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Abstract 

Rising air temperatures are exposing carbon in Arctic permafrost to decomposition by 

microorganisms. This is predicted to amplify the response of Earth’s climate system to the 

anthropogenic forcing of climate. However, the timing and magnitude of this climate 

feedback are uncertain because of the complex effects of permafrost landscape 

sedimentation and hydrology upon microbial decomposition of the carbon. This thesis 

explores the influence of landscape development on biogeochemical processes in continuous 

permafrost in Svalbard.  Fjord valley infills and raised beaches are landforms developed as a 

direct consequence of deglaciation. Biogeochemical analyses of permafrost cores and water 

from the active layer were undertaken for three contrasting wetlands situated on these 

landforms. Chapter 3 demonstrates that the accumulation of organic carbon in fjord valley 

infills regulates biogeochemical processes, with pyrite oxidation being most pronounced in 

the drier, organic-poor wetland. In contrast, in the saturated groundwater-fed, organic-rich 

wetland, there are signs of iron- and sulfate-reduction, pyrite and siderite precipitation and 

methanogenesis. Chapter 4 shows that the degradation of an ice-wedge polygon situated on 

intra-beach sediments results in the degraded polygon developing more oxidising conditions, 

with a decrease in iron reduction, and decreased preservation of pyrite and siderite. Chapter 

5 shows that concentrations of carbon dioxide are substantially higher than concentrations 

of methane in the pore water, owing to microbial respiration using ferric iron and sulfate as 

electron acceptors. Where methane is detected, hydrogenotrophic methanogenesis is the 

dominant pathway of methanogenesis. In the degraded ice-wedge polygon, the degradation 

causes oxidation and a decoupling of the relationship between the concentration of methane 

and the content of organic carbon. This implies that the production of carbon dioxide during 

the aerobic respiration of peat becomes increasingly important as ice-wedge polygons 

degrade. As air temperatures continue to rise in the high Arctic, degradation of ice-wedge 

polygons and the resultant drainage of water from the landscape are likely to result in pyrite 

and siderite oxidation and aerobic respiration of organic carbon. 
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Chapter 1. General Introduction 

1.1 Motivation 

Surface temperatures in the Arctic are increasing at double the rate of the lower latitudes 

(Cowtan & Way, 2014; Screen & Simmonds, 2010; Serreze et al., 2009). Numerous changes 

and feedbacks are occurring in the Arctic in reaction to this rapid warming (Hinzman et al., 

2013). The extent of sea ice is decreasing, mass is being lost from glaciers and ice sheets (IPCC, 

2013) and permafrost is warming and thawing (Smith et al., 2005; Osterkamp, 2007; 

Romanovsky et al., 2010a, 2010b; Smith et al., 2010). Permafrost, which is ground that 

remains at or below 0 °C for at least two consecutive years (French, 2013), contains 

approximately 50% of the global terrestrial belowground organic carbon stocks (1330 to 1580 

Pg carbon; Tarnocai et al., 2009; Hugelius et al., 2014). This accounts for the largest individual 

constituent of the terrestrial carbon pool, and is more than double the amount of carbon in 

the present atmosphere (Tarnocai et al., 2009; McGuire et al., 2012; IPCC, 2013). As rapid 

climate change occurs in the high Arctic, rising permafrost temperatures and progressively 

deeper seasonal thaw (active layer) are exposing formerly frozen soil organic carbon to soil 

microbial decomposition (Romanovsky et al., 2010b; Schuur et al., 2015; Koven et al., 2011). 

This releases carbon dioxide and methane to the atmosphere and it is predicted that by the 

mid-2020s this will cause permafrost ecosystems to become a net source of carbon (Elberling 

et al., 2013; Lee et al., 2012; Schuur et al., 2015). Hence, permafrost thawing will amplify the 

response of Earth’s climate system to the anthropogenic climate forcing. However, the size 

and timing of the permafrost carbon feedback is uncertain (IPCC, 2013). As future climate 

change will exacerbate economic and social burdens on the human population (Carleton & 

Hsiang, 2016), it is therefore crucial to resolve the uncertainty in estimates of future 

greenhouse gas emissions from permafrost regions.  

1.2 Climate change and greenhouse gases 

Greenhouse gases (GHGs), such as carbon dioxide (CO2), methane (CH4) and nitrous oxide 

(N2O), have long residence times in the atmosphere and have high thermal absorption 
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capacities (Serrano-Silva et al., 2014). Since the Industrial Revolution, global mean surface 

temperature has increased at an alarming rate because of rising greenhouse gas (GHG) 

concentrations in the atmosphere (IPCC, 2013). The burning of fossil fuels has contributed a 

total of 375 ± 30 PgC to the atmosphere between 1750 and 2011 (IPCC, 2013) and is the main 

reason for increasing concentrations of carbon dioxide in the atmosphere (Rotty, 1983; Boden 

et al., 2011; IPCC, 2013). Changes in land use (mainly deforestation) are the second major 

source of anthropogenic carbon dioxide emissions to the atmosphere (IPCC, 2013). Since the 

start of the Industrial Revolution, the concentration of atmospheric carbon dioxide has 

increased dramatically (from ~280 to ~400 parts per million; Myhre et al., 2013). The current 

atmospheric carbon dioxide concentrations of over 400 ppm have probably not been 

experienced on Earth for 3 million years (Martínez-Botí et al., 2015).  

The importance of methane as a well-mixed greenhouse gas is second only to carbon dioxide 

(Myhre et al., 2013). Since the start of the Industrial Revolution, globally averaged surface 

methane concentrations have increased (from ~720 to ~1800 parts per billion; Myhre et al., 

2013). Natural and anthropogenic sources emit methane to the atmosphere (Dean et al., 

2018). Between 50 and 65% of the current total methane emissions are anthropogenic (IPCC, 

2013). The main anthropogenic causes of the increase in atmospheric methane concentration 

are the growth in the number of ruminants (Barnosky, 2008), extraction and use of fossil fuels, 

landfill emissions and rice paddy agriculture (IPCC, 2013). Natural sources of methane are 

estimated to have contributed between 33 and 54% of the global emissions since 1980 

(Kirschke et al., 2013).  The largest natural source of methane to the atmosphere is wetlands, 

and other natural sources include other land water systems (lakes, ponds, rivers, estuaries), 

geological sources, wild animals, wildfires, termites, terrestrial permafrost and oceanic 

sources (Saunois et al., 2016).  

The most recent report by the Intergovernmental Panel on Climate Change (IPCC) stated a 

high level of confidence that warming would cause permafrost extent to decrease, with 

consequent thawing of currently frozen permafrost carbon (IPCC, 2013). However, there was 

a low level of confidence in the magnitude of carbon losses via carbon dioxide and methane 

emissions, with estimates ranging from 50 to 250 PgC lost in the period 2000 to 2100 under 

the highest Representative Concentration Pathway (RCP8.5) scenario. The sources of 



 3  

uncertainty were cited by the IPCC report as the rate of thaw, the proportion and timing of 

carbon released following thaw, the potential for negative feedbacks from nutrients, spatial 

variability and the ratio of carbon dioxide to methane emitted. Consequently, the 

Coordinated Modelling Intercomparison Project Phase 5 (CMIP5) Earth System Models used 

in the report did not include the permafrost carbon feedback in their projections of future 

atmospheric greenhouse gas concentrations and global temperature increase. This clearly 

signals the need to resolve the uncertainty in the response of permafrost to current climate 

change and its contribution to future climate change. 

1.3 The response of permafrost to climate change 

Permafrost is found beneath approximately 22.79 x 106 km2, or 24%, of the Northern 

Hemisphere land surface (Zhang et al., 2008). This is ~15% of the global exposed land area  

(Zhang et al., 2008). In the continuous permafrost zone, permafrost exists beneath the entire 

exposed land surface, except for widely scattered sites (Figure 1.1; van Everdingen, 2005). In 

the extensive discontinuous permafrost zone, permafrost underlies between 65 and 90% of 

the exposed land surface, and in the sporadic permafrost zone, permafrost underlies between 

10 and 35% of the exposed land surface (van Everdingen, 2005). In the International Polar 

Year (2007-2009), improvements were made to the permafrost monitoring network in the 

Northern Hemisphere polar regions by drilling new boreholes for long-term ground 

temperature monitoring, resuming ground temperature measurements at previously 

abandoned sites and continuing to measure ground temperatures at existing permafrost 

observatory sites (Romanovsky et al., 2010b; Figure 1.1). The overall trend in the mean annual 

ground temperature (MAGT) is to decrease northward. This trend is modified by factors such 

as elevation, ocean currents, snow thickness, vegetation type, ground composition, and 

landforms (Romanovsky et al., 2010b). For instance, thicker snow cover is associated with a 

higher MAGT (Smith et al., 2010). In north-western Russia, northern Scandinavia and 

Svalbard, warm ocean currents cause the MAGT to be higher than in other locations with a 

similar latitude in the high Arctic (Romanovsky et al., 2010b). Overall, Northern Hemisphere 

permafrost has warmed since the late 1970s (Romanovsky et al., 2010b). The rates of 
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warming are higher for colder permafrost (<-2 °C), such as in Svalbard, than for warmer 

permafrost, due to latent heat effects (close to 0 °C). 

 
Figure 1.1 The mean annual ground temperature (MAGT) during the International Polar Year  
(2007-2009). The MAGT, at the depth of zero annual amplitude, is represented by coloured dots. The 
greyscale permafrost zones are after Brown et al. (1997). Modified after Romanovsky et al. (2010b). 

Present-day permafrost is a product both of present-day climate and of past climates (Péwé, 

1975). A large proportion of Arctic permafrost was formed in the late-Pleistocene, or even 

earlier (Brown, 1965; Gubin & Lupachev, 2008; Kanevskiy et al., 2011; Schirrmeister et al., 

2011a). For instance, old permafrost, which is a remnant of paleoclimate, is found in the 

Yukon regions in Canada (Froese et al., 2008) and the Yedoma formations in Arctic and boreal 
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Alaska and north-eastern Russia (Reyes et al., 2010; Schirrmeister et al., 2011a, 2011b; 

Kanevskiy et al., 2011, 2014). However, younger permafrost has formed more recently, during 

the Holocene, following deglaciation and sub-aerial exposure (Humlum, 2005). Organic 

matter is accumulated in permafrost regions because organic matter decomposition is slowed 

by low temperatures and frequently saturated (thus reducing) conditions (Kaiser et al., 2007; 

Rodionov et al., 2007). Ice-rich, syngenetic permafrost forms when permafrost aggrades 

concurrently with sedimentation (French, 2013). Epigenetic permafrost forms when 

permafrost aggrades after sedimentation (French, 2013). Often, organic carbon in epigenetic 

permafrost has undergone some degradation before incorporation into the permafrost 

(Schuur et al., 2008), whereas syngenetic permafrost is more likely to contain relatively 

undecomposed organic matter that was promptly buried and frozen (Zimov et al., 2006; 

Sannel & Kuhry, 2009). Hence, the manner in which permafrost aggraded influences the 

quantity and quality of the organic matter available for decomposition upon thawing. 

In addition to the style of permafrost aggradation, the hydrology of permafrost plays an 

important role in determining the quantity of organic matter accumulated. For example, in 

wetlands, oxygen diffusion into sediments is limited by water saturation (Dean et al., 2018). 

This means that net primary production exceeds decomposition, and so organic carbon 

accumulates in wetlands (Kolka et al., 2015). Furthermore, the hydrology of permafrost 

influences the type of greenhouse gas produced from decomposing organic matter in thawing 

permafrost. If the soil is well-drained, carbon dioxide is produced as organic carbon is 

decomposed aerobically (Liljedahl et al., 2012; Elberling et al., 2013). In contrast, under water-

saturated, anaerobic conditions, organic carbon is decomposed anaerobically, producing 

carbon dioxide and/or methane (Lipson et al., 2012; Figure 1.2). The most substantial natural 

source of methane emissions globally is wetlands, which produce approximately one third of 

the total global methane emissions every year (Saunois et al., 2016). Approximately 34% of 

the total wetland methane emissions are from northern (Boreal and Arctic) wetlands (Wang, 

1996; Bloom et al., 2010).  

Limited diffusion of oxygen into sediments of the active layer under water-saturated 

conditions results in increased methane emissions (Riley et al., 2011). However, this picture 

may be complicated by the presence of alternative electron acceptors, such as nitrate, 
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manganese, iron and sulfate. The standard model developed for deep marine sediments 

indicates that, under anaerobic conditions, these alternative electron acceptors may be used 

preferentially in the microbial respiration of organic carbon, prior to the production of 

methane (Froelich et al., 1978). The alternative electron acceptors tend to be used by 

microorganisms in succession, according to their free energy yield (Froelich et al., 1978). The 

alternative electron acceptors are used as follows, in order of decreasing free energy yield: 

nitrate, manganese, iron and lastly sulfur (Froelich et al., 1978) . Generally, microbes do not 

respire using a specific alternative electron acceptor until the concentrations of the electron 

acceptors yielding a higher energy have substantially decreased (Tostevin & Poulton, 2019). 

Under steady state conditions, the result of this is a series of biogeochemical zones in which 

the use of each electron acceptor dominates (e.g., Figure 1.2; Burdige, 1993). This increases 

carbon dioxide production relative to methane production.  

In reality, the Arctic cryosphere is a far more dynamic system than deep marine sediments 

and it does not exist in steady state; it is changing in response to past and present climate 

perturbations (Jakobsson et al., 2014), as well as in response to seasonal rainfall and 

temperature variations. Cycling (of electrons) occurs between different elements of the 

cascade represented in Figure 1.2. For instance, even in marine sediments in steady state, the 

re-oxidation of 70 to 90% of sulfide (produced by sulfate reduction) occurs, with the amount 

of re-oxidation increasing with an increased input of Fe(III) (Thamdrup et al., 1994). 

Experiments on salt marsh sediments indicate that this recycling can occur with sulfide acting 

as an electron donor for Fe(III)-reduction (Mortimer et al., 2011). Hence, the definition of 

biogeochemical zones in Figure 1.2 is only a proxy for process, as the concentrations of 

reactants and products relate to the difference between the rates of consumption and 

production, rather than the absolute rates of consumption and production. In addition, 

sediment microheterogeneity facilitates the existence of bacterial microniches, where 

isolated reducing conditions exist in confined areas of high organic matter (Stockdale et al., 

2009, and references therein). Moreover, the biogeochemical zonation (Figure 1.2) is 

entangled with physical processes, such as hydrological input to and outflows from the active 

layer (Throckmorton et al., 2016) and annual freezing and thawing of the active layer. Finally, 

the speciation and availability of electron acceptors (dependent partly on substrate material 

and sedimentation) and organic carbon cause geochemical complexity that is not fully 
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represented by the conventional redox ladder illustrated in Figure 1.2 (Lovley & Chapelle, 

1995; Bethke et al., 2011). For instance, the reduction of ferric iron was found to increase 

carbon dioxide production relative to methane production in an Arctic peat soil in Barrow, 

which is situated on the coastal plain of Alaska. Large quantities of siderite, which contains 

reduced iron and carbon, were found in these sediments. The pathway of decomposition of 

organic carbon was heavily influenced by the mineralogy of iron oxides (Herndon et al., 2017; 

Herndon et al., 2015).  For example, ferrihydrite minerals suppressed methanogenesis, 

whereas the crystalline iron oxides did not decrease methane production (Herndon et al., 

2015). In summary, there is a range of factors influencing methane and carbon dioxide 

production in the complex permafrost and active layer sediments of the Arctic cryosphere. 
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Figure 1.2 Conceptual diagram of the theoretical vertical sequence in water-saturated sediments of 
organic matter remineralisation (vertical arrows from rounded rectangles to ovals) and re-oxidation 
pathways (horizonal arrows). Re-oxidation of H2S during Fe(III)-reduction to produce SO4 shown by 
red dotted line and arrow. Above the sediment-air interface are arrows indicating the flux of 
greenhouse gases (CH4 and CO2) to the atmosphere. Modified after Bianchi et al. (2016). 

Wetlands are more widespread in cool and/or wet climates than in hot and/or dry climates, 

due to the difference in the balance between evapotranspiration and precipitation (Mitsch & 

Gosselink, 2007). The water table of wetlands is usually near to or above the ground surface, 

but this may vary depending on the characteristics of the wetland (Woo & Young, 2006). 

Permafrost, particularly that with a high ice content, can act as an impermeable barrier that 

impedes the percolation of water and contributes to keeping wetland active layers saturated 

with water (Woo & Young, 2006). In the high Arctic, the formation of wetlands in polar deserts 

requires a reliable water supply, which could be from groundwater, streams and ponds, 

snowbanks or coastal water (Woo & Young, 2006). In addition, the topographical setting 

affects the development of a wetland; wetlands are more widespread in flat terrain or terrain 

depressions than in steep terrain (Mitsch & Gosselink, 2007). The high Arctic is 
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geomorphologically very active because many areas have only recently emerged from under 

the ice sheets (Woo & Young, 2006). Hence, high Arctic wetlands may be described by the 

landforms upon which they develop (e.g., raised beaches) in addition to their water source.   

The hydrogeomorphology of a wetland can be described by a combination of climate, 

geomorphology and hydrology. Figure 1.3 shows that landscape geomorphology exerts an 

influence over the wetland hydrology, physiochemical environment and biota. The 

physiochemical environment of a wetland is influenced by its hydrology, with impacts on 

sediment and nutrient transport, oxygen availability and water chemistry. The build-up of 

sediments can in turn influence the hydrologic inflows and outflows (Mitsch & Gosselink, 

2007). The physiochemical environment affects the wetland biota; for instance, reduced 

sediments favour microorganisms that are able to metabolise under anaerobic conditions, 

whereas oxidised sediments favour the survival of aerobic microorganisms (Mitsch & 

Gosselink, 2007). Finally, there are feedbacks between the various aspects of the system; for 

instance, plants build peat, trap sediment and retain nutrients, acting as ecosystem engineers  

(Mitsch & Gosselink, 2007, and references therein). The links shown here between climate, 

landscape geomorphology, hydrology, physiochemical environment and biota make it clear 

that there are many factors that could make the Arctic permafrost system heterogeneous 

with respect to GHG emissions.  
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Figure 1.3 Conceptual diagram showing the interlinking effects of climate and basin geomorphology 
on landscape hydrology, physiochemistry and biota. After Mitsch and Gosselink (2007). 

 

Figure 1.4 High-centred polygon at Revneset, Svalbard. Gwilym (pictured) is standing on the collapsed 
polygon rim. 
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Ice-wedge polygons, such as shown in Figure 1.4, are small-scale landforms that condition the 

environment within which wetlands form. Ice-wedge polygons are prevalent in permafrost 

regions (Christiansen et al., 2016) and 3% of the exposed land area in the Arctic is covered by 

ice-wedge polygon tundra (Minke et al., 2007). Ice-wedge polygons form alongside the 

development of ice-wedges, which are described further in Section 4.1. Low-centred ice-

wedge polygons are commonly enclosed by raised rims that trap snow meltwater in the 

depressed polygon centre (Woo & Young, 2006). These landforms degrade in response to 

climate warming and their degradation influences landscape hydrology and the 

decomposition pathways of organic carbon. It is paramount, therefore, to study their impact 

on permafrost landscape hydrology, biology and greenhouse gas emissions.  

The previous sections in this chapter described the heterogeneous nature of Arctic 

permafrost environments, with regard to the age of the permafrost, the type of aggradation 

(syngenetic/epigenetic), the landforms present, the hydrology and the geochemistry. Current 

research sampling does not adequately represent this heterogeneity (Metcalfe et al., 2018). 

Particularly well-studied permafrost locations include the coastal plain of Alaska, where 

detailed studies of the interactions between iron and organic carbon in permafrost have been 

conducted (e.g., Lipson et al., 2010; Herndon et al., 2015; Herndon et al., 2017). The Arctic 

Coastal Plain sediments were deposited in the Middle and Late Quaternary and mainly 

comprise near-shore marine, fluvial, alluvial and aeolian sediments (Meyer et al., 2010). 

Importantly, during the late Pleistocene, the Arctic Coastal Plain was not glaciated (Kaufman 

& Manley, 2004). The excellent biogeochemistry studies from Barrow must not be uncritically 

assumed to apply to permafrost regions that have a significantly different history of 

glaciation, sedimentation or permafrost aggradation. Simulations of the future permafrost 

carbon feedback cannot properly represent the diversity of permafrost environments without 

field and laboratory data from the full breadth of permafrost environments. Therefore, 

sampling of under-sampled permafrost environments is urgent. For instance, a study by 

Metcalfe et al., (2018) found that rapidly warming sites are poorly represented by current 

research sampling, but serve as early warning indicators of climatic change. The Svalbard 

archipelago is warming rapidly, but has relatively few field sampling locations and citations 

for many discipline areas, including biogeochemistry (Metcalfe et al., 2018). Further, the 

permafrost of Svalbard has a different history of glaciation, sedimentation and permafrost 
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aggradation from the coastal plain of Alaska, and thus is an ideal location for further study of 

permafrost biogeochemistry to confirm whether or not similar biogeochemical processes 

dominate this different, yet important, landscape. 

1.4 Permafrost in Svalbard 

As glaciers retreat, fjord valleys have rapid sedimentation and organic carbon burial rates, 

forming valley infills that are ideal for methanogenesis (Gilbert et al., 2017; Gilbert et al., 

2018; Smith et al., 2015; Syvitski et al., 1986). In fact, over the past 10,000 years, almost one 

quarter of global marine sedimentation has occurred in fjords (Syvitski et al., 1987). In the 

lower elevation, coastal sites of Svalbard, glacial retreat and postglacial isostatic rebound 

have played a cardinal role in landscape evolution (Milne & Shennan, 2007). In western 

Svalbard (Figure 1.5), for instance, there were three glacial advances during the late 

Pleistocene (Weichselian) (Mangerud et al., 1998).  
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Figure 1.5 A schematic representation of permafrost zones in Svalbard. The Barents Sea was glaciated 
during the LGM and permafrost is absent, owing to a lack of subaerial exposure (Zone 1).  Limited 
permafrost aggraded in areas that were not glaciated during the LGM, but were inundated by the sea 
in the Holocene (Zone 2). In the east, permafrost is younger and thinner owing to its recent subaerial 
exposure (Zone 3). In the north and west, coastal erosion and transgressions are occurring, but there 
is permafrost beneath the beaches (Zone 4). The present study is on land that deglaciated after the 
LGM (except areas covered by present-day glaciers), since which time permafrost has developed (Zone 
5). Nunataks (LGM unglaciated mountains) contain permafrost up to 100,000 years old (Zone 6). Some 
areas were not glaciated during the LGM, but are above present sea level (Zone 7). Modified after 
Landvik et al. (1988). 
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In the most recent glaciation, the Last Glacial Maximum (LGM; 20 ka), the entire archipelago 

of Svalbard was covered by an ice sheet (Landvik et al., 1988; Landvik et al., 2005). Warm-

based glaciers have basal ice at the pressure melting point (Benn and Evans, 2010). During 

the LGM, the valleys of western Spitsbergen were filled with warm-based, erosive ice streams, 

as indicated by the glacial striae up to 200 metres above sea level in central Spitsbergen 

(Humlum et al., 2003; Landvik et al., 2005; Humlum, 2005). Warm-based ice is a key factor in 

regulating the age of permafrost in Svalbard.  

 
Figure 1.6 The Svalbard archipelago (inset) and Adventdalen, with a white circle indicating each site 
where ice-wedge polygons were sampled (Section 2.1 for further details). 

After the LGM, the ice sheet retreated. Inner Adventfjorden (Figure 1.6) was ice-free by 10 

ka; the evidence for this is a 10 ka raised beach at 62 metres above sea level in Bolterdalen 

(Lønne, 2005). Radiocarbon dating of driftwood from raised marine deposits provides 

evidence for the fall of relative sea level on western Spitsbergen (Salvigsen, 1984). Following 

deglaciation, a Gilbert-type delta prograded into Adventfjorden (Lønne & Nemec, 2004). 
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Despite the global eustatic sea-level rise (Fairbanks, 1989), the glacial isostatic rebound of 

Svalbard meant that relative sea level fell (Figure 1.7; Lønne & Nemec, 2004). The highest 

relative sea-level stand (the marine limit) is at 70 metres above sea level in outer 

Adventfjorden (Lønne & Nemec, 2004). The sea level fall was interrupted by still stands or 

transgressions (Forman et al., 2004). For instance, at Brøggerhalvøya, three barrier beaches 

below 45 metres above sea level indicate that there were three such events (Forman & Miller, 

1984; Forman et al., 2004). Raised beaches are widespread across the coastline of the 

Svalbard archipelago (Forman et al., 2004; Salvigsen et al., 2005; Figure 1.8) and other high 

Arctic coasts (Funder et al., 2011; Nielsen et al., 2017; Dyke et al., 1997). Studies in Arctic 

Canada have found that peat commonly develops in the wetlands between raised beaches 

(Martini & Glooschenko, 1985). However, studies of coastal peat development on Svalbard 

are rare (e.g., Rozema et al., 2006) and there have not been any studies focussing on wetlands 

and peat development between raised beaches in Svalbard. 

 
Figure 1.7 Sea level curve for Adventfjorden, based on data from Lønne & Nemec (2004).The solid 
black line is constrained by radiocarbon dates, and the dashed black line is hypothetical. The shaded 
blue rectangle represents an approximate estimate of the elevations of the cores presented later in 
this thesis. The position of the rectangle indicates that the core sediments presented in this thesis 
have an approximate age of between 4 and 8 radiocarbon ka BP.  
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Figure 1.8 Wetlands have formed between raised beaches in this photograph of a raised beach 
sequence at Bohemanflya, which is situated on the northwest side of Isfjorden, Svalbard. The raised 
beaches are linear features aligned approximately parallel to the coastline. Photo credit: A. Hodson. 

During the Quaternary glaciations, with the exception of the high altitudes, warm-based 

glaciers caused permafrost in Svalbard to thaw (Landvik et al., 1988; Humlum et al., 2003; 

Humlum, 2005). In western Svalbard, permafrost aggradation began after the deglaciation 

(Haldorsen et al., 2010). The aggradation of permafrost in Svalbard since the LGM is linked to 

climatic variations over the Holocene (Humlum, 2005). Macrofossils and pollen in lake 

sediments (Birks, 1991), ice-rafted debris (IRD) in marine sediment cores (Hald et al., 2004), 

and recent instrumental records indicate three climatic phases since the LGM (Humlum, 

2005). Between 9000 and 7500 years before present (B.P.), the post-LGM warming 

culminated in the maximum air temperatures for Svalbard in the Holocene (Birks, 1991; 

Humlum, 2005). Permafrost was probably discontinuous or absent on Svalbard below 300-

500 metres above sea level (Humlum, 2005). After 4000 B.P., diatoms in marine sediment 

cores indicate that surface waters close to western Svalbard cooled (Koç et al., 1993). As 

permafrost aggradation can only occur once the ground is exposed to the cold air, glacial 

isostatic rebound influences the age of permafrost (Humlum, 2005). Pingos and ice wedges 

below the Holocene upper marine limit in Spitsbergen formed no earlier than 2650 B.P. and 

2900 B.P. (Humlum, 2005), indicating that permafrost was established in the Late Holocene 
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near sea level (Humlum, 2005). The recent glaciation of Svalbard means that, compared to 

Siberia and the Alaskan North Slope, permafrost in Svalbard is young (Humlum et al., 2003).  

1.5 Aims and objectives 

The primary motivation for this research is the need of a deeper understanding of how past 

landscape development determines the biogeochemical processes in recently deglaciated 

permafrost landscapes. The aim of this thesis is to deduce the biogeochemical processes 

leading to the production of methane and carbon dioxide in the active layer and shallow 

permafrost sediments of polygonal ground in Adventdalen, Svalbard. The specific objectives 

are to: 

1. Assess the variability of biogeochemical processes within two contrasting, yet 

complementary, ice-wedge polygonal wetlands in a fjord valley (Adventdalen). 

2. Examine the influence of larger-scale landforms (fjord valley, raised beaches) and 

smaller-scale landforms (ice-wedge polygons) on biogeochemical processes and the 

concentrations of methane and carbon dioxide in active layer and shallow permafrost 

sediments in Svalbard. 

3. Quantify the sources and sinks of methane in fjord valley (Adventdalen) and intra-

beach sediments (Revneset). 

1.6 Thesis structure  

This thesis comprises the introduction (Chapter 1), the methodology (Chapter 2), three 

independent chapters of research material (Chapters 3 to 5) and a summary (Chapter 6). 

Chapter 1 introduces the research topic, reviews the key literature and presents the aims of 

the thesis. Chapter 2 presents the sampling locations and contains a detailed methodology 

applicable to Chapters 3 to 5. Chapter 6 provides a synthesis, suggests worthwhile future 

research and concludes the thesis. 
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Chapter 2. Methods 

This chapter describes the methods applied in the research documented in this thesis. There 

are three main sections: Section 2.1 describes the sampling locations, Section 2.2 describes 

the collection and analysis of active layer and shallow permafrost cores and Section 2.3 

describes sampling and analyses of water from the active layer. Microbiological data 

described in Chapter 5 were contributed by Ebbe Norskov Bak (Aarhus University) and Section 

2.2.4 describes the core sampling, 16S sequencing and data analysis conducted by Ebbe. 

2.1 Sampling locations 

Adventdalen (78°19¢N, 15°93¢E) is a 12 km x 4 km valley, oriented NW-SE, in central Svalbard. 

The van Mijenfjord and Adventdalen Groups, which contain sedimentary rocks (sandstones, 

shales and carbonates), comprise the lithology of the Adventdalen catchment (Figure 2.1). 

These rocks contain carbonate and pyrite (Dallmann et al., 1999). The sandstones contain the 

iron-bearing mineral phases pyrite, siderite and glauconite (Svinth, 2013), plus shales (Riber 

& Lars, 2009). Also, there is a small amount of iron in biotite and chlorite (chamosite; Hodson 

et al., 2016).  
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Figure 2.1 Geological map of the study area. The age of deposits ranges from the mid-Jurassic to the 
Quaternary. The formations of the Adventdalen Group (deposited mid-Jurassic to Lower Cretaceous) 
are the Rurikfjellet Formation (part of the Janusfjellet Subgroup; shale, siltstone and sandstone), the 
Helvetiafjellet Formation (sandstone, conglomerate and coal seams) and the Carolinefjellet Formation 
(shale, siltstone and sandstone). The formations of the Van Mijenfjorden Group (deposited Paleocene 
to Eocene) are the Firkanten Formation (sandstone, shale, coal seams), the Basilika Formation (shale, 
mudstone, siltstone), the Grumantbyen Formation (sandstone), the Frysjaodden Formation (shale, 
sandstone), the Battfjellet Formation (sandstone, siltstone, shale) and the Aspenlintoppen Formation 
(sandstone, siltstone, mudstone). Unconsolidated deposits of the Quaternary are present in areas 
across the map. Orange triangles represent pingos; rhombuses represent abandoned mines. Map 
based on data from the Norwegian Polar Institute (http://svalbardkartet.npolar.no). 
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Glacial retreat and postglacial isostatic rebound influence landscape evolution (Milne & 

Shennan, 2007). As a consequence, permafrost aggradation in many high Arctic fjord valleys 

has involved the freezing of reactive, fine-grained sediment originally deposited on the fjord 

floor via glacio-marine sedimentation and delta progradation throughout deglaciation 

(Haldorsen et al., 2010; Gilbert et al., 2018). During the Last Glacial Maximum, Adventdalen 

was filled with an erosive ice stream; this caused permafrost to thaw (Humlum, 2005; 

Humlum et al., 2003; Landvik et al., 2005). After retreat of the ice sheet, the glacial isostatic 

rebound of Svalbard meant that relative sea level fell, and a Gilbert-type delta prograded into 

Adventfjorden (Lønne & Nemec, 2004). In Adventdalen, below about 3 metres depth, the 

permafrost is epigenetic, as it formed after the progradation of the delta (Gilbert et al., 2018). 

At between 0 and 3 metres depth, the permafrost is syngenetic, as it aggraded concurrently 

with aeolian sedimentation (Gilbert et al., 2018). Although permafrost only aggraded after 

deglaciation, it is continuous in Svalbard, where it reaches a thickness of 80 to 100 metres 

near the coast (Brown et al., 1997; Humlum, 2005). The seasonally thawed surface permafrost 

is the ‘active layer’ (French, 2013). Active layer thicknesses in Svalbard can be from 0.4 to 6 

metres (Christiansen, 2005). In Adventdalen, the active layer thickness is around 1 metre 

(Christiansen et al., 2010). This project will focus on 0 to 2 metres depth, which involves 

sampling the active layer and the shallow permafrost. 

The climate of Svalbard is polar tundra (Kottek et al., 2006) and in Longyearbyen between 

1981 and 2010, the mean annual air temperature (MAAT) was -4.6 °C (Førland et al., 2011). 

Between 1989 and 2011, MAAT increased by 1.25 °C per decade (Førland et al., 2011) and in 

2018, the MAAT was -1.8 °C (eklima.met.no). The mean annual ground temperature (MAGT) 

ranges from -5.6 °C to -3.2 °C in the Adventdalen area (Christiansen et al., 2010) and the rising 

air temperatures have caused a recent increase in permafrost temperatures (Isaksen et al. 

2007). The vegetation in the valley varies between 1.3 g m-2 and 27.2 g m-2 moss and 2.8 g m-

2 and 9.6 g m-2 vascular plants, with the amount of moss dependent on the soil moisture 

(Sjögersten et al., 2006). 

The study sites (Figure 1.6) were selected with the aim of sampling three different wetlands 

found in Adventdalen. Sites S1, S2 and S3 are collectively termed ‘Ice-wedge South’, sites N1 

and N2 are collectively termed ‘Ice-wedge North’. Together, Ice-wedge South and Ice-wedge 
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North are henceforth referred to as Adventdalen. Sites R1, R2 and R3 are collectively termed 

‘Revneset’. 

Table 2.1 lists the sample locations with details of the sampling methods. The sites in 

Adventdalen are covered with Late Holocene loess (aeolian) deposits overlying alluvial and 

deltaic deposits (Cable et al., 2017; Gilbert et al., 2018). As aeolian deposits accumulated, 

permafrost aggraded syngenetically, and the permafrost beneath this aggraded 

epigenetically (following deposition of sediments, by downward freezing; Gilbert et al., 2018). 

The sites at Revneset are peat deposits, situated between raised beaches. All sites in 

Adventdalen are situated in areas of low-centred ice-wedge polygons, which are common in 

Adventdalen (Figure 2.2; Sørbel & Tolgensbakk, 2002). Revneset contains both low- and high-

centred polygons, but only high-centred polygons and the troughs of low-centred polygons 

were sampled here (Figure 2.3). The approximate proportion of high- and low-centred 

polygons at Revneset was estimated by classifying the polygons along the Revneset coastline, 

between Hanaskogelva and the river immediately to the north draining Louisdalen, using 

aerial imagery from the Norwegian Polar Institute (Figure 2.4). 66% of classified polygons (92 

polygons) were high-centred polygons and the remaining 34% were low-centred polygons (47 

polygons). Ice-wedge North is a water-saturated wetland, mainly fed by springs, whereas Ice-

wedge South is mainly precipitation-fed and only sporadically inundated by local snowmelt 

and rainfall. The primary water source to Revneset is summer precipitation, with a probable 

contribution from winter precipitation.  
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Table 2.1 Sampling locations, in UTM zone 33X. The sample types are cores of the active layer and 
shallow permafrost (‘PF’), waters from the active layer extracted via Macro Rhizon samplers (‘WM’) 
and waters from the active layer extracted via the The Sheffield Spike (‘TSS’). The polygon feature 
refers to whether the samples were extracted from a polygon centre (‘c’) or trough (‘t’). 

Site Name Code 
Latitude 
(UTM) 

Longitude 
(UTM) 

Sample Type (Date) Polygon 

Feature 

Ice-wedge 
South 

S1 8679400 521010 PF (15.06.15), WM (26.08.17 & 
27.08.17) 

c 

S2a 8679343 521042 PF (12.02.17) c 
S2b 8679343 521042 PF (14.02.17) c 
S3w 8679145 521223 TSS (28.08.17 & 10.09.17) c 

Ice-wedge 
North 

N1 8680446 522541 PF (02.05.16) c 
N2 8681819 519780 PF (15.04.14) c 

N1w 8680446 522541 WM, TSS (31.08.17, 01.09.17 & 
13.09.17) 

c 

N2w 8681819 519780 TSS (02.09.17) c 

Revneset 

R1a 8690378 512848 PF (30.04.16), WM (05.09.17) c 
R1b 8690378 512848 PF (26.04.17) c 
R2 8690380 512856 TSS (06.09.17) t 
R3 8690404 512926 TSS (06.09.17) t 
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Figure 2.2 Aerial photographs of the Adventdalen sites, with the white circles representing the 
sampling locations in a) Ice-wedge South (S1, S2 and S3), b) Ice-wedge North (N1) and c) Ice-wedge 
North (N2). Scale bar is the same for all photographs. Courtesy of the Norwegian Polar Institute 
(https://toposvalbard.npolar.no/). 
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Figure 2.3 a) Aerial photograph of Revneset, with the sampling locations marked by white circles, 
courtesy of the Norwegian Polar Institute (https://toposvalbard.npolar.no/), and b) Aerial photograph 
of Revneset and Hanaskogdalen (the river valley). Credit: A. Hodson. 
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Figure 2.4 Aerial photograph of Revneset, showing the locations where polygons were classified either 
as high-centred or as low-centred on the basis of a visual inspection of the aerial photograph. Each 
classified polygon is marked by a red dot. Photograph courtesy of the Norwegian Polar Institute 
(https://toposvalbard.npolar.no/). 
 

2.2 Sediment cores of the active layer and shallow permafrost 

2.2.1 Coring and subdivision 

Sediment cores of the frozen active layer and shallow permafrost were extracted in segments 

(5 cm diameter; between 5 and 50 cm length) using motorised hand drilling equipment (a 

Stihl BT 130 drilling engine, expandable drill string and cylindrical drill head; Figure 2.5). The 

core segments were extruded into individual Whirl PakÒ bags, which were sealed and frozen 

during transport to the University of Sheffield, where they were stored at -18 °C. Coring was 

undertaken before the onset of thaw, when air temperatures were below 0 °C. 
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Cores were subdivided by sawing into 2 cm depth slices while frozen (Figure 2.5a). The freshly 

cut surfaces were scraped with a scalpel, and the outer 2 cm were removed with a hollow 

brass tube (3 cm diameter), to prevent contamination. The sawblade, scalpel and brass tube 

were cleaned with 70% isopropanol between slices. 
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Figure 2.5 Photographs showing a) coring the active layer and shallow permafrost of Adventdalen in 
spring 2016, using body weight to force the drill down (Credit: Ebbe Bak), and b) a slice of core R1b 
from a depth interval of 34-36 cm. The squares on the green cutting board are 1 cm2. 
 

a)

b)
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Figure 2.6 Schematic diagram illustrating a) subdivision of permafrost cores by sawing and removal of 
the outer 2 cm of each slice, b) equilibration of core samples with de-ionised water in vials with an N2 
headspace at 4 °C, followed by sampling of the headspace, sampling and filtering of the porewaters, 
and drying of the sediments, for c) analyses by gas chromatography, inductively coupled plasma-mass 
spectrometry and ion chromatography. 
 

2.2.2 Pore water extractions 

2.2.2.1 Glassware preparation 

All glassware used in these extractions was decon washed and then acid-washed (10% HCL; 

24-hour soak; 5x Milli-Q de-ionised water rinse) and dried. Pore water extractions were 

carried out in 22 mL vials, which firstly were weighed empty, then filled with Milli-Q de-

ionised water, reweighed to determine their exact volume, and dried.  
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2.2.2.2 Sample preparation 

A clean chisel and hammer were used to break the 3 cm diameter inner core samples into 

pieces. These pieces were added to the previously prepared 22 mL crimp top vials.  

2.2.2.3 Pore water extraction 

The pore water extraction method was adapted from a methodology developed by Spence et 

al. (2005). Vials containing samples were transferred to a Coy Vinyl Anaerobic chamber with 

a N2 atmosphere (0 ppm oxygen). Each vial was weighed to determine the sample mass. 

Nitrogen-sparged de-ionised water (Milli-Q) was added to fill each vial. The vials were 

reweighed to determine the mass and volume of water added. Three mL of water were 

subsequently removed from the top of the vial to create a headspace. The vials were crimp-

capped and stored for 5 days at 4 °C upside down with the crimp caps submerged in water 

(to prevent gas diffusion across the septa). This storage time allowed ample time for the de-

ionised water to equilibrate with the pore waters (e.g., Spence et al., 2005; Figure 2.6b). 

Five days after first saturating the sample, the sample vial headspace was analysed by Gas 

Chromatography with a flame ionisation detector (GC-FID) to determine the concentrations 

of methane and carbon dioxide. Firstly, 3 mL of oxygen-free nitrogen were injected into the 

headspace of each vial (to ensure that the vials did not become under pressured upon 

sampling). The vials were shaken for 30 seconds. Triplicate 1 mL samples were taken from 

each vial and analysed by GC-FID (Figure 2.6c). Section 2.2.2.4.2  provides information on the 

GC-FID analysis and calibration, and Section 2.2.2.5 provides details of the subsequent 

calculations. 

Seven days after first saturation of the sample, the vials were centrifuged at 7750 rpm for 5 

minutes and transferred to the anaerobic chamber. Each vial was de-capped and the 

supernatant water was removed using a Plastipak syringe attached to a wide bore needle. 

The water was filtered through a clean 0.22 µm nylon syringe filter (Perkin Elmer). The first 1 

mL was filtered into a 1.5 mL borosilicate vial (Restekâ) for later analysis by ion 

chromatography (IC). 5 mL were filtered into a 15 mL polypropylene centrifuge tube pre-
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acidified with 50 µL nitric acid (Fisher Scientific Trace Metal Grade) for later analysis by 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS).   

The remaining sediments and water in the 22 mL vials were dried at 105 °C (Ernakovich et al., 

2017; Kokelj & Burn 2003) for 24 hours and reweighed to determine the initial moisture 

content of the samples. 

2.2.2.4 Post-sampling analyses 

2.2.2.4.1 Major ions and metals 

Major ions (Ca2+, Mg2+, Na+, K+, Cl-, NO3
-, SO4

2-) were determined by ion chromatography 

(Dionex 3000 system; LOD = 0.02 mg L-1 for the lowest, undiluted analysis; precision <5% for 

the mid-range standards). The system comprised an autosampler, analytical pump, 

chromatography module and conductivity detector. The chromatography module contained 

an AS18 guard column, an AS18 analytical column for anion analysis and a CG12A guard 

column and CS12A analytical column for cation analysis. Each system had its own 

micromembrane suppressor. The anion system eluent was 34 mM potassium hydroxide at a 

flow rate of 0.2 mL/min. The cation system eluent was 28 mM methane sulphonic acid at a 

flow rate of 0.4 mL/min. The sample size was 10 µL. Dionex Chromeleon software collected 

data and controlled the autosampler.  

Trace metals (Fe, Mn) were determined on a 5 mL sample acidified with 50 µL reagent grade 

HNO3
- (Fisher Scientific Trace Metal Grade), using Inductively Coupled Plasma Mass 

Spectrometry or ICPMS (PerkinElmer Elan DRC II, MA, USA). The system used a nickel sampler 

and skimmer cones, a quartz torch and injector and a Meinhard spray chamber. The precision 

errors for repeat analyses of mid-range standards were < 5%, and the detection limits were 

1.0 µg L-1. Data acquisition was via Elan NT software. Sample introduction was via a Cetac ASX-

150 and 4-line peristaltic pump set at 20 rpm, with one line used for adding the internal 

standard (103Rh).  

Analyte concentrations were corrected for blank analyses and corrected for the dilution 

during the pore water extraction 
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2.2.2.4.2 Methane and carbon dioxide 

Methane and carbon dioxide concentrations in gas samples were determined using a GC-2014 

Shimadzu Gas Chromatograph with a 30 m GS-Q, 0.53 mm internal diameter column and a 

100 µL sample loop. Injection, flame ionisation detector (FID) and column temperatures were 

60, 240 and 50 °C, respectively. The column temperature was kept at 50 °C isothermally for 

the three-minute run. Nitrogen was the carrier gas with a flow rate of 8.0 mL min-1. A 

methaniser (nickel catalyst) at 380 °C converted CO2 to CH4 prior to detection by FID.  

Sample concentrations were calculated based on a calibration constructed  from serial 

manual dilutions of a certified 60% CH4 40% CO2 standard in N2-flushed 120 mL Wheaton vials 

(linear over 0 to 140000 ppm methane and 0 to 90000 ppm carbon dioxide calibration range, 

R2 = 0.99, n = 6). Standards and blanks were run daily, giving a coefficient of variation for both 

CH4 and CO2 of <1.3% (n = 22), and detection limits of 25 and 89 ppm for CH4 and CO2, 

respectively, equivalent to ~1.2 and ~25 µmol L-1 in the porewaters. Detection limits for 

methane and carbon dioxide were calculated from the mean plus three times the standard 

deviation of the blanks. For the samples and blanks, 1 mL of the headspace was sampled (in 

triplicate) with a gas-tight syringe and injected into the 100 µL sample loop. 

2.2.2.5 Gas pore water calculations 

Peak areas of methane and carbon dioxide were analysed using Shimadzu GC Solution Lite 

PostRun software. Peak areas were converted into gaseous concentrations (ppm) using the 

calibration described in Section 2.2.2.4.2. Mean concentrations of methane and carbon 

dioxide in the water blanks were subtracted from the concentrations in the sample vials. 

Sample vial headspace concentrations (ppm) were converted to partial pressures (x 10-6). 

Partial pressures were converted to moles (n) of methane and carbon dioxide in the 

headspace, using the Ideal Gas Law (Equation 2.1): 

 
" = 	
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where n is the number of moles of the gas in the headspace, P is the partial pressure of the 

gas in the headspace, V is the headspace volume (L), adjusted for the dilution effect of the 3 

mL N2 injected, R is the ideal gas constant (=0.08205 L atm mol-1 K-1), and T is the temperature 

(room temperature; K). 

For each vial, the quantity of dissolved methane was determined using the Bunsen coefficient 

(B) for 0‰ salinity and 4 °C (Equation 2.2; Wiesenburg & Guinasso, 1979):  
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(2.2) 

where CH4(aq) [mL] is the concentration of dissolved methane in the water, Vw [mL] is the 

water volume (total in vial during equilibration), PCH4 is the partial pressure of methane in the 

vial headspace, and Vh [mL] is the vial ‘virtual’ headspace after addition of 3 mL N2. The 

quantity of methane was converted from mL to moles using the Ideal Gas Law (Equation 2.3): 
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The Analytical Expression for Temperature Dependence (Equation 2.4) was used to calculate 

a Henry’s law constant (KH [mol atm-1]) at 4 °C, which describes the partitioning between 

aqueous and gaseous phases (Stumm & Morgan, 1996). 
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The partial pressure of CO2 in the vial headspace was multiplied by KH to determine the molar 

concentration of aqueous carbon dioxide (CO2 (aq) [mol L-1]). The concentration of CO2 (aq) was 

multiplied by the volume of water in the vial to obtain the total quantity of CO2 (aq) in the 

water. 

The total quantity of methane in the vial was determined by summing the amount in the 

headspace and the amount dissolved in the water. The total quantity of carbon dioxide in the 

vial was determined by summing the amount in the headspace and the amount dissolved in 
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the water.  It was assumed that all of the methane and carbon dioxide in the vial originated 

from the pore water. To calculate the concentration of methane in the sample pore water, 

the total methane (mol) was divided by the pore water volume (L). To calculate the 

concentration of carbon dioxide in the sample pore water, the total carbon dioxide (mol) was 

divided by the pore water volume (L). 

2.2.3 Solid phase analyses 

2.2.3.1 Organic carbon 

Samples to be analysed for organic carbon were treated in the following manner. Samples 

were oven-dried (105 °C) and the <2 mm fraction was milled in a Retsch ball mill for 5 minutes 

at 15.0/s frequency. After milling, samples were transferred to EppendorfTM microcentrifuge 

tubes. Ball mills were washed in de-ionised (Milli-Q) water and dried in the oven between 

samples. 90 mg of milled sample was weighed into an EppendorfTM microcentrifuge tube and 

500 µL of 6 M hydrochloric acid was added. The sample was stirred with a blunt needle and 

left to settle in a fume cupboard for 24 hours. The sample was centrifuged in a 

microcentrifuge at 13,000 rpm for 10 minutes, and the supernatant was removed with a 3 mL 

disposable pipette. De-ionised (Milli-Q) water was added to the sample tube (up to the 0.5 

mL line), the sample was stirred, centrifuged, and the supernatant was removed by pipetting. 

Samples were dried for 24 hours at 105 °C. Samples to be analysed for total carbon were not 

treated with 6 M hydrochloric acid. 

Between 25 and 50 mg of each sample were weighed into a tin capsule. Samples were 

analysed on an Elementar vario EL cube. Concentrations were checked with acetanilide 

standards (C8H9NO; Merck; n = 28, % C = 70.96 ±0.67, % N = 10.34 ±0.10), with 2 blanks and 2 

acetanilide standards run every 15 samples.  

2.2.3.2 Acid-volatile sulfur (AVS) and chromium-reducible sulfur (CRS) 

Acid-volatile sulfur (AVS) and chromium-reducible sulfur (CRS) were determined at the 

University of Leeds. A two-step distillation method was applied to freeze-dried and milled 

sediment samples, using firstly 6 M HCl and then boiling 3 M CrCl2 solution (Fossing & Barker 
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Jørgensen 1989; Canfield et al. 1986). In each extraction, H2S was precipitated as Ag2S, 

filtered, dried, and sulfide was determined gravimetrically. The stoichiometry of the phase 

was used to convert the mass to  weight percent (FeS for AVS; FeS2 for CRS).  

2.2.3.3 Iron phases 

Different operationally defined iron mineral phases were targeted with a four-step sequential 

extraction procedure applied to 100 mg freeze-dried and milled sediment samples. To extract 

(i) amorphous and nanoparticulate iron (oxyhydr)oxide phases (Feox1), each sample was 

shaken for 24 hours with 10 mL ascorbate solution (50 g L-1 sodium citrate, 50 g L-1 sodium 

bicarbonate and 10 g L-1 of ascorbic acid; buffered at pH 7.5; Raiswell et al. 2008). For (ii) iron 

bound in carbonates (Fecarb), the residual sample was shaken for 48 hours at 50 °C with 10 mL 

sodium acetate solution (1 M sodium acetate solution buffered with acetic acid to pH 4.5; 

Poulton & Canfield 2005). For (iii) crystalline iron (oxyhydr)oxides (Feox2), the residual sample 

was then shaken for 2 hours with 10 mL dithionite solution (50 g L-1 sodium dithionate 

buffered to pH 4.8 with acetic acid and sodium citrate; Poulton & Canfield 2005). Lastly, for 

(iv) magnetite (Femag), the residual sample was shaken with 10 mL ammonium oxalate 

solution (0.2 M ammonium oxalate/0.17 M oxalic acid buffered with ammonium hydroxide 

to pH 3.2) for 6 hours (Poulton & Canfield 2005). Extractions were performed at room 

temperature (except for Fecarb at 50 °C) by continuous shaking. After centrifugation (4000 rpm 

for 4 minutes at 21 °C), the supernatant from each extraction was stored at 4 °C until analysis 

by atomic absorption spectroscopy (AAS). 

2.2.4 Microbiological data collection and analysis (Aarhus University) 

The cores analysed at Aarhus University by Ebbe Norskov Bak were cored as described in 

Section 2.2.1, but sample processing differed and was conducted as follows. The outer ≥ 5 

mm were removed from the frozen cores with sterilized spoke shaves and the core ends were 

sawed off to remove potential contamination. The cores were divided into sections 

corresponding to successive 25 cm depth intervals from the surface downwards and were 

packed in separate sterile bags.  
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To check the efficiency of the Aarhus sampling decontamination procedure, one core section 

had an aqueous suspension of multifluorescent microspheres added to the sample bag 

immediately following extraction from the ground. The microspheres were mixed into the 

thawed surface material before the sample was returned to the cool box. Each layer removed 

with the spoke shave (~1 mm) was examined with a Leica DMRB microscope using the CY3-

filter to record the density of the fluorescent microspheres. After removal of the outer 2 mm, 

the contamination level was reduced by more than 3 orders of magnitude and after 4 mm, 

no microspheres could be detected. Samples were kept frozen during transport to Aarhus 

University in Denmark. 

Cores were subdivided by leaving them to thaw under anoxic conditions at 4°C overnight and 

homogenised by kneading the sample bags by hand. In the case of dry samples, sterile Milli-

Q water was added to create a mud. Subsamples for DNA extraction were transferred to 

Oxygen 2 mL maximum recovery microtubes in duplicates and were frozen at -18 °C.  

DNA extraction was done with bead beating, an enzymatic treatment and chemical lysis 

followed by pyrification using a modified method from the FastDNA Spin Kit for Soil 

(Qbiogene). Approximately 0.3 g sample was mixed with 300 µL extraction buffer in a Lysis 

matrix E tube and mechanically treated for 2x15 seconds at speed 4 and additional 15 seconds 

at speed 4.5 with a FastPrep Instrument. 50 µL of a mixture of lysozyme, Lipase Type 7, 

pectinase and β-glucuronidase and 50 µL of a mixture with Proteinase K, Protease Type 9 and 

Pronase was added. All enzyme mixtures were at a concentration of 1mg mL-1 for each 

compound. 75 µL of 20% SDS was added and the mixture was incubated for 65 °C for two 

hours. Following this, the standard procedure for the FastDNA Spin Kit for Soil was followed.  

A mixed library was prepared according to the 16S Metagenomic Sequencing Library 

Preparation guide (Illumina, 2013) with the following modifications. Initially, 20 cycles of PCR 

were performed with the Bac 341F (5ʹ CCTACGGGNGGCWGCAG 3ʹ) and the Bac 805R (5’ 

GACTACHVGGGTATCTAATCC 3’) primers for bacteria and 25 cycles of PCR were performed 

with the Archa344Fmod (5ʹ ACGGGGYGCAGGCGCGA 3ʹ) and the Arch 915R (5ʹ 

GTGCTCCCCCGCCAATTCCT 3ʹ) primers for archaea to amplify the highly variable V3-V4 

regions of the 16S rRNA genes. Additionally, 10 cycles of PCR were run to attach the adapters, 



 36  

followed by another 8 cycles to add index barcodes using Nextera Index primers. The PCR 

reactions were performed with the 2x KAPA HiFI Hotstart mix and denaturation at 95 °C, 

annealing at 55/60 °C for bacteria and archaeal primers, respectively, and elongation at 72 

°C.  The PCR products were cleaned between each PCR run with AMPure XP beads and length 

and quantity of the DNA were checked with gel-electrophoresis and Qubit HS. The DNA was 

pooled to a mixed library and analyzed with Illumina MiSeq to get 2x300 bp paired end-reads.  

Each of the four datasets (bacterial and archaeal for day 0 and day 362) were analyzed 

separately for amplicon sequence variants (ASVs) using DADA2 (ver.1.12.1; Callahan et al., 

2016) in R (ver. 3.6.0). The analysis from the two time points were gathered according to the 

target kingdom and chimeras were removed using DADA2. Sequences were classified 

taxonomically with IDTaxa from the Decipher Package (ver. 2.12.0; Murali et al., 2018) using 

the SILVA SSU r132 database as the reference. The sequence table, the taxonomy table and 

the metadata were gathered in phyloseq objects for bacteria and archaea, respectively. The 

data were then inspected and processed using phyloseq (ver. 1.28.0; McMurdie & Holmes, 

2013). For each section of the three replicate cores from Ice-wedge South, the average ASV 

abundance was estimated by combining the relative abundance from the 16S microbiome 

analysis with the cell densities from the qPCR analysis. Heatmaps were made with ampvis2 

(ver. 2.4.11; Andersen et al., 2018). 

2.3 In-situ sampling 

During the summer of 2017 (between 26/08/17 and 13/09/17), in-situ sampling of water from 

the active layer was conducted at Adventdalen and Revneset with two types of sampler: 

Macro Rhizon soil moisture samplers (Van Walt Ltd) and a custom-made stainless steel active 

layer water sampler (“The Sheffield Spike”). 

2.3.1 Macro Rhizon sampling 

To obtain blank measurements, 3 Macro Rhizon  soil moisture samplers (Van Walt Ltd) were 

soaked in de-ionised (Milli-Q) water for 5 minutes, and subsequently flushed with 10 mL de-
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ionised (Milli-Q) water. Following this, de-ionised (Milli-Q) water was sampled through the 

Macro Rhizons for later analysis by IC and ICP-MS.  

Macro Rhizon soil moisture samplers were installed at Revneset, Ice-wedge South and Ice-

wedge North (Table 2.1). Active layer depths were 65 cm in S1, 63 cm in N1, 65 cm in N2 and 

36 cm in R1. At Ice-wedge South and Ice-wedge North, Macro Rhizons were installed at depths 

of 9 cm, 30 cm and 60 cm. At Revneset, Macro Rhizon samplers were installed at depths of 9 

cm, 20 cm and 30 cm, due to the shallower active layer depth at this site. At each site, 

triplicate samplers were installed at each depth, with a total of 9 Macro Rhizon samplers per 

site. 

To install Macro Rhizon samplers, a  gouge auger was inserted at 45° (measured using a 

clinometer), twisted 360° and removed. A narrow hole was created at the base of the augered 

hole with an insertion tool (a PVC pipe with a steel pin at the end). With the insertion tool in 

place (to prevent collapse of the surrounding soil into the hole), the Macro Rhizon was flushed 

with 10 mL de-ionised (Milli-Q) water (from a 500 mL polyethylene bottle). After removal of 

the insertion tool from the ground, the Macro Rhizon was inserted immediately (with the 

stopcock open). A 30 mL syringe was attached to the Macro Rhizon and the plunger was 

drawn to its full extent, producing a low-pressure zone, which required a wooden spacer to 

maintain (Figure 2.7). The first 2 mL (~3x the sampler volume) collected in the syringe were 

discarded, and the syringe was re-vacuumed. Between each insertion, soil was cleaned from 

the auger using a spatula and nearby standing/flowing water. 

On the day of installation, samples for analysis of major ions and metals were collected. There 

was no need to pre-filter, as the pore size of the Macro Rhizons was 0.2 µm. Samples for later 

determination of major ions were collected in 1 mL Eppendorf tubes (with no headspace in 

the tubes). 5 mL samples for later determination of trace metals were collected in 15 mL 

Corning centrifuge tubes, pre-acidified with 50 µL nitric acid (AnalaR 65% Normapur, VWR, IL, 

USA). If the flow rate of water into the syringe was rapid enough, samples were collected the 

same day in 50 mL centrifuge tubes for later analysis of d34S-SO4
2- and d18O-SO4

2- and in 2 mL 

Eppendorf tubes for later analysis of d18O-H2O and dD-H2O. Otherwise, Macro Rhizon 



 38  

samplers were revisited in subsequent days to allow time for water to collect overnight before 

sampling. All samples were stored at 4 °C until analysis. 

 
Figure 2.7 Macro Rhizon samplers installed in Ice-wedge North. Samplers were installed at three 
different depths, each with a syringe attached at the top. 

2.3.2 Stainless steel active layer water sampler (“The Sheffield Spike”) 

A stainless-steel sampler (henceforth referred to as The Sheffield Spike, TSS; Figure 2.8) for 

water from the active layer  was made with the aim of obtaining a higher depth resolution 

profile of the chemistry of water from the active layer. A 6 mm outer diameter (1.5 mm wall 

thickness) stainless steel pipe was inserted into an 8 mm outer diameter (1 mm wall thickness) 

stainless steel pipe. A collar was positioned near the top of the pipes, to allow a screw 

threaded T-bar to be attached for pushing the pipe into the ground. The pipe base was 

attached to a pointed stainless-steel tip. The outer pipe was slightly (5 cm) shorter than the 

inner pipe, leaving the base of the inner pipe exposed. Five sets of 3mm diameter holes were 

drilled through the inner pipe at 1 cm intervals down the exposed portion of the pipe. To 

30 ml syringe

Wooden spacer



 39  

avoid blocking of the sample holes with sediments, a stainless-steel mesh (100 µm pore size) 

was glued (Aralditeâ epoxy resin) over the holes. 

 
Figure 2.8 Schematic diagram illustrating the use of The Sheffield Spike to collect samples of water 
from the active layer. 

The Sheffield Spike was soaked in and flushed with de-ionised (Milli-Q) water for 5 minutes. 

A peristaltic pump (Williamson Pumps Ltd; ~200 mA; pump rate in pure water 100 mL in 3 

min) was attached via flexible plastic tubing to the top of The Sheffield Spike and was powered 
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by a 9-volt sealed lead acid battery. Blank samples of de-ionised (Milli-Q) water were taken 

for later analysis of trace metals, major ions and volatile fatty acids.  

At each site, at each depth, The Sheffield Spike was flushed with ~10 mL water from the active 

layer. A 50 mL syringe was attached to the pump and water was pumped from each depth in 

turn, starting at 5 cm, and moving The Sheffield Spike progressively downwards in 10 cm 

increments. Water samples were slowly injected directly via a syringe needle into two 

previously prepared N2-flushed 12 mL crimp top vials per depth. During sample injection 

(Figure 2.9), an outflow needle was inserted into the septum, so that the vial could be 

completely filled with sample, with no headspace or overpressure. One vial was later analysed 

for methane concentrations (CH4 (aq)) and the other for d13C-CH4. 

 
Figure 2.9 Using The Sheffield Spike at Revneset (site R3) on 6th September 2017 to pump water from 
the active layer. Credit: G. Jones. 

Samples for later quantification of major ions, volatile fatty acids, d18O-H2O and  dD-H2O were 

filtered via a clean 0.22 µm nylon syringe filter (Perkin Elmer) into Eppendorf tubes (with no 

Peristaltic pump
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50 ml syringe
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headspace in the tubes). 5 mL samples for later quantification of trace metals were filtered 

into 15 mL Corning centrifuge tubes pre-acidified with 50 µL nitric acid (AnalaR 65% 

Normapur, VWR, IL, USA). A total of up to 60 mL water was pumped from each depth, which 

equates approximately to a sphere of 2.4 cm radius, if 100% porosity is assumed. Hence, even 

if porosity were only 30%, there should be no overlap between collection depths. All samples 

were stored at 4 °C until analysis. 

2.3.3 Sample analysis 

2.3.3.1 Volatile fatty acids (VFAs) 

Eppendorf tubes containing the samples were centrifuged at 13 000 rpm for 5 minutes. 1 mL 

of supernatant was pipetted into a GC vial. The supernatant, blanks and standards were 

acidified with 15 µL analytical grade orthophosphoric acid to ensure that the acid/salt ratio 

(i.e. acetic acid versus acetate ions) was weighted towards the acid. Samples were analysed 

on a Thermo ScientificTM TRACETM 1300 Gas Chromatograph, which was calibrated with 

dilutions of Acetic acid and a Volatile Acid Mix (46975-U, Sigma) composed of Acetic acid, 

Propionic acid, Isobutyric acid, Butyric acid, Isovaleric acid, Valeric acid, Isocaproic acid, 

Caproic acid and Heptanoic acid. 

The R2 for all calibrations was >0.99, and the detection limit, calculated as the mean of the 

blanks plus three times the standard deviation of the blanks (n = 5), was 4.22 µM for acetate. 

2.3.3.2 Water isotopes 

Samples were analysed at the University of East Anglia (UEA), using a Picarro 1102i analyser, 

by direct injection of 2.6 µL of water. Samples were measured together with 2 United States 

Geological Survey (USGS) standards: USGS 64444 and USGS 67400 and a UEA Norwich Tap 

Water (NTW) internal laboratory standard. Using the calibration line defined by the USGS 

standards, the true composition of the samples, relative to Vienna Standard Mean Ocean 

Water (VSMOW), was calculated. The differences in isotope values, known as d, are defined 

as: 
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dRSTUVW = 	 X
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− 1b 	× 1000 

(2.5) 

Sample is the sample value and standard is the reference value. R is the heavy/light ratio 

between the abundances of two isotopes (in this case, 18O/16O or 2H/H). d is reported in parts 

per thousand (per mille, ‰). Enrichment in the heavy isotope is shown by a positive d value, 

whereas a negative d value indicates depletion. The standard, in this case, is VSMOW (Rohling, 

2013). The same notation applies for sections 2.3.3.4 and 2.3.3.5, with different standards. 

The Global Meteoric Water Line (GMWL) was defined by Equation 2.6. 

 d2H-H2O = 8.17d18O + 11.27 (2.6) 

The Local Meteoric Water Line (LMWL) was based on composite monthly precipitation data 

from 75 samples in the periods 1961-65 and 1972-75 collected at Isfjord Radio, which is 

approximately 50 km southwest of the study sites, and provided by the International Atomic 

Energy Agency (IAEA/WMO 2006). The LMWL (R2 = 0.91) was defined by Equation 2.7. 

 d2H-H2O = 6.46d18O – 5.98 (2.7) 

Deuterium excess (“d-excess”) based on the GMWL was calculated according to Equation 2.8 

(Rozanski et al., 1993).  

 d-excess = d2H — 8.17d18O (2.8) 

Hence, if d-excess > 11.27 this indicates a Deuterium excess, in comparison with the GMWL. 

Deuterium excess (“d-excess”) based on the LMWL was calculated according to Equation 2.9. 

 d-excess = d2H — 6.46d18O (2.9) 

Hence, if d-excess > -5.98, this indicates a Deuterium excess, in comparison with the LMWL. 
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2.3.3.3 Concentrations of methane (CH4 (aq)) and carbon dioxide (CO2 (aq)) 

Into each 12 mL crimp top vial containing a water sample, 5 mL of nitrogen gas was injected 

to displace (through an outflow needle) 5 mL of sample. This resulted in a 5 mL headspace. 

Samples were left at 4 °C for 2 hours to allow time for equilibration of dissolved gas with the 

headspace. The septum of each vial was pierced with a needle attached to a gas-tight syringe 

and 1 mL of headspace gas was sampled from each vial and injected into the GC-FID (Section 

2.2.2.4.2). Post-GC calculations were conducted as in Section 2.2.2.5. 

2.3.3.4 d13C-CH4  

The ratio 13C/12C, which was reported as the d13C isotopic composition of dissolved methane 

(d13C-CH4), was analysed at the University of York. A gas headspace equilibration technique 

(15 minutes) was employed, after which 6 mL of sample were injected into a 120 mL glass 

serum Wheaton vial (Viton-stoppered, He-flushed). The 2 mL sample loop was flushed with 6 

mL of headspace and this was injected into a 25 m MolSieve column in an Agilent 7890B GC 

connected to an Isoprime100 Isotope Ratio Mass Spectrometer (IRMS). The definition in 

Equation 2.5 applies for the d13C  of methane (d13C-CH4), and the reference was Vienna Pee 

Dee Belemnite (VPDB). For all samples with > 3 ng C, analytical precision errors were < 0.3‰. 

2.3.3.5 Sulfate isotopes (d34S-SO4) and (d18O-SO4): sample preparation and analysis 

Processing and analysis of the ratios 34S/32S (reported as d34S-SO4) and 18O/16O (d18O-SO4) of 

sulfate in water samples from the active layer was undertaken at Lancaster Environment 

Centre (LEC). The volume of sample required to obtain 350 µg barium sulfate for analysis by 

continuous flow isotope ratio mass spectrometry was calculated based on results from ion 

chromatography. Three types of resin were prepared for each sample: 4 mL of SupeliteTM 

DAX-8 (for removal of dissolved organic matter), 1 mL of Dowexâ 50 W-X8 (for removal of 

cations) and 1 mL of Dowexâ 1X8 (for removal of anions). Each resin was mixed with de-

ionised (Milli-Q) water to form a sludge and was loaded into an acid-washed syringe with a 

fritz in the base to retain the resin. The Dowexâ 50 W-X8 and 1X8 resins were conditioned 

with 15 mL 1 M HCl, followed by repeated rinses (3-4 times) until the pH was neutral. The 
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SupeliteTM DAX-8 resin was conditioned with 15 mL methanol, followed by repeated rinses 

(3-4 times). The prepared resins were stacked (Figure 2.10). 
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Figure 2.10 Two water samples flowing through resins in the laboratory. 

The Dowexâ AG2 X8 was blown dry and eluted by adding a 0.5 mL aliquot of 1 M HCl, leaving 

it for 20 minutes and then blowing the Dowexâ AG2 X8 dry and collecting the acid in an 

Eppendorf. This was repeated twice more, resulting in 1.5 mL volume in the Eppendorf. 0.2 

mL of 1 M BaCl2 was added to the eluted sample, and the samples were left for 48 hours at 4 

°C to allow the BaSO4 to precipitate. Each sample was rinsed three times (centrifuged at 3500 

rpm for 20 minutes, supernatant discarded, 1.5 mL de-ionised (Milli-Q) water added and 

mixed on a vortex, and repeated twice more, or more, until the pH was neutral). The 

supernatant was removed and the samples were dried at 40 °C.   

The dry samples were weighed into tin or silver capsules for analysis of d34S-SO4 and d18O-SO4 

respectively. Isotopic analysis was undertaken by Elemental Analyser (Elementar Pyrocube) 

linked to a continuous flow isotope ratio mass spectrometer (Isoprime 100 with dual inlet 

capability for injection of monitoring gases) and followed methods detailed in Wynn et al., 

2015. Combustion of BaSO4 within tin capsules yielded SO2 for determination of d34S. 

Sample	syringes	

Supelite™	DAX-8	
resin	

Dowex®	50	W-
X8	ca>on	resin	

Dowex®	1X8	
anion	resin	

Sa
m
pl
e	
flo

w
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Analytical conditions demanded the use of vanadium pentoxide as an oxidizing agent and a 

combustion temperature of 1050 °C. Pyrolysis of BaSO4 at 1450°C within silver capsules and 

in the presence of carbon black, yielded CO for the determination of d18O. d34S values were 

corrected against Vienna Cañon Diablo Troilite (VCDT) using within run analyses of 

international standards National Bureau of Standards (NBS)-127 and International Atomic 

Energy Agency (IAEA) SO-5. d18O values were corrected to VSMOW using within-run analyses 

of NBS-127 and IAEA-SO-6. Internal standard MLSG (a subglacial meltwater precipitate of 

BaSO4) was used to monitor drift and precision within each run as well as external precision 

between analytical sequences. Within-run standard replication (1SD) was better than +/- 

0.3‰ for both sulfur and oxygen isotope values. 

2.3.3.6 Precipitation correction 

Pre-melt snowpack chemistry data from Svalbard were compiled (Hodgkins et al., 1997; Wynn 

et al., 2006; Tye et al., 2007; Yde et al., 2008) in order to calculate the mean X/Cl ratios (where 

X is a major anion or cation). The following ratios in the snowpack were established: Na/Cl (= 

0.82), K/Cl (= 0.02), Mg/Cl (= 0.10), Ca/Cl (= 0.08) and SO4/Cl (= 0.11). By assuming that 

chloride behaves conservatively and is derived only from precipitation (pd), these ratios were 

used to calculate the fraction of each anion or cation in pore water (pw) derived from 

precipitation (fXpd; Equation 2.10): 

 
de[` = 	 5

e

)A
7
Y_f0

⋅ 5
)A

e
7
[0

 
(2.10) 
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The residual (fXnpd) represents the fraction of each anion or cation in pore water derived from 

weathering (Equation 2.11): 

 de_[` = 1 − de[`  (2.11) 

The d34S-SO4 values were corrected for snow inputs, following Equation 2.12 (from Hindshaw 

et al., 2016) and using the mean snowpack d34S-SO4 value of 17.5‰ from the compilation of 

pre-melt snowpack chemistry from Svalbard. 

 
dh+i_[` = 	

jdh+i[0 − d ⋅ d
h+iY_f0k

(1 − d)
 

(2.12) 

Where f is the fraction of sulfate derived from snowmelt. d18O-SO4 values were corrected in 

the same way as in Equation 2.12, using the mean snowpack d18O-SO4 value of 9.28‰ from 

the compilation of pre-melt snowpack chemistry from Svalbard. 

2.4 Data Analyses 

Data analyses were performed in Microsoft Excel and R (R Core Team, 2017) and graphics 

were prepared with Excel or the ggplot2 R package. Prior to testing correlations between 

variables, Shapiro Wilk’s method was used to test whether data were normally distributed. 

Many variables were not normally distributed and their relationships with one another were 

non-linear. Therefore, in correlation analysis, the Spearman correlation test (a test 

appropriate for non-normally distributed data) was selected for testing monotonous 

relationships between the variables because it is robust to skewed distributions and outliers 

(du Prel et al., 2010). The test ranks each variable from highest to lowest, assigning a ‘1’ to 

the largest number in each variable group, and ‘2’ to the second largest, and so on. The 

difference between the ranks is calculated and squared, and this is used to calculate the 

coefficient (r), which lies between -1 (a  strong negative monotonic correlation) and +1 (a 

strong positive monotonic correlation). In  a monotonic relationship, the value of the 
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dependent variable either never increases or never decreases as the independent variable 

increases. 

The Grubbs test (Grubbs, 1950), which is a test to detect outliers in data with a normal 

distribution, was conducted on log-transformed data to ensure a normal distribution and one 

outlying observation from the d13C-CH4 dataset from Ice-wedge North (d13C-CH4 = -150.08‰) 

was removed from the dataset. 
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Chapter 3. Biogeochemical Processes in the Active Layer and 

Permafrost of a High Arctic Fjord Valley 

3.1 Introduction 

Permafrost is found beneath 24% of the land area of the Northern Hemisphere and stores 

immense quantities (1330 to 1580 Pg) of organic carbon (Hugelius et al., 2014; Tarnocai et al., 

2009). Section 1.1 discussed that permafrost ecosystems are currently a net sink of carbon, 

owing to the drawdown of carbon dioxide exceeding emissions of methane and carbon 

dioxide (Kirschke et al., 2013; Parmentier et al., 2013; Schaefer et al., 2011).  As rapid climate 

change occurs in the high Arctic, rising permafrost temperatures and progressively deeper 

active layers are exposing previously frozen soil organic carbon and facilitating microbial 

decomposition of this soil organic carbon (Romanovsky et al., 2010a; Schuur et al., 2015; 

Koven et al., 2011). This releases carbon dioxide and methane to the atmosphere and is 

predicted to cause permafrost ecosystems to become a net carbon source by the mid-2020s 

(Lee et al., 2012; Schuur et al., 2015; Elberling et al., 2013).  

To predict the impact of permafrost thaw on biogeochemical cycling, it is necessary to 

understand the heterogeneity of biogeochemical processes in Arctic soils, both laterally and 

vertically. The distribution of stored organic carbon varies across the permafrost landscape, 

and with depth (Kuhry et al., 2010). Organic carbon accumulation and storage in permafrost 

is maximised in regions where waterlogged conditions dominate, as under these conditions, 

net primary production exceeds decomposition (Kolka et al., 2015). This is similar to 

peatlands, which have particularly large stores of organic carbon. Hydrology exerts a powerful 

influence on the type of gaseous products released from decomposing thawed permafrost 

organic carbon. For example, drained soil allows previously frozen organic carbon to 

decompose rapidly under oxic conditions, producing carbon dioxide (Liljedahl et al., 2012; 

Elberling et al., 2013), whereas water saturation limits the oxygen supply and enhances 

anaerobic respiration and methane production (Lipson et al., 2012; Olefeldt et al., 2013a; 

Turetsky et al., 2008). However, under anaerobic conditions, alternative electron acceptors 

such as nitrate, manganese, iron and sulfate may be used preferentially in the microbial 
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respiration of organic carbon, prior to the production of methane (Froelich et al., 1978). The 

use of alternative electron acceptors increases carbon dioxide production relative to 

methane, and hence the coupling between hydrology and the availability of alternative 

electron acceptors plays a crucial role in determining the magnitude of the permafrost carbon 

feedback.  

Hodson et al. (2016) conducted hydrological monitoring demonstrating that waters draining 

through reactive, fine-grained sediments in the lower elevation coastal sites of Svalbard’s 

Central Tertiary Basin (i.e. Adventdalen, the site of the present study) acquire reactive iron 

from pyrite oxidation. The authors found pyrite oxidation to be a process that exerts a major 

control upon the composition of fluvial runoff, as evidenced by the presence of high sulfate 

and cation concentrations. This process has also been observed in catchments close to 

Adventdalen (Bolterdalen and Longyeardalen; Rutter et al., 2011; Yde et al., 2008). This 

indicates that Adventdalen and the surrounding area has an abundance of alternative 

electron acceptors, such as ferric iron and sulfate, for the microbial oxidation of organic 

carbon. The abundance of ferric iron and sulfate in the waters draining through Adventdalen 

is important in the context of greenhouse gas emissions because Fe(III)- and sulfate-reduction 

are thermodynamically favourable to methanogenesis. Fe(III)-reduction has been found to 

suppress methanogenesis in the permafrost landscape of Barrow, Alaska (Lipson et al., 2012; 

Miller et al., 2015) and sulfate reduction has been observed to decrease methane production 

in wetlands (e.g., Pester et al., 2012). Hodson et al. (2016) used the highly correlated decrease 

in concentrations of sulfate and *Fe (all dissolved and colloidal iron that passed through a 

0.45 µm filter) at low flow to infer removal by sulfate reduction and precipitation of pyrite 

(FeS2), iron monosulfide (FeS) and perhaps elemental sulfur in waters draining through the 

Endalen alluvial sediment fan. However, the processes removing *Fe and sulfate from these 

waters were hypothesised to be limited by the paucity of organic matter (e.g., Raiswell & 

Canfield, 2012). The lack of organic matter has also been observed to limit the removal of *Fe 

and sulfate from pore water in fjord sediment cores in Svalbard (Wehrmann et al., 2014). It 

follows from these findings that it is necessary to test whether the accumulation of organic 

carbon in such environments results in enhanced removal of iron and sulfate from solution.  
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The objective of this chapter, therefore, is to determine how the vertical and lateral 

heterogeneity of organic carbon accumulation in Adventdalen influences the biogeochemical 

processes in the active layer and shallow permafrost sediments and pore water. This chapter 

presents and discusses the results of the geochemical analyses of the pore water and 

sediment from the cores of the active layer and shallow permafrost of Ice-wedge South and 

Ice-wedge North. 

3.2 Results 

Figure 3.1 (a-e) shows that the Ice-wedge North cores had a higher gravimetric water content 

than the Ice-wedge South cores. The gravimetric water content (g water g-1 dry sediment) for 

the two sites differed significantly according to Welch’s t-test (Table 3.1). N2 had a mean 

gravimetric water content of 6.05 g g-1, with no clear trend with depth, whereas the mean 

gravimetric water content in N1 was 2.79 g g-1 (maximum was 9.14 g g-1) and was highest at 

the surface and below 90 cm depth. In S1, however, the mean water content was 0.57 g g-1, 

with peaks near the surface, and at 105, 141 and 169 cm, and a maximum water content of 

1.32 g g-1. The mean gravimetric water content of S2a and S2b was similar (0.58 and 0.45 g g-

1, respectively). Both these cores had an increased water content near the surface. 

The sedimentary organic carbon content for the two sites also differed significantly according 

to Welch’s t-test (Table 3.1). Table 3.1 and Figure 3.1 show that Ice-wedge North had a higher 

organic carbon content than Ice-wedge South. The surface of N1 had a high organic carbon 

content (29.7%). In the permafrost, the organic carbon content was high, but variable (low at 

30-70 cm depths, peaking at 100-140 cm depth). S1, however, had a more uniform and lower 

organic carbon content (mean of 2.38 wt.%), but with a peak near the surface (5.40%) and at 

61 cm depth (4.65%).  
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Table 3.1 Results of Welch’s t-tests comparing organic carbon, gravimetric water content, Fe(aq), 
sulfate, CH4(aq), CRS, Feox1, Feox2, Fecarb and Femag for Ice-wedge South and Ice-wedge North. t is the t 
statistic, df is the degrees of freedom, p is the significance level, S.D. is the standard deviation of the 
mean and n is the number of samples. Asterisks indicate level of significance: p < 0.05 (*); p < 0.01 
(**); p < 0.001 (***). 

 

The concentrations of Fe(aq) and sulfate differed significantly between the two sites, according 

to Welch’s t-test (Table 3.1). Figure 3.2a and Figure 3.2b show that the Fe(aq) in N1 and N2 was 

< 3.0 mmol L-1. In N1, peaks in aqueous iron were at 31, 67, 93 and 155 cm depth. In N2, the 

peaks were broader and at depths: 15-73cm, 109-139cm, and 197 cm. Figure 3.2f and Figure 

3.2g show that while N2 had a sulfate concentration <1.3 mmol L-1, N1 had up to 4.7 mmol L-

1 in the peak at the active layer base. N1 had a clear trend in sulfate, increasing from the 

surface towards the base of the active layer, and then decreasing into the permafrost (with a 

small peak ~150 cm). 

 

Variable t df p-value
Units of 

mean
mean S.D. n mean S.D. n

Organic carbon -7.9 60.8 *** 2.30 0.86 30 12.5 9.94 60 Dry wt.%
Gravimetric 

water content
-7.4 72.5 *** 0.53 0.34 113 4.6 4.68 73 g g-1

Fe(aq) 8.7 127.8 *** 2.92 2.76 113 0.6 0.60 73 mmol L-1

Sulfate 14.6 125.9 *** 7.49 4.81 113 0.7 0.97 73 mmol L-1

CH4(aq) -10.3 70.1 *** 1.24 2.13 113 98.0 79.0 71 µmol L-1

CRS -3.1 6.2 * 0.01 0.01 9 0.1 0.04 7 Dry wt.%
Feox1 -4.1 11.6 ** 0.47 0.14 10 1.0 0.36 10 Dry wt.%
Feox2 7.5 17.7 *** 0.44 0.09 10 0.1 0.10 10 Dry wt.%
Fecarb -3.5 10.2 ** 0.50 0.11 10 1.0 0.43 10 Dry wt.%
Femag 5.1 17.4 *** 0.76 0.17 10 0.3 0.21 10 Dry wt.%

Ice-wedge South Ice-wedge North
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Figure 3.1 Depth profiles of water content (a-e), chloride concentration (f-j) and quantity of organic 
carbon (k-o) for N1, N2, S1, S2a and S2b. The horizontal dashed line on each plot represents the active 
layer depth in 2017. 
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Figure 3.2 Depth profiles of Fe(aq) (a-e) and SO4

2- (f-j) for N1, N2, S1, S2a and S2b. The horizontal dashed 
line on each plot represents the active layer depth in 2017. 

Figure 3.2 (c-e) shows that the concentration of Fe(aq) was low (<1.5 mmol L-1) in the active 

layer of all the Ice-wedge South cores. Fe(aq) in S1 peaked at 75 cm and 123 cm depth. The 
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Fe(aq) concentration in the permafrost of S2a and S2b had less distinct peaks, but increased 

with depth, reaching over 7.5 mmol L-1. Figure 3.2(h-j) show that sulfate followed similar 

depth trends to Fe(aq) for all three Ice-wedge South cores, reaching >20 mmol L-1 in core S2b. 

The sulfate concentration in the active layer was higher than the Fe(aq) concentration. 

Figure 3.3(a and f) shows that N1 had only low concentrations of calcium and magnesium in 

pore water (<6 mmol L-1), with the highest values of both cations in the uppermost core 

sample. N2 had similarly low concentrations of calcium and magnesium (Figure 3.3b and g). 

S1 displayed distinct peaks in all cations at the base of the active layer and >1 m depth in the 

permafrost (Figure 3.3 and Figure 3.4, c and h). S2a and S2b show the greatest range in 

concentrations of calcium and magnesium (reaching ~15 mmol L-1), with higher 

concentrations in the permafrost (Figure 3.3d, e, i and j). The concentration of potassium was 

generally <2.5 mmol L-1 in N2, S1, S2a and S2b (Figure 3.4), but reached >20 mmol L-1 in N1. 

The sodium concentration was <10 mmol L-1 in all the cores (Figure 3.4f-j). 
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Figure 3.3 Depth profiles of calcium (a-e) and magnesium (f-j) for N1, N2, S1, S2a and S2b. The 
horizontal dashed line on each plot represents the active layer depth in 2017. 
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Figure 3.4 Depth profiles of potassium (a-e) and sodium (f-j) for N1, N2, S1, S2a and S2b. The horizontal 
dashed line on each plot represents the active layer depth in 2017. 
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core (Table 3.2). The concentration of iron species was more variable down N1, with 

concentrations: Feox1 <1.6 wt.%, Feox2 <0.35 wt.%. Fecarb was the dominant extracted iron 

phase at N1, reaching a maximum of 1.57 wt.% (Table 3.2). Overall, N1 had less Feox2 and 

Femag than S1. Femag at N1 was <0.71 wt. %. N1 contained an order of magnitude more CRS 

than S1 (Table 3.2). N1 had the highest CRS at 15 cm depth and at 115 cm depth, which 

tracked the organic carbon content. AVS was detected at 15 cm in N1, and also in all three 

samples measured between 114 and 156 cm. 

Table 3.2 Summary statistics for the solid phase data of Ice-wedge South and Ice-wedge North, 
including AVS, CRS, Feox1, Feox2, Fecarb, Femag and organic carbon. 

 

Table 3.3 summarises the sulfate d34S-SO4 results obtained from samples of water from the 

active layer. Overall, the Ice-wedge South water was more depleted in 34S than the Ice-wedge 

North water. At Ice-wedge South, the water d34S-SO4 was most enriched in 34S at 30 cm depth, 

whereas the d34S-SO4 was more depleted in 34S in depths 9 cm and 60 cm. The Ice-wedge 

North d34S-SO4 was increasingly depleted in 34S with increasing depth. 

Unit N1 N2 S1 S2a S2b
mean 0.02 na 0 na na

(min-max) (0.00-0.05) na (0-0) na na
n 7 na 9 na na

mean 0.12 na 0.02 na na
 (min-max) (0.02-0.27) na (0.00-0.05) na na

n 7 na 9 na na
mean 0.97 na 0.44 na na

(min-max) (0.32-1.64) na (0.30-0.77) na na
n 10 na 12 na na

mean 0.13 na 0.44 na na
(min-max) (0.05-0.32) na  (0.24-0.52) na na

n 10 na 12 na na
mean 1.00 na 0.53 na na

(min-max) (0.38-1.57) na  (0.39-0.73) na na
n 10 na 12 na na

mean 1.58 na 4.11 na na
 (min-max) (0.55-3.43) na  (2.48-5.78) na na

n 10 na 12 na na
mean 8.55 16.7 2.41 1.9 2.34

(min-max)  (1.84-30.8)  (4.83-45.6)  (1.44-5.41)  (1.71-2.08) (2.06-2.66)
n 33 29 28 5 5

Fecarb
 dry 
wt.%

Femag
 dry 
wt.%

Organic 
Carbon

 dry 
wt.%

CRS  dry 
wt.%

Feox1
 dry 
wt.%

Feox2
 dry 
wt.%

Ice-wedge North Ice-wedge South

AVS  dry 
wt.%
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Table 3.3 d34S-SO4 (‰) in water from the active layer in polygons S1 and N2. 

 
 

3.3 Discussion 

The long-term biogeochemical evolution of this high Arctic floodplain has played a vital role 

in determining the biogeochemical processes and mineral precipitation within the active layer 

and permafrost sediments. Two sites with contrasting hydrological regimes displayed marked 

contrasts in the accumulation and decomposition of permafrost organic carbon. The quantity 

of organic carbon exerted a landscape-scale control on the active layer and permafrost 

biogeochemistry, regulating the consumption of alternative electron acceptors for the 

microbial oxidation of organic carbon. This indicates that the stabilization of the floodplain by 

vegetation (following deglaciation, e.g., Milner et al., 2009) caused the water-saturated areas 

of the floodplain to switch to iron- and sulfate-reduction, with net iron and carbon storage 

via increased pyrite (FeS2) and siderite (FeCO3) precipitation. In contrast, the drier areas 

stored far less organic carbon and were instead dominated by the biogeochemical signatures 

of the oxidation of pyrite.  

3.3.1 Dominant weathering reactions 

Previous work on waters draining glacial and periglacial sediments has demonstrated the 

relevance of pyrite oxidation coupled to both carbonate and silicate dissolution in the nearby 

Endalen, Bolterdalen and Longyeardalen catchments (Hodson et al., 2016; Rutter et al., 2011; 

Yde et al., 2008, respectively). The pore water profiles shown in Figure 3.1, Figure 3.2, Figure 

3.3 and Figure 3.4 represent the following attributes of both the active layer and the 

underlying permafrost: (1) the in situ distribution of extractable or adsorbed solutes, reactive 

mineral phases, and gases, and (2) the products of additional rock-water-microorganism 

interactions following thaw. Across both sites, except for N1 where potassium dominated, 

mean min max n
S1 9 -6.90 -6.95 -6.85 2
S1 30 -2.23 -3.74 -0.13 3
S1 60 -6.78 -8.37 -5.70 3
N1 9 15.1 3.33 25.3 3
N1 30 5.19 -0.98 11.4 2
N1 60 -2.83 -4.03 -2.16 3

Site Depth (cm) !34S-SO4
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calcium and magnesium were the dominant cations (Figure 3.3 and Figure 3.4), indicating that 

carbonate dissolution prevails over silicate dissolution, despite a low carbonate content in the 

sediments (<0.8 dry wt.% at Ice-wedge South) and low volumetric carbonate contents (~0.3 

to 1.8%, but up to 10.7%) in the Todalen and Endalen endmembers (Svinth, 2013). This 

contrasts with a study in a nearby unglaciated catchment (Fardalen) that found a relatively 

high proportion of silicate weathering, suggested to be the result of a combination of 

relatively rapid leaching of carbonate phases from the active layer and low rates of physical 

weathering in the sediments failing to expose fresh carbonates to weathering (Hindshaw et 

al., 2016). However, carbonate weathering has previously been shown to control the water 

chemistry of both glacial and non-glacial watersheds, even where the bedrock is 

predominantly silicate, with only trace amounts of carbonate (Horton et al., 1999; Blum et al., 

1998). This strongly suggests that although the low carbonate content coupled with the 

potential for active layer leaching might limit the importance of carbonate weathering in 

Adventdalen to some degree, the reactivity of the carbonate phases (compared to silicates) 

compensated for these factors. 

The weathering processes responsible for the acquisition of Ca2+ and Mg2+ are most likely to 

be represented by the following reactions (after Hindshaw et al., 2016; Tranter et al., 2002; 

and Yde et al., 2008): 

(3.1) Carbonate dissolution with carbonic acid 

 CanopMgp)sh + 	)sQ +	*Qs → (1 − u))vQw +	uxCQw + 2*)sh
o (3.1) 

(3.2) Sulfide oxidation coupled to carbonate weathering 

 4FeSQ 	+ 16Canop(Mgp)COh + 	15OQ + 	14HQO

→ 4Fe(OH)h + 16(1 − u)Ca
Qw + 16uMgQw + 16HCOh

o + 8SO+
Qo 

(3.2) 

The covariance between ions is used here to focus on the dominant weathering processes in 

the entire active layer and permafrost. Evidence for carbonate weathering as a source of both 

Ca2+ and Mg2+ was provided by the strong positive correlation between these ions at Ice-

wedge South (r = 0.95, p < 0.0001) and a regression slope close to unity (0.89). When 
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corrected for precipitation inputs of both cations, the slope remained unchanged (Figure 3.5), 

but the intercept decreased significantly towards zero (0.24 mmol L-1), suggesting that 

dolomite represents a credible, common source for both ions. 

  
Figure 3.5 Non-precipitation-derived magnesium (Mgnpd) and non-precipitation-derived calcium 
(Canpd) in the three cores from Ice-wedge South. The dashed black line corresponds to a 1:1 
relationship between Canpd and Mgnpd that represents dolomite dissolution. The solid orange line is a 
regression for all points from the three cores from Ice-wedge South (R2 = 0.69). 

Although (Ca+Mg)npd was strongly correlated with (SO4
2-)npd (p<0.0001, r = 0.81), the 

regression slope was 0.73, which suggests that some of the sulfate originated from other 

sources. The presence of silicates in the catchment indicates that sulfide oxidation coupled to 

silicate dissolution may play a role in making up the deficit. Since silicates in the catchment 

are mainly present as Na- and K-feldspars, they may be represented by the formulae: 

NaAlSi3O8 and KAlSi3O8 in the following reactions (Hindshaw et al., 2016; Tranter et al., 2002):  

(3.3) Silicate dissolution with carbonic acid 

 NaAlSihOÇ(É) + 	2COQ(vÑ) +	2HQO(A)

⇌ 	Naw(vÑ) +	2HCOh
o(vÑ) + 	AlSihOÇ(É) 

(3.3) 
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(3.4) Sulfide oxidation coupled to silicate dissolution  

 

16NanopKpSihOÇ(s) +	4FeSQ(aq) + 	15OQ(aq) +	86HQO(l) 

⇌ 

16(1 − u)Naw(aq) + 16uKw +	8SO+
Qo(aq) +	4Al+Si+Onâ(OH)Ç(s)

+ 	4Fe(OH)h(s) + 32H+SiO+(aq) 

 

 
 
(3.4) 

When silicate and carbonate dissolution are both driven by sulfide oxidation, the total base 

cation (Ca2++Mg2++Na++K+) ratio to SO4
2- tends towards unity when precipitation inputs are 

insignificant (Fairchild et al., 1994; Tranter et al., 2002; Wadham et al., 2010). However, this 

characteristic signature can be overprinted or masked by ion exchange reactions or mineral 

precipitation acting to remove base cations from solution. Prior to correction for precipitation 

inputs, the total base cation ratio to sulfate at Ice-wedge South was 0.98 (r2 = 0.68). The 

standard correction for precipitation inputs resulted in a lower regression slope of 0.76 (r2 = 

0.70; Figure 3.6). Of the base cations, sodium was particularly affected by masking effects, 

with non-precipitation-derived inputs appearing negative, similar to Cable et al. (2017). This 

is indicative of ion exchange reactions or mineral precipitation (e.g. albite) and hence 

precludes the use of the non-precipitation-derived ion ratios to estimate the importance of 

sulfide oxidation coupled to silicate dissolution. 

 
 



 63  

 
Figure 3.6 Total non-precipitation-derived base cations and non-precipitation-derived sulfate in the 
three cores from Ice-wedge South. The dashed black line corresponds to a 1:1 relationship between 
SO4 npd and (Canpd + Mgnpd + Nanpd + Knpd) that represents sulfide oxidation coupled to silicate 
dissolution. The solid orange line is a regression for all points from the three cores from Ice-wedge 
South (R2 = 0.70). 

Since the concentration of SO4
2- derived from pyrite oxidation was high and developed within 

a sometimes-anoxic environment, alternative processes of pyrite oxidation require 

identification. The reduction of solid-phase iron (oxyhydr)oxides (Equation 3.5), potentially 

produced by Equations 3.2 and 3.4, could provide the alternative mechanisms, resulting in 

the significant contribution of ferrous iron to the total cations in solution (Raiswell & Canfield, 

2012; Hodson et al., 2016).  

 2Fe(OH)h + 	FeSQ + 2HQO	 ⟶	3FeQw + 	2SO+
Qo +	10Hw (3.5) 

However, iron reduction need not be achieved in combination with sulfide oxidation 

(Equation 3.6). 

 4Fe(OH)h +	CHQO + 8H
w 	⟶	4FeQw +	11HQO +	COQ (3.6) 
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Figure 3.7 Total non-precipitation-derived base cations and non-precipitation-derived sulfate in the 
two cores from Ice-wedge North. The dashed black line corresponds to a 1:1 relationship between 
SO4npd and (Canpd + Mgnpd + Nanpd + Knpd) that represents sulfide oxidation coupled to silicate dissolution. 

In contrast to Ice-wedge South, Figure 3.7 shows that the Ice-wedge North pore waters 

generally do not plot on the 1:1 line, and there is no relationship between sulfate and total 

cations for these. Despite this, some samples from this site have a sulfate to chloride ratio 

greater than the snowpack sulfate to chloride ratio. This indicates that sulfide oxidation has 

enhanced the sulfate concentrations, as gypsum is absent from the bedrock, precluding this 

phase as a source of sulfate (Svinth, 2013). The absence of a 1:1 relationship between total 

cations and sulfate at this site therefore strongly suggests that the sulfate produced by sulfide 

oxidation is removed in part by sulfate reduction during respiration of organic matter 

(Equation 3.7; Wadham et al., 2004).  

 SO+
Qo + 2CHQO	 ⇌ 	HQS + 2HCOh

o  (3.7) 

The major ion ratios show that sulfide oxidation coupled to carbonate dissolution can 

contribute substantial quantities of sulfate to the sediment pore water at Ice-wedge South. 

In contrast, processes removing sulfate from the sediment pore water at Ice-wedge North 

preclude the use of major ion ratios to determine the significance of sulfide oxidation. In 
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addition, the evidence for iron- and sulfate-reduction indicates that microbially-mediated 

anaerobic oxidation of organic carbon produced bicarbonate and carbon dioxide.  

3.3.2 Sources and sinks of sulfate 

Sulfur and oxygen isotopic values of sulfate in waters provide compelling evidence for the 

identification of the sources and sinks of sulfate (e.g., Wynn et al., 2006, 2015; Turchyn et al., 

2013; Hindshaw et al., 2016). Pre-melt snowpacks in Svalbard at Midtre Lovenbreen (Wynn 

et al., 2006) and near Ny Ålesund (Tye & Heaton, 2007) reveal a d34S range of +17 to +18‰ 

and a d18O range of +8.6 to +9.7‰ for the precipitation-derived sulfate contribution to the 

active layer pore water (i.e. SO4
2-

pd). A study of dissolved organosulfur compounds in a raised 

peat bog showed that atmospheric sulfur in surface water sulfate is also taken up by plants 

(plant d34S was 0.1‰ and 4.2‰) and released when they decay, releasing humic organosulfur 

with d34S values reflecting the precipitation-derived origin of the sulfate (Bottrell et al., 2010). 

Other sources of sulfate to the pore water include the oxidative weathering of pyrite (OWP), 

as in Equations 3.2, 3.4 and 3.5. The mass weighted mean sulfide d34S values in the geological 

formations of the study region varies widely, from -40.6‰ in the Grumantbyen Formation to 

1.78‰ in the Aspelintoppen Formation (Dixon, 2020; Table 3.4). In the geological formations 

measured closest to the sites, the range in mass weighted mean sulfide d34S values is 

narrower, from -13.8‰ in the Carolinefjellet Formation to -2.01‰ in the Firkanten Formation 

(Dixon, 2020). These nearby d34S values are therefore used to discriminate the rock-derived 

sulfate from the snowpack-derived sulfate.  
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Table 3.4 The mean quantity of sulfide (wt.%) in bedrock, the numerical mean sulfide d34S (‰) in 
bedrock and the mass-weighted mean sulfide d34S (‰) in bedrock (Dixon, 2020).

  

The d18O of sulfate depends on the oxidation pathway; the oxygen atoms in the sulfate can 

originate either from atmospheric oxygen (+23.5‰) or from the surrounding water (-11‰ to 

-14‰ at our sites). In sulfate produced by OWP via Fe3+ (Equation 3.5), the oxygen atoms are 

derived solely from the surrounding water molecules. Experiments have demonstrated that 

there is no isotopic discrimination during the incorporation of oxygen atoms from water 

molecules into sulfate (Lloyd, 1968). In contrast, the incorporation of oxygen atoms from O2 

molecules into sulfate molecules during OWP via O2 causes an isotopic fractionation of -8.7‰. 

Consequently, sulfate produced by OWP via O2 is depleted in 18O by -8.7‰ compared with 

atmospheric O2, which is strongly enriched in 18O at +23.7‰ (Bottrell and Tranter, 2002). 

However, during OWP via O2, there can be isotopic exchange between water and oxygen 

atoms in sulfoxy anions of intermediate valency, obscuring the isotopic signal of atmospheric 

oxygen (Balci et al., 2007). Hence, even in OWP via O2, three out of four oxygen atoms in the 

sulfate molecule could show an isotopic signal from water (Bottrell and Tranter, 2002).  

To elucidate whether the sulfate in the samples from Adventdalen could derive from OWP 

only via O2, the approach of Bottrell and Tranter (2002) was applied to the d18O values of 

sulfate from the waters in the active layer. This conservative approach assumed that only the 

final oxygen atom incorporated into sulfate will still carry an isotopic signature indicative of 

its source (water or atmospheric oxygen). Only if there is less than 25% of the oxygen in a 

Mean S 
Numerical mean 

!34S
Mass weighted 

mean δ34S
wt. % ‰ ‰

Asplentoppen 4 0.09 0.44 1.78
Battfjellet 3 0.06 1.56 1.49

Frysjaodden 
(Gilsonryggen)

4 0.15 -4.98 1.34

Grumantbyen 3 0.10 -32.35 -40.60
Basilika 4 1.71 8.45 2.04

Firkanten (Endalen) 3 0.24 -6.22 -7.88
Firkanten (Todalen) 3 3.55 -0.76 -2.01

Carolinefjellet 3 0.15 -13.27 -13.79

Formation n
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sulfate molecule derived from O2 can it be certain that part of the sulfate was produced 

anoxically, by OWP via Fe3+. Equation 3.8 uses the measured d18O-H2O water isotopic 

compositions (Table 3.5) to calculate a threshold sulfate d18O (d18OTHRESH) for the formation 

of sulfate with one oxygen atom from O2 and three from water (Bottrell and Tranter, 2002). 

 dnÇsã3åçé3 = (23.7 − 8.7) 	× 	0.25 + 0.75	 ×		dnÇsã3åçé3  (3.8) 

In a comparison of d18O-SO4
2-  and d18OTHRESH-SO4

2-, only one sample from the Adventdalen 

active layer pore waters falls below the threshold for OWP via Fe3+ (Table 3.5), indicating that 

SO4
2-

npd in this sample must derive from OWP via Fe3+. In the rest of the samples, SO4
2-

npd could 

have derived from OWP via Fe3+, but the isotopic data do not require that and it is probable 

that SO4
2-

npd in the remaining samples instead derived from OWP via O2. This is a surprising 

result, as these samples are from between 9 and 60 cm below the ground surface and it was 

anticipated that oxygen penetration would decrease with profile depth. However, it is 

possible that radial oxygen loss from the roots of wetland plants may have provided an 

oxygen source to this deeper pore water (e.g. Johnston et al., 2014). In addition, ice-wedge 

cracking provides a route for ingress of oxygenated rain and meltwater.  
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Table 3.5 Oxygen isotopes of weathering-derived sulfate (d18O-SO4
2-

npd) and water (d18O-H2O) 
compared to the threshold for anoxic oxidation of pyrite (d18OTHRESH). 

 
 
 

Depth δ18O-SO4
2-
npd δ18O-H2O δ18OTHRESH

cm ‰ ‰ ‰
S 9 -5.36 -11.4 -4.78 anoxic
S 9 -3.36 -11.3 -4.75 oxic
S 30 3.47 -12.3 -5.45 oxic
S 30 3.48 -12.3 -5.45 oxic
S 30 2.54 -12.4 -5.57 oxic
S 30 3.95 -12.1 -5.30 oxic
S 60 1.39 -12.0 -5.24 oxic
S 60 3.83 -13.1 -6.05 oxic
S 60 5.66 -12.4 -5.57 oxic
N 9 9.16 -13.0 -6.00 oxic
N 9 5.65 -13.0 -6.01 oxic
N 9 1.40 -13.0 -5.96 oxic
N 30 5.06 -13.7 -6.56 oxic
N 30 6.12 -13.5 -6.34 oxic
N 60 5.33 -14.1 -6.79 oxic
N 60 5.39 -14.1 -6.79 oxic
N 60 4.32 -13.8 -6.59 oxic
N 60 4.32 -13.5 -6.38 oxic

OWPSite
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Figure 3.8 Water samples from the active layer of Ice-wedge South and Ice-wedge North in d18O-SO4 
and d34S-SO4 isotope space. The blue box represents the isotopic range of pre-melt snowpacks in 
Svalbard at Midtre Lovenbreen (Wynn et al., 2006) and near Ny Ålesund (Tye & Heaton, 2007). The 
solid blue line is a regression line illustrating BSR (R2 = 0.98). The nearby bedrock range is of the mass-
weighted mean sulfide d34S in the Firkanten and Carolinefjellet Formations (Dixon, 2020). 

Figure 3.8 shows how plotting sulfate d18O and d34S in sulfur isotopic space can provide a 

unique solution to elucidating the sulfate sources. The stoichiometric stage of pyrite oxidation 

results in sulfur isotopic fractionation between pyrite and sulfate (εSO4-pyrite) of -1.3‰ to -

0.6‰ (Balci et al., 2007; Brunner et al., 2008; Pisapia et al., 2007). The mass-weighted mean 

sulfide d34S of the nearby Firkanten and Carolinefjellet Formations, combined with the sulfur 

isotopic fractionation during the stoichiometric stage of sulfide oxidation, indicates that any 

water sample with a d34S-SO4
2-

npd value between -15.1‰ and -2.6‰ is likely to have derived 

all of its sulfur from the stoichiometric oxidation of pyrite. Figure 3.8 shows that half of the 

samples of pore water from Adventdalen contain SO4
2-

npd falling within this d34S-SO4
2-

npd 

range, indicating that the stoichiometric oxidation of pyrite is an important process 
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contributing sulfate to active layer pore water in Adventdalen. This corroborates the evidence 

from d18O-SO4
2- presented earlier.  

 Although all except for the most 34S-enriched sample have a d34S range that falls between 

the range of the bedrock and snowpack d34S values (Figure 3.8), the origin of sulfate in these 

samples in 34S and 18O cannot be explained purely as a mixing of sulfate derived from these 

two sources. There are two lines of evidence for this, as follows. Firstly, if mixing between 

(relatively 34S-enriched) precipitation-derived sulfate and (relatively 34S-depleted) 

weathering-derived sulfate were solely responsible for the d34S values of pore water sulfate 

in the active layer, a negative linear correlation between the concentration and d34S values of 

weathering-derived sulfate would result. There is no such negative linear correlation in the 

pore water samples from Adventdalen (R2 < 0.2). Secondly, a negative correlation between 

d34S-SO4
2- and the sulfate-to-chloride molar ratio (SO4

2-/Cl-) would result from mixing 

between weathering-derived sulfate (high SO4
2-/Cl-, relatively 34S-depleted) and precipitation-

derived sulfate (low SO4
2-/Cl-, relatively 34S-enriched). In fact, there is a positive correlation 

between d34S-SO4
2- and SO4

2-/Cl- (R2 = 0.49). Neither line of evidence supports mixing between 

snowmelt and pyrite oxidation as the sole reason for the d34S-SO4
2- values observed in the 

samples from Adventdalen. Hence, these statistical tests indicate that sulfate removal from 

the pore water by bacterial sulfate reduction (BSR) may be a factor in enriching the remaining 

sulfate in these samples. In BSR, there is preferential reduction of the lighter isotopes of sulfur 

and oxygen, leading to isotopic enrichment of the residual sulfate. It is common for the 

product H2S to be incorporated into iron sulfides or into organic matter (Brown, 1985, 1986; 

Blodau et al., 2007). This causes both d34S and d18O values in the remaining sulfate to increase, 

and so a positive correlation between them results (Mandernack et al., 2003). Since there is 

a positive correlation (R2 = 0.98) between d34S and d18O in four samples from Ice-wedge 

North, it seems highly likely that BSR occurs in the pore water of the active layer at Ice-wedge 

North. 

3.3.3 Iron and sulfur mineral precipitation 

The d34S and d18O values of pore water sulfate in the active layer are indicative of sulfate 

reduction at Ice-wedge North. The sulfate concentration was relatively low at Ice-wedge 
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North (<4.7 mmol L-1; Figure 3.2f and g), supporting the isotopic evidence for sulfate 

reduction. To produce a distinctive d18O-d34S signature of sulfate reduction, the reduced 

sulfur must be sequestered in the solid phase (iron sulfide or carbon-bonded sulfur). The 

reactions of iron with hydrogen sulfide can be expressed with the following simplified 

equation scheme, where Equation 3.9 represents hydrogen sulfide reacting with iron oxides 

to form iron monosulfide (AVS) and sulfur, and Equation 3.10 represents the formation of the 

more stable pyrite (CRS) from the metastable iron monosulfide and sulfur (Raiswell & 

Canfield, 2012): 

 2FeOOH +	3HQS	 → 2FeS +	Sâ +	4HQO   (3.9) 

 

 FeS +	Sâ 	→ FeSQ (3.10) 

 

The AVS formed in Equation 3.9 is comprised mainly of the iron sulfide minerals mackinawite, 

greigite and amorphous FeS. These phases are usually only stable for short periods before 

their re-oxidation or further reduction to pyrite (Chesworth, 2008). Table 3.2 shows that the 

AVS concentrations in the Ice-wedge North sediments were low, but detectable, in just over 

half the tested samples, reaching a maximum of 0.05 dry weight percent (equivalent to 6.02 

µmoles g-1 dry sediment; 115 cm depth). The low concentrations of AVS indicate that AVS is 

not a significant long-term store of the products of iron and sulfate reduction. The CRS 

includes pyrite, which is the most thermodynamically stable iron sulfide (Berner, 1967). 

Concentrations of CRS are higher than AVS, reaching 0.27 dry weight percent (equivalent to 

22.4 µmoles g-1 dry sediment; 115 cm depth) at Ice-wedge North (Table 3.2). 

The Ice-wedge North sediments contain abundant iron in the form of poorly crystalline 

ferrihydrite (Feox1), crystalline goethite (Feox2), magnetite (Femag), siderite (Fecarb) and pyrite 

(CRS). Ferrous iron in the porewaters is probably derived from the dissimilatory reduction of 

iron (oxyhydr)oxides (Equation 3.6), as well as the oxidation of allogenic and authigenic pyrite 

(Equation 3.5). In addition to reacting with hydrogen sulfide to form AVS or CRS, the dissolved 

ferrous iron reacts with bicarbonate ions to form siderite (FeCO3; Fecarb). Siderite tends to 

occur in reducing, CO2-rich, hydromorphic environments, such as peatlands (Chesworth, 
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2008). Table 3.2 shows that Fecarb reaches >1.5 dry wt.% in the sediments at Ice-wedge North, 

indicating that it is a more significant sink of ferrous iron than pyrite. As the precipitation of 

siderite dominates over the precipitation of pyrite, it is possible that an additional sink for the 

hydrogen sulfide is carbon-bonded sulfur (CBS), which has previously been shown to be an 

important sink for reduced sulfur in peat soils (Blodau et al., 2007; Spratt & Morgan, 1990). 

Although CBS was not measured in these cores, a strong positive correlation between organic 

carbon content and CRS (r = 0.9; Table 3.6) and also Fecarb (r = 0.67; Table 3.6) indicates that 

where the organic carbon content is high, sulfate reduction, CRS precipitation and Fecarb 

precipitation occur. Given the high concentration of sedimentary organic carbon, it seems 

likely that CBS exists and is forming here. 

Table 3.6 Spearman rank correlation coefficients (!) and significance (p). Asterisks indicate level of 
significance: p < 0.05 (*); p < 0.01 (**); p < 0.001 (***); not significant (n.s.). 

 

In contrast to Ice-wedge North, the d34S and d18O values of the sulfate in water from the active 

layer of S1 indicate primarily OWP via O2, and some OWP via Fe3+. Evidence for a mostly 

oxidised active layer at S1 is in the mostly low Fe(aq) concentration in the water from the active 

layer and the low water table (summer 2017). CRS and AVS concentrations at this site are low, 

corroborating the isotopic indications of an absence of sulfate reduction at this site. In 

addition, the siderite concentration is lower than at Ice-wedge North. Finally, Figure 3.2c and 

h show that aqueous iron and sulfate covary at this site, which is indicative of pyrite oxidation. 

Core Variable 1 Variable 2 ! p
S1 Chloride (mmol L-1) Gravimetric water content (g g -1) -0.63 ***

S2a Chloride (mmol L-1) Gravimetric water content (g g -1) 0.15 n.s.

S2b Chloride (mmol L-1) Gravimetric water content (g g -1) -0.38 *

N2 Chloride (mmol L-1) Gravimetric water content (g g -1) -0.33 *

N1 Chloride (mmol L-1) Gravimetric water content (g g -1) 0.05 n.s.

Organic Carbon Sulphate -0.68 ***
Organic Carbon Fe(aq) -0.61 ***

Fe(aq) (mmol L -1) Sulfate (mmol L -1) 0.56 ***

Organic Carbon (dry wt.%) FeCRS (dry wt.%) 0.90 ***

Organic Carbon (dry wt.%) Feox1 (dry wt.%) 0.75 ***

Organic Carbon (dry wt.%) Feox2 (dry wt.%) -0.85 ***

Organic Carbon (dry wt.%) Fecarb (dry wt.%) 0.67 **

Organic Carbon (dry wt.%) Femag (dry wt.%) -0.89 ***

N1 & S1
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Across both sites, the quantity of sediment organic carbon exerts a strong control on 

biogeochemical processes and mineral precipitation. Firstly, Table 3.6 shows that organic 

carbon content is strongly positively correlated with pyrite (r = 0.90), siderite (r = 0.67) and 

ferrihydrite (r = 0.75). In addition, organic carbon content is negatively correlated with sulfate 

(r = -0.68) and aqueous iron (R = -0.61). This further supports the mechanisms discussed 

above, whereby in organic carbon-poor sediment, the oxidation of pyrite produces aqueous 

iron and sulfate that are not reduced to form authigenic pyrite and siderite, whereas in 

sediments rich in organic carbon, the dissolved iron and sulfate are reduced and form the 

minerals siderite and pyrite. Finally, sediment organic carbon content appears to influence 

the formation of crystalline iron (oxyhydr)oxides and magnetite. Organic carbon content is 

negatively correlated with Feox2 (r = -0.85) and Femag (r = -0.89). A plausible explanation is a 

combination of cycling redox conditions and dissolved oxygen levels at Ice-wedge South 

which increase the crystallinity of ferrihydrite, coupled with an inhibition of the change from 

poorly crystalline ferrihydrite (Feox1) to crystalline goethite (Feox2) by organic compounds at 

Ice-wedge North (e.g., Herndon et al., 2017; Schwertmann & Murad, 1988; Amstaetter et al., 

2012; Thompson et al., 2006). These significant relationships demonstrate that the quantity 

of sediment organic carbon exerts landscape-scale controls on the active layer and 

permafrost biogeochemistry. 

3.3.4 Variations in pore water geochemistry due to physical processes 

The biogeochemical processes discussed above are overprinted on a set of complex physical 

processes, including hydrological inputs to the active layer (precipitation, advection and 

ground ice melt; Throckmorten et al., 2016), hydrological outputs from the active layer 

(evaporation, freezing and advection) and the diffusion of ions from regions of high 

concentration to regions of low concentration. Each physical process influences the 

distribution of chemical constituents in the active layer and their signatures commonly 

overlap or mask one another. For instance, both evaporation of water and ion freeze-out from 

the active layer concentrate porewater chemistry and enrich the d18O and dD of the remaining 

water (Throckmorton et al., 2016).  
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Kokelj and Burn (2003, 2005) suggest that the near-surface permafrost may be a sink for 

soluble materials, relative to the active layer, owing to (1) leaching of soluble materials by 

advection of water through the active layer, (2) the migration of ions downwards along 

thermally-induced suction gradients in fine-grained alluvium (“cryosuction”), and (3) solute 

exclusion by downward freezing in sandy silt alluvium. Assuming that chloride behaves 

conservatively, without participating in dissolution or precipitation reactions, its 

concentration profile in each core can in principle be used to establish the net effect of the 

physical processes described above (Jessen et al., 2014). For example, a constant 

concentration of chloride with depth would indicate that active layer leaching, ion migration 

and solute exclusion are not important in the pore water chemical profiles. A variable 

concentration with depth would indicate that these processes are causing vertical solute 

transport (Jessen et al., 2014) and presumably causing concentration gradients which induce 

solute diffusion.  

Table 3.7 Results from Welch’s t-test, which was used to test whether the concentration of chloride 
was significantly different for permafrost (PF) versus active layer (AL) in each core. t is the t statistic, 
df is the degrees of freedom, p is the significance level, S.D. is the standard deviation of the mean and 
n is the number of samples. Asterisks indicate level of significance: p < 0.05 (*); p < 0.01 (**); p < 0.001 
(***); not significant (n.s.). 

 

Figure 3.1(f-j) shows that the concentration of chloride varied with depth in all the cores, 

indicating that physical processes contributed to the pore water chemistry at specific depths. 

Welch’s t-test shows that only cores S2a and S2b had a significantly higher concentration of 

chloride in the permafrost compared with in the active layer (Table 3.7). The lack of a 

significant difference between the chloride concentration of the active layer and permafrost 

chloride in the three other cores indicates that the active layer was not leached relative to 

the permafrost. The upper permafrost in Adventdalen has aggraded syngenetically (Cable et 

al., 2017), which means that the present-day permafrost is comprised of former active layers 

that have been incorporated into the permafrost with sedimentation and a rising permafrost 

mean S.D. n mean S.D. n
S1 chloride 0.59 11.42 n.s. 1.84 0.77 9 1.67 0.52 20 mmol L-1

S2a chloride -6.44 28.01 *** 2.39 0.81 14 12.60 8.31 28 mmol L-1

S2b chloride -3.52 31.62 ** 4.66 2.20 14 11.81 10.29 28 mmol L-1

N1 chloride -1.22 22.15 n.s. 0.75 0.52 10 1.01 0.67 23 mmol L-1

N2 chloride -1.62 31.10 n.s. 0.76 0.40 13 1.35 1.78 27 mmol L-1

AL PF Units for 
meanCore Variable t df p
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table. The rate of advection through the active layer has probably remained unchanged as 

permafrost has aggraded. In contrast to these cores, cores S2a and S2b have significantly 

more concentrated chloride in the permafrost compared with the active layer, and the 

chloride concentration in their active layer is greater than in the other cores. This indicates 

either that there is an additional source of chloride to these cores, or that the rate of 

advection is lower in these sediments, both in the current and former active layers. The 

additional chloride in these cores could originate by diffusion from the underlying deltaic 

sediments (5 metres below the top of permafrost). Nearby cores display an increase in 

chloride concentration from a mean of ~1 mmol L-1 in the loess sediments (down to 2 m below 

top of permafrost) to a mean of ~68 mmol L-1 in the deltaic sediments (5 to 10 m below top 

of permafrost) (Cable et al., 2017). Diffusion upwards from these marine sediments may 

enhance the pore water chloride concentration at shallower depths in some locations, 

although the reasons for the location-specific diffusion are not clear. The data do not enable 

enhanced chloride concentration due to upward diffusion to be distinguished from enhanced 

chloride concentration due to low advection rates. However, far greater rates of advection 

are likely at Ice-wedge North on account of the spring-fed hydrologic regime and high water 

content. 

Solute exclusion by downward freezing results in the accumulation of solutes at the base of 

the active layer (Kokelj & Burn, 2005). S1, N1 and S2b show increased chloride in pore water 

at the base of the active layer (Figure 3.1f, h and j). This accumulation may be enhanced by 

the additional migration of chloride ions downwards along thermally-induced suction 

gradients. An additional effect of this would be that zones of solute enrichment correspond 

to locations of ice enrichment (Kokelj & Burn, 2005). Evaluation of the variation between 

chloride concentration and gravimetric water content for each core reveal that there was a 

significant (p < 0.05) weak to medium strength (r = -0.33 to -0.63) negative relationship 

between these two variables in cores S1, S2b and N2 (Table 3.7). The absence of this 

observation in the other cores indicates that it is solute exclusion by downward freezing, 

rather than cryosuction, that concentrates chloride in pore water at the base of the active 

layer. The medium strength negative correlation between water content and chloride 

concentration in core S1 suggests that evaporation contributes to the chloride concentration 

in this core, but the low r value suggests that this is not an important process. The weak 
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negative correlation between water content and chloride concentration in cores S2b and N2 

implies a minor role for evaporation in concentrating chloride in the pore water, but the very 

low r values again suggest that this process is not important. 

In summary, the active layer is not leached relative to the permafrost, except in cores S2a and 

S2b, where upwards diffusion of chloride from marine sediments may occur. Furthermore, 

three cores (S1, N1 and S2b) have experienced solute exclusion by downward freezing of the 

active layer, but cryosuction seems unimportant for vertical migration of ions in all cores. 

However, the variability in chloride concentration with depth confirms a complex 

contribution of physical processes in the observed pore water profiles. Despite the additional 

complexity of these physical processes, the use of covariances between ions has enabled the 

dominant biogeochemical processes in Adventdalen to be elucidated.  

3.4 Conclusions 

The evidence presented in this chapter demonstrates that the accumulation of organic carbon 

in the continuous permafrost of a deglaciated high Arctic valley regulates the biogeochemical 

processes across this landscape. Signals of pyrite oxidation were more pronounced in the dry, 

organic-poor sediments to the south of the Adventelva braided river, whereas the 

groundwater-fed, organic-rich sediments to the north of Adventelva displayed clear signs of 

iron- and sulfate-reduction, pyrite precipitation and siderite precipitation. As air 

temperatures continue to rise in the high Arctic and active layer depths increase, there are 

likely to be major changes in the iron, sulfur and carbon cycling in this valley, depending on 

how permafrost thaw impacts the geomorphology and hydrology of the ice-wedge polygonal 

terrain.  
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Chapter 4. Interacting Hydrogeomorphology and Biogeochemistry 

in a High Arctic Permafrost Setting 

The previous chapter examined the biogeochemical processes occurring in low-centred ice-

wedge polygons situated on fjord valley infill sediments. This chapter follows with a 

comparison of the biogeochemistry of a high-centred, degraded ice-wedge polygon situated 

between raised beaches and the biogeochemistry of low-centred ice-wedge polygons 

situated on fjord valley infill sediments.  

4.1 Introduction 

Low-relief wetlands cover a substantial area of the pan-Arctic landscape (<400 000 km2; 

Walker et al., 2005). In the high Arctic, the formation of wetlands in the polar desert depends 

on a reliable water supply during the thaw season, as water-saturated surface conditions are 

required to form wetlands and peatlands (Martini & Glooschenko, 1985; Woo & Young, 2006). 

The water supply may be from groundwater, streams and ponds, snowbanks or coastal water. 

The geomorphology of the landscape directly affects its hydrology (Mitsch & Gosselink, 2007) 

and the topographical setting of a wetland governs the inflows and outflows of water (Woo 

& Young, 2006). Topographical settings that receive an ample supply of water include 

depressions that have water inputs from drainage and a high retention of water, valley 

bottoms that receive both surface and ground water inflows, any slope below a late-lying 

snowbank that receives sustained meltwater runoff for an extended period, and many 

streambanks and shorelines that experience frequent inundation (Woo & Young, 2006). In 

recently-glaciated regions of the high Arctic, the topography is modified by isostatic rebound, 

periglacial and fluvial processes, all of which control the setting in which wetlands develop 

(Woo & Young, 2006). Raised beaches, which are formed during postglacial isostatic rebound, 

are widespread along the coasts of Svalbard (e.g., Forman et al., 2004; Salvigsen et al., 2005) 

and other high Arctic coasts (Funder et al., 2011; Nielsen et al., 2017; Dyke et al., 1997). 

Studies in Arctic Canada have found that peat commonly develops in the wetlands between 

raised beaches (Martini & Glooschenko, 1985), and this peat becomes older and more 

developed further inland from the coast (Price & Woo, 1988). Studies of coastal peat 
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development on Svalbard are rare (e.g., Rozema et al., 2006) and there have not been any 

studies focussing on wetlands and peat development between raised beaches in Svalbard. 

While postglacial isostatic rebound conditions the landscape in which wetlands and peatlands 

form, smaller-scale landforms, such as ice-wedge polygons, play a role in the site-specific 

hydrology (e.g., Liljedahl et al., 2012). In permafrost regions, the most easily identifiable 

landforms are ice-wedge polygons (Christiansen et al., 2016), and ~250 000 km2 of the Arctic 

is covered by polygon tundra (Minke et al., 2007). There are two main types of ice-wedge 

polygon: low-centred and high-centred. The formation of ice-wedges occurs when 

plummeting temperatures during winter cause the ground to cool and contract, resulting in 

thermal contraction cracks (Leffingwell, 1915; Lachenbruch, 1962). Snowmelt infiltrates the 

cracks, and when the temperature drops, the water refreezes and expands, widening the 

cracks. As the tensile strength of ice is lower than that of sediment, in subsequent years, 

cracking recurs in the ice (Lachenbruch, 1962; Mackay, 1984). Over centuries to millennia, 

ice-wedges form, owing to the continued cycle of cracking, infilling and refreezing. The 

formation of ice-wedges causes deformation of the surrounding sediment, resulting in the 

distinctive surface microtopography of low-centred polygons, with elevated rims along the 

polygon edges (Liljedahl et al., 2016). The small-scale variations in the ground surface 

microtopography associated with ice-wedge polygons regulate the landscape hydrology 

(Liljedahl et al., 2012). For example, the rims of low-centred polygons serve as hydrologic 

barriers, resulting in the centres of low-centred polygons flooding temporarily or 

continuously during the summer (Liljedahl, 2011). 

Ice-wedges are vulnerable to climate change (Jorgenson et al., 2015). In Alaska, for example, 

as air temperatures have risen, the degradation of ice wedges has increased over the past 

three decades (Jorgenson et al., 2006; Liljedahl et al., 2016; Raynolds et al., 2014). As the near 

surface permafrost thaws and ice-wedges melt, the result is differential ground subsidence 

(Liljedahl, 2011). This causes the troughs to subside and the polygon rims to collapse into the 

troughs, resulting in the polygons becoming flat-centred and then eventually high-centred. 

While many field studies have observed an increase in inundation and active layer thickness 

due to permafrost degradation (Olefeldt et al., 2013, and references therein), permafrost 

thaw can instead result in landscape drying, as drainage channels created by the loss of 
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ground ice take water away from wetlands (Godin et al., 2016). The complete transformation 

of low-centred polygons to high-centred polygons has hydrologic implications, which are that 

the centres of high-centred polygons are well-drained and the connected troughs form a 

drainage system, causing an overall landscape drying (Figure 4.1; Liljedahl et al., 2016).  
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Figure 4.1 A schematic diagram of the hydrologic impacts of ice-wedge polygon degradation, showing 
the transformation from a) undegraded polygons, with inundated low-centred polygons, through b) 

an initial degradation stage, with the ice wedge tops melting and the troughs becoming disconnected 
from each other, around either low- or high-centred polygons and c) an advanced stage of 
degradation, with high-centred polygons and well-connected troughs that form a drainage network 
and cause an overall drying of the polygonal landscape. Figure modified after Liljedahl et al. (2016). 

Ice-wedge polygon degradation influences the pathways of decomposition of organic carbon, 

with implications for the types of greenhouse gas released from thawing permafrost 

(Wainwright et al., 2015; Lara et al., 2015; Sachs et al., 2010). Low-centred polygons are linked 

with a higher summer methane flux, owing to their higher temperature, moister soil, 
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frequently higher proportion of vascular plants and higher concentrations of aqueous total 

organic carbon (Lara et al., 2015; Sachs et al., 2010; Wainwright et al., 2015). Numerous 

studies at the Barrow Environmental Observatory, Alaska, have observed decreases in 

methane emissions with permafrost degradation in ice-wedge polygon terrain. For instance, 

Vaughn et al. (2016) found that permafrost degradation caused local decreases in tundra 

methane emissions in ice-wedge polygon terrain. This was supported by findings from 

Wainwright et al. (2015), who used a multiscale zonation approach to show that low-centred 

polygons had a higher flux of methane than other polygon types. On Samoylov Island, in the 

southern central Lena River Delta, Sachs et al. (2010) also found higher methane fluxes from 

low-centred polygons than high-centred polygons. In comparison, there is less consensus on 

the effect of polygon degradation on carbon dioxide fluxes: while the lower soil moisture and 

decreased cover of vascular plants may result in increased carbon dioxide emissions 

(Wainwright et al., 2015), once plant growth in the peak growing season is accounted for, a 

net drawdown of carbon dioxide is observed in high-centred polygons (Lara et al., 2015). 

Finally, these studies have tended to focus on greenhouse gas emissions under ice-wedge 

polygon degradation, but further work is needed to elucidate the underlying biogeochemical 

processes leading to greenhouse gas emissions. 

There is clear evidence that ice-wedge polygon degradation is increasing in response to rising 

air temperatures in Alaska. In contrast, by comparing aerial photographs from 1948 to 2015 

of Adventdalen, Svalbard, Pirk et al. (2017a) found no striking ice-wedge degradation at Ice-

wedge South. The absence of dramatic degradation at this site indicates that ice-wedge 

degradation has not yet been triggered by the gradual increase in air temperature. As 

temperature and precipitation in Svalbard are predicted to further increase (Førland et al. 

2011) it becomes more likely that degradation of low-centred ice-wedge polygons in Svalbard 

will occur. The aim of this chapter is to characterise the dominant biogeochemical processes 

occurring in a high-centred polygon situated between raised beaches in Svalbard. The low-

centred polygons of Ice-wedge North are discussed in this chapter as a reference site, 

providing a basis for comparison. 
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4.2 Results 

The active layer depths at N1 and N2 (Ice-wedge North, low-centred polygons) were similar 

(63 and 65 cm, respectively; Table 4.1), yet the active layer at R1a and R1b (Revneset, high-

centred polygon) was shallower (36 cm; Table 4.1). While the water table depth was shallow 

at both N1 and N2 (3 and 0 cm below the ground surface, respectively; Table 4.1), the water 

table depth at R1a and R1b was much lower (31 cm below the ground surface; Table 4.1). 

Figure 4.2a shows that the water from the active layer at each site formed a distinct group on 

a d18O-d2H plot. The water from the active layer of Revneset was more enriched in 2H and 18O 

than the samples from Ice-wedge North. Figure 4.2b shows that the water from the active 

layer of Ice-wedge North had a greater d-excess relative to the GMWL than the water from 

the active layer of Revneset. Figure 4.2c shows that few samples from Revneset and Ice-

wedge North have a d-excess relative to the LMWL, and some samples from both sites have 

a d-excess below -5.98, indicating enrichment of these samples in the heavy isotopes. 

Table 4.1 Active layer and water table depths at the end of the thaw season in 2017 at Ice-wedge 
North (N1 and N2) and Revneset (R1a and R1b). Active layer depths are presented as a mean of three 
measurements within each polygon, with the minmum and maximum depth of each polygon active 
layer in brackets, and water table is one measurement, taken at the point of water sampling from the 
active layer. 

 

All the cores from Ice-wedge North and Revneset contained a high organic carbon content at 

specific depths (Figure 4.3). N2 had the highest organic carbon content at the surface (45 dry 

weight percent; Figure 4.3b), a minimum organic carbon content at 61 cm depth (5 dry weight 

percent), and a further peak in organic carbon content between 61 and 132 cm depth. N1 had 

a slightly lower organic carbon content (Figure 4.3a), but the trends with depth were similar 

to N2, in that the surface had a high organic carbon content (30 dry weight percent), the 

organic carbon content decreased with depth to 67 cm depth (1.84 dry weight percent), and 

between 83 and 147 cm depth, the organic carbon peaked again. R1a had a high organic 

carbon content at the surface (38 dry weight percent; Figure 4.3c), which decreased to a 

Site Date Active layer depth 
(cm)

Water table depth below ground 
surface (cm)

N1 31/08/2017 63.3 (60.0-65.0) 3
N2 02/09/2017 64.7 (62.0-68.0) 0

R1a and R1b 05/09/2017 36.0 (34.0-39.0) 31
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minimum at 45 cm depth (13 dry weight percent), increased to a maximum between 45 and 

109 cm depth, and finally was generally very low (~0.5 dry weight percent) below 109 cm 

depth. The profile from R1b was at a lower depth resolution, but clearly indicated a higher 

organic carbon content in the active layer and upper permafrost, compared to the lower 

permafrost (Figure 4.3d). 
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Figure 4.2 Water from the active layer of Ice-wedge North and Revneset:  a) d18O-H2O and d2H-H2O, 
with the Global Meteoric Water Line (GMWL; dashed line) and the Local Meteoric Water Line from 
Isfjord Radio (LMWL; dotted line), b) deuterium excess (d-excess) based on the GMWL and d2H-H2O, 
with a horizonal dashed line at d-excess = 11.27 (Equation 2.8), and c) deuterium excess (d-excess) 
based on the LMWL and d2H-H2O, with a horizonal dashed line at d-excess = -5.98 (Equation 2.9). The 
blue dashed line (oval) encompasses samples from 60 cm depth at Ice-wedge North. The green dashed 
line (oval) encompasses samples from 20 and 30 cm depth at Revneset. 
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Figure 4.3 Organic carbon content with depth in cores a) N1, b) N2, c) R1a and d) R1b. The horizontal 
dashed line on each plot shows the active layer depth at the end of the thaw season in 2017. 
 

200

150

100

50

0

200

150

100

50

0

500 10 20 30 40 500 10 20 30 40

De
pt

h 
(c

m
)

Organic Carbon Content (dry wt. %)

a b

c d



 86  

Table 4.2 shows that the dominant iron phase at Revneset was ferrihydrite (Feox1), whereas 

there were lower amounts of pyrite and siderite (CRS and Fecarb) at this site. In contrast, the 

sediments at Ice-wedge North contained more pyrite and siderite, but less ferrihydrite (Table 

4.2). Revneset contained more crystalline iron (oxyhydr)oxides (Feox2) than Ice-wedge North 

(Table 4.2), and the amounts of magnetite (Femag) at both sites were variable, with the Ice-

wedge North sediments containing slightly more magnetite overall. Concentrations of acid-

volatile sulfur (AVS) were low at both sites (Table 4.2). 

Table 4.2 Summary statistics for the solid phase data from Revneset and Ice-wedge North including 
AVS, CRS, Feox1, Feox2, Fecarb, Femag, and organic carbon. 

 

The concentrations of Fe(aq) in cores R1a and R1b were low (<0.7 mmol l-1; Figure 4.4c and d). 

In R1a, the concentrations of Fe(aq) were low but variable down to 117 cm, below which Fe(aq) 

concentrations were negligible until 173 cm, where a small peak in Fe(aq) was detected. The 

decrease in Fe(aq) occurred at a more shallow depth in R1b (75 cm) and concentrations of Fe(aq) 

remained low below this depth. The concentrations of Fe(aq) in N1 reached over 1.5 mmol L-1 

Unit N1 N2 R1a R1b
mean 0.02 na 0.007 na

(min-max) (0.00-0.05) na (0.00-0.04) na
n 7 na 8 na

mean 0.12 na 0.077 na
 (min-max)  (0.02-0.27) na (0.017-0.16) na

n 7 na 8 na
mean 0.97 na 1.04 na

(min-max) (0.32-1.64) na (0.18-3.26) na
n 10 na 8 na

mean 0.13 na 0.31 na
(min-max) (0.05-0.32) na (0.05-1.19) na

n 10 na 8 na
mean 1.00 na 0.42 na

(min-max) (0.38-1.57) na (0.16-0.81) na
n 10 na 8 na

mean 1.58 na 0.52 na
 (min-max) (0.55-3.43) na (0.05-2.10) na

n 10 na 8 na
mean 8.55 16.7 14.6 10.5

(min-max) (1.84-30.82)  (4.83-45.55) (0.09-38.1)  (1.38-36.1)
n 33 29 27 6

Ice-wedge North Revneset

AVS  dry wt. 
%
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%
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(~150 cm depth; Figure 4.4a), but many samples contained negligible Fe(aq). N2 had the 

highest concentrations of Fe(aq), reaching 3 mmol L-1 at the base of the core (Figure 4.4b). 

However, the rest of the core had lower, but variable, Fe(aq) concentrations, with no trend 

with depth. 
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Figure 4.4 Aqueous iron (Fe(aq)) with depth in cores a) N1, b) N2, c) R1a and d) R1b. The horizontal 
dashed line on each plot shows the active layer depth at the end of the thaw season in 2017. 

The concentrations of Mn(aq) were <0.15 mmol L-1 in all the cores from Ice-wedge North and 

Revneset (Figure 4.4). Notable characteristics of the concentration profiles are that N1 

displayed a peak in Mn(aq) at the active layer base (Figure 4.4a), N2 displayed a peak in Mn(aq) 

close to the ground surface (Figure 4.4b), R1a displayed an increase in Mn(aq) below 100 cm 

Figure 3. Aqueous iron (Fe(aq)) with depth in the cores a) N1, b) N2, c) R1 and d) R2.
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depth (Figure 4.4c), and R1b displayed a peak in Mn(aq) close to the ground surface (Figure 

4.4d).  
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Figure 4.5 Aqueous manganese (Mn(aq)) with depth in cores a) N1, b) N2, c) R1a and d) R1b. The 
horizontal dashed line on each plot shows the active layer depth at the end of the thaw season in 
2017. 

Sulfate concentrations in N1 were generally <2 mmol L-1, but the sulfate concentration peaked 

at >4 mmol L-1 at the base of the active layer (Figure 4.6a). The sulfate concentrations in N2 

Figure 4. Aqueous manganese (Mn(aq)) with depth in the cores a) N1, b) N2, c) R1 and d) R2.
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were the most consistently low of the four cores compared here; the sulfate concentrations 

only rose above 1 mmol L-1 in one sample point (Figure 4.6b). Sulfate concentrations in R1a 

were <0.30 mmol L-1 down to 105 cm depth, below which sulfate concentrations increased, 

but remained variable, rising over 6 mmol L-1 at the core base (Figure 4.6c). Sulfate 

concentrations in R1b were similarly low in the shallow sediments, but increased below 75 

cm, although concentrations in this core were always <4 mmol L-1 (Figure 4.6d). Figure 4.7 

shows the d34S-SO4
2- and d18O-SO4

2- of water from the active layer of Ice-wedge South, Ice-

wedge North and Revneset in d34S-d18O isotope space. This figure demonstrates that sulfate 

reduction occurred in water in the active layer at Ice-wedge North and Revneset. 
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Figure 4.6 Sulfate with depth in cores a) N1, b) N2, c) R1a and d) R1b. The horizontal dashed line on 
each plot shows the active layer depth at the end of the thaw season in 2017. 

Figure 5. Sulphate with depth in the cores a) N1, b) N2, c) R1 and d) R2.

200

150

100

50

0

200

150

100

50

0De
pt

h 
(c

m
)

0

Sulfate (mmol L-1)

2

a b

c d
4 6 0 2 4 6



 93  

 
Figure 4.7 Water samples from the active layer of Ice-wedge South, Ice-wedge North and Revneset in 
d18O-SO4 and d34S-SO4 isotope space. The blue box represents the isotopic range of pre-melt 
snowpacks in Svalbard at Midtre Lovenbreen (Wynn et al., 2006) and near Ny Ålesund (Tye & Heaton, 
2007). The solid blue line is a regression line illustrating BSR (R2 = 0.98). The nearby bedrock range is 
of the mass-weighted mean sulfide d34S in the Firkanten and Carolinefjellet Formations (Dixon, 2020). 

Overall, Figure 4.8 shows that chloride concentrations were low (<3 mmol L-1), except for at 

the base of N2, where they increased to over 9 mmol L-1. Despite the low concentrations, it is 

clear from Figure 4.8 that the concentration of chloride varied with depth in the cores. In core 

N2, the clearest variation was in the core base, where the concentration of chloride increased 

rapidly with depth (Figure 4.8b). N1 had no such increase in chloride at its base, but 

concentrations were variable up to 3 mmol L-1, with the highest chloride concentrations in 

the upper permafrost (Figure 4.8a). R1a had a variable chloride concentration with depth, but 

no trend in chloride concentration with depth (Figure 4.8c). Table 4.3 shows that R1b had 

significantly lower chloride concentrations in the permafrost compared to the active layer.  
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Figure 4.8 Chloride with depth in cores a) N1, b) N2, c) R1a and d) R1b. The horizontal dashed line on 
each plot shows the active layer depth at the end of the thaw season in 2017. 
 

 

Figure 7. Chloride with depth in the cores a) N1, b) N2, c) R1 and d) R2.
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Table 4.3 Results from Welch’s t-test, which was used to test whether the concentration of chloride 
was significantly different for permafrost (PF) versus active layer (AL) in each core. t is the t statistic, 
df is the degrees of freedom, p is the significance level, S.D. is the standard deviation of the mean and 
n is the number of samples. Asterisks indicate level of significance: p < 0.05 (*); p < 0.01 (**); p < 0.001 
(***); not significant (n.s.). 

 
 

4.3 Discussion 

4.3.1 Sources of water to the active layer 

Figure 4.2a shows that water in the active layer of Revneset was more enriched in 2H and 18O 

than water in the active layer of Ice-wedge North. This indicates that the primary water source 

to the active layer of Revneset was summer precipitation, whereas the primary water source 

to the active layer of Ice-wedge North was winter precipitation (e.g., Ala-aho et al., 2018; 

Throckmorton et al., 2016). This inference is supported by analysis of the deuterium-excess 

(“d-excess”) in water from the active layer, relative to the GMWL (Equation 2.8). The d-excess 

in precipitation over Svalbard displays a strong seasonality (Frankenberg et al., 2009). Winter 

precipitation has high d-excess values, owing to a strong kinetic effect as evaporation occurs 

from local source regions with contrasting air and sea temperature. In comparison, summer 

precipitation has a lower d-excess, due to a stronger influence from moisture evaporated 

from the warmer North Atlantic below 50 °N (Frankenberg et al., 2009). Figure 4.2b shows 

that all the samples from Ice-wedge North, except one, have a d-excess relative to the GMWL, 

indicating that they were principally sourced from winter precipitation. This is corroborated 

by field observations of snowmelt-fed springs providing water to Ice-wedge North from the 

adjacent mountains. The samples from Revneset generally had a lower d-excess relative to 

the GMWL, indicating that the principal water source to this site was summer precipitation. 

This was unexpected because a nivation hollow was observed to cut into the raised beach 

sediments upslope of the high-centred polygon, leading to the expectation that snowmelt 

mean S.D. n mean S.D. n
N1 chloride -1.22 22.15 n.s. 0.75 0.52 10 1.01 0.67 23 mmol L-1

N2 chloride -1.62 31.10 n.s. 0.76 0.40 13 1.35 1.78 27 mmol L-1

R1a chloride -0.66 12.97 n.s. 0.89 0.37 7.00 1.01 0.53 20 mmol L-1

R1b chloride 9.70 21.7 *** 0.91 0.13 7.00 0.33 0.16 22 mmol L-1

AL PFCore Variable t df p-value Units for 
mean
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contributed to water in the active layer. However, the snow accumulation at this site is 

markedly lower than in the mountains, largely due to wind removal during winter. 

Throckmorton et al. (2016) argue that snowmelt is unlikely to be an important contributor to 

water in the active layer, as during peak snowmelt, the active layer is poorly developed, so 

snow melt runs off quickly into larger stream channels. This could be particularly true for a 

wind-exposed (cold) high-centred ice-wedge polygon, such as that studied at Revneset. 

Despite the assertion that snowmelt occurred before significant active layer development, 

the active layers at Ice-wedge North preserve a signature of winter precipitation (snow). This 

is difficult to reconcile with the paradigm of a poorly-developed active layer during snowmelt, 

but it may be related both to the continuous supply of snowmelt from the mountains, which 

would melt later than snow at a (warmer) lower elevation close to the raised beaches and 

sustain a water supply all summer. The thicker active layer at Ice-wedge North (Table 4.1) 

may be indicative of more rapid active layer thaw at Ice-wedge North compared to at 

Revneset, meaning that snowmelt was more likely to percolate into the Ice-wedge North 

active layer than the Revneset active layer. In addition, water flow through peat typically 

occurs mainly in the upper, seasonally aerobic layer (“acrotelm”), and in the deeper, 

permanently anaerobic layer (“carotelm”), there is only a very low thoughflow (Damman, 

1986; Kolka et al., 2015). Hence, the rate of water flow through the unsaturated sediments of 

Revneset may be greater than the water flow through the saturated sediments of Ice-wedge 

North, meaning that the isotopic signature of snowmelt would be lost more quickly from the 

water in the active layer of Revneset. 

Calculating a d-excess of the samples using the LMWL (Equation 2.9) tests whether 

modifications have occurred since precipitation (summer or winter) reached the active layer. 

Water left behind by evaporation is more enriched in the heavy isotopes relative to the LMWL 

and a d-excess value below -5.98 may indicate that evaporation has affected the sample (Ala-

aho et al., 2018). Figure 4.2c shows that some samples from Ice-wedge North and Revneset 

have d-excess values below -5.98. However, those samples with the most negative d-excess 

values (blue and green dashed line ovals; Figure 4c) are from deeper in the active layer (60 

cm depth at Ice-wedge North and 20 to 30 cm depth at Revneset). It is unlikely that 

evaporation has a stronger influence on waters from the deeper active layer relative to waters 
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from the shallow active layer. In addition, studies near Barrow (on the coastal plain of Alaska) 

found that evaporation effects are more significant in early summer to midsummer, with 

these effects diminishing after midsummer (Throckmorton et al., 2016; Koch et al., 2014). It 

is probable that a similar seasonal pattern in evaporation occurs in Adventdalen and 

Revneset. An alternative explanation to evaporation for those samples with a low d-excess is 

that seasonal ice melt contributed water to the deeper active layer (e.g., Throckmorton et al., 

2016). As water freezes, water molecules containing the heavier isotopes (deuterium and 

oxygen-18) preferentially freeze out of solution, leaving their lighter isotopic counterparts in 

the unfrozen water (Throckmorton et al., 2016). This is freeze-out fractionation and results in 

active layer and shallow permafrost ice enriched in deuterium and oxygen-18, with a d-excess 

below -5.98. Towards the end of summer, as the active layer deepens, melting of this ice 

results in water with a low d-excess, such as that observed in the deeper active layers of Ice-

wedge North and Revneset. Overall, then, the d2H-H2O and d18O-H2O of the water in the active 

layer of Revneset and Ice-wedge North indicated that the primary water source to Ice-wedge 

North was winter precipitation, whereas the primary water source to Revneset was summer 

precipitation, with seasonal ice melt as a secondary water source in the deeper active layers 

of both sites. 

4.3.2 Organic carbon accumulation 

A net accumulation of organic matter occurs when the rate of primary production or 

deposition surpasses the rate of decomposition (Mitsch & Gosselink, 2007). Figure 4.3 shows 

that cores from both Revneset and Ice-wedge North contained an abundance of organic 

carbon sequestered in distinct depths of the active layer and permafrost. A high organic 

carbon content is characteristic of peat formed under anaerobic conditions, as net primary 

production generally exceeds decomposition under waterlogged conditions (Kolka et al., 

2015), implying that the sediments rich in organic carbon were deposited under stagnant 

conditions. In ice-wedge polygonal tundra, stagnant conditions are more likely in the centres 

of low-centred polygons because the rims of low-centred polygons tend to block water 

drainage, whereas the troughs of high-centred polygons facilitate relatively fast and effective 

drainage of water from the polygonal networks (Liljedahl et al., 2012). Thus, frequently, low-

centred polygon centres are flooded with stagnant water during summer. A high organic 
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carbon content in the cores hence implied sediment deposition under anaerobic conditions 

in the centre of a low-centred polygon. This is congruent with the ice-wedge polygon 

morphology at Ice-wedge North, as here, the sampled polygons were low-centred. However, 

the sampled polygon at Revneset was high-centred, and so a high organic carbon content in 

the well-drained active layer was unanticipated. The high organic carbon content in the active 

layer and upper permafrost implied that the polygon has undergone a transformation from 

low-centred and water-saturated to high-centred and well-drained.  

Chapter 3 showed that the organic carbon content and degree of water saturation of the 

Adventdalen sediments had a strong influence on the biogeochemical processes occurring 

across the landscape. The organic carbon content was an important factor in determining the 

consumption of electron acceptors. Revneset presented a different picture, where 

degradation of an ice-wedge polygon led to a high organic carbon content that was not always 

matched by the present-day water saturation. 

4.3.3 Biogeochemical processes driving carbon dioxide production  

In addition to determining the accumulation of organic carbon in the landscape, the 

hydrologic conditions under which previously frozen organic carbon is decomposed have a 

strong influence on the type of gaseous products of decomposition. Under drained 

conditions, organic carbon can be decomposed aerobically, producing carbon dioxide 

(Elberling et al., 2013; Liljedahl et al., 2012), whereas under water-saturated conditions, 

organic carbon can be decomposed anaerobically, producing carbon dioxide and/or methane 

(Lipson et al., 2012). The ratio of carbon dioxide to methane produced under anaerobic 

conditions is dependent on the availability of alternative electron acceptors, such as nitrate, 

manganese, iron and sulfate, in the system (Froelich et al., 1978). The final stage in the 

remineralisation of organic matter in anaerobic systems is methanogenesis (Kiene, 1991). 

Carbon dioxide production relative to methane production is increased by the use of 

alternative electron acceptors. Hence, the magnitude of the permafrost carbon feedback is 

at least partly determined by hydrology and the availability of alternative electron acceptors. 
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Iron has been shown in many Arctic permafrost locations to exert an influence on methane 

and carbon dioxide production. For instance, the Barrow basin system, where much of the 

previous work on interactions between iron and organic carbon in permafrost has been 

conducted, is particularly well-suited to the study of these interactions because of low or 

absent nitrate, sulfate and manganese in the porewaters (Lipson et al., 2010; Miller et al., 

2015) and a high water table (Liljedahl, 2011). Here, Lipson et al. (2010) showed that the 

reduction of ferric iron had a function in anaerobic respiration in an Arctic peat soil in Barrow, 

Alaska. Iron reduction increased carbon dioxide production relative to methane production. 

Furthermore, the end product of the iron reduction was siderite, which was found in 

substantial quantities in the sediments; siderite is a store of both reduced iron and carbon, 

and therefore warrants further research attention. For instance, the d13C values in authigenic 

siderite reflect the biogeochemical processes that yield groundwater dissolved inorganic 

carbon; methanogenic environments result in positive d13C values, whereas methanotrophic 

environments result in d13C values below -40‰ VPDB (Ludvigson et al., 2013; Ludvigson et 

al., 1998). Additionally, the mineralogy of iron oxides impacts the organic carbon 

decomposition pathway (Herndon et al., 2017; Herndon et al., 2015).  For instance, Herndon 

et al. (2017) showed that whilst ferrihydrite minerals could suppress methanogenesis by 

being energetically favourable electron acceptors, the crystalline iron oxides were not as 

easily-reduced in anaerobic respiration and so did not decrease methane production.  

Svalbard presents a different geochemical context from Barrow, on account of the weathering 

of reactive bedrock and the relatively recent glaciation (Hodson et al., 2016), and so is an ideal 

environment to study some of the alternative anaerobic respiratory pathways. The 

substantial quantities of siderite and pyrite at Ice-wedge North were indicative of iron and 

sulfate reduction. As discussed in Chapter 3, the prevalence of these processes was controlled 

by the organic carbon content. Iron reduction appeared to be particularly significant at Ice-

wedge North, as indicated by the high quantities of siderite. In contrast, iron reduction 

appeared to be less important at Revneset. The primary indication of this was the relatively 

low concentrations of siderite and pyrite at Revneset (Table 4.2). Ferrihydrite was the 

dominant solid iron phase close to the surface at Revneset. Ferrihydrite is an amorphous, 

poorly crystalline iron oxide mineral that is precipitated as a result of the oxidation of Fe(II) 

(Megonigal & Hines, 2004). In fact, the most common product of Fe(II) oxidation is ferrihydrite 
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(Straub et al. 1998). It takes weeks to months for the diagenesis of ferrihydrite to produce 

crystalline iron oxides such as haematite and goethite. Organic compounds can slow down 

this transition (Schwertmann & Murad, 1988; Amstaetter et al., 2012). In addition, the 

association between ferrihydrite and organic compounds can protect the organic compounds 

from degradation (e.g., Herndon et al., 2017, and references therein). Although the data from 

Revneset do not provide direct evidence of the stabilising effects of interactions between 

ferrihydrite and organic carbon, it is likely that such interactions in the shallow sediments of 

Revneset protected both the ferrihydrite from diagenesis and the organic carbon from 

degradation. Overall, iron oxidation exceeded iron reduction in the shallow sediments of 

Revneset.  

Despite the dominance of iron oxidation over iron reduction at Revneset, there were low and 

variable concentrations of Fe(aq) in the active layer and shallow permafrost of Revneset (Figure 

4.4), indicating that minor iron reduction occurred. In addition, the amounts of magnetite and 

crystalline iron oxides increased in the deeper permafrost. The greater amount of magnetite 

indicates that the bedrock has a stronger influence deeper in the permafrost at Revneset. The 

increase in crystalline iron oxides with depth may suggest that due to the lower 

concentrations of organic carbon, the diagenesis of ferrihydrite occurred more rapidly. In 

contrast, Ice-wedge North had no such increase in magnetite and crystalline iron oxides. 

Ferrihydrite was also less important here, which may be due to the relative importance of 

iron reduction over iron oxidation.  

Although iron reduction is well-studied in permafrost regions, alternative anaerobic 

respiratory pathways, such as manganese reduction and sulfate reduction, are less frequently 

observed in permafrost settings. A study of fjord sediments in Svalbard indicated that high 

manganese concentrations in the porewaters could be the result of dissimilatory metal 

reduction of the manganese oxide phases (Wehrmann et al., 2014). If dissimilatory 

manganese reduction in the cores from Revneset and Ice-wedge North were limited by the 

organic carbon content, there would be a positive correlation between Mn(aq) and organic 

carbon content. However, across all cores together, there was a weak negative correlation 

between Mn(aq) and organic carbon content (r = -0.37, p < 0.001), indicating that on the 

landscape scale, dissimilatory manganese reduction was not limited by the organic carbon 



 101  

content. Despite this, in R1b and N2, Mn(aq) concentrations peaked near the ground surface 

(Figure 4.5). This is similar to a typical marine sediment, where the hypothetical porewater 

profile shows a depth sequence of electron acceptors used in sedimentary organic carbon 

oxidation, with Mn(aq) peaking below oxygen and nitrate, but above Fe(aq) and sulfate under 

steady state conditions (Froelich et al., 1978). Overall, however, manganese reduction had a 

negligible contribution to the carbon dioxide production in these sediments.  

N1 displayed significant negative correlations between Mn(aq) and organic carbon content (r 

=-0.51, p < 0.01), as did R1 (r = -0.57, p < 0.01). These negative correlations suggest that the 

oxidation of pyrite by manganese oxides contributed Mn(aq) to the pore water of the 

sediments. The positive and highly significant correlation between Mn(aq) and sulfate across 

all cores together (r = 0.61, p < 0.001) supported that manganese reduction coupled to sulfide 

oxidation was an important contributor of Mn(aq) across the landscape. The oxidation of pyrite 

by manganese oxides in anoxic sediments was shown by Schippers & Jorgensen (2001) to 

proceed by the following equation (Equation 4.1): 

 

FeSQ + 7.5	MnOQ + 11	H
w → 	Fe(OH)h + 2	SO+

Qo + 7.5	MnQw + 4	HQO 

 
(4.1) 

This mechanism of manganese reduction does not produce carbon dioxide because it is not 

directly linked with the oxidation of organic carbon. The concentration of manganese was 

substantially lower than the concentration of sulfate in the cores, and this indicates that while 

the oxidation of pyrite by manganese oxides contributed much of the Mn(aq), there must be 

other mechanisms that made up the deficit in sulfate. Unlike in Chapter 3, where pyrite 

oxidation was shown to exert a landscape-scale control over the concentrations of Fe(aq) and 

SO4
2-, in this site comparison, it is more challenging to determine the importance of pyrite 

oxidation, due to the generally higher organic carbon content causing iron and sulfate 

reduction to mask the signatures of pyrite oxidation. Despite this, many samples from Ice-

wedge North and Revneset have a sulfate to chloride ratio greater than the snowpack sulfate 

to chloride ratio (0.11). This indicates that sulfide oxidation has enhanced the sulfate 
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concentrations, as gypsum is absent from the bedrock and so sulfate cannot be derived from 

gypsum (Svinth, 2013). 

Consistent with deposition under anaerobic conditions, both Revneset and Ice-wedge North 

displayed strong evidence for sulfate reduction. Sulfate reduction is observed in permafrost 

settings less often than iron reduction, but Rivkina et al. (1998) detected ferrous iron, acid-

soluble sulfide and methane in frozen permafrost sediment samples from northeastern 

Siberia. The acid-soluble sulfide (greigite and mackinawite) was inferred to have formed in-

situ, indicating a role for sulfate reduction in these sediments. Chapter 3 demonstrated that, 

in the absence of processes removing sulfate, the oxidative weathering of pyrite caused high 

concentrations of sulfate in the cores from Ice-wedge South. The catchment bedrock geology 

is the same for all our sites. Therefore, in the absence of processes removing sulfate, we might 

expect to observe up to 18 mmol L-1 sulfate in the porewaters, owing to the oxidation of pyrite 

(see Chapter 3, Figure 3.2). As the concentrations of sulfate were <7 mmol L-1 and <5 mmol L-

1 at at Revneset and Ice-wedge North respectively (Figure 4.6), this is indicative of sulfate 

reduction. However, concentrations of sulfate are variable with depth (Figure 4.6) and there 

was a strong negative correlation between sulfate concentration and organic carbon content 

for all cores (r =-0.66, p < 0.0001). This demonstrates that organic carbon content controlled 

sulfate reduction. Further evidence for sulfate reduction at Ice-wedge North and at Revneset 

is shown in the sulfate isotopes plot from Chapter 3. It is presented here with an additional 

point from Revneset, which fits with the points from Ice-wedge North that display evidence 

of BSR (Figure 4.7), despite an absence of evidence for the active formation of pyrite at 

Revneset. This may indicate that sulfate reduction occurred at this site, but that the redox 

conditions were not consistently low enough for much pyrite to form. Alternatively, perhaps 

the high organic carbon content of the active layer and upper permafrost meant that the 

proportion of mineral soil was too low for pyrite oxidation to contribute much sulfate to the 

porewater in the first place, thereby meaning that even under anoxic conditions, sulfate 

reduction was limited simply by the low concentration of sulfate. Finally, given that only one 

sampling depth at Revneset yielded sufficient sulfate mass for isotopic analysis, it could be 

that this one point instead represents mixing between sulfate derived from the OWP via O2 

and sulfate derived from precipitation. Further sampling and analysis are required to 
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elucidate whether the d34S-SO4
2- and d18O-SO4

2- values in the sample at Revneset are 

representative of BSR or of mixing between the different sources of sulfate. 

4.3.4 Depth variations in pore water geochemistry 

The pore water profiles shown in Figure 4.3 to Figure 4.6 and in Figure 4.8 represent the 

following attributes of both the active layer and the underlying permafrost: (1) the in situ 

distribution of extractable or adsorbed solutes, reactive mineral phases, and gases, and (2) 

the products of additional rock-water-microorganism interactions following thaw. As 

discussed in Chapter 3, the variations in pore water geochemistry with depth in the 

permafrost and the active layer are influenced by multiple factors. These include physical 

factors, such as hydrological inputs to the active layer (precipitation and ground ice melt; 

Throckmorten et al., 2016), hydrological outputs from the active layer (evaporation, freezing 

and advection); and the diffusion of ions. Each process influences the pore water chemistry, 

and it can prove challenging to gauge the effect of each separate process. Kokelj & Burn, 

(2003, 2005) suggest that the shallow permafrost may be a sink for soluble materials, relative 

to the active layer, on account of (1) leaching of soluble materials by advection of water 

through the active layer, (2) the migration of ions downwards along thermally-induced 

suction gradients in fine-grained alluvium (“cryosuction”), and (3) solute exclusion by 

downward freezing in sandy silt alluvium. Here, the approach used in Section 3.3.4 is applied 

to the cores from Revneset. The cores from Ice-wedge North are discussed briefly as a 

reference. Assuming that chloride moves conservatively, without participating in dissolution 

or precipitation reactions, its concentration profile in each core is used to trace the variations 

in physical processes that concentrate or dilute pore waters (Jessen et al., 2014). 

A constant concentration of chloride with depth would indicate that active layer leaching, ion 

migration and solute exclusion are unimportant in the cores. A variable concentration with 

depth would indicate that these processes are causing vertical solute transport (Jessen et al. 

2014) and presumably causing concentration gradients that induce diffusion. Figure 4.8 

shows that the concentrations of chloride did indeed vary with depth in all our cores, 

indicating that physical processes were removing or concentrating chloride at specific depths. 

However, none of these profiles are indicative of marine pore waters, in contrast to the 
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deeper pore waters analysed by Cable et al. (2017). Welch’s t-test shows that cores N2, N1, 

and R1a did not have significantly different concentrations of chloride in the active layer and 

permafrost (Table 4.3). Welch’s t-test shows that the permafrost of core R1b had significantly 

lower concentrations of chloride than the active layer (Table 4.3), suggesting that the active 

layer was less leached than the permafrost. However, the difference in chloride 

concentrations in this core was <1 mmol L-1 between the active layer and the permafrost, and 

so the decrease in leaching has only been small. The absence of a significant difference in 

chloride concentration between the active layer and the permafrost in the other three cores 

may indicate that the rate of advection through the active layer has remained unchanged as 

the permafrost has aggraded. The increased chloride concentration at the base of N2 was 

discussed in more depth in Chapter 3, but in summary it is highly probable that the enhanced 

chloride concentrations were due to upward diffusion from the cryopeg or frozen deltaic 

sediments. 

Solute exclusion by downward freezing results in the accumulation of solutes at the base of 

the active layer (Kokelj & Burn, 2005). N2, R1a and R1b did not display distinctive chloride 

accumulation at the base of the active layer (Figure 4.8a-c). There was a small accumulation 

of chloride close to the base of the active layer in N1 (Figure 4.8b). A further possibility is that 

this accumulation may instead have been caused by the migration of chloride ions downwards 

along thermally-induced suction gradients. In that case, zones of solute enrichment would 

correspond to locations of ice enrichment (Kokelj & Burn, 2005). Evaluation of the 

correlations between chloride concentration and gravimetric water content in N1 reveal that 

there is no significant correlation between these two variables (r = 0.051, p = 0.78). 

Therefore, it is more likely that this small solute/chloride enrichment at the base of the active 

layer of N1 is due to solute exclusion by downward freezing, rather than cryosuction. 

In summary, the rate of active layer leaching appears to have been largely unchanged during 

the aggradation of the upper 2 metres of sediment, despite a small decrease in leaching in 

R2. One core (N1) has experienced solute exclusion by downward freezing of the active layer, 

and another (N2) shows evidence of chloride sourced from upwards diffusion from a cryopeg 

or frozen deltaic sediments. In all the cores, there are small variations in the concentration of 

chloride that are not explained by these tests. This indicates that there were physical 



 105  

processes occurring that are not explained by active layer leaching, cryosuction, or solute 

exclusion. Therefore, in this chapter, the focus has been on the broader-scale 

biogeochemistry of the sites. 

4.3.5 Summary and predictions of the impact of permafrost thaw 

In Adventdalen, the organic carbon content coupled with the degree of water saturation 

controlled the prevailing biogeochemical processes (Chapter 3), but the organic carbon 

content in the cores from Revneset did not have this effect. This difference between 

Adventdalen and Revneset was due to both the sediment composition and the polygon 

morphology. Firstly, the high organic carbon content of the active layer and shallow 

permafrost at Revneset was coupled with a relatively low mineral content of the soil. This was 

reflected in the lower extracted iron (dry wt. percent) at Revneset compared to Ice-wedge 

North (Table 4.2). The low mineral content of the organic soil at Revneset limited the supply 

of iron and sulfate to iron- and sulfate-reducers. In addition, the degradation of the ice-wedge 

polygon at Revneset resulted in a high-centred polygon with a low or fluctuating water table. 

The lack of consistent water saturation in the high-centred polygon precluded the 

maintainance of low redox conditions at Revneset. This was in contrast to Ice-wedge North, 

where the low redox conditions of the organic-rich sediments in the low-centred polygons 

were maintained by more consistent water saturation. The low or fluctuating water table of 

Revneset meant that even with minor iron and sulfate reduction occurring, the products were 

not preserved in pyrite and siderite to the same degree as at Ice-wedge North. 

Permafrost in Svalbard is relatively warm for its northerly latitude (Romanovsky et al., 2010b), 

and between 1961-1990 and 2000-2011 there has been a 2.95 °C increase in mean annual air 

temperatures in Adventdalen (Førland et al., 2011; Christiansen et al., 2013; Nordli et al., 

2014). Despite this, occurences of extremely high summer temperatures have so far been 

prevented by the maritime climate on Svalbard (Pirk et al. 2017a). This may explain the 

absence of dramatic ice-wedge degradation in Adventdalen, as extremely high summer 

temperatures are a trigger of ice-wedge degradation in Alaska (Jorgenson et al., 2006; 

Liljedahl et al., 2016; Pirk et al., 2017a). In addition, the topography of Svalbard is influential 

on the airflow and wind speeds in Svalbard, with acceleration of wind channelised in the 
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Adventdalen valley cooling the ground (Christiansen et al., 2013). In contrast, data from 

Longyearbyen Airport, which, like Revneset, is situated in the open outer part of Adventdalen 

on marine terraces, suggest that there is lower acceleration of the winds and also relatively 

more wind from the open fjord. This indicates that the permafrost on the marine terraces is 

likely to be warmer than that in the valley bottom, and could be a reason for the observed 

ice-wedge polygon degradation at Revneset, compared to Adventdalen.  

Pirk et al. (2017a) posit that as temperature increases markedly on Svalbard, this may cause 

future ice-wedge polygon degradation in Adventdalen. In this case, the biogeochemistry of 

the Revneset high-centred polygon may be helpful for predicting the future biogeochemistry 

of the degraded Ice-wedge North polygons. Based on the Revneset high-centred polygon 

biogeochemistry, polygon degradation at Ice-wedge North could cause oxidation of pyrite 

and siderite, with resulting increases in carbon dioxide fluxes to the atmosphere. Although, 

the Adventdalen valley sediments are much thicker than those at Revneset, and hence 

potentially more concerning for greenhouse gas emissions under future warming and 

permafrost thaw, the particularly organic-rich sediments are mainly confined to the upper 2 

metres (Cable et al., 2017). Hence, future warming and polygon degradation at Ice-wedge 

North is likely to result in a similar set of biogeochemical processes to those occurring at 

present-day Revneset.  

4.4 Conclusion 

Although there were similarly organic-rich sediments at Ice-wedge North and Revneset, the 

differences in primary water source and hydrology, coupled with degradation of the ice-

wedge polygons at Revneset, caused the sites to exhibit different dominant biogeochemical 

processes. The sediments of the low-centred polygons of Ice-wedge North were water-

saturated and anaerobic, with iron and sulfate reduction leading to the precipitation of pyrite 

and siderite. In contrast, the active layer of the high-centred polygon was not consistently 

water-saturated, owing to the degradation of the ice-wedge polygon and the probable 

greater hydraulic conductivity of both the peat and the underlying beach sediments. This led 

to the more oxidising conditions found in the high-centred polygon, with a dominance of iron 

oxidation at Revneset; ferrihydrite was the dominant extracted iron phase and there were 
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much lower levels of pyrite and siderite. The low or fluctuating water table precluded the 

formation and/or preservation of pyrite, even though isotopic data were indicative of sulfate 

reduction occurring in the active layer at Revneset. While the concentrations of Mn(aq) at both 

sites were indicative of the reduction of manganese oxides, this was not coupled to the 

oxidation of organic carbon, but rather to the oxidation of pyrite. Hence, dissimilatory 

manganese reduction did not produce substantial quantities of carbon dioxide at either site. 

The data presented in this chapter demonstrate the profound effect of ice-wedge polygon 

degradation on the sediment and porewater biogeochemistry: polygon degradation resulted 

in more oxidising conditions, a decrease in iron reduction, and a decrease in the preservation 

of the products of iron and sulfate reduction. 
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Chapter 5. Sources and Sinks of Greenhouse Gases in the Active 

Layer and Permafrost of a High Arctic Valley 

The previous chapters in this thesis focused on the influence of landscape geomorphology 

upon iron, sulfur and carbon cycling within permafrost pore water and sediment, with 

discussion of the biogeochemical processes driving carbon dioxide production. This chapter 

follows with an emphasis on quantifying the methane and carbon dioxide concentrations in 

the pore water and elucidating the biogeochemical processes that lead to methanogenesis. 

5.1 Introduction 

5.1.1 The permafrost carbon feedback 

As explained in Section 1.1, around half of the global terrestrial belowground organic carbon 

stocks (1330 to 1580 Pg carbon) are stored in permafrost soils (Hugelius et al., 2014; Tarnocai 

et al., 2009). This is the largest individual component of the terrestrial carbon pool, and is 

over double the amount of carbon in the present atmosphere (Tarnocai et al., 2009; McGuire 

et al., 2012; IPCC, 2013). According to models of the global climate, the mean annual air 

temperature of the Arctic is predicted to increase by up to 9 °C by the year 2100 (Anisimov et 

al., 2007). Permafrost ecosystems are predicted to transform from a net sink of carbon to a 

net source of carbon in the next decade, due to gradual, top-down thawing of permafrost in 

response to climate change (Kirschke et al., 2013; Parmentier et al., 2013; Schaefer et al., 

2011; Elberling et al., 2013; Lee et al., 2012; Schuur et al., 2015). 

The emission of greenhouse gases from permafrost is a feedback from the global carbon cycle 

to climate change. However, there remains substantial uncertainty pertaining to both the size 

and the timing of emissions of greenhouse gases and the impact on climate change that will 

accrue from this climate feedback process (Schuur et al., 2015). This uncertainty is due to 

numerous factors, which include: problems associated with limited spatial and temporal data 

due to challenges in data collection from cold, remote areas, which are difficult and expensive 

to access (Metcalfe et al., 2018; Turetsky et al., 2019); heterogeneous processes including 
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fine-scale effects such as abrupt thaw (Turetsky et al., 2019); and local soil redox status (Riley 

et al., 2011; Meng et al., 2012; Xu et al., 2015; Zheng et al., 2019). For instance, recent models 

of the permafrost methane feedback-to-climate up to the year 2100 do not thoroughly 

account for microbial responses to permafrost thaw, nor do they include soil pore-scale 

anaerobic and aerobic niches that are crucial in determining the balance between methane 

production and methane oxidation (Gao et al., 2013; Lawrence et al., 2015; Schaefer et al., 

2014; Ebrahimi & Or, 2017). Ice-wedge polygon degradation, for example, is associated with 

an overall landscape drying, as low-centred polygons transition to high-centred polygons 

(Section 4.1, Figure 4.14.1; Liljedahl et al., 2016). The drying of the landscape has implications 

for methane fluxes from polygons (Lara et al., 2015; Sachs et al., 2010; Wainwright et al., 

2015). For instance, numerous studies at the Barrow Environmental Observatory, Alaska, 

have observed a decrease in methane emissions with permafrost degradation in ice-wedge 

polygon terrain (Vaughn et al., 2016; Wainwright et al., 2015). While the evidence for 

decreasing methane emissions with polygon degradation is clear, less is known about 

whether this degradation impacts methane storage and production within the permafrost. 

Hence, further work is required, both to extend the spatial and temporal coverage of 

permafrost data and to incorporate such data into models of the permafrost methane 

feedback.  

5.1.2 Sources and sinks of methane 

Across the Arctic, much research attention has been devoted to methane and carbon dioxide 

emissions from the shallow permafrost and active layer, where relatively modern organic 

carbon is decomposed by methanogens to produce methane and carbon dioxide (e.g., 

Knoblauch et al., 2018; Lara et al., 2015; Miller et al., 2015; Sachs et al., 2010; Throckmorton 

et al., 2015). In addition, biogenic and thermogenic methanogenic processes produce 

methane beneath permafrost within sedimentary basins (Walter Anthony et al., 2012). In 

some permafrost areas, permafrost degradation results in the removal of the permafrost 

‘cryospheric cap’, which drives methane emissions from beneath the permafrost. 

Biogenic methane is primarily produced via two mechanisms: hydrogenotrophic and 

acetotrophic methanogenesis. Different precursor compounds, kinetic isotope effects and 
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the high temperatures required for thermogenic generation of hydrocarbons all cause each 

source to produce methane with a distinct isotopic composition (Whiticar, 1999). Hence, 

measuring the isotopic composition of methane dissolved in water of the active layer is 

helpful in elucidating the primary source of methane. Thermogenic methane has a d13C of 

approximately -50‰ to -20‰ (Whiticar, 1999). Biogenic (or ‘bacterial’) methane has a d13C 

of -110‰ to -50‰ (Whiticar, 1999). Bacterial methane can be produced via the acetotrophic 

pathway (d13C-CH4 of -60‰ to -50‰) or the hydrogenotrophic pathway (d13C-CH4 of -110‰ 

to -60‰; Whiticar, 1999). Hydrogenotrophic methanogens form methane via the reduction 

of carbon dioxide with hydrogen, a process also known as “carbonate reduction” (Equation 

5.1; Oremland, 1988; Whiticar, 1999): 

 COQ +	8H
w +	8eo → 	CH+ +	2HQO (5.1) 

Acetotrophic methanogens form methane via acetate fermentation (Equation 5.2; Whiticar, 

1999): 

 CHhCOOH →	CH+ +	COQ (5.2) 

Furthermore, d13C values of methane are influenced by numerous other factors, including the 

d13C values in organic matter, the temperature of methanogen growth, the phase of 

methanogen growth and methanogenesis energetics (Valentine et al., 2004; Penning et al., 

2005; Hornibrook, 2009; Chanton et al., 1989; Botz et al., 1996; Whiticar, 1999). Despite these 

complicating factors, the d13C of methane is useful in distinguishing the various methane 

sources. In addition, methanotrophy, which is the oxidative consumption of methane by 

methanotrophs, such as methane-oxidising archaea (Whiticar, 1999; Barbier et al., 2012), has 

an effect on the d13C of the residual methane. During methanotrophy, 12C-CH4 is consumed 

preferentially, resulting in an enrichment of 13C in the residual methane (Whiticar, 1999). 

Finally, dD values of methane are useful as a further constraint on the methane sources, 

particularly for distinguishing between the two main biogenic methane sources (Whiticar, 

1999). However, the analysis of dD values of methane is beyond the scope of this thesis. 
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d13C-CH4 data from natural systems show that acetotrophic methanogenesis produces around 

two thirds of methane globally (Oremland, 1988; Ferry, 1992). Atmospheric inversion studies 

inferring the sources and sinks of atmospheric methane globally make the assumption that 

methane production from wetlands is dominated by acetotrophic methanogenesis (Bousquet 

et al., 2006; Kai et al., 2011). The accuracy of this assumption has implications for correctly 

attributing global methane sources and sinks (McCalley et al., 2014). Acetotrophic 

methanogenesis was the dominant biogenic source of methane in the active layer waters in 

Barrow, Alaska, (Throckmorton et al., 2015). In addition, anoxic microcosm experiments with 

high Arctic peat soil from the active layer in Knudsenheia, in Svalbard, found that the 

minimum fraction of methane originating from hydrogen and formate was ~35%, and the 

maximum methane proportion formed by acetotrophic methanogenesis was therefore ~65% 

(Tveit et al., 2015). In contrast, methane isotope data from the Kara Sea coast had a mean 

d13C-CH4 of -68.6‰ in the permafrost and a mean d13C-CH4 of -63.6‰ in the active layer, 

indicating the importance both of hydrogenotrophic methanogenesis in the permafrost and 

additionally of methanotrophy in the active layer (Streletskaya et al., 2018). Furthermore, 

incubations of permafrost sediments from Samoylov Island, on the Lena Delta in the Siberian 

Arctic, showed that amendment with hydrogen at low temperatures (< 0 °C) resulted in 2.5 

to 3.5 times more methane production than amendment with acetate, implying a prevalence 

of hydrogenotrophic methanogenesis (Wagner et al., 2007). It is clear from these studies that 

the primary pathway of methanogenesis varies across the Arctic, and also depends on 

whether the methane is produced in the active layer or the permafrost.  

5.1.3 Permafrost and greenhouse gases in Adventdalen 

Methane emitted from Adventdalen is sourced from both below the permafrost and within 

the shallow permafrost and active layer (Hodson et al., 2019; Pirk et al., 2017b). As part of an 

effort to estimate the potential for geological carbon sequestration on Spitsbergen, Huq et 

al. (2017) measured the d13C of methane and carbon dioxide down to a depth of 700 metres 

in Adventdalen. They established that the dominant sources of methane transition gradually 

from thermogenic at depth to biogenic in more shallow sediments. In Adventdalen, the 

thermogenic methane that diffuses from below a depth of 400 metres has d13C  values ca. -

45‰ (Huq et al., 2017). Importantly, these authors determined that although there is some 
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vertical diffusion of thermogenic methane to shallower sediments, this diffusion is too slow 

to contribute to the isotopic signatures of methane in the shallow permafrost and active layer. 

Outgassing of methane produced beneath permafrost in Adventdalen is not necessarily 

driven by permafrost degradation. Instead methane sourced from both thermogenic and 

biogenic production may be transported to the surface via sub-permafrost groundwaters 

emerging from open system pingos (Hodson et al., 2019). Hodson et al. (2019) found high 

seasonal maximum concentrations of methane (up to 14.5 mg L-1 methane) in waters 

accumulating beneath the winter ice layer on an open system pingo in Adventdalen (Lagoon 

Pingo). The methane was primarily biogenic, and the authors suggested that it was 

transported along groundwater flowpaths below the permafrost in fractures within 

sandstone bedrock. This resulted in a large summer methane emission flux from the pingo 

pond of 46 gCH4C m-2, and an even more substantial annual emission flux of 223 gCH4-C m-2 

once the winter emissions were included.  

In Adventdalen, previous work by Pirk et al. (2017b) revealed that wetlands in this valley have 

relatively low methane fluxes, with (median) rates of 1-2 gCH4C m-2. In Arctic wetlands, the 

authors used a statistical description of methane emissions based on three hypothesised 

mechanisms: i) slow-turnover carbon contained within soil microorganism cells or frost-

damaged roots contributed to a peak in methane emissions immediately after thawing 

(Skogland et al., 1988), ii) fast-turnover carbon of root exudates (Ström et al., 2003) 

contributed to a wider peak in methane emissions in the middle of the growing season and 

iii) during the autumnal freeze-in period, there is physical release of stored methane 

(Mastepanov et al., 2008). Their statistical description was effective in delineating the spatial 

and temporal patterns in methane fluxes, even in Adventdalen, which did not exhibit an early 

emission peak and was dominated by the wider peak in the middle of the growing season. 

The ice-wedge polygons in Adventdalen caused the methane fluxes to vary on small spatial 

scales, owing to the variable soil moisture. While this work accurately described the spatial 

and temporal patterns in methane fluxes from the studied site, the datasets did not allow a 

comprehensive investigation of the mechanisms underlying the methane fluxes. 

These previous studies of methanogenesis and methane fluxes in Adventdalen indicate that 

there are methane sources both below the permafrost and within the shallow permafrost and 
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active layer (Hodson et al., 2019; Pirk et al., 2017b). While the mechanisms of methanogenesis 

have been analysed in some detail for the methane sourced from beneath the permafrost, 

the biogeochemical processes leading to methanogenesis in the shallow permafrost and 

active layer of Adventdalen are less clearly understood at present. In addition, the scarcity of 

ice-wedge polygon degradation in the Adventdalen region (Pirk et al., 2017) means that 

studies of ice-wedge polygons in Svalbard have not yet examined the impact of ice-wedge 

polygon degradation on methane production. The focus of this chapter, therefore, is on 

quantifying the methane and carbon dioxide concentrations in the active layer and shallow 

permafrost in Adventdalen and Revneset, elucidating the biogeochemical processes that lead 

to methanogenesis, and inferring the methanogenic pathways. This chapter presents and 

discusses for the first time the concentrations of methane and carbon dioxide in the pore 

water of the sediment cores, the relative abundance of archaea in the sediment cores, and 

the d13C-CH4 values and concentrations of acetate in water from the active layer of 

Adventdalen and Revneset. 

5.2 Results 

The concentrations of methane were low or negligible in the cores from Ice-wedge South (up 

to 14.4 µmol L-1; Figure 5.1a-c). In contrast, all cores from Ice-wedge North and Revneset 

contained substantial concentrations of methane accumulated in specific depths (up to 560 

µmol L-1; Figure 5.1d-g). Much of the active layer of core N1 contained low or negligible 

concentrations of methane (the minimum was 1.07 µmol L-1), except for a peak in 

concentration at 15 cm depth (126 µmol L-1; Figure 5.1d). Concentrations of methane were 

consistently higher in the permafrost (Mean = 105 µmol L-1, Range = 3.29-195 µmol L-1) of 

core N1 relative to the active layer (Mean= 31.6 µmol L-1, Range = 1.07-126 µmol L-1), with 

substantial variability below 10 cm depth (Figure 5.1d). A large peak in methane was observed 

in the active layer of core N2 (219 mmol L-1 at 53 cm depth; Figure 5.1e); this peak occurred 

at greater depth than the active layer methane peak in core N1. The concentrations of 

methane in the permafrost of core N2 were similarly variable to those observed in N1 and 

reached a maximum of 293 µmol L-1 at 109 cm depth (Figure 5.1e). The concentrations of 

methane in the active layer of cores R1a and R1b were low or negligible (< 1 µmol L-1; Figure 
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5.1f-g). The shallow permafrost of cores R1a and R1b contained substantially higher 

concentrations of methane than N1 and N2 (up to 560 µmol L-1). The peak in methane in the 

shallow permafrost was concentrated in a narrower depth interval, closer to the permafrost 

table, and reached higher concentrations in core R1b compared to core R1a (Figure 5.1f and 

g). Below this peak, the methane concentrations decreased in cores R1a and R1b.  
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Figure 5.1 Methane (CH4 (aq)) with depth in cores a) S1, b) S2a, c) S2b, d) N1, e) N2, f) R1a and g) R1b. 
The error bars (black horizontal solid lines that are only rarely wider than the points themselves) 
represent one standard deviation either side of the mean, calculated from 3 replicate measurements 
of the same vial. Horizontal dashed lines represent the active layer depths. 
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In all cores, the concentrations of carbon dioxide far exceeded the concentrations of methane 

(Figure 5.2a-g). The concentrations of carbon dioxide were highly variable with depth in all 

cores. The cores from Ice-wedge South did not display consistent trends with depth (Figure 

5.2a-c). However, in core S1, the concentrations of carbon dioxide were generally higher in 

the permafrost than in the active layer, whereas in cores S2a and S2b, the concentration 

increased slightly from the base of the active layer towards the ground surface.  The 

concentrations of carbon dioxide in core N1 were highest in the deeper active layer and the 

shallow permafrost (Figure 5.2d). Although an instrumentation failure resulted in no carbon 

dioxide data from much of the active layer of core N2, it is clear from the limited existing data 

that the highest concentrations of carbon dioxide were at the base of the active layer, and 

that the concentrations were lower in the permafrost (Figure 5.2e). In core R1a, the highest 

concentrations of carbon dioxide were in the active layer and shallow permafrost (Figure 

5.2f). Core R1b also displayed higher concentrations in the active layer, but in addition, the 

concentrations increased into the deeper permafrost (Figure 5.2g). 

The relationship between organic carbon content and methane concentration is presented in 

Figure 5.3a for the Adventdalen cores. A higher organic carbon content was associated with 

a higher methane concentration (r = 0.75, p < 0.001), although there was variability in this 

relationship. The relationship  between the concentration of sulfate and the organic carbon 

content is presented in Figure 5.3b for the Adventdalen cores. Samples were either rich in 

sulfate or in organic carbon, giving a negative monotonic correlation (r = -0.68, p<0.001). The 

same was true of the relationship between aqueous iron and organic carbon content (r = -

0.61, p<0.001; Figure 5.3c). Across Revneset and Adventdalen, the relationship between 

methane concentration and aqueous iron and sulfate concentrations is presented in Figure 

5.4. There was a negative monotonic correlation between methane and sulfate (r = -0.46, p 

< 0.0001; Figure 5.4a), which was particularly strong in the Adventdalen cores alone (orange 

points for S1, S2a, S2b and blue points for N1 and N2, r = -0.76, p < 0.001), as well as in water 

samples from the active layer of Adventdalen (orange points for S3w and blue points for N1w 

and N2w, r = -0.67, p < 0.01). There was a negative monotonic correlation between methane 

and aqueous iron in the Adventdalen cores (r = -0.58, p < 0.001; Figure 5.4b). In general, the 

samples from Ice-wedge South that had varying sulfate and iron concentrations with low 
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methane concentrations, and the samples from the remaining two sites exhibited low sulfate 

and iron concentration with varying methane concentration. 
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Figure 5.2 CO2 (aq) with depth in cores a) S1, b) S2a, c) S2b, d) N1, e) N2, f) R1a and g) R1b. Error bars 
(horizontal solid black lines) represent one standard deviation either side of the mean, calculated from 
3 replicate measurements of the same vial. Horizontal dashed lines represent the active layer depths. 
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Figure 5.3 a) CH4 (aq) plotted as a function of the organic carbon content (r = 0.75, p < 0.001), b) SO4
2- 

plotted as a function of organic carbon content, and c) Fe(aq) plotted as a function of organic carbon 
content, in cores (S1, S2a, S2b, N1, N2) from Adventdalen. 
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Figure 5.4 a) CH4 (aq) plotted in relation to SO4

2-, and b) CH4 (aq) plotted in relation to Fe(aq), in cores (S1, 
S2a, S2b, N1, N2, R1a and R1b) and water from the active layer (S3w, N1w, N2w, R1a, R1b, R2 and R3) 
from Adventdalen and Revneset. All samples except those from R2 and R3 are from ice-wedge polygon 
centres. R2 and R3 are from the water ponding in ice-wedge troughs. 
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Figure 5.5a shows a large range in the concentration of methane in the water samples from 

the active layer, with samples from polygon S3 containing the highest concentrations of 

methane (up to 224 µmol L-1). There was also a large range in d13C-CH4 values, with no 

statistically significant difference between the sites. Most of the water samples from the 

active layer contained low or negligible concentrations of acetate (Figure 5.5b). However, 

some water samples from polygon S3 contained high concentrations of acetate (up to 4400 

µmol L-1; Figure 5.5b). These samples also generally contained higher concentrations of 

methane (Figure 5.5b).  

The relative abundance of archaea was recorded as a function of depth for three different 

sites. There was a relative abundance of hydrogenotrophic methanogens, compared to 

acetotrophic methanogens (see Table 5.1). In contrast to Ice-wedge North and Revneset, 

there was a relatively low abundance of methanogens in polygon S1 at Ice-wedge South. The 

relative abundance of methanotrophs was high in all the sites (Table 5.1). Figure 5.6 shows 

that Ice-wedge North was dominated by the mainly methanogenic Methanomicrobia at 

depths below 150 cm and by the methanotrophic Bathyarchaeia nearer the surface (Figure 

5.1). Similarly, there was a substantial input from Methanobacteria and Methanomicrobia in 

the shallow permafrost of Revneset, whereas the methanotrophic Bathyarchaeia dominated 

in the active layer. Overall, at Ice-wedge North and Revneset, methanogenesis dominated in 

the deeper permafrost, whereas methanotrophy was more dominant in the shallower 

permafrost and active layer. The microbial data presented in Table 5.1 and Figure 5.6 were 

generously provided by Ebbe Norskov Bak (Aarhus University) and are interpreted here for 

the first time.  
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Figure 5.5 a) d13C-CH4 plotted as a function of the concentration of CH4 (aq) in water samples from the 
active layer, with Zone A representing the isotopic signature of methane produced via the 
hydrogenotrophic pathway, Zone B representing methane produced via the acetotrophic pathway and 
Zone C representing either thermogenic production of methane or isotopic enrichment of methane 
produced via hydrogenotrophic or acetotrophic methanogenesis and then isotopically enriched by 
methanotrophy (Whiticar, 1999; Huq et al., 2017), and b) acetate concentration plotted in relation to 
CH4 (aq) concentrations in water samples from the active layer. 
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Table 5.1 Summary table of the relative abundance of archaea involved in producing methane 
(hydrogenotrophic methanogens, acetoclastic methanogens, and all other methanogens) and 
consuming methane (methanotrophs) in cores from Ice-wedge North, Ice-wedge South and Revneset. 
Data provided by Ebbe Norskov Bak (Aarhus University). 

Hydrogenetrophic 
methanogens

Acetoclastic 
methanogens

 Methanogens of 
unclassified 
metabolic 
pathway 

 Methanotrophs 

0-25 14 0.0 6.8 79
25-50 7.9 0.0 11 81

75-100 13 2.3 11 73
100-125 6.3 4.6 23 66
125-150 10 5.2 26 58
150-175 6.1 2.6 20 71
175-200 9.1 6.1 24 60

0-25 0.0 0.0 3.0 0.3
25-50 0.0 0.0 0.8 1.4
50-75 0.0 0.0 0.0 7.8

100-125 1.7 0.0 0.0 85
125-150 0.0 0.0 0.0 0.0
150-175 0.0 0.0 0.2 98
175-200 0.0 0.0 0.0 99
200-225 0.3 0.0 0.0 96

0-25 12 5.3 5.3 77
25-50 12 0.1 29 58
50-75 11 2.9 59 27

75-100 57 0.0 0.0 40
100-125 51 0.0 6.1 43
125-150 81 0.2 2.1 16

Ice-wedge 
North

Ice-wedge 
South

Revneset

Relative abundance (%)

Depth 
(cm)Site
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Figure 5.6 Heatmap of the relative abundance (% read abundance) of archaeal classes detected in permafrost cores from Ice-wedge North, Ice-wedge South 
and Revneset. Functional assignments (where possible) were based on Evans et al. (2015) and Bergey’s Manual of Systematics of Archaea and Bacteria (2015).  
Data provided by Ebbe Norskov Bak (Aarhus University).
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5.3 Discussion 

The interaction of carbon, iron and sulfur cycling in the permafrost and active layer resulted in 

higher methane concentrations in organic carbon rich, water-saturated sediments that were 

undergoing active iron- and sulfate-reduction. However, carbon dioxide concentrations were 

much higher than methane concentrations, indicating that iron- and sulfate-reduction 

dominated over methanogenesis. Degradation of an ice-wedge polygon had a substantial impact 

on biogeochemical cycling and methanogenesis. Isotopic and microbial data from sediments of 

the shallow permafrost and active layer in Adventdalen and Revneset indicate that the primary 

mode of methane production was hydrogenotrophic methanogenesis. This is in contrast with 

atmospheric inversion studies, which assume that methane production from Northern 

Hemisphere wetlands is dominated by acetotrophic methanogenesis to infer the global sources 

and sinks of atmospheric methane (Bousquet et al., 2006; Kai et al., 2011). Methane 

consumption by methanotrophs occurred, particularly in the active layer, resulting in a wide 

range of d13C-CH4 values within and between sites (Figure 5.5).  

5.3.1 Redox and Greenhouse Gases 

In cores from Ice-wedge South and Ice-wedge North, the quantity of sediment organic carbon 

influenced methane production indirectly, by regulating the consumption of alternative electron 

acceptors, such as iron and sulfate. The negative monotonic correlation between organic carbon 

content and sulfate concentration (Figure 5.3b), and between organic carbon content and 

aqueous iron concentration (Figure 5.3c), indicated that generally a higher organic carbon 

content led to increased iron and sulfate reduction and perhaps also decreased pyrite oxidation 

(Chapter 3). Both Ice-wedge South and Ice-wedge North displayed evidence of active iron and 

sulfur cycling, with Ice-wedge North generally displaying more reduced conditions than Ice-

wedge South. The reducing conditions at Ice-wedge North were conducive to methanogenesis, 

with the concentration of methane in the pore water reaching a maximum of 293 µmol L-1 

(Figure 5.1e). In contrast, methanogenesis appeared to be negligible in most of the core samples 

from Ice-wedge South, with methane concentrations reaching a maximum of 14.4 µmol L-1 

(Figure 5.1a-c). A higher organic carbon content was associated with a higher concentration of 

methane in cores from Adventdalen, although there is variability in this relationship (Figure 

5.3a). A positive relationship between the content of organic carbon and the concentration of 
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methane was also seen in earlier studies in Siberia and in the Western Canadian Arctic (Barbier 

et al., 2012; Ganzert et al., 2007). The variability in the positive correlation shown in Figure 5.3 

is probably the result of diffusion and ebullition of methane, which would cause methane to 

travel away from the zone of methanogenesis, obscuring the relationship between organic 

carbon and methane concentration.  

Core pore water samples from Adventdalen and Revneset were either rich in methane or in 

sulfate, resulting in a negative monotonic correlation between methane and sulfate 

concentration (Figure 5.4a; r = -0.46, p < 0.0001). In the core pore water samples from 

Adventdalen alone (Figure 5.4a; cores S1, S2a and S3b), there was a particularly strong 

relationship between methane and sulfate concentration (r = -0.76, p < 0.001), and this was true 

also for water samples from the active layer of Adventdalen (samples S3w, N1w and N2w; r = -

0.67, p < 0.01). In addition, the core pore water samples from Adventdalen displayed a negative 

monotonic correlation between methane and aqueous iron concentrations (r = -0.58, p < 0.001; 

Figure 5.4b). Generally, the samples from Ice-wedge South contained variable sulfate and iron 

concentrations with low methane concentrations, while samples from Ice-wedge North and 

Revneset exhibited low sulfate and iron concentrations with variable methane concentrations. 

Many previous studies have observed the suppression of methanogenesis due to methanogens 

being outcompeted by sulfate- and iron-reducers for substrates, such as acetate and hydrogen 

(e.g., Lovley & Phillips, 1987; Lovley & Klug, 1983; Schönheit et al., 1982), and this is a potential 

factor influencing methanogenesis in the sediments of Adventdalen and Revneset. 

Sampling of water from the active layer at the end of summer 2017 revealed intra-site, inter-

polygon heterogeneity, with the water-saturated polygon S3 in Ice-wedge South containing the 

highest concentrations of methane (224 µmol L-1; Figure 5.5) across all the water samples from 

the active layer. Biased sampling of water from the active layer was necessary in summer 2017 

to ensure recovery of water with The Sheffield Spike; this sampling strategy led to sampling the 

water-saturated polygon S3 in order to recover sufficient water. The advantage of this is that it 

showed that that the prevailing biogeochemical processes differed dramatically in ice-wedge 

polygons separated by only ~300 metres. The high degree of heterogeneity in this system is 

typical of ice-wedge polygons and soils (Coleman et al., 2004; Wainwright et al., 2015; Zona et 

al., 2011).  
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Despite the clear indications of methanogenesis at Ice-wedge North, the concentrations of 

carbon dioxide were much higher, exceeding 6 mmol L-1 (Figure 5.2d). In addition, the 

concentration of carbon dioxide in the pore water exceeded 7 mmol L-1 at Ice-wedge South 

(Figure 5.2a-c). The high concentration of porewater carbon dioxide relative to porewater 

methane is congruent with previous studies of iron cycling in permafrost, where carbon dioxide 

was the dominant biogas (Lipson et al., 2012; Miller et al., 2015). In fact, there was a negative 

correlation between dissolved methane and carbon dioxide in the N1 core (r = -0.69; p < 0.001), 

with the deeper active layer having most carbon dioxide and least methane. This negative 

correlation may be indicative of sulfate- and iron-reduction producing more carbon dioxide 

where there is less methanogenesis occurring. Alternatively, this relationship could be the result 

of methanotrophs consuming methane and producing carbon dioxide, or of hydrogenotrophic 

methanogens consuming carbon dioxide during methane production. 

Wagner et al. (2007) concluded that methane in the upper permafrost in a core from the Lena 

Delta in the Siberian Arctic was produced in-situ (within the permafrost), rather than being 

produced in the former active layer and preserved in the permafrost during sedimentation. Their 

low temperature (< 0 °C) incubations produced methane, and the concentration of methane in 

the cores was found to correlate well with the biomass of archaea and the activity of 

methanogens. In fine-textured permafrost soils, liquid water can be present down to -60 °C 

(Ananyan, 1970). Liquid water, which facilitates the movement of ions and nutrients, is crucial 

for microorganisms (Ostroumov & Siegert, 1996). The data presented in Figure 5.1 are, 

unfortunately, not sufficient to discern whether the methane in the shallow permafrost has been 

preserved during sedimentation and aggradation of permafrost, or whether the methane was 

produced in-situ. However, given that increased methanogenic activity has been found close to 

the permafrost table and at low temperatures (Ganzert et al., 2007), and that Adventdalen 

experiences highly variable winter temperatures (-30 °C to slightly above 0 °C) accompanied by 

episodes of winter rain (Pirk et al., 2016) that would further warm the shallow permafrost, it is 

likely that at least some of the methane in the shallow permafrost was produced in-situ.  

5.3.2 Ice-wedge polygon degradation 

In Adventdalen, the organic carbon content, coupled with the degree of water saturation, played 

a critical role in determining the redox conditions and dominant biogeochemical processes 
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leading to the production of greenhouse gases. It is likely that the water-saturated, low-centred 

polygons at Ice-wedge North were a net sink of carbon, due to storage of carbon in organic 

carbon and in siderite (Section 3.3). While the evidence for methanogenesis indicates that these 

polygons were a methane source, it is possible that this was counteracted by methanotrophy 

(Section 5.3.3). Flux measurements would be necessary to determine that these polygons are 

indeed a methane source. The high-centred polygon at Revneset had a low or fluctuating water 

table, which implied that the active layer was not consistently anaerobic. This meant that, 

despite the high organic carbon content of the active layer, concentrations of methane in the 

active layer core pore water were negligible (Figure 5.1f and g). This indicates that the high-

centred polygon at Revneset is no longer a methane source. However, the concentration of 

methane in the water from the active layer of Revneset was up to 81 µmol L-1 (Figure 5.1). This 

could be a result of sampling the Revneset cores from the dry centre of a high centred-polygon, 

and sampling water from the active layer of nearby ice-wedge polygon troughs (Table 2.1; Figure 

2.3). The difference in sampling location (troughs instead of polygon centres) was because 

water-saturated environments were required for sampling using The Sheffield Spike. Water was 

ponding in the troughs at the time of sampling, and so the conditions in the troughs were more 

conducive to methanogenesis (and methanotrophy; Sections 5.3.3 and 5.3.4). In contrast with 

the active layer in the centre of the ice-wedge polygon, the shallow permafrost, which was rich 

in organic carbon, contained high concentrations of methane (Figure 5.1f and g). These high 

concentrations of methane were probably due to a combination of a high content of organic 

carbon, anaerobic conditions and active methanogens. As discussed in Chapter 4, a high content 

of organic carbon is characteristic of a water-saturated, low-centred polygon. The high organic 

carbon content and anaerobic conditions were probably preserved in the permafrost during 

aggradation of permafrost and were maintained despite subsequent degradation of the 

polygon. The methane in the shallow permafrost was either produced in-situ or was produced 

in the active layer and preserved during aggradation of the permafrost. The deeper permafrost 

at Revneset contained lower concentrations of methane, which was most likely to be a result of 

the lower content of organic carbon at depth. Climate change, which is associated with 

degradation of ice-wedge polygons in western, coastal permafrost, may therefore already be 

influencing modern methane biogeochemistry, with the potential for further changes in the 

future. Thawing and release of methane formerly stored in the permafrost could result in 

emission of methane to the atmosphere, but this will depend upon the rates of methanotrophy 

(Sections 5.3.3 and 5.3.4) 
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5.3.3 Sources and sinks of methane in the active layer 

Figure 5.5a shows that most of the methane detected in water from the active layer (locations 

in Table 2.1) of Adventdalen and Revneset had d13C-CH4 values in the range of hydrogenotrophic 

methanogenesis. The data show no localisation (grouping) around d13C-CH4 values in the range 

of acetotrophic methanogenesis; only two samples contained methane with d13C-CH4 values in 

the relatively narrow range of acetotrophic methanogenesis (-60‰ to -50‰). This is 

substantiated by evidence from Huq et al. (2017), who found clear evidence of hydrogenotrophic 

methanogenesis from the d13C-CO2 and d13C-CH4 of samples from the permafrost and below the 

permafrost (Figure 5.7). In addition, Table 5.1 indicates that there was a relative abundance of 

hydrogenotrophic methanogens, compared to acetotrophic methanogens. Hence, there are 

multiple lines of evidence supporting a mainly hydrogenotrophic source of the methane 

produced in the permafrost and active layer of Adventdalen and Revneset. 

 

Figure 5.7 Stable isotope characteristics in rock pore gases at different depths. The pore gas analyses are 
from published results (Huq et al. 2017) from a core collected close to Ice-wedge South. Horizontal 
dashed lines indicate the approximate permafrost, aquifer and shale boundaries for lower Adventdalen. 
Figure modified after Hodson et al. (In Review). 

The acetate data presented in Figure 5.5b show that acetate rarely accumulated in water from 

the active layer of Adventdalen and Revneset. Concentrations of acetate were below the limit 

of detection (4.22 µmol L-1) in 62% of the water samples from the active layer water, all of which 
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were from Revneset and Ice-wedge North. The low concentrations of acetate may imply either 

that acetogenesis (the production of acetate via fermentation of low-molecular weight fatty 

acids and alcohols) was slow, or that the uptake of acetate by bacteria was rapid (e.g., King et 

al., 1983; Lovley & Klug, 1983). In particular, sulfate- and iron-reducers can outcompete 

acetotrophic methanogens for acetate (King et al., 1983; Bridgham et al., 2013). Geochemical 

evidence from the permafrost and active layer presented in Chapters 3 and 4 is indicative of 

iron- and sulfate-reduction in Ice-wedge North and Revneset. Hence, it could be that, in organic-

carbon rich sediments of Ice-wedge North and Revneset, sulfate-reducers kept the acetate 

concentrations too low for acetotrophic methanogens, resulting in methanogenesis proceeding 

via the hydrogenotrophic pathway. Dilution by lateral groundwater influx (e.g., Hordijk et al., 

1994) is unlikely to have occurred owing to the ice-wedges and polygon rims impeding 

groundwater flow. Reversible attachment of acetate to the sediment matrix (e.g., Hordijk & 

Cappenberg, 1983) is also unlikely to have caused the stark difference in acetate concentrations 

between Ice-wedge North and Ice-wedge South, as both sites are based on similar aeolian 

sediments. 

Samples from polygon S3 at Ice-wedge South contained strikingly high concentrations of acetate 

(up to 4400 µmol L-1) as well as high concentrations of methane (up to 224 µmol L-1) in the water 

from the active layer (Figure 5.5b). Furthermore, some water samples from the active layer of 

Ice-wedge North contained concentrations of acetate (up to 117 µmol L-1 in N2) above the 

detection limit. Clearly, an alternative explanation is required to explain these high 

concentrations of acetate. The accumulation of acetate is similar to that observed in northern 

peatlands (Duddleston et al., 2002). In northern peatlands, it appears that acetotrophic 

methanogens are not capable of utilising acetate as an energy source. Acetate either 

accumulates or diffuses into oxic peat and is oxidised to carbon dioxide by sulfate or oxygen 

(Duddleston et al., 2002). This process is “acetate-decoupling” (coined by Hines et al., 2001), and 

it is not fully understood why the methanogens cannot use the acetate (Bridgham et al., 2013). 

The samples from Ice-wedge South exhibited a strong, positive correlation between the 

concentration of acetate and the concentration of methane (r = 0.76, p < 0.05). This strong 

positive correlation could indicate a lack of acetotrophic methanogens, with methanogenesis 

instead proceeding via the hydrogenotrophic pathway. This is corroborated by d13C-CH4 values 

of the samples from Ice-wedge South mainly in the hydrogenotrophic zone (Figure 5.5a). These 
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isotopic values may imply that hydrogenotrophic methanogenesis was favourable in the 

environments that were accumulating acetate.  

Three of the samples from Revneset had d13C-CH4 values in the range of thermogenic methane 

(Figure 5.5a). Huq et al. (2017) modelled the diffusion of thermogenic methane from a depth of 

800 to 300 metres in Adventdalen. The authors found that thermogenic methane originating 

from a depth of ~800 metres had been migrating upwards by diffusion over the past 10,000 

years. However, they also found that the d13C-CH4 values in the permafrost layer at 100 metres 

depth were unequivocally biogenic and appeared unaffected by the diffusion of thermogenic 

methane from the deeper sediments (Figure 5.7). Hence, it is likely that thermogenic methane 

has not yet reached the permafrost and active layer sediments by diffusion. It is probable, 

therefore, that the isotopically heavy d13C-CH4 values in water from the active layer of Revneset 

reflect the influence of methanotrophy, rather than diffusion of thermogenic methane from 

deeper sediments. Methanotrophy complicates the use of  d13C-CH4 values to determine the 

primary methane source. For instance, if methane produced via the hydrogenotrophic pathway 

experiences methanotrophy, the enrichment of 13C in the residual methane may cause the d13C 

values of the residual methane to increase and fall in the range of d13C-CH4 values for 

acetotrophic methanogenesis. Hence, Figure 5.5a alone cannot be used to identify acetotrophic 

methanogenesis, unless the possibility of methanotrophy can be eliminated. Due to the large 

spread of d13C-CH4 values within and across sites, the occurrence of methanotrophy is highly 

probable. Therefore, the low number of samples containing methane appearing in the 

acetotrophic region (Zone B) of Figure 5.5a could rather be displaying the complex isotopic 

signature of hydrogenotrophic methanogenesis followed by methanotrophy.  

The results presented in Figure 5.5a imply a greater degree of methanotrophy at Revneset 

(green) compared to Adventdalen (orange and blue). It is possible that this difference is related 

to degradation of the ice-wedge polygon at Revneset. However, as the water samples from the 

active layer of Revneset were from ice-wedge polygon troughs and the water samples from the 

active layer of Adventdalen were from polygon centres, it could be that the isotopic differences 

reflect the increased methanotrophy in the troughs compared to the centres. Further work, 

including sampling of the ice-wedge polygon troughs in Adventdalen, would help to discern the 

reason for the apparently higher rates of methanotrophy at Revneset. In addition, further work 

is required to determine whether the water from the active layer of Revneset and Adventdalen 
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was influenced by acetotrophic methanogenesis. It is clear, however, that the d13C values of 

methane show that hydrogenotrophic methanogenesis was the prevalent mechanism of 

methanogenesis in the water from the active layer of Adventdalen and Revneset. 

5.3.4 Molecular approaches to elucidating methane cycling 

Table 5.1 shows that there was a relative abundance of hydrogenotrophic methanogens, 

compared to acetotrophic methanogens. This corroborates the geochemical evidence presented 

in the previous section of this discussion. Ice Wedge North was dominated by the mainly 

methanogenic Methanomicrobia at depths below 150 cm, while methanotrophic Bathyarchaeia 

were dominant at depths above 150 cm (Figure 5.6). This is likely to have resulted in the higher 

concentrations of methane in the permafrost compared to the active layer (Figure 5.1). A similar 

microbial trend was evident at Revneset, where in the shallow permafrost, there was a 

substantial input from Methanobacteria and Methanomicrobia, and the trend from the 

permafrost into the active layer was towards dominance by the methanotrophic Bathyarchaeia. 

Overall, methanogenesis dominated in the permafrost and methanotrophy dominated in the 

active layer of Ice-wedge North and Revneset.  

In contrast to Ice-wedge North and Revneset, there was a relatively low abundance of 

methanogens in Ice-wedge South. It is important to reiterate here that water sampling from the 

active layer of Ice-wedge South was conducted in a different polygon to coring of permafrost, 

owing to the biased sampling necessary to achieve recovery of water from the active layer in 

summer 2017. Water samples of the active layer were obtained from water-saturated polygon 

S3, whereas molecular analyses were conducted on three cores from a well-drained polygon 

(S1). Hence, molecular data from Ice-wedge South correspond to geochemical data from the 

permafrost cores, but are unlikely to explain the geochemistry of water from the active layer of 

a different polygon. The low relative abundance of methanogens in polygon S1 of Ice-wedge 

South is in agreement with findings from Müller et al. (2018), who reported low archaeal 

abundances and found either a very low level or a complete absence of genes involved in 

methane production. The low relative abundance of methanogens in Ice-wedge South cores 

could explain the negligible concentrations of methane found in the core from this polygon (S1; 

Figure 5.1). The composition of the microbial community at Ice-wedge South is likely to vary 

substantially between polygons. For instance, it could be expected that the high concentrations 
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of methane detected in polygon S3 would be linked to a higher abundance of methanogens in 

this water-saturated polygon.  

The relative abundance of methanotrophs was high in all the sites (Table 5.15.1). This evidence 

corroborates the isotopic evidence presented in Figure 5.55.5 and discussed in Section 5.3.3, 

and may explain why there was such a large spread in d13C-CH4 values observed both within each 

site and between sites (Figure 5.55.5a). In addition, negligible concentrations of methane in the 

permafrost cores from Ice-wedge South might be a result both of low rates of methanogenesis 

and active methanotrophy.  

5.4 Conclusions 

Concentrations of carbon dioxide were substantially higher than concentrations of methane in 

the pore water of the cores, due to microbial respiration using ferric iron and sulfate as electron 

acceptors. The data from the pore water of cores from Ice-wedge South and Ice-wedge North 

indicated that methanogenesis was controlled by the quantity of organic carbon, coupled with 

the degree of water saturation (Section 5.3.1). This was linked with the iron and sulfur redox 

chemistry, as the quantity of organic carbon in these cores regulated the concentrations of 

alternative electron acceptors via iron and sulfate reduction. In contrast, the degradation of the 

ice-wedge polygon at Revneset resulted in a decoupling between the concentration of methane 

and the content of organic carbon (Section 5.3.2). This was exemplified by the absence of 

methane in the dry, organic carbon-rich active layer of the high-centred ice-wedge polygon. The 

evidence from the active layer suggests that it is likely that the low-centred, water-saturated ice-

wedge polygons were a net sink of carbon, due to storage of carbon in organic carbon and 

siderite. It is probable that methanotrophy decreased the emissions of methane, or even 

resulted in the polygons being a net sink of methane. Despite this, the permafrost of the high- 

and low-centred polygons at Revneset and Ice-wedge North contained high concentrations of 

methane, which could be released to the atmosphere upon permafrost thawing, depending on 

the rates of methanotrophy. Quantifying these processes and their influence on greenhouse gas 

emissions from thawing permafrost would improve the accuracy of predictions of the response 

of permafrost to climate change. 
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Hydrogenotrophic methanogenesis was the dominant mode of methanogenesis in the water 

from the active layer of Adventdalen and Revneset. It is unlikely that thermogenic methane 

made a substantial contribution to the concentration of methane in the active layer, owing to 

very slow diffusion of thermogenic methane from depth. Although it is possible that 

acetotrophic methanogenesis occurred in two samples, consumption of methane by 

methanotrophs could have produced the same d13C-CH4 signature in the residual methane. The 

high relative abundance of hydrogenotrophic methanogens and methanotrophs revealed by the 

microbial data support a conclusion that the d13C-CH4 signatures result from production of 

methane via the hydrogenotrophic pathway, followed by variable amounts of methane 

consumption by methanotrophy. The methane data for the water in the active layer were not 

always directly comparable with that for the pore water in the cores, due to the different timing 

of the sampling and the slightly different locations of sampling. However, the active layer data 

are a useful initial indication of the processes producing and consuming methane in Adventdalen 

and Revneset. Further insights into the modes of methane production and consumption would 

be gleaned by measuring the d13C-CH4 and d13C-DIC (dissolved inorganic carbon) of the core pore 

water. This would be useful because, although the active layer data presented in this chapter 

indicate that the primary mode of methanogenesis is hydrogenotrophic, it could be that the 

prevalent pathway of methanogenesis differs between the active layer and the permafrost. 

Finally, the prevalence of hydrogenotrophic methanogenesis in the data presented in this 

chapter adds to a body of evidence from Arctic permafrost indicating that the prevalent pathway 

of methanogenesis varies across the Arctic, and this needs to be accounted for, both in 

predictions of future climate change, and in atmospheric inversion studies.  
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Chapter 6. Synthesis and Conclusions 

This chapter presents a landscape-scale synthesis of the biogeochemical processes in active layer 

and shallow permafrost sediments of Adventdalen and Revneset. The thesis aim and objectives 

are revisited and the work presented in the thesis is discussed in the context of past landscape 

development and future climate warming. Finally, the limitations of the work are assessed, and 

recommendations for future research are identified. 

6.1 Restatement of Project Aim and Objectives 

The motivation for the research presented in this thesis was an appreciation that landscape 

geomorphology influences biogeochemical processes in permafrost regions, but that this has 

been frequently overlooked in previous research on permafrost carbon cycling. The key aim of 

this thesis was to link landscape geomorphology with the biogeochemical processes that lead to 

the production of methane and carbon dioxide in active layer and shallow permafrost sediments 

in Adventdalen and Revneset (Svalbard). The specific objectives were to: 

1. Assess the variability of biogeochemical processes within two contrasting wetlands in a 

fjord valley (Adventdalen). 

2. Examine the influence of larger-scale landforms (fjord valley, raised beaches) and 

smaller-scale landforms (ice-wedge polygons) on biogeochemical processes and the 

concentrations of methane and carbon dioxide in active layer and shallow permafrost 

sediments in Svalbard. 

3. Quantify the sources and sinks of methane in fjord valley (Adventdalen) and intra-beach 

sediments (Revneset). 

6.2 Summary of Findings 

The research presented in Chapter 3 follows from hydrological monitoring in the Endalen, 

Bolterdalen and Longyeardalen catchments, where the oxidation of pyrite exerted a strong 

control on the composition of fluvial runoff, as evidenced by the presence of high sulfate and 
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cation concentrations (Hodson et al., 2016; Yde et al., 2008; Rutter et al., 2011). While sulfate 

reduction and precipitation of pyrite, iron monosulfide and elemental sulfur were inferred from 

the decreasing concentrations of sulfate and *Fe , these processes were hypothesised to be 

limited by a paucity of reactive organic matter in the sediments (Hodson et al., 2016; Raiswell & 

Canfield, 2012). Hence, further work was conducted to test whether the accumulation of organic 

carbon in such environments led to enhanced rates of iron- and sulfate-reduction. For this, two 

ice-wedge polygon wetlands (Ice-wedge South and Ice-wedge North) were selected for 

sampling. Sediment cores from the active layer and shallow permafrost were collected from the 

sites, pore water was extracted from the sediment cores and was analysed for major ions and 

metals, while the core sediments were analysed for organic carbon content, iron oxides and iron 

sulfides. The results from Ice-wedge South indicated that Ca2+, Mg2+, SO4
2- and Fe(aq) in the pore 

water were primarily sourced from sulfide oxidation coupled to carbonate dissolution. Sulfide 

oxidation coupled to silicate dissolution was a secondary source of base cations, SO4
2- and Fe(aq). 

d18O-SO4 and d34S-SO4 values in water from the active layer of Ice-wedge South corroborated 

these findings, indicating that sulfate in pore water of Ice-wedge South originated from pyrite 

oxidation via O2 and pyrite oxidation via Fe3+. These weathering reactions were similar in nature 

to those reported by Hodson et al. (2016), since both are influenced by the limited availability 

of organic carbon.  

In contrast, the high content of organic carbon in Ice-wedge North caused increased iron- and 

sulfate-reduction in this water-saturated site. d18O-SO4 and d34S-SO4 values in water from the 

active layer of Ice-wedge North were indicative of pyrite oxidation via O2 at depths where the 

content of organic carbon was low, and of bacterial sulfate reduction (BSR). The products of iron- 

and sulfate reduction were pyrite (CRS) and siderite (Fecarb), and the quantity of both minerals 

displayed a positive correlation with the content of organic carbon, supporting the conclusion 

that enhanced iron- and sulfate-reduction leading to pyrite and siderite precipitation occurred 

where the content of sediment organic carbon content was high. Finally, Chapter 3 used chloride 

as a tracer to examine the complex physical processes contributing to variations of geochemical 

parameters with depth in the pore water profiles. While cryosuction appeared unimportant for 

vertical migration of ions in both sites, solute exclusion by downward freezing of the active layer 

was a factor in cores S1, N1 and S2b. Cores S2a and S2b may have been influenced by diffusion 

of chloride upwards from underlying marine sediments. Overall, however, the physical processes 

influencing the vertical distribution of ions in the cores were very complex and not well-
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constrained by using chloride as a tracer. The key message of Chapter 3 was that the 

accumulation of organic carbon in water-saturated sediments of a deglaciated high Arctic fjord 

valley caused a transition from sulfide oxidation coupled to carbonate/silicate dissolution 

towards enhanced iron-reduction, sulfate-reduction and precipitation of pyrite and siderite. This 

confirmed the hypothesis of Hodson et al. (2016) that a paucity of organic matter in sediments 

limited sulfate- and iron-reduction, hence limiting precipitation of pyrite, iron monosulfide and 

elemental sulfur. It is plausible that precipitation of pyrite, iron monosulfide, elemental sulfur 

and siderite may result if organic carbon accumulates below the water table of the sediment 

fans.  

Chapter 4 focussed on the effect of landscape geomorphology and ice-wedge polygon 

degradation on the biogeochemistry of the active layer and shallow permafrost. The aim of this 

chapter was to compare the biogeochemical processes in intra-beach sediments (Revneset) with 

water-saturated fjord valley sediments (Ice-wedge North) and to examine the effect of the 

degradation of an ice-wedge polygon on its biogeochemistry. Two sediment cores from the 

active layer and shallow permafrost were extracted from a high-centred ice-wedge polygon at 

Revneset, and the pore water and sediments were analysed in an identical manner to the cores 

from Ice-wedge South and Ice-wedge North. In addition, water from the active layer was 

analysed for d18O-SO4, d34S-SO4, δ18O-H2O and δ2H-H2O to determine the primary water sources 

to Revneset and Ice-wedge North and the sinks for sulfate at Revneset. Finally, active layer and 

water table depths were measured at the end of summer 2017 to understand the hydrology 

during the thaw season at these sites. d2H-H2O and d18O-H2O values of water from the active 

layer of Revneset and Ice-wedge North indicated that the primary source of water for Ice-wedge 

North was winter precipitation, whereas the primary source of water for Revneset was summer 

precipitation, with evaporation contributing to mask any signature of the input of winter 

precipitation. The sediments of Ice-wedge North and Revneset were similarly rich in organic 

carbon, but the ice-wedge polygon at Revneset was much drier, due to a less consistent supply 

of water and degradation of the ice-wedge polygon. The sites hence exhibited different 

dominant biogeochemical processes. In the unsaturated active layer of the high-centred ice-

wedge polygon at Revneset, iron oxidation resulted in high concentrations of ferrihydrite and 

low concentrations of pyrite and siderite. The formation of pyrite and siderite in the active layer 

of Revneset was precluded by the low water table, despite limited isotopic evidence for sulfate 

reduction. The rate of active layer leaching at Revneset appeared to have remained 
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approximately constant and there was no evidence of cryosuction or solute exclusion by 

downward freezing of the active layer.  The research in chapter 4 indicated that future 

degradation of low-centred ice-wedge polygons at Ice-wedge North could lead to more oxidising 

conditions, with a decrease in iron-reduction and a decreased preservation of pyrite and siderite 

in the sediments. 

Chapter 5 was concerned with quantifying methane and carbon dioxide concentrations in the 

active layer and shallow permafrost sediments of Ice-wedge South, Ice-wedge North and 

Revneset, to elucidate the biogeochemical processes leading to methanogenesis and to infer 

methanogenic metabolic pathways. Sediment cores were analysed in an identical manner to 

Chapters 3 and 4, with the additional analysis of methane and carbon dioxide concentrations. 

Water was sampled from the active layer and analysed to determine the concentrations of 

methane and carbon dioxide, in addition to the d13C values of methane. d13C-CH4 values showed 

that the primary source of methane in the active layer was hydrogenotrophic methanogenesis. 

In addition, sequencing data showed that hydrogenotrophic methanogens were more abundant 

than acetotrophic methanogens in cores of the active layer and shallow permafrost. However, 

there was a high relative abundance of methanotrophs and the detected methane was relatively 

enriched in 13C, suggesting that methanotrophs in the active layer consumed methane. At Ice-

wedge North and Revneset, there was a greater abundance of methanogens in the permafrost 

compared to the active layer, with a greater abundance of methanotrophs in the active layer 

compared to the permafrost. This fits with the higher concentrations of methane in the 

permafrost compared to the active layer. The low relative abundance of methanogens in the 

cores from Ice-wedge South could explain the low concentrations of methane in the same 

polygon. However, it is clear from higher methane concentrations in the active layer of a 

different, water-saturated, polygon from Ice-wedge South that methane production is spatially 

variable across polygons within this site. Across all the sites, the methane concentration was 

higher in water-saturated sediments that had higher organic carbon content. A higher 

concentration of methane was inferred to reflect the removal of iron and sulfate from solution 

by iron- and sulfate-reduction where there was sufficient organic carbon, which created redox 

conditions more conducive to methanogenesis. Carbon dioxide concentrations in the sediment 

cores were substantially higher than methane concentrations, in part due to iron- and sulfate-

reduction.  
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Chapter 5 showed that while the quantity of sediment organic carbon and degree of water 

saturation controlled methanogenesis in Adventdalen, the degradation of the ice-wedge 

polygon at Revneset resulted in a decoupling between methane concentration and organic 

carbon content. It was suggested that the water-saturated, low-centred polygons in Ice-wedge 

North were a net sink of carbon, due to carbon storage in organic carbon and siderite. Although 

methanogenesis occurred in these polygons, there was partial consumption of the methane by 

methanotrophs. The high-centred polygon at Revneset is likely to have become a net carbon 

source, due to siderite oxidation, sulfate-reduction and perhaps aerobic respiration of peat 

producing carbon dioxide. However, this polygon is likely to be a methane sink, due to 

methanotrophy in the active layer. Nonetheless, methane concentrations in the permafrost of 

Ice-wedge North and Revneset were high, and the release of this methane to the atmosphere 

upon permafrost thawing will depend on rates of methanotrophy. The prevalence of 

hydrogenotrophic methanogenesis in Adventdalen and Revneset is in contrast to the 

assumption made in atmospheric inversion studies that methane produced in wetlands is 

dominated by acetotrophic methanogenesis (Bousquet et al., 2006; Kai et al., 2011). 

Atmospheric inversion studies and predictions of future climate change must account for this 

variability in the dominant methanogenic pathway.  

6.3 Synthesis 

The essence of this thesis is that post-glacial landscape development, coupled with present and 

future permafrost degradation, influences carbon, iron and sulfur cycling in Adventdalen and 

Revneset, and is therefore likely to be important across deglaciated Arctic permafrost regions 

(Figure 6.1). The aim of this section is to place the present-day biogeochemical processes in 

active layer and shallow permafrost sediments in Svalbard in a longer-term biogeochemical 

context. To achieve this, the following section presents an overview of the biogeochemical 

development of Adventdalen and Revneset over the past 20 ka, culminating in a proposed 

descriptive conceptual model of probable future biogeochemical changes in Adventdalen and 

Revneset. 
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Figure 6.1 A conceptual model of methane and carbon dioxide production in the post-glacial permafrost 
landscape central to the research in this thesis. Methane seepage from deep, natural (thermogenic) gas 
occurs in addition to methane associated with continental ice sheet retreat. There is production of carbon 
dioxide and methane (hydrogenotrophic pathway) in the active layer and shallow permafrost sediments 
of Adventdalen and Revneset. Figure modified from the LowPerm final project report (A. Hodson, pers. 
com.). 

Chapter 1 introduced the concept that in the most recent glacial advance, the Last Glacial 

Maximum (LGM; 20 ka), the entire archipelago of Svalbard was covered by the Svalbard-Barents 

ice sheet (Landvik et al., 1988; Landvik et al., 2005). Previous work on present-day ice sheets has 

shown that their subglacial environments are highly geochemically reactive (Wadham et al., 

2010). Sulfide oxidation coupled to silicate dissolution tends to dominate beneath ice sheets 

(Wadham et al., 2010). While methane has only rarely been detected in subglacial meltwaters 

of valley glaciers (Burns et al., 2018), the basal environment of ice sheets may be more conducive 

to methanogenesis, provided that conditions are anoxic, with sufficient organic carbon and 

meltwater (Wadham et al., 2008; Wadham et al., 2019). Recently, subglacial runoff from two 

Greenlandic catchments has been found to be supersaturated with biogenic methane (Dieser et 

al., 2014; Lamarche-Gagnon et al., 2019). The subglacial biogenic methane source is 

supplemented by thermogenic methane (Wadham et al., 2012; Crémière et al., 2016). Once the 

concentration of methane in subglacial sediment pore water reaches saturation, the formation 

of methane hydrates is favoured by the low temperature and high pressure conditions at the 

base of ice sheets (Wadham et al., 2012; Weitemeyer & Buffett, 2006; Portnov et al., 2016). As 

the LGM drew to a close, deglaciation caused methane hydrates to become thermodynamically 

unstable, resulting in methane release from sea floor pockmarks (submarine fluid escape 
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features; Smith et al., 2001; Weitemeyer & Buffett, 2006; Crémière et al., 2016). Escape of 

methane associated with continental ice sheet retreat is still occurring from submarine seepages 

in Svalbard (Wallmann et al., 2018). However, methanotrophy in the water column above the 

pockmarks results in only a small fraction of the dissolved methane reaching the atmosphere 

(Mau et al., 2017). Following deglaciation, uplifted pockmarks can form pingos during 

permafrost aggradation (Hodson et al., 2019). Pingos provide significant contributions to 

terrestrial methane emissions because they route groundwater to the ground surface with little 

opportunity for interaction with methanotrophic water and soil ecosystems (Hodson et al., 

2019). Otherwise, thermogenic methane produced at depth only seeps upwards slowly (Huq et 

al., 2017), owing to the low hydraulic conductivity of the marine infills. In summary, assuming 

that weathering processes beneath the Svalbard-Barents ice sheet during the LGM were similar 

to those beneath present-day ice sheets, it is likely that the subglacial environment of the 

Svalbard-Barents ice sheet was dominated by sulfide oxidation coupled to silicate dissolution. 

The subglacial environment of the Barents-Svalbard ice sheet facilitated methanogenesis, and 

the release of the methane initiated by deglaciation is still occurring today (Figure 6.2).  

 

Figure 6.2 Conceptual model of dominant methane sources and sinks a) 11 ka. and b) the present day in 
Adventdalen. Methane sources include destabilising methane hydrates, deep thermogenic methane and 
zones of net methanogenesis (e.g., some active layers and permafrost sediments). Methane sinks (zones 
of net methanotrophy) exist in the fjord and potentially in some active layers and permafrost sediments. 
Modified after Hodson et al. (2019, In Review). 

During deglaciation deltaic sediments were deposited in the fjord and their subsequent uplift by 

isostatic recovery of the land surface led to permafrost aggradation. Prior to the accumulation 

of substantial quantities of organic carbon in these sediments, it is likely that the chemical 
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composition of active layer and permafrost pore water was determined primarily by weathering 

of reactive, fine-grained sediments. Pyrite oxidation exerts a strong control on the chemical 

composition of fluvial runoff (Hodson et al., 2016; Yde et al., 2008; Rutter et al., 2011) and 

Chapter 3 confirmed the importance of this process in the present-day active layer and shallow 

permafrost sediments and pore water of Ice-wedge South. In these sediments, sulfide oxidation 

coupled to carbonate weathering was the main source of cations and sulfate, and silicate 

weathering coupled to sulfide oxidation was a secondary source of cations and sulfate.  

Following the retreat of the ice sheet, the recently deglaciated terrain would have lacked 

vegetation cover (Wietrzyk et al., 2018). Tishkov (1986) studied primary succession on landforms 

on the west coast of Spitsbergen and found that the total time for primary succession ranged 

from around 800 to 3500 years. The growth of vegetation in deglaciated terrain is linked to 

nutrient and water supply (Burga et al., 2010). Following deglaciation, a consistent supply of 

water to sediments during the thaw season would have induced anoxia, which, combined with 

low temperatures, would have restricted extensive decomposition of vegetation organic matter, 

facilitating peat formation. The accumulation of peat would have been influenced by changing 

site-specific characteristics (such as hydrology) and by climatic variations during the Holocene. 

Results from Ice-wedge North indicated that in present-day sediments with abundant organic 

carbon, geochemical signals of weathering were masked by biogeochemical processes such as 

iron- and sulfate-reduction, which produce carbon dioxide and result in the formation of pyrite 

and siderite (Chapter 3). The abundance of organic carbon facilitated the maintenance of 

reducing conditions and hydrogenotrophic methanogenesis occurred with associated 

methanotrophy at shallower depths (Chapter 5). It is likely that present-day Ice-wedge North is 

a net sink of atmospheric carbon, due to storage of carbon in organic matter and siderite 

formation. It is not yet clear how the quantity of methane emitted from shallow active layer 

sediments in such environments compares to methane emissions from nearby pingos, but 

release of methane stored in the underlying shallow permafrost sediments could become an 

additional carbon source under climate warming. 

The mean annual air temperature (MAAT) in Longyearbyen, Svalbard, has increased by 1.25 °C 

per decade in 1989-2011 (Førland et al., 2011) and the rising air temperature has caused a recent 

increase in permafrost temperature (Isaksen et al., 2007). Degradation of ice-wedge polygons in 

response to rising air temperatures and thawing ground ice has been observed across the Arctic 
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(e.g., Sachs et al., 2010; Lara et al., 2015). However, no dramatic degradation of ice-wedge 

polygons has occurred in Adventdalen (Pirk et al., 2017a). The biogeochemical state of a high-

centred polygon at Revneset provides inferences on the future of low-centred polygons at Ice-

wedge North. Degradation of an ice-wedge polygon at Revneset resulted in an overall drainage 

of water and drying of the polygon centre. This has led to oxidising conditions, a decrease in 

iron-reduction and decreased preservation of pyrite and siderite in the sediments. Degradation 

has also resulted in an absence of methane in the active layer, and further degradation could 

cause the release of methane presently stored in permafrost. However, the amount of methane 

released from the permafrost will depend on rates of methanotrophy. The high hydraulic 

conductivity of the beach sediments and peat at Revneset are likely to facilitate drainage of 

water. However, even in fjord valley infill sediments at Ice-wedge North, there is a possibility 

that lateral drainage of water will occur as a result of the degradation of ice-wedge polygons. If 

ice-wedge polygons at Ice-wedge North were to follow a similar trajectory to the polygon at 

Revneset, low-centred polygons would progressively transform to high-centred polygons, with 

oxidising conditions, a decrease in iron-reduction, and oxidation of pyrite, siderite and methane 

in the sediments.  

Degradation of ice-wedge polygons may have less of an impact on biogeochemical cycling at Ice-

wedge South, due to the already drier sediments and lower accumulation of organic carbon. 

However, conditions within ice-wedge polygons at Ice-wedge South are heterogeneous, with 

some water-saturated polygons displaying clear indications of methanogenesis. Across the ice-

wedge polygonal terrain of Adventdalen and Revneset, it is likely that permafrost will become a 

sink of methane, due to degradation of ice-wedge polygons and drainage of water from the 

landscape. It is possible that a transformation to high-centred polygons will result in increased 

carbon dioxide emissions and that, despite methanotrophy, the polygons will be a net carbon 

source. As  ~250 000 km2 of the Arctic is covered by polygon tundra (Minke et al., 2007), this 

transformation could have a substantial impact on the future permafrost carbon feedback. 

Further work is required to quantify the impact of ice-wedge polygon degradation across 

Adventdalen on the biogeochemistry of pore water and fluxes of methane and carbon dioxide 

to the atmosphere. 
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6.4 Recommendations for Future Research 

The limitations of this study inform the following recommendations for future research.  

6.4.1 Sources and quality of organic carbon 

Accumulation of organic carbon in active layer and shallow permafrost sediments of 

Adventdalen and Revneset has a substantial impact on the cycling of iron and sulfur, as well as 

on the production of methane. Further information on the sources and quality of organic carbon 

would complement this study. There are various typical sources of permafrost carbon, which 

include undecomposed plant roots, infiltrating dissolved organic carbon and mineral-associated 

organic matter in loess (Waldrop et al., 2010). Future research should focus on analysing plant 

macrofossil residues and d13C values of organic carbon to reconstruct the history of peat 

accumulation and changing plant assemblages (e.g., Andersson et al., 2012). These analyses 

would be complemented by radiocarbon dating peat deposits to determine the time of initiation 

of peat formation at Revneset and Ice-wedge North and the varying rates of peat accumulation 

through time. This could provide insight into the rate of accumulation of organic carbon and 

carbon drawdown in other regions in the high Arctic that either have a shared history of 

glaciation and glacial isostatic rebound, or that have a probable future of deglaciation (e.g., 

Greenland). Further valuable research would include linking these analyses with grain size 

analyses of Ice-wedge North, to ascertain whether the varying location of sediment fans 

cascading down the steep valley side of Adventdalen was implicated in altering the rate of 

organic carbon accumulation over time.  

Vegetation type influences the rate of organic carbon decomposition and the spatial variability 

of methane emissions in Arctic tundra (Schuur et al., 2008; Davidson et al., 2016). It is imperative 

that future research on the biogeochemistry of Adventdalen and Revneset considers the role of 

vegetation in organic carbon quality, decomposition rate and methane emissions. The quality, 

or decomposability, of soil organic carbon affects the rate of release of permafrost carbon to the 

atmosphere (Schädel et al., 2014). There are various approaches to assessing carbon quality, or 

decomposability. Schädel et al. (2014) constructed a three-pool carbon decomposition model 

based on the turnover time of organic carbon during incubations. Strauss et al. (2015) used a 

multiproxy approach, including the analysis of lipid biomarkers, to ascertain permafrost carbon 
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quality. Waldrop et al. (2010) instead focussed on analysing spectra obtained from solid state13C 

nuclear magnetic resonance (NMR) spectroscopy to determine the inherent chemical 

composition of soil organic matter. It would also be useful to understand changes in microbial 

community composition and how this influences the regional carbon content of the soil. There 

is scope for future studies to apply these diverse approaches in Adventdalen and Revneset to 

refine and extend the information on organic carbon presented in this thesis. 

6.4.2 Iron and sulfur cycling 

Measurements of d13C of siderite and d34S in pyrite from Ice-wedge North would provide further 

evidence for the sources of these mineral phases in the sediments. This could be supplemented 

with incubations to ascertain the rate of siderite and pyrite formation in the sediments. It is 

hoped that this would corroborate the results from Chapter 3, which suggest that pyrite and 

siderite form in-situ in sediments of Ice-wedge North. Measuring d13C in siderite could confirm 

that the bicarbonate mainly originates from degradation of organic matter, rather than from sea 

water (e.g., Mortimer et al., 2011). Furthermore, measuring d34S in pyrite could validate the 

hypothesis that pyrite in sediments of Ice-wedge North is indeed authigenic. Authigenic pyrite 

would be more enriched in 34S compared to bedrock, owing to fractionation by sulfate-

reduction. Furthermore, in Chapter 3, it was noted that the all sulfate was enriched in 34S 

compared with the bedrock pyrite. The enrichment could result from of the breakdown of humic 

matter or plant material. This requires testing by measuring d34S in carbon-bonded sulfur at the 

sites.  

6.4.3 Methane fluxes 

A deeper understanding of the relationship between net surface methane and carbon dioxide 

fluxes and biogeochemical profiles in Ice-wedge South, Ice-wedge North and Revneset would be 

valuable. This could be achieved by measuring methane and carbon dioxide fluxes from the 

study sites, which would also help to discern whether the sites are a sink or a source of carbon 

to the atmosphere. Such experiments were attempted with manual flux chambers in 2016, but 

infrequent and temporally variable sampling protocols led to substantial uncertainty in flux 

estimates. This was compounded by the difficulty of accessing Ice-wedge North during the 

summer, when there was high discharge through Adventelva. An automatic closed chamber 
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system to continuously monitor methane and carbon dioxide fluxes, such as that used by Pirk et 

al. (2017b) near to Ice-wedge South, would be ideal for continuously measuring methane and 

carbon dioxide fluxes, particularly at Ice-wedge North and Revneset. Further, it would be useful 

to understand the environmental reasons for the dominance of hydrogenotrophic 

methanogenesis over acetotrophic methanogenesis, and the scattered accumulation of acetate, 

at the study sites. This could be addressed by analyses of the dD of methane and d13C of dissolved 

organic carbon, as well as amended incubations of sediments to determine geochemical or 

microbiological factors that limit acetotrophic methanogenesis or enhance hydrogenotrophic 

methanogenesis.  

6.4.4 Replication 

The research presented in this thesis was unusual in analysing permafrost cores at such a high 

depth resolution. This was useful in that it demonstrated that permafrost biogeochemistry is 

variable with depth and that it would be incorrect to assume that an active layer sample 

represents the underlying permafrost. However, it was very time-consuming to analyse the 

permafrost cores at this high depth resolution and this limited the time available for 

comprehensive replication of the permafrost core analyses. Although some replication in 

permafrost cores was achieved (2 cores from Ice-wedge North, 3 from Ice-wedge South and 2 

from Revneset), a useful future sampling design should focus on measuring features better 

suited to scaling up the dominant biogeochemical processes for this region. For instance, ice-

wedge polygons are commonplace in this landscape and are easily recognisable from readily 

available aerial photographs, as are fjord valleys and raised beaches. Ascertaining intra-site, 

inter-polygon and intra-polygon biogeochemical variability would better establish whether 

particular landscape features are biogeochemically similar. In practice this would mean a 

sampling at a coarser resolution with depth, in order to allow time and resources for sampling 

more polygons within each site, and sampling different polygon features (polygon centres, 

troughs and rims) in each polygon. This would allow future estimates of biogeochemical 

processes in specific landforms to be based on measuring fewer parameters. For instance, the 

water in the active layer of polygon S3 at Ice-wedge South was sampled only because it proved 

difficult to extract water from the drier polygons with The Sheffield Spike. Analyses of water 

from this polygon showed a remarkable accumulation of acetate and clear evidence of 

methanogenesis, in contrast to the other polygons sampled at Ice-wedge South. Clearly, this 
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polygon was overlooked in the permafrost coring sampling design, and it would be useful to 

ascertain by surface features or indirect measurements which polygons are similar to S3. In 

addition, it would be helpful to core polygon S3 and study the bioavailability of the organic 

matter and the conditions that lead to high acetate and methane concentrations. 

A limitation of this study is the failure to consider inter-annual variability in active layer and 

permafrost biogeochemistry. Further extensions to the work presented here would be to study 

inter-annual variability, development of active layer biogeochemistry with progression of the 

annual thaw season and connections with active layer hydrology. This would require frequent 

site visits during the thaw season over a number of years. Hence, this type of work is probably 

best suited to Ice-wedge South, which is the most accessible site. Ice-wedge South contains both 

dry and water-saturated polygons. Hence, Ice-wedge South is an ideal site to examine the impact 

of hydrology on polygon biogeochemistry and the manner in which polygon active layer 

biogeochemistry develops over the thaw season. It is clear from the results in this thesis that 

polygons at Ice-wedge South have a large range in their water-saturation, with some polygons 

being much drier than others, and that this leads to differences in biogeochemistry and 

methanogenesis. It would be helpful to know whether the quantity of organic carbon varies 

between polygons within a site, whether some polygons are consistently water-saturated while 

others remain dry, and whether polygon hydrology varies on an annual or seasonal basis.   

6.4.5 Geomorphology of Revneset 

Visits to Revneset during this project were limited by time at the site, due to a variety of logistical 

challenges. There is scope for future research to consider the geomorphology of Revneset in 

much greater detail. For instance, it is not yet known why or when the lake at Revneset formed, 

or whether the lake was implicated in the degradation of down-slope ice-wedge polygons. It 

may yield useful insights to link the formation of the lake with sea level history. For instance, 

Lønne & Nemec (2004) linked the formation of successive spits as relative sea level fell to the 

formation of Moskuslaguna (an intertidal lagoon) in Adventdalen. While the lake at Revneset 

could have formed by a similar mechanism, it could instead have formed by underlying fine-

grained bedrock and permafrost impeding the drainage of water from the area. Later, water 

draining laterally from the lake may have initiated the degradation of ice-wedge polygons 

downstream by thermal erosion of the ice wedges. It would in addition be beneficial for future 
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research to quantify the influence that the lake has on water biogeochemistry in the active layer 

of downstream ice-wedge polygons. 

6.4.6 Other deglaciated coastal regions 

While the conclusions drawn from this study are specific to Adventdalen and Revneset, it is likely 

that there are broad similarities to other previously glaciated fjord valleys or coastal regions in 

continuous permafrost. The history of glaciation and deglaciation is typical across the high Arctic 

(Gilbert et al., 2018) and so the evidence presented in this study may be broadly applicable to 

other high Arctic settings. As glaciers retreat, fjord valleys have rapid sedimentation and organic 

carbon burial rates, forming valley infills that are ideal for methanogenesis (Gilbert et al., 2017; 

Gilbert et al., 2018; Smith et al., 2015; Syvitski et al., 1986). In fact, over the past 10,000 years, 

almost one quarter of global marine sedimentation has occurred in fjords (Syvitski et al., 1987). 

Glacial retreat and postglacial isostatic rebound has occurred across much of the Arctic, uplifting 

fjord systems (Milne & Shennan, 2007). For instance, following deglaciation, the marine limit in 

the Canadian high Arctic varies, but reaches as high as >130 metres above sea level (England et 

al., 2006), and in Greenland it reaches a maximum of 140 metres above sea level (Bennike et al., 

2011). The highest marine limit in Novaya Zemlya is 13.5 metres above high tide and 49 metres 

above high tide in Franz Josef Land, Russia (Forman et al., 2004; Zeeberg et al., 2001; Forman et 

al., 1996). It would be informative to conduct a similar study to this in coastal sediments that 

have experienced isostatic rebound and permafrost aggradation following ice sheet retreat. 

Such future study might be profitably focussed on coastal Greenland or the Canadian high Arctic. 

If similar processes occur in these locations, it would useful to incorporate some of the 

biogeochemical mechanisms into models of the permafrost carbon feedback.  

Finally, this research on the present state of permafrost biogeochemistry in Svalbard raises 

further questions about the evolution of the study sites and similar sites in the future. Future 

changes in in the biogeochemistry of permafrost will be closely linked to changes in hydrology 

and geomorphology. For instance, the scale and timing of future degradation of ice-wedge 

polygons will impact their biogeochemistry and emissions of methane; the form, amount and 

timing of precipitation will regulate hydrology and hence the biogeochemistry of permafrost; 

and air and ground temperature will influence the thawing of permafrost, rates of weathering 

and microbial activity. However, the timing and relative importance of these future changes is 
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not well-known for the study sites and further research is required to constrain this uncertainty. 

Further uncertainties include, but are not limited to, the rate of decrease in carbon storage in 

permafrost in these sites, changing grazing patterns, and changing vegetation. Changes in 

permafrost are coupled to the fjord by runoff and to the atmosphere by greenhouse gas 

emissions. If ice-wedge polygons remain water-saturated and low-centred, it is likely that this 

will decrease the adverse impact of permafrost thaw both on the atmosphere and on 

downstream ecosystems. However, if polygons degrade across Adventdalen and other similar 

regions in the high Arctic, this could lead to drying of the landscape, rapid loss of carbon as 

carbon dioxide, and oxidation of pyrite and siderite.  
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