(XA+X⊥B)

)
= tr

(
(ATXTM +BTXT

⊥M −
1

2
ATXTM)(XA+X⊥B)

)
= tr

(
ATA− 1

2
ATA+BTB

)
= tr

(
1

2
ATA+BTB

)
=
∑
i<j

A2
ij +

∑
ij

B2
ij.

Definition 6.1.12: [119, 3.1.1], [117, 4.1.1] Let M be a smooth manifold. A

retraction on M is a smooth map R from the tangent bundle TM to M, such

that for all X ∈M, Z ∈ TXM the restriction RX : TXM→M satisfies

(i) RX(0) = X,

(ii) d
dτ

∣∣
τ=0

RX(τZ) = Z, where τ ∈ R.

Definition 6.1.13: Let X ∈ Rn×k and let M be an n×n symmetric positive definite

matrix. The Cayley Transform is the map CTX : Skew(n)→ Rn×k defined by

CTX(W) = (I −WM)−1(I +WM)X, (6.1.13)

where W ∈ Skew(n).

Lemma 6.1.14: If X ∈ SM and W ∈ Skew(n) then CTX(W) ∈ SM .

Proof. Let W ∈ Skew(n). Firstly note that

(I +WM)T = I −MW and (I −WM)T = I +MW.

149

Secondly note that

(I −WM)M−1(I +MW) = (M−1 −W)(I +MW)

= M−1 −W +W −WMW

= M−1 −WMW

= (M−1 +W)(I −MW)

= (I +WM)M−1(I −MW). (6.1.14)

Let Q = (I −WM)−1(I +WM). Then

QTMQ = (I +WM)T (I −WM)−TM(I −WM)−1(I +WM)

= (I −MW)(I +MW)−1M(I −WM)−1(I +WM)

= (I −MW)
(
(I −WM)M−1(I +MW)

)−1
(I +WM)

= (I −MW)
(
(I +WM)M−1(I −MW)

)−1
(I +WM), from (6.1.14)

= (I −MW)(I −MW)−1M(I +WM)−1(I +WM)

= IMI

= M.

Then, CTX(W) = QX so

CTX(W)T M CTX(W) = (QX)TM(QX)

= XTQTMQX

= XTMX, since QTMQ = M

= I, since X ∈ SM .

That is, CTX(W) ∈ SM .

Proposition 6.1.15: Let X ∈ SM and let PX ,WZ be as in equations (6.1.7),(6.1.8).

Then the map TCTX : TXSM → SM defined by

TCTX(Z) = CTX

(
1

2
WZ

)
= CTX

(
1

2
(PXZX

T −XZTP T
X)

)
, (6.1.15)

is a retraction.

150

Proof. To show this check that TCTX satisfies the conditions of the definition:

(i) TCTX(0) = CTX(0) = I−1IX = X.

(ii) Let W := 1
2
WZ = 1

2
(PXZX

T −XZTP T
X), then

d

dτ

∣∣
τ=0

TCTX(τZ) =
d

dτ

∣∣
τ=0

CTX(τW) .

Since ∂
∂X
Y −1 = −Y −1 · ∂

∂τ
Y · Y −1 [19, (59)] and ∂

∂X
(I ± τWM) = ±WM ,

d

dτ

∣∣
τ=0

TCTX(τZ) =
[
−(I − τWM)−1(−WM)(I − τWM)−1(I + τWM)X

+(I − τWM)−1(WM)X
]
τ=0

= −I−1(−WM)I−1IX + I−1WMX

= 2WMX

= WZMX

= Z, via lemma 6.1.7, equation (6.1.9).

And, therefore, TCTX is a retraction.

Definition 6.1.16: The map TCTX is called the Cayley retraction.

Use of the Cayley retraction can be computationally expensive due to the inversion

of the n× n matrix I + τ
2
WZ . This can be simplified by the following theorem:

Theorem 6.1.17: [19, (157)] (The Woodbury matrix identity) Let A be an

n×n invertible matrix, let U be a n× k matrix and let V be a k×n matrix. Then,

(A+ UV)−1 = A−1 − A−1U(Ik + V A−1U)−1V A−1. (6.1.16)

A proof can be found in appendix G.

Then via the Woodbury matrix identity

(I − τ

2
WZM)−1 = I − U(I + V U)−1V, (6.1.17)

151

with

U = −τ
2

[
PXZ X

]
and V =

[
XTM

−ZTP T
XM

]
. (6.1.18)

So

CTX

(τ
2
WZ

)
= (I − U(I + V U)−1V)(I − UV)X

= X − UV X − U(I + V U)−1V X + U(I + V U)−1V UV X

= X − U(I + V U)−1 [(I + V U) + I − V U]V

= X − 2U(I + V U)−1V X. (6.1.19)

This is simpler to compute than equation (6.1.13) since I + V U is a 2k× 2k matrix

and k is chosen to be much smaller than n in our applications.

Another retraction which has been used in some recent work ([121],[122]) is a

retraction based on the Cholesky decomposition of a symmetric positive definite

matrix. These papers claim that there exists a retraction to S based on the

QR decomposition with an argument to generalise to SM via the Cholesky

decomposition. (For details on matrix decomposition see section 2.2.) Both provide

citation to Absil [117] which does not provide a proof that the QR decomposition

can be used to define a retraction onto S. Absil proves that there is a retraction

based on the QR decomposition to the orthogonal group and claims a retraction on

to S. The proof below uses an alternative approach.

First let

P := {X ∈ Rn×n : X symmetric positive definite}

and let

L := {X ∈ Rn×n : X lower triangular with positive diagonal elements}.

Proposition 6.1.18: The map RChol
X : TXSM → SM defined by

RChol
X (Z) = (X + Z)C−1, (6.1.20)

where C = Chol
(
(X + Z)TM(X + Z)

)T
, is a retraction.

152

Proof. First, check that RChol
X (Z) ∈ SM :

RChol
X (Z)T MRChol

X (Z) = (C−1)T (X + Z)TM(X + Z)C−1

= (C−1)TCTCC−1, since CTC = (X + Z)TM(X + Z),

= I.

Hence RChol
X (Z) ∈ SM . Next check the properties of a retraction:

(i) RChol
X (0) = XC−1, where C−1 = Chol

(
XTMX

)
. Since X ∈ SM , XTMX = I.

The Cholesky decomposition of I is given by I and hence RChol
X (0) = X.

(ii) Let F : R→ P be defined by F (τ) = (X + τZ)TM(X + τZ) which is equal to

I+τ 2ZTMZ since Z ∈ TXSM . The (X+τZ)TM(X+τZ) is symmetric positive

definite by 6.1.6. Then F ′(τ) = 2τZTMZ, F ′′(τ) = 2ZTMZ and F (n)(τ) = 0

for all n ≥ 3. The matrix F (τ) has entries F (τ)ij = δij + τ 2(ZTMZ)ij, a

polynomial of τ .

Let H : R → L be defined by H(τ) = Chol(F (τ)). That is, F (τ) =

H(τ)T H(τ). The decomposition Chol(F (τ)) is defined element-wise on the

matrix F (τ), via the functions in 2.2.7 (and according to the forced order

of construction used in algorithm 1). Given that elements of F (τ) are

polynomials in τ the functions constructing the elements Lij are analytic since

matrix derivatives are also taken element-wise H can be expressed using the

Taylor series expansion:

H(τ) = H(0) +H ′(0) τ +
H ′′(τ)

2!
τ 2 +

H(3)(τ)

3!
τ 3 + . . .

Then equate τ coefficients of F (τ) and H(τ)T H(τ):

F (τ) = (H(0)T +H ′(0)T τ + . . .)(H(0)T +H ′(0) τ + . . .)

I + τ 2ZTMZ = H(0)T H(0) +H(0)T H ′(0) τ +H ′(0)T H(0) τ

+ higher order τ terms,

giving I = H(0)T H(0) and 0 = H(0)T H ′(0) + H ′(0)T H(0). Since H(0) is

upper triangular it must be that H(0) = I, and so it follows that H ′(0) = 0.

153

Therefore

H(τ) = I +
H ′′(0)

2!
τ 2 +

H(3)(0)

3!
τ 3 + . . .

Let H̄(τ) := H(τ)−1, with Taylor expansion

H̄(τ) = H̄(0) + H̄ ′(0) τ +
H̄ ′′(0)

2!
τ 2 +

H̄(3)(0)

3!
τ 3 +

Then, since I = H(τ)H(τ)−1 = H(τ) H̄(τ),

I =

(
I +

H ′′(0)

2!
τ 2 +

H(3)(0)

3!
τ 3 + . . .

)(
H̄(0) + H̄ ′(0) τ +

H̄ ′′(0)

2!
τ 2 + . . .

)
= H̄(0) + H̄ ′(0) +

H̄ ′′(0)

2!
τ 2 +

H ′′(0) H̄(0)

2!
τ 2 + higher order τ terms.

By comparing coeffcients, H̄(0) = I and H̄ ′(0) = 0.

Now the second property of a retraction is simple to check:

d

dτ

∣∣∣∣
τ=0

RChol
X (τZ) =

d

dτ

∣∣∣∣
τ=0

(X + τZ)H̄(τ)

= ZH̄(τ) |τ=0 + (X + τZ)

[
d

dτ
H̄(τ)

]
τ=0

= ZH̄(0) + (X + τZ)H̄ ′(0)

= Z.

Therefore RChol
X is a retraction onto SM .

Definition 6.1.19: The map RChol
X is called the Cholesky retraction.

6.2 Background: Optimisation on Manifolds

LetM⊆ Rn be a manifold and let F : Rn → R be a real-valued function. Consider

the constrained optimisation problem

min
X

F (X) subject to X ∈M. (6.2.21)

154

Let the gradient of F at X be denoted by

∇F (X) = G :=
∂F (X)

∂X
=

[
∂F (X)

∂Xi

]
.

However, most usually it is the gradient of the restricted function F |M : M → R
which is required.

Definition 6.2.1: Let (M, g) ⊆ Rn×k be a Riemannian manifold and let F :M→
R be a smooth real-valued function. Let Z ∈ TXM. The directional derivative

of F at X in direction Z is defined to be

DZF (X) := 〈G,Z〉g [120, 1.4]. (6.2.22)

Definition 6.2.2: [117, 3.31] Let (N , h) ⊆ (M, g) ⊆ Rn×k and let F |N : N → R
be the function F restricted to N . Let X ∈ N . Then the restricted gradient

∇F |N (X) is the unique element of TXN satisfying, for all Z ∈ TXN ⊆ TXM,

〈∇F |N (X) , Z〉h = DZF (X) = 〈G,Z〉g. (6.2.23)

When N ⊆M is a Riemannian submanifold, with the induced metric, the following

lemma can be used:

Lemma 6.2.3: [117, p.48 (3.37)] Let f : M → R be a real-valued function on

Riemannian manifold (M, g). Consider a Riemannian submanifold N ⊆ M, with

induced metric h. Let F |N : N → R be the restriction of F to N and let X ∈ N .

Then the gradient ∇F |N (X) is given by the projection of the gradient ∇F (X) into

the tangent space TXN . That is, for projection projTXN : TXM→ TXN ,

∇F |N (X) = projTXN (∇F (X)) . (6.2.24)

To minimise a function F |M consider a gradient descent algorithm. Gradient descent

algorithms iteratively define new, improved points from old via a descent direction

and a step size.

Definition 6.2.4: LetM be a manifold and let F :M→ R be a differentiable real

valued function. A gradient descent algorithm is an algorithm which iteratively

155

searches for a minimiser of F . Given a retraction R : TM→M and an initial start

point X0 ∈M, new points Xp+1 are defined iteratively by

Xp+1 := RXp(τkdp) . (6.2.25)

The scalar τp is called the step size. The descent direction dp is an element of

TXpM such that 〈dp, G〉 < 0 where 〈·, ·〉 denotes the inner product on TXpM and G

is the gradient of F .

Figure 6.1 illustrates this, with the vector lying in the tangent space representing the

descent direction, and the red arrow representing the retraction from the tangent

space back down to the manifold.

Figure 6.1: Gradient descent on a

manifold, via retraction.

Figure 6.2: The importance of step size

choice.

The gradient G gives a direction of greatest change in the value of F , based at X.

Movement in the direction of −G is, therefore, an efficient method of searching

for a minimum. This is the direction of steepest descent. A gradient descent

algorithm for minimisation of a real-valued function evaluated on a manifold is

given in algorithm 4.

Of course, care must be taken when choosing how far to move in the descent

direction. A step size which is too small will result in a slow decrease of the objective

function but too large a step size may pass over a local minimum. Step size choice

is illustrated in figure 6.2, which plots F (Xp+1) as step-size Tp varies, given fixed

descent direction. This restriction to a search in a fixed direction is known as a line

search.

156

Algorithm 4 Gradient descent on a manifold M
1: Given a function F :M→ R and retraction R onto M,

2: Set convergence tolerance ε.

3: Generate random x0 ∈M.

4: Set k = 0.

5: while ‖∇F (x) ‖ > ε do

6: Select descent direction d.

7: Select step size τ .

8: Move to new iterate xk+1 = Rx(τd).

9: k ← k + 1

10: end while

Definition 6.2.5: Let f : M → R be a real-valued function. Let xp ∈ M, d ∈
TxpM, τ ∈ R. A line search is an algorithm which searches for a scalar τ such that

the value of the function f satisfies some condition for the new iterate xp+1. For a

monotone line search this condition is that the value of f decreases at xp+1.

In general, solving for an optimum τ is expensive, and so instead end the search

when a step size which meets certain conditions is found. The line search algorithm

below uses conditions on the gradient of f at xp+1 and the decrease in the value of

f between the old and new points.

To ensure that the decrease in the value of the function is sufficient, ensure that τ

is such that

f(xp+1) ≤ f(xp) + c1τ〈∇f(xp) , d〉,

where c1 ∈ (0, 1). That is, the decrease of f is proportional to the step size and the

rate of change of f at xp in the direction d [124, p.33].

Consider the function h : R → R, defined by h(τ) = f(xp + τd). To ensure that τ

is close to being a stationary point of h use a condition on the gradient:

|∇f(xp+1)T d| ≤ c2|∇f(xp)
T d|,

where c2 ∈ (0, 1). This ensures that the gradient at the new point xp+1 is closer to

zero than the gradient at the initial point xp. Figure 6.3 shows how the constraints

157

aid selection of step size by plotting the curve h(τ) and the constraints. The sufficient

decrease condition is met whenever the curve is beneath the red line; the gradient

condition is met in regions denoted by the blue line. Regions indicated by the green

line are regions which meet both conditions.

Figure 6.3: Line search conditions

Definition 6.2.6: The strong Armijo-Wolfe conditions are satisfied when τ is

such that

f(xp+1) ≤ f(xp) + c1τ〈∇f(xp) , d〉, (6.2.26)

|〈∇f(xp+1) , d〉| ≤ c2|〈∇f(xp) , d〉|, (6.2.27)

where 0 < c1 < c2 < 1. In practice, c1 = 10−4 [124, p.33] and c2 = 0.9 [124, p.34].

Condition (6.2.26) is called the Armijo condition.

A backtracking line search is a line search method which decreases an initial step size

τ0 until a suitable τ is found. An algorithm for a backtracking line search using the

strong Armijo-Wolfe conditions is given in algorithm 5. To combine the line search

with the gradient descent algorithm, insert algorithm 5 at line 2 of algorithm 4.

Sometimes the additional constraint that the new step size τp is less than or equal

to the previous step size τp−1 is used. This aids the backtracking line search by

giving an initial step size.

158

Algorithm 5 Backtracking line search

1: Given initial point x, direction d and step size τ0,

2: Set k = 0.

3: Set a scale factor ρ used to decrease the value of τk, 0 < ρ < 1.

4: Set condition parameters 0 < c1 < c2 < 1.

5: Set xτ = Rx(τkd).

6: while strong Armijo-Wolfe conditions not satisfied do

7: τk+1 ← ρτk

8: xτ ← Rx(τk+1d).

9: k ← k + 1

10: end while

6.3 Optimisation on Generalised Stiefel

Manifolds

Returning to the setting of generalised Stiefel manifolds, let F : Rn×k → R be a

smooth real-valued function and consider the constrained optimisation problem

min
X∈Rn×k

F (X) subject to XTMX = I. (6.3.28)

Then, using the results from the previous section, we can find the gradient of the

restricted function F |SM .

Consider Rn×k as a Riemannian manifold with metric defined via the Euclidean

inner product

〈X, Y 〉R = tr
(
XTMY

)
, (6.3.29)

for X, Y ∈ TpRn×k ' Rn×k, p ∈ Rn×k. Consider SM as a submanifold and let F have

gradient G :=
[
∂F(X)
∂Xij

]
. Then, to transform G into a restricted gradient a projection

from Rn×k to TXSM is required.

Definition 6.3.1: Let Y ∈ Rn×k. The orthogonal projection projTXSM : Rn×k →

159

TXSM is defined by [117, p.81]

projTXSM (Y) = Y −X sym
(
XTMY

)
(6.3.30)

= Y − X

2
(XTMY + Y TMX).

It can be checked for both the Euclidean and canonical inner products that the

inner product 〈X sym
(
XTMY

)
, Z〉 = 0 for all Z ∈ TXSM , and so it is justified to

describe the above projection as orthogonal.

So, for X ∈ SM and a matrix function F : Rn×k → R the restricted gradient on the

(generalised) Stiefel manifold endowed with the Euclidean metric is

∇F |SM(X) = G−X sym
(
XTMG

)
(6.3.31)

and the restricted gradient on the (generalised) Stiefel manifold endowed with the

canonical metric is

∇F |SM(X) = G−XGTMX. (6.3.32)

For completeness the calculations which verify these claims are below. Recall

from definition 6.2.2 that ∇F |SM(X) is the unique element of TXSM satisfying

〈∇F |SM(X) , Z〉 = tr
(
GTMZ

)
for all Z ∈ TXSM , where 〈·, ·〉 denotes the inner

product on TXSM . It is checked that 〈∇F |SM(X) , Z〉 = tr
(
GTMZ

)
and that

∇F |SM(X) ∈ TXSM via lemma 6.1.5.

Let Ẑ = G−X sym
(
XTMG

)
. Then

〈Ẑ, Z〉e = tr
((
G−X sym

(
XTMG

))T
MZ

)
= tr

(
GTMZ

)
− tr

(
sym

(
XTMG

)T
XTMZ

)
= tr

(
GTMZ

)
,

as XTMZ = −ZTMX and the trace of the product of a symmetric and a skew-

symmetric matrix is zero (for proof see lemma A.12). The projection Ẑ ∈ TXSM
since ẐTMX +XTMẐ = GTMX − sym

(
XTMG

)T
+XTMG− sym

(
XTMG

)
= 0.

160

Let Ẑ = G−XGTMX. Then

〈Ẑ, Z〉e = tr

(
(GT −XTMGXT)(MZ − 1

2
MXXTMZ)

)
= tr

(
GTMZ

)
− 1

2
tr
(
GTMXXTMZ

)
− 1

2
tr
(
XTMGXTMZ

)
= tr

(
GTMZ

)
,

since XTMZ = −ZTMX and by exploiting the properties of trace. The projection

Ẑ ∈ TXSM since ẐTMX +XTMẐ = GTMX −XTMG+XTMG−GTMX = 0.

There are two significant existing works using gradient descent on Stiefel manifolds

(M = I),

• Siegel’s algorithm “Accelerated Gradient Descent with Function Restart

Scheme” [119, Algorithm 1] which uses Nesterov acceleration [125],[126].

• Wen & Yin’s algorithm “Curvilinear Search method with BB steps” [120]

which uses Barzilai-Borwein steps to accelerate [127],[128].

Both methods follow a similar structure: use a line search to find a step size

(see algorithm 5) then use the Cayley transform (see definitions 6.1.13, 6.1.16 and

proposition 6.1.15) to define a new point. Both methods also include an additional

acceleration step and can be adapted for use on generalised Stiefel manifolds using

the results in section 6.1.

6.4 Sequential Optimisation on SM

This section considers optimisation on generalised Stiefel manifolds for a specific type

of function which can be written as a sum of functions acting on matrix columns.

A sequential algorithm for optimisation is presented in algorithm 6. This is based

on [119, Algorithm 1], a gradient descent algorithm for optimisation on the Stiefel

manifold, using the Cayley retraction. As discussed in section 6.1 this requires

inversion of a 2k×2k matrix, and although k is generally chosen to be much smaller

161

than n in applications this could still be quite large. In an aim to reduce the

dimensionality of the problem the sequential algorithm searches for a solution on an

ellipsoid formed by the intersection of a larger ellipsoid and a linear subspace of Rn.

Let fi : Rn → R, i = 1, . . . , k and define F : Rn×k → R by

F
(
Φ̄
)

=
k∑
i=1

fi(φi) , (6.4.33)

where φi is the i-th column of the matrix Φ̄ ∈ Rn×k.

Examples 6.4.1: Let A and W be n× n matrices and define f : Rn → R by

(i) f(φ) = φTWφ, then F as defined in (6.4.33) can be written as F
(
Φ̄
)

=

tr
(
Φ̄TW Φ̄

)
.

(ii) f(φ) = φTWφ+‖Aφ‖1, then F as defined in (6.4.33) can be written as F
(
Φ̄
)

=

tr
(
Φ̄TWΦ

)
+ ‖AΦ̄‖1.

Recall, the aim is to find a matrix Φ̄ ∈ Rn×k minimising a function F : Rn×k → R
such that Φ̄TMΦ̄ = I. Instead of seeking the n × k matrix minimiser, consider a

sequential construction, searching for columns of Φ̄ one by one: Let φm ∈ Rn denote

the m-th vector found via the following optimisation and let Φ denote the matrix

[φ1, . . . , φm]. Then the (m+ 1)-th column-vector is found by solving

arg min
φm+1

F (φm+1) subject to

 φTm+1MΦ = 0,

φTm+1Mφm+1 = 1.
(6.4.34)

To do this, begin by considering the generalised Stiefel manifold with k = 1. That

is, SM = {x ∈ Rn : xTMx = 1}. Compare this to definition 3.2.8 and the following

proposition is clear:

Proposition 6.4.2: The generalised Stiefel manifold SM ⊂ Rn is an (n − 1)-

dimensional ellipsoid. That is SM = EM .

Then define

VΦ := {x ∈ Rn : xTMΦ = 0}.

162

Lemma 6.4.3: Let M be an n× n symmetric positive definite matrix and let Φ =

[φ1 . . . φm] be an n×m matrix formed by orthonormal vectors φi (i.e. ΦTMΦ = Im).

Then, VΦ is an (n−m)-dimensional linear subspace of Rn.

Proof. By definition VΦ is the null space of the matrix MΦ, hence VΦ is a linear

subspace of Rn. To calculate the dimension consider the rank-nullity theorem:

rank(MΦ) + null(MΦ) = n.

Since Φ has orthogonal columns, rank(Φ) = m. The rank of M is n since

all eigenvalues of positive definite matrices are non-negative, and the rank of a

symmetric matrix is equal to the number of non-zero eigenvalues. Note that

rank(MΦ) = rank(Φ) = m (for proof see lemma A.13). Hence, via the rank-nullity

theorem, the dimension of VΦ = Null(MΦ) = n− Rank(MΦ) = n−m.

Remark 6.4.4: The set of points VΦ ∩EM is an (n−m− 1)-dimensional ellipsoid.

To see this, let {vi} be a set of basis vectors for VΦ, represented as columns of

a matrix V . Then any vector in VΦ can be written as V b where b ∈ Rn−m, so

VΦ ∩ EM = {b ∈ Rn−m : bTV TMV T b = 1} = EV TMV . Note that the matrix V TMV

is symmetric positive definite: symmetry is due to the symmetry of M ; positive

definite-ness follows from V being full rank (so V x = 0 ⇐⇒ x = 0) and M being

positive definite.

The minimisation problem (6.4.34) can be rephrased as find

arg min
φm+1

F (φm+1) subject to φm+1 ∈ VΦ ∩ EM . (6.4.35)

The new aim is to minimise the function F restricted to the space VΦ∩EM . Denote

the restricted function by F
∣∣
V ∩E : VΦ∩EM → R. The optimisation problem (6.4.35)

can then be written as solve

arg min
φm+1

F
∣∣
V ∩E(φm+1) . (6.4.36)

To restrict to the submanifold VΦ ∩ EM ⊆ Rn a projection Rn → VΦ ∩ EM is

required, along with a projection into the tangent space. To construct these first

consider projection into the linear subspace VΦ:

163

Definition 6.4.5: The M-orthogonal projection onto VΦ, projV,M : Rn → VΦ, is

defined by

projV,M(x) = x−
m∑
l=1

(xTMφl)φl. (6.4.37)

This takes a vector and removes any parts which are parallel to the columns of Φ.

To check that projV,M(x) ∈ VΦ consider projV,M(x)T MΦ:

projV,M(x)T MΦ =

(
xT −

m∑
l=1

(xTMφl)φ
T
l

)
MΦ

= xTMΦ−
m∑
l=1

(xTMφl)φ
T
l MΦ

= xTMΦ−
m∑
l=1

(xTMφl)el, where el is the standard basis vector,

= xTMΦ− xTMΦ

= 0, as expected.

Remark 6.4.6: It is useful to note that

projV,M(x) = x−
m∑
l=1

(xTMφl)φl

= x−

(
m∑
l=1

φlφ
T
l

)
Mx.

The matrix given by φ1φ
T
1 + . . . + φmφ

T
m has entries given by

∑m
l=1 ΦilΦjl =∑m

l=1 Φil(Φ
T)lj since Φij = (φj)i and hence,

projV,M(x) = x− ΦΦTMx = (I − ΦΦTM)x. (6.4.38)

That is, the projection is given by the linear transformation described by the matrix

(I − ΦΦTM). This can be used to help describe the tangent space of the ellipsoid

VΦ ∩ EM at a point x.

Definition 6.4.7: Two submanifolds P ,Q of a manifold M are transverse if for

all x ∈ P ∩ Q, the span of the tangent spaces to the submanifolds at x is equal to

the tangent space of M at x. That is, TxP + TxQ = TxM.

164

Lemma 6.4.8: Consider the spaces VΦ and EM as submanifolds of Rn. Then VΦ

and EM are transverse.

Proof. Let x ∈ VΦ and recall that VΦ is an (n −m)-dimensional linear subspace of

Rn. Therefore

TxVΦ = VΦ = {z ∈ Rn : zTMΦ = 0}. (6.4.39)

Similarly, let x ∈ EM and recall that EM is an (n − 1)-dimensional ellipsoid.

Therefore the tangent space TxEM is given by the (n−1)-dimensional linear subspace

of Rn orthogonal to x. That is,

TxEM = {z ∈ Rn : zTMx = 0}. (6.4.40)

Now, let x ∈ VΦ∩EM and consider the tangent spaces at x: since x ∈ TxVΦ and TxEM
is the (n− 1)-dimensional linear subspace of Rn orthogonal to x, TxP + TxQ = Rn.

Therefore, since TxRn = Rn, VΦ and EM are transverse.

Lemma 6.4.9: Let P ,Q be transverse submanifolds of a manifold M and let x ∈
P ∩Q. Then, TxP ∩ TxQ = Tx(P ∩Q). [129, p.203]

Let x ∈ VΦ∩EM , then the above lemma can be applied to describe the tangent space

Tx(VΦ ∩ EM). Recall that any z ∈ Rn can be projected into VΦ via transformation by

the matrix (I −ΦΦTM) (see remark 6.4.6). Similarly, any z ∈ Rn can be projected

into the linear subspace TxEM via transformation by the matrix (I − xxTM).

These transformations commute:

(I − ΦΦTM)(I − xxTM) = I − ΦΦTM − xxTM + ΦΦTMxxTM

= I − ΦΦTM − xxTM , since ΦTMx = 0,

= (I − xxTM)(I − ΦΦTM).

Let

P := I − ΦΦTM − xxTM. (6.4.41)

165

Then any z ∈ Rn can be projected into both TxVΦ and TxEM via Pz, and so

Pz ∈ TxVΦ ∩ TxEM = Tx(VΦ ∩ EM) by lemma 6.4.9. In summary:

z ∈ Tx(VΦ ∩ EM) if both ΦTMz = 0 and xTMz. (6.4.42)

The projection P is used to translate information about the function F to

information about the restricted function F
∣∣
V ∩E. In particular, the gradient of

F
∣∣
V ∩E at x is equal to the gradient of F projected in to the tangent space

Tx(VΦ ∩ Em), see [117, 3.37].

Definition 6.4.10: Let F : Rn → R be a differentiable function, and let x ∈ Rn.

Then define g ∈ Rn as the n× 1 vector with entries

gi :=
∂

∂xi
F (x) . (6.4.43)

The vector g represents the gradient of F at x.

Let VΦ ∩ EM be endowed with either the Euclidean or canonical metric. Then the

gradient of F
∣∣
V ∩E at x ∈ VΦ ∩ EM is given by

∇F
∣∣
V ∩E(x) = Pg. (6.4.44)

Again, for completeness the calculations to verify this claim are given here. It is

clear from the construction of P that Pg ∈ Tx(VΦ ∩EM) so all that is required is to

check that 〈Pg, z〉 = tr
(
gTMz

)
for all z ∈ Tx(VΦ ∩ EM). For the Euclidean metric,

〈Pg, z〉e = tr
(
gTP TMz

)
= tr

(
gTMz

)
− tr

(
gTMΦΦTMz

)
− tr

(
gTMxxTMz

)
= tr

(
gTMz

)
, since ΦTMz = 0 and xTMz = 0 as z ∈ Tx(VΦ ∩ EM).

For the canonical metric,

〈Pg, z〉c = tr

(
gTP T (Mz − 1

2
MxxTMz)

)
= tr

(
gTMz

)
− 1

2
tr
(
gTP TMxxTMz

)
, since tr

(
gTP TMz

)
= tr

(
gTMz

)
,

= tr
(
gTMz

)
, since xTMz = 0, as z ∈ Tx(VΦ ∩ EM).

166

Remark 6.4.11: Note that Additional notes on the matrix P can be found in

appendix F.

Definition 6.4.12: Let projE : Rn → EM be the projection on to the ellipsoid

defined by

projE(x) =
x√

xTMx
. (6.4.45)

This takes a vector in Rn and scales it to lie on the ellipsoid EM , hence is referred

to as radial projection.

Let projV ∩E : Rn → VΦ ∩ EM be defined by

projV ∩E(x) = projE
(
projV,M(x)

)
. (6.4.46)

It is clear that projV ∩E(x) ∈ EM but to check that it also lies in VΦ consider

projV ∩E(x)T MΦ. Let y = projV,M(x), so yTMΦ = 0. Then

projE(y)T MΦ =
yT√
yTMy

MΦ =

(
1√
yTMy

)
yTMΦ = 0, since y ∈ VΦ.

And so projV E ∈ VΦ.

The fact that the projection projV,M is linear leads to the following useful corollary:

Corollary 6.4.13: If x ∈ VΦ and y ∈ Rn, then

projV ∩E(x+ αy) = projE
(
x+ α projV,M(y)

)
.

Proof. Consider the projection on to VΦ ∩ EM :

projV ∩E(x+ αy) = projE
(
projV,M(x+ αy)

)
= projE

(
projV,M(x) + α projV,M(y)

)
, since projV,M is linear,

= projE
(
x+ α projV,M(y)

)
, since x ∈ VΦ ⇒ projV,M(x) = x.

Remark 6.4.14: Note that, in general, projV,M(projE(x)) /∈ VΦ ∩ EM .

167

Proposition 6.4.15: Let x ∈ EM and z ∈ TxEM , then the map Rproj
x : TxEM → EM

defined by

Rproj
x (z) = projE(x+ z) (6.4.47)

is a retraction.

Proof. It is clear that Rproj
x (z) ∈ EM , so check the properties of a retraction:

(i) Rproj
x (0) = projE(x) = x since x ∈ EM .

(ii)

d

dτ

∣∣∣∣
τ=0

Rproj
x (x+ τz)

=
d

dτ

∣∣∣∣
τ=0

(x+ τz)
(
(x+ τz)TM(x+ τz)

)− 1
2

= z
(
(x+ τz)TM(x+ τz)

)− 1
2

− 1

2
(x+ τz)

(
(x+ τz)TM(x+ τz)

)− 3
2
(
zTM(x+ τz) + (x+ τz)TMz

) ∣∣∣∣
τ=0

= z(xTMx)−
1
2 − 1

2
x(xTMx)−

3
2 (zTMx+ xTMz)

= z, since xTMx = 1 and zTMx = xTMz = 0 as z ∈ TxEM .

Remark 6.4.16: When x ∈ VΦ ∩ EM and τz ∈ Tx(VΦ ∩ EM) the retracted point

Rproj
x (τz) ∈ VΦ ∩ EM and so Rproj

x can be used as a retraction onto VΦ ∩ EM .

Definition 6.4.17: The map Rproj
x is called the radial retraction.

Remark 6.4.18: Let L be the straight line between the point x+ τz and the origin

0 ∈ Rn×k. Then the projection projE(x+ τz) will project the point x + τz to the

point of intersection between the ellipsoid EM and the line L, hence the name radial

retraction. There will be an accumulation point at the point of intersection between

the ellipsoid EM and the parallel line L̂, where L̂ is the straight line in the direction

of L which passes through 0. Figure 6.4 shows this on a 2-dimensional ellipsoid

(ellipse).

168

Figure 6.4: Projection onto the ellipse via a line through the centre.

Consider the following alternative: Any y ∈ TxEM can be written as y = τ ŷ where

τ > 0 and ŷ = y
‖y‖ . From here it is assumed that d is such a unit vector.

Proposition 6.4.19: Let EM ⊂ Rn be an (n−1)-dimensional ellipsoid, as described

above, and let x ∈ EM . The map R̃x : TxEM → EM defined by [117, 4.31]

R̃x(τd) = cos(τ)x+ sin(τ) d (6.4.48)

is a retraction.

Proof. To check first ensure that R̃x(τd) ∈ EM :

R̃x(τd)T MR̃x(τd) = cos2(τ)xTMx+ sin2(τ) dTMd+ 2 cos(τ) sin(τ)xTMd.

Then, since xTMx = dTMd = 1 and xTMd = 0 as d ∈ TxEM (see equation (6.4.40)),

R̃x(τd)T MR̃x(τd) = cos2(τ) + sin2(τ) = 1.

Hence, R̃x(τd) ∈ VΦ ∩ EM . Then check the properties for a retraction:

(i) R̃x(0) = cos(0) x+ sin(0) d = 0.

(ii) d
dτ

∣∣
τ=0

R̃x(τd) = [− sin(τ)x+ cos(τ) d]τ=0 = d.

So R̃x is a retraction on EM .

Definition 6.4.20: The retraction R̃x is called the periodic retraction.

Remark 6.4.21: When x ∈ VΦ ∩ EM and τd ∈ Tx(VΦ ∩ EM) the retracted point

R̃x(τd) ∈ VΦ ∩ EM . Therefore R̃x can be used as a retraction onto VΦ ∩ EM .

169

Remark 6.4.22: The retraction is called periodic because R̃x(τd) = R̃x((2πn+ τ)d)

for n ∈ N. This follows from the periodic qualities of cos and sin and is illustrated

in figure 6.5 for an ellipsoid in R2.

Figure 6.5: Projection onto the ellipse via periodic retraction.

Remark 6.4.23: The periodic retraction does not extend simply to generalised

Stiefel manifolds of the form SM = {X ∈ Rn×k : XTMX = Ik}, with k > 1.

The obvious extension to generalised Stiefel manifolds is given by the function from

TXSM defined by

R̃X(Y) = cos(‖Y ‖)X +
sin(‖Y ‖)
‖Y ‖

Y,

where ‖Y ‖ = tr
(
Y TMY

) 1
2 , for Y ∈ TXSM . The hope is that R̃X(Y) ∈ SM . That

is, that R̃X(Y)T MR̃X(Y) = Ik, but

R̃X(Y)T MR̃X(Y) =

(
cos(‖Y ‖)XT +

sin(‖Y ‖)
‖Y ‖

Y T

)(
cos(‖Y ‖)MX +

sin(‖Y ‖)
‖Y ‖

MY

)
= cos2(‖Y ‖)XTMX +

sin2(‖Y ‖)
‖Y ‖2

Y TMY

+
cos(‖Y ‖) sin(‖Y ‖)

‖Y ‖
(XTMZ + ZTMX).

Then since Y ∈ TXSM , XTMY + Y TMX = 0,

R̃X(Y)T MR̃X(Y) = cos2(‖Y ‖) Ik +
sin2(‖Y ‖)
‖Y ‖2

Y TMY.

This is equal to Ik if and only if

Y TMY

‖Y ‖2
= Ik. (6.4.49)

170

Recall that ‖Y ‖2 = tr
(
Y TMY

)
so rearranging equation (6.4.49) gives Y TMY =

tr
(
Y TMY

)
Ik. Taking the trace of both sides gives tr

(
Y TMY

)
= k tr

(
Y TMY

)
,

which only holds when k = 1. Therefore the function only takes points in TXSM to

SM when SM ⊂ Rn. That is, when SM = EM .

Proposition 6.4.24: Let the function h : R→ R be defined by h(τ) = F
(
R̃x(τd)

)
for some fixed x ∈ VΦ ∩ EM , d ∈ Tx(VΦ ∩ EM) with dTMd = 1. If F is such that

F (x) = F (−x) then h(τ) is π-periodic.

Proof. Consider h(τ + π) = F
(
R̃x((τ + π)d)

)
.

R̃x((τ + π)d) = cos(τ + π)x+ sin(τ + π) d, since dTMd = 1,

= − cos(τ)x− sin(τ) d

= −R̃x(τd) .

Then, since F (x) = F (−x), h(τ + π) = F
(
−R̃x(τd)

)
= −F

(
R̃x(τd)

)
= h(τ), so h

is π-periodic.

Corollary 6.4.25: Assume d is a descent direction. Then for a backtracking line

search on the function h(τ) the initial step need not be larger than π/2.

An algorithm for sequential gradient descent is given in algorithm 6. In practice

the optimisation is accelerated via a function restart scheme. A maximum number

of iterations is set, along with an additional convergence condition – if the distance

between a point xk and the new point xk+1 is sufficiently small the algorithm is

deemed to have converged.

171

Algorithm 6 Sequential gradient descent on SM
1: Set convergence tolerance ε.

2: Set Φ = 0n×1.

3: Set p = 1

4: while p ≤ k do

5: Generate random x ∈ VΦ ∩ EM .

6: while ‖∇F |V ∩E(x) ‖ > ε do

7: Set descent direction d = −∇F |V ∩E(x).

8: Perform line search to find step size τ for next iterate.

9: Use τ0 = π/2.

10: Use iterates xτ = R̃x(τd).

11: x← R̃x(τd).

12: end while

13: if p = 1 then

14: Φ← x

15: else

16: Φ← [Φ, x]

17: end if

18: end while

172

6.5 Approximating Sequential Compressed

Manifold Modes

The method of sequential optimisation on the generalised Stiefel manifold can be

used to approximate compressed manifold modes. Recall that compressed modes

φ minimise tr
(
φTWφ

)
+ ‖Aφ‖1 with φTAφ = 1 and each mode orthogonal to

every other mode. (A and W are the area and weight matrix of a discrete

Laplacian operator.) To approximate compressed modes a differentiable function

which approximates the `1 norm is required.

To find such a function first recall that for X ∈ Rn×k, ‖X‖1 =
∑

ij |Xij|. The

`1 norm can then be approximated by a continuously differentiable function which

approximates the absolute value.

Definition 6.5.1: A function f̄ : R× (0,∞)→ R is a smoothing of the `1 norm

if

(i) f̄(0, ε) = 0, for all ε ∈ (0,∞),

(ii) f̄(x, ε)→ |x| as ε→ 0,

(iii) ∂
∂x
f̄(x, ε)→ sgn(x) as ε→ 0.

For ease of notation, define f∗,ε(x) := f̄(x, ε). A list of viable functions f∗,ε and their

first partial derivatives (with respect to x) is given in table 6.1. The functions are

illustrated in figures 6.6 and 6.7, with figure 6.7 showing an extreme close up about

zero. (Note that the subscript ε is omitted in the function names.) The parameters

ε and δ are both set to be 10−3. Figure 6.8 shows the function gradients. The

function f0 denotes the absolute value, included for reference. Note also that when x

is very small the absolute difference between f0(x) and f∗,ε(x) becomes even smaller.

Figure 6.9 demonstrates this, potting values of |f∗,ε(x)−abs(x) | for x ∈ [10−12, 1010].

The error in computational accuracy due to machine rounding errors can be bounded

by a value called the machine epsilon. As the parameter ε decreases below the

173

machine epsilon calculations become inaccurate and so ε can be replaced with

zero. Therefore, assuming a very small ε the absolute value function f0 can be

used rather than a smoothed approximation, and hence this function is included in

some of the following figures. Figure 6.10 shows the first 10 approximated modes

on the ScapeMan001 mesh (12500 vertices), via a selection of the `1 smoothings.

Algorithm parameters are detailed in the figure caption. The approximated CMMs

were ordered by compressed eigenvalue (see section 3.2.3).

The approximated modes are not consistent. That is, between approximations the

modes vary. There is not always a clear correspondence between modes, nor is

there a consistent ordering. In the classical eigenfunction case inconsistent ordering

occurs when eigenvalues are very close, a consequence of symmetries in the shape. To

check if this is the case for these approximated modes the compressed eigenvalues are

plotted in figure 6.11. Consider the mode supported on the left foot which appears

as the 7th mode for f0; the 2nd mode for f1; the 2nd mode for f3; and the 1st mode

for f9. If the approximated modes exhibit the same behaviour as the Laplacian

eigenfunctions for modes with similar eigenvalue then it would be expected that the

compressed eigenfunctions corresponding to these modes is very similar but this is

not the case.

Recall that when the parameter µ = 0 the output matrix Φ̄ should be the matrix

with the first k eigenfunctions as columns. Figure 6.12 shows eigenfunctions

calculated on the homer mesh (5103 vertices) via the eigs function in MATLAB and

then the first 10 sequential eigenfunctions calculated using the sequential gradient

descent on SM algorithm. Again, algorithm parameters are detailed in the figure

caption. Comparing the rows of the figure shows a much greater consistency between

the sequentially approximated eigenfunctions and the eigs eigenfunctions. This

suggests that the inconsistency between methods for CMMs is a consequence of the

difficulty in calculating CMMs rather than a flaw of the algorithm.

174

Table 6.1: Smoothings of the l1 norm.

Name f∗,ε(x) ∂
∂xf∗,ε(x)

f0(x) |x| sgn(x)

f1,ε(x) |x|+ ε
1+|x| − ε sgn(x)− ε sgn(x)

(1+|x|)2

f2,ε(x) |x| − ε
2(1+|x|) − ε log(ε+ |x|) + ε

2 + ε log(ε) sgn(x) + ε sgn(x)
2(1+|x|)2 −

ε sgn(x)
ε+|x|

f3,ε(x) |x| − ε log(ε+ |x|) + ε log(ε) sgn(x)− ε sgn(x)
ε+|x|

f4,ε(x) |x|+ ε exp(−|x|)− ε sgn(x)− ε sgn(x) exp(−|x|)

f5,ε(x) |x|+ ε exp(−ε|x|)− ε sgn(x)− ε2 sgn(x) exp(−ε|x|)

f6,ε(x)

x2

2δ , if |x| ≤ δ

|x| − δ
2 , if |x| > δ

x
δ , if |x| ≤ δ

sgn(x) , if |x| > δ

f7,ε(x)

ε+δ
δ

(
|x|+ ε log

(
ε

ε+|x|

))
, if |x| ≤ δ

|x|+ ε
(

1 + ε+δ
δ log

(
δ
ε+δ

))
, if |x| > δ

ε+δ
δ

(
sgn(x)− ε sgn(x)

ε+|x|

)
, if |x| ≤ δ

sgn(x) , if |x| > δ

f8,ε(x) ε log
(
cosh

(
x
ε

))
tanh

(
x
ε

)
f9,ε(x) |x| − δε log(ε+ |x|) + δε log(ε) sgn(x)− δε sgn(x)

ε+|x|

Functions 1-5 are based on functions found in table III in the paper [130]. Function 6

is the Moreau-Yosida envelope where δ controls the width of the envelope [119, (5.1.3)].

Function 7 is an adaptation of the Moreau-Yosida envelope via function 1. Function 8 is

based on the Green potential function [130, Table II]. Function 9 is based on function 3,

with an additional parameter to reduce the size of the smoothing terms.

175

Figure 6.6: Smoothed approximations of the modulus function.

Figure 6.7: Smoothed approximations of the modulus function close to zero.

176

Figure 6.8: Gradients of smoothed approximations to the modulus function.

Figure 6.9: The effect of small x values on the difference between f∗,ε and |x|. Note that

f8,ε becomes undefined due to a computational error. When x
ε is large, cosh

(
x
ε

)
=∞ and

so log
(
cosh

(
x
ε

))
also evaluates to be ∞.

177

Figure 6.10: Various approximation of CMMs. Algorithm parameters: µ = 0.1, maximum number of iterations = 10000,

convergence tolerance = 10−12, uses the canonical metric.

178

Figure 6.11: Compressed eigenvalues for the modes in figure 6.10

179

Figure 6.12: A comparison of eigs eigenfunctions and sequential eigenfunctions on the homer mesh. Algorithm parameters:

µ = 0, max. iterations = 10000, convergence tolerance = 10−12.

180

6.6 Summary and Future Work

Generalised manifold harmonics where M is symmetric and invertible can be

found as solutions to an optimisation problem on the generalised Stiefel manifold.

Section 6.1 developed the theory of Steifel manifolds for the generalised Stiefel

manifold case, including a proof that the Cholesky retraction really is a retraction.

A sequential algorithm (algorithm 6) was presented. This gives a potential method

for the calculation of generalised manifold harmonics, however it requires an

objective function which can be written as a sum of matrix columns.

The sequential algorithm was applied to the calculation of compressed manifold

modes. This required a smoothing of the `1 term and a set of possible smoothings

were suggested. The functions produced by the optimisation were sparse, however

the results were inconsistent. Different smoothings produced different functions.

Further work is required to understand this difference.

181

Chapter 7

Fast Approximation of Compressed

Manifold Modes

The recent paper ‘Fast Approximation of Laplace-Beltrami Eigenfunctions’ [14]

provides a method of reducing the dimension of the Laplacian eigenfunctions, by

restricting to a sample of the mesh vertices. The solution to the restricted eigenvalue

problem can then be used to provide an approximation of the Laplacian eigenbasis.

The reduction in dimension leads to faster calculation times, at the expense of loss

in accuracy. This chapter provides a summary of the original work and applies the

same method to the calculation of compressed manifold modes. Proof that restricted

eigenfunctions commute with discrete isometry is also given.

7.1 Fast Approximation of Laplacian

Eigenfunctions

This section details the method introduced in the original work referenced above.

The general idea is to sample a mesh, construct eigenfunctions on the sample and

map back to the mesh to get an approximation of the eigenfunctions on the mesh.

Let N be a mesh with n vertices and real-valued function space F(N,R), then the

182

method has three steps:

1. Sample the mesh and produce a set of locally supported functions which span

a subspace of the function space.

2. Restrict the eigenproblem to the subspace and solve.

3. Lift the solutions to N , producing an approximation of the Laplacian

eigenfunctions.

Constructing a subspace

Let d � n be the number of vertices used in a sampling of N . In [14] a sampling

method based on Poisson-disk sampling is used which ensures that randomly

sampled points remain further than some distance ε from each other [131],[132].

Let S = {si ∈ V : i = 1, . . . , d} be the set of vertices in the sample. Then, create a

set of locally supported functions ũi centred at si. In [14] these functions are defined

over the vertex set V = {v1, . . . , vn} by

ũi(vj) =

2
ρ3
r3 − 3

ρ2
+ 1, when r ≤ ρ

0, when r > ρ
(7.1.1)

where r is the distance between si and vj, and ρ is a distance which bounds the radius

of support of the function. The distance r is calculated using a Euclidean correction

of the geodesic distance as calculated via Dijkstra’s algorithm: the geodesic distance

between two nearby points on a surface can be approximated by the Euclidean

distance. The parameter ρ is chosen to ensure that each function is supported on

a specified number of other sample vertices. In [14] ρ is chosen so that the local

functions ũi are supported on a minimum of 7 and maximum of 15 vertices other

than si.

The matrix U containing the set of d locally supported functions as columns is

constructed by normalising the rows of the matrix Ũ which has the functions ui as

columns. That is,

Uij =
1∑d

k=1 Ũik
Ũij =

1∑d
k=1 ũk (vi)

ũj (vi) .

183

This ensures that the sum of the local functions evaluated at each vertex equals 1,

constructing a partition of unity. The local functions ui are defined via

uj(vi) := Uij.

Remark 7.1.1: The combination of poisson-disk sampling and choice of polynomial

(equation (7.1.1)) used to construct the local functions guards against the matrix U

being rank deficient. However it is not guaranteed that U is full-rank. From here it

is assumed that U is full rank.

The subspace eigenproblem

Recall from section 2.5.2 that the eigenfunctions of the Laplacian L = A−1W on N

are columns of the matrix solution to the optimisation problem

arg min
Φ

tr
(
ΦTWΦ

)
subject to ΦTAΦ = Ik,

where k is the number of eigenfunctions which are sought. The columns φi of Φ

correspond to eigenvalues λi such that Wφi = λiAφi.

This eigenproblem can be restricted to the subspace spanned by the functions ui.

This is done by restricting both the weight and area matrices,

Ā := UTAU and W̄ := UTWU. (7.1.2)

The restriction of the eigenproblem to the space spanned by U is then given by

arg min
φ̄

tr
(
φ̄T W̄ φ̄

)
subject to φ̄T Āφ̄ = Ik.

The number of eigenfunctions k is chosen to be k = d/2. This restricted

eigenproblem is called the subspace eigenproblem, the eigenfunctions φ̄i are

called subspace eigenfunctions and their corresponding eigenvalues λ̄i are called

restricted eigenvalues.

184

The restricted eigenfunctions

The subspace eigenfunctions can be lifted to functions Φ̄i ∈ Rn on the mesh N by

Φ̄i = Uφ̄i. These functions are called restricted eigenfunctions.

The restricted eigenfunctions have several important properties:

Lemma 7.1.2: [14, lemma 1] The restricted eigenfunctions are orthogonal with

respect to A.

Proof. Let Φ̄i = Uφ̄i and Φ̄j = Uφ̄j be restricted eigenfunctions, then

〈Φ̄i, Φ̄j〉A = Φ̄T
i AΦ̄j,

= φ̄Ti U
TAUφ̄j, by the construction of the restricted eigenfunctions,

= φ̄Ti Āφ̄j, by the construction of Ā,

= δij, since φ̄T Āφ̄ = Ik.

Lemma 7.1.3: [14, lemma 2] The Dirichlet energy of the restricted eigenfunction

Φ̄i is given by the restricted eigenvalue λ̄i.

Proof. Recall from definition 2.5.32 that the Dirichlet energy of a function

represented by vector f ∈ Rn is given by E = fTW f . Then the Dirichlet energy of

a restricted eigenfunction Φ̄i is given by

Φ̄T
i W Φ̄i = φ̄Ti U

TWUφ̄i, by the construction of the restricted eigenfunctions,

= φ̄Ti W̄ φ̄i, by the construction of W̄ ,

= λ̄iφ̄
T
i Āφ̄i, by the properties of the subspace eigenfunctions,

= λ̄i, since φ̄Ti Āφ̄i = 1.

The above lemma provides justification for the terminology restricted eigenvalues.

Consequently, if restricted eigenvalues λ̄i are close to (unrestricted) eigenvalues

185

λi then the Dirichlet energies of the corresponding restricted and unrestricted

eigenfunctions are also close.

Figures 7.2 and 7.1 show a comparison of the fast approximation method applied to

the fandisk mesh. A total of 500 restricted eigenfunctions were calculated. Figure 7.3

shows the comparison in time taken to solve the eigenproblem via eigs and the time

taken to solve the restricted eigenproblem via eigs. The total time to perform the

fast approximation algorithm is also included – this adds the time taken to sample,

construct a matrix of local functions and lift to the restricted eigenfunctions.

Figure 7.1: A comparison of eigs eigenvalues and restricted eigs eigenvalues for the

fandisk mesh.

186

Figure 7.2: A comparison of eigs eigenfunctions and restricted eigs eigenfunctions on the fandisk mesh.

187

Figure 7.3: A comparison of eigs and the fast approximation algorithm timings for

three meshes.

Proposition 7.1.4: Restricted eigenfunctions commute with isometry.

Proof. Let Π be the permutation matrix representing an isometry between two

meshes N and P . Let UN be a matrix of locally supported functions. The subspace

eigenfunctions Φ̄N are such that

Φ̄N = arg min
X

tr
(
XT W̄NX

)
subject to XT ĀNX = I,

where W̄N and ĀN are the restricted area and weight matrices.

The isometry maps any function f defined as a vector on N to the vector ΠT f on P .

So UP = ΠTUN . Then, the restricted area and weight matrices on P are given by

W̄P = UT
PWPUP

= UT
NΠΠTWNΠΠTUN , since Π represents an isometry,

= W̄N , (7.1.3)

and

ĀP = ĀN , (7.1.4)

by the same reasoning.

188

The subspace eigenfunctions Φ̄P on P are such that

Φ̄P = arg min
X

tr
(
XT W̄PX

)
subject to XT ĀPX = I,

That is, via equations (7.1.3) and (7.1.4),

Φ̄P = arg min
X

tr
(
XT W̄NX

)
subject to XT ĀNX = I,

which is exactly the subspace eigenproblem on N . Hence,

Φ̄P = Φ̄N

and the restricted eigenvalues on P are given by

Λ̄P = Λ̄N .

Therefore the restricted eigenfunctions on P are given by

ΦP = UP Φ̄P

= ΠTUN Φ̄N

= ΠTΦN .

7.2 Extension to GLMHs

The method of fast approximation can be applied to approximating generalised

localised manifold harmonics (definition 3.3.9). Recall that these are GMHs which

arise as solutions to an eigenvalue problem (as in theorem 3.3.7). As noted in [14],

the method adapts because there is no need for the matrices involved to necessarily

be the components A,W of a Laplacian L = A−1W , as detailed above.

Let M be symmetric and invertible, then problems of the form

arg min
Ψ

tr(ΨQΨ) subject to ΨTMΨ = I,

189

Algorithm 7 FastApprox for GLMHs

1: Given GLMH problem of the form

arg min
Ψ

tr
(
ΨTQΨ

)
subject to ΨTMΨ = Ik×k

2: Take a sample and construct matrix of locally supported functions U .

3: Restrict the GLMH problem to

arg min
X

tr
(
XT Q̄X

)
subject to XTM̄X = Ik×k

where Q̄ = UTQU and M̄ = UTMU .

4: Solve the restricted GLMH eigenvalue problem.

5: Calculate the restricted eigenfunctions Ψ̄ = UX.

have solutions given by the eigenfunctions satisfying
(
Q+QT

)
ψi = λiMψi, where

the λi are the k smallest eigenvalues. These eigenfunctions can be approximated

using the fast approximation method, see algorithm 7.

The proof of proposition 7.1.4 can be extended to include generalised localised

manifold harmonics with Q and M matrices related by isometry as in theorem 3.5.5.

7.3 Fast Approximation of Compressed Manifold

Modes

The idea of solving problems in a lower dimensional subspace can be combined with

ADMM to calculate approximations of compressed manifold modes. Recall that the

CMM problem is given by

arg min
Ψ

tr
(
ΨTWΨ

)
+ µ‖AΨ‖1, subject to ΨTAΨ = I,

where W,A ∈ Rn×n are the weight and area matrices of a discrete Laplacian, Ψ ∈
Rn×k and µ ∈ R.

190

Let matrix U be a matrix of d locally supported functions. Then the CMM problem

can be restricted to the subspace spanned by columns of U . The restricted problem

is given by

arg min
X

tr
(
XT W̄X

)
+ µ‖AUX‖1, subject to XT ĀX = I, (7.3.5)

where W̄ , Ā ∈ Rd×d are as in equation 7.1.2.

Remark 7.3.1: There is no need to scale the sparsity parameter µ as in the

restricted problem the `1 norm continues to act on an n× k matrix.

Problem (7.3.5) can then be split via the ADMM algorithm of [9], with the f(X)

part given by

ι(X) =

0, if XT ĀX = I

∞, if XT ĀX 6= I.

The g(Z) part is given by setting

Z =

[
E

S

]
, g(Z) =

[
tr
(
ET W̄E

)
µ‖AS‖1

]
;

and the linear condition is given by[
U

U

]
X +

[
−U 0

0 −I

][
E

S

]
= 0.

Note that X ∈ Rd×k, E ∈ Rd×k and S ∈ Rn×k. Given an initial X0, set E0 = X0,

S0 = UX0, UE
0 ∈ Rn×k and US

0 = 0 ∈ Rn×k. The iterative steps of the algorithm are

then given by

The X step: Xk+1 := arg min
X

ι(X) +
ρ

2

∥∥∥∥∥
[
UX

UX

]
−

[
UEk

Sk

]
+

[
UUE

k

US
k

]∥∥∥∥∥
2

F

, (7.3.6)

The E step: Ek+1 := arg min
E

tr
(
ET W̄E

)
+
ρ

2
‖UXk+1 − UE + UUE

k ‖2
F , (7.3.7)

The S step: Sk+1 := arg min
S

µ‖AS‖1 +
ρ

2
‖UXk+1 − S + US

k ‖2
F , (7.3.8)

The U step: UE
k+1 := UE

k +Xk+1 − Ek+1,

US
k+1 := US

k + UXk+1 − Sk+1.

191

Although the overall aim is reduce the dimension of the matrices in each step, the

S step dimension does not change. This is because a solution is not known when

restricting to the lower dimensional space – we only have a result for multiplication

by a diagonal matrix (see section 3.2.2, theorem 3.2.13. This leads to the novel

situation of the variables UE and US being different sizes.

The X Step: To solve (7.3.6) first rearrange to be of the same form as equation

(3.2.20). That is, the problem becomes

arg min
X∈Rd×k

‖UX − Y ‖2
F subject to XT ĀX = I,

where Y = 1
2
(UEk − UUE

k + Sk − US
k).

Due to the multiplication by U this cannot be solved in the same way as before –

the differentiation of the Lagrange equation with respect to X leads to the equation

UTUX +
1

2
(ĀXΛ + ĀXΛ) = UTY

which can’t be rearranged into an expression for X. Instead, approximate a solution

by solving for the matrix UX and use least squares minimisation to extract the

matrix X. This looks as if it is a problem in Rn×d but with some manipulation the

solution can be written as product of smaller matrices.

Substitute X̂ = UX and recall from section 3.2.2, equation 3.2.24 that the solution

to

arg min
X̂∈Rn×k

‖X̂ − Y ‖2
F subject to X̂TAX̂ = I,

when A = rI is given by

X̂ =
1√
r
Y V D−

1
2V T (7.3.9)

where Y is as above and V DV T is the singular value decomposition of Y TY .

But, Sk − US
k can be approximated in the subspace spanned by the columns of U .

Let S̃ ∈ Rd×k assume that US̃ = Sk − US
k , then

UTUS̃ = UT (Sk − US
k)

S̃ = (UTU)−1UT (Sk − US
k).

192

Of course, this is not really equality, but the least squares solution of section 2.4.1.

Note that the existence of (UTU)−1 follows from the assumption that U is full rank.

Then let Y be approximated by Ỹ with

Ỹ :=
1

2
(UEk − UUE

k + US̃)

=
1

2
U(Ek − UE

k + S̃).

Then

Ỹ T Ỹ =
1

4
(Ek − UE

k + S̃)TUTU(Ek − UE
k + S̃).

Let Ṽ D̃Ṽ T be the svd of the k × k matrix (Ek − UE
k + S̃)TUTU(Ek − UE

k + S̃), so

Ỹ T Ỹ =
1

4
Ṽ D̃

1
2 Ṽ T

and

(Ỹ T Ỹ)−
1
2 = 2Ṽ D̃−

1
2 Ṽ T .

Then, via equation (7.3.9), UX can be approximated by

UX ≈ 2√
r
Ỹ Ṽ D̃−

1
2 Ṽ T

=
1√
r
U(Ek − UE

k + S̃)Ṽ D̃−
1
2 Ṽ T .

Using the least squares minimisation discussed above, X can be approximated by

multiplying on the left by (UTU)−1UT , giving

X ≈ 1√
r

(UTU)−1UTU(Ek − UE
k + S̃)Ṽ D̃−

1
2 Ṽ T

=
1√
r

(Ek − UE
k + S̃)Ṽ D̃−

1
2 Ṽ T . (7.3.10)

The E Step: Problem (7.3.7) can be solved in a similar way to problem (3.2.16).

Let Ê := UXk+1 + UUE
k , then

Ek = arg min
E

tr
(
ETWE

)
+
ρ

2
‖Ê − UE‖2

F

= arg min
E

tr
(
ETWE

)
+
ρ

2

(
tr
(
ÊT Ê

)
+ tr

(
ETUTUE

)
− 2 tr

(
ÊTUE

))
.

193

Differentiating with respect to E and equating with zero gives

0 = 2WE +
ρ

2

(
2UTUE − 2UT Ê

)
.

Rearranging gives

(2W + ρUTU)E = ρUT Ê.

And so

E = ρ(2W̄ + ρUTU)−1UT (UXk+1 + UUE
k)

= ρ(2W̄ + ρUTU)−1UTU(Xk+1 + UE
k). (7.3.11)

That (2W̄ + ρUTU)−1 exists is due to it being the sum of a positive semi-definite

matrix and a positive definite matrix (recall ρ > 0).

This is the step which is most greatly affected by the lowering of dimensions. In

the original ADMM for calculating CMMs the E step requires the inversion of an

n × n matrix. Here the size of the matrix inverse is d × d, where d is the number

of samples taken to construct the set of local basis functions. It is assumed that

d� n, and so the time taken to calculate the inverse will be reduced. Note, however

the additional multiplication by UTU and that in the original ADMM solution E is

given by

E = ρ(2W + ρI)−1(Ψk+1 + UE
k),

where the matrix 2W +ρI is much sparser than the matrix 2W̄ +ρUTU . Figure 7.4

compares the sparsity of the restricted and unrestricted matrices. Sparsity is given

as (number of zero elements/number of elements).

The S Step: The solution for S can be found in the same way as previously, with

Ŝ = UXk+1 + US
k . That is,

Sij = sgn
(
Ŝij

)
max{|Ŝij| −

µr

ρ
, 0}, (7.3.12)

since it is assumed that A = rI. Again note the the dimensions have not been

reduced when compared with the original ADMM.

To summarise, the algorithm for the fast approximation of compressed manifold

modes is given in algorithm 8.

194

Algorithm 8 Fast Approximation of CMMs

1: Given X0 ∈ Rd×k, µ ∈ R, restricted weight matrix W̄ ∈ Rd×d, matrix of local

functions U ∈ Rn×d

2: Set E0 = X0, S0 = UX0, UE
0 = 0 ∈ Rd×k, US

0 = 0 ∈ Rn×k

3: Set regularisation parameter ρ > 0

4: Compute and store UTU , (UTU)−1UT

5: repeat

S̃ ← (UTU)−1UT (Sk − US
k)

Z ← Ek − UE
k − S̃

Ṽ D̃Ṽ T = ZTUTUZ, the svd

Xk+1 ←
√
nZṼ D̃−

1
2 Ṽ T

Ek+1 ← ρ(2W̄ + ρUTU)−1UTU(Xk+1 + UE
k)

(Sk+1)ij ← sgn
(
(UXk+1 + US

k)ij
)

max{|(UXk+1 + US
k)ij| −

µ

ρn
, 0}

UE
k+1 ← UE

k +Xk+1 − Ek+1

US
k+1 ← US

k + UXk+1 − Sk+1

6: until convergence

195

Figure 7.4: The sparsity of the original and restricted area and weight matrices, and

UTU , calculated for the ScapeMan001 mesh.

7.3.1 Experimental Results

Compressed manifold modes were calculated for a set of meshes, using both the fast

approximation algorithm and ADMM without restriction. CMMs were calculated

10 times then timings averaged, to allow for deviation due to the the random

initialisation. Table 7.1 provides details of the sparsity parameter, sample sizes,

overall timings and number of iterations required for convergence. The time taken

to restrict the problem includes the time taken to sample the mesh, construct the

matrix U and calculate the restricted matrices W̄ , Ā. It is likely that the time taken

to restrict the problem could be improved. The final column calculates an average

time per iteration for each method.

These timings show that although the time per iteration of the fast approximation

196

method is greater than the time per iteration of the unrestricted ADMM, the fast

approximation converges much faster. Note the trends that as the number of vertices

in the mesh increases the number of iterations required for the unrestricted ADMM

to converge increases greatly but the number of iterations required for the fast

approximation to converge does not show such a trend, the number of iterations

seems to be quite steady.

Table 7.2 compares the timings for the individual steps of the ADMM algorithm.

The time given is the average time per iteration where the number of iterations and

total times are given in table 7.1. As expected the greatest saving in time taken is

in the E step. This is the step where the dimension of the matrix inverse is reduced

from an n × n matrix to a d × d matrix. The Ψ/X step is significantly slower in

the fast approximation, this is likely to be due to the mutliplication by (UTU)−1UT

required to calculate S̃. Unexpectedly the timings for the S step also increased –

probably due to a change in matrix sparsity, a consequence of restricting via U .

Figure 7.5 shows CMMs calulated via the fast approximation and via unrestricted

ADMM on the fandisk and ScapeMan001 meshes. The functions are very similar,

some change in ordering.

197

ADMM Sample Restrict Fast Approx. Av. ADMM It. Time

Mesh Vertices Modes µ time it.s Size time time it.s total ADMM Fast

fandisk 6457 10 64 53.2174 1489 162 0.9057 6.1890 326 7.1082 0.0357 0.0190

chair1 12326 10 120 75.9129 1424 308 3.5430 29.9082 413 33.5672 0.0533 0.0725

ScapeMan001 12500 10 120 31.7624 676 313 3.0367 13.8918 214 17.0057 0.0470 0.0649

octopus 16554 10 160 111.9092 1851 413 6.5580 34.6992 267 41.8057 0.0605 0.1301

horse0 19248 10 190 69.4587 868 481 7.7546 61.1408 405 69.1317 0.0801 0.1509

horse10 19248 10 190 83.5128 1065 481 7.1619 73.8106 509 81.2081 0.0784 0.1451

head1 20490 10 200 335.8071 1134 512 8.2724 47.7540 300 56.1544 0.2963 0.1593

cat6 27894 10 270 124.0095 1070 697 13.7826 86.6193 356 100.4732 0.1159 0.2432

victoria17 45659 10 46 1013.7910 5278 1141 39.0662 229.2959 368 268.6111 0.1921 0.6234

david12 52565 10 53 1126.6470 4296 1312 51.5346 325.2257 391 377.0151 0.2622 0.8326

kid7 59727 10 60 1767.3510 6241 1493 66.9091 390.4531 365 457.7433 0.2832 1.0706

Table 7.1: Table comparing ADMM with Fast Approximation for CMMs on assorted meshes.

198

ADMM Fast Approx. % Increase

Mesh Ψ Step E Step S Step X Step E Step S Step Ψ\X Step E Step S Step

fandisk 0.0019 0.0298 0.0005 0.0106 0.0016 0.0016 5.520 0.0525 3.3113

chair1 0.0018 0.0447 0.0007 0.0379 0.0046 0.0075 21.566 0.1021 10.0042

ScapeMan001 0.0019 0.0385 0.0007 0.0392 0.0040 0.0051 20.441 0.1027 7.2747

octopus 0.0032 0.0484 0.0011 0.0703 0.0074 0.0133 21.688 0.1521 12.0973

horse0 0.0034 0.0667 0.0013 0.0931 0.0093 0.0109 27.569 0.1389 8.5095

horse10 0.0035 0.0650 0.0012 0.0894 0.0098 0.0106 25.597 0.1500 8.5426

head1 0.0039 0.2814 0.0013 0.1044 0.0089 0.0095 26.578 0.0317 7.2225

cat6 0.0042 0.0983 0.0017 0.1923 0.0089 0.0074 45.580 0.0907 4.3865

victoria17 0.0074 0.1626 0.0027 0.5082 0.0201 0.0164 68.576 0.1235 6.1293

david12 0.0095 0.2164 0.0039 0.6842 0.0245 0.0205 71.848 0.1132 5.2943

kid7 0.0102 0.2339 0.0042 0.8668 0.0325 0.0254 85.378 0.1390 6.0185

Table 7.2: Table comparing the unrestricted ADMM and fast approximation step times.

199

Figure 7.5: CMMs calculated via fast approximation and unrestricted ADMM, on the fandisk and ScapeMan001 meshes.

200

7.4 Summary and Future Work

A novel algorithm for the fast approximation of compressed manifold modes was

given (algorithm 8). This algorithm show significant improvement to the time taken

to calculate CMMs.

The algorithm needs to be tested on larger meshes and the effect of the sample size

could be investigated.

The algorithm for adapting the fast approximation method to any eigenproblem

is simple. As mentioned in section 7.2 the adaptation of the fast approximation

method to the calculation of localised manifold harmonics should follow. In practice,

however, this requires future work. An attempt was made but the resulting functions

were not consistent with the eigs eigenfunctions, and hence not explored further

or detailed in the chapter. The cause behind the inconsistency is that the localised

functions used to lower the dimensional of the eigenvalue problem reduce the ability

to construct locally supported functions with a high frequency. A naive solution

is to simply increase the number of sampled points, increasing the dimension of

the subspace eigenproblem. Instead, we suggest a stratified sample, with a dense

sampling of the regions of localisation, and a sparser sampling of the rest of the

mesh.

To formulate the restricted ADMM problem the variables UE and US are of different

sizes. This has not been done before and requires further work to formally describe

the effect on the convergence conditions.

201

Chapter 8

Key Results and Conclusions

Generalised manifold harmonics have been introduced here as solutions to a

general problem with an orthogonality constraint. The problem brings together

definitions of various functions used in geometry processing including the Laplacian

eigenfunctions, localised manifold harmonics, Hamiltonian eigenfunctions and

compressed manifold modes. A new definition for discrete isometry was given,

motivated by properties of isometries between Riemannian manifolds. This led to a

proof that compressed manifold modes commute with isometry. No such result was

previously known. The conditions required for generalised manifold harmonics to

commute with isometry were also discussed.

Key Result: Localised manifold harmonics and compressed manifold modes

commute with discrete isometry.

Generalised manifold harmonics can be used to span subspaces of a mesh function

space. A variety of alternative bases were tested for their ability to reconstruct

functions. Localised manifold harmonics are designed to improve the reconstruction

of a specific function (or set of functions). It was expected that they would

out-perform alternative bases when reconstructing the functions which they were

constructed to handle.

202

Key Result: Function type has a greater impact on reconstruction error than

basis type.

Key Result: Localised manifold harmonics did not perform as well as expected.

Functional maps are used as a method of finding point-to-point matches between

shapes. They can also be used to transfer functions between meshes. The basis

vectors tested for function reconstruction were also used in the construction of

functional maps. The functional maps were used to transform functions from one

mesh to another. In a first attempt to consider the quality of such transformations

on function reconstruction the error between the mapped functions and the known

corresponding functions was measured. Results showed no particular trends, except

that some bases performed better for some specific meshes than others. This may

mean that basis choice can be optimised for specific shape collections, however it

may be a side effect of the meshes having the same underlying graph structure. How

to test this and the testing of transformation of different functions provide scope for

future work.

A specific set of generalised manifold harmonics can be calculated as solutions to an

eigenvalue problem, this includes localised manifold harmonics and Hamiltonian

eigenfunctions. Compressed manifold modes and other generalised manifold

harmonics cannot be found in such a way. Given that they are solutions to an

optimisation problem with the constraint XTMX = I optimisation on generalised

Stiefel manifold was studied. Known properties and results for the Stiefel manifold

S = {X ∈ Rn×k : XTMX = I, M = I} were generalised for the M 6= I case.

A sequential algorithm for optimising on generalised Stiefel manifolds was given.

The sequential method requires an objective function F : Rn×k → R which can be

written as a sum of functions acting on the matrix columns; it may be possible to

use the same method to optimise alternative functions with the additional of further

constraints.

Key Result: Section 6.1 which provides the properties of generalised Stiefel

manifolds.

203

Key Result: A sequential algorithm for optimisation on generalised Stiefel

manifolds using the periodic retraction, algorithm 6.

The method of fast approximation of Laplacian eigenfunctions provides a way of

approximating Laplacian eigenfunctions by restricting the eigenvalue problem to a

subspace. It was proved that the restricted eigenfunctions commute with isometry.

Due to the ease of calculating approximated eigenfunctions this could be useful

in shape matching problems, but would require corresponding matrices of locally

supported functions on each mesh. The method is simply generalised for a specific

set of generalised manifold harmonics – those which are solutions to eigenvalue

problems. When attempting to use this generalisation to approximate localised

manifold harmonics and Hamiltonian eigenfunctions, problems arise due to the mesh

sampling. This requires further exploration – a possible solution is to use a mixed-

density sample which takes more samples of the local regions of interest. The method

was applied to the approximation of compressed manifold modes. Numerical results

show a reduction in the number of iterations required to get the ADMM algorithm

to converge, and a significant time saving in the E step due to the reduction of the

dimension of the matrix inverse required. Further work is required to improve the

X step.

Key Result: Restricted eigenfunctions commute with isometry.

Key Result: A novel algorithm for the fast calculation of approximations of

compressed manifold modes, algorithm 8.

The sparsity parameter µ in the compressed manifold modes problem remains

difficult to choose. It was observed that for some meshes the compressed manifold

modes and Laplacian eigenfunctions spanned similar subspaces of mesh function

space. If it can be understood why then this could lead to greater understanding of

how µ choice affects modes.

204

205

Appendices

206

A Assorted Short Proofs

Lemma A.1: Let M be a full rank matrix. Then the matrix MTM is invertible.

Proof. Recall that any square matrix with null space equal to zero is invertible. Let

x be such that MTMx = 0, then

xTMTMx = 0

(Mx)T (Mx) = 0,

and so Mx must be equal to the zero vector. As M is full rank this means that

x = 0, and so the null space of MTM is zero. Hence, MTM is invertible.

Lemma A.2: Let M and N be n×n symmetric matrices, with M invertible. Then

the linear operator represented by M−1N is self-adjoint, with respect to the M inner

product.

Proof. Let f, g be vectors, then

〈M−1Nf, g〉M = fTNTM−TMg

= fTNM−1Mg, since N = NT , M−T = M−1,

= fTNg

= fTMM−1Ng

= 〈f,M−1Ng〉M

and so M−1N is self-adjoint.

Lemma A.3: Let L be self-adjoint with respect to the A inner product, then L has

orthogonal eigenvectors and real eigenvalues.

Proof. First consider the eigenvalues. Let λ ∈ C be an eigenvalue for L, with

207

eigenvector v. Then

λ〈v, v〉A = 〈λv, v〉A
= 〈Lv, v〉A, since Lv = λv,

= 〈v, Lv〉A, since L is self-adjoint,

= 〈v, λv〉A
= 〈λv, v〉A, since inner products obey 〈x, y〉 = 〈y, x〉,

= λ 〈v, v〉A
= λ〈v, v〉A, since 〈v, v〉 = 〈v, v〉.

Therefore, λ = λ which implies λ ∈ R. Now consider the eigenfunctions: Let λ be

an eigenvalue for L with eigenvector v, and let µ be an eigenvalue with eigenvector

w, λ 6= µ. Then

〈Lv,w〉A = 〈v, Lw〉A, since L is self-adjoint,

〈λv, w〉A = 〈v, µw〉A
λ〈v, w〉A = µ〈v, w〉A

(λ− µ)〈v, w〉A = 0

but since λ 6= µ, λ− µ 6= 0 and hence, 〈v, w〉A = 0.

Lemma A.4: Let M be an n × n symmetric positive definite matrix. Let (pq) be

such that Mpq ≥ |Mij| for all pairs (i, j) 6= (p, q). Then p = q. That is, the largest

element of M lies on the diagonal.

Proof. Let ei and ej be standard basis vectors in Rn. Define x := ei−ej and consider

xTMx:

xTMx = eTi Mei + eTjMej − 2eTi Mej

= Mii +Mjj − 2Mij.

As M is positive definite and x 6= 0 it must be that

Mii +Mjj > 2Mij

208

and hence at least one of Mii,Mjj bust be greater than Mij. This holds for all i, j

and so it must be that the largest element of M lies on the diagonal.

Lemma A.5: An n×n matrix with all entries equal is not positive definite (n ≥ 2).

Proof. Let M ∈ Rn×n with Mij = m ∈ R for all ij and let x ∈ Rn. Then xTMx =

m
∑

ij xixj. Consider the cases:

(i) If m = 0 then xTMx = 0 for all x, and hence M is not positive definite.

(ii) Let x be such that one element is equal to 1, one element is equal to −1 and

all other elements are equal to zero. Then
∑

ij xixj = 0, and so xTMx = 0.

As x 6= 0 the matrix M is not positive definite.

Lemma A.6: Let A,B ∈ Rn×k, then ‖A+B‖2
F = ‖A‖2

F + ‖B‖2
F + 2 tr

(
ATB

)
.

Proof.

‖A+B‖2
F tr
(
(AT +BT)(A+B)

)
= tr

(
ATA+BTA+ ATB +BTB

)
= tr

(
ATA

)
+ tr

(
BTA

)
+ tr

(
ATB

)
+ tr

(
BTB

)
= ‖A‖2

F + ‖B‖2
F + 2 tr

(
ATB

)
, since tr(X) = tr

(
XT
)
.

Lemma A.7: Let A ∈ Ra×k, B ∈ Rb×k, then

∥∥∥∥∥
[
A

B

]∥∥∥∥∥
2

F

= ‖A‖2
F + ‖B‖2

F .

Proof. ∥∥∥∥∥
[
A

B

]∥∥∥∥∥
2

F

= tr

([
AT BT

] [A
B

])
= tr

(
ATA+BTB

)
= tr

(
ATA

)
+ tr

(
BTB

)
= ‖A‖2

F + ‖B‖2
F .

209

Lemma A.8: ‖X‖1 = vec (X)T vec (sgn (X)) .

Proof.

vec (X)T vec (sgn (X)) =
∑
ij

Xij sgn (X)

=
∑
ij

|Xij|

= ‖X‖1.

Lemma A.9: Let L (X,Λ) be the Lagrangian multiplier function where Λ is the

matrix of λij associated to the equations φTi Mφj− δij = 0. Then, if M is symmetric

so is Λ.

Proof. If M is symmetric then
(
φTi M

Tφj
)T

= φTi Mφj, which is equal to φTi M
Tφj

since the product is a scalar. Then, since δij = δji, the equations φTi Mφj − δij = 0

and φTjMφi − δji = 0 are equivalent, and are, therefore, associated to the same

Lagrangian variable λij. This results in the matrix Λ where λij = λji; that is, Λ is

symmetric.

Lemma A.10: Let X ∈ Rn×k and let U ∈ Rm×n such that UTU = I. Then

‖UX‖F = ‖X‖F .

Proof.

‖UX‖2
F = tr

(
(UX)T (UX)

)
= tr

(
XTUTUX

)
= tr

(
XTX

)
= ‖X‖2

F

210

Lemma A.11: Let Ψ ∈ Rn×k be such that ΨTAΨ = I for symmetric positive

definite A. Define f := Ψa and g := Ψb via a, b ∈ Rk. Then

‖f − g‖A = ‖a− b‖2.

Proof.

‖f − g‖2
A = (f − g)TA(f − g)

= fTAf + gTAg − 2fTAg

= aTa+ bT b− 2aT b, since ΨTAΨ = I,

= (a− b)T (a− b)

= ‖a− b‖2
2

Taking the square root of both sides gives the result.

Lemma A.12: Let S ∈ Sym(n) and let K ∈ Skew(n). Then tr(SK) = 0.

Proof. Recall that the trace of any matrix is equal to the trace of the transpose, so

tr(SK) = tr
(
KTST

)
= tr(−KS) , by the properties of S and K,

= − tr(KS) .

Also recall that the trace is invariant under cyclic permuation, so

tr(SK) = tr(KS) .

Therefore, since tr(KS) = − tr(KS) the trace must be zero.

Lemma A.13: Let A be an a× n matrix with rank(A) = n, and let B be an n× b
matrix. Then Rank(AB) = Rank(B).

Proof. From the definition of rank

Rank(AB) = dim
(
{y ∈ Ra : y = ABx, x ∈ Rb}

)
= dim({y ∈ Ra : y = Az, z ∈ Im(B) ⊆ Rn}) .

211

First note that the kernel of AB is contained within the kernel of A, so Null(AB) ≤
Null(A). The nullity of A is given by

Null(A) = dim({y ∈ Rn : Ay = 0}) = 0,

since RankA = n.

Define a transformation T : Im(B)→ Ra such that

T (z) = Az for all z ∈ Im(B) ,

represented by matrix Ā.

By the rank-nullity theorem Rank
(
Ā
)

+ Null
(
Ā
)

= Rank(B). Note that

Rank(AB) = Rank
(
Ā
)

and that Null(AB) = Null
(
Ā
)
. Therefore

Rank(AB) = Rank
(
Ā
)

= Rank(B)− Null
(
Ā
)

= Rank(B)− Null(AB)

= Rank(B) .

Lemma A.14: Let ρ ∈ R, ρ > 0 and let W̄ = UTWU , with U full rank and W

positive semi-definite. Then W̄ + ρUTU is invertible.

Proof. Let x be a non-zero vector, then

xT (W̄ + ρUTU)x = xTUT (W + ρI)Ux

= yT (W + ρI)y, where y = Ux

= yTWy + ρyTy.

Since U is full rank and x 6= 0, y 6= 0. Therefore, since W is positive semi-definite

and yTy > 0, the matrix W̄ + ρUTU is positive defininte. Hence it is invertible.

212

B Table of Mesh Details

Table B.1: Mesh details.

Mesh name Vertices Source/Comments

screwdriver 1 † 2502 aim@shape [133]

screwdriver 2 † 2502 Deformation of screwdriver 1

screwdriver 2 † 2502 Deformation of screwdriver 1

homer † 5103 SHREC ’12 [134]

fandisk † 6457 yobi3d.com [135]

table 1 † 10182 SHREC ’12

chair 1 † 12326 SHREC ’12

ScapeMan001 12500 SCAPE [136]

chair 2 † 13462 SHREC ’12

table 2 † 13579 SHREC ’12

octopus † 16554 SHREC ’12

213

Mesh name Vertices Source/Comments

horse 0 † 19248 TOSCA [111]

horse 6 † 19248 TOSCA

horse 10 † 19248 TOSCA

head 2 † 20359 Headspace [137], remeshed

head 1 † 20490 Headspace, remeshed

fish 1 † 24830 Bristol [138], remeshed

fish 2 † 24873 Bristol, remeshed

bunny † 26002 SHREC ’12

armadillo † 26002 SHREC ’12

hand 1 † 26000 SHREC ’12

hand 2 † 26000 SHREC ’12

cat 0 † 27894 TOSCA

cat 6 † 27894 TOSCA

214

Mesh name Vertices Source/Comments

cat 10 † 27894 TOSCA

victoria 17 † 45659 TOSCA

victoria 21 † 45659 TOSCA

david 12 52565 TOSCA

kid 7 59727 KIDS [112]

Meshes marked by † are used in the experiments in chapters 4 and 5.

215

C List of pairs used in matching problem

screwdriver / screwdriver x

screwdriver / screwdriver y

screwdriver x / screwdriver y

table 1 / table 2 (ground truth between meshes unknown)

chair 1 / chair 2 (ground truth between meshes unknown)

horse 0 / horse 6

horse 0 / horse 10

horse 6 / horse 10

head 1 / head 2 (ground truth between meshes unknown)

fish 1 / fish 2 (ground truth between meshes unknown)

hand 1 / hand 2 (ground truth between meshes unknown)

cat 0 / cat 6

cat 0 / cat 10

cat 6 / cat 10

victoria 17 / victoria 21

The table, chair, head and fish meshes are pairs of distinct meshes, not obtained

through deformation. They are “less isometric” than the meshes where the ground

truth match is known, and do not have the same number of vertices.

216

D Reliability of Compressed Manifold Modes

Figure D.1 shows a set of comparison plots from the calculation of compressed

manifold modes. The modes were calculated sequentially via ADMM, with a cap on

mode calculation after 150 minutes. A cap was also set on the number of iterations

required to get convergence. Modes were calculated twice, once allowing a maximum

of 10K iterations (blue points) and once allowing a maximum of 100K iterations (red

points). The paramater controlling sparsity was set to µ = 50. Further details of

the graphs are listed below.

Top left: Markers plot (number of vertices, number of CMMs calculated in time)

for each mesh. As expected, fewer modes are calculated in a 2.5 hour window if the

maximum number of iterations is increased (red points are lower than blue points).

Top right: Markers plot (number of vertices, index of first mode for which the

maximum number of iteration was reached) for each mesh. Some meshes fail at the

same mode (where blue and red points overlap); some meshes do not fail (columns

where there are blue points but no red points), however this may just be because

there was not enough time to reach the mode of first failure; in general, the mode of

first failure occurs later when the maximum number of iterations is increased (blue

points are lower than red points).

Bottom left: Markers plot (number of vertices, number of modes for which

the maximum number of iterations was reached) for each mesh. Fewer modes fail

when the maximum number of iteration is increased (red points are lower than blue

points).

Bottom right: Markers plot (number of vertices, number of modes for which the

maximum number of iterations was reached as a percentage of number of modes

calculated in time) for each mesh.

217

Figure D.1: CMM calculation details

218

E Additional figures

Figure E.2: The failure to meet the ΦTAΨ = I orthogonality condition, with large

GLMH Delta errors included.

219

Figure E.3: Function transformation error between C and refined C, with basis type

CMM 10K included.

220

Figure E.4: Mesh area comparison boxplots – complete mesh set.

221

F Properties of the projection P

In section 6.4 the projection of any element y ∈ Rn into the tangent space Tx(VΦ ∩
EM) is given by Py where P := I − ΦΦTM − xxTM . The following equalities may

be useful in calculations, particularly in evaluation of ‖Pg‖.

First, recall that xTMx = 1, ΦTMΦ = I and ΦTMx = 0, then

P TMP = (I −MΦΦT −MxxT)(M −MΦΦTM −MxxTM)

= M −MΦΦTM +MxxTM

= MP.

Also,

P TMxxTMP = P (MxxTM −MxxTMΦΦTM −MxxTxxTM)

= P (MxxTM −MxxTM)

= 0.

It follows that ‖Pg‖2 = gTMPg for either the Euclidean or the canonical metric.

222

G Proof of the Woodbury Matrix Identity

(theorem 6.1.17)

Proof. Let A ∈ Rn×n, U ∈ Rn×k and V ∈ Rk×n and consider the system of equations

given by [
A U

V −Ik

][
X

Y

]
=

[
In

0

]
.

Expanding out gives the equations

AX + UY I (G.1)

V X − Y 0. (G.2)

From (G.1)

X = A−1(I − UY) (G.3)

and from (G.2)

Y V X. (G.4)

Substitution of (G.3) into (G.2) gives

V A−1 = (I + V A−1U)Y

and, assuming that (I + V A−1U) is invertible, gives

Y = (I + V A−1U)−1V A−1. (G.5)

Substitution of (G.5) into (G.3) gives

X = A−1 − A−1U(I + V A−1U)−1V A−1. (G.6)

Substitution of (G.4) into (G.1) gives

(A+ UV)X = I

and hence (G.6) gives an expression for the inverse of (A+ UV).

223

Bibliography

[1] D. Thompson, On Growth and Form. Cambridge University Press, 1917.

[2] M. Reuter, Laplace Spectra for Shape Recognition. PhD thesis, Universität,

Hannover, 2005.

[3] B. Vallet and B. Lévy, “Spectral Geometry Processing with Manifold

Harmonics,” Computer Graphics Forum, vol. 27, no. 2, pp. 251–260, 2008.

[4] M. Zhang, J. Ma, X. Liu, and L. Kobbelt, “Spectral Quadrangulation with

Orientation and Alignment Control,” ACM transactions on graphics, vol. 27,

no. 5, 2008.

[5] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas,

“Functional Maps: A Flexible Representation of Maps Between Shapes,” ACM

Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2012,

vol. 4, no. 31, pp. 1–11, 2012.

[6] S. Melzi, E. Rodola, U. Castellani, and M. Bronstein, “Localized Manifold

Harmonics for Spectral Shape Analysis,” in Eurographics Symposium on

Geometry Processing, (University College London), 3–5 July 2017. [Poster].

[7] Y. Choukroun, G. Pai, and R. Kimmel, “Schrödinger Operator for Sparse

Approximation of 3D Meshes,” in Eurographics Symposium on Geometry

Processing, (University College London), 3-5 July 2017. [Poster].

224

[8] V. Ozolinš, R. Lai, R. Caflisch, and S. Osher, “Compressed modes for

variational problems in mathematics and physics,” Proceedings of the National

Academy of Sciences, vol. 110, no. 46, pp. 18368–18373, 2013.

[9] T. Neumann, K. Varanasi, C. Theobalt, M. Magnor, and M. Wacker,

“Compressed Manifold Modes for Mesh Processing.,” Eurographics Symposium

on Geometry Processing 2014., vol. 33, no. 5, pp. 35–44, 2014.

[10] J. Pokrass, A. Bronstein, M. Bronstein, P. Sprechmann, and G. Sapiro,

“Sparse Modeling of Intrinsic Correspondences,” Computer Graphics Forum,

vol. 32, no. 2pt4, pp. 459–468, 2013.

[11] C. Zhang, W. Smith, A. Dessein, N. Pears, and H. Dai, “Functional Faces:

Groupwise Dense Correspondence Using Functional Maps,” in 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5033–

5041, IEEE, June 2016.

[12] O. Litany, E. Rodolà, A. Bronstein, M. Bronstein, and D. Cremers, “NonRigid

Puzzles,” Computer Graphics Forum, vol. 35, no. 5, pp. 135–143, 2016.

[13] Kovnatsky, A. and Bronstein, M. and Bresson, X. and Vandergheynst, P.,

“Functional correspondence by matrix completion,” in IEEE Conference on

Computer Vision and Pattern Recognition. Proceedings, pp. 905–914, 2015.

[14] A. Nasikun, C. Brandt, and K. Hildebrandt, “Fast Approximation of Laplace-

Beltrami Eigenproblems,” Computer Graphics Forum, vol. 37, no. 5, pp. 121–

134, 2018.

[15] R. Horn and C. Johnson, Matrix Analysis. Cambridge, UK: Cambridge

University Press, 1985.

[16] J. Solomon, Numerical Algorithms: Methods for Computer Vision, Machine

Learning, and Graphics. Natick, MA, USA: A. K. Peters, Ltd., 2015.

[17] L. Hogben, ed., Handbook of linear algebra. Discrete mathematics and its

applications, Boca Raton: CRC Press, second edition. ed., 2014.

225

[18] “Cholesky Decomposition. [Online].” Wikipedia. [Accessed Dec 2018].

[19] K. Petersen and M. Pedersen, “The Matrix Cookbook,” tech. rep., Technical

University of Denmark, 2012. [Online], Version 20121115.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstien, “Distributed

Optimization and Statistical Learning via the Alternating Direction Method of

Multipliers,” Foundations and Trends in Machine Learning, vol. 3, pp. 1–122,

2010.

[21] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. Jordan, “A

General Analysis of the Convergence of ADMM,” 2015. [Available from:

https://arxiv.org/abs/1502.02009].

[22] Y. Wang, W. Yin, and J. Zeng, “Global Convergence of ADMM in Nonconvex

Nonsmooth Optimization,” Journal of Scientific Computing, vol. 78, no. 1,

pp. 29–63, 2019.

[23] B. Lévy and H. Zhang, “Elements of Geometry Processing,” in SIGGRAPH

Asia 2011 Courses, SA ’11, (New York, NY, USA), pp. 1–48, ACM, 2011.

[24] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lev́y, Polygon Mesh

Processing. Natick, MA: A.K. Peters, 2010.

[25] M. Campen, “Quad Mesh Generation,” 2017. IGS

Summerschool 2016, Berlin. [Slides available from:

http://www.geometrysummit.org/summerschool/presentations.html].

[26] G. Taubin, “A Signal Processing Approach to Fair Surface Design,” in

Proceedings of the 22nd Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’95, pp. 351–358, 1995.

[27] M. Desbrun, M. Meyer, P. Schröder, and A. Barr, “Implicit Fairing of

Irregular Meshes Using Diffusion and Curvature Flow,” in Proceedings of

the 26th annual conference on computer graphics and interactive techniques,

SIGGRAPH ’99, pp. 317–324, 1999.

226

[28] A. Belyaev and Y. Ohtake, “A Comparison Of Mesh Smoothing Methods,”

in Israel-Korea Bi-National Conference on Geometric Modeling and Computer

Graphics, pp. 83–87, 2003.

[29] V. Krishnamurthy and M. Levoy, “Fitting Smooth Surfaces to Dense Polygon

Meshes,” in Proceedings of the 23rd annual conference on computer graphics

and interactive techniques, SIGGRAPH ’96, pp. 313–324, ACM, 1996.

[30] B. Levy, S. Petitjean, N. Ray, and J. Maillot, “Least Squares Conformal Maps

for Automatic Texture Atlas Generation,” ACM Transactions On Graphics,

vol. 21, no. 3, pp. 362–371, 2002.

[31] M. Floater and K. Hormann, “Surface parameterization: a tutorial and

survey,” in Advances in Multiresolution for Geometric Modelling (N. Dodgson,

M. Floater, and M. Sabin, eds.), (Berlin, Heidelberg), pp. 157–186, Springer

Berlin Heidelberg, 2005.

[32] M. Marinov and L. Kobbelt, “A Robust Two-Step Procedure for Quad-

Dominant Remeshing,” Computer Graphics Forum, vol. 25, no. 3, pp. 537–546,

2006.

[33] V. Surazhsky and C. Gotsman, “Explicit Surface Remeshing,” in ACM

International Conference Proceeding Series; Vol. 43: Proceedings of the

2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing :

Aachen, Germany; 23-25 June 2003, vol. 43, pp. 20–30, 2003.

[34] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene, Recent Advances in

Remeshing of Surfaces, pp. 53–82. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2008.

[35] M.-E. Algorri and F. Schmitt, “Mesh Simplification,” Computer Graphics

Forum, vol. 15, no. 3, pp. 77–86, 1996.

[36] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational Shape

Approximation,” ACM Transactions on Graphics (TOG), vol. 23, no. 3,

pp. 905–914, 2004.

227

[37] P. Cignoni, C. Montani, and R. Scopigno, “A Comparison of Mesh

Simplification Algorithms,” Computers & Graphics, vol. 22, no. 1, pp. 37–

54, 1998.

[38] G. Barequet and S. Kumar, “Repairing CAD Models,” in Proceedings.

Visualization ’97, pp. 363–370, IEEE, 1997.

[39] A. Gueziec, G. Taubin, F. Lazarus, and B. Hom, “Cutting and Stitching:

Converting Sets of Polygons to Manifold Surfaces,” IEEE Transactions on

Visualization and Computer Graphics, vol. 7, no. 2, pp. 136–151, 2001.

[40] T. Ju, “Fixing Geometric Errors on Polygonal Models: A Survey,” Journal of

Computer Science and Technology, vol. 24, no. 1, pp. 19–29, 2009.

[41] O. Sorkine and M. Alexa, “As-Rigid-As-Possible Surface Modeling,” in

Geometry Processing (A. Belyaev and M. Garland, eds.), The Eurographics

Association, 2007.

[42] M. Botsch, M. Pauly, M. Gross, and L. Kobbelt, “Primo: Coupled prisms

for intuitive surface modeling,” in Proceedings of the Fourth Eurographics

Symposium on Geometry Processing, SGP ’06, pp. 11–20, 2006.

[43] M. Botsch and O. Sorkine, “On Linear Variational Surface Deformation

Methods,” IEEE Transactions on Visualization and Computer Graphics,

vol. 14, no. 1, pp. 213–230, 2008.

[44] Y. Ma, Z. Chen, W. Hu, and W. Wang, “Packing Irregular Objects in 3D

Space via Hybrid Optimization,” Computer Graphics Forum, vol. 37, no. 5,

pp. 49–59, 2018.

[45] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson surface reconstruction,”

in Proceedings of the fourth Eurographics symposium on geometry processing,

SGP ’06, pp. 61–70, Eurographics Association, 2006.

[46] M. Wardetzky, S. Mathur, F. Kaelberer, and E. Grinspun, “Discrete

Laplace operators: No free lunch,” in Eurographics Symposium on Geometry

Processing. Proceedings., pp. 33–37, 2007.

228

[47] D. Cvetković, P. Rowlinson, and S. Simić, An Introduction to the Theory of

Graph Spectra. Cambridge: Cambridge University Press, 2010.

[48] U. Pinkall and K. Polthier, “Computing Discrete Minimal Surfaces and Their

Conjugates,” Experimental Mathematics, vol. 2, no. 1, pp. 15–36, 1993.

[49] C. Gotsman, X. Gu, and A. Sheffer, “Fundamentals of spherical

parameterization for 3D meshes,” in ACM SIGGRAPH 2003 Papers, vol. 22

of SIGGRAPH ’03, pp. 358–363, ACM, 2003.

[50] H. Zhang, “Discrete combinatorial Laplacian operators for digital geometry

processing,” in SIAM Conference on Geometric Design., p. 5755923, 2004.

[51] Laplace-Beltrami: The Swiss Army Knife of

Geometry Processing, 2014. [Slides available from:

http://ddg.cs.columbia.edu/SGP2014/LaplaceBeltrami.pdf].

[52] T. Sakai, Riemannian Geometry. Providence, RI: American Mathematical

Society, 1996.

[53] S. Melzi, E. Rodolà, U. Castellani, and M. Bronstein, “Localized

Manifold Harmonics for Spectral Shape Analysis,” 2017. [Available from:

http://arxiv.org/abs/1707.02596].

[54] Y. Choukroun, G. Pai, and R. Kimmel, “Sparse Approximation of 3D Meshes

Using the Spectral Geometry of the Hamiltonian Operator,” Journal of

Mathematical Imaging and Vision, vol. 60, no. 6, pp. 941–952, 2018.

[55] J. . Tropp, A. Gilbert, and M. Strauss, “Algorithms for simultaneous sparse

approximation. Part I: Greedy pursuit.,” Signal Processing, vol. 86, pp. 572–

588, 2006.

[56] Y. Dodge, “An Introduction to L1 Norm Based Statistical Data Analysis,”

Computational Statistics and Data Analysis, vol. 5, no. 4, pp. 23–,253, 1987.

[57] D. Vidaurre, C. Bielza, and P. Larranaga, “A Survey of L1 Regression,”

International Statistical Review, vol. 81, no. 3, 2013.

229

[58] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of

the Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–

288, 1996.

[59] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Adaptive

computation and machine learning series, Cambridge, MA: MIT Press, 2017.

[60] J. Lavery, “Univariate cubic Lp splines and shape-preserving, multiscale

interpolation by univariate cubic L1 splines,” Computer Aided Geometric

Design, vol. 17, no. 4, pp. 319–336, 2000.

[61] J. Lavery, “Shape-preserving, multiscale interpolation by univariate curvature-

based cubic L 1 splines in Cartesian and polar coordinates,” Computer Aided

Geometric Design, vol. 19, no. 4, pp. 257–273, 2002.

[62] H. Avron, A. Sharf, C. Greif, and D. Cohen-Or, “l1-Sparse Reconstruction of

Sharp Point Set Surfaces,” ACM Transactions On Graphics, vol. 29, no. 5,

pp. 1–12, 2010.

[63] R. M. Rustamov, “Multiscale Biharmonic Kernels,” Computer Graphics

Forum, vol. 30, no. 5, pp. 1521–1531, 2011.

[64] MathWorks, “Computational Advantages of Sparse Matrices.” Webpage, 2019.

[Accessed May 2019].

[65] A. Bronstein, Y. Choukroun, R. Kimmel, and M. Sela, “Consistent

Discretization and Minimization of the L1 Norm on Manifolds,” 2016 Fourth

International Conference on 3D Vision, pp. 435–440, 2016.

[66] K. Houston, “Compressed manifold modes: Fast calculation and natural

ordering,” 2015. [Available from: http://arxiv.org/abs/1507.00644].

[67] F. Barekat, R. Caflisch, and S. Osher, “On the Support of Compressed Modes,”

SIAM Journal on Mathematical Analysis, vol. 49, no. 4, pp. 2573–2590, 2017.

[68] R. Lai and S. Osher, “A Splitting Method for Orthogonality Constrained

Problems,” Journal of Scientific Computing, vol. 58, no. 2, pp. 431–449, 2014.

230

[69] M. Huska, D. Lazzaro, and S. Morigi, “Shape Partitioning via Lp Compressed

Modes,” Journal of Mathematical Imaging and Vision, vol. 60, no. 7, pp. 1111–

1131, 2018.

[70] R.-C. Li, “Relative Perturbation Theory: I. Eigenvalue and Singular Value

Variations,” SIAM Journal on Matrix Analysis and Applications, vol. 19, no. 4,

pp. 956–982, 1998.

[71] N. Parikh and S. Boyd, “Proximal Algorithms,” Foundations and Trends in

Optimization, vol. 3, no. 1, pp. 123–231, 2013.

[72] K. Houston, “Sequentially-Defined Compressed Modes via ADMM,” in

Symposium on Geometry Processing 2017 - Posters (J. Brentzen and

K. Hildebrandt, eds.), The Eurographics Association, 2017.

[73] M. Ovsjanikov, Q. Mrigot, F. Mmoli, and L. Guibas, “One Point Isometric

Matching with the Heat Kernel,” Computer Graphics Forum, vol. 29, no. 5,

pp. 1555–1564, 2010-07.

[74] J. Sun, M. Ovsjanikov, and L. Guibas, “A Concise and Provably Informative

Multi-Scale Signature Based on Heat Diffusion. [Online],” Eurographics, vol. 5,

no. 28, pp. 1383–1392, 2009.

[75] E. Rodolà, M. Möller, and D. Cremers, “Point-wise Map Recovery and

Refinement from Functional Correspondence,” 2015. [Available from:

http://arxiv.org/abs/1506.05603].

[76] A. Elad and R. Kimmel, “On Bending Invariant Signatures for Surfaces,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25,

no. 10, pp. 1285–1295, 2003.

[77] F. Mémoli and G. Sapiro, “A theoretical and computational framework

for isometry invariant recognition of point cloud data,” Foundations of

computational mathematics., vol. 5, no. 3, pp. 313–347, 2005.

231

[78] S. Lee and M. Kazhdan, “Dense Point-to-Point Correspondences Between

Genus-Zero Shapes,” Computer Graphics Forum, vol. 38, no. 5, pp. 27–37,

2019.

[79] D. Ezuz and M. Ben-Chen, “Deblurring and Denoising of Maps between

Shapes,” Computer Graphics Forum, vol. 36, no. 5, pp. 165–174, 2017.

[80] M. Shoham, A. Vaxman, and M. BenChen, “Hierarchical Functional Maps

between Subdivision Surfaces,” Computer Graphics Forum, vol. 38, no. 5,

pp. 55–73, 2019.

[81] V. Kim, Y. Lipman, and T. Funkhouser, “Blended intrinsic maps,” ACM

Transactions on Graphics (TOG), vol. 30, no. 4, pp. 1–12, 2011.

[82] Y. Lipman, R. Rustamov, and T. Funkhouser, “Biharmonic Distance,” ACM

Transactions on Graphics (TOG), vol. 29, no. 3, pp. 1–11, 2010.

[83] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. Gortler, and H. Hoppe, “Fast

exact and approximate geodesics on meshes,” ACM Transactions on Graphics

(TOG), vol. 24, no. 3, pp. 553–560, 2005.

[84] D. Martnez, L. Velho, and P. Carvalho, “Computing Geodesics on Triangular

Meshes,” Computers & Graphics, vol. 29, no. 5, pp. 667–675, 2005.

[85] K. Crane, C. Weischedel, and M. Wardetzky, “The heat method for distance

computation,” Communications of the ACM, vol. 60, no. 11, pp. 90–99, 2017.

[86] J. Gross, J. Yellen, and P. Zhang, Handbook of Graph Theory. CRC Press,

2 ed., 2013.

[87] R. Rustamov, M. Ovsjanikov, O. Azencot, M. Ben-Chen, F. Chazal,

and L. Guibas, “Map-based exploration of intrinsic shape differences and

variability,” ACM Transactions on Graphics (TOG), vol. 32, no. 4, pp. 1–

12, 2013.

[88] D. Mateus, R. Horaud, D. Knossow, F. Cuzzolin, and E. Boyer, “Articulated

Shape Matching Using Laplacian Eigenfunctions and Unsupervised Point

232

Registration,” in 2008 IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1–8, IEEE, 2008.

[89] S. Umeyama, “An Eigendecomposition Approach to Weighted Graph

Matching Problems,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 10, no. 5, pp. 695–703, 1988.

[90] W. Graustein, Differential Geometry. New York: Dover Publications, 1966.

[91] Y. Canzani, “Analysis on Manifolds via the Laplacian.” Lecture notes, 2013.

[Available from: http://www.math.harvard.edu/c̃anzani/math253.html].

[92] M. Ovsjanikov, M. Ben-Chen, F. Chazal, and L. Guibas, “Analysis and

Visualization of Maps Between Shapes,” Computer Graphics Forum, vol. 32,

no. 6, pp. 135–145, 2013.

[93] B. Allen, B. Curless, and Z. Popovi, “The space of human body shapes:

reconstruction and parameterization from range scans,” in ACM SIGGRAPH

2003 Papers, vol. 22 of SIGGRAPH ’03, pp. 587–594, ACM, 2003.

[94] M. Ovsjanikov, Q. Mèrigot, F. Mémoli, and L. Guibas, “One Point Isometric

Matching with the Heat Kernel,” Computer Graphics Forum, vol. 29, no. 5,

pp. 1555–1564, 2010.

[95] “Dijkstra’s algorithm. [Online].” Wikipedia. [Accessed April 2017].

[96] M. Pauly, R. Keiser, and M. Gross, “Multi-scale feature extraction on point-

sampled surfaces.,” Computer Graphics Forum, vol. 22, no. 3, pp. 281,289.,

2003.

[97] X. Li and I. Guskov, “Multi-scale features for approximate alignment of point-

based surfaces,” in ACM International Conference Proceeding Series; Vol. 255:

Proceedings of the third Eurographics symposium on Geometry processing :

Vienna, Austria; 04-06 July 2005, vol. 255, 2005.

[98] M. Aubry, U. Schlickewei, and D. Cremers, “The wave kernel signature:

A quantum mechanical approach to shape analysis,” in 2011 IEEE

233

International Conference on Computer Vision Workshops (ICCV Workshops),

pp. 1626,1633, IEEE, 2011.

[99] P. Skraba, M. Ovsjanikov, F. Chazal, and L. Guibas, “Persistence-based

Segmentation of Deformable Shapes.,” in 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition - Workshops, (San

Francisco, CA), pp. 45–52, 2010. [Accessed October 2015].

[100] MathWorks, “mldivide, \.” Webpage, 2019. [Accessed May 2019].

[101] K. Ye and L.-H. Lim, “Schubert Varieties and Distances between Subspaces of

Different Dimensions,” SIAM Journal on Matrix Analysis and Applications,

vol. 37, no. 3, pp. 1176–1197, 2016.

[102] H. Wang and J. Oliensis, “Rigid Shape Matching by Segmentation Averaging,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32,

no. 4, pp. 619–635, 2010.

[103] H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. Van Kaick, and

A. Tagliasacchi, “Deformation-Driven Shape Correspondence,” Computer

Graphics Forum, vol. 27, no. 5, pp. 1431–1439, 2008.

[104] A. Bronstein and M. Bronstein, “Not only size matters: Regularized partial

matching of nonrigid shapes,” in 2008 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops, pp. pp.1–6, June 2008.

[105] O. Van Kaick, H. Zhang, G. Hamarneh, and D. CohenOr, “A Survey on Shape

Correspondence,” Computer Graphics Forum, vol. 30, no. 6, pp. 1681–1707,

2011.

[106] C. Lawson and H. R. J., Solving Least Squares Problems. New Jersey: Prentice-

Hall, Inc., 1974.

[107] A. Kovnatsky, M. Bronstein, A. Bronstein, K. Glashoff, and R. Kimmel,

“Coupled quasi-harmonic bases,” Computer Graphics Forum, vol. 32, no. 2,

pp. 439–448, 2013.

234

[108] D. Eynard, A. Kovnatsky, M. Bronstein, K. Glashoff, and A. Bronstein,

“Multimodal Manifold Analysis by Simultaneous Diagonalization of

Laplacians,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 37, no. 12, pp. 2505–2517, 2015.

[109] D. Eynard, E. Rodola, K. Glashoff, and M. Bronstein, “Coupled Functional

Maps,” in 2016 Fourth International Conference on 3D Vision (3DV), pp. 399–

407, 2016.

[110] farnboroughmaths, “Hungarian Algorithm [Online].” Youtube

video, 2013. [Accessed May 2016] Available from:

https://www.youtube.com/watch?v=dQDZNHwuuOY.

[111] Bronstein, A.M. and Bronstein, M.M. and Kimmel, R., “Numerical

geometry of non-rigid shapes.” Dataset, online, 2008. [Accessed Nov 2017]

http://tosca.cs.technion.ac.il/book/resources data.html.

[112] E. Rodola, S. Bulo, T. Windheuser, M. Vestner, and D. Cremers, “Dense Non-

rigid Shape Correspondence Using Random Forests,” in IEEE Conference on

Computer Vision and Pattern Recognition. Proceedings, pp. 4177–4184, 2014.

[113] P. Besl and N. McKay, “A method for registration of 3-D shapes,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2,

pp. 239–256, 1992.

[114] S. Biasotti, A. Cerri, A. Bronstein, and M. Bronstein, “Recent Trends,

Applications and Perspectives in 3D Shape Similarity Assessment,” Computer

Graphics Forum, 2015.

[115] M. Ovsjanikov, E. Corman, M. Bronstein, E. Rodola, M. Ben-Chen, L. Guibas,

F. Chazal, and A. Bronstein, “Computing and Processing Correspondences

with Functional Maps,” in ACM SIGGRAPH 2017 Courses, (University

College London), pp. 1–62, 2017.

235

[116] E. Rodolà, L. Cosmo, M. Bronstein, A. Torsello, and D. Cremers, “Partial

Functional Correspondence,” Computer Graphics Forum, vol. 36, no. 1,

pp. 222–236, 2017.

[117] P.-A. Absil, R. Mahoney, and R. Sepulchre, Optimization Algorithms on

Matrix Manifolds. Princeton, New Jersey: Princeton University Press, 2008.

[118] A. Edelman, T. Arias, and S. Smith, “The Geometry of Algorithms

with Orthogonality Constraints,” SIAM Journal on Matrix Analysis and

Applications, vol. 20, no. 2, pp. 303–353, 1998.

[119] J. Siegel, Accelerated First-Order Optimization with Orthogonality

Constraints. PhD thesis, UCLA, 2018.

[120] Z. Wen and W. Yin, “A Feasible Method for Optimization with Orthogonality

Constraints,” Mathematical Programming, vol. 142, no. 1-2, pp. 397–434, 2013.

[121] H. Oviedo and H. Lara, “Riemannian Conjugate Gradient Algorithm with

Implicit Vector Transport for Optimization on the Stiefel Manifold.” [Online]

Available from: www.researchgate.net, 2018.

[122] H. Sato and K. Aihara, “Cholesky QR-based retraction on the generalized

Stiefel manifold,” Computational Optimization and Applications, vol. 72, no. 2,

pp. 293–308, 2019.

[123] H. Tagare, “Notes on Optimization on Stiefel Manifolds,” tech. rep., Yale

Univesity, 2011.

[124] J. Nocedal and S. Wright, Numerical Optimization. New York: Springer-

Verlag, second edition ed., 2006.

[125] Y. Nesterov, “A Method of Solving a Convex Programming Problem with

Convergence Rate 0(1/k2),” Soviet Mathematics Doklady, vol. 27, no. 2,

pp. 372–376, 1983.

236

[126] B. O’Donoghue and E. Candès, “Adaptive Restart for Accelerated Gradient

Schemes,” Foundations of Computational Mathematics, vol. 15, no. 3, pp. 715–

732, 2015.

[127] J. Barzilai and J. M. Borwein, “Two-Point Step Size Gradient Methods,” IMA

Journal of Numerical Analysis, vol. 8, no. 1, pp. 141–148, 1988.

[128] W. Yin, “The Barzilai-Borwein method.” Lecture notes, Math273a:

Optimization. UCLA. [Available online], 2015.

[129] J. Lee, Introduction to Smooth Manifolds. Graduate texts in mathematics ;

218, New York: Springer, 2003.

[130] K. Lange, “Convergence of EM Image Reconstruction Algorithms with Gibbs

Smoothing,” IEEE Transactions on Medical Imaging, vol. 9, no. 4, pp. 439–

446, 1990.

[131] R. Cook, “Stochastic Sampling in Computer Graphics,” ACM Transactions

on Graphics (TOG), vol. 5, no. 1, pp. 51–72, 1986.

[132] C. Yuksel, “Sample Elimination for Generating Poisson Disk Sample Sets,”

Computer Graphics Forum (Proceedings of EUROGRAPHICS 2015), vol. 34,

no. 2, pp. 25–32, 2015.

[133] http://visionair.ge.imati.cnr.it/ontologies/shapes/view.jsp?id=40-

Screwdriver#, “Screwdriver.” Online shape repository. [Accessed Nov

2017].

[134] http://www-rech.telecom-lille1.eu/shrec2012-segmentation/#dataset,

“SHREC ’12.” Shape Retrevial Contest Dataset, online. [Accessed Nov

2017].

[135] https://www.yobi3d.com/q/fandisk, “Fandisk.” Online shape repository.

[Accessed Nov 2017].

[136] https://ai.stanford.edu/d̃rago/Projects/scape/scape.html, “SCAPE.”

Dataset, online. [Accessed Nov 2017].

237

[137] https://www-users.cs.york.ac.uk/ñep/research/Headspace/, “The Headspace

dataset.” Dataset, online. [Accessed Nov 2017].

[138] Hammond, C., “Fish jawbone meshes.” Personal correspondence. University

of Bristol.

