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General summary 

 

Reducing poverty and halting biodiversity loss are two crucial global goals. Protected areas 

(PAs) are an important example of how goals to reduce poverty and halt biodiversity loss 

interact. PAs aim to conserve biodiversity, but also have impacts on poverty. In this thesis I 

focus on the environmental and social impacts of protected areas using a suite of large datasets. 

Specifically, I focus on how our understanding of PA impacts can be improved by (1) assessing 

heterogeneity in more detail, (2) comparing impacts relative to impacts of other land uses, and 

(3) by using better data to study impacts in countries with currently insufficient data. In chapter 

2 I assess how Nepali PAs influence poverty, extreme poverty, and inequality. I find that Nepali 

PAs reduced overall poverty and extreme poverty, and crucially, did not exacerbate inequality. 

I also find that tourism was a key driver in poverty reductions, but PAs also reduced extreme 

poverty in areas with few tourists. In chapter 3 I compare PA impacts relative to competing 

land uses and find that sustainable use PAs, agriculture and mining have led to different 

outcomes in forest cover and poverty in the Brazilian Amazon. I also show that PAs were 

effective in reducing deforestation compared to larger-sized landholdings, but not 

smallholders. I also show evidence that mining sites had more deforestation, but that mining 

sites also raised local income. In chapter 4 I test whether machine learning methods can be 

informative to estimate poverty in Tanzania using publicly available satellite imagery. I find 

that our machine learning methods can be used to estimate household consumption fairly 

accurately, but cannot be used to measure poverty change or multidimensional poverty. 

Combined, my findings highlight that PAs can reduce poverty and protect forests although 

impacts are highly heterogeneous and further scrutiny of PA impacts is needed in more 

countries. Novel methods using publicly available secondary data show promise to drastically 

improve the evidence base of PA impacts in data-poor countries where poverty is most 

prevalent.  
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1.1 Global challenges 

Eradicating extreme poverty and halting biodiversity loss are two important global challenges 

to reach the aims of the Sustainable Development Goals (SDGs; Griggs et al. 2013). In this 

thesis I focus on the poverty and environmental impacts of conservation interventions with a 

focus on protected areas (PAs). PAs provide a perfect example to study these impacts because 

they are a key strategy to protect biodiversity but can also have positive and negative socio-

economic impacts on local populations (Watson et al. 2014; Brockington & Wilkie 2015). 

Although PAs are a cornerstone of global biodiversity conservation efforts, much remains 

unknown about the effectiveness of PAs in halting biodiversity loss, and whether PAs have net 

positive or negative impacts on local poverty. The lack of evidence in understanding how 

conservation interventions work has led to numerous calls from scientists to improve the 

evidence base for more effective policy design and intervention (Fisher et al. 2014; Lu et al. 

2015). 

 

1.1.1 Global poverty trends 

Before 1750, poverty was largely accepted as a constant feature in society. Poverty reduction 

was only considered feasible, once Adam Smith’s views emerged that economic development 

was possible (Lipton & Ravallion 1995). This led to a recognition that the state had a role to 

play in the reduction of, resulting in the poor laws in Britain that were designed to provide 

safety-nets for the country’s poor (Robinson 2002). The earliest estimates of poverty date back 

to 1820, with more than 80% of the global population living in extreme poverty (earning less 

than $1 per day; Bourguignon & Morrisson 2002). Yet these measures are crude, because they 

only estimate poverty by calculating the proportion of GDP that goes to a households. Only 

from 1980 did the World Bank start data collection to estimate poverty (household 

consumption expenditure) directly (Grosh & Glewwe 1998). Household consumption 

expenditure estimates whether a household can secure a basket of goods that is critical for 

survival, and how much such a basket would cost. Using these data, we now estimate that 

extreme poverty rates have fallen from 44% of the world’s population in 1980 to 10% in 2015 

(equivalent to 736 million people earning less than the extreme poverty line of $1.90 per day). 

The $1.90 poverty line is arbitrary, but poverty rates have decreased regardless of the chosen 

poverty line (Ravallion 1998). Despite the progress in reducing extreme poverty, an estimated 

Met opmerkingen [b1]: Elaboration of examples 



  Chapter 1 

3 
 

3.4 billion people (46% of the world’s population) still earn less than $5.50 (the poverty line 

used in upper-middle-income countries) and struggle to meet basic needs. 

Household consumption expenditure remains one of the most used indicators of poverty, but 

its strictly monetary focus has also been criticized frequently (Alkire & Foster 2011; 

Brockington et al. 2018). Multiple other dimensions of poverty have been identified, including 

non-monetary dimensions such as health, education, social inclusion, empowerment and 

human rights. Several qualitative studies have interviewed the poor to identify their values and 

identify important dimensions of wellbeing (Narayan 2000).  

Discussion about the definition of poverty have also affected discussions on how poverty 

should be alleviated or reduced (Agrawal & Redford 2006). From an economic perspective 

poverty reduction strategies rely on macroeconomic growth, income generation and 

infrastructure building. However, it has been recognized that removing political, social and 

cultural obstacles (e.g. addressing neo-colonial power relations) are also important components 

of poverty reduction strategies. 

Much of the criticisms on monetary-based poverty measures draw on the works of Amartya 

Sen who argued against the use of income-based poverty lines (Anand & Sen 1997; Sen 2000). 

Firstly, a simple line that divides the world in poor and non-poor obscures important 

heterogeneity in the intensity of poverty below the poverty line and neglects inequalities 

between rich and poor. Secondly, counting the poor does not take into account the volatility of 

poverty (Barrett et al. 2001). Chronically deprived families that are trapped in poverty would 

require a different approach than families that cycle in and out of poverty. Finally, personal 

and environmental factors of individuals are not taken into account. In Sen’s view income is 

only a means to an end. Poverty analyses in Sen’s view should focus on the ability of people 

to choose and live the life they value. For example, Sen argued that the right to vote is 

meaningless if a person has no means of transport to get to the voting booth. This approach is 

referred to as the capabilities approach and focuses on the actual quality of life that individuals 

are being able to achieve.  

Several attempts have been made to operationalize the capabilities approach into quantifiable 

indicators. The human development index (HDI) focuses on three capabilities that are regarded 

as universally valued and weighted equally: long and healthy life (measured by life expectancy 

at birth), knowledge (measured by expected and mean years of schooling) and decent standard 

of living (measured by GNI per capita). The HDI has been criticized because the index implies 

Met opmerkingen [b2]: Discussion on the various 
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that trade-offs are possible. For example, the HDI implies that an additional year of life has an 

economic value. The HDI also neglects inequalities because the HDI is developed for the 

national level. Average income could be high, but taken up only by the elite.  

More recently, the multidimensional poverty index (MPI) has been developed that addresses 

some of these critiques (Alkire & Foster 2011). The MPI is also based on Sen’s capability 

approach and measures poverty in three dimensions: health, education and living standards. 

However, instead of the HDI, the MPI is calculated at the household level and does not only 

measure the poverty headcount (whether the household is poor), but also measures poverty 

intensity (how poor the household is). The more sophisticated calculation of the MPI ensures 

that trade-offs are not obvious, but the MPI is still criticized because each dimension is 

weighted equally. Other approaches, such as the Sustainable Livelihood Approach (SLA; 

Scoones 1998) or the Nested Spheres of Poverty (NESP; Gonner et al. 2007) approach attempt 

to provide a holistic framework to analyse poverty (and livelihoods in general) by combining 

information on subjective wellbeing, resources and context.  

In general, the broadening of poverty to include multiple dimensions has given rise to a wide 

range of indicators to determine how poor a person is. These poverty dimensions are not 

independent, yet the links between them can be complex. For example, marginalization in 

education could lead to lower incomes and poorer health. Yet higher incomes, especially in 

rural areas, do not uniformly lead to better drinking water and access to better schools and 

hospitals. Because of the complex mechanisms that underlie the multiple definitions of poverty, 

each single poverty indicators remains flawed. Furthermore, several dimensions of poverty are 

not easily measurable quantitatively, including important dimensions of poverty such as gender 

inequality, social inclusion and human rights (Narayan 2000). It is therefore important to 

acknowledge the shortcomings of poverty indicators and to be explicit in what they measure 

and what they overlook. This is especially important in measuring the success of poverty 

reduction strategies. Impacts of poverty reduction programmes highly depend on the aspect 

(incidence, intensity, volatility) and dimension (income, education, health, empowerment) that 

is taken into consideration (Agrawal 2014). 
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1.1.2 Global biodiversity trends 

In contrast to global poverty estimates, biodiversity trends follow an opposite pattern. Rates of 

species extinction are 100 to 1,000 times greater than pre-human levels (Pimm et al. 2014). 

Biodiversity loss is continuing at such alarming rates that some scientists estimate that we are 

entering the sixth mass extinction if all species currently listed as Critically Endangered go 

extinct (Barnosky et al. 2011).  

The most important drivers of biodiversity loss are land use change, climate change, 

exploitation (hunting and wildlife trade) and invasive species. Although the importance of each 

driver varies with taxonomic group and specific location, habitat loss due to land use changes 

is likely responsible for the largest decline of species. Powers and Jetz (2019) estimate that by 

2070 approximately 1,700 species will be imperilled due to land use change. Amphibians are 

projected to be the most affected taxonomic group as the Red List threat status of 886 

amphibian species is projected to be up-listed.  

In the tropics forest loss is the main cause of biodiversity loss. Betts et al. (2017) estimate that 

121-219 species will become threatened in the next 30 years in Borneo, Central Amazon and 

the Congo basin. Forest loss also has indirect effects including increasing forest fragmentation 

and edge effects (Pfeifer et al. 2017), opening up previously inaccessible areas for hunting and 

wildlife trade, and driving climate change by increasing greenhouse gas emissions (Foley et al. 

2005). Forest degradation (negative anthropogenic changes that do not lead to complete forest 

cover loss) might be less severe than complete deforestation, but is more widespread (Barlow 

et al. 2016; Edwards et al. 2019). Around 25% of the world’s remaining forests are zoned for 

selective logging, most of which is unsustainable (Edwards et al. 2014). Selective logging 

typically targets the largest and oldest trees, opening gaps that are often occupied by non-tree 

species such as climbers. Nevertheless, logged forests are able to provide habitat to a greater 

proportion of biodiversity than converted areas.  

Climate change is causing species extinctions as high-elevation species lose suitable climate 

conditions on mountains and other species are trapped in forests with unsuitable climatic 

conditions because of habitat fragmentation and lack of available connections to move between 

forest patches (Senior et al. 2019). Newbold (2018) estimates that the added effects of climate 

change and land use changes could lead to a loss of 37.9% of species from vertebrate 

communities by 2070. Furthermore, by 2070 the effects of climate change could match or 

exceed the impacts of land use changes.  

Met opmerkingen [b3]: overall drivers and patterns of 
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The effects of overexploitation and invasive species are less well documented. A recent 

analysis shows that 18% of species are currently being traded, and potentially more species 

will be traded in the future (Scheffers et al. 2019). Benitez-Lopez et al. (2017) demonstrated 

that bird and mammal abundances declined due to hunting. Invasive predators have contributed 

to the majority (58%) of modern bird, mammal, and reptile extinctions (Doherty et al. 2016). 

The impact of invasive species is especially severe in insular regions, the habitat of a large 

proportion of highly threatened vertebrate species (Spatz et al. 2017).  

In 2010 the Convention for Biological Diversity (CBD) set out twenty “Aichi Biodiversity 

Targets” to support the overall goal to halt biodiversity loss by 2020, some of which have been 

adopted by the SDGs. The Aichi targets comprise a wide range of actions that should be taken, 

including establishing protected areas. Although small but significant progress has been made 

to achieve some targets, the main goal will not be met (Tittensor et al. 2014).  

 

1.1.3 Linkages between poverty and biodiversity 

Although there is increasing recognition that economic growth is not conducive to sustainable 

development (Stiglitz et al. 2017), at least part of the successes in poverty reductions have been 

attributed to economic development, especially agricultural development (Ravallion 2001; 

Deaton 2005). Several Asian countries have shown that reducing poverty can be very 

successful if agricultural growth is combined with equal distribution of wealth (Chen & 

Ravallion 2008). However, poverty reduction can occur without economic development (e.g. 

in Brazil - Ferreira et al. 2010), and agricultural intensification can also have perverse outcomes 

on well-being (Rasmussen et al. 2018). Nevertheless, agricultural development has been and 

remains a key policy to promote rural poverty reductions. Yet from a biodiversity perspective, 

growing demand for agricultural land is also the most important driver of biodiversity loss 

(Newbold et al. 2015). Most of the recent deforestation has occurred in tropical regions, which 

is also where most of low and middle-income countries (LMIC) countries are located. Around 

150 million hectares of forest have been converted to agriculture between 1980 and 2012, 

especially in the Amazon and South-East Asia (Hansen et al. 2013). In temperate regions 

reforestation of previously cleared areas has taken place, causing a rise in forest cover between 

1982 and 2016 (Song et al. 2018). Reforestation is considered an important factor in mitigating 

climate change and restoring biodiversity (Bastin et al. 2019; Busch et al. 2019).  The Bonn 

challenge aims to restore 350 million hectares of forest by 2030. Tracking forest cover 
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estimates and economic development levels have shown a transition starting with high forest 

cover, deforestation in early stages of economic development followed by reforestation in the 

latest stages of economic development. This pattern is known as the forest transition curve and 

suggests that forest cover can regrow after some critical threshold of economic development 

has been reached (Mather 1992; Meyfroidt & Lambin 2011).  

Poverty is also linked to wildlife exploitation. Poor communities greatly depend on forest 

resources for their livelihoods. For example, bushmeat forms an important component of 

household income for impoverished communities in the Congo basin (De Merode et al. 2004). 

However, a study from across Africa found the majority of bushmeat is consumed by wealthier 

households (Brashares et al. 2011). Bushmeat can also be an important source of nutrients. For 

example, a study in Madagascar estimated that removing access to bushmeat would triple 

anemia cases for children living in the poorest households (Golden et al. 2011). These studies 

show that unsustainable harvest of forest resources and the subsequent depletion of wildlife 

could also increase poverty.  

A closer look at the relationship between development and nature could give insights into how 

sustainable development could be achieved. The consequences of poverty reduction could have 

negative environmental consequences, but in other cases poverty reductions could synergize 

with positive biodiversity outcomes. Nevertheless,, sustainable development would likely 

require a radical reconfiguration of how humans interact with the natural world (Foley et al. 

2005; Cardinale et al. 2012). The enormity of this task raises questions about the importance 

of biodiversity and whether it is worth the effort. Biodiversity is important for humans because 

it has intrinsic and extrinsic value. Intrinsic value is based on the belief that all life on earth 

deserves the right to exist. Extrinsic value relates to the benefits that nature provides for humans 

such as ecosystem services (Costanza et al. 1997; Balmford et al. 2002). A disproportionate 

part of poor people lives in natural systems and directly depends on the diversity of ecosystem 

services that nature provides (Jagger et al. 2014). Ecosystems that harbour maximum biological 

diversity are more resilient to human or natural shocks such as climate change (Isbell et al. 

2015). At the local scale poor people will be hit the hardest when nature’s resilience decreases. 

On the global scale exceeding planetary boundaries will lead to severe negative effects for all 

people (Rockström et al. 2009).  

 

1.2 Protected areas as coupled human and natural systems 

Met opmerkingen [b4]: Expansion on the links between 
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Disentangling the complex interactions in coupled human and natural systems (CHANS) is 

therefore crucial and requires a holistic approach, yet social and environmental studies have 

developed mostly independently (Liu et al. 2007; Ostrom 2009). By integrating the 

environmental and social sciences we have reached a better understanding of the complexity 

of these systems and how they interact. Scientists of CHANS have identified causal 

relationships in a wide range of human-nature interactions including deforestation, fishing, 

desertification, species extinctions, and collapse of ecosystems and civilizations (Ferraro et al. 

2018). They have shown a myriad of synergies and trade-offs between poverty reduction and 

biodiversity conservation efforts. These have sparked debates about the roles of poverty 

reduction in biodiversity conservation efforts and vice versa (Soule 2013; Marvier 2014; Roe 

2019). 

Protected areas (PAs), the main focus in this thesis, are an example of a CHANS and play a 

key role in these discussions. Setting aside land for protection has developed as one of the key 

strategies of contemporary biodiversity conservation. The concept of PAs has a long history in 

many cultures, but the first official PA only dates from 1872 with the establishment of 

Yellowstone NP. As environmental awareness increased governments around the world 

decided to protect more land (Watson et al. 2014). Currently around 16% of the terrestrial 

surface falls under protection, close to the Aichi target of 17% that the CBD set to reach by 

2020. Although the global PA network is expanding, reports of downgrading, downsizing and 

degazettement of PAs have increased too, highlighting that the PA network is more dynamic 

than previously assumed (Golden Kroner et al. 2019). For example, the Arabian Oryx sanctuary 

in Oman currently only retains 10% of its original size for hydrocarbon purposes. The Yosemite 

National Park in the USA has experienced multiple changes, including downsizes (for forestry 

and mining) and downgradings (to allow construction of roads, facilities and dams). Some 

changes have been reversed later, or were off-setted by protecting other tracts of land (Qin et 

al. 2019). 

The primary goal PAs is to protect the biological diversity within its borders. PAs can achieve 

this by mitigating habitat loss, minimizing anthropogenic disturbances and avoiding species 

extinctions and population declines. PAs also have socio-economic impacts by restricting 

access and use to resources within. It is estimated that around 70% of the PAs has people living 

within PA boundaries (Bruner et al. 2001). The world conservation union IUCN classifies PAs 

into six different categories according to the extent to which biodiversity goals are prioritized 

over impacts on people (Dudley 2008). Categories I-IV are regularly referred to as Strict PAs 

Met opmerkingen [b5]: Example to clarify point made 
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because they do not allow human use, while categories V and VI are sustainable use (SU) PAs 

and explicitly list community use as one of their major objectives. Initially PAs excluded 

human interference based on Hardin’s influential theory “the tragedy of the commons” that 

hypothesised that people (commoners) were unable to limit their resource use, and should be 

separated from nature in order to protect it. This paradigm has also been referred to as fortress 

conservation and was later critiqued as the recognition grew that biodiversity conservation 

should not be separated from the involvement of local communities (Naughton-Treves et al. 

2005; Ostrom & Nagendra 2006; Berkes 2007).  

PAs show varied success in achieving their conservation and socio-economic goals. The 

expansion of the PA network has been celebrated as a key conservation success, but concerns 

have been raised about the effectiveness of PAs in protecting habitat and species. PA 

management is plagued with funding shortfalls (Waldron et al. 2017), and PAs are chronically 

understaffed (Coad et al. 2019). Critics argue that some PAs only exist on paper and are referred 

to as ‘paper parks’ (Oates 1999). A PA management assessment of 2167 PAs shows that only 

a quarter of terrestrial PAs have adequate staffing and budget (Coad et al. 2019). Insufficient 

resources impact law enforcement, boundary demarcation, natural resource management and 

could also lead to reduced communication with stakeholders, potentially creating conflicts 

(Watson et al. 2014). Corruption and bureaucracy are also important factors that influence PA 

performance and effectiveness. Upgrading the management of current PAs could result in 

significantly improved conservation outcomes (Pringle 2017; Kuempel et al. 2018). For 

example, the Parque Nacional de Gorongosa in Mozambique suffered great ecological damage 

during civil wars (Pringle 2017). More than 90% of the park’s large mammals was extinguished 

in 1992, but wildlife recovered to almost 80% of pre-conflict levels following an upgrade of 

PA management. 

The success of PAs is not only influence by its management but also by its location. Many PAs 

protect lands with low opportunity costs, such as areas with higher elevations, steeper slopes 

and remote from cities (Joppa & Pfaff 2009). Consequently, many PAs only passively protect 

forests through the absence of human pressure, and thus play a limited role in conservation. 

PAs are often established in an opportunistic, ad hoc manner that generally does not take into 

account species representation across all biomes. Only 15% of the threatened vertebrates are 

effectively represented in PAs (adequate overlapping of species range with a PA - Rodrigues 

et al. 2004; Venter et al. 2014). Policies to expand PAs based on area alone can thus result in 

underachieving biodiversity outcomes. Area-based targets of PAs are compared to Goodhart’s 
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Law which warns that an indicator can transition into a de facto policy target, thereby 

neglecting the overarching goal (Barnes et al. 2018).  

 

1.2.1 Impacts of protected areas on biodiversity 

Despite concerns regarding PA management and location, studies have shown that PAs have a 

net positive impact on protecting habitats. Remote sensing to track forests from space has 

shown that PAs on average reduce deforestation and carbon loss. Examples from countries 

across all continents show that tropical deforestation rates within PAs are routinely lower in 

PAs than in comparable sites outside PAs (e.g. Andam et al. 2008; Canavire-Bacarreza & 

Hanauer 2013; Sims & Alix-Garcia 2017), although Brun et al. (2015) found no impact of PAs 

in Indonesia. Effect sizes of PA impacts vary per country, per protected area and can even 

differ within PAs. For example Shah & Baylis (2015) found that the Sebangau National Park 

in Kalimantan, Indonesia, performed significantly better in reducing deforestation than the 

Kerinci Seblat National Park in Sumatra. Within the Kerinci Seblat National Park, reducing 

deforestation was more successful in the South than in the North part of the park. On average, 

the effect size were modest. For example, Andam et al. (2008) found that PAs avoided 10% of 

deforestation in Costa Rica. It is possible that PAs also have positive (“blocking”) or negative 

(“leakage”) impacts outside the boundaries, but the evidence remains inconclusive (Herrera et 

al. 2019). Fewer studies show evidence on PA success in other biomes, although a study in the 

Brazilian Cerrado found that PAs were successful in reducing deforestation (Carranza et al. 

2014). The effectiveness of PAs is also influenced by their management goals, but strictly 

protected areas are not always more effective in reducing deforestation than SU PAs (Ferraro 

et al. 2013). Despite the relative success of PAs in slowing down deforestation in comparison 

to unprotected land, 3% of the global protected forest was lost from 2000 to 2012 and 10% of 

the total forest loss occurred within PA boundaries (Heino et al. 2015). Even in some renowned 

PAs that have been designated as UNESCO world heritage sites deforestation has continued. 

For example, the Río Plátano Biosphere Reserve in Honduras lost 5% forest cover between 

2000 and 2012 (Allan et al. 2017). In some PAs deforestation rates have been especially 

alarming. A study from Kalimantan, Indonesia, has shown that protected forests have declined 

by more than 50% (Curran et al. 2004).  

Few studies have focused on the impacts of PAs on smaller scale anthropogenic disturbances 

such as logging and fire. Anthropogenic impacts are often not measured but are severely 

Met opmerkingen [b7]: Example to clarify point made 

Met opmerkingen [b8]: Example to clarify point made 



  Chapter 1 

11 
 

underestimated (Barlow et al. 2016). Traditional remote sensing techniques are unable to detect 

selective logging because the pixel size is too big to capture small-scale habitat changes. Using 

techniques to analyse forest degradation at subpixel levels one study has shown that PAs in the 

Brazilian Amazon show limited signs of selective logging (Asner et al. 2005). Evidence from 

other regions is more limited. Fire is an important indicator of land clearing of forests in Asia 

and South-America, but fires form an integral part of management of grassland ecosystems. A 

global study compared fires inside PAs vs outside PAs and found fewer fire occurrences in 

PAs (Nelson & Chomitz 2011). SU PAs had fewer fires than strict PAs.  

Evidence of the impacts of PAs on conserving species is still weak. Populations of many 

species are declining in PAs (Craigie et al. 2010), but many studies of PA impacts on species 

populations and assemblages lack an appropriate counterfactual to compare PA impacts 

against. Identifying a counterfactual can be complicated when species mostly occur within PAs 

or if species migrate beyond PA boundaries. Furthermore, studies on PA impacts on species 

are often biased towards charismatic species, such as lions and elephants, and well-known PAs 

with adequate resources (Geldmann et al. 2013). Two meta-analyses report higher species 

abundance inside PAs than outside, but sample sizes (42 and 86 studies) were limited 

(Geldmann et al. 2013; Coetzee et al. 2014). The most comprehensive study compared species 

richness and abundance of 13,669 vertebrate species inside 359 PAs against a counterfactual 

without protection (Gray et al. 2016). They found higher species richness and abundance inside 

PAs than outside. However, wide confidence intervals highlighted that evidence of PA impacts 

on species should be improved. They also found that differences in species were mostly due to 

differences in habitat instead of wildlife exploitation (e.g. hunting and trapping). The evidence 

on impacts of PAs on species through limiting exploitation of wildlife is limited. Hunting 

pressure is generally lower in PAs than outside PAs, but overhunting in PAs is common in 

tropical PAs (Laurance et al. 2012; Benítez-López et al. 2017). The effects of PAs on mitigating 

exploitation for wildlife trade are poorly known although studies suggest that PAs might fail 

to prevent the extinction of commercially valuable species (Symes et al. 2018).  

 

1.2.2 Socio-economic impacts of protected areas 

The rules and regulations that PAs impose also have positive and negative socio-economic 

impacts for people. Socio-economic outcomes can also influence biodiversity outcomes. For 

example, local poverty is an important factor in explaining elephant poaching (Hauenstein et 
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al. 2019). Oldekop et al. (2016) found that PAs with positive socio-economic outcomes were 

also more likely to report positive biodiversity conservation outcomes.  

PAs can provide positive socio-economic outcomes by safeguarding vital ecosystem services, 

including water provision, food security and carbon storage. For example, cities often rely on 

PAs as a source of drinking water (Watson et al. 2014). Globally, PAs are also play an 

important role in climate change mitigation efforts, such as REDD+ (reducing emissions from 

deforestation and forest degradation, plus the conservation, sustainable management and 

enhancement of forest carbon stocks) schemes (Scharlemann et al. 2010).   

PAs can also positively aid communities by creating employment opportunities, especially 

through ecotourism. Ecotourism has been rising in recent years and some countries are now 

highly dependent on ecotourism as driver of their economy (Coria & Calfucura 2012). 

Birdwatching trips in Colombia could generate an annual profit of $9 million and create 7516 

new jobs (Maldonado et al. 2018). Presence of ecotourism is also linked to higher wages. For 

example, in Costa Rica Robalino et al. (2015) found higher wages of people living closer to 

PA tourist entrances. A case study in Cuyabeno National Park, Ecuador, showed that 

ecotourism has provided substantial additional income, even to families that are not directly 

involved in tourism activities (Wunder 2000). Studies from other countries confirm that 

ecotourism can lead to improved income and employment for local communities (Walpole & 

Leader-Williams 2001), but other studies warn that ecotourism can cause inequalities between 

communities, pressure on local resources, and even conflicts between PAs and communities 

(West et al. 2006). For example, in Qinling province in China giant panda reserves reduced 

poverty, but also increased inequality (Ma et al. 2019).Studies from other countries confirm 

that ecotourism can lead to improved income and employment for local communities (Walpole 

& Leader-Williams 2001), but other studies warn that ecotourism can cause inequalities 

between communities, pressure on local resources, and even conflicts between PAs and 

communities (West et al. 2006). 

Of the negative impacts displacement of local people from PAs is certainly one of the most 

controversial (Cernea & Schmidt-Soltau 2006; Agrawal & Redford 2009). A report on 

displacement of people in 36 Central African PAs shows that in 26 of them PA creation had 

resulted in partial or complete displacement of local people (Pyhälä et al. 2016). In no case 

compensation was provided. The magnitude of displacement is poorly known, but could have 

affected millions of people (Agrawal & Redford 2009). Yet, much of the evidence is anecdotal 

and is biased towards certain regions. It is unclear how many evictions will take place to make 

Met opmerkingen [b9]: Elaboration including examples 
to clarify the points made 
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room for future PAs. A study from India suggests that four million people will be evicted from 

PAs in the future. Managing forthcoming displacement by the expansion of the PA network is 

one the key social challenges (Büscher et al. 2017). One study from India shows how local 

communities were successfully resettled to make room for the Bhadra Wildlife Reserve 

(Karanth 2007).  

Damning reports about the abuse of local people by park rangers in Central Africa have caused 

further concern about the social impacts of PAs (Warren & Baker 2019). Some have argued 

that the response of the international NGO community has been muted, which can have dire 

consequences for international NGOs. The government of Germany has stopped funds for 

WWF following a flurry of human rights violations by park rangers in Central Africa (Engert 

et al. 2019).  

Such troublesome reports have received significant attention, but the economic displacement 

that arises through restrictions in use and access of resources is arguably more common (Cernea 

& Schmidt-Soltau 2006). These restrictions disproportionally affect poor segments of the 

population who rely on natural resources for their livelihoods (Holmes 2007). Examples from 

community-based conservation projects have shown how PAs can sustain livelihoods and 

safeguard ecosystem services , but stories of failure are common too (Weber et al. 2011). There 

is wide recognition that dialogue between PA managers and stakeholders is crucial, but 

consultation and participation of communities to guide management is often lacking. 

Communities were involved in management decisions in only 8 of the 34 surveyed PAs in 

Central Africa (Pyhälä et al. 2016). In only one PA the participation resulted in concordant 

management and zoning decisions that benefit community interests. However, in Nepal 

communities are more actively involved in PA management decisions and 30-50% of PA 

revenues are distributed to local communities (Heinen & Shrestha 2006).  

Positive and negative PA socio-economic impacts can have an impact on poverty of local 

communities (Adams et al. 2004; Brockington & Wilkie 2015b). Poverty is a complex concept 

that encompasses multiple dimensions such as income, education, health and household assets 

(Anand & Sen 1997). Poverty can be measured by using proxies of each dimension or by 

combining multiple dimensions of poverty into one index, for example the multidimensional 

poverty index (MPI; Alkire & Foster 2011). Currently there is no consensus on which measures 

of poverty are best, and studies to measure the impact of PAs on poverty have used multiple 

different measures of poverty. Nevertheless, a growing literature of impact evaluations of PAs 

on poverty does not find evidence of poverty exacerbation by PAs, although PAs are often 
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located in areas with high poverty levels (Fisher & Christopher 2007). Instead, several studies 

show that PA networks in several countries (e.g. Costa Rica, Thailand and Bolivia) have 

managed to reduce poverty compared to comparable non-protected areas using a wide range of 

poverty metrics. A global assessment of the impact of PAs did not find negative effects of PAs 

on human health and living standards (Naidoo et al. 2019). They found that PAs with 

documented tourism were associated with better children’s health and more assets. These 

results suggest that benefits stemming from ecotourism are beneficial for households and 

additional income can be spent to buy assets and to pay for food, medicine or medical clinic 

visits that improve children’s health. Ferraro et al. (2015) found that ecotourism was able to 

explain two-thirds of the reduction in poverty in Costa Rica PAs. There is less evidence 

whether strict or SU PAs are better at reducing poverty. Globally SU PAs performed better in 

improving health and assets (Naidoo et al. 2019), but studies within countries found mixed 

results (e.g. Miranda et al. 2014).  

 

1.2.3 Approaches to measure impacts of protected areas 

Multiple qualitative and quantitative studies to assess PA impacts have been implemented 

across the world (Pullin et al. 2013). However, many study designs faced severe limitations. 

Past studies generally did not record pre-intervention levels, did not include a control group to 

compare the impact of the intervention against, and did not randomize allocation of the 

intervention (Baylis et al. 2015). Instead, most studies have only considered a single site at a 

single point in time. Such studies have put emphasis on the contextual and place-based impacts, 

but these impacts might not be representative of impacts in other conditions. Therefore their 

findings are mostly unsuitable for generalization and are unable to serve as basis for 

incorporation into broad policy interventions (Agrawal & Redford 2006; Miteva et al. 2012). 

Indeed, study designs such as before-after-control-impact (BACI) or randomized control trials 

(RCTs) that incorporate pre-intervention sampling, counterfactuals, and/or random allocation 

result in more accurate effect estimations (Christie et al. 2019). However, such study designs 

can be expensive, infeasible, or even unsuitable for many research questions in conservation 

and development (Deaton 2009).  

Recently, conservation and development scientist have applied a quasi-experimental 

econometric approach that mimics these study designs to evaluate impacts. By controlling for 

the influence of potential confounding variables these studies are able to identify treatment and 
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counterfactual control groups without the intervention. This technique is referred to as 

statistical matching, and allows to empirically quantify the impact of an intervention in 

comparison to a counterfactual without the intervention (Stuart 2010). Following this 

methodology studies have examined the environmental and socio-economic impacts of a 

multitude of policies and interventions in CHANS, including PAs. PA impact evaluations 

generally combine big datasets to isolate impacts of PAs from land use processes that would 

have happened anyways as determined by factors that influence the value of land (Meyfroidt 

et al. 2018), including biophysical characteristics (Ricardo 1891) and accessibility/distance to 

markets (Von Thünen 1966). More recently, PA impact evaluations have also shown through 

which mechanisms (e.g. tourism) PAs affect environmental and socio-economic outcomes of 

PAs (Ferraro & Hanauer 2015), and under which conditions impacts are moderated by 

exogenous variables (Hanauer & Canavire-Bacarreza 2015; Ferraro et al. 2018).  

 

1.2.4 Data gaps in measuring impacts of protected areas 

The large increase of data has greatly advanced research on CHANS. An important example is 

the wall-to-wall forest map that records global forest cover changes from 2000 (Hansen et al. 

2013). Such forest maps allow to evaluate the impacts of entire PA networks. In contrast to 

these environmental data, data gaps on poverty metrics are still widespread. A few global 

initiatives collect data on socio-economic indicators in LMIC counties. The World Bank LSMS 

studies collect data from many countries to estimate global poverty rates  based on household 

consumption expenditure (Grosh & Glewwe 1998). In addition, the demographic household 

study (DHS) collects data on other dimensions of poverty that are important to people’s 

capabilities, including education, health and living standards. The Oxford Poverty and Human 

Development Initiative (OPHI) collates these data to estimate the multidimensional poverty 

indices for countries (Alkire & Foster 2011). The DHS data has been used to measure global 

PA impacts on health and assets (Naidoo et al. 2019). However, the sampling coverage of both 

global initiatives is limited to only 1-5% of the entire populations in most countries. In addition, 

geolocations of sampled households are made fuzzy (up to 10 km) to ensure privacy, and 

sampled households might not to be representative of the local communities at each location. 

Therefore, most PA impact evaluations have resorted to census data that are generally recorded 

in cycles of ten years. Census data cover a much larger percentage of the population (typically 

around 10%) and are often designed to be representative of local communities and 

administrative areas. However, censuses are costly endeavours that are often not implemented 
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in LMIC countries, or have been skipped for some years. Therefore, country-wide socio-

economic impacts of PAs have mostly been studied in upper middle-income countries (e.g. 

Costa Rica). As far as I know socio-economic impacts of PAs have only been studied in one 

LMIC country (Bolivia; Hanauer & Canavire-Bacarreza 2015), and only one country listed as 

least developed (Nepal; den Braber et al. 2018). No country-wide assessment of PAs has taken 

place in sub-Saharan Africa, where most of the negative impacts of PAs are reported. Hence, 

there is a clear need for better data to evaluate socio-economic impacts of PAs and other 

policies in CHANS.  

An alternative to census data is to use remote sensed satellite data that can be used as proxies 

to measure socio-economic indicators. For example, luminosity (nightlight) measured by 

satellites can be a proxy for poverty (Noor et al. 2008; Chen & Nordhaus 2011). However, in 

areas with high poverty, luminosity levels are generally very low, making it difficult to 

distinguish unpopulated areas from areas with high poverty levels. Machine learning methods 

have shown promise to derive information from remotely sensed imagery that can be applied 

to predict poverty (Watmough et al. 2016, 2019). One approach used by Jean et al. (2016) 

applies convolutional neural networks (CNNs) and imagery from Google Street Maps to detect 

poverty in four African countries at higher accuracy than using luminosity. CNNs are a type of 

deep neural networks that are developed specifically for imagery (Lecun et al. 1998; Bengio 

2009). In contrast to other machine learning methods they are able to detect spatial features 

from images. Jean et al. (2016) show that CNNs are able to detect landscape features from 

imagery that correlate to economic activity and are useful for detecting poverty.  

Advancing socio-economic data would allow to estimate the socio-economic impacts of PAs 

and other policies in countries where data is currently not available, but where poverty levels 

are most dire. Studying impacts of policies on habitat and poverty simultaneously would 

advance our understanding of interactions in CHANS. These insights could be used to develop 

strategies that combine poverty reduction and halt biodiversity loss to achieve the SDGs.  

 

1.3 Thesis aims and objectives 

In this thesis I focus on approaches in the study of environmental and social impacts of 

protected areas. Specifically, I focus on how our understanding of PA impacts can be improved 

by (1) assessing heterogeneity in more detail, (2) comparing impacts relative to impacts of 
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other land uses, and (3) by filling data gaps to study impacts in countries with currently 

insufficient socio-economic data.  

In chapter 2, I assess how Nepalese PAs influence poverty, extreme poverty, and inequality. 

Despite progress in assessing PA impacts on poverty, studies have mostly focused on entire 

communities. Yet benefits of PAs might be captured by the elite, potentially exacerbating 

inequality (West et al. 2006). Previous studies have suggested that tourism could be an 

important mechanism through which PAs impact local poverty by providing local income and 

employment (Ferraro & Hanauer 2014). Studies have used binary assessments of tourism 

(presence or absence of tourism), but there is a need to move beyond binary impacts to gain a 

better understanding of how tourism affects local poverty. Finally, PA impacts could be 

moderated by duration of protection, the amount of protected land and elevation, an important 

factor in determining agricultural suitability (Joppa & Pfaff 2009).  

This chapter sets out to assess how PAs in Nepal influence different metrics of poverty, using 

a multidimensional poverty index and a quasi-experimental design that controls for potential 

confounding factors. I specifically assess the role of tourism by assessing PA impacts according 

to the number of tourists they receive, and by assessing the role of tourism infrastructures like 

trekking routes.  

Chapter 3 addresses the effects of PAs in the Brazilian on deforestation and poverty. 

Specifically, I assess the impact of PAs in comparison to two important competitors of land 

use: agriculture and mining. Policy makers have to continually make trade-offs between 

environmental and social goals. Quantifying the trade-offs and synergies between different 

land use options could be crucial (Lambin et al. 2014), yet impact evaluations rarely go beyond 

binary assessments of land uses (e.g. protection vs not protection). Due to looming land scarcity 

(Lambin & Meyfroidt 2011), competition for land is expected to increase, and will also affect 

protection as already shown by the downgrading, downsizing and degazettement of PAs 

worldwide (Golden Kroner et al. 2019), and also in the Amazon (Pack et al. 2016).  

In this chapter I analyse whether sustainable use PAs, agriculture and mining lead to different 

outcomes in forest cover and poverty in the Brazilian Amazon. I chose SU PAs because they 

allow some access and use within the PA and are therefore more comparable to extractive land 

uses. I use a quasi-experimental study design that controls for confounders. I split agriculture 

according to different landholding sizes and assess spread of mining impacts at different buffer 

sizes.  
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Chapter 4 tests the ability of novel machine learning methods to measure poverty in Tanzania. 

A better understanding of how interventions impact poverty requires quantitative assessments 

at local scales and different time points (Lu et al. 2015). Because household surveys are costly 

endeavours that are unfeasible in many countries, using remotely sensed data from satellites 

could be a promising alternative to close the data gap (Watmough et al. 2019). Recently 

developed machine learning algorithms (convolutional neural networks (CNNs)) show that 

they can estimate poverty better than traditional proxies of poverty such as nightlights (Jean et 

al. 2016). However, these studies used very high resolution imagery that is not publicly 

available at large spatial scales.  

In this chapter I test whether CNNs could be informative to estimate poverty using publicly 

available satellite imagery. I compare predictive power to estimate two different metrics of 

poverty (household consumption expenditure and a multidimensional poverty index) and 

assess if CNNs can also accurately estimate consumption change between two different time 

points.  

Finally, in chapter 5 I synthesise my findings, and discuss the value for policy makers and PA 

managers of assessing PA impacts. I also show how future impact evaluations could provide 

more insight into PA impacts and I give several recommendations for future research.    
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2.1 Abstract 

Protected areas (PAs) are key for biodiversity conservation, but there are concerns that they 

can exacerbate poverty or unequal access to potential benefits, such as those arising from 

tourism. We assess how Nepalese PAs influence poverty, extreme poverty and inequality using 

a multidimensional poverty index, and a quasi-experimental design that controls for potential 

confounding factors in non-random treatment allocation. We specifically investigate the role 

of tourism in contributing to PA impacts. Nepali PAs reduced overall poverty and extreme 

poverty, and crucially, did not exacerbate inequality. Benefits occurred in lowland and highland 

regions, and were often greater when a larger proportion of the area was protected. Spread of 

benefits to nearby areas outside PAs was negligible. Furthermore, older PAs performed better 

than more recently established ones, suggesting the existence of time-lags. Although tourism 

was a key driver of poverty alleviation, PAs also reduced extreme poverty in areas with fewer 

tourists.  

 

2.2 Introduction 

Protected areas (PAs) are key conservation strategies but also have socioeconomic impacts on 

people living in and around them (Brockington and Wilkie 2015). PAs limiting anthropogenic 

activities can harm local economic development (Brockington and Wilkie 2015), but can also 

safeguard ecosystem services that local communities depend on, and generate additional 

sources of income, for example through tourism (Ferraro and Hanauer 2015). Some studies 

find that PAs are linked to high poverty levels (de Sherbinin 2008; Fisher and Christopher 

2007), but such associations can be confounded because PAs are often located in areas with 

limited development potential (Joppa and Pfaff 2009). There are, therefore, growing efforts to 

assess PA outcomes using techniques that control for this non-random allocation of PAs. Such 

studies provide increasing evidence that PAs can reduce poverty, albeit with much 

heterogeneity in effect sizes (Andam et al. 2010; Hanauer and Canavire-Bacarreza 2015; 

Miranda et al. 2014; Sims and Alix-Garcia 2016; Yergeau et al. 2017). 

Despite this progress, several topics remain understudied.  First, PA assessments have focused 

primarily on mean poverty outcomes across entire communities (but see Sims 2010). However, 

PA’s financial benefits may suffer from elite capture (Agrawal and Gupta 2005), leading to 

greater inequalities. Assessing the mechanisms through which PAs influence poverty is 

essential. PAs may increase tourism opportunities leading to improved local income and 

employment (Walpole and Leader-Williams 2001). Assessing tourism impacts across large 
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spatial extents is often limited by data availability, and assessments have predominantly used 

binary proxies (presence or absence of tourism infrastructure, Ferraro et al. 2011). Yet to gain 

a better understanding of how tourism contributes to local poverty alleviation, it is important 

to move beyond binary assessments of tourism and consider variation in the intensity of tourism 

in PAs (Robalino and Villalobos 2015). Finally, there is substantial spatial variation in the 

proportion of land surrounding a community that is protected, the duration that it has been 

protected for, and livelihood opportunities that are constrained by a series of factors, such as 

slope and elevation that influence agricultural suitability (Gentle and Maraseni 2012). These 

factors can influence the magnitude, and possibly even the direction of PA effects on poverty.   

Here, we assess how PAs in Nepal influence multiple measures of poverty. We combine 

national census derived poverty estimates for 2001 and 2011, and use statistical matching to 

construct a counterfactual group. We build upon previous research by i) quantifying how PA 

status influences measures of extreme poverty and inequality, in addition to overall measures 

of poverty, ii) using tourism indicators to assess if tourism is an important mechanism through 

which PAs influence poverty, and iii) testing whether effects of PAs on poverty are moderated 

by variations in the amount of protected land, time since establishment, and elevation. 

Nepal provides a good case study to assess the effects of protected areas on multiple poverty 

outcomes. It is one of the poorest Asian countries (Alkire and Santos 2011) and has an 

extensive PA network, covering 20% of the country’s land surface. Nepalese PA policies were 

first characterized by a strict “fences and fines” approach (Heinen and Shrestha 2006) that 

denied local people’s user rights. However, during the nineties several important pieces of 

legislation were passed to promote social welfare including redistribution initiatives to 

minimize inequality by spending 30-50% of PA revenues on community development (Spiteri 

and Nepal 2008).   

 

2.3 Methods 

2.3.1 Data 

We compiled a high spatial-resolution, national-level dataset using 3,845 of Nepal’s 3,973 

Village Development Committees (VDCs), the sub-district level administrative unit, as our unit 

of analysis. 
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i) Poverty metrics 

We use household health, education and living standards data from the Nepali national 

censuses of 2001 and 2011 to develop three multi-dimensional poverty (MDP) measures based 

on the multi-dimensional poverty index developed by Alkire and Santos (2011): poverty 

(MDP>0.33 - following Alkire and Santos’ (2011) cut-off for measuring poverty); extreme 

poverty (MDP>0.66 - this doubles the standard poverty threshold, following other studies (e.g. 

Lokshin and Ravallion, 2000) and indicates that at a minimum a household is completely 

deprived in one of the three poverty dimensions and partially deprived across the remaining 

two dimensions); and inequality - measured as the standard deviation of the incidence of 

household poverty (S2.1; Figure 2.1A). Using alternative thresholds for defining extreme 

poverty either generates too few VDCs that contain extreme poverty (70% threshold – 314 

VDCs using 2001 baseline data compared to 1,153 with a 66% threshold) or generates 

qualitatively identical results and conclusions (60% threshold, Figure S2.2).  

 

ii) Defining Protected Area treatments 

We define protected treatments as VDCs that overlap Nepal’s 32 PAs (IUCN categories II - 

VI, Nepal lacks category I PAs) using the World Database on Protected Areas (WDPA; IUCN 

& UNEP-WCMC, 2016; Figure 2.1B). The vast majority of these are multiple-use PAs. We 

conduct two separate analyses: one focusing on PAs established before 2001 (the baseline year 

of our poverty data), and one focusing on PAs established between 2001 and 2011. We conduct 

this second analysis as a robustness check because PAs established prior to 2001 could affect 

our baseline measures, although baseline poverty metrics were similar in VDCs that were 

protected before and after 2001 (see Fig. 2.2). We also defined protected VDCs using two 

separate definitions: those with i) at least 10% of their area overlapping with a PA (e.g. Andam 

et al. 2010; Hanauer and Canavire-Bacarreza, 2015) and ii) at least 70% of the VDC being 

protected (which is close to the mean percentage overlap for overlapping VDCs - PAs 

established before 2001 = 65.2%; PAs established after 2011 = 71.4%). VDCs with <1% of 

their area protected were defined as non-protected to ensure a clear distinction in the magnitude 

of protection between control and treatment VDCs.  
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Figure 2.1. Poverty and protected areas. (A) Multidimensional Poverty in 2011. Each 

polygon represents a Village Development Committee (VDC). Data are presented as 

deciles. Grey areas with red contours represent excluded VDCs (reasons for exclusion 

include missing data due to armed conflict and instances of inconsistent data from the 

Nepali Department of Forests). (B) Schematic map of protected areas in Nepal. Data from 

the World Database of Protected Areas. In our analysis we included 192 VDCs that were 

protected before 2001 (of which 110 were protected using the 70% threshold definition), and 

106 VDCs that were protected between 2001 and 2011 (of which 67 were protected using the 

70% threshold).  
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iii) Tourism metrics 

We assessed how PAs with different tourism intensities impacted our outcome variables, using 

data on official tourism numbers for each PA in 2011 (low < 10,000 visitors, intermediate 

10,000-100,000, high > 100,000; Nepal Tourism Statistics, 2013). We also assessed how 

proximity to a PA entrance and trekking routes (categorised as major or minor; Table S2.9) 

contributed to heterogeneity in PA impacts using a mean travel time estimate (weighted by 

population density) from each VDC to the nearest PA entrance, and major and minor trekking 

routes (S2.3).  

 

iv) Confounding factors 

We selected a suite of biophysical and socioeconomic covariates based on their potential to 

influence the outcome or the relationship between treatment and outcomes. These covariates 

were baseline levels of our poverty measures, slope, elevation, precipitation, VDC area, forest 

cover, travel time from the VDC to population centres and district headquarters, proportion of 

the VDC under community forest management and the age of community forestry arrangement, 

population density, agricultural effort, international migration and district (Table S2.3).  

 

2.3.2 Matching and post-matching analyses 

We used a combined matching and regression based approach to explore the causal link 

between PAs and poverty outcomes. We model poverty metrics in 2011 while controlling for 

baseline poverty in 2001 to avoid constructing models that can generate spurious correlations 

(Brett, 2004). This approach yields similar parameter estimates for our treatment variables as 

those generated when modelling absolute change (S2.2). The pre-processing of data using 

matching methods optimizes the balance of covariates across treated and control units, and is 

useful when imbalance between treatment and control is an issue for traditional causal 

inference techniques (Ho et al. 2007). We used genetic matching with replacement, which 

performs well when covariates have skewed distributions (Diamond and Sekhon 2013). 

We performed all of our statistical analyses in R version 3.3.2 (2013) using the “Matchit” 

package (Ho et al. 2007). We used post-matching standardized mean differences of <0.25 as 

an acceptable balance between treatment and control groups for each covariate (Stuart 2010, 

see Figures S2.3-S2.5). We then performed an Ordinary Least Squares (OLS) regression to 

adjust for remaining imbalances in covariate distributions (Ho et al. 2007). When modelling 

extreme poverty, we implemented a two-step hurdle model (Cragg 1971) using matched 



  Chapter 2 

39 
 

binomial regressions to first model the incidence of extreme poverty, and then OLS regressions 

to model the magnitude of extreme poverty in those VDCs in which extreme poverty occurs. 

We first measured the average impact of our treatments (protection) on our response variables 

(poverty, extreme poverty and inequality in 2011). We then subset and separately matched PAs 

in each tourism intensity category (high, intermediate or low) to assess the impact of tourism 

intensity. PAs with high tourism levels were all designated before 2001, so we only performed 

this subgroup analysis on PAs established before 2001. We conducted robustness checks to test 

for spillover effects from unprotected VDCs adjacent to a PA (defined as the treatment) into 

unprotected control VDCs that are not adjacent to a PA (S2.4), and spatial autocorrelation 

(S2.5); results are robust to spillover and spatial autocorrelation unless stated otherwise. 

 

2.3.3 Heterogeneity analysis 

We assessed if PA impacts were moderated by travel time to the nearest tourism hub (PA 

entrance, major and minor trekking route) and elevation, which affects livelihood choices 

(greater range of options in the lowlands, including commercial agriculture) and tourism 

options (safaris in the lowlands, trekking in the mountains). We used partial linear modelling 

(PLM - Yatchew 1998; Hanauer 2015) to assess heterogeneous impacts along the gradients of 

our moderating factors following methods described in Ferraro et al. (2011) and Hanauer and 

Canavire-Bacarreza (2015). In a first step, we controlled for confounding factors using a linear 

regression. In the second stage, we employed a nonparametric locally weighted scatter plot 

smoothing (LOESS) to estimate the non-parametric relationship between moderator and 

outcome. This method allows us to estimate the impact of PAs on our outcome variables as a 

function of our moderator variables of interest (elevation and travel times to the nearest PA 

entrance, major and minor trekking routes) while holding other covariates constant.  

 

2.4 Results 

i) Average impact on poverty, extreme poverty and inequality 

We found no evidence that PAs exacerbated poverty in Nepal. In fact, matched protected VDCs 

(defined using the 10% threshold and established before 2001) had significantly lower poverty 

in 2011 than unprotected VDCs (coef. = -0.03, S.E. = 0.02, P = 0.027; Figure 2.2A). Poverty 

was not exacerbated when raising the protection threshold to 70% (coef. = -0.06, S.E. = 0.03, 

P = 0.060; Figure 2.2A). For PAs established after 2001 we found no evidence of positive or 



  Chapter 2 

40 
 

negative impacts of PAs on overall poverty (Figure 2.3A). Models without matching showed 

similar patterns (Table S2.7).  

PAs established before and after 2001 reduced the incidence of extreme poverty. For PAs 

established before 2001, this result was significant for our 10% protection threshold (coef. = -

0.95, S.E. = 0.38, P = 0.012; Figure 2.2B) and was accentuated by raising the threshold to 70% 

(coef. = -3.51, S.E. = 1.20, P = 0.003; Figure 2.2B). For PAs established after 2001, this result 

was not significant using a 10% protection threshold, but was significant after raising the 

protection threshold to 70% (coef. = -2.82, S.E. = 1.18, P = 0.018; Figure 2.2B). We found no 

significant impact of protection on the magnitude of extreme poverty (Table S2.8). Results 

from models without matching showed the same patterns for PAs established before and after 

2001 (Table S2.7).  

We found no consistent evidence that inequality was influenced by PAs established before or 

after 2001, using either 10% or 70% protection thresholds (Figure 2.2C). Models without 

matching indicate that PAs established before 2001 reduced inequality, while PAs established 

after 2001 increased inequality (Table S2.7), but these difference were not significant after 

controlling for spatial autocorrelation (Table S2.6).  

 

ii) Tourism intensity 

PAs with high tourism levels significantly reduced overall poverty (coef. = -0.05, S.E. = 0.02, 

P = 0.023; Figure 2.2A), while PAs with low tourism levels had no significant effect on 

poverty. However, PAs with low tourism levels significantly alleviated extreme poverty (coef. 

= -2.80, S.E. = 1.12, P = 0.013; Figure 2.2B) and decreased inequality (coef. = -1.01, S.E. = 

0.43, P = 0.023; Figure 2.2C).  

 

iii) Heterogeneity – travel time to PA entrance and trekking route 

Travel time to a PA entrance had no impact on poverty (Figure S2.7) and inequality (Figure 

S2.6), while reductions in the incidence of extreme poverty were greater closer to a PA entrance 

(Figure 2.3D). Travel time to a minor and major trekking route moderated the influence of PAs 

on poverty, with significant reductions only occurring in VDCs close to the trekking route 

(Figures 2.3A and 2.3B). Incidence of extreme poverty was lower further away from a minor 

trekking routes (Figure 2.3D), but was not influenced by travel time to a major trekking route 

(Figure S2.7). Inequality was not influenced by proximity to major or minor trekking routes 

(Figure S2.6).  
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Figure 2.2. Estimated impacts of protected areas (PAs) on poverty, extreme poverty 

and inequality in Village Development Committees (VDCs) in Nepal for PAs 

established before 2001 (A), PAs established between 2001 and 2011 (B), and according 

to level of tourism (C). Poverty, extreme poverty and inequality measurements are based 

on a multidimensional poverty index. Dashed lines (B) represent mean baseline (2001) of 

VDCs, thick lines (T) represent treatment i.e. PAs, thin lines (C) represent counterfactual 

controls without protection. Significance: **** P < 0.001, *** P < 0.01, ** P < 0.05, * 

<0.1. 
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iv) Heterogeneity – elevation 

Our PLM results do not show significant heterogeneous impacts of PAs on extreme poverty 

and inequality as a function of elevation (Figures 2.3F and S2.6). PAs established before 

2001 reduced poverty to a greater extent at low elevations than high elevations (Figure 2.3E).  

 

  

 

Figure 2.3. Partial linear models: Impact of protected areas (PA) on poverty (A-C) and 

extreme poverty (D-F) in Village Development Committees (VDCs) in Nepal for PAs 

established before 2001, conditional on travel time to major trekking route (A), minor 

trekking route (B-C) and PA entrance (D), and PA impacts conditional on elevation 

(E-F). Poverty measurements are based on a multidimensional poverty index. Dashed lines 

represent protected VDCs, dotted lines counterfactual controls without protection, and solid 

lines the difference between treatment and counterfactual estimates (negative values 

indicate reductions in poverty). 
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2.5 Discussion 

Nepali PAs typically reduced poverty, concurring with previous research elsewhere (Andam et 

al. 2010; Hanauer and Canavire-Bacarreza 2015). Crucially, PAs reduced extreme poverty 

without deepening inequalities. This finding is particularly important as creating pathways out 

of extreme poverty is more difficult than tackling less extreme poverty (Halder and Mosley 

2004). Our findings suggest that PAs are able to provide pathways out of extreme poverty in 

remote areas, challenging previous evidence that PA policies only benefit community elites 

(Agrawal and Gupta 2005).  

PAs with high tourism levels reduced poverty without exacerbating extreme poverty and 

inequality, while PAs with low tourism levels reduced extreme poverty and inequality but had 

no impact on overall poverty. These results suggest that the poorest receive the greatest benefits 

from small-scale tourism, contrasting with previous suggestions that tourism increases 

inequalities (West et al. 2006). We provide further evidence for beneficial impacts from 

tourism by showing that poverty reductions in PAs only occurred close to trekking routes. This 

suggests that redistribution policies (that 30-50% of PA revenue is spent on local community 

development; Heinen and Shrestha 2006) may not fully address spatial biases in which 

communities benefit from tourism in PAs. Notably, however, the impact of PAs on reducing 

extreme poverty increased with distance from minor trekking routes that are typically located 

in remote areas with little development potential that can benefit from park redistribution 

policies. Future studies should specifically assess if, where and how these policies influence 

PA poverty outcomes.  

Distance from PA entrances had no impact on extreme poverty inside PAs, but increased 

extreme poverty outside PAs. This suggests localised negative spillovers, with PA residents 

living close to PA entrances receiving benefits that people living equally close to entrances 

outside of the PA miss out on. Other research on PA spillover effects show similar patterns of 

heterogeneity (Robalino et al., 2017; Pfaff and Robalino, 2017), with tourism benefits only 

occurring close to PA entrances (Robalino and Villalobos 2015). Indeed, our analyses indicate 

that benefits of protection do not spread to neighbouring unprotected VDCs. Redistribution 

policies might thus need to target communities inside and outside protected area more equally.  

Time since establishment moderated the effect of PAs on our measures of poverty. PAs 

established after 2001 did not show the same significant social benefits as PAs established 

before 2001, although in newer PAs we observe a trend towards lower extreme poverty and 
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inequality. This pattern is expected if there are time lag effects that arise because communities 

need to adjust to new regulations imposed by PAs and the new opportunities provided by them, 

and for the tourism industry to develop. The reduced benefits of more recently established PAs 

are unlikely to be associated with changes in management regimes as these have been constant 

across all Nepali PAs since the 1990s (Bhattarai et al., 2017). Notably, an increase in the 

threshold used to define a protected VDC (from 10% to 70%) accentuated our main findings. 

This suggests that communities in VDCs that have restrictions placed on activities across a 

larger proportion of their land do not experience adverse impacts on poverty metrics, thus larger 

protected areas may deliver greater economic benefits. Finally, impacts of PAs were similar 

across a wide range of elevations indicating that PAs can deliver socio-economic impacts even 

in areas that typically support livelihoods that are less compatible with nature conservation, 

such as agriculture.  

Our study makes a number of important contributions. First, we demonstrate not only that PAs 

in Nepal reduce poverty and extreme poverty, but that they do so without increasing inequality. 

These benefits occur even in lowland regions with high capacity for alternative land-uses, and 

when capacity for alternative livelihoods is reduced by protecting larger proportions of land. 

Second, we find that tourism is a key driver of PA benefits, but that reductions of extreme 

poverty are possible even in marginalised areas with limited tourism potential. Finally, we find 

no evidence that socio-economic benefits of PAs spread to people living outside, but close to, 

PAs. Addressing this by adjusting PA’s revenue redistribution policies, could increase the 

benefits for these communities and reduce conflict between local communities and PA’s 

conservation objectives (Oldekop et al. 2016). Nepal’s PA management policy to promote 

social welfare via redistribution of PA revenues, gained through tourism and other activities, 

is similar to policies in other countries including Thailand (Sims 2000) and Kenya (Walpole 

and Leader-Williams, 2001) suggesting that our findings may also apply elsewhere. 
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2.7 Supplementary information 

S1 Poverty Metrics 

Poverty is considered a multidimensional concept that includes more dimensions than the 

traditionally used measures of household consumption and income (Alkire and Santos, 2014). 

We used the Nepali national census data (2001 – 520,624 households surveyed; 2011 – 841,467 

households surveyed) to construct multi-dimensional poverty (MDP) indices based on 

indicators of household health, education and living standards (Table S2.1). We derived three 

MDP indices: poverty, (MDP>0.33), extreme poverty (MDP>0.66) and inequality (standard 

deviation of household MDPs). The MDP poverty index is closely correlated with the 

$1.25/day poverty line (Alkire and Santos, 2014), suggesting that it is also representative of 

household income and consumption. Other studies have recommended the GINI-index as a 

measure of inequality between rich and poor (Halpern et al. 2013), but this is based on income 

and ignores non-monetary based forms of assets and well-being that are crucial for more 

holistic assessment of poverty. We therefore used the standard deviation of household MDPs 

as a measure of inequality.  
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Table S2.1. The dimensions, indicators, deprivation cut-offs and weights of the 

multidimensional poverty index 

Dimension Indicator Deprived if: Weight 

Health 

(weight 0.33) 

1. Child 

mortality 

The household experienced death of one or more 

children aged 5 years or younger in the last 12 

months 

0.166 

2. Premature 

mortality 

The household experienced premature death 

(death below the period life expectancy) in the last 

12 months 

0.166 

Education 

(weight 0.33) 

1. School 

absence 

The household has a school-aged child not going to 

school (a school-aged child is defined as aged 

between six and sixteen years) 

0.166 

2. Years of 

schooling 

The household has a member of eleven years or 

older that has not completed five years of schooling 
0.166 

Living 

standards 

(weight 0.33) 

1. Cooking fuel The household uses wood or dung as cooking fuel 0.0833 

2. Electricity The household has no access to electricity 0.0833 

3. Source of 

water 
The household has no access to clean water 0.0833 

4. Improved 

Sanitation 

The household does not have access to improved 

sanitation (flush toilet or similar) 
0.0833 
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S2 Model definition 

Instead of modelling poverty in 2011 as the response variable it would also be possible to 

estimate absolute change in poverty (poverty 2011-poverty 2001) as the response variable. 

However, as we show below, this model is functionally the same, and does not affect the 

estimates of the treatment effect.  

Under our approach our model to measure poverty in 2011 (Yi) takes the following form: 

 Yt ~ β0 + β1*Yt-1 + β2*Xt + ϵ. (equation 1) 

Here we model Yi as a function of baseline poverty Yi-1 and treatment Xi. β1 represents the 

coefficient of baseline poverty, β2 represents the treatment effect, and ϵ is a normally 

distributed error term. Using absolute change as the response is equivalent to subtracting 

baseline poverty from both sites to generate the following model: 

Yt – Yt-1 ~ β0 + β1*Yt-1 – 1*Yt-1 + β2*Xt + ϵ. (equation 2) 

Which simplifies to: 

Yt – Yt-1 ~ β0 + (β1-1) *Yt-1 + β2*Xt + ϵ. (equation 3) 

Such a model that measures absolute change would have different parameter estimates for 

baseline poverty (β1-1) and could generate spurious correlations (Brett, 2004), but the 

parameter coefficient of the focal treatment effect (β2) remains unchanged following this 

reformulation of the model (see Table S2.2 for comparison).  
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Table S2.2. Comparison of the association between treatment and poverty metrics when 

modelling poverty using alternative response variables, i.e. i) absolute poverty in 2011 

(equation 1) and ii) modelling change in poverty (equation 2).  

 Model using poverty metric 

2011 as response variable 

Coefficient ± Standard error 

(P-value) 

Model using absolute 

change as response variable 

Coefficient ± Standard error 

(P-value) 

Poverty 

PAs established before 2001 

(10% overlap, n = 214) 

-0.035 ± 0.015 

(P = 0.026) 

-0.035 ± 0.015 

(P = 0.026) 

PAs established after 2001 

(10% overlap, n=150) 

-0.006 ± 0.017 

(P = 0.733) 

-0.006 ± 0.017 

(P = 0.733) 

Inequality 

PAs established before 2001  

(10% overlap ,n = 223) 

-0.164 ± 0.226 

(P = 0.467) 

-0.164 ± 0.226 

(P = 0.467) 

PAs  established after 2001  

(10% overlap ,n = 149) 

0.172 ± 0.259 

(P = 0.508) 

0.172 ± 0.259 

(P = 0.508) 

Extreme poverty incidence 

PAs established before 2001  

(10% overlap ,n = 227) 

-0.951 ± 0.381 

(P = 0.012) 

-0.951 ± 0.381 

(P = 0.012) 

PAs established after 2001  

(10% overlap ,n = 153) 

-0.102 ± 0.413 

(P = 0.805) 

-0.102 ± 0.413 

(P = 0.805) 

Extreme poverty magnitude   

PAs established before 2001  

(10% overlap ,n = 227) 

-0.015 ± 0.027 

(P = 0.577) 

-0.015 ± 0.027 

(P = 0.577) 

PAs established after 2001 

(10% overlap ,n = 153) 

-0.000 ± 0.002 

(P = 0.954) 

-0.000 ± 0.002 

(P = 0.954) 
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S3 Confounding factors and transformations 

Our selection of covariates follows other research on protected areas (Andam et al. 2010; 

Canavire-Bacarreza and Hanauer 2013). Table S2.3 presents the confounding factors used in 

our analysis, and the rationale for including them. PA entrances and trekking route locations 

were determined from guidebooks (Armington 2001; McConnachie et al. 2012) and the 

Forestry Nepal website (www.forestrynepal.org). We generated travel time estimates by 

adapting the approach used to calculate travel time to major cities developed by the Joint 

Research Centre (JRC) (Nelson 2008). To do so, we combined the Nepali Survey Departments 

road data, the global land cover dataset developed by JRC (Bartholome and Belward 2005) and 

the ASTER global digital elevation model version 2 (Tachikawa et al. 2011) to produce a travel 

time raster for population centres of different sizes and each of our tourism surrogate indicators 

(PA entrance and major/minor trekking route). These were then multiplied by 1 km resolution 

population estimates (LandScan, Oak Ridge National Laboratory; Bright and Coleman 2001) 

and divided by the total population in each VDC in order to take into account the non-random 

distribution of population centres, especially in mountainous areas.  

We tested for colinearity among variables to avoid redundancy in the data. We removed travel 

time to population centres larger than 25,000 inhabitants from the analysis because it was 

highly correlated with travel time to population centres higher than 10,000 (r = 0.75). Slope 

and elevation were highly colinear (r = 0.79) across the entire dataset but there was much spatial 

variation in the strength of this relationship so both were retained as confounding factors. We 

log10-transformed covariates with highly skewed distributions to reduce kurtosis and associated 

problems of outliers disproportionately influencing the analysis.  

file:///C:/Users/bowydb/Documents/Sheffield_Nepal/www.forestrynepal.org
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Table S2.3. Confounding factors used in analyses. The unit of analysis is the Village 

Development Committee (VDC). 

Confounding factor Definition and data source Rationale for inclusion 

Elevation and slope 

Mean elevation (m.) and slope 

(degree), calculated from ASTER 

DEM version 2 (Tachikawa et al. 

2011) 

Slope and elevation influence the 

distributions of PAs and people’s 

livelihood decisions (Gentle and 

Maraseni 2012) 

Area* 

Size of the VDC (km2). Data: Nepali 

Department of Home Affairs 

Size of the administrative area has been 

found to correlate with poverty 

outcomes (Andam et al. 2008) 

Forest cover* 

Proportion of forested area in VDC 

in 2000 with more than 10% 

(UNFAO). Data: High-resolution 

forest cover change dataset version 

1.0 (Hansen et al. 2013) 

Forest cover influences PA allocation 

and welfare as many people depend on 

forests for their livelihoods (Angelsen et 

al. 2014) 

Precipitation 

Mean levels of precipitation in 

individual VDCs using the 30 arc-

seconds resolution WorldClim 

current precipitation dataset 

(Hijmans et al. 2005) 

Precipitation affects forest dynamics, 

agricultural activity and related land use 

choices (Duncan et al. 2013) 

Population density* 

Population size for each VDC at 

baseline 2001 as recorded in the 

Nepali census 

Population density affects both welfare 

and PA allocation (Wittemyer et al. 

2008) 

Agricultural effort 

Mean number of months that 

household members above school 

age (>16 years of age) dedicate to 

agriculture in VDC (Nepal census) 

Agriculture is a leading cause of land-

cover change and an important source 

of livelihoods for local communities 

(Angelsen 2010) 

International migration* 

Proportion of households within 

each VDC with at least one or more 

household members above school 

age (>16 years) living abroad 

(Nepal census) 

International migration influences 

socioeconomic patterns through 

remittances (Barham and Boucher 

1998) 

Community forest 

management size 

Proportion of VDC under 

community forest management 

(Nepali Department of forests) 

Community forest management is an 

important factor influencing 

socioeconomic outcomes (Acharya 

2002; Persha et al. 2011) 

Community forest 

management age 

Mean number of years since 

community forest management was 

established (Nepali Department of 

forests) 

Travel time to pop. centre: 

- 1,000 inhabitants* 

- 10,000 inhabitants * 

- 25,000 inhabitants † 

- 50,000 inhabitants * 

- District HQ* 

Travel time calculated using the 

method described above for 

tourism surrogates (Nepali Survey 

Department) 

Access to markets and services (e.g., 

technical assistance, health centres) 

can significantly influence people’s 

livelihoods, PA establishment decisions, 

and other related land-use choices 

(Angelsen 2010) 

District 

Exact match based on the district 

which VDCs are located in 

Districts have significant autonomy in 

decision-making and planning, and the 

majority of donor funded development 

projects are targeted at the district-level 

* log10 transformed 
† Dropped due to collinearity 
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S4 Spillover analysis 

We performed a spillover analysis because households in unprotected VDCs that are close to 

protected VDCs might also be positively or negatively influenced by PAs (Pfaff and Robalino, 

2017). To test whether spillover effects occurred we first selected all unprotected VDCs (<1% 

overlap with a PA) adjacent to a protected VDCs (i.e. over 10% of their area overlapping a 

PA).  We defined these adjacent VDCs as treated and matched them to other control VDCs that 

were not adjacent to a protected VDC. Under the null hypothesis of zero spillover there should 

be no treatment effect in the matched sample. We repeated these steps for all three social 

outcome variables, and for PAs established before and after 2001. Our spillover analyses do 

not detect any significant spillover effects from protected VDCs into adjacent unprotected 

VDCs (Table S2.4).  

 

Table S2.4. Regression results for spillover analysis of protected areas (PAs). All 

covariates were used in the analysis but their coefficients are not shown here 

 Coefficient Standard error P 

Poverty  
  

PAs established before 2001 0.013 0.018 0.458 

PAs established after 2001 0.031 0.022 0.166 

Inequality    

PAs established before 2001 -0.053 0.282 0.850 

PAs established after 2001 0.284 0.331 0.394 

Extreme poverty incidence    

PAs established before 2001 -0.010 0.594 0.987 

PAs established after 2001 1.377 0.968 0.155 

Extreme poverty magnitude    

PAs established before 2001 0.006 0.008 0.456 

PAs established after 2001 -0.004 0.004 0.302 
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S5 Spatial autocorrelation 
Spatial autocorrelation can distort parameter estimates. Spatial autocorrelation is measured by 

defining a weight matrix based on a measure of distance between observations. We calculated 

the weight matrix based on inverted distance between VDCs to ensure that nearby VDCs are 

allocated more weight than VDCs further away. We performed all spatial autocorrelation 

analyses in R version 3.3.2 (2013) using the “spdep” package (Bivand 2015). For our poverty 

and inequality outcome variables we calculated the Global Moran’s I index in the model 

residuals to detect spatial autocorrelation in our data. In the case of significant spatial 

autocorrelation we then determined the type of dependence (spatial lag or spatial error) based 

on the Lagrange multiplier diagnostics. If necessary, we then corrected for spatial 

autocorrelation based on the Lagrange multiplier diagnostics (Anselin 2002; Dormann et al. 

2007) using a spatial lag or spatial error model. Spatial lag occurs when observations are not 

independent as the dependent variable in a location is influenced by neighbouring independent 

variables. Spatial error indicates that the error terms across different spatial units are correlated 

and could implicate that omitted spatial variables might affect inference (Anselin, 2002). In the 

case of the extreme poverty incidence response variable spatial eigenvector mapping (Griffith 

and Peres-Neto, 2006) indicated negligible spatial autocorrelation in our models. We estimated 

spatial autocorrelation for all models with and without matching. However, the weights that 

are generated by the matching interfere with the weights that are used in the spatial 

autocorrelation models. In this case we used the matched subsample without the matching 

weights and applied the spatial models to this reduced dataset.  

Overall, spatial analyses confirmed our main findings. Testing for spatial autocorrelation in our 

matched models for PAs established before 2001 showed that spatial lag was present in our 

data (P <0.05; Table S2.5). However, after applying a spatial lag model the results confirm our 

main finding that PAs before 2001 reduced poverty and did not exacerbate inequality. We did 

not find evidence of spatial autocorrelation in our matched models for PAs established after 

2001 and also found no significant spatial eigenvectors in our models for extreme poverty 

incidence, indicating that spatial autocorrelation did not distort our parameter estimations.  

Our models without matching showed significant spatial error in all models (Table S2.6). 

Correcting using a spatial error model did not remove all spatial error, although Moran’s I 

values were greatly reduced. We found that PA impacts on inequality were heavily influenced 

by spatial error. After employing a spatial error model we found no impact of PAs on 

inequality, in line with our models with matching. Applying a spatial error model did not result 



  Chapter 2 

57 
 

in significant differences in poverty and extreme poverty impacts for both PAs established 

before and after 2001.  
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Table S2.5. Regression results of spatial autocorrelation analysis – models with matching. 

The coefficient standard error and P value of treatment (i.e. protection) and global Moran’s I 

values are shown for the post-matched regression, and the spatial lag model when the global 

Moran’s I value is significant in the post-matched regression.  All covariates were used in the 

analysis, but their coefficients are not shown here.  
  Coefficient Standard error P Global Moran’s I (P) 

Poverty      

PAs established 
before 2001 
 
(n = 214) 

Post-matched 
regression 

-0.034 0.015 0.027 
0.036  

(0.036) 

Spatial lag model -0.041 0.015 0.005 
-0.071 
(0.959) 

PAs established 
after 2001 
 
(n=150) 

Post-matched 
regression 

-0.006 0.017 0.733 
-0.076 
(0.588) 

Inequality      

PAs established 
before 2001  
 
(n = 223) 

Post-matched 
regression 

-0.164 0.226 0.467 
0.154 

(<0.001) 

Spatial error model -0.265 0.225 0.238 
0.001 

(0.449) 

PAs  established 
after 2001  
 
(n = 149) 

Post-matched 
regression 

0.172 0.259 0.508 
-0.049 
(0.886) 

Extreme poverty 
incidence 

     

PAs established 
before 2001  
  
(n = 227) 

Post-matched 
regression 

-0.951 0.381 0.012 
-0.043 
(0.868) 

PAs established 
after 2001  
 
(n = 153) 

Post-matched 
regression 

-0.102 0.413 0.805 
-0.013 
(0.599) 

Extreme poverty 
magnitude 

     

PAs established 
before 2001  
  
(n = 64) 

Post-matched 
regression 

-0.015 0.027 0.577 
-0.053 
(0.414) 

PAs established 
after 2001  
  
(n = 51) 

Post-matched 
regression 

0.000 0.002 0.954 
-0.154 
(0.875) 
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Table S2.6. Regression results of spatial autocorrelation analysis – models without 

matching. The coefficient standard error and P value of treatment (i.e. protection) and global 

Moran’s I values are shown for the post-matched regression, and the spatial lag model when 

the global Moran’s I value is significant in the post-matched regression.  All covariates were 

used in the analysis, but their coefficients are not shown here. 

 
 Coefficient 

Standard 
error 

P Global Moran’s I (P) 

Poverty      

PAs established 
before 2001 
 
(n = 3714) 

Regression -0.039 0.009 <0.001 
0.134 

(<0.001) 

Spatial error model -0.022 0.009 0.029 
0.017 

(<0.001) 

PAs established 
after 2001 
 
(n = 3628) 

Regression -0.020 0.011 0.072 
0.132 

(<0.001) 

Spatial error model -0.015 0.012 0.201 
0.015 

(<0.001) 

Inequality      

PAs established 
before 2001  
 
(n = 3714) 

Regression -0.554 0.142 <0.001 
0.159 

(<0.001) 

Spatial error model -0.224 0.149 0.133 
0.013 

(<0.001) 

PAs established 
after 2001  
 
(n = 3628) 

Regression 0.336 0.172 0.051 
0.152 

(<0.001) 

Spatial error model 0.088 0.181 0.626 
0.012 

(<0.001) 

Extreme poverty 
incidence 

     

PAs established 
before 2001  
  
(n = 3714) 

Regression -0.955 0.232 <0.001 
0.001 

(0.006) 

Spatial eigenvector 
mapping 

-1.024 0.241 <0.001 
0.001 

(0.001) 

PAs established 
after 2001  
 
(n = 3628) 

Regression -0.512 0.252 0.043 
0.007 

(0.023) 

Spatial eigenvector 
mapping 

-0.463 0.263 0.078 
0.002 

(0.236) 

Extreme poverty 
magnitude 

     

PAs established 
before 2001  
  
(n = 1153) 

Regression 0.000 0.003 0.906 
0.010 

(<0.001) 

Spatial error model 0.001 0.003 0.707 
-0.020 
(0.997) 

PAs established 
after 2001  
  
(n = 1149) 

Regression -0.003 0.003 0.306 
0.076 

(<0.001) 

Spatial error model -0.002 0.003 0.500 
-0.027 
(0.999) 
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Table S2.7. The coefficient, standard error and P value of treatment (protection) in 

regression models of poverty, inequality and extreme poverty without matching of 

covariates (hence the larger sample size). Extreme poverty results are presented as a hurdle 

model: 1. a binomial model to estimate extreme poverty incidence, and 2. a linear regression 

model of the magnitude of extreme poverty in those VDCs where extreme poverty is present 

(only for 10% overlap due to sample sizes). All matching confounding factors were included 

in the regressions, but their coefficients are not shown here.  

 Coefficient Standard error P 

Poverty  
  

PAs established before 2001 ≥ 10% overlap 
(n = 3714) 

-0.039 0.009 <0.001 

PAs established before 2001 ≥ 70% overlap 
(n = 3632) 

-0.043 0.012 <0.001 

PAs established after 2001 ≥ 10% overlap 
(n = 3628) 

-0.020 0.011 0.072 

PAs established after 2001 ≥ 70 % overlap 
(n = 3589) 

-0.027 0.014 0.054 

Inequality    

PAs established before 2001 ≥ 10% overlap 
(n = 3714) 

-0.554 0.142 <0.001 

PAs established before 2001 ≥ 70% overlap 
(n = 3632) 

-0.757 0.191 <0.001 

PAs established after 2001 ≥ 10% overlap 
(n = 3628) 

0.336 0.172 0.051 

PAs established after 2001 ≥ 70% overlap 
(n = 3589) 

0.383 0.213 0.073 

Extreme poverty incidence and magnitude    

PAs established before 2001 ≥ 10% overlap  
1. Extreme poverty incidence (binomial model) 
(n = 3714) 

-0.955 0.232 <0.001 

PAs established before 2001 ≥ 10% overlap  
2. Extreme poverty magnitude (linear regression) 
 (n = 1153) 

0.000 0.003 0.906 

PAs established before 2001 ≥ 70% overlap  
1. Extreme poverty incidence (binomial model) 
(n = 3632) 

-1.123 0.320 <0.001 

PAs established after 2001 ≥ 10% overlap  
1. Extreme poverty incidence (binomial model) 
 (n = 3628) 

-0.512 0.252 0.043 

PAs established after 2001 ≥ 10% overlap  
2. Extreme poverty magnitude (linear regression) 
(n = 1149) 

-0.003 0.003 0.305 

PAs established after 2001 ≥ 70%  
1. Extreme poverty incidence (binomial model) 
 (n = 3589) 

0.984 0.351 0.005 
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Table S2.8. The coefficient, standard error and P value of treatment (protection) in 

matched regression models of the magnitude of extreme poverty (i.e. second stage of the 

hurdle model). All covariates were used in the analysis, but their coefficients are not shown 

here. 

 Coefficient Standard error P 

Extreme poverty magnitude  
  

PAs established before 2001 ≥ 10% 
overlap 
Linear regression 
(n = 64) 

-0.015 0.027 0.577 

PAs established after 2001 ≥ 10% overlap 
Linear regression 
(n = 51) 

0.000 0.002 0.954 
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Table S2.9. Trekking routes included in our analysis. Descriptions from Armington (2008). 

Classifications are based on descriptions that indicate popularity. 

# Name Description Classification 

1 Annapurna Circuit Trek 
"there are teashops and lodges every couple 

of hours" 
Major 

2 Annapurna Panorama Trek "this is a popular trip" Major 

3 Annapurna Sanctuary Trek 
"you will rarely walk long without finding 

refreshment or accommodation" 
Major 

4 Everest Base Camp Trek 
"tens of thousands of trekkers storm the trail 

every year" 
Major 

5 Gosainkund Trek "popular alternative" Major 

6 Langtang Valley Trek "one of Nepal's big three treks" Major 

7 Short treks near Pokhara "most popular region among trekkers" Major 

8 Gokyo Trek "less crowded" Minor 

9 Helambu Trek "few crowds" Minor 

10 Khopra Ridge Trek "trek away from the popular trails" Minor 

11 Mustang Trek “now over 3000 trekkers a year visit"  Minor 

12 Around Manaslu Trek "without the crowds" Minor 

13 Beni to Dolpo "more blue sheep than people" Minor 

14 Ganja La Trek "the most challenging and dangerous" Minor 

15 Jumla to Dunai "facilities are very sparse" Minor 

16 Kagmara La Trek "little information" Minor 

17 Kanchenjunga Treks 
"remote Alpine country", "facilities are 

limited" 
Minor 

18 Limi Valley trek "little-visited corner of Nepal" Minor 

19 Lukla to Tumlingtar "little-used route" Minor 

20 Makalu Base Camp Trek "rugged and remote" Minor 

21 Nar-Phu "far removed in both time and space" Minor 

22 
Phoksumdo Lake to Shey 

Gompa 
"truly adventurous" Minor 

23 Phoksumdo Lake Treks 
"wild, high country without rescue or 

communication facilities" 
Minor 

24 Rara Lake Trek "well off the beaten track" Minor 

25 Shivalaya to Lukla Trek "only 1000 trekkers walk this route a year" Minor 

26 Tamang Heritage Trail "off the main tourist route" Minor 

27 Three Passes Trek "only for the truly adventurous" Minor 
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Figure S2.1. Inequality (A) and extreme poverty (B) in 2011 in Nepal, based on 

multidimensional poverty index (MPI). Data are presented as deciles. Grey areas with red 

contours represent excluded Village Development Committees (reasons for exclusion include 

missing data due to armed conflict and instances of inconsistent data from the Nepali 

Department of Forests concerning community forestry data).  
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Figure S2.2. Estimated impacts of protected areas (PAs) on extreme poverty in Nepali 

Village Development Committees (VDCs) using the alternative 60 % threshold for PAs 

established before 2001 (A), PAs established between 2001 and 2011 (B), and according 

to level of tourism (C).  Dashed lines (B) represent mean baseline (2001) of VDCs, thick lines 

(T) represent treatment i.e. PAs, thin lines (C) represent counterfactual controls without 

protection. Significance: **** P < 0.001, *** P < 0.01, ** P < 0.05, * P <0.1. 
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Figure S2.3. Balance of covariates before and after genetic matching, using protection as 

treatment and poverty as outcome variable. (A) PAs established before 2001. (B) PAs 

established after 2001. Standardized mean difference for confounding covariates before (open 

circles) and after matching (orange circles). Dotted lines indicate acceptable standard mean 

difference after matching to reach balance (Stuart 2010). 
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Figure S2.4. Balance of covariates before and after genetic matching, using protection as 

treatment and extreme poverty as outcome variable. (A) PAs established before 2001. (B) 

PAs established after 2001. Standardized mean difference for confounding covariates before 

(open circles) and after matching (orange circles). Dotted lines indicate acceptable standard 

mean difference after matching to reach balance (Stuart 2010).                        
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Figure S2.5. Balance of covariates before and after genetic matching, using protection as 

treatment and inequality as outcome variable. (A) PAs established before 2001. (B) PAs 

established after 2001. Standardized mean difference for confounding covariates before (open 

circles) and after matching (orange circles). Dotted lines indicate acceptable standard mean 

difference after matching to reach balance (Stuart 2010).  
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Figure S2.6. Partial linear model: Impact of protected areas (PA) on inequality in Village 

Development Committees (VDCs) in Nepal for PAs established before 2001, conditional 

on travel time to minor trekking route (A), major trekking route (B), PA entrance (C) 

and elevation (D). Poverty measurements are based on a multidimensional poverty index. The 

dashed line represents protected VDCs, the dotted line counterfactual control without 

protection, and the solid line the difference between protected and counterfactual (negative 

values indicate PAs reduced inequality). 
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Figure S2.7. Partial linear model: Impact of protected areas (PA) on poverty (A) and 

extreme poverty (B) in Village Development Committees (VDCs) in Nepal for PAs 

established before 2001, conditional on travel time to PA entrance (A) and major trekking 

route (B). Poverty measurements are based on a multidimensional poverty index. The dashed 

line represents protected VDCs, the dotted line counterfactual control without protection, and 

the solid line the difference between protected and counterfactual (negative values indicate PAs 

reduced poverty/extreme poverty).  
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3.1 Abstract 

Understanding how land use decisions drive deforestation and poverty is key for policy makers, 

but studies that assess trade-offs between multiple alternatives remain rare. We compare effects 

of sustainable use protected areas (SU PAs) on deforestation and poverty in the Brazilian 

Amazon with two competing land uses: agricultural landholdings and mining. On average, SU 

PAs were effective in reducing deforestation without exacerbating poverty, but this masks 

important heterogeneity. There were no differences in deforestation between SU PAs and 

smallholders or remote areas, but SU PAs were much more effective in comparison to large 

landholdings than average comparisons. Reduced deforestation outcomes did not lead to 

poverty exacerbation by SU PAs, even in comparison to areas dominated by large landholdings. 

SU PAs also reduced deforestation in comparison to mining sites, but at the expense of locally 

reduced incomes and higher inequality. Mining effects on income and deforestation spread 

beyond the present mine.  

 

3.2 Introduction 

Deforestation and poverty are at the core of many sustainability challenges, including climate 

change, biodiversity loss and food security (Foley et al. 2005; Naeem et al. 2016). Gaining a 

deeper understanding of how policies can drive transitions to sustainable land use practices is 

essential to address increasing land scarcity and competition among alternative land uses 

(Ferraro et al. 2018a). Despite substantial progress in measuring the consequences of land-use 

policies and interventions, evaluations that move beyond binary comparisons of two alternative 

land-uses and acknowledge that there are multiple alternatives remain rare (but see e.g. 

Heilmayr and Lambin (2016)). Elucidating comparative effects of a range of alternative land 

uses is essential to capture the range of options available to policy makers, and generate better 

theoretical and empirical understanding of environmental and socio-economic trade-offs of 

land-use alternatives within socio-ecological systems. 

We quantify deforestation and poverty outcomes of three common land-use options within 

tropical forested landscapes, using the Brazilian Legal Amazon (BLA) as a case study. 

Specifically, we contrast outcomes arising when land is managed as sustainable use protected 

areas (SU PAs) – a rapidly growing conservation and development strategy (Poutzols et al. 

2014), agriculture and mining. Our analysis further distinguishes between agricultural land 

dominated by smallholders and large landholders, as these represent very divergent forms of 
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agriculture and the relative contributions of these groups to deforestation and socio-economic 

outcomes is frequently debated. Large-scale agricultural production is responsible for most 

deforestation and produce typically flows to distant consumers with little contribution to local 

poverty reduction (Meyfroidt 2018). Conversely, the contribution of smallholders to 

deforestation is lower, and while financial benefits are more localised (Pokorny et al. 2013), 

revenues are smaller as smallholders are often disconnected from agricultural markets (Barrett 

et al. 2001). Mining is a significant driver of tropical deforestation but estimates of its impacts 

are highly variable (Edwards et al. 2014; Austin et al. 2019), and its local effects on poverty 

are highly contested (Bebbington et al. 2008; von der Goltz & Barnwal 2018). For example, 

mining in Peru increased wages, but also increased inequality (Loayza & Rigolini 2016).   

Our analysis focuses on deforestation and poverty outcomes for the period 2000-2010. Despite 

previous work on BLA PAs (e.g. Nolte et al. 2013; Soares-Filho, 2010; Kere et al. 2017) we 

are unaware of studies that have assessed both the environmental and socioeconomic effects of 

PAs relative to the main competing land uses in the region. A small number of studies from 

other countries have compared PA impacts with those of competing land uses but focus 

exclusively on deforestation outcomes (Schleicher 2017; Panlasigui et al. 2018). Some studies 

have also assessed PA effects on poverty but only in comparison to alternative forest-based 

interventions, such as payments for ecosystem services (e.g. Sims and Alix-Garcia 2017), and 

have ignored alternative uses that have greater potential to contribute to deforestation whilst 

providing key resources for people and traditional economic activity, such as agricultural 

products or mined resources.   

Comparing effects of PAs to alternative land uses is particularly important in the Brazilian 

Amazon whose forests have very high biodiversity value and provide the world’s largest 

terrestrial carbon stock (Nepstad et al. 2009). Socio-economic benefits of PAs in other regions 

appear to be largely driven by eco-tourism (e.g. Naidoo et al. 2019; den Braber et al. 2018), 

but such benefits are likely to be less prevalent in the Brazilian Amazon as the majority remains 

largely inaccessible to visitors. Moreover, due to deforestation Brazil has become the world’s 

largest emitter of forest-based greenhouse gases (Tyukavina et al. 2017). Deforestation initially 

peaked in the early 2000s as a result of expansion of soy and cattle production lands, influenced 

by technological advancements and favourable market conditions (Nepstad et al. 2014a; 

Richards et al. 2014). Deforestation rates dropped after 2004 when the Brazilian government 

launched the Plan to Combat Deforestation in the Amazon (PPCDAM in Portuguese acronym) 

that included the expansion of PAs among other interventions (Arima et al. 2014). More 
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recently, the Brazilian government has implement a range of initiatives that have been linked 

to increasing deforestation. Land-use within the Brazilian Amazon was historically decided 

directly by central government (Hecht 1985). This role of central government continues today 

and includes rolling back environmental protection (Pack et al. 2016), major development 

projects including infrastructure projects (Ferreira et al. 2014) and agrarian settlement schemes 

aimed at smallholder farms (Pacheco 2009). These settlement schemes are a source of 

deforestation (Schneider & Peres 2015), but large landholders are responsible for the largest 

part of the deforestation even though the relative contribution of smallholders has increased 

(Godar et al., 2014). Mining is the second largest cause of Amazonian deforestation after 

farming related activities, contributing about 10% of recent deforestation (Sonter et al. 2017). 

Gold mining in the Amazon has been linked to mercury exposure, but broader socio-economic 

impacts of mining are not well studied (Malm 1998). Rapidly shifting and unstable land tenure 

designations have caused disputes and conflicts over who owns Brazilian lands (Sparovek et 

al. 2019). The relationship between environmental conservation and other actors in Brazil has 

been tense for decades, highlighted by the increase of PA downgrading, downsizing and 

degazettement (PADDD) events in the Amazon (Pack et al. 2016) and the potential for mining 

within PA boundaries (Ferreira et al. 2014). This trend is predicted to accelerate following 

recent government pledges to loosen regulations and further open the Amazon to agriculture 

and mining (Escobar 2019). 

We compiled a high-spatial resolution, longitudinal dataset that combined data on land-use, 

deforestation and poverty. We generated deforestation estimates from the well-established 

PRODES Brazilian Amazon deforestation dataset (INPE 2017) and the global forest loss 

dataset from the University of Maryland (Hansen et al. 2013), and estimated four well-

established poverty indicators (income, inequality, literacy and sanitation) for 5,545 census 

tracts from population censuses. These census tracts are the smallest spatial unit for which 

socio-economic data are available within the BLA and comprise the entire BLA. We compiled 

property sizes of landholders from agricultural census data and approved mining concessions 

from SIGMINE (DNPM 2012) to define different subsets of comparison groups. We combined 

these with spatial data on SU PAs that allow controlled access and extraction of resources. We 

focus on SU PAs because they allow controlled extraction of resources, and thus provide a 

more comparable alternative scenario to agriculture and mining than strictly protected areas. 

In addition, they comprise a major component of protected land in the BLA (36%) and are the 

most rapidly growing type of PA globally and in the BLA in recent years (Soares-Filho et al. 



  Chapter 3 

77 
 

2010; IUCN & UNEP-WCMC 2016). We use well-established matching and regression 

techniques to control for potential biophysical, socio-economic and political confounders that 

could influence our outcomes (S3.1). Our analysis focuses on the expansion of SU PAs 

established after 2000 as this enables us to assess changes in our key outcome variables 

following establishment of PAs. We also use different definitions of treatment (from 10% (187 

CTs) to 50% (112 CTs) of the CT under protection) to test whether PA effects are moderated 

by the amount of protected land. 

 

3.3 Results 

Using a quasi-experimental approach our analysis across 5,545 census tracts demonstrate that 

the expansion of SU PAs in the Brazilian Amazon in comparison to unprotected land, on 

average, significantly reduced deforestation between 2000 and 2010 (P < 0.001; Fig. 1) without 

exacerbating poverty. This equates to roughly 1,750 hectares on average per census tract, 

attributed to SU PAs established after 2000. We found no significant impact of SU PAs 

established after 2000 on any of our poverty indicators (income (P = 0.749), inequality (P = 

0.487), literacy (P = 0.392) and sanitation (P = 0.318) Fig.1b). These broad patterns remained 

for both deforestation and poverty indicators, with similar effect sizes, when raising the 

definition of protected census tracts from 10% to 50% overlap with SU PAs (Figure S3.1A-

S3.2). The global forest loss dataset from the University of Maryland also showed this pattern, 

but estimates of PA impact were higher (Figure S3.1C).  

Crucially, taking heterogeneity in land use in the control census tracts into account reveals 

significant context dependency in the effect of SU PAs on both deforestation and poverty 

outcomes. We used agricultural census data to define agricultural controls. CTs with less than 

10% of their land settled by landholders were classified as “remote”. We split the remaining 

CTs according to landholding size, and classified the census tracts based on the most frequent 

type of property size. We used four categories of property size: 1) “very small” properties 

smaller than 10 ha, 2) “small” properties between 10 and 50 ha, 3) “medium” properties 

between 50 and 200 ha, and 4) “large” properties bigger than 200 ha. We find that SU PAs 

established after 2000 have not reduced deforestation in comparison to remote areas (P = 0.178) 

and areas dominated by landholders with very small property sizes, i.e. < 10 ha (P = 0.293), 

but were successful in reducing deforestation in comparison to areas dominated by landholders 

with property sizes > 10 ha (Figure 3.1). Effect sizes of avoided deforestation per census unit 

differed in comparison to small (landholdings of 10 to 50 ha; ~2,500 ha of avoided 
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deforestation), medium (landholdings of 50 to 200 ha; ~6,600 ha of avoided deforestation) and 

large (landholdings larger than 200 ha; ~4,200 ha of avoided deforestation) landholders. 

Importantly, these effects of SU PAs are greater than those detected in the initial analysis that 

pooled all unprotected land in the control treatment (1.4 times greater for small, 3.7 times for 

medium and 2.4 times for large landholdings). When using the global forest loss dataset, rather 

than the PRODES dataset, we find a similar pattern of effects, but do see that SU PAs had 

limited (<100ha) but significant effect on reducing deforestation in comparison to remote areas 

(Fig. S3.1C). The differential effect of PAs when taking land holding size of the control units 

into account remains similar when raising the threshold of the amount of land protected to 50% 

(Figure S3.1A). We tested whether these results were influenced by differences in the amount 

of land that is settled by agricultural landholders, but we found no significant differences in the 

proportion of settled land between the categories (F = 0.69, df = 121, P = 0.56, Figure S3.4A).  

 

Figure 3.1. Estimated impacts of sustainable use (SU) protected areas established after 

2000 on deforestation in comparison to non-protection, agricultural controls split by 

dominant size of landholdings, and registered mining sites, in census tracts (CTs) in the 

Brazilian Amazon. Non-PA controls include all the CTs with less than 1% of their land 

protected. Other categories related to non-protected controls with specific land use pattern. 

Remote areas are those with less than 10% of the CT settled. Dominant agricultural landholder 

size is determined by the category that contains the most properties per CT. Mining sites are 

defined as CTs with recorded licensed mining activities present after 2000. Thick lines 

represent treatment i.e. PAs, thin lines represent modelled values in controls matched to the 

treatment across all ten covariates. Dashed lines represent average level in non-matched control 
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group. Significant differences between treatment and matched controls: *** P < 0.001, ** P < 

0.01.
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  1 

Figure 3.2. Estimated impacts of sustainable use protected areas (SU PAs) established after 2000  on 2 

income (A), inequality (B), literacy (C), and sanitation (D), in comparison to non-protection, 3 

agricultural controls split by dominant size of landholdings, and registered mining sites, in census tracts 4 

(CTs) of the Brazilian Amazon. Non-PA controls include all the CTs with less than 1% of their land 5 

protected. Other categories related to non-protected controls with specific land use pattern. Remote areas are 6 

those with less than 10% of the CT settled. Dominant agricultural landholder size is determined by the category 7 

that contains the most properties per CT. Mining sites are defined as CTs with recorded licensed mining 8 

activities present after 2000. Thick lines represent treatment i.e. SU PAs, thin lines represent modelled values 9 

in controls matched to the treatment across all ten covariates. Dashed lines represent average level in non-10 

matched control group. Significance: *** P < 0.001, * P < 0.05, + P <0.1.11 

A B 

C D 
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Agriculture in the BLA is dominated by pasture (i.e. livestock) or growing arable crops (such 

as soy); both types of agriculture are important drivers of deforestation although their relative 

contributions have varied over time with pasture being more important during our focal time 

period (Nepstad et al. 2014a). We find that deforestation rates are similar in SU PAs and census 

tracts dominated by small agricultural land holdings, and there is generally slightly, but 

significantly, less pasture in these census tracts (Figure S3.4B). However, we find that 

deforestation rates remain similar in SU PAs and census tracts dominated by small agricultural 

land holdings when these are restricted to those dominated by pasture (Figure S3.1B).  

We found no consistent evidence that areas dominated by agriculture differed from SU PAs 

established after 2000 in their ability to alleviate poverty (Figure 3.2). There was marginal, 

non-significant, evidence that SU PAs reduced income compared to areas dominated by small 

landholders (P = 0.098; Figure 3.2A), but we found no differences in effects on literacy and 

inequality of SU PAs and other size of agricultural landholding (Figure 3.2C). Effects of SU 

PAs on sanitation relative to agricultural landholdings had consistently small effect sizes and 

were very variable in the direction of effects (Figure 3.2D). 

When we compare SU PAs to CTs with an active legal mining concession we find trade-offs 

between deforestation (Figure 3.1) and poverty (Figure 3.2) outcomes. SU PAs established 

after 2000 were successful in reducing forest loss in comparison to census tracts with mining 

activity (~3500ha; P < 0.001; Figure 3.1), but mining sites are associated with higher income 

(P = 0.021; Figure 3.2A) and lower inequality (P = 0.028; Figure 3.2B). We find no difference 

in the effects of mining and SU PAs on literacy or sanitation (Figures 3.2C-D). These patterns 

were confirmed after raising the threshold to 50% land protected (Figure S3.2). Our main 

analyses defined mined census tracts as those in which mines were located, but mining effects 

on deforestation can extend up to 75km from the mining site (Sonter et al. 2017). We thus 

repeated analyses when changing the definition of mined census tracts as those in which a mine 

was located to any census tract within 75 km, 50 km, 25 km, 10 km and 5 km from a mine. 

These analyses find that SU PAs reduce deforestation relative to mining across all definitions 

of mined census tracts up to and including those within 50km of a mine, but not those within 

75km of a mine (Fig. 3.3A).  Mining, relative to SU PAs, also increased income when mined 

census tracts were defined as those within 5 and 10 km of a mine (Fig. 3.3B). Literacy rates 

were higher in census tracts 5-25km away from a mining sites, but we found no significant 

difference at other distances (Fig. S3.5). We found no significant effect of mines on inequality 

and sanitation under different definitions of mined census tracts (Fig. S3.5).   
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Figure 3.3. Estimated impacts of sustainable use (SU) protected areas established after 

2000  in comparison to mining concessions across different buffer distances, in census 

tracts of the Brazilian Amazon. Thick lines represent treatment i.e. PAs, thin lines represent 

modelled values in controls matched to the treatment across all ten covariates. Significance: 

*** P < 0.001, * P < 0.05. 
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3.4 Discussion 

Our study demonstrates that focusing on PA effects without considering the nature of land-use 

in unprotected controls masks considerable variation in in the consequences for conservation 

(deforestation) and socioeconomic outcomes (poverty). Such heterogeneity in land-use is, 

however, typically ignored in studies of PA impacts which prevents policy makers assessing if 

alternative land use decisions would generate better or worse outcomes that protection across 

multiple and diverse sustainability objectives. For example, even though previous studies have 

shown that PAs can reduce poverty (e.g. Andam et al. 2010), alternative land uses could be 

preferable, depending on development priorities, if they were able to reduce poverty even more.  

A key finding is that deforestation outcomes of SU PAs do not significantly differ when 

compared to areas dominated by very small land holdings (<10 ha) and remote areas with little 

settled land (although agriculture in such areas can still lead to the loss of disturbance sensitive 

species; Socolar et al. 2019). Previous research suggests that large landholders are the largest 

contributors to deforestation in the BLA, although the share of deforestation caused by 

smallholders has increased recently (Godar et al. 2014; Richards & VanWey 2016) and we 

demonstrate that SU PAs can still reduce deforestation relative to agricultural areas dominated 

by land holdings between 10 and 50 ha. The lack of differences in deforestation between SU 

PAs and remote areas contrasts with the disproportionate location of PAs in remote areas 

(Joppa & Pfaff 2009), confirming previous suggestions that PAs have previously been located 

in areas where it is politically convenient to do so rather than where they are most effective 

(Rodrigues et al. 2004). Notably, however, the SU PAs that were established during the study 

period are located less remotely than already established PAs (Nolte et al. 2013). Moreover, 

projected future increases in the accessibility of remote areas due to improved transport 

infrastructure (Barber et al. 2014) suggest that such PAs will, however, be well placed to play 

a key role in reducing deforestation in the near future.  

The environmental benefits arising from reduced deforestation outcomes of SU PAs are 

unlikely to trade-off against the capacity for poverty alleviation as we find no evidence of 

poverty exacerbation by SU PAs, even in comparison to areas dominated by larger 

landholdings. This suggests that economic benefits from agricultural activities in these areas 

might flow beyond the focal census tract, or might not typically be captured by a sufficient 

proportion of the local population to influence our outcome metrics. Across the BLA studies 

have reported increased human welfare in frontier areas following deforestation (e.g. Weinhold 

et al. 2015), while other studies from the region (e.g. Pokorny et al. 2013; Ferreira et al. 2010) 
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have contested the view that large scale agricultural developments have benefited human 

welfare. For example, Garrett et al. (2017) found that low income land uses such as livestock 

production remained popular in the Eastern Amazon because of limited supply chain 

mechanisms, but also social preferences and because more importance was given to non-

monetary attributes of rural lifestyle (e.g. safety, tranquillity and community relations). Our 

study indicates that the proposed development of the BLA by agricultural businesses might not 

uniformly lead to better living conditions locally. At least in some areas, alternatives such as 

SU PAs that preserve forest cover might perform equally well in offering livelihoods.  

We show that SU PAs reduce deforestation in comparison to mining concessions, but at the 

expense of locally reduced incomes and higher inequality. Whilst SU PAs did not adversely 

impact other poverty metrics, there are clear trade-offs between environmental protection and 

other development goals if establishing SU PAs prevents access to economic benefits of mining 

activities. We also find that mining impacts stretch beyond the mining site (up to 50 km for 

deforestation and up to 10 km for income). However, our study only measures relatively short-

term impacts and does not take into account health, which is often negatively affected by 

mining (Von der Golz et al. 2018). Importantly, we are only able to assess legal mining 

concession even though illegal mining is a well-known issue in the Amazon (Asner & 

Tupayachi 2016). Further studies should focus on effects of mining different materials and 

assess effects of illegal mining. Due to demand for minerals mining activities for a variety of 

mined resources are expected to increase (Ali et al. 2017). Because PAs often overlap with 

areas of mining interest (Durán et al. 2013; El Bizri et al. 2016), the risk of PADDD events 

warrants research on how deforestation impacts by mining could be curbed (Sonter et al. 2018). 

(Asner & Tupayachi 2016).  

Our study paves the way for improving future assessments of PA effects. First, comparisons 

between land uses could be expanded with comparisons across alternative forest-based 

interventions. For instance, a study in Mexico compared effects of PES programs and PAs, and 

found that both interventions reduced equal amounts of deforestation, but that PES performed 

slightly better at poverty alleviation (Sims & Alix-Garcia 2017). In the BLA multiple 

interventions were implemented that reduced deforestation rates (Arima et al. 2014; Soares-

Filho et al. 2014). These include blacklisting of districts with high deforestation rates (Cisneros 

et al. 2015), declaration of rural environmental registries (Portuguese acronym CAR) to 

improve monitoring in compliance with the Brazilian Forest Code (L’Roe et al. 2016), and the 

soy and beef moratoria (an agreement among major beef and soy traders to not buy soy or beef 
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from land that was cleared after 2006; Gibbs et al. 2015). Comparing interventions could give 

insight which interventions worked best in achieving environmental and social outcomes.  

Secondly, our analysis assumes homogeneity within each treatment and control group whereas 

management of PAs and land use decisions by individual landholders could have great effects 

on both forest cover and poverty alleviation (Pringle 2017; Runting et al. 2019). Future studies 

should pay greater attention to how variations in PA management (but also in control groups) 

influence outcomes.  

Finally, although our study design is specific to the case of the BLA region, agriculture and 

mining are important competitors for land use worldwide (Golden Kroner et al. 2019). Hence, 

our findings indicate that PA impact evaluations in other regions could also benefit from 

elucidating relative PA effects to competing land uses.  

 

3.5 Methods 

3.5.1 Unit of analysis 

Our analysis focuses on 5,545 CTs within the Brazilian Legal Amazon (BLA) derived from 

census tracts identified in Brazil’s 2,000 human population census. We merged CTs that were 

smaller than 50 km2 (mean size 3.5 km2 ± SE; total area covered is less than 1% of the BLA 

area.) as the boundaries of these census tracts are tightly delimiting villages from the 

surrounding landscape with which they regularly interact. This decoupling could reduce the 

ability to detect impacts of land-use decision on the residents of these small census tracts. Our 

recursive algorithm selected the smallest CT, then merged it with the neighbouring CT situated 

in the same municipality with whom it shares the longest border – although in practice most of 

the small census tracts are surrounded by much larger census tracts. The algorithm repeated 

this procedure until the area of the smallest remaining CT was larger than 50 km2.  

Boundaries of some census tracts changed between 2000 and 2010. We thus followed the 

approach of Cavatassi et al. (2004) and Andam et al. (2010) and consistently reconstructed data 

to the 2000 census tract boundaries by first overlapping the 2010 census tract boundaries with 

the 2000 census tract boundaries and then calculating a weighted average of the 2010 metric 

for the 2000 census tract boundary. Agricultural census data also experienced boundary 

changes between 2000 and 2006 and the same procedure was followed to calculate a 2006 

metric allocated to the 2000 census tract boundaries.  
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3.5.2 Metrics 

(i) Forest cover loss metrics 

We estimated forest cover loss estimates based on the Brazilian PRODES (INPE 2017) and the 

global forest loss datasets from the University of Maryland (Hansen et al. 2013). The PRODES 

dataset quantifies large-scale deforestation of primary forest, but ignores loss of secondary 

forest. Whilst the Hansen dataset combines loss of primary and secondary forest it also includes 

loss vegetation cover that does not comprise natural forest, such as plantations (Hansen et al. 

2013; Tropek et al. 2014). Despite these differences in methodology, both datasets agree on 

the general spatial patterns and temporal trends in deforestation in BLA (Tyukavina et al. 

2017). We chose to use the PRODES dataset in our main analysis because it is widely used in 

assessment of deforestation in the Amazon (Soares-Filho et al. 2010), and forms the basis of 

the newly developed MapBiomas dataset (MapBiomas 2015). A robustness check using the 

Hansen dataset to measure forest cover loss largely revealed similar patterns (Fig. S3.1C) but 

a small number of minor discrepancies are mentioned in the main text.  

 

(ii) Poverty metrics 

We measure four indicators of poverty. We chose these because they are commonly used 

poverty metrics for assessing impacts of protected areas (e.g. Andam et al. 2010; Canavire-

Bacarreza & Hanauer 2013), and comprise both income-based metrics and key dimensions that 

contribute to multi-dimensional poverty indicators. We do not, however, generate multi-

dimensional indicators because we only estimate few indicators and poverty indices are 

critiqued because they compound accuracy errors (Ravallion, 2010). Two indicators are based 

on income: i) average income per household head in Brazilian Reais (R$) (corrected for 

inflation using the INPC/IPC consumer price index (IBGE 2018)), and ii) GINI coefficient, a 

well-established indicator to assess inequality (Halpern et al. 2013). In addition, we assessed 

two indicators to account for other dimensions of poverty: i) percentage of literate household 

heads as a measure of education, and ii) percentage of households with poor sanitation (i.e. 

without toilets that drain into a sewage system or septic tank) as a measure of health.  

 

3.5.3 Intervention and control definitions 

(i) Defining interventions 

We define SU PAs in the BLA using the National Cadaster of Protected Areas (Cadastro 

Nacional de Unidades de Conservação, CNUC) of the Brazilian Ministry of the Environment. 
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In accordance with Brazilian nomenclature, we classify national forests, extractive reserves, 

and sustainable development reserves as “sustainable use” (SU) areas (similar to IUCN 

categories V-VI; Silva, 2005; Figure S3.6A). We thus excluded strictly protected areas and 

indigenous territories from the analysis, and only focuses on PAs established between 2000 

and 2010. We defined protected census tracts using two separate definitions: those with i) at 

least 10% of their area overlapping with a PA (due to the frequent use of this threshold in other 

studies e.g. Andam et al. 2010; Hanauer and Canavire-Bacarreza, 2015) and ii) at least 50% of 

the census tract being protected (a higher threshold that is also used in the same studies). Census 

tracts with <1% of their area protected were defined as non-protected to ensure a clear 

distinction in the amount of protection between control and treatment CTs. To further ensure a 

clear contrast between treatment and control units we excluded protected CTs that contained 

more than 10% settled land and protected CTs that included a mine.  

 

(ii) Choice of control land uses 

We compared PA impacts against two major competitors for land use: agriculture and mining. 

We chose these two land uses, because they are globally key competitors with  PAs for land 

(Jones et al. 2018; Sonter et al. 2018; Golden Kroner et al. 2019). Moreover, they are the two 

major drivers of deforestation in the BLA (Nepstad et al. 2014b; Sonter et al. 2017). We did 

not define forest concessions as an additional type of alternative land use due to their rarity in 

the BLA (Keller et al. 2007), but recognise remote areas, i.e. census tracts that are not protected 

and less than 10% of their area is occupied by agricultural areas, as an additional type of land-

use. 

 

(iii) Defining controls - agriculture 

Firstly, we compare PA impacts against the impacts of agricultural actors. We defined a CT as 

an agricultural control if at least 10% of the CT is settled by agricultural properties. Following 

Godar et al. (2016), we defined agricultural controls based on property size of landholders. 

Two major approaches to define agricultural controls by the size of landholdings can be 

distinguished: i) the most frequent landholding size category and ii) the landholding size 

category which occupies the largest proportion of land.. We follow the first approach to ensure 

that landholding size definitions reflect the type of land-holding of residents that contribute 

disproportionately to our poverty metrics.   
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We reclassified the original data into four separate categories: 1) properties smaller than 10 ha 

are considered “very small” 2) properties between 10 and 50 ha are “small”, 3) properties 

between 50 and 200 ha are “medium”, and 4) properties bigger than 200 ha are “large”. We 

determined actor dominance by the category that contains the most properties per census tract 

(Figure S3.6B). Our classification largely follows global assessments of farm size (Lowder et 

al. 2016; Samberg et al. 2016), but is adjusted for the Brazilian Amazon because farm sizes in 

Latin-America are generally bigger than the global average. Our classification is able to tease 

apart differences in agricultural property size at lower scales than previous assessments 

conducted in the Amazon that generally treat all properties smaller than 100 ha as smallholder 

agriculture (e.g. L’Roe et al. 2016). Teasing apart differences in property size below this 

threshold could be important because 100 ha is substantially higher than the size of the  average 

family farm in Brazil (18.37 ha; Medina et al. 2015).  

Furthermore, we distinguished between cropland and pasture (i.e. livestock). Firstly, we 

calculated the ratio of cropland and pastureland in the agricultural controls of our post-matched 

sample (Figure S3.4B). Secondly, we performed an analysis that only included agricultural 

control CTs that are dominated by pasture (>70% of the agricultural area dominated by 

pasture), but this additional analysis generated similar findings to our main analysis (Figures 

S3.1B & S3.3). Because of small sample sizes (<5% of the agricultural CTs in the BLA consists 

of cropland areas dominated by medium or large landholders) we were unable to perform a 

separate analysis using only cropland agricultural controls.  

 

(iv) Defining controls - mining 

Large tracts of the Brazilian Amazon are registered as under consideration for mining, 

including parts of PAs. However, far fewer areas have been approved and licensed for mining 

activities. We followed previous studies (Ferreira et al. 2014; Sonter et al. 2017) and only 

included those mines classified in the Sistema de Informações Geográficas da Mineração 

(SIGMINE) that have been officially approved and licensed for mining by the Brazilian 

Minister of Mines and Energy (DNPM 2012). These categories included “concessão de lavra”, 

“concessão de lavra garimpeira”, “licenciamento”, and “registro de extração”. We identified 

mining controls based on the presence/absence of at least one licensed minewithin the census 

tract (Fig. S3.6C). We only included mines that were licensed during the study period to 

guarantee that controls at baseline were similar to protected units. We excluded CTs with mines 

that were licencsed before 2000. Although mining activities might not take place directly after 
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licensing, in many cases infrastructure development occurs before the final approval of the 

mine and this infrastructure influences deforestation rates (Sonter et al. 2017). To test the 

robustness of the findings we drew buffers around each mining site and treated all CTs within 

5 km, 10 km, 25 km, 50 km and 75 km of the mining site as treated – this matches the maximum 

reported distance from a mine at which Sonter et al (2007) detected minimizing impacts on 

deforestation. Due to small sample sizes we were not able to differentiate between various 

mined resources (for example, gold mining or other polymetallic mines).  

 

3.5.4 Covariates 

We selected biophysical and socioeconomic covariates based on their potential to influence the 

outcome or the relationship between treatment and outcomes (S1; Ferraro et al. 2018b)). These 

covariates were baseline levels of our poverty measures, slope, size of the census tract, baseline 

forest cover, agricultural suitability, travel time from the census tract to major cities (pop. size 

>50,000), population density, and state. For our analyses comparing PAs and agriculture we 

included presence of mining as a covariate, and we included proportion of settled land as a 

covariate in our analysis of PAs vs mining.  

 

3.5.5 Matching and post-matching analyses 

We used a matching and regression approach to assess the differences in poverty and 

deforestation outcomes between SU PAs, agriculture and mining. Matching is a data pre-

processing technique to optimize the balance of covariates across treated and control units, and 

is useful when imbalance between treatment and control hinders causal inference (Ho et al. 

2007). We used genetic matching with replacement, which uses a machine learning algorithm 

to select matches and performs well when covariates have skewed distributions (Diamond & 

Sekhon 2013).  

We performed all of our statistical analyses in R version 3.3.3 (R Core Team 2018) using the 

“Matchit” package (Ho et al. 2007). We used a calliper of 1.5 to produce sufficient matches 

while maintaining matching balance (Figures S3.7-S.313 & Tables S3.4-S3.10). We used post-

matching standardized mean differences of <0.25 as an acceptable balance between treatment 

and control groups for each covariate (Stuart 2010). Finally, we conducted an Ordinary Least 

Squares (OLS) regression on the matched sample using weights obtained from the matching to 

adjust for any imbalances in covariate distributions.  
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We first conducted an impact evaluation and compared the average impact of protection on 

deforestation and poverty against a counterfactual without distinguishing the type of land use 

in the controls. We then split our control group and compared the relative effects of SU PAs 

on forest loss and poverty indicators against our different control groups (agriculture according 

to property size, and mining). For the comparisons with the agricultural groups we compared 

the proportion of settled land post-matching to confirm that the amount of settled land did not 

confound our main findings (Fig. S3.4A). We conducted robustness tests to check for spatial 

autocorrelation. Although spatial autocorrelation is present within our models, our estimated 

value of spatial autocorrelation (Moran’s I) is very low so we do not expect spatial 

autocorrelation to interfere with our main findings (Table S3.3).  
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3.7 Supplementary information 

S1 Confounding factors 

Our selection of covariates follows other research on protected areas (Andam et al. 2010; 

Canavire-Bacarreza & Hanauer 2013). Table S3.1 presents the confounding factors used in our 

analysis, and the rationale for including them. We also included forest and poverty baselines 

in our models as covariates to match on.  

Table S3.2 presents baseline levels of covariates for our treatment and control groups. As 

expected protected units show higher baseline tree cover than the unprotected controls. 

Protected units also show lower baseline income and lower baseline literacy levels, but 

inequality is also lower. In addition, PAs are established in areas with lower population density, 

lower agricultural suitability, longer travel time to major cities, and larger census tracts.  

When we tease apart our control group we observe significant heterogeneity within the control 

group.  As expected areas dominated by smallholders show higher tree cover, lower average 

income, and lower literacy levels at baseline than areas dominated by larger-sized landholders. 

However, inequality in these areas is also lower than in the other agricultural controls. Values 

of other covariates differ substantially within each agricultural control category.  

Mining sites show the lowest tree cover at baseline in comparison to other controls. Baseline 

levels of income, literacy, and inequality are higher in mining sites than in the homogeneous 

controls. Mining sites are also associated with higher population densities, less steep slopes, 

and slightly larger census tracts, but covariates differ.  
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Table S3.1. Confounding factors used in analyses. The unit of analysis is the census tract 

(CT). 

Confounding factor Definition and data source Rationale for inclusion 

Area 

Size of the census tract (km2). 

Data: CNUC 

Size of the administrative area s linked 

to poverty outcomes (Andam et al. 

2010) 

Slope 

Slope (degree), extracted from data 

provided by the International 

Institute for Applied Systems 

Analysis (Fischer et al. 2007) 

Slope influences the distributions of PAs 

and people’s livelihood decisions 

(Joppa & Pfaff 2009; Gentle & Maraseni 

2012)  

Population density 

Population density year 2000 

(IBGE) 

Population pressure affects poverty 

outcomes, resource use and PA 

allocation (Wittemyer et al. 2008) 

Agricultural suitability 

Weighted agricultural suitability 

based on soil, slope and floodability 

restrictions. Calculations are based 

on Nepstad (Nepstad et al. 2008) 

Agriculture is a leading cause of land-

cover change and an important source 

of livelihoods for local communities 

(Angelsen 2010) 

Proportion settled area 

Proportion of settled land in the 

census tract, based on calculations 

from agricultural census (IBGE) 

Land settlement influences land use 

choices, people’s welfare, and resource 

use (Hecht 1985) 

Mine presence 

established before 2000 

Binary exact match based on the 

presence/absence of legal mining 

before 2000 (SIGMINE; DNPM 

2012) 

Mining is an important land use and 

influences land use choices, livelihoods, 

and PA allocation decisions (Ali et al. 

2017; Sonter et al. 2018)  

Travel time to pop. centre 

(>50,000 inhabitants) 

Travel time to major cities using 

calculations as in Nolte et al. 

(2013), based on Soares-Filho et 

al. (2006) 

Access to markets and services (e.g., 

technical assistance, health centres) 

significantly affects livelihoods, PA 

establishment decisions, and other 

related land-use choices (Angelsen 

2010) 

State 

Exact match based on the state the 

CT is located in 

Federal states have significant 

autonomy in decision-making and 

planning that can influence 

deforestation and development 
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Table S3.2. Summary statistics of covariates for protected and control units. Reported values are 

coefficient ± standard error 
 

SU PAs 

est. after 

2000 

Non-PA Remote 

(<1% of 

land 

settled) 

Very small 

(<10 ha) 

Medium 

(10-50 ha) 

Large 

(50-200 

ha) 

Very large 

(>200 ha) 

Mining 

Baseline 

tree cover 

(%) 

89.72 

± 

13.84 

57.35 

± 

24.00 

75.72 

± 

22.14 

60.65 

± 

21.24 

50.44 

± 

23.16 

52.82 

± 

22.69 

54.14 

± 

23.52 

49.55 

± 

22.25 

Area of 

census 

tract (km2) 

2644 

± 

4213 

410 

± 

681 

751 

± 

1251 

306 

± 

594 

223 

± 

283 

290 

± 

355 

593 

± 

697 

493 

± 

657 

Slope 

(degree) 

27.4 

± 

109.5 

11.6 

± 

82.7 

29.5 

± 

135.4 

26.6 

± 

126.0 

22.2 

± 

111 

3.3 

± 

43.4 

3.9 

± 

34.3 

2.9 

± 

17.7 

Agricultural 

suitability 

(0-1) 

0.80 

± 

0.49 

0.63 

± 

0.51 

0.74 

± 

0.54 

0.64 

± 

0.51 

0.70 

± 

0.50 

0.58 

± 

0.49 

0.62 

± 

0.15 

0.57 

± 

0.49 

Travel time 

to major 

cities 

(minutes) 

3989 

± 

2696 

1249 

± 

1115 

1956 

± 

1838 

1016 

± 

919 

917 

± 

676 

1085 

± 

758 

1391 

± 

1124 

1185 

± 

1009 

Baseline 

population 

density 

(pop. per 

km2) 

7.24 

± 

33.19 

15.62 

± 

68.70 

20.57 

± 

118.90 

25.97 

± 

72.05 

22.59 

± 

59.87 

12.97 

± 

48.06 

8.34 

± 

56.97 

32.66 

± 

122.18 

Baseline 

income 

(Reais) 

392 

± 

386 

633 

± 

568 

433 

± 

329 

573 

± 

755 

617 

± 

459 

617 

± 

400 

889 

± 

829 

775 

± 

769 

Baseline 

GINI index 

0.36 

± 

0.14 

0.43 

± 

0.13 

0.38 

± 

0.14 

0.40 

± 

0.13 

0.45 

± 

0.12 

0.44 

± 

0.12 

0.46 

± 

0.14 

0.46 

± 

0.12 

Baseline 

literacy 

(%) 

0.53 

± 

0.20 

0.65 

± 

0.16 

0.58 

± 

0.19 

0.61 

± 

0.17 

0.65 

± 

0.13 

0.66 

± 

0.15 

0.70 

± 

0.15 

0.70 

± 

0.14 

Baseline 

poor  

sanitation 

(%) 

0.96 

± 

0.11 

0.94 

± 

0.13 

0.93 

± 

0.13 

0.90 

± 

0.18 

0.95 

± 

0.10 

0.95 

± 

0.11 

0.92 

± 

0.15 

0.90 

± 

0.17 

Sample 

size 
213 3251 480 439 203 1547 582 352 
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Table S3.3. Spatial autocorrelation results for each control group and outcome.  

Outcome 
Observed Moran’s I 

(P-value) 

  Agricultural landholder category  

 
Non-PA Remote 

Very 

small 
Small Medium Large Mining 

Deforestation 

 
-0.001 
(0.022) 

 
-0.001 
(0.006) 

 
-0.009 
(0.871) 

 
-0.020 
(0.811) 

 
-0.004 
(0.173) 

 
-0.006 
(0.351) 

 
-0.006 
(0.777) 

Income 
 

0.000 
(0.004) 

 
0.004 

(<0.001) 

 
-0.009 
(0.782) 

 
-0.017 
(0.460) 

 
-0.004 
(0.213) 

 
-0.014 
(0.345) 

 
-0.007 
(0.783) 

Inequality 
 

-0.006 
(0.060) 

 
-0.005 
(0.913) 

 
-0.009 
(0.820) 

 
-0.016 
(0.987) 

 
-0.011 
(0.613) 

 
-0.008 
(0.687) 

 
-0.005 
(0.394) 

Literature 
 

0.029 
(<0.001) 

 
0.031 

(<0.001) 

 
0.013 

(<0.001) 

 
-0.008 
(0.118) 

 
0.037 

(<0.001) 

 
0.022 

(<0.001) 

 
0.006 

(<0.001) 

Sanitation 
 

0.007 
(<0.001) 

 
0.003 

(<0.001) 

 
0.003 

(<0.001) 

 
-0.024 
(0.949) 

 
0.001 

(0.003) 

 
0.005 

(<0.001) 

 
0.002 

(<0.001) 
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Figure S3.1. Estimated impacts of sustainable use protected area (SU PAs) established after 2000 on 

forest (A) after raising the threshold from 10% to 50% of census tracts overlapping a SU PA (using the 

PRODES deforestation dataset), (B) in comparison to pastureland, and (C) using the global forest loss 

dataset from the University of Maryland, in comparison to non-protection, agricultural controls split 

by dominant size of landholdings, and registered mining sites, in census tracts (CTs) in the Brazilian 

Amazon. Non-PA controls include all the CTs with less than 1% of their land protected. Remote areas are 

defined as areas with less than 10% of the CTs settled. Dominant agricultural landholder size is determined 

by the category that contains the most properties per CT. Mining sites are defined as CTs with recorded 

licensed mining activities present after 2000. Thick lines represent treatment i.e. SU PAs, thin lines represent 

modelled values in controls matched to the treatment across all ten covariates. Dashed lines represent average 

level in non-matched control group. Significance: *** P < 0.001, ** P < 0.01, + P < 0.1.



  Chapter 3 

103 
 

 

Figure S3.2. Estimated impacts after raising the threshold from 10% to 50% of census tracts 

overlapping a sustainable use protected area (SU PA) established after 2000 on (A) average income, (B) 

GINI index, (C) literacy, and (D) sanitation) in comparison to non-protection, agricultural controls split 

by dominant size of landholdings, and registered mining sites, in census tracts (CTs) of the Brazilian 

Amazon. Non-PA controls include all the CTs with less than 1% of their land protected. Remote areas are 

defined as areas with less than 10% of the CT settled. Dominant agricultural landholder size is determined by 

the category that contains the most properties per CT. Mining sites are defined as CTs with recorded licensed 

mining activities present after 2000. Thick lines represent treatment i.e. PAs, thin lines represent modelled 

values in controls matched to the treatment across all ten covariates. Dashed lines represent average level in 

non-matched control group. Significance: * P < 0.05, + P <0.1. 
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Figure S3.3. Estimated impacts of sustainable use (SU) protected areas established after 2000 on (A) 

average income, (B) GINI index, (C) literacy, and (D) sanitation in comparison to area dominated by 

pastureland (>70% of the settled land classified as pastureland) split by dominant size of landholdings, 

in census tracts (CTs) in the Brazilian Amazon. Dominant pasture landholder size is determined by the 

category that contains the most properties per CT. Thick lines represent treatment i.e. PAs, thin lines represent 

modelled values in controls matched to the treatment across all ten covariates. Significance: * P < 0.05, + P 

<0.1. 

  



  Chapter 3 

105 
 

 

Figure S3.4. Box plots of (A) percentage of settled land in the post-matched sample for each landholder 

size category, and (B) percentage of pastureland in the post-matched sample for each landholder size 

category. Percentage of settled land does not differ significantly between landholding size categories (F = 

0.69, df = 121, P = 0.56). Percentage of cropland differs significantly between the categories (F = 0.69, df = 

121, P = 0.56) -  percentage in very small and small categories is smaller than areas dominated by medium (P 

= 0.03) and large (P = 0.03) landholders. Dominant landholder size is determined by the category that contains 

the most properties per CT. Box boundaries represent upper and lower quantiles,  horizontal lines inside box 

represent medians, vertical lines represent range, dots represent individual observations.  
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Figure S3.5. Estimated impacts of sustainable use protected areas (SU PAs) established after 2000  on 

(A) GINI, (B) literacy and (C) sanitation in comparison to mining concessions across different buffer 

distances, in census tracts of the Brazilian Amazon. Thick lines represent treatment i.e. PAs, thin lines 

represent modelled values in controls matched to the treatment across all ten covariates. Significance: ** P < 

0.01. 
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Figure S3.6. Schematic maps of (A) sustainable use protected areas established 2000-2010, (B) dominant 

landholders, and (C) registered mining sites 2000-2010 in the Brazilian Amazon. Dominant landholder 

size is determined by the category that contains the most properties per CT.  



  Chapter 3 

108 
 

 

Figure S3.7. Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, non-protected areas as control and deforestation as outcome 

variable. Standardized mean difference for confounding covariates before (open circles) and after matching 

(orange circles). Dotted lines indicate acceptable standard mean difference after matching to reach balance 

(Stuart 2010).     

 

Table S3.4. Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, non-protected areas as control and poverty indicators as 

outcome variables. Analysis was repeated for each poverty indicator separately, but only covariate balance 

for income outcome is reported. For other poverty indicators only post-matched balance of the poverty 

indicator is reported.  

 Before matching After matching 

 Means 

treated 

(n = 213) 

Means 

control 

(n = 3250) 

Std. 

mean 

Diff. 

Means 

treated 

(n = 128) 

Means 

control 

(n=186) 

Std. mean 

Diff. 

CT size 2644 410 0.530 1822 1847 -0.006 

Slope 27.4 11.6 0.144 30.9 30.6 0.002 

Baseline forest cover 89.7 57.4 2.339 89.0 87.9 0.074 

Agricultural suitability 0.802 0.628 0.359 0.82 0.83 -0.012 

Baseline income 393 633 -0.621 364 368 -0.010 

Baseline GINI 0.36 0.43 -0.473 0.36 0.36 0.020 

Baseline literacy 0.53 0.65 -0.599 0.53 0.53 0.015 

Baseline sanitation 0.96 0.94 0.182 0.97 0.97 -0.048 

Baseline pop. density 7.2 15.6 -0.253 5.8 5.2 0.019 

Travel time to pop. centre 3989 1249 1.016 3601 3539 0.023 
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Figure S3.8. Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, remote non-settled areas as control and deforestation as 

outcome variable. Standardized mean difference for confounding covariates before (open circles) and after 

matching (orange circles). Dotted lines indicate acceptable standard mean difference after matching to reach 

balance (Stuart 2010).     

 

Table S3.5. Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, non-protected areas as control and poverty indicators as 

outcome variables. Analysis was repeated for each poverty indicator separately, but only covariate balance 

for income outcome is reported. For other poverty indicators only post-matched balance of the poverty 

indicator is reported.  

 Before matching After matching 

 Means 

treated 

(n = 176) 

Means 

control 

(n = 480) 

Std. mean 

Diff. 

Means 

treated 

(n = 145) 

Means 

control 

(n = 86) 

Std. mean 

Diff. 

CT size 3084 751 0.518 2063 1977 0.019 

Slope 29.9 29.5 0.004 30.2 24.9 0.045 

Baseline forest cover 91.5 75.7 1.238 90.7 89.7 0.077 

Agricultural suitability 0.80 0.74 0.117 0.84 0.80 0.081 

Baseline income 386 433 -0.113 332 342 -0.023 

Baseline GINI 0.36 0.38 -0.183 0.35 0.35 0.001 

Baseline literacy 0.51 0.58 -0.319 0.51 0.51 -0.032 

Baseline sanitation 0.96 0.93 0.228 0.98 0.98 -0.023 

Baseline pop. density 3.5 20.6 -1.892 3.7 4.0 -0.023 

Travel time to pop. centre 4461 1956 0.943 4199 3889 0.116 
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Figure S3.9. Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, very small landholders as control and deforestation as 

outcome variable. Standardized mean difference for confounding covariates before (open circles) and after 

matching (orange circles). Dotted lines indicate acceptable standard mean difference after matching to reach 

balance (Stuart 2010).     

 

Table S3.6. Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, non-protected areas as control and poverty indicators as 

outcome variables. Analysis was repeated for each poverty indicator separately, but only covariate balance 

for income outcome is reported. For other poverty indicators only post-matched balance of the poverty 

indicator is reported.  

 Before matching After matching 

 Means 

treated 

(n = 176) 

Means 

control 

(n = 438) 

Std. mean 

Diff. 

Means 

treated 

(n = 75) 

Means 

control 

(n = 28) 

Std. mean 

Diff. 

CT size 3084 306 0.617 677 472 0.046 

Slope 29.9 26.7 0.027 63.6 60.7 0.024 

Baseline forest cover 91.5 60.7 2.415 87.1 84.3 0.223 

Agricultural suitability 0.8 0.6 0.307 1.06 1.06 -0.017 

Baseline income 386 573 -0.451 350 403 -0.128 

Baseline GINI 0.36 0.40 -0.304 0.35 0.34 0.074 

Baseline literacy 0.51 0.61 -0.474 0.53 0.54 -0.039 

Baseline sanitation 0.96 0.90 0.509 0.97 0.98 -0.070 

Baseline pop. density 3.5 26.0 -2.497 7.3 8.6 -0.141 

Travel time to pop. centre 4461 1018 1.297 3062 3098 -0.014 
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Figure S3.10. Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, smallholders as control and deforestation as outcome 

variable. Standardized mean difference for confounding covariates before (open circles) and after matching 

(orange circles). Dotted lines indicate acceptable standard mean difference after matching to reach balance 

(Stuart 2010).     

 

Table S3.7. Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, non-protected areas as control and poverty indicators as 

outcome variables. Analysis was repeated for each poverty indicator separately, but only covariate balance 

for income outcome is reported. For other poverty indicators only post-matched balance of the poverty 

indicator is reported.  

 Before matching After matching 

 Means 

treated 

(n = 176) 

Means 

control 

(n = 1084) 

Std. 

mean 

Diff. 

Means 

treated 

(n = 45) 

Means 

control 

(n = 26) 

Std. mean 

Diff. 

CT size 3084 273 0.624 529 501 0.006 

Slope 29.9 3.6 0.222 17.1 11.2 0.050 

Baseline forest cover 91.5 52.0 3.098 87.0 86.1 0.075 

Agricultural suitability 0.80 0.59 0.402 0.91 0.94 -0.055 

Baseline income 386 602 -0.523 334 315 0.048 

Baseline GINI 0.36 0.45 -0.614 0.38 0.38 0.023 

Baseline literacy 0.51 0.65 -0.652 0.59 0.57 0.132 

Baseline sanitation 0.96 0.95 0.096 0.96 0.97 -0.038 

Baseline pop. density 3.5 15.5 -1.327 6.6 8.4 -0.200 

Travel time to pop. centre 4461 993 1.306 2502 2564 -0.023 
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Figure S3.11. Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, medium-sized landholders as control and deforestation as 

outcome variable. Standardized mean difference for confounding covariates before (open circles) and after 

matching (orange circles). Dotted lines indicate acceptable standard mean difference after matching to reach 

balance (Stuart 2010).     

 

Table S3.8. Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, non-protected areas as control and poverty indicators as 

outcome variables. Analysis was repeated for each poverty indicator separately, but only covariate balance 

for income outcome is reported. For other poverty indicators only post-matched balance of the poverty 

indicator is reported.  

 Before matching After matching 

 Means 

treated 

(n = 176) 

Means 

control 

(n = 1547) 

Std. 

mean 

Diff. 

Means 

treated 

(n = 75) 

Means 

control 

(n = 41) 

Std. mean 

Diff. 

CT size 3084 290 0.620 786 684 0.023 

Slope 29.9 3.3 0.224 17.9 10.6 0.061 

Baseline forest cover 91.5 52.8 3.032 88.1 88.3 -0.016 

Agricultural suitability 0.8 0.58 0.426 0.89 0.85 0.090 

Baseline income 386 617 -0.560 329 304 0.061 

Baseline GINI 0.36 0.44 -0.575 0.344 0.336 0.061 

Baseline literacy 0.51 0.66 -0.697 0.53 0.54 -0.072 

Baseline sanitation 0.96 0.95 0.075 0.98 0.98 -0.013 

Baseline pop. density 3.5 13.0 -1.048 4.7 3.6 0.127 

Travel time to pop. centre 4461 1085 1.272 3157 3036 0.046 
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Figure S3.12. Balance of covariates before and after genetic matching, using PAs established after 2000 

as treatment, large landholders as control and deforestation as outcome variable. Standardized mean 

difference for confounding covariates before (open circles) and after matching (orange circles). Dotted lines 

indicate acceptable standard mean difference after matching to reach balance (Stuart 2010).     

 

Table S3.9. Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, non-protected areas as control and poverty indicators as 

outcome variables. Analysis was repeated for each poverty indicator separately, but only covariate balance for 

income outcome is reported. For other poverty indicators only post-matched balance of the poverty indicator is 

reported.  

 Before matching After matching 

 Means 

treated 

(n = 176) 

Means 

control 

(n = 582) 

Std. 

mean 

Diff. 

Means 

treated 

(n = 71) 

Means 

control 

(n = 28) 

Std. mean 

Diff. 

CT size 3084 593 0.553 850 780 0.016 

Slope 29.9 3.9 0.220 21.1 21.7 -0.006 

Baseline forest cover 91.5 54.1 2.929 90.4 89.3 0.087 

Agricultural suitability 0.80 0.62 0.349 0.93 0.95 -0.033 

Baseline income 386 889 -1.217 353 397 -0.106 

Baseline GINI 0.36 0.46 -0.735 0.36 0.39 -0.227 

Baseline literacy 0.51 0.70 -0.883 0.50 0.51 -0.055 

Baseline sanitation 0.96 0.92 0.309 0.97 0.98 -0.043 

Baseline pop. density 3.5 8.3 -0.534 4.4 2.8 0.169 

Travel time to pop. centre 4461 1391 1.156 3259 2788 0.177 
  



  Chapter 3 

114 
 

 

Figure S3.13. Balance of covariates before and after genetic matching, using PAs established after 2000 

as treatment, mines established after 2000 as control and deforestation as outcome variable. 

Standardized mean difference for confounding covariates before (open circles) and after matching (orange 

circles). Dotted lines indicate acceptable standard mean difference after matching to reach balance (Stuart 

2010). 

 

Table S3.10.| Balance of covariates before and after genetic matching, using sustainable use protected 

areas established after 2000 as treatment, non-protected areas as control and poverty indicators as 

outcome variables. Analysis was repeated for each poverty indicator separately, but only covariate balance for income 

outcome is reported. For other poverty indicators only post-matched balance of the poverty indicator is reported.  

 Before matching After matching 

 Means 

treated 

Means 

control 

Std. mean 

Diff. 

Means 

treated 

Means 

control 

Std. mean 

Diff. 

CT size 2309 481 0.444 1275 1215 0.015 

Slope 31.3 2.4 0.244 11.9 7.7 0.036 

Baseline forest cover 89.5 49.6 2.862 88.0 85.4 0.189 

Agricultural suitability 0.86 0.56 0.617 0.81 0.81 0.036 

Baseline income 347 782 -2.049 347 334 0.060 

Baseline GINI 0.36 0.46 -0.784 0.36 0.36 -0.065 

Baseline literacy 0.51 0.70 -0.925 0.56 0.55 0.046 

Baseline sanitation 0.96 0.90 0.568 0.98 0.97 0.077 

Baseline pop. density 5.3 37.4 -2.403 4.6 5.0 -0.029 

Travel time to pop. centre 3954 1201 1.002 2854 2194 0.240 

Proportion of settled land 0.07 0.50 -3.329 0.08 0.09 -0.083 
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4.1 Abstract 

Reducing poverty is a key target of sustainable development goals, which will require monitoring 

poverty at multiple time points and at fine spatial resolutions. Poverty data in lower- and middle-

income countries are often insufficiently frequent or at too coarse spatial resolutions to use for 

assessing the impacts of environmental change or poverty reduction policies. Previous studies have 

been able to predict poverty fairly accurately using machine learning methods (convolutional neural 

networks (CNNs)) and very high resolution satellite imagery. Here we assess the ability of CNNs to 

estimate poverty and poverty change in Tanzania using publicly available data sources. We find that 

CNNs provide useful information to estimate household consumption expenditure (Pearson’s r2 0.32), 

but cannot be used to measure poverty change or multidimensional poverty. Estimates vary per biome 

and are less useful to detect small changes in poverty. Our results can be used to improve poverty 

predictions in countries with limited socio-economic data.  

 

4.2 Introduction 

Eradicating extreme poverty by 2030 is a key target of the sustainable development goals (SDGs - 

Griggs et al. 2013). Monitoring progress towards this target, and understanding how social and 

environmental factors, and policy change influence poverty dynamics requires quantitative 

assessments of poverty at multiple time points and at sufficiently fine spatial resolutions to capture 

spatial heterogeneity (Lu et al. 2015; Selomane et al. 2015). These data are crucial for policy makers 

and NGOs to target areas and people most in need of support, and to evaluate the effectiveness of 

poverty reduction efforts. Most programs and policies operate over short time frames, and their 

implementation is often spatially heterogeneous. Yet, the majority of poverty data in lower- and 

middle-income countries is gathered through census cycles or representative household surveys (e.g., 

the World Bank’s Living Standards Measurement Survey) that collect data intermittently over space 

and time, and are thus not suitable to assess the effects of dedicated programs and policies. 

Sub-Saharan Africa is the region with the largest data gap. Rapid economic and demographic changes 

in the region are not matched by suitable socio-economic data, which can result in poor quality data 

and misleading official statistics that do not represent the reality on the ground (Jerven 2013). 

Consequently, the United Nations High Level Panel has called for a data revolution to dramatically 

improve data collection (United Nations IEAG 2014). However, collecting such data requires 

expensive and time-consuming household surveys that continue to be inconsistently available over 

time and space. Following guidelines set up by the World Bank for monitoring the SDGs, such a data 
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collection revolution is estimated to cost around $253 billion globally for the time period of the SDGs 

– almost twice the annual global total spent on official development assistance (Jerven 2014).  

An alternative, and potentially much cheaper, approach to reducing the data gap is to use secondary 

data sources to predict poverty at fine spatial scales across large spatial extents. This general approach 

has been applied using mobile phone network data (Blumenstock et al. 2015; Steele et al. 2017), and 

remote sensed satellite data (Elvidge et al. 2009) – with the later showing the most promise due to its 

global availability and scalability in comparison to other data sources. These advantages will continue 

to increase as the spatial and temporal resolution and availability of satellite images continues to 

improve - for example through the  launching of the Sentinel satellites (Drusch et al. 2012). Data 

derived from satellite sensors are used to extract information on land use and other biophysical 

characteristics, but can also be used as proxies to measure socio-economic development and 

livelihoods. Luminosity (nightlight) measured by satellites has been shown to be a good proxy for 

economic activity (Noor et al. 2008; Chen & Nordhaus 2011). For example, Noor et al. (2008) showed 

that nightlight correlated with an asset-based poverty index at 64% precision. However, in areas with 

high poverty, luminosity levels are generally very low or close to zero making it difficult to estimate 

small changes in poverty using night-time light data in isolation. 

Recently, studies have applied novel statistical methods using remotely sensed data from satellites to 

estimate poverty, education, and health indicators in sub-Saharan Africa (Golding et al. 2017; Graetz 

et al. 2018; Osgood-Zimmerman et al. 2018; Tusting et al. 2019). Machine learning methods have 

shown promise with regard to their ability to predict poverty using  information derived from remotely 

sensed imagery (Watmough et al. 2016, 2019). For instance, Watmough et al. (2019) estimated poverty 

using very high resolution imagery and household surveys up to 62% accuracy. One approach used by 

Jean et al. (2016) applies convolutional neural networks (CNNs) and imagery from Google Street Maps 

to measure poverty in four African countries at higher accuracy than using luminosity. CNNs are a 

type of deep neural networks that are developed specifically for image classification tasks (Lecun et 

al. 1998; Bengio 2009). In contrast to other machine learning methods they are able to derive 

information from multiple pixels simultaneously, and are thus able to detect spatial features from 

images. Jean et al. (2016) show that CNNs are able to detect landscape features from imagery that 

correlate with economic activity and are thus useful for detecting poverty. New forms of CNNs have 

been developed to incorporate a temporal dimension to classify change in imagery. These so-called 3-

dimensional CNNs are originally developed to classify video footage (Karpathy et al. 2014), but have 

been successful in detecting changes in imagery in various research domains (Ji et al. 2013, 2018). 

Met opmerkingen [b15]: Example to clarify point 

Met opmerkingen [b16]: Example to clarify point 
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Several topics remain understudied. First, current studies that apply machine learning methods to 

estimate poverty typically use very high-resolution imagery (~3m/pixel) that is expensive, not publicly 

available, and collected irregularly over space and time because observations are captured ‘on demand’ 

(Watmough et al. 2019), but see Perez et al. (2019). Although these high-resolution images are better 

for detecting features from satellite imagery (Gilbertson et al. 2017), the costs of these images hinder 

standardized and routine poverty data estimations. In contrast, Landsat imagery has a lower resolution 

(30m), but is publicly available from 1984 and continues to be collected regularly (16-day repeat 

cycle). Studies to date have not assessed if these advantages of using Landsat imagery trade off against 

reduced capacity to predict poverty due to the lower resolution imagery. A key challenge is therefore 

to assess the ability to measure poverty using lower resolution publicly available imagery.  

Second, currently the state-of-the-art is single time point poverty maps that only provide snapshots of 

poverty (cross-sectional data), but do not provide insight into the dynamics of poverty over time 

(longitudinal data). However, accurately measuring change is crucial to monitor progress towards the 

SDGs and to conduct impact evaluations of specific policies or programs. Single time-point maps are 

not suitable to assess changes over time, because measurement errors of individual time points are 

compounded when combined to measure change. Compounding errors are commonly addressed in 

deforestation change measures (see e.g. Sexton et al. 2015), but are currently understudied for poverty 

change measures. A second key challenge is therefore to develop methods to estimate remotely-sensed 

poverty change that minimize errors.  

Finally, previous studies have mostly focused on consumption-based metrics. Consumption- or 

income-based metrics are commonly used to measure poverty, but are also criticized as poor indicators 

of people’s needs (Anand & Sen 1997). Other dimensions of human welfare such as education, 

sanitation and assets are important aspects in driving wellbeing and do not always correlate well with 

consumption or income but are recommended for use in multi-dimensional poverty indices (Alkire & 

Foster 2011). The final key challenge is thus to assess the capacity of machine learning methods 

applied to remote sensing data for accurately measuring poverty dimensions other than consumption.  

Here, we assess the ability to predict poverty change at fine spatial scales in Tanzania using publicly 

available Landsat satellite imagery and novel CNN methods. We obtain panel household consumption 

expenditure data (a key indicator of poverty) from the World Bank’s Living Standards Measurements 

Study – Integrated Surveys on Agriculture (LSMS-ISA) from 2008/09 and 2012/13 to estimate poverty 

for each year and directly estimate poverty change from 2008/09 to 2012/13. In addition, we estimate 

multi-dimensional poverty using data from the Demographic Health Survey (DHS) in 2010. We apply 
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CNN transfer learning models that have shown to be successful in estimating poverty indicators (Jean 

et al. 2016; Xie et al. 2016), and apply specific 3D CNNs to predict poverty change. We estimate 

consumption-based poverty and multidimensional poverty in the two biggest biomes (tropical forest 

and tropical grassland biomes) and compare the accuracy of our poverty estimates. We use Tanzania 

as a case study because it has major gaps in coverage from censuses, contains major variation in 

biomes, has very high poverty rates, and evidence for marked recent changes in poverty levels (Ellis 

& Mdoe 2003; Östberg et al. 2018).  

 

4.3 Methods 

4.3.1 General approach 

We used CNNs to estimate household consumption expenditure, an important indicator of poverty, in 

Tanzania in 2008/09, 2012/13 and estimate consumption change from 2008/09 to 2012/13. In addition, 

we estimate multidimensional poverty in 2010. Following Jean et al. (2016) we used a transfer learning 

approach consisting of three steps (Figure 4.1). First, we extracted day-time (Landsat 5 TM and 

Landsat 8 OLI/TIRS) and night-time imagery from publicly available satellite data. For every location 

we classified day-time imagery onto a corresponding nightlight intensity category (binned into 

categories from low to high luminosity levels). Secondly, we split our imagery into training and 

validation sets (70/30 ratio) and trained a convolutional neural network to identify features (e.g. roads, 

buildings or abstract features) that are useful to classify day-time imagery into a corresponding 

nightlight category. Features from day-time images that are useful to predict nightlights can also be 

useful to predict poverty levels (Jean et al. (2016)). Finally, we use the extracted features from the 

CNN for further analyses to estimate how much of the poverty can be explained by the extracted 

features. Ideally, the imagery used for the nightlights categorization task should be separate from the 

imagery used to estimate poverty. Few poverty data points restrict the possibility to split the data in 

training and validation data (for estimating nightlights), and testing data (for estimating poverty). 

Moreover, the dense sampling of the LSMS-ISA and DHS surveys in Tanzania in villages and urban 

areas makes it impossible to select separate imagery for categorizing nightlights without overlap 

(Figure S4.1). Other studies have overcome this issue by sampling imagery for the nightlight 

categorization task from other countries (Jean et al. 2016; Xie et al. 2016), but this is likely to introduce 

error due to differences between countries in environmental, socio-economic and cultural factors that 

generate international variation in the relationship between poverty, nightlights and features extracted 

from remote sensed data. Since our main task is not to classify nightlights but estimate poverty we 

decided to use the same imagery for the nightlight categorization task to extract features for estimating 
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poverty, although the same network structure could be used to handle a much larger set of images 

which would likely improve predictive capacity of poverty. In addition, we used an existing well-

established CNN architecture that is not trained on nightlight imagery, but uses weights pre-trained on  

a standardized image database (ImageNet) to extract features and compare our results.  

 

Figure 4.1. Schematic overview of general approach to predict poverty using satellite imagery. 

In step 1 we extract (10x10 km2) day-time and night-time images from satellite data at each survey 

location from the household surveys (Living Standards Measurements Study – Integrated Surveys on 

Agriculture (LSMS-ISA) and Demographic Health Survey (DHS)). Then for every location we overlay 

day-time and night-time imagery and classify every day-time image onto a corresponding nightlight 

intensity category (ranging from low to high luminosity levels). In step 2 we split our day-time images 

into training and validation images (70/30 ratio) and train a convolutional neural network (CNN) to 

extract features (e.g. roads, buildings or abstract features) that are useful to classify day-time imagery 

onto a corresponding nightlight category. In step 3 we use the extracted features from the CNN and 

combine these with the poverty data. We split the data into training and test sets (70/30) and assess the 

ability to predict poverty from the extracted features using ridge regression. 
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4.3.2 Study site 

Tanzania experienced significant economic and demographic growth since the 1990s (Ellis & Mdoe 

2003; Östberg et al. 2018) as a result of the booming mining, tourism, financial and construction 

sectors. Agricultural growth has been stagnant, yet 68% of the population continues to live in rural 

areas, including 84% of the country’s poor. Poverty rates as measured by the LSMS-ISA surveys have 

declined since 1992, but because of population growth the number of poor people in Tanzania has 

increased over the same period. Yet much remains unknown about local poverty dynamics (Östberg 

et al. 2018). Improved poverty data would aid in determining effects of multiple policies and programs 

that affect human wellbeing (Pailler et al. 2015). 

 

4.3.3 Poverty data 

We used two different data sources to measure poverty in Tanzania that enable us to measure 

consumption based poverty and multi-dimensional poverty. First, we extracted poverty household 

consumption expenditure data in 2008/2009 and 2012/2013 from the LSMS-ISA that are collected by 

the World Bank (Grosh & Glewwe 1998). Consumption expenditure is a common measure of poverty 

and is defined as the total amount of money a household spends on consumption goods per year. 

LSMS-ISA surveys in Tanzania and other African countries are part of a longitudinal study to track 

household poverty over time and are thus suitable to estimate poverty change. LSMS-ISA surveys 

sample enumeration areas (“clusters”) throughout the country with probability of sampling in 

proportion to population size. Households within the cluster are then randomly sampled. LSMS-ISA 

report the latitude/longitude of the cluster, but geolocations are made fuzzy to ensure anonymity of 

individuals is preserved. Up to 2 km noise is added for urban areas, 5 km for rural areas, and 10 km is 

randomly added for 1% of the cluster. We extracted imagery from a 10 by 10 km square polygon 

around the cluster geolocation. This way we take into account the fuzzy nature of the geolocation, but 

also capture a wider area around the household which is more representative of their economic well-

being as economic activities of a household take place in a buffer around the household (Watmough 

et al. 2019).  

Second, we constructed a multidimensional poverty index using data obtained from the Demographic 

Health Surveys (DHS). Although consumption poverty is commonly used as a poverty metric, certain 

aspects of poverty are overlooked (Brockington et al. 2018). From the DHS data we constructed a 

multidimensional poverty index, based on education, health and living standards (Table S4.1 - Alkire 
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& Foster 2011). We obtained data from 2010, the closest year to our LSMS-ISA data. Sampling design 

is similar to the LSMS and locations of clusters are also made fuzzy. However, the DHS data sampling 

design is not longitudinal, and is therefore not suitable to track poverty over time at fine spatial 

resolutions and therefore we only predicted multidimensional poverty in 2010. Similarly, we extracted 

an image for every 10 by 10 km square polygon drawn around the sampled geolocation.  

 

4.3.4 Day-time Landsat satellite imagery 

We obtained cloud-free composite Landsat satellite imagery from Tanzania in 2008 and 2013, 

corresponding to the years of the available poverty data. The resolution of Landsat imagery (30m/pixel 

for most bands, 15m/pixel for pan-sharpened band) is significantly lower than the very high resolution 

imagery (~2.5m/pixel) that has previously been used to assess poverty (Jean et al. 2016; Watmough et 

al. 2019), but Landsat imagery is open source, easily accessible and has been collected since 1984 

(Wulder et al. 2016). All acquiring and processing of imagery was done in Google Earth Engine 

(Gorelick et al. 2017). We used atmospherically corrected Landsat 5 TM Tier 1 images for 2008 and 

Landsat 8 OLI/TIRS Tier 1 images for 2013. Atmospherically corrected Tier 1 products provide 

similar spectral signatures and give the highest geodetic accuracy and are thus recommended for time 

series analyses (Young et al. 2017). We chose to avoid using Landsat 7 because of the scan-line 

corrector failure that would have unpredictable effects on our CNN models. Because our analysis 

draws from two different sensors we cross-calibrated Landsat 8 surface reflectance values to Landsat 

5 reflectance to ensure cross-sensor functionality (Roy et al. 2016). Although we use the algorithm to 

cross-calibrate Landsat 8 surface reflectance to Landsat 7, reflectance values of the Landsat 5 TM and 

Landsat 7 ETM+ sensors are very similar (Melaas et al. 2013). For both years we extracted the visual 

bands (red-green-blue (RGB)), near-infrared (NIR), both shortwave infrared bands (SWIR), and the 

thermal infrared (TIR) band for our analyses. We estimated models that only use the visual RGB bands, 

and models that use all seven bands. For 2013 we also tested Landsat 8 OLI/TIRS Tier 1 top-of-

atmosphere (TOA) imagery because it allows to pan-sharpen the Red-Green-Blue bands to a higher 

resolution (15m), which has proven to be successful in other image classification studies (Gilbertson 

et al. 2017). Pan-sharpened imagery is not available for Landsat 5 TM so could only be used for 2013 

data. We selected the images with the fewest clouds using the CFMASK algorithm (Foga et al. 2017) 

and produced a composite for every year by taking the median value of each pixel from that year during 

the period June-October, which is considered the dry period for most of Tanzania. Finally, we overlaid 

our cluster polygons from the LSMS-ISA and DHS datasets with the final composite map to extract 

day-time images. In total we ended up with 369 images for 2008, 1458 images for 2013, and 409 
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images for 2010 (DHS). To estimate change we used the 369 images for 2008 and used the same 

geolocations to extract 369 images for 2013.   

 

4.3.5 Nightlight satellite imagery 

We obtained night-time satellite imagery in 2008 and 2013 from the United States Air Force Defense 

Meteorological Satellite Program (DMSP), provided by the National Oceanic and Atmospheric 

Administration (NOAA). Although the more recent Visible Infrared Imaging Radiometer Suite 

(VIIRS) data provides a higher resolution (Elvidge et al. 2013), this data is not available for 2008 and 

we therefore decided to only use the DMSP data in our analyses. Previous work on estimating poverty 

has also used the DMSP data (Jean et al. 2016). After extracting the nightlight data we overlaid our 

LSMS-ISA and DHS cluster polygons with the nightlight data to determine the average nightlight 

luminosity for each cluster polygon. For classification purposes we then binned the nightlight data into 

5 categories ranging from no light to very bright so that every day-time image corresponds to a 

nightlight category. For our model to estimate poverty change we binned the change in luminosity 

between the years in 3 categories (no change, small change and big change).  

 

4.3.6 Convolutional neural networks 

We used CNNs to extract features from the day-time imagery that can be used to predict poverty. Our 

CNN models were based on the VGG-16 model structure (Simonyan & Zisserman 2014) which 

performs well on classifying images in the widely used ImageNet database (Russakovsky et al. 2015). 

We used Keras (Chollet 2015), based on Tensorflow (Abadi et al. 2016), to implement our CNN 

models. The VGG-16 model architecture consists of convolutional layers, pooling layers, and a fully 

connected layer (Figure S4.2). In the convolutional layers features are extracted from an image while 

keeping the spatial dependency. Relatively small (3x3 pixels) filters are passed over an image to create 

generalized feature maps. The number of filters increases per block of convolutional layers from 32 

filters in the first block to learn basic features such as edges to 512 filters in the last block to learn 

complex features such as objects. We added non-linearity in the form of a rectified linear unit (ReLU) 

to allow complex relationships to be learned (Dahl et al. 2013). Batches of convolutional layers are 

followed by pooling layers. Pooling layers are used to reduce dimensionality and prevent overfitting 

by minimizing the number of parameters in the model. In the final step of the network a fully connected 

layer combines the neuron information from the previous layer to determine the night light category 

of the image. We then applied the SoftMax activation function that is commonly used for image 

classification purposes (Bengio 2009). In our transfer learning models we first train the images to 
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classify day-time images to a corresponding nightlight intensity category and then extract the features 

from the last pooling layer before the fully connected layer for further analyses. For all models we 

used dropouts and data augmentation (horizontal and vertical flipping, and rotating of images by 90 

degrees) to prevent overfitting (Srivastava et al. 2014). We used categorical cross entropy as our loss 

function, an Adam optimizer starting at 0.0001 (Kingma & Ba 2014), a batch size of 32, and input 

image resolution of 128 by 128 as other CNN parameters. 

To estimate poverty change we altered the original network to allow two images as input and create a 

3D CNN (Figure S4.3). 3D CNNs have originally been created to analyse video footage, but can also 

be used to assess temporal change (Donahue et al. 2015). In this case, the CNN receives two day-time 

images, one from 2008 and one from 2013, and assesses the change between the images directly and 

classifies every pair of images to a corresponding nightlight intensity change category. Poverty change 

is thus modelled directly from changes in the images rather than estimating poverty separately for two 

different time periods and thus avoids compounding errors. Just like in our transfer learning CNN we 

extracted the features from the last pooling layer before the fully connected layer for further analyses. 

One common approach is to apply a VGG-16 CNN that is already pre-trained on ImageNet and use 

this CNN as a feature extractor. These features can then be used in a different task. This approach has 

shown to be useful in a variety of fields (Pan & Yang 2010; LeCun et al. 2015). Using pre-trained 

weights is useful to detect low-level features such as edges and slows down computational time 

(Krizhevsky et al. 2012). However, ImageNet mainly consists of object-based images whereas satellite 

imagery is observed from an aerial, bird’s-eye view (Christie et al. 2018). However, extracting features 

from CNNs trained on ImageNet has also shown to be useful in remote sensing applications (Nogueira 

et al. 2017; Hu et al. 2015).  

We tested both models that use the VGG-16 trained on ImageNet as a feature extractor and transfer 

models that are trained from scratch to classify nightlights and train all layers of the CNN. Because 

VGG-16 trained on ImageNet only accepts three bands we only used the pan-sharpened images and 

the normal RGB images for this approach. We used all different imagery (pan-sharpened, normal RGB 

and all bands) for our transfer learning models that are trained from scratch on nightlights.  

 

4.3.7 Post-CNN 

The features that are extracted from CNNs can be further used in regression analyses to estimate 

household consumption and multidimensional poverty metrics. Our transfer learning model CNN and 

the ImageNet VGG-16 CNN extract 5048-dimensional feature vectors (our change models extract 
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10096-dimensional feature vectors). To reduce overfitting and to enhance computational speed we first 

used principal component analysis to reduce dimensionality (Jean et al. 2016). We used the first 50 

components of the PCA (Jean et al. 2016) and ran ridge regressions which further prevents overfitting 

by penalizing the size of the linear coefficients (R package ‘glmnet’- Friedman et al. 2009). We 

computed the average Pearson’s R2 correlation after nested 5-folded cross-validation. In the inner fold 

we tune the alpha L2 regularization parameter. In each outer fold we split our poverty data in training 

(70%) and test (30%) data. We repeat this procedure to calculate the capacity to predict poverty per 

biome (tropical forest and tropical grassland biomes), and to predict poverty while using different 

poverty thresholds (using only 25%-50%-75% of the poorest clusters). The latter tests whether CNNs 

can also detect small-scale heterogeneity. To assess poverty change we did not use different poverty 

thresholds, but instead used different change thresholds (using 25%-50%-75% of the clusters with 

smallest change). For every approach we compared our correlations using CNNs against the 

correlation between nightlight and the poverty metric. We logged consumption expenditure so that 

consumption was distributed normally.  

Secondly, we divided all our continuous poverty metrics in four different bins to check the robustness 

of our estimates and evaluate the impacts of false classifications. We used a support vector machine 

(SVM) to predict which category our test poverty data belongs to. SVM is a supervised machine 

learning algorithm that separates classes using a multidimensional non-linear approach (Kuhn 2008). 

Again we used nested 5-fold cross-validation. In the outer fold the poverty data is split into training 

(70%) and test (30%) data while in the inner fold the SVM parameters are fine-tuned during each fold. 

We used two different metrics to assess the classification accuracy. The first is the multiclass AUC 

which is the area under the receiver operating characteristic curve (ROC). The ROC curve compares 

the true positive rate against the true negative rate. The AUC is 0.5 when classification is completely 

random and 1 indicates perfect prediction. Secondly, we calculate weighted Cohen’s kappa because, 

other than AUC, it respects the ordinal structure of the poverty classes that ranges from low to high. 

Weighted Cohen’s kappa extra penalizes classifications that are two or three classes away from the 

true category. Because nightlight is a continuous variable we only calculated the AUC in this case.  

 

4.4 Results 

We show that CNNs trained on publicly available satellite imagery can be used to predict average 

household consumption expenditure in 2008/09 and 2012/13. Cross-validated predictions can explain 

31% of the variation in 2008/09 consumption expenditure and 32% of the variation in 2012/13 (Figure 

4.2). These estimates are lower than the estimates found using very high-resolution imagery (55% in 
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Tanzania by Jean et al. (2016)). They are also lower than the estimates when using nightlight intensity 

as a predictor of consumption. Nightlight luminosity can explain over 50% of the variation both for 

2008/09 and 2012/13 (Figure 4.2A-B).  

Our ability to assess change over time is lower than our predictions for single time snapshots. Still our 

best model can explain 14% of the variation despite the relatively short time span of only four years 

(Figure 4.2 C). However, changes in luminosity predict changes in consumption slightly better (17%).  

We also find lower predictive capacity to estimate multidimensional poverty compared to our 

consumption-based models. Our CNNs can only explain 16% of the variation in the MPI in 2010 

(Figure 4.2D). This could be explained by the nature of the index that also includes dimensions of 

poverty that are difficult to assess using satellite imagery such as education. Nightlights can predict 

multidimensional poverty slightly better (29%) but also show lower predictive power in comparison 

to household consumption predictions.  

Predictive capacity highly depends on the focal biome (Figure 4.2). For all poverty measures predictive 

power in the tropical forest biome that spans the coastal area is much higher than in the tropical 

grasslands that span much of the rural part of Tanzania. In the latter predictive capacity of our CNN 

models drops to almost zero. Nightlight performs slightly better in that part of Tanzania, but also shows 

a drop in explanatory capacity. In some cases predictive capacity in the tropical forest biome is higher 

than across Tanzania. Our best CNN is able to explain 53% of the variation in household consumption 

in this biome (compared to 32% for entire Tanzania), even though this is still lower than nightlight 

predictions (69%). We find similar patterns when assessing poverty change. However, we also find 

that one model predicted poverty change in the tropical forest biome better than using nightlight as a 

predictor of consumption (29% cf. 21%). 

Our models cannot detect heterogeneity in consumption and multidimensional poverty among poorer 

household clusters. Predictive capacity of all tested models drops to almost zero when only the poorest 

quantiles of the household clusters are measured. Nightlight intensity performs equally poor to 

measure heterogeneity in poverty close to the poverty line (Figure 4.3). Our poverty change models 

also show drops in predictive capacity when assessing heterogeneity in smaller changes, although one 

CNN model shows a sudden increase in predictive capacity to assess small changes (18%- Figure 

4.3C).  
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Fig. 4.2. Predictive capacity of household consumption expenditure in (A) 2008/09, (B) 2012/13, 

(C) household consumption change between 2008/09 and 2012/13 and (D) of multidimensional 

poverty in 2010 for entire Tanzania (total), and tropical forest and tropical grassland biomes, 

using nightlights and two different convolutional neural network (CNN) models using different 

imagery. We tested predictive capacity using Red-Green-Blue (RGB), 7 bands (RGB plus near-

infrared, both shortwave infrared bands, and thermal infrared), and pan-sharpened imagery (only for 

2013). We tested CNN models trained on ImageNet and transfer learning CNN models trained from 

scratch on nightlight imagery. Reported Pearson’s r2 is from five-fold cross-validation. Consumption 

expenditure was logged.  
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Fig. 4.3. Predictive capacity of household consumption expenditure in (A) 2008/09 and (B) 

2012/13 per poorest cluster used, predictive capacity of (C) consumption change between 2008/09 

and 2012/13 per percentage of clusters with smallest change, and (D) predictive capacity of the 

multidimensional poverty index (MPI) per poorest cluster used. Comparisons of using 

nightlights and two different convolutional neural network (CNN) models using different 

imagery. We tested predictive capacity using Red-Green-Blue (RGB), 7 bands (RGB plus near-

infrared, both shortwave infrared bands, and thermal infrared), and pan-sharpened imagery (only for 

2013). We tested CNN models trained on ImageNet and transfer learning CNN models trained from 

scratch on nightlight imagery. Reported Pearson’s r2 is from five-fold cross-validation. Consumption 

expenditure was logged.  



  Chapter 4 

132 
 

Finally, we find heterogeneity depending on the CNN which we use. We find that using VGG-

16 ImageNet CNN as a feature extractor generally outperforms transfer learning CNNs trained 

on nightlights. This could be a result of the small sample training set on which we trained the 

nightlight transfer learning models (only 369 images for 2008). Increasing the number of 

images to train the CNN will likely improve predictive capacity of transfer learning models. 

Yet, our transfer model CNN to assess poverty change performed better than the VGG-16 

ImageNet CNN. We also find that pan-sharpened imagery leads to improved predictive power, 

but the difference is minimal (32% for pan-sharpened imagery and 28% for normal RGB 

imagery; Figure 4.1B). This could be due to overfitting issues with the pan-sharpened images 

that are much bigger in size. Overfitting could also be the reason that using more bands 

generally leads to worse predictive power. Another reason could be that CNN architectures are 

generally not trained on using multiple bands and could lead to biased weights, especially if 

some bands are not useful to predict socio-economic indicators.  

To assess the robustness of these findings we compared predictive power of our models by 

splitting our poverty metrics into four ordinal classes. We measured the multi-class AUC and 

the weighted Cohen’s kappa of all our models. Overall, these results confirm that CNNs can 

be useful to predict poverty metrics. However, many CNNs have an AUC around 0.6 which 

signals that they perform only slightly better than random (Figure 4.4). Nightlight as a predictor 

shows the highest AUC. We find that our transfer learning models sometimes slightly 

outperform VGG-16 based models. This suggests that the predictive power of our transfer 

learning models using Pearson’s R2 correlation might have been influenced by outliers. 

However, the differences in AUC between the models are minimal. Pan-sharpened images 

show the highest AUC scores. The weighted Cohen’s kappa scores confirm these patterns 

(Figure 4.5). Our transfer learning model using 2013 pan-sharpened imagery performed best 

(weighted Cohen’s kappa of 0.52).  
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Figure 4.4. Multiclass Area Under Curve (AUC) (A) and Weighted Cohen’s kappa (B) of 

predicting household consumption expenditure classes in 2008/09 and 2012/13, household 

consumption change classes from 2008/09 to 2012/13, and multidimensional poverty 

index (MPI) classes in 2010. Consumption, consumption change and MPI were binned in 

four bins. Comparisons of using nightlights and two different convolutional neural 

network (CNN) models using different imagery. We tested predictive capacity using Red-

Green-Blue (RGB), 7 bands (RGB plus near-infrared, both shortwave infrared bands, and 

thermal infrared), and pan-sharpened imagery (only for 2013). We tested CNN models trained 

on ImageNet and transfer learning CNN models trained from scratch on nightlight imagery. 

Reported AUC and weighted Cohen’s kappa are from five-fold cross-validation. Note that 

weighted Cohen’s Kappa cannot be calculated for continuous variables and therefore nightlight 

is missing. Consumption expenditure was logged.  
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4.5 Discussion 

Our study shows that CNNs trained on publicly available satellite imagery could be informative 

on predicting household consumption expenditure, an important indicator of poverty, in 

Tanzania at fine spatial scales. We achieved this accuracy despite lower resolution imagery 

and fuzzy survey geolocations. In contrast to published methods we used a method that can be 

scaled to measure poverty metrics in other countries at minimal cost and only used data sources 

that can be accessed freely without any licensing limitations. However, our method is not yet 

able to outperform previous methods, including those using freely available nightlight data. 

Therefore, other methods are currently preferable over our method. Imagery at lower resolution 

might not be able to pick up details that are important for detecting poverty, such as roof type 

or road quality, but accessibility to higher resolution imagery is increasing rapidly and could 

improve poverty predictions in the future.  

In addition, we present the first attempt (to our knowledge) to measure socio-economic change 

over time using CNNs. Directly measuring change would be beneficial to track socio-economic 

indicators, but we show that current CNN methods are not yet able to predict local changes in 

consumption expenditure – at least using publicly available satellite imagery. However, 

measuring change in remote sensed imagery by using CNNs is a novel field that is still under 

development (Daudt et al. 2018). It is possible that our time frame was too small to detect 

change, but longitudinal socio-economic data collections over longer time frames are rarely 

implemented. One important reason for this, is that in all longitudinal surveys respondents 

leave the survey over time (survey attrition), gradually reducing sample sizes (Falaris 2003). 

For example in Tanzania, due to survey attrition a new set of households was selected from 

2015 onwards in the LSMS-ISA surveys.  

We show that CNN models are less capable in detecting differences in multidimensional 

poverty than in consumption-based poverty between clusters. Perhaps some indicators of the 

index, for example education, are more difficult to measure remotely than others, such as roof 

type (Jean et al., 2020). Future studies could assess which indicators are detectable from space 

and which indicators would rely on traditional survey methods.  

Our study uses commonly applied CNN methods, but it is likely predictive capacity of poverty 

using publicly available imagery can be improved. Firstly, using more accurate geolocation 

source data would likely lead to better predictions (Watmough, 2019). Although CNN methods 

provide an opportunity to fill in data gaps, better and more data will still be required to optimize 

Met opmerkingen [b17]: Edited discussion to add more 
nuance 
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these methods. Future research could find out how much data is needed for accurate poverty 

predictions. Secondly, CNN methods improve quickly and newer CNN models are increasingly 

able to work with sparse data sources such as socio-economic data (Wang & Hebert 2016). 

Furthermore, CNN methods could be combined with other methods to enhance the possibility 

to estimate poverty. For example, our CNN models do not take into account spatial 

autocorrelation between images. Previous studies have shown that poverty in a location is 

correlated with poverty at nearby locations (Okwi et al. 2007; Graetz et al. 2018; Tusting et al. 

2019). Combining CNNs with methods that incorporate spatial dependency (e.g. Gaussian 

processes) might further increase the capacity to estimate a variety of socio-economic 

indicators. For example, You et al. (2017) combined machine learning with gaussian processes 

to estimate crop yields, an important indicator of agricultural development. 

Our study provides three important contributions. First, it builds upon a small but growing 

literature of studies that apply CNN methods in remote sensing for a large range of tasks 

including object recognition, detection and classification (Zhu et al. 2017). Together these 

studies demonstrate how machine learning methods provide additional information compared 

to traditional remote sensing techniques. Here we use features extracted from CNNs to predict 

poverty, but features extracted from CNNs could provide useful information on a range of 

aspects (e.g. agriculture, infrastructure) that are regularly studied in impact evaluations of 

poverty reduction policies and programmes.  

Second, our study could be replicated in other countries to test how much predictive capacity 

of poverty metrics varies per country. Previous studies have shown that there is considerable 

variation in predictive capacity of poverty metrics between countries. We show that predictive 

capacity can also vary significantly within a country. By testing CNN methods in multiple 

countries we can gain better insight into the conditions under which CNN methods perform 

best. 

Finally, if our CNN method holds promise to be used by statistical agencies in many LMIC 

countries that struggle to estimate socio-economics at fine-scale resolutions and lack resources 

to acquire additional data. Numerous NGOs could benefit as well to improve targeting of those 

areas that are most in need of aid and measure the socio-economic impact of their programmes 

to gain insight into which programmes work and which do not (Clements et al. 2008).   

Met opmerkingen [b18]: Example to clarify point 
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4.7 Supplementary information 

Table S4.1. The dimensions, indicators, deprivation cut-offs and weights of the 

multidimensional poverty index 

Dimension Indicator Deprived if: Weight 

Health 

(weight 0.33) 

1. Child 

mortality 

A child under 18 years of age has died in the family 

in the five-year period preceding the survey 
0.1667 

2. Nutrition 
Any person under 70 years of age for whom there is 

nutritional information is undernourished 
0.1667 

Education 

(weight 0.33) 

1. School 

attendance 

Any school-aged child is not attending school up to 

the age at which he/she would complete class 8 
0.1667 

2. Years of 

schooling 

No household member aged 10 years or older has 

completed six years of schooling 
0.1667 

Living 

standards 

(weight 0.33) 

1. Cooking fuel 
The household cooks with dung, agricultural crop, 

shrubs, wood, charcoal or coal 
0.0556 

2. Electricity The household has no access to electricity 0.0556 

3. Source of 

water 

The household has no access to clean water or 

safe drinking water is at least a 30-minute walk 

(roundtrip) from home 

0.0556 

4. Improved 

Sanitation 

The household does not have access to improved 

sanitation (flush toilet or similar) 
0.0556 

 5. Housing 

The household has inadequate housing: the floor is 

of natural materials or the roof or walls are of 

natural or rudimentary materials 
0.0556 

 6. Assets 

The household does not own more than one of 

these assets: radio, TV, telephone, computer, 

animal cart, bicycle, motorbike, or 

refrigerator, and does not own a car or truck. 

0.0556 
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Figure S4.1 Schematic maps of (A) 2013 day-time imagery and household survey 

locations, (B) nightlight intensity, and (C) biomes in Tanzania. Day-time image from 2013 

is an atmospherically corrected mosaic from Landsat 8 OLI/TIRS Tier 1. 2012/13 household 

surveys are from the Living Standards Measurement Surveys – Integrated Surveys on 

Agriculture (LSMS-ISA). Nightlight image is from the United States Air Force Defense 

Meteorological Satellite Program (DMSP).  
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Figure S4.2. Schematic figure of the convolutional neural network (CNN) architecture, 

based on VGG-16. The CNN architecture consists of five blocks of convolutional layers to 

extract features from day-time images, followed by a pooling layer after each block to reduce 

dimensionality and two fully connected layers before a Softmax activation function that 

classifies the day-time image into a nightlight intensity category. Features can be extracted 

from the last pooling layer for further analyses. 
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Figure S4.3. Schematic figure of the 3-dimensional convolutional neural network 

architecture, based on VGG-16. The 3D-CNN accepts a pair of images and extracts features 

from each image, then combines the features and classifies each pair of day-time images to a 

nightlight intensity change category. Each CNN arm consists of five blocks of convolutional 

layers to extract features from images, followed by a pooling layer after each block to reduce 

dimensionality and two fully connected layers before a Softmax activation function that 

classifies the image into a category. Features can be extracted from the last pooling layer for 

further analyses. 
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5.1 Summary 

Reducing poverty and halting biodiversity loss are two important sustainable development 

goals (Griggs et al. 2013). Currently, poverty is decreasing while biodiversity loss is still 

increasing (Chen & Ravallion 2010; Pimm et al. 2014). Poverty, biodiversity, and the 

underlying causes are linked together in coupled human and natural systems (CHANS; Liu et 

al. 2007). Understanding causal inference into how humans and nature interact could provide 

useful insights into achieving SDGs (Ferraro et al. 2018). Protected areas (PAs) are part of 

CHANS. PAs are established to halt biodiversity loss, but also have positive and negative 

impacts on people (Brockington & Wilkie 2015). Recent improvements in identifying causal 

inference have allowed researchers to study the environmental and socio-economic impacts of 

multiple PAs within a country (Andam et al. 2010; Stuart 2010). However, this approach 

requires large amounts of data at fine spatial grain, which are often unavailable in many of the 

lower and middle-income (LMIC) countries (Jean et al. 2016). Therefore, PA impact 

evaluations have been biased towards certain areas, and have omitted large parts of the world 

(e.g. sub-Saharan Africa) where poverty is most prevalent. Recently developed machine 

learning algorithms could potentially close this data gap and increase our understanding of PA 

impacts and other determinants of poverty (Jean et al. 2016).  

The main aim of this thesis is to increase the understanding of environmental and socio-

economic impacts of PAs. First, I explored an important mechanism, ecotourism, through 

which PAs impact socio-economic conditions of local people in Nepal. I found that Nepali PAs 

have reduced poverty and extreme poverty without exacerbating inequality. Tourism was an 

important factor in explaining poverty reductions, and poverty reductions were linked to 

tourism infrastructure (trekking routes). I then analysed impacts of SU PAs in the Brazilian 

Amazon where tourism impacts are expected to be much lower and where tensions between 

PAs and competing land uses are more tense. Furthermore, I compared sustainable use (SU) 

PA impacts against competing land uses (agriculture and mining) to find out which land use 

was best in achieving forest and socio-economic outcomes. I found that deforestation impacts 

of SU PAs were minimal compared to smallholder agriculture, but were much larger compared 

to large landholdings and mining. Socio-economic outcomes did not differ between SU PAs 

and agriculture, but mining sites were better at increasing income. Finally, I analysed if publicly 

available satellite imagery can be used to estimate poverty in Tanzania. This could be used in 

future studies as a basis to estimate socio-economic impacts of policies such as PAs. I found 
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that machine learning methods (convolutional neural networks (CNNs)) were able to provide 

useful information to estimate consumption-based poverty in Tanzania.  

In this chapter I first assess the ability of current PA impact evaluations to inform policy and 

management. I then show how PA impact evaluations can be improved by using examples from 

my thesis, and how future studies could improve PA impact evaluations. I conclude with future 

steps to increase the evidence base of PA impacts across multiple countries, using newly 

developed statistical methods.  

 

5.2 Value and limitations of impact evaluations to inform PA policy 

and management 

Impact evaluations have been applied in many different fields to quantitatively measure the 

impacts of interventions (Dehejia & Wahba 2002). Impact evaluations stem from economics 

but have now been applied in a variety of fields, including ecology. This thesis supports a 

growing literature that studies PA impacts. PA impact evaluations have already contested a few 

long-held beliefs about conservation. Important examples are (1) PAs can reduce poverty and 

are not inherently trapping people into poverty and can reduce poverty in some cases (e.g. 

Andam et al. 2010), (2) strict PAs are not always better in reducing biodiversity than SU PAs 

(Ferraro et al. 2013; Oldekop et al. 2016), and (3) even parks with few resources can reduce 

deforestation (Blackman et al. 2015). In general, most studies find that PAs can be moderately 

effective in reducing habitat loss. A much smaller evidence base suggests that PAs do not 

exacerbate poverty. These findings show that there is a great need to support the existing PA 

network, and that future PAs could have beneficial impacts for nature without exacerbating 

poverty although some have warned that PA expansions could also have perverse impacts 

(Büscher et al. 2017). This result is of great importance now discussions to set PA expansion 

targets post-2020 are underway (Barnes et al. 2018). Yet, there are also caveats to impact 

evaluations. One important limitation is that impact evaluations by definition study the past, 

while policy makers are concerned with the future. Whether the conditions under which the 

impact is observed remain true for the future is never certain. Many PA impact evaluations 

show that impact can be greater in areas of human pressure, but gazetting PAs in these areas is 

also more expensive. PA policies could reduce costs of implementing PAs by anticipating on 

future dynamics, for example by gazetting a PA in an area that is currently remote, but where 

road developments are expected.  
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Another important limitation of impact evaluations is caused by the definition of impact that 

can be confusing for PA policy makers and managers. I will explain this difficulty of definition 

though an example. Take two hypothetical countries A and B. Country A does not have 

deforestation, both inside and outside PAs. In country B deforestation is high, but inside PAs 

deforestation levels are much lower although deforestation still continues within PA 

boundaries. PA impact evaluations of countries A and B will show that PAs in country B are 

effective in reducing deforestation, but will find no effect of PAs in country A. Yet PAs in 

country A maintain more forest cover than PAs in country B. The example shows that this 

definition of impact is dependent on the context (e.g. political, climatic context) at a certain 

place and time. Yet PA managers generally have limited control over this context (Coad et al. 

2015). Because conditions vary between countries, impact evaluation scholars have warned 

against simple comparisons of PA impacts between countries (Ferraro & Hanauer 2011).  

Conditions not only vary between countries, but also change within a country over time. For 

example, many countries experience forest transitions from high deforestation to low 

deforestation and eventually reforestation (Meyfroidt & Lambin 2011). The measured impact 

of PAs against a counterfactual non-protected area is thus dependent on the time when impact 

is measured (Figure 5.1): a PA in a hypothetical country that successfully avoids deforestation 

within its borders would have limited impact when the entire country is still forested. Impact 

would increase over time as deforestation pressure increases, but would peak at a certain level. 

When previously cleared areas would reforest, then the impact of a PA would decrease and 

eventually become zero when reforestation increases (or even negative if you measure forest 

cover change). Therefore, conservation outcomes can be maximized without any impact of 

PAs, largely outside the influence sphere of PA managers. For example, Eklund et al. (2019) 

found that PAs in Madagascar with better management scores did not perform better in 

reducing deforestation. This shows that impact does not always equate to conservation success, 

but this seems contradictory for PA managers that would want to maximize the impacts of PAs. 

To be more useful for policy makers and PA managers impact evaluations should provide more 

specific insights that go beyond measuring only whether PAs work or not.  
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Figure 5.1. Forest cover transition and PA impact in a hypothetical country over time 

 

5.3 Improving PA impact evaluations to inform policy and PA 

management 

In this thesis I explored three ways in how PA impact evaluations can further improve our 

understanding of PA impacts and increase policy relevance. I will discuss each and explain 

how these can lead to a better understanding of PA impacts. I will also give recommendations 

on how future studies can build on these findings and improve the science on PA impacts.  

First, I explored how PAs have an impact on local people. PA managers have a large set of 

tools to achieve positive biodiversity outcomes. Each management decision will affect 

biodiversity outcomes in a different way, but PA impact evaluations that only measure 

outcomes do not give much insight into how such outcomes were achieved. In chapter 2 I 

studied one important mechanism through which PAs affect social outcomes: ecotourism. I 

found that poverty reductions in PAs were linked to tourism and found no significant impacts 

on inequality. Future studies could explore the market channels through which PA policies 

affect ecotourism (e.g. job creation or emergence of economic opportunities; Wunder 2000). 

Further studies could also study how other mechanisms can affect PA impacts, for example 

provision of ecosystem services, hunting bans, or NGO investments.  
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Secondly, I studied how PAs can have heterogeneous outcomes. Understanding what causes 

heterogeneity in outcomes is important for policy makers to assess under which circumstances 

PAs are most effective, and for whom they are most effective (Ferraro et al. 2011). There are 

several approaches to estimating heterogeneity. One approach is to split the PAs into different 

subgroups. For example, in Chapter 2, I show that PAs with different tourism levels have 

different impacts, even though PAs with low tourism levels do not have negative poverty 

impacts. Other examples of subgroup analyses could split PAs into categories of funding or 

staffing, which are considered crucial in PA management (Waldron et al. 2017; Malcom et al. 

2019), but are currently understudied in impact evaluations. Instead of subgroups, studies could 

assess impacts of individual PAs. Some studies have assessed individual and PA network 

effects on deforestation together (Eklund et al. 2019), but PAs studying socio-economic 

impacts have so far only focused on PA networks (largely because of sample size issues). 

Studying individual impacts would be useful for PA managers, but also provides insights into 

outliers that have exceptional positive or negative impacts (Post & Geldmann 2018), opening 

an avenue to study what these PAs have done well or not. Differential impacts can occur 

between PAs, but also within a PA (Shah & Baylis 2015). In Chapter 2, I show that poverty 

impacts of PAs depend on distances to trekking routes and PA entrances. Another approach 

can be to assess how heterogeneity is influenced by exogenous moderators, such as elevation. 

Ferraro et al. (2011) show that forest and poverty impacts depend on slope. At lower slopes 

avoided deforestation is higher, but at higher slopes poverty reduction is higher. In chapter 2 I 

show that poverty reductions in Nepal are not influenced by differences in elevation despite 

the great altitudinal profile of Nepal. Finally, heterogeneity in outcomes is important to take 

into consideration. I show that PAs have different effects on different poverty aspects (income, 

literacy, sanitation; chapter 3), and across different strata of society (poor and extremely poor, 

inequality; chapter 2). Many PA impact evaluations do insufficiently assess which aspects of 

poverty they take into account, and how these choices influence outcomes (de Lange et al. 

2016).  

Finally, I show how PA impact evaluations can improve by measuring PA impacts relative to 

other land uses and policies. There is an increased recognition that parks are not the only way 

to achieve positive biodiversity conservation outcomes. Community forests (Oldekop et al. 

2016), indigenous territories (Garnett et al. 2018), and Other Effective Conservation Measures 

(OECMs; Donald et al. 2019) have been put forward as viable alternatives to protection. In 

some cases, these alternatives have led to better biodiversity outcomes than PAs. For example, 
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Nolte et al. (2013) showed that indigenous territories in the Brazilian Amazon were better in 

reducing deforestation than protected areas. However, another alternative to protection are 

policies that directly affect drivers of deforestation. Such policies receive much less attention 

in conservation, but could also lead to significant effects on forest protection (Angelsen 2010). 

For example, Gabon has maintained high forest covers by  influencing factors that affect 

agricultural productivity such as imposing heavy taxes on agricultural export, limited support 

to smallholders and poor road maintenance (Wunder 2005). In other countries stimulating 

agricultural intensification has led to reductions in deforestation by pulling away labour from 

extensive agriculture (Angelsen 2010). Global models that predict future biodiversity trends 

indicate that policies to influence agricultural impacts on reducing habitat loss can be bigger 

than impacts of PAs (Kok et al. 2018). To fully understand the role of PAs in achieving 

environmental and socio-economic outcomes impact evaluations of PAs should measure 

relative impacts against a wide range of policies and programmes that influence outcomes, 

including policies that are not area-based. Such multi-comparison evaluations could also be 

useful to compare socio-economic impacts. Studies have shown how PAs can have negative 

impacts, but these are not compared to impacts of other land uses and policies (Andam et al. 

2010). It has been estimated that there are more evictions as a result of development projects 

than conservation interventions (Agrawal and Redford 2009).  Other policies or land uses could 

also have negative effects on limiting access and use of ecosystem services. In Chapter 3, I 

show that local benefits from agriculture in the Brazilian Amazon might not be higher than 

benefits from SU PAs. However I also find that mining has caused positive impacts on 

improving income of local communities. Studies like chapter 3 can provide insight into PA 

impacts in relation to important drivers of biodiversity loss. It has been suggested that area-

based targets for future PA expansion focus too much on the indicator instead of the overall 

goal (Barnes et al. 2018). Yet I would argue that only focusing on PAs is problematic in itself. 

A focus that is too tight on only PA risks to omit the importance of assessing drivers of 

biodiversity loss (Büscher et al. 2017).  

 

5.4 Increasing the evidence base of socio-economic impacts of PAs 

The evidence base of PA impacts on deforestation has increased in recent years and now 

contains examples of a large number of regions across the world. In stark contrast, the evidence 

base of socio-economic impacts of PAs is limited to only a few countries in South-America 

Met opmerkingen [b20]: Example to clarify point 
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and Asia, most of them classified as upper middle-income (UMIC; Pullin et al. 2013). There is 

a tremendous need for PA impact evaluations over a much wider range of countries, especially 

in countries with high poverty rates. This is crucial for a number of reasons. First, and most 

obvious, contested negative impacts of PAs on poverty should be studied in areas where 

poverty is most prevalent. PAs are managed in different ways in different countries, and 

communities in these countries have different levels of agency. Mechanisms and causal 

pathways that operate in upper-middle-income countries might not be feasible, or have 

different effects, in LMIC countries (Ferraro & Hanauer 2011). UMIC countries also have more 

financial resources to address conflict situations between PAs and local communities (Pullin et 

al. 2013). Second, more impact evaluations would allow to study PA impacts across the world. 

As mentioned in section 5.2 impacts are specific to the context of a certain place and time. 

However, if we can draw from a large number of PA impact evaluations in many different 

contexts, we can gain insight into how PA impacts differ across countries, across time and 

which factors are best in explaining PA impact.  

Yet caveats remain. Despite the multi-faceted nature of poverty, impact evaluations are only 

able to assess certain aspects of poverty. In this thesis I assessed only non-monetary indicators 

of poverty in Nepal. In the Brazilian Amazon I assessed both non-monetary and monetary 

indicators of poverty, but I neglected important indicators such as asset ownership. Although 

these are important indicators of poverty, it is still possible that a separate assessment using 

other poverty indicators would result in different outcomes (Agrawal & Redford 2006). Just as 

the environmental PA impact literature is skewed towards studies on deforestation (instead of 

species, pollution etc.), quantitative impact evaluations on poverty are skewed towards 

indicators that can be more easily measured (instead of concepts that less easy to quantify, such 

as empowerment). Case studies of mostly single PAs have assessed impacts of interventions 

on indicators that are often neglected in quantitative impact evaluations. For example, a survey 

of four villages in North Sulawesi, close to marine protected areas, assessed the impact of a 

marine protected area program (Gurney et al. 2014). They focused on three poverty dimensions 

that are often not included in impact evaluations: security, opportunity, and empowerment. 

They found that the marine protected area program alleviated poverty overall, but impacts 

differed per individual indicator. There is evidence that such hard-to-measure indicators can be 

crucial in wellbeing. For example, to people living in the rural Eastern Amazon, non-monetary 

values (such as safety, tranquillity and community relations) were deemed more important than 

Met opmerkingen [b21]: Discussion on the various 
definitions of poverty and what the approaches used tell 
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income (Garrett et al. 2017). Furthermore, real or perceived inequality can create conflict and 

impede socio-economic and biodiversity goals of PAs (West et al. 2006; Oldekop et al. 2016).  

Caveats aside, because of serious financial shortfalls in LMIC countries, it is unlikely that 

census data - the main data source for assessing socio-economic impacts - will fill current data 

gaps necessary for measuring PA impacts on poverty (Jean et al. 2016). In Chapter 4, I explore 

whether machine learning (CNNs) can aid to fill in socio-economic data gaps using publicly 

available satellite imagery that can be obtained without additional costs. I find that features 

extracted using CNNs can provide useful information for estimating poverty at fine spatial 

scales. This method is easily scalable across different countries and time frames and could 

provide a viable approach to collecting poverty data that can be used in a wide range of 

applications, including PA impact evaluations. Rapid improvements in machine learning 

techniques and increasing accessibility of remotely sensed imagery at high resolutions will 

likely result in improved accuracy of poverty estimates (LeCun et al. 2015; Jean et al. 2016; 

Watmough et al. 2019). Other studies have used geostatistical methods to estimate a wide range 

of indicators of human health, education, and assets (Golding et al. 2017; Graetz et al. 2018; 

Osgood-Zimmerman et al. 2018; Tusting et al. 2019). The rapid increase in the availability of 

data on many poverty indicators could provide much better insight into the factors that affect 

local poverty, including PAs. Better socio-economic data from LMIC countries could improve 

our understanding of interactions in CHANS and create a scientific basis for achieving SDGs.  

5.5 Concluding remarks 

Reducing poverty and halting biodiversity loss are two important global goals that interact in 

multiple ways. Impact evaluations can be useful starting points to study causal inference in 

CHANS, including assessing environmental and socio-economic impacts of PAs. By 

broadening impact evaluations to also assess how and under which conditions PAs are most 

successful, relevance for policy and management could be increased further. Novel statistical 

methods such as machine learning could allow to grow the evidence base of PA impacts, 

especially in LMIC countries where assessments are most desired. Overall, I hope that my 

thesis provides useful contributions to the literature of PAs and impact evaluations.  
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