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Abstract

The aim of the present work is to study MHD waves and instabil-
ities at contact discontinuities, in a plasma, with applications to
the solar atmosphere. In particular we investigate what effect field
inclination has on the characteristics of waves and instabilities.

We initially consider the gravity-free environment and investigate
the characteristics of magneto-acoustic surface waves propagating
at a single density interface, in the presence of an inclined mag-
netic field. For linear wave propagation, dispersion relations are
obtained for both the time independent and the incompressible,
time-dependent cases. Analytical solutions are derived for small
inclination angle. For the time-independent case, the inclination
of the field renders the frequency of waves to be complex, where
the imaginary part describes wave attenuation, due to lateral en-
ergy leakage. The time-dependent case confirms the attenuation of
leaky waves at a contact discontinuity. We also discuss the transi-
tion to the tangential discontinuity as the inclination angle tends
to zero. We show that there is no continuous transition from the
leaky modes on a contact discontinuity to the surface modes on
a tangential discontinuity. However, such a transition exists if we
take the average quantities describing the leaky modes.

We extend our study of the effects of magnetic field inclination
at a contact discontinuity, by including the gravitational effects.
We investigate the nature of the magnetic Rayleigh-Taylor insta-
bility at a density interface permeated by an inclined magnetic
field in the incompressible MHD limit. Through an ideal MHD
analysis, we find that, unlike the tangential case of MRT instabil-
ity, perturbations of the interface are shown to be unstable for all
wavenumbers, thus, due to the inclination of the magnetic field,
the critical wavenumber at which waves become unstable disap-
pears. As a result, field inclination produces qualitatively different
dynamics than the tangential case, for the gravitationally modified
case, as well as for the gravity free analysis. Theoretical results are
applied to diagnose the structure of the magnetic field in promi-
nence threads. Our analysis shows that the observed growth time
of instability requires only small values of the inclination angle.
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Ruderman, Vickers, Ballai and Erdélyi (2018)) . . . . . . . . . . 59

4.2 The variation of the real part of horizontal velocity, vx, with
respect to time, 100 km above the interface, for two values of
density ratio, d = 0.09, 9. The inclination angle is take to be
θ = 5◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 The real and imaginary parts of the velocity, vx, the tangential
solution for the velocity, ut and the averaged velocity, 〈vx〉, with
respect to dimensionless height, kz, across the interface, for θ =
0.001, d = 0.5 and kv1t being the value for the 25th peak. . . . 65

4.4 An intensity plot showing the vertical component of velocity in
the (x, z)-plane over a minute, when subject to a Lorentzian
driver, for θ = 5◦, d = 0.5, vA− = 10 kms−1, a = 1 and l = 50
km. Solutions are only plotted in the region where |z| < zm(t). . 70

4.5 An intensity plot showing the vertical component of velocity
in the (x, z)-plane over a minute, when subject to a sinusoidal
initial driver, for θ = 5◦, d = 0.5, vA− = 10 kms−1, a = 1
and l = 50 km. Solutions are only plotted in the region where
|z| < zm(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

iv



5.1 Solutions for the hydrodynamic RTI and propagating modes, in
terms of wavenumber and density ratio. . . . . . . . . . . . . . . 80

5.2 A sketch of the equilibrium configuration for the case of a hori-
zontal magnetic field. The equilibrium state consists of a surface
separating two regions, each with different density. The mag-
netic field is horizontal and uniform in each region. The config-
uration is invariant in the x- and y-directions and perturbations
are in the direction of the wavevector k in the (x, y)-plane. . . . 82

5.3 Frequency of waves in the presence of a horizontal magnetic
field, in terms of wavenumber. The real part of solutions is
shown in blue and the imaginary part in red, while solutions for
different propagation directions are shown with different line-
styles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 Imaginary part of the frequency against wavenumber for the
case of vertical magnetic field, i.e. normal to the density inter-
face. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 2D sketch of the equilibrium configuration for the case of waves
propagating in the x-direction. The equilibrium state consists
of a surface separating two regions, each with different density.
The magnetic field is uniform throughout both regions and is
inclined within the (x, z)-plane at an angle, θ, with respect to
the x-direction. The configuration is invariant in the x-direction. 89

6.2 Solutions for longitudinally propagating waves, where d = 0.5,
vA = 100 km s−1, θ = 5◦ . Imaginary part of frequency is
plotted in red in lower panel, whereas the real part is shown in
blue in the upper panel. The solution to the tangential case is
shown in green . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Imaginary part of the solution for x-propagating waves, where
d = 0.5, vA = 100 km s−1, kx = 0.0025. . . . . . . . . . . . . . . 94

6.4 2D sketch of the equilibrium configuration for the case of waves
propagating in the y-direction. The equilibrium state consists
of a surface separating two regions, each with different density.
The magnetic field is uniform throughout both regions and is
inclined within the (x, z)-plane at an angle, θ, with respect to
the x-direction, so has a component Bz = B0 sin θ within the
(y, z)-plane. The configuration is invariant in the y-direction. . . 95

6.5 A solution for transversally propagating waves in terms the
wavenumber, ky, whith d = 0.5, vA = 100 km s−1, θ = 22.5◦. . . 97

v



6.6 Schematic representation of the equilibrium configuration used
in the present section. The equilibrium state consists of a sur-
face separating two regions, each with different density. The
magnetic field is uniform throughout both regions and is in-
clined within the (x, z)-plane at an angle, θ, with respect to
the x-direction. The configuration is invariant in the x- and
y-directions. Perturbations are described by the wavevector, k,
in the (x, y)-plane. . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 Solutions for the dispersion relation for waves propagating in
the (x, y)-plane, for two propagation directions (α = 0 solid line,
and α = π/4 dashed line), with respect to wavenumber, k. The
density ratio is d = 0.5, the Alfvén speed of the lower plasma is
vA = 10 km s−1, and the magnetic field inclination angle θ = 5◦.
The upper panel shows the real part of the frequency, while
the imaginary part is plotted in the lower panel. The limiting
value of =(ω) when k → ∞ is shown by the grey horizontal
lines, in the lower panel. For illustration we also show the real
and imaginary part of the frequency in the case of a tangential
discontinuity (θ = 0), plotted here in green. . . . . . . . . . . . 104

6.8 Imaginary part of the frequency for waves propagating in the
(x, y)-plane, for several propagation directions, with respect to
the magnetic field inclination, θ. The density ratio is assumed
to be d = 0.5, the reference Alfvén speed is vA− = 10 km s−1,
and the value of the wavenumber fixed at k = 10−5 m−1. . . . . 105

6.9 Growth time for k = 2.5 × 10−3 m−1, d = 0.5 vA = 10 kms−1,
in terms of propagation angle, α and field inclination θ. . . . . . 106

6.10 Growth time for k = 2.5× 10−3 m−1, d = 0.5 θ = π/8, in terms
of propagation angle, α and Alfvén speed of the lower plasma, vA.107

6.11 A diagram showing the dense prominence plasma (orange) sup-
ported by magnetic field lines (blue) and how this relates to the
contact discontinuity at an interface investigated in the present
work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.12 Solutions of the dispersion relation for a given growth time in
terms of magnetic field inclination (θ) and propagation direction
(α), for six observed prominence threads, for three possible den-
sity ratios. Observational data has been adapted from Okamoto
et al. (2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vi



CHAPTER 1

Introduction

“The sun is a miasma
Of incandescent plasma”

1.1 Solar Structure and Properties

The Sun dominates virtually all aspects of life on Earth and, as such, has been
an object of fascination throughout human history. Our understanding of the
Sun has changed greatly over the millennia; from the belief that it was a great
flaming chariot being driven across the sky, to our current understanding of it
as a massive nuclear furnace at the centre of our solar system.

Not only does the Sun provide heat and light to the solar system, it also
constitutes over 99% of the mass of the system, with a mass of approximately
2× 1030 kg, making it 330,000 times more massive than the Earth. Given its
enormous mass, the gravitational acceleration at its surface is 27 times greater
that the Earth’s gravitational acceleration. The mean distance from the Earth
to the Sun is 149.6 million km, a distance that light takes approximately 8
minutes to cover.

The incredibly high temperature at the core of the Sun, along with the
intense pressure, facilitates the occurrence of fusion; where hydrogen nuclei
fuse together to form helium and release energy. This high temperature also
causes the electrons to dissociate from the nuclei of the super-heated hydrogen
and helium. This “soup” of ions and electrons, controlled by the magnetic
field, is known as plasma and is often referred to as the fourth state of matter.
The collectively free moving positively charged ions and negatively charged
electrons enable the plasma to support electric currents, as well as electric and
magnetic fields, which in turn affect the dynamics of the plasma. The high-
resolution observations in different wavelengths, over the last few decades,
revealed, with no doubts, that the magnetic field is at the heart of the solar
structure and its dynamical evolution. Thus, if we want to understand how
our Sun evolves and how and why the varied solar phenomena take place, we
need to understand the effects that the magnetic field has on the solar plasma.

The Sun is a huge plasma sphere, approximately 700 Mm in radius, which
is over 100 times larger than the Earth’s radius. However, it is far from ho-
mogeneous; instead, it is made up of several different layers and regions with
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Figure 1.1: Schematic representation of the solar layers, from the Sun’s core
to the outer solar wind. Credit: Kelvinsong (2012)

different properties, which are shown in figure (1.1) and described below. Most
notably for our discussion, the Sun may be split into the solar interior and
the solar atmosphere.

1.1.1 Solar Interior

The interior of the Sun is shielded from our view, only its surface and its
atmosphere is visible directly. Helioseismology is the science that uses the
sound waves, that penetrate the solar interior and get reflected back towards
the solar surface, to diagnose the evolution and structure of the solar interior.

In the centre of the Sun, the core has a radius in the region of 150 Mm (0.2
solar radii), so it comprises only approximately 1% of the volume of the Sun.
Despite its small size, it contains over one third of the Sun’s mass and also
has a temperature of 15 million K. At such a high density and pressure, this is
the region where 99% of the fusion energy originates. During fusion processes
helium nuclei are formed from hydrogen nuclei, mainly by the proton-proton
reaction. The end-result of these reactions (in addition to the helium) are two
high-frequency gamma-rays, having an energy of 26.2 MeV, and two electron
neutrinos, each with an energy of 0.5 MeV. These neutrinos can travel at
nearly the speed of light, practically unaffected by matter, but (with great
difficulty) can be detected by scientists on Earth, to learn more about the
physical mechanisms at the heart of our Sun.

Further out, between 0.2 and 0.7 solar radii, is the radiative zone, where
the energy produced in the core radiates outwards, by the absorption and re-
emission of photons. The plasma is still incredibly dense and opaque, meaning
that absorption and re-emission occurs so many times that the time taken for
a photon to travel across the radiative zone is increased to over 100 000 years;
a journey that would take about 2 seconds in a vacuum. The density and
temperature both decrease over the radiative zone; the density dropping two
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orders of magnitude, while the temperature drops an order of magnitude to
1.5 million K.

The outermost layer of the Sun’s interior is the convection zone, where
energy is transported via the convective instability. The convective instability
(covered in more detail in Chapter 5) occurs when the temperature gradient
is sufficiently high, such that when plasma is displaced vertically upwards,
it may expand, becoming buoyant. The buoyant plasma then rises to the
surface, where it radiates energy into the atmosphere, cools and sinks again.
At the surface of the Sun, the temperature has fallen to about 6000 K. Unlike
the solid body rotation of the radiative zone, the convection zone exhibits
differential rotation, where the angular velocity is dependent on latitude. This
produces a thin shear layer between the radiative and convective zones, known
as the tachocline (Spiegel and Zahn, 1992), which is thought to be vital for the
generation of the global solar magnetic field, in many solar dynamo models.

1.1.2 Solar Atmosphere

The values for density and temperature given here for layers of the solar at-
mosphere have been derived from the VAL (Vernazza-Avrett-Loeset) model
of the solar atmosphere (Vernazza et al., 1981) and are illustrated in Figure
(1.2). This model gives mean values for temperature and density by assum-
ing thermodynamic properties vary only with height. It was constructed by
using the equations for radiative transfer, for an optically thick medium. For
several constituents of the solar atmosphere (e.g. hydrogen atoms, hydrogen
ions, carbon and silicon), these equations were solved for a trial atmosphere, to
derive possible radiation spectra. These spectra were then compared against
observed data and the trial atmosphere was adjusted until a good agreement
with the observed spectrum was achieved.

The lowest level of the solar atmosphere is the photosphere, which, although
only 500 km thick, emits the majority of the Sun’s visible light. The convective
motion from the Sun’s interior may be seen as granulation. Here, hot bright
granules, with cool dark boundaries, are caused by the hot rising plasma and
cover most of the solar surface and may be observed directly. They range in
size from 0.3 to 2 Mm, with an average diameter of 1.5Mm, and lifetimes of
1 to 20 minutes (Priest, 2014). There are also regions of intense magnetic
field, with strengths of the order of a few kG, where convection is inhibited,
known as sunspots. Across the photosphere, the temperature decreases from
6 000 K to approximately 4 400 K, and the density gradient is approximately
exponential, decreasing two orders of magnitude, to 10−6 kg m−3. The temper-
ature in the photosphere decreases to its lowest value (approximately 4,300 K),
while density and pressure decrease by approximately two and a half orders of
magnitude.

Further out is the chromosphere, a region situated between 0.5 - 2.5 Mm;
so-called because of its rosy colour, revealed during a solar eclipse. Through-
out its height, the temperature rises from 4 400 K to around 100 000 K, while
density and pressure decrease by further four orders of magnitude. The chro-
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Figure 1.2: The VAL model of the solar atmosphere, describing how mean
density and temperature vary with height from the solar surface. Credit:
Avrett and Loeser (2008)

mosphere contains many magnetic and plasma structures, most notably its
many spicules, which early observers described as a “burning prairie”, and so-
lar prominences (also known as filaments). The solar chromosphere is probably
the most dynamic and structured solar atmospheric layer, however its detailed
description is beyond the current study. Instead we refer to the remarkable
review by Priest (2014).

The outer atmosphere is known as the corona, so named because, when a
solar eclipse allowed the corona to be seen clearly, ancient Greeks thought it
looked like a crown. Separating the chromosphere from the corona, is a very
thin layer (only a few hundred km), termed the transition region. Within this
thin layer the temperature changes from 100 000 K to over 1 million K, ac-
companied by a drastic drop in density. There are many theories proposed to
explain this huge rise in temperature, but this problem is still not fully under-
stood and is thus known as the coronal heating problem, (see e.g. Klimchuk
2006; Parnell and De Moortel 2012). In the corona, magnetic forces dom-
inate, creating significant structuring, including coronal loops. There is no
clear distinction between the corona and the solar wind, which extends as far
as the heliopause, past the orbit of Pluto, and constitutes a stream of charged
particles streaming outwards, emitted by the Sun.

1.1.3 Structure and Variations in the Solar Atmosphere

The magnetic field in the solar atmosphere is profoundly inhomogeneous. Not
only does the magnetic field strength vary with height, with the average inten-
sity decreasing with height from the solar surface, the magnetic field lines also
accumulate into tubes of intense magnetic field strength, known as flux tubes.

4



Figure 1.3: The structure of a sunspot, including magnetic field lines. Credit:
Thomas and Weiss (2004).

This magnetic field structuring, in turn, applies structure to the plasma, due
to the fact that plasma will more readily travel in the direction of magnetic
field lines, especially in regions of intense magnetic field. This section will
introduce some of the more notable structures of the solar atmosphere. The
main premise of this thesis is to explore dynamics at contact discontinuities,
where a component of the magnetic field intersects a sharp change in plasma
densities 1. For this reason, this section will particularly focus on examples
where magnetic fields are inclined to changes in density.

Sunspots have already been introduced in section (1.1.2), as regions of
intense magnetic field. These tend to be approximately 10 Mm across and the
field tends to be in the region of a few kG. This intense magnetic field exerts
a strong magnetic pressure, which inhibits convection, causing the sunspots to
be approximately 2000 K cooler than their surroundings. At the centre of the
sunspot, in the umbra, magnetic field lines are vertical, opening out more at
the edges, becoming inclined, as well as less intense. This means that at the
outer edges, the convection is not as diminished as in the centre, manifesting
as a brighter ring around the umbra, known as the penumbra. Within the
umbra, the field is still not homogeneous and there are often bright points,
around 100km across, of less intense magnetic field, known as umbral dots.
Within the penumbra the magnetic field is inclined with respect to the vertical
direction (see Fig. 1.3). As the density gradient between the solar interior and
the photosphere is predominantly vertical, where these inclined magnetic field
lines open up, they can, in places, cross this density change, and may be viewed
as a contact discontinuity (a discontinuity with an intersecting magnetic field
component, see Section 2.3). The treatment of the penumbra as a discontinuity
is valid, provided the lengths scales, in the direction of the density change, of
perturbations considered are large in comparison to the scale-height of the
density change. For more details on sunspots’ structure and properties, see
Solanki (2003).

1A more detailed explanation of discontinuities is given in Section (2.3)

5



Figure 1.4: Magnetic structuring of prominences. Adapted from: Malherbe
and Priest (1983)

Throughout much of the corona are bright coronal loops, visible thanks to
high resolution observations in X-ray and EUV, made with instruments such
as Yohkoh, SDO AIA or TRACE. The emissive plasma in these loops acts as
tracer of the magnetic field lines, with plasma in the loops denser than their
surroundings (around 10 times denser). The loops’ characteristics therefore
vary as much as the magnetic fields themselves. Magnetic field intensities in
coronal loops vary over two orders of magnitude. Loops may be anchored
at both ends by magnetically opposite footpoints, with these “closed” loops
extending up to 300Mm up into the solar atmosphere. Conversely, the loops
may also be “open”, with only one footpoint connected to the solar surface,
the other end fading into the solar wind and are here referred to as plumes.

Many flux tubes may come together to form solar prominences. A promi-
nence is a large (extending over thousands of km) loop of dense, chromospheric
plasma, anchored in the photosphere, suspended in the sparse corona by mag-
netic fields. When viewed with high resolution telescopes, these may be re-
solved into separate threads, but due to interactions between these threads,
the prominence may often be modelled as one unified structure. The mag-
netic field not only confers stability to prominences, but also provides thermal
shielding, from the much hotter corona, since the thermal flux is channelled
along the magnetic field lines 2. There are two basic geometries of magnetic
field that may suspend the dense plasma: arcades and flux ropes. The flux
rope model has the prominence intersecting field lines in closed loops; these
are then surrounded by figure-of-eight shaped field lines, anchored below, with
an X-point situated below the prominence (see Malherbe and Priest 1983).
The arcade model has dense plasma sitting in “dipped” magnetic fields. Both
these models are shown in Fig (1.4) and include contact discontinuities at the
prominence edges, with inclined field lines.

2Thermal shielding and the stability provided by the magnetic fields are only effective in
the case where magnetic field lines go around, rather than through the prominences itself
(tangential rather than contact discontinuities.)

6



1.1.4 Eruptive Events

As well as long term stable structuring, the Sun can also exhibit sudden, erup-
tive events, such as solar flares and coronal mass ejections. Solar flares mani-
fest as bright flashes, observed in e.g. X-ray, EUV or Hα and are present in all
layers of the solar atmosphere. Flares produce huge bursts of electromagnetic
radiation across all wavelengths of the electromagnetic spectrum, with most of
the energy concentrated in X-ray frequencies. Coronal mass ejections (CMEs)
often coincide with large flares and are a huge release of plasma from the solar
corona. The ejected plasma is normally present as prominences, before being
expelled into the solar wind. Magnetic fields accompany the ejected plasma, so,
when CMEs are directed Earth-wards, the interaction of the CMEs’ magnetic
field with the Earth’s produces geomagnetic storms.

These eruptive events are caused by the sudden release of magnetic energy,
through magnetic reconnection. Magnetic reconnection is a non-ideal process,
where the magnetic topology of the plasma is rearranged and magnetic energy
is released, in the form of thermal energy and particle acceleration (instigating
flares) and kinetic energy (forcing plasma outwards in the form of CMEs).
These energy releases may also drive waves across the solar atmosphere, as
well as contributing to coronal heating.

Another form of eruptive events are spicules, which are jets of chromo-
spheric plasma, travelling upwards at speeds of around 20 km s−1. Spicules
have a width of approximately 500 km, and reach several thousands of km
in height, before collapsing or dispersing, after approximately 10-15 minutes.
Although it is possible that spicules are also driven by reconnection, like flares
and CMEs, another theory is that spicules are formed as a result of pressure-
driven oscillations at the surface of the Sun (Erdélyi and James, 2004).

1.1.5 Waves in the solar atmosphere

Waves and oscillations are ubiquitous phenomena in the solar atmosphere, and
are very important to solar physics, both in the essential processes they carry
out and from an observational point of view, probing the inner-workings of the
Sun. In general, the energy for waves in the solar atmosphere comes from the
convective motions at the bottom of the photosphere, but the waves themselves
carry energy across different layers of the solar atmosphere. Waves can also
dissipate their energy, causing plasma heating in the upper regions of the atmo-
sphere (e.g. Einaudi et al. 1993, Erdélyi and Ballai 2007, Arregui 2015). This
may, in part, help to explain the high coronal temperatures. As waves prop-
agate through different regions, their properties may be altered and, in doing
so, carry an imprint of the environment through which they have propagated.
This idea is the foundation of solar seismology (covering helioseismology, in
the solar interior, and atmospheric seismology), where physical parameters
that may not be directly observed are inferred from the wave properties, such
as amplitude, period, polarization, frequency, damping time and length, etc.
This technique has been employed for some time in the solar interior, most
notably to discover much of the information given in section (1.1.1). In more
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recent years, with the improvements of space and ground-based telescopes,
enabling more detailed observations, magneto-seismology has been developed
and applied, to determine values of difficult to observe parameters in the outer
solar atmosphere, such as magnetic field strength, its sub-resolution structure,
the local density of the plasma, various transport coefficients, heating/cooling
functions, etc. (see reviews by Arregui 2015, De Moortel and Nakariakov 2012,
Mathioudakis et al. 2013, Arregui et al. 2018).

One of the most well-studied waves in the solar atmosphere is the kink
wave, in the context of magnetic structures (filaments, spicules, prominences,
coronal loops, etc). These are believed to be the result of the reaction of the
flux tube to an external driver, such as a global wave or nearby release of
energy (such as during a coronal mass ejection) and the magnetic structures
themselves act as waveguides. The majority of these kink wave oscillations
are observed to damp very quickly, due to a phenomenon known as resonant
absorption. In addition, coronal loops, may support decayless kink waves,
which appear as low amplitude transverse oscillations of coronal loops. These
are thought to be due to resonance of flux tubes in the presence of continu-
ous perturbations of the surrounding atmosphere (see Anfinogentov, S. et al.
2013). With flux tubes acting as a cylindrical waveguide, there are two ma-
jor kinds of oscillation modes: kink waves and sausage waves (see Edwin and
Roberts 1982). Sausage modes have zero azimuthal wavenumber, so are rota-
tionally symmetric and manifest as a wave of oscillating radius of the tube.
Kink waves, have an azimuthal wavenumber of one and perturb the centre of
the tube, but maintain cross-sectional area. Higher order fluting modes also
exist, which change the shape of the cross-section of the tube, but are more
difficult to observe. Both kink and sausage modes have been observed in the
solar atmosphere. Kink waves in coronal loops manifest as rapidly damping
waves, propagating along the coronal loops and have been observed by several
authors (e.g. Verwichte et al. 2005). The theory of kink waves in the solar
atmosphere has also been studied by many authors (e.g. Aschwanden et al.
1999, Nakariakov and Roberts 1999etc.) and observations have been used to
estimate hard to observe parameters (see, e.g. Nakariakov et al. 1999, Andries
et al. 2005, Verth et al. 2008). Sausage modes, though less easy to identify,
have also been observed (see e.g. Aschwanden 2003, Erdélyi and Taroyan 2008,
Dorotovič et al. 2014).

In addition to sausage and kink waves, flux tubes are able to support
torsional waves known as “surface Alfvén waves” or “Alfvénic” waves, and
identified as fast waves by Edwin and Roberts (1982). These are investigated
in detail in Goossens et al. (2012) and are found to propagate at a phase-
speed between the Alfvén speeds of the inner and outer plasmas and are driven
predominantly by magnetic tension, with low compressibility effects, especially
for the thin tube approximation. These waves are fundamental modes, with
no radial modes, and the vorticity is located at the boundary, hence the name
“Alfvénic”.

The strong magnetic fields within sunspots also act as waveguides, allowing
the upward propagation of waves, and there are several well-known oscillations
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connected with sunspots. Oscillations within the umbrae tend to be vertically
propagating into the corona, with periods of 130-190 s (first identified in corona
by DeForest and Gurman 1998), whereas in the penumbra, running penumbral
waves, propagate horizontally outwards from the sunspot, with typical periods
of 200-300 s (see e.g. Nye and Thomas 1974, Zirin and Stein 1972). A summary
of observations of such oscillations may be found in ( Lites et al. 1982 and
Brynildsen et al. 2000). Running penumbral waves have, in fact, been shown
to constitute a superposition of many waves, with varying periods and phase
speed, see (Brisken and Zirin 1997 and Kobanov and Makarchik 2004). A
detailed review of oscillations in sunspots and their atmospheres is provided
by Khomenko and Collados (2015).

Prominences have also been observed to support an array of oscillations
in filaments (see reviews by Ballester 2006, Oliver 2009). Longitudinal promi-
nence thread oscillations have been studied theoretically, by modelling them
as a single flux tube, surrounded by hot coronal plasma (Luna and Karpen,
2012), where gravity was found to provide a significant contribution to the
dynamics and large amplitude oscillations on curved threads had gravity as
the main restoring force. Observed transverse waves have been modelled as
predominantly MHD waves (see review by Arregui et al. 2010). Observations
of prominence oscillations also showed that the threads had relatively short
lifetimes of approximately 5 minutes (Lin et al., 2009), which it has been sug-
gested is due to the gravitational Rayleigh-Taylor instability (Terradas et al.,
2012). The Rayleigh-Taylor instability in prominence threads will be revisited
in Chapters 5 and 6.

All the above waves are strictly connected to the magnetic structure in
which they propagate, therefore, they can very often be labelled as local waves.
On the other hand, global waves are also able to propagate within the Sun,
over very large distances. One of the most well-studied global modes are the
p-modes (first discovered by Leighton 1960), which are acoustic oscillations,
propagating in the photosphere. These oscillations are able to penetrate the
solar interior and carry essential information back to the surface and, thus,
these are an essential tool for helioseismologists. These oscillations are pro-
duced by the Sun’s convective motion, continually disturbing the stable photo-
sphere. Another form of global waves are those generated by a sudden energy
release, such as a large flare or coronal mass ejection. These waves appear
as circularly expanding shocks, rather like ripples on a pond after a stone
is thrown in. In the chromosphere, these present as Moreton waves (More-
ton and Ramsey, 1960) and propagate with super-Alfvénic speeds of 1000 -
2000 kms−1. In the corona, EIT waves may be observed (named after the
Extreme ultraviolet Imaging Telescope with which they are observed), which
only propagate at speeds of a few hundred kms−1 (Thompson et al., 1999). De-
spite being instigated by the same events, it is still not clear how, or if, these
waves are connected. Another form of large-scale waves are transition region
quakes (TRQs), investigated by Scullion et al. (2011), where upward propa-
gating spicules provoke oscillations of the transition region, rippling outwards
from where the spicule strikes the transition region.
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As we can see from this short review the solar atmosphere can host a rich
variety of waves; practically, waves are observed in almost all magnetic features
in the solar atmosphere. Local waves and oscillations are very much connected
to the presence of the magnetic field, and these predominantly propagate along
magnetic field lines or various magnetic structures, an aspect that will be
investigated in detail in the present thesis. The main premise of the current
work is the investigation of characteristics of waves and instabilities that appear
at density interfaces and the effect of filed inclination.

1.2 Outline of Thesis

The research presented in this thesis is centred around the effect of magnetic
field inclination on both waves and instabilities at contact discontinuities in
the solar atmosphere. To give the technical background necessary to inves-
tigate the effects of field inclination later in the thesis, Chapter 2 covers an
introduction to some of the important concepts surrounding MHD waves and
instabilities. This includes an introduction to the MHD equations, magneto-
hydrodynamic waves, and continuity conditions for interfaces. A brief review
of a study investigating surface waves at a tangential discontinuity is included
for reference.

In Chapter 3, we explore the properties of waves that can propagate at a
contact discontinuity interface. These properties are investigated as an eigen-
value problem, assuming linear perturbations, propagating along the interface,
in a 2D, compressional plasma. A small angle approximation is introduced for
the field inclination and a perturbation technique is used to find leaky wave
solutions (i.e. propagating modes where energy disperses away from the in-
terface) either side of the interface. A dispersion relation is then found, using
boundary conditions for a contact discontinuity, and solved numerically, to
find the phase-speed of waves.

Chapter 4 explores the initial value problem of waves at a contact discon-
tinuity, for the incompressible case. Once again, the case for small inclination
angle is considered and solutions are found analytically in terms of wavenum-
ber for some initial velocity perturbation, centred at the interface. Three cases
for this initial condition are considered and explicit solutions are found for each
of these, in terms of time and spacial coordinates.

Chapter 5 gives some more background, pertinent to the following chapter,
about gravitational instabilities in a plasma. Chapter 6 is devoted to the
effect of magnetic field inclination on the magnetic Rayleigh-Taylor instability
at the density interface. A similar technique as in Chapter 3 is used to study
wave-like perturbations, in the linear MHD limit, to obtain the dispersion
relation. Thanks to the simplification incompressibility affords, solutions to
the dispersion relation are calculated analytically, for an arbitrary inclination
angle. Using the expressions for the velocity, a proof of concept for an inversion
technique is presented, where the orientation of the magnetic field is found for
some observed prominence threads, providing an application of the theory to
the diagnostics of magnetic field structure in the solar atmosphere.
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CHAPTER 2

Physical and Mathematical Background

The present thesis deals with the properties of magnetohydrodynamic (MHD)
waves and instabilities that are present at surfaces separating regions of differ-
ent properties. The plasma dynamics will be described within the framework
of MHD and the equations outlining the connection between various ther-
modynamic and electromagnetic parameters (together with the limit of their
applicability) will be discussed below.

The surfaces along which waves and instabilities will propagate are mod-
elled by discontinuities, and when we study the propagation of waves along
these surfaces we will need to know how to connect solutions on both sides of
the discontinuity. The magnetic field, that is present in the two regions, will
play an important role, as its orientation will decide the nature of the discon-
tinuity. In the present chapter we will derive the necessary conditions that
allow us to connect the solutions at the separating surface and, as a result, to
derive the dispersion relation of waves.

In order to better understand the implication of the magnetic field orienta-
tion with respect to the interface on wave propagation, we will need to review
and understand the results obtained for the same problem when the magnetic
field is parallel to the interface, a theory that has been developed almost four
decades ago by Roberts (1981).

2.1 Introduction to MHD

As described in the Introduction, the solar plasma is a fluid made up of charged
particles (positive and negative) that interact with electromagnetic fields. Al-
though the plasma contains individual particles, collisions between these allow
us to treat the ensemble as a single fluid, where particles have a collective mo-
tion. In order to mathematically model the dynamics in the solar atmosphere,
we make use of magnetohydrodynamics (MHD), which describes the large-scale
(macroscopic) changes of the magnetised plasma. The set of MHD equations
may be obtained by combining the Navier-Stokes fluid dynamics equations, the
equations of gas dynamics and Maxwell’s equations of electrodynamics. The
main attraction of the MHD model is that it provides an elegant dynamical
theory. The MHD equations tell us how thermodynamic and (electro)magnetic
variables evolve in time. Derivations of the MHD equations are not repeated
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here, though may be found in many previous works, e.g. Priest (2014)

2.1.1 Assumptions of MHD

In MHD, as with fluid dynamics, the plasma is treated as a continuous medium.
As such, MHD is valid provided the length-scales of the systems being studied
are much greater than the small-scale plasma lengths; most notably the mean
free path and the ion gyroradius (also known as Larmor radius). The mean free
path gives the average distance between collisions, which is inversely propor-
tional to the density of the plasma, so this is much longer in the corona than
in the solar interior. The assumption that relevant length-scales are larger
than the mean free path means that the plasma is collisionally dominated.
The ion gyroradius is the radius of the circular motion of ions or electrons
in the presence of a magnetic field, which is dependent on the magnetic field
strength and so varies greatly in the solar atmosphere. In terms of time scales,
we will focus on processes whose characteristic times are much longer than the
collision times between particles, or the gyroperiod.

MHD also assumes that the plasma is continuous in terms of charge den-
sity. Since there is separation between the negatively charged electrons and
positively charged ions, MHD is only valid when the Debye sphere, which gives
a measure of the scale over which charge separation can occur, contains a high
density of charged particles and length scales involved are much longer than
the Debye radius. Further, it is assumed that the plasma is electrically neu-
tral, i.e. the difference between the number density of positively and negatively
charged particles is much less than the total number density.

Finally, we assume that plasma velocities are much less than the speed or
light and thus relativistic effects need not be taken into account.

2.1.2 MHD equations

The set of MHD equations describe the evolution and coupling of fluid variables
(pressure, density, velocity) and magnetic field. These have been derived by
many authors (e.g. Priest (2014)), but are merely presented here, without
derivation. As a matter of fact the equations we are going to present are no
more than conservations laws valid for the fluid and the magnetic field.

The basic MHD equations, describing the dynamics of conducting fluids
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are:

Continuity:
∂ρ

∂t
+∇ · (ρv) = 0, (2.1)

Momentum: ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p+

1

µ
(∇×B)×B + ρg

+ ρν

[
∇2v +

1

3
∇(∇ · v)

]
, (2.2)

Energy equation:
∂p

∂t
+ v · ∇p+ γp∇ · v = η(γ − 1)|j|2 +Hν , (2.3)

Induction:
∂B

∂t
= ∇× (v ×B) + η∇2B, (2.4)

Solenoidal Constraint: ∇ ·B = 0, (2.5)

where ρ is the density, t is time, v is the plasma velocity, p is the kinetic
pressure, B is the magnetic field strength, µ is the permeability of free space,
g is the constant gravitational acceleration, j is the current, γ is the ratio of
specific heats, ν is the kinematic viscosity coefficient, Hν is viscous heating,
and η is the magnetic diffusivity coefficient.

The continuity equation, Eq. (2.1) states that matter is neither created
nor destroyed and plasma flow compensates for changes in density.

The momentum equation, Eq. (2.2) is the equation of motion and describes
the motion of the plasma under the forces of gas (or kinetic) pressure, the
Lorentz force, gravitational forces and viscous forces, given on the right-hand
side of Eq. (2.2). The Lorentz force is the force exerted by the magnetic field
on the plasma and may further be split into magnetic tension and magnetic
pressure.

1

µ
(∇×B)×B =

1

µ
(B · ∇)B− 1

2µ
∇(B2) (2.6)

Magnetic tension is given by the first term on the right-hand side of Eq. (2.6)
and occurs wherever the magnetic field lines are curved. Magnetic pressure
is given by the second term on the right-hand side of Eq. (2.6) and occurs
wherever the field strength varies with position. The last term on the right-
hand side of Eq. (2.2) describes “friction” of particles within the plasma. We
should note here that the electric field does not appear explicitly in the above
equations as this can be eliminated in favour of velocity and magnetic field.
Furthermore, the electric field within a certain volume of plasma is always
negligible in the rest frame of that volume.

The energy equation, Eq. (2.3) describes the balance of various forms of
energy. The ratio of specific heats, γ, is 5/3 for a monotonic ideal gas (this
value is connected to the number of degrees of freedom particles have in the
plasma). In the derivation of the MHD equations, it was assumed that plasma
follows the ideal gas laws and since we assumed it was fully ionised, it must also
be monotonic. The first term on the right-hand side describes Ohmic heating,
where the resistivity of the plasma causes heating when current passes through
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it. The second term on the right-hand side is the viscous heating term, given
by

Hν = ρµ

[
1

2
eijeij −

2

3
(∇ · v)2

]
,

where eij = ∂vi/∂xj +∂vj/∂xi is the rate of strain tensor. As we can see, both
heating terms on the right hand side of the energy equation are connected to
the heat produced by non-ideal effects and both appear as non-linear terms.
Since our investigation deals with linear dynamics, both non-linear terms in
the energy equation will be neglected and, therefore, the energy equation will
describe adiabatic changes. Linearisation will be applied to all equations in
the following section.

The induction equation, Eq. (2.4) explains the evolution of the magnetic
field. The first term on the right hand side is the convection term, which
describes how magnetic field lines are transported by plasma motions. The
second term on the right hand side is the diffusion term, which describes
how the magnetic field lines spread out in the plasma. The diffusion term is
multiplied by the magnetic diffusivity, which is given by

η =
1

µσ
,

where σ is the electric conductivity. If a plasma is perfectly conductive (σ →
∞), the diffusion term disappears and magnetic field lines become frozen-in
to the plasma, so that magnetic field lines move with the plasma.

The solenoidal constraint, Eq. (2.5), essentially states that there are no
magnetic monopoles and magnetic field lines are always closed.

2.1.3 Ideal MHD Limit

While the MHD approximation has already assumed several simplifications to
the physical context, the system of equations describing the evolution of the
plasma is still overly complex to be solved analytically. We thus introduce the
ideal MHD limit, which neglects the effects of diffusivity, viscosity and other
dissipative processes, in general. However, there are several considerations
that need to be taken into account in order to be able to neglect dissipative
processes.

The Reynolds number is a dimensionless parameter, which quantifies the
importance of viscosity, and is defined as the ratio of inertial to viscous forces,
by

Re =
l0V0

ν
, (2.7)

where V0 denotes a typical plasma speed and l0 stands for a typical length
scale. In much of the solar atmosphere, Re � 1 and so inertial forces dominate
over viscous forces. In the limit of vanishing viscosity, the ideal momentum
equation simplifies to

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p+

1

µ
(∇×B)×B + ρg. (2.8)
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The magnetic Reynolds number gives a measure of the coupling between
the magnetic field and flow of the plasma. The magnetic Reynolds number is
defined as

Rm =
l0V0

η
. (2.9)

If Rm � 1, the coupling is weak and diffusion of the magnetic field is a
dominant process. If Rm � 1, the coupling is strong and the magnetic field
lines can be described as being “tied-in” to the plasma, i.e. plasma lying along
a magnetic field line will continue to lie along a magnetic field line, however the
magnetic field may be distorted. In astrophysical plasmas, Rm is, in general,
large and so diffusivity may be neglected. The induction equation simplifies
to its ideal form as,

∂B

∂t
= ∇× (v ×B). (2.10)

Finally when dissipative mechanisms are neglected the energy equation de-
scribes adiabatic processes, therefore the ideal energy equation used through-
out the present thesis is

∂p

∂t
+ v · ∇p+ γp∇ · v = 0. (2.11)

The above ideal equations, along with the equation of mass continuity, Eq.
(2.1), and the solenoidal constraint, Eq. (2.5), given in the previous section,
constitute a closed system of equations relating density, pressure, velocity and
magnetic field. These equations give a good description of plasma dynamics
in the solar atmosphere in most applications and will be used to describe the
mathematical framework with which we have modelled phenomena studied in
the present thesis.

2.1.4 Linearisation

In their original form, the MHD equations are highly non-linear and mathe-
matical descriptions of dynamics in such plasmas is rather cumbersome. One
elegant way to simplify the mathematical framework is to use the method of
linearisation. This method assumes that all variables can be written as a sum
of their equilibrium value and a small perturbation, i.e.

ρ(r, t)→ ρ0(r) + ρ(r, t)

p(r, t)→ p0(r) + p(r, t)

B(r, t)→ B0(r) + b(r, t),

where quantities with subscript 0 refer to the background (equilibrium) state
and those without denote the small perturbation of physical parameters. This
notation will be used in all future chapters. In addition, we assume that the
plasma is stationary in equilibrium, i.e. v0 = 0. As the perturbations are con-
sidered small compared to the equilibrium values, terms containing products
of perturbed values can be considered very small and are therefore neglected.
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By keeping linear terms of the perturbations, we maintain a reasonable ap-
proximation of plasma dynamics.

As a result, the linearised and ideal MHD equations are,

∂ρ

∂t
+∇ · (ρ0v) = 0, (2.12)

ρ0
∂v

∂t
= −∇p+

1

µ
(∇×B0)× b +

1

µ
(∇× b)×B0 + ρg, (2.13)

∂p

∂t
+ v · ∇p0 = −γp0∇ · v, (2.14)

∇ · b = 0, (2.15)

∂b

∂t
= ∇× (v ×B0). (2.16)

It is worth also introducing another essential plasma parameter, which will
be used in later chapters. The plasma-β, is the ratio of plasma pressure to
magnetic pressure and is defined as

β =
2µp0

B2
0

=
2c2
s

γv2
A

,

where cs is the sound speed and vA is the Alfvén speed, which are defined
in the following section. This dimensionless parameter gives an indication of
whether magnetic or pressure forces dominate. Accordingly, for low-β plasmas,
the magnetic forces dominate (typical for the upper chromosphere and solar
corona) and for high-β plasmas, kinetic pressure forces dominate (valid for
photosphere and lower chromosphere).

2.2 MHD Waves

In a non-ionised, neutral fluid, a disturbance may produce a sound wave, which
has a uniform propagation speed in a homogeneous environment. This is why
if someone, for example, hits a drum, we hear this only once and the sound
takes the same time to travel to us, regardless of the direction from the drum
we are. However in an ionised plasma, there are at least three separate waves
that are able to propagate, each with a different speed, dependent on the
angle of propagation compared to the magnetic field orientation. These are
known as the fast, slow and Alfvén waves. This means that in the solar
atmosphere we would “hear” the drum twice, because of the magnetacoustic
fast and slow waves, while the Alfvén wave could be seen, through magnetic
field perturbations. As we will see later, Alfvén waves do not perturb density.
These waves are already well understood in homogeneous media, but a brief
derivation of properties of these three waves is repeated here, along with the
sound wave, to introduce notation and techniques used in later chapters.

The MHD equations may be combined, by substituting ∂ρ/∂t, ∂p/∂t, and
∂b/∂t, obtained from Eqs. (2.12), (2.14), (2.16) into the time derivative of the
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momentum equation, Eq. (2.13) . This gives the three-dimensional generalised
equation, in terms of v as the only perturbed quantity

ρ0
∂2v

∂t2
=∇(γp0∇ · v + v · ∇p0) +

1

µ
(∇×B0)× [∇× (v ×B0)] (2.17)

+
1

µ
(∇× [∇× (v ×B0)])×B0 −∇ · (ρ0v)g. (2.18)

We seek wave-like solutions to the MHD equations, where all perturbed vari-
ables are written in the Fourier expanded form,

f(r, t) = f̂ exp[i(k · r− ωt)], (2.19)

where f̂ is the amplitude of physical parameters, ω is the frequency of the
waves, k is the wavevector and r is the vector describing the spatial position.
Using this form, we may replace temporal and spatial derivatives as, ∇ → ik
and ∂/∂t→ −iω. As a result, the generalised wave equation takes the form

ρ0ω
2v̂ = k(γp0k · v̂ + v̂ · kp0) +

1

µ
(k×B0)× [k× (v̂ ×B0)] (2.20)

+
1

µ
(k× [k× (v ×B0)])×B0 − k · (ρ0v̂)g. (2.21)

In a plasma with homogeneous equilibrium, the quantities, B0, ρ0 and p0,
must all be constants, thus Eq.(2.21) simplifies to

ρ0ω
2v̂ = k(γp0k · v̂) +

1

µ
(k× [k× (v̂ ×B0)])×B0 − k · (ρ0v̂)g. (2.22)

Depending on the dominant term on the right-hand side of the above equation,
we can recover the types of waves that can propagate in plasmas.

2.2.1 Sound waves

When g = B0 = 0, the only restoring force is the gradient of the kinetic
pressure and Eq. (2.18) becomes,

ρ0
∂2v

∂t2
= γp0∇(∇ · v). (2.23)

Substituting the form of v given by Eq. (2.19), the above relation becomes

ω2v̂ =
γp0

ρ0

k(k · v̂). (2.24)

Taking the scalar product with k, assuming that k · v̂ 6= 0, the dispersion
relation for sound waves is

ω2 =
γp0

ρ0

k2 = c2
sk

2,

where cs =
√
γp0/ρ0 is the sound speed, which is the propagation speed of

sound waves. Strictly speaking, pure sound waves cannot propagate in mag-
netic plasmas, however the above quantities and concepts will be important
when combined with the effects of magnetic fields.

17



2.2.2 Alfvén Waves

We next look at the opposite extreme, when waves are driven by magnetic
tension alone and no kinetic pressure force acts. We once again require that
the plasma is homogeneous, but also require that the plasma is incompressible,
i.e. ∇ · v = k · v = 0. With these conditions, Eq. (2.18) becomes

ρ0
∂2v

∂t2
=

1

µ
(∇× [∇× (v ×B0)])×B0. (2.25)

Assuming the same exponential form of variables, Eq. (2.25) reduces to

ρ0ω
2v̂ =

1

µ
(k× [k× (v̂ ×B0)])×B0. (2.26)

From the outer vector product on the right-hand side of the above equation,
it may be seen that the velocity perturbations must be perpendicular to B0.
This is expected, since the magnetic tension, the relevant restoring force for this
case, acts perpendicular to the magnetic field. This also gives that B0 · v̂ = 0.
Equation (2.26) may, thus, be expanded and written in terms of the angle
between the direction of propagation, k, and the equilibrium magnetic field,
B0, denoted by θB. Once again employing the incompressibility criterion, this
simplifies to the dispersion relation for incompressible Alfvén waves,

ρ0ω
2v̂ =

1

µ
B2

0k
2 cos2 θBv̂. (2.27)

This equation has the non-trivial solutions,

ω = ±k cos θB

√
B2

0

µρ0

, (2.28)

which, in the direction of the magnetic field, propagate at the Alfvén speed,
defined as

vA =

√
B2

0

µρ0

.

Alfvén waves are transverse wave, where the velocity perturbations are normal
to the direction of propagation and these waves do not perturb the density.
When Alfvén waves occur in a cylindrical geometry, they present as purely
azimuthal perturbations and are known as torsional Alfvén waves.

2.2.3 Magnetoacoustic waves

Next we come to consider the combined effects of magnetic and kinetic forces
in a homogeneous plasma. When both restoring forces are taken into account,
the combined momentum equation is

ρ0
∂2v

∂t2
= ∇(γp0∇ · v) +

1

µ
(∇× [∇× (v ×B0)])×B0. (2.29)
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Using the exponential form of perturbations, the above equation becomes

ρ0ω
2v̂ = k(γp0k · v̂) +

1

µ
(k× [k× (v̂ ×B0)])×B0. (2.30)

Now that we have defined the sound and Alfvén speeds, we may introduce
these into the above equation, by using a vector, with magnitude of the Alfvén
speed, directed in the same direction as the magnetic field, vAB̂0, where B̂0

is the unit vector directed along the equilibrium magnetic field. Using vector
identities, Eq. (2.30) yields

[ω2−v2
A(k·B̂0)2]v̂ =

[
(c2
s + v2

A)(k · v̂)− v2
A(k · B̂0)(B̂0 · v̂)

]
k−v2

A(k·B̂0)(k·v̂)B̂0

(2.31)
This equation may be written in terms of the angle between the propagation
direction and the direction of the magnetic field, θB, as

[ω2 − k2v2
A cos2 θB]v̂ =

[
(c2
s + v2

A)(k · v̂)− v2
Ak cos θB(B̂0 · v̂)

]
k

− kv2
A cos θB(k · v̂)B̂0. (2.32)

Without loss of generality, we consider magnetic field lines directed in the
z-direction. Hence, Eq. (2.32) may further be simplified to give

[ω2 − k2v2
A cos2 θB]v̂ =

[
(c2
s + v2

A)(k · v̂)− v2
Akvz cos θB

]
k− kv2

A cos θB(k · v̂)ẑ.
(2.33)

When k·v̂ = 0, this reduces to the incompressible Alfvén wave investigated
in the previous section. For the compressible case, we make take the scalar
product of the above equation with k and B̂0 to achieve,

[ω2 − k2(c2
s + v2

A)](k · v) = −k3v2
A cos θB(B̂0 · v), (2.34)

and
k cos θBc

2
s(k · v) = ω2(B̂0 · v). (2.35)

By eliminating k·v and B̂0·v from the above relations, we obtain the dispersion
relation for compressible MHD waves:

ω4 − ω2k2(c2
s + v2

A) + c2
sv

2
Ak

4 cos2 θB = 0. (2.36)

This bi-quadratic equation has solutions

ω = ±k
2

[
(c2
s + v2

A)±
√
c4
s + v4

A − 2c2
sv

2
A cos 2θ

]1/2

, (2.37)

which constitute the dispersion relation of the forward and backward propa-
gating fast ( “+” solutions) and slow (“-” solutions) magnetoacoustic waves.

The relative propagation speeds of the fast, slow and Alfvén waves, and
their propagation characteristics relative to the ambient magnetic field, may
be seen clearly in the polar diagram (see Fig 2.1). The slow wave is caused by
destructive interference of kinetic and magnetic forces, while the fast mode is
caused by the constructive interference, as such they have speeds either side
of the Alfvén mode. Both the slow and Alfvén waves propagate fastest in
the direction of (or anti-parallel to) the magnetic field and have zero velocity
perpendicular to it. The fast wave conversely propagates fastest perpendicular
to the magnetic field.
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Figure 2.1: Velocities of Alfvén, fast (vfast) and slow (vslow) waves in a homoge-
neous plasma, for a magnetic field, directed in the horizontal direction. Here,
the sound speed is denoted vs. The relevant velocities are shown for the three
cases: sound speed slower than Alfvén speed (left), Alfvén and sound speeds
equal (middle), and sound speed greater than Alfvén speed (right). Credit:
Jess et al. (2015)

2.3 Discontinuities and Jump Conditions

Waves in a homogeneous plasma are well-understood, but much of the present
work is concerned with waves propagating along an interface between plas-
mas with different properties. Such interfaces constitute discontinuities, where
physical parameters can change abruptly from one side of the interface to the
other. When discontinuities in any plasma quantities are present, it is essential
to know which quantities must be continuous under the given circumstances.
These are most commonly known as the jump conditions across the inter-
face. The jump conditions serve as boundary conditions when quantities are
matched at the interface.

For a fluid, the continuity conditions across a shock are given by the
Rankine-Hugoniot conditions:

ρ1u1 = ρ2u2, (2.38)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2, (2.39)

2h1 + u2
1 = 2h2 + u2

2, (2.40)

where the subscripts refer to the variables either side of the shock, u1,2 are the
velocities perpendicular to the shock and h1,2 are the specific enthalpies. These
equations give conservation of mass, momentum and energy. A discontinuity
is a specific case of a shock where there is no flow across the shock. Thus, the
continuity conditions for a fluid interface are achieved by the added condition
that

u1 = u2.

When a plasma rather than a non-magnetic fluid, is considered, the jump
conditions become more complex and several different situations, relating to
different magnetic field alignments must be considered. An intuitive derivation
of the jump conditions in a plasma is given by Goedbloed and Poedts (2004),
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by considering a plasma interface as a shock, where the velocity through the
shock front is zero, and key ideas are repeated here.

It is convenient for the derivation of continuity conditions to write the ideal
MHD equations in conservative form as

Conservation of Mass:

∂ρ

∂t
+∇ · (ρv) = 0, (2.41)

Conservation of Momentum:

∂

∂t
(ρv) +∇ · [ρvv + (p2 +

1

2
B2)I−BB] = ρg, (2.42)

Conservation of Energy Density:

∂

∂t
(
1

2
ρv2 + ρe+

1

2
B2) +∇ ·

[(
1

2
ρv2 + ρe+

1

2
B2

)
v − v ·BB

]
= ρv · g,

(2.43)

Conservation of Magnetic Flux:

∂B

∂t
+∇ · (vB−Bv) = 0. (2.44)

Here we used the same notation for physical parameters as in Eqs. (2.1) - (2.5)
and these equations are not linearised. In addition, e denotes internal energy,
which will be used instead of pressure, p, through the use of the relation,
p = (γ− 1)ρe. These equations are once again supplemented by the solenoidal
constraint.

Considering a shock travelling with speed u, in the direction n, normal
to the shock front, the subscripts − and + are used to denote the values of
quantities on either side of the shock, we can define a jump in a quantity f as
JfK = f−− f+

1. The integral across the interface introduces the substitutions

∂f

∂t
→ −u JfK , ∇f → n JfK .

Hence, integrating the system of MHD equations, given by Eqs. (2.41) - (2.44)
across the shock results in the jump conditions:

− u JρK + n · JρvK = 0, (2.45)

− u JρvK + n ·
s
ρvv + (p2 +

1

2
B2)I−BB

{
= 0, (2.46)

− u
s

1

2
ρv2 + ρe+

1

2
B2

{
+ n ·

s
(
1

2
ρv2 + ρe+

1

2
B2)v − v ·BB

{
= 0, (2.47)

− u JBK + n · JvB−BvK = 0, n · JBK = 0. (2.48)

For convenience, these relations are transformed into the frame in which
the shock is stationary and velocities are rewritten using v′ = v− un, to give

1If we were to consider flow in the opposite direction, i.e. u → −u, this would also
necessitate considering the difference of the variables across the interface in the opposite
orientation, so JfK→ − JfK and thus the jump conditions would be unchanged.
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the continuity conditions:

Mass continuity: Jρv′nK = 0, (2.49)

Continuity of Normal Momentum:

s
ρv′2n + p+

1

2
B2
t

{
= 0, (2.50)

Continuity of Tangential Momentum: ρv′n Jv′tK = Bn JBtK , (2.51)

Energy Continuity: ρv′n

s
1

2

(
v′2n + v′2t

)
+

1

ρ

(
γ

γ − 1
p+B2

t

){
= Bn Jv′t ·BtK ,

(2.52)

Continuity of Normal Flux: JBnK = 0, (2.53)

Continuity of Tangential Flux: ρv′n

s
Bt

ρ

{
= Bn Jv′tK , (2.54)

where subscript n refers to quantities normal to the shock front and subscript
t refers to quantities tangential to the shock front.

An interface between two plasma regions with different properties is equiv-
alent to a shock front, where there is no flow across the discontinuity, i.e.
v′n = 0. Substituting this into the above equations, the jump conditions across
an interface simplify to:

Continuity of Total Pressure:

s
p+

1

2
B2
t

{
= 0, (2.55)

Continuity of Tangential Momentum: Bn JBtK = 0, (2.56)

Energy Continuity: Bn Jv′t ·BtK = 0, (2.57)

Continuity of Normal Flux: JBnK = 0, (2.58)

Continuity of Tangential Flux: Bn Jv′tK = 0. (2.59)

There are two distinct kinds of discontinuities, with distinct jump condi-
tions: tangential discontinuities, where the magnetic field is parallel to the
interface and contact discontinuities, where the magnetic field intersects the
interface.

For a tangential discontinuity, where Bn = 0, all above conditions are
inherently satisfied except Eq. (2.55). The necessary boundary conditions are
thus the continuity of total pressure,

JPT K =

s
p+

1

2
B2
t

{
= 0,

and the continuity of normal velocity, v′n = 0, which was the condition for
considering an interface, rather than a genuine shock.

For a contact discontinuity, Bn 6= 0, so Eq. (2.56) gives the condition that
JBtK = 0. This, in turn, along with Eq. (2.55), results in the condition that
JpK = 0 and, with Eq. (2.59), it results in the condition that Jv′tK = 0.

In summary, the boundary conditions for a contact discontinuity are much
more restrictive than those for a tangential discontinuity. Now, the kinetic
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pressure, normal and tangential components of velocity, and normal and tan-
gential components of the magnetic field are all continuous and the only quan-
tity that is allowed to have a jump is the density.

Linearising these jump conditions, we obtain that the continuity conditions
at discontinuities are:

1. Tangential Discontinuity: (Bn = 0)

JvnK = 0, Jp+ b ·B0K = 0, (2.60)

2. Contact Discontinuity: (Bn 6= 0)

JvnK = 0, JvtK = 0, JbnK = 0,
r√

B0t · b0t

z
= 0, JpK = 0. (2.61)

The literature of waves at tangential discontinuities is vast (e.g. Roberts
1981a, Jain and Roberts 1991, Joarder and Nakariakov 2006, Mather and
Erdélyi 2016, Zsámberger et al. 2018 etc.), while little has been done in the
case of contact discontinuities. Thus the novelty of our work lies with our focus
on contact discontinuities.

There is also a third kind of MHD discontinuity, the rotational disconti-
nuity. These occur where density, pressure and the normal components of
magnetic field strength and velocity are unchanged across the interface, how-
ever the tangential components of magnetic field and velocity rotate across
the interface. Thus the magnitude of magnetic field strength and velocity re-
mains continuous, while the orientation changes. Rotational discontinuities
have been proposed to occur in the fast solar wind (see e.g. Levy et al. 1964)
and were first observed by Paschmann et al. (1979).

2.3.1 Jump conditions in the presence of gravity

For almost all of the linearised conditions, the jump across the unperturbed
interface at equilibrium is the same as across the perturbed interface. Since the
position of the unperturbed interface is defined at the outset of any problems
investigated, the jump JfK is most useful when defined as the difference either
side of where the interface is positioned at equilibrium. However, when gravity
is taken into account, the condition for pressure continuity must be amended.
This is relatively straightforward, but will be re-derived using the method
described by Ruderman et al. (2014).

For a homogeneous background magnetic field, the background pressure
balance becomes

∂p0

∂z
= −gρ0.

When a horizontal interface located at z = z0 is perturbed, its variation can be
described by the equation z = z0 + h(x, t), where h is the small perturbation
of the interface, in the z-direction. A Taylor expansion of linearised pressure
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at the interface gives

p(z0 + h) ≈ p(z0) + h
∂p0

∂z

∣∣
z=z0

+O(h2)

≈ p(z0)− ghρ0(z0) +O(h2). (2.62)

This condition allows us to write that for the case when gravity is present,
the continuity of pressure across the interface, becomes, in terms of the jump
across the unperturbed interface,

Jp− gρ0hK = 0, across z = z0. (2.63)

Noting that ∂h/∂t = vz, we may take the time derivative of this condition
(this is possible as we consider the time independent solutions). Taking the
time derivative of Eq. (2.63) gives

s
∂p

∂t
− gρ0vz

{
= 0, across z = z0, (2.64)

and so continuity of total pressure across the interface is satisfied when
s
∂p

∂t
− gρ0vz + B0 ·

∂b

∂t

{
= 0, across z = z0. (2.65)

These jump conditions will be used throughout the thesis, to determine the
dispersion relation of waves and the generation of instabilities.

2.4 MHD Waves Propagating Along an Inter-

face

In a series of papers published more than 30 years ago, Roberts laid the foun-
dation of MHD waves propagating in a magnetically structured atmosphere
(Roberts 1981a, Roberts 1981b, Edwin and Roberts 1982 ). While consider-
ing several different geometries, these all begin with the linear, ideal MHD
equations and use analytical techniques to find a dispersion relation and as-
sociated solutions, for thin and thick structures. The first paper, “Surface
Waves at a Magnetic Interface” (Roberts, 1981a) has a particular pertinence
to the research presented in the current work, since the background plasma
configuration is the same; a single interface separating two regions of different
properties. Due to these similarities, the key techniques and results from the
paper will now be explored and used later as reference.

In the equilibrium state, the plasma is arranged into two homogeneous
plasma regions, separated by a sharp interface at z = 0. The equilibrium
homogeneous magnetic field is parallel to the interface, i.e. B0 = B0x̂. As a
result, the equilibrium density and magnetic field take the simple form,

ρ0(z) =

{
ρ−, z < 0,

ρ+, z > 0,
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B0(z) =

{
B−, z < 0,

B+, z > 0,

where the indices, ±, refer to the regions corresponding to z > 0 and z < 0,
respectively.

Assuming that all perturbations are of the form f = f̂(z) exp[i(kxx+kyy−
ωt)], the MHD equations may be reduced to a single equation

d

dz

[
ρ0(z) (k2

xv
2
A(z)− ω2)

m2
0(z) + k2

y

dv̂z
dz

]
− ρ0(z)

(
k2
xv

2
A(z)− ω2

)
v̂z = 0, (2.66)

where m0 is the magnetoacoustic parameter defined as

m2
0(z) =

(k2
xc

2
s(z)− ω2) (k2

xv
2
A(z)− ω2)

(c2
s(z) + v2

A(z)) (k2
xc

2
T (z)− ω2)

. (2.67)

This parameter acts as an effective wavenumber in the z-direction, giving a
measure of how quickly the wave amplitude decays away from the interface.
In the above expression, vA is the Alfvén speed, cs is the sound speed, and, cT
is the cusp (or tube) speed, defined as

c2
T (z) =

c2
s(z)v2

A(z)

c2
s(z) + v2

A(z)
.

Either side of the interface, where the plasma is homogeneous, this equation
simplifies to (

k2v2
A − ω2

)(d2v̂z
dz2
− (m2

0 + k2
y)v̂z

)
= 0. (2.68)

For simplicity let us assume that the motion is independent of the y-direction,
so we choose ky = 0 and kx = k. Hence, evanescent surface wave solutions,
which decay away from the interface, are given by

v̂z(z) =

{
α− exp[m−z], z < 0,

α+ exp[−m+z], z > 0,
(2.69)

where the expressions of m− and m+ are given by similar relations as Eq.
(2.67). Solutions will be surface waves, evanescent away from the interface,
if m− and m+ are both real quantities. Therefore, physical solutions will not
exist if

max(c2
s, v

2
A) <

ω2

k2
, or c2

T <
ω2

k2
< min(c2

s, v
2
A), (2.70)

for the plasma parameters both sides of the interface.
Since the equilibrium magnetic field is parallel to the interface, we are deal-

ing with a tangential discontinuity, where we require that the normal compo-
nent of velocity, vz and total pressure, PT are continuous across the interface,
z = 0. Continuity of v̂z, using the solution (2.69) implies that α− = α+. Using
the MHD equations, the total pressure perturbation may be written in terms
of v̂z as,

P̂T =
iρ0

ω

(
c2
s + v2

A

) k2c2
T − ω2

k2c2
s − ω2

dv̂z
dz

. (2.71)
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Substituting the solution (2.69) into the continuity of P̂T , we obtain the dis-
persion relation for surface waves at a single magnetic interface

ρ−
(
k2v2

A− − ω2
)
m+ + ρ+

(
k2v2

A+ − ω2
)
m− = 0. (2.72)

In order to compare the solutions of the above dispersion relation, obtained
for the tangential discontinuity, to solutions for contact discontinuities in later
chapters, we consider the case with a constant and identical background mag-
netic field either side of the interface, so we take B0 = B− = B+. In this case,
it follows that ρ−v

2
A− = ρ+v

2
A+. Let us introduce the density ratio

d =
ρ−
ρ+

=
v2
A+

v2
A−
,

which allows us to write the dispersion relation in terms of fewer variables. We
also introduce the plasma-β parameter and the dimensionless phase-speed,
to allow us to write the dispersion relation in dimensionless form, with c̃ph
depending only on d and β,

β =
c2
−

v2
A−

=
c2

+

v2
A+

, c̃ph =
ω

kvA+

.

The dimensionless dispersion relation is now written as

d(d− c̃2
ph)m̃+ + (1− c̃2

ph)m̃− = 0, (2.73)

where the dimensionless magnetoacoustic parameters become

m̃2
− =

m2
−

k2
=

(dβ − c̃2
ph)(d− c̃2

ph)

d(β + 1)(c̃2
T− − c̃2

ph)
, m̃2

+ =
m2

+

k2
=

(β − c̃2
ph)(1− c̃2

ph)

(β + 1)(c̃2
T+ − c̃2

ph)
, (2.74)

and the tube speeds in units of Alfvén speed in the upper plasma region are

c̃2
T− =

c2
T−

v2
A+

=
dβ

β + 1
, c̃2

T+ =
c2
T+

v2
A+

=
β

β + 1
.

Further we see that no solutions exist in the regions where any of the
following criteria (derived from Eq. 2.70) are satisfied,

c̃T− < c̃ph < min(d, dβ), c̃ph > max(d, dβ),

c̃T+ < c̃ph < min(1, β), c̃ph > max(1, β). (2.75)

In what follows, the dispersion relation (2.73) will be solved numerically
for a wide range of parameters.

2.4.1 Numerical Solutions of The Dispersion Relation

The dimensionless phase speed may now be studied in terms of the two vari-
ables d and β, by solving Eq. (2.73). Although Eq. (2.73) may seem simple
at first glance, since m̃± are themselves square roots of functions of c̃ph, it is
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not currently written as a rational function. Of course, we could square both
sides of the equation and solve the resulting polynomial, however, this would
introduce spurious roots and it may not be clear which correspond to physical
solutions. Since the algebraic expressions for the solutions to the polynomial
are not straightforward, this method shows no immediate advantage. We thus
choose to solve the dispersion relation numerically from the outset. For all
cases, the solutions are shown to have speeds between the two Alfvén speeds,
but, more importantly, the obtained phase speeds are always greater than the
lower cusp speed, which suggests all propagating surface modes in this 2D
model are fast modes.

The solutions of the dimensionless dispersion relation are plotted for two
values of plasma-β (β = 0.1 and β = 10), for varying density ratio in Figs.
(2.2a) and (2.2b). Only positive solutions, corresponding to forward propagat-
ing waves, are shown, since solutions are symmetric. Regions where solutions
would not be evanescent are shaded with grey, to show that no physical surface
wave solutions exist in these regions.

Solutions for low plasma-β, where kinetic forces dominate, are shown in Fig.
(2.2a). The solution for low values of d is between the cusp and sound speed
of the lower plasma region while for high values of d solutions are obtained
between the cusp and sound speed of the upper plasma region. However, it is
clear that these solutions fall entirely within the regions where solutions are not
evanescent, so there are no physical solutions for β = 0.1. This confirms the
statement in Roberts (1981a) that there are no surface-waves in the low-beta
regime, when only considering propagations parallel to the magnetic field.

Solutions for high plasma-β (dynamics dominated by magnetic forces) are
shown in Fig. (2.2b). The solution for d < 1 is between the Alfvén and sound
speed of the upper plasma region, appearing to tend towards vA+ as d → 0.
For d > 1 the solution is between the Alfvén and sound speed of the lower
plasma region. As d → ∞, the curve of solutions appears to saturate to a
value between these two speeds.

In Figs. (2.3a) and (2.3b), we plot solutions for several values of density
ratio and with plasma-β varying over a range of four orders of magnitude.
Solutions for c̃ph = ω/kvA+, where the density ratio is d = d0, are identical to
solutions for c̄ph = ω/kvA− where the density ratio is d = 1/d0. As such, we
will only show solutions for d < 1, corresponding to a denser plasma above.

Figure (2.3a) shows two separate families of solutions. For lower β values
the phase-speed is between cT and cs, tending to cs, with increasing β. For
low plasma-β values, solutions are not evanescent, this confirms the results
shown in Figure (2.2a). However, for higher plasma-β values, solutions are
evanescent and the phase speed of waves is between vA+ and c+, beginning
where these speeds intersect and tending towards some fixed value as β →∞.
This value may be found by using an asymptotic expansion, with respect to β
of the dispersion relation, which to highest order is

d(d− c̃2
ph)− c̃2

ph + 1 +O(β−1) = 0.
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(a) β = 0.1

(b) β = 10

Figure 2.2: Solutions of the dispersion relation of waves propagating along an
interface in the tangential discontinuity case, for β = 0.1 (above) and β = 10
(below), for varying density ratio. Solutions are shown with solid blue lines.
Critical speeds above the interface are shown in green and below the interface
are shown in black. The Alfvén speeds are shown with solid lines, the sound
speeds are shown with dotted lines and the cusp speeds are shown with a
dashed line.
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(a) d = 0.1

(b) d = 0.5

Figure 2.3: Solutions of the dispersion relation of waves propagating along an
interface in the tangential discontinuity case, for d = 0.1 (above) and d =
0.5 (below), for varying plasma-β. Solutions are shown with solid blue lines.
Critical speeds above the interface are shown in green and below the interface
are shown in black. The Alfvén speeds are shown with solid lines, the sound
speeds are shown with dotted lines and the cusp speeds are shown with a
dashed line.
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The solutions to this equation are

c̃2
ph =

d2 + 1

d+ 1
,

which matches well with what may be seen in Figs (2.3a) - (2.3b). For d =
0.5 (Figure 2.3b), the two separate curves of solutions almost connect. This
suggests the possibility of mode conversion, if modes with negative m− or m+

were allowed. However, this cannot be a possibility for surface waves.

2.4.2 Symmetry

For the present configuration, we would expect to obtain the same solutions,
regardless of the arrangement of the two plasma layers. For our original system
we supposed the density ratio was d = D and the dimensionless phase-speed
was c̃ph = W . If the orientation of the system were “flipped”, with ρ− now the
density of the upper plasma and ρ+ denoting the density of the lower plasma,
we would consider the density ratio to be d = ρ+/ρ− = v2

A−/v
2
A+ = 1/D. The

dimensionless phase-speed was defined in terms of the lower plasma, so for the
“flipped” case, the dimensionless phase-speed becomes

c̃ph =
ω

kvA+

=
ω

kvA+

vA−
vA+

=
W√
D
.

We introduce these new expressions for density ratio and dimensionless phase-
speed into the expressions for the effective wavenumber in dimensionless form,
(Eq. 2.74). From this we find that

m̃2
−

(
d =

1

D

)
= m̃2

+ (d = D) , m̃2
+

(
d =

1

D

)
= m̃2

− (d = D) .

Next, we input these expressions into the dispersion relation, Eq. (2.73), and
obtain

1

D2
(1−W 2)m̃−(d = D) + (1−W 2/D)m̃+(d = D) = 0.

Multiplying this equation through by D2 we see that the dispersion relation
is identical to that found for our original configuration. Thus, as expected,
the nature of the waves is unchanged by the orientation of the equilibrium
configuration.

However, Fig. (2.2) appears not to be symmetric in terms of comparing d
with 1/d. This is simply due to the fact that solutions are given in terms of
the dimensionless phase-speed, which, as explained above, must be modified
when considering a different orientation.

2.5 Summary and Conclusions

The present chapter was devoted to the introduction of the mathematical
and physical framework of the thesis. In particular we presented the MHD
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equations and described their limitations. In order to make these equations
mathematically tractable, we used the linear and ideal limit, i.e. we focus on
small amplitude waves, where no energy sinks or sources are considered. We
also presented the fundamental properties of MHD waves, as these will be used
in later chapters. We have described, in detail, the jump conditions we must
impose when connecting solutions at discontinuities. From this we have seen
that the orientation of the magnetic field, with respect to the interface, will
determine the nature of the discontinuity.

As a reference case for our investigation, we reviewed the study by Roberts
(1981a), analysing the properties of surface waves propagating along a den-
sity interface in the presence of a background magnetic field parallel to the
interface.

It has been shown that a density interface, with such a tangential discon-
tinuity, may support stable surface waves for high plasma-β values. These
solutions have real frequency, suggesting that the amplitude of the surface
waves is constant over time. For any given density ratio and plasma-β, there
is only ever one physical solution.

The phase speeds of all solutions lie between the Alfvén speeds for the
upper and lower plasma regions, hence all solutions have phase speed above
the lower cusp speed, cT and so cannot be identified as slow modes. Thus,
we conclude that only fast surface waves propagate in this environment. Due
to the phase-speed between the two Alfvén speeds, these modes bear some
similarity to the so-called surface Alfvén modes (see Section 1.1.5), though
lack the torsional component.

These results have many applications in the solar atmosphere, including
modelling short length-scale waves at the edges of flux tubes, prominences
and inter-granular lanes. We will later compare these results to those for the
contact discontinuity.
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CHAPTER 3

Propagation of Leaky MHD Waves at Discon-

tinuities with Tilted Magnetic Field

Although there have been many studies focused on waves at a tangential dis-
continuities (see Section 1.1.5), there have been few theoretical studies looking
into situations where the magnetic field is inclined to the direction of wave
propagation and fewer still considering waves at contact discontinuities. How-
ever there are several examples of structures in the solar atmosphere with
inclined magnetic fields, where contact discontinuities would be an appropri-
ate model. These include sunspot penumbrae, where running penumbral waves
propagate at an angle to the magnetic field lines. In regions above sunspot
penumbrae, there are also oblique fields, with vertically propagating waves
(see e.g. Schunker and Cally 2006). On large length scales the transition
region may even be modelled as a contact discontinuity, with magnetic field
lines intersecting a sharp density gradient. Waves along the transition region
have been studied by (e.g. Scullion et al. 2011). These provide a few concrete
examples in the solar atmosphere where the following study of waves propa-
gating along contact discontinuities would provide important information on
solar dynamics.

We will, in particular, investigate leaky waves, where energy propagates
away from the interface and leads to wave attenuation. These have been
studied in a theoretical sense, in flux tubes, by Cally (1986) and Ruderman
and Roberts (2006) and have been observed in coronal loops, using TRACE,
by Cally (2003).

Inspired by the seminal work by Roberts (1981a), on MHD waves at a
tangential discontinuity (summarised in the previous chapter), the present
chapter uses an eigenmode analysis to investigate the effect of magnetic field
inclination across the interface. Following on from the time-independent study
covered in this chapter, Chapter 4 will use a time dependent analysis to study
these waves in further detail, to model how the waves evolve from an initial
perturbation.

This chapter is based on the following refereed journal article:

• Vickers, E., Ballai, I., Erdélyi, R. (2018); Propagation of Leaky MHD Waves at
Discontinuities with Tilted Magnetic Field, Solar Phys., Volume 293, Issue 10
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Figure 3.1: The plasma is structured into two semi-infinite regions of constant
density and gas pressure, with a sharp interface at z = 0. A constant magnetic
field crosses the interface and it is inclined at an angle θ to the interface.

The background equilibrium will, once again, be a discontinuity in density
and temperature, aligned with z = 0, with homogeneous plasma either side of
this discontinuity. The novelty of our research resides in considering a constant
magnetic field that permeates the plasma, at an angle, θ to the discontinuity
in the (x, z) plane and has the form B0 = B0(cos θ, 0, sin θ). Without loss of
generality we may assume 0 < θ ≤ π. In our working model, with a tilted
magnetic field, the restoring force will be the tangential component of the
Lorentz force, with magnetic tension acting on any displacement transversal
to the field and magnetic pressure acting on any displacement that changes
the magnetic field strength. The effect of gravity is neglected, and we restrict
ourselves to the study of the two-dimensional dynamics, with no y-component
of perturbations. A schematic representation of the equilibrium configuration
is shown in Figure (3.1).

The system considered now has a component of the magnetic field inter-
secting the interface and, as such, the interface is a contact discontinuity. The
continuity conditions are thus (see section (2.3)),

Jv⊥K = 0,
q
v||

y
= 0, Jb⊥K = 0,

q
b||

y
= 0, JpK = 0.

The dynamics of MHD waves in this system will be described within the
framework of linearised, ideal magnetohydrodynamics (MHD), using the equa-
tions (2.12)-(2.16), given in the previous chapter.

3.1 Governing Equation

In general, the propagation of waves can be studied with the help of their
dispersion relation, i.e. the relation between the frequency of waves and the
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wavenumber, in terms of characteristic speeds and quantities specific to the
medium in which they propagate. First, general solutions are found for the
plasma regions either side of the interface, and the dispersion relation may
then be obtained by matching the solutions in the two regions, at the interface
at z = 0, using the jump conditions given above.

The mathematical procedure we employ in the present study would clas-
sify our task as an eigenvalue problem. However, when comparing to an initial
value problem investigation, there are differences between a standard eigen-
value problem and the problem concerning leaky waves. As pointed out by
Ruderman and Roberts (2006), while standard eigenvalue solutions correspond
to the asymptotic behaviour of the time-dependent solutions, the leaky mode
solutions are instead intermediate asymptotics, where the time-scale is greater
than the period of the wave, but less than the attenuation time. This will be
revisited in Chapter 4.

The system of ideal, linearised MHD equations for this environment may
be written in terms of their components as

∂ρ

∂t
+ ρ0

(
∂vx
∂x

+
∂vz
∂z

)
= 0, (3.1)

ρ0
∂vx
∂t

= −∂p
∂x

+
1

µ
B0 sin θ

(
∂bx
∂z
− ∂bz
∂x

)
, (3.2)

ρ0
∂vz
∂t

= −∂p
∂z

+
1

µ
B0 cos θ

(
∂bz
∂x
− ∂bx

∂z

)
, (3.3)

∂p

∂t
= c2

s

∂ρ

∂t
, (3.4)

∂bx
∂x

+
∂bz
∂z

= 0, (3.5)

∂bx
∂t

= B0

(
sin θ

∂vx
∂z
− cos θ

∂vz
∂z

)
, (3.6)

∂bz
∂t

= B0

(
cos θ

∂vz
∂x
− sin θ

∂vx
∂x

)
. (3.7)

By differentiating the x− and z-components of the momentum equation,
(3.2) and (3.3), with respect to time and using the energy, continuity and
induction equations (3.1), (3.4), (3.6), (3.7), we obtain two simultaneous, dif-
ferential equations for the horizontal and vertical velocity perturbations,

∂2vx
∂t2

= (v2
A sin2 θ + c2

s)
∂2vx
∂x2

+ v2
A sin2 θ

∂2vx
∂z2

− v2
A sin θ cos θ

∂2vz
∂x2

+ c2
s

∂2vz
∂x∂z

− v2
A sin θ cos θ

∂2vz
∂z2

, (3.8)

∂2vz
∂t2

= − v2
A sin θ cos θ

∂2vx
∂x2

+ c2
s

∂2vx
∂x∂z

− v2
A sin θ cos θ

∂2vx
∂z2

+ v2
A cos2 θ

∂2vz
∂x2

+ (v2
A cos2 θ + c2

s)
∂2vz
∂z2

, (3.9)

where the Alfvén speed was defined in Chapter 2.
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We assume that all of the perturbed quantities will reach a steady state
and oscillate with frequency, ω, and real wave-number, k. Therefore, we take
any perturbations to be of the form f = f̂(z) exp[i(kx − ωt)], where f̂ is
the amplitude of perturbations that depends on z. Applying this ansatz to
the above system of equations, we arrive at the system of coupled differential
equations for a homogeneous medium,

[ω2 − k2(v2
A sin2 θ + c2

s)]v̂x + v2
A sin2 θ

d2v̂x
dz2

+k2v2
A sin θ cos θv̂z + ikc2

s

dv̂z
dz
− v2

A sin θ cos θ
d2v̂z
dz2

= 0, (3.10)

k2v2
A sin θ cos θv̂x + ikc2

s

dv̂x
dz
− v2

A sin θ cos θ
d2v̂x
dz2

+(ω2 − k2v2
A cos2 θ)v̂z + (v2

A cos2 θ + c2
s)
d2v̂z
dz2

= 0. (3.11)

Since all coefficients in this system of equations are constants, we can elim-
inate the component of velocity parallel to the interface, v̂x to obtain a single
fourth-order differential equation, for the normal component of velocity per-
turbation, v̂z,

c2
sv

2
A sin2 θ

d4v̂z
dz4

+ 2ikc2
sv

2
A cos θ sin θ

d3v̂z
dz3

+ [ω2(c2
s + v2

A)− k2c2
sv

2
A]
d2v̂z
dz2

−2ik3c2
sv

2
A cos θ sin θ

dv̂z
dz

+ [ω4 − ω2k2(c2
s + v2

A) + k4c2
sv

2
A cos2 θ]v̂z = 0. (3.12)

If the inclination of the magnetic field is omitted (i.e. θ = 0), we recover the
governing equation for compressional waves for the tangential case, derived by
Roberts (1981a)(see Section 2.4). The solution of the above equation will be
of the form v̂z ∼ exp[Γz], where Γ are the roots of the characteristic equation,

c2
sv

2
A sin2 θΓ4 + 2ikc2

sv
2
A cos θ sin θΓ3 + [ω2(c2

s + v2
A)− k2c2

sv
2
A]Γ2

−2ik3c2
sv

2
A cos θ sin θΓ + [ω4 − ω2k2(c2

s + v2
A) + k4c2

sv
2
A cos2 θ] = 0. (3.13)

The values of Γ will be used to determine the dispersion relation for the waves
propagating along the interface. We note that this equation describes dynamics
for both plasma regimes, above and below the interface, with appropriate
characteristic speeds substituted in.

We will show by contradiction that in order to obtain propagating solutions,
Γ must be complex. Let us assume that Γ is real, then the left-hand side of
Equation (3.13) is a complex analytical function which may therefore be split
into real and imaginary parts as

u(ω, k) + iv(ω, k) = 0, (3.14)

where u and v are the real functions,

u(ω, k) = c2
sv

2
A sin2 θΓ4 + [ω2(c2

s + v2
A)− k2c2

sv
2
A]Γ2
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+[ω4 − ω2k2(c2
s + v2

A) + k4c2
sv

2
A cos2 θ],

v(ω, k) = Γ[2kc2
sv

2
A sin θ cos θΓ2 − 2k3c2

sv
2
A cos θ sin θ].

In order for Equation 3.14 to be satisfied, we require that both functions u(ω, k)
and v(ω, k), are equal to zero simultaneously. Setting v(ω, k) = 0 gives the
solutions Γ = 0,±k. The solutions Γ = 0 is not a solution to u(ω, k) = 0.
Substituting Γ = ±k into Eq. (??) returns a trivial solution for ω. This
proves that, in order for the wave to propagate, Γ must be a complex quantity.
The imaginary part of Γ represents an oscillatory component to the variation of
v̂z with respect to the transverse coordinate, z. This will in turn give complex
solutions for frequency, which will introduce energy flow into the system, either
towards or away from the interface, depending on the sign of ω. Since no energy
source is specified, this only makes physical sense if energy flow is away from
the interface. These leaky wave solutions correspond to the case where the
group speed is positive above the interface and negative below and the effect
of lateral energy leakage is an attenuation of the waves.

3.2 Solving The Governing Equation - A per-

turbation Technique

While an explicit solution to the fourth order governing equation could be
found, these solutions for Γ would be wildly complicated expressions. There-
fore, in order to give a solution with which we can make analytical progress,
we assume that the angle between the magnetic field lines and the interface is
small and so the inclination induces only a small change to the waves’ prop-
erties in each homogeneous semi-infinite volume, compared to the case with
parallel magnetic field. This allows us to make approximations in θ, letting
cos θ ≈ 1 and sin θ ≈ θ.

The governing equation for the quantity Γ, in the case of small values of
inclination angle, is given by

c2
sv

2
Aθ

2Γ4 +2ikc2
sv

2
AθΓ

3 +[ω2(c2
s+v2

A)−k2c2
sv

2
A]Γ2−2ik3c2

sv
2
AθΓ+A = 0, (3.15)

where
A = ω4 − ω2k2(c2

s + v2
A) + k4c2

sv
2
A.

In order to physically account for the transition of perturbed quantities from
one side of the interface to the other, we consider a thin boundary layer (em-
bracing the interface), in which the transition takes place, with width less than
2θ.

Despite the small angle, even the first term of Eq. (3.15) is comparable to
the other terms, since it is multiplied by the highest derivative of v̂z, which
may be large. Let us now apply the method of dominant balance to find the
roots of the fourth order polynomial. This involves rescaling the equation and
simplifying it to an approximate form, by neglecting terms corresponding to
a higher order of θ, while ensuring this approximate form still includes the
highest derivative term.
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First, since some terms are smaller than others, they could not possibly be
part of the dominant balance and may be ignored. We seek solutions in the
form of an asymptotic power series in θ,

Γ = Γ0 + θΓ1 + θ2Γ2 + . . . (3.16)

To leading order (i.e. terms proportional to O(1)), we obtain that

[ω2(c2
s + v2

A)− k2c2
sv

2
A]Γ2

0 − A = 0, (3.17)

which means that
Γ0 = ±m, (3.18)

where

m =

[
−(ω2 − k2v2

A)(ω2 − k2c2
s)

(c2
s + v2

A)(ω2 − k2c2
T )

]1/2

.

This quantity, m, coincides with the effective wave-number determined for
magnetoacoustic modes obtained by Roberts (1981a) in the case of tangential
discontinuity and given by Eq. (2.67), if we assume that m is real when ω is
real. This is expected, since this is equivalent to the limit θ → 0. However,
in the case of leaky modes, ω is complex and so too is m, introducing an
oscillatory behaviour in the z-direction. A similar expression can be derived
for both plasma regions, for the appropriate values of cs and vA. For simplicity,
we will introduce the subscripts + and −, to refer to parameters in the plasmas
above and below the interface, respectively. Hence, in the z < 0 region we will
use m−, whereas in the upper region (z > 0), we will use m+. Here, the signs
of m− and m+ should be chosen in such a way that the real parts of m− and
m+ are positive. We choose the signs of Γ0, above and below the interface,
such that these match the solutions for the case of the parallel magnetic field,
i.e. physical solutions are given by

Γ0 =

{
m−, if z < 0,

−m+, if z > 0.

Eq. (3.15) is a fourth-order polynomial and the remaining two roots must
still be found. This can be done by rescaling the problem. For some unknown
exponent, Q (to be determined), let us set,

Γ = θQy, (3.19)

where y is bounded and also bounded away from zero as θ → 0. Thus Eq.
(3.15) becomes (after dividing by c2

sv
2
A)

θ(4Q+2)y4 + 2ikθ(3Q+1)y3 +
1

c2
T

(ω2− k2c2
T )θ2Qy2− 2ik3θ(Q+1)y+A′ = 0, (3.20)

where A′ = A/c2
sv

2
A. We will now find the correct value of Q by using the

principle of dominant balance, so that the rescaled equation is consistent as
θ → 0, if at least two terms correspond to the same power of θ (this is called
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balance). In addition, the balance is dominant in the sense that every term
not involved in the balance corresponds to a higher power of θ, and therefore
must be smaller than the balancing terms.

It can be shown that, when balancing the first three terms, the balance will
occur for Q = −1 and the balancing terms are proportional to O(θ−2) while
the other terms are ∼ O(1). With this value of Q, we obtain that

θ−2y4 + 2ikθ−2y3 +
1

c2
T

(ω2 − k2c2
T )θ−2y2 − 2ik3y + A′ = 0. (3.21)

Multiplying the above equation by ξ = θ2, we have

y4 + 2iky3 +
1

c2
T

(ω2 − k2c2
T )y2 − 2ik3ξy + A′ξ = 0. (3.22)

Now, we write y also in the form of an asymptotic series in terms of ξ as

y = y0 + y1ξ + y2ξ
2 + . . .

In the leading order, we obtain

y2
0(y2

0 + 2iky0 +
1

c2
T

(ω2 − k2c2
T )) = 0, (3.23)

that has 4 roots for y0, i.e.

y0A = y0B = 0, y0(C,D) = − i

cT
(kcT ∓ ω)

The y0 = 0 solutions contradict our assumptions that y is bounded to a non-
zero value as θ → 0 and must be disregarded, so the remaining two solutions
will be

y0(C,D) = − i

cT
(kcT ∓ ω). (3.24)

Returning now to the original variables, the four roots of the polynomial in Γ
are (in the leading order)

ΓA = m+O(θ); ΓB = −m+O(θ);

ΓC = θ−1y0C +O(θ); ΓD = θ−1y0D+O(θ).

Higher-order terms in θ are neglected, as they are small compared to the
leading order terms.

In order for the sharp density gradients in e.g. sunspot penumbra and prominences,
to be considered as contact discontinuities, we require that the length-scales of the waves
in the direction perpendicular to the interface to be large compared to the scale-height
of the density change, i.e. small effective wavenumbers. Unfortunately, we see that y ∼
θ−1 and thus the length scales in the z-direction are small. This renders our discussion
of contact discontinuities largely unphysical, except for the cases of very sharp density
gradients. However, this work is a useful starting point to understand the implications of
inclined magnetic fields and will have relevancy when variable density gradient, rather than
a sharp interface, is considered, in future work.
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Let us briefly discuss the form and sign of the last two roots. The key
ingredient in both expressions is y0(C,D) = − i

cT
(kcT ∓ω). Since we are dealing

with an interface with inclined magnetic field, we expect that modes will be
leaky and the frequency of waves can be written as ω = ωr + iωi. Introducing
this expression into the form of y0(C,D) we obtain that

y0C = −ωi
cT

+
i

cT
(ωr − kcT ); y0D =

ωi
cT
− i

cT
(ωr + kcT ). (3.25)

Since attenuation of waves due to leakage corresponds to ωi < 0, Equation
(3.25) shows that <(y0C) > 0, while <(y0D) < 0. To ensure that the group
speed is positive above the interface and negative below it, the physically ac-
ceptable solutions for y0C and y0D must have the corresponding sign. Hence,
for the z < 0 region we are going to use y0D, while in the region above the inter-
face we will need to use a similar root as y0C but written for the corresponding
characteristic speeds.

Using the same subscripts as above, we write y0D, below the interface, as
y− and y0C above the interface as y+. Therefore, keeping terms of exponents
with the lowest order of θ, the expression of v̂z in the lower (z < 0) region is

v̂z− = F−e
m−z +G−e

θ−1y−z. (3.26)

The corresponding expression for vz, in the upper (z > 0) region becomes

v̂z+ = F+e
−m+z +G+e

θ−1y+z, (3.27)

where the characteristic speeds for the relevant plasma are used to determine
m± and y± in that region and F± and G± are constants.

3.3 Dispersion Relation of Waves Along Dis-

continuities

Since four constants are involved in the two expressions of v̂z, four boundary
conditions will be needed to find the values of those constants and determine
the dispersion relation. We are dealing with a contact discontinuity, therefore
we require continuity of both components of velocity, v̂x and v̂z, the kinetic
pressure, p̂, and both components of the magnetic field, b̂x and b̂z. In this
equilibrium, continuity of bz is implied by the continuity of v, so we have the
correct number of boundary conditions to find all unknown coefficients.

Using the expression for v̂x and v̂z, given by Eqs. (3.10), we can find that
v̂x may also be written in terms of the same exponentials as v̂z, i.e.

v̂x± = f±F± exp(∓m±z) + g±G± exp(y±z),

where the expressions for f± and g± are given by

f± =
θv2

A±
(m2
± − k2)∓ ikc2

0±m±

ω2 − k2c2
0±

, g± =
1

θ

v2
A±
y2
± − θkc2

0±y±

(ω2 − k2c2
0±)

=
1

θ
g′±. (3.28)
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The condition that the vertical component of velocity, v̂z, is continuous
across the boundary results in

F− +G− = F+ +G+. (3.29)

Continuity of the parallel component of velocity, v̂x, results in

θf−F− + g′−G− = θf+F+ + g′+G+. (3.30)

The condition that the parallel component of the magnetic field, bx, is contin-
uous, gives

−θm−F− + (g′− − 1)y−G− = θm+F+ + (g′+ − 1)y+G+, (3.31)

to first order of θ. Finally, pressure balance across the interface gives

ρ−c
2
0−
[
θ(ikf− +m−)F− + (ikg′− + y−)G−

]
= ρ+c

2
0+

[
θ(ikf+ −m+)F+ + (ikg′+ + y+)G+

]
. (3.32)

Due to the particular choice of discontinuity, ρ−/ρ+ = c2
0+/c

2
0−, so multipliers

cancel in this equation.
These conditions may be written together as a matrix equation,

M


F−
G−
F+

G+

 = 0,

where,

M =


1 1 −1 −1
θf− g′− −θf+ −g′+
−θm− (g′− − 1)y− −θm+ −(g′+ − 1)y+

θ(ikf− +m−) ikg′− + y− −θ(ikf+ −m+) −(ikg′+ + y+)

 .
We seek eigen-mode solutions, by solving the dispersion relation, which is given
by the equation

det(M) = 0. (3.33)

3.3.1 Dispersion Relation in Dimensionless Form

Written in the present form, the dispersion relation is dependent on the den-
sities, Alfvén speeds and sound speeds relating to the two plasmas either side
of the interface, as well as the wavenumber and frequency of the waves them-
selves. However, the two key dimensionless parameters that can affect the
characteristics of waves are the ratio between the densities of the two plasma
regions (d = ρ−/ρ+) and the modified plasma-β, which gives a ratio between
kinetic and magnetic forces and is defined as β̄ = c2

s/v
2
A = β̄, which is the same

in both plasma regions. This clearly reduces the complexity of the problem,
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which is why we write the dispersion relation in terms of these two parame-
ters and we determine the equations in their dimensionless form. We intro-
duce the phase speed, relative to the Alfvén speed of the lower plasma, as
c̃ph = cph/vA− = ω/kvA−. Due to the particular form of the magnetic field, we
see that d = c2

0+/c
2
0− = v2

A+/v
2
A− and hence β− = β+ = β.

The effective wave-numbers in dimensionless form are

m2
−

k2
=

(β̄ − c̃2
ph)(1− c̃2

ph)

β̄ − (β̄ + 1)c̃2
ph

,
m2

+

k2
=

(dβ̄ − c̃2
ph)(d− c̃2

ph)

d2β̄ − d(β̄ + 1)c̃2
ph

,

and

y−
k

= −i− ic̃ph

√
β̄ + 1

β̄
,

y+

k
= −i+ ic̃ph

√
β̄ + 1

dβ̄
.

The ratios between tangential and transversal components of velocity are given
in dimensionless form by

f− =
θ
(
m2
−/k

2 − 1
)

+ iβ̄m−/k

˜cph
2 − β̄

, f+ =
θd
(
m2

+/k
2 − 1

)
− idβ̄m+/2k

˜cph
2 − dβ̄

,

g′− =
y2
−/k

2 − θβ̄y−/k
c̃2
ph − β̄

, g′+ =
dy2

+/k
2 − θdβ̄y+/k

c̃2
ph − dβ̄

.

In this new, dimensionless, form, the dispersion relation is now given by
the equation

det(M′) = 0. (3.34)

where,

M′ =


1 1 −1 −1
θf− g′− −θf+ −g′+
−θm−

k
(g′− − 1)y−

k
−θm+

k
−(g′+ − 1)y+

k

θ
(
if− + m−

k

)
ig′− + y−

k
−θ
(
if+ − m+

k

)
−
(
ig′+ + y+

k

)
 .

3.4 Numerical Solutions and Discussion of Re-

sults

In what follows, we solve the dispersion relation in dimensionless form (Equa-
tion 3.34) numerically, for varying density ratio and plasma-β. For simplicity,
we choose to plot only forward propagating waves. Only the physical, attenu-
ating modes are shown.

First, we plot the dispersion curves of forward propagating waves for a fixed
density ratio. In Figure (3.2), we set d = 0.1 (upper panel) and d = 10 (lower
panel) and allow the plasma-β to vary over two orders of magnitude, covering
the spectrum of possible values in the solar atmosphere plasma. When the
plasma above the interface is heavier (here d = 0.1), the dispersion relation
allows the propagation of three modes. Mode (A), is present as an attenuating
mode for larger values of plasma-β (β > 0.6), with phase-speed close to the
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(a) d = 0.1

(b) d = 10

Figure 3.2: The variation of the dimensionless phase-speed of the waves, c̃ph,
propagating along the interface in terms of the plasma-β, for two values of
density ratio. The real part is plotted in the upper panel and the imaginary
part in the lower panel. The characteristic speeds are also shown for reference,
using thin lines : the Alfvén (solid line), sound (dotted line) and cusp speeds
(dashed line) for the regions above (green lines) and below the interface (black
lines).
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sound speed of the upper plasma, cs+. The imaginary part of the solution
increases in magnitude for higher values of plasma-β, so that for β = 10, the
period is approximately half of the attenuation time. Since the phase speed is
higher than the Alfvén speed in the upper region, this mode must be a highly
attenuated fast mode. Its propagation speed increases with plasma-β.

Mode (B) is present for the entire range of plasma-β and the phase-speed
is, for most of the range, close to the cusp-speed of the plasma in the upper
region, cT+, increasing to a speed between the two cusp-speeds for high plasma-
β. For β → 0, we find that mode (B) also tends to zero, meaning that we are
dealing with a slow wave. The imaginary part of the solution stays fairly
steady, between 0 and -0.1 (or between one tenth and one quarter of the real
part), so these waves show a rather weak attenuation. Although dissimilar for
low-β values, the real part of this mode tends towards the real solution for the
tangential case, shown in Figure (2.3a).

Mode (C), is only attenuating for β > 0.5, since for lower values of plasma-
β, solutions do not satisfy the conditions set for the imaginary part of the
frequency (they do not “leak-out”). For β > 1, the phase-speed of this mode
decreases, with increasing plasma-β, while the imaginary part increases in
magnitude greatly, so that, for β > 1, the period of the wave is greater than
the attenuation time, meaning that the expected life-time of these modes is
rather short. This mode should be labelled as a slow mode, as it is slower
than either cusp speeds, however, it shows a rather peculiar behaviour. Its
phase speed does not increase with plasma-β, a feature characteristic for slow
waves. Due to their high attenuation, modes (A) and (C) are unlikely to be
observable, due to having an attenuation time much shorter than the wave
period, especially in the high-beta regime.

In Figure (3.2b), we show solutions to the dispersion relation for d = 10 and
we can see two modes of propagation. Mode (A) has a phase speed between
the sound and cusp speeds in the upper plasma region, though is only present
for β < 3, since for higher plasma-β the mode is no longer a leaky mode. For
low values of plasma-β, mode (A) tends to zero, so this is clearly a slow mode.
In the region corresponding to β < 1, the attenuation of this mode is very
small, however, the attenuation rate increases with the value of plasma-β. At
a value of β = 2 the attenuation of the mode decreases again.

Mode (B), similar to the mode (C) in Figure (3.2a), has phase speed close
to the lowest value of the cusp-speeds for lower plasma-β and its phase speed
decreases to zero around β = 1. Again, based on its propagation speed we
label this mode as a typical slow mode, however, it has the same peculiar
behaviour with respect to plasma-β. This mode, again, is highly attenuated,
especially for β > 1. It is possible that these highly attenuated modes are
in fact a manifestation along the interface of waves propagating along the
magnetic field lines.

Figure (3.3) shows the variation of the solutions of the dispersion relation
with density ratio, for low and high values of plasma-β. In Figure (3.3a), we set
β = 0.1 (a typical solar upper solar atmospheric condition) and the numerical
investigation of the dispersion relation reveals the existence of three modes
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(a) β = 0.1

(b) β = 10

Figure 3.3: The variation of the dimensionless phase-speed of the waves, c̃ph
propagating along the interface in terms of the density ratio, for two values
of plasma-β. The real part is plotted in the upper panel and the imaginary
part in the lower panel. The characteristic speeds are also shown for reference,
using thin lines : the Alfvén (solid line), sound (dotted line) and cusp speeds
(dashed line) for the regions above (green lines) and below the interface (black
lines).
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(two for any given d), all with relatively small imaginary part, meaning these
modes are weakly attenuated. Mode (A) has phase speed below the cusp and
sound speeds of the plasma in the lower region and a small imaginary part,
which decreases in magnitude towards d = 1, at which point the imaginary
part becomes zero. Mode (B) is a physical solution for d > 0.8 and has phase
speed very close to the cusp speed of the lower plasma region. Although the
dimensionless phase speed of these two modes are very similar in the region
where d = 1, they have a rather distinctive imaginary part. Mode (C) exists
for d > 1 and has phase-speed close to both the sound and cusp speeds of the
upper plasma and this mode shows the largest attenuation among all possible
modes. The real part of this solution is very similar to the numerical, but
non-physical, solution for d > 1, for the tangential case, shown in Figure
(2.2a). However, modes (A) and (C) have no counterpart in the tangential
case; this exemplifies that the range of physical solutions for leaky waves is
not so strict as for evanescent surface waves, for the tangential case. The
d = 1 value corresponds to the situation when the difference between the two
regions disappear and there is no interface. This situation was earlier studied
by Cally and Schunker (2006) and the dispersion relation for MHD waves
in this context, for small inclination angle between the wave vector and the
magnetic field, may be easily solved to give that the cph ≈ cs− or vA−. This
agrees with the value of mode (C) at this point and explains the decrease in
attenuation of modes (A) and (C), towards d = 1.

In Figure (3.3b), we plot the variation of the dimensionless phase speed of
waves for a given value of plasma-β (here taken to be 10) and we let the density
ratio of the two regions vary. This regime of parameters is more relevant to
photospheric conditions. We can see that the interface enables the propagation
of two surface modes. Comparing these solutions to the ones obtained for low
coronal conditions (i.e. β < 1) it is obvious that under photospheric conditions
these modes have a much stronger attenuation; the leakage of waves is more
accentuated in plasmas with β > 1. Mode (A) has phase speed very close
to the sound speed of the upper plasma region and an imaginary part to
the solutions with fairly large amplitude, which decreases towards zero, with
increasing density ratio. Given its propagation speed, this mode is a fast
MHD mode. This mode does not exist when the plasmas in the upper region
becomes heavier. In this case, mode (A) does not satisfy the condition imposed
on the imaginary part of its frequency. Mode (B) shows a rather interesting
characteristics as its propagation speed is sub-Alfvénic for d < 1 (the Alfvén
speed in the lower region is taken as reference), and it becomes super-Alfvénic
for d > 1. For the entire domain of its definition, the propagation speed of
waves stays close to the sound speed cs−. Given the lower phase-speed, as well
as a smaller degree of attenuation, we suggest that mode (B) is a slow MHD
mode. The sub-Alfvénic part, for d < 1 is comparable to the d < 1 solution for
the tangential case, shown in Figure (2.2b), though the real part of solutions
for the tangential and contact discontinuity cases differ greatly for d > 1.

In Figure (3.4), we show the height dependence of the vertical velocity,
for each solution, corresponding to the eigenvalues found in Figures (3.2) and
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(a) (b)

(c) (d)

(e)

Figure 3.4: Height dependence of eigenfunctions, corresponding to the eigen-
values found in Figures (3.2) and (3.3), proportional to the value G+.
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(3.3). These velocities cannot be found explicitly, and are instead given in
terms of G+. We see that, as expected for a leaky wave, all solutions increase
in amplitude away from the interface in a oscillatory fashion.

These figures clearly show that there are qualitative differences between
surface waves at the contact discontinuity, studied in the present chapter, and
surface waves at the tangential discontinuity, presented in Section 2.4. We have
already noted that the present case has complex solutions, unlike the purely
real solutions for the tangential case. Another noteworthy difference is that
there are no explicit real frequency regions where solutions are not physical,
unlike the grey shaded regions shown in Figures (2.2a) - (2.3b). However, the
imaginary part of the frequency must instead be negative, for physical solutions
to be possible, though this is a less strict condition, than the condition for the
tangential case that ω and both m± are real. The less strict condition, as
well as the higher order of the dispersion relation, admits more possible modes
than the tangential case. Thus, more modes are able to propagate for a given
plasma-β and density ratio; up to three simultaneous modes, in some cases.

3.5 Symmetry

Let us explore the symmetries of this system. With the introduction of in-
clination of the magnetic field, the symmetry between forward and backward
propagating modes is broken and so these need to be considered separately.

We first consider when the magnetic field is anti-parallel to the original
orientation. This may equally be considered as the case where the inclination of
the magnetic field with respect to the positive x-direction is given by φ = π+θ.
As a result, the sine and cosine of φ become cosφ = − cos θ and sinφ = − sin θ.
Inserting these results into the original governing equation, Eq. (3.12), we find
that the relation is unchanged and, thus, the solutions are not altered.

When the system is viewed from different angles, however, the orientation-
dependent variables are altered, despite the inherent physics of the system
remaining unchanged. One such invariant orientation is illustrated in Figure
(3.5).

We will now write these orientation-dependent variables, in terms of d, θ
and k, and thus find these in terms of the values for the original orientation,
where d = D, θ = Θ, k = K and c̃ph = W . We consider a vertical rotation of
the system by 180◦. Here d = 1/D, so the positive z-direction is reversed and
the direction of propagation also reversed, i.e. k = −K. However the angle
of inclination is unchanged. As found in Section (2.4.2), the dimensionless
phase-speed for the case d = 1/D is,

c̃2
ph

(
d =

1

D

)
=
W 2

D

The expressions for m2
± are identical to those defined for the tangential case,

though swapping definitions,

m̃2
−

(
d =

1

D

)
= m̃2

+ (d = D) , m̃2
+

(
d =

1

D

)
= m̃2

− (d = D) .
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(a) Case 1: original orientation
d = D, θ = Θ, k = Kx̂

(b) Case 2: rotation of 180◦

d = 1
D , θ = Θ, k = −Kx̂

Figure 3.5: The invariant orientations of the equilibrium system.

Due to the inversion of the vertical direction, we still require that the exponents
to be positive below the interface and negative above, i.e.

m̃−

(
d =

1

D

)
= −m̃+ (d = D) , m̃+

(
d =

1

D

)
= −m̃− (d = D) .

Inserting these expresiions for m± into the expressions for f±, we find that

f̃−

(
d =

1

D
, k = −K

)
= f+(d = D, k = K) (3.35)

f̃+

(
d =

1

D
, k = −K

)
= f−(d = D, k = K). (3.36)

Next, we consider the new forms of y±. Let us introduce a slightly different
definition: y± = ±Y±, so

Y− = i
ω

cT
− ik = y−, Y+ = i

ω

cT
+ ik = y−.

Introducing k in terms of our original wavevector, we see that

Y− (k = −K) = −Y+(k = K), z < 0, (3.37)

Y+ (k = −K) = −Y−(k = K), z > 0. (3.38)

Again, we must non-dimensionalise these expressions and so we obtain that

Ỹ−

(
d =

1

D
, k = −K

)
= −Ỹ+(d = D, k = K), z < 0, (3.39)

Ỹ+

(
d =

1

D
, k = −K

)
= −Ỹ−(d = D, k = K), z > 0. (3.40)

The new forms of Y±, in turn, give that g± for this case are equivalent to g∓
for the original case. Thus, the dispersion relation will simply give a nega-
tive expression from that found previously, which must have all of the same
solutions.
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We have, thus, confirmed that the same system, viewed from another ori-
entation will indeed give the same solutions, when following the technique
outlined in the present work. Therefore, the mathematical results confirm the
physical behaviour, even when the assumptions used above are applied.

3.6 Conclusions

This chapter considered the problem of MHD waves propagating along an
interface, in the presence of an inclined magnetic field, in a two-dimensional
configuration. For a small-angle approximation, the dispersion relation was de-
rived analytically, by employing the method of dominant balance. The effective
wavenumbers are shown to be complex, so wave amplitude decays away from
the interface in an oscillatory pattern. The complex effective wavenumbers, in
turn, give rise to complex solutions for the frequency of the waves, which would
give amplification or attenuation. However, since no outside energy source ex-
ists in this situation, only solutions with negative imaginary part are permitted
physically. These solutions correspond to MHD waves where amplitude decays
due to lateral energy leakage, towards |z| → ∞.

Solutions to the dispersion relation, for varying density ratio and plasma-
β, were found numerically. The solutions found all have negative imaginary
component, showing that the introduction of magnetic field inclination intro-
duces energy flow to the system, compared to the case with parallel magnetic
field and so even a small angle between the interface and the magnetic field
produces a qualitative change in the modes which may propagate. Thus, a con-
tact discontinuity in density and temperature, in the presence of an inclined
constant magnetic field, may support the propagation of surface leaky waves.
However, quantities averaged over a thin boundary layer do tend towards the
solutions for a tangential discontinuity, as the inclination angle tends towards
zero, so the contact and tangential discontinuity solutions are qualitatively
comparable.

Furthermore, it was found that, with an oblique field, more leaky modes
are permitted over a wider range of variables, than the surface mode solutions
to the tangential case. For the tangential case, there are no solutions for low
values of plasma-β, whereas leaky modes persist at the contact discontinuity
for all values of β. For the tangential case, each pair of values of plasma-β and
density ratio resulted in only one solution; the fast surface mode. However for
the case of the contact discontinuity, there are two propagating modes for most
values of the variables, corresponding to the fast and slow magnetoacoustic
modes. For low values of density ratio, there is even a third mode which may
propagate, which is identified as a second slow-mode.

These results may have considerable applications to the study of waves
in the solar atmosphere. In particular, the penumbra of sunspots have been
shown to have highly inclined magnetic field lines and, at high-resolutions,
running penumbral waves were detected (e.g. Giovanelli 1972, Zirin and Stein
1972). Understanding that the outer edge of the sunspot may support leaky
waves, more readily than trapped waves, could give a different explanation to
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any observed damping of running penumbral waves. While, inside the sunspot,
the sharp density variation is horizontal, in the outer edge of the penumbra
and the outer canopy, the sharp density gradient is vertical. It has been
shown (in e.g. Jess et al. 2013) that field inclination (from the horizontal)
in the penumbra is 0− 60◦, but also that the field inclination in the magnetic
canopy is 0− 35◦. Hence, small-angle approximation may have relevance to a
much wider range of applications, especially across the solar transition region,
where the density variation is sudden. This study may also be of particular
use for the investigation of transition region quakes (TRQs) (Scullion et al.,
2011), since these waves have large vertical length scales, so the transition
region may be viewed as a single interface. When considering TRQs as surface
waves propagating along an density discontinuity, the fact that interfaces with
inclined fields can only support leaky waves, may help to explain how energy
is transferred into the solar corona, through wave leakage.
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CHAPTER 4

Time-Dependent Analysis of Waves at a Con-

tact Discontinuity

The previous chapter was dedicated to the eigenvalue problem, for waves prop-
agating along contact discontinuities. The imaginary part of the frequency
gave us key information of how the amplitude of the waves changed over time.
One of the findings of that study was that, once the background magnetic
field crosses the density interface (i.e. waves propagate along a contact discon-
tinuity), waves will undergo an attenuation of their amplitude due to lateral
leakage, and this leakage can be rather important for explaining wave attenu-
ation in various solar physics applications. However, to gain a better under-
standing of the temporal evolution, an initial value problem technique must
be employed. For standard surface wave solutions, the eigenvalue solutions
correspond to the asymptotic behaviour of time-dependent solutions, i.e. the
value that solutions tend towards after long time-scales. For leaky wave so-
lutions, however, the eigenvalue solutions instead correspond to intermediate
asymptotics, where the time-scale is much greater than the period of the wave,
but less than the attenuation time. The initial value problem of waves at a
contact discontinuity is going to be addressed using the technique of Laplace
transforms.

The previous chapter has already given motivation for studying waves at
a contact discontinuity, as well as many physical applications. However, the
assumption that a leaky wave would reach a steady state (in the sense that
solutions ∼ e−iωt) may not be valid for every case, so the evolving solutions
need also be considered. Additionally, time-dependent solutions give a clear
description of the features and dynamics of waves at contact discontinuities,
which are more readily compared to observations, than the time-independent
solutions.

The equilibrium considered in this chapter is similar to that previously
considered in a Cartesian coordinate system; a constant magnetic field of the

This chapter is based on the following refereed journal article:

• Ruderman, M.S., Vickers, E., Ballai, I., Erdélyi, R. (2018); Propagation of Leaky
Surface Waves on Contact Magnetohydrodynamic Discontinuities in Incompressible
Plasmas, Physics of Plasmas, Volume 25, Issue 12
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form B0 = B0(cos θ, 0, sin θ) permeates a density interface, situated at z = 0,
separating two homogeneous plasma regions of different densities. As spec-
ified previously, we neglect gravitational effects and the equilibrium (unper-
turbed) state is static. For simplicity, we consider that the two plasma regions
are incompressible. We will, once again, consider perturbations only in the
(x, z)-plane, independent of y. The components of velocity and magnetic field
perturbation are denoted by v = (vx, 0, vz) and b = (bx, 0, bz), with vy and by
assumed to be zero.

4.1 Governing equations

The system of linearised, ideal MHD equations (see Eqs. 2.12 - 2.16) for the
incompressible plasma, therefore becomes

ρ0
∂v

∂t
= −∇p+

1

µ0

(B0 · ∇)b− 1

µ0

∇(b ·B0) (4.1)

∂b

∂t
= (B0 · ∇)v (4.2)

∇ · b = 0, (2.15)

where all variables were defined in Chapter 2 and the incompressibility con-
dition, ∇ · v = 0 is also taken into account. The perturbation to the total
pressure may also be introduced, which is defined as

PT = p+
1

µ0

b ·B0.

This allows us to rewrite Eq. (4.1) much more simply in terms of the total
pressure, as

ρ0
∂v

∂t
= −∇PT +

1

µ0

(B0 · ∇)b. (4.3)

Taking the divergence of this equation, together with the incompressibility
and solenoidal conditions allows us to obtain a simple relation for the total
pressure:

∇2PT = 0. (4.4)

Since we consider the time-dependent case, the ansatz, f ∼ f̂ exp[i(kx−ωt)]
used previously, is no longer useful. However, we still consider solutions to be
oscillatory along the interface (in the x-direction), so we now consider the
perturbations of all quantities proportional to exp(ikx), where k is a real and
positive constant. As a result, the system of equations, including Eq. (4.4),
reduces to

ρ0
∂vz
∂t

= −∂PT
∂z

+
B0

µ0

(
∂bz
∂z

sin θ + ikbz cos θ

)
, (4.5)

∂vz
∂z

+ ikvx = 0, (4.6)

∂bz
∂t

= B0

(
∂vz
∂z

sin θ + ikvz cos θ

)
, (4.7)
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∂bz
∂z

+ ikbx = 0, (4.8)

∂2PT
∂z2

− k2PT = 0. (4.9)

In order to make analytical progress, while keeping information about time
dependence, we introduce the Laplace transform with respect to time,

f̂(z, ω) =

∫ ∞
0

f(z, t)eiωtdt, (4.10)

which is defined in the upper half of the complex ω-plane. Applying the Laplace
transform to Eqs. (4.5)–(4.9) yields the following system of equations:

iωv̂z =
1

ρ0

∂P̂T
∂z
− v2

A

B 0

(
∂b̂z
∂z

sin θ + ikb̂z cos θ

)
− vz0, (4.11)

∂v̂z
∂z

+ ikv̂x = 0, (4.12)

iωb̂z = −B0

(
∂v̂z
∂z

sin θ + ikv̂z cos θ

)
− bz0, (4.13)

∂b̂z
∂z

+ ikb̂x = 0, (4.14)

∂2P̂T
∂z2

− k2P̂T = 0, (4.15)

where vz0(z) = vz(z, t = 0) and bz0(z) = bz(z, t = 0) are the initial values of
the z-components of the velocity and magnetic field perturbation. Note that
ρ−v

2
A− = ρ+v

2
A+, where the subscripts - and + indicate that the quantity is

calculated in the regions z < 0 and z > 0, respectively.
Equation (4.15) can be easily solved and has solutions of the form P̂T ∼

e±kz. Supposing that the total pressure perturbation vanishes as |z| → ∞
and it is continuous across z = 0, the physical solutions of Eq. (4.15) can be
written as

P̂T = A(ω)

{
ekz, z < 0,

e−kz, z > 0,
(4.16)

where A(ω) is an arbitrary function, that will be determined later, with the
help of the jump conditions across the interface

Eliminating b̂z from Eqs. (4.11) and (4.13) yields

v2
A

∂2v̂z
∂z2

sin2 θ + ikv2
A

∂v̂z
∂z

sin 2θ + (ω2 − k2v2
A cos2 θ)v̂z

= iωvz0 − v2
AF (z)− iω

ρ 0

dP̂T
dz

, (4.17)

where the function F (z) is defined entirely in terms of the initial value of the
z-component of the magnetic field perturbation as

F (z) =
1

B 0

(
∂bz0
∂z

sin θ + ikbz0 cos θ

)
. (4.18)
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To simplify the analysis we consider that there is no initial perturbation to the
vertical magnetic field, i.e. bz0(z) = 0, so F (z) = 0. From this, along with the
expression for PT (Eq. 4.16), we obtain a governing equation for v̂z

v2
A±
∂2v̂z
∂z2

sin2 θ+ikv2
A±
∂v̂z
∂z

sin 2θ+(ω2−k2v2
A± cos2 θ)v̂z = iωvz0±ikω

1

ρ±
A(ω)e±kz.

(4.19)
We aim to solve this equation, using the method of variation of parameters.

Firstly we find the general solution to the homogeneous equation corresponding
to (4.19) i.e. we are setting the right hand side to zero. This gives

v̂z,g = Beiλ+z + Ceiλ−z = By1 + Cy2,

where the effective wavenumbers are given by

λ± =
−kvA cos θ ± ω

vA sin θ
(4.20)

and the coefficients B and C are complex amplitudes, yet to be determined.
The method of variation of parameters states that an equation of the form

d2y

dz2
+ p(z)

dy

dz
+ q(z)y = g(z)

has a solutions of the form

y = u1(z)y1(z) + u2(z)y2(z),

where y1 and y2 are solutions of the homogeneous equation (in this case eiλ±z)
and u1 and u2 are given by

u1 = −
∫

y2g

W (y1, y2)
dz + c1, u2 =

∫
y1g

W (y1, y2)
dz + c2.

Here c1 and c2 are constants to be determined and W (y1, y2) is the Wronskian,
which may be written as,

W (y1, y2) = i(λ− − λ+)ei(λ−+λ+)z.

We are hence able to find that

u1 =
1

2vA sin θ

[
c+ +

∫ z

0

vz0(z′)e−λ+z
′
dz′ +

∫ z

0

− k

ρ±
A(ω)e(−iλ+±k)z′dz′

]
= α+ + β+ + γ+ (4.21)

and

u2 = − 1

2vA sin θ

[
c− +

∫ z

0

vz0(z′)e−λ−z
′
dz′ +

∫ z

0

− k

ρ±
A(ω)e(−iλ−±k)z′dz′

]
= −(α− + β− + γ−). (4.22)
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With the help of these quantities we write the z-component of the velocities
as

v̂z = yA + yB + yC

= (α+e
iλ+z − α−eiλ−z) + (β+e

iλ+z − β−eiλ−z) + (γ+e
iλ+z − γ−eiλ−z)

where, more explicitly,

yA =
1

2vA sin θ

(
c+e

iλ+z + c−e
iλ−z
)
, (4.23)

yB =
1

2vA sin θ

∫ z

0

vz0(z′)
[
eiλ+(z−z′) − eiλ−(z−z′)

]
dz′, (4.24)

yC =
ρ±

2kvA± sin θ
A(ω)

[
e±kz − eiλ+z

±k − iλ+

− e±kz − eiλ−z

±k − iλ−

]
=
ikω

ρ
A(ω)e±kz

1

(ω2 − k2v2
Ae
∓2iθ)

+D+e
iλ+z +D−e

iλ−z. (4.25)

Combining c± and D± into the arbitrary constants A±, we finally have an
expression for the vertical velocity,

v̂z =Beiλ+z + Ceiλ−z +
1

2vA sin θ

∫ z

0

vz0(z′)
[
eiλ+(z−z′) − eiλ−(z−z′)

]
dz′

∓ ikωA(ω)e±kz

ρ(ω2 − k2v2
Ae
∓2iθ)

(4.26)

We will us ± subscripts to denote quantities above and below the interface,
respectively.

Since we assume that ω is in the upper part of the ω-plane, it follows that
<(iλ+) < 0 and <(iλ−) > 0. The integral in the above expression can be
calculated once the profile of the initial velocity is specified, something we will
address later in this Chapter. We should also specify that the frequencies we
are going to deal with will be such that the resonance will never occur, i.e. the
denominator of the last term will never reach zero (or values near zero).

Now, we use the condition that v̂z → 0 as |z| → ∞, i.e. vertical wave
amplitudes do not increase far from the interface. For simplicity, we assumed
that vz0(z) has finite support, meaning that there is always such a zm value that
satisfies vz0(z) = 0 for |z| ≥ zm. This condition guarantees the convergence
of the integral in Eq. (4.26). When z < 0 the asymptotic behaviour of v̂z for
large |z| is given by

v̂z ∼ eiλ1+z
(
B− −

1

2vA− sin θ

∫ 0

−∞
vz0(z′)e−iλ1+zdz

)
, (4.27)

where λ1± refers to the effective wavenumbers of the lower plasma and λ2±
refers to the upper plasma. So the condition that v̂z → 0 for z → −∞ (i.e.
that the velocities are bounded far from the interface) in turn implies

B− =
1

2vA− sin θ

∫ 0

−∞
vz0(z′)e−iλ1+zdz, (4.28)
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and so the expression for v̂z in the lower plasma region is

v̂z− = eiλ1−z
(
C− −

1

2vA− sin θ

∫ z

0

vz0e
−iλ1−z′dz′

)
+

ikωAekz

ρ−(ω2 − k2v2
A−e

−2iθ)
+

eiλ1+z
′

2vA− sin θ

∫ z

−∞
vz0(z′)e−iλ1+z

′
dz′. (4.29)

In a similar fashion, when z > 0, the condition that v̂z → 0 for z →∞ is

C+ =
1

2v21 sin θ

∫ ∞
0

vz0(z′)e−iλ2−zdz, (4.30)

so the expression for v̂z in the upper plasma region becomes

v̂z+ = eiλ2+z
(
B+ −

1

2vA+ sin θ

∫ z

0

vz0e
−iλ2+z′dz′

)
+

ikωA(ω)e−kz

ρ+(ω2 − k2v2
A+e

−2iθ)
+

eiλ2−z
′

2vA+ sin θ

∫ ∞
z

vz0(z′)e−iλ2−z
′
dz′. (4.31)

Again, the expressions of the integrals will be known once particular forms for
vz0 are chosen.

4.2 Joining solutions at the interface

In order to determine the temporal evolution of various components of velocity,
we will need to join the solutions determined for each region at the interface.
The necessary continuity conditions at the contact discontinuity were derived
in Chapter 2, here we are going to use these relations with no further proof.
We are dealing with a contact discontinuity, therefore the continuity conditions
across the interface are once again

JvK = 0, JbK = 0, JpK = 0. (4.32)

Since the magnetic field is continuous across the interface, the final condition
is equivalent to

JPT K = 0. (4.33)

Combining this jump condition with Eq. (4.16), we obtain that A(ω) is also
a continuous function across z = 0. Using the incompressibility condition, we
see that

v̂x = − i
k

∂v̂z
∂z

. (4.34)

Hence, the condition of continuity of v̂x is given by
s
∂v̂z
∂z

{
= 0. (4.35)

Next, we are going to use the continuity of the two components of the magnetic
field perturbation. First, from equation (4.13), continuity of bz is equivalent
to s

∂v̂z
∂z

sin θ + ikv̂z cos θ

{
= 0. (4.36)
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Using this result, along with the solenoidal constraint, the condition that bx is
continuous becomes

s
∂2v̂z
∂z2

sin θ + ik
∂v̂z
∂z

cos θ

{
= 0. (4.37)

By simplifying Eqs. (4.36) and (4.37), the remaining continuity conditions are
thus (in terms of v̂z)

Jv̂zK = 0,

s
∂v̂z
∂z

{
= 0,

s
∂2v̂z
∂z2

sin θ + ik
∂v̂z
∂z

cos θ

{
= 0. (4.38)

Using the solutions for v̂z, given by equations (4.29) and (4.31), the jump
condition Jv̂zK = 0 results in

B+ +
ikωA(ω)

ρ+(ω2 − k2v2
A+e

2iθ)
+

1

2vA+ sin θ

∫ ∞
0

vz0(z)e−iλ2−z dz

= C− −
ikωA(ω)

ρ−(ω2 − k2v2
A−e

−2iθ)
+

1

2vA− sin θ

∫ 0

−∞
vz0(z)e−iλ1+z dz. (4.39)

Furthermore, the second jump condition, derived from continuity of vx trans-
lates into

λ2+B+ −
k2ωA(ω)

ρ+(ω2 − k2v2
A+e

2iθ)
+

λ2−

2vA+ sin θ

∫ ∞
0

vz0(z)e−iλ2−z dz

= λ1−C− −
k2ωA(ω)

ρ−(ω2 − k2v2
A−e

−2iθ)
+

λ1+

2vA− sin θ

∫ 0

−∞
vz0(z)e−iλ1+z dz. (4.40)

Equations (4.39) and (4.40) constitute a system of linear algebraic equations
for B+ and C−. Solving this system we obtain expressions for these unknowns,

C− =
kA(ω)vA−vA+ sin θ

vA− + vA+

(
iλ2+ + k

ρ+(ω2 − k2v2
A+e

2iθ)
+

iλ2+ − k
ρ−(ω2 − k2v2

A−e
−2iθ)

)
+

1

(vA− + vA+) sin θ

(
vA−
vA+

∫ ∞
0

vz0(z)e−iλ2−z dz

+
vA+ − vA−

2vA−

∫ 0

−∞
vz0(z)e−iλ1+z dz

)
, (4.41)

B+ =
kA(ω)vA−vA+ sin θ

vA− + vA+

(
iλ1− + k

ρ+(ω2 − k2v2
A+e

2iθ)
+

iλ1− − k
ρ−(ω2 − k2v2

A−e
−2iθ)

)
+

1

(vA+ + vA−) sin θ

(
vA+

vA−

∫ 0

−∞
vz0(z)e−iλ1+z dz

+
vA− − vA+

2vA+

∫ ∞
0

vz0(z)e−iλ2−z dz

)
. (4.42)
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The final jump condition,
r
b̂x

z
= 0, gives

λ1−C−
vA−

+
λ2+B+

vA+

+ k3A(ω)

(
e−iθ

ρ−(ω2 − k2v2
A−e

−2iθ)
− eiθ

ρ+(ω2 − k2v2
A+e

2iθ)

)
=

1

2 sin θ

(
λ1+

v2
A−

∫ 0

−∞
vz0(z)e−iλ1+z dz +

λ2−

v2
A+

∫ ∞
0

vz0(z)e−iλ2−z dz

)
− ivz0(0)

sin θ

(
1

v2
A+

− 1

v2
A−

)
. (4.43)

After a lengthy but straightforward calculation, using Eqs. (4.41) and (4.42),
we can isolate the coefficient function A(ω) and its expression is given by

A(ω) =
H(ω)G(ω)

kD(ω)
, (4.44)

where

D(ω) = (ρ− + ρ+)ω2 + 2ikω(ρ−vA− + ρ+vA+) sin θ − 2ρ−v
2
A−k

2, (4.45)

H(ω) = ρ−ρ+(vA+ − vA−)(ω − kvA−e−iθ)(ω + kvA+e
iθ), (4.46)

G(ω) =
iω

sin θ

(∫ 0

−∞

vz0(z)

v2
A−

e−iλ1+z dz +

∫ ∞
0

vz0(z)

v2
A+

e−iλ2−z dz

)
+ vz0(z = 0)

(
1

vA−
+

1

vA+

)
. (4.47)

The function D(ω) will play an important role in our analysis, as the singu-
larities, relating to its zeros will help determine the time dependent solutions.
The zeros occur at ω± = ±ωr + iωi, where

ωr =
ρ

1/2
− kvA−
ρ− + ρ+

√(
ρ

1/2
− − ρ

1/2
+

)2

+
(
ρ

1/2
− + ρ

1/2
+

)2

cos2 θ , (4.48)

ωi = −k(ρ−vA− + ρ+vA+) sin θ

ρ− + ρ+

. (4.49)

4.3 Finding time-dependent solutions

By inserting the solutions for A± and A(ω), given by Eqs. (4.40), (4.41) and
(4.44), into the expressions for v̂z, (4.29) and (4.31), we have obtained the
Laplace transform for the vertical velocity. With the help of this form we can
find the Laplace transforms for the other perturbed quantities. The temporal
evolution of perturbations will be found, by performing an inverse Laplace
Transform for particular types of drivers.
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Figure 4.1: A sketch of the contour in the complex ω-plane used to perform
inverse Laplace transforms of perturbations. (Taken from Ruderman, Vickers,
Ballai and Erdélyi (2018))

The time-dependent velocity, vz is thus given by the inverse Laplace trans-
form,

vz =

∫ iζ+∞

iζ−∞
v̂ze
−iωtdω, (4.50)

where the integration path, ζ is chosen in such a way that the integration line
is above all singularities of the integrand.

In order to calculate the above integral we consider the closed contour in
the complex plane, as shown in figure (4.1). Accordingly, the contour is made
up of the straight line from ω = iζ − R, to ω = iζ + R and the half circle,
C of radius R, joining these two points. The radius of the semi-circle, R is
chosen to be large enough that the zeros of D(ω), which give the poles of
A(ω), are within the contour. By performing integration over the contour and
considering the simple poles at ω±, we obtain that(∫

C

+

∫ iζ+R

iζ−R

)
v̂ze
−iωtdω = −2πi

[
resω−

(
v̂ze
−iωt)+ resω+

(
v̂ze
−iωt)] , (4.51)

where resω± are the residues at the poles, ω±, given by the the formula,

resω± = lim
ω→ω±

[
(ω − ω±)v̂ze

−iωt] . (4.52)

By considering the integral over the half-circle, it may be shown that, as R→
∞, the integral along the semi-circle vanishes, i.e.∫

C

v̂ze
−iωtdω → 0. (4.53)

Thus, the integral, (4.50) is given by −2πi times the sum of the two residues,
given above. When the residues are calculated explicitly, the vertical compo-
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nents of the velocity are found (in Appendix A) to be

vz(t, z) =eωit

{
e−iωrt

[
U1+e

kz +W1+ exp

(
[ωi − i(kvA− cos θ + ωr)]z

vA− sin θ

)]
−eiωrt

[
U1−e

kz +W1− exp

(
[ωi − i(kvA− cos θ − ωr)]z

vA− sin θ

)]}
(4.54)

for z < 0, and

vz(t, z) =eωit

{
e−iωrt

[
U2+e

−kz −W2+ exp

(
− [ωi + i(kvA+ cos θ − ωr)]z

vA+ sin θ

)]
− eiωrt

[
U2−e

−kz −W2− exp

(
− [ωi + i(kvA+ cos θ + ωr)]z

vA+ sin θ

)]}
,

(4.55)

for z > 0, where U1,2± and W1,2± are given by the expressions,

U1± =
ρ+ω±G(ω±)(vA− − vA+)(ω± + kvA+e

iθ)

2ωr(ρ− + ρ+)(ω± + kvA−e−iθ)
, (4.56)

U2± =
ρ−ω±G(ω±)(vA+ − vA−)(ω± − kvA−e−iθ)

2ωr(ρ− + ρ+)(ω± − kvA+eiθ)
, (4.57)

W1± =
G(ω±)vA−(vA+ − vA−)

2ωr(ρ− + ρ+)(vA− + vA+)(ω± + kvA−e−iθ)
×

[(ρ− + ρ+)ω2
± + 2ikω±ρ+vA+ sin θ − 2k2ρv2

Ae
−iθ cos θ], (4.58)

W2± =
G(ω±)vA+(vA+ − vA−)

2ωr(ρ− + ρ+)(vA− + vA+)(ω± − kvA+eiθ)
×

[(ρ− + ρ+)ω2
± + 2ikω±ρ−vA− sin θ − 2k2ρv2

Ae
iθ cos θ]. (4.59)

The horizontal component of the velocity, vx, can also be found by using
the incompressibility condition, (4.6), with the determined expressions for vz,
(Eqs. 4.54 and 4.55). These solutions are clearly in Fourier form, as were the
results for the previous chapter. This confirms that our assumption in the
previous chapter, that solutions would be proportional to e−iωt, was valid.

The given solutions are not valid, unless the resultant waves have been al-
lowed a sufficiently large period of time to transit outwardly from the interface.
Hence, an MHD wave in a given position may only be valid at time, t, which
exceeds the time taken to reach that position, tm. Similarly, the solutions at
some arbitrary value of time, t, will only exist in the region encompassing the
interface, |z| < zm. This is explicitly given by the conditions,

0 < z ≤ tvA+ sin θ, or − tvA− sin θ ≤ z < 0. (4.60)

The above relations are identical to the conditions imposed for yB, given in
Eq. (4.24) to be convergent.
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4.4 Small Inclination Angle Approximation

In order to more easily make comparisons with the previous chapter, we now
consider the case of a small inclination angle, θ � 1, so that the magnetic field
is close to horizontal. In this approximation (as in the previous chapter), we
take sin θ ≈ θ and cos θ ≈ 1. Then, it follows from Eqs. (4.48) and (4.49) that
a linear approximation in θ of the zeros of D(ω) results in

ωr = kCk +O
(
θ2
)
, ωi = −kθΓ +O

(
θ3
)
, (4.61)

where

C2
k =

2ρv2
A

ρ− + ρ+

, Γ =
ρ−vA− + ρ+vA+

ρ− + ρ+

. (4.62)

It is clear that the phase speed of waves is independent on the inclination
of the magnetic field (in the leading order), however, the attenuation rate is
proportional to the inclination angle. Furthermore, in this small-inclination
angle limit, the expressions for U1,2± and W1,2± reduce to

U1± = U2± = ±1

2
vz0(0) +O(θ), (4.63)

W1± = W2∓ =
iθvz0(0)Ck(vA+ − vA−)

2(Ck ∓ vA−)(Ck ± vA+

+O
(
θ2
)
. (4.64)

Using the above expressions, the small angle approximations for the vertical
velocity in leading order is thus

vz(t, z) = eωitvz0(0) cos(kCkt)

{
ekz, z < 0,

e−kz, z > 0.
(4.65)

Using the incompressibility condition we can find that the expression of the
x-component of the velocity, vx, can be found to be

vx(z, t) = ṽx(z, t) + v̄x(z, t), (4.66)

where

ṽx(z, t) = ieωitvz0(0) cos(kCkt)

{
ekz, z < 0,

−e−kz, z > 0,
(4.67)

and

v̄x(z, t) =
i

2
eωitvz0(0)Ck(vA+ − vA−)

{
u−, z < 0,

u+, z > 0,
(4.68)

where the expressions for u±, in the solution for v̄x above, are given by

u− =
1

vA−
exp

[
−kz

(
Γ

vA−
+
i

θ

)]
×
(

exp [−ikCk (t+ z/θvA−)]

Ck + vA+

+
exp [ikCk (t+ z/θvA−)]

Ck − vA+

)
, (4.69)
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Figure 4.2: The variation of the real part of horizontal velocity, vx, with respect
to time, 100 km above the interface, for two values of density ratio, d = 0.09, 9.
The inclination angle is take to be θ = 5◦

u+ =
1

vA+

exp

[
kz

(
Γ

vA+

− i

θ

)]
×
(

exp [−ikCk (t− z/θvA+)]

Ck − vA−
+

exp [ikCk (t− z/θvA+)]

Ck + vA−

)
. (4.70)

Similar expressions may be found for the magnetic field perturbations, by using
Equations (4.7 and 4.8).

Solutions obtained for vx over time are shown in Figure 4.2. For t < tm,
solutions are not plotted, as the physical velocity is unknown, since the present
analysis is only valid for t > tm. As expected, we see that waves decay over
time, due to the lateral energy leakage. The time taken for the waves to
attenuate to e−1 of the original amplitude is

td = −1/ωi =
1

θkvA−

d+ 1

d+
√
d
. (4.71)

This gives a quicker decay rate for greater Alfvén speed, as well as for greater
inclination angle, θ. This emphasises once again that the attenuation of the
waves is due to the inclination of the magnetic field. However, the decay rate
is slower for higher values of d, which means that the attenuation is much more
pronounced if the magnetic field is tilted towards the denser plasma, than if
the field is tilted towards the less dense plasma. This implies that MHD waves
in this system have a preferential propagation direction. In other words, given
the wavenumber and decay rate of a wave in a system with known Alfvén speed
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d = 10 d = 0.1
vA− = 100 km s−1 td = 9.6 s td = 30.3
vA− = 50 km s−1 td = 19.2 s td = 60.5
vA− = 10 km s−1 td = 96 s td = 303 s

Table 4.1: The attenuation times for different values of Alfvén speed, for an
inclination angle of θ = 5◦ and a typical wavenumber of 10−5 m−1.

and density ratio, it would be possible to infer the orientation as well as the
magnitude of field inclination.

Some values of attenuation time for different Alfvén speeds are shown in
Table (4.1). We see that that for chromospheric Alfvén speeds, attenuation
times may be less than 10s. These values show that the lateral wave leakage
due to the inclination of magnetic field can be a very effective way to damp
waves; particularly when Alfvén speeds are high.

4.5 Comparison to Tangential Solutions

In order to fully understand the implication of wave propagation at contact
discontinuity, we now compare the expressions for the leaky modes, found
above, with the expressions for surface waves propagating along a tangential
discontinuity. In what follows, we use the subscript ‘t’ to indicate quantities
corresponding to the surface MHD wave on the tangential discontinuity. By
taking the limit θ → 0 in Eq.(4.19), we can find that the tangential solution
for the Laplace transformed vertical velocity is

v̂zt =
1

ω2 − k2v2
At±

[
iωvz0 ± ikω

A

ρ±

]
. (4.72)

By applying the condition of continuity of vz, the remaining jump condition
for a tangential discontinuity, we find that

At(ω) =
kvz0ρ+ρ−(v2

A− − v2
A+)

(ρ+ + ρ−)ω2 − 2ρ−v2
A−k

2
. (4.73)

By using the same contour integration introduced previously, it may be shown
that

vzt = lim
θ→0

vz, vxt = lim
θ→0

ṽx, (4.74)

Since v̄x 6→ 0 we conclude that vx 6→ vxt as θ → 0. Hence, only vz tends to
the corresponding quantity in a tangential discontinuity, while vx does not.
This implies that there is no continuous transition from the leaky mode on the
contact discontinuity to the surface wave on the tangential discontinuity.

When θ � 1 the z-dependence of vx is highly spatially oscillatory, with the
oscillation wavelengths equal to

L1+ =
2πθvA−

k(Ck + vA−)
, L1− =

2πθvA−
k|Ck − vA−|

(4.75)
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for z < 0, and

L2+ =
2πθvA+

k(Ck + vA+)
, L2− =

2πθvA+

k|Ck − vA+|
(4.76)

for z > 0. These wavelengths tend towards zero, as θ → 0, making the solutions
hugely oscillatory and so difficult to compare directly to the tangential solution.

We will now introduce a different definition of continuous transition, in
terms of an average value of a function f(z), introduced in Ruderman, Vickers,
Ballai and Erdélyi (2018), and defined to be

〈f〉 =
k

2
√
θ

∫ z+θ1/2/k

z−θ1/2/k
f(z′)dz′. (4.77)

This describes an average over a small transitionary layer, with width pro-
portional to

√
θ. The choice of the averaging interval, equal to k−1θ1/2, is

somewhat arbitrary. Instead of θ1/2, we can choose any quantity that is much
smaller than unity and much larger than θ, when θ � 1. Applying this aver-
aging technique to vx, we find, to lowest order of θ,

〈ṽx〉 = ieωitvz0(0) cos(kCkt)


ekz, kz < −θ1/2,

−θ−1/2kz, k|z| ≤ θ1/2,

−e−kz, kz > θ1/2,

(4.78)

〈v̄x〉 =
1

4
θ1/2e−γtvz0(0)Ck(vA+ − vA−)


Υ1, kz < −θ1/2,

Υt, k|z| ≤ θ1/2,

Υ2, kz > θ1/2.

(4.79)

This gives the average horizontal velocity over a small height. The quantities
Υ1, Υ2, and Υt are found, through long but straightforward calculations, and
are given in the Appendix B.

It follows from Eq.(4.79) that, for any value of z, 〈v̄x〉 → 0 as θ → 0.
However, it also follows from the expressions for Υ1 and Υ2 that maxz |〈v̄x〉| →
∞ as |z| → ∞, while θ is fixed. Hence, the convergence of 〈v̄x〉 to zero is non-
uniform with respect to z.

From Eq. (4.78) we can also see that 〈ṽx〉 = ṽx = vxt for kz ≥ θ1/2. Hence,

〈vx〉 = 〈ṽx〉+ 〈v̄x〉 → ut, as θ → 0

and z 6= 0. Summarising, we can state that the difference between 〈vx〉 and vxt
is of the order of θ1/2 except for a transitional layer, surrounding the interface,
of thickness of the order of θ1/2 when θ � 1 and z is sufficiently small. It follows
from the expressions for Υ1 and Υ2 that the latter condition is equivalent to
k|z| � 1. Hence, 〈vx〉 ≈ vxt for θ1/2 � k|z| � 1.

In Figure (4.3), we compare vx, 〈vx〉 and vxt with respect to distance from
the interface, z, displaying both the real and imaginary parts of the solutions.
We see how the averaged velocity 〈vx〉, approximately connects the solutions
for the tangential discontinuity, across a boundary layer of width 2

√
θ, while

64



Figure 4.3: The real and imaginary parts of the velocity, vx, the tangential
solution for the velocity, ut and the averaged velocity, 〈vx〉, with respect to
dimensionless height, kz, across the interface, for θ = 0.001, d = 0.5 and kv1t
being the value for the 25th peak.
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also giving an approximation of the velocity, vx. For this value of θ, the average
value over the boundary layer is highly oscillatory within the boundary layer,
but the magnitude of these oscillations is proportional to θ1/2/k, so a smaller
θ would lead to a more linear solution, across a smaller boundary region and
would thus be comparable to the tangential solution.

4.6 x-dependent solutions

In order to find how solutions vary in the direction of the wave propagation, we
must perform inverse Fourier transforms of the velocities. Since the velocity
v(x, z, t) must be real, we know that v(−k, z, t) = v∗(k, z, t), where f ∗ denotes
the complex conjugate of f . By splitting the integral into positive and negative
ranges for k, we may rewrite the inverse Fourier transform as

v(x, z, t) =
1

2π

∫ ∞
0

[
eikxv(k, z, t) + e−ikxv∗(k, z, t)

]
dk. (4.80)

Inserting the expressions for vz(k, z, t) from Eq. (4.65) into the above integral
we find,

vz(x, z, t) =
1

π

∫ ∞
0

vz0(k)e−k(|z|+θΓt) cos(kCkt) cos(kx)dk. (4.81)

The above equation can be used together with particular initial conditions
to find the temporal evaluation of the wave along the x-axis. A similar cal-
culation may be performed to obtain the x-dependent form of the horizontal
component of velocity, vx, but these calculations are not presented here.

4.6.1 Delta-function driver

We first use an initial solution in the form of a delta-function, vz0(x) = πaδ(x),
where a is a positive constant with the dimension of the velocity. The delta
function can be thought of as the limit of a very short, but strong impulse
acting on the system. Such localised and impulsive sources are plentiful in the
solar physics, occurring over a very large spectrum of energies, e.g. Coronal
Mass Ejections, flares of different energies, surges, and, in general, phenomena
that are related to reconnections of oppositely oriented magnetic fields. As
a result of such interaction, sudden energy releases (in form of e.g. shocks)
take place. Such events can take place in any region of the solar atmosphere.
Strictly speaking the delta-function (also known as the Dirac-delta function) is
not a function in the normal sense as it is zero everywhere, except when x = 0,
where the function is infinite. However, given its property, the delta-function
can be a very useful function to evaluate integrals of the type shown by Eq.
(4.81), as ∫ ∞

−∞
f(x)δ(x− a)dx = f(a)

In reality, though, such very narrow drivers do not exist and this restriction will
be relaxed later by considering a wider driver. The delta-function as a driver
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has been used widely in solar physics application. For instance, Sutmann et al.
(1998) investigated the initial value problem of the generation of slow sausage
modes in gravitationally stratified plasmas and found that an initial delta-
function pulse decays at a rate proportional to t−3/2. In a similar fashion,
Ballai et al. (2008) considered the generation of kink oscillations in coronal
loops by the interaction of EIT global waves with individual coronal loops.
In the first instance the EIT wave has been approximated by a delta-function
pulse.

The delta-function perturbation gives a constant value in k-space, vz0(k) =
πal. Straightforward calculations then result in

vz(x, z, t) =
a

2
(Γθt+ |z|)

[
1

(Γθt+ |z|)2 + (Ckt− x)2
+

1

(Γθt+ |z|)2 + (Ckt+ x)2

]
.

(4.82)

We can see that the above solution (Eq. 4.82) is a superposition of two signals,
one propagating in the positive x-direction and the other in the negative x-
direction with the phase speed Ck, while dispersing outwards in the z-direction,
with phase-speed θΓ. As expected the result of a delta-function driver results
in a signal that does not oscillate, however the impulsive driver generates a
pulse that decays in intensity with time, due to energy leakage. The vertical
velocity is symmetric either side of the interface. However the region in which
this solution is physical (satisfying the condition in Eq. 4.60), has boundaries
which propagate at speeds proportional to the Alfvén speed either side of the
interface.

The solution also decays as O(t−1) as t → ∞, as the energy “leaks” away
and it is proportional to the angle θ. We should also note that, the solution
to the initial value problem when written in terms of position, rather than
wavenumber, decays as |z| → ∞, unlike the oscillatory form, when given in
terms of wavenumber.

4.6.2 Lorentz function driver

While a delta function may be a useful approximation of a large perturbation,
centred at one position, there can never be a physical perturbation that is ex-
actly a delta-function, since an infinite amplitude perturbation at a point, with
infinitesimal width would be impossible. As a more physical initial condition,
we now consider the Lorentz function, which has the form

vz0(x) =
al2

x2 + l2
, (4.83)

where a once again is a constant velocity and l is a length describing the width
of the initial perturbation. This profile has finite magnitude and non-zero
width and, therefore, constitutes a much more realistic driver than the delta-
function. In many applications it is much more convenient to use a Lorentz
function driver than the standard Gaussian function as the Lorentz function
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has a much simpler form (compared to the exponential form of the Gaussian
function), and the two functions show a very close similarity.

The Fourier transform of the driver function is

vz0(k) = πale−lk. (4.84)

Then it follows from Eq. (4.65) that

vz(k, z, t) = πal cos(kCkt) exp[−k(|z|+ l + θΓt)]. (4.85)

Again, after a straightforward calculation, we obtain

vz(x, z, t) =
al

2
(Γθt+ |z|+ l)×[

1

(Γθt+ |z|+ l)2 + (Ckt− x)2
+

1

(Γθt+ |z|+ l)2 + (Ckt+ x)2

]
.

(4.86)

Similar to the case corresponding to the delta-function initial condition, this
solution is also symmetric across the interface. The vertical velocity is shown
in the region of the (x, z)-plane for which the above function is physical, for
different times in Figure (4.4), for an inclination angle of 5◦. The velocities
are relatively low, since the initial amplitude was small, with a = 1 kms−1.
The behaviour of vz is quite similar to that given by Eq. (4.82) and it is a
superposition of two perturbations propagating in the opposite directions with
the phase speed Ck. The wave front decays with time as t−1, confirming the
attenuation of the waves, due to energy leakage. The amplitude also decays
with the distance from the interface, as we would expect from a physical wave
propagating away from an initial perturbation.

We also note that the expression given by Eq. (4.86) is almost equivalent
to that given by Eq. (4.82), when l = 0 km, apart from the factor of l. This
property is in agreement with the fact that l2/(x2 + l2)→ πδ(x) as l→ 0.

4.6.3 Sinusoidal Driver

We finally consider an initial condition, which is not centred with an intense
amplitude at only one x-position and instead take a sinusoidal driver along the
entire range of x, with vz0(x) = eiκx, for some initial wavenumber, κ, which we
assume is positive. This driver models a wave-like initial perturbation, which
would be most applicable to modelling how an interface evolves after waves
have developed (rather than an initial sinusoidal “kick” to the interface). This
particular form of the driver gives an initial perturbation in terms of k of
vz0(k) = 2πδ(k − κ).

Using the method of finding components of velocity, shown before, we can
find that

vz(x, z, t) = 2e−κ(|z|+θΓt) cos(κCkt) cos(κx). (4.87)
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Figure 4.4: An intensity plot showing the vertical component of velocity in the
(x, z)-plane over a minute, when subject to a Lorentzian driver, for θ = 5◦,
d = 0.5, vA− = 10 kms−1, a = 1 and l = 50 km. Solutions are only plotted in
the region where |z| < zm(t).
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Figure 4.5: An intensity plot showing the vertical component of velocity in
the (x, z)-plane over a minute, when subject to a sinusoidal initial driver, for
θ = 5◦, d = 0.5, vA− = 10 kms−1, a = 1 and l = 50 km. Solutions are only
plotted in the region where |z| < zm(t).

We note that in this case the wave propagating along the interface decays
in time as e−t, confirming the leaky nature of the waves, while also decaying
exponentially as |z| → ∞. However, since the initial driver is not centred on
one value, the solution does not ripple out along the x-axis in the same way
as the solution for delta function or Lorentzian initial conditions.

The time for the amplitude of these MHD waves to decay to 1/e of the
initial value, the attenuation time is independent of the initial kick and is
simply given by 1/(Γθκ). Hence, as θ → 0, the attenuation time tends towards
infinity, which gives us an intuitive understanding as to why MHD waves along
a tangential discontinuity do not display attenuation, while waves along a
contact discontinuity do. By replacing k by κ, we obtain the formula for
attenuation time given by Eq. (4.71) and so for κ = 10−5 m−1, we achieve the
attenuation times given by Table (4.1).

Finally, we point out that in order to derive Eqs. (4.82), (4.86) and (4.87) we
used Eq. (4.65), which is only valid when the conditions given by Eq. (4.60) are
satisfied. Taking into account that Eq. (4.65) is derived for θ � 1, we conclude
that Eqs. (4.82) and (4.86) are only valid when the following conditions are
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satisfied:

t ≥ zm
θ

max

(
1

vA−
,

1

vA+

)
, −tθvA− ≤ z ≤ tθvA+. (4.88)

We recall that zm is determined by the condition that vz0(z) = 0 for |z| ≥ zm,
while there is such z ∈ (−zm, zm) that vz0(z) 6= 0.

4.7 Conclusions

This chapter confirmed many of the results of the previous chapter, including
the leaky nature of waves, causing attenuation, while further providing an
explicit description of the wave dynamics in terms of time and positions, for
possible initial conditions.

While the previous chapter used an eigenmode analysis to study waves at
a contact discontinuity, this chapter explored the same configuration as an
initial value problem, for the incompressible case. Since compressibility was
neglected, magnetic tension was the only restoring force, so only one mode
was present, reducing the complexity of the problem as compared with the
compressible case, allowing time-dependent analytical solutions to be found.
The solution was obtained using a Laplace transform and the initial perturba-
tions were assumed to be localised to the interface. These Laplace-transformed
solutions were then inverted using a contour integration to achieve solutions
for perturbations in terms of wavenumber and time. Solutions are only de-
termined in the interval −tvA− < z < tvA+, proportional to the time it takes
perturbations to propagate away from the interface.

We, once again, showed that leaky modes were present when the equilib-
rium magnetic field was inclined. The amplitudes of these modes exponentially
decay with time and exponentially increase with the distance from the contact
discontinuity, showing that the contact discontinuity supports qualitatively
different modes than the tangential discontinuity. Moreover, as with the time-
independent case, the amplitude of the modes were oscillatory in z and the
wavelength of these amplitude oscillations is proportional to the inclination
angle, so becomes highly spatially oscillatory for small inclination of the mag-
netic field. As previously, this suggested that there is no smooth transition to
the tangential case, however, by introducing an average with respect to z over
an interval of length 2

√
θ/k, we showed that the averaged quantities tend to

the tangential solutions as θ → 0.
By performing inverse Fourier transforms, we found solutions in terms of

position, rather than wavenumber, for some possible initial perturbations. This
provides some examples of how leaky modes at surface discontinuities may
appear in physical observations of the solar atmosphere. Two of the examples
of initial conditions used were a Lorentz function and a delta function, which
have a large initial amplitude centred at one position. The delta-function pulse
has been used previously to model both kink and sausage waves in coronal
structures, started by an impulsive event (see Sutmann et al. 1998, Ballai et al.
2008) The solutions with delta-function and Lorentz-function initial drivers
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could also model waves along the transition region, excited by the buffeting
from spicules, below, such as in the model of transition region quakes, described
by Scullion et al. (2011). The third initial condition example was sinusoidal,
providing a possible model for contact discontinuities, in many solar structures,
when incident with an MHD waves, such as those produced throughout the
solar atmosphere after large-scale CMEs and related events. However, the
sinusoidal initial perturbation may be more relevant as a model of how an
interface evolves after waves have developed. All of these solutions, for all
three initial conditions, clearly show wave attenuation over time; as there are
no outside energy sources or sinks and there are no other methods of energy
dissipation are present, this must clearly be due to energy leaking outwards.
Using typical solar atmospheric values we found that the attenuation of waves
due to wave leakage is very effective. The region in which these solutions
are physical propagates outwards over time, as do the velocity perturbations,
which demonstrate the energy flow away from the interface, while, for a given
time, the amplitude exponentially decays away from the interface.
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CHAPTER 5

An Introduction to Instabilities

The hydrodynamic Rayleigh-Taylor instability (RTI), first explored by Rayleigh
(1900) and later by Taylor (1950), for the incompressible case in the context of
fluid dynamics, concerns the instability of an interface, separating two fluids
with different properties, where a dense fluid is supported above a lighter fluid,
in the presence of a vertical gravitational force. The Magnetic Rayleigh-Taylor
(MRT) instability was studied for the case of a horizontal magnetic field by
(e.g. Kruskal and Schwarzschild 1954, Parker 1966). The magnetic field in
this case was found to provide a stabilising effect to perturbations propagating
in the direction of the magnetic field, by supplying magnetic tension, which
counteracts buoyancy. The magnetic field also introduces a preferential direc-
tion, as perturbations perpendicular to the magnetic field are not supported
by magnetic tension and so are analogous to the hydrodynamic case. The
particular effect of inclination on wave propagation, with respect to magnetic
field direction, was most notably investigated by Chandrasekhar (1961).

Over the years, many advances have been made in the theory of MRT
instabilities that helped to understand its complex properties. Among other
effects, compressibility has been widely investigated (Vandervoort 1961, Shiv-
amoggi 1982, Bernstein and Book 1983, Ribeyre et al. 2004) and is in general
found to stabilise against MRT instability. Recently developments have been
made to analyse the effect of sheared magnetic fields (Ruderman et al. 2014,
Ruderman 2017). The growth time of unstable modes was found to be de-
pendent on the shear angle and, by using the growth rate of instabilities, the
shear angle of observed prominences was determined, using an estimation of
the Alfvén speed and lifetimes of the prominence threads. Partial ionisation
has also been introduced into the models describing the generation of MRT
instability in the lower part of the atmosphere (Dı́az et al. 2014, Ruderman,
Ballai, Khomenko and Collados 2018), and the results show that, in partially
ionised plasmas, the interface becomes unstable for all wavelengths, provided
the plasma is partially ionised on both sides of the interface.

Interest in MRT instabilities has grown recently, due to their many appli-
cations in an astrophysical context. For example, the filamentary structure of
the Crab Nebula, could well be due to Rayleigh-Taylor instability, as was cor-
roborated by comparisons made by Hester et al. (1996) between the observed
structuring and MRT instability simulations, made by Jun and Norman (1995).
Other examples of where MRT instabilities may develop are in supernovae (Jun

73



et al. 1996, Chevalier 1982), accretion discs (Wang and Nepveu 1983, Kulkarni
and Romanova 2008), buoyant magnetic bubbles in galaxies (Robinson et al.
2004, Jones and De Young 2005) and relativistic jets (Matsumoto and Masada,
2013).

Of particular note to the present thesis, there are many examples where
MRT may be at work in the solar atmosphere. Isobe suggested (Isobe et al.
2005, Isobe et al. 2006) that the “fingers” that develop in MRT instabili-
ties are responsible for the filamentary structure in emerging flux regions.
Most notably, solar prominences are likely to become Rayleigh-Taylor unsta-
ble, since they are composed of cool, dense plasma, suspended above much
lighter plasma. Filamentary threads of prominences were modelled analyti-
cally by Terradas et al. (2012), who found that the MRT instability caused
filaments in quiescent prominences to have very short lifetimes, but that in
active regions, the magnetic tension may be sufficient to stabilise these promi-
nences. MRT instabilities in observed prominences have been investigated by
Ryutova et al. (2010) to explain plumes and even to determine the magnetic
field strength from the wavelength and growth rate of instabilities. This was
expanded upon by (Innes et al., 2012), who used the critical wavelength to es-
timate the Alfvén speed, and (Carlyle et al., 2014), who used a most unstable
mode analysis to find the magnetic field strength, in fragmenting eruptions of
filaments. For a more comprehensive review, see Hillier (2018).

5.1 Gravitational Instabilities

When a sharp interface separates a dense fluid, above, from a less dense fluid,
below, the Rayleigh-Taylor instability may occur. When a magnetic field is
present in a plasma, with a horizontal component, the magnetic tension helps
to support the plasma against gravity. However, over a threshold density
ratio (for a given wavenumber), or under a threshold wavenumber (for a given
density ratio), the system is still prone to instabilities: a magnetic variation
on the Rayleigh-Taylor instability. This is sometimes referred to as either the
Parker instability, if the wave-vector, k is parallel to the magnetic field (see
Parker 1966), or the Kruskal-Schwarzschild instability, if k is perpendicular to
the magnetic field, as well as gravity (see Kruskal and Schwarzschild 1954).

Although we intend to study the possibility of magnetic Rayleigh-Taylor
instability generation at a contact discontinuity (later in Chapter 6), it is
important to understand the manifestations of other instabilities in order to
separate any effects of these from our results and to focus solely on RTI. For
instance, the collapse seen in the Jeans’ instability may appear similar to the
downward “fingers” of the RTI, also, the continuing motion of perturbations in
convective instabilities may seem like plasma motions either side of the RTI,
depending on the direction of perturbations, since the onset of instabilities
may all appear similar.

In order to understand the way this important instability appears and what
the effects of different physical parameters are in its development, we are going
to briefly review the family of gravity-induced instabilities. In a plasma where
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gravitational effects may not be ignored, there are three predominant kinds
of instabilities that may arise: Rayleigh-Taylor, Convective and Gravitational
instabilities.

Gravitational instabilities occur where a plasma collapses under its own
weight. The simplest case is that of a homogeneous plasma, known as the
Jeans instability, which occurs primarily in interstellar gas clouds (Jeans,
1902). However, since this is due to the height dependence of gravity and
it is customary to only consider self-gravity when discussing Jeans instability,
it will not be considered further in the present work.

5.1.1 Convective instabilities

The second form of instability that may be present are convective instabilities.
These occur in plasmas where the stratification is insufficient to stabilise the
buoyancy force. In a homogeneous plasma this has the effect that, if a plasma
element is displaced upwards, it will continue to rise, with the rest of that
column of plasma, uninhibited. This sort of instability is thought to operate
in the solar convective zone, helping the hot plasma at the base of the region
to rise against gravity and form the granular pattern on the solar surface.

A vertically stratified, non-magnetic, fluid is convectively stable if the
Brunt-Väisälä frequency, N satisfies the condition N2 > 0, where

N2 = −g
(

1

ρ

∂ρ0

∂z
+
g

c2
s

)
,

where gravitational stratification is taken to occur in the z-direction. In a mag-
netized plasma, this frequency is modified by the magnetic field. In the case of
a horizontal magnetic field, this frequency was determined previously by Chen
and Lykoudis (1972) and for the more general case of an inclined magnetic
field in a spherical coordinate system, the value of N was found by Ershkovich
and Israelevich (2000). The derivation given by the latter is repeated here, for
a Cartesian geometry, where linearisation has not been applied.

The Lorentz force acting upon a plasma element is given by

FL = (∇×B)×B/µ0 = − 1

2µ0

∇B2 +
1

µ0

(B · ∇)
B

B
,

where B is the total magnetic field. If there is primarily inhomogeneity in the
z-direction only (e.g. due to gravitational stratification), the equilibrium field
would depend mostly on z, therefore (B · ∇)B ≈ Bz∂B/∂z, where Bz is the
component of magnetic field in the z-direction. This approximation will be
used to find an expression for the magnetic Brunt-Väisälä frequency, under
the assumption that inhomogeneity perpendicular to gravity is negligible.

The momentum equation for a plasma in hydrostatic equilibrium is

−∇p+ FL + ρg = 0.
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By using the expression for the Lorentz force given above, we are able to find
that the z-component of the momentum balance gives,

dp

dz
= − 1

µ0

B
dB

dz
+

1

µ0

B2
z

B

dB

dz
− ρg = −v2

Ah

ρ

B

dB

dz
− ρg, (5.1)

where v2
Ah

= (B2 −B2
z )/µ0ρ.

If we consider a plasma element, which is subject to a small vertical, trans-
lational perturbation, ξ from the equilibrium, in the z direction, the change in
pressure within the plasma element is given by

δpin = c2
sδρin = −v2

Ah

ρ

B

dB

dz
ξ − ρgξ,

where δpin and δρin are the changes in pressure and density, respectively within
the plasma element and cs is the sound speed. Due to the frozen-in nature of
the magnetic field, B/ρ is conserved, hence

c2
sδρin = −v2

Ah
δρin − ρgξ.

Therefore, the change in density inside the plasma element is

δρin = − ρgξ

c2
s + v2

Ah

.

On the other hand, the change in density outside of the perturbed element is
simply

δρout =
dρ

dz
ξ.

Using Archimedes’ law, which states that the buoyancy force for a fluid element
is given by g(δρout − δρin), the motion of the displaced plasma element is
described by

ρ
d2ξ

dt2
+ g

(
∂ρ0

∂z
+

gρ

c2
s + v2

Ah

)
ξ = 0.

This equation describes oscillations of the fluid element, with a frequency given
by the magnetically modified Brunt-Väisälä frequency,

N2
B = −g

(
1

ρ

∂ρ0

∂z
+

g

c2
s + v2

Ah

)
. (5.2)

For the inclined field case, considered in this thesis, the equilibrium magnetic
field is given by B0 = B0(cos θ, 0, sin θ). Hence, the magnetic Brunt-Väisälä is
given by,

N2
B = −g

(
1

ρ

∂ρ0

∂z
+

g

c2
s + v2

A cos2 θ

)
. (5.3)

The criterion for convective stability is simply that N2
B, given in Eq. (5.3),

is positive. This may equivalently be written,

−dρ0

dz
>

ρ2
0g

γp0 +B2
t

, (5.4)
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where Bt is the tangential component of the magnetic field, i.e. B2
t = B2

x +
B2
y . The Brunt-Väisälä frequency for the magnetic case is higher than the

corresponding value for the fluid case, which means that the magnetic field
stabilises the system against convective instability. If we assume that on the
local scale, stratification is negligible, i.e. dρ0

dz
→ 0, the above criterion is not

satisfied, so for a homogeneous plasma there must be convective instability.
The maximum growth rates, given by the imaginary part of the frequency, are
found in Newcomb (1960) to be

max(=(ω)) =

{
g

ρ

(
ρ2g

γp+B2
t

+
dρ

dz

)}1/2

if − dρ

dz
<

ρ2gγp

(γp+B2
t )

2
, (5.5)

max(=(ω)) =

 ρg

B2
t

[
1−

(
−γp
ρ2g

dρ

dz

)1/2
]2


1/2

if
ρ2gγp

(γp+B2
t )

2
< −dρ

dz
<
ρ2g

γp
.

(5.6)
Thus, for the homogeneous case,

max(ω2
I ) =

ρg2

γp+B2
t

.

Hence, we have two necessary conditions to test whether a given instability
is convective. Firstly, if Eq. (5.4) is not satisfied, then there is instability.
Secondly, the growth rate of the instability must not exceed the values given
by Eqs. (5.5) and (5.6). If either one of these conditions are not satisfied, the
instability cannot be generated due to convection.

5.2 Hydrodynamic Rayleigh-Taylor Instabili-

ties

Now let us consider the Rayleigh-Taylor instability in detail. The most straight-
forward case of the Rayleigh-Taylor instability is that of the purely hydrody-
namic case, where two homogeneous incompressible fluids are separated by a
sharp horizontal interface. We take gravity to act in the negative z-direction,
i.e. g = −gẑ, and the interface to be situated at z = 0.

In the absence of a magnetic field, linear fluid dynamics are described by
the two equations

∂ρ

∂t
+ v · ∇ρ0 = 0, (5.7)

ρ0
∂v

∂t
= −∇p− ρgẑ, (5.8)

that should be considered together with the incompressibility condition,

∇ · v = 0. (5.9)

Perturbations are assumed to be wavelike in the (x, y)-plane, so are of the
form f = f̂ exp[i(kxx + kyy − ωt)], where, as usual, f̂ is the amplitude of an
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arbitrary perturbation, that can depend on z and the background density is
dependent only on height, ρ0 = ρ0(z). Hence, the governing equations are
written in terms of components as,

−iωρ̂+ v̂z
∂ρ0

∂z
= 0 (5.10)

iωρ0v̂x = ikxp̂, (5.11)

iωρ0v̂y = ikyp̂, (5.12)

iωρ0v̂z =
∂p̂

∂z
+ ρ̂g. (5.13)

Applying the same ansatz to the incompressibility condition results in

i(kxv̂x + kyv̂y) +
∂v̂z
∂z

= 0. (5.14)

We multiply Eq.(5.11) by ikx and Eq.(5.12) by iky, sum the two and use
Eq.(5.14), to obtain,

iωρ0
∂v̂z
∂z

= k2p̂, (5.15)

where k2 = k2
x + k2

y. Substituting expressions for ρ̂ and p̂ given by Eqs. (5.10)
and (5.15) into the z-component of the momentum equation, Eq. (5.13), the
governing equation is found to be

∂

∂z

(
ρ0
∂v̂z
∂z

)
− k2ρ0v̂z =

gk2

ω2
v̂z
∂ρ0

∂z
. (5.16)

The gravitational scale-height of the medium, H, gives a measure of how
quickly the pressure and density change with height. In an isothermal atmo-
sphere, H = c2

s/g and the height-dependence of density is given as

ρ0(z) = ρ0(z = 0) exp

(
−z
H

)
. (5.17)

If the vertical length scales of perturbations in the system are small compared
to the scale-height, the fluid may be considered locally homogeneous and so
the density (and pressure) may be considered as constants on the small scale.
This allows us to take ρ′0 → 0, so Eq. (5.16) reduces to

∂2v̂z
∂z2
− k2v̂z = 0,

which has solutions v̂z ∼ e±kz. Further, requiring that solutions are evanescent
far away from the interface, we obtain

v̂z =

{
A−e

kz, z < 0,

A+e
−kz, z > 0,

(5.18)

where the amplitudes A− and A+ will be determined by imposing the necessary
boundary conditions at the interface.
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The requirement that the component of velocity perpendicular to the in-
terface is continuous across the interface, gives that A− = A+. Further, in-
tegrating Eq. (5.16) with respect to z across the boundary, the second jump
condition is found to be

s
ρ0
∂v̂z
∂z

{
=
gk2

ω2
v̂z Jρ0K . (5.19)

This is equivalent to the condition for continuity of pressure across the inter-
face, given in Section (2.3). Very often, in hydrodynamics these jump condi-
tions (or boundary conditions) are called the kinematic and dynamic boundary
conditions. Using the solutions found above (Eq. 5.18), the frequency of the
waves is given by

ω = ±
√
−gkρ+ − ρ−

ρ+ + ρ−
. (5.20)

This expression becomes imaginary if ρ+ > ρ−. Thus, rather unsurprisingly,
the system is unstable if the upper fluid is denser. The growth-rate is higher,
the greater the difference between the two densities, though this is reduced
as the total of the two densities increases. This is seen more clearly if we
introduce the density ratio, d = ρ−/ρ+, so that the frequency is given by

ω = ±
√
−gk1− d

d+ 1
. (5.21)

There is a limiting value as d→ 0, since the instability rate cannot be higher
than that due to pure gravitational acceleration of a fluid parcel. It may also
be seen, from the above expression for ω, that the system is more unstable to
short wavelength perturbations. These two results are illustrated in the plots
shown in Figure (5.1).

It is clear that the growth rate of the instability increases with the wavenum-
ber, for any density ratio, and all rates are smaller than the limiting value we
obtain for d → 0. In the right-hand side panel we plot the variation of the
frequency for a large spectrum of density ratio, and for several values of the
wavenumber, k. The RT instability occurs when d < 1 (the left-hand side
branch or curves, shown in red), while the right-hand side branch (curves
shown in blue) correspond to propagating surface gravity waves, that propa-
gate with no amplification due to gravity .
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(a) Imaginary part of the frequency of
hydrodynamic Rayleigh-Taylor instabil-
ity as a function of wavenumber, for
varying density ratio. The limit of d→
0 is shown in black.

(b) Frequency of hydrodynamic
Rayleigh-Taylor instability as a func-
tion of density ratio, for several
wavenumber values. The propagating
modes, corresponding to d > 1 are
purely real and are plotted in blue.
The RT unstable modes are purely
imaginary and are shown in red.

Figure 5.1: Solutions for the hydrodynamic RTI and propagating modes, in
terms of wavenumber and density ratio.

5.3 Stability of a Plasma Supported by a Hor-

izontal Magnetic field

Since the present thesis deals with solar plasmas, where magnetic fields play
a crucial role, we will expand this introductory section to review some charac-
teristics of the RTI in the presence of magnetic fields, and here we will discuss
the properties of this instability when the ambient magnetic field is horizontal
and vertical, i.e. parallel and perpendicular to the density interface. The case
of RTI in the presence of a horizontal magnetic field was first investigated by
Kruskal and Schwarzschild (1954). The following derivation is based on that
presented in Chandrasekhar (1961).

The background magnetic field is set to be horizontal and parallel to the
interface, i.e. B0 = B0x̂, and the gravity is taken to be in the negative z-
direction, i.e. g = −gẑ (see Fig.5.2). The linearised, incompressible, ideal
MHD equations for this situation (once again taking perturbations to be of
the form f = f̂ exp[i(kxx+ kyy − ωt)]) are,

−iωρ̂+ v̂z
∂ρ0

∂z
= 0, (5.10)

−iωρ0v̂x = −ikxp̂, (5.11)

−iωρ0v̂y +
B0

µ
[iky b̂x − ikxb̂y] = −ikyp̂, (5.22)

−iωρ0v̂z = −∂p̂
∂z
− B0

µ

[
∂b̂x
∂z
− ikxb̂z

]
− ρ̂gẑ, (5.23)
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Figure 5.2: A sketch of the equilibrium configuration for the case of a horizon-
tal magnetic field. The equilibrium state consists of a surface separating two
regions, each with different density. The magnetic field is horizontal and uni-
form in each region. The configuration is invariant in the x- and y-directions
and perturbations are in the direction of the wavevector k in the (x, y)-plane.

−iωb̂ = ikxB0v̂, (5.24)

ikxv̂x + ikyv̂y +
∂v̂z
∂z

= ikxb̂x + iky b̂y +
∂b̂z
∂z

= 0. (5.25)

By using the condition of incompressibility, as well as the solenoidal constraint
(given by Eq.5.25), we may write the y-components of the velocity and mag-
netic field perturbation in terms of the x and z-components as,

v̂y =
i

ky

(
ikxv̂x +

∂v̂z
∂z

)
, b̂y =

i

ky

(
ikxb̂x +

∂b̂z
∂z

)
, (5.26)

and so the y-component of the momentum equation, Eq. (5.22) becomes

ω

ky
ρ0

(
ikxv̂x +

∂v̂z
∂z

)
+
B0

µ

[
iky b̂x +

kx
ky

(
ikxv̂x +

∂v̂z
∂z

)]
= −ikyp̂. (5.27)

Using equations (5.10), (5.11) and (5.22), we can find the expressions for ρ̂, p̂
and b̂, in terms of v̂ and, therefore, the y and z-components of the momentum
equation are found to be,

−ik
2

kx

[
k2
x

B2
0

µ
− ρ0ω

2

]
v̂x =

[
k2
x

B2
0

µ
− ρ0ω

2

]
∂v̂z
∂z

, (5.28)

[
iω2ρ0 − ik2

x

B2
0

µ
+ ig

∂ρ0

∂z

]
v̂z =

ω2

kx

∂

∂z
(ρ0v̂x)−

B2
0kx
µ

∂v̂x
∂z

. (5.29)
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Equation (5.28) simplifies to give that

v̂x = i
kx
k2

∂v̂z
∂z

,

so we may formulate Eq.(5.29) in terms of vz alone as the governing equation,

∂

∂z

[
ρ0
∂v̂z
∂z

]
− k2

xB
2
0

µω2

[
∂2

∂z2
− k2

]
v̂z − k2ρ0v̂z =

gk2

ω2
v̂z
dρ0

dz
. (5.30)

After comparing this governing equation with Eq. (1.17), it is clear that the
second term in the above equation is the addition due to the presence of the
magnetic field.

We now consider the situation when a horizontal interface separates two
plasmas, which may each be taken to be locally homogeneous. The densities
either side of the interface are thus given by ρ− in the lower region and ρ+ in
the upper region and are taken to be constants, close to the interface (locally
homogeneous). In the two plasma regions, Eq. (5.30) becomes,

(ω2 − k2
xv

2
A)

[
∂2v̂z
∂z2
− k2v̂z

]
= 0, (5.31)

which, similar to the hydrodynamic case, has evanescent solutions in the form
vz = A±e

±kz, where, again, the two coefficients, A± will be determined once
boundary conditions at the interface are applied and the ± subscript denotes
values below (z < 0) and above (z > 0) the interface. Using the continuity of
vz across the interface, A+ = A− = A and so the surface wave solutions are

v̂z = A

{
ekz, z < 0,

e−kz, z > 0.
(5.32)

Integrating Eq. 5.30 across the boundary we arrive at
s
ρ0
∂v̂z
∂z

{
− k2

xB
2
0

µω2

s
∂v̂z
∂z

{
=
gk2

ω
v̂z(z = 0) Jρ0K . (5.33)

This equation is identical to the condition we would obtain by imposing the
continuity of pressure in the presence of gravity (see Section (2.3)). Substitut-
ing in the solutions (5.32) and rearranging, we find,

ω2 =
gk(ρ− − ρ+)

ρ− + ρ+

+
2k2

xB
2
0

µ(ρ− + ρ+)
. (5.34)

Once again, using the density ratio, d = ρ−/ρ+, and also using the Alfvén
speed, vA− =

√
B2

0/µρ−, this stability criterion may be written as,

ω2 = −gk(1− d)

d+ 1
+

2dk2
xv

2
A−

d+ 1
. (5.35)

Since the second term of the above relation is strictly positive, we see that
the magnetic field has a stabilising effect, with a higher magnetic field strength
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Figure 5.3: Frequency of waves in the presence of a horizontal magnetic field,
in terms of wavenumber. The real part of solutions is shown in blue and the
imaginary part in red, while solutions for different propagation directions are
shown with different line-styles.

reducing the growth rate, if it is unstable. This result is easy to understand,
as the horizontal magnetic field is (through the magnetic tension) opposing
perturbations in the vertical direction, in a similar manner to surface tension
in a hydro-dynamic case.

For perturbations in the x-direction, (i.e. ky = 0, k = kx),the magnetic
field also reduces the range of k values for which instability exists. It must
now be in the range

0 < k <
g(1− d)

2dv2
A−

,

if the system is to remain unstable. For any given value of k, there is a much
stricter condition on the densities for instability to take place than for the
hydrodynamic case, i,e,

ρ+ > ρ− +
2k2v2

A

gk
.

However, when kx = 0, so k = ky, the stability criterion is identical to the
hydrodynamic case. Thus, we see that the direction of the perturbations also
has an effect on the stability. In order to make this clearer, we introduce
α, to indicate the angle between the wave vector k and the x-axis, so that
kx = k cosα and ky = k sinα. The numerical analysis of the above stability
criterion is shown in Fig. (5.3). It is clear that there is always a critical
wavenumber, kc, below which waves are RT unstable. For k > kc, waves
are propagating. For the y-propagating case, we see that kc = 0, like the
hydrodynamic case. Similar to the hydrodynamic case, here we introduced α as
the angle between the ambient magnetic field and the direction of propagation.
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5.4 Stability of Plasma Permeated by a Verti-

cal Magnetic Field

While the previous section has given us an understanding of the effect of a
magnetic field on Rayleigh-Taylor instabilities at a tangential discontinuity,
this thesis is concerned with contact discontinuities. We therefore need to
consider the case of a magnetic field with a component intersecting the inter-
face. We begin with the simplest magnetic field configuration for a contact
discontinuity, i.e. the case where the magnetic field is purely perpendicular to
the interface and parallel to gravity. Hence, using the same gravitational field
configuration as before, g = −gẑ, and the background magnetic field is now
taken to be B0 = B0ẑ. Once again, this instability is considered at an interface
between two homogeneous plasmas, with the denser plasma supported above
the sparser plasma (ρ− < ρ+). This problem has been considered initially by
Chandrasekhar (1961) (among others), and key points of the derivation are
repeated here for completeness.

When written in terms of Fourier expanded components, the linearised,
incompressible, ideal MHD equations for this case, in the incompressible limit
in the presence of a vertical magnetic field, are

−iωρ̂+ v̂zρ
′
0 = 0 (5.10)

−iωρ0v̂x = −ikxp̂+
B0

µ

(
∂b̂x
∂z
− ikxb̂z

)
, (5.36)

−iωρ0v̂y = −ikyp̂+
B0

µ

(
∂b̂y
∂z
− iky b̂z

)
, (5.37)

−iωρ0v̂z = −∂p̂
∂z
− ρ̂g, (5.38)

−iωb̂ = B0
∂v̂

∂z
, (5.39)

where ρ′0 = ∂ρ0/∂z. The above system of equation has to be supplemented
by the incompressibility condition, ∇ · v = 0 and the solenoidal constraint,
∇ · b = 0.

For a locally homogeneous plasma, the above equations may be combined,
using a similar method as for the horizontal magnetic field, into the governing
equation, (

∂2

∂z2
− k2

)(
v2
A

∂2

∂z2
+ ω2

)
(v̂z) = 0. (5.40)

The solutions of the above governing equation are of the form v̂z ∼ eΓz, where

Γ = ±k,± iω
vA
.
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We require once again that solutions decay away from the interface. Insta-
bility rather than attenuation of perturbations is being investigated, so it is
assumed that =(ω) ≥ 0 and so evanescent solutions are given by

v̂z =

{
A− e

kz +B− e
−iω
vA−

z
z < 0,

A+ e−kz +B+ e
iω

vA+
z

z > 0,
(5.41)

where, again, the ± subscript refers to solutions above and below the interface
and vA± denote the Alfvén speeds in the two regions.

This is a contact discontinuity, with gravity taken into account, so the
appropriate continuity conditions across the interface are (see the derivation
in Section (2.3))

Jv̂zK = 0,
q
v̂||

y
= 0,

r
b̂z

z
= 0,

r
b̂||

z
= 0,

s
∂p̂

∂z
− gρ0v̂z

{
= 0,

where v|| =
√
v2
x + v2

y . Using the MHD equations, (5.10), (5.36) - (5.39), these
jump conditions can be given in terms of v̂z as,

Jv̂zK = 0, ,

s
∂v̂z
∂z

{
= 0,

s
∂2v̂z
∂z2

{
= 0,

s
gρ0v̂z −

1

k2

[
B2

0

µ

(
∂2

∂z2
− k2

)
+ ω2ρ0

]
∂v̂z
∂z

{
= 0

Using the solutions, shown by Eq. (5.41) the continuity conditions may be
combined into a matrix equation, to give

MA =
1 1 −1 −1
k − iω

vA−
k − iω

vA+

k2 − ω2

v2A−
−k2 ω2

v2A+

ρ−

(
g − ω2

k

)
ρ−(g − iωvA−) −ρ+

(
g + ω2

k

)
−ρ−(g + iωvA+)



A−
B−
A+

B+

 = 0.

(5.42)

Non-trivial solutions of the above system of equations are given by det(M) = 0.
This equation may be written explicitly as the dispersion relation,

(ω − ikvA−)
(
ω − ikd1/2vA−

)
q = 0 (5.43)

where,

q = (1+d)ω3 +2ikvA−(d1/2 +1)ω2 +k[2kv2
A−+g(d−1)]ω−2igk2vA−(d1/2−1),

(5.44)
and the density ratio is defined as d = ρ−/ρ+. As noted by Chandrasekhar
(1961), the roots given by ω = ikvA− and ω = ikd1/2vA− lead to trivial solu-
tions for velocity. Removing these factors, the remaining cubic polynomial has
three solutions, but only one solution has non-negative imaginary part, which
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Figure 5.4: Imaginary part of the frequency against wavenumber for the case
of vertical magnetic field, i.e. normal to the density interface.

was a necessary condition in the current calculation. This solution is unstable
for all values of wavenumber, when the upper plasma is denser, i.e. d < 1. In
fact, when d < 1, this solution has no real part, so is a pure instability, rather
than an unstable propagating wave.

Solutions of the only physical root of the equation q = 0, for various density
ratios, are plotted against wavenumber in Figure (5.4). We can see that the
instability rate increases with wavenumber and also increases as d decreases.
Unlike the tangential case however, the system is unstable for all wavenumbers,
provided d < 1. The propagation direction has no effect, since the system is
rotationally symmetric with respect to the z-axis.

As k → ∞ the frequency tends to a fixed value, ω → (1 − d1/2)/
√

1 + d,
unlike the hydrodynamic case, where ω increases indefinitely with k.
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CHAPTER 6

Magnetic Rayleigh-Taylor Instability at a Con-

tact Discontinuity

Despite the horizontal and vertical magnetic field configurations of the MRT
instability having been extensively studied by previous authors, little work has
been done to investigate the effect of magnetic field inclination on stability of
density interfaces. The present chapter is dedicated to the analysis of this case,
relevant to several solar applications. For example, arcade-type prominences,
with typical “dipped” magnetic field structure, which intersects the denser
upper plasma are excellent cases where the stability of contact discontinuities
become pertinent,(see Figure 1.4). We will determine the governing equations
of wave propagation and analytically calculate the growth rate of instability
in terms of equilibrium parameters, for the case of a contact discontinuity, of
an incompressible plasma.

Although this is inherently a 3D problem, we will begin with the simpler
cases, looking at the problem in two dimensions: considering the problem in the
plane of the field inclination (the (x, z)-plane) and perpendicular to this (the
(y, z)-plane), separately. These preliminary studies will show clearly some of
the important factors at work, that may be obscured in the more complicated
three-dimensional case. It will also be useful as a comparison tool, to the fully
3-dimensional case, in order to check it is physically correct.

6.1 x-propagating waves

Initially, we will consider the 2-dimensional case in the (x, z)-plane. Like the
equilibrium in Chapter 3, an interface located at z = 0, separates the space
into two plasma regions of different densities, as

ρ0(z) =

{
ρ−, z < 0,

ρ+, z > 0.
(6.1)

This chapter is based on the following submitted journal article:

• Vickers, E., Ballai, I., Erdélyi, R. (2019); Magnetic Rayleigh-Taylor Instability at
Contact Discontinuity, Astron. Astrophys., submitted
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Figure 6.1: 2D sketch of the equilibrium configuration for the case of waves
propagating in the x-direction. The equilibrium state consists of a surface
separating two regions, each with different density. The magnetic field is uni-
form throughout both regions and is inclined within the (x, z)-plane at an
angle, θ, with respect to the x-direction. The configuration is invariant in the
x-direction.

A homogeneous equilibrium magnetic field is, once again, present across the
entire space, with field lines inclined at an angle, θ to the interface, with B0 =
B0(cos θ, 0, sin θ). In this situation, gravity also acts in the negative z-direction
as g = gẑ. The schematic representation of the equilibrium configuration
is shown in Fig (6.1). As we are currently treating the problem only in 2-
dimensions, we take ky = 0 and only consider x and z perturbations, setting
by = vy = 0. The MHD equations for this case, when supplemented with the
incompressibility condition, ∇ · v = 0, are given by

∂ρ

∂t
+ ρ′0vz = 0, (5.10)

ρ0
∂vx
∂t

= −∂p
∂x

+
1

µ
B0 sin θ

(
∂bx
∂z
− ∂bz
∂x

)
, (3.2)

ρ0
∂vz
∂t

= −∂p
∂z

+
1

µ
B0 cos θ

(
∂bz
∂x
− ∂bx

∂z

)
− ρg, (6.2)

∂bx
∂x

+
∂bz
∂z

= 0, (3.5)

∂bx
∂t

= B0

(
sin θ

∂vx
∂z
− cos θ

∂vz
∂z

)
, (3.6)

∂bz
∂t

= B0

(
cos θ

∂vz
∂x
− sin θ

∂vx
∂x

)
. (3.7)

where ρ′0 = dρ0/dz. Most of these equations are identical to the gravity free
case considered in Chapter 3, however the continuity equation (5.10) is given in
the hydrodynamic RTI case, taking incompressibility and stratification into ac-
count, and the z-component of the momentum equation (6.2) is supplemented
by gravitational forces.

Once again, we are looking for waves propagating in the x-direction, mean-
ing that all perturbations can be written as, f = f̂ exp[i(kxx − ωt)], and this
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ansatz is applied here. The x-component of the momentum equation, Eq.(3.2)
may be rearranged to give an expression for the perturbation to the pressure,

p̂ =
ω

kx
ρ0v̂x −

i

kx

B0

µ
sin θ

(
∂b̂x
∂z
− ikxb̂z

)
. (6.3)

From the mass conservation equation, Eq.(5.10), we can isolate the density
perturbation, in terms of the transversal component of velocity, as

ρ̂ = − i
ω
ρ′0v̂z. (6.4)

Next, using the incompressibility condition, ∇ · v = 0, and the solenoidal
constraint, ∇ · b = 0, we are able to write the x-components of velocity and
magnetic field perturbation in terms of the z-components. Finally, from the z
component of the induction equation, Eq.(3.7), we obtain that,

b̂z = −B0

ω

(
kx cos θ v̂z − i sin θ

∂v̂z
∂z

)
. (6.5)

We combine all of these expressions for vx, bx, bz, p and ρ, along with the
vertical component of the momentum equation (6.2) to achieve the governing
equation,

sin2(θ)
B2

0

µ

∂4v̂z
∂z4

+ ikx
B2

0

µ
sin 2θ

∂3v̂z
∂z3
− k2

x

B2
0

µ

∂2v̂z
∂z2
− ik3

x

B2
0

µ
sin 2θ

∂v̂z
∂z

− k2
x

[
ω2ρ0 − k2

x

B2
0

µ
cos2 θ

]
v̂z = k2

xg
dρ0

dz
v̂z − ω2 ∂

∂z

(
ρ0
∂v̂z
∂z

)
. (6.6)

We will again assume local homogeneity, where the plasma densities either
side of the interface, ρ±, may be considered to be constants, provided that
the length scale of the perturbations are much smaller than the gravitational
scale-height. As we are concerned with the conditions required for Rayleigh-
Taylor instabilities to occur, we will in particular consider the case where the
upper plasma region is heavier, i.e. ρ+ > ρ−.

Either side of the interface, solutions to the governing equation are of the
form v̂z ∼ eΓ, with Γz a complex quantity, which describes how the wave
amplitude changes away from the interface. After simple algebra, we can find
the governing equation in the form

(Γ2 − k2
x)(v

2
A sin2 θ Γ2 + 2ikxv

2
A sin θ cos θ Γ + ω2 − k2

xv
2
A cos2 θ) = 0, (6.7)

which admits the straightforward solutions,

Γ = ±kx,m±

where

m± =
i [±ω − vAkx cos θ]

vA sin θ
. (6.8)
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These solutions represent the pure surface wave and fast-mode components of
the perturbation, respectively.

Surface waves are expected to decay away from the interface, so we require
that <(Γz) < 0, such that vz → 0 as z → ±∞.

As we are investigating a “top-heavy” equilibrium situation, we expect
instabilities to occur and so we restrict our attention to the solutions that
correspond to =(ω) > 0. This means that for evanescent solutions we use
Γ = m−, in the lower plasma region, and Γ = m+, in the upper region, with
the suitable value of Alvén speed for the region substituted in.

Hence, the surface wave solutions are given by

v̂z =

{
A− e

kxz +B− e
m−z z < 0,

A+ e−kxz +B+ em+z z > 0.
(6.9)

The constant coefficients, that appear as amplitudes in the above relations,
can be found once the continuity conditions for variables are imposed at the
boundary between the two media.

6.1.1 Continuity conditions

From Section (2.3) , the continuity conditions across z = 0 are given to linear
order by

JvzK = 0, JvxK = 0, JbxK = 0, JbzK = 0,

s
∂p

∂t
− gρ0vz

{
= 0.

The above relations may be written in terms of v̂z alone, as,

Jv̂zK = 0,

s
∂v̂z
∂z

{
= 0,

s
∂2v̂z
∂z2

{
= 0,

sin2 θ
B2

0

µ

s
∂3v̂z
∂z3

{
+ ω2

s
ρ0
∂v̂z
∂z

{
− k2

xg Jρ0v̂zK = 0 (6.10)

Substituting the expressions for v̂z into the continuity conditions allows us to
write the relations in linear form as

1 1 −1 −1
kx m− kx −m+

k2
x m2

− −k2
x −m2

+

da− db− −a+ −b+



A−
B−
A+

B+

 = M


A−
B−
A+

B+

 = 0, (6.11)

where the quantities used in the expression of matrix L are defined as

a− = sin2 θ k3
xv

2
A− − gk2

x + kxω
2, b− = sin2 θ m3

−v
2
A− − gk2

x +m−ω
2,

a+ = − sin2 θ k3
xdv

2
A− − gk2

x − kxω2, b+ = sin2 θ m3
+dv

2
A− − gk2

x +m+ω
2,

(6.12)

in terms of the density ratio, d = ρ−/ρ+. For non-trivial solutions, we require
that the determinant of the matrix M vanishes, so we have the dispersion
relation,

det(M) = 0.
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It is worth noting that m−/kx and m+/kx, when written in terms of the
phase-speed, cph = ω/kx, are independent of kx,

m̃− =
m−
kx

=
−i [vA− cos θ + cph]

vA− sin θ
, m̃+ =

m+

kx
=
−i
[√

dvA− cos θ − cph
]

√
dvA− sin θ

.

It is thus possible to re-write the continuity equations, and hence the dispersion
relation, in a form, where kx dependence is only introduced in the gravity terms
of the fourth continuity condition. This is expected, since the only inherent
length-scale in the system is the gravitational scale-height.

6.1.2 Solutions

The dispersion relation, may be expanded into a polynomial form,

(kx +m+)(kx −m−)Q(ω) = 0, (6.13)

where,

Q(ω) =(d1/2 + 1)(d+ 1)ω3 + 2ikxd
1/2vA− sin θ(d1/2 + 1)2ω2

− (d1/2 + 1)
[
2dv2

A−k
2
x + gkx(d− 1)

]
ω − 2ik2

xd
1/2vA− sin θg(d− 1).

(6.14)

The dispersion relation, Eq. (6.13) has five solutions, two of which are the
explicit solutions to kx −m− = 0 and kx +m+ = 0, i.e.

ω1 = −kxvA− cos θ + ikxvA− sin θ, ω2 = kx
√
dvA− cos θ + ikx

√
dvA− sin θ.

(6.15)
These solutions are linear in kx and vA− and ω2 is proportional to

√
d. However

these solutions would lead to the result that the velocity perturbation is given
simply by vz = A∓e

±kxz, and the jump conditions would give that A− = A+ =
0. These trivial solutions are thus neglected in the following analysis.

The three solutions to the cubic polynomial, Q, may be found using the
cubic formula, however, due to the complexity of these solutions, they will not
be written explicitly. Only one of these three solutions has positive imaginary
part and, thus, corresponds to an instability, evanescent from the interface.
This solution is shown in figures (6.2) and (6.3) and is the only physical solu-
tion, so is the only solution considered subsequently.

In Figure (6.2), the evanescent solution that satisfies the equation, Q = 0
is shown in terms of the wavenumber, kx, along with solutions corresponding
to the tangential case, for the same plasma parameters (shown here in green),
for comparison. For the sake of completeness we also plot the real part of
the solution corresponding to the contact discontinuity (blue lines), but these
values are zero. For low wavenumber, the solution for the inclined case is nearly
identical to the tangential case, though for higher wavenumber the solutions
show a very different behaviour. The tangential solution has a cut-off value kc
(given in the previous Chapter), for the wavenumber, above which solutions
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Figure 6.2: Solutions for longitudinally propagating waves, where d = 0.5,
vA = 100 km s−1, θ = 5◦ . Imaginary part of frequency is plotted in red in
lower panel, whereas the real part is shown in blue in the upper panel. The
solution to the tangential case is shown in green

are purely propagating and below which solutions are pure instabilities. The
solution corresponding to an inclined magnetic field (contact discontinuity) has
no such cut-off value: solutions are pure instabilities for all values of kx, for any
inclination angle. Hence, the inclination of the field qualitatively changes the
nature of solutions, no longer permitting the presence of propagating waves.

In Figure (6.3) we plot the imaginary part of the physical solution to Q = 0,
for varying inclination angle, θ, and it shows unstable behaviour for every value
of θ. The growth rate increases as the field tends towards vertical, since there
is a smaller component of magnetic tension opposing gravity.
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Figure 6.3: Imaginary part of the solution for x-propagating waves, where
d = 0.5, vA = 100 km s−1, kx = 0.0025.

6.2 y-propagating waves

Let us now consider the other extreme, where waves are propagating in the
transverse direction (y-direction), therefore kx = 0 and perturbations in ve-
locity and magnetic field have no x-component, i.e. vx = bx = 0. The MHD
equations for this case are now given by

∂ρ

∂t
+ ρ′0vz = 0, (5.10)

ρ0
∂vy
∂t

= −∂p
∂y

+
1

µ
B0 sin θ

(
∂by
∂z
− ∂bz
∂y

)
, (6.16)

ρ0
∂vz
∂t

= −∂p
∂z
− ρg, (6.17)

∂bx
∂y

+
∂bz
∂z

= 0, (6.18)

∂b

∂t
= B0 sin θ

∂v

∂z
. (6.19)

It is expected that this is equivalent to the case with a vertical magnetic
field, with field strength equal to the vertical component for this case, i.e.
Bz = B0 sin θ. In other words, inclination of the magnetic field should not
affect the stability condition, compared to the case of a vertical field, when
only considering waves propagating perpendicular to the plane of inclination,
although, it is expected to modify the growth rate.

Using similar techniques to the x-propagating case and using the ansatz
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Figure 6.4: 2D sketch of the equilibrium configuration for the case of waves
propagating in the y-direction. The equilibrium state consists of a surface sep-
arating two regions, each with different density. The magnetic field is uniform
throughout both regions and is inclined within the (x, z)-plane at an angle, θ,
with respect to the x-direction, so has a component Bz = B0 sin θ within the
(y, z)-plane. The configuration is invariant in the y-direction.

for y-propagating wave perturbations, f ∼ exp[i(kyy − ωt)], the governing
equation is found to be,

∂

∂z

(
ρ0
∂v̂z
∂z

)
+

B2
z

µω2

(
∂2

∂z2
− k2

y

)
∂2v̂z
∂z2

= k2
yρ0v̂z +

gk2
y

ω2
ρ′0v̂z. (6.20)

When the plasma is locally homogeneous either side of the interface, the
plasma density is constant, hence, either side of the interface, the vertical
component of velocity has the form v̂z ∼ eΓz, where the effective wavenumbers,
Γ are the solutions to the bi-quadratic equation,

B2
z

µ
Γ4 +

[
ρ0ω

2 − B2
z

µ
k2
y

]
Γ2 − ω2k2

yρ0 = 0. (6.21)

Solutions are simply given by Γ = ±ky, n±, where

n− =
iω

vA− sin θ
, n+ =

iω

vA+ sin θ
.

The surface wave solutions, evanescent away from the interface, for unstable
solutions with =(ω) ≥ 0, are

v̂z =

{
A− e

kyz +B− e
−n−z z < 0,

A+ e−kyz +B+ en+z z > 0,
(6.22)

where the four coefficients that appear in these expressions will be determined
using the jump conditions imposed at the interface.

Solutions obtained for both regions must be matched at the interface using
the continuity conditions for a contact discontinuity (see Section 2.3), i.e.

JvzK = 0, JvyK = 0, JbyK = 0, JbzK = 0,
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s
∂p

∂t
− gρ0vz

{
= Jiωp+ gρ0vzK = 0.

In terms of the transversal component of velocity, v̂z, these jump conditions
become,

Jv̂zK = 0,

s
∂v̂z
∂z

{
= 0,

s
∂2v̂z
∂z2

{
= 0,

gk2
y Jρ0v̂zK− ω2

s
ρ0
∂v̂z
∂z

{
− B2

z

µ

s
∂3v̂z
∂z3

{
= 0. (6.23)

With the help of Eq. (6.22), we can cast the equations that arise, after applying
the four jump conditions, into a matrix equation of the form NA = 0, given
by

N =


1 1 −1 −1
ky −n− ky −n+

k2
y n2

− −k2
y −n2

+

a− b− −a+ −b+

 , A =


A−
B−
A+

B+

 (6.24)

In the expression of N we introduce the notations,

a− = d(gk2
y − kyω2 − k3

yv
2
A− sin2 θ), b− = d(gk2

y + n−ω
2 + n3

−v
2
A− sin2 θ),

(6.25)

a+ = gk2
y + kyω

2 + k3
ydv

2
A− sin2 θ, b+ = gk2

y − n+ω
2 − n3

+dv
2
A− sin2 θ.

(6.26)

Non-trivial solutions to the matrix equation above are given by det(N) =
0, and this leads to the dispersion relation of waves propagating along the
interface in the y direction. The dispersion relation can be written in expanded
form as

k(k + n−)(k + n+)R = 0,

where the polynomial, R is given by

R(ω) =(d1/2 + 1)(d− 1)ω3 − 2ikyd
1/2vA− sin θ(d1/2 + 1)2ω2

+ (d1/2 + 1)[2dv2
A−k

2
y sin2 θ + gky(d− 1)]ω + 2ik2

yd
1/2vA−g sin θ(d− 1).

(6.27)

As expected, by setting θ = π/2, we obtain the expression Q, given in Eq.
(6.14), from the dispersion relation for a vertical magnetic field configuration.

By substituting the expressions for n±, the first two terms of the dispersion
relation give purely imaginary solutions in frequency, with

ω1 = id1/2kyvA− sin θ, ω2 = ikyvA− sin θ.

These roots describe purely unstable, non-propagating solutions, with linear
dependence on both wavenumber and Alfvén speed. The solutions ω1 and ω2

correspond to the solutions for the vertical magnetic field case which lead to
trivial solutions, as noted by Chandrasekhar (1961).
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Figure 6.5: A solution for transversally propagating waves in terms the
wavenumber, ky, whith d = 0.5, vA = 100 km s−1, θ = 22.5◦.

The remaining three solutions are given by R = 0. As R is a cubic poly-
nomial, the roots of R = 0 may be found explicitly, however, it may be shown
that only one solution has positive imaginary part. This unstable solution is
shown in Fig. (6.5), for values of the variables appropriate to the chromo-
sphere: g = 274m s−2, θ = π/8, d = 0.5, vA− = 100 km s−1. Figure
(6.5) shows that the growth rate increases with ky and =(ω) is positive for all
values of ky. Hence, as with a vertical field, there is no critical wavenumber and
instabilities are present for every ky value. Unlike the longitudinally propa-
gating case, the instability rate increases monotonically with the wavenumber,
since there is no horizontal component of the magnetic field directed within
the (y, z)-plane, to act against gravity.

It is interesting to note that the growth rate is bounded. For ky → ∞,
we may perform an asymptotic expansion of the dispersion relation, which, to
highest order, gives us a linear equation in ω, of the form

=(ω)→ g

sin θvA+

1− d√
d+ 1

.

This implies that the growth rate tends towards a constant value for high
wavenumber.

On the other extreme, we can expand the function R(ω, ky), into series
solutions for ky → 0. Keeping only linear terms in ky, we obtain a quadratic
equation in ω

ω2 ≈ −1− d
d+ 1

kyg, (6.28)

which is the same stability condition as for the hydrodynamic case, for waves
propagating in the y-direction. It also constitutes the dispersion relation of
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internal gravity modes, known from hydrodynamics, for the case of a denser
lower plasmas, i.e. d > 1. Therefore for large wavelengths, the magnetic field
has insignificant effect on waves propagating in the y-direction.

6.3 Three-Dimensional Analysis

While the previous 2D analyses have given us useful information about how
the waves may propagate and the instability thresholds, to understand the
stability of this system fully, it is necessary to investigate the problem in all
three dimensions, where waves propagate in the (x, y)-plane. That is why we
consider the case where the interface is in the (x, y)-plane, situated at z = 0,
with density changing sharply at this interface, according to Eq. (6.1). Once
again, we consider a homogeneous equilibrium magnetic field intersecting the
interface at an angle θ, meaning that the equilibrium magnetic field is given
by B0 = B0(cos θ, 0, sin θ). Thus, a contact discontinuity is achieved. Due to
the constraint of continuity of magnetic field strength across the interface, the
background magnetic field has the same value in both plasma regions and B0

is constant. The equilibrium configuration is shown in Fig. (6.6).

6.3.1 Dispersion relation of waves propagating along the
interface

Similar to the cases discussed previously, we are going to consider that all
perturbations are proportional to the exponential ansatz introduced in Section
2, i.e. f ∼ f̂ exp[i(kxx + kyy − ωt)]. In this case, the dynamics of waves are
described with the help of the ideal, incompressible MHD equations,

−iωρ̂+ v̂zρ
′
0 = 0 (6.29)

−iωρ0v̂x = −ikxp̂+
B0

µ
sin θ

(
∂b̂x
∂z
− ikxb̂z

)
, (6.30)

−iωρ0v̂y = −ikyp̂+
B0

µ
sin θ

(
∂b̂y
∂z
− iky b̂z

)
+
B0

µ
cos θ

(
ikxb̂y − iky b̂x

)
, (6.31)

−iωρ0v̂z = −∂p̂
∂z

+
B0

µ
cos θ

(
ikxb̂z −

∂b̂x
∂z

)
− ρ̂g, (6.32)

−iωb̂ = B0

(
ikx cos θv̂ + sin θ

∂v̂

∂z

)
. (6.33)

We may substitute the induction equation, (6.33), into the x-component of
the momentum equation, Eq. (6.30), to obtain an expression for p̂ in terms of
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Figure 6.6: Schematic representation of the equilibrium configuration used in
the present section. The equilibrium state consists of a surface separating two
regions, each with different density. The magnetic field is uniform throughout
both regions and is inclined within the (x, z)-plane at an angle, θ, with respect
to the x-direction. The configuration is invariant in the x- and y-directions.
Perturbations are described by the wavevector, k, in the (x, y)-plane.

the components of velocity,

p̂ =
ω

kx
ρ0v̂x −

i

kx

B2
0

µω
sin θ

(
i sin θ

∂2v̂x
∂z2
− kx cos θ

∂v̂x
∂z

+ kx
∂v̂z
∂z

+ ik2
x cos θv̂z

)
=

[
1

kx

B2
0

µω
sin2 θ

∂2

∂z2
+ i

B2
0

µω
cos θ sin θ

∂

∂z
+
ω

kx
ρ0

]
(v̂x)

+

[
−iB

2
0

µω
sin2 θ

∂

∂z
+ kx

B2
0

µω
cos θ sin θ

]
(v̂z). (6.34)

The incompressiblity condition, ∇·v = 0, can be used to obtain a relationship
between v̂y and the other two components of velocity, as

v̂y =
1

ky

(
i
∂v̂z
∂z
− kxv̂x

)
. (6.35)

Finally, Eq. (6.29) allows us to express the density perturbation as

ρ̂ = − i
ω
ρ′0v̂z. (6.36)

The above expressions for density, pressure and the y-component of velocity
can be inserted into the y and z-components of the momentum equation (6.31)
and (6.32), to obtain two relations that connect v̂x and v̂z:

i
k2

kx
f(v̂x) = −f

(
∂v̂z
∂z

)
,

1

kx

[
f

(
∂v̂x
∂z

)
+ ω2ρ

′
0

ρ0

v̂x

]
= i

[
f(v̂z) + g

ρ′0
ρ0

v̂z

]
,

(6.37)

98



where k2 = k2
x + k2

y and the operator function, f , is defined as

f = v2
A sin2 θ

∂2

∂z2
+ 2ikxv

2
A cos θ sin θ

∂

∂z
+ (ω2 − k2

xv
2
A cos2 θ). (6.38)

When the vertical length scales of the perturbations are much smaller than
the gravitational scale-height, such as at the onset of instability in the problem
currently being explored, we can take the long scale-height limit and so treat
the plasma either side of the interface as uniform. Given this approximation
of local homogeneity, we will simplify our treatment by taking ρ′0 → 0. We are,
therefore, able to combine the equations given by (6.37), into the governing
equation for wave propagation in the incompressible plasma,(

k2 − ∂2

∂z2

)
f(v̂z) = 0. (6.39)

We assume that the above equation has solutions of the form v̂z ∼ eΓz, where
the quantity Γ is complex. The governing equation for this case (6.39) thus
simplifies to

(Γ2 − k2)(v2
A sin2 θ Γ2 + 2ikxv

2
A sin θ cos θ Γ + ω2 − k2

xv
2
A cos2 θ) = 0, (6.40)

which gives the roots Γ = ±k,m±, where the expression for m± is given by
Eq. (6.8).

The form of the governing equation, Eq. (6.39) implies that the frequency
of waves will be complex, with the imaginary part of ω describing the temporal
evolution of perturbations’ amplitude. According to the temporal variation of
perturbations assumed earlier, it is clear that a positive imaginary part of ω
will describe unstable amplification of the amplitude. Since we are interested
in waves localised at the surface, we assume that far away from the interface
waves will be evanescent, therefore, the z-component of the velocity will be of
the form,

v̂z =

{
A− e

kz +B− e
m−z, z < 0,

A+ e−kz +B+ em+z, z > 0,
(6.41)

where the amplitudes, A± and B± are arbitrary constants. We are only inter-
ested in unstable perturbations, hence we assume that =(ω) > 0. This ensures
that waves will be evanescent (via the roots m±). The first terms (A) in Eq.
(6.41) represent an exponential decay with z, while the second terms (B) de-
scribe an oscillatory decay. It is clear that when θ = 0, in Eq. 6.40, the second
terms of (6.41) vanish and we recover the result of a tangential discontinuity.

The present assumption of local homogeneity is valid when 1/|<(Γ)| is
much less than the gravitational scale-height, H, i.e.

H � max

(
1

k
,

vA− sin θ

=(ω)
,

vA+ sin θ

=(ω)

)
. (6.42)

In other words, stratification effects due to gravity may be ignored, so long as
the wavelength of perturbations is sufficiently small, as well as the product of
the growth time, =(ω)−1, with the Alfvén speeds.
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6.3.1.1 Boundary Conditions

The solutions obtained for the two plasma regions, given by Eq. (6.41), will
now be connected at the interface, using the boundary conditions for a con-
tact discontinuity in the presence of gravity. The jump conditions across the
interface are given in Chapter 2 by Eq. (2.61) and the condition for pres-
sure continuity across z = 0 is more explicitly given by Eq. (2.64). These
equations state that we require continuity of all components of velocity and
magnetic field perturbations, as well as continuity across the unperturbed in-
terface of iωp + gρ0vz. Using the surface wave solutions (6.41), we may now
express these jump conditions in terms of v̂x and v̂z, using the same methods
as previously. These are found to be

Jv̂zK = 0,

s
∂v̂z
∂z

{
= 0,

s
∂2v̂z
∂z2

{
= 0 (6.43)

along with the dynamic boundary condition,
s
iρ0

(
v2
A sin2 θ

∂2v̂x
∂z2

+ ω2v̂x

)
+ kxgρ0v̂z

{
= 0. (6.44)

These boundary conditions will be used to connect the solutions from both
sides of the interface, in order to derive the dispersion relation of waves.

6.3.1.2 Derivation of Dispersion Relation

In order to use the boundary conditions specified above, we must first find the
expression for v̂x using the expression of v̂z given by Eq. (6.41). In the local
homogeneity limit we may combine Eqs. (6.37) into a governing equation for
v̂x of the same form as the governing equation for v̂z, though with different
constants. Therefore, we write v̂x as

v̂x =

{
a−A− e

kz + b−B− e
m−z z < 0,

a+A+ e−kz + b+B+ em+z z > 0,
(6.45)

where a±, b± are to be found using the boundary conditions. Using the explicit
expressions for v̂x and v̂z, Eq.(6.37a) transforms into

i
k2

kx
f
(
a±Aie

∓kz) = − ∂

∂z
f
(
A±e

∓kz) , (6.46)

since f(en±z) = 0. As a result, the coefficients a± are

a− = i
kx
k
, a+ = −ikx

k
.

However, these expressions give no information about the coefficients bi. By
combining the coefficients b± and B± into a new unknown quantity, C±, v̂x
may be written as,

v̂x =

{
ikx
k
A− e

kz + C− e
m−z z < 0,

−ikx
k
A+ e−kz + C+ em+z z > 0.

(6.47)
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Using the exponential forms of v̂x and v̂z given by Eqs 6.41 and 6.45, we
can now apply the boundary conditions, Eqs. (??) - (6.44). After long but
straightforward calculations, we obtain a system of linear equations for the
unknown six constants, that in matrix form, can be given as,

1 1 0 −1 −1 0
ikx
k

0 1 ikx
k

0 −1
k m− 0 k −m+ 0
k2 m2

− 0 −k2 −m2
+ 0

ikx 0 m− −ikx 0 −m+

α− β− γ− −α+ −β+ −γ+




A−
B−
C−
A+

B+

C+

 = M


A−
B−
C−
A+

B+

C+

 = 0, (6.48)

where the various expressions in the newly defined matrix M are,

α− = dkxg −
kx
k

(
dv2

A−k
2 sin2 θ + dω2

)
,

α+ = kxg +
kx
k

(
dv2

A−k
2 sin2 θ + ω2

)
,

β− = dkxg,

β+ = kxg,

γ− = i
(
dv2

A−m
2
− sin2 θ + dω2

)
,

γ+ = i
(
dv2

A−m
2
+ sin2 θ + dω2

)
. (6.49)

The non-trivial solution to the homogeneous system of equations (6.48) only
exists when det(M) = 0, which will give us the dispersion relation of waves
propagating along the interface, in the presence of gravity and inclined mag-
netic field. This dispersion relation is explicitly given to be

(m+ −m−)(k −m−)(k +m+)S(ω) = 0, (6.50)

where

S(ω) =(d1/2 + 1)(d− 1)ω3 − 2ikd1/2vA− sin θ(d1/2 + 1)2ω2

+ (d1/2 + 1)[2dv2
A−(k2 − k2

y cos2 θ) + gk(d− 1)]ω

+ 2ik2d1/2vA−g sin θ(d− 1), (6.51)

and d = ρ−/ρ+ < 1 is the density ratio. The dispersion relation, Eq. (6.50) has
six roots in terms of ω. The first multiplier in the dispersion relation clearly
corresponds to a trivial solution. The second and third brackets admit the two
roots,

ω1 = kxvA− cos θ − ikvA− sin θ

ω2 = kx
√
dvA− cos θ − ik

√
dvA− sin θ. (6.52)

The solutions ω1 and ω2 lead to trivial solutions for velocity perturbations, but
even so they both have negative imaginary parts and these solutions are neces-
sarily disregarded, because we only consider that physical solutions correspond
to =(ω) > 0. Hence, we consider the three solutions to S = 0.
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In order to simplify discussion, we use one single Alfvén speed (vA−), and
write the Alfvén speed in the upper plasma region as, vA+ =

√
dvA−. To gain

more information about the unstable solutions, the dispersion relation may be
reformatted in terms of Ω = −iω, such that <(Ω) = =(ω) and the unstable
solutions are given by solutions where the real part of Ω is positive. With the
help of this re-scaling we obtain that S = −iσ, where the function σ is given
by

σ =(d1/2 + 1)(1− d)Ω3 + 2kd1/2vA− sin θ(d1/2 + 1)2Ω2

+ (d1/2 + 1)[2dv2
A−(k2 − k2

y cos2 θ)− gk(1− d)]Ω

− 2k2d1/2vA−g sin θ(1− d). (6.53)

Given that the coefficients of Ω3 and Ω2 are both positive (when d < 1), the
sum of the roots must be negative and since the coefficient of Ω0 is negative,
the product of the roots must be positive. Assuming that at least one solution
is unstable, i.e. positive Ω, these two conditions lead to the fact that the other
two roots for Ω must have negative real parts and so are non-physical, ampli-
fying modes. This leaves one physical solution, that we display graphically,
to explore the effects of varying wavenumber, k, inclination angle, θ, density
ratio, d, and propagation direction, α, shown in Figures (6.7 - 6.10).

6.3.2 Solutions and results

In order to simplify the discussion, let us introduce the propagation angle of
the perturbations within the (x, y)-plane, α, such that

kx = k cosα, ky = k sinα.

We note that, even before plotting solutions, we see that taking the limit
α → 0, i.e. considering waves only propagating in the x-direction, the poly-
nomial, S(ω) simplifies to the polynomial, Q(ω) for the 2D case in the (x, z)-
plane, given by Eq. (6.14) and so, too, does the solution tend to the solutions
for the 2D case in the (x, z)-plane. As α → π/2 we consider waves propagat-
ing in the y-direction, and the polynomial S(ω) tends towards the polynomial
R(ω) derived for the 2D case in the (y, z)-plane. As the propagation direc-
tion changes smoothly from x-aligned to y-aligned, there is a smooth change
in the solution. This may initially seem like a trivial comment, but in the
2-dimensional cases considered in Sections (6.1 and 6.2), it was assumed that
there were no perturbations to velocity or magnetic field perpendicular to the
direction of propagation. Thus, for the 3D case, simply changing the direction
of propagation of the wave reduces the problem, by removing perpendicular
components of perturbations. This also confirms that the results and conclu-
sions discussed in the previous sections are relevant to the fully 3D problem.

The variation of the only physically acceptable root of S(ω) = 0, with
various physical parameters, is investigated numerically. First, in Fig. (6.7)
we plot the variation of the real and imaginary part of the frequency with
respect to the wavenumber, k, for a small field inclination angle. In order
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Figure 6.7: Solutions for the dispersion relation for waves propagating in the
(x, y)-plane, for two propagation directions (α = 0 solid line, and α = π/4
dashed line), with respect to wavenumber, k. The density ratio is d = 0.5, the
Alfvén speed of the lower plasma is vA = 10 km s−1, and the magnetic field
inclination angle θ = 5◦. The upper panel shows the real part of the frequency,
while the imaginary part is plotted in the lower panel. The limiting value of
=(ω) when k → ∞ is shown by the grey horizontal lines, in the lower panel.
For illustration we also show the real and imaginary part of the frequency in
the case of a tangential discontinuity (θ = 0), plotted here in green.

to compare our results with the well-known results obtained in the case of a
tangential discontinuity, we also plot the results we obtain for θ = 0 (green
lines). We choose to plot solutions for two values of the propagation direction:
α = 0 (propagation along the x-axis, solid line) and α = π/4 (dashed line).
The smallest instability increment (longest amplification time) is obtained for
propagation parallel to the x-axis, while increasing the direction of propaga-
tion away from α = 0 we see an increase in the instability rate. The maximum
of the instability rate is obtained at a smaller wavelength than in the case of
a tangential discontinuity, and, in general, the maximum of the rate is higher
than the one obtained for tangential discontinuity. This result is easy to inter-
pret, as at contact discontinuity only the horizontal (x−directed) component
of the equilibrium magnetic field is able to stabilise the plasma.

In the case of a tangential discontinuity, there is always a critical wavenum-
ber, below which the solution is purely imaginary and hence gives rise to in-
stability. However, above this critical value, the solution is real and the wave
is propagating. In contrast, for the contact discontinuity, this is no longer the
case; solutions are unstable for all values of wavenumber, k. Moreover, for
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Figure 6.8: Imaginary part of the frequency for waves propagating in the
(x, y)-plane, for several propagation directions, with respect to the magnetic
field inclination, θ. The density ratio is assumed to be d = 0.5, the reference
Alfvén speed is vA− = 10 km s−1, and the value of the wavenumber fixed at
k = 10−5 m−1.

very large wavenumbers, the imaginary part of the frequency tends towards a
fixed value, given by

=(ω)→ g sin θ(1− d)

vA−d1/2(1− sin2 α cos2 θ)(d1/2 + 1)
. (6.54)

These values are shown in grey in Fig. (6.7). It may also be seen that the
instability rate decreases for higher wavenumber.

Interestingly, the behaviour of the imaginary part of the frequency (and the
disappearance of the critical wavenumber) is similar to the results obtained by
Dı́az et al. (2014), where these authors studied the effect of partial ionization
on MRT instability in a single-fluid approximation. In their study, the change
in the imaginary part of the frequency was attributed to the ambipolar diffu-
sion in the induction equation, i.e. the modification was due to the presence of
neutrals, that can diffuse in the perpendicular direction to the ambient mag-
netic field. This suggests that changes occurring in the transversal direction
(relative to the interface) will notably modify the behaviour of the instabil-
ity increment. One important difference is that, for the partially ionised case
considered by Dı́az et al. (2014), the instability rate tends to zero for high
wavenumbers, however, in our case this quantity never reaches the zero value.

In the other limit, when the propagation direction is along the y-axis (α =
π/2), solutions are identical to the 2D y-propagating case in Section (6.2) and
the only wave that can propagate is the gravity surface wave. The magnetic
field begins to have an effect on the propagation characteristics of waves, as
the propagation direction inclines towards the x-axis.

Let us investigate how the inclination angle of the magnetic field, θ, affects
the stability of incompressible waves propagating along the interface. Now,
the value of the wavenumber is fixed at k = 10−5 m−1 (a typical value for
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Figure 6.9: Growth time for k = 2.5 × 10−3 m−1, d = 0.5 vA = 10 kms−1, in
terms of propagation angle, α and field inclination θ.

oscillations in prominences) and we choose a number of characteristic values
for the propagation angle, α. The numerical result of our analysis is shown
in Fig. (6.8). Again, the mode that has the smallest instability rate is the
one that propagates strictly along the x-axis and this rate shows a pronounced
increase for smaller values of θ, after which this rates saturates and becomes
independent of the inclination angle of the magnetic field. With increasing
propagation angle, the instability rate increases, meaning that the amplifica-
tion time reduces. This result is something that can be understood if we keep
in mind that, with increasing the propagation angle, the magnetic tension has
less effect on the stabilisation of the interface. It is clear that, regardless of the
propagation angle of waves, the instability increments tend to a steady value
of approximately =(ω) = 0.055 s−1.

In Fig. (6.8), we see that regardless of the value of the propagation angle of
the waves, for large inclination angle of the field, all modes will tend towards
the same instability rate. In order to translate our results into observable
quantities, we show the contour plots of the inverse of the instability rate (the
growth time, in minutes) for a particular wavenumber, density ratio, d and
Alfvén speed in terms of the inclination angle, θ and propagation angle, α (see
Fig. 6.9), i.e. we plot the pair of the angles that satisfy the given growth time.
In this plot, we see two distinct behaviours. While on the left-hand side of the
plot we see that for shorter growth time we require higher inclination angle, the
mode that appears on the right-hand side shows a different behaviour for very
large values of inclination angle. However, this mode is not an Alfvén mode;
instead it is the surface gravity mode that appears for a nearly perpendicular
propagation. Similarly to the findings shown in Fig.(6.8), for large inclination
angle of the magnetic field, the growth time of instability becomes independent
of α.

It is well known that magnetic field can stabilise the unstable interface,
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Figure 6.10: Growth time for k = 2.5 × 10−3 m−1, d = 0.5 θ = π/8, in terms
of propagation angle, α and Alfvén speed of the lower plasma, vA.

which is why we investigate the variation of the growth time with respect to
the propagation angle of waves and Alfvén speed, keeping the wavenumber,
density ratio and magnetic field inclination constant (see Fig.(6.10)). Since
the density ratio is constant, changing Alfvén speed means a change in the
intensity of the magnetic field. An increase in the magnetic field intensity
means that the growth time increases, i.e. the magnetic field has a stabilising
effect, for any propagation direction, as expected. In addition, the value of the
propagation angle becomes more important for stronger magnetic fields.

Finally, we investigate the effect of changing density ratio on the growth
rate of unstable modes and we obtain that the growth rate decreases monoton-
ically towards zero as the density ratio is increased, towards d = 1. In the case
of the tangential MRT instability (but also true for the hydrodynamic case),
as the density of the upper plasma increases in comparison to the density of
the lower plasma (d decreasing), the system becomes less stable. Taking the
limit of d → 0, the instability rate tends towards a fixed value. By taking
the solution of S(ω) = 0, when d → 0, the limiting value of the growth rate
is found to be =(ω) →

√
gk. This is clearly independent of both inclination

angle and magnetic field strength and gives the dynamics of a plasma element
falling freely under gravity.

6.3.3 Symmetry

We will once again consider how viewing this system from a different orienta-
tion may affect the mathematical results. This analysis is slightly less essential
than for the gravity-free case, since the direction of gravity will introduce a
preferential direction into the system. Nevertheless, for completeness, we in-
clude a discussion of the symmetry problem in what follows.
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We assume that in the original orientation the variables are given by k =
(Kx, Ky, 0), d = D, θ = Θ and the gravity pointing downwards to be g = G.
If we once again rotate the system by 180◦, the variables in the standard
viewpoint are given by k = (−Kx, Ky, 0), d = D, θ = Θ and g = −G. The
magnitude of the wavevector, k is unchanged. In this orientation the Alfvén
speeds also have exchanged subscripts.

Considering the expression for m± is given by Eq. (6.8), along with the
condition for evanescence, we see that

m±

(
d =

1

D
,k = (−Kx, Ky, 0)

)
= −m∓ (d = D,k = (Kx, Ky, 0)) .

The condition that kx = −Kx also gives us that, a− ←→ a+. These two
conditions, along with our altered variables, in turn, give that α− ←→ −α+,
β− ←→ −β+, and γ− ←→ −γ+. Thus, the matrix which leads us to the
dispersion relation becomes

M =


1 1 0 −1 −1 0
iKx

k
0 1 iKx

k
0 −1

k −m+ 0 k m− 0
k2 m2

+ 0 −k2 −m2
− 0

−iKx 0 −m+ iKx 0 m−
−α+ −β+ −γ+ α− β− γ−

 , (6.55)

which, through simple matrix manipulation, may be rewritten as the matrix
for the original orientation. Thus, we have once again confirmed that viewing
the system for a different orientation will not change the mathematical results.

6.3.4 Applications to Solar Prominences

Solar prominences are magnetic features suspended in the solar corona that
are made from dense, cold plasma surrounded by tenuous and hot coronal
plasma. High-resolution observations show that prominences present threads
along which plasma can flow and waves propagate (see Sections 1.1.3 and 1.1.5
for more detail on prominences). Such an observation was carried out, using
Hinode/SOT instrument by Okamoto et al. (2007), who observed an active re-
gion prominence (NOAA AR 10921) in a 0.3 nm broadband region centred at
396.8 nm. They found that a multi-thread prominence was suspended above
the main sunspot. Their analysis showed in-phase, oscillatory motions with
periods 130-250 s. These authors concluded that the observed waves are prop-
agating or standing Alfvén waves.

Terradas et al. (2008) used these oscillations to carry out a seismological
study and determined Alfvén speeds in both the prominence and corona in
terms of the density ratio. The threads were considered to be thin flux tubes
(observations showed that they have a small radius), in the presence of a
flow that slightly influenced the period of waves. Using a few simplifications
(e.g. straight flux tubes, homogeneous plasma, longitudinal magnetic field,
non-stratified plasma, threads have equal length, linear approximation) these
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Figure 6.11: A diagram showing the dense prominence plasma (orange) sup-
ported by magnetic field lines (blue) and how this relates to the contact dis-
continuity at an interface investigated in the present work.

authors obtained that the minimum Alfvén speed varies between 120 and 350
km s−1. Although not analysed in the above studies, Ruderman et al. (2014),
found that the typical lifetimes of threads under investigation is 10 minutes. If
the MRT is responsible for these short lifetimes, then we may suppose that the
instability time is approximately equal to the thread lifetime. This gives us
the necessary information to find the magnetic field inclination, θ, in terms of
the propagation direction α, for a given density ratio, using our model. Figure
(6.11) shows how our investigation of a contact discontinuity at an interface,
relates to prominences and gives some justification for this technique.

Using the observations by Okamoto et al. (2007), we can use the analysis
presented by Terradas et al. (2008) (their Eq. 3) to determine the wavenum-
bers and Alfvén speeds for three possible density ratios (d = 0.1, 0.2, 0.5).
With these values, we solve numerically Eq.(6.51) and this determines the pair
of values for magnetic field inclination and propagation direction satisfying the
observed variables. We note that not all observable data sets have solutions for
any α and θ values; these are shown by dashes in the table of results. This sug-
gests that only certain density ratios may be possible in those circumstances,
thus giving even more information about hard-to-observe variables. The so-
lutions, in terms of magnetic field inclination and propagation direction, are
displayed for all six observed threads in Figure (6.12) and the relevant data,
including the maximum possible inclination angle (when the wave is directed
in the same plane as the magnetic field i.e x-propagating), are shown in Table
??.

It is clear that for all threads the 10 min growth time can be satisfied
only for particular values of density ratio and a particular combination of field
inclination angle and propagation angle. Thread 1 shows only solutions for
a density ratio of d = 0.1, with the maximum field inclination only about
half a degree that is attained when the wave propagates along the x-axis.
Threads 4, 5 and 6 all have solutions for d = 0.2 with maximum inclination
of approximately 1◦. In addition thread 4 has a solution for d = 0.5 with
a noticeably higher maximum inclination of 4◦. Thread 2 shows a higher
maximum θ for the d = 0.2 solution than the other three, of 3◦, and a lower
maximum θ for the d = 0.5 solution than thread 4 of approximately 1◦. Finally,
thread 3 has a solution only for d = 0.5, but with much higher maximum
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d=0.1 d=0.2 d=0.5
Wavenumber vA max θ vA max θ vA max θ

# (10−7 m−1) (km s−1) (◦) (km s−1) (◦) (km s−1) (◦)
1 34.9 1331 0.5 1237 - 1172 -
2 7.85 1336 - 1015 2.9 897 1.1
3 18.8 1116 - 983 - 899 25.8
4 57.1 1220 - 1164 1.4 1126 4.0
5 35.9 1710 - 1583 1.1 1511 -
6 7.39 861 - 827 1.1 806 -

Table 6.1: The wavenumber and coronal Alfvén speeds derived for the six
prominence threads. The maximum value of the inclination angle of the field
is shown for the three values of the density ratio, d.

inclination than any of the other threads, with θ = 25◦. Although all of
the magnetic field inclinations found are relatively low (except thread 3), the
inclination is only zero if the propagation direction is almost perpendicular to
the magnetic field, which would be very unlikely for MHD waves in the solar
atmosphere. This also gives a justification for the study explored in Chapters 3
and 4, where small magnetic field inclinations were considered for MHD waves
at a contact discontinuity.

We should note that, in the context of solar prominences, compressibility
would have a pronounced effect in stabilising the interface, therefore, a model
including compressibility would need to be developed to give more pertinent
results. The density ratios present in prominences also, in general, give lower
d values than those considered here, destabilising the system further. We can
thus suppose that solutions would be of a similar order of magnitude to those
considered here.
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(a) Thread 1 (b) Thread 2

(c) Thread 3 (d) Thread 4

(e) Thread 5 (f) Thread 6

Figure 6.12: Solutions of the dispersion relation for a given growth time in
terms of magnetic field inclination (θ) and propagation direction (α), for six
observed prominence threads, for three possible density ratios. Observational
data has been adapted from Okamoto et al. (2007).
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6.4 Conclusions

This chapter has presented the results of the study on the generation of
Rayleigh-Taylor instability of waves propagating along a density interface in
the presence of an oblique magnetic field that crosses an interface. For sim-
plicity the plasma was considered to be incompressible. The component of the
magnetic field across the interface, makes the interface a contact discontinuity.

We have shown that, for even a small inclination of the magnetic field,
the system is unstable for any wavenumber. This results is in contrast to
the findings obtained in the case of a tangential discontinuity, where there
is always a “critical wavenumber”, above which the system is stable. The
instability rate we obtained is also higher than the rate we would obtain for
the tangential case, however the magnetic tension stabilises against gravity,
so the instability rate is lower than for the purely hydrodynamic case and is
reduced with increasing Alfvén speed. The instability rate was found to be
considerably higher for perturbations perpendicular to the plane in which the
magnetic field is inclined, than for perturbations in the direction of the field
and there is a smooth change between these two extremes, as the magnetic
tension has a less pronounced effect as a restoring force.

The geometry investigated provides a good model for the edges of promi-
nences, where the high density gradients, between the low density coronal
plasma and the higher density plasma of the prominence itself, are readily
modelled by a a sharp interface. The edges of these prominences are often
intersected by inclined magnetic fields, making this investigation relevant to
Rayleigh-Taylor instabilities. The results of this study thus suggest that, even
with a high magnetic field strength, instabilities are able to develop for per-
turbations of any wavelength, where the field intersects the prominence edge.
This gives us information about where in the prominences plumes are most
likely to develop.

Using the dispersion relation derived in the current study, an inversion tech-
nique has been performed on observations of oscillating prominences, which
can give us information on the angle of inclination of the magnetic field and
direction of the wave propagation. A simple analysis of six prominence threads
observed by Hinode/SOT was performed, which found that the typical max-
imum inclination angles of the magnetic field was 1 − 4◦. The inversion
technique applied in this Chapter also provided information about the possi-
ble density ratios, for each prominence thread considered.
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CHAPTER 7

Conclusions

7.1 Overview of Thesis

The present thesis is concerned with the properties of waves propagating along
a density interface, when the interface is permeated by a homogeneous mag-
netic field. Such configuration defines a contact discontinuity.

Chapter 2 introduces important background information required for the
body of this thesis, including an introduction to linear MHD wave theory, as
well as revising MHD waves propagating in a homogeneous medium. In this
chapter we present a rigorous derivation of jump conditions at an interface.
These jump conditions are effective as when matching solutions at the interface
and, in this sense, act as boundary conditions at the interface. This chapter
also summarises a previous work, exploring MHD waves at a tangential dis-
continuity (Roberts, 1981a).

Chapter 3 was based on the published study, Vickers et al. (2018), and
introduces the concept of wave propagation in the presence of magnetic field
inclination across the interface, for the first time. Following the method used
by Roberts (1981a), which was summarised in Chapter 2, a governing equation
is found, which describes the transverse velocity component, either side of the
interface. In order to solve the governing equation analytically and hence find
the dispersion relation, it was necessary to consider an approximation of small
inclination angle. Solutions to the dispersion relation were found numerically.

In Chapter 4, based upon work by Ruderman, Vickers et al. (2018), we
analysed the initial value problem for incompressible waves propagating along
contact discontinuities. Time-dependent solutions, in terms of wavenumber,
are found in terms of initial drivers for vz, which is assumed to be localised
at the interface. There, x-dependent solutions are found analytically for small
field inclination for several different initial conditions.

Background information on gravitational instabilities is given in Chapter 5
and, in particular, magnetic Rayleigh-Taylor instabilities, which are considered
at a tangential discontinuity, as well as at a contact discontinuity with vertical
magnetic field.

In Chapter 6, we take into account the effect of gravity and explore the
effect of magnetic field inclination on the magnetic Rayleigh-Taylor instability,
for the case where the upper plasma is denser. Unlike the studies covered in
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the previous chapters, a two-dimensional analysis is not sufficient to investigate
whether a given state is stable, so a three-dimensional analysis is employed to
analyse the incompressible problem. A dispersion relation is found and solved
analytically, to give the instability rate in terms of two angles (as well as the
ratio of the densities, the wavenumber, and one of the Alfvén speeds): the
direction of propagation of the initial perturbation, and the inclination of the
field with respect to the interface. This expression was then used to find the
range of possible angles for both propagation direction and field inclination for
observed magnetic Rayleigh-Taylor instabilities on prominence filaments.

7.2 Summary of Results

7.2.1 Chapter 3

The first two chapters of the present thesis are devoted to the introduction
of the mathematical and physical framework of the thesis, including the jump
conditions that will be used throughout our calculation.

Chapter 3 used an eigenmode technique to find the phase-speed of waves
propagating along a contact discontinuity. A governing equation for the trans-
verse component of velocity was found either side of the interface, in the pres-
ence of an inclined magnetic field. Solutions to this equation showed that the
variation of wave amplitude with height had an oscillatory component, due
to the complex effective wavenumber. Using a small angle approximation for
the magnetic field inclination, the dispersion relation was found analytically
,from these solutions. Phase-speed solutions to the dispersion relation were
calculated numerically and were found to be complex, which implied complex
values for frequency. Complex values for frequency correspond to amplification
(if =(ω) > 0) or attenuation (if =(ω) < 0). Since there is no outside energy
source, the only physical solutions must be the attenuated modes, where the
attenuation is due to energy leaking away from the interface. This result cor-
responds to the amplitude of the waves decreasing over time, but increasing
away from the interface. Thus, even a small inclination of the magnetic field
qualitatively changes the modes that may exist, from stable surface modes at
the tangential discontinuity to attenuating leaky modes at the contact discon-
tinuity. While this distinct change exists for velocity solutions, by averaging
over a small boundary layer, values are found to change continuously to the
tangential solutions, as the direction of the magnetic field tends towards hori-
zontal.

7.2.2 Chapter 4

Chapter 4 expanded upon the previous chapter by introducing time-dependence,
i.e. an analysis of time evolution of MHD waves at a contact discontinuity.
In this chapter, we solved an initial value problem for incompressible waves
propagating along the density interface. This method required performing a
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Laplace transform of the perturbed quantities. However, in order to make an-
alytical progress, only the incompressible case was considered. Through use of
the continuity equations for a contact discontinuity, solutions for the Laplace
transform of velocity are found. Complex analysis techniques are used to find
the velocities in terms of wavenumber and the initial velocity perturbation.
The initial velocity perturbation was assumed to be purely vertical and lo-
calised at the interface. These solutions for perturbations are valid within a
certain distance of the interface, given in terms of the time and the speed
at which the waves to propagate outwards. In order to draw parallels to the
previous chapter, as well as to aid in following calculations, the small angle
approximation was once again considered. We have shown that, in the limit
of the inclination angle tending toward zero (approaching a tangential discon-
tinuity), the velocity did not change continuously to the value corresponding
to the tangential discontinuity. However, when the solutions corresponding
to the contact discontinuity were averaged over a small boundary layer, these
averaged values tended towards the tangential solution.

The x-dependent solutions were found by performing an inverse Fourier
transform for three different initial drivers: a delta function, a Lorentz function
and a sinusoidal driver. The delta function and Lorentz function give a good
approximation of the case when the interface is hit in one location. An example
of this particular driver in the solar atmosphere may be the case of spicules
hitting the transition region, which on a large scale may be viewed as an
interface. The sinusoidal driver represents a wave perturbing the interface. In
agreement with the previous chapter, it was shown that the amplitude of the
wave decays for large time, regardless of the type of initial conditions. For
the first two forms of the solution, we see that the solutions take the form of
two pulses propagating forwards and backwards at the same speed along the
interface, whilst spreading outwards in the vertical direction.

7.2.3 Chapter 6

While the previous chapters were concerned with how field inclination affected
wave propagation, this chapter explored the effect of field inclination on the
onset of magnetic Rayleigh-Taylor instability in an incompressible plasma. Ini-
tially, the problem is explored in two dimensions, firstly, in the plane in which
the field is inclined, and then in the plane perpendicular to the magnetic field
lines. Finally, the three-dimensional problem is explored. All three cases follow
similar methods to find the time independent solutions. Unstable solutions are
sought, which are evanescent far from the interface, when the upper plasma
is denser than the lower plasma. The dispersion relation is found and solved
analytically for a general inclination angle. The two 2D cases are found to
be identical to the 3D case, when the propagation direction of perturbations
is respectively parallel to and perpendicular to the plane in which the mag-
netic field is inclined. The general solution admits five solutions, but only one
of them is found to be phsyical. This solution is unstable for every value of
wavenumber and the instability rate tends towards a non-zero value for high
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wavenumber. This result is unlike MRT instability at the tangential disconti-
nuity, where solutions are only unstable for wavenumbers below some critical
value and solutions are stable and propagating above this critical value. How-
ever, the closer to parallel the magnetic field is, the more stable the system
is, as a greater component of the magnetic tension is directed vertically, sta-
bilising against gravity. The magnetic field has a greater stabilising effect for
perturbations directed parallel to the field in which the magnetic field is in-
clined varying smoothly with propagation direction. When the propagation
direction is perpendicular to the magnetic field, solutions are identical to the
case of a perpendicular magnetic field of field strength equal to strength of the
vertical component of the inclined field.

These results were used to find pairs of angles of propagation direction and
field inclination for observed unstable prominence threads. Six threads were
observed, using Hinode, by Okamoto et al. (2007), on which Terradas et al.
(2008) performed a seismological study to determine the Alfvén speeds. It
was assumed that the instability time was roughly equal to the thread life-
time, which had previously been observed to be approximately 10 minutes.
Using these quantities, the expression for the instability rate, derived earlier,
was used to calculate the angles of propagation direction and field inclination,
for three possible density ratios. The given instability time was found to be
possible for a density ratio of d = 0.2 in four of the threads, for d = 0.5
in three of the threads and for d = 0.1 in only one thread. The maximum
field inclinations were given when the propagation was directed parallel to the
plane of magnetic field inclination and was found to be generally low (approxi-
mately one degree) except in one case, where the inclination was approximately
twenty five degrees. The inclination of the field was only found to be zero for a
propagation direction almost perpendicular to the magnetic field, an unlikely
scenario, which confirms the presence of magnetic field inclination in promi-
nence threads. While this was a first, simplified study, it lay the groundwork
for more detailed future studies and showed validity for further research into
contact discontinuities in the solar atmosphere.

7.3 Future Work

While this thesis presents some initial studies into the effect of magnetic field
inclination upon waves and instabilities at an interface, there are many ways
in which this work could be expanded, to be more applicable to structures in
the solar atmosphere.

A fairly obvious extension to the work presented here would be to consider
the models explored in the first two studies in all three dimensions. The
compressible leaky modes explored in Chapter 3 could be explored for magnetic
fields close to vertical, or solutions for a more general inclination could be found
numerically. A time dependent analysis of the MRT instability (investigated
in Chapter 6) would be interesting, however non-linear effects may need to
be considered once the Rayleigh-Taylor “fingers” begin to develop. These
extensions would help us to refine and expand upon the inversion introduced in
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section 6.3.4 and help to determine field configurations in all three dimensions.
Although the first study (covered in Chapter 3) looked at the case of com-

pressible plasma, incompressibility was assumed for the next two chapters. It
would be expected that including compressibility to the initial value study of
leaky waves (Chapter 4), would make it possible for two more modes to prop-
agate simultaneously; representing the fast and slow magnetoacoustic modes,
rather than the purely magnetic mode featured here. It is also known that
compressibility stabilises plasma dynamics, so there may be qualitative differ-
ences to the stability of the MRT problem, discussed in Chapter 6.

The entirety of this thesis has assumed the plasma is fully ionised and has,
thus, been concerned with a single-fluid approach. However, much of the solar
atmosphere (photosphere and much of the chromosphere) is not fully ionised,
so a two-fluid investigation may be more appropriate to modelling some regions
of the solar atmosphere. A study of magnetic Rayleigh-Taylor instability at
a tangential discontinuity has already been performed for a partially ionised
plasma by Dı́az et al. (2014), who found similar results to the solutions shown
in Chapter 6 for the inclined field. This suggests that by including partial
ionisation as well as field inclination may increase the instability rate for high
wavenumber even further.

In all of our studies, we have considered a sharp interface between plasmas
of two different densities, which clearly does not always describe reality. A
more realistic (though still idealised) configuration would be to replace the
sharp interface with a thin boundary layer, i.e. we can study the effects of
field inclination in the presence of dispersion, another effect that affects the
phase-speed of waves. This will have particular pertinence to modelling the
transition region and the field lines intersecting it. If we are able to model
this effectively, for the time-dependent case, we could use this to represent the
effect of spicules on the transition region, in terms of waves that may propagate
as well as energy leakage. It’s also conceivable that this energy leakage could
contribute to heating of the lower corona.

Our study was predominantly theoretical and numerical investigations have
been used whenever the equations to be solved became too complicated to be
solved analytically. Another possible path in which the research presented here
could be continued is to connect our results to observations, i.e. to explore the
diagnostic capabilities of the theoretical results presented here.

With all of these refinements, our model will be much more applicable to
the solar environment and give us greater understanding of wave propagation,
as well as energy leakage and instabilities in prominences, the transition region
and other features with waves propagating obliquely to magnetic fields. This
will help us to understand energy flow and its effects on wave observations in
the solar atmosphere in ever greater detail.
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APPENDIX A

Calculation of residues and time-dependent ve-

locities

We aim to calculate explicitly the time dependent form of vz, given by

vz(t) = −2πi
[
resω−

(
v̂ze
−iωt)+ resω+

(
v̂ze
−iωt)] .

In order to calculate the residues, required to find the time-dependent solutions
for velocity, we introduce the expressions for B+ and C−, given by Eqs. (4.41)
and (4.42), into the expressions for v̂z, given by Eqs. (4.29) and (4.31). As a
result, we write

v̂z±(ω) = X±(ω)A(ω) +
Y±(ω)

sin θ
,

where

X− =
k

ρ−(ω2 − k2v2
A−e

−2iθ)

[
vA−vA+

vA− + VA+

sin θeiλ1−z(iλ2+ − k) + iωekz)

]
+

k

ρ+(ω2 − k2v2
A+e

2iθ)

[
vA−vA+

vA− + VA+

sin θeiλ1−z(iλ2+ + k)

]
,

X+ =
k

ρ−(ω2 − k2v2
A−e

−2iθ)

[
vA−vA+

vA− + VA+

sin θeiλ2+z(iλ1− − k)

]
+

k

ρ+(ω2 − k2v2
A+e

2iθ)

[
vA−vA+

vA− + VA+

sin θeiλ2+z(iλ1− + k) + iωe−kz)

]
,

Y− =
eiλ1+z

2vA−

∫ z

−∞
vz0e

−iλ1+z′dz′ − eiλ1−z

2vA−

∫ z

0

vz0e
−iλ1−z′dz′

+
vA−e

iλ1−z

vA+(vA− + vA+

∫ ∞
0

vz0e
−iλ2−zdz +

(vA+ − vA−)eiλ1−z

2vA−(vA− + vA+

∫ 0

−∞
vz0e

−iλ1+zdz,

Y+ =
eiλ2−z

2vA+

∫ ∞
z

vz0e
−iλ2−z′dz′ − eiλ2+z

2vA+

∫ z

0

vz0e
−iλ2+z′dz′

+
vA+e

iλ2+z

vA−(vA− + vA+

∫ 0

−∞
vz0e

−iλ1+zdz +
(vA− − vA+)eiλ2+z

2vA+(vA− + vA+

∫ ∞
0

vz0e
−iλ2−zdz.
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Since Y±/ sin θ has no poles in ω, the residues must be given simply by the
residues of X±A. We may write the expression, D(ω), in the definition for
A(ω) as,

D(ω) = (ρ− + ρ+)(ω − ω−)(ω − ω+).

This means that, when calculating the residue, we may use the result,

lim
ω→ω±

[(ω − ω±)A(ω)] =
H(ω±)G(ω±)

±2ωr(ρ− + ρ+)
,

where G and H are defined in Eqs. (?? and 4.46). Thus, the time dependent
form of the velocity, either side of the interface, is found to be

vz(z, t) = −iπ
[
X(ω+)H(ω+)G(ω+)

ω+

e−iω+t − X(ω−)H(ω−)G(ω−)

ω−
e−iω−t

]
,

which, when written explicitly, is

vz(t, z) =eωit

{
e−iωrt

[
U1+e

kz +W1+ exp

(
[ωi − i(kvA− cos θ + ωr)]z

vA− sin θ

)]
−eiωrt

[
U1−e

kz +W1− exp

(
[ωi − i(kvA− cos θ − ωr)]z

vA− sin θ

)]}
(A.1)

for z < 0, and

vz(t, z) =eωit

{
e−iωrt

[
U2+e

−kz −W2+ exp

(
− [ωi + i(kvA+ cos θ − ωr)]z

vA+ sin θ

)]
− eiωrt

[
U2−e

−kz −W2− exp

(
− [ωi + i(kvA+ cos θ + ωr)]z

vA+ sin θ

)]}
,

(A.2)

for z > 0, where U1,2± and W1,2± are given by the expressions,

U1± =
ρ+ω±G(ω±)(vA− − vA+)(ω± + kvA+e

iθ)

2ωr(ρ− + ρ+)(ω± + kvA−e−iθ)
, (A.3)

U2± =
ρ−ω±G(ω±)(vA+ − vA−)(ω± − kvA−e−iθ)

2ωr(ρ− + ρ+)(ω± − kvA+eiθ)
, (A.4)

W1± =
G(ω±)vA−(vA+ − vA−)

2ωr(ρ− + ρ+)(vA− + vA+)(ω± + kvA−e−iθ)
×

[(ρ− + ρ+)ω2
± + 2ikω±ρ+vA+ sin θ − 2k2ρv2

Ae
−iθ cos θ], (A.5)

W2± =
G(ω±)vA+(vA+ − vA−)

2ωr(ρ− + ρ+)(vA− + vA+)(ω± − kvA+eiθ)
×

[(ρ− + ρ+)ω2
± + 2ikω±ρ−vA− sin θ − 2k2ρv2

Ae
iθ cos θ]. (A.6)
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APPENDIX B

Expressions for time-dependent averages

The expressions in Eq. (4.79) are given to be,

Υ1 = exp[−kz(Γ/vA− + i/θ)]

{
exp[−ikCk(t+ z/θvA−)]

(Ck + vA−)(Ck + vA+)

×

[
exp

(√
θΓ

vA−
+

i√
θ

(1 + Ck/vA−)

)
− exp

(
−
√
θΓ

vA−
− i√

θ
(1 + Ck/vA−)

)]

− exp[ikCk(t+ z/θvA−)]
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×

[
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θΓ

vA−
+

i√
θ

(1− Ck/vA−)

)
− exp

(
−
√
θΓ
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− i√

θ
(1− Ck/vA−)

)]}
,

(B.1)

Υ2 = exp[kz(Γ/v2− i/θ)]
{
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, (B.2)

and

Υt =
4i(C2

k + vA−vA+) sin(kCkt)

(C2
k − v12)(C2

k − v2
A+)

+ e−ikz/θ
(

exp[σ1+ − ikCkt]− exp[σ2− + ikCkt]

(Ck + vA−)(Ck + vA+)

−exp[σ1− + ikCkt]− exp[σ2+ − ikCkt]
(Ck − vA−)(Ck − vA+)

)
, (B.3)
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where

σ1± =

√
θ − kz
vA−

(
Γ± iCk

θ

)
+

i√
θ
,

σ2± =

√
θ + kz

vA+

(
Γ∓ iCk

θ

)
− i√

θ
. (B.4)
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of leaky surface waves on contact magnetohydrodynamic discontinuities in
incompressible plasmas’, Physics of Plasmas 25(12), 122107.

Ryutova, M., Berger, T., Frank, Z., Tarbell, T. and Title, A. (2010), ‘Ob-
servation of Plasma Instabilities in Quiescent Prominences’, Solar Phys.
267(1), 75–94.

Schunker, H. and Cally, P. S. (2006), ‘Magnetic field inclination and atmo-
spheric oscillations above solar active regions’, Mon. Not. Roy. Astron.
Soc. 372(2), 551–564.
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