
Gaussian Process Emulation:

Theory and Applications

to the Problem of

Past Climate Reconstruction

Dario Domingo

The University of Leeds

School of Mathematics

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

October 2019

i

Intellectual Property Statement

The candidate confirms that the work submitted is his own and that appropriate credit

has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and

that no quotation from the thesis may be published without proper acknowledgement.

©2019 The University of Leeds and Dario Domingo

ii

To my parents

who have always supported my studies and ambitions, in spite

of the geographical distance that these have imposed.

A Giovanna e Nino

che mi hanno sempre sostenuto nel perseguire le mie ambizioni,

nonostante la distanza che queste hanno imposto.

iv

Acknowledgements

There are several people whom I wish to thank for their contribution to my PhD and,

as a result, to this work. First and foremost my supervisor, Jochen Voss. Jochen, you

have been a precious guide for me throughout the PhD. Thanks for giving the right

piece of advice when asked for, for believing in my potential and always encouraging my

own development, but also for listening to and sharing with me ideas of any sort. Two

special persons also deserve my heartfelt thanks: Alan Haywood and Aisling Dolan,

my co-supervisors from the School of Earth and Environment. Alan, Aisling, you have

both been remarkably kind to me. I have always been able to rely on your explanations,

your support and most importantly your affection, which I genuinely reciprocate. My

gratitude goes as well to Louise Sime. Almost by chance we started a collaboration

three years ago, which I could not wish to be more pleasant and successful, and which

has taught me a lot about our planet and its precious ice sheets.

Thanks Harry (Dowsett), your prompt and detailed emails have been most helpful to

answer my numerous questions on geological records, and your efforts to scrutinise

old archives most appreciated. Thanks John Paul (Gosling), for the mathematical

conversations we had in your office, for reading parts of this thesis and especially for

the support and advice you have given me throughout the job-search period. Similarly,

thanks a lot Elena (Issoglio), for your support and for always enjoyable conversations

and valuable exchange of views we had on the most diverse topics.

There are also several people who may not have directly contributed to this work, but

whom I nonetheless feel part of it. It would be impossible to list them all. They are

the numerous friends I made in Leeds, with whom I shared several experiences, trips

and countless dinners. To them all goes my gratitude for making this a great journey.

Last but not least, a special thanks to Anastasia, for understanding my last months

of hard work and never complaining of the little time this has left during most days.

v

Abstract

The dynamics of complex systems are commonly explored via the use of computer

simulators. To ensure an understanding of the phenomena they model, simulators are

usually run at a sequence of inputs, to explore different scenarios. This, however, often

requires a prohibitive amount of time and computational resources. In such a case, the

Bayesian framework of Gaussian process emulation allows to build a fast and reliable

statistical surrogate of the simulator, called an emulator. This provides not only

predictions of the simulator outputs, but also information on the uncertainty of these

predictions. This work investigates the framework of Gaussian process emulation, and

provides two separate examples of application to climate problems.

In Part I of the thesis, Gaussian process emulation is introduced and investigated in

depth. We employ a formal probabilistic setting, allowing us to see the derivation as

an example of Bayesian analysis in an infinite-dimensional space, and to recover the

formulas commonly used as a limit case. Further analyses are carried out, and the

case of a chaotic simulator is investigated. In relation to the problem of emulating

climate simulators, we also propose a dimension-reduction technique that accounts for

the Earth’s spherical geometry.

In Part II of the thesis, we employ the emulation framework to tackle problems of past

climate reconstruction, key to understanding the dynamics and potential consequences

of current global warming. In a first application, we explore the mismatch between

simulated mid-Pliocene ocean temperatures and geological records. By sampling from

the emulator trajectories, we reproduce the way records are extracted and account

for orbitally-induced changes in temperature. In a second application, we explore the

morphology of the Greenland ice sheet during the last Interglacial, to locate areas

prone to melting under warm temperatures. The context provides an example of non-

standard emulation setting, where the emulator input space consists of ice shapes.

vi

Preface

This thesis summarises the work I have carried out during my PhD. I feel lucky to

have had the opportunity to combine what is a strong academic passion, the one of

mathematics, with my personal interest in climate and in the current climate crisis

that we are witnessing, which is now being brought more and more to the attention of

politicians and decision-makers. At the beginning of my PhD, I understood that an

effective way we have to predict the consequences of the current warming is, however

strange this may sound at first, to study the past. In particular, to study periods in

Earth’s history that appear (and in fact are) temporally remote, but whose climate

shares much more than we think with the one we have, now, unnaturally caused.

In this challenge, rigorous statistics and mathematics play a prominent role. I here

provide the details of my personal experience in this context: using the statistical

framework of Gaussian process emulation to draw inference that is both statistically

sound and of relevance to the applied problem. While the first aim calls for direct

confrontation with, and feedback from, experts in the field (climate scientists in my

case), the second is usually in the hands of the statistician or mathematician. I believe

that a sound theoretical investigation is key to achieve robust conclusions. The way

this work is structured and developed reflects my interest for both a mathematically

sound setting and for the relevance that this can have to efficiently tackle problems

of collective interest. My wish is that the reader, whether motivated by a purely

statistical and mathematical interest, by an interest in climate and in the current

crisis, or by both, may find the coming chapters pleasant and enjoy their reading.

Leeds,

October 2019

D`a˚r˚i`o D`o“m˚i‹n`g´o

Contents

Acknowledgements . iv

Abstract . v

Preface . vi

Contents . vii

List of Abbreviations . x

List of Notation . xii

Introduction to the Thesis 1

Thesis Outline . 3

I Theory of Gaussian Process Emulation 5

1 Bayesian Statistics and Gaussian Processes 7

1.1 Motivation Behind the Introduction of Emulators 8

1.1.1 The Use of Computer Simulators in Science 8

1.1.2 The Need to “Emulate” Simulators 9

1.2 Introduction to Bayesian Inference . 11

1.2.1 Illustrative Example . 11

1.2.2 General Setting and Notation 13

1.3 Gaussian Processes . 18

1.3.1 Intuition Behind Stochastic Processes 19

1.3.2 Formal Definitions and Properties 19

1.4 Covariance Functions . 24

1.4.1 Definitions and Results . 25

1.4.2 Connection to Mean-square and Pathwise Continuity 26

1.4.3 Connection to Mean-Square Differentiability of Any Order . . . 31

1.4.4 Important Families of Covariance Functions 32

1.5 Correlation Lengths . 36

viii CONTENTS

2 Gaussian Process Emulation 39

2.1 Introduction . 40

2.1.1 Literature Review . 40

2.2 Two-Level Hierarchical Model . 44

2.3 Prior Distribution of the Model . 46

2.3.1 Recap of Useful Distributions 46

2.3.2 Prior Choice for the Hyperparameters β and σ2 49

2.3.3 Shorthand Notation Used in the Chapter 50

2.4 Conditioning the Model to Observations 51

2.4.1 Conditioning a Gaussian Vector 52

2.4.2 Bayesian Conjugate Analysis on Hyperparameters 54

2.5 Marginal Posterior Distribution of the Model 59

2.5.1 Some Definitions and Technical Results 59

2.5.2 Distribution of the Emulator . 64

2.6 Classical Prior Choice . 69

2.7 Summary of Emulation Setting and Formulas 72

2.8 The Case of Chaotic and Stochastic Simulators 74

2.8.1 Adding Observational Variance (Nugget Term) 75

2.8.2 A Glimpse on Potential Identifiability Issues 82

3 Principal Component Analysis Adapted to a Spherical Setting 87

3.1 Motivation . 88

3.2 Classical PCA: Review of Theory and Formulas 90

3.3 PCA on a Different Geometry . 93

3.3.1 Immersing Rs Into a Space of Functions 94

3.3.2 Theoretical Formula for the Principal Components 97

3.3.3 Computing the Principal Components 103

II Applications to Past Climate Reconstruction 107

4 Role of Orbital Variability in Ocean Temperature Reconstruction 109

4.1 Learn From the Past to Understand the Future 110

4.1.1 Motivation for the Interest in Mid-Pliocene Climate 110

Contents ix

4.1.2 The Combined Use of Models and Geological Data 111

4.1.3 The Role of Statistics . 112

4.1.4 Contribution of This Chapter 112

4.2 Description of Marine Geological Archive 113

4.3 The Climate Simulator and its Output Field 114

4.4 Simulator Inputs: Orbital Parameters 116

4.4.1 Description of Relevant Astronomical Phenomena 117

4.5 Experimental Design . 121

4.5.1 Uniform Sampling in Time . 123

4.5.2 Transformed input variables . 124

4.6 Reducing Output Dimensionality . 128

4.7 Prior Specifications for PC Scores . 132

4.7.1 Mean Function . 132

4.7.2 Covariance Function . 134

4.8 Estimation of Correlation Lengths and Nugget 135

4.9 Recombining the PC Scores . 139

4.9.1 Prediction for a General Location 140

4.9.2 Sampling Trajectories from the Emulator 142

4.10 Data-Model Comparison (DMC) . 146

4.11 Results . 149

4.12 Conclusions . 154

5 Greenland Ice Sheet Reconstruction During Last Interglacial 157

5.1 Introduction . 158

5.1.1 The Issue of Current Sea-Level Rise 158

5.1.2 Ice Sheets as Frozen Archives of Earth’s History 160

5.1.3 Overview of the Chapter . 162

5.2 Available Ice-Core Records . 164

5.3 Climate Simulations: Inputs and Outputs 166

5.4 Parameterise and Generate New Morphologies 168

5.4.1 Regridding the Original Morphologies 169

5.4.2 Principal Components and Synthetic Morphologies 172

5.4.3 Mask Generation of Synthetic Morphologies 175

x CONTENTS

5.5 Experimental Design . 179

5.5.1 Wave 1 . 180

5.5.2 Wave 2 . 181

5.6 Calibration of the Six Emulators . 183

5.6.1 Mean and Covariance Functions 183

5.6.2 Estimation of Correlation Lengths and Nugget Term 186

5.6.3 Emulator Validation . 187

5.7 Identifying Record-Compatible Morphologies 189

5.8 Results . 192

5.8.1 A Scenarios-Based Approach . 192

5.8.2 Posterior Densities (Record-Compatible Morphologies) 193

5.8.3 Shape and Uncertainty of RC Morphologies 195

5.9 Conclusions . 197

Concluding Remarks 199

Contributions of This Work . 201

Future Directions of Investigation . 202

Appendix 207

A Results from Probability . 207

B Results from Linear Algebra . 209

C Proof of Integrated Likelihood Formula 211

MATLAB Code 215

D General Routines . 215

E Code Relating to Chapter 4 . 218

F Code Relating to Chapter 5 . 227

Bibliography 245

List of Abbreviations

CC: Camp Century (Greenland ice-core site).

DMC: Data-Model Comparison.

GCM: General Circulation Model.

GP: Gaussian Process.

GrIS: Greenland Ice Sheet.

HadCM3: Hadley Centre Coupled Model - version 3.

HPC: High Performance Computing.

IPCC: Intergovernmental Panel on Climate Change.

kya: Thousand of Years ago.

LHS: Left-Hand Side.

LIG: Last Interglacial.

LOOCV: Leave-One-Out Cross-Validation.

MAP: Maximum a Posteriori.

MS: Mean-Square.

NIG: Normal-Inverse-Gamma.

PC(A): Principal Component (Analysis).

PI: Pre-Industrial.

PRISM: Pliocene Research, Interpretation, and Synoptic Mapping.

RHS: Right-Hand Side.

SST: Sea Surface Temperature.

SVD: Singular Value Decomposition.

UQ: Uncertainty Quantification.

WPA: Warm Peak Average.

List of Notation

The followings list provides a reference to some of the notation used throughout this

work. For easier reference, the list is divided into three classes.

Sets and General Mathematical Notation

N Set of positive natural numbers: N = {1, 2, 3, . . . }.

R Set of real numbers.

Rd Set of real vectors of length d.

Rd1×d2 Set of real matrices of dimension d1 × d2.

1d Vector in Rd whose components are all equal to 1.

Id Identity matrix of order d.

1A(·) Indicator function of the set A:
1A(x) = 1 if x ∈ A, 1A(x) = 0 otherwise.

S2 Unit sphere in R3: S2 =
{

(x, y, z) ∈ R3 |x2 + y2 + z2 = 1
}

.

Probability-Related Notation

P(A) Probability of the set A.

E[X] Expectation of a random variable (or vector) X.

X ∼ ν The random variable/vector X has distribution given by ν.

N(µ, σ2) Univariate Normal distribution with mean µ ∈ R
and variance σ2 ≥ 0.

N(µ,Σ) Multivariate Normal distribution with mean µ ∈ Rq

and covariance matrix Σ ∈ Rq×q.

NIG(b,B, a, s) Normal-Inverse-Gamma distribution with
parameters b,B, a, s (see page 48).

GP
(
m(·), v(·, ·)

)
Gaussian process with mean function m(·)
and covariance function v(·, ·).

xiii

Emulation-Related Notation

P ⊆ Rp Input space of emulator and simulator.

p ∈ N Dimension of emulator/simulator input space.

x ∈ P Generic input to emulator/simulator.

x1, . . . ,xn ∈ P Design points (inputs at which the simulator is run).

n ∈ N Number of design points.

x̃1, . . . , x̃k ∈ P Collection of k generic points in P at which
the emulator is evaluated.

y ∈ R, y ∈ Rs Univariate (e.g., Chapter 2) or multivariate (e.g., Chapter 3)
simulator outputs.

s ∈ N Dimension of space (Rs) on which PCA is performed
before GP emulation can be applied.

xiv

Introduction to the Thesis

This thesis explores the statistical framework of Gaussian process (GP) emulation and

provides details of two applications to past climate reconstruction problems. Accord-

ingly, the work is divided into two parts. In Part I, a thorough discussion of the theory

of GP emulation is carried out and further developments within this and related fields

are proposed. In Part II, two climate problems are introduced and investigated in

detail, in the light of both applied considerations and the theory previously laid out.

While, especially in Part I, some of the sections necessarily delve into the mathematical

theory or technicalities, it has been my (the author’s) effort to make any reasoning or

explanation as clear as possible. Where appropriate and possible, I have used illustra-

tions and diagrams to accompany theoretical explanations. In addition, throughout

the work, the reader will find infoboxes, like the following one.

Infoboxes

An infobox may add an historical note that is contextually relevant, clarify the

notation used, discuss a technical caveat, or more. The title will provide a guide.

The aim of all infoboxes is to concisely present information that favours the

understanding of the context or gives a slightly different perspective on it, while

not being strictly necessary to understand the rest of the section or chapter.

The two parts into which the thesis is divided should not be considered strictly separate

entities. The theoretical investigations of Part I are motivated by the problems arising

in applied contexts, and allow to gain a level of insight into these which would be

otherwise difficult to achieve. On the other side, the context of each of the two problems

tackled in Part II, both arising in relation to the current climate change issue, plays a

2 Introduction

primary role in guiding the statistical and mathematical choices which are undertaken

in this part of the thesis. The climate context also provides the starting point to

develop methodologies which have wider applicability and their own interest from a

purely mathematical point of view.

Some remarks about conventions used in this work are as follows. I generally devote

the first section of each chapter to introduce in plain language the problem dealt with,

be this of pure or applied nature. Especially in Part II, this aims to introduce the

reader to potentially unfamiliar settings, in order to favour a solid understanding of

the context and motivations behind the work that follows. Moreover, unless otherwise

stated, throughout the work I use lowercase plain letters to denote scalars, lowercase

bold letter to denote vectors, and uppercase bold letters to denote matrices. As an

example, consider the following:

x ∈ R , x ∈ Rn, X ∈ Rp×q, n, p, q ≥ 2 .

The same will hold for functions, whose values are respectively scalars, vectors, or

matrices. Finally, the ith component of a vector x is denoted as xi.

I would like to conclude with a remark. Unlike the Preface and this very first part,

most of the coming work, mainly of descriptive character, is written in first person

plural. This choice conforms to the style widely used to report scientific research,

where the pronoun “we” may be used with the purpose of including the reader, or on

behalf of the whole research community. I am nonetheless the sole author of this work

and, as such, I am as well the only person who is to be blamed for any inaccuracy or

incorrectness that this work may contain.

Thesis Outline 3

Thesis Outline

In the rest of this work, each chapter is introduced by its own abstract. An overview

of the structure of the thesis is as follows.

In Part I of the thesis, Chapter 1 introduces general mathematical and statistical

tools, at the basis of GP emulation: in particular stochastic and Gaussian processes,

and the ideas underlying Bayesian modelling. Chapter 2 is devoted to the emulation

framework. While most of the chapter’s results are soundly established in the relevant

literature, the way the framework is presented and the results are derived, within

the probability formalism introduced in the preceding chapter, often departs from the

standard approach. Part I terminates with Chapter 3, where a classical dimension-

reduction technique (PCA) is adapted to a the spherical setting. This has potential

relevance for a number of statistical applications.

Part II of the thesis approaches two problems of climate reconstruction. In Chapter 4,

the period we focus on is the mid-Pliocene (about 3.3 to 3 million years ago). This

represents the last time in Earth’s history with atmospheric carbon dioxide concentra-

tions comparable to today, and global temperatures warmer than today. We investigate

the mismatch between mid-Pliocene ocean temperature simulated via complex climate

simulators, and temperature reconstructions from geological records. The emulation

framework allows us to replace the expensive simulator with a reliable and fast-to-

run statistical model, which can be used as its surrogate. In Chapter 5, we employ

the framework of GP emulation, together with information available from Greenland

ice cores, to study the shape and extent of the Greenland ice sheet during the last

Interglacial (approximately 125 thousand years ago). At the time, polar temperatures

are estimated to have been up to 4°–5°C warmer than today. Besides being of primary

interest within the climate community, due to the drastic consequences produced by

the Greenland ice sheet’s current melting, the topic provides the opportunity to develop

emulation in a non-standard setting, specifically on ice shapes.

The Matlab code that I have developed to tackle the problems in Part II can be down-

loaded from https://github.com/dariod89. Part of the code is reported in Appendix.

https://github.com/dariod89

4 Introduction

Part I

Theory of Gaussian Process

Emulation

1. Bayesian Statistics and Gaussian

Processes

Abstract: The aim of the chapter is to introduce concepts and tools that are of

particular importance in the treatment of Gaussian process emulation, and of general

relevance within the fields of statistics and probability. Specifically, after providing

the context and motivation behind the introduction of emulators, we discuss: i) the

Bayesian framework for statistical inference; ii) stochastic and Gaussian processes. We

report and discuss classical results linking the regularity of a stochastic process to the

one of its covariance function, both in mean square and pathwise, and introduce the

concept of correlation lengths. The exposition also allows to set the notation and

terminology used in the next chapter, where the framework of Gaussian process

emulation is investigated in detail.

8 1. Bayesian Statistics and Gaussian Processes

1.1. Motivation for the Introduction of Emulators

1.1.1. The Use of Computer Simulators in Science

Mathematical models are employed to study the dynamics of various phenomena,

for which direct experimentation is too complex or impossible to perform. The

primary aim of a model is to allow to gain a deeper insight into the system that

it describes. While only representing an approximation of the real phenomenon, most

models of practical interest incorporate a level of complexity that makes purely theoret-

ical investigations of their properties unfeasible. For this reason, scientists resort to

numerical approximations of the model, implemented in the form of computer code.

These are known as computed models, or simulators.

Nowadays, computer simulators are used virtually in every area of science. Craig

et al. [1997] provide an example of application to hydrocarbon reservoirs; Vernon

et al. [2010] employ a complex simulator to study the large-scale physical phenomenon

of Galaxy formation and evolution; Zhou et al. [2010] model crowd behaviour and

dynamics; Alden et al. [2013] present a simulator designed for lymphoid tissue organo-

genesis modelling, alongside other biological modelling tasks; Kavetski [2019] focus on

simulation of hydrological systems. A vast literature concerning the use of computer

simulators in weather and climate modelling is also available (see for example Rougier

and Goldstein [2014], Tran et al. [2016], and also Menemenlis et al. [2005] for an

illustration of the use of a NASA supercomputer in ocean climate research); we will

expand more on this in Part II of this work.

As already pointed out, computer simulators are characterised by a complex structure,

which accounts for the interactions between processes developing in different compart-

ments or components of the system. Such a high complexity necessarily introduces

a large number of parameters in the simulator. Some of these are parameters of the

mathematical model, whose “best” value may be unknown. Others represent external

influences on the system, which tailor the behaviour of the latter to a specific instance:

these are known as forcing parameters. We can here denote by x the collection of all

the model and forcing parameters that can be varied between different runs of the

simulator, and by y = f(x) the state of the simulated system corresponding to the

1.1. Motivation Behind the Introduction of Emulators 9

choice of input parameters x. This explicitly allows us to view a simulator as a

mathematical function, associating outputs y to inputs x.

To ensure a robust inference on the problem of interest, the simulator must usually

be run at a sequence of inputs, with the aim of exploring different scenarios. This

task, however, can be challenging to perform. This is primarily due to three, partially

interconnected reasons:

i) The high dimensionality of the input space;

ii) The computational power that is required to perform each simulation;

iii) The amount of time that is required to perform each simulation.

The above challenges therefore call for the development of appropriate statistical

methodologies that enable the study of a simulator’s dynamics and that can properly

handle the uncertainties associated with the analysis.

1.1.2. The Need to “Emulate” Simulators

During the 1980’s and 1990’s, the increasingly important role played by computer

simulators in studying a variety of problems, and the difficulty to perform an exhaus-

tive search of their parameter space, gave rise to a new field: the one of the design and

analysis of computer experiments, as it is referred to in the seminal work Sacks et al.

[1989]. The term “computer experiments” refers to a sequence of runs of the simulator;

the term “design” concerns the choice of the inputs at which the simulator should be

run, to make best use of the information that these will provide. The term “analysis”

(of computer experiments) has a wider, and at the same time deeper, interpretation.

It refers to the way in which the information provided by the design runs should be

processed to make robust inference about the dynamics of the simulator and, even more

importantly, about the dynamics of the phenomenon that the simulator describes. In

this regard, let us quote an excerpt of Lionel Galway’s and Thomas Lucas’ comments

to Craig et al. [1997].

The computer models [. . .] tend to be very large, often with thousand of

parameters and the run times are correspondingly lengthy, so relatively few

10 1. Bayesian Statistics and Gaussian Processes

computer runs are feasible. As a result, relatively sparse “data” exist [. . .].

However, [. . .] important decisions must be made, e.g., setting standards

and regulations for carbon-dioxide emissions and nuclear waste sites or

efficiently managing hydrocarbon production. The first question is how to

use such models rigorously and how to account for our uncertainty about

the models’ relationships to reality.

The field of Gaussian process (GP) emulation provides the statistical framework to

tackle the problem of the analysis of computer experiments. It is now recognised to be

a prominent part of a more general field, the one of Uncertainty Quantification (UQ).

In simple words, an emulator is a statistical model of the simulator, whose notable

advantage over the simulator is the ability to provide predictions of the response at

untried inputs in a significantly reduced amount of time (milliseconds rather than

weeks, for instance). Most importantly, the emulator predictions take the form of

probabilistic statements, which do not simply provide a “best guess” of the simulator

response, but attach probabilistically quantified levels of uncertainty to it. If suitably

calibrated, an emulator may also be able to account for the discrepancy between the

simulator and reality.

The idea behind GP emulation is to model the simulator as a stochastic process, rather

than as a deterministic function. One of the motivations behind this choice is that

the simulator output corresponding to a particular input x is essentially unknown,

till a notable amount of time and computational resources are invested in running the

simulator at the particular input configuration x of interest: Kennedy and O’Hagan

[2001] coined the term “code uncertainty” to refer to this kind of uncertainty. It

is therefore clear that the theory of GP emulation relies on the ones of stochastic

processes. Moreover, it is classically developed within a Bayesian setting: “beliefs”

are initially expressed on the stochastic process modelling the simulator, and they are

subsequently “updated” in light of the simulator response at a small sample of input

configurations.

It is the author’s wish to ensure that the ideas underlying Bayesian inference, and the

main concepts and results concerning stochastic processes, are not left unclear in the

mind of the potentially unfamiliar reader. For this reason, we defer the treatment of

GP emulation to Chapter 2, and devote this chapter to the exposition of the previous

1.2. Introduction to Bayesian Inference 11

topics. Presenting them here also gives us the opportunity to set the notation for the

framework that will be used in Chapter 2 to present and investigate the theory of GP

emulation.

The structure of this chapter is as follows. Section 1.2 is devoted to the illustra-

tion of the central ideas of Bayesian statistics. Section 1.3 introduces stochastic and

Gaussian processes, and related results. Section 1.4 examines how properties of covari-

ance functions and correlation lengths affect a stochastic process. While some of the

results shown in these last two sections may appear of a theoretical nature, they are

of fundamental importance in applied contexts, as we will see in Part II of the thesis.

1.2. Introduction to Bayesian Inference

In this section, we provide an introduction to the framework of Bayesian inference,

starting with the illustration of its key principles via a brief and easy example. Even if

currently unfamiliar with Bayesian statistics, the reader will then be able to recognise

that very similar principles and steps characterise the construction of the emulator

(Chapter 2), although the mathematics will necessarily be more involved.

For a more complete and detailed introduction, we refer the reader to the book of Peter

Lee, Lee [2012]. This is one of the most popular introductory texts to Bayesian Statis-

tics, and covers a variety of both theoretical and computational topics. A possibly

simpler, and easily-accessible introduction is provided in Bolstad and Curran [2016].

This text accompanies most of the theory with illustrations and numerical examples,

and also carries out a detailed comparison between the performances of the Bayesian

and the more classical frequentist approach.

1.2.1. Illustrative Example

Let us consider the following elementary example.

Setting: Suppose you would like to know whether you are affected by a given rare

disease, D. This affects 1% of the population. A test is available, but it is expensive

to carry out and the results take a long time to be available. The doctor therefore

12 1. Bayesian Statistics and Gaussian Processes

suggests to go, firstly, through a simpler route: to take a blood test to check whether

you possess a given enzyme, E. The enzyme is known to be produced under the

disease, but it can also be produced as a consequence of a number of other factors. In

fact, it is present in 40% of the total population. Assuming that the test reveals that

you possess the enzyme, and assuming you are a very rational person, how likely do

you believe it is that you are actually affected by the disease?

Answer: Using an intuitive notation and elementary probability rules, the answer is

easily computed. We have:

P(D) = 0.01, P(E |D) = 1, P(E) = 0.4. (1.1)

We are then interested in computing P(D |E), the probability of being affected by the

disease, if the enzyme test is positive. Through Bayes’ rule, we get:

P(D |E) =
P(E |D) P(D)

P(E)
=

1× 0.01

0.4
= 0.025 . (1.2)

Albeit elementary, the example provides a typical illustration of the paradigm

underlying Bayesian statistics: in light of the observation (the test), you have updated

your information from a prior one (having 1% chance of being affected by the disease)

to a posterior one (having 2.5% chance of being affected by the disease).

Notice that, from the law of total probability, we have the following relation:

P(E) = P(E |D)P(D) + P(E |Dc)P(Dc) . (1.3)

In equation (1.1), we can therefore replace the information about P(E) with

P(E|Dc) = (0.4− 1 · 0.01)/0.99 = 13/33, hence rewriting (1.1) as:

P(D) = 0.01, P(E |D) = 1, P(E |Dc) = 13/33. (1.4)

In order to easily analyse the example within the Bayesian framework, it is convenient

to rephrase it in terms of random variables. We can consider the following:

• X: the Bernoulli random variable denoting whether a person is affected by the

disease or not.

1.2. Introduction to Bayesian Inference 13

• Y : the Bernoulli random variable denoting whether a person possesses the

enzyme or not.

For convenience of interpretation, we denote by D (disease) and H (health) the two

possible outcomes of X, and by E (enzyme) and F (free) the two possible outcomes

of Y . Within this formulation, equation (1.4) becomes as follows:

P(X=D) = 0.01 ; (1.5.a)

P
(
Y =E |X=D

)
= 1, P

(
Y =E |X=H

)
= 13/33 . (1.5.b)

Equation (1.5.a) specifies the distribution of X, and equation (1.5.b) specifies the

conditional distribution of Y given X. Through Bayes’ rule, we can easily compute

the conditional distribution of X given Y , as done in (1.2). Within a Bayesian setting,

these distributions have precise names.

1. The distribution of X, equation (1.5.a), is called prior distribution. This is

the distribution we associate to the random variable of interest, according to the

knowledge available before any observation is made.

2. The conditional distribution of Y given X, equation (1.5.b), is called likelihood.

It reflects the way in which the random variable X affects the observations Y .

3. The conditional distribution of X given Y is called posterior distribution. It

reflects the updated distribution of X, given that a specific instance of Y has

been observed.

1.2.2. General Setting and Notation

The simple illustration in Subsection 1.2.1 introduces the reader new to Bayesian

statistics to the basic concepts and terminology. Here we expand on this by providing

a more general and unifying framework, that applies indifferently to random objects

of different nature.

In a statistical inference framework, we are interested in the value of an unknown

quantity Θ, not directly observable. However, we know that the value of Θ affects the

14 1. Bayesian Statistics and Gaussian Processes

outcome of a random quantity, Y , which we may be able to observe. In our previous

example, Θ tells us whether we are affected by the disease (not directly observable),

and Y tells us whether we possess the enzyme E. The key question is as follows:

“Provided we observe an instance of Y , how can we use

this information to draw inference on Θ?”

In the classical frequentist approach, Θ is considered to be a fixed, but unknown

value. Given the observation Y = y, the most common approach is to estimate

Θ with the value that maximises the likelihood of seeing y as instance of Y . For

example, if Y ∼ N(Θ, 1) and we observe Y = y, then we would estimate Θ = y.

What instead characterises the Bayesian approach, is that the unknown parameter Θ is

itself considered a random variable, about which we are asked to specify a distribution.

The latter will encode any external information that is available (for example, from

experts’ judgements) and can be “updated” in light of the observation Y = y.

We have essentially seen this in Subsection 1.2.1 (equation (1.2)), but we make it

explicit here, in the simple case where Θ and Y are discrete random variables. In this

case, we define:

π
Θ

(θ) := P
(
Θ = θ

)
, (1.6)

π
Y |Θ(y | θ) := P

(
Y = y |Θ = θ

)
. (1.7)

The function π
Θ

(·) is the prior distribution of Θ. The function π
Y |Θ(· | θ) specifies what

distribution Y follows, if Θ = θ: this is the likelihood function of θ. If we observe

Y = y∗, then Bayes’ rule yields the following posterior distribution for Θ:

π
Θ|Y (θ|y∗) =

π(y∗|θ) π(θ)

π(y∗)
=

π(y∗|θ) π(θ)∑
j π(y∗|θj) π(θj)

. (1.8)

We have omitted the right-hand side (RHS) subscripts, since the argument(s) of each

density allow to identify the distribution we refer to.

If Θ and Y are continuous real variables, then we replace the definitions (1.6) and

(1.7), which specify probability masses, with probability densities. If π(θ) is the prior

density of Θ, and π(y | θ) is the density of Y for Θ = θ, then the posterior density of

1.2. Introduction to Bayesian Inference 15

Figure 1.1: Illustration of the classical Bayesian principle: given a likelihood function and
observed data, prior information about a parameter Θ is updated into posterior information
for the same parameter. Compare with equation (1.10). Permission to use the above illustra-
tion from Doll and Jacquemin [2018] has been kindly granted by The American Fisheries
Society.

Θ given the observation Y = y∗ is computed as:

π(θ|y∗) =
π(y∗|θ)π(θ)∫
π(y∗| θ̃) π(θ̃) dθ̃

. (1.9)

The procedure generalises to random objects of any nature: either Y , or Θ, or both,

can be random variables, random vectors, or even random functions. This last case is

of particular interest in GP emulation, as we will see in Chapter 2. We can therefore

summarise the above in one simple and fundamental formula, at the heart of any

Bayesian procedure:

π(θ | y∗) ∝ π(y∗| θ)× π(θ) . (1.10)

16 1. Bayesian Statistics and Gaussian Processes

The proportionality sign is due to having neglected the factor π(y∗)−1: this is indepen-

dent of θ, the only variable the posterior is a function of. In an informal but easily

memorable way, we may write the following:

Posterior ∝ Likelihood× Prior . (1.11)

Figure 1.1 provides a schematic illustration of the way information from different

sources is merged within a typical Bayesian framework: equation (1.10) represents

the mathematical formulation of this. In Example 1.1, we illustrate an application

of the formula to a simple context, where Θ and Y are both real random variables,

respectively continuous and discrete. Before doing that, we make a more technical

note on the case dealt with in equation (1.9).

Θ and Y Continuous: Technical Note

Suppose both Θ and Y are continuous real random variables. Then, the event

{Θ = θ} has probability zero, hence the quantity P
(
Y ∈ A |Θ = θ

)
, for an interval

A ⊆ R, is not defined in terms of classical conditional probabilities. Even more,

one may wonder what precise meaning to associate to the density of Y given Θ:

we cannot define it as the derivative of P
(
Y ∈ [0, y] |Θ = θ

)
with respect to y,

since this last term is undefined. Within a measure-theoretic setting, it is however

possible to define P
(
Y ∈ A |Θ = θ

)
, and have it satisfy all the intuitive properties

that one would expect. The interested reader may for example consult the book of

the famous Russian mathematician Albert Shiryaev, Shiryaev [1996] (Chapter II,

Section 7). The author first defines the following function of θ:

mX (θ) = E
[
X |Θ = θ

]
, (1.12)

for any random variable X defined on the same probability space (Ω,F ,P) of

Θ. Then, the desired definition of conditional probability follows naturally, by

considering X to be the appropriate indicator function:

P
(
Y ∈ A |Θ = θ

)
= E

[
1{Y ∈A} |Θ = θ

]
, A ∈ F . (1.13)

Here, we do not go into the details of definition (1.12), which would first require the

1.2. Introduction to Bayesian Inference 17

introduction of appropriate tools (partially overlapping with the ones presented in

Subsection 1.3.2). It was however worth pointing out the caveat, and reassure the

reader that a legitimate definition of conditional density can be given, and that

this satisfies Bayes’ rule (1.9).

Let us now conclude this introductory section on Bayesian statistics with the simple

example mentioned prior to the previous remark.

Example 1.1. Let Y be the number of heads in N coin tosses. The coin is potentially

biased: the probability Θ ∈ [0, 1] of obtaining head in a single toss is unknown.

Supposing to have no reasons to favour one value or the other, we put a uniform prior

on Θ. Therefore, we have:

Θ ∼ U(0, 1) , Y |Θ ∼ B(N,Θ) .

We have denoted with B(n, p) the binomial distribution with parameters n ∈ N and

p ∈ [0, 1]. We now toss the coin N times, and obtain y∗ ∈ {0, . . . , N} heads in total.

How does this observation modify our prior (flat, in this case) belief on Θ? From

Bayes’ rule (1.10), we obtain:

π(θ |Y = y∗) ∝ π(y∗| θ)× π(θ)

∝ θy
∗
(1− θ)N−y∗ × 1[0,1](θ) . (1.14)

Defining for simplicity a = y∗ + 1 and b = N − y∗ + 1, and taking into account the

normalising factor, we find:

π(θ |Y = y∗) =
θa−1(1− θ)b−1

B(a, b)
, θ ∈ [0, 1] . (1.15)

This is the density of a Beta distribution with parameters a and b; the function

B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx is the Beta function.

Having seen exactly y∗ heads out of N trials, we expect the posterior density of Θ to

assign higher probabilities to values near Θ = y∗/N . This is indeed the case, with the

mode of (1.15) being exactly (a − 1)/
(
(a − 1) + (b − 1)

)
= y∗/N . Notice that this

posterior mode coincides with the maximum likelihood estimate of Θ: maximising

18 1. Bayesian Statistics and Gaussian Processes

Figure 1.2: Illustration of the prior and posterior densities of a random variable Θ, within
the simple setting of Example 1.1. Θ represents the probability of tossing a head in a single
coin flip. A uniform prior for Θ is chosen (green), which is updated to the posterior (red)
after observing 7 head tosses in 10 trials. The posterior mode is, as expected, 0.7.

the likelihood or the posterior is in this case equivalent, since the prior is constant.

The Bayesian approach returns however a full distribution for Θ, rather than a single-

valued estimate. We illustrate in Figure 1.2 the change from the prior to the posterior

distribution of Θ, in the case where y∗ = 7 heads are tossed out of N = 10 trials.

1.3. Gaussian Processes

As explained in Section 1.1, the main idea behind GP emulation is to create a fast

and reliable statistical surrogate of an expensive computer simulator. To this aim, the

simulator is modelled as a GP, a particular kind of stochastic process. In this section we

present the basic definitions and results about stochastic and Gaussian processes. We

do this within a relatively formal probabilistic setting which we introduce in Subsec-

tion 1.3.2, after providing a brief intuition in Subsection 1.3.1. For a wider treatment,

we refer the reader to Rasmussen and Williams [2006], providing a good and practical

overview on GPs, with special focus on their multiple uses in Machine Learning.

1.3. Gaussian Processes 19

1.3.1. Intuition Behind Stochastic Processes

Gaussian processes are stochastic processes. A stochastic process is informally

described as a collection of random variables, indexed via the elements of a given

set. The most common example is the one where the index set is time, in which case

the process is naturally thought of as describing the (random) time evolution of a

given quantity of interest. In this case, it is natural to denote the process as follows:

(
X(t)

)
t≥0

. (1.16)

X(t) is the random variable denoting the state of the process at time t. The distri-

bution of X(t) at the different times t clearly needs to be specified. However, this

is not enough to completely determine the stochastic nature of X. As a minimal

further requirement, we have to specify the dependence between the random variables

at different times t: for example, if we assume the process continuous, we expect the

correlation between X(t) and X(t+ ε) to be high for ε� 1. More generally, we need

to specify the full joint distribution of the process at any finite collection of times

t1, . . . , tk ≥ 0, that is, the distribution of the random vector:

(
X(t1), . . . , X(tk)

)
∈ Rk . (1.17)

This will identify what is referred to as the law of the stochastic process (formally

defined in the following Subsection 1.3.2). GPs are particular stochastic processes,

the ones for which the distribution of (1.17) is multivariate Gaussian. The following

section formalises the previous concepts within an appropriate framework.

1.3.2. Formal Definitions and Properties

In order to treat randomness in a formal and consistent manner, we need to introduce

the concept of probability space. This is a triple (Ω,F ,P), where:

• Ω is the so-called sample space. The elements in Ω represent all the possible

outcomes of the random experiment being considered.

20 1. Bayesian Statistics and Gaussian Processes

• F ⊆ 2Ω is a set of events (2Ω denotes the power set of Ω), an event being a

collection of single outcomes for which a probability is defined.

• P is the probability measure assigning a probability to each event in F .

In order to satisfy the standard probability axioms (i.e., P(A) ≥ 0, P(Ω) = 1, and

P(∪iAi) =
∑

i P(Ai) for mutually disjoint sets Ai) we need to impose some require-

ments on F , the set of events. In particular, we need to request that the following

three properties hold:

1. Ω ∈ F ;

2. A ∈ F ⇒ Ω \A ∈ F (closure of F under complements);

3. {An}n∈N ⊆ F ⇒
⋃
n

An ∈ F (closure of F under countable unions).

A set F ⊆ 2Ω satisfying properties 1–3 is called a σ-algebra. In a probability space,

the elements of the σ-algebra F are often referred to as measurable events: we can

measure their mass through P. If no probability measure is specified, a pair (Ω,F) of

a set and a corresponding σ-algebra is simply called a measurable space. Notice that,

if Ω is a topological space (a space for which the notion of open set is defined), there

is a natural σ-algebra associated with Ω. This is the Borel σ-algebra, denoted B(Ω),

defined as the smallest σ-algebra containing all open sets of Ω.

We now provide the formal definition of random variable, and immediately after the

one of stochastic process which we will use in the rest of this work.

Definition 1.3.1. Let (Ω,F ,P) be a probability space, and (E, E) a measurable space.

A random variable between (Ω,F ,P) and (E, E) is a function

X : Ω→ E , (1.18)

such that the pre-image of an element of E through X is an element of F . That is:

X−1(A) :=
{
ω ∈ Ω | X(ω) ∈ A

}
∈ F ∀A ∈ E . (1.19)

This way, for any A ∈ E , the probability P(X ∈ A) = P
(
X−1(A)

)
is well defined.

1.3. Gaussian Processes 21

We now introduce the definition of stochastic process. We limit our treatment to the

case of real output with associated Borel σ-algebra, since this is essentially the only

case of interest in this work. The following definition (but not all of the following

results) remains valid if the pair (R,B(R)) is replaced by any measurable space (E, E).

Definition 1.3.2. Let I be a set. A stochastic process with index set I and underlying

probability space (Ω,F ,P) is a function

X : Ω× I → R , (1.20)

such that, for each t ∈ I, the function Xt(·) := X(·, t) is a random variable. That is,

for any A ∈ B(R), we have:

Xt
−1(A) :=

{
ω ∈ Ω | X(ω, t) ∈ A

}
∈ F . (1.21)

We have denoted with t a general element of I, since the latter may often have an

interpretation as set of times. However, both in the previous definition and in the

following results, I is to be considered just a set, which needs not have any particular

additional structure.

According to Definition 1.3.2, it is natural to see a stochastic process as a collection of

random variables, indexed by the elements of I. However, notice that for each sample

element ω ∈ Ω, the process returns a function from I to R:

X(ω, ·) : I → R . (1.22)

This is often called a sample trajectory, path, or realisation of the process. Hence, it

is also convenient to see a stochastic process as a random variable (function of ω ∈ Ω

only) taking values in the space of functions from I to R, denoted by RI :

X : Ω −→ RI

ω 7→ X(ω, ·)
(1.23)

The probability measure P on (Ω,F) can be “transported” forward to the space RI

endowed with its Borel σ-algebra (whose existence and construction is not obvious, see

point 1 just below). This allows to identify the different elements of RI as more, or

22 1. Bayesian Statistics and Gaussian Processes

less, likely realisations of the process. This can all be made rigorous, but it is not the

aim of the present section, nor of the present work, to go into such measure-theoretic

details. For the purposes of this work, it suffices to know the following:

1. The Borel σ-algebra B(RI) is well-defined even for general uncountable sets I
(this is constructed through the so-called cylinder sets, see Shiryaev [1996,

Chap II.2, Thm 3]);

2. A central result, due to the eminent probabilist Andrey Kolmogorov, ensures that

the probability measure induced by the process X on
(
RI ,B(RI)

)
is uniquely

determined by a set of measures on Rk, k ∈ N. These are the finite-dimensional

distributions of the process, introduced below.

Definition 1.3.3. Let X be a stochastic process on the probability space (Ω,F ,P),

with index set I. For fixed t1, . . . , tk ∈ I, call µt1,...,tk the distribution of the random

vector (
Xt1 , . . . , Xtk

)
: Ω → Rk . (1.24)

The family {
µt1,...,tk

∣∣∣ k ∈ N, t1, . . . , tk ∈ I
}

(1.25)

is called the family of finite-dimensional distributions of the process X.

Within this setting, the famous result of Kolmogorov, informally introduced in point 2

above, can be formulated as follows.

Theorem 1.3.4 (Kolmogorov). Let X be a stochastic process on the probability space

(Ω,F ,P), with index set I. Then the law of the process, that is, the probability measure

µ on
(
RI ,B(RI)

)
defined by

µ(A) = P
(
ω ∈ Ω | X(ω, ·) ∈ A

)
∀A ∈ B

(
RI
)
, (1.26)

is uniquely identified by the set of all finite dimensional distributions {µt1,...,tk} of the

process.

Remark 1.2. It is worth noting that the original result of Kolmogorov, known as

Kolmogorov’s extension theorem, is slightly more general than the one stated above:

1.3. Gaussian Processes 23

see, for example, Shiryaev [1996, Chap II.3, Thm 4], Shiryaev [1996, Chap II.9, Thm 1],

or Øksendal [1998, Thm 2.1.5]. It states that a family of finite-dimensional distribu-

tions on
(
Rk,B

(
Rk
))
k∈N can be uniquely extended to a measure on

(
RI ,B

(
RI
))

,

provided that the family satisfies some relatively natural conditions known as consis-

tency conditions. These are clearly satisfied in the case where the distributions are

the finite-dimensional distribution of a given stochastic process, hence our statement.

In light of the solid mathematical ground laid by Kolmogorov’s theorem, we can define

a Gaussian process as follows.

Definition 1.3.5 (Gaussian Process). A Gaussian process is a stochastic process X,

for which all finite-dimensional distributions are Gaussian: that is, the random vectors

(
Xt1 , . . . , Xtk

)
∈ Rk, t1, . . . , tk ∈ I, (1.27)

are all jointly Gaussian distributed.

The previous definition allows to uniquely identify the law of the process X, thanks

to Kolmogorov’s theorem. In Figure 1.3 we show some sample trajectories of what is

arguably the most famous Gaussian process, the Brownian motion. The parameter

set I is a set of times, I = [0, 25] in Figure 1.3. The finite dimensional distributions

are instead as follows:

(
Xt1 , . . . , Xtk

)
∼ N(0,Ct1, ...,tk) , (1.28)

where 0 ∈ Rk is the zero k-dimensional vector, and the element (i, j) of the covariance

matrix Ct1, ...,tk ∈ Rk×k is given by

(Ct1, ...,tk)ij = min{ti, tj} , i, j = 1, . . . , k . (1.29)

As Figure 1.3 shows, the Brownian motion has relatively irregular paths. In the next

section, we see that the regularity of the paths of a GP is affected by an important

property of the process, its covariance function.

24 1. Bayesian Statistics and Gaussian Processes

0 5 10 15 20 25time
-10

-5

0

5

10

Figure 1.3: Plot of four different trajectories of Brownian Motion, the canonical example
of a Gaussian process. Each trajectory corresponds to a different ω of the sample space Ω.

1.4. Covariance Functions

Let us consider a stochastic process X with index set I. Throughout this section, we

need the technical hypothesis that the process has finite second-order moments. That

is, we assume the following:

E
[
X2
t

]
<∞ ∀ t ∈ I . (1.30)

If the previous condition holds, we say in short that X is a second-order process.

From (1.30), it follows that the mean of all Xt is as well finite. Indeed:

∣∣E[Xt]
∣∣ =

∣∣E[Xt · 1]
∣∣ ≤ E

[
X2
t

] 1
2 E
[
12
] 1

2 = E
[
X2
t

] 1
2 <∞ . (1.31)

The inequality used is simply Cauchy-Schwarz inequality (|〈f, g〉| ≤ ‖f‖ · ‖g‖) on

L2(Ω,P), with the scalar product

〈f, g〉 =

∫
Ω

f(ω) g(ω) dP(ω), f, g ∈ L2(Ω,P). (1.32)

1.4. Covariance Functions 25

L2(Ω,P) is the space of real functions on Ω, whose square is integrable with respect

to the measure P (the reader may refer to Jacod and Protter [2000, Chapter 9] for

background on integration with respect to a probability measure). Given a stochastic

process X on I with finite second-order moments, we can encode the information about

its mean at any point t ∈ I and about the covariance between any pair of random

variables Xs and Xt in two functions, which we present in the next subsection.

1.4.1. Definitions and Results

Definition 1.4.1. Let I be a set, and X a second-order stochastic process with index

set I. The function m : I → R, defined by

m(t) := E[Xt] , t ∈ I, (1.33)

is called the mean function of X. The function C : I × I → R, defined by

C(s, t) := Cov(Xs, Xt) , s, t ∈ I, (1.34)

is called the covariance function of X.

Remark 1.3. The mean and covariance functions are not sufficient, in general, to

identify the law of the process. However, if the process is Gaussian, they uniquely

identify its law. This follows immediately from the fact that the distribution of a

k-dimensional Gaussian random vector is uniquely determined by its mean (in Rk)

and covariance matrix (in Rk×k), and from Kolmogorov’s Theorem 1.3.4, which ensures

that the finite-dimensional distributions uniquely specify the law of the process.

Let us now recall that the covariance matrix of any multidimensional random vector

is always positive semi-definite, and obviously symmetric. This justifies the following

definition.

Definition 1.4.2. Let I be a set. We say that a function C : I × I → R is a valid

covariance function, if the following two conditions hold:

1. for any s, t ∈ I, C(s, t) = C(t, s);

26 1. Bayesian Statistics and Gaussian Processes

2. for any k ∈ N and any different t1, . . . , tk ∈ I, the matrix

A = (aij) ∈ Rk×k, aij = C(ti, tj) , (1.35)

is positive semi-definite.

The covariance function of a stochastic process clearly satisfies the two conditions

above. Conversely given any valid covariance function C : I×I → R and any function

m : I → R, one may wonder whether there exists a stochastic process having mean

function m(·) and covariance function C(·, ·). The answer is positive. In fact, it is not

difficult to show something even stronger: a Gaussian process with the specified mean

and covariance functions exists. The proof of this statement only needs to check that

the family of finite-dimensional Gaussian measures with mean vectors and covariance

matrices derived from m(·) and C(·, ·) is consistent, according to the definition of

consistency in Kolmogorov’s extension theorem (recall Remark 1.2 on page 22); the

result then follows by Kolmogorov’s theorem itself. We skip the proof, but retain this

important and classical result.

Theorem 1.4.3. Let I be a set, m : I → R any function, and C : I × I → R a valid

covariance function. Then, there exists a Gaussian process X with mean function m(·)
and covariance function C(·, ·).

Remark 1.4. Consider the setting of the above theorem, guaranteeing the existence

of a Gaussian process X with prescribed mean and covariance functions. If the index

set I is a measurable space (for example, I is an interval of the real line with associ-

ated Borel σ-algebra B(I)), then no statement can be made on the measurability of

the process’ paths as functions of t ∈ I. Notice, indeed, that the Definition 1.3.2 of

stochastic process does not ask for measurability in I. This is the classical defini-

tion of stochastic process, for which Kolmogorov’s extension theorem (Shiryaev [1996,

Chap II.9, Thm 1]) holds true.

1.4.2. Connection to Mean-square and Pathwise Continuity

The covariance function encodes important information about the process: in partic-

ular, its regularity affects the regularity of the process. To make this rigorous, we need

1.4. Covariance Functions 27

a notion of distance between elements of the index set I, as well as a notion of distance

between square-integrable random variables. As to the first point, we suppose that

the index set is an open set of Rp, with the Euclidean distance. To remark both via

notation and terminology that this is not anymore an unstructured set, we denote it

by P rather than I and refer to P as to the parameter space or input space of the

process. As to the second point, we consider the distance on L2(Ω,P) induced by the

scalar product (1.32), and define continuity in this metric.

Terminology: Random Processes and Random Fields

In the case where P ⊆ Rp with p ≥ 2, it is common to refer to the process as

to a “random field”. Accordingly, in the stochastic literature, Gaussian processes

with multi-dimensional inputs are usually referred to as Gaussian random fields.

The expression Gaussian process, however, has always been used within the GP

emulation literature, independently of the input dimensionality. In this work, we

do not alter what has become a well-established nomenclature convention in the

field. We therefore use the term “Gaussian process” (or stochastic process) also

in the case where the process’ input space is multi-dimensional.

Definition 1.4.4. Let X be a stochastic process with parameter space P ⊆ Rp, and

let u∗ ∈ P . We say that X is continuous in mean square at u∗, or mean-square (MS)

continuous at u∗, if for any sequence
(
un
)
n∈N ⊆ P the following holds:

lim
n→∞

un = u∗ =⇒ lim
n→∞

E
[
|Xu∗ −Xun|2

]
= 0 . (1.36)

In the previous definition, notice that E
[
|Xu∗ −Xun|

2] = ‖Xu∗ −Xun‖
2, where ‖ · ‖

denotes the norm induced by the scalar product (1.32). The following result links the

MS continuity of a process to the continuity of its covariance function.

Proposition 1.4.5. Let X be a second-order process with parameter space P ⊆ Rp

and continuous mean function m(·). Let C(·, ·) be its covariance function. Then, the

process X is MS continuous at u∗ ∈ P if and only if C(·, ·) is continuous at (u∗,u∗).

Proof. First, observe that we can assume the mean m(·) to be constantly zero. Indeed,

28 1. Bayesian Statistics and Gaussian Processes

since m(·) is continuous, the MS continuity of the original process is equivalent to the

MS continuity of the centred process X·−m(·). In the following, we therefore assume

m(·) ≡ 0, hence C(u,u′) = E
[
XuXu′

]
for any u,u′ ∈ P .

“If” part

Let (un) ⊆ P be a sequence. For each n ∈ N, the following holds:

E
[
|Xu∗ −Xun|2

]
= E

[
X2
u∗

]
+ E

[
X2
un

]
− 2E

[
Xu∗Xun

]
= C(u∗,u∗) + C(un,un)− 2C(u∗,un) . (1.37)

If un converges to u∗, and C(·, ·) is continuous at (u∗,u∗), from (1.37) we obtain:

lim
n→∞

E
[
|Xu∗ −Xun|2

]
= C(u∗,u∗) + C(u∗,u∗)− 2C(u∗,u∗) = 0 . (1.38)

Hence, the process is MS continuous at u∗ ∈ P .

“Only if” part

Consider two sequences
(
un
)
⊆ P and (vn) ⊆ P both converging to u∗ ∈ P . We

would like to prove the following:

lim
n→∞

C
(
un,vn

)
= C(u∗,u∗) , (1.39)

under the assumption that the process X is MS continuous at u∗. It is convenient

to rephrase this last hypothesis in terms of the corresponding L2 norm, and use basic

norm properties. The fact that X is MS continuous at u∗ can be restated as follows:

‖Xun −Xu∗‖, ‖Xvn −Xu∗‖
n→∞−→ 0 . (1.40)

Consequently, we also have:

‖Xun −Xvn‖ ≤ ‖Xun −Xu∗‖+ ‖Xu∗ −Xvn‖
n→∞−→ 0 . (1.41)

Moreover, from (1.40) and the reverse triangle inequality (that is,
∣∣‖Xun‖−‖Xu∗‖∣∣ ≤

‖Xun −Xu∗‖), we get:

‖Xun‖, ‖Xvn‖
n→∞−→ ‖Xu∗‖ . (1.42)

1.4. Covariance Functions 29

Hence, the limit as n tends to infinity of the following identity:

E
[
|Xun −Xvn|2

]
= E

[
X2
un

]
+ E

[
X2
vn

]
− 2E

[
XunXvn

]
, (1.43)

becomes as follows:

0 = E
[
X2
u∗

]
+ E

[
X2
u∗

]
− 2 lim

n→∞
C
(
un,vn

)
. (1.44)

Recalling that E[X2
u∗] = C(u∗,u∗), we have shown that (1.39) holds, as it was to be

proved.

An important class of covariance functions are stationary covariance functions, widely

used in GP emulation and more generally in Machine Learning. We say that a covari-

ance function C(·, ·) on P ×P is stationary if there exists a function k : Rp → R such

that

C(u,v) = k(u− v) ∀u,v ∈ P . (1.45)

The function k(·) is often called the kernel function. We will commonly denote its

argument by h ∈ Rp. Notice that, by first centering the process X and by then

considering the trivial inequality Var[Xu −Xv] ≥ 0, one immediately verifies that

k(h) ≤ k(0) ∀h ∈ Rp. (1.46)

In the case of a stationary covariance function, Proposition 1.4.5 can be immediately

rephrased as follows.

Corollary 1.4.6 (of Proposition 1.4.5). Let X be a second-order process with contin-

uous mean function, and stationary covariance function with kernel k(·). The process

is MS continuous at any u ∈ P if and only if k(·) is continuous at h = 0.

Notice that MS continuity is not equivalent to continuity of the process paths, as

functions of u ∈ P for fixed ω ∈ Ω. In a general setting, none of the two types

of continuity implies the other. In the stochastic literature, results are available that

guarantee pathwise continuity under appropriate conditions on the covariance function.

For stationary processes, these conditions are often formulated in terms of polynomial

30 1. Bayesian Statistics and Gaussian Processes

and logarithmic bounds on the stationary kernel k(·) of equation (1.45). For complete-

ness, we provide below two examples of such conditions. The first result is due to John

Kent and holds for generic stationary process. Under such general assumptions, the

author shows that the condition can hardly be weakened.

Theorem 1.4.7 (Kent [1989]). Let X be a zero-mean stationary stochastic process,

with parameter space P ⊆ Rp. Suppose the kernel k(·) of the covariance function of

X is p times continuously differentiable at h = 0. Denote by Tp(h) the multivariate

Taylor polynomial of order p of k(·) around h = 0, and by σp(·) the remainder:

σp(h) = k(h)− Tp(h) . (1.47)

If there exists γ > 0 such that

∣∣σp(h)
∣∣ = O

(
rp

| log r|3+γ

)
as r = ‖h‖ → 0 , (1.48)

then the process has almost surely (i.e., with probability one) continuous realisations.

For completeness, let us briefly recall the meaning of the “big O” notation. Given two

real function f(·) and g(·) both defined in a neighbourhood of x∗ ∈ Rp, we say that f

is “big O” of g as x tends to x∗ if the following holds:

lim
x→x∗

∣∣∣∣ f(x)

g(x)

∣∣∣∣ <∞ . (1.49)

Condition (1.49) assumes the limit exists. Otherwise, replace lim with lim sup.

The second result that we present only holds for Gaussian processes. The Gaussianity

assumption allows to provide a weaker condition than (1.48) under which path

continuity is guaranteed.

Theorem 1.4.8 (Adler [1981], Theorem 3.4.1). Let X be a zero-mean Gaussian

process with parameter space P ⊆ Rp and continuous stationary covariance function

C(u,v) = k(u− v). If there exists C > 0 and ε > 0 such that

k(0)− k(h) ≤ C∣∣ log ‖h‖
∣∣1+ε ∀h ∈ P , (1.50)

1.4. Covariance Functions 31

then the process has almost surely continuous paths in P.

Further results relating the regularity of the covariance function to the one of the

process can be found in the literature (see, for example, Theorem 3.3.2 and equations

(3.4.1), (3.4.2) in Adler [1981]). Extensions to the non-stationary case are also

available. However, as Theorem 1.4.7 and Theorem 1.4.8 show, sufficient conditions

for pathwise continuity are generally more complex to check than sufficient conditions

for MS continuity; moreover, they are not as general as the last ones. In the following,

we only state results guaranteeing higher order regularity of the process in the MS

metric, and provide appropriate references for the pathwise analogous results.

1.4.3. Connection to Mean-Square Differentiability of Any

Order

In this section, we extend the results of Subsection 1.4.2 to derivatives of first and

higher order. To this aim, we first define the concept of MS differentiability.

Definition 1.4.9. Let X be a stochastic process with open parameter space P ⊆ Rp,

and fix i ∈ {1, . . . , p}. We say that a random variable Y is the MS derivative of X at

u∗ ∈ P in the ith direction, if the following holds:

lim
h→0

E

[∣∣∣∣ Xu∗+hei −Xu∗h
− Y

∣∣∣∣2
]

= 0 , (1.51)

where the jth component of ei ∈ Rp equals δij, for j = 1, . . . , p. In this case, we write

Y = ∂X/∂ui(u
∗).

The previous definition can be extended to higher order derivatives, see for

example Adler and Taylor [2007, § 1.4.2]. An analogue of Proposition 1.4.5 for

derivatives of first or higher order can be found in Rasmussen and Williams [2006,

§ 4.4.1]. For simplicity, we formulate this result only in the case of stationary covari-

ance functions, this being the case of main interest in the present work.

Theorem 1.4.10. Let X be a zero-mean, second-order process with parameter space

P ⊆ Rp. Suppose X has stationary covariance function with kernel k(·), and fix q ∈ N

32 1. Bayesian Statistics and Gaussian Processes

and any q coordinates (ui1 , . . . , uiq) ∈ {u1, . . . , up}q. Then, the following MS partial

derivative of X at any u ∈ P exists:

∂ qX

∂ui1· · · ∂uiq
(u) , (1.52)

if and only if the corresponding partial derivative of order 2q of k(·) at h = 0 exists:

∂ 2qk

∂h2
i1
· · · ∂h2

iq

(0) (1.53)

For example, if we take q = 1, we get that the process is MS differentiable in all

directions, if and only if the kernel k(·) possesses all second-order derivatives with

respect to the single variables: ∂2k/∂h2
i . We refer the reader to Adler and Taylor

[2007, Thm 1.4.2] for additional hypotheses under which, in the Gaussian case, MS

qth-order differentiability implies qth-order differentiability of the sample paths.

To sum up, Corollary 1.4.6 and Theorem 1.4.10 state that, for stationary processes,

the regularity of the covariance function in 0 directly affects the MS regularity of

the process. As we have observed in Subsection 1.4.2, the former also affects the

regularity of the process’ paths. In Figure 1.5, we provide an example of sample

trajectories of zero-mean Gaussian processes with different covariance functions. These

are introduced in the following section: they are characterised by different levels of

regularity, which is reflected into the regularity of the resulting sample trajectories

shown in the figure.

1.4.4. Important Families of Covariance Functions

In this section we present families of covariance functions commonly employed in

applications, especially within GP emulation. In Part II of this work, we discuss their

use in two different climate reconstruction problems.

We present families of covariance functions whose value on a pair (u,v) only depends

on the length of the vector u− v. That is, we have:

C(u,v) = k(‖u− v‖) ∀u,v ∈ P , (1.54)

1.4. Covariance Functions 33

for some function k : [0,∞)→ R. Although, technically, this function is different from

the one of equation (1.45) (their domains are different), we still call it kernel function:

the assumption that C(u,v) only depends on ‖u−v‖ naturally makes k(·) a function

of positive real numbers, rather than p-dimensional vectors. The argument of k(·),
representing the norm of a vector, will generally be denoted by the letter r.

The norm ‖ · ‖ can be imagined to be the Euclidean norm in Rp. Nothing, however,

prevents other norms from being used. In the following, we suppose that the map

h 7→ ‖h‖2 is C∞ in h = 0, in order for the comments on regularity which will follow

to hold; the Euclidean norm, and more generally the norms introduced in Section 1.5,

clearly satisfy this property. We relate the choice of the norm in (1.54) to the concept

of correlation lengths, in Section 1.5.

Squared Exponential

The squared exponential (or Gaussian) kernel is defined as follows:

k(r) = exp

(
− r

2

2

)
, r ≥ 0 . (1.55)

This is one of the most commonly employed kernels. The function in (1.55) is

infinitely many times differentiable at r = 0, also as a function of h ∈ Rp when

r = ‖h‖. Hence, a zero-mean stochastic process with this covariance function will be

infinitely many times MS differentiable (provided that h 7→ ‖h‖2 is C∞ in h = 0).

Matérn Family

The Matérn kernel depends on a positive parameter ν. It is defined as follows:

kν(r) =
21−ν

Γ(ν)

(√
2νr
)ν
Kν

(√
2νr
)
, (1.56)

where Γ(·) is the Gamma function, and Kν(·) is the modified Bessel function of second

kind (Abramowitz and Stegun [1970, Section 9.6.1]). Its properties are not immediately

evident from the expression above. However, it is known that a Gaussian process with

Matérn covariance with parameter ν, is q times differentiable both in mean square and

pathwise if and only if ν > q. See Santner et al. [2003, Section 2.3.4, Example 2.5],

and Rasmussen and Williams [2006, Section 4.2]).

34 1. Bayesian Statistics and Gaussian Processes

Figure 1.4: Plot of the covariance kernels presented in Subsection 1.4.4. The first three
(squared exponential and Matérn, for ν > 1) have zero derivative in r = 0, hence they are
differentiable in 0 also as a function of h when r = |h|; the simple exponential is not.

Expression (1.56) considerably simplifies when the parameter ν is half-integer,

ν = n+ 1/2, n ∈ N. In particular, for n = 1 and n = 2, we get:

k3/2(r) =
(
1 +
√

3r
)

exp
(
−
√

3r
)
, (1.57)

k5/2(r) =

(
1 +
√

5r +
5

3
r2

)
exp

(
−
√

5r
)
. (1.58)

According to the previous result, a zero-mean Gaussian process with covariance

function (1.57) or (1.58) is differentiable, respectively, once or twice, both pathwise

and in mean square. As a side note, let us observe that the MS differentiability can

also be derived from Theorem 1.4.10, by checking the existence of

∂2g

∂u2
i

(0) and
∂4g

∂u2
i ∂u

2
j

(0) ,

for the function g(h) = k(‖h‖), h ∈ Rp.

1.4. Covariance Functions 35

Figure 1.5: Sample trajectories of zero-mean GPs with different covariance functions.
The absolute exponential yields continuous but not differentiable paths (green line). The
other three covariance functions yield higher, but different, levels of path (and mean-square)
regularity. In particular: C1 for Matérn ν = 3/2, yellow line; C2 for Matérn ν = 5/2, red
line; C∞ for squared exponential, blue line.

Simple Exponential

The simple (or absolute) exponential kernel is defined as follows:

k(r) = exp (−r) . (1.59)

It is clear that the function k(‖h‖) for h ∈ Rp is continuous but not differentiable

in h = 0. Hence, a process with this covariance function is MS continuous, but

not MS differentiable. This also holds pathwise: it can be seen, in fact, that the

simple exponential kernel is the Matérn kernel corresponding to ν = 1/2. However,

we have presented it separately due to its importance and simple expression. This

is, for example, the covariance function of the Ornstein-Uhlenbeck process, a famous

Gaussian process obtained as solution to a linear stochastic differential equation.

Figure 1.4 shows the plot of the different kernels presented in this section. One-

dimensional sample trajectories of GPs with these covariance functions are instead

shown in Figure 1.5: it can be appreciated that the trajectories have different

36 1. Bayesian Statistics and Gaussian Processes

Figure 1.6: GP trajectories corresponding to different correlation lengths. The squared
exponential kernel has been used. Within an input interval of length 10, a trajectory with
correlation length d = 0.2 usually displays numerous fluctuations. These decrease consis-
tently for d = 1 and even more for d = 5. In the last case, the correlation between outputs
at the endpoints of the interval is still non-negligible.

regularity, according to what the regularity of the function k(‖h‖) in h = 0 is.

1.5. Correlation Lengths

If the norm used in equation (1.54) is the Euclidean norm, the resulting covariance

function is invariant under rotations. That is, it satisfies:

C(Ru,Rv) = C(u,v) , (1.60)

for any rotation R of Rp and any u,v ∈ Rp. This immediately follows from the

property ‖Rh‖ = ‖h‖, valid for any orthogonal transformation when the employed

norm is the Euclidean one. Covariance functions satisfying (1.60) are therefore

convenient in applications where no special role is attached to the different axes. For

this reason, they are often referred to as isotropic.

In many applications, however, the input parameters of the stochastic process of

1.5. Correlation Lengths 37

interest are characterised by different scales along the different dimensions. If a covari-

ance function of the form (1.54) is used, it is then convenient to consider a norm that

treats distances in the different dimensions accordingly. Here, for positive d1, . . . , dp,

we consider the following norm:

‖h‖d =

√√√√ p∑
j=1

(
hi
dj

)2

, h ∈ Rp . (1.61)

The vector d is the vector with components dj. Hence, for a given kernel k(·), the

associated covariance function reads as follows:

C(u,v) = k
(
‖u− v‖d

)
, u,v ∈ Rp. (1.62)

The quantity dj is a measure of how far apart from each other two inputs u and

v need to be along the jth dimension, in order for the covariance function (1.62) to

decrease significantly. We refer to the dj as correlation lengths: the higher they are, the

smaller the quantity r = ‖u− v‖d is, and therefore the more correlated the outputs

corresponding to the inputs u and v will be.

In Figure 1.6 trajectories of a zero-mean GP with squared exponential covariance

function are shown in one dimension, for different values of the only correlation length

d = d1. It can be appreciated that trajectories with higher correlation length tend

to “remember” more about their past, while trajectories with small correlation length

show an oscillatory behaviour even within small input intervals. In practice, choosing

appropriate values of the correlation lengths is not an easy task. We show methods to

estimate these in Chapter 4 and Chapter 5.

38 1. Bayesian Statistics and Gaussian Processes

2. Gaussian Process Emulation

Abstract: This chapter provides a detailed presentation of univariate Gaussian

process emulation. The formulas commonly used in the relevant literature, which

is reviewed at the beginning of the chapter, are derived within a formal probabilistic

setting. Our presentation requires the introduction of ad-hoc and sometimes technical

results, which are stated and proved. In parallel, different diagrams illustrate the

various steps dealt with. The choice classically made in the literature is also discussed.

In the final section, the setting is extended to the one where the observed simulator

outputs come with associated uncertainty and the potential for an identifiability issue

is discussed.

40 2. Gaussian Process Emulation

2.1. Introduction

In Section 1.1, we have provided an overview of the context and motivations leading

to the birth of Gaussian process (GP) emulation. This chapter is now devoted to a

detailed presentation of its theory. The framework and all relevant results are derived

in Sections 2.2–2.5: more details on the content of these sections are provided at the end

of Section 2.2, once the relevant notation has been introduced. Section 2.6 illustrates

the classical choice adopted in applications. After schematically summarising the

overall GP framework and formulas in Section 2.7, we consider in Section 2.8 the case

of chaotic simulators and a correction term in the emulator that is relevant to deal

with such simulators.

Before presenting the theory, in Subsection 2.1.1 we provide a review of the most

relevant work in the field. The content of the subsequent sections is obviously inspired

by the pioneering work of some of the authors mentioned therein. However, the

mathematical formulation used and all proofs have been entirely developed by the

author of this work. As such, some ideas differ from the ones found within the classical

works. It has been the author’s aim to systematically present the theory and to justify

all the steps yielding the formulas commonly used in applications.

2.1.1. Literature Review

As remarked in Section 1.1, the field of GP emulation was born to face the problem

of the analysis of complex simulators. We establish here some basic notation, helpful

in the following review and more generally needed throughout the chapter. We view

the simulator as a function:
f : P −→ R

x 7→ f(x) ,
(2.1)

where P ⊆ Rp is the set of valid inputs. An emulator can then be described as a

stochastic interpolator of f(·), modelled as a GP and whose prior distribution is

updated on the basis of the observed simulator outputs at a sequence of inputs in P .

Notice that the output of the simulator is here assumed one-dimensional only for

convenience; the case of multi-dimensional output will be treated in Chapter 3.

2.1. Introduction 41

Identifying a single, specific work as the one marking the birth of the GP emulation field

is not an easy task. One of the most acclaimed papers in the context of fitting a cheaper

predictor to the outputs of computer codes is the one of Sacks et al. [1989]. The paper

is however mostly based on a frequentist framework, which uses Gaussian processes

to describe the behaviour of the simulator. In fact, the work also makes a comparison

with the so-called kriging approach, where a linear combination of the outputs yi is

used to predict the value f(x) for unknown x ∈ P . The kriging method is especially

used in geostatistics, where the input space P is usually two- or three-dimensional. See

the book Cressie [1993]. The Bayesian approach is instead emphasised in a subsequent

paper of Currin et al. [1991], which also compares the setting to the numerical analysis

one of linear and cubic splines. Connections between the use of Gaussian processes

in interpolation and classical numerical analysis problems such as quadrature and

optimisation are also discussed in O’Hagan [1992].

Tony O’Hagan is generally considered (one of) the scientific father(s) of GP emulation.

The work O’Hagan [1978] may be recognised an early precursor of the later develop-

ment of GP emulation: in the paper, the author uses a Bayesian approach based on

GPs to make inference on the regression function of a statistical model. The works

mentioned in the previous paragraph, alongside others, may be seen as an extension of

this setting to the one where the regression function is replaced by a general mathemat-

ical function, or a computer code. Curiously enough, however, none of these works

explicitly referred to the statistical model developed as to an emulator.

Between the end of the 1990’s and the first years of the 2000’s, numerous pieces of

work were produced that focused on the uncertainties associated with the inference

on computer codes (Haylock and O’Hagan [1996], Oakley and O’Hagan [2002], Oakley

and O’Hagan [2004]). The works gave rise to the Uncertainty Quantification (UQ)

field and the word “emulator” became a classical term. It is worth mentioning that

not all the works on emulators are based on GPs. A parallel approach is the Bayes

Linear one: as opposed to the more classical full Bayesian approach, developed by

O’Hagan, Oakley etc, the Bayes linear approach only relies on the specification of first

and second order moments of prior distributions. Papers such as Craig et al. [2001],

Goldstein and Rougier [2006] or Cumming and Goldstein [2010] are eminent examples

of the works in the area of Bayes linear emulators. For a broader introduction to the

42 2. Gaussian Process Emulation

principles and applications of the Bayes linear approach, we refer the reader to the

book Goldstein and Wooff [2007].

With the birth of the UQ field, and especially within the context of computer codes,

the name uncertainty analysis started to be used with a precise meaning: specifically,

to denote the study of the propagation of uncertainty from the inputs to the outputs

of a computer simulator, when the “true/best” values of the input parameters are

unknown (Haylock and O’Hagan [1996], O’Hagan et al. [1998]). In this context, the

name uncertainty distribution refers to the distribution induced by the simulator on

the outputs, given the uncertainty in the inputs: see Oakley and O’Hagan [2002].

The study of the different uncertainties associated with the analysis of computer

simulators is a topic of key practical importance, especially when decisions have to

be made on the basis of the analysis. The topic has in fact attracted the attention

of numerous influential authors. In their highly popular and cited paper, Kennedy

and O’Hagan [2001] make the effort to systematically classify the different sources

of uncertainty that affect a computer simulator analysis. Besides the so-called code

uncertainty, already introduced in Subsection 1.1.2, the authors identify sources of

uncertainty such as the parameter uncertainty (reflecting the lack of knowledge of best

inputs), the residual variability (variability due to factors not explicitly included in

the input configurations), and others. In particular, their work studies the uncertain-

ties related to what they call “model inadequacy”, or model discrepancy: that is,

the difference between the value predicted by a simulator and the value that the real

physical process would take under the conditions specified as inputs to the simulator.

Model discrepancy is not an easy issue to tackle, and it has been target, indeed, of

extensive investigation; in the end, any analysis aims to make robust inference on

reality, rather than on the sheer simulator dynamic. Model discrepancy is usually

accounted for via an additional term within the emulator model. This is the case of

the already mentioned paper Kennedy and O’Hagan [2001], but also of other works

such as Goldstein and Rougier [2004]. Here, the authors construct a probabilistic

framework which has the aim to link the physical system of interest to the results

obtained via one or more simulators.

We mention here that the idea of using more than one simulator to study the same

system has also been developed in a slightly different context, and with a slightly

2.1. Introduction 43

different aim. The context is the one where either a “coarse” (Cumming and Goldstein

[2009]) and cheaper version of a given simulator is available, or separate simulators

characterised by different levels of complexity are available, to study the same system.

See for example Kennedy and O’Hagan [2000]. In either case, different emulators

are built and the information coming from the simpler and faster-to-run models is

“passed on” to the emulators of the more complex simulators. This way, a hierarchy

of emulators is built, known as multi-level emulators. An example of application to

the climate system is provided in Tran et al. [2016].

Coming back to the central idea of linking the simulator to reality, we briefly touch

upon a key idea, that we will later employ in Chapter 5. This is the one of history-

matching. The idea consists in using real-world observations to identify input configu-

rations of a computer simulator whose corresponding outputs best match the observed

data. In such a case, it may be useful to incorporate model-discrepancy in the emulator

of the simulator of interest. The term history-matching originally comes from the oil

industry (see Mattax and Dalton [1990] or Craig et al. [1997]), but is now used to

refer to what we have just described, independently of the field of application. See

for example Vernon et al. [2010] for an application within the fascinating context of

Galaxy formation.

The standard approach of GP emulation has been developed and mostly used for

computer simulators depending on a number of continuous inputs, and one or more

outputs. In 2009, Conti et al. [2009] extended this framework to the one of dynamic

simulators: that is, simulators whose outputs are time series, provided at a sequence

of discrete times. The authors tackle the problem of emulating such simulators in

an iterative way, by developing a framework and an algorithm that does not need to

know a priori up to which time the time series should be emulated. This represents

a clear improvement with respect to the case where a fixed-length time series is more

classically treated as a multi-dimensional output.

We point out here another aspect of the classical emulation approach: it constructs

a statistical model, the emulator, that perfectly interpolates the observed simulator

outputs at specific inputs xi ∈ P called design points. An extension to stochastic

simulators is proposed in Johnson et al. [2011]. In both deterministic and stochastic

cases, it is relatively common to include a so-called nugget term within an emulator,

44 2. Gaussian Process Emulation

which allows to build a model not interpolating the observed data. The effect of the

nugget term on GP models is investigated in detail in Andrianakis and Challenor

[2012]. In their work, the authors also examine the improved numerical stability that

its use yields. We will investigate the use of a nugget term in Section 2.8, specifically

proposing its use within the context of chaotic simulators, and by deriving the relevant

formulas via continuity arguments.

We conclude this review with an important remark. After building an emulator, a

crucial step before this can be used as “surrogate” of the simulator consists in its

validation: that is, in checking that the emulator predictions are reasonable approx-

imations of the simulator outputs. Bastos and O’Hagan [2009] is the seminal article

on the topic. It provides a comprehensive list of diagnostics, of both numerical and

graphical nature, to identify potential problems with different aspects of an emulator.

2.2. Two-Level Hierarchical Model

As stated in equation (2.1), in this chapter we consider a simulator with one-

dimensional outputs:

f : P −→ R
x 7→ f(x) .

(2.2)

The set P ⊆ Rp is the set of valid inputs to the simulator. As the previous equation

implicitly reveals, we assume – at least in this chapter – that the simulator is determin-

istic: running the code twice on the same input x ∈ P will return both times the same

output. Throughout the chapter, we also assume that the simulator has been run

on a sequence of “design points” x1, . . . ,xn ∈ P , and denote with yi = f(xi) the

corresponding outputs. Examples of how to choose the design points will be discussed

in Part II of this thesis. For a more comprehensive treatment, see Chapters 5 and 6

of Santner et al. [2003].

Following the classical literature (Currin et al. [1991], O’Hagan [1992]), we model the

simulator f(·) as a GP η(·), with the same input space P of the simulator itself. In the

author’s view, the choice of modelling the simulator as a stochastic process represents

2.2. Two-Level Hierarchical Model 45

a way to express the uncertainty that is inherently attached to the simulator dynamic.

Indeed, whilst we assume the simulator to be deterministic, it is also the case that this

represents most often a black box to the modeller/experimenter. The value f(x) will

be completely unknown, till the simulator is actually run on x. Within a Bayesian

terminology, we can say that modelling the simulator as a stochastic process allows us

to express (not-too-strong) “beliefs” on the simulator, which can then be “updated”

in the light of the observed outputs yi, i = 1, . . . , n.

Using the notation of Chapter 1, we consider an underlying probability space (Ω,F ,P)

and represent the GP η(·) with input space P as follows:

η :
(
Ω, F , P

)
× P −→

(
R, B(R)

)
. (2.3)

Let us recall that B(R) denotes the Borel σ-algebra on R. As in the classical literature,

we assume that the mean function of η(·) is an unknown linear combination of q known

functions of the inputs. That is, we consider the mean function:

mβ(x) = h(x)Tββ , x ∈ P , (2.4)

where ββ ∈ Rq is the unknown vector of coefficients, and the set of q regression functions

h : P → Rq is specified according to the problem. Moreover, we model the covariance

function of η(·) as follows:

vσ2(x,x′) = σ2 c(x,x′) , x,x′ ∈ P , (2.5)

where c : P × P → R is any valid covariance function, and σ2 is a scaling factor.

Within the emulation literature, the function c(·, ·) is usually specified as a correlation

function – i.e., a valid covariance function satisfying c(x,x) = 1 for all x ∈ P . In

such a case, equation (2.5) implies that the process is being modelled as homoscedastic

(same variance at all x ∈ P) with variance σ2. However, as we show in the following,

the theory of GP emulation holds true as long as c(·, ·) is any valid covariance function.

This way, we can also model heteroscedastic processes via equation (2.5).

For fixed ββ ∈ Rq and σ2 > 0, we write that η(·) is a GP with mean function mβ(·)

46 2. Gaussian Process Emulation

and covariance function vσ2(·, ·) via the following compact notation:

η(·) ∼ GP
(
mβ(·), vσ2(·, ·)

)
. (2.6)

Within a standard frequentist approach, ββ and σ2 would be interpreted as unknown

constants. Their values would be usually estimated to maximise the likelihood of the

data
{(
xi, yi)

)}
i=1,...,n

. The Bayesian approach at the basis of GP emulation instead

assigns a prior distribution to ββ and σ2, and conditions this to having observed the

simulator outputs yi = f(xi) for i = 1, . . . , n. This way, a model with a hierarchical

structure is built: ββ and σ2 are random quantities, commonly referred to as hyperpa-

rameters of the model; conditioned on their values, η(·) is a random process distributed

as in (2.6). Hence, in the coming sections we proceed as follows:

i) In Section 2.3, we specify the prior distribution of ββ and σ2, and formulate the

problem in terms of a single (infinite-dimensional) random quantity.

ii) In Section 2.4, we condition the latter to the observations yi = f(xi), i=1, . . . , n.

iii) In Section 2.5 we uncondition the model on ββ and σ2, and derive the marginal

posterior for η(·).

Diagrams will illustrate the completion of each of these steps.

2.3. Prior Distribution of the Model

We start this section by a recap of univariate and multivariate probability distributions.

All of these are continuous and admit a probability density. Particularly the Normal-

Inverse-Gamma, introduced last, will be used throughout the chapter.

2.3.1. Recap of Useful Distributions

The following three distributions have support in [0,∞). After the expression of their

densities, we review some of their properties of interest for us.

2.3. Prior Distribution of the Model 47

Chi-squared: A random variable V follows a chi-squared distribution with d degrees

of freedom if it is the sum of the squares of d independent standard normal random

variables. We write V ∼ χ2(d). Its density f
V

reads as follows:

f
V

(x) =
1

2d/2 Γ(d/2)
x
d
2
−1e−x/2, x ≥ 0 . (2.7)

Gamma: A random variable X follows a Gamma distribution with shape parameter

a > 0 and rate parameter r > 0, if its density f
X

is as follows:

f
X

(x) =
r a

Γ(a)
xa−1 e−rx, x ≥ 0 . (2.8)

We write X ∼ Γ(a, r).

Inverse-Gamma: A random variable Y follows an Inverse-Gamma distribution with

shape parameter a > 0 and scale parameter s > 0, if the random variable 1/Y is

distributed as Γ(a, s). We write Y ∼ IG(a, s), and have:

f
Y

(x) =
s a

Γ(a)

1

xa+1
e−s/x, x > 0 . (2.9)

The previous expression can be easily derived through the transformation formula for

probability densities, applied to the function g(x) = 1/x and the density (2.8). The

formula is recalled for convenience in Lemma A.1, in Appendix.

The following are useful properties of the previous distributions. From the density

transformation formula, it is immediate to see that a rescaled Gamma random variable

is still Gamma distributed. More specifically:

X ∼ Γ(a, r) ⇐⇒ 1

c
X ∼ Γ(a, cr) ∀ c > 0 . (2.10)

This property justifies the name “rate” for r. Similarly, the name “scale” is appropriate

for the parameter s of an Inverse-Gamma distribution, since from (2.10) we obtain:

Y ∼ IG(a, s) ⇐⇒ c Y ∼ IG(a, cs) ∀ c > 0 . (2.11)

48 2. Gaussian Process Emulation

Moreover, by comparing (2.7) and (2.8), we see that the Gamma distribution is a

generalisation of the chi-squared distribution. Indeed, for integer d, we have:

V ∼ χ2(d) ⇐⇒ V ∼ Γ

(
d

2
,

1

2

)
. (2.12)

Finally, by combining properties (2.10) and (2.12), we see that any Gamma random

variable can be written as a multiple of a chi-squared random variable:

X ∼ Γ(a, r) ⇐⇒ X =
V

2r
, where V ∼ χ2(2a) . (2.13)

Equivalently:

Y ∼ IG(a, s) ⇐⇒ Y =
2s

V
, where V ∼ χ2(2a) . (2.14)

We now introduce a new distribution, of particular relevance in Subsection 2.3.2. As

opposed to the previous ones, this is multivariate.

Normal-Inverse-Gamma: Let b ∈ Rq, B ∈ Rq×q a symmetric, positive definite

matrix, and a, s > 0 positive constants. A random vector (ββ, σ2) with ββ ∈ Rq and

σ2 > 0 follows a Normal-Inverse-Gamma (NIG) distribution with parameters b,B, a, s,

if

σ2 ∼ IG(a, s) and ββ |σ2 ∼ N(b, σ2B−1) . (2.15)

In this case, we write (ββ, σ2) ∼ NIG(b,B, a, s).

The joint density of a NIG distribution can be worked out through the standard rule

for conditional densities (see for example Jacod and Protter [2000, Chapter 12]):

p(ββ, σ2) = p(ββ |σ2) p(σ2)

=
C

(σ2)a+1+ q/2
exp

[
− 1

2σ2

(
2s+ (ββ − b)TB(ββ − b)

)]
, (2.16)

where C is the normalisation constant.

2.3. Prior Distribution of the Model 49

2.3.2. Prior Choice for the Hyperparameters β and σ2

In this section we specify a prior distribution for the pair of hyperparameters ββ ∈ Rq

and σ2 > 0. Conditioned on their value, the process η(·) is modelled as a GP

(equation (2.6)).

As the notation used in Section 2.2 suggests, the choice we make for the prior of the

pair (ββ, σ2) is the one of a NIG. This follows the idea developed in O’Hagan [1992],

underlying most of the applications of GP emulation where a hierarchical model as the

one is (2.17) is used1. We notice that the choice of a NIG prior has the main advantage

of making the subsequent inference analytically tractable. In particular, as we detail in

Section 2.4 (specifically, Subsection 2.4.2), it allows to carry out a conjugate analysis,

i.e., a Bayesian analysis where the prior and the posterior distributions belong to the

same family. We also notice that the choice of a NIG distribution allows, in principle,

to cover a variety of density shapes, given the relatively large number of parameters

that this involves (i.e., b,B, a and s). However, an estimation of these parameters is

challenging in most applications, hence a “default” choice is usually considered. We

discuss this in Section 2.6.

At present, let us consider the parameters b,B, a and s as fixed. To remark that they

refer to the prior, we add the subscript 0. Thus, from (2.6), we have:

η(·) |ββ, σ2 ∼ GP
(
mβ(·), vσ2(·, ·)

)
, (2.17.a)

(ββ, σ2) ∼ NIG(b0,B0, a0, s0). (2.17.b)

The expression of the functions mβ and vσ2 is given in (2.4) and (2.5).

Let us now denote by RP the space of functions from P to R, to which all trajecto-

ries of the process η(·) belong. Equations (2.17) can be seen as specifying the prior

distribution of a random “variable” leaving in a product space, that is:

(
η(·),ββ, σ2

)
: (Ω,F ,P) −→

(
RP× Rq × R+, B

)
, (2.18)

1The NIG choice is rarely mentioned explicitly. Most works however refer to a “non-informative”
choice, proportional to σ−2: this follows from the present one, as we shall discuss in Section 2.6.

50 2. Gaussian Process Emulation

where B is the Borel σ-algebra on RP× Rq × R+. The main aim of this chapter is to

condition the prior distribution of (2.18) to the observed simulator outputs, and to

extract the marginal posterior for η(·). This is done, respectively, in Section 2.4 and

Section 2.5. Those two steps, alongside the one that this section has carried out, are

schematically represented in Figure 2.1. A similar diagram will be updated at the end

of each of the following two sections, to provide a visual summary of the key step that

each of these sections is concerned with.

2.3.3. Shorthand Notation Used in the Chapter

We conclude this Section 2.3 by setting some notation, used in the remainder of the

chapter. We denote by Yi the random variable obtained upon evaluation of the GP

η(·) at the design point xi, and by Y ∈ Rn the random vector with components Yi:

Y = (Y1, . . . , Yn) ∈ Rn, Yi = η(xi) for i = 1, . . . , n. (2.19)

Similarly, for generic x̃1, . . . , x̃k ∈ P , we set:

Ỹ = (Ỹ1, . . . , Ỹk) ∈ Rk, Ỹj = η(x̃j) for j = 1, . . . , k. (2.20)

Moreover, we denote by y ∈ Rn the vector of observed simulator outputs:

y = (y1, . . . , yn) ∈ Rn, yi = f(xi) for i = 1, . . . , n. (2.21)

Finally, throughout the chapter, we use the index i ∈ {1, . . . , n} to refer to quantities

associated with the n design points xi ∈ P , and the index j ∈ {1, . . . , k} to refer to

quantities associated with the generic points x̃j ∈ P .

In terms of the above notation, given the generality of x̃1, . . . , x̃k ∈ P , the aim of

finding the marginal posterior distribution of η(·) given the simulator outputs at the

design points can be restated as finding the following conditional law:

L
(
Ỹ |Y = y

)
. (2.22)

This is achieved in two steps, detailed in Section 2.4 and Section 2.5.

2.4. Conditioning the Model to Observations 51

Hierarchical model (Section 2.3)

η(·) |ββ, σ2 ∼ N
(
mβ(·), vσ2(·, ·)

)
(ββ, σ2) ∼ NIG(b0,B0, a0, s0)

Conditioning to simulator outputs

(Section 2.4)

Extracting marginal posterior of η(·)
(Section 2.5)

Figure 2.1: Schematic representation of the steps behind the construction of a GP emulator.
In the green box, what Section 2.3 has just dealt with.

2.4. Conditioning the Model to Observations

This section is concerned with conditioning the prior model (2.17) to the observed

simulator outputs y ∈ Rn. In terms of the notation introduced in Subsection 2.3.3,

we aim to find L
(
Ỹ ,ββ, σ2 |Y = y

)
, which we more simply write as follows:

L
(
Ỹ ,ββ, σ2 |y

)
. (2.23)

We compute the density of this distribution in two steps, by deriving the densities

associated with L(Ỹ |ββ, σ2,y) in Subsection 2.4.1, and with L(ββ, σ2 | y) in Subsec-

tion 2.4.2. Their product returns the density associated with (2.23).

52 2. Gaussian Process Emulation

2.4.1. Conditioning a Gaussian Vector

Equation (2.17.a) specifies the conditional distribution of the process η(·) given ββ, σ2:

η(·) |ββ, σ2 ∼ GP
(
mβ(·), σ2c(·, ·)

)
. (2.24)

In terms of the notation introduced in (2.20), and given the form of mβ(·) in (2.4), we

can therefore write the following, for any choice of x̃1, . . . , x̃k ∈ P :

Ỹ |ββ, σ2 ∼ N
(
H̃ββ, σ2Ã

)
, (2.25)

where

H̃ =

h(x̃1)T

...

h(x̃k)T

 ∈ Rk×q , Ã =

c(x̃1, x̃1) · · · c(x̃1, x̃k)

...
. . .

...

c(x̃k, x̃1) · · · c(x̃k, x̃k)

 ∈ Rk×k . (2.26)

We now have to further condition (2.25) on the observation Y = y. Since η(·) is a

GP, the vector (Ỹ ,Y) is jointly Gaussian distributed, hence the conditioning becomes

a simple application of a well-known result about conditioning of Gaussian random

vectors. For completeness, Lemma A.2 in Appendix reports the result.

Before stating here the result of interest for us (Proposition 2.4.1), let us introduce

the following notation, of particular importance throughout the whole chapter. We

denote by H and A the following matrices:

H =

h(x1)T

...

h(xn)T

 ∈ Rn×q , A =

c(x1,x1) . . . c(x1,xn)

...
. . .

...

c(xn,x1) . . . c(xn,xn)

 ∈ Rn×n . (2.27)

Moreover, we denote by t(x) ∈ Rn the vector of prior correlations between any point

x of the input space and the n design points:

t(x) =
(
c(x,x1), . . . , c(x,xn)

)T ∈ Rn , x ∈ P . (2.28)

2.4. Conditioning the Model to Observations 53

Proposition 2.4.1. Let ββ ∈ Rq, σ2 > 0, and y ∈ Rn be fixed. Suppose that the

distribution of the process η(·), given ββ and σ2, be as in (2.24). Then, the process η(·)
further conditioned on the event

(
η(x1), . . . , η(xn)

)T
= y is still a Gaussian process.

Its distribution is as follows:

η(·) |ββ, σ2,y ∼ GP
(
m∗β(·), v∗σ2(·, ·)

)
, (2.29)

where, for any x,x′ ∈ P, v∗σ2(x,x′) = σ2c(x,x′),

m∗β(x) = h(x)Tββ + t(x)TA−1(y −Hββ), (2.30.a)

c∗(x,x′) = c(x,x′)− t(x)TA−1t(x′). (2.30.b)

The expressions of H ∈ Rn×q, A ∈ Rn×n and t(x) ∈ Rn are provided in (2.27), (2.28).

Proof. Let us consider any k points x̃1, . . . , x̃k ∈ P . We show that the finite-

dimensional distribution of η(·) at these points, conditioned on ββ, σ2, and y, is

multivariate Gaussian with the correct mean vector and variance matrix. To the

aim, we use the notation introduced in (2.19) and (2.20) and apply Lemma A.2.

Given the fixed values of ββ and σ2, the vector (Ỹ ,Y) ∈ Rk+n is jointly Gaussian by

assumption (2.24). Hence, by the first part of Lemma A.2, the distribution of Ỹ given

Y =y is as well Gaussian. To find the conditioned mean and variance of Ỹ , we apply

formulas (A.4). The mean and variance of Y and Ỹ are respectively as follows:

µY = Hββ, ΣY Y = σ2A,

µỸ = H̃ββ, ΣỸ Ỹ = σ2Ã,

with H̃ and Ã as defined in (2.26). Moreover, by (2.24), the covariance matrix ΣỸ Y

between Ỹ and Y is ΣỸ Y = σ2T̃ , where

T̃ =

c(x̃1,x1) · · · c(x̃1,xn)

...
. . .

...

c(x̃k,x1) · · · c(x̃k,xn)

 ∈ Rk×n .

54 2. Gaussian Process Emulation

Hence, applying formula (A.4.a) in Appendix, we find:

µ
cond

Ỹ
= µỸ + ΣỸ Y ΣY Y

−1(y − µY)

= H̃ββ + (σ2 T̃)(σ2A)
−1

(y −Hββ)

= H̃ββ + T̃A−1(y −Hββ) . (2.31)

This is an equality in Rk. If we consider the jth component of both sides, and simply

call x the generic point x̃j , then formula (2.30.a) is recovered. As for the variance of

Ỹ given Y =y, equation (A.4.b) of Lemma A.2 gives us:

Σ
cond

Ỹ Ỹ
= ΣỸ Ỹ −ΣỸ Y ΣY Y

−1 ΣY Ỹ

= σ2Ã− (σ2T̃)(σ2A)
−1

(σ2T̃)T

= σ2
(
Ã − T̃ A−1 T̃ T

)
. (2.32)

This is an equality in Rk×k. By considering the element (j1, j2) of both sides of last

equation, and renaming x̃j1 as x and x̃j2 as x′, we immediately get formula (2.30.b).

This completes the proof.

Proposition 2.4.1 provides the law of η(·) conditioned on ββ, σ2 and the observations

y, that is L(Ỹ |ββ, σ2,y). In the next subsection, we derive L(ββ, σ2 |y).

2.4.2. Bayesian Conjugate Analysis on Hyperparameters

In equation (2.17.b) we have modelled the marginal prior distribution of (ββ, σ2) as

Normal-Inverse-Gamma. In this subsection we condition this to the n observations

Y =y, and derive the posterior of the pair (ββ, σ2). Proposition 2.4.2 shows the result.

The proof is an application of Bayes’ rule, equation (1.10). None of the steps is

therefore conceptually involved, although the algebra often requires some care. We

provide below the details of all the steps in a hopefully clear and easy-to-follow way.

Proposition 2.4.2. Consider model (2.17). In particular, assume:

(ββ, σ2) ∼ NIG(b0,B0, a0, s0) , (2.33)

2.4. Conditioning the Model to Observations 55

for some b0 ∈ Rq, B0 ∈ Rq×q symmetric positive semi-definite, a0, s0 > 0. Then, for

any y ∈ Rn, the distribution of (ββ, σ2) conditioned on Y = y is still NIG. Specifically,

we have:

(ββ, σ2) |y ∼ NIG(b,B, a, s) , (2.34)

where:

B = B0 +HTA−1H ∈ Rq×q , (2.35.a)

b = B−1
(
B0b0 +HTA−1y

)
∈ Rq, (2.35.b)

a = a0 +
n

2
, (2.35.c)

s = s0 +
(y −Hb0)TF−1(y −Hb0)

2
, (2.35.d)

and F = A+HB0
−1HT ∈ Rn×n. The matrices H and A are defined in (2.27).

Proof. As in (2.19), set Y =
(
η(x1), . . . , η(xn)

)T
. From equations (2.17), the likeli-

hood of Y = y given ββ and σ2 is Normal, and the prior of the pair (ββ, σ2) is NIG.

Recalling from (2.16) the form of the NIG density, we can write the following:

p
Y |β,σ2 (y |ββ, σ2) ∝ 1

(σ2)n/2
exp

[
− 1

2σ2
(y −Hββ)TA−1(y −Hββ)

]

p
β,σ2 (ββ, σ2) ∝ 1

(σ2)a0+1+ q/2
exp

[
− 1

2σ2

(
2s0 + (ββ − b0)TB0(ββ − b0)

)]

All factors not involving y,ββ, σ2 have been ignored on the RHS of the previous

equations. Through Bayes’s rule (equation (1.10)) we obtain the following expres-

sion for the posterior of (ββ, σ2):

p
β,σ2|Y

(ββ, σ2 |y) ∝ p
Y |β,σ2 (y |ββ, σ2)× p

β,σ2 (ββ, σ2)

∝
exp

[
− 1

2σ2

(
2s0 + (ββ − b0)TB0(ββ − b0) + (y −Hββ)TA−1(y −Hββ)

)]
(σ2)

a0+n
2

+ 1+ q
2

. (2.36)

We now need to rearrange the argument of the exponential, to see that this is indeed

the density of a NIG distribution for the pair (ββ, σ2). This will prove the statement.

56 2. Gaussian Process Emulation

Step 1: Write the argument of the exponential as a quadratic form in ββ, plus remainder.

To this aim, we have:

(ββ−b0)TB0(ββ − b0) + (y −Hββ)TA−1(y −Hββ)

= ββT (B0 +HTA−1H)ββ − 2ββT (B0b0 +HTA−1y) + b0
TBb0 + yTA−1y

= ββTBββ − 2ββTBb + b0
TB0b0 + yTA−1y

= (ββ − b)TB (ββ − b) − bTBb + b0
TB0b0 + yTA−1y . (2.37)

The second equality immediately follows from the definitions of B and b in (2.35); the

last one is a simple completion of the square (quadratic form in ββ − b). Let us now

expand the term bTBb in (2.37). From the definition of B and b, and the symmetry

of A,B,B0, we obtain the following:

bTBb =
(
B0b0 +HTA−1y

)T
B−1

(
B0b0 +HTA−1y

)
= b0

TB0B
−1B0b0 + 2b0

TB0B
−1HTA−1y + yTA−1HB−1HTA−1y. (2.38)

Step 2: Simplify the three addends in (2.38), to get new expression for bTBb .

To accomplish the aim, we use a linear algebra lemma, Lemma B.1 in Appendix, to

explicitly invert B = B0 +HTA−1H . Formula (B.1) applied to such B yields:

B−1 = B0
−1 −B0

−1HTF−1HB0
−1, (2.39)

where F = A+HB0
−1HT , as defined in the statement. From this, we deduce:

B0B
−1B0 = B0 −HTF−1H ; (2.40)

B0B
−1HT = HT −HTF−1HB0

−1HT

(def. of F)
= HT −HTF−1(F −A)

= HTF−1A ; (2.41)

A−1H
(
B−1HT

)
A−1 (2.41)

= A−1H
(
B0
−1HTF−1A

)
A−1

= A−1HB0
−1HTF−1 = A−1(F −A)F−1

= A−1 − F−1 . (2.42)

2.4. Conditioning the Model to Observations 57

Given the above identities, the three terms of (2.38) become as follows:

1. b0
T
(
B0B

−1B0

)
b0

(2.40)
= b0

TB0b0 − b0THTF−1Hb0

2. 2b0
T
(
B0B

−1HT
)
A−1y

(2.41)
= 2b0

T
(
HTF−1A

)
A−1y = 2b0

THTF−1y

3. yT
(
A−1HB−1HTA−1

)
y

(2.42)
= yT

(
A−1 − F−1

)
y = yTA−1y − yTF−1y.

Step 3: Rewrite the expression for bTBb and plug this back in (2.37).

Recalling (2.38), by simply adding the three terms above we obtain:

btBb = b0
TB0b0 + yTA−1y − b0THTF−1Hb0 + 2b0

THTF−1y − yTF−1y

= b0
TB0b0 + yTA−1y − (y −Hb0)TF−1(y −Hb0),

Equivalently (just rearrange the order):

− bTBb+ b0
TB0b0 + yTA−1y = (y −Hb0)TF−1(y −Hb0) . (2.43)

Substituting (2.43) back into (2.37) immediately yields the following:

(ββ − b0)TB0(ββ − b0) + (y −Hββ)TA−1(y −Hββ)

= (ββ − b)TB (ββ − b) + (y −Hb0)TF−1(y −Hb0) . (2.44)

Step 4: Plug (2.44) back into the posterior density (2.36). This yields:

p(ββ, σ2|y) ∝
exp

[
− 1

2σ2

(
2s0 + (y −Hb0)TF−1(y −Hb0) + (ββ − b)TB (ββ − b)

)]
(σ2)(

a0+n
2)+ 1+ q

2

.

Given the definitions of a and s in (2.35), we can rewrite this as

p(ββ, σ2|y) ∝
exp

[
− 1

2σ2

(
2s+ (ββ − b)TB (ββ − b)

)]
(σ2)

a+ 1+ q
2

. (2.45)

Comparing (2.45) with (2.16), we see that this is indeed the density of a

NIG(b,B, a, s) distribution. Hence, the proof is complete.

58 2. Gaussian Process Emulation

Hierarchical model (Section 2.3)

η(·) |ββ, σ2 ∼ N
(
mβ(·), vσ2(·, ·)

)
(ββ, σ2) ∼ NIG(b0,B0, a0, s0)

Conditioning to simulator outputs

(Section 2.4)

η(·) |ββ, σ2 ∼
(
m∗β(·), v∗σ2(·, ·)

)
(ββ, σ2) ∼ NIG(b,B, a, s)

Marginal posterior of η(·)
(Section 2.5)

Figure 2.2: Continued from Figure 2.1, schematic representation of the steps behind the
construction of a GP emulator. The middle green box highlights the results of Section 2.4,
specifically associated with Propositions 2.4.1 and 2.4.2.

Proposition 2.4.1 and Proposition 2.4.2 together provide the distribution of the triple(
η(·),ββ, σ2

)
, conditioned on having observed the simulator outputs y1, . . . , yn:

η(·) |ββ, σ2,y ∼ GP
(
m∗β(·), σ2c∗(·, ·)

)
, (2.46.a)

(ββ, σ2) |y ∼ NIG(b,B, a, s) . (2.46.b)

In Section 2.5, we uncondition expression (2.46.a) from ββ and σ2, essentially by

integrating over their posterior distribution (2.46.b). This provides the law of the

final emulator, L
(
η(·) |Y =y

)
.

2.5. Marginal Posterior Distribution of the Model 59

2.5. Marginal Posterior Distribution of the Model

In order to work out the distribution of η(·) conditioned on Y = y only, two parallel

paths can be followed. One is to integrate out ββ and σ2 from the conditional density

of (η(·),ββ, σ2) given y. Using the notation introduced in (2.20), we can write:

p
Ỹ |Y

(ỹ |y) =

∫
p
Ỹ ,β,σ2|Y

(ỹ,ββ, σ2 |y) dββ dσ2

=

∫
p
Ỹ |β,σ2,Y

(ỹ |ββ, σ2,y)× p
β,σ2 |Y

(ββ, σ2 |y) dββ dσ2 . (2.47)

The distributions in the last line are provided in (2.46.a), (2.46.b). Alternatively, we

can write down the expression of a random variable whose distribution is the one of Ỹ

given the values of ββ, σ2 and y, and replace the fixed constants ββ and σ2 by random

variables which follow the distribution (2.46.b), recognising the distribution that the

random variable obtained this way follows.

Departing from the standard literature, we follow the second approach here and provide

the result in Theorem 2.5.5. The approach needs however some technical results to be

rigorously justified, which the author of this work has developed and proved. Moreover,

we need to introduce ad-hoc definitions, among which the key one of Student-t process.

This is done in Subsection 2.5.1.

2.5.1. Some Definitions and Technical Results

Definition 2.5.1 (Student-t random vector). Let ν > 0, µ ∈ Rk, and let Σ ∈ Rk×k

be a symmetric, positive semi-definite matrix. A random vector Y ∈ Rk is distributed

according to a Student-t distribution with ν degrees of freedom, mean µ, and kernel

matrix Σ, if it can be written as follows:

Y = µ+

√
ν

V
X ∈ Rk, (2.48)

where X ∼ N(0k,Σ), V ∼ χ2(ν), and X and V are independent of each other. We

write Y ∼ tν(µ,Σ).

60 2. Gaussian Process Emulation

Notice that the one-dimensional case with µ = 0 and Σ = I1 = 1 recovers the classical

t-distribution. Moreover, not difficult calculations show the following:

Y ∼ tν(µ,Σ) =⇒

E [Y] = µ , (2.49.a)

Var [Y] =
ν

ν − 2
Σ , if ν > 2 . (2.49.b)

Once the Student-t distribution has been defined in the multivariate case, it is

immediate to extend the concept to random processes, in exactly the same way in

which a GP represents the infinite-dimensional analogue of Gaussian vectors.

Definition 2.5.2 (Student-t process). A real-valued stochastic process η with input

space P is a Student-t process (or t-process) with ν > 0 degrees of freedom, mean

function m : P → R, and kernel function S : P × P → R, if for any x̃1, . . . , x̃k ∈ P
the following holds: (

η(x̃1), . . . , η(x̃k)
)T ∼ tν(µ,Σ), (2.50)

where

µ =

m(x̃1)

...

m(x̃k)

 , Σ =

S(x̃1, x̃1) . . . S(x̃1, x̃k)

...
. . .

...

S(x̃k, x̃1) . . . S(x̃k, x̃k)

 . (2.51)

Let us now provide a formal definition of the concepts of location and scale parameters

for a family of distributions. These will be useful to state Lemma 2.5.4. Intuitively,

they are used to parameterise distributions sharing the same density “shape”: the

location parameter provides a measure of the displacement of the distribution; the

scale parameter provides a measure of how spread this is.

Definition 2.5.3. Let
(
Pµ,σ

)
be a family of probability distributions over

(
Rk,B(Rk)

)
,

indexed by µ ∈ Rk, σ > 0. Denote by Fµ,σ : Rk → [0, 1] the joint cumulative distribu-

tion function of Pµ,σ :

Fµ,σ
(

(a1, . . . , ak)
)

= Pµ,σ
(
X1 ≤ a1, . . . , Xk ≤ ak

)
∀a ∈ Rk , (2.52)

where (X1, . . . , Xk) ∼ Pµ,σ. We call µ a location parameter and σ a scale parameter

2.5. Marginal Posterior Distribution of the Model 61

for the family, if there exists F : Rk → [0, 1] such that

Fµ,σ(x) = F

(
x− µ
σ

)
∀ µ,x ∈ Rk, σ > 0 . (2.53)

Notice that, if such F exists, then F = F0,1.

Example 2.1. If µ ∈ R, Pµ,σ ∼ N(µ, σ2) is an example of a family with location

parameter µ and scale parameter σ. More broadly, µ ∈ Rk and σ > 0 are location and

scale parameters for a family of multivariate normal distributions Pµ,σ ∼ N(µ, σ2A),

where A ∈ Rk×k is a fixed, symmetric and positive semi-definite matrix.

Example 2.2. Consider Ps ∼ IG(a, s) for any fixed a > 0. The parameter s is a

scale parameter for the family, see property (2.11). There is no location parameter

as such. However, one may easily consider a larger family (Pµ,s), with Pµ,s being the

distribution of µ+X, X ∼ IG(a, s). For this family, µ and s represent a location and

a scale parameter, respectively.

Remark 2.3. With the notation of Definition 2.5.3, if we call ν the probability

measure associated with F0,1 = F , we have

Pµ,σ(µ+ σA) = ν(A) ∀A ∈ B(Rk) .2 (2.54)

Albeit intuitive, we provide a proof of the claim. Since the sets of the form B =∏k
j=1(−∞, bj] generate the Borel σ-algebra on Rk, we need to check (2.54) on these

sets only. For such a B, call b = (b1, . . . , bk). Then we have:

Pµ,σ(µ+ σB) = Pµ,σ

(
k∏
j=1

(−∞, µj + σbj]

)
(2.52)
= Fµ,σ

(
(µ1 + σb1, . . . , µk + σbk)

)
= Fµ,σ (µ+ σb)

(2.53)
= F (b) = ν(B) .

2As per standard notation, for x ∈ Rk and A ⊆ Rk, we define x+A := {x+ a |a ∈ A}.

62 2. Gaussian Process Emulation

The last equality follows from the fact that F is the cumulative distribution function

of ν and by the definition of B.

We can now state and prove the following slightly technical result. This will allow

us to deal properly with independence of different random variables in the proof of

Theorem 2.5.5, when we replace the posterior expressions ββ and σ2 within the expres-

sion of the process η(·).

Lemma 2.5.4. Let
(
Pb,s
)

be a family of distributions over Rk with location parameter

b ∈ Rk and scale parameter s > 0. Consider random Y ∈ Rk, ββ ∈ Rk and σ > 0, and

suppose that

Y | (ββ = b, σ = s) ∼ Pf(b), g(s) ∀ b ∈ Rk, s > 0 , (2.55)

for some suitable functions f : Rk → Rk and g : R+ → R+. Then:

Y − f(ββ)

g(σ)
⊥⊥ (ββ, σ) , (2.56)

where the symbol ⊥⊥ denotes independence of random variables, or vectors.

Proof. For fixed b ∈ Rk and s > 0, consider the Borel-measurable, bijective map

ϕ
b,s

: Rk −→ Rk

y 7−→ y − b
s

,
(2.57)

and define the random vector (function of Y)

Zb,s := ϕ
b,s

(Y) . (2.58)

Ultimately, we would like to prove that the random vector Zf(β), g(σ) is independent

of the pair (ββ, σ2). To simplify the notation, let us call:

b̃ := f(b) ∈ Rk, s̃ := g(s) > 0 (2.59.a)

β̃β := f(ββ) ∈ Rk, σ̃ := g(σ) > 0 . (2.59.b)

Notice that b̃ and s̃ in (2.59.a) are a real vector and number, respectively; β̃β and σ̃ in

2.5. Marginal Posterior Distribution of the Model 63

(2.59.b) are instead random quantities. Let us now denote by ν the probability measure

P0,1, so that equation (2.54) holds. Then, for A ∈ B(Rk), we have the following:

P
(
Z b̃,s̃ ∈ A | (ββ, σ) = (b, s)

)
= P

(
Y ∈ ϕ

b̃,s̃

−1(A) | (ββ, σ) = (b, s)
)

(2.55)
= Pb̃,s̃ (ϕ

b̃,s̃

−1(A)) = Pb̃,s̃ (b̃+ s̃A)

(2.54)
= ν(A) . (2.60)

Since the set A ∈ B(Rk) is arbitrary, and b and s are as well, we can reformulate

(2.60) as follows:

Z b̃,s̃ | (ββ = b, σ = s) ∼ ν ∀ b ∈ Rk, s > 0 . (2.61)

Moreover, clearly, once conditioned on the event {ββ = b, σ = s}, the distribution of

Zf(β), g(σ) becomes the same as the one of Zf(b), g(s). Hence, from (2.61), it immedi-

ately follows that:

Zβ̃,σ̃ | (ββ = b, σ = s) ∼ ν ∀ b ∈ Rk, s > 0 . (2.62)

The proof is almost complete. Since the probability measure ν does not depend on ββ

and σ, it is intuitive from (2.62) that Zβ̃,σ̃ is independent of the pair (ββ, σ). We show

this rigorously.

For simplicity, let us denote by λ the joint distribution of the pair (ββ, σ) on

Rk × R+. Simply by definition of conditional distribution, for all A1 ∈ B(Rk) and

A2 ∈ B(Rk × R+), we can write the following:

P
[
Zβ̃,σ̃ ∈ A1, (ββ, σ) ∈ A2

]
=

∫
A2

P
[
Zβ̃,σ̃ ∈ A1 | (ββ, σ) = (b, s)

]
dλ(b, s)

(2.62)
=

∫
A2

ν(A1) dλ(b, s)

= ν(A1)λ(A2) . (2.63)

64 2. Gaussian Process Emulation

Given the product form in which the LHS of (2.63) has factorised, together with the

generality of A1 and A2, we can conclude that Zβ̃,σ̃ and (ββ, σ) are independent. This

completes the proof.

2.5.2. Distribution of the Emulator

We can now use the previous result to find out the marginal distribution of the

process η(·) conditioned on Y = y (notation introduced in Subsection 2.3.3). Before

stating Theorem 2.5.5, let us briefly recall the setting.

We consider the random variable:

(η(·),ββ, σ2) : (Ω,F ,P) −→ (RP × Rq × R+, B) . (2.64)

Its conditional distribution given Y = y is as follows (Propositions 2.4.1 and 2.4.2):

η(·) |ββ, σ2,y ∼ GP
(
m∗β(·), σ2c∗(·, ·)

)
, (2.65.a)

(ββ, σ2) |y ∼ NIG(b,B, a, s) . (2.65.b)

The expressions of m∗β(·) and c∗(·, ·) are as follows:

m∗β(x) = h(x)Tββ + t(x)TA−1(y −Hββ) , (2.66.a)

c∗(x,x′) = c(x,x′)− t(x)TA−1t(x′) . (2.66.b)

The expression of the hypeparamenters b,B, a, s in terms of b0,B0, a0, s0 is given in

Proposition 2.4.2.

Theorem 2.5.5. Under the above notation, the process η(·) conditioned on Y = y is

a Student-t process with 2a degrees of freedom, mean function m : P → R given by

m(x) = h(x)Tb+ t(x)TA−1(y −Hb) , (2.67)

and kernel function S : P × P → R given by

S(x,x′) =
s

a

[
c∗(x,x′) + p(x)TB−1p(x′)

]
. (2.68)

2.5. Marginal Posterior Distribution of the Model 65

For x ∈ P, the definition of the vector p(x) ∈ Rq is as follows:

p(x) = h(x)−HTA−1t(x) ∈ Rq. (2.69)

Remark 2.4. By expanding c∗(·, ·) in the expression of the kernel function (2.68),

and given property (2.49.b), we see that the covariance function of η given Y reads as

follows:

v(x,x′) =
s

a− 1

[
c(x,x′)− t(x)TA−1t(x′) + p(x)TB−1p(x′)

]
. (2.70)

The quantity s/(a−1) is the mean of an IG(a, s) random variable, hence the posterior

mean of σ2.

Proof. As usual, let us denote by x1, . . . ,xn ∈ P the design points and consider any

k inputs x̃1, . . . , x̃k ∈ P . We will study the joint distribution, at the inputs x̃j , of the

conditioned process η(·). As in equation (2.26), we define:

H̃ =

h(x̃1)T

...

h(x̃k)T

 ∈ Rk×q, T̃ =

t(x̃1)T

...

t(x̃k)T

 ∈ Rk×n,

and Ã ∈ Rk×k the matrix with elements Ãij = c(x̃i, x̃j). We use the notation

introduced in Subsection 2.3.3. Hence, from (2.65.a), we have:

Ỹ |ββ, σ2,y ∼ N(f(ββ), σ2Σ) , (2.71.a)

f(ββ) = H̃ββ + T̃A−1(y −Hββ) ∈ Rk, (2.71.b)

Σ = Ã− T̃A−1T̃
T
∈ Rk×k. (2.71.c)

We can also think of this as the distribution of the vector Ỹ given ββ and σ2, where

the mean of this distribution depends on a fixed vector y.

Let us now apply Lemma 2.5.4 to the family of distributions Pb,s = N(b, s2Σ), with

location parameter b ∈ Rq and scale parameter s > 0. The vector Y in the statement

of the lemma is here Ỹ , the function f(·) is as above, and g(·) is the identity of R+.

66 2. Gaussian Process Emulation

Given the equations in (2.71), the hypothesis of the lemma is fulfilled. Hence, the

random vector:

X1 =
Ỹ − f(ββ)

σ
∈ Rk (2.72)

is independent of both ββ and σ. The distribution of X1 is then the same as its

conditional distribution on ββ and σ2. This is normal for Ỹ , hence X1 ∼ N(0,Σ) .

We rewrite (2.72) as:

Ỹ = f(ββ) + σX1, X1 ∼ N(0,Σ) independent of ββ, σ. (2.73)

We can iterate the process, this time on ββ. By assumption (2.65.b), we have

ββ |σ2 ∼ N(b, σ2B−1). Let us again apply Lemma 2.5.4, in the simpler case where

the “location” function f(·) is constant and equal to the fixed vector b, and g(·) is

again the identity of R+. We get:

ββ = b+ σX2 , X2 ∼ N(0,B−1) independent of σ. (2.74)

Finally, since σ2 ∼ IG(a, s), we can write (cf. (2.14)):

σ2 =
2s

V
, V ∼ χ2(2a) . (2.75)

Independence of σ then translates into independence of V .

Summary so far: Equations (2.73)–(2.75) give us the following:

Ỹ = f(ββ) + σX1, ββ = b+ σX2, σ2 =
s

a

2a

V
, (2.76)

with

X1 ∼ N(0,Σ), X2 ∼ N(0,B−1), V ∼ χ2(2a) (2.77)

all independent of one another.

We can now plug the second and third identities of (2.76) into the first identity of the

same equation, in order to have a more explicit expression for Ỹ ∈ Rk. Starting from

the expression of f(ββ) ∈ Rk in (2.71.b), we get:

Ỹ = H̃ββ + T̃A−1(y −Hββ) + σX1

2.5. Marginal Posterior Distribution of the Model 67

(β=b+σX2)

= H̃b+ σH̃X2 + T̃A−1y − T̃A−1H(b+ σX2) + σX1

= H̃b+ T̃A−1(y −Hb) + σ
[
(H̃ − T̃A−1H)X2 +X1

]
= H̃b+ T̃A−1(y −Hb) + σX3 , (2.78)

where therefore X3 is independent of V , since X1 and X2 are independent of V :

X3 ∼ N(0,W) , W = Σ + (H̃ − T̃A−1H)B−1(H̃ − T̃A−1H)T . (2.79)

Plugging the expression of σ from (2.76) into (2.78), we get:

Ỹ = H̃b+ T̃A−1(y −Hb) +

√
2a

V
X , (2.80)

where X =
√
s/aX3 ∼ N

(
0,

s

a
W
)

is independent of V ∼ χ2(2a).

Equation (2.80) proves that the distribution of Ỹ given y, now unconditioned on ββ

and σ2, is indeed multivariate Student-t, with:

1. 2a degrees of freedom;

2. mean H̃b+ T̃A−1(y −Hb) ∈ Rk;

3. kernel matrix
s

a
W ∈ Rk×k.

Given the generality of x̃1, . . . , x̃k, this proves that η(·) conditioned on Y = y is a

t-process with 2a degrees of freedom. The jth component of the mean, when read

for a general x rather than x̃j , coincides with the expression in (2.67). Similarly, the

component (j1, j2) of s
a
W ∈ Rk×k, for general x and x′, reads as in (2.68). This

completes the proof.

The previous result is of capital importance, since it provides the distribution of

the emulator, i.e., the posterior distribution of the process η(·), given the observed

simulator outputs f(x1), . . . , f(xn). Notice that the transition from a prior Gaussian

distribution to a posterior Student-t distribution is due to having unconditioned the

law of the process η(·) from the pair (ββ, σ2), rather than to having conditioned η(·)
on the observed simulator outputs f(xi).

68 2. Gaussian Process Emulation

Hierarchical model (Section 2.3)

η(·) |ββ, σ2 ∼ N
(
mβ(·), vσ2(·, ·)

)
(ββ, σ2) ∼ NIG(b0,B0, a0, s0)

Conditioning to simulator outputs

(Section 2.4)

η(·) |ββ, σ2 ∼ N
(
m∗β(·), v∗σ2(·, ·)

)
(ββ, σ2) ∼ NIG(b,B, a, s)

Marginal posterior of η(·)
(Section 2.5)

η(·) |y ∼ t2a
(
m(·), S(·, ·)

)
,

where

m(x) = h(x)Tb+ t(x)TA−1(y −Hb) ,

S(x,x′) =
s

a

[
c∗(x,x′) + p(x)TB−1p(x′)

]
.

Figure 2.3: Continued from Figure 2.2, the last step behind the construction of a GP
emulator is depicted in the green box. Details are in Theorem 2.5.5. The distribution is the
one of a t-process, with the displayed mean function m(·) and kernel function S(·, ·).

2.6. Classical Prior Choice 69

2.6. Classical Prior Choice

In order to build an emulator, the hyperparameters b0,B0, a0, s0 used to define the

marginal prior distribution of ββ ∈ Rq and σ2 > 0 need to be specified. Where available,

information on mβ(·) and vσ2(·, ·) from the problem can be translated into information

about the parameters ββ and σ2, so as to make informed decisions about the values

of b0, B0, a0, and s0 to choose. These may also be estimated via simpler regression

models, such as linear regression. In most applications, however, the choice of a non-

informative prior for the pair (ββ, σ2) is made (O’Hagan [1992], Bonceur et al. [2015]).

The term non-informative refers to a distribution which takes values over large real

intervals, with approximately uniform probability. In the case of

(ββ, σ2) ∼ NIG(b0,B0, a0, s0) ,

the hyperparameters can formally be chosen to yield a “flat” marginal density for ββ,

and an “as flat as possible” density for σ2. In order to give this a more precise meaning,

let us recall from (2.16) the form of the prior density:

π(ββ, σ2) ∝ 1

(σ2)a0+1+ q/2
exp

[
− 1

2σ2

(
2s0 + (ββ − b0)TB0(ββ − b0)

)]
. (2.81)

If we formally set B0 = 0q×q, the dependence on ββ vanishes. This mathemati-

cally improper choice is equivalent to attributing infinite conditional variance to ββ,

since indeed ββ |σ2 ∼ N(b0, σ
2B0

−1). Moreover, setting s0 = 0 in (2.81) will lead an

improper polynomial density for σ2: improper, in that the integral∫ +∞

0

1

(σ2)γ
dσ2, γ = a0 + 1 +

q

2
,

diverges for any real value of γ. However, γ = 1 is the only value for which the integral

diverges in any neighbourhood of both zero and infinity. Therefore, in order to have

an “as flat as possible” prior for σ2, the choice a0 = −q/2 corresponding to γ = 1 can

be made. Such a choice yields:

π(ββ, σ2) ∝ 1

σ2
, (2.82)

70 2. Gaussian Process Emulation

a notation often used in the literature to denote the common non-informative choice

made for the prior of (ββ, σ2). However, as pointed out, setting

B0 = 0q×q, s0 = 0, a0 = −q
2

(2.83)

does not yield a proper prior density in (2.81). In the following, we propose a limit

argument.

Note of the author

The proposed argument needs a remark, concerning the choice of the prior

parameter a0. Specifically, while a proper limit argument can be carried out for

the other parameters, this is not the case of a0, whose negative value lies outside

the closure of the set of allowed prior values. Formally, its use leads nonetheless a

proper density as posterior, which we derive below. It should be noticed, however,

that this can only be given a formal “posterior” meaning, at least within our

presentation, since it is not directly associated with any prior.

If B0 is any strictly positive definite matrix, s0 > 0, and a0 > −q/2, then the expres-

sion in (2.81) has the following properties: it decays exponentially in ββ ∈ Rq as ‖ββ‖
tends to infinity, it is bounded in a neighbourhood of σ2 = 0, and it is integrable when

σ2 tends to infinity, since γ > 1. While these conditions are sufficient to make (2.81)

integrable in ββ for fixed σ2, and in σ2 for fixed ββ, they are not sufficient to guarantee

integrability over Rq × R+. Formally, however, we can compute the posterior values,

equations (2.35.a)–(2.35.d), in the case where b0 = 0 and in the limit:

B0

PD

↘ 0 , s0 ↘ 0 , a0 ↘ −
q

2
. (2.84)

The first limit is taken over any sequence of positive definite matrices tending to the

zero matrix, for example B0 = ε Iq when ε ↘ 0: the limit will not depend on the

specific sequence. From (2.35.a), we obtain:

lim
B0→0

B = HTA−1H ∈ Rq×q. (2.85)

2.6. Classical Prior Choice 71

Hence, from (2.35.b) we obtain the posterior expression of b, and from (2.35.c) the

one of a:

lim
B0→0

b =
(
HTA−1H

)−1
HTA−1y ∈ Rq, (2.86)

lim
a0→−q2

a =
n− q

2
. (2.87)

To work out the limit expression of s from (2.35.d), we need to expand F−1. Since

F = A+HB0
−1HT ∈ Rn×n, we can again take advantage of Lemma B.1 in Appendix.

This yields the following expression for F−1:

F−1 = A−1 −A−1H
(
B0 +HTA−1H

)−1
HTA−1 ∈ Rn×n. (2.88)

Hence, the following is the posterior limit expression of s:

lim
B0→0

s0→0

s = lim
B0→0

s0→0

[
s0 +

(y −Hb0)TF−1(y −Hb0)

2

]

=
1

2
(y −Hb0)T

[
A−1 −A−1H

(
HTA−1H

)−1
HTA−1

]
(y −Hb0) . (2.89)

This expression can be significantly simplified. First, notice that multiplying the

matrix

A−1 −A−1H
(
HTA−1H

)−1
HTA−1

by H on the right-hand side or by HT on the left-hand side, returns in both cases the

null matrix. Therefore, we can simplify (2.89) into the following:

lim
B0→0

s0→0

s =
1

2
yT
[
A−1 −A−1H

(
HTA−1H

)−1
HTA−1

]
y . (2.90)

Moreover, given the limit expression of b in (2.86), we have:

lim
B0→0

s0→0

s =
1

2
yTA−1y − yTA−1Hb

=
1

2
yTA−1 (y −Hb)

72 2. Gaussian Process Emulation

(?)
=

1

2
(y −Hb)T A−1 (y −Hb) . (2.91)

We have made a slight abuse of notation, by simply denoting with b the limit expression

in (2.86). Notice that the equality (?) provides a more symmetric expression for s:

it simply follows from (Hb)T A−1 (y −Hb) = 0, which is trivial to check using the

expression (2.86) of b.

Hence, in the limit (2.84), all the posterior hyperparameters converge to well defined

quantities, which identify a proper posterior density for (ββ, σ2).

2.7. Summary of Emulation Setting and Formulas

Even if not conceptually advanced, some of the results in the previous sections have

been reasonably technical. In the following, we concisely summarise the main steps

and assumptions used to build a GP emulator: the aim is both of providing a unifying

overview of its Bayesian setting and final formulas, and to produce a compact reference

for future use within this work.

The starting point are the outputs of a complex simulator f(·) on n design points

x1, . . . ,xn ∈ P . P ⊆ Rp is the input space of the simulator. The observed outputs

are denoted by yi = f(xi). We want to build a stochastic process η(·) providing

predictions of the simulator output corresponding to any input x ∈ P .

1. The process η(·) is modelled as a Gaussian process. The prior mean function

mβ(·) and covariance function vσ2(·, ·) of η are specified as follows:

mβ(x) = h(x)Tββ, x ∈ P , (2.92)

vσ2(x,x′) = σ2 c(x,x′), x,x′ ∈ P , (2.93)

where

• h(·) is a vector of q real functions of the inputs x, h(x) ∈ Rq;

• c(·, ·) is a valid covariance function;

• ββ ∈ Rq and σ2 > 0 are coefficients.

2.7. Summary of Emulation Setting and Formulas 73

2. The pair (ββ, σ2) is endowed with the following prior distribution:

(ββ, σ2) ∼ NIG(b0,B0, a0, s0) . (2.94)

The joint model (η(·),ββ, σ2) is conditioned on {η(xi) = yi}i=1,...,n. The posterior

distribution of (ββ, σ2) is NIG(b,B, a, s), Proposition 2.4.2.

3. The pair (ββ, σ2) is integrated out of the posterior model. The marginal distribu-

tion of η(·), conditioned on {η(xi) = yi}i only, is the one of a Student-t process,

Theorem 2.5.5.

In the literature, the choice of a non-informative prior for the pair (ββ, σ2) is often

made, see Section 2.6. In this case, the posterior hyperparameters b,B, a, s read as

follows:

B = HTA−1H ∈ Rq×q, (2.95.a)

b = B−1HTA−1y ∈ Rq, (2.95.b)

a =
n− q

2
, (2.95.c)

s =
1

2
(y −Hb)TA−1(y −Hb) . (2.95.d)

Under this choice, the resulting emulator is Student-t process with n − q degrees of

freedom, mean function

m(x) = h(x)Tb+ t(x)TA−1(y −Hb) , (2.96)

and covariance function

v(x,x′) = σ̂2
[
c(x,x′)− t(x)TA−1t(x′) + p(x)TB−1p(x′)

]
. (2.97)

The positive quantity

σ̂2 =
(y −Hb)TA−1(y −Hb)

n− q − 2
(2.98)

represents the posterior mean of σ2.

For the convenience of the reader and for future reference, we recall below the expres-

74 2. Gaussian Process Emulation

sion of the matrices A and H and of the functions t(·) and p(·):

H =

h(x1)T

...

h(xn)T

 ∈ Rn×q , A =

c(x1,x1) . . . c(x1,xn)

...
. . .

...

c(xn,x1) . . . c(xn,xn)

 ∈ Rn×n , (2.99)

t(x) =
(
c(x,x1), . . . , c(x,xn)

)T ∈ Rn, x ∈ P , (2.100)

p(x) = h(x)−HTA−1t(x) ∈ Rq, x ∈ P . (2.101)

2.8. The Case of Chaotic and Stochastic Simulators

So far, we have considered the case of a deterministic simulator. In this section we

introduce a tool that is useful if the simulator is stochastic, but also if the simulator

is deterministic but chaotic: that is, if the simulator response f(x) is always the same

across different runs at the same input x ∈ P , but f(x) and f(x′) are generally very

different for almost identical inputs x 6= x′ ∈ P . This case will be of particular interest

in Part II of this work.

To motivate the rest of this section, we start with a simple observation. We state it as a

lemma due to the importance of the result, although this is an immediate consequence

of the emulation setting itself.

Lemma 2.8.1. Let m(·) and v(·, ·) be the mean and covariance function of an emulator

built with set of design points D = {xi}i=1,...,n ⊂ P and corresponding outputs {yi}i.
Then the emulator perfectly interpolates the outputs. That is:

m(xi) = yi , v(xi,xi) = 0 . (2.102)

Proof. The result is a consequence of the emulation setting, particularly of the step

where the process η(·) has been conditioned on the event {η(xi) = yi}i=1,...,n.

Remark 2.5. Even without any probabilistic interpretation, the claim of Lemma 2.8.1

can be proven via a simple algebraic check. Let us denote by ei ∈ Rn the ith vector

2.8. The Case of Chaotic and Stochastic Simulators 75

of the canonical basis of Rn. Then the ith column of the matrix identity A−1A = In

reads A−1t(xi) = ei. Hence:

HTA−1t(xi) = HTei = h(xi) . (2.103)

Thus, from (2.101):

p(xi) = h(xi)− h(xi) = 0q×1 . (2.104)

Similarly, from t(xi)
TA−1 = ei

T , we get:

t(xi)
TA−1H = h(xi)

T . (2.105)

This yields (see equations (2.96) and (2.97)):

m(xi) = h(xi)
Tb+ ei

Ty − h(xi)
Tb = yi , (2.106)

v(xi,xi) = σ̂2
[
c(xi,xi)− eiT t(xi) + 0

]
= σ̂2

[
c(xi,xi)− c(xi,xi)

]
= 0 , (2.107)

which completes the purely algebraic check of (2.102).

2.8.1. Adding Observational Variance (Nugget Term)

If the simulator is stochastic or chaotic, property (2.102) may not be desirable to

reproduce its nature. In such a case, it may be appropriate to interpret the simulator

output yi as one instance among different outcomes corresponding to the input xi – or

to a very small neighbourhood of the latter in the chaotic case – and hence to build an

emulator whose predictions are truly stochastic even at the design points. This way,

the emulator may be able to identify a smooth mean curve m(·) not deterministically

interpolating the pairs (xi, yi), with the shifts yi −m(xi) at the design points being

explained by the additional variance due to the simulator nature.

To implement this approach, we use the so-called “nugget term”, investigated in detail

in Andrianakis and Challenor [2012]. In the paper, this is as well investigated under a

numerical stability point of view. In the following, we present the use of the nugget and

76 2. Gaussian Process Emulation

derive the formulas of practical interest via a different approach than the classical one,

i.e., by using continuity arguments to identify two different components of a relevant

emulator.

The nugget correction consists in adding a Kronecker-δ term, with continuous inputs,

to the prior covariance function c(·, ·) of an emulator. That is, we replace c(x,x′) with

the following:

cν(x,x
′) = cs(x,x

′) + ν δx,x′ , x,x′ ∈ P , (2.108)

where ν > 0 and

δx,x′ =

{
1 if x = x′

0 otherwise
, x,x′ ∈ P . (2.109)

Before investigating the effects of using a covariance function of the form (2.108) in

emulation, we make an important remark and discuss the associated terminology.

Remark and Terminology

The function δx,x′ , as a function of the two inputs x and x′ ∈ P, is a valid

covariance function (Definition 1.4.2): it is clearly symmetric and as well positive

definite. Due to Theorem 1.4.3, a Gaussian process with input space P ∈ Rp,
constantly zero mean, and covariance function equal to δx,x′ exists. However, the

paths of such a process are extremely irregular: in fact, they have zero probability

of being measurable as functions of x ∈ P (in this regard, recall Remark 1.4

on page 26). Nonetheless, throughout the emulation literature, such a GP is

frequently used, especially in conjunction with the “nugget term”. The reason

is that, while being formally defined on a continuous space, in any emulation

application the process is only evaluated at a finite number of sites in P. We’ll

see an example of this in Subsection 4.9.2.

The way the above process is named is not uniform across the emulation literature:

it is sometimes referred to as white noisea (e.g., Craig et al. [2001]), or it is itself

called the “nugget term” (e.g., Vernon et al. [2010]), or it is just defined in terms

of its mean and covariance functions and given no specific name (e.g., Goldstein

and Rougier [2004]). In all these cases, the process is used within an emulator

to account for the so-called “residual” variability, the one in the simulator output

2.8. The Case of Chaotic and Stochastic Simulators 77

which cannot be explained in terms of the input x alone (for example, because of

an intrinsic stochastic behaviour of the simulator, or because of the role of factors

which have not been included in x). In this work, for ease of future reference, we

refer to a GP with zero mean and covariance function equal to δx,x′ as to Gaussian

noise. For such a process ε(·), we use the notation ε(·) ∼ GN (1). More generally,

we write:

ε(·) ∼ GN
(
σ2
)

if ε(·)/σ ∼ GN (1) for σ > 0. As mentioned above, values of this process will only

be used simultaneously at a finite number of sites only.

a Note that, in stochastic analysis, the term white noise refers to a different mathemat-
ical object, i.e., to a generalised random process. Within an appropriate framework
(analogous to the one of generalised functions, and which is not the aim of this work
to introduce), white noise can be viewed as the “derivative” of Brownian motion. It is
therefore clear that such a process cannot be defined in the classical sense and it is not
real-valued, since the paths of Brownian Motion are almost surely not differentiable at
any point (they are not even α-Hölder continuous for α ≥ 1/2).

In (2.108), we suppose that the function cs(·, ·) is a valid covariance function, which

therefore encodes the main prior covariance structure of the emulator: typical examples

are presented in Subsection 1.4.4. In the following, we assume, that cs(·, ·) it is at least

continuous, although in practical applications it is often more regular than that. In

this regard, the subscript “s” may be thought of as standing for the word “smooth”

(in contrast to the highly irregular Kronecker-δ term), although we simply assume

continuity and not infinite differentiability of cs(·, ·).

In equation (2.108), the Kronecker-δ term adds independent variance to cs(·, ·). Since

cs(·, ·) is a valid covariance function and ν > 0, it is straightforward to see that the

function cν(·, ·) is as well a valid covariance function. However, cν(·, ·) is discontinuous

under the assumed regularity of cs(·, ·). This induces an emulator with discontinuous

paths, in accordance with (although, strictly speaking, not being necessarily implied

by) the results of Subsection 1.4.2, but which still predicts the deterministic value

yi at the point xi. Such an emulator, ην(·), does not seem to achieve the goals

set out at the beginning of the section: smooth non-interpolating mean and truly

stochastic predictions. However, we would like to recognise that it can be decomposed

78 2. Gaussian Process Emulation

as ην(·) = η(·) + ε(·) almost everywhere in P , where:

. the process η(·) is continuous, and it does not deterministically interpolate the

simulated outputs yi;

. the residual ε(·) can be identified as Gaussian noise.

We formalise the previous claim in Theorem 2.8.3. In the rest of this section, it will

be convenient to differentiate between quantities computed with respect to the prior

covariance cs(·, ·), or with respect to cν(·, ·). We refer in particular to the quantities

A, B, b, t(·), σ̂2, m(·), v(·, ·) appearing in equations (2.95)–(2.101). To this aim, we

add the subscript “s” or “ν”, according to the case.

We start by a proposition, which examines the continuity properties of an emulator

built with prior covariance cν(·, ·). Theorem 2.8.3 will follow. The regression function

h : P → Rq is assumed continuous in both coming results, even if not explicitly stated.

Proposition 2.8.2. Let cs(·, ·) be a continuous covariance function, cν(·, ·) as

in (2.108), and ην(·) the emulator built with prior covariance cν(·, ·). Further denote by

D the set design points of ην(·), by mν : P → R its mean function and by vν : P×P → R
its covariance function (equations (2.96), (2.97)). Then:

1. mν(·) is discontinuous in x if and only if x ∈ D;

2. vν(·, ·) is discontinuous in (x,x′) if and only if x ∈ D, or x′ ∈ D, or x = x′;

3. The unique continuous functions mc(·) and vc(·, ·) that extend mν(·) and vν(·, ·)
outside their respective discontinuity regions read as follows:

mc(x) = h(x)Tb+ ts(x)TA−1(y −Hb) (2.110)

vc(x,x
′) = σ̂2

[
cs(x,x

′)− ts(x)TA−1ts(x
′) + ps(x)TB−1ps(x

′)
]
, (2.111)

where A := Aν, B := Bν, b := bν, σ̂ := σ̂ν. Notice that the constant matrix A

appearing in the definition of ps(·), equation (2.101), is as well A = Aν.

Proof. Recall the expression of mν(x):

mν(x) = h(x)Tb+ tν(x)TA−1(y −Hb). (2.112)

2.8. The Case of Chaotic and Stochastic Simulators 79

Since h(·) is continuous, and the vectors b and A−1(y−Hb) are constant, the discon-

tinuity points of mν(·) coincide with the ones of tν(·). The ith component of tν(x)

reads:

cν(x,xi) = cs(x,xi) + νδx,xi , (2.113)

which is discontinuous if and only if x = xi (cs(·, ·) is continuous by hypothesis).

Hence, the vector tν(·) is discontinuous in x if and only if x belongs to the set of

design points D: this proves claim 1. Moreover, being the set D ⊆ P discrete, the

function mν(·), continuous on P \ D, can be continuously extended to D in a unique

way. The extension is the one claimed in (2.110). Indeed, we have:

lim
x→xi

δx,xi = 0 ∀xi ∈ D ,

and therefore, considering (2.113) for all i = 1, . . . , n, we obtain:

lim
x→xi

tν(x) = ts(x) ∀xi ∈ D .

This shows that (2.112) continuously extends to (2.110) outside D.

A similar reasoning can be carried out for the function vν(·, ·):

vν(x,x
′) = σ̂2

[
cν(x,x

′)− tν(x)TA−1tν(x′) + pν(x)TB−1pν(x′)
]
. (2.114)

First, notice that the function cν(·, ·) is discontinuous only along the diagonal

H = {(x,x) | x ∈ P} ⊆ P × P (2.115)

of the set P × P , and its continuous extension is clearly the function cs(x,x
′).

Moreover, from (2.101), we see that the set of discontinuity of the function pν(·)
coincides with the one of the function tν(·): i.e., the set D. This means that both

the second and the third addend in (2.114) are discontinuous on (D×P) ∪ (P×D).

Therefore, outside the set

V = H ∪ (D×P) ∪ (P×D) , (2.116)

the function vν(·, ·) is continuous. Furthermore, it is as well straightforward that,

80 2. Gaussian Process Emulation

inside V , vν(·, ·) is discontinuous. Hence, this proves claim 2.

Finally, the set V has zero Lebesgue measure in P×P ⊆ Rp×Rp, thus the continuous

extension of vν(·, ·) outside V is unique. The claim that the extension is the one

in (2.111) is, again, a straightforward consequence of the fact that, outside D, tν(·)
extends continuously to ts(·) and pν(·) extends continuously to what we have defined

as ps(·) in the statement. The proof is thus complete.

The following result allows us to recognise both a regular and a random-noise

component in an emulator ην(·) built through cν(·, ·). This is equation (2.117) below.

We state the theorem and discuss its meaning and relevance within the context of

this section, deferring its proof to immediately after the short discussion.

Theorem 2.8.3. Let mν(·) and vν(·, ·) be the mean and covariance function of an

emulator ην(·) built with prior covariance cν(·, ·) and set of design points D. Consider

a t-process η(·) on P with the same degrees of freedom as ην(·), but continuous mean

and covariance functions, mc(·) and vc(·, ·), as in (2.110), (2.111). Further define, for

any two x̃j ∈ P \ D, j = 1, 2, the two following random variables:

ϕj = η(x̃j) + εj , εj ∼ N
(
0, ν σ̂ 2

ν

)
, (2.117)

with σ̂ν defined as in (2.98), and ε1 and ε2 independent of each other and of η(·).

Then, it holds:

E (ϕj) = mν(x̃j) , j = 1, 2 , (2.118.a)

Cov(ϕj, ϕh) = vν(x̃j , x̃h) , j, h ∈ {1, 2} , (2.118.b)

In the light of the theorem, we can sum up the results of this overall section as follows.

If the prior covariance cν(·, ·) is used in the emulation formulas (2.96)–(2.101), then

the resulting emulator ην(·) has discontinuous mean and covariance, and yet determin-

istically interpolates the observed simulator outputs. Theorem 2.8.3, however, ensures

the following: outside of the design points, any finite-dimensional distribution of this

emulator is the same as the one of the stochastic process ϕ(·) obtained by summing:

2.8. The Case of Chaotic and Stochastic Simulators 81

a) the continuous version η(·) of the emulator ην(·), and

b) independent Gaussian noise ε(·) of constant variance ν σ̂2
ν .

At the design points, the process η(·) provides non-deterministic predictions.

Therefore, in practical applications, the process η(·) can be used as emulator built

with prior covariance cν(·, ·): this has a continuous mean (2.110) which does not go

through the observed simulator outputs, and always provides non-deterministic predic-

tions. For future reference, let us write below its mean and covariance functions (from

Proposition 2.8.2):

m(x) = h(x)Tb+ ts(x)TA−1(y −Hb) , (2.119)

v(x,x′) = σ̂2
[
cν(x,x

′)− ts(x)TA−1ts(x
′) + ps(x)TB−1ps(x

′)
]
. (2.120)

The matrixA (and all other quantities depending on it, such asB, b, σ̂2) are computed

with prior covariance cν(·, ·).

Proof. (of Theorem 2.8.3) From the definition of ϕj, we immediately have:

E(ϕj) = mc(x̃j) + 0 = mν(x̃j) ,

since, by Proposition 2.8.2, mν(·) ≡ mc(·) on P \ D. This proves equation (2.118.a).

Now, assuming without loss of generality that x̃1 6= x̃2, denote by Σϕ the covariance

matrix of the random vector (ϕ1, ϕ2), and by Ση the covariance matrix of the random

vector
(
η(x̃1), η(x̃2)

)
. From (2.117), we have:

Σϕ = Ση + ν σ̂2
ν I2 ∈ R2×2, (2.121)

where I2 denotes the 2 × 2 identity matrix. Any of the two off-diagonal elements in

the previous equation reads as follows:

Cov(ϕ1, ϕ2) = vc(x̃1, x̃2) . (2.122)

This shows (2.118.b) in the j 6= h case, since vc(x,x
′) = vν(x,x

′) if x 6= x′ and

x,x′ /∈ D : compare with Proposition 2.8.2, point 2.

82 2. Gaussian Process Emulation

Along the diagonal of (2.121), we have instead:

Var(ϕj) = vc(x̃j , x̃j) + ν σ̂2
ν

= σ̂ 2
ν

[
cs(x̃j , x̃j) − ts(x̃j)

TA−1ts(x̃j) + ps(x̃j)
TB−1ps(x̃j)

]
+ ν σ̂2

ν

= σ̂ 2
ν

[
cν(x̃j , x̃j) − ts(x̃j)

TA−1ts(x̃j) + ps(x̃j)
TB−1ps(x̃j)

]
,

given the definition of cν(·, ·) in equation (2.108). Moreover, since ts(x) = tν(x) and

ps(x) = pν(x) if x /∈ D, we get:

Var(ϕj) = σ̂2
ν

[
cν(x̃j , x̃j) − tν(x̃j)

TA−1tν(x̃j) + pν(x̃j)
TB−1pν(x̃j)

]
= vν(x̃j , x̃j) ,

for j = 1, 2. This completes the proof.

2.8.2. A Glimpse on Potential Identifiability Issues

We conclude this chapter with a brief analysis of the emulator model in specific

limit cases, which are of relevance in practical applications. We include a nugget

term in our analysis to be as general as possible within the setting presented so far.

However, with the only aim of simplifying the notation, we suppose that the inputs

are one-dimensional, x = x ∈ R, and that the prior mean is a linear (affine) function

of x: that is, h(x) = (1, x)T ∈ R2. The coming analysis applies perfectly to the case

of higher dimensional x or nonlinear basis functions h(·).

The analysis is centred around the role played in the model by the correlation lengths,

introduced in Section 1.5. Under our one-dimensional assumption, there will only be

one correlation length, which we call d > 0. This is a measure of how far apart from

each other two inputs x, x′ ∈ P ⊆ R need to be, in order for their prior correlation

to decrease significantly. If d tends to 0, then all pairs of different inputs tend to

be uncorrelated. On the other side, if d tends to infinity, all inputs become highly

2.8. The Case of Chaotic and Stochastic Simulators 83

correlated. Let us therefore set the notation. We consider:

cν(x, x
′) = c(x, x′) + ν δx,x′ ,

3 (2.123)

and we suppose that c(·, ·) is a correlation function that depends on a parameter d > 0,

such that the following holds:

lim
d→0

c(x, x′) = 0 ∀x, x′ ∈ P , x 6= x′, (2.124.a)

lim
d→∞

c(x, x′) = 1 ∀x, x′ ∈ P . (2.124.b)

Under this notation and these assumptions, the prior model for the emulator can be

written as follows:

η(x) = a+ bx+ σ
[
ψ(x) +

√
ν ε(x)

]
, where

 ψ(·) ∼ GP
(
0, c(·, ·)

)
,

ε(·) ∼ GN (1) .
(2.125)

If d→ 0, then (2.125) tends to the following model:

η(x) = a+ bx+ σ ε̃(x), ε̃(·) ∼ GN
(
1 + ν

)
, (2.126)

since the process ψ(·) tends itself to Gaussian noise. The one above is a simple linear

regression model. In fact, it is not difficult to check that the classical linear regression

formulas are recovered in this case from the emulation ones.

The case where d → ∞ is instead more interesting. In such a case, any two inputs

x, x′ ∈ P have prior correlation one, which entails that the process ψ(·) becomes

constant in x ∈ P . Of course, by constant, we mean a random constant: in terms of

the notation introduced in Subsection 1.3.2, we refer here to the randomness coming

from the different ω of the sample space Ω. Hence, in distribution, we can write:

ψ(·)
d→∞−→ Z, Z ∼ N(0, 1) . (2.127)

3 It is not necessary in this section to add the subscript “s” to the function c(·, ·) on the RHS. We
will not need to use the formulas (2.95)–(2.101), for which the subscripts “ν” and “s” had been
previously introduced.

84 2. Gaussian Process Emulation

The model (2.125) in the case d→∞ therefore reads as follows:

η(x) = a+ bx+ σ
[
Z +
√
ν ε(x)

]
, ε(·) ∼ GN (1). (2.128)

We can interpret this in two different (but necessarily equivalent) ways, as we outline

below:

(a) η(x) = a+ bx+ σY (x), Y (x) = Z +
√
ν ε(x);

(b) η(x) = ã+ bx+ (σ
√
ν)ε(x), ã = a+ σZ.

Model (a) can be read as a linear model. However, as opposed to the case of standard

regression, the “residuals” are in this case correlated. It is indeed straightforward to

check that

Corr
(
Y (x), Y (x′)

)
=

1

1 + ν
if x 6= x′ .

The same model looked through (b) may instead be naturally described as a linear

model, with uncorrelated residuals, but with the peculiarity of having a random

intercept. Of course, as we have stressed, these are two equivalent interpretations

of the same model. Both of them, and especially (b), may however point out a caveat.

If we generate data from this model, and subsequently fit an emulator to the data,

we may not be able to recover the “true” value of the intercept a. Using classical

statistical wording, we refer to this as to an identifiability issue.

Data generated from (2.128) may be interpreted as having, equally likely, come from a

continuous spectrum of different models. One of such models may be characterised by

an intercept a whose corresponding regression line is far from the observed data, but

the data points are interpreted as being heavily correlated: essentially, a realisation of

model (a), where ν is very small with respect to the random value taken by Z. On

the other side of the spectrum, the same data could be interpreted as coming from a

linear model with an intercept which fits the data well, hence with the regression line

mostly going through the points, and with the local variation around the line being

explained by lack of correlations between the points (essentially, the intercept of the

model is close to the value of ã in interpretation (b)).

2.8. The Case of Chaotic and Stochastic Simulators 85

We can therefore see how the two extreme cases d→ 0 and d→∞ may be potentially

confused in practical situations. Much to the author’s dismay, he now finds himself in

the urgent need to complete the present work, and he cannot investigate the potential

issue further, as the topic deserves. Nonetheless, we thought it worth mentioning the

issue here, leaving it as a topic of further investigation.

86 2. Gaussian Process Emulation

3. Principal Component Analysis

Adapted to a Spherical Setting

Abstract: In practical applications, the output of the simulator to be emulated is

often multi-dimensional. Principal Component Analysis (PCA) is commonly used to

reduce the original problem into a small number of one-dimensional problems. In this

chapter, we point out one important issue that the use of PCA is likely to cause, specif-

ically when climate models are emulated. Hence, building on PCA ideas, we propose

an alternative approach, where elements of Rs are identified with real-valued maps

defined on the sphere S2. This naturally endows Rs with a Hilbert-space structure,

whose (non-Euclidean) geometry is appropriate to the problem and can therefore be

used to find relevant variance-maximising directions. In the last section, we provide

the details to implement the procedure.

88 3. PCA Adapted to a Spherical Setting

3.1. Motivation

The setting introduced in Chapter 2 allows us to build emulators of computer models

which can be represented as a function

f : P → R . (3.1)

In practical applications, the output of the computer model is rarely one-dimensional.

In the special case of climate models, which is of particular interest in this work, the

simulator output corresponding to any input x ∈ P is provided on a number s of grid

cells in which the Earth’s surface has been discretised. An example of such output,

representing simulated annual average temperature, is provided in Figure 3.1 where

s = 73× 96 = 7, 008. In similar cases, the simulator can be represented as a map f of

the following form:

f : P → Rs , (3.2)

where each of the s coordinates of Rs is associated with the output at one grid cell.

The common case of a simulator as in (3.2) is generally dealt with in one of two ways.

1. Independently, s one-dimensional emulators are built, one for each output grid

cell.

2. A suitable subspace V ⊆ Rs and a basis B of V are identified, such that each

model output can be approximated as an element of V . Hence, the coefficients

of the outputs with respect to the basis B are emulated.

Within the climate literature, an example where choice 1 is adopted is represented

by the work Lee et al. [2012], where s = 8192 independent emulators are built

and validated. Such an approach may however be computationally expensive to

carry out. Moreover, in this case, the intrinsic covariance structure between outputs

corresponding to neighbour or close grid cells is (at least in principle) lost. Nonethe-

less, note that the approach may be appropriate if either s is small, or only the outputs

at a few, sparse grid cells are of interest.

In the majority of cases, choice 2 is adopted (e.g., Bonceur et al. [2015], Tran et al.

[2016], Lord et al. [2017]). See also Higdon et al. [2008] and Chang and Guillas [2019]

3.1. Motivation 89

Figure 3.1: Structure of a typical climate simulator output. The Earth surface is discretised
into a number of grid cells, and one output value is associated to each cell. In the illustration
above: simulated annual average pre-industrial temperature, over a 73×96 grid; values from
a HadCM3 simulation (more on this simulator in Chapter 4).

for examples of application within the context of calibration of computer models, where

the multivariate outputs of the simulator are compared with physical observations.

Since choice 2 requires the further effort of identifying an appropriate subspace V ⊆ Rs

and a basis of this, it is clear that it becomes advantageous only in cases where the

dimension s′ of V is remarkably lower than the original dimension s. To the end,

Principal Component Analysis (PCA) is often used. Given a set of m points yi ∈ Rs,

PCA considers the affine space that they span and identifies the directions which,

sequentially, explain most-to-least of the variability of the data set Y = {yi}i=1,...,m.

In this chapter, we stress one issue that is prone to arise when PCA is performed

on vectors yi whose components represent values of a physical quantity over different

grid cells of the Earth (as in Figure 3.1). Hence, we propose an alternative approach,

which adapts the ideas underlying PCA to a non-Euclidean geometry. The case of the

geometry of the sphere S2 ⊆ R3 is of particular relevance in this work and is therefore

stressed out, but the procedure we propose adapts to other cases.

Simulator grids on the Earth are specified in terms of latitude and longitude values,

90 3. PCA Adapted to a Spherical Setting

often uniformly in each of the two directions. Figure 3.1 provides one such example.

Such latitude-longitude uniform grids yield, however, highly non-uniform grids on the

Earth surface: cells will be more densely concentrated at higher latitudes, where they

account for smaller areas. Performing PCA under such a grid, therefore, identifies

directions that automatically privilege the variability displayed by the data set at high

latitudes, where most of the cells are located. To tackle the issue, in this chapter we

propose an alternative approach. This is based on the following observation: although

conveniently represented by a vector y ∈ Rs, a simulator output of the form discussed

above is in reality a discretisation of a real map defined on the Earth. This can be

represented as a function:

ϕ : S2 → R , (3.3)

where the sphere S2 ⊆ R3 is used as mathematical model of the Earth. Starting from

this idea, we carry out a dimension reduction that takes into account the spherical

geometry of the problem and the aforementioned differences in cell areas.

Our procedure is illustrated in Section 3.3. Since this builds on the ideas of classical

PCA, we provide a brief summary of the latter in Section 3.2, with the aim to set as

well the basic notation.

3.2. Classical PCA: Review of Theory and Formulas

Principal Component Analysis is a classical topic of multivariate statistics, probably

the most widely employed methodology for dimension reduction. Here we only provide

a brief account of PCA: no proof is supplied, but the interpretation is stressed

throughout. More details on PCA can be found in any undergraduate text on

multivariate statistics, see for example Mardia et al. [1979, Chap. 8].

We start from m vectors y1, . . . ,ym ∈ Rs, which will be fixed throughout the section.

Notice that, as points in Rs, these span an affine space Ṽ of dimension, at most, m−1.

We have used the tilde, since we denote with V the underlying vector space obtained

by translating Ṽ to the origin:

Ṽ = y + V =
{
y + v | v ∈ V

}
, (3.4)

3.2. Classical PCA: Review of Theory and Formulas 91

where

y =
1

m

m∑
i=1

yi ∈ Rs. (3.5)

Given any direction u ∈ Rs, ‖u‖ = 1, we can consider the projections of the elements

yi onto u:

〈y1,u〉, . . . , 〈ym,u〉 ∈ R , (3.6)

where 〈·, ·〉 denotes the Euclidean inner product on Rs.

Observation (terminology)

Strictly speaking, the projection of a vector y onto the liner space generated by

u ∈ Rs is itself a vector, by definition proportional to u: if ‖u‖ = 1, the projection

is 〈y,u〉u. In this chapter, it is however convenient to identify the projection of

y onto u directly with the scalar 〈y,u〉.

We can now can define the empirical variance of the m projections, and look at this

as function of the direction u ∈ Rs:

G(u) = Var
{
〈y1,u〉, . . . , 〈ym,u〉

}
≥ 0 . (3.7)

The quantity G(u) is informative of the orientation of u with respect to the space Ṽ .

If G(u) = 0, then u is orthogonal to Ṽ (and vice versa). Otherwise, the bigger G(u),

the more u represents a direction of particular variability of the data set Y =
{
yi
}
i
.

PCA allows us to identify an orthonormal basis B = {v1, . . . ,vm−1} of V , whose

elements, sequentially, represent directions of maximal variability within the data set.

More formally, the elements vj ∈ Rs satisfy the following:

v1 = arg max
u∈Rs, ‖u‖=1

G(u) , (3.8)

and, recursively for j = 2, . . . ,m− 1,

vj = arg max
u∈Rs, ‖u‖=1

u⊥{v1,...,vj−1}

G(u) . (3.9)

92 3. PCA Adapted to a Spherical Setting

The basis vectors vj are called Principal Components (PCs). Notice that the maximi-

sation takes place on Rs, but will automatically select elements in V (assuming no

singularity of the data set Y , so that dim(V) = m− 1).

Notation convention on indices

In this chapter, we make frequent reference to the elements of the original set

Y = {y1, . . . ,ym} ⊂ Rs and to the elements of the basis B = {v1, . . . ,vm−1} ⊂ Rs,
both introduced above. To notationally ease the distinction between these, we use:

• the index i ∈ {1, . . . ,m} to refer to the elements yi ∈ Rs or to quantities

associated with these;

• the index j ∈ {1, . . . ,m − 1} to refer to the principal components vj ∈ Rs

or to quantities associated with these.

When needed, we will use the index c ∈ {1, . . . , s} to refer to the components of

a generic vector y ∈ Rs (each associated with a cell of the simulator Earth grid).

The theory of PCA ensures that the PCs are eigenvectors of the empirical covariance

matrix C of the data set Y ; that is, of the s× s matrix

C =
1

m− 1
Y TY ∈ Rs×s, (3.10)

where the ith row of Y ∈ Rm×s is (yi − y)T . Moreover, if λj denotes the eigenvalue

associated with vj , then it holds:

λj = G
(
vj
)
≥ 0 . (3.11)

Notice the following: the matrix C is real and symmetric, hence, by the classical

spectral theorem of linear algebra, its eigenvectors form an orthogonal basis of Rs.

Moreover, the eigenvalues are non-negative, since C is positive semi-definite. Here,

we are more specifically saying that the eigenvectors vj ∈ Rs associated with the

first m − 1 largest eigenvalues satisfy (3.8) and (3.9), and that the eigenvalues are

the empirical variances associated to each vj through the function G(·) in (3.7). The

remaining eigenvalues are necessarily zero, since the rank of C is at most m− 1 (and,

3.3. PCA on a Different Geometry 93

indeed, G(u) = 0 if u ⊥ V).

In practice, especially when m � s (i.e., number of points yi much lower than

dimension of the space to which they belong), it is computationally more stable and

efficient to compute the PCs via the singular value decomposition (SVD) of Y . This

reads as follows:

Y = UDV T ∈ Rm×s, (3.12)

where U ∈ Rm×m is orthogonal (UUT= UTU = Im), D ∈ Rm×m is diagonal with

non-negative elements di, and V ∈ Rs×m has orthonormal columns (V TV = Im).

It is straightforward to check that the columns of V are eigenvectors of Y TY , with

associated eigenvalues d2
j (i.e., (Y TY)V = V D2). Hence, the columns of V are also

eigenvectors of C, with associated eigenvalues d2
j/(m− 1). Finally, notice that the ith

row of (3.12), after transposing, reads as follows:

yi − y =
m∑
j=1

Qijvj , i = 1, . . . ,m , (3.13)

where Q = UD, and vj is the jth column of V . Hence, the matrix Q contains the

coefficients of the linear combinations expressing the elements yi ∈ Rs in terms of the

basis {vj}.

3.3. PCA on a Different Geometry

In this section we propose a variant of PCA, appropriate to geometries on Rs that

are different to the Euclidean one. While still working on s-dimensional vectors, the

idea behind our procedure is to interpret these as discretisation of infinite-dimensional

objects, specifically real-valued maps defined on the sphere S2 (or on a subset thereof).

Before proceeding, I4 would like to make a note. Albeit in a different setting,

formulas similar to the ones that our procedure recovers are discussed and used

in Salter et al. [2019], which references the book Jolliffe [2002]. Upon consulting

this, I discovered that mathematical ideas similar to the ones proposed below are

4 The author of this work.

94 3. PCA Adapted to a Spherical Setting

introduced in the last chapter of the book. The present chapter has nonetheless been

independently developed by myself, and no result or proof has been adapted from the

previous references, which I became aware of only after completing the present chapter.

Moreover, such ideas have not yet been applied within an emulation framework, as we

do in Part II of this work.

3.3.1. Immersing Rs Into a Space of Functions

As illustrated in Figure 3.1, a typical output of a climate simulator is provided over a

grid of the Earth. We represent such an output as a vector y ∈ Rs, whose components

are simulated values at the different grid cells. In the following, we assume for

convenience a uniform grid, and denote by NLat and NLon the number of grids cells

along the latitude and longitude dimensions, respectively. Moreover, let us denote by

(ϕh, θl) the coordinates of the grid cell centres, for h = 1, . . . , NLat and l = 1, . . . , NLon.

Hence, each cell, Rhl, is a (spherical) rectangle which in latitude-longitude coordinates

reads as follows:

Rhl =
[
ϕSh , ϕ

N
h

]
×
[
θWl , θ

E
l

]
. (3.14)

ϕSh

ϕNh

θWl θEl

(
ϕh, θl

)
Rhl

The S, N , W and E superscripts are meant to remind of the four cardinal points. In

the case of a uniform grid, we have:

ϕSh = ϕh −
δ

2
, ϕNh = ϕh +

δ

2
, h = 1, . . . , NLat (3.15.a)

3.3. PCA on a Different Geometry 95

θWl = θl −
ε

2
, θEl = θl +

ε

2
, l = 1, . . . , NLon , (3.15.b)

where δ = π/NLat and ε = 2π/NLon are the latitude and longitude step sizes, respec-

tively, both measured in radians.

Remark 3.1. According to the grid of the simulator in use, the definition of ϕNh

(respectively, ϕSh) for the cells closest to the North (respectively, South) Pole may

differ from the one in equation (3.15.a). For example, in the case of the HadCM3

simulator, employed in Chapter 4 and Chapter 5 of this work, the northernmost cells

are characterised by a value of ϕh equal to π/2: for these cells, we have ϕNh = π/2.

This corresponds to a grid which has NLon “triangular” cells around the North Pole,

each extending in longitude for δ/2 radians. The case of the South Pole is symmetric.

A vector y ∈ Rs, with grid cell simulator outputs as components, can be naturally

interpreted as a function from S2 to R: the function fy which is constant on

each cell, with value given by the appropriate component of y. If we denote by

c(h, l) ∈ {1, . . . , s} the index corresponding to the cell Rhl, we can write fy as:

fy(z) =
∑
h,l

y
c(h,l)

1Rhl(z) , z ∈ S2, (3.16)

where 1Rhl : S
2 → R is the indicator function of cell Rhl. Any such fy is an element of

a much bigger space, which has a natural inner-product structure. This is the vector

space of real, square-integrable functions on S2:

H =

{
f : S2 → R

∣∣∣ ∫
S2

f 2(z) dz <∞
}
. (3.17)

If endowed with the following inner product:

〈f, g〉H =

∫
S2

f(z) g(z) dz , f, g ∈ H, (3.18)

the set H becomes a Hilbert space (i.e., it is complete, in the standard sense that

every Cauchy sequence converges, under the metric induced by the inner product).

Equation (3.16) allows us to interpret vectors in Rs as elements of H. This naturally

induces a different inner product on Rs than the Euclidean one. Indeed, for any

96 3. PCA Adapted to a Spherical Setting

y,y′ ∈ Rs, the integral (3.18) of the associated functions fy, fy′ ∈ H translates into

the following finite sum:

〈fy, fy′〉H =

∫
S2

fy(z) fy′(z) dz =
s∑
c=1

wc yc y
′
c , (3.19)

where the weight wc is equal to the area of grid cell c. Seen as bilinear function of

y and y′ ∈ Rs, equation (3.19) defines an inner product on Rs. We denote this by

〈·, ·〉
W

:

〈y,y′〉
W

=
s∑
c=1

ycwc y
′
c = yTWy′ , y,y′ ∈ Rs , (3.20)

where W ∈ Rs×s is the diagonal matrix with diagonal elements wc > 0.

The reasoning carried out so far is valid for any grid. However, in the case of a

rectangular grid, a simple formula can be obtained for the area of the cell Rhl defined

in (3.14) and (3.15). We derive the formula below, via a surface integral. To the aim,

we parameterise the sphere using latitude and longitude polar coordinates:

Φ :
[
−π

2
,
π

2

]
× [0, 2π] −→ S2

(ϕ, θ) 7→

 cosϕ cos θ
cosϕ sin θ

sinϕ

 (3.21)

Indeed, a point at latitude ϕ and longitude θ has z component equal to sinϕ, and

distance from the z axis equal to cosϕ: from this last figure, it follows that the

x and y components are the ones in (3.21). Locally, the area-scaling factor of the

transformation is given by the norm of the cross product between the two tangent

vectors: ∥∥∥∥ ∂Φ

∂ϕ
× ∂Φ

∂θ

∥∥∥∥ = cosϕ . (3.22)

Hence, the area of the spherical rectangle Rhl is as follows:

Area(Rhl) =

∫
Rhl

1 dA =

∫ ϕNh

ϕSh

∫ θEl

θWl

cosϕdϕdθ

= (θEl − θWl) (sinϕNh − sinϕSh)

= ε (sinϕNh − sinϕSh) , (3.23)

3.3. PCA on a Different Geometry 97

where ε = 2π/NLat is the longitude step size previously introduced.

Notice that, as expected, Area(Rhl) does only depend on the latitude ϕh at which Rhl is

placed, and not on the longitude θl: the area shrinks towards the poles (ϕh → ±π/2),

where the sine approaches zero derivative. This mathematically supports what already

stressed in Section 3.1, i.e., that a polar region of a given geographical area consists

of many more cells than an equatorial region of the same area.

3.3.2. Theoretical Formula for the Principal Components

In the previous Section, we have defined an inner product on Rs,

〈y,y′〉
W

= yTW y , y,y′ ∈ Rs, (3.24)

where the matrix W ∈ Rs×s is diagonal with weights chosen to resemble the L2 inner

product of the Hilbert space H of square-integrable, real-valued maps on the sphere.

We now go back to the problem introduced in Section 3.1: performing PCA on a

data set Y = {yi}i=1,...,m ⊂ Rs, which consists of vectors approximating maps on the

sphere. To accomplish the aim, we follow the same ideas underlying PCA, but use

the more natural inner product 〈·, ·〉
W

in order to account properly for the variability

displayed by the elements of the data set in the different geographical areas.

Remark 3.2. The validity of this section’s results is not limited to the case where

the matrix W ∈ Rs×s in equation (3.24) is chosen to resemble the L2 inner product

of real functions defined on S2. The results remain valid for any diagonal W with

positive diagonal entries and, in fact, for any symmetric and positive-definite matrix

W . The procedure we outline below is therefore of relevance to any dimension-

reduction problem, where the meaning of the vectors on which dimension-reduction is

performed suggests the use of an inner product different to the Euclidean one.

Let us therefore consider m starting points y1, . . . ,ym ∈ Rs. Our aim is to look for

the directions of maximal variability that characterise the data set, with respect to

the inner product (3.24). That is, we define, recursively:

v1 = arg max
v∈Rs, ‖v‖

W
=1

Var
{
〈y1,v〉

W
, . . . , 〈ym,v〉

W

}
, (3.25.a)

98 3. PCA Adapted to a Spherical Setting

and

vj = arg max
v∈Rs, ‖v‖

W
=1

v⊥
W
{v1,...,vj−1}

Var
{
〈y1,v〉

W
, . . . , 〈ym,v〉

W

}
, (3.25.b)

for j = 2, . . . ,m − 1. The symbol ‖ · ‖
W

denotes the norm induced by the inner

product (3.24) (‖v‖2

W
= 〈v,v〉

W
for v ∈ Rs); similarly, the symbol ⊥

W
denotes orthog-

onality with respect to this inner product.

Theorem 3.3.1 shows that problem (3.25) can be reformulated as an eigenvector

problem. This is analogous to the PCA case, but the problem is, in our case,

asymmetric. The proof has been autonomously developed by the author of this work,

and may therefore differ, also in the ideas and tools used, from proofs of the analogous

result of classical PCA. Before stating Theorem 3.3.1, let us conveniently introduce

the quantities y and Y , as follows:

y =
1

m

m∑
i=1

yi ∈ Rs, Y =

(
y1 − y

)T
...(

ym − y
)T
 ∈ Rm×s. (3.26)

To keep the notation compact, for any v ∈ Rs let us also define:

G(v) := Var
{
〈y1,v〉

W
, . . . , 〈ym,v〉

W

}
. (3.27)

Theorem 3.3.1. Let y1, . . . ,ym ∈ Rs be m vectors, and define Y ∈ Rm×s as in (3.26).

Moreover, let W ∈ Rs×s be a symmetric, positive definite matrix, so that the bilinear

map

〈y,y′〉
W

= yTWy′, y,y′ ∈ Rs, (3.28)

defines an inner product on Rs. Then, the matrix

C =
1

m− 1
Y TYW ∈ Rs×s (3.29)

has real, non-negative eigenvalues λ1 ≥ · · · ≥ λs ≥ 0, and the corresponding eigenvec-

tors vj satisfy equations (3.25.a), (3.25.b). Moreover, for each j = 1, . . . , s, it holds:

G
(
vj
)

= λj ≥ 0 . (3.30)

3.3. PCA on a Different Geometry 99

Proof. We divide the proof into four small blocks.

1. Part 1: Show that G(v) ∝ ‖XWv‖2 for any v ∈ Rs.

2. Part 2: Show that the eigenvectors vj form a (special) basis of Rs.

3. Part 3: For any v ∈ Rs, write G(v) in terms of its basis coefficients.

4. Part 4: Maximise G(·) and show the claim.

Part 1: For any v ∈ Rs, we have the following:

G(v) = Var
{
〈y1,v〉

W
, . . . , 〈ym,v〉

W

}
= Var

{
〈y1 − y,v〉

W
, . . . , 〈ym − y,v〉

W

}
, (3.31)

since the inner product is linear in the first argument, and 〈y,v〉
W

is a constant.

Moreover, again by the inner product linearity and by the definition of y, we have:

1

m

m∑
i=1

〈yi − y,v〉
W

= 0 . (3.32)

Hence, the variance in (3.31) becomes the sum of the square of each element,

normalised. That is:

(m− 1)G(v) =

∥∥∥∥∥∥∥∥

(y1 − y)TWv
...

(ym − y)TWv

∥∥∥∥∥∥∥∥

2

= ‖YWv‖2 , (3.33)

where ‖ · ‖ is the standard Euclidean norm on Rm.

Part 2: This part shows that the eigenvectors vj , as defined in the statement, form a

〈·, ·〉
W

-orthonormal basis of Rs. To the aim, we use the general version of the spectral

theorem which is recalled in Appendix, Theorem B.2. To apply the theorem, we need

to show that the matrix C is symmetric with respect to the inner product 〈·, ·〉
W

. That

is, we need to show that the following holds:

〈Cy,y′〉
W

= 〈y,Cy′〉
W
∀y,y′ ∈ Rs. (3.34)

100 3. PCA Adapted to a Spherical Setting

This is a simple check, by using that C = (Y TYW)/(m− 1):

〈Cy,y′〉
W

= (yTCT)Wy′

=
1

m− 1
yTWY TYWy′

= yTWCy′ = 〈y,Cy′〉
W
. (3.35)

Hence, by the spectral theorem, the5 set B = {v1, . . . ,vs} of eigenvectors of C forms

a basis of Rs, orthonormal with respect to 〈·, ·〉
W

. We can compactly write this using

matrix notation. Denoting by V ∈ Rs×s the matrix whose jth column is vj , by

Λ ∈ Rs×s the diagonal matrix with diagonal elements the eigenvalues λj of C, and by

Is the identity matrix of order s, we have:

CV = V Λ ∈ Rs×s , (3.36.a)

V TWV = Is ∈ Rs×s . (3.36.b)

Equation (3.36.a) asserts that the columns of V are eigenvectors of C, with associated

eigenvalues λj. Equation (3.36.b) states that the columns of V are orthonormal with

respect to (3.28).

Part 3: Since B is a basis of Rs, any vector v can be written as linear combination

of the vj . That is, for any v ∈ V , we can write:

v = V α, (3.37)

for some vector of coefficients α ∈ Rs. We can then compute the variance G(v) in

terms of the coefficients α. Starting from (3.33), we have:

G(v) =
1

m− 1
(vTWY T)(YWv)

(3.37)
=

1

m− 1
αTV TWY TYWV α

= αTV TWCV α

5Notice that, if the multiplicity of an eigenvalue is greater than one (if m < s, λ = 0 is one such
eigenvalue), we choose the corresponding eigenvectors so that they are orthogonal to each other,
among the infinite choices available.

3.3. PCA on a Different Geometry 101

(3.36.a)
= αTV TWV Λα

(3.36.b)
= αTΛα

=
s∑
j=1

αj
2λj . (3.38)

Notice, in particular, that equation (3.38) immediately shows that the eigenvalues λj

are all non-negative (choose αj = 1 and all other αk equal to zero). If needed, we

reorder both them and the corresponding eigenvectors, so that λ1 ≥ · · · ≥ λs ≥ 0.

Part 4: We can finally maximise G(·), over the subspaces of interest. From v = V α,

and by exploiting (3.36.b), it is immediate to see that

‖v‖
W

= 1 ⇐⇒
s∑
j=1

αj
2 = 1 . (3.39)

Hence, equation (3.38) in particular says the following: for any ‖ · ‖
W

-unit vector

v ∈ Rs, the value G(v) is a convex combination of the positive eigenvalues λj of C.

Given the order of the λj, it immediately follows that

max
‖v‖

W
=1
G(v) = λ1, (3.40)

and that the maximum of (3.38) is attained at α = (1, 0, . . . , 0). In terms of vectors

v, such α yields V α = v1. Therefore, we have proved that:

v1 = arg max
v∈Rs, ‖v‖

W
=1

G(v) and G
(
v1
)

= λ1 . (3.41)

We can now maximise G(·) in the subspace orthogonal to v1. If we suppose that

v = V α satisfies ‖v‖
W

= 1 and that 〈v,v1〉
W

= 0, then we get:

α1 = 0 and
s∑
j=2

αj
2 = 1 . (3.42)

Among all such v, we have

G(v) =
s∑
j=2

αj
2λj . (3.43)

102 3. PCA Adapted to a Spherical Setting

Hence, the same reasoning of before shows the following:

v2 = arg max
v∈Rs, ‖v‖

W
=1

〈v,v1〉
W

G(v) and G
(
v2
)

= λ2 . (3.44)

The reasoning can be replicated for all unit vectors orthogonal to
{
v1, . . . ,vj−1

}
, and

this completes the proof.

Theorem 3.3.1 provides an explicit solution to the constrained optimisation problem

in (3.25). Notice that the result only requiresW ∈ Rs×s to be symmetric and positive-

definite, in order to define a proper inner product; it does not requireW to be diagonal

as in the setting of Subsection 3.3.1. Of course, if W = Is, then the matrix C is

simply the covariance matrix of the data set {yi} and the results of classical PCA are

recovered.

We conclude with a remark. It is probably intuitive, also in analogy with what stated

in Section 3.2, that each vector yi−y belongs to the span of the first m− 1 principal

components only. This could be proven easily6, but also follows from what we show in

Subsection 3.3.3. Hence we skip an independent, redundant proof. The main geomet-

rical idea should nonetheless remain, and we summarise it in the following box.

Geometrical Overview

The m centred vectors yi − y ∈ Rs span a linear space V of dimension at most

m− 1: to be precise, of dimension r = rank(C). Exactly the first r eigenvectors

of C form a ‖ · ‖
W

-orthogonal basis of V , explaining sequentially most-to-least

of the data set variance, and have eigenvalues equal to these variances. The

remaining eigenvectors are orthogonal to any of the data set elements, and are

indeed associated with a zero eigenvalue.

6 Main idea: i) observe that rank(C) ≤ m − 1, hence λm = · · · = λs = 0; ii) relate these λj ,
through (3.30), to the coefficients 〈yi − y,vj〉

W
of the expansion of yi− y with respect to the basis

{vj}.

3.3. PCA on a Different Geometry 103

3.3.3. Computing the Principal Components

In practical applications, the square matrix C in (3.29) is of order s of several

thousands: in Chapter 4 and Chapter 5, we deal both times with settings where s

is of the order of 4 × 104 (Table 4.1 and Table 5.2). In such cases, storing in double

precision the approximately 109 matrix elements already requires a notable amount of

computer memory; a straight computation of all its eigenvectors becomes computa-

tionally unaffordable. Since the matrix is asymmetric, it is not directly possible to

apply the SVD to its “square root”: a square root, in the sense of a matrix X such

that C = XXT , clearly does not exist, since such a C would be symmetric. However,

we can apply the SVD to a linear transformation of the original data Y = {yi}i=1,...,m

and then transform back, as explained below.

Supposing for convenience that the matrix W is diagonal, as the case of actual

interest is (Subsection 3.3.1), the procedure to compute the eigenvectors of

C = (Y TYW)/(m− 1) ∈ Rs×s is as follows:

1. Define Ỹ = YW 1/2 ∈ Rm×s.

2. Apply the usual SVD to Ỹ : Ỹ = UDṼ
T

.

3. Define V = W−1/2Ṽ ∈ Rs×m.

We show below that this yields the eigenvectors of C as columns of V , and the

corresponding eigenvalues (up to a square and a scaling factor) as diagonal elements

of the matrix D in point 2.

The SVD applied to Ỹ = YW 1/2 reads as follow:

Ỹ = UDṼ
T
∈ Rm×s, (3.45)

where U ∈ Rm×m is orthogonal, D = (dj)jj ∈ Rm×m is diagonal, and Ṽ ∈ Rs×m

satisfies Ṽ
T
Ṽ = Im. First, let us observe that the m columns of Ṽ are eigenvectors

of the matrix Q = W 1/2CW−1/2 ∈ Rs×s:

(m− 1)QṼ = (n− 1)W 1/2CW−1/2Ṽ

104 3. PCA Adapted to a Spherical Setting

(def of C)
= W 1/2 Y TYW 1/2 Ṽ

(def of Ỹ)
= Ỹ

T
Ỹ Ṽ

(3.45)
= Ṽ DImDṼ

T
Ṽ

= Ṽ D2 . (3.46)

This equivalently reads:

QṼ = Ṽ
(
D2/(m− 1)

)
, (3.47)

i.e., the columns of Ṽ are eigenvectors of Q, with associated eigenvalues

λj = d2
j /(m− 1). Let us denote with Λ ∈ Rm×m the diagonal matrix with diagonal

elements λj.

Defining V = W−1/2Ṽ , we want to show that its columns are eigenvectors of C.

From (3.47) and from the above definition of Q, we see the following:

CV = W−1/2QW 1/2V

= W−1/2QṼ

(3.47)
= W−1/2Ṽ Λ (3.48)

= V Λ . (3.49)

Hence, as it was our aim, we have shown that the columns of V are eigenvectors of

the matrix C = (Y TYW)/(m− 1), with corresponding eigenvalues λj = d2
j/(m− 1).

For convenience and reference, we summarise the result below.

Proposition 3.3.2. Given Y ∈ Rm×s and given W ∈ Rs×s diagonal with positive

elements, define V ∈ Rs×m as per steps 1–3 above (beginning of Section). Then, the

m columns of V are eigenvectors of the matrix

C =
1

m− 1
Y TYW ∈ Rs×s.

The associated eigenvalues are λj = d2
j /(m − 1), where dj is the diagonal element of

D ∈ Rm×m, as in point 2 and equation (3.45).

Notice that, from the orthonormality of the columns of Ṽ with respect to the Euclidean

inner product (Ṽ
T
Ṽ = Im), it follows that the columns of V = W−1/2Ṽ are

3.3. PCA on a Different Geometry 105

orthonormal with respect to the inner product 〈·, ·〉
W

, as expected:

V TWV = (Ṽ
T
W−1/2)W (W−1/2Ṽ) = Ṽ

T
Ṽ = Im . (3.50)

Finally, from the SVD in (3.45), we can write the original elements of the data set as

linear combinations of the PCs vj , columns of V . By multiplying both sides of (3.45)

on the right by W−1/2, we get:

Y = UDV T ∈ Rm×s. (3.51)

Notice that this is not a singular value decomposition, since V TV 6= Im. The

transpose of the ith row of (3.51) then shows what we have claimed:

yi − y =
m∑
j=1

(UD)ijvj =
m∑
j=1

qijvj , qij = uij dj . (3.52)

That is, the elements yi − y belong to the linear space generated by the first n PCs.

In reality, the first m − 1 PCs already span the space where each yi − y lies. This

follows from the observation that the rank of Y , and therefore of Ỹ , is at most m− 1,

since the m rows of Y are trivially dependent (they sum up to zero). The last singular

value of D (equation (3.45)) is therefore dm = 0. Hence, for any i = 1, . . . ,m, the

coefficient qim in (3.52) is zero. This also shows the claim made just before the start

of Subsection 3.3.3.

An example of code implementing PCA, either in its classical form or in our variant,

is provided in the Matlab Appendix D.2. The code returns the PCs, the matrix of

coefficients Q = (qij) ∈ Rm×(m−1) and the standard deviations
√
λj associated with

each PC (see Proposition 3.3.2).

106 3. PCA Adapted to a Spherical Setting

Part II

Applications to Past Climate

Reconstruction

4. The Role of Orbital Variability in

Ocean Temperature Reconstruction

Abstract: To understand the dynamics and consequences of current climate change,

systematic scientific efforts are being undertaken to reconstruct the climate of past

warm periods. To this aim, both complex climate models and geological records are

employed. In this chapter, we employ Gaussian process emulation to investigate the

mismatch between: a) simulated mid-Pliocene (∼3 million years ago) ocean temper-

atures; b) proxy reconstructions from geological records. The comparison takes full

advantage of the nature of the emulator as stochastic process, by drawing sample

trajectories from its distribution to resemble the way geological proxies are obtained.

This way, we are able to account for the significant changes in ocean temperature

induced by the varying orbital forcing. We also compare our results to the case where

no emulator is employed.

110 4. Role of Orbital Variability in Temperature Reconstruction

4.1. Learn From the Past to Understand the Future

4.1.1. Motivation for the Interest in Mid-Pliocene Climate

Different scientific studies in recent years have ascertained that the current Earth’s

climate is undergoing a radical change: notable is in this regard the series of works by

the Intergovernmental Panel on Climate Change (IPCC), among which IPCC [2007],

IPCC [2013]. To face the changes, on the 12th of December 2015 a number of nations

signed in Paris the famous Agreement, committing to:

[. . .] holding the increase in the global average temperature to well below

2°C above pre-industrial levels, and pursuing efforts to limit the temperature

increase to 1.5°C above pre-industrial levels.

These lines can be found in United Nations [2015], page 2. While exact predictions

are impossible, the seemingly-small half degree of difference between the two scenarios

is likely to yield very different consequences in terms of the number of days of extreme

heat, severity of species loss, decline in coral reefs, sea-level rise: see for example Jahn

[2018], Zhang et al. [2018].

Although these drastic changes are undoubtedly caused by the human activity,

our planet has naturally experienced warmer-than-today periods during its lifetime.

Understanding the nature of past warm climates, and the associated response of the

different components of the Earth system, provides us with an excellent ground to

gain insight on future changes. The mid-Pliocene, from around 3.3 to 3 million years

ago, represents in this regard an ideal case study.

At the time, temperatures were warmer than during Pre-Industrial times (PI;

around 1750–1800) and atmospheric CO2 concentrations were much higher than then,

see Dowsett et al. [1996]. Since the PI, atmospheric CO2 concentrations have risen

anomalously, from around 280 parts per million (ppm) to more than 400 ppm today.

Prior to this present peak, the last time in history characterised by so high concen-

trations is the mid-Pliocene. The mid-Pliocene climate is therefore often regarded

as the most similar analogue of the climate we are experiencing in this first half of

4.1. Learn From the Past to Understand the Future 111

the twenty-first century. For this reasons, the climate community has endeavoured to

gain a deeper understanding of that climate and of its effects7, to as well enable more

informed policy decision in tackling the current climate crisis.

4.1.2. The Combined Use of Models and Geological Data

Information from both geological records and climate simulations has been used to

study the mid-Pliocene. On the geological side, the US Geological Survey launched in

the late 1980’s the PRISM (Pliocene Research, Interpretation, and Synoptic Mapping)

project, Dowsett et al. [1994]. Its aim was to use marine and terrestrial records to

investigate the magnitude and variability of the mid-Pliocene climate, with particular

emphasis on North Atlantic marine records. Future generations of PRISM reconstruc-

tions, up to PRISM4 (Dowsett et al. [2016]), have extended the focus to the northern

hemisphere, and later to the whole globe. On the climate modelling side, the Pliocene

Model Intercomparison Project (PlioMIP, Haywood et al. [2011]) has coordinated the

planning and execution of a number of different simulations, run with the most recent

boundary conditions (vegetation, ice sheets) provided by the PRISM data sets. In

2016, its second phase was launched (PlioMIP2, Haywood et al. [2016a]).

While undoubtedly crucial to study the past climate, it must be acknowledged that

climate simulators are not ideal, error-free tools. The climate system is the result of

a number of complex interacting processes which take place in different components:

atmosphere, oceans, ice sheets, vegetation. Studying in a systematic way the ability

of a climate simulator to reproduce past warm climates becomes therefore a very

important, but extremely challenging task. In recent years, information from models

and geological archives has been combined to tackle this task. Alongside helping

to achieve more reliable climate reconstructions (Chandler et al. [2008]), this step has

been crucial to identify deficiencies and geographical biases of simulators: in Salzmann

et al. [2013], for example, the authors suggest that most climate models are inclined

to display a cold bias at high latitudes in reproducing warm past climate.

7 Another period of great interest to the climate community, as means of comparison to the near
future, is the Last Interglacial (around 125 thousand years ago). At the time, temperatures were
at least comparable to the current levels, although CO2 concentrations were much lower. We will
expand on this in Chapter 5.

112 4. Role of Orbital Variability in Temperature Reconstruction

4.1.3. The Role of Statistics

One area in which the mid-Pliocene has been object of particular investigation is

the one of data-model comparison (DMC; Lunt et al. [2010], Dowsett et al. [2013],

Salzmann et al. [2013], Haywood et al. [2016b]). Nonetheless, the field still stands

as one of the most challenging within the area of past climate reconstruction: not

only from the climate point of view, but also from the statistical one. Remarkable

challenges come from the uncertainty affecting the chronology of geological records,

the cost of climate simulations (in terms of both time and computational power), as

well as the intrinsic discrepancy between model predictions and reality. Moreover, as

demonstrated in Prescott et al. [2014], the mid-Pliocene, covering approximately 300

thousand years, cannot be regarded as a period of stable climate conditions.

The aforementioned paper suggest that significant changes took place in the average

annual temperature, as a consequence of the varying orbital forcing affecting the

amount of solar radiation received by our planet (more on this in Subsection 4.4.1);

in addition, the work argues that warm peaks during the mid-Pliocene were reached

at different times in different locations. In light of these results, comparing geological

archives to the outputs of one or few snapshot simulations may not allow to capture

the highlighted orbitally-induced variability and the asynchronous warming behaviour.

Within this context, it becomes clear that a relevant contribution may be provided by

the setting of GP emulation. A well-calibrated emulator allows to reliably predict the

simulator outputs at different past times in fractions of a second, identify an underlying

regular pattern in the simulator dynamics and encode uncertainty information on the

predictions. For these reasons, the setting of GP emulation has been applied to various

past climate reconstruction problems (Lee et al. [2011], Bonceur et al. [2015], Lord et al.

[2017]). However, to the best of the author’s knowledge, the field of mid-Pliocene DMC

has never benefited from the GP emulation contribution.

4.1.4. Contribution of This Chapter

In the present chapter, we develop and use GP emulation techniques to provide a novel

contribution to the framework of DMC during the mid-Pliocene. We emulate the sea

4.2. Description of Marine Geological Archive 113

surface temperature (SST) output field of the HadCM3 climate model, as a function of

those orbital parameters identified in Prescott et al. [2014] to be a significant source of

temperature variability. We compare, at a number of marine sites, the emulator SST

predictions to temperature reconstructions derived by ocean sediments and identify

geographical patterns of data-model (mis)match. The use of GP emulation allows us

to account for orbital forcing in explaining temperature variability and for potential

asynchronicity between sites. Moreover, we analyse the results obtained by comparing

the geological archive to single control simulations, run with fixed orbital forcing, to

assess the role played by orbital variability in explaining the data-model mismatch.

More in detail, we proceed as follows. In Section 4.2 we present the geological records

we use. In Section 4.3 and Section 4.4 we describe the structure, inputs and outputs

of the simulator we employ, alongside an illustration of the relevant astronomical

phenomena to which the inputs are linked. We then provide details of the construction

of the emulators used to compare records and simulations. We describe the design in

Section 4.5; apply the procedure illustrated in Chapter 3 to our case and further

reduce the dimensionality in Section 4.6; illustrate and justify our prior emulator

choices in Section 4.7; estimate the values of emulator hyperparameters in Section 4.8.

In Section 4.9 we incorporate the uncertainty from left-out PCs and illustrate how

to generate emulated trajectories at any location. Finally, we carry out the DMC in

Section 4.10, illustrate our results and compare these to the ones obtained without

emulators in Section 4.11, and conclude the chapter in Section 4.12.

4.2. Description of Marine Geological Archive

In this section we describe the archive of reconstructed mid-Pliocene ocean tempera-

tures, to which the emulator predictions will be later compared. The archive we use

comes from the PRISM3D data set (Dowsett et al. [2010]): for 51 marine sites, shown

in Figure 4.1, it provides an estimate of warm peaks reached by the SST during the

mid-Pliocene. The procedure followed to extract the information summarised in the

data set can be schematically described by the following three steps8. For each site:

8 Expert insight on this has been provided to the author by Prof. Harry Dowsett, personally involved
in most of the data-collection process. Awareness of the procedure is at the basis of the way we

114 4. Role of Orbital Variability in Temperature Reconstruction

1. A time series of estimated SSTs is extracted from marine paleontological records

(ocean sediments). The estimates are mostly fauna-based and correspond to mid-

Pliocene times within the PRISM3D time slab, between 3,264 and 3,025 kya9.

2. Warm peaks are identified within the series: these are defined as estimated

temperatures which are preceded and followed by lower estimates.

3. For each location, the empirical mean of the subset of warm peaks is reported.

The number Np of peaks constituting the subset and the number Ns of samples

of the original time series are also recorded in the data set.

We use the acronym WPA (Warm Peak Average) to refer to the empirical mean

computed in step 3. We note that the times corresponding to each element of the time

series are not easily inferred from the geological data, and in particular not provided

in the dataset. The chronological order of the elements is however known, and clearly

fundamental in the procedure of extracting warm peaks defined in step 2.

We now describe the simulator employed to reproduce the mid-Pliocene climate, and

the process to construct a statistical emulator of this. We will come back to the data

in Section 4.10, when we compare the emulator predictions to the geological data

described above.

4.3. The Climate Simulator and its Output Field

The climate simulator used in this work to study the change in the Earth SST during

the mid-Pliocene is the Hadley Centre Coupled Model, version 3 (HadCM3, Gordon

et al. [2000]). The model was developed at the UK Met Office in 1999 and was

extensively used in the Third and Fourth Assessments of the IPCC, in 2001 and 2007.

It is a coupled atmosphere-ocean general circulation model.

The term general circulation model (GCM) refers to a numerical model describing the

evolution of the main physical processes which develop in the atmosphere, ocean and

carry out the data-model comparison, in Section 4.10.

9 kya: Thousand of years ago.

4.3. The Climate Simulator and its Output Field 115

Figure 4.1: Illustration of the 51 marine sites (white triangles) at which mid-Pliocene
ocean temperature estimates are available. These are mainly derived from the analysis of
planktonic foraminifer assemblages (fauna) in ocean sediments.

land components of the Earth system. Similar numerical models integrate forward

in time systems of coupled partial differential equations (mainly of fluid-dynamics

type, such as Navier-Stokes), on a non-inertial system such as a rotating sphere.

A number of other thermodynamic sources (solar radiation, albedo) and the so-

called boundary conditions (presence of vegetation, sea-ice, amount of CO2 in the

atmosphere, topography) are also accounted for in the model.

In the case of HadCM3, the outputs of the numerical integration are provided within a

three-dimensional grid. The Earth surface is divided into a two-dimensional grid, and

the third “vertical” dimension (high in the atmosphere or deep in the ocean) is in turn

divided into a number of layers: see Figure 4.2 for an illustration. The vertical layers

are 19 for the atmosphere, and 20 for the ocean. We consider here the model output

corresponding to the upper level of the ocean component, the SST. As explained above,

values for this are provided over a two-dimensional grid. This has a resolution of 1.25°
in longitude by 1.25° in latitude, yielding a total of s = 144× 288 cells.

The model can be run with a variety of initial and boundary conditions, which can

be set to match configurations of past or future epochs. Within a climate simulation

116 4. Role of Orbital Variability in Temperature Reconstruction

Figure 4.2: Illustration of the HadCM3 grid structure. Figure kindly provided by the IPCC.
Above sea level, the atmospheric component of the model is divided into 19 layers; below
sea level, the oceanic component is divided into 20 layers. For the atmospheric component,
the grid-size resolution is 3.75° in longitude by 2.5° in latitude. That refines to 1.25° in both
longitude and latitude for the oceanic component.

context, the term boundary condition refers to the set of vegetation, orbital forcing,

CO2 concentration, topography which a given run is configured with. These are usually

kept fixed throughout a run. The term initial condition is instead to be interpreted in

the classical mathematical way, as the prescribed state at time t = 0 of the variables

appearing in a system of differential equations. In practice, these are usually extracted

as the final condition of a previous simulation, which has been specifically run in order

for the quantity of interest to reach a quasi-stationary behaviour.

4.4. Simulator Inputs: Orbital Parameters

In order to study the evolution of the mid-Pliocene SST, we run different simulations.

The same boundary conditions are shared between any two of them, with the only

exception of some astronomical quantities, which we refer to as orbital parameters:

these are adjusted to the specific time simulated. Orbital parameters are therefore to

be considered the input of our simulations. In this section we introduce these, alongside

an illustration of the relevant astronomical phenomena which are responsible of long

4.4. Simulator Inputs: Orbital Parameters 117

time-scale changes in the Earth’s climate.

The temperature on our planet is deeply affected by the distribution of solar radiation

reaching the top of the atmosphere. This quantity, known as insolation (with

dimensions of [E]/([L]2×[T])), is subject to significant changes over millennia scales.

The varying astronomical configuration of our planet during its revolution around

the Sun is at the basis of these changes, and of the consequent alternation of colder

and warmer eras known as glacial and interglacial cycles. As theorised by the

astronomer, mathematician and climatologist Milutin Milanković (Milanković [1930]),

three astronomical phenomena are responsible for the succession of different climate

patterns on the Earth. These are: changes in the eccentricity of Earth’s orbit, changes

in the obliquity of Earth’s axis, and the precession of equinoxes. We illustrate these in

the following subsection and specify variables to measure them.

4.4.1. Description of Relevant Astronomical Phenomena

Changes in Eccentricity

The eccentricity of Earth’s orbit characterises how close to a circle the elliptical orbit

of our planet is. We denote it by e. From its geometrical definition (e =
√
a2 − b2/a,

where a and b are the major and minor semi-axes of the ellipse, respectively), it is

clear that e ∈ [0, 1), with e = 0 representing the perfect circle case.

Earth’s eccentricity is not constant over time. Currently, it is about 0.0167 and

decreasing. Its value has always been below 0.06 in the last 25 million years (Laskar

et al. [2004], Berger and Loutre [1991]), a figure that shows how Earth’s orbital shape

has never been too dissimilar from a circular one. However, even within such a small

range, higher eccentricity values induce greater variations in the amount of insolation

received by the Earth during different times of the year. The greatest difference is

observed between the times of perihelion and aphelion: in a non-circular orbit, these

represent the closest point to the Sun, and the farthest point from the Sun, respec-

tively. It is also worth noting that a non-zero eccentricity affects the duration of

seasons. Earth’s orbital velocity is indeed faster near perihelion than near aphelion,

as per the second Kepler’s law.

118 4. Role of Orbital Variability in Temperature Reconstruction

Earth's orbit

rotational
axis

23.44°

normal to
orbital plane ε

Figure 4.3: Obliquity ε, defined as the positive angle between Earth’s rotational axis and
the normal to Earth’s orbital plane. The illustration displays its current value, ε = 23.44°.

Changes in Obliquity

The obliquity of Earth’s axis is defined as the angle between the plane going through

Earth’s equator (equatorial plane) and the plane to which Earth’s orbit belongs (orbital

plane). We denote it by ε. Equivalently, it is the angle between Earth’s rotational

axis and the normal to the orbital plane, see Figure 4.3.

A non-zero obliquity causes each of the two hemispheres to receive more insola-

tion in certain periods of the year than in others, causing the seasons’ alternation.

Higher obliquity values increase the contrast between seasons. As it was the case for

eccentricity, obliquity is not constant over time. The current value is around 23.44° and

it is decreasing. However, the range of possible obliquity values is quite constrained:

according to Laskar et al. [2004], values for the last 250 million years and predictions

for the forthcoming 250 million years have been and are between 21.5° and 25°.

4.4. Simulator Inputs: Orbital Parameters 119

NOWIn around
13 Kyr

Earth's orbit

Figure 4.4: Representation of the axial precession, a wobbling movement of the axis spacial
direction with periodicity of approximately 26 Kyr. Notice the clockwise motion, as opposed
to the counter-clockwise one of Earth’s revolution.

Precession of Equinoxes

According to Milanković theory, the last relevant phenomenon affecting Earth’s climate

is the so-called precession of equinoxes. Differently from the two previous cases, it is

not straightforward to identify a variable to characterise it. Hence, we first describe

the phenomenon and then give a precise definition of the quantity we use to measure

it.

The Sun’s and the Moon’s gravitational attraction, alongside the not perfectly

spherical shape of our planet, induce a slow change over time in the spatial direction

of Earth’s rotational axis: in around 26 thousands years, this completes a full rotation

around the normal to the orbital plane, spanning the surface of an imaginary cone.

This phenomenon is known as axial precession, see Figure 4.4 for an illustration. From

a mathematical-physics point of view, it is the same phenomenon characterising the

motion of a rotating spinning top on a flat surface.

As a consequence of axial precession, the position that the Earth occupies during key

120 4. Role of Orbital Variability in Temperature Reconstruction

astronomical times of the year, such as equinoxes and solstices, slowly shifts along

Earth’s orbit. The two equinoxes are the times of the year at which Earth’s equato-

rial plane goes exactly through the centre of the Sun: the northern and southern

hemispheres receive the same amount of insolation, and day and night have equal

length at all locations. The two solstices are instead the times at which the distance

between the Sun and the equatorial plane is at its maximum: they are characterised

by the largest difference between the duration of day and night. These astronom-

ical events currently befall around the 20th of March (spring equinox), the 21st of June

(summer solstice), the 22nd of September (autumnal equinox) and the 21st of December

(winter solstice).

If seen from above Earth’s orbital plane, the axial precession is a clockwise motion; on

the contrary, the revolution of our planet around the Sun follows a counter-clockwise

motion. Compare to Figure 4.4. The overlap of these two “counteracting” phenomena

causes the equinoxes to occur each year around 20 minutes earlier than the year

before. This resulting phenomenon is known as Precession of the Equinoxes . We

uniquely identify the direction of Earth’s rotational axis via the heliocentric angle ω,

in the orbital plane, going from the position of Earth during autumnal equinox to the

perihelion. See Figure 4.5.

Due to the precession of Equinoxes, the angle ω slowly increases over time. Currently,

it is approximately 102.9° (Figure 4.5 depicts this situation). In terms of angles,

this means that 12.9° after the winter solstice the perihelion is reached: this indeed

happens on the 3rd of January, which not surprisingly is approximately 13 days after

the winter solstice. In general, the value of ω affects the strength of seasons in the

different hemispheres: due to what just described, the northern hemisphere currently

experiences milder winters and cooler summers than the southern hemisphere. But

the situation would be reversed if ω was close to 270° (that is, perihelion close to the

position of summer solstice).

Summing up, the three parameters we are going to consider to identify the astronomical

configuration of the Earth at different times are as follows: the eccentricity e of Earth’s

orbit; the obliquity ε of Earth’s axis; the angle ω between autumnal equinox and

perihelion. These will be used as inputs to the HadCM3 simulations.

4.5. Experimental Design 121

E

S Perihelion

AE

WS

VE

SS

ω

Aphelion

Figure 4.5: Schematic representation of the angle ω we use to measure axial precession
and the related precession of equinoxes phenomenon. View is from the northern half-space
delimited by the Earth’s orbital plane. The drawn positions of Earth at Winter Solstice
(WS), Spring or Vernal Equinox (VE), Summer Solstice (SS), and Autumnal Equinox (AE)
portray the current configuration. In this configuration, ω ≈ 102.9°. The eccentricity of
Earth’s orbit is exaggerated for illustrative purposes.

4.5. Experimental Design

In order to build an emulator of the SST output field of the HadCM3 simulator,

specifically during the mid-Pliocene, a relatively small number of simulations must be

run to train the emulator. The choice of initial simulations is very important. These

need to be low in number, due to the high cost that each simulation requires, both in

terms of time (around two weeks in our case) and computational power. At the same

time, within the areas of the input space that are of interest, a sufficient number of

initial simulations must be run to ensure a reliable calibration of the emulator. As

discussed in Subsection 1.1.2, the problem of choosing the parameters in the input

space at which to run the initial simulations is referred to as the “design problem”

(Santner et al. [2003]). We call experimental design the set D = {x1, . . . ,xn} of these

parameters: in our case, each xi is obtained from a triple (e, ε, ω) of orbital parameters

(see Section 4.4), via the transformation detailed in Subsection 4.5.2.

The problem of designing computer experiments (Sacks et al. [1989], Santner et al.

122 4. Role of Orbital Variability in Temperature Reconstruction

[2003]) requires a trade-off between minimising the number of runs, and maximising the

amount of information that can be extracted from these. If there is no particular reason

to concentrate design runs in one specific region of the space, a common approach is

to implement a design with a space-filling property: informally, this scatters points

evenly within the space to explore with the aim of covering all areas, while ensuring

that any two points are never too close. This is often reached by minimising a measure

of discrepancy of a given sequence. We will not go into the details here, which can

be found in Santner et al. [2003, Chap. 5]: while similar designs are popular in the

emulation literature (Bonceur et al. [2015], Holden et al. [2018], Wilson et al. [2018]),

for the present study we make use a different design10. Before providing a description

of this, we point out the reasons underlying the choice.

1. When the author started his PhD, a set of mid-Pliocene simulations were

available. These had been run and processed by Caroline Prescott, at the time

Earth Science PhD student at Leeds, as part of her PhD work (Prescott [2017]).

They had been specially designed to explore the varying mid-Pliocene orbital

forcing and the associated temperature response. It was therefore natural to

include the results of these simulations in the emulator construction.

2. The author re-ran and processed two of the simulations, using the most recent

version of the HPC facilities available at Leeds. These had undergone an update

since the time of Caroline’s experiments. Although the same parameters were

used, the results differed: unsurprisingly, even tiny numerical representation

differences were becoming notable when propagated forward in time by the

model, which is, by its nature, chaotic.

3. Given the above incompatibility, including the results of new simulations in the

emulator calibration was deemed unsound, since it could have undermined the

results. The design originally developed by Caroline Prescott was therefore left

unchanged and used to construct the SST emulator of this chapter.

We provide details of the design in Subsection 4.5.1 and Subsection 4.5.2.

10 An example of emulation whose design is obtained through the use of low-discrepancy sequences
with the space-filling property is provided in Chapter 5.

4.5. Experimental Design 123

4.5.1. Uniform Sampling in Time

The design adopted here aims at assessing the climate variability around two

interglacial events of the mid-Pliocene: these are referred to as marine isotope stages

K1 and KM5c, which date back to around 3,060 and 3,205 kya, respectively. In

Figure 4.6, their position within the PRISM3D time slab is highlighted via a red

border. As all interglacials, K1 and KM5c were warm periods11: the times 3,060 and

3,205 kya identify the interglacial peaks. As shown in Figure 4.6, the KM5c peak was

characterised by an orbital configuration relatively similar to the current one. This

makes the time 3,205 kya a particular reference in DMC.

The experimental design consists of a total of n = 32 simulations, run with orbital

configurations corresponding to times up to 20 thousand years before and after each of

the two interglacial peaks. Specifically, one time every four thousand years is sampled

in the interval around the K1 peak, and one time every two thousand years is sampled

in the interval around the KM5c peak. This yields 11 time points in the interval 3,040–

3,080 kya, and 21 time points in the interval 3,185–3,225 kya, as depicted below.

3040 30803060

K1
Interglacial

Peak

3185 32253205

KM5c
Interglacial

Peak

past time
[kya]

In order to obtain the orbital parameters (a triple of the form (e, ε, ω)) corresponding

to each of these times, the web-based interface available at http://vo.imcce.fr/

insola/earth/online/earth/online/ is used. This implements the astronomical solution

developed in Laskar et al. [2004], which returns estimates of the orbital parameters

and insolation values for any time between 100 million years ago and 20 million years

in the future. Any two design simulations differ only in the orbital configuration that

is imposed; all other boundary conditions – imposing vegetation, land-sea mask, CO2

concentrations and vegetation appropriate for the mid-Pliocene – are shared among

the simulations.

11 Note that the letters K and M, alongside the digit after them, help locate the two periods with
respect to the Kaena and Mammoth epochs; compare to Figure 4.6.

http://vo.imcce.fr/insola/earth/online/earth/online/
http://vo.imcce.fr/insola/earth/online/earth/online/

124 4. Role of Orbital Variability in Temperature Reconstruction

Figure 4.6: Illustration taken from Prescott et al. [2014]. Top plot: benthic oxygen isotope
excursions over the period 2,600–3,600 kya; lower values (red areas) are associated with
higher temperatures. Bottom three plots: evolution of obliquity (green), eccentricity (red)
and precession (blue). Values from Laskar et al. [2004]. The precession ω is plotted as sin(ω)
and further modulated by eccentricity. Horizontal green and red lines show the current
obliquity and eccentricity values. Throughout the plots, red borders highlight the time
intervals associated with our simulations, around the two interglacial events K1 and KM5c.
The broader shaded band identifies the PRISM3D time slab (3,025–3,264 kya).

4.5.2. Transformed input variables

Let us recall from Section 4.4 that the orbital parameters here considered are the

following:

• the eccentricity e ∈ [0, 1) of Earth’s orbit;

• the obliquity ε ∈ [0, π] of Earth’s axis;

• the angle ω ∈ S1 measuring precession.

The intensity of climatic differences induced by precession – in particular, the strength

of seasons in each of the two hemispheres – is naturally dampened by eccentricity: if

the orbit is very close to a circle (e ≈ 0), the Earth-Sun distance is almost constant

4.5. Experimental Design 125

Figure 4.7: Projection of the n = 32 points used as design to build the emulators of this
chapter, onto the coordinate plane spanned by the last two coordinates of (4.1). Projections
onto the two other coordinate planes are shown in Figure 4.8. Red points correspond to
times around the K1 peak, blue points correspond to times around the KM5c peak. Label
x identifies the time (3000+x) kya.

throughout the year, hence little difference will be present between the two cases where

summer happens close to aphelion or to perihelion. For this reason, rather than via a

triple (e, ε, ω), we parameterise the inputs of each simulation as follows:

x =

 ε

e cos(ω)

e sin(ω)

 ∈ P . (4.1)

As in Chapter 2, we denote by P ⊆ Rp the set of input parameters. In this case, we

have p = 3. For ease of reference, Table 4.1 reports the value of this and other constants

used throughout this chapter. The choice of representing an angle ω ∈ S1 via the pair

126 4. Role of Orbital Variability in Temperature Reconstruction

Figure 4.8: Same content of Figure 4.7. Here, projections are onto the two coordinate
planes containing obliquity, denoted as ε in equation (4.1). Red points are associated with
times around the K1 peak, blue points with times around the KM5c peak.

(cos(ω), sin(ω)) is convenient to avoid discontinuities; moreover, the eccentricity factor

in the last two components of (4.1) reflects the dampening effect of eccentricity onto

precession, as described above.

Figure 4.7 and Figure 4.8 show the coordinates of each design input parameter, with

4.5. Experimental Design 127

Table of Constants and Notation

Name Meaning Value

n Number of design points 32

p Dimension of simulator input space 3

s Dimension of simulator output space
144× 288

(41, 472)

r
Number of PCs used to approximate
simulator outputs (equation (4.6))

6

Ns
Number of samples of geologically reconstructed

SST time series at a given marine site
site

dependent

Np
Number of peaks in geologically reconstructed

SST time series at a given marine site
site

dependent

N
Number of WPA estimates from emulator

at a given marine site (Section 4.10) 1, 000

i
Index used to denote quantities

associated with each of the n simulations i ∈ {1, . . . , n}

j
Index used to denote quantities
associated with the first r PCs j ∈ {1, . . . , r}

Table 4.1: Table reporting the meaning and value of the main constants used in the chapter.
Most of these will be introduced in later pages, but are here reported to provide a compact
reference. The last two lines concern the use of two indices frequently employed in the
chapter.

respect to the parameterisation in (4.1). From the pictures, it can be appreciated

that the regularity with which the simulations are scattered in time, in each of the

two intervals around the K1 and KM5c interglacials, is partly lost in the coordi-

nates used to build the emulator. Once again, we stress that a design based on

low-discrepancy sequences would cover the space in a more uniform way than the one

presented here. On the other side, it is worth noting that our design allows to reduce

the uncertainty of predictions in the region around the KM5c interglacial (charac-

terised by low eccentricity), when the orbital configuration was similar to today.

128 4. Role of Orbital Variability in Temperature Reconstruction

4.6. Reducing Output Dimensionality

Each of the n simulations is initialised with orbital forcing corresponding to one of the

times described in Subsection 4.5.1, and run for subsequent 500 simulated years. This

allows the simulated surface climatology to reach an equilibrium under a particular

forcing condition. The average of the last 100 years of the simulated SST is then

computed, at each of the s cells constituting the simulator output grid. We can

therefore represent each output as a s-dimensional vector, and the simulator as a

function γ associating a vector of this form to any input parameter in P :

γ : P → Rs . (4.2)

In reality, as discussed in Chapter 3, for any x ∈ P each vector γ(x) represents a

discretisation of a map from the sphere S2 into the real numbers. In order to reduce

the high dimensionality of the problem, we can therefore apply the procedure described

therein, to the data set Y formed by the n simulator outputs corresponding to the n

design points:

Y =
{
γ
(
xi
)
∈ Rs

}
i=1,...,n

. (4.3)

Recall from Chapter 3

The approach looks at the affine space generated by the vectors in (4.3) and finds

a sequence of orthonormal directions explaining respectively most-to-least of the

data set variance. The procedure differs from a classical PCA approach, in that it

considers each vector in (4.3) as a function from S2 to R, weighting the different

components of γ(xi) by the area associated with the cell they represent.

The orthogonal directions identified by our procedure are the Principal Components

(PCs). Although they are here introduced as s-dimensional vectors, given their

importance in the chapter and their natural parallel interpretation as 144 × 288

matrices, we denote them via a capital letter: V1, . . . ,Vn−1.

As per equation (3.52), each γ(xi) ∈ Rs can be written as affine combination of the

4.6. Reducing Output Dimensionality 129

Order of PC 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

% Explained
Variance

48.43 24.47 10.92 7.65 2.34 1.16 0.73 0.69 0.51

Cumulative %
Expl. Var.

48.43 72.90 83.87 91.52 93.86 95.02 95.75 96.43 96.95

Table 4.2: Percentage of variance explained by the first nine PCs (total number of PCs:
n− 1 = 31). Both single and cumulative percentages are reported.

PCs, with constant intercept term given by the average γ̄ of γ(x1), . . . ,γ(xn). That

is:

γ
(
xi
)

= γ̄ +
n−1∑
j=1

fijVj , i = 1, . . . , n , (4.4)

for some coefficients fij ∈ R identified by the PCA procedure (denoted by qij in

equation (3.52)). Note that, as summarised in Table 4.1, we use the index i to refer to

the n observed simulator outputs (and associated quantities), and the index j to refer

to the n− 1 PCs (and associated quantities) or to a subset of these.

If we only retain a number r < n − 1 of PCs, then the RHS of (4.4) provides an

approximation of γ(xi). One of the advantages of the PCA approach is that relatively

small values of r may already yield excellent approximations, since higher PCs account

for less of the variability displayed by the data set. In our case, the first six PCs

together explain more than 95% of the data set variance, while each of the remaining

PCs alone explains less than 1%, see Table 4.2. In this regard, let us recall that the

variance associated with the jth PC is the empirical variance

σ2
j = Var

(
{fij}i=1,...,n

)
. (4.5)

Values for σ2
j are provided as part of the spectral decomposition detailed in Chapter 3

(specifically, see Proposition 3.3.2 where they are referred to as λj).

A plot of the first six PCs is shown in Figure 4.9. Important physical patterns can

be recognised in some of them. The first PC reflects the great variability displayed

130 4. Role of Orbital Variability in Temperature Reconstruction

Figure 4.9: Plot of the first six PCs, with scales on the side. Values have however no
physical meaning: each PC has norm equal to one, with respect to the scalar product used
to carry out the PCA (details in Subsection 3.3.1).

by the different runs in two North Atlantic areas; this is a well-known feature of

HadCM3, in Prescott et al. [2014] referred to as North Atantic dipole feature. Also

the third PC appears to be linked to the phenomenon, probably reflecting tempera-

ture changes associated with the Gulf Stream. The second PC captures more of the

Pacific oscillations. The fourth PC seems to encode most of the North-South temper-

ature variability present among the different runs, which is likely to reflect precession

changes. Meaningful patterns can also be recognised in higher PCs. However, visual

inspection of the PCs higher than the 7th hardly reveals physically relevant features.

4.6. Reducing Output Dimensionality 131

From a mathematical point of view, equation (4.4) says that the PCs V1, . . . ,Vn−1

form a basis of the space generated by the n elements γ(xi) ∈ Y (more precisely, these

generate an (n− 1)-dimensional affine subspace in Rs, and the PCs are a basis of its

underlying vector space). Moreover, once projected onto the space generated by the

first six PCs, the data set still retains 95% of its original variability. In light of this

consideration, and of the previous one on the physical meaning of the first PCs, we

approximate any unknown simulator output γ(x) ∈ Rs by an element γ̃(x) belonging

to the subspace generated by the first r = 6 PCs. That is, we consider:

γ̃(x) := γ̄ +
r∑
j=1

fj(x)Vj ∈ Rs , x ∈ P . (4.6)

For general x ∈ P , the coefficients f1(x), . . . , fr(x) are unknown. However, if x =

xi ∈ P is one of the design points, then from equation (4.4) it is natural to impose

the following condition12:

fj
(
xi
)

= fij , i = 1, . . . , n, j = 1, . . . , r. (4.7)

This reduces an s-dimensional problem (predicting γ(x) ∈ Rs) to r one-dimensional

problems (predicting fj(x) for j = 1, . . . , r).

It is therefore apparent that the setting we have reduced our original problem to is

exactly the one of univariate emulation presented in Chapter 2. Indeed, for each

j = 1, . . . , r, we have a scalar field

fj : P → R , (4.8)

whose outputs at n design points xi ∈ P are known (we will denote these by

y
(j)
i := fj(xi) in analogy with the notation of Chapter 2), and whose outputs at all

other x ∈ P must be predicted. In the next sections, we provide the details of the

choices adopted to construct the r emulators of the PC scores fj(·). Equation (4.6)

will then allow us to approximate γ(x) ∈ Rs, for any x ∈ P .

12 Note that condition (4.7) is the choice which minimises the norm ‖γ̃(x)− γ(x)‖L2(H), when γ̃(·)
varies in the space of functions from S2 to R generated by the first r PCs.

132 4. Role of Orbital Variability in Temperature Reconstruction

4.7. Prior Specifications for PC Scores

We have described the procedure to emulate a scalar field, such as each of the functions

fj : P → R, in Chapter 2. Formulas (2.96) and (2.97) in particular provide expressions

for the posterior mean and covariance functions of the emulator. In order to apply

them, we need to choose the prior mean and covariance functions for our specific

problem. This is done in the next two subsections.

4.7.1. Mean Function

The prior mean function of an emulator (equation (2.4)) is specified as follows:

mβ(x) = h(x)Tβ , x ∈ P , (4.9)

where h(·) is a vector of q basis functions of the input parameter x ∈ P . Let us recall

that, within the Bayesian framework of GP emulation presented in Chapter 2, the

coefficient ββ ∈ Rq is marginalised out (Section 2.5 and Section 2.7).

As far as the function h(·) is concerned, a common choice in the literature is to set

h(x) = (1,x), i.e., to have the prior mean linear in the input x (Bonceur et al. [2015],

Araya-Melo et al. [2015]). In our case (recall equation (4.1)), the coordinates of the

vector x are as follows:

x1 = ε,

x2 = e · cos(ω),

x3 = e · sin(ω) .

In order to evaluate whether a linear prior mean is appropriate in our context, for each

PC j = 1, . . . , r we perform a linear regression of the response vector y(j) ∈ Rn with

components

y
(j)
i := fij , i = 1, . . . , n , (4.10)

as a function of the regressors x1, x2, x3. The results are generally poor, with a

coefficient of determination R2 less than 0.25 in four of the first six cases of interest

(j = 1, . . . , r). Further inspection shows that the variability of the components of y(j)

4.7. Prior Specifications for PC Scores 133

corresponding to higher eccentricities (times around K1) is often higher than the one

shown by components corresponding to lower eccentricity (times around KM5c): see

Figure 4.7. Within the (x2, x3)-plane, this reveals a dependence of the response vector

on the distance of a point from the origin (indeed, e2 = x2
2 + x2

3). In order to account

for this, we consider the following set of potential regressors:

R = {x1, x2, x3, x2
2, x3

2} . (4.11)

For each response vector y(j), we run all linear regressions comprising exactly three

of the five regressors in R plus intercept. A total of
(

5
3

)
= 10 linear regressions

are therefore run (for fixed j). Hence, we select the set of three regressors which

yields the greatest R2 and use these as regressors for the prior mean mβ(·) in (4.9).

In other words, if the selected subset of regressors corresponding to the vector y(j) is

{xj1, xj1, xj3} ⊆ R, then we define:

hj(x) =

1
xj1
xj2
xj3

 , x ∈ P . (4.12)

The subscript j highlights that the set of regressors depends on the PC in question.

As explained before equation (4.11), the choice of adding x2
2 and x3

2 to the set of

potential regressors was made to include dependence on the square of eccentricity. In

hindsight, we remark that this choice should have been accompanied by the inclusion

of the cross-product x2x3 among the set R of potential regressors (equation (4.11)).

This would account for the fact that the choice of representing an angle ω ∈ S1 by a

pair (cosω, sinω) is arbitrary and any other non-zero phase could have been chosen.

Table 4.3 shows which regressors our procedure selects for the first six PCs, alongside

the R2 value of the corresponding linear regression. At least one of x2
2 and x3

2 is

always selected, and both regressors are selected in four of the six cases. Also notice

that the choice of limiting the number of regressors to three is adopted with the aim of

avoiding overfitting, in consideration of the limited amount of training data available

for each emulator (n = 32 data points).

134 4. Role of Orbital Variability in Temperature Reconstruction

ε e cos(ω) e sin(ω) e2 cos2(ω) e2 sin2(ω) R2

1st PC 0.95

2nd PC 0.98

3rd PC 0.14

4th PC 0.96

5th PC 0.49

6th PC 0.38

Table 4.3: Set of regressors used as basis of the emulator prior mean, for each of the first
six PC scores to be emulated. The last column shows the R2 value of a standard linear
regression carried out with the specified regressors. Variables to construct the regressors:
obliquity (ε); eccentricity (e); precession (ω).

4.7.2. Covariance Function

The prior covariance function of an emulator (equation (2.5)) is specified as follows:

vσ2(x,x′) = σ2 c(x,x′) . (4.13)

Within the GP emulation setting, the coefficient σ2 is marginalised out alongside the

coefficient ββ ∈ Rq used to specify the prior mean (Section 2.5). The function c(·, ·)
should instead be specified. Here, we choose it to be the Matérn correlation function

with parameter ν = 5/2: its expression is provided in equation (1.58). Moreover, we

add a nugget term to the prior covariance. As described in Section 2.8, this allows the

emulator to return probabilistic predictions even at the design points xi ∈ P .

The choice to include a nugget term is mainly motivated by the chaotic behaviour

displayed by the simulator. This can be seen by running simulations with almost

identical input parameters, or, similarly, by running on different machines two simula-

tions with the same input parameters. In both cases, the results of the pair of

simulations will be significantly different from each other: as mentioned in point 2 of

Section 4.5, this was checked by the author in the second case. It is however important

to point out that the simulator is deterministic: running the same simulation twice,

4.8. Estimation of Correlation Lengths and Nugget 135

on the same machine, yields the same output. The chaotic behaviour displayed by the

simulator is not surprising, since the physics driving the climate system is governed

by chaotic differential equations.

To sum up, the function c(·, ·) we use to build each emulator is as follows:

c(x,x′) = k(r̃) + ν δx,x′ , x,x′ ∈ P , (4.14)

where k(·) is the Matérn Kernel with parameter ν = 5/2 (equation (1.58)), δ·,· is the

Kronecker-δ function, and

r̃ =

√√√√ p∑
h=1

(
xh − x′h
dh

2

)2

, x,x′ ∈ P . (4.15)

The tilde over the argument r̃ of the kernel k(·) has been used to highlight the distinc-

tion from the fixed constant r = 6 used in the rest of this chapter, to denote the

number of PCs used to approximate simulator outputs, equation (4.6). The positive

parameters dh in (4.15) are referred to as correlation lengths. As discussed in more

detail in Section 1.5, their size is a measure of the strength of correlation between

elements of the input space P .

4.8. Estimation of Correlation Lengths and Nugget

In this section, we illustrate how to simultaneously estimate the unknown parameters

appearing in the expression of the prior emulator covariance: the nugget term ν and

the correlation lengths di. We note here that a common approach in the literature

(Andrianakis and Challenor [2012], Bonceur et al. [2015]) is to maximise the integrated

likelihood of the model, as reported in Berger et al. [2001]. For completeness and

reference, we report and prove the formula in Appendix C. In our case, however, the

method of maximising the integrated likelihood proved particularly unstable, due to

a remarkable irregularity of the objective surface. We therefore implement a slightly

different methodology, consisting in maximising the posterior density of the data,

estimated via cross-validation (CV). We explain this in the following.

136 4. Role of Orbital Variability in Temperature Reconstruction

It is likely that the reader is already familiar with the CV methodology, but if

unfamiliar they can find a brief description of the latter in the following box.

Cross Validation: A Few Words

Cross-validation (CV) is a statistical methodology, commonly used to assess the

predictive ability of a statistical model. It applies when a data set of observations

{(xi, yi)}i=1,...,n is available, and a model to predict yi as a function of xi can

be built based on the information provided in the data set. The idea behind CV

is to consider the model built on a subset of the data only (the training set),

and to compare the model predictions for the remaining data points (the test set)

with the actual responses available in the original data set. In the special case

where the training set consists of all pairs (xi, yi) except for one, and the test

set consists of the left-out pair, the methodology is referred to as leave-one-out

cross-validation (LOOCV). LOOCV is applied to all left-out pairs in turn, and a

summarising measure of the goodness of the n predictions is returned.

In our case, for each j ∈ {1, . . . , r}, we want to build an emulator on a data set D
consisting of n design points and n PC scores (equation (4.10)):

D =
{

(xi, y
(j)
i

)}
i=1,...,n

. (4.16)

To simplify the notation, in the following we omit the fixed superscript j from the

vector y(j) ∈ Rn. To estimate the parameters ν and dh to be used in the emulator

construction, we proceed as follows. Consider the emulator calibrated on the data

set D where the ith entry of (4.16) has been left out. Let ρ
(i)
d,ν(·) be the posterior

density at the point xi of this emulator, where nugget term ν and correlation lengths

d = (d1, d2, d3) are used. This is the probability density function of a univariate

Student-t distribution, with mean and variance given by (2.96) and (2.97) under the

position x=x′:=xi. Hence, consider the function:

g(d, ν) =
n∏
i=1

ρ
(i)
d,ν(yi) . (4.17)

Each term of the product is a measure of the emulator capability of predicting one

4.8. Estimation of Correlation Lengths and Nugget 137

output that was not included in the calibration set. Hence, the function g(·, ·)
represents a global measure of the goodness of the emulator predictions, when nugget

ν and correlation lengths d are used.

The idea is to choose the parameters d and ν that maximise the function g(·, ·). We

follow the main idea, with two modifications.

1. First, we impose d2 = d3, since the last two components of an input x ∈ P have

comparable scales (x2 = e cos(ω), x3 = e sin(ω)). This has the further advantage

of reducing the number of parameters to be estimated from four to three.

2. Second, we multiply the function g
(

(d1, d2, d2), ν
)

by the product of three

Gamma densities in each of the input parameters d1, d2, ν.

We now explain the reasons behind the adoption of the second choice. The surface

obtained as graph of the function g(·, ·) is essentially flat when any of the correlation

lengths di is close to zero: in this case, any two parameters x,x′ ∈ P become essentially

uncorrelated, regardless of the values of the other correlation lengths. Moreover, in

such a case, the contribution coming from the nugget term becomes irrelevant (the

matrixA of prior correlations is anyway a multiple of the identity). In addition to this,

in-depth inspection of sections of the graph of g(·, ·) shows that for some PCs this has

more than one local maxima, sometimes close to flat regions. A straight maximisation

of g(·, ·) can therefore be numerically problematic to perform. Multiplying the function

by a product of Gamma densities enables to regularise the surface, and to shift the new

maximum towards a small region around the modes of the different Gamma densities.

In this regard, recall from equation (2.8) that the expression of a Gamma density

function with shape parameter a > 0 and rate parameter ρ > 0 is as follows:

h
Γ
(x) =

ρ a

Γ(a)
xa−1 e−ρx, x > 0 . (4.18)

In our case, for each of the three variables d1, d2, ν, we choose the shape parameter a

and the mode M of the distribution, and consequently compute the rate parameter ρ

via the identity ρ = (a − 1)/M . We choose the value a = 4 for all three parameters,

and the modes M = 3× 10−3 for d1, M = 2× 10−2 for d2, M = 0.5 for ν. The mode

138 4. Role of Orbital Variability in Temperature Reconstruction

d1 MAP
estimate
(×10−3)

d2 MAP
estimate
(×10−2)

ν MAP
estimate

1st PC 4.01 3.96 0.962

2nd PC 2.23 0.21 0.611

3rd PC 4.29 3.74 0.956

4th PC 1.19 1.42 0.614

5th PC 5.22 2.51 0.580

6th PC 4.01 1.77 0.399

Table 4.4: Maximum a Posteriori (MAP) estimates of the parameters d1, d2, ν, needed in
the specification of the emulator covariance function. Values are obtained by maximising
the function v(·, ·, ·) in (4.19).

values for d1 and d2 represent around a fifth of the maximum distance between any

two design points along the relevant axis; compare for example with Figure 4.8.

In conclusion, the procedure we use to estimate the parameters d1, d2 and ν is to

maximise the following function:

v(d1, d2, ν) = g
(
d, ν

)
× h(1)

Γ
(d1) h(2)

Γ
(d2) h(3)

Γ
(ν) , (4.19)

where d = (d1, d2, d2), and each Gamma density h(l)
Γ

(·) has shape parameter and mode

specified above, l = 1, 2, 3. In practice, we maximise the logarithm of v(·, ·, ·), to avoid

incurring in underflow or overflow numerical problems. The code implementing the

maximisation is reported in Appendix E.2. The specific values of a and M are set

within the function carrying out the emulation of the PC scores fj(·), Appendix E.1.

Table 4.4 shows the estimated values of d1, d2, ν. With classical Bayesian terminology,

we say that these are Maximum a Posteriori (MAP) estimates of the parameters of

interest: we assign a prior density to the parameters (Gamma, in our case), multiply

this by (a cross-validated estimate of) the likelihood function g(·), and select the

maximum of the posterior density obtained this way.

4.9. Recombining the PC Scores 139

4.9. Recombining the PC Scores

Once an emulator of each of the PC scores fj(·) is built, formula (4.6) allows to predict

the SST field γ(x) corresponding to any input x ∈ P . We recall the formula here:

γ̃(x) = γ̄ +
r∑
j=1

fj(x)Vj . (4.20)

We use r = 6. For simplicity of notation, consider each fj(·) in equation (4.20) to

represent directly the emulated coefficient, rather than the original, unknown, scalar

field. Each fj(·) is therefore a real-valued stochastic process with parameter space P .

Hence the emulator prediction γ̃(·) is itself a stochastic process, valued in Rs. We

use the index c to refer to a general component of γ̃(·), and denote this by γ̃(c)(·).
Similarly, component c of Vj ∈ Rs will be denoted by V

(c)
j . The choice of the letter c

is meant to remind of the fact that each such component corresponds to a cell of the

simulator output grid.

For any x ∈ P , the mean of component c of γ̃(x) reads as follows:

E
[
γ̃(c)(x)

]
= γ̄(c) +

r∑
j=1

E
[
fj(x)

]
V

(c)
j . (4.21)

For any x,x′ ∈ P , the 2 × 2 covariance matrix of the vector
(
γ̃(c)(x), γ̃(c)(x′)

)
reads

instead as follows:

Covx,x′
[
γ̃(c)(·)

]
=

r∑
j=1

(
V

(c)
j

)2

Covx,x′
[
fj(·)

]
. (4.22)

We have denoted by Covx,x′ [fj(·)] the 2 × 2 covariance matrix of the random vector

with components fj(x) and fj(x
′). Notice that formula (4.22) assumes that the coeffi-

cients fj1(·) and fj2(·) are uncorrelated if j1 6= j2: this is a reasonable assumption

given the orthogonality of the PCs Vj1 and Vj2 .

Formula (4.22) only accounts for the variability displayed by the first r PCs, since

the remaining components are not involved in reconstructing the emulator response.

Nonetheless, as for example in Bonceur et al. [2015], we can account for the additional

140 4. Role of Orbital Variability in Temperature Reconstruction

variability that their inclusion would introduce, by adding a term to emulator covari-

ance. That is, we replace formula (4.22) by the following:

Covx,x′
[
γ̃(c)(·)

]
=

r∑
j=1

(
V

(c)
j

)2

Covx,x′
[
fj(·)

]
+

n−1∑
j=r+1

(
V

(c)
j

)2

σ2
jI2 , (4.23)

where σj is the standard deviation associated to the jth PC (equation (4.5)), and

I2 is the identity matrix of order 2. Together with (4.21), formula (4.23) and its

straightforward generalisation to more than two inputs in P is of crucial importance

to sample trajectories from the emulator.

Finally, we notice that equations (4.21) and (4.23) can be recognised to be the mean

and covariance functions of the following process:

γ̃(c)(x) = γ̄(c) +
r∑
j=1

fj(x)V
(c)
j +

n−1∑
j=r+1

σjεj(x)V
(c)
j , x ∈ P . (4.24)

The εj(·) are independent Gaussian processes whose finite-dimensional distributions

are multivariate normal with zero mean and identity covariance matrix. Moreover,

each εj(·) is independent of any of the fk(·), for k = 1, . . . , r and j = r+1, . . . , n−1.

Loosely speaking, formula (4.24) can be interpreted as follows: the expressions of the

mean and covariance that we use ((4.21) and (4.23)) reflect the original decomposi-

tion (4.4), where only the first r PC scores are emulated, while the remaining ones are

replaced by Gaussian noise with the proper variance.

4.9.1. Prediction for a General Location

Formulas (4.21) and (4.23) provide the emulator mean and covariance, at any of the

p grid cells constituting the simulator output. In order to emulate the SST at a

general location L, not necessarily falling on the output grid, we can use the same

formulas where we replace the value of the jth PC at the cth grid cell, V
(c)
j , with an

estimated value of the jth PC at the location of interest, V
(L)
j . We obtain the latter

by interpolating among neighbouring cells, as explained below.

The location L belongs to one of the s grid cells of the simulator output. Consider the

4.9. Recombining the PC Scores 141

other three closest grid cells to the location, so that the total four of them surround

the point forming an approximate spherical “square” around it.

L

C1C2

C3 C4

We compute the value V
(L)
j of the jth PC at the location of interest as weighted average

of the PC values at the four grid cells, where the weights are inversely proportional

to the geodesic distance between the location L of interest and the centre Ck of each

grid cell. If any of the four cells corresponds to land in the simulator, then its value

is not included in the average. The positive weights are normalised so that they sum

up to one.

The geodesic distance between two points A and B of a sphere is the length of the

shortest path lying on the sphere, which connects the two points. This path is found

by considering the great circle13 going through the two points, and in particular the

shorter of the two arcs in which the two points divide it. The formula is as follows.

Suppose for simplicity that the two points, A and B, belong to the unit sphere S2.

Let (θA, φA) and (θB, φB) be the latitude and longitude coordinates of each of the two

points:

θ ∈
[
−π

2
,
π

2

]
, φ ∈ [0, 2π] . (4.25)

Then, the geodesic distance G(A,B) between the two points can be computed via the

13 In a sphere, a great circle is obtained as intersection between the sphere and a plane going through
its centre. Great circles have therefore the same radius as the sphere.

142 4. Role of Orbital Variability in Temperature Reconstruction

identity:

cos
[
G(A,B)

]
= sin(θA) sin(θB) + cos(θA) cos(θB) cos(φA − φB) . (4.26)

Notice indeed that G(A,B) ∈ [0, π] since the sphere has radius one; hence the cosine

on the LHS can be inverted.

In the Matlab Appendix E.4, we show the code that, given the coordinates of the

location L of interest, identifies the nearby cells (only sea cells if needed) and computes

the weights inversely proportional to the relevant geodesic distances.

4.9.2. Sampling Trajectories from the Emulator

In this section we describe how to extract a multivariate sample from the emulator.

At a general sequence of input parameters S =
{
x̃1, . . . , x̃k

}
⊆ P , the emulator at

location L is a k-dimensional random vector, which we denote by γ(L)(S):

γ(L)(S) :=

γ(L)(x̃1)

...

γ(L)(x̃k)

 ∈ Rk. (4.27)

Its distribution is multivariate t-Student (Definition 2.5.1):

γ(L)(S) ∼ tν

(
µ(L)

S , Σ(L)

S

)
. (4.28)

The number of degrees of freedom is ν = n−q, where q = 4 in our case. The mean µ(L)

S

is immediately derived by extending equation (4.21) to case of k inputs and replacing

the quantity V
(j)
i by V

(j)
L :

µ(L)

S = γ̄(L)1k +
r∑
j=1

E
[
fj(S)

]
V

(L)
j ∈ Rk . (4.29)

We have denoted by fj(S) the vector with components fj
(
x̃1

)
, . . . , fj

(
x̃k
)
. The

symbol 1k ∈ Rk denotes the vector of all ones.

The kernel matrix Σ(L)

S in (4.28) is obtained from the covariance matrix of γ(L)(S)

4.9. Recombining the PC Scores 143

by the relationship (recall (2.49.b)):

Σ(L)

S =
ν − 2

ν
Cov

[
γ(L)(S)

]
∈ Rk×k . (4.30)

In turn, we notice that the expression of the covariance matrix is immediately derived

by extending (4.23) to the case of k inputs:

Cov
[
γ(L)(S)

]
=

r∑
j=1

(
V

(L)
j

)2

Cov
[
fj(S)

]
+

n−1∑
j=r+1

(
V

(L)
j

)2

σ2
jIk ∈ Rk×k. (4.31)

Most mathematical and statistical softwares are able to sample from a multivariate

t-Student distribution; however, definitions may not be equivalent from one software

to the other, or may be given in terms of different parameters. Hence, we briefly

describe here a simple and numerically stable way to sample from

Y ∼ tν
(
µ,Σ

)
, (4.32)

which only requires the ability to generate independent samples of the χ2(ν) and

N(0, 1) distributions: this allows to sample from our emulator, with mean and kernel

as in (4.29), (4.30).

Given our Definition 2.5.1, from (4.32) we can write:

Y = µ+

√
ν

V
X ∈ Rk , (4.33)

where X ∼ N(0,Σ) and V ∼ χ2(ν) are independent of each other. Since it is

normally distributed, the random vector X can be written as linear transformation of

a multivariate standard normal vectorZ ∼ N(0, Ik). Specifically, since Σ is symmetric

and positive definite, we can consider its Cholesky decomposition:

Σ = AAT , (4.34)

where A is lower triangular. The vector X can then be written as:

X = AZ . (4.35)

144 4. Role of Orbital Variability in Temperature Reconstruction

Notice indeed that from (4.35) it follows Cov[X] = ACov[Z]AT . Substituting (4.35)

into (4.33), we get

Y = µ+AT , (4.36)

where T =
√
ν/V Z is a k-dimensional Student-t vector with zero mean and identity

kernel matrix. A sample of such T can thus be obtained upon division of k independent

N(0, 1) samples by the square root of a χ2(ν) sample (independent of the previous

normal ones), and by rescaling the ratio by a factor
√
ν .

Probabilistic Observation/Remark

Given what just pointed out, it is clear that the components of a random vector

T ∼ tν(0, Ik) are not independent of each other: the random factor V −1/2 is

common to all of k of them. However, they are uncorrelated: this provides a per

se interesting example in probability, of a random vector with uncorrelated but

non-independent components.

The fact that the components of a T ∼ tν(0, Ik) are uncorrelated may be deduced,

for example, from the following fact, trivial to check: the covariance between two

random variables of the form T1 = Z1W and T2 = Z2W is zero, for independent

Z1, Z2 and W with E[Zi] = 0.

The above procedure allows to sample from the emulator distribution at any finite

subset S ⊆ P of input parameters. In practice, it is convenient for us to look at

the emulated SST as a function of time: we fix a sequence of past times, use the

online interface available here to find the set S of corresponding orbital parameters,

and employ the procedure above to sample from a t-distributed random vector with

mean (4.29), kernel matrix (4.30), and n− q degrees of freedom.

An example of emulator trajectory at one of the marine sites where data is available

(Section 4.2) is shown in the middle panel of Figure 4.10. For illustration purposes, the

“Gaussian noise” component of the trajectory is left out (last term of equation (4.24)).

In addition, we recall that a nugget term has been used to build the emulated PC scores

fj(·): in order to display a continuous trajectory, only the continuous component of the

emulated fj(·) has been used – see the decomposition of Theorem 2.8.3 and comments

http://vo.imcce.fr/insola/earth/online/earth/online/

4.9. Recombining the PC Scores 145

Figure 4.10: Emulator predictions over the PRISM3D time slab at one of the marine
location where data are available (lat: 19.74°S, lon: 10.52°E; off the south-west African
coast, in front of Namibia). Top panel: emulator mean and standard deviation, together
with simulator outputs at the design points. Middle panel: one sample trajectory, continuous
since the noise part (last term in equation (4.24)) has been left out. Bottom panel: zoom of
a trajectory, to appreciate level of regularity.

146 4. Role of Orbital Variability in Temperature Reconstruction

thereafter (formulas (2.119), (2.120)). From the theory presented in Subsection 1.4.2,

we know that the emulator trajectories are C2 but not C3. To appreciate this visually,

the bottom panel of Figure 4.10 shows the zoom of a trajectory over a relatively small

interval of time. Note, instead, that the emulator posterior mean (blue line in the top

panel of Figure 4.10) is smoother than the trajectories. Indeed, from equation (2.96) we

see that the regularity of the posterior mean function is determined by the regularity

of the functions h(·) and t(·): in our case, h(x) is linear in x, and the components

of t(x) (i.e, c(x,xi) for i = 1, . . . , n) are C∞ when x 6= xi. The predicted mean is

therefore C∞ between design points.

4.10. Data-Model Comparison (DMC)

In this section we describe the procedure we use to compare the geological archive

of reconstructed marine temperatures (Section 4.2) to the emulator SST predictions.

The comparison is carried out over the whole time interval that the fossils used in

the geological temperature reconstruction date back to (PRISM3D time slab: 3,025–

3,264 kya). As pointed out in Section 4.1, the use of the emulator allows to account for

the effects of varying orbital forcing during the interval; moreover, by emulating site

by site, we are able to account for potential asyncronicity in the warming at different

locations.

As detailed in Section 4.2, at each marine site depicted in Figure 4.1, the geological

archive provides a warm peak average (WPA) estimate, the number Np of peaks used

to obtain the WPA, and the number Ns of samples constituting the original time series

before peaks were extracted. In order to obtain estimates of average warm peaks from

the emulator, at each location we proceed as follows:

1. Uniformly at random, we sample Ns times between 3,025 and 3,264 kya.

2. We generate a sample z = (z1, . . . , zNs) of emulated SST from the distribution

of the emulator at those times, as described in Subsection 4.9.2.

3. We then extract the peaks of the sample: a value zi is considered a peak if greater

than both zi−1 and zi+1. Further specifications are provided below.

4.10. Data-Model Comparison (DMC) 147

4. If the number of peaks equals Np, the peak average is stored. Otherwise, we

repeat steps 1–3 till the extracted number of peaks is Np, and store the peak

average.

For each location, we repeat the previous four steps till N = 1,000 WPA estimates

from the emulator are obtained. Finally, we subtract from these the SST value, at the

site of interest, obtained from a control simulation run with pre-industrial boundary

conditions. This step is important to help remove potential biases in the simulation

process. Similarly, at each site, from the geologically reconstructed mid-Pliocene WPA

we subtract observed SST modern temperature. This last value is provided within the

PRISM3D data set; it is derived from either Reynolds and Smith [1995] or Levitus

[1982], according to the site of interest.

The sequence of steps 1–4 was adopted in order to reproduce as closely as possibly the

methodology employed during the data collection process (Section 4.2). We need to

make some remarks about the latter, which allow us to provide further details on our

own procedure.

When peaks were extracted from a time series of marine temperature proxies, the

first and last element of the sequence were not considered peaks. We therefore adopt

the same convention in our procedure, specifically in step 3. This implies that the

condition Np < Ns/2 holds between the number of samples and the number of peaks

at any site. For some of the data set locations, however, a number of peaks and total

samples with Np ≥ Ns/2 were provided. Upon further inspection14, this was revealed

to be the consequence of “identical” consecutive estimates in the time series, in which

case both elements had the potential to be considered peaks. We therefore adapt

our procedure to this feature, by allowing two consecutive elements zi and zi+1 of an

emulator sample to be considered the same, if their difference is less than a given

tolerance t. In such a case, zi is considered a peak if greater than zi−1; similarly,

zi+1 is considered a peak if greater than zi+2. We set the tolerance to t = 0.01°C, in

consideration of the fact that the original marine proxies were analysed at a resolution

of two decimal places.

14 I (the author) would like to acknowledge here the effort of Prof. Harry Dowsett, whom I thank
once again, for recovering and personally scrutinising the original time series of the “problematic”
sites.

148 4. Role of Orbital Variability in Temperature Reconstruction

By adopting the above procedure, we are able to generate WPA emulator estimates

for 42 of the 51 sites provided in the data set. The remaining sites show values of Np

and Ns that are practically unfeasible to match: the ratio Np/Ns is either too close to

zero, or very close to a half despite a large Ns (a long sequence with approximately a

peak every other element), or even larger than a half. Although reasons behind some

of these rare occurrences were provided to the author, it remains impossible for the

emulator to reproduce such sequences: hence, we carry out the comparison for the 42

sites where the comparison is possible.

We can now describe the way the comparison is carried out. For each site, our

procedure returns N WPA estimates obtained from the emulator: these have a natural

interpretation as N independent samples of the emulator WPA distribution at the

site, conditioned on having observed Np peaks out of Ns samples. Let m and s be the

empirical mean and standard deviation of the sample, respectively, and denote with I

the interval [m− 2s,m+ 2s]. For convenience, we define a := m− 2s and b := m+ 2s,

hence I = [a, b]. We assess the agreement between the collection of N emulator WPA

samples and the geological estimate z in the marine data set15, by computing the

signed distance between the interval I defined above and the value z. This distance is

defined as follows:

dist(I, z) =

a− z if z < a

0 if z ∈ I
b− z if z > b

, I = [a, b], z ∈ R. (4.37)

The signed distance in (4.37) is positive if the emulator WPA estimates are greater

than the proxy data z (warm bias of the emulator) and it is negative if the emulator

WPA estimates are lower than z (cold emulator bias). We note here that the emulator

samples at the different sites show an approximately normal distribution, hence the

interval I defined above has a loose interpretation as a 95% confidence interval of the

emulator WPA distribution.

15 As explained earlier, the appropriate PI values are preliminarily subtracted on both the emulator
and the proxy data.

4.11. Results 149

4.11. Results

By carrying out the procedure described in Section 4.10, at each site we obtain

a measure of the discrepancy between emulator predictions and geological record.

Figure 4.11 shows the results, commented below.

Around a quarter of the sites (11 out of 42) display a data-model mismatch in modulus

less than 0.5°C according to the measure in (4.37). These are shown as white circles

in Figure 4.11. Further inspection shows that for three of them the distance (4.37)

is zero, while the remaining eight are equally split into sites showing either a cold

small bias or a warm small bias of the simulator with respect to geological records.

The data-model comparison (DMC) for the remaining locations shows a remarkable

pattern. With only few exceptions, low-latitude sites reveal a warm simulator bias,

while high-latitude sites reveal a cold simulator bias. This is particularly evident in

the Northern Hemisphere, where most of the marine sites of the data set lie. In this

region, by taking as convenient reference the parallel located at 40°N latitude, we see

the following: 21 of the 23 sites south of the parallel show warm (or zero) simulator

bias; 6 of the 7 sites north of the parallel show cold (or zero) simulator bias. An

analogous, symmetrical, pattern is revealed in the Southern Hemisphere, although the

number of sites is here more limited.

It is now of interest to compare our DMC procedure, built via the use of the emulator

and accounting for the orbital variability characterising the mid-Pliocene, to the DMC

where proxies are related to the outputs of single mid-Pliocene simulations. In partic-

ular, we select the peaks of the two interglacial events K1 and KM5c, happening at

3,060 and 3,205 kya respectively (compare to description in Subsection 4.5.1). In each

of the two cases, we compute the difference between the snapshot simulation and the

geological proxy, at the 42 marine sites (as usual, after subtracting the appropriate PI

values from each source). Figure 4.12 allows to graphically compare the results.

While all three plots approximately reveal the same geographical pattern previously

recognised (high-latitude cold bias and low-latitude warm bias for the simulator),

differences in magnitude between the DMC involving the emulator and the DMC

involving each of the snapshot simulations are often significant, especially in particular

geographical areas. We now summarise some results, differentiating between the two

150 4. Role of Orbital Variability in Temperature Reconstruction

Figure 4.11: Each circle locates a marine site. The plot aims at comparing, at each of these
sites, the set of N = 1, 000 WPA estimates derived from the emulator to the single WPA
estimate derived from geological records. The signed measure (4.37) is used to quantify the
difference. Red denotes warm emulator bias, blue denotes cold emulator bias.

cases where the emulator shows a cold, or warm, bias.

Sites with cold or null emulator bias

There are 17 such sites, mostly located at high latitudes.

• For all of them, the DMC carried out via the 3205 simulation shows a stronger

(still cold) bias than the one carried out via the emulator. In Table 4.5 we report

the percentage of improvement from the 3205-based to the emulator-based DMC,

alongside the absolute difference of the two: the percentage of improvement is

computed as (1− dEmul/d3205)× 100, where dEmul is the mismatch obtained from

our DMC (equation (4.37)), and d3205 is the one obtained by using the 3205 peak.

• For the same sites, differences between the emulator DMC and the one carried

out with simulated temperatures from the 3060 peak do not show significant

patterns (last column of Table 4.5).

4.11. Results 151

(a)

(b)

(c)

Figure 4.12: Following from Fig. 4.11, plot of the difference between: 1) WPA estimates
obtained from (a) the emulator, (b) the KM5c interglacial peak simulation (3,205 kya), (c)

the KM1 interglacial peak simulation (3,060 kya); and 2) WPA estimates from geological
records (proxies). Panel (a) shows the same plot as Fig. 4.11, and is here reported to ease
comparison with (b) and (c). Notice, in general, darker blue colours of panel (b) and darker
red colours of panel (c), when compared to (a). See also Table 4.5 and Table 4.6.

152 4. Role of Orbital Variability in Temperature Reconstruction

Latitude Longitude
Improvement on 3205

(Absolute Difference)

Improvement on 3060
(Absolute Difference)

56.04° N 23.33° W 100% (3.29°C) 100% (−0.47°C)

53.22° N 18.89° W 31% (1.36°C) −15% (−0.39°C)

50.42° N 46.37° W 63% (2.18°C) −46% (−0.40°C)

48.85° N 12.00° W 20% (1.37°C) −8% (−0.40°C)

45.51° N 29.48° W 32% (0.63°C) 59% (2.01°C)

42.84° N 23.09° W 23% (0.58°C) 36% (1.08°C)

36.87° N 176.90° W 65% (0.62°C) 66% (0.66°C)

35.49° N 70.03° W 49% (1.00°C) 4% (0.04°C)

5.28° N 110.07° W 100% (0.43°C) 100% (−0.03°C)

16.00° S 76.37° W 28% (1.01°C) 5% (0.14°C)

19.74° S 10.52° E 89% (0.86°C) 64% (0.20°C)

21.37° S 81.43° W 18% (0.78°C) 16% (0.72°C)

26.07° S 10.27° W 64% (0.56°C) 44% (0.24°C)

30.93° S 93.57° E 8% (0.44°C) 3% (0.13°C)

36.47° S 165.44° E 100% (0.29°C) 100% (−0.11°C)

42.55° S 178.17° W 17% (0.72°C) −3% (0.10°C)

46.88° S 7.42° E 88% (0.53°C) 35% (0.04°C)

Table 4.5: In the column on the right of the vertical line, the table shows the improvement
from the DMC based on the KM5c experiment (3205 kya) to the DMC based on the emulator
WPA predictions. Only sites showing cold emulator bias are reported here (signed distance
in (4.37) negative). Both percentage values (see text for details) and absolute differences
(emulator DMC minus 3205 DMC) are reported. All differences are positive, showing an
improvement of the emulator on all reported sites. By using the emulator, the data-model
mismatch seems generally reduced also with respect to the 3060-based DMC (values in the
last column), although no strong pattern as in the 3205 column emerges.

4.11. Results 153

Latitude Longitude
Improvement on 3060

(Absolute Difference)

Improvement on 3205
(Absolute Difference)

41.00° N 32.96° W −75% (+0.60°C) 35% (−0.74°C)

37.34° N 35.50° W 14% (−0.17°C) −9% (0.08°C)

33.80° N 9.60° W 67% (−1.70°C) 23% (−0.25°C)

32.03° N 24.87° W 87% (−0.75°C) 156% (0.31°C)

28.83° N 87.17° W 59% (−0.50°C) −165% (0.21°C)

25.52° N 133.20° E 10% (−0.16°C) −16% (0.21°C)

24.40° N 79.46° W 28% (−0.63°C) −23% (0.30°C)

23.00° N 20.00° W 39% (−0.37°C) −31% (0.14°C)

22.90° N 43.50° W 76% (−1.42°C) 46% (−0.39°C)

16.62° N 59.80° E 2% (−0.04°C) −11% (0.19°C)

15.52° N 58.72° W 42% (−1.27°C) 14% (−0.29°C)

15.50° N 58.50° W 39% (−1.23°C) 6% (−0.13°C)

9.45° N 19.39° W 10% (−0.21°C) −15% (0.25°C)

8.78° N 121.29° E 14% (−0.41°C) −9% (0.21°C)

5.68° N 19.85° W 20% (−0.46°C) −4% (0.07°C)

5.38° N 90.37° E 10% (−0.49°C) −8% (0.34°C)

4.93° N 73.28° E 4% (−0.16°C) −7% (0.22°C)

4.55° N 21.90° W 13% (−0.35°C) −11% (0.24°C)

4.20° N 43.49° W 15% (−0.40°C) −12% (0.25°C)

1.20° N 83.74° W 54% (−0.73°C) −79% (0.27°C)

0.18° N 95.32° W 88% (−0.92°C) 139% (0.46°C)

3.92° S 60.55° E 10% (−0.30°C) −12% (0.29°C)

9.18° S 151.57° E 17% (−0.48°C) −9% (0.18°C)

17.02° S 88.18° E 44% (−0.50°C) −63% (0.24°C)

20.59° S 112.21° E 52% (−0.76°C) −92% (0.34°C)

Table 4.6: Improvement from the 3060- to the emulator- based DMC, for sites showing
warm emulator bias. Same specifications of Table 4.5 hold. With the only exception of the
northern-most site, the emulator DMC reduces the mismatch. No systematic improvement
can instead be recognised with respect to the 3205-based DMC (last column).

154 4. Role of Orbital Variability in Temperature Reconstruction

Sites with warm emulator bias

There are 25 such sites, all located within the latitude band between 21°S and 41°N.

• For all of them but one, the DMC carried out via the 3060 simulation shows a

stronger (still warm) bias than the one carried out via the emulator. Specific

numbers are reported in Table 4.6. The exceptional site is the northern most

one of the set.

• For the same sites, difference between the emulator-based and the 3205-based

DMCs are mostly negligible and do not seem to reveal significant patterns: differ-

ence values are in modulus less than 0.5°C, with the only exception of the same

northern most site mentioned in the previous point (for which the difference is

of 0.74°C).

The two points just mentioned suggest that the accounted-for orbital variability in

our DMC is generally able to reduce the mismatch with respect to the DMC built on

single shapshot simulations, even when these are the ones corresponding to the two

warm peaks of the K1 and KM5c interglacials. Moreover, it can be deduced from the

points above that simulated SST around the 3060 interglacial peak is generally higher

than the simulated SST around the 3205 peak, although this is not true for all the

locations.

4.12. Conclusions

In this chapter we have tackled the problem of DMC during the mid-Pliocene,

analysing it within the statistical framework provided by GP emulation. While the

latter has been used in diverse climate reconstruction problems, as well as in other

DMC settings, the present work represents the first instance in which the emulation

setting is employed to analyse the mismatch between mid-Pliocene climate simulations

and geological records. The contribution of GP emulation is relevant to the problem,

in that allows to account for the orbitally-induced changes in simulated temperature,

which Prescott et al. [2014] have shown to be substantial.

4.12. Conclusions 155

By comparing the estimated WPAs from geological records to random samples drawn

from a number of emulated SST trajectories, we are able to match, as close as we can,

the way geological estimates are derived. We remark, indeed, that precise times are

not associated to the single elements of the original geological time series, from which

a WPA is extracted. In light of this, comparisons to single snapshot simulations may

be inappropriate, carrying unavoidable biases. We are instead able to automatically

account for the time uncertainty associated with the data, by sampling at random

times (within the time interval of relevance) from the emulator SST distribution. By

carrying out this procedure site by site, we are also able to account for potentially

asynchronous warming between sites. The results highlight that the HadCM3 climate

simulator typically shows a cold bias at high latitudes with respect to geological record,

while a warm bias is displayed at low-latitudes. The mismatch is however generally

reduced with respect to the case where the comparison is performed based on the

output of a single climate simulation.

We would like to conclude by looking at what we think represents the next natural

research step within the field. The recent work Dowsett et al. [2019] provides,

for different marine sites, reasonably accurate estimates of past times within the

mid-Pliocene, corresponding to which a time series of reconstructed temperatures is

extracted. The inclusion of time estimates of course represents a major improvement

with respect to the PRISM3D data set, and could be easily merged within our DMC

procedure by sampling only at the relevant times from the emulator distribution. Such

detailed information comes currently at the price of having only few (eight) sites where

the data has been processed and stored. All of these are located in the North Atlantic

region. Nonetheless, we believe that the availability of this information will allow to

shed further light on the mid-Pliocene DMC. Once again, the use of GP emulation

seems the natural way to incorporate the additional time information in the DMC

framework, further allowing to account for the uncertainty affecting the simulator

predictions.

156 4. Role of Orbital Variability in Temperature Reconstruction

5. Greenland Ice Sheet Reconstruc-

tion During the Last Interglacial

Abstract: This chapter employs Gaussian process emulation to tackle the following

problem: to reconstruct the shape of the Greenland ice sheet during the last

Interglacial, the last period in Earth’s history characterised by warmer-than-today

temperatures. We treat this as an inverse problem. We emulate the so-called δ18O

output of the HadCM3 climate simulator, as a function of ice shapes. Hence, we

seek the shapes that match δ18O records extracted from Greenland ice-cores. The

work presents the non-standard feature of emulating over infinite-dimensional objects,

such as ice shapes. The problem tackled here is of primary interest to the climate

community, given that the current melting from the Greenland ice sheet represents

the greatest contributor to the sea-level rise at global level.

158 5. Greenland Ice Sheet Reconstruction During LIG

5.1. Introduction

The work detailed in this chapter is the result of a collaboration started in September

2016, following an informal conversation with Dr. Louise Sime at a conference organised

by the Past Earth Network. Louise Sime is a paleoclimate modeller at the British

Antarctic Survey (BAS, Cambridge). The collaboration has involved myself (the

author) and my supervisor Jochen Voss on the one side, and Louise Sime alongside

her PhD student Irene Malmierca-Vallet on the other.

The problem presented by Louise Sime is a central one in paleoclimate: reconstruct

how the Greenland ice sheet looked like during the Last Interglacial period (115–

129 kya). To this aim, the idea was to use both climate simulations and ice-core records

to approach the problem. It seemed apparent that the existing climate literature on

the topic could benefit from the statistical contribution of GP emulation. At the

same time, the collaboration would allow to develop an emulator on “ice shapes”

(infinite dimensional objects), rather than on a standard finite number of inputs that

are directly tuned in the simulations.

In the remainder of this section, we introduce in more detail the problem and its

relevance. Subsection 5.1.1 reviews the literature information which allows to put

the problem in context. Subsection 5.1.2 provides a simple illustration of key climate

terms and concepts. Finally, Subsection 5.1.3 specifically illustrates our problem and

the way it is tackled, providing as well an overview of the chapter structure.

5.1.1. The Issue of Current Sea-Level Rise

In Chapter 4 we discussed the interest of the climate community to understand the

dynamics and nature of past warm climates, to shed light on future scenarios. One of

the main sources of concern is the magnitude of future sea-level rise, brought about by

polar ice melting. According to a recent estimate (Kopp et al. [2017]), under a high

CO2 emission scenario, land currently home to more than 150 million people may be

submerged by the end of this century if no protective measures are adopted.

More than 99% of the ice present on Earth can be found within only two regions of

5.1. Introduction 159

Figure 5.1: Reconstruction of global sea levels during the last 400 thousand years,
from Williams and Gutierrez [2009].

our planet: Greenland and Antarctica. Antarctica holds the majority of Earth’s ice:

if the Antarctic ice melted completely, it is estimated that the sea level would rise

of about 58 meters, on a global average (Fretwell et al. [2013]). Greenland contains

a lower amount of ice, corresponding to approximately 7 meters of global sea-level

equivalent (Robinson et al. [2011]). However, the Arctic island is undergoing a more

dramatic ice loss than the Antarctic continent. Although all estimates come with

significant uncertainties, most studies suggest that Greenland’s current melting rate

is about twice that of Antarctica, equating approximately 1 to 2 ×1014 kilograms of

ice loss per year (Shepherd et al. [2012], IPCC [2013], Van den Broeke et al. [2016]).

According to Brunnabend et al. [2012], this translates into about 0.3-0.6 mm of global

sea-level rise per year. On this basis, in 2013 the IPCC recognised Greenland as the

largest single contributor to the current sea-level rise.

The last time in history with higher-than-present sea levels was the Eemian

Interglacial, also known as Last Interglacial (LIG; 115–129 kya); see Figure 5.1.

Temperatures were at the time 2–3°C warmer than today on a global average; Arctic

temperatures may have been up to even 4–5°C warmer (CAPE Members [2006]).

The difference in sea levels with respect to present day is thought to have been of

several meters (Kopp et al. [2009] estimates it to be greater than 6.6 meters with 95%

probability). However, the contribution of the Greenland Ice Sheet (GrIS) to the latter

160 5. Greenland Ice Sheet Reconstruction During LIG

is highly uncertain, with estimated contributions ranging from as little as 0.3 meters

to over 5 meters (Robinson et al. [2011]).

The uncertainty on the GrIS contribution to the LIG sea level stems directly from the

uncertainty on the morphology itself of the GrIS during the LIG, and on the locations

of predominant melting. Some studies suggest that strong melting happened in the

south (e.g., Otto-Bliesner et al. [2006]), some suggest it happened in the north (e.g.,

Quiquet et al. [2013]), while some others in both (e.g., Born and Nisancioglu [2012]).

A common effort has therefore been undertaken to try to reduce the uncertainties

regarding these reconstructions. To the aim, both climate simulations and geological

data in the form of ice-core records have been used (Robinson et al. [2011], Stone

et al. [2013]). In Subsection 5.1.2 we provide more details about ice cores and the

information that they contain.

5.1.2. Ice Sheets as Frozen Archives of Earth’s History

Ice sheets form at latitudes where the annual snowfall rate exceeds the annual snow

melt: snow accumulates, and soon turns into ice under the above pressure. Through

this process, a “frozen archive” of the Earth’s climatic and atmospheric history builds

up. Specific events may be recorded within the ice: for example, ashes may reveal an

exceptional volcanic event happening hundreds or even thousands or kilometres away

from the site. But more importantly, bubbles of air are trapped within the falling

snow crystals, together with physical and chemical properties of the water forming

the snow itself. Figure 5.2 shows a NASA 3D reconstruction of the GrIS near the

Camp Century site (details in caption), which illustrates the “layered” structure of

an ice sheet. By drilling down from its surface, scientists and engineers are able to

extract deep cylinders of ice, whose physical and chemical properties can be studied to

recover information from the past. These cylinders are known as ice cores: they may

reach three or four kilometres in length, and often take several years to be extracted.

Figure 5.3 shows a photograph of a core containing ice more than 16 thousand years

old. The annual layer structure can be appreciated.

One of the most important pieces of information that ice cores contain comes from

oxygen isotopes. Oxygen atoms always have eight protons in their nucleus. The

5.1. Introduction 161

Figure 5.2: NASA 3D reconstruction of the Greenland ice layers near the Camp Century
site (in the north west of Greenland: latitude 77.2°N, longitude 61.1°W). Video available at
https://www.nasa.gov/content/goddard/nasa-data-peers-into-greenlands-ice-sheet.

number of neutrons in the nucleus can however vary: most atoms present eight, but a

small percentage presents ten. Such variants of the same element are called isotopes:

the additional neutrons do not affect the chemical properties of the element (oxygen

in this case), but increase the atom weight. The two oxygen isotopes mentioned above

are denoted by the symbols 16O and 18O, which reflect the total number of protons

and neutrons in the nucleus. Lighter water molecules, formed by two hydrogen atoms

and one 16O atom, require less energy (or, equivalently, lower temperatures) than

heavier water molecules to evaporate; they are therefore the first ones to escape water

and be transformed into vapour in any naturally occurring evaporation process. As a

consequence, the proportion of light and heavy oxygen isotopes present in precipitation

water is informative of the temperature at which the water formed. Higher proportions

of heavy isotopes are indicative of higher temperatures.

In a given layer of an ice core, the proportion of light and heavy oxygen isotopes can

be measured and used to draw information about the ice sheet and the local climate,

at the time the layer formed. Throughout geochemistry and paleoclimatology, the

measure used is the so-called δ18O. It compares the heavy-to-light ratio of oxygen

https://www.nasa.gov/content/goddard/nasa-data-peers-into-greenlands-ice-sheet

162 5. Greenland Ice Sheet Reconstruction During LIG

Figure 5.3: Photograph showing a section of an ice core, extracted from the GrIS at the
GISP2 location (72.6°N, 38.5°W). Annual layers are clearly visible. The section shows ice
from around 16,250 years ago, and was drilled at a depth of 1837 meters. Picture credit:
Department of the Interior, U.S. Geological Survey.

isotopes in a water sample of interest, to the same ratio of a reference water sample.

More precisely, we have:

δ18O =
(18O/16O)sample

(18O/16O)reference

− 1 . (5.1)

For completeness, we mention that the reference sample commonly used is the Vienna

Standard Mean Ocean Water sample. Despite the name, it consists of pure distilled

water, with no salt.

5.1.3. Overview of the Chapter

We have mentioned earlier that the LIG morphology of the GrIS is a matter of some

controversy. The various reconstructions differ substantially from each other and

consequently yield very different estimates of the GrIS contribution to the LIG sea-

level rise. The aim of this chapter is to join information from climate simulations and

from ice cores (in the form of δ18O records), to provide constraints on the shape and

extent of the LIG GrIS. We schematically summarise here the information that these

two sources provide, and the way the two are merged in this work. More details are

of course provided in the following sections.

• Ice-Core Records: Estimated LIG δ18O values, with error bands, are provided

at six Greenland locations, depicted in Figure 5.4.

5.1. Introduction 163

• Climate Simulations: The HadCM3 climate model is used to simulate, at each

of the six locations, δ18O values corresponding to different GrIS morphologies.

This allows to see the simulator as a map

f
L

: M 7−→ δ18O , (5.2)

which associates, to a given morphology M , a δ18O value at location L.

By comparing the simulated δ18O values to the ice-core records, one can in principle

identify the morphologies that are compatible with the records, and study their proper-

ties. An exhaustive search within the space of GrIS morphologies, however, is made

unfeasible by the expensiveness of the simulator. Hence, we build an emulator of

each of the six maps f
L

in (5.2), and carry out a statistical comparison between the

emulator predictions and the ice-core records. This allows to inspect the properties of

the GrIS morphologies that are compatible with the available δ18O records.

The chapter is structured as follows. In Section 5.2, we discuss the available ice-

core records. In Section 5.3, we conveniently represent the simulator as a collec-

tion of functions, within an appropriate mathematical setting for our problem. The

domain of these functions is a space of ice morphologies, infinite dimensional objects,

fact that marks a difference from standard emulation settings. We therefore devote

Section 5.4 to its parameterisation, and describe how to generate input morphologies

for the simulator, starting from elements of the parameterised space. We are then

ready to discuss the emulators. Section 5.5 describes the experimental design, built

in two waves; Section 5.6 details the construction and validation of our emulators.

Hence, in Section 5.7, we illustrate how the emulators are used to identify morpholo-

gies that are compatible with records. The results of our approach are discussed

in Section 5.8, under both a more mathematical and a more applied point of view.

Finally, in Section 5.9, we conclude the chapter with some remarks, and an overview

of future directions of investigation in the field.

The data produced as a result of the work detailed in this chapter can be accessed at the

following repository: https://ramadda.data.bas.ac.uk/repository/entry/show?entryid=

35aed839-1634-4692-b6d6-4d6312953eb5, or via the following link: https://data.bas.

ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01283.

https://ramadda.data.bas.ac.uk/repository/entry/show?entryid=35aed839-1634-4692-b6d6-4d6312953eb5
https://ramadda.data.bas.ac.uk/repository/entry/show?entryid=35aed839-1634-4692-b6d6-4d6312953eb5
https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01283
https://data.bas.ac.uk/full-record.php?id=GB/NERC/BAS/PDC/01283

164 5. Greenland Ice Sheet Reconstruction During LIG

Figure 5.4: Position of the six drilling sites in Greenland where the ice-core records
(δ18O) used in this work come from. Geographical coordinates: Camp Century, abbrevi-
ated CC (77.2°N, 61.1°W); NEEM (77.45°N, 51.06°W); NGRIP (75.1°N, 42.3°W); GISP2
(72.6°N, 38.5°W); GRIP (72.6°N, 37.6°W); DYE3 (65.2°N, 43.8°W).

5.2. Available Ice-Core Records

The δ18O records that we use, alongside climate simulations and GP emulation to

constrain the LIG GrIS morphology, come from ice cores extracted at six different

sites. These are depicted in Figure 5.4. We briefly provide below an account of the

six sites, and the associated ice-core drilling projects.

• NEEM. Site in North Greenland. The ice core was extracted within the North

Greenland Eemian Ice Drilling project, NEEM Community Members [2013]. The

drilling started in June 2009 and ended in July 2010, after hitting the bedrock

at a depth of 2537 metres.

• GRIP. Site around the centre of Greenland. The acronym stands for GReenland

Ice core Project, GRIP Members [1993]. Drilling started in 1990 and ended in

5.2. Available Ice-Core Records 165

summer 1992, extracting a core 3028 metres long.

• NGRIP. Site around 320 km North of GRIP (from which the name), NGRIP

Members [2004]. The NGRIP ice core is 3085 metres long. It took almost four

years to be extracted (1999–2003).

• GISP2. Greenland Ice Sheet Project 2, Johnsen and Vinther [2007]. Site located

28 km to the west of GRIP. The drilling was completed in five years (1988–1993),

and recovered a 3053-metre-long ice core.

• Camp Century (CC). The site is situated in the North West of Greenland.

The core was drilled during the 1960’s, and is 1390 metres long.

• DYE3. The Southern most site of the six considered. The drilling was carried

out during the 1970’s, within the Greenland Ice Sheet Project (GISP). It was

completed in 1981, extracting a 2038-metre-long ice core. The core is not intact:

together with the Camp Century one, it represents the least well-preserved core.

Historical Note

The Camp Century site was born during the cold war, and it was, in reality, a

military site. It was the base of a top-secret US program (the Iceworm project),

whose aim was to build around 600 ballistic missiles trained towards the Soviet

Union. The aim was, fortunately, not accomplished. The site was conveniently

placed between the US and the USSR, and was at the same time isolated from

the rest of the world, therefore providing a “perfect” location in the eyes of the

US, to carry out the project. In 1960, a scientific drilling project was started at

the site. The project, mainly supposed to act as a “cover” to the secret military

program, was in the end extremely successful and drilled the 1390-metre-long ice

core mentioned above. By revealing the great potential of ice cores, it opened up

a whole new scientific era in the study of past climate, and pioneered a number

of future drilling projects which we have referenced above (NEEM, GRIP, GISP).

For a more detailed account of the history behind the Camp Century site, we refer

the interested reader to the online article available here (reference Gertner [2019]

in bibliography).

https://www.wired.com/story/the-top-secret-cold-war-project-that-pulled-climate-science-from-the-ice/

166 5. Greenland Ice Sheet Reconstruction During LIG

Anomaly values (LIG minus present day) at each ice-core site

NEEM NGRIP GRIP GISP2 Camp Cent. DYE3

δ18O ‰ δ18O ‰ δ18O ‰ δ18O ‰ δ18O ‰ δ18O ‰

Most likely +3.6 +3.1 +3.2 +2.7 +2.5 +4.7

Minimum +2.7 +2.1 +2.2 +1.7 +0.0 +0.0

Maximum +4.0 +3.8 +3.5 +3.4 +4.0 +5.2

Table 5.1: Stable water isotopic (δ18O) information from the six Greenland ice cores used
in this work. Most likely, maximum, and minimum values are provided, see text for full
details.

Due to the difficulties arising in dating ice-core layers, and due to the possibility of

missing layers, it is not possible to obtain, from the six ice cores, a precise estimate of

what the δ18O at the location was during a specific time of the LIG. Compiling the

available information therefore requires to account for these uncertainties. Here, at

each of the six sites, we consider a δ18O central estimate for the time 125 kya, alongside

a maximum and minimum value. These have been extracted on the basis of the

information reviewed in Johnsen and Vinther [2007] or available from the members of

the community in charge of the ice core drilling. Table 5.1 summarises the information.

All reported values are anomalies with respect to present-day measurements at the

same sites.

The poor preservation of the oldest ice cores (DYE3 and Camp Century) makes it

difficult to have lower δ18O estimate at these sites. In Table 5.1 we report the present-

day value as minimum δ18O. In Section 5.8, however, we consider three different

scenarios, which reflect three different minimum values for the anomalies at these

sites.

5.3. Climate Simulations: Inputs and Outputs

The climate simulator that we employ is HadCM3, whose main features were already

introduced in Chapter 4 (Section 4.3). Here, we use the simulator to reproduce the

5.3. Climate Simulations: Inputs and Outputs 167

δ18O response to changes in the shape and extent of the GrIS. We provide more details

below.

A “shape” of the GrIS is best referred to as morphology. For instance, a morphology

may be characterised by massive ice presence in the north, or in the south, and so on.

An intuitive way to identify a morphology would then be to specify the ice thickness

at any place in Greenland. For simulation purposes, it is more convenient to refer

to surface elevation rather than ice thickness. If we denote by G ⊆ S2 the two-

dimensional subset of the sphere (thought of as the Earth) identifying Greenland, a

GrIS morphology can then be viewed as a map

M : G −→ R+, (5.3)

where the quantity M(l) represents the surface elevation of the morphology at location

l ∈ G. Information about the GrIS morphology can be supplied to the climate

simulator as one of the boundary conditions, essentially in the form (5.3) above: the

natural adjustment consists in providing the surface height information at a finite

number of grid cells only, rather than an infinite number of locations.

In light of the above, we can use the model to simulate the climate response associated

with different morphologies. Here, in particular, we look at the δ18O output field of

the simulator. As all other output fields, this is provided on a number of grid cells.

Since the aim is to compare the simulated outputs to the available ice-core records,

we extract the outputs at the six sites of interest by interpolating over nearby cells.

This way, for each site L introduced in Section 5.2, the simulator can be represented

as the following map (M denotes the space of all morphologies):

f
L

: M −→ R
M 7→ δ18O

. (5.4)

The map f
L

associates, to a given morphology M , the simulated δ18O output at

location L. By running the simulator on a selected number of design morphologies,

we can build emulators of the six maps f
L

of interest (one for each of the sites of

Section 5.2), and compare the outputs to the available ice-core records.

Our input spaceM, however, differs from the ones encountered in classical emulation

168 5. Greenland Ice Sheet Reconstruction During LIG

Table of Constants

Name Meaning Value

m
Number of morphologies from previous studies,

used as starting point for PCA 14

s
Dimension of morphologies from previous studies,

used as starting point for PCA
122× 314

(38,808)

r
Number of PCs used to generate

new morphologies (equation (5.10))
8

p
Dimension of emulators’ input space

(by construction, p = r)
8

n Number of emulators’ design points 69

N
Number of morphologies generated

to perform DMC (Section 5.7)
107

Table 5.2: Table reporting the meaning and value of the main constants used in the chapter.
While most of these will be introduced in later pages, they are all reported here to provide
a compact reference.

settings. Although represented in the simulator via a finite number of values (one

surface elevation value for each grid cell), it is in reality infinite-dimensional: specifi-

cally, a space of functions representing ice shapes. We therefore need to first parame-

terise the set M, in order to be able to identify a morphology by a small number of

independent parameters only. In the next section we explain how we perform the task.

5.4. Parameterise and Generate New Morphologies

The idea behind our morphology parameterisation is to find an “interesting” finite-

dimensional subspaceM′ ofM, alongside an appropriate basis which allows to identify

a morphology via the basis coefficients. To identify the subspace, we gather from

previous studies m = 14 reconstructions identifying a wide range of GrIS morphologies,

and consider the affine subspace that these generate. In order to find an appropriate

5.4. Parameterise and Generate New Morphologies 169

basis for this, and to further lower its dimensionality, we use the PC approach presented

in Chapter 3. Details of the overall procedure, comprising an ice-land mask generation,

are given in Sections 5.4.1–5.4.3.

5.4.1. Regridding the Original Morphologies

Figure 5.5 shows the surface elevation of the N original morphologies that we choose.

Details of the corresponding studies are provided in the caption of the same figure.

It can be appreciated that the chosen studies cover a wide range of GrIS morpholo-

gies. Each morphology is represented by a matrix, whose elements report the surface

elevation at the different grid cells. The grid used by the different studies varies. In

order to apply the PC procedure detailed in Chapter 3 and find a basis of the space

that the morphologies generate, we firstly need to represent each morphology as a

vector of the same length. To retain the detail provided by the reconstructions, we

regrid each morphology into a (longitude-latitude) rectangular grid with resolution of

0.2° in both directions: latitude values range from 59.7° N to 83.9° N; longitudes values

range from 73.6° W to 11° W. This yields a total of s = 122 × 314 grid cells for each

regridded morphology. The plots in Figure 5.5 show the regridded morphologies.

The aforementioned regridding has not been performed on the original latitude and

longitude coordinates. Such a procedure would indeed generate heavily distorted

regridded morphologies, especially at high latitudes. This is due to the non-uniform

local behaviour of the transformation mapping latitude-longitude coordinate into

points on the sphere. To circumvent the issue, we carry out the regridding on the

coordinates obtained by projecting a point on the sphere orthogonally onto the plane

π tangent to the sphere at the point with latitude ϕ∗ = 72° N and longitude θ∗ = 40° E.

The point with coordinates (ϕ∗, θ∗) essentially lies in the centre of Greenland. We

derive the details of the transformation below.

A point on the sphere with latitude ϕ and longitude θ has the following coordinates:

Φ
(
ϕ, θ
)

=
(

cosϕ cos θ, cosϕ sin θ, sinϕ
)T ∈ S2 ⊆ R3. (5.5)

An (orthogonal) basis for the plane tangent to the sphere at the point (ϕ∗, θ∗) is given

by the following two vectors:

170 5. Greenland Ice Sheet Reconstruction During LIG

0 400 800 1200 1600 2000 2400 2800 3200

Surface Elevation [m]

Figure 5.5: Surface elevation of the initial GrIS morphologies used in this work to
generate new synthetic morphologies. From top to bottom, left to right, reconstructions
from: Born and Nisancioglu [2012]; Calov et al. [2015] (reconstructions at 121.3, 122.1 and
123.3 kya respectively); Helsen et al. [2013]; Langebroek and Nisancioglu [2016] (reconstruc-
tions corresponding to simulated temperature lapse rate of 6.5°C/km and 8◦C/km); Quiquet
et al. [2013] (CNRM and IPSL anomaly experiments); Robinson et al. [2011] (reconstructions
corresponding to strong, moderate and weak GrIS retreat); Stone et al. [2013] (reconstruc-
tions for maximum contribution (+3.8 m, at 121 kya) and most likely contribution (+1.5 m,
at 123.5 kya) to sea-level rise).

5.4. Parameterise and Generate New Morphologies 171

v1 =
∂Φ

∂ϕ
(ϕ∗, θ∗) , v2 =

∂Φ

∂θ
(ϕ∗, θ∗) . (5.6)

We consider the normalised versions of the two vectors, so that ‖v1‖ = ‖v2‖ = 1.

Given any point Φ(ϕ, θ) ∈ S2, its orthogonal projection onto the plane π can be written

as linear combination of v1 and v2. Since the basis is orthonormal, the coefficients of

the linear combination are as follows:

〈
Φ(ϕ, θ), v1

〉
and

〈
Φ(ϕ, θ), v2

〉
, (5.7)

where the symbol 〈· , ·〉 denotes the Euclidean scalar product of R3. For convenience

of notation, let us denote by V ∈ R3×2 the matrix with columns v1 and v2. This way,

we have defined a transformation of coordinates:

Ψ :
[
− π

2
,
π

2

]
× S1 −→ R2

(
ϕ, θ

)
7→ V T Φ(ϕ, θ) .

(5.8)

The coordinates Ψ(ϕ, θ) are used in place of (ϕ, θ) to interpolate the surface height

values in the original grid of theN starting morphologies, at the lattice points identified

by the uniform 0.2°-wide grid introduced at the beginning of this section.

The interpolation is performed via triangulation-based cubic splines. To this aim, we

use the Matlab function griddata. The code implementing our procedure can be

found in the Matlab Appendix F.1.

Figure 5.6 provides an illustration of the space deformation induced by (5.8) in each of

the two directions, latitude and longitude. In particular, notice how, especially at high

latitudes, squares are transformed into tall and thin rectangles. Interpolation carried

out in the new coordinates yields therefore very different results than interpolation in

the old coordinates. As an elementary example of this, consider a square Q in the

left panel of Figure 5.6, the square Q2R two “steps” on its right, and the square QT

just on top of Q. In the old coordinates, the square Q2R lies farther from Q than QT

does. In the new coordinates, especially at high latitudes, the role of the transformed

“squares” is inverted, with obvious consequences on interpolation.

172 5. Greenland Ice Sheet Reconstruction During LIG

300 304 308 312 316 320 324 328 332 336 340

64

68

72

76

80

Ψ

Figure 5.6: Illustration of how the transformation Ψ in (5.8) deforms the space. In the left
part, a uniform grid in latitude and longitude is shown, with a step-size of 2°. In the right
part, its image under Ψ is shown. The red dot on the left represents the point of tangency
between the sphere and the plane onto which points of the sphere are projected through Ψ:
the point is mapped into (0, 0) ∈ R2 after the transformation. Units along the x and y axes
are not shown in the right plot, however the same scale is used on both axes to appreciate
the deformation induced by Ψ.

5.4.2. Principal Components and Synthetic Morphologies

Once the m initial morphologies have been regridded, we perform on these the PC

procedure described in Chapter 3. This allows to find a basis of the space that they

generate, by identifying directions (i.e., morphologies) that sequentially explain most-

to-least of the data set variance. Figure 5.7 shows the elements of this basis as obtained

through our procedure. These are the PCs, which we denote in the following by Vj .

Any of the m original morphologies M
(k)
orig ∈ Rs can be recovered as linear combination

of the PCs, plus the fixed term M obtained as average of the morphologies themselves

(average computed grid cell by grid cell). That is:

M
(k)
orig = M +

m−1∑
j=1

α
(k)
j Vj ∈ Rs, k = 1, . . . ,m, (5.9)

for some coefficients α
(k)
i ∈ R. By generalising to any set of coefficients, we can

represent any element belonging to the space generated by the PCs. Our specific

5.4. Parameterise and Generate New Morphologies 173

Figure 5.7: PCs used to generate new synthetic morphologies via equation (5.10). Within
each PC, areas of opposite sign yield opposite contributions to the surface height of the
generated morphology. Values in the colour bars do not have a physical meaning: the PCs
have norm equal to one with respect to the scalar product used to carry out the PCA.

choice, motivated in the following, is to consider the space spanned by the first r = 8

PCs only. In other words, any morphology considered in this work is of the following

174 5. Greenland Ice Sheet Reconstruction During LIG

form:

M (α) := M +
r∑
j=1

αjVj ∈ Rs, (5.10)

for some set of real coefficients α = (α1, . . . , αr) ∈ Rr.

The choice of employing fewer than available PCs is motivated by the computational

limitations associated with the running of climate simulations. Indeed, as we shall see

in Section 5.5, the vectors α ∈ Rr which identify a morphology via equation (5.10)

will represent inputs to the emulators built in this chapter. Time and computa-

tional constraints imposed a design formed by less than 70 simulations (details in

Section 5.5), hence it seemed appropriate to lower the dimension of the input space to

suit this constraint16. The specific choice r = 8 reflects the information summarised

in Table 5.3. The table reports the percentage of variance explained by the different

PCs, and shows that the first eight PCs account for more than 95% of this. Let us

recall that the variance associated with each PC is the sample variance

σj
2 = Var

{
α

(1)
j , . . . , α

(m)
j

}
. (5.11)

Table 5.3 also reports the values of the standard deviations σj.

For our analysis, it is convenient to consider a prior distribution on the set of morpholo-

gies or, equivalently, on the set Rr = R8 of parametersα = (α1, . . . , α8) associated with

a morphology via equation (5.10). Since the prior distribution should be concentrated

in a region of the parameter space which also contains the m original morphologies,

we consider

αj ∼ N
(
0, σj

2
)
, (5.12)

independently. That is, the prior is multivariate normal, with centred independent

components of variance σ2
j . We will use this prior distribution when designing the

simulation runs in Section 5.5, and when the compatibility with the ice-core records

is explored in Section 5.7.

We conclude with a note. Through equation (5.10), there is the possibility that an

16A commonly-used rule of thumb suggests around 10 design simulations per emulator input
dimension.

5.4. Parameterise and Generate New Morphologies 175

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8

σj 271.12 228.56 145.45 141.41 91.37 86.16 75.40 65.21

% of Explained
Variance

36.37 25.85 10.47 9.90 4.13 3.67 2.81 2.10

Cumulative %
of Expl. Var.

36.37 62.22 72.69 82.59 86.72 90.40 93.21 95.31

PC 9 PC 10 PC 11 PC 12 PC 13

σj 56.62 47.80 44.45 36.72 25.71

% of Explained
Variance

1.59 1.13 0.98 0.67 0.33

Cumulative %
of Expl. Var.

96.90 98.03 99.01 99.67 100.00

Table 5.3: In the first row of each table, values of the standard deviations σi associated with
the PCs used in equation (5.10). In the second and third rows, corresponding percentages
of explained variance (single and cumulative).

element α ∈ R8 generates a morphology with unrealistically low, or even negative,

surface heights. To avoid that this be the case, at each grid cell we consider the

maximum between the surface height from equation (5.10), and the bedrock height as

provided with the morphology of Stone et al. [2013] corresponding to +1.5 m of sea-

level rise. The possibility of unrealistically high surface elevation is dealt with during

the generation of the design morphologies; a more comprehensive criterion of physical

plausibility of a GrIS morphology is introduced in Section 5.7, when the compatibility

between simulated δ18O and ice-core records is explored.

5.4.3. Mask Generation of Synthetic Morphologies

Subsection 5.4.2 establishes a bijection between the space of synthetic morphologies

that we consider in this work and R8. Some morphologies are used as input to actual

176 5. Greenland Ice Sheet Reconstruction During LIG

δ18O simulations. In this case, a corresponding land-ice mask must also be provided

to the simulator: at each grid cell, this specifies whether the morphology is covered

by ice or not. We explain below how we generate masks. Being able to associate a

mask to a given morphology will also be useful during the discussion of our results, in

Section 5.8.

For the m = 14 original morphologies, the mask is provided. For a new morphology

M , the main idea behind the mask generation is as follows: first, associate ice with a

cell if the height of M at the cell is greater than a given threshold, and associate land

otherwise; hence, smooth the mask. The threshold is computed on the basis of the

value of the masks and heights of the m original morphologies at the cell in question.

More precisely, at a grid cell, we proceed as follows:

1. Let I1, . . . , Iq and L1, . . . , Ls (q + s = m) be the surface heights of the original

morphologies: the letter I or L serves to distinguish between morphologies having

ice or land at the grid cell, respectively.

2. Let a be the minimum of I1, . . . , Iq, and b be maximum of L1, . . . , Ls. Define

c = (a+ b)/2.

3. Associate ice to the grid cell in question if the corresponding surface height of

M is greater than c, and land otherwise.

Finally, in order to smooth possible irregular patterns of the mask obtained through

steps 1–3, we generate a new mask where ice (land) is associated with each grid cell,

according to whether a majority of ice (land) cells are present in the original mask,

within a circle of radius 35 km around the grid cell centre. This last process is repeated

ten times, at which point changes become hardly detectable.

Subsection F.2 of the appendix shows the code implementing the procedure described

above. The first routine (ice mask generator.m) implements steps 1–3 above, while

the following two routines deal with the smoothing process and the computation of

ice proportion in disks of given radius around the centre of each grid cell.

5.4. Parameterise and Generate New Morphologies 177

Born&Nisanc Calov 121.3

Calov 122.1 Calov 123.3

Helsen Langebroek 6.5°

Figure 5.8: For each of the first six morphologies used as starting point to our PCA
(see Figure 5.5 for their plots), we compare here the mask originally associated with the
morphology (left) to the synthetic mask generated via our procedure (right). It can be
appreciated that differences are mostly negligible. The same comparison for the remaining
eight morphologies is shown in Figure 5.9.

Figure 5.8 and Figure 5.9 allow to compare the provided masks of the m original

morphologies with the synthetic masks generated for these by the procedure detailed

above. The similarities within each pair of masks are remarkable, supporting the

validity of our procedure.

178 5. Greenland Ice Sheet Reconstruction During LIG

Langebroek 8.0° Quiquet CNRM

Quiquet IPSL Robinson Max Retreat

Robinson Mod Retreat Robinson Min Retreat

Stone +3.8m Stone +1.5m

Figure 5.9: Same mask comparison as in Figure 5.9, here shown for the last eight morpholo-
gies used as starting point to our PCA (details of these in Figure 5.5).

5.5. Experimental Design 179

5.5. Experimental Design

As specified in equation (5.4), for our purposes it is convenient to see the simulator as

a collection of maps {f
L
}, where f

L
models the δ18O response at location L to changes

in morphologies. Having parameterised the set of morphologies by Rr via equation

(5.10), r = 8, for each location L we can represent the map f
L
(·) as follows:

f
L

: R8 −→ R
α 7→ δ18O

. (5.13)

This way, we can see each map f
L
(·) as a simulator defined on a low-dimensional input

space and characterised by a univariate output: this is precisely the setting within

which GP emulation has been presented in Chapter 2. We can therefore emulate the

six maps f
L
(·) of interest to us, i.e., the ones corresponding to the six ice-core sites

introduced in Section 5.2, and compare the emulated δ18O outputs to the ice-core

records at these locations.

The aim of this section is to provide details of the experimental design associated with

the six emulators. Before this is done, we recall some notation and terminology from

Chapter 2, and highlight their counterparts in this chapter.

Recall and Forthcoming Terminology/Notation

In Chapter 2, we have denoted by P ⊆ Rp the simulator input space. Equation

(5.13) shows that, for any of the six locations L of interest, we have here P = R8.

The simulator input space has therefore dimension p = 8, by construction equal

to the number r of PCs used to generate morphologies via (5.10). Using the same

notation of Chapter 2, we denote a general input of the simulator by x ∈ Rp.

In order to build an emulator of each map fL(·), we need the actual simulated

response on a small number n of inputs. We call these design points and denote

them by x1, . . . ,xn ∈ Rp. The index i = 1, . . . , n will refer to them or to associated

quantities. The morphologies associated with the design points will be called

design morphologies, and denoted by M1, . . . ,Mn (i.e., Mi := M(xi) with the

notation of equation (5.10)). The index j = 1, . . . , p will be used to refer to

quantities associated with the PCs (e.g., the components of an input x ∈ Rp).

180 5. Greenland Ice Sheet Reconstruction During LIG

Our design is built in two waves. Each wave aims at assessing different properties of

the maps f
L
(·), as we explain below in Subsection 5.5.1 and Subsection 5.5.2. Before

doing that, however, we provide a brief account of the simulation set-up.

All climate simulations are forced with greenhouse-gas values and orbital forcing which

are appropriate for the time 125 kya, peak of the LIG. A 125 kya control simulation is

initially run, with modern-day GrIS configuration, for 400 model years: this ensures

that quasi-equilibrium conditions between the atmosphere and the upper ocean are

reached. The simulations of interest for this work, with modified GrIS configuration,

are then run on from the end of the previous “spin-up” simulation, for additional

70 model years. The average of the last 50 years is computed. As last step, δ18O

simulated values from a PI control simulation, set-up with atmospheric gas composition

appropriate for the year 1850, are subtracted from the LIG-simulated outputs obtained

above. The final values used represent therefore LIG minus PI anomalies.

5.5.1. Wave 1

The aim of the first wave of simulations is to generate design morphologies that are

well-scattered within the region of space that the emulator is required to explore. To

accomplish the task, we use a quasi-random sample from the prior distribution (5.12).

This is obtained in the following way:

1. We generate a Halton sequence {x̃i} ⊂ [0, 1]p of well-scattered points in the

p-dimensional unit cube (p = 8);

2. We then consider the sequence {xi} ⊂ Rp obtained by applying the inverse of a

N
(
0, σj

2
)

cumulative distribution function to the jth component of each vector

x̃i, for j = 1, . . . , p (values of σj in Table 5.3).

Halton sequences (Kocis and Whiten [1997]) are particular low-discrepancy sequences:

these have been briefly introduced in Chapter 4, Section 4.5, and serve the purpose of

systematically scattering points within the unit cube, ensuring that no region of space

is left uncovered, and that no pair of points are too close to each other. More on low-

discrepancy sequences can be found in Santner et al. [2003, Chap. 5]. The transfor-

mation used in point 2 above on the original Halton sequence yields design points

5.5. Experimental Design 181

xi with the correct variance along each PC, and whose corresponding morphologies

systematically cover different GrIS scenarios for 125 ka. We observe that, essentially,

the design points form a sample of a multivariate normal distribution.

Before a point xi ∈ Rp is accepted as design point, we carry out a basic plausibility test

on the maximum height of the associated morphology. Specifically, we first compute

the sample mean m̂ and sample standard deviation ŝ of the set of maximum heights

of the 14 original morphologies. Hence, we accept the parameter xi if and only if

the maximum height of the corresponding morphology is less than m̂ + 4ŝ. From the

sequence {xi}, we extract the first 64 elements that satisfy this criterion, and run

the corresponding climate simulations17. Two of the climate simulations crashed for

unknown reasons and were consequently omitted from the analysis. The experimental

design associated with the first wave of simulations thus consists of 62 elements.

5.5.2. Wave 2

The aim of the second wave of simulations is to test how the simulator δ18O response is

affected by small changes in the morphologies. For this, we undertake seven additional

simulations, corresponding to morphologies specially designed for the task. Hence, a

total of n = 62 + 7 = 69 design points xi ∈ Rp form the full experimental design. One

of the additional design morphologies is chosen on the basis of the results provided by

the six emulators calibrated on the first wave of simulations only. While details on

the emulator calibration will be provided in the next Section 5.6, we illustrate here

how the emulator results from the first wave inform the choice of the additional design

points/morphologies, in order to give now a full overview of the complete experimental

design used in the rest of this work.

Details of the seven additional design points xi and morphologies Mi associated to

the second wave of simulations (i = 62, . . . , n = 69) are given below. Reasons for the

choices are provided immediately after.

17 The process of running the simulations was not carried out by myself, the author of this work.
I would like to renew here my thanks to Irene Malmierca, PhD student at the British Antarctic
Survey, for carrying out the simulations and extracting the simulated δ18O values at the six locations
of interest.

182 5. Greenland Ice Sheet Reconstruction During LIG

1. The design point x63 maximises the first-wave emulator probability of hitting the

data intervals provided in Table 5.1, where the lower bounds for Camp Century

and DYE3 are set to 1‰ and 2‰, respectively. The design point x63 happens

to be significantly closer to x60 than to any of the other design points of the first

wave (xi for i = 1, . . . , 62).

2. The design point x64 is chosen on the straight line between x60 and x63, with

distance from x63 equal to twice the distance from x60.

3. The design point x65 is obtained as small perturbation of x3: the jth component

of x3 is perturbed by an instance of a uniform random number between −σj/10

and σj/10 (values of the PC standard deviations σj shown in Table 5.3).

4. The design points x66 and x67 are obtained, respectively, from x26 and x50,

through the same procedure used to obtain x65 from x3.

5. The design point x68 is essentially identical to x60 (height difference between

M68 and M60 always smaller than 4 cm).

6. The design point x69 is essentially identical to x63 (height difference between

M69 and M63 always smaller than 0.3 mm).

Choice 2 aims at assessing the changes in the simulator response to inputs that are

one, two, and three units apart from each other. Choices 3 and 4 intend, more

generally, to assess changes in the simulator response to relatively small perturbation

of inputs which belong to different regions of the input space. Finally, choices 5 and 6

are adopted to test the chaoticity of the system. That is, we want to test whether

morphologies that are completely equivalent from the physical point of view, but not

identical, yield essentially indistinguishable outputs via the climate model. The values

in Table 5.4 show, unequivocally, that this is not the case. On this basis, we introduce

observational variance during the emulator calibration phase, as the following section

explains.

In Figure 5.10, we show the results of the n design simulations, in per-mille anomalies

with respect to PI. Colour bands identify the ranges of δ18O anomalies from records,

as provided in Table 5.1. It can be appreciated that, for each pair of locations, there

5.6. Calibration of the Six Emulators 183

NEEM NGRIP GRIP GISP2 CC DYE3

δ18O ‰ δ18O ‰ δ18O ‰ δ18O ‰ δ18O ‰ δ18O ‰

x60 Output 3.51 3.17 2.08 2.72 2.61 4.60

x68 Output 2.92 2.65 1.87 2.46 2.37 4.14

x63 Output 2.94 2.43 1.94 2.59 2.42 4.75

x69 Output 3.00 2.60 2.17 2.83 1.63 4.62

Table 5.4: Per-mille δ18O outputs of two pairs of simulations, performed to investigate
potentially chaotic behaviour of the simulator. Each pair is run on physically identical input
morphologies (surface height smaller than 4 cm for the top pair, and 0.3 mm for the bottom
pair). Results differ significantly (compare to overall ranges of simulated δ18O anomalies in
Figure 5.10), confirming the chaotic nature of the simulations.

are always design simulations matching the records at both sites. Further inspection

reveals that there are eight simulations which match the records on five of the six sites

simultaneously, while there is none that matches the records at all six sites.

5.6. Calibration of the Six Emulators

On the basis of the results provided by the n design simulations, we fit one emulator

at each of the six sites of interest. We follow the same procedure, independently, to fit

each emulator: below we explain and justify the choices we make. As done so far, we

denote by xi ∈ Rp the n design points, and further denote by yi ∈ R the corresponding

simulated δ18O anomalies, i = 1, . . . , n.

5.6.1. Mean and Covariance Functions

To specify the prior emulator mean, we need to choose a set of basis functions of the

inputs x ∈ Rp (recall equation (2.4) in Chapter 2). To decide on the form of the basis

functions, we perform, independently at each site, a multiple linear regression which

explains yi as linear combination of the p components of the vector xi. In all six cases,

184 5. Greenland Ice Sheet Reconstruction During LIG

−2 0 2 4 6

0

1

2

3

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

0 1 2 3

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

−1 1 3 5

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

GISP2

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

DYE3

−1
0
1
2
3
4
5

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

● ●

−2
0
2
4
6
8

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

Camp

Century

●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

GRIP
●

●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

0

1

2

3

●

●

●

●

●
●

●

●

●
●

● ●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

−1
0
1
2
3
4

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●
●●

NGRIP
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●●

●
● ●

NEEM

−1 1 3

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ● ●

●

●

● ●

●●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

−2 2 6

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●

●

●

● ●

● ●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

● ●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●●

0 1 2 3

−2

0

2

4

6

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ● ●

●

●

●●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●● ●

Figure 5.10: Simulated per-mille δ18O anomalies for the n = 69 design morphologies.
Results are shown for pairs of locations. Shaded light blue bands correspond to the ranges
reconstructed from ice-core records, using the minimum/maximum values shown in Table 5.1.

the linear model returns unstructured residuals and adjusted-R2 always greater than

0.89. In light of the fit, we choose a linear basis, h(x) = (1,xT)T ∈ Rq, with therefore

q = p+ 1 = 9. Equivalently, we specify the prior mean as follows:

m(x) = β0 + β1x1 + . . .+ βpxp, x ∈ Rp. (5.14)

The reader may recall that the idea of first exploring a simple linear regression was

as well used in the development of the emulators of Chapter 4. In that case, however,

5.6. Calibration of the Six Emulators 185

the fit was poor, and highlighted the need to include quadratic components. In the

case of this chapter, a linear fit is on the contrary highly satisfactory.

As prior covariance function c(·, ·) (recall equation (2.5) in Chapter 2), we use the

squared exponential (reasons for the choice given in Remark 5.1 below), with additional

observational variance – the so-called “nugget” term, Section 2.8. That is, we consider:

c(x,x′) = exp
(
−(x− x′)TD−1(x− x′)

)
+ ν δx,x′ , x,x′ ∈ Rp, (5.15)

where D is the p×p diagonal matrix whose diagonal elements are the squared correla-

tion lengths d1
2, . . . , dp

2, and δ·,· is the Kronecker delta function in (2.109). The

procedure to estimate simultaneously the correlation lengths dj and the nugget ν

is discussed in Subsection 5.6.2. Before detailing this, we make two remarks about

choice (5.15).

Remark 5.1. Correlation functions other than the squared exponential were tested

during the calibration phase of the emulator. Specifically, we carried out experiments

using the absolute exponential correlation function (expression (1.59)), and the Matérn

correlation functions with parameter ν = 3/2 and ν = 5/2 (expressions (1.57) and

(1.58); notice that the parameter ν is here clearly distinct from the nugget term used

in (5.15)). In all cases, the mean and variance of the emulator predictions, as well as

cross-validated estimates of the emulation error, were very similar. Given the apparent

linear response highlighted at the beginning of this section, we chose the smoothest

covariance function, i.e., the squared exponential.

Remark 5.2. The choice of adding a nugget term was made on the basis of the

second wave of simulation results, which highlighted a chaotic simulated response of

the climate model: compare to the values in Table 5.4 and the discussion is Subsec-

tion 5.5.2. The emulator fitted after the first wave of simulations, and whose results

were used to identify the design point x63 as explained in Subsection 5.5.2-point 1,

was built following the same procedure presented here, with the only constraint of zero

observational variance (ν = 0).

186 5. Greenland Ice Sheet Reconstruction During LIG

5.6.2. Estimation of Correlation Lengths and Nugget Term

To complete the emulator calibration, the correlation lengths dj > 0 (j = 1, . . . , p)

and the nugget term ν > 0 appearing in equation (5.15) must be estimated. We detail

below the procedure we use.

First, we observe from Figure 5.7 that all PCs have comparable size, as a consequence

of being normalised with respect to the same scalar product. This implies that changes

of similar magnitude in any two components of an input x ∈ Rp yield changes of similar

magnitude in the corresponding ice morphologies, built via the linear combination in

equation (5.10). Following this reasoning, we assume the same correlation length for

all the eight dimensions of the input space. That is, we impose:

d1 = · · · = dp =: d . (5.16)

This reduces the total number of parameters to estimate from nine to two.

At this point, to estimate the pair (d, ν), we employ a similar procedure to the one

used to estimate the nugget and correlation lengths of the emulators of Chapter 4:

maximise a cross-validated estimate of the emulator density of the data (xi, yi). This

time, however, we do not use any prior distribution on the pair (d, ν). Specifically,

for each i = 1, . . . , n, we consider ρ
(i)
d,ν(·), the posterior density function at xi of the

emulator built on the data set where the pair (xi, yi) has been left out. Hence, we

evaluate this density on the known output yi, and consider the log-likelihood:

g(d, µ) = log

(n∏
i=1

ρ
(i)
d,µ(yi)

)
=

n∑
i=1

log
(
ρ

(i)
d,µ(yi)

)
. (5.17)

The function g(·, ·) represents a cross-validated measure of the goodness of the

emulator fit, when correlation lengths d and nugget term ν are used. We therefore

choose the parameters d and ν which maximise the function g.

The maximisation is carried out using the Matlab nonlinear solver fminunc. The

fminunc solver performs unconstrained optimisation, hence the maximisation is carried

out on the logarithm of the variables d and ν. We perform the maximisation multiple

times, from different starting points, in order to minimise the risk of only identifying

5.6. Calibration of the Six Emulators 187

NEEM NGRIP GRIP GISP2 CC DYE3

Corr. Length (d) 208.14 309.40 397.58 322.93 3,117.3 513.40

Nugget Term (ν) 0.45 0.35 0.28 0.53 2.54× 10−4 0.09

Table 5.5: Location by location, the values of the correlation length (d) and the nugget
term (ν) which are used to build the corresponding emulator. The estimation is carried out
through the LOOCV procedure explained in Subsection 5.6.2.

a local extremum.

We report in Table 5.5 the estimated values of the correlation length d and nugget ν, for

the six locations of interest. With the only exception of Camp Century, the estimated

d are of comparable magnitude to the standard deviations σj of the first PCs, as shown

Table 5.3. In the case of Camp Century, the estimation returns instead a relatively

large d. After considerations, we decided to retain the value: as we have discussed

in Subsection 2.8.2, the large d denotes that the emulator model approaches a linear

model, which would still represent an appropriate limit case given the considerations,

in Subsection 5.6.1, on the apparent underlying linear response of the simulator. The

emulators at all six sites are validated in the next section.

5.6.3. Emulator Validation

Before using the emulators as stochastic surrogates of the simulator, it is important to

validate them. To assess the capability of each emulator to make correct predictions,

we appeal again to the idea of LOOCV, using, however, a different measure than the

one in (5.17): we consider standardised cross-validated residuals for each site.

For each i = 1, . . . , n, we remove the ith observation (xi, yi) from the data set, and fit

an emulator with nugget and correlation length values given by Table 5.5. Let ŷi be

the emulator prediction for the left out element of the data set, and ŝi the emulator

standard deviation associated with the prediction. We then define the standardised

residual as follows:

ε̃i =
ŷi − yi
ŝi

, i = 1, . . . , n . (5.18)

188 5. Greenland Ice Sheet Reconstruction During LIG

Figure 5.11: Cross-validated standardised residuals of the emulators, as defined in
equation (5.18), as function of the corresponding simulator outputs. Shaded bands highlight
values between −2 and 2, where around 95% of the standardised residuals are expected to
lie.

In the terminology of Bastos and O’Hagan [2009], ε̃i would be called (cross-validated)

individual prediction error. Given the emulator distribution (t-Student with n − q =

69 − 9 = 60 degrees of freedom), we expect the standardised residuals of a good

emulator to be distributed, roughly, as an independent sample of a standard normal.

In Figure 5.11 we show the plot of the standardised residuals as function of the

simulator outputs, for all six emulators. The result is satisfactory. The shaded bands

5.7. Identifying Record-Compatible Morphologies 189

highlight the interval [−2, 2], where we expect to find around 95% of the standard-

ised residuals. In a sample of size 69, this translates into approximately 3-4 elements

outside the band, as the case of all the panels in Figure 5.11 is (only NEEM displays

five elements outside the band, with one element very close to the border). Moreover,

no particular structure can be identified in the plots. The only exception may be

represented by the GRIP and GISP2 plots, two very close sites, where a trace of

decreasing relationship may be identified in the lower part of the plots. The sign is

however weak, and the relatively small number of design points does not exclude that

the behaviour may be ascribed to intrinsic randomness.

Overall, our validation suggest that all the six emulators built represent reliable statis-

tical models, which can not only make accurate predictions, but also accurately assess

the uncertainties around them.

5.7. Identifying Record-Compatible Morphologies

The emulators built and validated in Section 5.6 allow to efficiently predict, at the six

locations where ice-core records are available, the δ18O simulated response to any ice

sheet morphology. In this section we illustrate how we compare these predictions to

the records, in order to identify morphologies that are compatible with them. Such a

procedure is called history matching, a term, originally, coming from the oil industry

(compare to Subsection 2.1.1 in Chapter 2). Clearly, to accomplish the aim, we need

to take into account both the uncertainty affecting the emulator predictions and the

one affecting the δ18O records.

To carry out the comparison, we use the so-called implausibility measure (details

below), which quantifies the extent to which a given morphology matches the records.

To the best of the author’s knowledge, the idea of an implausibility measure was first

introduced in Craig et al. [1997], in the context of hydrocarbon reservoirs. Since then,

it has been employed in a variety of other areas, such as galaxy formation (Vernon

et al. [2010]) or epidemiology (Andrianakis et al. [2017]).

Albeit applied to different contexts, the previous works all share the same framework:

a computer simulator and historical observations are available, and the aim is to locate

190 5. Greenland Ice Sheet Reconstruction During LIG

a region of the simulator input space whose corresponding outputs match the observa-

tions. This aim is usually achieved through several “waves” of simulations, as explained

in the following. After a first wave, an emulator is built and an implausibility measure

is employed to rule out regions of the input space where the emulator predictions and

the observed data are unlikely to be compatible. Hence, additional simulations are run

within the “not-ruled-out-yet” (NROY) region, and a new emulator is trained which

will give more precise predictions in the region. This procedure (known as refocusing,

Craig et al. [2001]) is iterated a number of times, till a sufficiently small region is

identified.

In the present work, carrying out the refocusing procedure described above is

unfeasible, due to the notable amount of time that each simulation requires (15-20

days). Hence, after a single wave, we use the implausibility measure to directly select

morphologies which are likely to be compatible with the records, rather than to discard

incompatible ones and later refocus. We provide the details of the measure and of our

procedure below.

Let m̂
L
(x) and v̂

L
(x,x) be the mean and variance of the δ18O emulator predic-

tion at the ice-core location L, for the morphology associated with input x ∈ Rp.

Further, denote by R
L

the most likely ice-core record δ18O anomaly at the location,

and by R−
L

and R+
L

the associated lower and upper bounds: for all locations, values of

R−
L
< R

L
<R+

L
are provided in Table 5.1. The idea behind the implausibility measure

is to quantify the mismatch between the emulator mean prediction m̂
L
(x) for input

x ∈ P and the ice-core record R
L
, relative to the uncertainty affecting both sources.

Computing this as ratio between the mean and the standard deviation of the “random

variable” emulator minus record, independence of the two sources reasonably leads to

the following definition:

IL(x) =

∣∣m̂
L
(x)−R

L

∣∣√
v
L
(x,x) + Var(Rec

L
)
. (5.19)

The quantity Var(Rec
L
) is meant to provide a measure of the “variance” associated

with the ice-core record. Clearly, information about the record does not come in the

form of an abstract random variable. However, based on the analogy that the variance

5.7. Identifying Record-Compatible Morphologies 191

of a uniform random variable on an interval of length l is l2/12, we compute the term

as follows:

Var(Rec
L
) =

{ (
R+
L
−R

L

)2
/3 if m̂

L
(x) > R

L(
R
L
−R−

L

)2
/3 if m̂

L
(x) < R

L

. (5.20)

The factor 1/3 rather than 1/12 is a consequence of the fact that, in equation (5.20),

we deal with the two subintervals rather than the whole interval. In particular, if

the interval is symmetric (R+
L
− R

L
= R

L
− R−

L
), then we recover the variance of

the uniform distribution. We note that an additional term is sometimes included in

the denominator of equation (5.19), accounting for discrepancy between the simulator

and the physical process being simulated (e.g., Vernon et al. [2010], Williamson et al.

[2013]).

Equation (5.19) provides a measure of the emulator-record mismatch at location L. In

order to provide a comprehensive measure of the mismatch at all locations, we define

I(x) = max{IL1(x), . . . , IL6(x)}, (5.21)

where L1, . . . , L6 are the six ice-core sites in question. We then classify a morphology

represented by x ∈ R8 as record-compatible (RC), if the following two conditions hold:

1. I(x) < 2;

2. At least 95% of the morphology grid cells, weighted by their respective areas,

have an height between m̃− 2s̃ and m̃+ 2s̃, where m̃ and s̃ represent the sample

mean and standard deviation of the set of heights of the N original morphologies

at the cell.

The combination of both criteria ensures that RC morphologies pass a general physical

plausibility test, in addition to being compatible with the available ice-core records. In

the Matlab Appendix F.3, we report the two functions separately implementing each

of the two previous conditions.

192 5. Greenland Ice Sheet Reconstruction During LIG

5.8. Results

In this section we illustrate the results of our comparison between emulator predictions

and ice-core records, in terms of plausible GrIS morphologies which match the records.

We carry out the comparison in three different scenarios, as explained in the following

subsection.

5.8.1. A Scenarios-Based Approach

In order to identify RC morphologies via the implausibility measure I(·) in (5.21),

values of R−
L
< R

L
< R+

L
must be specified at all six ice-core sites. As explained in

Section 5.2, however, lower bounds for the δ18O anomalies at Camp Century (CC)

and DYE3 cannot be easily inferred from the records. While Table 5.1 reports the

present-day value (i.e., a zero anomaly) as lower bound at these two sites, in this

section we acknowledge the aforementioned uncertainty by considering three different

scenarios. We name these according to how close the CC and DYE3 lower bounds are

set to the central estimates at the two sites (R
CC

= +2.5‰ and R
DYE3

= +4.7‰).

1. Loose scenario (only imposing non-negative anomalies, as Table 5.1):

R−
CC

= 0‰, R−
DYE3

= 0‰. (5.22)

2. Middle scenario:

R−
CC

= 1‰, R−
DYE3

= 2‰. (5.23)

3. Tight scenario (R−
L

= R
L
− 1‰):

R−
CC

= 1.5‰, R−
DYE3

= 3.7‰. (5.24)

In Subsection 5.8.2 and Subsection 5.8.3, we investigate and compare properties of the

RC morphologies in the three scenarios.

5.8. Results 193

5.8.2. Posterior Densities (Record-Compatible Morphologies)

In Subsection 5.4.2, we introduced a prior distribution on the set of all morphologies,

here identified with Rp, p = 8: the prior is multivariate normal, as specified in (5.12).

In our analysis, we represent the prior distribution by a sample of N = 107 morpholo-

gies, drawn randomly from (5.12). Each of these N morphologies is classified as either

being RC or not, according to the criterion described in Section 5.7. The resulting RC

morphologies hence form a sample from the posterior distribution, which incorporates

the constraints from the data (ice-core records). In this section we analyse the posterior

in the three scenarios introduced above, and compare it to the prior distribution.

In the loose scenario, where the imposition of the record compatibility at Camp

Century and DYE3 has little effect, the RC morphologies represent 7.37% of the

morphologies sampled from the prior distribution. The percentage reduces when

tighter constraints are imposed: it approximately halves (3.74%) in the middle

scenario, and further decreases to 0.95% in the tight scenario.

Figure 5.12 illustrates how the posterior distribution compares to the prior, in the

loose and tight scenario cases. While all these distributions are eight-dimensional,

we plot two-dimensional sections of the subspace generated by the first three PCs

to ease the interpretation. The grey shaded background shows the prior Gaussian

density. The coloured lines instead represent contours of the posterior densities (red

for tight scenario, blue for loose scenario), with labels indicating the percentage of RC

morphologies that are selected from the original prior sample. As a general pattern,

it can be appreciated that the posterior distribution in the loose scenario is wider

and closer to the prior than the posterior distribution in the tight scenario. This is

not surprising. However, the particular directions in which the shifts from prior to

posterior happen, alongside the PC shapes, are informative of the main patterns that

RC morphologies may display.

Particularly in the tight scenario case, we see that areas characterised by a higher

density of RC morphologies tend to have a positive first PC score (this is clearly

evident in the subplot of PC1-PC3, but can also be observed in the PC1-PC2 subplot).

In light of the “North-South” pattern shown by the first PC, this seems to suggest

the following: imposing the compatibility with records leads to ice morphologies with

194 5. Greenland Ice Sheet Reconstruction During LIG

Figure 5.12: Comparison between prior and posterior densitites in the morphology space,
represented by R8. For convenience, two-dimensional projections are shown, in the subspace
generated by the first three PCs. Along the diagonal: illustration of the PCs. Off-diagonal
plots: Gaussian prior illustrated by shaded grey background; contours of the posterior density
shown in the case of the loose (blue) and tight (red) scenarios. Labels indicate the percentage
of RC morphologies, along the specified contour. Different contour levels are shown in
symmetric plots.

lower surface heights in the south and higher surface heights in the north, than the

average morphology generated through the prior.

Similarly, the pair of PC2-PC3 subplots in Figure 5.12 reveals critical information.

We see that PC2 scores of RC morphologies are for the vast majority positive in the

tight scenario (red), and seem to be generally negative in the loose scenario (blue). To

5.8. Results 195

interpret this information, notice that the second PC has almost everywhere negative

values, particularly in the west-southern block of Greenland. Hence, the previous

consideration suggests that the strong constraint on DYE3 and Camp Century imposed

in the tight scenario induces a remarkable loss of ice in the west-southern block.

However, when almost no constraint at DYE3 and Camp Century is imposed (loose

scenario), the typical surface elevation in the south increases, reflecting the presence

of more ice.

We hypothesise here that the cause of significantly lower south elevation in the tight

scenario is to be mainly ascribed to the constraint provided by the DYE3 record,

rather than to the one provided by Camp Century. Notice, indeed, the geographical

position of the two sites (Camp Century, north; DYE3, south), and that the record

at the DYE3 location is remarkably high (4.7‰ anomaly). In a scenario where the

uncertainty around this last value is significantly reduced, as the case of our tight

scenario is, it would not be surprising that morphologies compatible with the record

were characterised by remarkable ice loss near the site. This hypothesis could be tested

by running a separate analysis where only the uncertainty concerning the DYE3 record

is reduced, as opposed to the analysis we have presented here which simultaneously

tightens the uncertainty of the Camp Century and DYE3 records.

5.8.3. Shape and Uncertainty of RC Morphologies

In this final part of Section 5.8, we investigate directly physical characteristics of RC

morphologies, and how these compare to general characteristics of prior morpholo-

gies. We mainly refer to Figure 5.13. This shows both mean and standard deviation,

computed grid cell by grid cell, of the two sets of prior and RC morphologies, in the

three scenarios.

We start by looking at the top row, which illustrates the variability characterising the

different sets of morphologies. In the prior case (left), most of the variability, and

thus of the uncertainty, is displayed within two regions: one in the north, one in the

centre-south. We can appreciate how the variability in both regions is significantly

reduced once the constraints from the data are taken into account. However, whilst

little difference is highlighted in the north between the three scenarios, the imposition

196 5. Greenland Ice Sheet Reconstruction During LIG

Prior Loose Middle Tight

Prior Loose Middle Tight

Figure 5.13: Plots represent the cell-by-cell standard deviation (top row) and average
(bottom row) of the surface elevation of different sets of morphologies. N = 107 morphologies
sampled from the prior distribution are used in the plots on the left of the vertical lines;
only the subset of these which are RC are used for the posterior, in the three scenarios on
the right. To ease visual interpretation, in the bottom-right plots (concerning means) we
show the difference between posterior and prior. The loose scenario corresponds to the best
current data, the middle and tight scenarios illustrate results which could be achieved, if
better constraints on DYE3 and Camp Century were available.

5.9. Conclusions 197

of tighter record constraints clearly reduces the uncertainty on the southern surface

elevation of RC morphologies.

To investigate the directions in which a higher degree of confidence in reconstructed

surface elevation is attained, when going from looser to tighter scenarios, we can

look at the prior and posterior average morphologies, in the bottom row. To ease the

interpretation, we replace the raw posterior means with their difference from the prior.

In the loose scenario, the compatibility with records imposes lower-than-prior average

surface height in the central and northern parts of Greenland. It is interesting to notice

that, in this case, the region characterised by lower elevations goes through the four

sites where a non-negligible constraint is imposed (NEEM, NGRIP, GRIP, GISP2), but

does not include DYE3 and Camp Century. This changes in the other two scenarios.

What mainly characterises the transition from the loose, to the middle, to the tight

scenario is a progressive and distinct decrease of the southern surface elevation. In the

last case, remarkable ice loss with respect to the prior is displayed in the area around

and just north of the DYE3 site.

In Subsection 5.4.3 we have explained how to associate a land-ice mask to a given

morphology. Visual inspection of the masks associated with morphologies compatible

with the tight scenario reveals that the majority of them presents a two-dome structure,

with a large ice-dome in the north and a smaller one covering DYE3 in the south. A

similar structure has been conjectured by other studies (Calov et al. [2015], Langebroek

and Nisancioglu [2016]). Our emulator-based approach shows that such a pattern

for the LIG GrIS may be recovered, if better constraints on the Camp Century and

(especially) DYE3 records were available.

5.9. Conclusions

In this chapter, we have tackled a problem of central importance in paleoclimate: the

one of reconstructing the past Greenland ice sheet (GrIS) morphology, specifically

during the Last Interglacial period. The raising interest in the problem is motivated

by the uncertainties surrounding the estimates of future sea-level rise, and the contri-

bution to the latter stemming from the melting of the GrIS.

198 5. Greenland Ice Sheet Reconstruction During LIG

To approach the problem, we have merged information from ice-core records and

climate simulations, using the statistical setting of GP emulation to compensate for

the simulator expensiveness. Specifically, we have independently built emulators,

predicting the δ18O response to different GrIS morphologies, at the six sites where ice-

core records are available. We have then compared the emulator predictions, on a large

sample of prior morphologies, to the available records, and identified record-compatible

morphologies. Our scenario-based approach, performed to face the large uncertainty of

some records, has allowed to demonstrate the importance of well-constrained records.

It suggests that more certain records at the DYE3 and Camp Century sites are compat-

ible with morphologies characterised by low surface elevation in the south; also, such

records would remarkably reduce the elevation uncertainty in this area. In particular,

there are glimpses that a better dated DYE3 record would be important to make more

certain inference about the past Arctic ice sheet and climate.

We remark that, in this chapter, we have not directly touched upon the issue of

translating our results concerning the past GrIS morphology into results on sea-level

rise contribution. This is a complex issue, as the extensive literature in the field

(partly reviewed in Subsection 5.1.1) reveals. In fact, there is no simple way to

estimate the ice volume corresponding to a given morphology. The ice pressure on

the underlying bedrock is enormous, and causes substantial decreases in the bedrock

elevation. Estimating the extent of the compression for a general morphology is a

challenging physics task: it depends on the elasticity of the rock at different locations,

and of course on the amount of above ice in large areas around the location.

Results about approximate ice-volume losses corresponding to our three scenarios have

been investigated by the author fairly in depth, under the simplistic assumption of fixed

bedrock. The description of the methods and the corresponding results have been

reluctantly omitted from this chapter due to the urgency of terminating the present

work, as well as to limit the overall length of the latter. Nonetheless, we believe that

the work illustrated in the chapter, accounting for various uncertainties via the use of

emulation methods, may trigger further collaborations with rock modellers to obtain

precise estimates of ice volumes corresponding to our scenarios. These, in turn, may

be translated into estimates of the GrIS contribution to the last interglacial sea-level

rise, both globally and locally. This still represents a highly debated topic, which

5.9. Conclusions 199

is recently benefiting of the contributions of researchers from an increasing number

of disciplines, called together to face the drastic climate changes that our planet is

experiencing.

200 5. Greenland Ice Sheet Reconstruction During LIG

Concluding Remarks

Contributions of This Work

In this thesis we have offered an overview of Gaussian process (GP) emulation: we

have analysed its framework and properties in Part I and have provided two examples

of its relevance in tackling climate problems in Part II.

During the last three decades, a large amount of works have been published in the

fields of GP emulation and more generally Uncertainty Quantification (UQ). These

have been reviewed at the beginning of Chapter 2. Due to obvious length and time

constraints, not all such aspects could be presented in detail in this work. However,

in Part I of this thesis, we have offered a thorough presentation of the theory behind

the construction of GP emulators. To this aim, we have used a formal probabilistic

setting as solid ground to justify all the steps involved in the construction of a GP

emulator. The case where observational variance is added to the emulator has also

been investigated. Departing from the literature, we have provided an interpretation

of the relevant formulas as being consequence of a component split of the emulator,

derived via continuity arguments.

Motivated by the need to reduce the dimension of the simulator output space

before carrying out emulation, in Chapter 3 we have proposed a dimension-reduction

technique which is appropriate to the nature of most climate simulator outputs. While

operating on elements of Rs, our procedure interprets these as elements of the Hilbert

space of real functions defined on the sphere S2 ⊆ R3, and therefore adapts classical

PCA ideas to a geometry of relevance to the problem.

In Part II of this thesis, the stress of this work has been on applications of the

202 Concluding Remarks

GP emulation framework to climate reconstruction problems. We have in partic-

ular tackled two problems, both of central importance for the climate community. In

Chapter 4, we have focussed our attention on the mismatch between simulated ocean

temperatures and ocean temperatures reconstructed from geological records, during

the mid-Pliocene (around three million years ago). As opposed to previous works on

the same topic, the use of the emulation framework has allowed us to incorporate in

the analysis the effects of the varying orbital forcing characterising the mid-Pliocene.

The nature of the emulator as stochastic process has allowed us to sample trajecto-

ries from its distribution, at random input times, and thus to synthetically replicate

the sequence of steps employed by geologists to estimate the mid-Pliocene temper-

ature from time series of geological records. This way, we have shown that part of

the currently observed data-model mismatch can be ascribed to the orbital variability

characterising the mid-Pliocene, by showing that the mismatch is indeed reduced when

this is taken into account.

In a second example, in Chapter 5, a problem directly linked to the current sea-level rise

issue has been undertaken: the one of reconstructing the morphology of the Greenland

ice sheet, during the Last Interglacial. Thanks to the use of emulation techniques, this

has been treated as an inverse problem: the employed simulator has been used to

predict δ18O anomalies, at six sites, corresponding to various morphologies; hence, the

morphologies whose simulator outputs matched ice-core records have been examined.

Our contribution here is twofold. On the statistical side, our approach shows an

example where GP emulation is performed on a space of functions (representing ice

morphologies), rather than on a finite-dimensional space of few, independent parame-

ters which are tuned as simulator inputs. On the applied side, our approach has allowed

to combine, for the first time, ice-core records and climate simulations in a compre-

hensive way, widely exploring the space of ice morphologies. We find that, especially

in the South of Greenland, the records would suggest a remarkable reduction of ice

with respect to previous reconstructions. Such a conclusion cannot however be reached

with a sufficiently high level of confidence, till better constrained ice-core records at

the DYE3 and Camp Century sites are available.

Concluding Remarks 203

Future Directions of Investigation

At the end of each of the two chapters in Part II, we have highlighted future directions

of investigation that this work opens up. Within the setting of Chapter 4, these

consist in the possibility of using the stochastic nature of the emulator in conjunc-

tion with recent data sets of marine records, characterised by the fact that each

record is associated with a past time, with relatively low uncertainty. Our sampling

procedure could straightforwardly be adapted to this case, and would be able to

naturally incorporate the unavoidable time uncertainties associated with the data.

Such research could enable a better understanding of the climate models employed

and allow the community to better identify potential biases in these, before they are

used for forecasting.

Within the setting of Chapter 5, one line of great climatological relevance that our

work opens up is the translation of our scenario-based compatible morphologies into

estimates of scenario-based Greenland ice sheet contribution to the LIG sea-level rise.

As mentioned at the end of the chapter, this calls for the collaboration with physicists

and rock modellers, to account for the elastic behaviour of the bedrock below the ice

sheets.

Various lines of further investigations may also be pursued under the purely statistical

point of view. We notice, for example, that the classical choices of prior covariance

functions used in emulation, introduced in Subsection 1.4.4, only allow positive correla-

tions. Covariance functions allowing negative correlations are used in other contexts,

such as in kriging: examples of trigonometric correlation functions, or of wave correla-

tion functions displaying a damping and oscillating behaviour, are for example reported

in Diggle and Ribeiro [2006]. However, to the best of the author’s knowledge, the use of

prior covariances allowing negative values has not been a topic of investigation within

the GP emulation field.

A way to investigate this may be to define a measure of the goodness of GP emulator

predictions on a given set of test functions, when different prior correlations are used.

If f(x) is a function, x ∈ P where P is a bounded domain of Rs, and η
f
(x) is an

emulator of f(·) built on a specified covariance function, then a normalised measure

204 Concluding Remarks

to test how well η
f
(·) approximates f(·) may be the following:

µ(f, η
f
) =

1

|P|
E
[∫
P

(
η
f
(x)− f(x)

)2

dx

]
.

Weights may also be introduced, for example, to lower the mismatch impact at the

boundaries of the space, if needed. Hence, the measure µ(·, ·), or otherwise, can be

used to evaluate whether one covariance function systematically outperforms another,

when f(·) varies in a given space S of test functions. If this is a vector space, then the

linearity of the map

T : f 7→ η
f

and the good properties of µ(·, ·) may also allow to work on a basis only. Notice,

indeed, that

µ(cf, η
cf

) = c2µ(f, η
f
) ∀ c ∈ R ,

and µ(f + g, η
f+g

) can be easily estimated in terms of µ(f, η
f
) and µ(g, ηg) through

Cauchy-Schwarz inequality.

Before concluding, we mention another topic which may be object of further theoretical

investigation and which, at the same time, is of relevance in practical contexts. This

concerns the potential rise of identifiability issues in models with particularly large

correlation lengths. At the end of Chapter 2, we have only briefly touched upon the

issue, but we believe that the problem needs further investigation. This should also

aim at providing guidance in recognising and tackling the issue in practical contexts.

The previous point is only one of several examples which highlight the interplay

between sound theoretical investigations and practical applications, and it is surely

far from being the most relevant. This work in its entirety has aimed to stress

the importance of both components when tackling real problems in research, with

examples borrowed from my, the author’s, direct and necessarily limited experience.

Even more after the PhD, it is a strong belief of mine that the formalism and rigour

that mathematics and statistics provide are not only beautiful and elegant “per se”,

but they are as well of crucial importance to provide the correct guidance to practi-

tioners outside the maths community.

206 Concluding Remarks

Appendix

A. Results from Probability

In the following we state two basic results from probability theory, which have been

used in Chapter 2.

Lemma A.1. Let I, J ⊆ R be two real intervals and let g : I → J be a diffeomorphism

(i.e., g ∈ C1(I), g is invertible, and g−1 ∈ C1(J)). Let X be a random variable on I

with density f
X

: I → [0,∞), and consider the random variable Y = g(X). Then, Y

has density f
Y

: J → [0,∞) given by:

f
Y

(y) =
f
X

(
g−1(y)

)∣∣g′(g−1(y)
)∣∣ . (A.1)

Proof. We exploit the fact that a random variable Z with support S has density f(z)

if and only if

E
[
h(Z)

]
=

∫
S

h(z) f(z) dz , ∀h ∈ C(S,R) . (A.2)

Hence, for h ∈ C(J,R), we get:

E
[
h(Y)

]
= E

[
(h ◦ g)(X)

]
=

∫
I

(h ◦ g)(x) f
X

(x) dx

=

∫
J

h(y) f
X

(g−1(y))
1∣∣g′(g−1(x)

)∣∣ dy ,
where the last equality is obtained through the change of variables y = g(x). Given

the characterisation at the beginning, we see that (A.1) is indeed the density of Y .

208 Appendix

Lemma A.2. Let (Ỹ ,Y) ∈ Rk+n be a Gaussian vector, with mean and variance

accordingly partitioned as

µ =

(
µỸ

µY

)
∈ Rk+n, Σ =

(
ΣỸ Ỹ ΣỸ Y

ΣY Ỹ ΣY Y

)
∈ R(k+n)×(k+n). (A.3)

Let a ∈ Rn be a fixed vector. Then, the conditional distribution of Ỹ given Y = a is

still Gaussian, with mean µ
cond

Ỹ
and variance Σ

cond

Ỹ
given by

µ
cond

Ỹ
= µỸ + ΣỸ Y ΣY Y

−1 (a− µY) ∈ Rk, (A.4.a)

Σ
cond

Ỹ
= ΣỸ Ỹ −ΣỸ Y ΣY Y

−1 ΣY Ỹ ∈ Rk×k. (A.4.b)

Sketch of Proof. The proof only consists in applying the standard formula for

conditional densities,

p(ỹ |y) =
pjoint(ỹ, y)

pmarg(y)
, (A.5)

to the case where:

. pjoint(·, ·) is the density of a Gaussian random vector with mean µ ∈ Rk+n and

covariance matrix Σ, as in (A.3);

. pmarg(·) is the density of a Gaussian random vector with mean µY and covariance

matrix ΣY Y .

Hence, only (unpleasant) algebraic manipulations remain to be carried out, to recognise

the exponent of the resulting ratio as a quadratic form in ỹ − µcond

Ỹ
. To this aim, the

formula to invert a symmetric block matrix Σ needs to be used. The reader interested

in carrying out the calculations can find the formula in a number of undergraduate

textbooks, for example Horn and Johnson [2012, §0.7.3].

B. Results from Linear Algebra 209

B. Results from Linear Algebra

We denote by GLn(R) the General Linear group of order n on R: that is, the set of

all n× n real invertible matrices. The following Lemma has been used in Chapter 2,

specifically in Proposition 2.4.2 and Section 2.6.

Lemma B.1. Let B ∈ GLq(R) and A ∈ GLn(R). Let also U and V be two rectan-

gular matrices,

U ∈ Rq×n , V ∈ Rn×q .

Then, the matrix B + UAV ∈ Rq×q is invertible if and only if the matrix

A−1 + V B−1U ∈ Rn×n is invertible. In this case, it holds:

(B +UAV)−1 = B−1 −B−1U(A−1 + V B−1U)
−1
V B−1 . (B.1)

Proof. To prove the statement it is sufficient to check that the product between the

matrixB+UAV and the RHS of (B.1) returns the identity matrix of order q. Indeed,

being both matrices of order q, also also their product in reverse order will have to

give the identity matrix. For completeness, we report the computations below:

(B +UAV)
[
B−1 −B−1U(A−1 + V B−1U)

−1
V B−1

]
= Iq +UAV B−1 −U(A−1 + V B−1U)

−1
V B−1

−UAV B−1U(A−1 + V B−1U)
−1
V B−1

= Iq +UAV B−1

−U
[
In +AV B−1U

]
(A−1 + V B−1U)

−1
V B−1

= Iq +UAV B−1

−U A(A−1 + V B−1U) (A−1 + V B−1U)
−1
V B−1

= Iq +UAV B−1 −UAV B−1 = Iq .

As explained at the beginning, this completes the proof.

The following result is a classical one in linear algebra. In its simplest form, it ensures

that a real symmetric matrix admits a basis of orthogonal eigenvectors. We provide

210 Appendix

the following more general form, from Lang [1987, Chapter VIII, Theorem 4.3]. This

has been used in Chapter 3, Theorem 3.3.1, when deriving PCA with respect to a

general inner product on Rp.

Theorem B.2 (Spectral Theorem). Let A ∈ Rs×s be square matrix, and 〈·, ·〉 be a

positive definite inner product on Rs. Suppose that A, as linear operator from Rs to

Rs, is symmetric (self-adjoint) with respect to the inner product 〈·, ·〉. That is, suppose

that

〈Ax,y〉 = 〈x,Ay〉 ∀x,y ∈ Rs . (B.2)

Then, there exists a 〈·, ·〉-orthonormal basis of Rs, whose elements are eigenvectors of

the matrix A.

If B = {v1, . . . ,vs} is the basis of the theorem, orthonormal means 〈vi,vj〉 = δij.

C. Proof of Integrated Likelihood Formula 211

C. Proof of Integrated Likelihood Formula

Below we provide the expression of the marginal integrated likelihood of a vector y

with respect to the emulator posterior distribution, under the classical assumption

of a non-informative prior discussed in Section 2.6. As mentioned in Section 4.8,

this function is often maximised in the literature to estimate hyperparameters of the

emulator model. Although we have not directly used it in this work, we provide here

the expression and a proof of the formula, for technical reference.

The notation we use is the one of Chapter 2, which we briefly summarise as follows:

• ββ ∈ Rq, σ2 ≥ 0 are random;

• H ∈ Rn×q is a full rank matrix (rank(H) = q since we assume q < n);

• A ∈ Rn×n is a symmetric, positive definite matrix;

• Y ∈ Rn is a Gaussian random vector, Y |ββ, σ2 ∼ N(Hββ, σ2A).

In particular, the conditional density of Y given ββ, σ2 is as follows:

L∗
(
y |ββ, σ2

)
=

1

(σ2)n/2 |A|1/2
exp

[
− 1

2σ2
(y −Hββ)TA−1(y −Hββ)

]
. (C.1)

Proposition C.1. Under the previous notation, assume an improper, non-informative

prior for the pair (ββ, σ2):

π(ββ, σ2) ∝ 1

σ2
. (C.2)

Also assume that the vector y ∈ Rn has been observed as a single realisation of Y .

Then, the following formula for the integrated likelihood of Y holds true:

L(y) =

∫
Rq×R+

π(y,ββ, σ2) dββ dσ2 =

∫
Rq×R+

L∗(y|ββ, σ2)π(ββ, σ2) dββ dσ2

∝ |A|−1/2 |B|−1/2
[
(y −Hb)TA−1(y −Hb)

]−n−q
2 , (C.3)

where B = HTA−1H and b = B−1HTA−1y, as in (2.95.a) and (2.95.b).

212 Appendix

Proof. Given (C.1) and (C.2), the following holds:

L(y) ∝
∫
Rq×R+

1

(σ2)n/2 +1 |A|1/2
exp

[
− 1

2σ2
(y −Hββ)TA−1(y −Hββ)

]
dββ dσ2

= |A|−1/2

∫
Rq

[∫ +∞

0

1

(σ2)α
exp

(
−D(ββ)

2σ2

)
dσ2

]
dββ , (C.4)

where α = n/2 + 1 and D(ββ) = (y −Hββ)TA−1(y −Hββ).

Now observe that, for any constant D, we have:

∫ +∞

0

1

xα
exp

(
−D

2x

)
dx

z= x
D=

1

Dα−1

∫ +∞

0

1

zα
exp

(
− 1

2z

)
dz =

c(α)

Dα−1
,

as long as the condition α > 1 holds, to guarantee the convergence of the integral.

Taking into account this result, from (C.4) we get the following:

L(y) ∝ |A|−1/2

∫
Rq

1

D(ββ)α−1 dββ = |A|−1/2

∫
Rq

1[
(y −Hββ)TA−1(y −Hββ)

]α−1 dββ .

(C.5)

Notice that the condition α > 1 is indeed satisfied, since α = n/2 + 1.

Let us now expand the integrand of (C.5). We have

(y −Hββ)TA−1(y −Hββ) = ββTHTA−1Hββ − 2yTA−1Hββ + yTA−1y . (C.6)

The matrix B = HTA−1H ∈ Rq×q is symmetric and positive definite (clearly,

xTBx ≥ 0 for any x ∈ Rq, since A is positive definite). We can therefore consider its

Cholesky decomposition, and write:

B = RTR ,

where R ∈ Rq×q is upper triangular. In particular, |R| = |B|1/2.

The matrix R is of course invertible (since B is), hence we can consider the following

change of variable:

z = Rββ ∈ Rq , (C.7)

C. Proof of Integrated Likelihood Formula 213

in terms of which we can write the following:

(y −Hββ)TA−1(y −Hββ)
(C.6)+(C.7)

= zTz − 2yTA−1HR−1z + yTA−1y

= zTz − 2w̃ Tz + yTA−1y

= (z − w̃)T (z − w̃) − w̃T w̃ + yTA−1y

= (z − w̃)T (z − w̃) + yT
[
A−1 −A−1HB−1HTA−1

]
y

= (z − w̃)T (z − w̃) + S(y)2 (C.8)

For the sake of simplicity, we have denoted by w̃ the constant vector R−THTA−1y,

and by S(y)2 the quantity yT
[
A−1 −A−1HB−1HTA−1

]
y.

Substituting (C.8) back into (C.5), we get

L(y) ∝ |A|−1/2

∫
Rq

[
(y −Hββ)TA−1(y −Hββ)

]−(α−1)

dββ

z=Rβ
= |A|−1/2|R|−1

∫
Rq

[
(z − w̃)

T
(z − w̃) + S(y)2]−(α−1)

dz

= |A|−1/2|B|−1/2

∫
Rq

[
zTz + S(y)2]−(α−1)

dz

x=z/S(y)
= |A|−1/2|B|−1/2

∫
Rq

[
S(y)2(xTx+ 1)

]−(α−1)
S(y)q dx

∝ |A|−1/2|B|−1/2S(y)2−2α+q

α=n
2

+1
∝ |A|−1/2|B|−1/2(S(y)2

)−n−q
2 (C.9)

The last step left to prove the claim is showing that S(y)2 can be rewritten as follows:

S(y)2 = (y −Hb)TA−1(y −Hb) . (C.10)

This is a trivial check, starting from S(y)2 = yT
[
A−1 −A−1HB−1HTA−1

]
y, and

remembering the definitions of B and b. Hence the proof is complete.

214 Appendix

MATLAB Code

Most of the code used in this thesis can be found at https://github.com/dariod89. Part

of it is reported in this appendix. For brevity, we omit initial checks on inputs from the

body of the following functions, although these are implemented in the actual code.

Details of all inputs and outputs of the functions are found within each script.

D. General Routines

D.1. Covariance Functions

The following code evaluates the covariance functions of Subsection 1.4.4 on different

pairs of inputs, under the convention of equation (1.54) and with norm as in (1.61).

The string fun will specify which covariance function to use. A nugget term nu may

also be specified (equation (2.108)). Each pair of inputs consists one row of the matrix

X ∈ Rn×k and one row of the matrix Y ∈ Rm×k. The outputs are returned in the form

of a n×m matrix.

The routine multiprod.m, implementing “inner” product between tensors of any order,

is used to increase speed, in place of two nested for loops over the rows of each input

matrix. Downside: code interpretation not as straightforward as with for loops.

% INPUTS:

% X: nxk conta in s n ve c t o r s o f l ength k

% Y: mxk conta in s m ve c t o r s o f l ength k

% d : vec to r o f l enght k , conta in ing the c o r r e l a t i o n l eng th s

% nu : p o s i t i v e number , nugget term

% fun : one o f the f o l l o w i n g s t r i n g s , to s p e c i f y c o r r e l a t i o n func t i on :

https://github.com/dariod89

216 MATLAB Code

% ' exp2 ' (square exponent i a l) ; ' abs exp ' (abso lu t e exponent i a l) ;

% ' matern32 ' (matern 3/2) ; ' matern52 ' (matern 5/2) .

%

% OUTPUT:

% C: nxm matrix , with C(i , j) = co r r (X(i , :) , Y(j , :))

f unc t i on C = Corr fun (X, Y, d , nu , fun)

n = s i z e (X, 1) ;

m = s i z e (Y, 1) ;

k = s i z e (X, 2) ;

%% STORE DIFFERENCES BETWEEN ALL PAIRS OF ROWS OF 'X' AND 'Y' (in 4D tenso r)

X2 = repmat (X, [1 1 1 m]) ; % s i z e : n x k x 1 x m, m c o p i e s o f X

Y2 = repmat (Y, [1 1 1 n]) ; % s i z e : m x k x 1 x n , n c o p i e s o f Y

Z2 = X2 − permute (Y2 , [4 2 3 1]) ; % n x k x 1 x m.

% Z2(i , : , : , j) = X(i , :) and Y(j , :)

Z = permute (abs (Z2) , [3 2 1 4]) ; % 1 x k x n x m. Just r eo rde r dimensions f o r

% f o l l o w i n g mult iprods to work.

%% ESSENTIALLY, COMPUTE Z∗D∗Z , 'D' DIAGONAL WITH CORR LENGTHS. Via two mult iprods :

D=spar s e (diag (d . ˆ−2)) ; % k x k

i f k==1

D = dˆ(−2) ; % s p e c i a l case needs to be e x p l i c i t f o r f o l l o w i n g mult iprods to work

end

A = mult iprod (Z , D) ; % 1 x k x n x m

A = multiprod (A, permute (Z , [2 1 3 4])) ; % equ iva l en t to many z∗D∗z ' , z=X(i , :)−Y(j , :)

A = squeeze (A) ; % convert from 1x1xnxm to nxm

i f n==1 % i f n=1, s p e c i f y that n x m becomes 1 x m, not m x 1 (as by d e f a u l t)

A = reshape (A, 1 , m) ;

end

%% PERFORM FINAL COMPUTATION, ACCORDING TO SPECIFIED CORRELATION FUNCTION

i f strcmp (fun , ' exp2 ') % Square exponent i a l

C = exp (−A) + nu∗(A==0) ;

e l s e i f strcmp (fun , ' abs exp ') % Absolute exponent i a l

C = exp(− s q r t (A)) + nu∗(A==0) ;

e l s e i f strcmp (fun , ' matern32 ') % Matern 3/2

A = s q r t (3∗A) ;

C = (1+A) . ∗exp(−A) + nu∗(A==0) ;

e l s e i f strcmp (fun , ' matern52 ') % Matern 5/2

A1 = s q r t (5∗A) ;

A2 = 5∗A/3 ;

C = (1 + A1 + A2) . ∗exp(−A1) + nu∗(A==0) ;

end

end

D. General Routines 217

D.2. Principal Components

By default, this function computes the PCs of a set of m vectors in Rs (each provided

in the form of a N1×N2 matrix, where s = N1N2), and the coefficients of each vector

with respect to the PCs. If varargin is present, then it should be a vector of s positive

weights; in this case, the procedure presented in Subsection 3.3.3 is implemented. This

is the way the function is used in Section E and Section F of this appendix.

% INPUTS

% − X: N1 x N2 x m matrix c o n s i s t i n g o f m s t a r t i n g m a t r i c e s .

% − vararg in : i f present , a vec to r o f weights o f l ength s=N1∗N2.

% OUTPUS

% − PC: N1 x N2 x (m−1) matrix with j−th PC at l e v e l PC(: , : , j) .

% − Mn: N1 x N2 matrix , average o f i n i t i a l matr i ce s in X.

% − Coef f : mx(m−1) matr ix . Coe f f (i , :) = c o e f f i c i e n t s o f X(: , : , i) wrt the m−1 PCs.

% − Std : (m−1)x1 vector , with PC s t . d e v i a t i o n from e igenva lue decompos i t i on .

f unc t i on [PC, Mn, Coeff , Std] = PCA(X, vararg in)

%% GENERAL VARIABLES

N1 = s i z e (X, 1) ; N2 = s i z e (X, 2) ; s = N1∗N2 ;

m = s i z e (X, 3) ;

Mn = mean(X, 3) ; % N1 x N2 , average o f X(: , : , 1) , . . . , X(: , : ,m)

Xbar = X − Mn; % N1 x N2 x m

Xbar = reshape (Xbar , [N1∗N2 , n]) ' ; % m x s

Xbar (i snan (Xbar)) = 0 ; % r e p l a c e NANs by 0 s

%% PCA: TWO CASES, ACCORDING TO WHETHER WEIGHTS ARE PROVIDED OR NOT

i f isempty (vararg in) % no weights ==> do standard PCA

[U, S ,PC] = svd (Xbar , ' econ ') ; % Xbar = U∗S∗PC ' ; U:m x m; S :m x m; PC: s x m;

% Get r i d o f in fo rmat ion cor re spond ing to l a s t PC:

% U: mx(m−1) ; S : (m−1)x (m−1) ; PC: sx (m−1) ; s t i l l Xbar = U∗S∗PC' .

U(:,end) = [] ; PC(:,end) = [] ; S (:,end) = [] ; S (end , :) = [] ;

Std = diag (S) / s q r t (m−1) ;

Coe f f = U∗S ; % m x (m−1)

e l s e % weights has been provided ; s o l v e Xbar ' ∗ Xbar∗W u = \ lambda u

weights=vararg in { : } ;

% Transform forward

W = spar se (1 : s , 1 : s , weights , s , s) ; % sxs d iagona l matrix o f weights

Y = Xbar ∗ s q r t (W) ;

% Compute SVD

[U, S ,V] = svd (Y, ' econ ') ;

218 MATLAB Code

U(:,end) = [] ; V(:,end) = [] ; S (:,end) = [] ; S (end , :) = [] ;

%Transform back

W minus1 = spar s e (1 : s , 1 : s , 1 . / weights , s , s) ;

PC = s q r t (W minus1) ∗ V;

Coef f = U∗S ;

Std = diag (S) / s q r t (m−1) ;

end

PC = reshape (PC, [N1 , N2 , m−1]) ;

end

E. Code Relating to Chapter 4

The following code has been specifically written and employed to tackle the problem

of ocean temperature reconstruction described in Chapter 4.

E.1. Emulation of PC scores (functions fj(·) of Section 4.6)

For each j = 1, . . . , n − 1, the n known values {fj(xi)}i=1,...,n corresponding to the

design points xi ∈ R3 are provided in the jth column of the input matrix Coeff.

Emulator predictions are made for the input parameters provided in New points.

The regressors to use are specified in index lr (they are selected as explained in

Subsection 4.7.1).

Correlation lengths and nugget can be provided; otherwise, they are estimated as

explained in Section 4.8. In such a case, the function in Subsection E.2 of this appendix

is used. As output, alongside the mean, either only the emulator variances or all pairs

of emulator covariances are computed, according to what specified in string var cov.

% INPUTS:

% − Des ign po in t s : nx3 matrix : in each row , t r i p l e the form :

% x=(ecc ∗ cos (prec) , ecc ∗ s i n (prec) , o b l i q) .

% − i n d e x l r : rx3 matrix o f i n t e g e r s between 1 and 5 , cor re spond ing to the f i v e

% r e g r e s s o r s in eqn (4 .11) . i n d e x l r (j , :) conta in s the i n d i c e s o f the

% three r e g r e s s o r s s e l e c t e d as b a s i s f o r emulator mean o f PC j .

% − Coef f : nxh matrix , with c o e f f i c i e n t s to emulate in columns. r≤h≤n−1 .

E. Code Relating to Chapter 4 219

% − r : number o f (f i r s t) columns o f Coe f f to a c t u a l l y emulate .

% − New points : Tx3 matrix : in each row , new parameters at which to perform emulat ion

% − co r fun : one o f the s t r i n g s ' exp2 ' , ' matern32 ' , ' matern52 ' , ' abs exp ' .

% − var cov : a s t r i ng , e i t h e r ' var ' or ' cov ' .

% − vararg in : o p t i o n a l . rx3 matrix , with co r r l eng th s in columns 1&2, nugget in c o l 3 .

%

% OUTPUTS:

% − M: Txr matrix , M(: , j) = emulated means o f j th PC, f o r inputs in New points .

% − VarCov : s i z e and content depends on ' var cov ' i n p u t . See be low.

% − Dnu : rx3 matr ix . F ina l (provided or est imated) co r r l eng th s and nugget .

% − s igma sq : rx1 vector , with s2 va lue s o f emulat ion . Needed i f a nugget term i s

% present , but want to p l o t cont inuous t r a j e c t o r i e s . In t h i s case , nu∗ s2

% s h a l l be subracted from the emulator var i ance at each p o i n t .

%

% I f var cov ='var ' , then :

% − VarCov : Txr matr ix . As M, but with va r i ance s ra the r than means.

% I f var cov ='cov ' , then :

% − VarCov : TxTxr. Cov (: , : , k) = covar matrix o f emulated kth PC.

func t i on [M, VarCov , Dnu , s igma sq] = emulat ion PCscores (Des ign po ints , i n d e x l r ,

Coeff , r , New points , cor fun , var cov , vara rg in)

n = s i z e (Des ign po ints , 1) ; % number o f des ign po in t s

q = s i z e (Des ign po ints , 2) +1; % q−1 r e g r e s s o r s w i l l be used

T = s i z e (New points , 1) ; % number o f t e s t po in t s

%% PART 1 : CHOOSE REGRESSORS TO USE, AND VALUES OF CORRELATION LENGTHS & NUGGET

%% (IF NOT ALREADY SPECIFIED IN OPTIONAL ARGUMENT ' vararg in ')

Dnu = ze ro s (r , 3) ;

H f u l l = c e l l (r , 1) ; % H f u l l {c} nx3 matrix , w i l l conta in r e g r e s s o r s f o r component c ,

% at des ign po in t s

h f u l l = c e l l (r , 1) ; % h f u l l {c} Tx3 matrix , w i l l conta in r e g r e s s o r s f o r component c ,

% at t e s t po in t s

A l l d i s c r r e g r e s s o r s = [Des ign po ints , Des i gn po in t s (: , 1 : 2) . ˆ 2] ; % eqn (4 .11)

A l l c o n t r e g r e s s o r s = [New points , New points (: , 1 : 2) . ˆ 2] ; % eqn (4 .11)

f o r c = 1 : r

y = Coef f (: , c) ; % output va lue s at des ign po in t s

%% Build matr i ce s o f r e g r e s s o r s , f o r both des ign po in t s and new parameters

H = [ones (n , 1) , A l l d i s c r r e g r e s s o r s (: , i n d e x l r (c , :))] ;

H f u l l {c} = H; % nxq : Matrix o f c o v a r i a t e s at des ign points , f o r component c

h = [ones (T, 1) , A l l c o n t r e g r e s s o r s (: , i n d e x l r (c , :))] ;

h f u l l {c} = h ; % Txq : Matrix o f c o v a r i a t e s at new parameters , f o r component c

%% Choose c o r r e l a t i o n l eng th s

i f isempty (vararg in) % ie , i f no c o r r l e n g t h s have been s p e c i f i e d

m1 = 0 .02 ; m2 = 0 .003 ; m nu = 0 . 5 ; a = 4 ; % parameters f o r p r i o r

220 MATLAB Code

% next func t i on f i n d s MAP est imate (code provided l a t e r)

[d , nu] = max cros s va l (Des ign po ints , y , H, cor fun , m1, m2, m nu , a) ;

Dnu(c , 1 : 2) = d ; Dnu(c , 3)=nu ;

e l s e % ie , c o r r l eng th s and nugget were g iven in input , in vararg in

Dnu = vararg in { : } ;

end

end

%% PART 2 : CARRY OUT ACTUAL EMULATION

% I n i t i a l i s e r e l e v a n t v a r i a b l e s to z e ro s

M = ze ro s (T, r) ;

i f strcmp (var cov , ' var ')

VarCov = ze ro s (T, r) ;

e l s e

VarCov = ze ro s (T,T, r) ;

end

s igma sq = ze ro s (r , 1) ;

f o r c = 1 : r % perform emulation with ' Design par ' and ' Coef f (: , c) '

d = [Dnu(c , 1) , Dnu(c , 1) , Dnu(c , 2)] ; % same co r r l ength f o r e∗ cos and e∗ s i n

nu = Dnu(c , 3) ;

y = Coef f (: , c) ;

A = Corr fun (Des ign po ints , Des ign po ints , d , nu , co r fun) ; % nxn

H = H f u l l {c } ; h = h f u l l {c } ;

K = H'/A; % qxn , K = H' ∗ (Aˆ−1)

B = K∗H; % qxq , B = H' ∗ (Aˆ−1)∗H

b = B\(K∗y) ; % qx1 , b = (Bˆ−1)∗Ky

f = y − H∗b ; % nx1

e = A\ f ; % nx1 , e = (Aˆ−1)∗(y − Hb)

s2 = (f ' ∗ e) /(n−q−2) ; % sca l a r , p o s t e r i o r average o f sigma ˆ2

s igma sq (c) = s2 ; % s t o r e f o r output

t = Corr fun (New points , Des ign po ints , d , 0 , c o r fun) ; % Txn

M(: , c) = (h∗b) + (t ∗e) ;

p = h ' − K∗ t ' ; % qxT , p = h(x) − H' ∗ (Aˆ−1)∗ t

i f strcmp (var cov , ' var ') % only re turn va r i ance s

v1 = Corr fun (Des i gn po in t s (1 , :) , Des i gn po in t s (1 , :) , d , nu , co r fun) ;

VarCov (: , c) = s2 ∗(v1 − diag (t ∗(A\ t ')) + diag (p ' ∗ (B\p))) ;

e l s e % otherwi s e re turn f u l l c ova r i ance s

v1 = Corr fun (New points , New points , d , nu , co r fun) ;

VarCov (: , : , c) = s2 ∗(v1 − t ∗(A\ t ') + p ' ∗ (B\p)) ;

end

end % end o f (f o r c=1: r)

end

E. Code Relating to Chapter 4 221

E.2. Maximum a Posteriori Estimate of d and ν

This function computes the correlation lengths and nugget, as explained in Section 4.8

(i.e., by maximising (4.19)). Design points are in Design points, response values in

y, predictors in H. The function cross val.m (not shown for brevity) is maximised,

after this is component-wise multiplied with a product of Gamma densities whose

parameters are specified as input. Maximisation carried out from M different starting

points.

% INPUTS

% − Des ign po in t s : nx3 matrix with n des ign po in t s (o r b i t a l parameters) .

% − y : nx1 vec to r o f observed output s .

% − H: nxq matrix o f p r e d i c t o r s (usua l ly , f i r s t column o f 1 s) .

% − co r fun : one o f the f o l l o w i n g s t r i n g s : ' exp2 ' , ' matern32 ' , ' matern52 ' , ' abs exp ' .

% − m1, m2, m nu : p o s i t i o n o f the modes o f the gamma d i s t r i b u t i o n s used as p r i o r

% in the maximisation (r e s p e c t i v e l y f o r d1 , d2 , nu) .

% − a : shape parameter o f the Gamma p r i o r . Smal ler a <−> f l a t t e r d e n s i t y .

%

% OUTPUTS:

% − d : f i n a l va lue o f opt imised c o r r e l a t i o n l eng th s (2D)

% − nu : f i n a l va lue o f opt imised nu (1D)

func t i on [d , nu] = max cros s va l (Des ign po ints , y , H, cor fun , m1, m2, m nu , a)

%% STORE IN X (s i z e : Mx3) INITIAL STARTING POINTS FOR FUTURE MAXIMISATION

M = 10 ;

p = h a l t o n s e t (3 , ' Skip ' , f l o o r (1000∗ rand) , ' Leap ' , 16) ;

X = net (p ,M) ; % wel l−s c a t t e r e d points , in 3D uni t cube

X = X∗ diag (2∗ [m1,m2, m nu]) ; % r e s c a l e s the columns with in a p l a u s i b l e range

%% DEFINE THE FUNCTION h=f ∗g TO BE MAXIMISED

% f : L ike l ihood , approximated through c r o s s v a l i d a t i o n .

% g : Pr io r (gamma, with shape parameter a>1 and mode equal to m1, m2, or m nu) .

% h : Main func t i on to be maximised , product o f l i k e l i h o o d and p r i o r .

f = @(x) c r o s s v a l (exp (x (1 : 2)) , exp (x (3)) , Des ign po ints , y , H, cor fun , ' dens ') ;

g = @(x , alpha ,m) gampdf (exp (x) , alpha , m/(alpha−1)) ;

h = @(x) −sum(log (f (x))) − l og (g (x (1) , a ,m1) ∗ g (x (2) , a ,m2) ∗ g (x (3) , a , m nu)) ;

%% CARRY OUT MAXIMISATION STARTING FROM M POINTS IN X

x0=log (X(1 , :)) ;

[xf , v f] = fminsearch (h , x0 , opt ions) ; % xf = maximising value , v f=h(x f)

f o r k = 2 :M

x0 = log (X(k , :)) ;

[x temp , v temp] = fminsearch (h , x0 , opt ions) ;

222 MATLAB Code

i f v temp < vf

x f=x temp ; v f=v temp ;

end

end

%% RETURN MAXIMISING VALUES

d = exp (x f (1 : 2)) ; nu = exp (x f (3)) ;

end

E.3. Recombine the PC scores

Given the output of emulation PCscores.m, this function computes temperature

emulated mean and variance/covariance for a set of locations, via linear combina-

tions (see (4.29) and (4.31)). Values of the PCs at the Nloc locations are provided

in PC Val. The average of the original simulations at these locations is provided in

Mn Val. Both of these are computed via the procedure of Subsection 4.9.1, for which

the main routine is provided in the following Subsection E.4.

% INPUTS (Starred inputs g e n e r a l l y obta ined as output o f ' emulation PCscores.m ')

% − ∗M Pc : Txn matrix (n≥r) . In j th column , emulated mean o f j th PC c o e f f i c i e n t .

% − ∗Cov Pc : TxTxr t enso r o f r covar matr ices , or Txr matrix o f r var i ance vector s ,

% as from ' emulat ion PCscores ' output . Last dimens can a l s o be >r ,

% i t w i l l be trimmed l a t e r .

% − PC Val : Nloc x n . In row i , va lue s o f the PCs at i t h l o c a t i o n .

% − Mn Val : Nloc x 1 . I n t e r c e p t o f a f f i n e combination (f o r each l o c a t i o n) .

% − Std PCA : Vector , l ength ≥ r . St .Dev . o f PCs , from e igenva lue decompos i t i on .

% − r : Number o f PCs to use in a f f i n e combinat ions .

% − var cov : a s t r i ng , e i t h e r ' var ' or ' cov ' . Accordingly , only var iance or f u l l

% covar iance w i l l be computed as output Cov.

%

% OUTPUTS:

% − M: T x Nloc . M(i , j) = emulated mean temperature at time i , l o c a t i o n j .

% Second output changes accord ing to value o f input ' var cov ' .

% I f var cov = ' var ' , then :

% − VarCov : T x Nloc . As M, but with va r i anc e s ra the r than means.

% I f var cov = ' cov ' , then :

% − VarCov : T x T x Nloc , with f u l l c ova r i ance s at l e v e l s (: , : , j) .

f unc t i on [M, VarCov]= emul complete (M Pc , Cov Pc , PC Val , Mn Val , Std PCA , r , var cov)

%% GENERAL VARIABLES, RESHAPING AND ”TRIMMING”

n = length (Std PCA) ; % t o t a l number o f PCs

E. Code Relating to Chapter 4 223

T = s i z e (M Pc , 1) ; % number o f inputs at which compute emulator p r e d i c t i o n s

Nloc = s i z e (PC Val , 1) ; % t o t a l number o f l o c a t i o n s

Std PCA = reshape (Std PCA , [1 , n]) ;

M Pc = M Pc (: , 1 : r) ; % Txr , d i s ca rd va lue s o f unused PCs

%% PART 1 : ADD CONSTANT VARIANCE, OR IDENTITY MATRIX COVARIANCE, FOR UNUSED PCs

i f strcmp (var cov , ' var ')

Full PC Var = ze ro s (T, n) ; % Txn

Full PC Var (: , 1 : r) = Cov Pc (: , 1 : r) ; % Actual var i ance f o r f i r s t r PCs

i f r<n

Full PC Var (: , r +1:n) = ones (T, 1) ∗(Std PCA(r +1:n) . ˆ2) ; % constant var iance

end

e l s e

Full PC Cov = ze ro s (T,T, n) ; % TxTxn

Full PC Cov (: , : , 1 : r) = Cov Pc (: , : , 1 : r) ; % Actual covar iance f o r f i r s t r PCs

i f r<n % mul t ip l e o f i d . matrix f o r remaining components

f o r k = r +1:n

Full PC Cov (: , : , k) = (Std PCA(k) ˆ2) ∗ spar s e (eye (T)) ;

end

end

end % end o f i f / e l s e statement

%% PART 2 : COMPUTE EMULATOR MEAN AND (CO)VARIANCES, AS LINEAR COMBINATIONS

M = ones (T, 1) ∗Mn Val ' + (M Pc∗PC Val (: , 1 : r) ') ; % TxNloc + (Txr) x (rxNloc)

Squared PC = (PC Val ') . ˆ2 ; % n x Nloc

i f strcmp (var cov , ' var ')

VarCov = Full PC Var∗Squared PC ; % T x Nloc , from (Txn) x (nxNloc)

e l s e

VarCov = ze ro s (T,T, Nloc) ;

f o r l o c =1: Nloc

%% Take l i n e a r combination o f the n l e v e l s o f Full PC Cov , with ...
c o e f f i c i e n t s Squared PC (: , l o c) .

f o r c =1:n

VarCov (: , : , l o c) = VarCov (: , : , l o c) + Squared PC (c , l o c) ∗Full PC Cov (: , : , c) ;

end

end % end i f / e l s e

% NOTE: double f o r loop can be avoided , by running the f o l l o w i n g mult iprod : ...
TxTxNloc , from (TxTxn) x (nxNloc) :

% VarCov = squeeze (mult iprod (Full PC Cov , Squared PC , [0 3] , [1 0])) .

% This however r e q u i r e s to s t o r e a matrix o f dimension T x T x n x Nloc .

end

224 MATLAB Code

E.4. Interpolate Among Cells (Subsection 4.9.1)

The following function returns the indices of the vectors lat vec and lon vec whose

values are closest to lat star and lon star, respectively. It also returns weights,

inversely proportional to the geodesic distance between the point with coordinates

(lat star, lon star) and the points with coordinates identified in lat vec and

lon vec. Compare with (4.26). If requested, only indices corresponding to sea (or

land) will be returned.

% INPUTS

% − l a t s t a r : number in [−90 , 90]

% − l o n s t a r : any r e a l number

% − l a t v e c : row or c o l vec to r o f l a t i t u d e s in dec r ea s ing order (l ength Nlat)

% − l on vec : row or c o l vec to r o f l o n g i t u d e s in i n c r e a s i n g order (l ength Nlon)

% − vararg in : op t i ona l argument. I f provided , i t must c o n s i s t o f :

% 1) a land−sea mask M: Nlat x Nlon (0 sea , 1 land)

% 2) a s t r i ng , e i t h e r ' sea ' or ' land ' .

% In t h i s case , only c e l l s cor re spond ing to sea or land w i l l be r e t u r n e d .

%

% OUTPUTS

% − i n d l a t : 4x1 vector , with l a t i t u d e i n d i c e s o f c l o s e s t g r i d c e l l s

% − i n d l o n : 4x1 vector , with l ong i tude i n d i c e s o f c l o s e s t g r i d c e l l s

% − l i n e a r i n d : 4x1 l i n e a r i n d i c e s between 1 and Nlat∗Nlon , each corre spond ing to ...
the pa i r (i n d l a t (i) , i n d l o n (i))

% − w: 4x1 vec to r with weights , summing up to 1 .

%

% Note : Function to compute geode s i c d i s t ance in next box.

func t i on [i n d l a t , ind lon , l i n e a r i n d , w] = i n t e r p o l a t e l a t l o n (l a t s t a r , l o n s t a r ,

l a t v e c , lon vec , vara rg in)

%% PRELIMINARY CODE

Nlon = length (l on vec) ;

Nlat = length (l a t v e c) ;

l a t v e c = reshape (l a t v e c , [Nlat , 1]) ;

l on vec = reshape (lon vec , [Nlon , 1]) ;

% Bring l o n s t a r in [−180 ,180]

l o n s t a r = mod(l o n s t a r , 360) ;

i f l o n s t a r ≥ 180

l o n s t a r = l o n s t a r −360;

end

% I f f u r t h e r inputs are provided , s t o r e them

i f ¬isempty (vararg in)

M = vararg in {1} ;

E. Code Relating to Chapter 4 225

s e a l a n d s t r = vararg in {2} ;

end

%% IDENTIFY CONSECUTIVE INDICES i n d l a t 1 & ind l a t 2 , WHOSE ELEMENTS IN l a t v e c

% ARE RESPECTIVELY BIGGER AND SMALLER THAN l a t s t a r

i n d l a t 1 = sum(l a t v e c− l a t s t a r≥0) ; % index in l a t v e c whose l a t i t u d e i s c l o s e s t to

% (and b igge r than) l a t s t a r

i f l a t v e c (i n d l a t 1)==l a t s t a r

i n d l a t 2 = i n d l a t 1 ; % take same index . . .

e l s e

i n d l a t 2 = min (i n d l a t 1 +1, Nlat) ; % . . . or f o l l o w i n g one (i f not l a s t a l r eady)

end

i n d l a t =[i nd l a t 1 , i nd l a t 1 , i nd l a t 2 , i n d l a t 2] ' ;

%% SAME AS ABOVE, FOR LONGITUDES

ind lon1 = sum(lon vec−l o n s t a r≤0) ; % lon vec [i nd l on1] ≤ l o n s t a r

i f l on vec (ind l on1)==l o n s t a r

ind l on2 = ind lon1 ;

e l s e

i nd l on2 = min (ind l on1 +1, Nlon) ;

end

i n d l o n =[ind lon1 , ind lon2 , ind lon1 , i nd l on2] ' ;

l i n e a r i n d=ze ro s (4 , 1) ; % l i n e a r i n d i c e s cor re spond ing to s e l e c t e d p a i r s

f o r i =1:4

l i n e a r i n d (i) = sub2ind ([Nlat , Nlon] , i n d l a t (i) , i n d l o n (i)) ;

end

%% IF ' vararg in ' PROVIDED, SELECT ONLY INDICES CORRESPONDING TO SEA OR LAND

i f ¬isempty (vararg in)

i f strcmp (s e a l a n d s t r , ' sea ')

sea = M(l i n e a r i n d)<0 . 5 ; % M = mask s to r ed at beg inning

l i n e a r i n d = l i n e a r i n d (sea) ;

e l s e

land = M(l i n e a r i n d)>0 . 5 ;

l i n e a r i n d = l i n e a r i n d (land) ;

end

end

%% COMPUTE WEIGHTS, INVERSELY PROPORTIONAL TO GEODESIC DISTANCE

[i n d l a t , i n d l o n] = ind2sub ([Nlat , Nlon] , l i n e a r i n d ') ;

A = [l a t v e c (i n d l a t) , l on vec (i n d l o n)] ;

B = [l a t s t a r , l o n s t a r] ;

w = g e o d e s i c d i s t (A, B) + 1 .e −10; % c o r r e c t i o n ensure s s t r i c l y p o s i t i v e va lue s

w = 1 . /w;

w = w/sum(w(:)) ; % normal i se sum to 1

end

The code of the function geodesic dist.m, used above, is shown in the next box.

226 MATLAB Code

E.4.1 Compute Great Circle Distance (from equation (4.26))

% INPUTS

% − Coord1 : nx2. Each row , one pa i r o f the form (la t , lon) , in d e g r e e s .

% − Coord2 : px2. Each row , one pa i r o f the form (la t , lon) , in d e g r e e s .

%

% OUTPUTS

% − G: nxp. G(i , j) = geode s i c d i s t between Coord1 (i , :) and Coord2 (j , :) .

f unc t i on G = g e o d e s i c d i s t (Coord1 , Coord2)

Coord1 = Coord1 /180∗ pi ;

Coord2 = Coord2 /180∗ pi ;

n = s i z e (Coord1 , 1) ;

p = s i z e (Coord2 , 1) ;

G = ze ro s (n , p) ;

f o r i = 1 : n

l a t 1 = Coord1 (i , 1) ;

lon1 = Coord1 (i , 2) ;

f o r j = 1 : p

l a t 2 = Coord2 (j , 1) ;

lon2 = Coord2 (j , 2) ;

G(i , j) = acos (s i n (l a t 1) ∗ s i n (l a t 2) + cos (l a t 1) ∗ cos (l a t 2) ∗ cos (lon2−lon1)) ;

end

end

end

F. Code Relating to Chapter 5 227

F. Code Relating to Chapter 5

The following code has been specifically written and employed to tackle the problem

of the last Interglacial Greenland ice sheet reconstruction described in Chapter 5.

F.1. Regridding of Original Morphologies (Subsection 5.4.1)

This function regrids an image (a matrix H), usually around Greenland, from any grid

into a regular latitude-longitude grid. Regridding happens in the coordinates obtained

by projecting elements of the sphere onto the plane tangent to the sphere at the point

(72°N, 40°W). See the coordinate transformation in (5.8).

% INPUTS

% − H: matrix , conta in ing s t a r t i n g values , among which to i n t e r p o l a t e .

% − l a t o r & l o n o r : ∗ matr i ce s ∗ , c onta in ing the o r i g i n a l l a t s and lons coo rd ina t e s

% at which va lue s in H are prov ided .

% − l a t & lon : ∗ ve c t o r s ∗ (g r i d w i l l be c rea ted as ' c a r t e s i a n product ') o f l a t and lon

% coo rd ina t e s where i n t e r p o l a t i n g va lue s need computing.

% − s t r : one o f the s t r i n g s ' l i n e a r ' , ' nearest ' , ' natura l ' , ' cubic ' , s p e c i f y i n g the

% i n t e r p o l a t i o n method to u s e .

%

% OUTPUTS

% − A: new regr idded image , with s i z e l ength (l a t) x l ength (lon)

func t i on A = r e g r i d (l a t o r , l on or , H, l a t , lon , s t r)

l a t s t a r = 72∗ pi /180 ; % [po int o f tangency , . . .

l o n s t a r = 320∗ pi /180 ; % . . . in rad ians]

%% DEFINE TANGENT VECTORS AT (l a t s t a r , l o n s t a r) . These are ∗column∗ v e c t o r s .

V1 = [− cos (l a t s t a r) ∗ s i n (l o n s t a r) ; . . . % d e r i v a t i v e wrt lon

cos (l a t s t a r) ∗ cos (l o n s t a r) ; . . .

0] / abs (cos (l a t s t a r)) ;

V2 = [− s i n (l a t s t a r) ∗ cos (l o n s t a r) ; . . . % d e r i v a t i v e wrt l a t

−s i n (l a t s t a r) ∗ s i n (l o n s t a r) ; . . .

cos (l a t s t a r)] ;

%% TRANSFORM MATRICES ' l a t o r ' & ' l on or ' IN COLUMN VECTORS

n1 = s i z e (l a t o r , 1) ; n2 = s i z e (l a t o r , 2) ; N = n1∗n2 ;

l a t o r = reshape (l a t o r ∗ pi /180 , [N, 1]) ;

l o n o r = reshape (l o n o r ∗ pi /180 , [N, 1]) ;

%% FIRST CREATE RECTANG GRID FROM ' l a t ' & ' lon ' , THEN TRANSFORM IN COLUMNS (as above)

228 MATLAB Code

[l a t , lon] = ndgrid (la t , lon) ; % l a t and lon now both matr i ce s

n1 = s i z e (la t , 1) ; n2 = s i z e (lon , 2) ; N = n1∗n2 ;

l a t = reshape (l a t ∗ pi /180 , [N, 1]) ;

lon = reshape (lon ∗ pi /180 , [N, 1]) ;

%% PROJECT ORIGINAL GRID (' l a t o r ' & ' l on or ') ONTO TANGENT PLANE. TWO STEPS:

% 1) Obtain po in t s on the sphere , v ia s p h e r i c a l po la r coo rd ina t e s :

l a t l o n o r g r i d = [cos (l a t o r) . ∗ cos (l o n o r) , cos (l a t o r) . ∗ s i n (l o n o r) , s i n (l a t o r)] ;

% each row o f ' l a t l o n o r g r i d ' i s un i t 3D vec to r

% 2) Pro j e c t each row onto tangent ve c to r s (s c a l a r product) :

x = reshape (l a t l o n g r i d ∗V1 , [n1 , n2]) ; % (Nx3) x (3 x1) reshaped in to n1xn2

y = reshape (l a t l o n g r i d ∗V2 , [n1 , n2]) ;

%% PROJECT NEW GRID (' l a t ' & ' lon ') ONTO TANGENT PLANE (as above)

l a t l o n g r i d =[cos (l a t) . ∗ cos (lon) , cos (l a t) . ∗ s i n (lon) , s i n (l a t)] ;

X = reshape (l a t l o n g r i d ∗V1 , [n1 , n2]) ;

Y = reshape (l a t l o n g r i d ∗V2 , [n1 , n2]) ;

%% CARRY OUT INTERPOLATION, VIA BUILT−IN FUNCTION ' gr iddata '
A = gr iddata (x , y , H, X, Y, s t r) ; % s i z e : n1 x n2 = length (l a t) x l ength (lon)

end

F.2. Generate Masks (Subsection 5.4.3)

Given a morphology in input, this function computes the first approximation of

the corresponding mask (steps 1–3 in Subsection 5.4.3). The mask is subsequently

smoothed through the function denoising mask radius.m, which I report later.

% INPUT

% Morph : Nlat x Nlon matrix o f h e i g h t s . (in the f o l l ow ing , c a l l p the number o f

% 'non−sea ' c e l l s)

% OUTPUT:

% Mask : Nlat x Nlon matr ix . Ice−land−sea mask : 0=ice , 1=land , 2=s e a .

f unc t i on Mask = ice mask gene ra to r (Morph)

%% 'Ht ' CONTAINS THE SURFACE HEIGHTS OF THE ORIGINAL 14 MORPHOLOGIES

Ht = dlmread (' Data/ Data s e t . t x t ' , ' ') ;

Ht = Ht(2:end , :) ; % remove f i r s t row o f area weights ; s i z e (Ht) = 14 x p

%% ' Ice Mask ' CONTAINS THE MASKS (sea excluded) OF THE ORIGINAL MORPHOLOGIES (14 xp)

Ice Mask = dlmread (' Data/ IceMask . txt ') ;

land = Ice Mask>0. 5 ; % l o g i c a l index

i c e = Ice Mask<0. 5 ; % l o g i c a l index

F. Code Relating to Chapter 5 229

%% FOR ALL LOCATIONS, COMPUTE THE THRESHOLD c ABOVE WHICH A GIVEN HEIGHT

% IS TO BE ASSOCIATED WITH ICE

X = Ht ; X(land) = I n f ;

a = min (X) ; % 1xp ; min (he ight | the re i s i c e)

X = Ht ; X(i c e) = −I n f ;

b = max(X) ; % 1xp ; max(he ight | the re i s no i c e)

c = (a+b) /2 ; % 1xp

%% BUILD THE MASK

s t r = ' Data/Mask.nc ' ;

Mask = ncread (s t r , 'Mask ') ; % Land−sea mask f o r Greenland : 1=land , 2=s e a .

GL = Mask<1. 2 ; % l o g i c a l index , i d e n t i f i e s GreenLand , exc ludes sea

Morph = Morph(GL) ; % turn 'Morph ' i n t o a c o l vector , only with Greenland (land) c e l l s

Morph = reshape (Morph , [1 , numel (Morph)]) ; % reshape to row vector , as vec to r ' c '
i c e l and mask = double ((Morph−c)<0) ; % a s s i g n 1 to land , 0 to i c e

Mask(GL) = ice land mask ;

end

F.2.1 Function denoising mask radius.m

This function takes an ice-land-sea mask and smoothens the ice and land parts. A

disk of radius r km around each cell is considered, and its mask value is replaced

by ice (land) according to whether the percentage of ice (land) in the disk is greater

than p1 (p2). Note: The original code is structured so that variables of the function

denoising mask radius.m are passed on to ice prop.m. Here the two functions are

shown in separate boxes for convenience, but variables in denoising mask radius.m

are seen by ice prop.m in the real code.

% INPUTS:

% − M: Nlat x Nlon mask (matrix with 0=ice , 1=land , 2=sea) .

% − l a t : vec to r o f l ength Nlat , with l a t coo rd ina t e s f o r M (degree s) .

% − l on : vec to r o f l ength Nlon , with lon coo rd ina t e s f o r M (degree s) .

% − p1 : number in [0 , 1] : percentage o f i c e below which an i c e c e l l i s r ep l aced

% by a land c e l l .

% − p2 : percentage o f land below which a land c e l l i s r ep l aced by an i c e c e l l .

% − r : rad ius , measured in k i l o m e t e r s .

%

% OUTPUTS:

% − M denoised : Nlat x Nlon deno i sed mask

% The va lues o f ' l a t ' and ' lon ' are used in the next funct ion , ' i c e prop ' .

230 MATLAB Code

f unc t i on M denoised = deno i s ing mask rad iu s (l a t , lon , M, p1 , p2 , r)

%% STORE ICE AND LAND POSITIONS OF ORIGINAL MASK

o r i g i c e = f i n d (M < 0 . 5) ;

o r i g l a n d = f i n d ((M > 0 . 5) & (M < 1 . 5)) ;

M denoised = M;

%% DENOISE, FIRST THROUGH ICE CELLS . . .

f o r i = 1 : l ength (o r i g i c e)

ind = o r i g i c e (i) ;

p i c e = i c e p r o p (M, ind , r) ; % approximates propor t ion o f i c e with in r km

i f p i c e < p1

M denoised (ind) = 1 ; % put land

end

end

%% . . . THEN THROUGH LAND CELLS

f o r i = 1 : l ength (o r i g l a n d)

ind = o r i g l a n d (i) ;

p i c e = i c e p r o p (M, ind , r) ;

p land = 1−p i c e ;

i f p land < p2

M denoised (ind) = 0 ; % put i c e

end

end

end

F.2.2 Function ice prop.m

The function ice prop.m computes the proportion of ice of the mask M, in (approx-

imately) a circle of radius r around the location identified by the index ind. Other

variables are passed from the previous script.

f unc t i on i c e p e r c e n t a g e = i c e p r o p (M, ind , r)

%% BASIC VARIABLES

Earth rad = 6371 ; % km

l a t = l a t ∗ pi /180 ;

lon = lon ∗ pi /180 ;

Nlat = length (l a t) ; Nlon = length (lon) ; % s i z e (M) = Nlat x Nlon

%% COMPUTE STEPSIZE OF ' l a t ' AND ' lon ' (IN RADIANS)

l a t a n g l e = abs (l a t (2)− l a t (1)) ;

l o n a n g l e = abs (lon (2)−l on (1)) ;

F. Code Relating to Chapter 5 231

%% CREATE RECTANGULAR GRIDS FROM ' l a t ' AND ' lon ' VECTORS

[l a t g r i d , l o n g r i d] = ndgrid (la t , lon) ; % Two (Nlat x Nlon) matr i ce s

Theta = l a t g r i d (ind) ; % l a t i t u d e o f c e l l o f i n t e r e s t

Phi = l o n g r i d (ind) ; % long i tude o f c e l l o f i n t e r e s t

[ihat , jha t] = ind2sub ([Nlat , Nlon] , ind) ; % conver t s l i n e a r index in to s u b s c r i p t s

%% DEFINE THE TWO LATITUDE INDICES , BETWEEN WHICH ALL CELLS

% AT MOST r KM APART FROM THE CELL AT LATITUDE ' Theta ' LIE

m a x l a t c e l l s = c e i l (r /(Earth rad ∗ l a t a n g l e)) ; % upper bound f o r number o f c e l l s ,

% which cover l e s s than r km in l a t

i 1 = max(iha t − m a x l a t c e l l s , 1) ; % max and min needed to have . . .

i 2 = min (iha t + m a x l a t c e l l s , Nlat) ; % . . . i n d i c e s between 1 and Nlat

%% DO THE SAME FOR LONGITUDE INDICES. NUMBER OF CELLS NOW DEPENDS ON LATITUDE

m a x l o n c e l l s = c e i l (r /(Earth rad ∗ cos (Theta) ∗ l o n a n g l e)) ;

j 1 = max(jhat − max lon ce l l s , 1) ;

j 2 = min (jhat + max lon ce l l s , Nlon) ;

%% TRIM VARIABLES OF INTEREST, AROUND THE RELEVANT l a t s & lons FOUND ABOVE

New Lat = l a t g r i d (i 1 : i2 , j 1 : j 2) ; % n1 x n2

New Lon = l o n g r i d (i 1 : i2 , j 1 : j 2) ; % n1 x n2

M New = M(i 1 : i2 , j 1 : j 2) ; % n1 x n2

% NOW COMPUTE ' coslambda ' : COSINE OF GEODESIC ANGLE BETWEEN POINT (Theta , Phi)

% AND ALL OTHER POINTS IN ' New Lat ' and 'New Lon ' (say , nxm matr i ce s)

coslambda = (s i n (Theta) ∗ s i n (New Lat)) + (cos (New Lat) . ∗ cos (New Lon−Phi) ∗ cos (Theta)) ;

d i s t = Earth rad ∗ acos (coslambda) ; % n x m

neigh = M New(d i s t<r) ; % only take mask c e l l s , d i s t a n t < than r km from (Theta , Phi)

L = length (neigh) ;

i c e p e r c e n t a g e = sum(neigh<0. 5) /L ; % propor t ion o f ne ighbours with i c e

end

F.3. Identifying Plausible Morphologies (Section 5.7)

F.3.1 Compatibility With Ice-Core Records

For N input parameters x ∈ R8, stored in Input par ∈ RN×8, and for the

locations corresponding to index loc, the following function measures the compati-

bility between the emulators’ predictions at the input parameters and the ice-core data

at the locations. The condition I(x) < 2 is implemented, I(·) defined as in (5.21).

See Section 5.7 for more details, particularly condition 1 on page 191. The routine

selecting morphologies which pass condition 2 is implemented in the next ht match.m.

232 MATLAB Code

% INPUTS:

% − Design par : nx8 matrix o f des ign points , to car ry out emulat ion .

% − Sim Outputs : nx6 matrix o f s imu la to r outputs f o r the 6 s i t e s (l i s t below) .

% − co r fun : one o f the s t r i n g s ' exp2 ' , ' matern32 ' , ' matern52 ' , ' abs exp ' .

% − d , nu : 6x1 ve c t o r s o f co r r l eng th s and nugget , r e s p e c t i v e l y .

% − Input par : Nx8 matrix with N input parameters , at which a s s e s s c o m p a t i b i l i t y .

% − range : 3x6 matr ix . In each column , 'min , med , and max ' d18O va lue s f o r a s i t e .

% − i n d e x l o c : vec to r o f i n t e g e r s o f l ength L≤6 , s p e c i f y i n g at which l o c a t i o n s

% to carry out the compar ison.

% − th r s : vec to r o f l ength L , with t h r e s h o l d s used to c l a s s i f y an input parameter

% compatible to the r e l e v a n t record (th r s (i) used f o r l o c a t i o n i n d e x l o c (i)) .

%

% OUTPUTS

% − X: NxL. X(i , j) = c o m p a t i b i l i t y measure (5 .15) at input i , l o c a t i o n i n d e x l o c (j)

% − index compat : Nx1 , l o g i c a l . TRUE at p o s i t i o n i i f f input i compatible to r e co rd s

% at a l l s i t e s s p e c i f i e d in i n d e x l o c .

%

% ORDER OF LOCATIONS

% 1 : NEEM 2 : NGRIP 3 : GRIP

% 4 : Camp 5 : DYE3 6 : GISP2

func t i on [X, index compat] = data match (Design par , Sim Outputs , cor fun , d , nu ,

Input par , range , i ndex loc , th r s)

N = s i z e (Input par , 1) ;

L = length (i n d e x l o c) ;

%% SELECT DATA ONLY FOR LOCATIONS SPECIFIED IN ' i ndex loc ' .

range = range (: , i n d e x l o c) ; % 3xL

d a t a c e n t r a l = range (2 , :) ; % 1xL

s td top = (range (3 , :) − range (2 , :)) / s q r t (3) ; % compare to (5 . 20)

std bottom = (range (2 , :) − range (1 , :)) / s q r t (3) ; % compare to (5 . 20)

Sim Outputs = Sim Outputs (: , i n d e x l o c) ; % nxL

d = d(i n d e x l o c) ; % vec to r o f l ength L

nu = nu(i n d e x l o c) ; % vec to r o f l ength L

% CARRY OUT EMULATION ON LOCATIONS OF INTEREST

M = ze ro s (N, L) ; % w i l l s t o r e mean

S = ze ro s (N, L) ; % w i l l s t o r e standard dev i a t i on

f o r l o c = 1 :L

y = Sim Outputs (: , l o c) ;

[M(: , l o c) , S (: , l o c)] = emul (Design par , y , Input par , cor fun , d(l o c) , nu (l o c)) ;

% custom funct ion , not shown h e r e . Performs emulat ion in b locks o f

% at most 10 ,000 inputs , to avoid memory problems.

end

%% COMPUTE IMPLAUSIBILITY MEASURE (eqn (5 .19))

X = M − (ones (N, 1) ∗ d a t a c e n t r a l) ; % d i f f e r e n c e between emulator and re co rd s

% Create a matrix o f ' r ecord s t . d e v i a t i o n s ' , with s td top or std bottom accord ing to

% whether emulator p r e d i c t i o n i s > or < than data value)

F. Code Relating to Chapter 5 233

Std data = ze ro s (N, L) ;

f o r l o c = 1 :L

Std data (: , l o c) = std bottom (l o c) ;

h i g h e r p r e d i c t i o n s = X(: , l o c)>0;

Std data (h i g h e r p r e d i c t i o n s , l o c) = s td top (l o c) ;

end

% Normalise d i f f e r e n c e in X by t o t a l standard dev i a t i on (emul + record)

Var tot = S. ˆ2 + Std data . ˆ2 ;

f o r l o c = 1 :L

X(: , l o c) = X(: , l o c) . / s q r t (Var tot (: , l o c)) ;

end

%% DETECT INPUTS THAT HAVE IMPLAUS MEASURE AT ALL LOCATIONS < THAN THRESHOLD

index compat = true (N, 1) ;

f o r l o c = 1 :L

index compat = index compat & (abs (X(: , l o c)) < th r s (l o c)) ;

end

end

F.3.2 Physical Criterion of Plausibility

The following function implements condition 2 on page 191. It takes in input N

parameters x ∈ R8, and returns a logical vector of length N with 1s corresponding to

parameters satisfying the condition. Recall that this is satisfied if at least a fraction p

of its cells, weighted by their surface area, have height within mean ± n std × std of

the 14 heigths of the original morphologies at that location (in practice, in Section 5.7

we choose n std= 2).

The code is structured to not suffer memory problems related to very large N .

% INPUTS:

% − Input par : Nx8 matrix o f input parameter s .

% − H: Nlat x Nlon x n. H(: , : , i) conta in s the i t h o r i g i n a l morphology (n=14) .

% − n sd : p o s i t i v e number. How many STDs from the mean o f the H(: , : , i) s a g iven

% morphology i s a l lowed to be , to be cons ide r ed ' phys i ca l ' .

% − p : percentage in [0 , 1] o f ' good c e l l s ' , above which to accept a morphology.

% − vararg in : o p t i o n a l . I f present , a l o g i c a l vec to r o f l ength N, s p e c i f y i n g

% on which rows o f Input par to perform ' ht match ' .

% The output index w i l l have z e ro s where ' vararg in ' had z e r o s .

%

% OUTPUT:

% − ht index : a l o g i c a l vec to r o f l ength N with 1 s where a morphology i s ' phys i ca l ' .

234 MATLAB Code

f unc t i on ht index = ht match (Input par , n sd , p , vara rg in)

%% STARTING VARIABLES

N = s i z e (Input par , 1) ;

s t r = ' Data/Mask.nc ' ;

l a t = ncread (s t r , ' l a t ') ; Nlat = length (l a t) ;

lon = ncread (s t r , ' l on ') ; Nlon = length (lon) ;

mask = ncread (s t r , ' Physical Mask ') ; % Nlat x Nlon

wei = ncread (s t r , ' Weights ') ; % px1 , where p=Nlat∗Nlon

% INITIALISE ht index , PUTTING ZEROS IF SOME INPUTS NEED NOT BE CONSIDERED

i f isempty (vararg in)

ht index = true (N, 1) ;

e l s e

ht index = vararg in { : } ;

end

Tot = sum(ht index) ; % t o t a l number o f shapes that have to be examined

% COMPUTE THE MORPHOLOGY OF MIN AND MAX ALLOWED HEIGHTS AT EACH LOCATIONS

Min H = mean(H, 3) − n sd ∗ std (H, [] , 3) ; % mean and std along the 3 rd dimension

Max H = mean(H, 3) + n sd ∗ std (H, [] , 3) ;

% FFURTHER VARIABLES, NEEDED TO BUILT MORPHOLOGIES FROM 8D INPUT PARAMETERS

[PC, Mn, ¬] = pca green land () ; % e x t r a c t s PCs and average o f o r i g i n a l morpholog ies

wei (mask>1. 5) = 0 ; % a s s i g n zero weights to the sea

wei = wei /sum(sum(wei)) ; % sum of weigths i n s i d e Greenland equa l s 1

% CODE IS DIVIDED INTO FOR LOOPS, TO AVOID MEMORY PROBLEMS WHEN BUILDING SHAPES

N block = 3000 ; % number o f input parameters examined in each i t e r a t i o n

N loop = c e i l (Tot/ N block) ; % length o f f o r loop

i mp or t an t i nd i c e s = f i n d (ht index>0. 5) ; % only i n d i c e s where to a s s e s s p h y s i c a l i t y

f o r i =1: N loop

ind1 = (i −1)∗N block + 1 ;

ind2 = min (i ∗N block , Tot) ;

sma l l b l o ck = im p or ta n t i nd i c e s (ind1 : ind2) ; % N block inputs to be examined

% Next func t i on b u i l d s the morpholog ies from the input parameters (not shown here)

Shapes = bu i l d shape s (PC, Mn, Input par (sma l l b lock , :)) ; % Nlat x Nlon x N block

% Compare each morphology (shape) to min H and max H.

I = (Shapes>Min H) & (Shapes<Max H) ; % Nlat x Nlon x N block l o g i c a l v e c t o r .

I = I . ∗wei ; % r e s c a l e each c e l l with cor re spond ing we ight .

perc = (squeeze (sum(sum(I)))) ; % vecto r o f l ength N block : in component j ,

% percentage o f j th Shape that i s between Min H and Max H.

ht index (sma l l b l o ck) = perc>p ;

c l e a r Shapes ;

end

end

Bibliography

Abramowitz, M. and Stegun, I. A. (1970). Handbook of Mathematical Functions with

Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, ninth

edition.

Adler, R. J. (1981). The Geometry of Random Fields. Wiley Series in Probability and

Mathematical Statistics. John Wiley & Sons.

Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry. Springer

Monographs in Mathematics. Springer.

Alden, K., Read, M., Timmis, J., Andrews, P. S., Veiga-Fernandes, H., and Coles, M.

(2013). Spartan: a comprehensive tool for understanding uncertainty in simulations

of biological systems. PLoS computational biology, 9(2):e1002916.

Andrianakis, I. and Challenor, P. G. (2012). The Effect of the Nugget on Gaussian

Process Emulators of Computer Models. Computational Statistics and Data

Analytics, pages 4215–4228.

Andrianakis, I., Vernon, I., McCreesh, N., McKinley, T., Oakley, J., Nsubuga, R.,

Goldstein, M., and White, R. (2017). History matching of a complex epidemiological

model of human immunodeficiency virus transmission by using variance emulation.

Journal of the Royal Statistical Society: Series C (Applied Statistics), 66(4):717–740.

Araya-Melo, P. A., Crucifix, M., and Bounceur, N. (2015). Global sensitivity analysis

of the Indian monsoon during the Pleistocene. Climate of the Past, 11(1):45–61.

Bastos, L. S. and O’Hagan, A. (2009). Diagnostic for Gaussian Process Emulators.

Technometrics, 51:425–438.

236 BIBLIOGRAPHY

Berger, A. and Loutre, M. (1991). Insolation values for the climate of the last 10

million years. Quaternary Science Reviews, 10(4):297–317.

Berger, J. O., de Oliveira, V., and Sanso, B. (2001). Bayesian Analysis of Spatially

Correlated Data. Journal of the American Statistical Association, 26(456):1361–

1374.

Bolstad, W. M. and Curran, J. M. (2016). Introduction to Bayesian Statistics. John

Wiley & Sons, Third edition.

Bonceur, N., Crucifix, M., and Wilkinson, R. (2015). Global Sensitivity Analysis of the

Climate-Vegetetion System to Astronomical Forcing: an Emulator-Based Approach.

Earth System Dynamics, 6:205–224.

Born, A. and Nisancioglu, K. H. (2012). Melting of Northern Greenland during the

last interglaciation. The Cryosphere, 6:1239–1250.

Brunnabend, S.-E., Schröter, J., Timmermann, R., Rietbroek, R., and Kusche, J.

(2012). Modeled steric and mass-driven sea level change caused by Greenland Ice

Sheet melting. Journal of Geodynamics, 59:219–225.

Calov, R., Robinson, A., Perrette, M., and Ganopolski, A. (2015). Simulating the

Greenland ice sheet under present-day and palaeo constraints including a new

discharge parameterization. The Cryosphere, 9(1):179–196.

CAPE Members, L. I. P. (2006). Last Interglacial Arctic warmth confirms polar

amplification of climate change. Quaternary Science Reviews, 25(13-14):1383–1400.

Chandler, M., Dowsett, H., and Haywood, A. (2008). The PRISM Model/Data

Cooperative: Mid-Pliocene data-model comparisons. PAGES News, 16(2):24–25.

Chang, K.-L. and Guillas, S. (2019). Computer model calibration with large non-

stationary spatial outputs: application to the calibration of a climate model. Journal

of the Royal Statistical Society: Series C (Applied Statistics), 68(1):51–78.

Conti, S., Gosling, J. P., Oakley, J. E., and O’Hagan, A. (2009). Gaussian process

emulation of dynamic computer codes. Biometrika, 96(3):663–676.

Bibliography 237

Craig, P. S., Goldstein, M., Rougier, J. C., and Seheult, A. H. (2001). Bayesian

Forecasting for Complex Systems Using Computer Simulators. Journal of the

American Statistical Association, 96(454):717–729.

Craig, P. S., Goldstein, M., Seheult, A. H., and Smith, J. A. (1997). Pressure matching

for hydrocarbon reservoirs. In Case studies in Bayesian statistics, pages 37–93.

Springer.

Cressie, N. A. C. (1993). Statistics for Spatial Data. John Wiley, New York. Revised

Edition.

Cumming, J. A. and Goldstein, M. (2009). Small Sample Bayesian Designs for

Complex High-Dimensional Models Based on Information Gained Using Fast

Approximations. Technometrics, 51(4):377–388.

Cumming, J. A. and Goldstein, M. (2010). Bayes Linear Uncertainty Analysis for Oil

Reservoirs Based on Multiscale Computer Experiments. O’Hagan, West, AM (eds.)

The Oxford Handbook of Applied Bayesian Analysis, pages 241–270.

Currin, C., Mitchell, T., Morris, M., and Ylvisaker, D. (1991). Bayesian Prediction of

Deterministic Functions, with Applications to the Design and Analysis of Computer

Experiments. Journal of the American Statistical Association, 86(416):953–963.

Diggle, P. J. and Ribeiro, P. J. (2006). Model-based Geostatistics. Springer Series in

Statistics. Springer.

Doll, J. C. and Jacquemin, S. J. (2018). Introduction to Bayesian Modeling and

Inference for Fisheries Scientists. Fisheries, 43:152–161.

Dowsett, H., Dolan, A., Rowley, D., Moucha, R., Forte, A., Mitrovica, J., Pound, M.,

Salzmann, U., Robinson, M., Chandler, M., Foley, K., , and Haywood, A. (2016).

The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Climate of the

Past, 12:10.5194/cp–12–1519–2016.

Dowsett, H., Robinson, M., Haywood, A. M., Salzmann, U., Hill, D., Sohl, L.,

Chandler, M., Williams, M., Foley, K., and Stoll, D. (2010). The PRISM3D paleoen-

vironmental reconstruction. Stratigraphy, 7(2-3):123–139.

238 BIBLIOGRAPHY

Dowsett, H., Thompson, R., Barron, J., Cronin, T., Fleming, F., Ishman, S., Poore, R.,

Willard, D., and Holtz, T. (1994). Joint investigations of the Middle Pliocene climate

I: PRISM paleoenvironmental reconstructions. Global and Planetary Change, 9:169–

195.

Dowsett, H. J., Barron, J. A., and Poore, R. Z. (1996). Middle Pliocene sea surface

temperatures: a global reconstruction. Marine Micropaleontology, 27:13–25.

Dowsett, H. J., Foley, K. M., Stoll, D. K., Chandler, M. A., Sohl, L. E., Bentsen,

M., Otto-Bliesner, B. L., Bragg, F. J., Chan, W.-L., Contoux, C., et al. (2013).

Sea Surface Temperature of the mid-Piacenzian Ocean: a Data-Model Comparison.

Scientific reports, 3.

Dowsett, H. J., Robinson, M. M., Foley, K. M., Herbert, T. D., Otto-Bliesner, B. L.,

and Spivey, W. (2019). The mid-Piacenzian of the North Atlantic Ocean. Stratig-

raphy, 16(3):119–144.

Fretwell, P., Pritchard, H., Vaughan, D., Bamber, J., Barrand, N., Bell, R., Bianchi,

C., Bingham, R., Blankenship, D., Casassa, G., et al. (2013). Bedmap2: improved

ice bed, surface and thickness datasets for Antarctica. The Cryosphere, 7:375–393.

Gertner, J. (2019). https://www.wired.com/story/the-top-secret-cold-war-project-

that-pulled-climate-science-from-the-ice/. Excerpted from the book: ”The Ice at

the End of the World: An Epic Journey into Greenland’s Buried Past and Our

Perilous Future”, by Jon Gertner. 2019.

Goldstein, M. and Rougier, J. (2004). Probabilistic Formulations for Transferring

Inferences from Mathematical Models to Physical Systems. SIAM journal on

scientific computing, 26(2):467–487.

Goldstein, M. and Rougier, J. (2006). Bayes Linear Calibrated Prediction for Complex

Systems. Journal of the American Statistical Association, 101(475):1132–1143.

Goldstein, M. and Wooff, D. (2007). Bayes Linear Statistics: Theory and Methods.

Wiley Series in Probability and Statistics. John Wiley & Sons.

Gordon, C., Cooper, C., Senior, C., Banks, H., Gregory, J., Johns, T., Mitchell, J., and

Wood, R. (2000). The simulation of SST, sea ice extents and ocean heat transports

Bibliography 239

in a version of the Hadley Centre coupled model without flux adjustments. Climate

Dynamics, 16:147–168.

GRIP Members (1993). Climate instability during the last interglacial period recorded

in the GRIP ice core. Nature, 364(6434):203.

Haylock, R. and O’Hagan, A. (1996). On Inference for Outputs of Computationally

Expensive Algorithms with Uncertainty on the Inputs. Bayesian statistics, 5:629–

637.

Haywood, A., Dowsett, H., Dolan, A., Rowley, D., Abe-Ouchi, A., Otto-Bliesner, B.,

Chandler, M., Hunter, S., Lunt, D., Pound, M., and Salzmann, U. (2016a). The

Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives

and experimental design. Climate of the Past, 12(3):663–675.

Haywood, A. M., Dowsett, H. J., and Dolan, A. M. (2016b). Integrating geological

archives and climate models for the mid-Pliocene warm period. Nature Communi-

cations, 7.

Haywood, A. M., Dowsett, H. J., Robinson, M. M., Stoll, D. K., Dolan, A. M., Lunt,

D. J., Otto-Bliesner, B., and Chandler, M. A. (2011). Pliocene Model Intercompar-

ison Project (PlioMIP): experimental design and boundary conditions (Experiment

2). Geoscientific Model Development, 4(3):571–577.

Helsen, M., Van De Berg, W., Van De Wal, R., Van Den Broeke, M., and Oerlemans,

J. (2013). Coupled regional climate–ice-sheet simulation shows limited Greenland

ice loss during the Eemian. Climate of the Past, 9(4):1773–1788.

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008). Computer Model

Calibration Using High-Dimensional Output. Journal of the American Statistical

Association, 103(482):570–583.

Holden, P. B., Edwards, N. R., Rangel, T. F., Pereira, E. B., Tran, G. T., and

Wilkinson, R. D. (2018). PALEO-PGEM v1.0: A statistical emulator of Pliocene-

Pleistocene climate. Geoscientific Model Development Discussions, 2018:1–26.

Horn, R. A. and Johnson, C. R. (2012). Matrix Analysis. Cambridge University Press,

Third edition.

240 BIBLIOGRAPHY

IPCC (2007). Climate Change 2007: Synthesis Report. Contribution of Working

Groups I, II and III to the Fourth Assessment Report of the Intergovernmental

Panel on Climate Change. IPCC, Geneva, Switzerland.

IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel

on Climate Change. Cambridge University Press, Cambridge, United Kingdom and

New York, NY, USA.

Jacod, J. and Protter, P. (2000). Probability Essentials. Universitext. Springer.

Jahn, A. (2018). Reduced probability of ice-free summers for 1.5°C compared to 2°C
warming. Nature Climate Change, 8:409–414.

Johnsen, S. J. and Vinther, B. M. (2007). Ice core records – Greenland stable isotopes.

In Elias, S. A., editor, Encyclopedia of Quarternary Sciences, pages 1250–1258.

Elsevier.

Johnson, J., Gosling, J., and Kennedy, M. (2011). Gaussian process emulation for

second-order Monte Carlo simulations. Journal of Statistical Planning and Inference,

141(5):1838–1848.

Jolliffe, I. T. (2002). Principal Component Analysis. Springer Series in Statistics.

Springer, second edition.

Kavetski, D. (2019). Parameter Estimation and Predictive Uncertainty Quantification

in Hydrological Modelling. Handbook of hydrometeorological ensemble forecasting,

pages 481–522.

Kennedy, M. C. and O’Hagan, A. (2000). Predicting the output from a complex

computer code when fast approximations are available. Biometrika, 87(1):1–13.

Kennedy, M. C. and O’Hagan, A. (2001). Bayesian Calibration of Computer Models.

Journal of the Royal Statistical Society, 63(3):425–464.

Kent, J. T. (1989). Continuity Properties for Random Fields. Annals of Probability,

17:1432–1440.

Bibliography 241

Kocis, L. and Whiten, W. J. (1997). Computational investigations of low-discrepancy

sequences. ACM Transactions on Mathematical Software, 23(2):266–294.

Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp, S.,

Oppenheimer, M., Pollard, D., and Strauss, B. H. (2017). Evolving understanding

of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections.

Earth’s Future, 5(12):1217–1233.

Kopp, R. E., Simons, F. J., Mitrovica, J. X., Maloof, A. C., and Oppenheimer, M.

(2009). Probabilistic assessment of sea level during the last interglacial stage. Nature,

462(7275):863.

Lang, S. (1987). Linear Algebra. Undergraduate Texts in Mathematics. Springer,

Third edition.

Langebroek, P. M. and Nisancioglu, K. H. (2016). Moderate Greenland ice sheet melt

during the last interglacial constrained by present-day observations and paleo ice

core reconstructions. The Cryosphere Discussions.

Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A., and Levrard, B. (2004).

A long-term numerical solution for the insolation quantities of the Earth. Astronomy

and Astrophysics, 428(1):261–285.

Lee, L. A., Carslaw, K. S., Pringle, K. J., and Mann, G. W. (2012). Mapping the

uncertainty in global CCN using emulation. Atmospheric Chemistry and Physics,

12(20):9739–9751.

Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. W., and Spracklen, D. V. (2011).

Emulation of a complex global aerosol model to quantify sensitivity to uncertain

parameters. Atmospheric Chemistry and Physics, 11(23):12253–12273.

Lee, P. M. (2012). Bayesian Statistics: An Introduction. Wiley Publishing, Fourth

edition.

Levitus, S. (1982). Climatological Atlas of the World Ocean. NOAA Profess. Pap.,

13:1–173.

242 BIBLIOGRAPHY

Lord, N. S., Crucifix, M., Lunt, D. J., Thorne, M. C., Bounceur, N., Dowsett,

H., O’Brien, C. L., and Ridgwell, A. (2017). Emulation of long-term changes in

global climate: application to the late Pliocene and future. Climate of the Past,

13(11):1539–1571.

Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J., and

Dowsett, H. J. (2010). Earth system sensitivity inferred from Pliocene modelling

and data. Nature Geoscience, 3(1):60.

Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. Probability

and Mathematical Statistics. Academic Press Inc.

Mattax, C. C. and Dalton, R. L. (1990). Reservoir Simulation. Monograph, Volume

13. Society of Petroleum Engineers.

Menemenlis, D., Hill, C., Adcrocft, A., Campin, J.-M., Cheng, B., Ciotti, B.,

Fukumori, I., Heimbach, P., Henze, C., Köhl, A., et al. (2005). NASA Supercom-

puter Improves Prospects for Ocean Climate Research. Eos, Transactions American

Geophysical Union, 86(9):89–96.

Milanković, M. (1930). Mathematische Klimalehre und Astronomische Theorie der

Klimaschwankungen. Handbuch der Klimatologie. Bornträger, Berlin.

NEEM Community Members (2013). Eemian interglacial reconstructed from a

Greenland folded ice core. Nature, 493:489–494.

NGRIP Members (2004). High-resolution record of Northern Hemisphere climate

extending into the last interglacial period. Nature, 431(7005):147–151.

Oakley, J. and O’Hagan, A. (2002). Bayesian Inference for the Uncertainty Distribution

of Computer Model Outputs. Biometrika, 89(4):769–784.

Oakley, J. E. and O’Hagan, A. (2004). Probabilistic sensitivity analysis of complex

models: a Bayesian approach. Journal of the Royal Statistical Society: Series B

(Statistical Methodology), 66(3):751–769.

O’Hagan, A. (1978). Curve Fitting and Optimal Design for Prediction. Journal of the

Royal Statistical Society, 40(1):1–42.

Bibliography 243

O’Hagan, A. (1992). Some Bayesian Numerical Analysis. In Bayesian Statistics 4,

pages 345–363. Oxford University Press.

O’Hagan, A., Kennedy, M., and Oakley, J. (1998). Uncertainty Analysis and other

Inference Tools for Complex Computer Codes. In Bayesian Statistics 6. Oxford

University Press.

Øksendal, B. (1998). Stochastic Differential Equations: An Introduction with Applica-

tions. Springer, Fifth edition.

Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H., Hu, A., and

CAPE Members, L. I. P. (2006). Simulating Arctic climate warmth and icefield

retreat in the last interglaciation. science, 311(5768):1751–1753.

Prescott, C. L. (2017). Orbital forcing and its importance in understanding the warm

Pliocene. PhD thesis, University of Leeds.

Prescott, C. L., Haywood, A. M., Dolan, A. M., Hunter, S. J., Pope, J. O., and

Pickering, S. J. (2014). Assessing orbitally-forced interglacial climate variability

during the mid-Pliocene Warm Period. Earth and Planetary Science Letters,

400:261–271.

Quiquet, A., Ritz, C., Punge, H., and Salas y Mélia, D. (2013). Greenland ice sheet

contribution to sea level rise during the last interglacial period: a modelling study

driven and constrained by ice core data. Climate of the Past, 9(1):353–366.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for Machine

Learning. The MIT Press, Massachusetts Institute of Technology.

Reynolds, R. W. and Smith, T. M. (1995). A high-resolution global sea surface temper-

ature climatology. Journal of Climate, 8(6):1571–1583.

Robinson, A., Calov, R., and Ganopolski, A. (2011). Greenland ice sheet model

parameters constrained using simulations of the Eemian Interglacial. Climate of

the Past, 7:381–396.

Rougier, J. and Goldstein, M. (2014). Climate Simulators and Climate Projections.

Annual Review of Statistics and Its Application, 1(1):103–123.

244 BIBLIOGRAPHY

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and Analysis

of Computer Experiments. Statistical science, 4(4):409–423.

Salter, J. M., Williamson, D. B., Scinocca, J., and Kharin, V. (2019). Uncertainty

Quantification for Computer Models With Spatial Output Using Calibration-

Optimal Bases. Journal of the American Statistical Association, 0:1–15.

Salzmann, U., Dolan, A. M., Haywood, A. M., Chan, W.-L., Voss, J., Hill, D. J., Abe-

Ouchi, A., Otto-Bliesner, B., Bragg, F. J., Chandler, M. A., et al. (2013). Challenges

in quantifying Pliocene terrestrial warming revealed by data–model discord. Nature

Climate Change, 3(11):969.

Santner, T. J., Williams, B. J., and Notz, W. I. (2003). The Design and Analysis of

Computer Experiments. Springer Series in Statistics. Springer.

Shepherd, A., Ivins, E. R., Geruo, A., Barletta, V. R., Bentley, M. J., Bettadpur, S.,

Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., et al. (2012). A reconciled

estimate of ice-sheet mass balance. Science, 338(6111):1183–1189.

Shiryaev, A. N. (1996). Probability. Graduate Texts in Mathematics. Springer, Second

edition.

Stone, E., Lunt, D., Annan, J., and Hargreaves, J. (2013). Quantification of the

Greenland ice sheet contribution to Last Interglacial sea level rise. Climate of the

Past, 9(2):621–639.

Tran, G. T., Oliver, K. I., Sóbester, A., Toal, D. J., Holden, P. B., Marsh,

R., Challenor, P., and Edwards, N. R. (2016). Building a traceable climate

model hierarchy with multi-level emulators. Advances in Statistical Climatology,

Meteorology and Oceanography, 2(1):17–37.

United Nations (2015). FCCC/CP/2015/L.9/Rev.1. Adoption of the Paris Agreement.

Van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël,

B. P., Jan Van De Berg, W., Van Meijgaard, E., and Wouters, B. (2016). On the

recent contribution of the Greenland ice sheet to sea level change. The Cryosphere,

10(5):1933–1946.

Bibliography 245

Vernon, I., Goldstein, M., and Bower, R. G. (2010). Galaxy formation: a Bayesian

uncertainty analysis. Bayesian analysis, 5(4):619–669.

Williams, S. J. and Gutierrez, B. T. (2009). Sea-level rise and coastal change: Causes

and implications for the future of coasts and low-lying regions. Shore & beach,

77(4):13–21.

Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L., and

Yamazaki, K. (2013). History matching for exploring and reducing climate model

parameter space using observations and a large perturbed physics ensemble. Climate

Dynamics, 41(7-8):1703–1729.

Wilson, A., Dent, C., and Goldstein, M. (2018). Quantifying uncertainty in wholesale

electricity price projections using bayesian emulation of a generation investment

model. Sustainable Energy, Grids and Networks, 13:42–55.

Zhang, W., Zhou, T., Zou, L., Zhang, L., and Chen, X. (2018). Reduced exposure

to extreme precipitation from 0.5°C less warming in global land monsoon regions.

Nature Communications, 9:1–8.

Zhou, S., Chen, D., Cai, W., Luo, L., Low, M. Y. H., Tian, F., Tay, V. S.-H., Ong, D.

W. S., and Hamilton, B. D. (2010). Crowd Modeling and Simulation Technologies.

ACM Transactions on Modeling and Computer Simulation (TOMACS), 20(4):20.

	Acknowledgements
	Abstract
	Preface
	Contents
	List of Abbreviations
	List of Notation
	Introduction to the Thesis
	Thesis Outline

	I Theory of Gaussian Process Emulation
	Bayesian Statistics and Gaussian Processes
	Motivation Behind the Introduction of Emulators
	The Use of Computer Simulators in Science
	The Need to ``Emulate'' Simulators

	Introduction to Bayesian Inference
	Illustrative Example
	General Setting and Notation

	Gaussian Processes
	Intuition Behind Stochastic Processes
	Formal Definitions and Properties

	Covariance Functions
	Definitions and Results
	Connection to Mean-square and Pathwise Continuity
	Connection to Mean-Square Differentiability of Any Order
	Important Families of Covariance Functions

	Correlation Lengths

	Gaussian Process Emulation
	Introduction
	Literature Review

	Two-Level Hierarchical Model
	Prior Distribution of the Model
	Recap of Useful Distributions
	Prior Choice for the Hyperparameters and 2
	Shorthand Notation Used in the Chapter

	Conditioning the Model to Observations
	Conditioning a Gaussian Vector
	Bayesian Conjugate Analysis on Hyperparameters

	Marginal Posterior Distribution of the Model
	Some Definitions and Technical Results
	Distribution of the Emulator

	Classical Prior Choice
	Summary of Emulation Setting and Formulas
	The Case of Chaotic and Stochastic Simulators
	Adding Observational Variance (Nugget Term)
	A Glimpse on Potential Identifiability Issues

	Principal Component Analysis Adapted to a Spherical Setting
	Motivation
	Classical PCA: Review of Theory and Formulas
	PCA on a Different Geometry
	Immersing �Rs Into a Space of Functions
	Theoretical Formula for the Principal Components
	Computing the Principal Components

	II Applications to Past Climate Reconstruction
	Role of Orbital Variability in Ocean Temperature Reconstruction
	Learn From the Past to Understand the Future
	Motivation for the Interest in Mid-Pliocene Climate
	The Combined Use of Models and Geological Data
	The Role of Statistics
	Contribution of This Chapter

	Description of Marine Geological Archive
	The Climate Simulator and its Output Field
	Simulator Inputs: Orbital Parameters
	Description of Relevant Astronomical Phenomena

	Experimental Design
	Uniform Sampling in Time
	Transformed input variables

	Reducing Output Dimensionality
	Prior Specifications for PC Scores
	Mean Function
	Covariance Function

	Estimation of Correlation Lengths and Nugget
	Recombining the PC Scores
	Prediction for a General Location
	Sampling Trajectories from the Emulator

	Data-Model Comparison (DMC)
	Results
	Conclusions

	Greenland Ice Sheet Reconstruction During Last Interglacial
	Introduction
	The Issue of Current Sea-Level Rise
	Ice Sheets as Frozen Archives of Earth's History
	Overview of the Chapter

	Available Ice-Core Records
	Climate Simulations: Inputs and Outputs
	Parameterise and Generate New Morphologies
	Regridding the Original Morphologies
	Principal Components and Synthetic Morphologies
	Mask Generation of Synthetic Morphologies

	Experimental Design
	Wave 1
	Wave 2

	Calibration of the Six Emulators
	Mean and Covariance Functions
	Estimation of Correlation Lengths and Nugget Term
	Emulator Validation

	Identifying Record-Compatible Morphologies
	Results
	A Scenarios-Based Approach
	Posterior Densities (Record-Compatible Morphologies)
	Shape and Uncertainty of RC Morphologies

	Conclusions
	Concluding Remarks
	Contributions of This Work
	Future Directions of Investigation

	Appendix
	Results from Probability
	Results from Linear Algebra
	Proof of Integrated Likelihood Formula

	MATLAB Code
	General Routines
	Covariance Functions
	Principal Components

	Code Relating to Chapter 4
	Emulation of PC scores (functions fj() of Section 4.6)
	Maximum a Posteriori Estimate of d and
	Recombine the PC scores
	Interpolate Among Cells (Subsection 4.9.1)

	Code Relating to Chapter 5
	Regridding of Original Morphologies (Subsection 5.4.1)
	Generate Masks (Subsection 5.4.3)
	Identifying Plausible Morphologies (Section 5.7)

	Bibliography

