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Abstract 

The laser flash photolysis – laser-induced fluorescence technique has been used 

to study the reaction kinetics of several potential biofuel ethers under low temperature 

combustion conditions, in order to extend the understanding of the reactions that occur in 

novel combustion engines. Biofuels offer a potentially carbon-neutral energy source that 

could contribute to climate change mitigation, and commercial interest has been given to 

the ether family of compounds, which display desirable fuel characteristics such as high 

energy densities and favourable ignition properties.  

Chapter 3 presents a study of the reaction between the OH radical and trimethyl 

orthoformate (TMOF), diethyl- (DEE), di-n-butyl- (DBE), methyl tert-butyl- (MTBE), 

and dimethyl ether (DME), from 298 – 744 K in 13 – 190 Torr of nitrogen. This 

constitutes the first temperature-dependent study of OH + trimethyl orthoformate, and a 

significant extension of the temperature range of previous studies on the OH + di-n-butyl 

ether and OH + diethyl ether reactions. The temperature dependences of the rate 

coefficients for OH + ether (all in units of cm3 molecule–1 s–1) can be parameterised by:  

kOH+TMOF(298–744 K) = (8.0 ± 12.2) × 10–13 [(T/298)(2.6±1.2) + (T/298)(–8.1±4.6)] × e(2.7±3.9)/RT, 

kOH+DEE(298–727 K) = (1.28 ± 0.21) × 10–11 × e(–0.11±0.59)/RT, 

kOH+DBE(298–732 K) = (3.05 ± 7.13) × 10–12 (T/298)1.3±1.6 × e(6.4±5.8)/RT, 

kOH+MTBE(298–680 K) = (9.8 ± 21.6) × 10–13 (T/298)2.7±1.5 × e(2.5±5.6)/RT, and  

kOH+DME(298–656 K) = (1.22 ± 2.83) × 10–15 (T/298)6.9±0.5 × e(19.1±3.8)/RT. 

Chapter 4 presents a technique for determining R + O2 rate coefficients and OH 

yields by the observation of OH regeneration from chemical activation. This technique 

was verified using the CH3OCH2 + O2 reaction in the dimethyl ether system via 

comparison with previous measurements, and analyses using numerical integration 

software determined the optimum experimental conditions for the method. Potentially, 

this technique can be used to obtain rate parameters important for the combustion 

modelling of a wide range of potential fuel molecules. Rate coefficients for the system 

are reported at 291 – 483 K, in 4.1 – 32.6 Torr of nitrogen, and the mean room temperature 

rate coefficient was determined to be kCH3OCH2+O2 = (0.94 ± 0.04) × 10–11 cm3 

molecule–1 s–1, across all pressures explored.  

Chapter 5 employed the technique described in Chapter 4 to present novel 

measurements of the C2H5OC2H4 + O2 reaction rate coefficient integral to the low 
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temperature combustion of diethyl ether under experimental conditions of 298 – 464 K, 

in 5.2 – 28.4 Torr of nitrogen. The mean 298 K rate coefficient was determined to be 

kC2H5OC2H4+O2 = (3.10 ± 0.55) × 10–11 cm3 molecule–1 s–1. OH yields and rate coefficients 

were compared to ab initio calculations of the diethyl ether low temperature oxidation 

surface at the CCSD(T)/Jun-cc-pVTZ//M06-2X/Jun-cc-pVTZ level, using master 

equation methods. The transition state barrier to the OH product was required to be 

lowered by ~7 kcal mol–1 in order to achieve good agreement between experimental data 

and theoretical calculations. 

Chapter 6 reports some initial observations of subsequent OH regeneration 

following the R + O2 reaction at higher temperatures (~500 K and above), and some 

interesting unwanted chemistry occurring under high temperature and high O2 conditions. 

The main recommendations for future work are further explorations of the source of this 

extraneous chemistry, and development of the data interpretation under such conditions. 

The investigation of a wide range of fuels’ R + O2 reactions using the method presented 

in Chapter 4 should also be carried out to improve estimated rates in combustion models. 
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Chapter 1 Introduction 

 This chapter provides context to the work carried out in this thesis, by giving an 

overview of the motivations driving the research undertaken. Broadly, the introductory 

chapter focuses on the principles of climate change; the potential for transport biofuels to 

mitigate the severity of anthropogenic contribution to climate change; properties of the 

ethers studied in this thesis, focused on the well-researched dimethyl ether, and higher 

ethers; combustion mechanisms and engines; and the principles of chemical reactions 

utilised to formulate experiments and analyse the data that form this thesis.  

 

1.1 Climate Change 

Climate change and its potential solutions have become possibly the most important 

and debated scientific and political issue of recent times. Evidence collated from modern 

day temperature recordings [1], past temperature extrapolations such as those from ice-

cores [2], and modelling studies [3], prove that global warming is heavily exacerbated by 

anthropogenic activity to a degree of certainty the Intergovernmental Panel on Climate 

Change (IPCC) now regard as “unequivocal” [4]. Increasing concentrations of CO2 

(Figure 1-1) and other greenhouse gases (GHGs) give rise to this atmospheric warming 

effect, in what is a well understood mechanism. Greenhouse gases are molecules which 

are infrared (IR) active, containing a permanent or transient dipole moment, where, upon 

absorbing infrared radiation, the dipole moment is induced by vibration and rotational-

vibration [5]. UV/VIS (ultraviolet/visible) sunlight is re-radiated from the Earth’s surface 

as IR radiation, and subsequently absorbed by the GHGs in the atmosphere. Once 

absorbed, the radiation can be emitted back towards the Earth’s surface, heating up the 

surface, or the atmosphere through energy transfer. This mechanism traps heat in the 

atmosphere via certain gases, acting somewhat similarly to a greenhouse glass roof.  

Carbon dioxide was first shown to absorb IR radiation by John Tyndall in 1859, 

along with other molecules such as water vapour, methane and ozone [6]. Now, it is 

virtually unanimously acknowledged that GHGs are the cause of current warming trends. 

Anthropogenic emissions from sources such as fossil fuels burned to generate energy; 

farming livestock for the food industry; and waste disposal, have led to an increase in 

carbon dioxide and other greenhouse gases that exhibit positive radiative forcing, since 
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the start of the industrial revolution in 1750 (Figure 1-1). The resultant temperature 

increase has also been observed over the past century (Figure 1-2), and when compared 

with long-term temperature records from ice-cores, the current trend in increasing 

temperature is not only more rapid than anything seen for thousands of years, but the 

temperature anomaly (the difference between measurement and reference, where the 

reference in this case is the temperature between 1961 and 1990) is also higher than 

previous measurements (Figure 1-3).  

 

 

Figure 1-1:  Law Dome ice core and firn air records since the year 1750, showing the 
increasing concentrations of three greenhouse gases. Contemporary records from 
Cape Grim are also shown. Thin lines are spline fits [7]: 20 year smoothing for 
methane and carbon dioxide, 40 year smoothing for N2O. Reproduced from 
MacFarling Meure et al. [8]. 

 

Recently a more focused global effort to tackle climate change was renewed with 

the Paris Agreement, formulated at COP 21 (21st Conference of the Parties), laying out 

targets to limit warming to well below 2 ℃, ideally 1.5 ℃, and emphasising national 

action as the driver behind climate change mitigation [9]. The most recent IPCC 

assessment report projected temperature anomalies that may be reached in the future, 

using RCP (representative concentration pathways) based on GHG emissions [3]. Three 

out of four of their RCP scenarios exceed a warming of 2 ℃ by the year 2100. Only with 

aggressive mitigation does their most optimistic scenario manage to keep warming below 
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2 ℃, highlighting the urgent need for countries to reduce their greenhouse gas emissions 

significantly.  

 

 

Figure 1-2: Increase in annual global mean surface temperature anomaly since 1850 
AD, relative to a 1961 – 1990 climatology from the most recent version of the three 
land-surface air temperature and sea-surface temperature data sets combined 
(HadCRUT4, GISS and NCDC MLOST). Reproduced from Hartmann et al. [1]. 

 

Should atmospheric warming be allowed to continue at the current rate, by the 

end of the 21st century, the IPCC report states with high confidence (95%), that there will 

be “severe, widespread and irreversible impacts globally”, as a result of a 3.7 – 4.8 °C 

predicted temperature anomaly by 2100, compared with pre-industrial levels [10]. The 

consequences could be catastrophic, and include species extinction, food security risks, 

and extreme weather events. To combat this threat, a plethora of methods for reducing 

CO2 and other emissions have been proposed, including carbon capture and storage, geo-

engineering, afforestation, and the use of alternative renewable energy sources.  
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Figure 1-3: Reconstruction of previous two millennia temperature anomalies based 
on 1961–1990 instrumental reference period (dashed line). Blue line represents 
global mean surface temperature reconstruction, red line modern day observations. 
Yellow shading represents the 95% confidence limits. Reproduced from [11].  

 

1.2 Biofuels 

One renewable energy source is bioenergy, which has the potential to be carbon-

neutral, and is essentially any source that derives its energy from biological organisms. 

In theory, any carbon that is released upon burning a bioenergy source, such as biomass, 

will have been recently sequestered from the atmosphere throughout the lifetime of the 

plant via photosynthesis. Thus, if the process of producing and transporting bioenergy 

does not use CO2, no additional CO2 is released into the atmosphere. Coupled with carbon 

capture and storage, bioenergy also has the potential for ‘negative’ carbon emissions [12].  

A bioenergy source group that may have a large capacity for CO2 emissions 

mitigation in the future is that of biofuels, where transport fuels are derived from 

renewable biological matter such as plants, animal wastes or organic manufacturing 

wastes. Biofuels could supplement or even replace the use of fossil fuels such as diesel 

and petrol, where 33% of UK CO2 emissions arose from the transport sector in 2018 [13]. 

In the European Union, approximately 23% of GHG emissions are due to the transport 

sector [14]. Currently, biofuels account for approximately 3% of global transport demand 

[15], and in 2016 biofuels accounted for a 91% share of global renewable road transport 

fuel [16]. Bioethanol and biodiesel account for the majority of current biofuels, sharing 

37% and 56% of the renewable fuel used in the UK in 2019 so far [17], and overall global 

transport biofuel manufacture grew ~7% year-on-year in 2018 [15]. Hydrogenated 

vegetable oils also hold a small, but increasing share in total biofuel production. Although 

their primary application is for road vehicles, biofuels began to see usage as an aviation 

fuel in 2016 [18]. Despite various advantageous properties of biofuels compared to 
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conventional fossil fuels, such as carbon-neutrality and renewable supply, there are also 

issues to consider, such as the food vs fuel debate, where food security would be at risk 

should extensive land be used to grow biofuels to substantially contribute to global 

energy [19]. In addition, careful production practices must be used to ensure deforestation 

and large energy consumption during the manufacture and transportation of biofuels does 

not lead to positive net carbon emissions. Generally biofuels currently offer decreased 

pollutant emissions but greater NOx (NO2 + NO) production from engines [20]. GHG 

savings compared to fossil fuel use were estimated to be 81% in the UK [17], and with 

legislation now passed committing to net zero emissions by 2050 in the UK [21], biofuels 

could make an important contribution moving forward. 

Other alternatives to conventional transport fuels may have a role to play, such as 

hydrogen and electricity, however combustion is still an attractive proposition for 

powering transportation, due to the high energy density of fuels, a well-developed 

understanding of combustion, and the relative ease with which alternative combustion 

fuels could be ingratiated into existing infrastructure. This high energy density is a 

considerable advantage that biofuels still possess over other sources of renewable 

transport energy such as lithium-ion batteries, and hydrogen. Hydrogen has a very high 

energy density per mass, but its low mass density means liquid hydrogen has a low energy 

density for practical use in transport, of 8 MJ L–1 [22]. Similarly, the Panasonic 2170 cell 

used in the most recent Tesla vehicle equates to roughly 2.6 MJ L–1 [23]. These energy 

densities are much lower than for something like diethyl ether studied in this thesis, which 

possesses an energy density of approximately 26 MJ L–1 [24]. 

 

1.3 Bio-Ethers 

Ether biofuels are emerging as a possible replacement for conventional fuels, or as 

a blending agent with petrol and diesel fuels [25]. Potential biofuel ethers include 

dimethyl ether (DME), and diethyl ether (DEE). They are not widely used as standalone 

fuels currently, but progress has been made, with gradual advancement towards 

commercial DME fuel use. Ford, in partnership with Oberon Fuels, announced a research 

project in 2015 that aims to develop the first cars to run on DME, along with 

oxymethylene ether (OME) (Table 1-1), citing lower particulate emissions than diesel 

and increased fuel efficiency as the primary advantages within reach [26]. Volvo are 

another large company that have demonstrated biofuel ethers’ potential for commercial 
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use, utilising a fleet of heavy lorries running on DME fuel for two years starting in 

2010 [27]. Field testing continued into 2015 and Volvo remain confident about DME as 

a fuel [28], pledging to continue to develop DME engines for commercial use in their 

subsequent Annual and Sustainability Report [29]. 

Aside from DME and DEE, other possible bio-ethers include di-n-butyl ether 

(DBE), methyl tertiary-butyl ether (MTBE), ethyl tertiary-butyl ether (ETBE), tertiary-

amyl methyl ether (TAME), tertiary-amyl ethyl ether (TAEE), trimethyl orthoformate 

(TMOF), and di-iso-propyl ether (DIPE) (Table 1-1), which show more potential as 

conventional fuel additives [30, 31]. DME, DEE, DBE, MTBE and TMOF have all been 

studied in this thesis, and some of their properties are detailed Table 1-2, in comparison 

to conventional fuels, and gasoline.  

 

Table 1-1:  Molecular structure of various potential bio-ether fuels and additives. 

DME 
 

DEE 
 

DIPE 

 

DBE  

MTBE 

 

ETBE 

 

TAME 

 

TAEE 

 

OME 
 

TMOF 

 

 

 

 

 

 



7 
 

Table 1-2: Properties of ethers studied in this thesis, and common fuels. 

Property DME DEE DBE MTBE TMOF diesel biodiesel gasoline 

Formula C2H6O C4H10O C8H18O C5H12O C4H10O C8-C25
a C12-C22

a,b C4-C12
a 

Energy 
densityc 20.6d 26.3e 28.9f 28.2g – 33.3d 32.3g 32.8d 

b.p. / ℃ -24.9h 34.6e 141f 55i ~101j 125-400h 330e 38-204h 

Cetane 
rating 

55-60k >125e 100-115e,l – – ~55k 52e – 

Octane 
number 

– – – 
98-
123m  – – – 80-100g 

Self 
ignition T 
/ ℃ 

350i 363e 175n 374i 255o 316a 150a 247-280g 

Flash 
point / ℃ 

–41i –49g 25n –33i 9j 74a 100-170a –43g 

C / wt.% 52.1 64.9 72.2 68.1 45.3 87o 78d 85.5o 

O / wt.% 34.7 21.6 13.1 18.2 45.2 trace 10d <3.7p 

aFrom ref [32]. bMethyl esters of C4-C12 fatty acids. cUnits of MJ L–1. dFrom refs [33, 34]. eFrom ref [24]. 
fAt 15 ℃, from ref [14]. gFrom ref [35]. hFrom refs [34, 36]. iFrom Sigma Aldrich. jFrom ref [37]. kFrom 
refs [34, 38].  lFrom ref [39]. mFrom ref [40].  nFrom ref [41]. oFrom Fisher Scientific. pFrom ref [42].  

 

1.3.1 Dimethyl Ether 

Dimethyl ether is currently considered a potential alternative fuel to conventional 

fuels such as petrol and diesel, due to its promising properties and feasible production as 

a biofuel. Several production routes for DME are possible, with feedstocks including 

methane (via methanol), biomass, and coal [43]. For bio-DME, biomass can be gasified 

in order to produce syngas (mostly a mixture of hydrogen, carbon monoxide and carbon 

dioxide), which can then undergo copper catalytic conversion to produce methanol, 

before de-hydrogenation of the methanol to form DME, using zeolite- or alumina-based 

catalysts [38]. These two steps can be combined to occur simultaneously when using 

different catalysts.  

Since 1996, between 100,000 and 150,000 tonnes of DME have been produced 

globally each year for various uses [38]. The Ghuangzhou Institute of Energy Conversion 

in China brought a DME-from-biomass demonstration plant to test phase in 2009, 

producing 1000 tonnes of DME per year by gasification of wood chips, achieving up to 

38% total system efficiency, and self-sustaining electricity and steam use [44, 45]. 

Similarly, a 100 tonne per year pilot plant has been developed in China, synthesising 

DME through gasification of corn core [46]. More recently BASF and Linde have 
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announced plans to commercialise a process that achieves 50% CO2 reductions in 

producing DME [47], and Oberon Fuels were awarded a grant to produce renewable DME 

in California [48]. 

Coal-based DME has also been shown by life cycle assessment to have fewer 

related greenhouse gas emissions than coal-based diesel [49], so even if DME were to be 

used as a fuel or fuel-additive having not been derived as a biofuel, it may still offer 

advantageous carbon savings. Production of DME by this route involves gasification of 

coal to produce synthesis gas (primarily H2, CO, and some CO2), which can be used to 

generate methanol, and ultimately DME.  

DME overall shows favourable properties for fuel use. A cetane rating (an 

indicator of combustion speed for compression ignition) of approximately 55 – 60 is 

comparable to that of diesel (~55) [34, 38], where a higher number is indicative of 

desirable properties in a fuel, such as a shorter ignition delay time, and increased burning 

efficiency. The relatively high oxygen content of DME (1O:2C) and lack of any carbon-

carbon bonds results in a clean-burning fuel that releases no [38] or little [50] soot, 

reducing its negative impact on tropospheric air quality. The zero sulphur content of 

DME, and other ether biofuels, shows another marked advantage over conventional fuels 

in terms of pollutant emissions.  

Disadvantages are still present for dimethyl ether, primarily the lower energy 

density reported in Table 1-2, which is significantly lower than diesel and gasoline’s, and 

is caused by the low carbon:oxygen ratio of atoms. As a result of the lower combustion 

enthalpy of the bioether, a greater volume of the fuel would have to be injected, over a 

longer period, in order to match the energy delivered by diesel [38]. Indeed, Volvo 

reported that due to the ~45% energy content drop of DME compared to diesel, larger 

fuel tanks were used in their lorry fleet in order to compensate, and common rail 

technology was used for biofuel injection so as to achieve high enough pressures to 

liquefy the dimethyl ether [27]. The lower viscosity of DME compared to diesel can also 

cause issues, due to resultant increased surface wear on engine parts, and the possibility 

of leakage from fuel supply system seals [38]. Existing as a gas under normal conditions 

also complicates the method of fuel injection used for DME [51].  

Conversely, a low boiling point gives rise to fast evaporation if DME were to be 

delivered as a liquid into an engine cylinder [38]. Further advantages of DME that 

counteract the undesirable properties outlined above are its low combustion noise 

pollution [27, 50], and the potential for low NOx release during combustion [38, 51] using 
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techniques such as pre-mixed combustion and exhaust gas recirculation (where a portion 

of exhaust gases is recycled back to the combustion cylinders, reducing peak temperatures 

via dilution of oxygen with inert gases).  

Low temperature autoignition of dimethyl ether is important for its combustion in 

engines, due to the necessity for control over ignition timing. This control is important 

for the prevention of knocking [52], and in the event of leakages during transport, the 

prohibition of explosive organic peroxide formation [53]. As such, a full understanding 

of its autoignition mechanism is required.  

 

1.3.2 Diethyl Ether 

Diethyl ether is similar to DME, with the infrastructural advantage of being in 

liquid state at room temperature [54]. Where DME is derived from methanol dehydration, 

DEE is produced in the same way by ethanol dehydration, owing to the longer carbon 

chains either side of the oxygen. Much like DME, DEE is a suitable potential diesel 

replacement fuel due to its high cetane number (>125), high oxygen content, reasonably 

high energy density and low autoignition temperature (see Table 1-2). Due to the greater 

ratio of C:O, DEE should possess a greater energy density compared to DME. However, 

it is also a highly volatile fuel, undergoes peroxidation when stored, has low lubricity and 

has associated human health concerns as an anaesthetic [55]. Currently there have been 

fewer studies on DEE as a biofuel compared with DME, but some work has analysed its 

ability to operate when blended with other fuels such as liquified petroleum gas [56-58], 

and it is a known cold-start aid for engines.  

As a fuel blend with diesel, DEE has been shown to reduce particulate matter 

(PM) emissions up to 24% with a 30% blend [59]. NOx was also demonstrated to diminish 

with the addition of DEE to the fuel, but some increase in total hydrocarbon and CO was 

observed. Tree and Cooley [60] also saw reduced PM production when blending DEE 

with diesel. Lower CO and smoke emissions have been observed in several studies with 

the addition of DEE to diesel fuel [61-63].  

 

1.3.3 Di-n-Butyl Ether 

Di-n-butyl ether is the fourth of the straight chain symmetrical ethers (after DME, 

DEE, and di-n-propyl ether), and is of relatively recent interest as a potential replacement 
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fuel, where it can be produced from pulping of biomass and fermentation of cellulose 

[14], where dehydration of bio-butanol yields DBE [64]. DBE also has several desirable 

diesel-replacement fuel qualities, including reduced hydrocarbons, CO, and noise, when 

compared with diesel. An estimated cetane rating of 115 (Table 1-2) has led to its testing 

as an ignition enhancer in fuels, and it mixes well  as a result of low viscosity, low boiling 

temperature, and low heat of vapourisation [39]. DBE has also demonstrated desirable 

spray characteristics [65]. Soot reduction has been observed through engine testing and 

laminar flame studies [66], sometimes up to 20% compared with diesel [67], or even near 

soot-free [39]. Conversely, Damyanov et al. [14] did not see a reduction in emissions 

from diesel engine testing. Ignition delay time studies [68, 69] demonstrated DBE fuel 

exhibits short ignition delay times, indicating higher reactivity than both DME and DEE.  

Despite some of the favourable properties and potential DBE has shown for its 

application as a renewable fuel, as the early stage of the research conducted may suggest, 

it has not yet been used as a transport fuel commercially.  

 

1.3.4 Methyl tert-Butyl Ether 

Currently bio-MTBE is the most commercially available biofuel oxygenate used 

for petroleum blends, and can allow cleaner combustion and more efficient engine 

performance. It has been favoured for its compatibility with gasoline, with high 

miscibility, and good storage stability [70]. Synthesis from methanol and iso-butene [71] 

implies bio-methanol [72] can also be used to enable at least partially bio-derived MTBE. 

Despite its previous extensive use in the US, fears over contamination of groundwater 

due to its high solubility in water led to a ban and phasing-out of MTBE in the US. It is 

however still exported to, and used in, Central and South America.    

MTBE has been added to fuels as an octane improver [73] (see octane number in 

Table 1-2), and has been shown to reduce petroleum exhaust gas emissions by 10 – 15%, 

1.0 – 1.7%, and 10 – 20% for CO, NOx and total hydrocarbons respectively with 15% v/v 

MTBE addition [74]. Conversely, other studies have shown no change in these 

emissions [75-77], and such studies depend heavily on the testing conditions used, such 

as temperature and blending ratios. Additionally, exhaust emissions as a result of MTBE 

addition have been demonstrated to exhibit increased ethanol and formaldehyde [78-80], 

known irritants and causes of respiratory problems. Its use as an octane enhancer (and 
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therefore anti-knock agent), may also suggest MTBE will not be well suited to a diesel-

type fuel that undergoes autoignition via chain-branching (discussed in section 1.4.2).  

 

1.3.5 Trimethyl Orthoformate 

Trimethyl orthoformate (also known as trimethoxy methane) has the potential to be 

used as an alternative fuel, or fuel additive, owing to its production route from methanol, 

and therefore bio-methanol [81]. Its similarity to dimethyl ether in structure, with no 

carbon-carbon bonds, suggests it may be of similar use as an alternative fuel.  

Currently there are no extensive studies on its use as a fuel, although it has been 

mixed with methanol in a test compression ignition engine, which ran successfully with 

20% TMOF [82]. Potential has been shown, however, for its use in fuel cells [37, 83-85], 

where a great number of alternative fuels to those such as methanol are being investigated, 

in order to increase the likelihood that low-temperature fuel cells will penetrate the 

transport market. Although TMOF was seen to be less efficient when compared with 

methanol, it was also noted that its similar energy density, higher boiling point (Table 

1-2), higher flash point, and lower toxicity in comparison with methanol were 

advantages [37, 83].  

 

1.4 Hydrocarbon Combustion 

Combustion involves the rate of reaction accelerating to a point where reactants are 

consumed, and in doing so, rises in temperature and pressure accompany a large release 

of energy, which can be harnessed for use in power generation, heating, explosive 

weapons, and transport fuels.  

In typical transport fuel combustion, usually involving petroleum, or diesel, 

decomposition of the fuel to smaller species dominates the process, and it is more useful 

to use computational fluid dynamics to model the nature of combustion. Chemistry still 

occurs and can be important, but it is less fuel-specific, hence it may be more useful to 

study properties such as mixing, rather than understanding the detail of chemical reactions 

occurring. Low temperature combustion however, is much more sensitive to specific 

reactions occurring, thus knowledge of their rate coefficients becomes very important. 

Low temperature combustion mechanisms are important for alternative fuel combustion 

in novel engines that rely on autoignition of the fuel to start combustion, rather than a 
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spark. Additionally, the same autoignition mechanisms cause engine knock, where fuel 

in a typical gasoline engine ignites before the flame has reached it. This effect results in 

loss of power, and can damage the engine, meaning the understanding of low temperature 

combustion mechanisms for potential biofuels is important not only for their use as 

standalone fuels, but also fuel additives to gasoline.  

 

1.4.1 High Temperature Combustion 

At high temperatures above approximately 1000 K, combustion chemistry will 

still be somewhat influenced by the abstraction of H atoms from the parent fuel by small 

species (OH, H, and O). Rapid repetition of this reaction takes place until CO2 remains. 

Soot precursors and other products will also remain.  

Despite abstraction reactions still taking place, due to the extreme speed of higher 

hydrocarbon molecule and radical decomposition in this regime, only a small group of 

non-fuel-specific reactions bear any significant effect on the overall reaction rate. 

Primarily these are the reactions between H and O2 to form O + OH, the equilibrium 

between CO + OH and H + CO2, and the decomposition of HCO to H + CO. These are 

the main reactions controlling the concentration of H atoms and the total amount of 

radicals in the system. An example showing the sensitivity of a methane-air flame 

sensitivity to the H + O2 reaction is presented in Figure 1-4.   
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Figure 1-4: Typical sensitivity diagram for the effect on flame velocity of a 
stoichiometric methane-air mixture, where each rate coefficient is varied by a factor 
of five. Reproduced from [86]. 

 

1.4.2 Low Temperature Combustion 

Low temperature combustion occurs below 1000 K, typically within the range 500 

to 800 K, and is much more dependent on the hydrocarbon fuel used. Hydrogen 

abstraction from the parent fuel, RH, is again the initial step, where an R radical is formed 

(reaction R 1-1). The major initiating radical here (X) is typically a small species, such as 

OH, O or H, although other species can also abstract, such as O2. Reaction R 1-1 is 

particularly relevant to the work in Chapter 3. 

 

 RH + X → R + HX R 1-1 

 

Addition of oxygen to the R radical forms a peroxy radical, RO2 (reaction R 1-2) 

(studied in Chapter 4 and Chapter 5), which can undergo isomerisation via internal 

H-abstraction to form the QOOH radical (reaction R 1-3). The rate of RO2 to QOOH 

isomerisation will depend on the structure of the radical involved, and the ring-structured 

transition state that is formed in the reaction. Smaller ring structures will have a larger 

pre-exponential factor, as the statistical likelihood of the correct orientation for internal 
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abstraction being achieved increases. However, larger rings will be favoured due to the 

decrease in ring strain of the transition state. Thermal decomposition of this QOOH 

radical to an OH radical and smaller stable species propagates the reaction (reaction R 

1-4).  

 

 R + O2 → RO2 R 1-2 

 RO2 ↔ QOOH R 1-3 

 QOOH → OH + stable product R 1-4 

 

Alternatively, to undergo chain-branching of radicals, molecular oxygen can 

intercept the hydroperoxide radicals in reaction R 1-5, generating the QOOH-peroxy 

radical, O2QOOH. This transient species is believed to be integral to the autoignition of 

fuels at low temperatures, where another isomerisation and decomposition provides the 

first of the two ‘branching’ OH radicals, along with a ketohydroperoxide product, 

OQʹOOH. Further dissociation of OQʹOOH leads to the second of the branching OH 

radicals in reaction R 1-6.  

 

 O2 + QOOH → O2QOOH → HO2QʹOOH → OH + OQʹOOH R 1-5 

 OQʹOOH → OH + products R 1-6 

 

A potential energy surface (PES) showing the generic routes for low temperature 

oxidation of fuel, RH, including the reaction of O2 with R and QOOH radicals, and the 

subsequent decomposition of species to yield OH radicals, is presented in Figure 1-5. 

Chapter 6 is concerned with the exploration of these later combustion steps.  
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Figure 1-5: Generic low temperature combustion potential energy surface, showing 
propagation (blue and green) and chain-branching OH formation (green to red).  

 

Additionally, ROOH species formed in reactions R 1-7 and R 1-8 undergo 

decomposition to RO and OH in reaction R 1-9, providing another chain-branching route.  

 

 QOOH + RH → ROOH + R R 1-7 

 RO2 + RH → R + ROOH R 1-8 

 ROOH → RO + OH R 1-9 

 

HO2 formation on longer timescales can occur, and also through reaction between 

RH and O2, but at these temperatures, HO2 is not reactive and does not immediately 

contribute to the chain-branching mechanism.  

Other reactions can compete with, or contribute to, the low temperature reaction 

scheme described here. Decomposition of R radicals can play a role at high temperatures, 

and where not enough oxygen is present to ensure the rate of R + O2 reactions are 

competitive enough to inhibit the decomposition reaction. Decomposition of RO2 to the 

reactants (in the reverse of reaction R 1-2) can also occur at high enough temperatures, 

where the C–O bond is broken, leading to a negative temperature dependence as the 

reactions following RO2 formation that lead to chain-branching can no longer occur. 



16 
 

A great deal of the uncertainty surrounding the low temperature combustion 

mechanism arises from the lack of understanding of QOOH interception, and what 

happens to the products of this reaction. These transient species are very difficult to 

detect, but recent studies have begun to make progress in identifying such molecules. The 

product of O2QOOH decomposition in the DME system, hydroperoxymethyl formate 

(HPMF), has now been detected [87] and quantified [88] by Moshammer and co-workers, 

using direct sampling of a jet-stirred reactor followed by detection with mass 

spectrometry. This offers an important insight into the key to autoignition. 

  

1.5 Chemical Activation 

The RO2 radical formed in reaction R 1-2 is initially formed in an energetically 

excited state (reaction R 1-10). The RO2* radical can undergo collisional deactivation to 

the relatively stable RO2 molecular radical at higher pressures (reaction R 1-11).  

 

 R + O2 → RO2* R 1-10 

 RO2* + M → RO2 + M R 1-11 

 

At lower pressures however, an excited species can undergo re-dissociation, or 

isomerisation to QOOH* species (reaction R 1-12) without undergoing thermalisation 

by M. This process is known as chemical activation, or ‘well-skipping’.  

 

 RO2* → QOOH* R 1-12 

 RO2* ← QOOH* → OH + stable products R 1-13 

 

Similarly, QOOH* species can isomerise back to RO2, or dissociate to the 

products (reaction R 1-13). This formally direct channel enables the generation of 

products, including OH, on fast timescales comparable to the decomposition of the R 

radical. This process is more efficient at lower pressures and higher temperatures, and 

will depend on the fuel molecule. Like the excited RO2* radical, QOOH* can also 

undergo collisional stabilisation to QOOH, although this is less likely given the 

RO2:QOOH equilibrium is shifted towards RO2 as a result of their relative energy well-

depths. A generic PES for this process is presented in Figure 1-6.  
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Figure 1-6: Generic potential energy surface showing the chemical activation 
process (blue), and thermalisation (red) by the bath gas.  

 

The importance of chemical activation reactions for low temperature combustion 

has previously been demonstrated [89-93], but these formally direct reaction channels 

were generally missing in kinetic models developed previously [94-96] and therefore the 

fast yields of bimolecular products accessible at low pressures and high temperatures will 

not be present. Chemical activation has been shown to be of no consequence when 

modelling combustion chemistry at ~10 bar [89, 97], so will likely not play a significant 

role under engine combustion conditions at high pressures. However, these reactions 

often a play a role under laboratory conditions where rate coefficients relevant to 

combustion are determined, hence a full understanding of chemical activation parameters 

will be important for these determinations.   

Eskola et al. [89] studied the importance of chemical activation in the DME 

system, making measurements of the CH3OCH2 + O2 reaction kinetics and yields. The 

kinetic traces in Figure 1-7 show a sharp initial increase in OH detection arising from 

chemical activation, followed by a decay as OH production halts (left figure). At high 

enough temperatures (Figure 1-7, right), the initial OH signal increase is followed by 

gradual continued growth due to the propagation process described in section 1.4.2. 

Experiments in Chapter 4 will focus on an alternative method to measuring the initial fast 

rates and yields detected here, and the method will be applied to the DEE system in 

Chapter 5. 
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Figure 1-7: Temperature effect on OH production at low temperature (left) and high 
temperature (right). Figures taken from Eskola et al. [89]. 

 

1.6 Combustion Engines 

Normal combustion for transport fuels generally takes place inside a diesel engine 

or a spark-ignition engine (SI), depending on the fuel (diesel or petroleum). Spark-

ignition engines use pre-mixed fuel, whereas a diesel engine injects fuel directly into the 

cylinder for mixing, and relies on compression to initiate combustion, rather than relying 

on a spark initiator. A new type of engine has been developed, known as an HCCI 

(homogeneous charge compression ignition) engine, which is close to a hybrid of diesel 

and SI engines. HCCI engines use a pre-mixed fuel/air component as in SI, but the engine 

relies on autoignition as a result of the compressed gas heat, similar to a diesel engine 

[98] (Figure 1-8). Advantages of HCCI engines over conventional engines include 

increased thermal efficiency, and reduced emissions (such as NOx) [99, 100]. 

Conventional engines combust at high temperatures (2000 – 2600 K) [101], which is the 

cause of NOx formation. HCCI engines on the other hand, combust at less than 1900 K, 

which significantly reduces the formation of NO from the temperature-dependent reaction 

between N2 and O2 (the full Zeldovich mechanism involves multiple steps for molecular 

nitrogen and oxygen to indirectly produce NO).  

 

Time / μs Time / μs 
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Figure 1-8: Diagram of three engine types, demonstrating the combined aspects 
from spark ignition and diesel engines used in HCCI engines, from [101]. 

 

The difficulty with novel engines like those of HCCI, is that the ignition timing is 

dependent on the inherent chemistry of the fuel mixture, rather than a spark [101]. 

Combustion in this case is caused by the chain-branching process, where products of a 

reaction are able to initiate new reactions in greater numbers (reactive radicals are 

produced at a rate greater than they are consumed). Combustion via chain-branching at 

low temperature is called autoignition, and the key to understanding autoignition is the 

kinetics of the reaction mechanism [102] discussed previously. Despite the high 

combustion temperatures discussed above, the actual temperature relevant to the initiation 

of the combustion at low temperature is generally accepted to be approximately 500 – 

800 K. The low temperature of autoignition that many biofuels have make the HCCI 

engine better suited for their combustion. Without a detailed understanding of the 

chemistry that occurs during low temperature combustion, novel HCCI engines will not 

operate under optimal conditions for a specific fuel.  

In an engine, the combustion mechanism is normally initiated by the fuel molecule 

undergoing a reaction with a small species, where O, H and OH are all important species, 

with the hydroxyl radical the most important, due to its much faster reaction with 

hydrocarbon fuels [103]. Hydroxyl radicals are present at the relatively high temperatures 

used in engines [102]. This well-known first step is relevant for all hydrocarbon fuels, 

and the subsequent reaction routes to autoignition are well-documented [104-108], albeit 

with limited evidence. 
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Extensive experimental techniques have been employed to study the potential of 

possible biofuel ethers, such as rapid compression machines [109, 110], shock tubes 

[111], jet-stirred reactors [111, 112], flow reactors [94], and laser photolysis – laser-

induced fluorescence [113]. This research enables fuel characteristics of the ethers to be 

determined, such as ignition delay times, and should allow the temperature and pressure 

ranges for autoignition to be ascertained, often with the help of theoretical 

calculations [114-116].  

 

1.7 Theories of Chemical Reactions 

This section provides an outline of the basic kinetic theories applied to experimental 

observations, in order to extract the rate coefficients that are presented in this thesis.  

1.7.1 Transition State Theory 

Transition state theory (TST) is used to predict the rates of elementary chemical 

reactions, and explain to some extent, why the reactions take place. The theory operates 

on the assumption that a transition state, comprised of an activated complex of reactants, 

exists along the reaction coordinate (see ABC‡ in Figure 1-9).  

 

 

Figure 1-9: Typical energy profile of a reaction as described by transition state 
theory.  

 

The transition state, ABC‡, lies along the reaction coordinate at the maximum of 

the minimum energy pathway, and ultimately falls apart to the products, AB + C. ABC‡ 
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is assumed to be in equilibrium with the reactants, A + BC. The rate for the reaction can 

be given by equation E 1-1:  

 

 kr[A][BC] =  
d[AB]

dt
  = k‡[ABC‡] E 1-1 

 

where kr is the rate coefficient.  The concentration of the transition state can be related to 

the equilibrium constant, K‡, in equation E 1-2: 

 

  [ABC‡] = K‡[A][BC] E 1-2 

 

and kr to K‡ in equation E 1-3: 

 

  kr = k‡K‡ E 1-3 

 

K‡ is given by the statistical expression in equation E 1-4: 

 

  K‡ = 
Q'ABC

Q'AQ'BC

 exp(–εc/RT) E 1-4 

 

where Q′I refers to the molecular partition function per unit volume of species I, and εc is 

the potential energy difference between the reactants and the complex, or in other words, 

the height of the transition state saddle point. Statistical mechanics results in an 

expression of the rate coefficient in equation E 1-5: 

 

  kr = 
kBT

h
 

QABC
‡

QAQBC
 exp(–ε0/RT) E 1-5 

 

where, ε0 is the sum of εc and Δεz (the total difference in zero-point energies of the 

complex and reactants). A correction factor, κ, is inserted in equation E 1-6, where it will 

often be unity, but is included to account for the possibility that some activated complexes 
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may return to reactants, rather than the products. κ is known as the transmission 

coefficient. 

 

  kr = κ
kBT

h
 

QABC
‡

QAQBC
 exp(–ε0/RT) E 1-6 

 

1.7.2 Unimolecular Reactions 

The Lindemann mechanism provides a mechanism for the unimolecular 

decomposition of species A showing first order kinetics (equation E 1-7). Increasing rate 

with temperature suggests an energy barrier is being overcome, however first-order 

kinetics do not suggest there is collisional activation. The reaction sequence proposed by 

Lindemann explains this behaviour, where A is excited by collisional activation with a 

molecule such as the bath gas, M (reaction R 1-14). A* can react to form products, as in 

reaction R 1-15, or undergo collisional deactivation (see Figure 1-10).  

 

 
d[A]

dt
= –k[A] E 1-7 

 A + M 
k1-14

⇄
k–1-14

A* + M R 1-14 

 A* k1-15
ሱ⎯ሮ  products R 1-15 

 

 

Figure 1-10: Potential energy surface for a unimolecular dissociation reaction.  
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Reaction R 1-15 shows that the overall rate of formation of products is equal to 

k1-15[A*], and as such, [A*] must be calculated to obtain the formation rate. The steady-

state approximation can be utilised to assume A*, which has a short lifetime, maintains a 

steady concentration once built up. Equation E 1-8 equates the rate of formation and 

consumption for A*.  

 

 k1-14[A][M] = k–1-14[A*][M] + k1-15[A*] E 1-8 

 

Rearrangement of equation E 1-8 for [A*], and substitution into the rate of 

formation of products gives equation E 1-9: 

 

 
d[products]

dt
 = k1-15[A*] = 

k1-15k1-14[A][M]

k–1-14[M] + k1-15
= kuni[A]  E 1-9 

 

where kuni represents the formal unimolecular rate coefficient; kuni = 

k1-15k1-14[M]/(k–1-14[M] + k1-15). At high pressures kuni is independent of pressure, as 

collisional deactivation is much faster than the unimolecular reaction of A* (k–1-14[M] >> 

k1-15), reducing the expression for kuni to k1-15k1-14/k–1-14 (independent of pressure). At low 

pressures, kuni is directly proportional to pressure, as the rate determining step becomes 

the excitation reaction in reaction R 1-14. Here, collisional deactivation of A* is less 

likely than reaction, and so k–1-14[M] << k1-15. This reduces kuni to kuni = k1-14[M] 

(dependent on pressure) (Figure 1-11).  
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Figure 1-11: Example of the unimolecular rate coefficient fall-off at lower pressures. 

 

 The Lindemann mechanism does have some failures, and improvements made by 

Rice and Ramsperger, and later Kassel, and Marcus, have led to the development of this 

theory, which is referred to as RRKM (Rice-Ramsperger-Kassel-Marcus) theory, and will 

be used by software employed in Chapter 5. Lindemann theory does not take account of 

molecular structure in its assumptions, and as such underestimates the activation rate as 

a result of ignoring the number of degrees of freedom of a polyatomic molecule (such as 

its vibrational modes). Taking into account these degrees of freedom was required to 

improve the agreement between fall-off behaviour predicted by the Lindemann 

mechanism, and that shown by experimental observations.  

Another failure of Lindemann theory arises where the excited molecule, A*, is 

energised, but it must also have sufficient energy localised into the relevant degree of 

freedom (i.e. a specific bond to be broken), before it can be converted into the products. 

This is termed the activated complex, A‡, and the rate of reaction from A* → A‡ (k*), is 

typically much slower than A‡ → products (k‡), thus it is the rate determining step. As k* 

is much smaller than k‡, A‡ will be very small, and the steady state approximation 

d[A‡]/dt = 0 can be used to yield k* = k‡[A‡]/[A*]. This formed the basis of the theory by 

Rice and Ramsperger (and later developments by Kassel), who assumed energy can be 
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rapidly exchanged freely between vibrational modes, and were able to predict the fall-off 

behaviour well.   

The final modification by Marcus took account of TST, where RRKM theory is a 

microcanonical transition state theory that assumes rate coefficients are a function of 

energy. A‡ is now treated as a transition state, and therefore transfer over A‡ to products 

is an irreversible process, and ultimately RRKM theory allows for a proper treatment of 

all internal modes.  

 

1.7.3 Association Reactions 

Association reactions are related to their counterpart unimolecular decomposition 

reactions (see example in reaction R 1-16) by an equilibrium constant, as in equation E 

1-10. They will be important for the work carried out in Chapter 4 and Chapter 5.  

 

 A2 + M 
k1-16

⇄
k–1-16

 A + A + M R 1-16 

 Kc = [A]2/[A2] = k1-16/k–1-16 E 1-10 

 

 To maintain Kc, the pressure dependence of the association reaction must be the 

same as the unimolecular reaction. Decomposition reactions have high activation 

energies, and therefore temperature dependences, whereas an equivalent association 

reaction will have no activation energy and a weak temperature dependence.  

 Upon association of two species, the bond formed causes release of energy, which 

is conserved, and is distributed amongst the internal modes of the complex formed. An 

example for the CH3 + O2 reaction is shown in reaction R 1-17. If enough energy is 

located along the bond formed, then dissociation will occur, reforming the reactants. 

Collisional deactivation can remove this excess energy (reaction R 1-18), where it is 

transferred into the motion of a bath gas and the new species formed (a generic PES is 

presented in Figure 1-12).  
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Figure 1-12: Potential energy surface for a generic association reaction, showing the 
routes to re-dissociation and collisional deactivation.  

 

 CH3 + O2 ⇄ CH3O2* R 1-17 

 CH3O2* + M → CH3O2 + M R 1-18 

 

The steady state approximation can be applied to the energised molecule possessing 

a short lifetime, where the formation and removal rate are equal, as in equations E 1-11 

and E 1-12:  

 

 k1-17[CH3][O2] = k1-18[CH3O2*][M] + k–1-17[CH3O2]*   E 1-11 

 [CH3O2*] = k1-17[CH3][O2] / (k1-18[M] + k–1-17) E 1-12 

 

The formation rate for the stabilised CH3O2 species is d[CH3O2]/dt = 

k1-18[CH3O2*][M]. Substituting equation E 1-12 into this expression yields equation E 

1-13:  

 

 d[CH3O2]/dt =  k1-18k1-17[M][CH3][O2] / (k1-18[M] + k–1-17) E 1-13 
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At high pressures, k–1-17 << k1-18[M], reducing equation E 1-13 to d[CH3O2]/dt =  

k1-17[CH3][O2], Here, the rate-determining step is the bimolecular complex formation, 

where it will always be stabilised rather than dissociating. This leads to an overall second 

order reaction. At low pressures, stabilisation is slow and thus k–1-17 >> k1-18[M], and 

d[CH3O2]/dt = k1-18k1-17[M][CH3][O2]/k–1-17 (third order overall). Here, the rate-

determining step is the deactivation of the energetically excited complex. 

At higher temperatures, excited complexes will have a shorter lifetime as a result 

of the greater kinetic energy of collisions. Re-dissociation will be more likely under these 

conditions, and as such, negative temperature dependences are expected.  

 

1.8 Thesis Overview 

Chapter 2 provides an overview of the laser flash photolysis – laser-induced 

fluorescence technique used for the experiments in this thesis, and some characterisation 

of this instrumentation for the treatment of gas flow and temperature. 

Chapter 3 covers the first reaction important for the low temperature oxidation 

mechanism of ethers, the reaction of the hydroxyl radical with TMOF, DEE, DBE, 

MTBE, and DME. Data are presented over a range from room temperature to 

approximately 740 K, and these data significantly extend the rate coefficients available 

for TMOF, DEE, and DBE. 

Chapter 4 describes a generic technique for measuring rate parameters of the R + 

O2 reaction that follows the OH + fuel reaction. A method applicable to any fuel that can 

undergo formally direct production of OH radicals at low pressures is presented, by 

analysis of biexponential kinetic decays. Numerical integration and simulation are used 

to analyse the method’s efficiency for obtaining R + O2 rate coefficients and experimental 

OH yields, and its sensitivity to experimental conditions. The CH3OCH2 + O2 reaction 

relevant to the DME low temperature combustion mechanism was studied, and current 

measurements are compared to previous studies and alternate techniques.  

Chapter 5 provides novel measurements of the C2H5OC2H4 + O2 reaction rate 

coefficients and OH yields below 500 K, using a method analogous to the study of the 

CH3OCH2 + O2 reaction, and an additional technique for obtaining OH yields. 

Comparison to ab initio calculations are provided using master equation methods.   
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Chapter 6 presents some observations of interesting, potentially unwanted, O atom 

chemistry occurring in the experimental setup at high temperatures and oxygen 

concentrations. Possible measurements of OH production from QOOH radical thermal 

decomposition, and O2QOOH radical propagation/branching are presented for all five 

ethers.  
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Chapter 2 Experimental 

This chapter gives an overview of the experimental setup used throughout this thesis 

to study the gas phase reactions of potential biofuel ethers. A description of the 

instruments used, such as lasers, temperature detectors, and the reaction cell, is provided. 

Some early results to characterise the set up are also provided, concerning gas flow 

calibration, and the calibration of temperature detection. Some other techniques that have 

been employed to measure gas phase kinetics relevant to this thesis are compared with 

the technique used in the current work. 

 

2.1 Overview of Experimental Setup 

In this work, laser flash photolysis – laser-induced fluorescence (LFP–LIF) was 

used to monitor OH, enabling the study of reactions between ether fuels with the hydroxyl 

radical over time, using gas phase reactants at low pressures (< ~500 Torr). A schematic 

diagram of the typical experimental setup is presented in Figure 2-1.  

 

 

Figure 2-1: Schematic of laser flash photolysis – laser-induced fluorescence 
experimental setup used in this work. 

 

Typically, initiation of the reaction was brought about by the first laser pulse from 

an excimer laser operating at 248 nm, in order to photolyse hydrogen peroxide (reaction 
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R 2-1), t-BuOOH (reaction R 2-2), or urea hydrogen peroxide (reaction R 2-3). The OH 

radicals formed during this photolysis initiate chemistry by reacting with the ether fuel. 

The photon density was approximately 7.5 × 1016 photons cm–2, and the typical OH 

concentration was ~(1 – 2) × 1012 molecule cm–3 (a calculation to estimate this is provided 

in section 2.5.1). 

 

 H2O2 + hv  
λ=248 nm
ሱ⎯⎯⎯⎯ሮ  2OH R 2-1 

 (CH3)CO2H + hv  
λ=248 nm
ሱ⎯⎯⎯⎯ሮ  OH + products R 2-2 

 (CO(NH2)2·H2O2) 
vap
ሱሮ  H2O2 + hν 

λ=248 nm
ሱ⎯⎯⎯⎯ሮ  2OH R 2-3 

 

 To monitor the progress of reactions and probe the OH radicals, on-resonance 

laser-induced fluorescence was used, probing at ~308 nm, corresponding to the energy of 

the OH Q1(2) rotational line of the A2Σ+(ν′ = 0) ← X2Πi(ν″ = 0) transition. The probe 

laser light was obtained from the output of an Nd:YAG-pumped dye. The lasers used in 

this thesis are described in the sections that follow.  

Major differences between the experimental setup used for each chapter are 

outlined in their respective experimental sections. Briefly, the t-BuOOH precursor was 

only used for some OH + DEE experiments in Chapter 3, and the urea/H2O2 precursor 

was only used in Chapter 4. 266 nm wavelength light was used in Chapter 3 for some 

experiments on the OH + MTBE rate data. This was generated using the Quantel Nd:YAG 

laser described later. The majority of ethers were delivered from a bulb, as described in 

section 2.7.1, however some experiments requiring greater concentrations of ether used a 

bubbler delivery method, described in Chapter 3. Finally, Chapter 6 presents some 

experiments using a modified setup, which is described in detail in the experimental 

section.  

 

2.2 Lasers 

LASER is an acronym for Light Amplification by Stimulated Emission of 

Radiation, where a system of molecules is excited by a beam of light, with a frequency 

where the photon energy matches the gap between the excited state and lower energy 

state. A molecule can relax from the excited state, by emitting another photon at the same 
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frequency as the initial radiation. The direction of the applied light beam is also the 

favoured direction for emission, therefore amplifying the intensity.  

Lasers are incredibly useful instruments for studying reaction kinetics, as they 

allow the study of premixed reactants and precursors, can be used to study reactions over 

a greater range of pressures when compared with traditional (liquid) flow methods, and 

the duration of a laser pulse is the only limitation on studying very fast reactions when 

using the flash photolysis method. Further, the laser-induced fluorescence technique 

allows highly selective monitoring of the relative concentration of products and/or 

reactants in a reaction.  

 This section aims to describe the principles of lasers, their use for kinetic studies, 

and the specific lasers used for the majority of this thesis’ measurements.  

 

2.3 Absorption and Emission of Radiation 

Typically, the lowest discrete energy level, the ground state, is where a molecule 

exists, but in a laser medium, excited energy levels must be occupied before the lasing 

action can take place. Absorbing light can excite a molecule to a higher state. This process 

involves the energy of photons, E, transferring to the molecule, where E = hν. Here, h is 

Planck’s constant, ν is the frequency of the photon, and E must be equal to the energy of 

the excitation gap between the lower and excited state of the molecule.  

Emission of light is the reverse process of absorption, where a molecule in an 

excited state emits photons matching the energy gap between the excited state and the 

destination state of the molecule during relaxation. Photons are emitted in random 

directions. No external trigger is required for this process, hence the term spontaneous 

emission.  

Finally, stimulated emission involves the emission of light from a molecule during 

relaxation from an excited state to a more stable state, but only after a light beam is 

directed toward the system, with the frequency corresponding to the photon energy 

matching the energy gap involved. The photon emitted also matches this energy. The 

amplification term in the definition of the laser acronym originates from the fact that 

emission prefers to occur in the same direction as the applied beam of light. Thus, the 

light intensity is amplified during the process of stimulated emission. An active medium 
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that can go undergo stimulated emission is the primary requirement for a laser, along with 

external stimulus.  

Examples of the external stimulus that pumps the active medium are flashlamps, an 

electrical discharge, or a chemical reaction. In order to increase the intensity of the 

stimulated emission, a resonator is used within the optical cavity of the laser (Figure 2-2), 

to allow the multiple passage of light back and forth through the active medium, causing 

more stimulated emission with each passage. To arrange this process, two mirrors are 

placed either side of the active medium, one fully reflective, and a second partially 

reflective. The partially reflective mirror allows some passage of light through, to form 

the laser beam. Aiding the highly directional nature of lasers, any spontaneous emission 

not in the direction of the mirrors will not contribute to the intensifying stimulated 

emission.  

 

 

Figure 2-2: Schematic diagram of a laser cavity resonator. 

 

2.4 Population Inversion  

In a two-level system (Figure 2-3), with two non-degenerate energy levels, there 

are three radiative processes; absorption, spontaneous emission, and stimulated emission 

(see Figure 2-3). For lasing action to occur, a population inversion must be built up in the 

higher energy level in the laser system, otherwise the process of absorption will beat 

stimulated emission. Under equilibrium conditions, the Boltzmann relation stipulates that 

the lower energy level will always have the greater population. Energy is supplied to the 

system through ‘pumping’ in order to sustain a state of population inversion. Practically, 

a laser possesses more than two levels, in order to overcome the competition between 

absorption and stimulated emission.  

 In a three-level laser (Figure 2-3), E3, a third level is present, at a higher energy 

than the two present in a two-level system. E3 is the level populated by initial pumping of 
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the laser medium, which proceeds to decay non-radiatively to E2. As long as this decay is 

slower than the emission from E2 to E1, the population in E2 can continue to increase 

while E1 loses population via the pumping process. For this to occur, E2 must also be 

metastable, with a long lifetime compared to the other levels. Because the laser emission 

repopulates the ground state, it can be difficult to maintain the population inversion. 

 

 

Figure 2-3: Schematics for the energy levels in a two-, three-, and four-level laser 
system, left to right.  

 

A four-level laser is used to combat the repopulation of the lowest energy level, 

where the ground state (E1) lies below the lower level of the laser emission process (E2), 

ensuring that E2 never builds up a significant population, as long as it decays rapidly to 

the ground state. This allows the population inversion to be maintained between the two 

relevant energy levels, regardless of the populations present in E1 and E4. The Nd:YAG 

and dye lasers described later are examples of four-level lasers that are employed in this 

thesis.  

 

2.5 Laser Flash Photolysis 

Norrish and Porter first developed the flash photolysis technique in the late 1940s, 

for which they were they were awarded the 1967 Nobel prize. Flash photolysis uses a 

light source, such as a flash lamp or laser, to photolyse molecules, where a specific bond 

is broken in order to produce a desired product species. The product species is generally 

a reactant in the reaction being studied [86]. In this work the product species was the OH 

radical. Flowing reactants and precursors together allows the reaction to take place once 

photolysis has occurred. Flash photolysis offers advantages over flow techniques with 

fewer limitations on pressure, and the possibility to remove mixing times. Generally, the 
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only limitation on reaction timescale imposed by flash photolysis, is the duration of the 

photolysis laser pulse, which can be faster than nanosecond durations. Unwanted 

reactions that may occur on the wall of an experimental cell can also be reduced, as 

photolysis light from the laser can be used to generate radical species in the centre of the 

cell and reaction occurs on a timescale faster than that of diffusion to and from the walls. 

 

2.5.1 Excimer Laser 

The light source most used in this work is an excimer (excited dimer), or more 

accurately an exciplex (excited diatomic complex) laser, which operate on a particular 

mixture of gases to achieve a certain wavelength of light. Some common excimer laser 

energies and the mixtures are listed below in Table 2-1. Excimer lasers have well-defined 

spatial profiles, a precise wavelength range, pulse durations of 10 – 20 ns, and repetition 

rates from 1 Hz up to 500 Hz. High pulse energies, up to 1 J, also allow the photolysis of 

precursor molecules efficiently when using low concentrations.  

 

Table 2-1: Excimer laser energies, wavelengths and the required gas compositions, 
from [86].  

Gas mix λ / nm Photon energy / eV 

Ar/F2/He 193 6.44 

Kr/HCl/He 222 5.60 

Kr/F2/He 248 5.01 

Xe/HCl/He 308 4.04 

Xe/F2/He 351 3.54 

 

When a pulsed electric discharge is passed through the mixture of gases in an 

excimer laser, ions are generated, which can form excited species when combined (for 

example KrF*) within the helium buffer gas [117]. The excited complex emits photons, 

decaying rapidly to the lower energy state. This state never achieves a high population, 

due to the instantaneous dissociation of the molecule as a result of repulsive interatomic 

forces. The population inversion between excited and lower state that exists because of 

this is maintained in the laser cavity, where light of the appropriate wavelength is 

amplified upon passing through [86]. This is clearly an exception to the impossibility of 

achieving a population inversion in a two-level laser system. The energy gap between the 
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two states (Figure 2-4) dictates the wavelength of light, thus difference gas mixes have 

different energy separations and therefore wavelengths.  

Other types of lasers that can be used for photolysis are dye-lasers (200 – 

1000 nm), Nd:YAG (Yttrium Aluminium Garnet) lasers and Nd:glass lasers (both 1064 

nm or sometimes 1319 nm), although these last two will operate not on the principal 

wavelength, but shorter wavelengths following frequency conversion (see section 2.6.1.1 

on Frequency Conversion). Typically these lasers will output 10 – 50 mJ for a pulse width 

of 10 ns at 266 nm when frequency quadrupled, whereas an excimer laser can achieve 

energies of 200 – 300 mJ at the same pulse width, given the correct gas mixture. Dye 

lasers produce even lower pulse energies (1 – 5 mJ) in the wavelength range 260 – 320 

nm, but have the advantage of tunability.  

 

 

Figure 2-4: Potential energy curves for the states involved in a KrF exciplex laser 
transition.  

 

 In this thesis, the exciplex laser used was a Lambda Physik LPX 200 Excimer 

laser, operating on KrF at 248 nm. Typically a 10 Hz pulse repetition frequency was used 

for experiments, although 1, 2 and 5 Hz were also employed for repetition rate-dependent 

experiments. Typical pulse energies measured with a power meter were 40 – 100 mJ 

pulse–1 cm–2, and beam dimensions were 25 mm × 10 mm. 
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  Measurements of the photolysis laser pulse energy can be used to estimate the 

concentration of OH radicals generated in the reaction cell at time zero. The energy of a 

photon, E, for an experiment using 248 nm laser light can be calculated using equation E 

2-1, where h and c are Planck’s constant and the speed of light respectively.  Based on a 

typical laser energy of 0.06 J cm–2, the number of photons, P, is estimated by equation E 

2-2.  

 

 E = hc/λ = 8.01 × 10–19 J E 2-1 

 P = 0.06/(8.01 × 10–19) = 7.49 × 1016 photons cm–2 E 2-2 

 

 In order to calculate the concentration of [OH] radicals, the concentration of H2O2 

must be known. This can be estimated based on the rate of decay of OH with no reactant 

present, only precursor (H2O2 and N2). For a typical pseudo-first order rate coefficient of 

k′ = 200 s–1, [H2O2] can be estimated using equation E 2-3, where kOH+H2O2 is estimated 

to be 1.70 × 10–12 cm3 molecule–1 s–1 based on the Arrhenius parameterisation 

recommended by Atkinson et al. [118] at 298 K. An assumption about k′ has been made 

here, where the entirety of the rate has been attributed to the reaction between OH and 

H2O2. In reality, some of this rate is likely to be as a result of diffusion, which would 

result in a lower [OH]0. Finally, the estimated H2O2 concentration, number of photons, 

and cross section of [H2O2] (σ, estimated here as 1 × 10–19 cm2 molecule–1 [119]) are used 

in equation E 2-4 to calculate the OH concentration at t = 0.  

 

 [H2O2] = 200/kOH+H2O2 = 1.18 × 1014 molecule cm–3 E 2-3 

 [OH]0 = P.σ.2[H2O2] = 1.8 × 1012 molecule cm–3 E 2-4 

 

2.5.2 Nd:YAG Laser  

For a small number of experiments, a neodymium laser (described in detail below) 

was used to generate the radical species from the photolytic precursor. The Nd:YAG laser 

(Q-smart 850, Quantel) operated at 10 Hz, at a wavelength of 266 nm, with a beam 

diameter of 9 mm.  
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2.6 Laser-Induced Fluorescence 

Laser-induced fluorescence is often used in conjunction with flash photolysis, and 

involves using a tunable laser source to excite a specific transition in target radicals, 

causing the molecule to emit fluorescence that can be detected as a reaction proceeds [86], 

thus monitoring relative concentration. This is used for the detection of OH radicals 

described in section 2.7.4.   

After a photolysis laser is fired at t = 0, the probe laser used for laser-induced 

fluorescence can be fired at varying known times following the generation of radical 

species by the photolysis laser. In doing this, a time-resolved trace of fluorescence is 

generated, where the intensity of the fluorescence signal collected is proportional to the 

concentration of the target radical.  

 

 

Figure 2-5: Example of off-resonance laser-induced fluorescence transitions in OH. 

 

A probe laser is tuned to the wavelength necessary for the desired transition to 

excite the target molecule, for example ~282 nm laser light will excite an OH radical in 

the transition (A2Σ+(vʹ = 1) ← X2Πi(vʹʹ = 0),Q1(1)) [89]. The subsequent fluorescence 

emitted by the target molecule, as shown in Figure 2-5, can be filtered and detected by a 

photomultiplier tube, before a computer collects the signal to build up a kinetic trace. The 

main advantages of the LIF technique are its highly sensitive and selective nature, where 

unwanted wavelengths are not detected, and the ability to probe a wide range of species 

using tunable laser sources. One limitation is LIF’s inability to detect species that do not 
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fluoresce, such as large molecules with enough vibrational modes to undergo 

radiationless transitions and intersystem crossing preferentially over fluorescence 

transitions, or molecules that do not have an accessible bound upper electronic state. 

Other processes possible are shown in Figure 2-6. Its inability to detect absolute 

concentrations is also a drawback when compared with absolute detection techniques 

such as absorption spectroscopy.  

 

 

Figure 2-6: Jablonski diagram showing some possible fates of excited states.  

 

In order to generate the light required for probing the desired transition, Nd:YAG 

lasers are often used in combination with dye lasers; both are described below.  

 

2.6.1 Nd:YAG Laser 

Nd:YAG lasers are comprised of neodymium ions (Nd3+) hosted inside an yttrium 

aluminium garnet (YAG; Y3Al5O12) crystal lattice. The host lattice influences the energy 

levels in the neodymium ions, where the laser action transitions take place. Originally 

degenerate, the energy levels are split by the influence of the crystal field, and laser 
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emission occurs after stimulated emission from the 4F3/2 level to the 4I11/2 level; a 

transition formally forbidden without the crystal lattice interaction. The active medium is 

located as a rod within the laser, with a flashlamp providing the initial excitation to higher 

energy levels than the 4F3/2 level. Radiationless decay populates this level. The existence 

of a 4I9/2 ground state below the lowest level of the lasing transition means the Nd:YAG 

level operates essentially as a four-level laser.   

 Nd:YAG lasers can operate with pulse energies up to 100 Joules, but also down 

to a fraction of 1 Joule. Frequency conversion can also enable access to wavelengths other 

than the typical 1064 nm, such as 532, 355 and 266 nm through harmonic generation.  

In this thesis, a Nd:YAG-pumped dye laser was employed. The pump laser light 

was obtained from the output of a Continuum Precision II laser at 532 nm, after frequency 

doubling the fundamental 1064 nm output.  

 

2.6.1.1 Frequency Conversion 

The wavelength output characteristic of the active medium in the laser can be 

modified, and in this work, the Nd:YAG 1064 nm light underwent frequency doubling to 

532 nm. Frequency doubling, also known as second harmonic generation, involves two 

photons of frequency ν being absorbed by a substance in its ground state, and a photon of 

frequency 2ν being emitted upon return to the ground state. Energy levels at hν or 2hν are 

not required, as there is no excited state with a measurable lifetime. Crystals are required 

for this process, as there must be no centre of symmetry in the medium. Third harmonic 

generation to produce 355 nm light from a Nd:YAG laser is also possible, as are using 

multiple doubling crystals in series to achieve even shorter wavelengths.  

 

2.6.1.2 Q-Switching 

Q-switching is used to achieve pulsed operation of a Nd:YAG with higher 

energies and shorter pulse durations. By placing a shutter within the optical cavity, the 

loss is increased, and a large population inversion can be established with very little 

stimulated emission occurring. Once the shutter is opened, the cavity releases the energy 

stored by the medium as a single pulse of intense light. The Q in Q-switching refers to 

quality, or Q-factor, where the process of Q-switching involves a sudden reversal in high 

loss (low Q-factor), to low loss (high Q-factor). Two common methods deployed to 
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achieve Q-switching involve using a high-speed rotating end-mirror to only briefly let out 

light or electro-optical shutter actions, such as a Pockels cell and polariser (Figure 2-7), 

where the light rotates 90o and is cut out by the polariser.  

 

 

Figure 2-7: Schematic example of a Q-switch (Pockels cell type).  

 

2.6.2 Dye Laser 

Dye lasers operate using an organic dye solution which has a broad fluorescence 

spectrum and absorption in the visible region [117]. A common dye utilised is Rhodamine 

6G, which is typical of dye molecules, where a large conjugated structure allows for 

considerable electron delocalisation, and a high number of distinct vibrational modes 

arising from the large number of atoms. As a liquid solution, the energy levels are 

broadened due to strong molecular interactions, and so for each electronic state, an energy 

continuum is formed where the broadened energy levels overlap.  

Typically a dye will absorb visible light causing a transition from the ground 

singlet state S0, transitioning to the S1 first excited singlet state energy continuum. This 

state has a short lifetime, and rapidly undergoes radiationless decay to the lowest level of 

the S1 continuum. Transitions down to S0 continuum levels result in fluorescent emission, 

and are followed by further radiationless decay. A pseudo-four level system ensures a 

population inversion between the two levels involved in the lasing emission. Due to 

reduction in photon energy, fluorescence occurs at a longer wavelength than the initial 

excitation. For example, in this work, the frequency-doubled Nd:YAG laser light at 

532 nm is retuned to 616 nm by the dye laser, before further frequency doubling to give 

the required probe light at 308 nm. 

Laser efficiency is reduced (often to approximately 5%) within the dye as a result 

of processes such as intersystem crossing from a singlet state to a triplet state, where slow 



41 
 

phosphorescence can repopulate the lower S0 levels. Intersystem crossing from the triplet 

states to S0, or absorption of radiation to higher triplet states, also contribute to the process 

of reducing efficiency. Similarly, the S1 state can undergo radiationless decay to S0, or 

transition to S2 states through absorption.  

Diffraction gratings are used to tune the wavelength of the laser output, where 

rotation of the grating changes the monochromatic emission, and is placed between the 

two end mirrors of the cavity, where a cell is also placed containing the flowing dye 

liquid.  

In this thesis, OH radicals were probed at ~308 nm, corresponding to the energy 

of the OH Q1(2) rotational line of the A2Σ+(ν′ = 0) ← X2Πi(ν″ = 0) transition. The 

Nd:YAG-pumped dye laser used (Sirah PRSC-DA-24) generally operated at 10 Hz, 

where the pulse energy was <0.1 mJ pulse–1. The dye laser operated using DCM 

(4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran) Special dye, the 

beam diameter was approximately 3 mm, and light output at ~616 nm was doubled to 

output ~308 nm light for the OH detection. Orientation of the tuning crystal used for 

frequency doubling was crucial, and the temperature dependence of the refractive index 

necessitated the use of a controlled heating cell held at a stable temperature to ensure 

maximum efficiency. When this heating cell was not reliable, manual tuning of the crystal 

was required, and regular checks were necessary, as the crystal was subject to temperature 

fluctuations in the laboratory. 

  

2.7 Apparatus Used in this Work 

This section describes the experimental setup (other than the lasers that have 

already been discussed) used for the majority of the experiments that comprise this thesis, 

and provides an example of typical data analysis, and some data used to calibrate the 

temperature of the reaction cell.  

 

2.7.1 Gas Flow 

Reactants were flowed using calibrated mass flow controllers (MFCs) in order to 

control and monitor the concentration of reagents (Figure 2-8). The fuel (DME, DEE, 

DBE, MTBE, or TMOF) was typically flowed from a bulb diluted with nitrogen, normally 

to 0.5 – 20% ether concentration. The exact concentration of a bulb was calculated using 
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the relative pressures after addition of ether and then nitrogen, and bulbs were left 

overnight before use, in order to ensure thorough mixing of the gases. Nitrogen (oxygen-

free) was also flowed through a separate mass flow controller, as was oxygen (when 

required), and the hydroxyl radical precursor. Early experiments used t-BuOOH as an OH 

radical precursor, however this was later replaced by hydrogen peroxide (H2O2/H2O). 

Both hydroxyl radical precursor compounds were delivered using a bubbler under 

nitrogen flow, with the bubbler situated upstream of the MFC. Slight variations in the 

delivery of reactants and precursors employed are outlined in the relevant chapters.  

 

 

Figure 2-8: Gas delivery line used in the experimental setup. Red circles represent 
taps.  

 

 Taps were used to isolate the flow of different gases (red circles, Figure 2-8), and 

allow facile re-routing of gas flows where required (i.e. oxygen was sometimes delivered 

through a high flow MFC (~100 – 4000 sccm (standard cubic centimetre per minute)), or 

a MFC that allowed very low flows (~1 – 20 sccm), depending on the experiment being 

undertaken. Mass flow controllers were arranged so the larger volumes of gas were 

delivered at the rear of the mixing manifold, and small flows at the front of the mixing 

manifold, to encourage mixing and ensure low amounts of gases flowed were carried into 

the reaction cell efficiently.  
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 Owing to the placement of a pressure gauge on the gas delivery line, bulbs were 

generally prepared on the same system used for experiments. Occasionally, for low 

concentration bulbs, or where ethers possessing low vapour pressures (such as DBE) were 

used, bulbs were made up on a separate, but similar line, that featured a wider range of 

pressure gauges, to enable more precise bulb concentration calculations. Leak testing was 

routinely carried out on the gas delivery line in Figure 2-8 to minimise loss of gases to 

the atmosphere, and the introduction of atmospheric O2 into the mixing manifold. 

Generally this was carried out through systematic monitoring of gas line pressure changes 

when the system was sealed, or through identifying sudden pressure changes around loose 

joints or taps when the line was sprayed with ethanol. Joints were tightened, and tap o-

rings replaced where necessary, and for leaks that were particularly difficult to identify, 

a Mass Spectrometer Leak Detector was used, with helium as the trace gas.  

  Two issues arising from the use of H2O2 and t-BuOOH precursors should be 

highlighted. The first, is a result of decomposition of H2O2 within the MFC and/or gas 

delivery lines, resulting in the presence of oxygen in the reaction cell at all times. The 

concentration of oxygen present varied depending on the total amount of hydrogen 

peroxide delivered, and the method used to ascertain this concentration is outlined in 

detail in Chapter 4. H2O2 is known to decompose at higher temperatures to H2O and O2 

[120, 121], and iron (which will be present in the stainless steel pipes used to flow gases 

in experiments) acts as a catalyst for its decomposition. In general, knowing the amount 

of oxygen present allows experimental conditions to be set up to account for this in the 

best possible way, but its presence can make the extraction of kinetic parameters prone to 

greater uncertainty.  

The second issue is decomposition of t-BuOOH, resulting in the formation of OH. 

Data for the OH + DEE reaction manifested itself as biexponential decays in Chapter 3 

when using this precursor. Acting as a photolysis-independent precursor to OH radicals 

is unsurprising given the hydroperoxy group present in this molecule, and its instability 

at ~311 K [122] meant t-BuOOH was never used at higher temperatures (approximately 

450 K) where it begins to interfere severely with kinetic decays, and ultimately wasn’t 

relied on for the large majority of experiments in this thesis.  
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2.7.1.1 Flow Correction 

For the fuel/N2 bulbs, experiments were conducted that identified it was necessary 

to adjust flow rates using a correction factor (equation E 2-5), for a specific reactant 

molecule and bulb concentration. This was discovered after identifying a discrepancy 

between the flow of nitrogen through a MFC (used for the calibration of the MFCs), and 

the actual flow rates measured when an ether/N2 bulb was used.  

 

 
100

[ether]
α +

100 – [ether]
1

 E 2-5 

 

The factor, α, in equation E 2-5 changes for each ether. For DME, α = 0.39, and 

for DEE α was approximated to be 0.3, based on the correction factor for butanol. This 

was confirmed by calibrating the MFC with the actual DEE/N2 mixed bulb, rather than 

pure nitrogen, to check that the α value corrected the pure nitrogen flow to match the 

measured bulb flow. The correction factor for nitrogen is 1. DBE, MTBE and TMOF 

were assigned approximate correction factors of 0.1, 0.20 and 0.15 based on their 

molecular masses. The correction factors are related to the specific heat capacity, and 

therefore mass, of the gas molecule in question, where a larger molecule can typically 

store more heat energy as a result of the greater number of degrees of freedom (vibrational 

and rotational modes). Heavier molecules will have lower α factors, and therefore a 

greater reduction in flow must be accounted for.   

 

2.7.2 Reaction Cell 

Reactants entered a mixing manifold, before the stainless steel reaction cell 

(~1000 cm3 volume, Figure 2-9), where a needle valve before a vacuum pump 

(Edwards RV 5), and total gas flow rate, were used to control the pressure in the cell, and 

to control flow rates over a range of approximately 100 – 6000 sccm. Low pressures were 

used (generally 5 – 500 Torr) to minimise quenching of the fluorescence signal for 

detection.  
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Figure 2-9: Schematic of the reaction cell used for the majority of experiments in 
this thesis. 

 

 Approximate flow rates can be calculated for a typical experiment at 298 K, 2000 

sccm and 40 Torr as below in equation E 2-6: 

 

 Qactual = Qstandard  
ρstandard

ρactual

 E 2-6 

 

where Q = flow rate, and ρ = density. Typically over 95% of the flow is that of the bath 

gas (and the majority of the remainder would be O2, which is of similar density to N2), so 

the density is assumed to be equal to nitrogen’s (ρstandard = 1.2506 kg m–3). The ideal gas 

law (equation E 2-7) is used to calculate the actual density to be 0.0603 kg m–3.  

 

 
n

V
 = 

P

RT
 E 2-7 
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From here, the actual flow rate can be calculated, and subsequent division by the 

volume of the cell in equation E 2-8 can be converted to give the total time required to 

flush the cell as 1.45 s. This is the total residence time within the entire cell, but the gas 

spends less time within the region where the two laser beams overlap.   

 

 41500 cm3 min–1

1000 cm3  = 41.5 min–1 E 2-8 

 

By the time gas entering the cell has reached the observation zone, it should not 

have been subject to many repeated photolysis pulses, as the gas flow does not enter along 

the photolysis laser axis (see Figure 2-13). However, the flow is not laminar, and the 

reactor is not linear, so the flow of gas will be complex. Consequently experiments 

determining pseudo-first order rate coefficients at varying laser repetition rates can be 

used to rule out any interfering effects, and were often carried out (see Chapter 3).  

 

2.7.3 Pressure Monitoring 

Pressure in the reaction cell was monitored using a capacitance manometer (MKS 

Baratron, 0 – 1000 Torr) situated at the entrance to the reaction cell. Throttling of the 

rotary pump (Edwards RV 5) by a needle valve was used to control the pressure.  

 

2.7.4 Detection of OH 

Fluorescence from the OH radicals at ~308 nm was detected by a photomultiplier 

tube (Electron Tubes), after passing through a filter ((308 ± 5) nm, Barr Associates). A 

digital oscilloscope (LeCroy LT 372) integrated the fluorescence signal, before 

transferring the output to the personal computer for collection and analysis, where the 

fluorescence signal was normalised for probe laser power. Probing on-resonance 

necessitated the use of a delay (~30 ns) before analysing the fluorescence, to avoid 

detecting the scatter pulse from the probe laser. 

Photomultiplier tubes (PMTs) used in this thesis operate on the photoelectric 

effect, where photons from the detectable light source hit a photosensitive cathode within 

a vacuum tube, releasing electrons. These electrons are received by the anode, and, using 

a series of electrodes (metal channel dynodes), multiplied by up to a factor of 109, 
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achieving great sensitivity to weak fluorescence signals. The PMT was situated at a right 

angle to the reaction cell in order to reduce the amount of scattered light hitting the 

cathode, and the filter was used to ensure only light of the target wavelength was 

collected. 

To build up a time-dependent trace of OH fluorescence signal, the delay time 

between the photolysis and probe lasers was varied using a delay generator, with a typical 

decay trace consisting 220 points, each averaged 3 – 30 times, over approximately 0.1 – 

25 ms, depending on the experiment.   

 

2.7.5 Typical Data Analysis 

During experiments, pseudo-first order conditions were used, where the 

concentration of the ether was in excess of the OH radicals (typical OH concentrations of 

1 × 1012 molecule cm–3 and typical ether concentrations of 5 × 1014 molecule cm–3). Using 

rate laws, it can be shown that an excess of ether allowed the reaction between OH and 

ether to be studied. Additionally, the high concentration of ether ensured that the reaction 

between ether and hydroxyl radical dominated, rather than the reaction between OH and 

the peroxide precursor in reaction R 2-4. OH self-reactions were also negligible due to 

the even lower concentration of OH radicals compared with H2O2.  

 

 OH + H2O2 → HO2 + H2O R 2-4 

 

After the collection of the fluorescence signal, the data were transferred to a 

personal computer, and normalised for probe laser power measured by a photodiode 

placed behind the exit window of the cell. An example of this is shown in Figure 2-10. 

There is no statistical difference between the pseudo-first order rate coefficients returned 

before and after normalisation, and only a marginal reduction in the rate coefficient 

uncertainty (there is not a great deal of fluctuation in laser power).  
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Figure 2-10: Typical OH decay trace showing pre- and post-normalisation for probe 
laser power. Pseudo-first order parameters for raw signal and normalised signal 
respectively: k′ = (9290 ± 370) s–1 and (9280 ± 330) s–1. Uncertainties are statistical 
at the 2σ level.  

 

For a typical OH + ether kinetic single exponential decay, the following rate 

equations were used to analyse the data based on reaction R 2-5, in order to obtain the 

bimolecular rate coefficient. More complex analysis required for biexponential traces as 

a result of more convoluted reaction schemes was often necessary, and these analyses are 

described in their relevant chapters.   

 

 OH + ROR′H → ROR′ + H2O R 2-5 

 

The rate of reaction R 2-5 can be expressed as the rate of removal of a species 

(OH in this case) with time. This is equal to the product of the concentration of both 

reactants (ether and hydroxyl radical) multiplied by a rate coefficient for a specific 

temperature (equation E 2-9). The reaction between OH and the photolytic precursor 

(reaction R 2-4, kOH) will also contribute. This is measured as a kinetic decay in the 

absence of ether, although diffusion (kdiff) likely also contributes to the rate in this case.  
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–d[OH]

dt
 = kbim[OH][ether] + kOH[OH][H2O2] + kdiff[OH] E 2-9 

 

By keeping the ether in large excess of the hydroxyl radicals, it can be assumed 

that the ether concentration remains constant throughout the reaction time. Now the rate 

law can be approximated as equation E 2-10, where k′ is referred to as the pseudo-first 

order rate coefficient (equation E 2-11). 

 

 
–d[OH]

dt
 = k'[OH] E 2-10 

 k' = kbim[ether] + kOH [H2O2] + kdiff E 2-11 

 

From the relationship between the parameters in equation E 2-11, it can be seen 

that a plot of the observed pseudo-first order rate coefficient against ether concentration 

will yield the bimolecular rate coefficient as the gradient of the plot, with the intercept = 

kOH[H2O2] + kdiff. In order to extract the pseudo-first order rate coefficient from a kinetic 

trace, the integrated rate law is used [123]. Equation E 2-10 can be rearranged to equation 

E 2-12, which in turn can be integrated between t = 0, and the final time, t, as in equation 

E 2-13, yielding equation E 2-14.  

 

 
d[OH]

[OH]
 = –k'dt E 2-12 

 න
d[OH]

[OH]

[OH]

[OH]0

 = –k' න dt
t

0
 E 2-13 

 ln[OH]  – ln[OH]0 = –k't E 2-14 

 [OH] = [OH]0e–k't E 2-15 

 

Equation E 2-15 is obtained from equation E 2-14. This equation allowed analysis 

of single exponential kinetic traces obtained from the laser flash photolysis – laser-

induced fluorescence experiments conducted in this work. The actual equation used does 

not rely on [OH], but If, which is the intensity of the OH fluorescence.  Pseudo-first order 

conditions do not require absolute concentrations to be known, as If is proportional to 

[OH], and the pseudo-first order rate coefficient determined is dependent on time, and the 

relative change in the fluorescence intensity.  
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 If,t = If,0e–k't  E 2-16 

 

An example of a typical kinetic decay is shown in Figure 2-11. Data points present 

pre-time zero were recorded before the photolysis laser fire, in order to establish a 

baseline of fluorescence signal. This average baseline could be incorporated into the 

exponential equation, or the trace could be corrected to have a baseline of zero. In this 

example case, the decay has been corrected so the pre-trigger baseline has a mean value 

of zero.  

 

 

Figure 2-11: Typical single exponential kinetic decay trace for the OH + DEE 
reaction, with a fit of single exponential decay (red line). Trace was obtained at 
298 K, in 47 Torr N2, where [DEE] = 7.7 × 1014 molecule cm–3. The exponential fit 
yielded k′ = (9320 ± 340) s–1 where the error was statistical, calculated at the 2σ level. 
The inset shows the residuals of the fit to the data.  

 

The bimolecular rate coefficients were obtained from the slope of the plot of the 

phenomenological rate coefficient k′ as a function of [ether], where the intercept, kd, was 

the rate coefficient for loss of OH in the absence of ether, primarily from the OH + H2O2 

reaction. An example bimolecular plot for the OH + DBE reaction is shown in Figure 

2-12.  
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Figure 2-12: Example bimolecular plot to determine the OH + DBE bimolecular rate 
coefficient at T = 298 K and 29 Torr N2. Slope, kbim = (3.99 ± 0.09) × 10–11 cm3 
molecule–1 s–1, where the error is statistical, calculated at the 2σ level. The grey 
shaded area represents the bounds of the 95% confidence limits.  

 

2.7.5.1 Treatment of Data and Weighting 

Not all the data collected were of equal precision, due to varied signal quality as 

a result of laser alignment, excimer power, temperature, pressure, and hydrogen peroxide 

purity. These factors often led to a difference in the quality of a kinetic trace. To weight 

the values of pseudo-first order rate coefficients used in bimolecular determinations, 

instrumental weighting in OriginPro was used. This weight factor, wi, is defined in 

equation E 2-17: 

 

 
wi = 

1

σi
2 

E 2-17 

 

here, σi refers to the size of the uncertainty on the data point. Instrumental weighting was 

also used for other data fitting regimes, such as Arrhenius parameterisations (Chapter 3), 

and mean OH yield calculations (Chapter 6).  

 One exception, where an instrumental weighting factor was not used, was in the 

use of globally analysed data. Global analysis uses multiple kinetic traces at once, sharing 
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some parameters (i.e. kbim for a set of traces at a given pressure and temperature), and not 

sharing other parameters (i.e. k′ and [ether] will be unique to each trace across a set for 

bimolecular determination). This technique allows a more robust determination of kinetic 

parameters, but does not allow for suitable weighting factors. Uncertainties on each data 

point in a kinetic decay were not readily available, and a weighting factor based on the 

magnitude of the signal will only serve to weight each trace in favour of the early or later 

points in a trace.  

 Global determinations of rate parameters typically returns much smaller 

uncertainties than single trace analysis (shown above in Figure 2-11 and Figure 2-12), 

and so uncertainties from global analysis, such as those for the determination of kOH+MTBE 

in Chapter 3, were often propagated with an extra uncertainty factor if the errors appeared 

unreasonably small. Further discussion of the global fitting method can be found in 

Chapter 4.  

 

2.7.6 Temperature Control and Monitoring 

The reactor was heated up to maximum temperatures of approximately 750 K, 

using a ceramic oven. A variable autotransformer was used to control the voltage of the 

heater, and calibration curves were constructed, allowing the prediction of the voltage 

setting required to give the desired cell temperature, for a given flow rate.  For early 

experiments, one Type K thermocouple was situated near the inlet of reactant gas, and 

for later experiments two more thermocouples were inserted at different positions, as it 

became apparent there was a discrepancy between the thermocouple readout and the true 

temperature of the reaction region.  

 

2.7.6.1 Temperature Calibration 

Placement of three Type K thermocouples within the reaction cell (Figure 2-13) 

showed there was some disagreement between the temperatures recorded in each of the 

positions. The difference between these temperatures was sometimes greater than 50 K, 

and varied greatly with different flow rates of gas. Kinetic parameters measured in this 

work were often temperature dependent, and thus required accurate knowledge of the 

temperature of the gases where the reactions took place. Characterisation of the 

experimental setup was necessary to achieve this. 
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Figure 2-13: Diagram of approximate thermocouple placement in reaction cell. 
Round-headed arrows indicate the ends of the thermocouples. 

 

In order to ascertain the temperature of the reaction cell when heated, the well-

known reaction between methane and the hydroxyl radical was used (reaction R 2-6). 

This reaction was suitable due to its particularly strong dependence on temperature, and 

therefore sensitivity as a chemical thermometer.  

 

 OH + CH4 → CH3 + H2O R 2-6 

 

Bimolecular plots were produced by measuring the decay of OH in the presence 

of methane, and using the Arrhenius parameters reported by Dunlop and Tully [124], an 

implied temperature could be determined. A bimolecular rate coefficient for OH + CH4 

in a given experiment was initially calculated using the temperature reading given by the 

thermocouple. The true temperature was implied by the measured kOH+CH4 value. 

However, calculated reactant concentrations were changed when the temperature was 

corrected, which in turn adjusted the value of the experimental bimolecular plot, leading 

to a new implied true temperature (Figure 2-14 demonstrates this iterative process). 
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Figure 2-14: OH + CH4 bimolecular determination plot, iterating towards the final 
calibrated temperature, 403 ℃. This temperature would be assigned an uncertainty 
of 8.2 ℃ (twice the 4.1% uncertainty of the bimolecular plot slope, discussed in the 
text).  

 

To iterate towards the solution efficiently, a simple command within the 

experimental spreadsheet can be set up, which calculates the difference between the rate 

coefficient predicted by Dunlop and Tully [124], and the experimental kOH+CH4. The 

difference between the two can then be minimised using the ‘goal seek’ command in 

Microsoft Excel, by adjusting the temperature used in both the calculation for Dunlop and 

Tully’s expression, and the experimental measurement. 
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Figure 2-15: Correction curves for temperature, based on the Dunlop and Tully 
[124] study of the OH + CH4 reaction. Corrections at flow rates of 1000, 2000 and 
4000 sccm N2 (black, red, green respectively). Fits are second order polynomials. 
Anomalous data points (purple data) in 2000 sccm flow calibration curve were 
omitted from the polynomial fitting expression. All corrections are based on the 
measurements using thermocouple A.  

 

A significant number of experiments have been conducted so that the temperature 

can be assigned with reasonable confidence for reactions at flow rates of 1000, 2000 and 

4000 sccm, at temperatures between approximately 150 and 550 °C (as measured by the 

thermocouple). These experiments were conducted over a period of months, rather than 

back-to-back in a short time period, resulting in greater scatter. Degrees Celsius are used 

here (Kelvin are generally used in the rest of this thesis), simply as a result of the units 

used by the thermocouple readouts. Simple second order polynomial equations were used 

to fit the correction curves (Figure 2-15), in the form y = ax + bx2.  

Error bars were assigned simply by doubling the percentage error of the OH + 

methane rate coefficient measured. For example, the 4.1% uncertainty in the bimolecular 

plot in Figure 2-14, would result in an uncertainty value of 8.2 ℃ for the corresponding 

correction factor. The uncertainties’ absolute values, and magnitudes, are not that 

important, they are primarily used to weight the parameterisation towards the better 

quality bimolecular determinations, based on statistical uncertainties. Doubling of the 

percentage uncertainty was used so all error bars could be clearly seen. Calibrations are 
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shown in Figure 2-16 for both 2000 sccm and 4000 sccm flow rates, where the total 

pressures of the measurements are specified. No significant effect on the temperature 

correction calculated was caused by varying total pressure, reinforcing the theory that the 

temperature deviations arose from changes in the gas flow rate.  

 

 

Figure 2-16: Temperature correction measurements as a function of total pressure. 
2000 sccm (left) and 4000 sccm (right).  

 

The three thermocouples placed in the system were positioned in different 

locations (Figure 2-13), and though the reasons behind their different readings is not fully 

understood, the positions likely account for the observed behaviour. For example, 

thermocouple A is located very close to the inlet of reactant gases entering the cell, so at 

higher flow rates is likely to feel a greater decrease in temperature due to gas rapidly 

passing across the thermocouple. Thermocouple C may read higher temperatures due to 

its location next to the wall, where it is ultimately closer to heaters, and should experience 

the flow of better-heated gases. Placement of thermocouple B is closest to the centre of 

the cell, where the photolysis and probe lasers intersect, however thermocouple A was 

used to generate the calibration curves. In practice it shouldn’t matter which thermocouple 

is used, but measurements carried out prior to all three thermocouples being present were 

measured using thermocouple A, so basing the temperature corrections on this 

thermocouple allowed the same correction factors to be applied to all experiments, 

maintaining relative consistency.   

Below 150 °C, no OH + CH4 rate coefficient measurements were made in this 

work, as the reaction becomes too slow for the experimental method to measure 

accurately. The calibration curves cannot necessarily be extrapolated directly back to 
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room temperature, as the difference between measured and implied temperatures should 

be zero at 298 K, but it is clear to see the polynomial curve extrapolations could give 

extreme corrections close to room temperature if not constrained (1000 sccm curve, 

Figure 2-15). A suitably sensitive and fast reaction that can be studied at temperatures 

below 200 °C would enable future measurements to identify accurate correction factors 

closer to room temperature. For this reason, reactions close to room temperature were not 

corrected. Flows approaching 500 sccm and below were also not corrected, as it was 

assumed the slower-flowing gas had less of an effect on the system. As the flow rate was 

reduced, the three thermocouples gave closer temperature readings to one another, 

supporting this theory.  

Figure 2-15 shows significant scatter in the measurements at all flow rates, and as 

such, it is clear that there is always a degree of uncertainty when assigning temperatures 

to heated reactions, even when using a calibrated thermocouple. Ideally, further 

experiments would use a thermocouple that behaves as expected at all flow rates; 

essentially following the shape of the 4000 sccm calibration graph (green curve, Figure 

2-15), where the temperature correction required does not switch from positive to 

negative (black and red curves, Figure 2-15). It is not clear what causes this behaviour, 

and the extreme difference between the calibration curve shape at different flow rates. A 

wider range of flow rate calibrations, and a thermocouple with more predictable 

measurement behaviour, would allow a parameterisation that interpolates the correction 

for any given flow rate.  

Ultimately, calibration of the experimental setup allowed kinetic studies of biofuel 

ethers to be carried out with greater certainty, and was necessary to ensure the true 

temperature was known, where previously the thermocouple was able to give an incorrect 

reading of up to 60 °C above or below the true temperature at the location of the reaction. 

In this thesis, typically all data above room temperature that require a temperature 

correction (i.e. flow rates ≥1000 sccm) are subject to approximately an uncertainty of 

±10 ℃ as a result of the calibrations presented here. This work highlights a need to 

rigorously check the experimental setup used for laser-based kinetic studies, and 

demonstrates that trust in one thermocouple may be misplaced. Furthermore, an incorrect 

temperature reading would be difficult to notice if a reaction that is not particularly 

temperature dependent was being studied, although this would likely mean a well-

characterised temperature reading is not crucial. Experiments using thermocouples to 
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measure temperatures of fast flowing gases, particularly at higher temperatures, are likely 

to be subject to greater correction factors. 

 

2.8 Other Experimental Techniques 

This section outlines some techniques used to study the kinetics of gas phase 

reactions, and they are contrasted with the methods employed throughout this thesis. Most 

of these techniques have been used to study the reactions of OH + hydrocarbons, but some 

are relevant to the detection of intermediate species in low temperature combustion.  

 

2.8.1 Shock Tubes  

In a shock tube experiment, an inert gas shock wave is passed through a pierced 

diaphragm along a metal tube, which contains a well-mixed reaction mixture, raising the 

temperature of the reactants as it passes [86, 125]. Precursor dissociation takes place 

inside and behind the shock wave, before the transient species goes on to react. Normally 

the shock front is detected by observation of the large change in pressure, temperature, or 

density. The reaction within this front can be followed by observation of a reactants’ 

absorption spectrum in order to monitor its concentration. Mass spectrometry has also 

been used, which allows several species to be monitored at once.  

 

 

Figure 2-17: Schematic of a typical shock tube experiment setup.  

 

Shock tubes allow the study of reactions at high temperatures (800 – 2500 K), and 

have become more sensitive with advances in detection techniques, however 

disadvantages to this technique include dissociation of undesired reactants, which will 
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lead to unexpected reactions perturbing the measured kinetics, although decomposition 

of precursors at high temperatures is also an issue for the flash photolysis technique. 

Additionally, only one decay trace is obtained for each experiment, which leads to many 

measurements being required in order to improve the signal-to-noise ratio satisfactorily. 

The laser flash photolysis – laser-induced fluorescence technique employed in this thesis 

can obtain many measurements in a short space of time in comparison. The high 

temperatures accessible using shock tubes are well complemented by the lower 

temperatures (<800 K) that are typically studied using the technique in this thesis, and the 

technique has been used to study the reactions of OH with MTBE and DME [126, 127]. 

Developments improving shock tube experiments have allowed lower 

temperature studies by using a tailored shock wave mixture to minimise the heating effect 

caused by backward propagating waves after wall contact, and by using longer driver 

sections in order to increase the test times accessible [128]. This is necessary as a result 

of the slower reactions in low temperature chemistry when compared with higher 

temperatures. Aerosol shock tubes have also been developed to allow the study of fuels 

with low vapour pressures.  

 

2.8.2 Relative Rate Determinations 

When isolation of an elementary reaction is not possible, relative rate methods 

can be used to study the reaction, and have been used to report rate coefficients for many 

of the OH + ether reactions studied in this thesis [129-132]. Known concentrations of two 

reactants, one a reference compound with a known bimolecular rate (RH), and the other 

the compound of interest where the rate coefficient is unknown (SH), are introduced to a 

reaction vessel with a photolytic precursor (in this example a precursor to OH). When 

photolysis lamps are turned on, a small constant concentration of OH radicals is 

generated. Reactions R 2-7 and R 2-8 will be taking place in the vessel.   

 

 OH + RH → H2O + R R 2-7 

 OH + SH → H2O + S R 2-8 

 

 At multiple times, gas samples are taken from the reaction cell and analysed by a 

technique such as gas chromatography (GC), to determine [RH]t and [SH]t. Initial 

concentrations of RH and SH can be low to allow plenty of time to sample over a long 



60 
 

reaction time. Rate laws for reactions R 2-8 and R 2-7 can be expressed as equations E 

2-18 and E 2-19 respectively. 

 

 
d[SH]

dt
= ks[OH][SH] E 2-18 

 
d[RH]

dt
= kr[OH][RH] E 2-19 

 

Integrating equations E 2-18 and E 2-19 under the assumption [OH] is constant 

([OH]ss, steady-state), yields equations E 2-20 and E 2-21, which when combined, give 

equation E 2-22. 

 

 ln ቆ
[SH]t

[SH]0

ቇ = ks[OH]sst E 2-20 

 ln ቆ
[RH]t

[RH]0

ቇ = kr[OH]sst E 2-21 

 ln ቆ
[SH]t

[SH]0

ቇ  = 
ks

kr
 ln ቆ

[RH]t

[RH]0

ቇ E 2-22 

  

Plotting ln([SH]t/[SH]0) against ln([RH]t/[RH]0) should produce a straight line, 

where the gradient = ks/kr. Disadvantages of this analytical method are the requirement 

for a well-known reference reaction rate coefficient, which will rely on other experimental 

techniques. Should this rate coefficient change, previous relative rate measurements will 

adjust, giving new results, although this could also be regarded as an advantage. It is less 

likely that a measurement using an absolute method will be able to undergo readjustment. 

Impurities in the compound of interest do not necessarily matter in a relative rate 

experiment, as long as the removal of the compound is measured. However, if impurities 

reacted with SH, this would affect the measured concentration of the compound with 

time. SH must only be removed by OH. Flash photolysis may be subject to issues arising 

from impurities if they react with OH, whereas the reaction of impurities with the 

compound of interest is less important (as it is likely to cause a negligible change in the 

compound concentration). Efficient detection of OH can be difficult, and this can make 

flash photolysis difficult, but is not a consideration for a relative rate experiment.  
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2.8.3 Discharge Flow 

Discharge flow is a fast experimental method that allows study of gas phase 

reaction kinetics. It works on the principle that the time between initiation of a reaction 

and the detection can be calculated, and is varied across an experiment [86].  

Microwave discharge of molecular hydrogen in helium produces H atoms, which 

are injected into a flow tube. In the flow tube is an excess of NO2, which reacts with all 

H atoms to produce OH and NO. At a known point along the flow tube, at which point 

all H has been converted, a movable injector introduces the reactant to be studied. This 

reactant is in excess of the OH atoms, and thus the relative concentration of OH atoms 

can be detected at a known point by a technique such as LIF. Due to knowledge of the 

flow velocity (V), and distance (X) between initiation and detection, the reaction time (t) 

can be calculated (equation E 2-23), so as to obtain relative OH concentration over time 

as an exponential decay.  

 

 t =  X/V E 2-23 

 

Mixing time is an issue in discharge flow experiments, as an ideal uniform 

concentration of reactants after injection is not instantly achieved. Faster reactions are 

affected more adversely by slow mixing times, as more of the reaction will have taken 

place before the uniform concentration is reached. As a result of this, discharge flow is 

limited to reactions that take place on the order of milliseconds. Flash photolysis 

experiments specifically enable well-mixed reactants as a result of the photolysis 

technique, hence much faster reactions can be studied. The upper limit of pressure is also 

around 1000 Pa, as uniform flow requires lower pressures. Wall reactions are a 

consideration, and often the walls require a coating such as Teflon to deactivate the 

surface the reactants will contact. The main advantage of discharge flow is that, provided 

the distances between injector and detector are measured accurately enough, it can be an 

effective technique coupled to a variety of detectors. Previously, this technique has been 

coupled to LIF in order to study R + O2 reactions [133], relevant to the material in Chapter 

4 and Chapter 5.  
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2.8.4 Detection Techniques 

2.8.4.1 Resonance Fluorescence 

Resonance fluorescence involves passing helium gas with a trace of atomic 

precursor (e.g. H2, O2 or Br2) through a microwave discharge, where a portion of the 

molecules are dissociated. Collisional excitation of some of the atoms formed, by He or 

electrons, is followed by fluorescence when they return to the ground state. The frequency 

of the light is specific to the atoms in the discharge lamp, and the light is filtered and 

passed into the reaction cell. The light is absorbed in the reactor by atoms of the same 

species, and these undergo the same process of excitation and fluorescence. A PMT 

positioned at a right angle to the lamp collects the fluorescence, which is proportional to 

the small atomic concentration, and rises rapidly after photolysis, before decaying as the 

reactant is removed.  

This technique can be used to monitor the relative concentration of atomic species, 

but only a few molecular species. It is very specific, and low cost, but LIF is 

predominantly used to monitor reactions where molecular species are targeted. 

Resonance fluorescence has been used to monitor the reaction of OH with DEE, DBE, 

MTBE, and DME [134-136]. 

 

2.8.4.2 Absorption Spectroscopy 

Absorption spectroscopy can be used to follow transient species in a flash 

photolysis experiment by probing the reaction cell with light of a frequency 

corresponding to a vibrational or electronic absorption for the species. The radical’s 

absorption signal increases immediately then decays away as it undergoes reaction, and 

this signal is recorded by a detector. The Beer-Lambert Law relates absorption to 

concentration in equation E 2-24: 

 

 I = I0exp(–εcl) E 2-24 

 

where I = light intensity, I0 = initial intensity, c = species concentration, l = path length, 

and ε is the absorption coefficient. If εcl is very small, the equation becomes equation E 

2-25, where Iabs is the change in light intensity measured. Under pseudo-first order 

conditions, the absorption coefficient does not need to be known. 
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 Iabs/I0 = –εcl E 2-25 

 

 The possibility for monitoring direct concentrations of reactants using absorption 

spectroscopy is a major advantage over the LIF technique, and an entire trace is recorded 

for every time the photolysis laser initiates the reaction, which is particularly efficient. 

Potential issues arise where multiple species may absorb at the wavelength used to 

monitor the reaction, however tunable lasers do help alleviate this problem by allowing 

selection of a specific transition in the reactant molecule. Nelson et al. [137] used 

absorption spectroscopy to monitor the reactions of OH with DEE, DBE, and DME.  

   

2.8.4.3 Proton Transfer Reaction-Mass Spectrometry 

Proton transfer reaction-mass spectrometry (PTR-MS) is a technique developed 

by Hansel et al. [138] which enables the detection of species at very low concentrations. 

The sensitivity of the technique has improved from as low as one ppb (parts per 

billion) [139], to a few ppt (parts per trillion) [140], up to its current state where it can 

detect analyte at concentrations <1 ppt [141]. 

PTR-MS uses soft ionisation to detect species present, by employing H3O+ to 

transfer protons to analyte compounds which have a higher affinity for protons than 

water [142]. General air components (N2, O2, Ar and CO2) do not get ionised by the beam 

as they have proton affinities lower than water. It will, however, ionise volatile organic 

compounds without causing fragmentation. The only source of H3O+ ion loss is the 

association reaction, forming H3O+.H2O, after collisional stabilisation of the excited 

(H3O+.H2O)* complex [138]. The use of H3O+ ions is the key to achieving such high 

sensitivity, as a higher ion count rate per unit density can be achieved when using air, 

rather than diluting with a buffer gas [140].  

The hydronium beam is generated by a hollow cathode glow discharge, which is 

injected into a transfer reactor at approximately 1 mbar pressure [142]. Under the 

influence of an electric field and viscous gas flow, the ions travel through the reactor. 

Once the analyte is injected into this reactor, they will collide with the hydronium ions 

(reaction R 2-9 from [138], where M can be C, O, N or S atoms). Ionised molecules leave 

the reactor, into a 1 × 10–4 mbar low pressure region, where flow becomes molecular, and 

is no longer viscous [142]. Here, conventional electrostatic ion optics are used to extract 

the divergent ion beam, focussing the ions into the mass spectrometer. The continuous 
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ion beam is converted into a pulse of ions, suitable for the time of flight MS method. A 

high performance time-to-digital converter initiates extraction pulses, where the pulse 

travels in and out of a reflectron analyser to an ion detector, and arrival time is converted 

to mass/charge ratio to generate spectra.  

 

 H3O+ + MiHj → MiHj+1
+  + H2O R 2-9 

 

Further advantages of PTR-MS over other detection techniques, such as gas 

chromatography, are the lack of sample preparation required, no pre-separation 

necessary, and trace gas analysis being possible in situ [141]. Other mass spectrometry 

techniques exist, and one major advantage they possess over LIF, is the ability to detect 

any species (in theory). This has been put to good use for detecting important combustion 

intermediates in the DME oxidation system [87, 88], and mass spectrometry has been 

used to aid the study of gas phase kinetics previously [143-146]. 
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Chapter 3 Kinetic Study of OH + Ether Reactions 

3.1 Abstract 

The reactions of OH with five potential biofuel ethers (dimethyl-, diethyl-, methyl 

tert-butyl-, and di-n-butyl- ether, and trimethyl orthoformate) have been studied from 298 

to 744 K, in 13 – 190 Torr N2 using laser flash photolysis and laser-induced fluorescence 

detection of the OH radical.  

This represents the first study of the temperature dependence of OH + trimethyl 

orthoformate ((CH3O)3CH), and extended temperature dependences for di-n-butyl ether 

(C4H9OC4H9) and diethyl ether (C2H5OC2H5). For dimethyl ether (CH3OCH3) and methyl 

tert-butyl ether (CH3OC(CH3)3), the studies were primarily used to validate the 

measurements, thereby ensuring any observations of more complex chemistry (OH 

regeneration, observed in Chapter 4, Chapter 5, and Chapter 6) were reliable, and not 

subject to any major issues. Thus, the focus of this chapter is on the novel measurements, 

and less so on the measurements of OH + DME, where significant previous work has 

been conducted. 

 The temperature dependences of the rate coefficients for OH + ether (all in units 

of cm3 molecule–1 s–1) can be parameterised by:  

kOH+TMOF(298–744 K) = (8.0 ± 12.2) × 10–13 [(T/298)(2.6±1.2) + (T/298)(–8.1±4.6)] × e(2.7±3.9)/RT, 

kOH+DEE(298–727 K) = (1.28 ± 0.21) × 10–11 × e(–0.11±0.59)/RT, 

kOH+DBE(298–732 K) = (3.05 ± 7.13) × 10–12 (T/298)1.3±1.6 × e(6.4±5.8)/RT, 

kOH+MTBE(298–680 K) = (9.8 ± 21.6) × 10–13 (T/298)2.7±1.5 × e(2.5±5.6)/RT, and  

kOH+DME(298–656 K) = (1.22 ± 2.83) × 10–15 (T/298)6.9±0.5 × e(19.1±3.8)/RT. 

 

3.2 Introduction 

OH + ether reactions (reaction R 3-1) are the important first steps in the low 

temperature combustion of ethers as potential biofuels, and in order to best understand 

the conditions required for novel engines, and generate accurate kinetic models, accurate 

measurements of these reaction rate coefficients are required below 1500 K. Often, there 

exists gaps in the knowledge of rate coefficients, kOH+ether, over this temperature range, 

particularly between approximately 450 K (the upper temperature of many literature 
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relative rate and flash photolysis experiments) and approximately 900 K (the lower limit 

of many higher temperature shock tube studies).  

 

 ROR'H + OH → ROR' + H2O R 3-1 

 

For simple hydrocarbon fuels, the preliminary reactions for their low temperature 

combustion are well-documented [147], with the initial propagation step consisting of 

hydrogen atom abstraction by a small radical, such as O or H. Here, OH is the example 

used; it is generally considered the most important abstraction agent, as it exhibits a much 

faster reaction with hydrocarbon fuels [103] than O and H, and is present at the high 

temperatures used in engines [102]. The reactions of the OH radical with TMOF, DEE, 

DBE, MTBE, and DME are presented in this chapter and compared with previous 

literature measurements in the discussions.  

 

3.3 Experimental 

The typical slow flow laser flash photolysis instrumentation used throughout this 

thesis was combined with laser-induced fluorescence to monitor OH. The reactants used 

are listed in Table 3-1. Also used were OH precursors (hydrogen peroxide, H2O2, Sigma-

Aldrich, 50% or 70% (w/w) in H2O; some early DEE experiments used t-BuOOH (Sigma-

Aldrich, 70% (w/w) in H2O)), and a buffer gas (N2, BOC, oxygen-free). 

Generally experiments in this work were carried out at an approximate flow rate 

of 1000 sccm and 30 – 60 Torr of nitrogen, or 2000 sccm and 120 Torr, and as such, 

temperatures above 298 K are subject to an uncertainty of ±10 K, based on the calibration 

discussed in Chapter 2. The full range of flow rates and pressures explored was 100 – 

4000 sccm and 13 – 208 Torr. Photolysis was carried out using 248 nm or 266 nm laser 

light, and OH radicals were probed by on-resonance LIF at 308 nm.  
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Table 3-1: Reactants used, with concentration ranges.  

TMOF Sigma-Aldrich, 99.8% (0.3 – 7.9) × 1014 molecule cm–3 

DEE  Sigma-Aldrich, ≥99% (0.8 – 30.4) × 1014 molecule cm–3 

DBE  Sigma-Aldrich, 99.3% (0.5 – 41.8) × 1013 molecule cm–3 

MTBE  Sigma-Aldrich, 99% (1.6 – 11.6) × 1014 molecule cm–3 

DME Argo International Ltd, 99.8% (1.1 – 14.2) × 1014 molecule cm–3 

 

Hydrogen peroxide (or t-BuOOH when used) was delivered with N2 using a 

bubbler placed before a MFC, to ensure the amount of gas being delivered was known. 

Contact of hydrogen peroxide with the metal in the MFC and consequent decomposition 

results in some oxygen always being delivered to the system, which was estimated to be 

approximately 1015 molecule cm–3, but this varied depending on pressure and flow. Under 

typical conditions of 298 K, 30 Torr N2, 1000 sccm flow, the estimated amount of H2O 

(from the hydrogen peroxide precursor) delivered was approximately 1.5% of the total 

gas density (~1018 molecule cm–3), and thus we expect H2O to make a negligible 

contribution to the total gas density, acting as a carrier gas. 

A bubbler delivery method was also used for the reactant in the di-n-butyl ether 

experiments, as a result of the low vapour pressure exerted by DBE in comparison to the 

other ether fuels (approximately 4 – 6 Torr at room temperature) [148, 149]. The result 

of this was particularly low bulb concentrations, and therefore slow pseudo-first order 

rate coefficients in comparison to other losses of OH. Some experiments showed 

recycling of OH due to O2 present in the system, which also contributed to the need for a 

faster OH + DBE pseudo-first order loss (see section 4.5 in Chapter 4). For these 

experiments, the bubbler was placed before a calibrated mass flow controller, and 

nitrogen was flowed across the surface of DBE in the bubbler. The concentration of ether 

delivered by the bubbler was estimated using the measured bath gas (N2) pressure within 

the bubbler, and the estimated vapour pressure of DBE. Antoine parameters were used to 

determine the vapour pressure of the DBE, where the bubbler was surrounded by a Dewar 

flask filled with room temperature water to reduce temperature fluctuations. The water 

was kept in the flask overnight before use, to stabilise at room temperature, and a 

thermometer was used during experiments to measure the water temperature. The Antoine 

equation used is shown below (equation E 3-1) [150]. 
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log(P / Torr) = A – 

B

((T / ℃) + C)
 E 3-1 

 

Here A = 6.92032, B = 1064.07 and C = 228.8 for the temperature range 212.15 – 

293.15 K [151], therefore the equation has been extrapolated in this work, and may 

explain the need for a reasonable correction between bubbler and bulb experiments. The 

correction factor for mass flow was still applied (described in Chapter 2). A correction 

factor between bubbler and bulb experiments was required, and determined at room 

temperature (described in full in section 3.6.1).  

Generally, OH kinetic traces exhibited single exponential behaviour, and were 

analysed as described in Chapter 2. An example for OH + dimethyl ether is presented in 

Figure 3-1.  

 

 

Figure 3-1: Single exponential decay, [DME] = 1.0 × 1015 molecule cm–3. The 
exponential fit yielded k′ = (2970 ± 100) s–1. The uncertainty on the returned 
parameter is 2σ and purely statistical. The experimental conditions were 298 K, in 
59 Torr N2. 

 

 Kinetic traces measured at higher temperatures in the presence of O2 often 

exhibited biexponential behaviour (examples are presented for each ether in 

Appendix A), rather than a single exponential decay. Diethyl ether experiments using the 
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t-BuOOH precursor also resulted in biexponential kinetic traces. The initial fast decay in 

the biexponential traces is the reaction between OH and the ether (ka′), and the second, 

tail portion of the decay, contains information about the regeneration of OH (kb and kc) 

(thus the decay is slower in the tail). These more complex traces were analysed by fitting 

to an equation derived from the scheme shown in Scheme 3-1.  

 

 

Scheme 3-1: Simplified reaction scheme for biexponential analysis equation 
parameters. 

 

The OH traces were fitted with the following equation (E 3-2) derived from 

Scheme 3-1: 

 

 
[OH] = [OH]0 × ቈቆ

–(kd + ka') – λ2

λ1 – λ2
ቇ  × ൫eλ1×t – eλ2×t൯ + eλ2×t E 3-2 

 

here, ka′ = pseudo first-order rate coefficient for OH + ether reactions, kd = rate coefficient 

for OH loss in the absence of ether, and the terms λ1 and λ2 are expanded fully in equations 

E 3-3 to E 3-6: 

 

 λ1 = 
ቀ–M1 + ඥM12 – 4M2ቁ

2
 E 3-3 

 λ2 = 
ቀ–M1 – ඥM12 – 4M2ቁ

2
 E 3-4 

 M1 = kd + ka' + kb + kc E 3-5 

 M2 = (kd + ka') × (kb + kc) – (ka'kb) E 3-6 

 

The terms kb (first order rate coefficient for OH regeneration from the R radical) 

and kc (first order rate coefficient for R radical reacting without producing OH) are both 
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present in the λ1 and λ2 terms. This equation can be used to determine the parameters from 

single trace analysis, where parameters are best defined when [ether] is sufficiently high 

that ka′ is faster than the sum of kc and kb. Parameters are even better defined/more robust 

when using global analysis, as the information is taken from many traces. The equation 

will be referred to as a biexponential equation (despite there being three exponential terms 

present), because of the two distinct portions of the biexponential traces (the initial fast 

decay, and the slow tail). 

For robust parameter retrieval, global fitting was used to analyse several 

biexponential traces at once (ka′ = kOH+ether[ether] for each trace), and share the 

bimolecular rate coefficient between decays. In this process the initial signal intensity, 

ka′, kb and kc are local parameters for each trace and rate coefficient kOH+ether is shared 

globally across all traces in the fit. This allows a well-defined, robust bimolecular rate 

coefficient for each temperature to be obtained from kinetic traces, which contain 

information on ka′ in the earlier part of the trace.  

Global analysis was used for the bimolecular rate coefficients obtained for OH + 

DEE, MTBE, and TMOF, and single trace (non-global) analysis was used for 

measurements using DME and DBE.  

 

3.4 OH + Trimethyl Orthoformate 

Trimethyl orthoformate bears structural similarities to DME (Scheme 3-2), and 

can be synthesised using methanol (and therefore bio-methanol) [81], making it a 

potential alternative bio-derived fuel or fuel additive. TMOF has been investigated for its 

use in fuel cells [37, 83-85]. Few studies exist on the low temperature oxidation 

mechanism of TMOF. TMOF possesses two distinct sites that the hydroxyl radical can 

abstract from; primary (reaction R 3-2) and tertiary (reaction R 3-3) α sites shown in 

Scheme 3-2. The products of these reactions are H2O and a radical, R. This first step has 

been measured in this work, with a non-site-specific approach, thus reported values 

kOH+TMOF refer to the sum of the rate coefficients for reactions R 3-2 and R 3-3. 
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Scheme 3-2: Potential abstraction sites in the OH + trimethyl orthoformate reaction, 
and R radical products formed.  

 

 

Trimethyl orthoformate and hydroxyl radical kinetics have only been studied once 

prior to the experiments presented here, by Platz et al. [152] using pulse radiolysis and 

UV absorption, finding kOH+TMOF = (6.0 ± 0.5) × 10–12 cm3 molecule–1 s–1 at 295 K, which 

they compared to OH + DMM (dimethoxymethane, CH3OCH2OCH3), a similarly 

structured molecule, where kOH+DMM = 5.2 × 10–12 cm3 molecule–1 s–1 as an average of two 

measurements [153, 154]. No measurements were made above room temperature.  

Since the measurements in this work were published in Potter et al. [155], a 

theoretical study of OH + TMOF has been carried out by Du and Zhang [116], including 

ab initio calculations of the extended TMOF low temperature oxidation system, with a 

focus on the agreement between their calculated kOH+TMOF and the measurements from 

this thesis that were presented in Potter et al. At room temperature, 71% of the abstraction 

is predicted to occur on the tertiary site (reaction R 3-3), and the remaining 29% at the 

primary sites (reaction R 3-2). 

 

3.4.1 OH + (CH3O)3CH Temperature Dependence 

The bimolecular rate coefficient for the reaction between trimethyl orthoformate 

and the hydroxyl radical has been measured under pseudo-first order conditions, where 

 (CH3O)3CH + OH → CH2O(CH3O)2CH + H2O R 3-2 

 (CH3O)3CH + OH → (CH3O)3C + H2O R 3-3 
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the concentration of OH was controlled by reaction R 3-4. Analysis of the OH decay rate 

at varying concentrations of trimethyl orthoformate to give k′OH+TMOF, and least squares 

linear fitting of these pseudo-first order rate coefficients as a function of [TMOF], for a 

given temperature and pressure, provides the bimolecular rate coefficient kOH+TMOF. Three 

example bimolecular plots are displayed in Figure 3-2. An example single exponential 

decay is shown in Appendix A. 

 

 

Rate coefficients for the abstraction of hydrogen by OH, from trimethyl 

orthoformate (kOH+TMOF), were measured as a function of temperature using hydrogen 

peroxide as the OH photolytic precursor, in the ranges 298 – 744 K and 37 – 68 Torr 

(Table 3-2). The uncertainties in the rate coefficients in this work are 2σ with an extra 

10% of the measured rate coefficient propagated, to allow for the systematic errors 

associated with the experimental method, and avoid weighting the data towards the small 

errors produced by global analysis of biexponential decays. Measured rate coefficients 

did not vary significantly with laser power or laser repetition rate (7.0% maximum 

variation between 10, 5 and 2 Hz, and no variation within uncertainties).  

The reaction of OH with TMOF showed similar behaviour to most ethers in this 

chapter, in that low temperature OH decays were single exponential, and higher 

temperature decays were biexponential. The OH + TMOF reaction exhibited 

biexponential behaviour at a relatively low temperature, where the nature of the decays 

changed at ~489 K, indicating recycling of OH radicals, where the initial fast portion of 

a decay contains information about the initial hydrogen abstraction (reaction R 3-4) and 

the tail of the decay contains information about OH recycling and yields. Oxygen present 

in the system due to decomposition of hydrogen peroxide (discussed in Chapter 4, and 

Potter et al. [156]) is the probable source of this OH, where it combines with TMOF-

derived R radicals (reaction R 3-5).  

 

 

 C4H10O3 + OH → C4H9O3 + H2O R 3-4 
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Figure 3-2: Example bimolecular plots for OH + TMOF at 298 K and 68 Torr N2 
(black), 336 K and 68 Torr N2 (red), and 489 K and 64 Torr N2 (green). kOH+TMOF = 
(4.73 ± 0.84) × 10–12 cm3 molecule–1 s–1, (3.34 ± 0.15) × 10–12 cm3 molecule–1 s–1, and 
(6.00 ± 0.57) × 10–12 cm3 molecule–1 s–1 respectively.  Shaded areas represent the 95% 
confidence limits, and error bars are statistical at the 1σ level. Uncertainties on rate 
coefficients are statistical at the 2σ level. The intercepts are (–210 ± 30) s–1 (black), 
(–290 ± 20) s–1 (red), and (–40 ± 100) s–1 (green).  

 

  C4H9O3  + O2 → products R 3-5 

 

Observations discussed later (Chapter 6) demonstrate the potential for TMOF to 

act as a precursor for OH even when isolated from other reactants or precursors (reaction 

R 3-6), so it is possible this is the sole cause of OH regeneration in the TMOF system, 

rather than the R + O2 reaction (reaction R 3-5). 

 

  C4H10O3 
hν or Δ
ሱ⎯⎯ሮ  OH + products R 3-6 
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Table 3-2: Bimolecular rate coefficients obtained for OH + TMOF. Uncertainties 
are 2σ with an additional 10% of the measurement value added to account for 
systematic errors. 

T / K 1012 kOH+TMOF
a n 10–14 [TMOF]b P / Torr 

298 4.69 ± 0.83 9 0.8 – 7.9 37 

298 4.73 ± 0.84 10 0.9 – 7.3 68 

298 4.53 ± 0.92 7 1.4 – 6.3 61 

336 3.34 ± 0.49 10 0.8 – 6.5 68 

338 3.75 ± 0.56 8 1.2 – 5.6 61 

380 4.65 ± 0.98 7 1.1 – 5.2 64 

451 5.26 ± 0.70 12 0.3 – 3.5 37 

489 5.71 ± 0.67c 6 0.9 – 4.1 64 

540 7.05 ± 0.82c 10 0.8 – 3.9 61 

598 7.75 ± 0.97c 5 0.6 – 2.2 60 

642 9.88 ± 1.14c 6 0.6 – 2.5 61 

675 10.45 ± 1.20c 7 0.5 – 2.3 60 

704 11.88 ± 1.33c 4 0.5 – 1.8 60 

734 14.01 ± 1.67c 4 0.5 – 1.6 59 

744 14.67 ± 1.86c 4 0.5 – 1.7 62 
aUnits of cm3 molecule–1 s–1. bUnits of molecule cm–3. cFrom global analysis. n refers 
to the number of experiments comprising a bimolecular determination. 

 

Biexponential decays were fit by the biexponential equation rather than the single 

exponential equation. An example biexponential decay with fitting is shown in Figure 

3-3, and the green data in Figure 3-2 demonstrate the extraction of kOH+TMOF from 

biexponential analysis. Biexponential traces were analysed globally, where several traces 

generated at a given temperature and pressure were analysed simultaneously to obtain a 

kOH+TMOF shared across the traces (and other parameters analysed in Chapter 6, such as 

OH yield). As a result of the well-defined nature global fitting possesses, uncertainty 

ranges on these data are particularly small. 
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Figure 3-3: Example OH + TMOF biexponential decay with a good fit to the 
biexponential equation (red line), and a poor fit to the single exponential equation 
(blue line), measured at 675 K and 60 Torr N2. The inset shows the residuals for the 
biexponential fit. Parameters from the biexponential fit: ka′ = (2560 ± 100) s–1, kb = 
(110 ± 50) s–1, kc = (380 ± 240) s–1, and kd was fixed at 200 s–1. Parameters from the 
single exponential fit: k′ = (2500 ± 70) s–1. [TMOF] = 2.28 × 1014 cm3 molecule–1 s–1. 
Uncertainties are statistical at the 2σ level.  

 

Examining the temperature dependence of the bimolecular rate coefficient for the 

OH + TMOF reaction (Figure 3-4), there is a clear positive temperature dependence above 

approximately 340 K, and a small negative temperature dependence region below this 

temperature. The temperature dependence of the data can be parameterised by 

kOH+TMOF(298744 K) = (8.0 ± 12.2) × 10–13 ቀ
T

298
ቁ

2.6±1.2
+ ቀ

T

298
ቁ

–8.1±4.6
൨ × exp ቂ

2.7±3.9

RT
ቃ cm3 

molecule–1 s–1, where a weighted fit was used, and the uncertainty in the parameterisation 

is 12%, taken as the maximum magnitude of the 95% confidence limit. 
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Figure 3-4: kOH+TMOF measured in this work ( ), as a function of temperature. Errors 
are 2σ with an additional 10% of the value to account for systematic errors. The 
only available literature measurement, by Platz et al. [152], is included ( ). The 
temperature dependence of kOH+TMOF from this work can be described by 
kOH+TMOF(298744 K) = (8.0 ± 12.2) × 10–13 [(T/298)(2.6±1.2) + (T/298)(–8.1±4.6)] e(2.7±3.9)/RT 
cm3 molecule–1 s–1, where the 95% confidence bounds are shown in grey shading. 
Two theoretical Arrhenius parameterisations by Du and Zhang [116] are shown; 
blue line: kOH+TMOF(336744 K) = 4.2 × 10–13 [(T/298)2.6 + (T/298)–8.1] e5.7/RT cm3 
molecule–1 s–1, and the green line is described in Table 3-3. 

 

Comparison with experimental measurements is only possible at room 

temperature, where we measure an average kOH+TMOF = (4.65 ± 0.50) × 10–12 cm3 

molecule–1 s–1, approximately 25% slower than the only reported rate coefficient, by Platz 

et al. [152] (Figure 3-4 and Table 3-3), who found kOH+TMOF = (6.0 ± 0.5) × 10–12 cm3 

molecule–1 s–1 at 295 K using pulsed radiolysis. The uncertainty on the measurement in 

this work is the propagated 2σ+10% uncertainty. There is no overlap of the two values’ 

uncertainty ranges. Pulsed radiolysis can involve much higher radical concentrations, and 

hence fast radical-radical reactions, causing increased OH loss, may have affected the 

Platz et al. measurements. 

Figure 3-4 shows what is possibly the onset of a negative temperature dependence 

region for kOH+TMOF, at temperatures below approximately 340 K. Low temperature 
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studies have shown that a negative temperature dependence of the rate coefficient for OH 

+ hydrocarbon reactions can occur below ~200 K. DME and acetone have both 

demonstrated this behaviour arising from the formation of a hydrogen-bonded pre-

reaction complex, in which an H atom can subsequently quantum tunnel through the 

reaction barrier to form water [157, 158]. The result is a rapid increase in rate at low 

temperatures. Measurements of kOH+TMOF at ~340 K and room temperature were both 

repeated to ensure the exhibited temperature dependence was unlikely to be the result of 

anomalous measurements. Further studies of ethers at sub-ambient temperatures would 

be of mechanistic interest, and potentially relevant to planetary atmospheres.  

 Since the publication of the data presented here in Potter et al. [155], Du and 

Zhang [116] undertook a theoretical study of the reaction between trimethyl orthoformate 

and the hydroxyl radical, carrying out ab initio calculations for the extended low 

temperature oxidation surface of TMOF, and compared their data to our results. 

Molecular structures for the OH + TMOF surface were optimised at the M06-2X-GD3/6-

311++G(d,p) level, with vibrational frequencies computed using the same method and 

basis set. The single point energies of each optimised structure were calculated using the 

QCISD(T)/6-311++G(d,p) method, and conventional transition state theory was used to 

calculate the OH + TMOF rate coefficients for each abstraction site, allowing the total 

bimolecular rate coefficient to be calculated at different temperatures. The reported 298 K 

calculated kOH+TMOF was 5.48 × 10–12 cm3 molecule–1 s–1, 6% faster than the upper limit 

of our measurement when considering the uncertainty range (4.65 ± 0.50 × 10–12 cm3 

molecule–1 s–1), however this assumes there is no uncertainty associated with the ab initio 

calculation method, and overall shows a good level of agreement.  

 

Table 3-3: Comparison of the rate coefficient obtained for kOH+TMOF with 
literature measurements and calculations. 

Reference Technique k(298 K)a
 T / K k(T)b 

Platz et al. Pulsed 
radiolysis 

6.0 ± 0.5c 295 – 

Du and Zhang Theory 
(QCISD(T)) 

5.48 298 – 
1500 

1.02×10–13 (T/298)3.4 

e9.89/RT  

This work PLP–LIF 4.65 ± 0.50 298 – 744 (8.0 ± 12.2)×10–13 
((T/298)2.6±1.2 + (T/298)–

8.1±4.6) e(2.7±3.9)/RT 
aUnits are 10–12 cm3 molecule–1 s–1. bUnits of A are cm3 molecule–1 s–1 and Ea are kJ 
mol–1. cMeasured at 295 K. 
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  The Arrhenius parameterisation calculated by Du and Zhang is displayed in Table 

3-3, along with their calculated room temperature rate coefficient for OH + TMOF. Figure 

3-4 displays two fits reported by Du and Zhang, where the green line represents a full fit 

to the temperature range 298 – 1500 K, and the blue line a less extensive parameterisation 

from 336 to 744 K. Across the reduced range in the blue fit, Du and Zhang used the 

temperature dependence exponential terms (2.6 and –8.1) from this study, and found a 

pre-exponential factor approximately 50% lower (4.2 × 10–13 cm3 molecule–1 s–1 

compared to 8.0 × 10–13 cm3 molecule–1 s–1), and an activation energy twice as low (–5.7 

kJ mol–1 in comparison to –2.7 kJ mol–1). As a result, their fit underestimates the rate 

coefficient we observe at high temperatures, and over-predicts kOH+TMOF below 

approximately 400 K. It is not clear why a temperature of 336 K was chosen as a lower 

limit for this fit. The authors note their calculated rate coefficients fit to the full 

temperature range using a linear least squares analysis, giving the modified Arrhenius 

parameterisation kOH+TMOF(298 – 1500 K) = 1.02 × 10–13 ቀ
T

298
ቁ

3.4
× exp ቂ

9885

RT
ቃ cm3 

molecule–1 s–1. This full expression is just within the uncertainty range of the room 

temperature data reported here, but underestimates the measured rate coefficient above 

approximately 700 K by ~20%. From the upper limit of our data, it is not clear whether 

the extrapolation up to 1500 K would greatly deviate from the calculated fit by Du and 

Zhang. The reversal in the temperature-dependent behaviour at approximately 350 K is 

reproduced reasonably well by the ab initio study reported by Du and Zhang, but has not 

been extrapolated below room temperature, so the extent to which low temperature 

complex formation will affect the rate coefficient is not explored.  

 

3.5 OH + Diethyl Ether 

Bio-derived diethyl ether is synthesised from bioethanol dehydration, and has 

already been used as a cold-start aid in engines [55]. Its similarity to DME, high cetane 

number (>125), good energy density (26.3 MJ L–1) and low self-ignition temperature 

(363 oC) [24], make DEE a suitable candidate for diesel replacement. The reaction 

between OH and diethyl ether is the most probable first step in the low temperature 

combustion mechanism.  

Waddington et al. [159] proposed a likely mechanism for the low temperature 

gaseous oxidation of DEE. Initially the mechanism follows the same route as other 

organic compounds, where abstraction of a hydrogen atom occurs. As the second most 
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simple symmetrical ether, diethyl ether is slightly more complex than dimethyl ether, as 

there are two unique abstraction sites (Scheme 3-3). Abstraction can occur at either the 

α- or β-carbon, and was found to take place primarily on the α-carbon (reaction R 3-7), 

based on products formed. Abstraction from the β site is the minor channel (reaction R 

3-8). Di Tommaso et al. [115] later postulated the same abstraction split, due to the more 

stable product that is formed when the radical is centred on the secondary carbon. This 

radical should be stabilised as a result of electron density donated by the neighbouring 

methyl group, and the lone electrons situated on the adjacent oxygen atom. Oxygen was 

the suggested abstraction agent, and is significant for initiation processes, however in low 

temperature combustion, it is likely to be O, H or OH from propagation reactions that will 

initiate the chemistry with DEE.  

 

 CH3CH2OCH2CH3 + OH → CH3CH2OCHCH3 + H2O R 3-7 

 CH3CH2OCH2CH3 + OH → CH3CH2OCH2CH2 + H2O R 3-8 

 

Orlando [160] predicted that >80% of abstractions occurred at the secondary 

carbon (α position) when the abstraction agent was a Cl atom, and Eberhard et al. [161] 

found that previous studies showed 95% of alkane hydrogen abstraction undergone by 

OH initiated photo-oxidation will occur on the secondary carbon. In the measurements 

here, kOH+DEE refers to the bimolecular rate coefficient for the total abstraction taking 

place in reactions R 3-7 and R 3-8, where the measurements made were non-site-specific.  

 

 

Scheme 3-3: Possible hydrogen abstraction sites, and subsequent R radicals formed 
for the reaction between OH and diethyl ether. 

 

Kinetics of the OH + DEE reaction have been investigated experimentally since 

1976, initially by Lloyd et al. [162], with various techniques being employed [113, 129, 

132, 136, 163-165], including flow reactors, smog chambers, and pulsed laser photolysis 
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– laser-induced fluorescence. Results of the rate coefficient studies of this reaction 

previously are summarised in Table 3-5. No pressure dependence is expected for this 

reaction [163], and also for the reaction of Cl + DEE [166], which should show the same 

pressure dependence as OH + DEE. Room temperature values are well-documented, and 

up to approximately 440 K, the kinetics have been explored, however there is a large gap 

between 440 K and the single relative rate measurement at 753 K, and no current studies 

at temperatures above this. The work presented here measures kOH+DEE within this void of 

experimental measurements.  

 

3.5.1 OH + C2H5OC2H5 Temperature Dependence 

The bimolecular rate coefficient for the reaction between diethyl ether and the 

hydroxyl radical has been measured under pseudo-first order conditions, where the 

concentration of OH was controlled by reaction R 3-9. Analysis of the OH decay rate at 

varying concentrations of diethyl ether to give k′OH+DEE, and least squares linear fitting of 

these pseudo-first order rate coefficients as a function of [DEE], for a given temperature 

and pressure, provides the bimolecular rate coefficient kOH+DEE. An example single 

exponential decay can be found in Appendix A. 

 

 C2H5OC2H5 + OH → C2H5OC2H4 + H2O R 3-9 

 

An example of a bimolecular plot is displayed in Appendix A. It should be noted 

that the analysis presented here is for illustrative purposes, and the actual values reported 

were obtained from a global analysis of multiple traces at once for a given temperature 

and pressure (more details of this method are given in Chapter 4 and Chapter 2).   

Above room temperature (357 – 532 K) decays produced using the t-BuOOH 

photolytic precursor exhibited biexponential behaviour. This behaviour was not seen 

when using the hydrogen peroxide precursor, so is likely as a result of t-BuOOH 

decomposition (discussed in Chapter 2). For this reason, above 532 K OH radicals were 

solely generated using the H2O2 precursor. Biexponential decays were fit using the 

biexponential expression in equation E 3-2, and an example biexponential decay with 

fitting is shown in Appendix A. It is worth noting the loss of OH in the absence of DEE 

in this figure (kd) is much higher than for the H2O2 precursor, due to faster reaction with 

t-BuOOH.  
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Rate coefficients for the abstraction of hydrogen by OH, from diethyl ether 

(reaction R 3-9), have been measured as a function of temperature, using hydrogen 

peroxide or tert-butyl hydroperoxide as photolytic precursors, in the ranges 298 – 727 K 

and 13 – 190 Torr N2. The measured rate coefficients did not vary significantly with laser 

power. A plot of the rate coefficient as a function of temperature is shown in Figure 3-5, 

and all values of kOH+DEE are displayed in Table 3-4, where total uncertainties are 

estimated as 2σ with an extra 10% of the rate coefficient value propagated, to account for 

the unrealistically small statistical errors on parameters returned by global analysis of 

multiple traces.  

Data obtained from different OH precursors have been identified in Figure 3-5, 

where no significant difference between the rates measured using H2O2 or t-BuOOH 

precursors was identified. At room temperature, the average measurement using H2O2 is 

15% lower than that of t-BuOOH, however, considering the uncertainty ranges (~10% for 

each measurement), the two values are in agreement. The mean values were calculated 

from four hydrogen peroxide experiments, and eight t-BuOOH experiments. The reported 

uncertainties are statistical at the 2σ level.  
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Table 3-4: Bimolecular rate coefficients obtained for OH + DEE. Uncertainties are 
2σ +10% to account for estimated systematic errors.  

T / K 1011 kOH+DEE
a n 10–14 [DEE] rangeb P / Torr Precursor 

298 1.23 ± 0.14 5 5.8 – 27.6 29 tBuOOH 

298 1.42 ± 0.16 11 8.2 – 28.1 29 tBuOOH 

298 1.30 ± 0.15 17 5.8 – 27.7 30 tBuOOH 

298 1.19 ± 0.17 5 4.6 – 17.8 38 H2O2 

298 1.14 ± 0.17 5 7.3 – 28.5 38 H2O2 

298 1.16 ± 0.14 5 1.5 – 7.4 47 H2O2 

298 0.96  ± 0.10 7 6.2 – 24.1 48 H2O2 

298 1.30 ± 0.17 6 4.3 – 16.4 59 tBuOOH 

298 1.15 ± 0.17 4 4.3 – 16.7 60 tBuOOH 

298 1.34 ± 0.17 4 4.3 – 16.7 60 tBuOOH 

298 1.25 ± 0.17 5 7.8 – 15.4 60 tBuOOH 

298 1.37 ± 0.18 7 4.0 – 30.4 60 tBuOOH 

357 1.29 ± 0.16 5 4.1 – 19.7 30 tBuOOH 

361 1.24 ± 0.26 17 3.9 – 19.0 30 tBuOOH 

367 1.42 ± 0.16 6 6.9 – 19.8 13 tBuOOH 

415 1.19 ± 0.26 9 3.4 – 16.6 30 tBuOOH 

494 1.21 ± 0.14 7 4.8 – 13.6 60 tBuOOH 

500 1.25 ± 0.15 14 3.3 – 12.9 35 tBuOOH 

531 1.47 ± 0.18 8 3.2 – 12.7 30 tBuOOH 

532 1.24 ± 0.17 15 3.8 – 14.7 29 tBuOOH 

620 0.96 ±0.12 5 3.8 – 15.1 47 H2O2 

632 1.25 ± 0.14 8 3.3 – 13.2 40 H2O2 

642 1.18 ± 0.13 4 1.7 – 6.6 57 H2O2 

663 1.31 ± 0.20 5 1.4 – 5.3 190 H2O2 

669 1.32 ±  0.16 7 1.6 – 6.5 57 H2O2 

670 1.29 ± 0.19 4 1.1 – 4.1 150 H2O2 

682 1.77 ± 0.21 4 1.7 – 6.5 59 H2O2 

686 1.30 ± 0.16 4 1.6 – 6.3 57 H2O2 

691 1.21 ± 0.15 5 1.6 – 6.1 57 H2O2 

714 1.33 ± 0.16 5 1.5 – 6.1 57 H2O2 

727 1.25 ± 0.15 5 0.8 – 5.9 57 H2O2 
aUnits of cm3 molecule–1 s–1. bUnits of molecule cm–3. n refers to the number of 
experiments comprising a bimolecular determination. 
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Figure 3-5: Measured kOH+DEE(298 – 727 K) = (1.26 ± 0.11) × 10–11 × e(0.01±0.80/RT) cm3 
molecule–1 s–1, uncertainties are 2σ and statistical, and the grey shaded area 
represents the bounds of the 95% confidence limits. Precursors were H2O2 ( ) and 
t-BuOOH ( ). Note the room temperature data are averages with propagated 2σ 
uncertainties (H2O2, n=4; t-BuOOH, n=8).  

 

Plotting kOH+DEE against temperature, shown in Figure 3-5, shows a clear lack of 

temperature dependence, where the rate coefficient is statistically invariant from room 

temperature to approximately 730 K. An Arrhenius fit has been performed, where the 

data can be described by kOH+DEE(298 – 727 K) = (1.26 ± 0.11) × 10–11 × exp ቂ
0.01±0.80

RT
ቃ 

cm3 molecule–1 s–1. The uncertainties reported are statistical at the 2σ level, and the 

maximum uncertainty of the 95% confidence limits across the temperature range valid 

for this parameterisation is 14%. Given the uncertainty in the activation energy, a 

temperature independent value of (1.26 ± 0.11) × 10–11 cm3 molecule–1 s–1 is 

recommended. A weaker temperature dependence compared with DME (see section 

3.8.1) can be rationalised by the more facile abstraction from the α C–H bond in DEE, 

where the adjacent CH3– group weakens the bond by donating electron density. DME 

lacks this adjacent methyl group.  
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Figure 3-6: kOH+DEE measured in this work ( ) as a function of temperature, with the 
modified Arrhenius fit described in the text, where the bounds of the 95% 
confidence limits are shaded grey. Error bars are 2σ with another 10% of the 
measured value added to account for estimated systematic errors. Dashed lines 
represent the respective Arrhenius parameterisations extrapolated past the 
experimental data. Literature measurements and their temperature dependences 
are shown for Tranter and Walker (2001) ( ), Mellouki et al. (1995) ( ), Semadeni 
et al. (1993) ( ), Bennett and Kerr (1990) ( ), Nelson et al. absolute (1990) ( ), Nelson 
et al. relative (1990) ( ), Bennett and Kerr (1989) ( ), Wallington et al. (1989) ( ), 
Tully and Droege (1987) ( ), and Lloyd et al. (1976) ( ).  

 

Measurements of kOH+DEE made in this work occupy the gap previously present in 

the literature between those made by Tully and Droege [165] and Tranter and 

Walker [147]. Agreement within uncertainty ranges with all other studies at room 

temperature is seen here, although there is variability of ~15% in our data given the two 

photolytic precursors used at this temperature, and the previous room temperature values 

range from (0.93 – 1.36) × 10–11 cm3 molecule–1 s–1, all details of previous studies are 

displayed in Table 3-5. The majority of previous studies used relative rate techniques. 

Bennett and Kerr [129] initially studied the reaction in a smog chamber, relative to the 

reaction between OH and iso-butene, using 350 – 450 nm photolysis of nitrous acid 

vapour. There is no significant difference in the updated reference rate coefficient 

recommended by IUPAC (international union of pure and applied chemistry) [167] 
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(kOH+iso-butene = 5.24 × 10–11 cm3 molecule–1 s–1 compared to the authors’ value kOH+iso-butene 

= 5.26 × 10–11 cm3 molecule–1 s–1).  

 A later study by Bennett and Kerr [163] used methyl nitrite photolysis and a 

reference compound of 2,3-dimethyl butane, where their data are in agreement with our 

measurements. An update to the temperature-independent reference rate coefficient used 

(kOH+DMB = 6.20 × 10–12 cm3 molecule–1 s–1) to the latest recommended by Atkinson [168] 

(kOH+DMB = 5.78 × 10–12 cm3 molecule–1 s–1 at 298 K) which is dependent on temperature, 

reduces the rate coefficients by approximately 15% at the lower temperatures, and ~1% 

at the highest temperatures reported.  

Agreement was found with the relative rate study by Semadeni et al. [164], where 

2,3-dimethyl butane was the reference compound used, after ethyl or methyl nitrite 

photolysis using a Xe arc lamp. The same adjustment to the reference reaction rate 

coefficient as described above reduces the lowest temperature rate coefficients by 

approximately 15%, and increases the highest temperature rate coefficients by 11%, 

giving a less pronounced temperature dependence, which is in better agreement with this 

work.   

Lloyd et al. [162] used a similar technique, with OH + iso-butene as the reference 

reaction, and photolysis of HONO in a smog chamber to measure kOH+DEE = (9.30 ± 1.83) 

× 10–12 cm3 molecule–1 s–1, just in agreement with our 298 K measurement. Updating the 

kOH+iso-butene value used (4.99 × 10–11 cm3 molecule–1 s–1) to the most recent IUPAC 

recommendation [167] (4.92 × 10–11 cm3 molecule–1 s–1 at 305 K) yields a corrected value 

of kOH+DEE = (9.17 ± 1.83) × 10–12 cm3 molecule–1 s–1, marginally lower than our value 

when considering uncertainty ranges.  
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Table 3-5: Comparison of the rate coefficient obtained for kOH+DEE with previous 
measurements. 

Reference Technique k(298 K)a
 T / K k(T)b 

Mellouki et al. (1995) LFP-LIF 1.36 ± 0.11c 230 – 371 9.07×10–13 (T/298)2.0 

e6.63/RT 

Semadeni et al. 
(1993) 

Relative rate 1.3 ± 0.11 
(1.21 ± 0.11) 

250 – 373 5.2×10–12 × e2.18/RT 

Nelson et al. (1990)  Pulse 
radiolysis – 
UV spec. 

1.13 ± 0.01 298 – 

Nelson et al. (1990) Relative rate 1.28 ± 0.06 

(1.19 ± 0.36) 

298 – 

Bennett and Kerr 
(1990) 

Relative rate 1.05 ± 0.10g 

(1.00 ± 0.10) 

242 – 328 3.5×10–12 × e2.77/RT 

Bennett and Kerr 
(1989) 

Relative rate 1.20 ± 0.11 294 – 

Wallington et al. 
(1988) 

UV 
photolysis – 

OH RF 

1.36 ± 0.09d 240 – 440 5.6×10–12 × e2.25/RT 

Lloyd et al. (1976) Relative rate 0.93 ± 0.18e 

(0.92 ± 0.18) 

305 – 

Tully and Droege 
(1987) 

LFP-LIF 1.34 ± 0.06f 295 – 442 9.3×10–12 × e0.95/RT 

Tranter and Walker 
(2001) 

Relative rate na 753 2.04 ± 0.38 

This work LFP-LIF 1.25 ± 0.13 298 – 727 (1.28±0.21) × 10–11       
× e(-0.11 ± 0.59)/RT 

aUnits are 10–11 cm3 molecule–1 s–1. bUnits of A are cm3 molecule–1 s–1 and Ea are kJ 
mol–1. cMeasured at 293 K. dMeasured at 296 K. eMeasured at 305 K. fMeasured at 295 
K. gMeasured at 304 K. hMeasured at 294 K. RF = resonance fluorescence discharge 
lamp. Rate coefficients in italics are based on updated reference reaction rates from 
references [167, 168].  

 

Nelson et al. [137] measured a relative rate value using a photolytic method, where 

methyl nitrite was photolysed at wavelengths longer than 300 nm, or H2O2 (λ = 254 nm), 

to act as the OH precursor. OH + cyclohexane was used as the reference reaction. The 

reported rate ((1.28 ± 0.06) × 10–11 cm3 molecule–1 s–1) lies within the uncertainty ranges 

of the average room temperature measurement made here, as does their rate coefficient 

from an absolute determination. For the absolute determination, pulse radiolysis–UV 

spectroscopy of H2O/Ar mixtures was used to generate OH radicals, and it was found that 

kOH+DEE = (1.13 ± 0.01) × 10–11 cm3 molecule–1 s–1. The small errors here account purely 
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for statistical 2σ uncertainties, and the authors suggest an estimated total uncertainty for 

the absolute measurements of 20%, based on reactant concentration accuracies. Relative 

rate experiments would be subject to 25% of the value propagated into the error, to 

account for the OH + c-C6H12 reference reaction. With an updated value for the reference 

reaction to the latest value recommended by Atkinson [168] (kOH+cyclohexane value used = 

7.49 × 10–12 cm3 molecule–1 s–1, corrected kOH+cyclohexane = 6.97 × 10–12 cm3 molecule–1 

s–1), kOH+DEE at 298 K = (1.19 ± 0.36) × 10–11 cm3 molecule–1 s–1, in good agreement with 

the measurement in this chapter.  

Flash photolysis – laser-induced fluorescence studies by Mellouki et al. [113] and 

Tully and Droege [165] are both in agreement with this work at room temperature. 

Mellouki et al. used 248 nm photolysis of H2O2, whereas Tully and Droege photolysed 

N2O at 193 nm to produce O(1D) atoms, which produced OH radicals in the presence of 

H2O. Finally, the study by Wallington et al. [136] also used flash photolysis, coupled to 

resonance fluorescence with photolysis of H2O at 165 nm, which produced a result in 

agreement with the other room temperature studies here. Previous work by Wallington et 

al. [136], Mellouki et al. [113], Tully and Droege [165], Bennett and Kerr [163] and 

Semadeni et al. [164] all undertook temperature-dependent measurements of the reaction 

between diethyl ether and the hydroxyl radical, where the ranges explored were, in 

Kelvin, 240 – 440, 230 – 370, 294 – 442, 242 – 328 and 247 – 373 respectively. At lower 

temperatures, virtually all of these more extensive studies overlap with our work, within 

error. Figure 3-7 shows the 95% confidence limits of all temperature dependent study fits, 

where the only significant deviation from this work is the behaviour of kOH+DEE with 

temperature observed by Bennett and Kerr [163] above 300 K. Above ~360 K, the 

Arrhenius parameterisation by Semadeni et al. [164] also starts to fall outside the 95% 

confidence limits of the rate coefficients measured in this work. This trend is similarly 

seen for the data fits by Wallington et al. [136] and Tully and Droege [165] above 

approximately 450 K, although it could be argued the data show signs of plateauing, 

similar to the behaviour observed in this work. It is possible that the upper limit of 

previous studies (~440 K) can account for this, where the studies simply did not extend 

to high enough temperatures to observe the plateau of the rate coefficient. Additionally, 

there was no hint of the strong negative temperature dependence seen by previous studies 

in the data obtained here. Once again, these may be as a result of the 298 K lower limit 

on temperature explored here, where the temperature dependence only becomes 

particularly strong below this threshold. Furthermore, it is feasible that certain 
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experiments may have been subject to photolysis of DEE, such as those by Tully and 

Droege, and Wallington et al., where wavelengths as short as 193 nm and 165 nm were 

used to initiate chemistry, potentially resulting in interfering reactions. This effect would 

become more pronounced at higher temperatures where the cross section of diethyl ether 

(at 165 nm and 193 nm, 295 K, 8.5 × 10–18 and 3.9 × 10–19 cm2 molecule–1 

respectively [169])  would typically be expected to increase, resulting in greater loss of 

reactant. Tully and Droege did observe non-exponential decays at high temperatures, 

where the initial decay portions were weakly dependent on laser energy. These decays 

were not reported however, but the dependence on laser energy suggests some photolysis 

may have occurred. This explanation would not account for the discrepancy with the 

negative temperature dependence for OH + DEE seen in studies using smog chambers or 

longer flash photolysis wavelengths. 

 

 

Figure 3-7: kOH+DEE comparison with literature determinations showing the 95% 
confidence bounds of the studies. Black data represent this work’s fit and 95% 
limits.  Literature studies are Mellouki et al. (1995) ( ), Semadeni et al. (1993) ( ), 
Bennett and Kerr (1990) ( ), Nelson et al. (1990) absolute ( ), Nelson et al. relative 
(1990) ( ), Bennett and Kerr (1989) ( ), Wallington et al. (1989) ( ), Tully and 
Droege (1987) ( ), and Lloyd et al. (1976) ( ).   

 

300 350 400 450

3.3 2.9 2.5 2.2

8.0x10-12

1.0x10-11

1.2x10-11

1.4x10-11

1.6x10-11

1000/T / K-1

k O
H

+
D

E
E
 / 

cm
3  m

ol
ec

ul
e-1

 s
-1

T / K



89 
 

At higher temperatures, the modified Arrhenius parameterisation by Mellouki et 

al. [113] predicts a positive temperature dependence above approximately 400 K (Figure 

3-6), however this is an extreme extrapolation beyond their experimental conditions, and 

as such shouldn’t be held to any degree of certainty.  

There is only one study that suggests there may be a positive temperature 

dependence above 400 K, by Tranter and Walker [132], who used a relative rate 

technique, where the reaction between H2 and OH was the reference used. Although 

measurements in this work are not in agreement with theirs, considering the extremes of 

the uncertainty bounds, there is only a ~20% difference in the rate measurement. The 

most comparable temperature to Tranter and Walker’s measurement in this work is 727 K, 

which is 26 K lower than theirs. A strong positive temperature dependence would need 

to appear between 727 and 753 K for the gap between measurements here and the highest 

temperature literature measurement to be consistent, which is unreasonable given the lack 

of temperature dependence seen throughout the study of kOH+DEE presented here. We note 

the presence of one data point at 682 K, where a rate coefficient measured was in 

agreement with Tranter and Walker’s value, however we consider this to be an anomalous 

result, potentially as a result of a mis-reported bulb composition.  

Because of the considerable uncertainty between previous literature 

measurements, negative temperature dependences, and the fast rate coefficient previously 

observed at 753 K, a combined modified Arrhenius parameterisation was performed, 

fitting to all available data in the literature and this work. The data can be described by 

kOH+DEE(230 – 753 K) = (5.8 ± 5.4) × 10–13 × ቀ
T

298
ቁ

2.3±0.8
 exp ቂ

7.5±2.3

RT
ቃ cm3 molecule–1 s–1, 

where the uncertainties quoted are the bounds of the 95% confidence limits from the fit. 

The maximum percentage uncertainty of the 95% confidence limits is 23%, at the highest 

temperature.  
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Figure 3-8: OH + DEE modified Arrhenius combined fit, described by = kOH+DEE(230 
– 753 K) = (5.8 ± 5.4) × 10–13 × (T/298)2.3±0.8 e(7.5±2.3)/RT cm3 molecule–1 s–1. The grey 
shaded area represents the 95% confidence limits of the fit.  

 

3.6 OH + Di-n-butyl Ether 

Di-n-butyl ether is a straight chain symmetrical ether, with four saturated carbons 

on both sides of the oxygen atom. It is of relatively recent interest as a potential 

replacement fuel, where it can be produced from pulping of biomass [14]. Desirable 

properties such as reduced soot [39, 66, 67], good spray characteristics [65], high cetane 

rating (100 – 115) [14, 39], and short ignition delay times [68], suggest it may be a suitable 

alternative fuel for low temperature combustion.  

Laminar flow studies have been carried out using DBE [170, 171], and radical chain 

branching was shown to dominate the low temperature ignition of DBE, suggesting that 

a similar reaction mechanism to that of DME and DEE, and typical low temperature 

hydrocarbon combustion, should be expected. In contrast to the two smaller linear ethers, 

DBE has four potential unique sites for the OH abstraction reaction. As a result of its 

proximity to the oxygen atom, the α site has been shown to be the dominant location for 

H abstraction to take place [170, 172]. All possible sites are shown in Scheme 3-4 and 

reactions R 3-10 to R 3-13.  
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Scheme 3-4: Potential hydrogen abstraction sites on di-n-butyl ether for its reaction 
with the OH radical, and the R radicals formed.  

 

 C4H9OCH2CH2CH2CH3 + OH → C4H9OCHCH2CH2CH3 + H2O R 3-10 

 C4H9OCH2CH2CH2CH3 + OH → C4H9OCH2CHCH2CH3 + H2O R 3-11 

 C4H9OCH2CH2CH2CH3 + OH → C4H9OCH2CH2CHCH3 + H2O R 3-12 

 C4H9OCH2CH2CH2CH3 + OH → C4H9OCH2CH2CH2CH2 + H2O R 3-13 

 

 In this work, a non-site-specific approach has been used to measure the 

bimolecular rate coefficient, and as such, values for kOH+DBE reported refer to the total rate 

coefficient for OH + DBE in reaction R 3-14.  

 

 C4H9OC4H9 + OH → C4H9OC4H8 + H2O R 3-14 

 

In this chapter, reaction R 3-14 has been studied, and generally found to be in 

qualitative agreement with the negative temperature-dependent behaviour observed in 

other studies over the temperature range 298 – 372 K, but with some disagreement over 

the absolute values of the rate coefficient. Beyond 500 K, no temperature dependence 

was seen. Such a lack of temperature dependence has not been seen before. Previous 

studies on the kinetics of reaction R 3-14 have employed the use of various techniques, 

the majority of which were relative rate studies within smog chambers, but there have 

been other studies using flash photolysis initiation methods coupled to fluorescence 

detection [113, 129, 130, 135, 137, 164, 173, 174]. 

  

3.6.1 OH + C4H9OC4H9 Temperature Dependence 

The bimolecular rate coefficient for the reaction between di-n-butyl ether and the 

hydroxyl radical has been measured under pseudo-first order conditions, where the 

concentration of OH was controlled by reaction R 3-14. An example single exponential 
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decay is included in Appendix A. Analysis of the OH decay rate at varying concentrations 

of di-n-butyl ether to give k′OH+DBE, and least squares linear fitting of these pseudo-first 

order rate coefficients as a function of [DBE], for a given temperature and pressure, 

provides the bimolecular rate coefficient kOH+DBE. Two example bimolecular plots are 

included in Appendix A. 

At higher temperatures, where the rate coefficient became slower, the low vapour 

pressure (and therefore low DBE/N2 concentration bulbs) became a prohibiting factor in 

measuring accurate rate coefficients, where pseudo-first order conditions would become 

harder to maintain. To circumvent this issue, a different method was used, where a glass 

bubbler was used to deliver higher quantities of fuel, by flow of nitrogen carrying DBE 

vapour into the mixing manifold. At room temperature, several measurements using both 

a bulb and a bubbler allowed the bubbler measurements to be multiplied by a correction 

factor to account for any discrepancies between the estimated [DBE] delivered by the 

bubbler and the actual amount delivered. Full discussion of this method is presented in 

section 3.3. An estimated 10% uncertainty was applied to all bubbler measurements after 

correction.  

At 483 K and higher temperatures, some decays exhibited biexponential 

behaviour, indicating recycling of OH radicals. Oxygen present in the system due to 

decomposition of H2O2 is likely the source of this OH, combining with n-butyl butoxy 

radicals (reaction R 3-15).  

 

 CH3(CH2)3OCH(CH2)2CH3  + O2 → products R 3-15 

 

Observation of biexponential decays is highly dependent on temperature and 

concentrations of oxygen and fuel. As such, biexponential decays were subtle, and not 

seen when the bubbler delivery method was employed (a very slow recycling rate is well 

hidden when the initial decay is too fast), as a result of the more concentrated amounts of 

DBE delivered. Despite their subtlety, biexponential decays were fit marginally better by 

the biexponential equation (Scheme 3-1) compared to the single exponential equation. An 

example biexponential decay with fitting is shown in Appendix A.  
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Table 3-6: Bimolecular rate coefficients obtained for OH + DBE. Uncertainties 
are 2σ for bulb measurements, and 10% of the kOH+DBE value for corrected 
bubbler measurements 

T / K 1011 kOH+DBE
a n 10–13 [DBE] rangeb P / Torr 

298 3.86 ± 0.33 6 4.5 – 9.3 29 

298 3.99 ± 0.09 7 1.5 – 10.3 29 

298 3.57 ± 0.47 c 4 8.2 – 41.8 30 

298 4.34 ± 0.42 c 9 7.9 – 26.2 30 

298 3.87 ± 0.37 c 7 4.8 – 14.8 30 

363 3.12 ± 0.45 c 5 4.3 – 13.3 29 

483 2.91 ± 0.63 7 2.3 – 9.5 28 

550 2.75 ± 0.38 c 7 2.5 – 8.1 29 

572 2.70 ± 0.27 8 0.5 – 4.0 28 

613 2.77 ± 0.36 c 6 2.5 – 8.2 29 

663 2.68 ± 0.26 c 5 3.4 – 12.8 30 

704 3.31 ± 0.35 c 10 2.7 – 11.3 30 

732 2.54 ± 0.29 c 11 2.6 – 9.9 30 
aUnits cm3 molecule–1 s–1. bUnits molecule cm–3. cValue obtained and corrected using 
the bubbler delivery method. n refers to the number of experiments comprising a 
bimolecular determination. 

 

The temperature dependence of reaction R 3-14 has been investigated, with rate 

coefficients measured between 28 and 30 Torr of pure nitrogen, and between 298 and 

732 K. Hydrogen peroxide was the photolytic precursor, and the measured rate 

coefficients did not vary significantly with laser power. A plot of the rate coefficient as a 

function of temperature is shown in Figure 3-9, and all values of kOH+DBE are displayed in 

Table 3-6. Previous measurements by other studies are included in Figure 3-10. The mean 

room temperature rate coefficient taken from two bulb measurements was (3.92 ± 0.13) 

× 10–11 cm3 molecule–1 s–1, where the uncertainty in the measurement refers to a purely 

statistical range at the 2σ level. This average value is shown in Figure 3-10, but the two 

individual bulb measurements, and three measurements made with the bubbler, at room 

temperature, are all displayed separately in Figure 3-9. 
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Figure 3-9: Bimolecular rate coefficient kOH+DBE measured in this work as a function 
of temperature. Data shown are rate coefficients measured using the bulb delivery 
method ( ), bubbler delivery method corrected ( ), and the uncorrected values 
obtained with a bubbler ( ). Uncertainties on bulb and original bubbler data are 
statistical at the 2σ level. Corrected bubbler error bars represent 10% of the value 
to account for uncertainty in the correction factor. The shaded area represents the 
95% confidence limits of the fit to the data (uncorrected bubbler values not 
included). The data can be parameterised as (3.05 ± 7.13) × 10–12 (T/298)(1.31±1.62) 
e(6.35±5.83)/RT cm3 molecule–1 s–1. All measurements at 298 K are shown here, rather 
than the mean reported in the text.  

 

The modified Arrhenius fit to the data can be described by kOH+DBE(298 – 732 K) 

= (3.05 ± 7.13) × 10–12 ቀ
T

298
ቁ

(1.31±1.62)
 × e

(6.35±5.83)
RT   cm3 molecule–1 s–1. The uncertainties 

reported are statistical at the 2σ level, and the maximum uncertainty of the 95% 

confidence limits across the temperature range valid for this parameterisation is 12%, at 

approximately 450 K. A weighted fit to the bulb and corrected bubbler measurements was 

used to describe the temperature dependence of the rate coefficient.  
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Figure 3-10: Comparison of kOH+DBE measured in this work ( ) with previous 
studies. Literature studies are Wallington et al. (1988) ( ), Bennett and Kerr (1989) 
( ), Wallington et al. (1989) ( ), Nelson et al. absolute (1990) ( ), Nelson et al. 
relative (1990) ( ), Mellouki et al. (1995) ( ), Semadeni et al. (1993) (DMB ref.) ( ), 
Semadeni et al. (1993) (DEE ref.) ( ), Kramp and Paulson (1998) ( ), and Harry et 
al. (1999) ( ). Orange fit is from Semadeni Arrhenius parameters, reported as an 
average of the DMB- and DEE-relative rate measurements.  

 

At room temperature (Figure 3-10 inset), the majority of the previous 

measurements in the literature are approximately 25 – 30% slower than the measured rate 

coefficient in this work (Table 3-7). Bennett and Kerr [129] used a relative rate technique 

to measure kOH+DBE with iso-butene as the reference compound within a smog chamber, 

employing photolysis of nitrous acid as the OH precursor (λ = 350 – 450 nm). Their 

reported rate and suggested 2σ+10% error, (1.71 ± 0.26) × 10–11 cm3 molecule–1 s–1, is 

significantly lower than the values reported in this work and the remainder of the 

literature. The latest recommended rate coefficient by IUPAC [167] for kOH+iso-butene 

makes no significant change to the rate coefficient. In general, the smog-chamber 

approach is less precise, and this is acknowledged by the authors.  

 Room temperature measurements reported by Wallington et al. [136], Nelson et 

al. [137], Wallington et al. [174], and Kramp and Paulson [173] are slower than the mean 
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measured rate coefficient at room temperature in this work ((3.92 ± 0.13) × 10–11 cm3 

molecule–1 s–1), by approximately (17 – 27)% when uncertainties are considered. 

 The first study conducted by Wallington et al. [136] used flash photolysis – 

resonance fluorescence to study reaction R 3-14, where the source of OH was photolysis 

of H2O at wavelengths greater than 165 nm. Their reported rate coefficient for the reaction 

between OH and di-n-butyl ether was (2.78 ± 0.36) × 10–11 cm3 molecule–1 s–1. As such, 

their experiments may have been subject to reagent photolysis at such short wavelengths, 

potentially introducing unwanted radical-radical reactions, or simply resulting in less 

DBE delivered than expected. No absorption cross-sections for DBE have been reported, 

but a comparable value to those of DME and DEE at 165 nm already discussed could be 

expected. Despite this, the later room temperature study by Wallington et al. [174] 

measured the rate coefficient again, to an almost identical value (2.74 ± 0.32) × 10–11 cm3 

molecule–1 s–1 via a relative rate study using OH + diethyl ether as the reference reaction. 

There, photolysis of methyl nitrite in synthetic air would have used longer wavelengths, 

and therefore would not have subjected the ether fuel to any photolysis effects. There is 

no new recommended rate coefficient for the reference, kOH+DEE, to update their reported 

rate coefficient.  

 Measurements made by Nelson et al. [137] provide both a relative rate value, and 

an absolute determination ((2.88 ± 0.12) × 10–11 cm3 molecule–1 s–1 and (2.72 ± 0.03) × 

10–11 cm3 molecule–1 s–1) which are only just outside agreement of each other’s 

uncertainty ranges. The relative rate determination employed a photolytic method, using 

methyl nitrite (λ ≥ 300 nm) or H2O2 (λ = 254 nm) as hydroxyl radical precursors. The 

reference reaction rate coefficient used, kOH+cyclohexane = 7.49 × 10–12 cm3 molecule–1 s–1, 

when updated to the latest recommendation by Atkinson [168] (kOH+cyclohexane = 6.97 × 

10–12 cm3 molecule–1 s–1) provides a corrected measurement of, kOH+DBE = (2.68 ± 0.79) 

× 10–11 cm3 molecule–1 s–1, in worse agreement with the rate coefficient observed in this 

work. Pulse radiolysis coupled to UV spectroscopy was used to make the absolute 

measurement, where mixtures of H2O and Ar were irradiated (2 MeV)  to induce reaction 

between Ar* and H2O, producing OH. The authors note that the absolute measurements 

only report the statistical uncertainties at the 2σ level, but a realistic estimate of the total 

uncertainty from reactant concentrations would be 20%. Similarly, for the relative rate 

experiments, a further 25% of the value would be a reasonable estimate to add to the 

statistical uncertainties, as a result of the uncertainty in the cyclohexane + hydroxyl 

reaction rate coefficient. With these considerations, the absolute and update relative 
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values reported by Nelson et al. would put their measurements 14% and 8% slower than 

kOH+DBE in this work respectively. 

Further relative rate measurements were made using UV photolysis of methyl 

nitrite and NO in a smog chamber, by Kramp and Paulson [173] who determined a mean 

bimolecular rate coefficient = (2.89 ± 0.23) × 10–11 cm3 molecule–1 s–1 at 296 K, using n-

nonane, methylcyclohexane and butadiene as reference compounds for the three 

contributing measurements. Newer recommended rate coefficients are available for n-

nonane (at 296 K), and methylcyclohexane (at 298 K) from Atkinson [168], but no update 

exists for butadiene. Taking into account the updates possible, a new mean rate coefficient 

kOH+DBE = (2.73 ± 0.23) × 10–11 cm3 molecule–1 s–1 is in slightly worse agreement with 

this work.  

Of the previous work carried out, the room temperature measurement by Harry et 

al. [130] is the most recent, and closest to the value in this work, reporting kOH+DBE = (3.30 

± 0.25) × 10–11 cm3 molecule–1 s–1 (~6% slower when considering the quoted uncertainty 

ranges). Methyl vinyl ketone was employed as the reference compound in their relative 

rate experiment, using a smog chamber and photolysis of methyl nitrite and NO at >300 

nm. The value kOH+MV-ketone = 2.06 × 10–11 cm3 molecule–1 s–1 used can be updated to the 

latest recommendation by IUPAC [167] where kOH+MV-ketone = 2.04 × 10–11 cm3 molecule–1 

s–1. This makes the updated rate coefficient of kOH+DBE = (3.27 ± 0.25) × 10–11 cm3 

molecule–1 s–1 in marginally worse agreement with rate coefficient measured in this work.  
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Table 3-7: Comparison of the rate coefficient obtained for kOH+DBE with previous 
measurements. Uncertainties for this work are 2σ.  

Reference Technique k(298 K)a
 T / K k(T)b 

Wallington et 
al. (1988) 

FP–resonance 
fluorescence 

2.78 ± 0.36 298 – 

Wallington et 
al. (1989) 

Relative rate 2.74 ± 0.32c 295 – 

Bennett and 
Kerr (1989) 

Relative rate 1.71 ± 0.26d 294 – 

Nelson et al. 
(1990) 

Relative rate 2.88 ± 0.12 

(2.68 ± 0.79) 

298 – 

Nelson et al. 
(1990) 

Pulse 
radiolysis 

2.72 ± 0.03 298 – 

Mellouki et al. 
(1995) 

PLP–LIF 2.69 ± 0.08e 230–372 6.3×10–18 × T2.0  × 
e9.7/RT 

Semadeni et al. 
(1993) 

Relative rate f 3.09 ± 0.09 

(2.91 ± 0.09) 

251–353 5.5×10–12 × e4.17/RT 

Kramp and 
Paulson (1998) 

Relative rate 2.89 ± 0.23e 

(2.73 ± 0.23) 

296 – 

Harry et al. 
(1999) 

Relative rate 3.30 ± 0.25e 

(3.27 ± 0.25) 

296 – 

This work PLP–LIF 3.92 ± 0.13 298–732 (3.1±7.1)×10–12 
(T/298)1.3±1.6 e(6.4±5.8)/RT 

aUnits are 10–11 cm3 molecule–1 s–1. bUnits of A are cm3 molecule–1 s–1 and Ea are kJ 
mol–1. cMeasured at 295 K. dMeasured at 294 K. eMeasured at 296 K. fArrhenius 
parameterisation and k(298 K) are both the averages of experiments using OH + diethyl 
ether and OH + 2,3-dimethyl butane as reference reactions. Rate coefficients in italics 
are based on updated reference reaction rates from references [167, 168]. 

 

Two temperature-dependent investigations of the OH + di-n-butyl ether rate 

coefficient exist (Figure 3-10), and as with the single room temperature measurement 

studies, their reported rate coefficients are lower than this work’s. Semadeni et al. [164] 

made measurements using a relative rate method using 2,3-dimethyl butane and diethyl 

ether as reference compounds, and the photolysis of ethyl or methyl nitrite in the presence 

of NO provided the hydroxyl radicals required for the reactions. A Xe arc lamp was used 

as a solar simulator for photolysis. Mellouki et al. [113] employed pulse flash photolysis 

– laser-induced fluorescence to study the reaction using 248 nm photolysis of H2O2, 

similar to the work carried out here. The reported room temperature values for kOH+DBE 

are (2.69 ± 0.08), (3.12 ± 0.16), and (3.05 ± 0.09) × 10–11 cm3 molecule–1 s–1 respectively 
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for Mellouki et al., and Semadeni et al. using DMB and DEE. Semadeni et al. used a 

modified Arrhenius expression to yield an average parameterisation of all their relative 

rate experiments where kOH+DBE(248 – 353 K) = (6.3 ± 0.74) × 10–18 × T2 × e
9.7±0.3

RT  cm3 

molecule–1 s–1. The fit to the data by Mellouki et al. yielded the expression kOH+DBE(248 

– 353 K) = 5.5 × 10–12 × e
4.2±1.2

RT  cm3 molecule–1 s–1. In comparison with the modified 

Arrhenius expression in this work, kOH+DBE(298 – 732 K) = × (3.05 ± 7.13) × 10–12 

ቀ
T

298
ቁ

(1.31±1.62)
 × e

(6.35±5.83)
RT , the fit by Semadeni et al. predicts a shallow negative 

temperature dependence when extrapolated past their experimental temperature range, 

whereas the data in this study shows a lack of temperature dependence above 

approximately 500 K. Extrapolating the fit by Mellouki et al. past their experimental 

conditions almost identically predicts the temperature dependence we observe. An update 

to the temperature-independent reference rate coefficient used by Semadeni et al. 

(kOH+DMB = 6.20 × 10–12 cm3 molecule–1 s–1) to the latest recommended by Atkinson [168] 

(kOH+DMB = 5.78 × 10–12 cm3 molecule–1 s–1 at 298 K) which is dependent on temperature, 

reduces the rate coefficients by approximately 15% at the lower temperatures, and results 

in an increase of ~6% at the highest temperatures reported. No update to the 

recommended OH + DEE rate coefficient exists.  

Given the disagreement with the majority of the literature by approximately 25% 

across all temperatures, it is possible there is a systematic error associated with the 

preparation of the di-n-butyl ether bulbs that the bubbler experiments were calibrated 

with. The low vapour pressure of DBE results in a more difficult bulb composition 

process, and inherently increases the percentage error of any discrepancy between the 

pressure of DBE in the bulb, and that of the pressure read from the manometer. Similarly, 

any slight leaks on the vacuum line will contribute to the uncertainty, however these were 

negligible. Loss of DBE to the walls will be greater over time, as a result of the low 

vapour pressure. It is possible that these issues affect the ability to deliver the reactant in 

this work, but also in the previous literature studies. Nelson et al. [137] also noted the 

discrepancy between their work and Bennett and Kerr and Wallington was not clear, as 

they were in agreement on shorter chain ethers. This suggests there can be systematic 

issues with higher member ethers.  

The negative temperature dependence seen for the reaction between OH and DBE 

in this work, and previous literature, may indicate similar behaviour to that observed for 

the OH + TMOF reaction in section 3.4.1. Occurring at approximately 350 K for the OH 
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+ DBE reaction indicates that the complex formation may become more facile with a 

larger molecule, where the larger number of degrees of freedom makes the configuration 

required to form a complex between the ether molecule and OH more probable. Similarly, 

the temperature where this behaviour has been observed to begin in previous studies for 

OH + DEE is between that for DME and for DBE.  

Despite the overall disagreement, qualitatively this work has corroborated the 

temperature dependence seen in other studies from room temperature to approximately 

370 K, and therefore confidence should be afforded in the higher temperature (≤732 K) 

behaviour of kOH+DBE, where a lack of temperature dependence is clear.  

 

3.7 OH + Methyl Tertiary Butyl Ether 

MTBE bears structural similarities to DME, and can be synthesised using 

methanol (and therefore bio-methanol) [72]. MTBE has been used as an additive to 

improve the octane rating of fuels [73], but few studies exist on the low temperature 

oxidation mechanism of MTBE relevant to its use as a biofuel additive. MTBE possesses 

two distinct sites that the hydroxyl radical can abstract from; α (reaction R 3-16) and β 

(reaction R 3-17) primary sites (Scheme 3-5). The products of these reactions are H2O 

and a radical, R. This first step has been measured in this work, with a non-site-specific 

approach, thus reported values for kOH+MTBE refer to the sum of the rate coefficients for 

reactions R 3-16 and R 3-17. 

 

 

Scheme 3-5: Possible hydrogen abstraction sites for MTBE, and the resulting R 
radicals formed.  

 (CH3)3COCH3 + OH → (CH3)3COCH2 + H2O R 3-16 

 (CH3)3COCH3 + OH → H2C(CH3)2COCH3 + H2O R 3-17 
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Previous research has not covered kOH+MTBE comprehensively, with few extensive 

temperature dependent studies conducted. The majority of studies focused on lower 

temperatures, often using relative rate or flash photolysis methods [131, 132, 135, 163, 

174-179]. A full summary of past work on kOH+MTBE is presented in Table 3-9. Only two 

studies have been undertaken across large temperature ranges comparable to our 

measurements [175, 176]. All other studies were carried out at 440 K and below. There 

has been some discussion in the literature of the two possible MTBE sites for hydrogen 

abstraction, but no direct experimental measurements of the site-specific rate coefficients. 

Arif et al. [175] predicted ~80% and ~20% abstraction from the  and  sites respectively, 

based on previous product analysis from smog chamber experiments [180, 181]. The 

dominance of abstraction from the methyl site rather than the t-butyl site was expected 

due to the weaker C-H bonds on the  carbon. Theoretical studies by Iuga et al. [182], 

Zavala-Oseguera et al. [183] and Atadinc et al. [184] have all indicated similar branching 

ratios for H abstraction (~75%, 74% and 63% abstraction from the α site respectively). 

 

3.7.1 OH + (CH3)3COCH3 Temperature Dependence 

The bimolecular rate coefficient for the reaction between methyl tertiary-butyl 

ether and the hydroxyl radical has been measured under pseudo-first order conditions, 

where the concentration of OH was controlled by reaction R 3-18. Appendix A includes 

a typical single exponential decay. Analysis of the OH decay rate at varying 

concentrations of MTBE to give k′OH+MTBE, and least squares linear fitting of these 

pseudo-first order rate coefficients as a function of [MTBE], for a given temperature and 

pressure, provides the bimolecular rate coefficient kOH+MTBE. Three example bimolecular 

plots are displayed Appendix A.  

 

 

Rate coefficients for the abstraction of hydrogen by OH from methyl tert-butyl 

ether (kOH+MTBE) were measured as a function of temperature, using hydrogen peroxide 

as a photolytic precursor, in the ranges 298 – 727 K and 29 – 67 Torr N2. The details of 

all rate coefficients measured are displayed in Table 3-8. The measured rate coefficients 

did not vary significantly with laser power or laser repetition rate (5.9% maximum 

variation between 10, 5 and 2 Hz, and no variation within uncertainties). Additionally, 

 C5H12O + OH → C5H11O + H2O R 3-18 
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varying the photolysis wavelength between 248 and 266 nm produced no significant 

variation in the bimolecular rate coefficient. Although there are no reported UV cross 

sections for MTBE, this lack of variation with photolysis wavelength is consistent with 

the insignificant cross-sections for smaller ethers at 248 nm and 266 nm [169].  

 

Table 3-8: Bimolecular rate coefficients obtained for OH + MTBE. Uncertainties 
are 2σ with an additional 10% of the measurement value added to account for 
systematic errors. 

T / K 1012 kOH+MTBE
a n 10–14 [MTBE] b P / Torr 

298 2.81 ± 0.37 6 1.6 – 7.7 29 

298 2.80 ± 0.53 5 2.7 – 10.8 39 

354 3.00 ± 0.70 5 2.8 – 9.6 37 

395 4.18 ± 0.76 6 2.5 – 8.5 37 

441 6.15 ± 1.19 5 2.2 – 7.7 37 

495 7.27 ± 1.68 6 2.1 – 10.2 63 

510 8.43 ± 1.45 6 2.3 – 9.9 45 

568 10.62 ± 1.18 c 6 2.4 – 10.2 52 

604 10.42 ± 1.23 c 11 1.7 – 8.3 62 

605 10.76 ± 1.22 c 6 2.0 – 8.3 45 

624 11.18 ± 1.32 c 8 1.6 – 6.9 38 

646 12.55 ± 1.45 c 6 1.9 – 7.9 45 

653 13.46 ± 1.57 c 5 2.7 – 11.6 67 

680 14.35 ± 1.71 c 5 1.8 – 7.5 45 

707 13.13 ± 2.13 c 7 1.7 – 9.8 46 

727 12.44 ± 1.57 c 5 1.6 – 6.9 46 
aUnits of cm3 molecule–1 s–1. bUnits of molecule cm–3. cFrom global analysis. n refers 
to the number of experiments comprising a bimolecular determination. 

 

At temperatures greater or equal to 568 K, the OH signal could no longer be 

represented as a single exponential, rather, the OH signal decay was biexponential. The 

presence of some oxygen when delivering hydrogen peroxide by a mass flow controller, 

allowed OH regeneration to occur via reaction R 3-19, where the O2 combines with the 

MTBE-derived R radicals.   
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  C5H11O  + O2 → products R 3-19 

 

The biexponential decay in Appendix A (Figure A 10) demonstrates the poor fit 

of a single exponential decay equation to the data obtained at 568 K and above, and the 

good fit by the biexponential equation. Biexponential traces were analysed globally, 

where several traces generated at a given temperature and pressure were analysed 

simultaneously to obtain a kOH+MTBE shared across the traces (and other parameters 

important for Chapter 6). As a result of the well-defined nature global fitting possesses, 

uncertainty ranges on these data are particularly small. A bimolecular plot derived from 

biexponential data is shown for illustrative purposes only in Appendix A. 

The Arrhenius plot for kOH+MTBE is shown in Figure 3-11 and kOH+MTBE(T) can be 

described by kOH+MTBE(298680 K) = (9.8 ± 21.6) × 10–13 ቀ
T

298
ቁ

2.7±1.5
× exp ቂ

2.52±5.63

RT
ቃ cm3 

molecule–1 s–1. Across the temperature range relevant to this work (298 – 680 K), the 

uncertainty of the Arrhenius parameterisation is 13% – the maximum size of the 95% 

confidence limits. A weighted fit was used to describe the temperature dependence of the 

data obtained, and the highest two temperature measurements were omitted, as a result of 

the apparent decrease in rate coefficient, which was attributed to decomposition of the 

MTBE at high temperatures.  

The mean room temperature value for the bimolecular rate coefficient for reaction 

R 3-18 measured in this work is shown in Table 3-9, along with a summary of literature 

measurements and their room temperature measurements. The uncertainty in the room 

temperature rate coefficient from this work is 2σ with an extra 10% of the measured rate 

coefficient propagated, to allow for the systematic errors associated with the experimental 

method, and avoid weighting the data towards the small errors produced by global 

analysis of biexponential decays. Our value for kOH+MTBE ((2.81 ± 0.32) × 10–12 cm3 

molecule–1 s–1) is in good agreement with previous measurements. Considering only the 

statistical uncertainty (± 0.12 at the 2 level), we measured a slightly lower rate than the 

majority of the literature values, but are in agreement (within errors) with measurements 

made by Arif et al. [175], Picquet et al. [178], Teton et al. [179], Smith et al. [131], Cox 

and Goldstone [177], and Bennett and Kerr [163]. 
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Figure 3-11: This work kOH+MTBE dependence on temperature. Red = 266 nm, black 
= 248 nm, green data are also 248 nm, but omitted from the Arrhenius 
parameterisation. kOH+MTBE(298680 K) = (9.8 ± 21.6) × 10–13 (T/298)2.7±1.5 e(2.52±5.63)/RT 
cm3 molecule–1 s–1. 

 

The studies by Picquet et al. [178], Smith et al. [131], Cox and Goldstone [177], 

and Bennett and Kerr [163] all used relative rate techniques, employing reference 

reactions of the hydroxyl radical with n-pentane, n-butane, n-hexane, and iso-butene 

respectively. Smog chambers were used by Picquet et al., Smith et al., and Bennett and 

Kerr, where methyl nitrite photolysis was the precursor for OH in the studies by Picquet 

et al. and Smith et al. Photolysis of hydrogen peroxide at 254 nm and 310 nm was also 

used by Picquet et al., and Bennett and Kerr photolysed nitrous acid at wavelengths 

ranging from 350 to 450 nm. Teton et al. [179] reported a bimolecular rate coefficient of 

(3.13 ± 0.36) × 10–12 cm3 molecule–1 s–1, measured using flash photolysis – laser-induced 

fluorescence, where H2O2 was the photolytic precursor, and 248 nm the wavelength used. 

Given the similarity to the technique used in this work, agreement is to be expected, 

although their absolute value is 11% higher. An updated rate coefficient for the study by 

Picquet et al. can be calculated based on the latest recommendation for kOH+n-pentane by 

Atkinson [168] (kOH+n-pentane used = 3.96 × 10–12 cm3 molecule–1 s–1, updated kOH+n-pentane 

= 3.80 × 10–12 cm3 molecule–1 s–1), where the new room temperature rate coefficient 
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kOH+MTBE = (2.86 ± 0.06) × 10–12 cm3 molecule–1 s–1, is in better agreement with this work. 

The relative rate study by Smith et al. also sees improved agreement after updating their 

measurements. The value for kOH+n-butane used was 2.54 × 10–12 cm3 molecule–1 s–1. The 

latest recommendation by Atkinson [168] yields an updated rate coefficient of kOH+n-butane 

= 2.36 × 10–12 cm3 molecule–1 s–1, giving an updated measurement of kOH+MTBE = (2.78 ± 

0.12) × 10–12 cm3 molecule–1 s–1. Bennett and Kerr’s work sees slightly worse agreement 

with the measurements in this chapter, where the temperature-independent reference rate 

coefficient kOH+DMB = 6.20 × 10–12 cm3 molecule–1 s–1 is updated to the temperature 

dependent recommendation by Atkinson [168], seeing a decrease in OH + MTBE rate 

coefficients of approximately 15% at the lowest temperatures, and 5% at the highest.  

A relative rate study by Wallington et al. [174] does not agree with our measured 

kOH+MTBE when considering only the statistical uncertainties, and is just outside agreement 

of the full uncertainty range estimated here. Methyl nitrite photolysis was used to generate 

the OH radicals, and MTBE was measured relative to the reaction between OH and n-

butane. Using the updated value for kOH+n-butane(295 K) recommended by Atkinson [168] 

since, a value of kOH+MTBE = (2.97 ± 0.08) × 10–12 cm3 molecule–1 s–1 puts the relative rate 

measurement by Wallington et al. in good agreement with this work. The earlier study by 

Wallington and co-workers [135] used UV photolysis of H2O at 165 nm coupled to 

microwave OH resonance to study the reaction, and their reported rate coefficient 

kOH+MTBE = (3.09 ± 0.15) × 10–12 cm3 molecule–1 s–1 is less than 1% away from our value 

when statistical uncertainties are accounted for.  

Figure 3-12 shows a comparison between kOH+MTBE as a function of temperature 

in this work, with previous studies. Below approximately 400 K, the values of kOH+MTBE 

from this work overlap with the measurements of Arif et al. [175] and Bonard et al. [176], 

however above this temperature higher rate coefficients were measured. Biexponential 

decays were not observed prior to this work, despite Bonard et al. using H2O2 as their OH 

precursor, meaning their experiment potentially contained oxygen. The small number of 

data points (~8 per trace), may have been insufficient to reveal biexponential behaviour. 

Any unaccounted biexponential behaviour would have resulted in extraction of their 

pseudo-first order rate coefficients lower than the actual values. An example of the lower 

value of k′ extracted from a single exponential fit to biexponential data can be seen in the 

reported k′ and ka′ values in Appendix A. 
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Table 3-9: Comparison of the rate coefficient obtained for kOH+MTBE with previous 
measurements. 

Reference Technique k(298 K)a
 T / K k(T)b 

Bonard et al. 
(2002) 

PLP–LIF 3.05 ± 0.03c 297 – 616 5.7×10–13 (T/298)2.4 

e4.15/RT 

Picquet et al. 
(1998) 

Relative rate 2.98 ± 0.06 

(2.86 ± 0.06) 

298 – 

Arif et al. 
(1997)  

LP–LIF 2.98 ± 0.11d 293 – 750 1.3×10–12 (T/298)2.0 
e2.21/RT 

Teton et al. 
(1996) 

PLP–LIF 3.13 ± 0.36 230 – 371 5.0×10–12 × e–1.1/RT 

Smith et al. 
(1991) 

Relative rate 2.99 ± 0.12 

(2.78 ± 0.12) 

298 – 

Bennett and 
Kerr (1990) 

Relative rate 2.84 ± 0.28 

(2.64 ± 0.28) 

242 – 328 4.0×10–12 × e–0.85/RT 

Wallington et 
al. (1989) 

Relative rate 3.24 ± 0.08e 

(2.97 ± 0.08) 

295 – 

Wallington et 
al. (1988) 

UV photolysis–
microwave OH 

resonance 

3.09 ± 0.15 240 – 440 5.1×10–12 × e–1.29/RT 

Cox and 
Goldstone 
(1982) 

Relative rate 2.51 ± 0.50e  295 – 

Tranter and 
Walker 

(2001) 

Relative Rate na 753 (1.48 ± 0.22) × 10–11 

This work PLP–LIF 2.81 ± 0.32 298 – 727 (9.8±21.6)×10–13 
(T/298)2.7±1.5 e2.5±5.6/RT 

aUnits are 10–12 cm3 molecule–1 s–1. bUnits of A are cm3 molecule–1 s–1 and Ea are kJ 
mol–1. cMeasured at 297 K. dMeasured at 293 K. eMeasured at 295 K. Rate coefficients 
in italics are based on updated reference reaction rates from reference [168]. 

 

Measurements made by Arif et al. [175] were made using photodissociation of 

N2O at 193 nm, and subsequent reaction of O(1D) with H2O to generate OH radicals. 

Lower rate coefficients measured by Arif et al. in comparison with this work may be as a 

result of photolysis of their reactant at the lower wavelength used, or relaxation of excited 

OH radicals over the duration of a kinetic decay. On the basis of the absorption cross-

section of diethyl ether, at room temperature and 193 nm (3.9 × 10–19 cm2 

molecule–1 [169]), the estimate of 10–21 cm2 molecule–1 for the cross-section of MTBE 

used by Arif et al. may underestimate the degree of reagent photolysis, particularly at 
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high temperatures, as cross-sections generally increase with temperature. The degree of 

MTBE photolysis (<0.5% for a cross-section of 3.9 × 10–19 cm2 molecule–1) will not cause 

significant MTBE depletion in a single photolysis pulse. However, if the reaction mixture 

is subject to several photolysis pulses and/or the cross-section is larger at higher 

temperatures, then MTBE depletion could be significant. Additionally, there would be a 

significant extra radical pool from MTBE photolysis and there may therefore have been 

radical-radical reactions present that could have affected the OH kinetics. However, Arif 

et al. reported no variation in rate coefficients as the photolysis laser intensity was 

changed, suggesting that such effects were not present, although the temperatures at 

which such checks were made was not stated. 

 

 

Figure 3-12: kOH+MTBE measured in this work ( , hollow=masked in fit), with a 
modified Arrhenius fit (excluding the highest two temperatures), where the 95% 
confidence bounds are shown in grey shading. The black dashed line shows the 
Arrhenius parameterisation extrapolated past the experimental conditions of this 
work. Uncertainties are 2σ with an additional 10% of the value to account for 
systematic errors. The literature studies, and their Arrhenius parameterisations 
where relevant, are Cox and Goldstone (1982) ( ), Wallington et al. (1988) ( ), 
Wallington et al. (1989) ( ), Bennett and Kerr (1990) ( ), Smith et al. (1991) ( ), 
Teton and Mellouki (1996) ( ) (only fit and room temperature data provided in 
paper/SI, no temperature dependent data), Arif et al. (1997) ( ), Picquet et al. (1998)  
( ), Tranter and Walker (2001) ( ), and Bonard (2002) ( ). 
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Explorations of the temperature-dependent behaviour of the OH + MTBE reaction 

over ranges less comparable to this work were presented in the studies already described 

by Teton et al. [179], Wallington et al. [135], and Bennett and Kerr [163]. Figure 3-12 

shows the Arrhenius parameterisations of these studies, extrapolated to higher 

temperature comparable with this study. All three temperature dependences exhibit 

remarkably similar behaviours, where the rate coefficient is under predicted as a result of 

the lack of a modified exponential temperature term (Table 3-9). This is not surprising 

given the limited temperature ranges explored (230 – 371, 240 – 440, and 242 – 328 K 

respectively).  

A value of kOH+MTBE = (1.48 ± 0.22) × 10–11 cm3 molecule–1 s–1 at 753 K was 

determined by Tranter and Walker [132] using relative rate methods, with the OH + H2 

reaction as a reference. This value is in good agreement with the current work.  

There is slight evidence of a negative temperature dependence around room 

temperature for kOH+MTBE measured here, but not so pronounced as for the DBE and 

TMOF systems. Bennett and Kerr [163] studied reaction R 3-18 using a relative rate 

technique from 246 – 314 K finding a slight positive temperature dependence (Ea = 0.85 

± 0.59 kJ mol–1) although for diethyl ether and several other larger ethers, a negative 

temperature dependence was observed.  

Presented in Figure 3-13 is the modified Arrhenius expression for OH + MTBE 

hydrogen abstraction employed by Yasunaga et al. [127] to validate data on MTBE 

oxidation from their shock tube measurements. To our knowledge, these are the only data 

on reaction R 3-18 above ~750 K. Yasunaga et al. used group additivity rate coefficient 

estimates based on H abstraction from other molecules, such as DME, ethyl methyl ether, 

iso-propyl methyl ether, and methyl cyclohexane. Although this expression was only used 

to validate experiments over the range 900 – 1600 K, when it is extrapolated back over a 

relatively short temperature range to the highest temperatures of this work and Arif et 

al. [175], the extrapolated values are approximately a factor 2 lower (Figure 3-13). 

Yasunaga et al. report that unimolecular decomposition reactions of MTBE dominate the 

chemistry and hence an underestimation of kOH+MTBE will have a limited effect on their 

model:measurement comparison.  
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Figure 3-13: Comparison of measured kOH+MTBE with Yasunaga et al. [127], red line 
as they report their Arrhenius parameterisation. The modelled modified Arrhenius 
expression used by Yasunaga et al. is shown for their validated temperature range 
(red) and extrapolated to lower temperatures (red dashed). The green line 
represents the Arrhenius expression if the gas constant used in the fit is J mol–1 K–1 
rather than cal mol–1 K–1. 

 

A second Arrhenius expression is present in Figure 3-13, where the green line 

represents the fit reported by Yasunaga et al. [127] if the gas constant used in the fit is 

expressed in J mol–1 K–1, rather than the units of cal mol–1 K–1 suggested in their model.  

This correction causes their expression to line up remarkably well with our data and other 

studies, so it is possible this was intended. It is not certain whether this is the case, or it is 

merely coincidental.  

 

3.8 OH + Dimethyl Ether 

There has been considerable interest in the use of dimethyl ether as a biofuel 

additive and standalone fuel, owing to its good cetane rating [34, 38] and lack of soot 

emissions [38]. The reaction between the hydroxyl radical and DME (reaction R 3-20) is 

the initial step in its low temperature combustion mechanism (when initiated by OH, 

rather than another small molecule) which gives rise to the autoignition of the fuel in a 
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low temperature engine. Further reactions involving the addition of O2 will ultimately 

lead to chain-branching and combustion (see Chapter 6 for further details and 

experiments).  

 

 CH3OCH3 + OH → CH3OCH2 + H2O R 3-20 

 

As the simplest ether, possessing only one unique abstraction site (Scheme 3-6), 

two methyl groups, and one oxygen, OH + DME was a good reaction to study initially, 

for later comparison with higher ethers. Reaction R 3-20 has been studied over an 

extensive temperature range previously in the literature, where techniques, the majority 

of which are flash photolysis or relative rate studies [113, 132, 134, 136, 137, 165, 174-

176, 185-187], have characterised the temperature dependence up to 800 K, and a shock 

tube study has been used to observe the reaction at higher temperatures (923 – 

1523 K) [126]. All previous studies are summarised in Table 3-11. In this chapter, 

reaction R 3-20 has been measured, and is generally in reasonable agreement with the 

previous studies. Thus, work in this section was able to verify that the experimental setup 

possessed no major issues, allowing the study to proceed with reactions involving higher, 

lesser studied, ethers, and more complex reactions.  

 

 

Scheme 3-6: Identical hydrogen abstraction sites possible for dimethyl ether 
reaction with OH, and the R radical formed.  

 

3.8.1 OH + CH3OCH3 Temperature Dependence 

The bimolecular rate coefficient for the reaction between dimethyl ether and the 

hydroxyl radical has been measured under pseudo-first order conditions, where the 

concentration of OH was controlled by reaction R 3-20. A typical pseudo-first order decay 

was presented in the kinetic trace in section 3.3 in Figure 3-1. Analysis of the OH decay 

rate at varying concentrations of dimethyl ether to give k′OH+DME, and least squares linear 

fitting of these pseudo-first order rate coefficients as a function of [DME], for a given 
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temperature and pressure, provides the bimolecular rate coefficient kOH+DME. Three 

examples of typical bimolecular plots are displayed in Appendix A (Figure A 11).  

At 523 K to 634 K, kinetic decays exhibited biexponential behaviour, indicating 

recycling of OH radicals. Oxygen present in the system due to decomposition of H2O2 is 

likely the source of this OH, combining with methyl methoxy radicals in reaction R 3-21.  

 

 CH3OCH2  + O2 → products R 3-21 

 

Observation of biexponential decays is highly dependent on temperature and 

concentrations of oxygen and fuel. As such, there were occasionally traces within the 

temperature range quoted above that exhibited normal exponential behaviour, rather than 

biexponential. Similarly, the highest two temperatures explored in this study – 671 K and 

673 K – were single exponential decays. Regardless, this should have no effect on the 

ability to extract the pseudo-first order rate coefficient from a kinetic trace. An example 

biexponential decay with fitting is shown in Appendix A.  

The temperature dependence of reaction R 3-20 has been investigated, with rate 

coefficients measured between 25 and 57 Torr of pure N2, between 298 and 673 K, and 

hydrogen peroxide was the photolytic precursor. A plot of the rate coefficient as a 

function of temperature is shown in Figure 3-14, and all values of kOH+DME are displayed 

in Table 3-10. Previous measurements by other studies are included in Figure 3-15.  

The mean room temperature rate coefficient taken from three measurements was 

(2.66 ± 0.09) × 10–12 cm3 molecule–1 s–1, where the error quoted in the measurement refers 

to a purely statistical uncertainty at the 2σ level. The fit to the data as a function of 

temperature in Figure 3-14 used the three individual room temperature kOH+DME values, 

rather than the calculated mean. 
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Table 3-10: Bimolecular rate coefficients obtained for OH + DME. Uncertainties 
are purely statistical at the 2σ level.  

T / K 1012 kOH+DME
a n 10–14 [DME] rangeb P / Torr 

298 2.63 ± 0.13 6 3.6 – 14.2 50 

298 2.71 ± 0.09 5 3.4 – 11.8 57 

298 2.65 ± 0.23 5 2.7 – 12.0 57 

419 3.18 ± 0.15 6 2.1 – 10.1 57 

475 3.46 ± 0.19 6 1.8 – 8.7 57 

523 5.19 ± 1.49 4 1.7 – 6.8 57 

543 5.36 ± 0.72 5 1.7 – 6.7 57 

545 5.86 ± 0.85 7 2.3 – 8.9 38 

546 6.73 ± 1.14 4 1.9 – 7.2 57 

574 6.28 ± 1.24 4 1.6 – 6.4 57 

590 6.41 ± 0.30 4 2.9 – 10.8 57 

590 7.06 ± 0.93 4 1.7 – 6.5 57 

594 6.41 ± 0.11 6 1.6 – 6.4 57 

605 7.22 ± 0.50 4 1.1 – 8.1 25 

629 8.64 ± 1.3 4 1.6 – 6.0 57 

634 8.11 ± 0.72 4 1.4 – 5.6 57 

656 8.41 ± 2.19 4 1.4 – 5.5 57 

671 6.47 ± 0.54 8 1.4 – 5.4 57 

673 6.89 ± 0.70 6 1.5 – 5.3 57 
aUnits of cm3 molecule–1 s–1. bUnits of molecule cm–3. n refers to the number of 
experiments comprising a bimolecular determination. 

 

Plotting the obtained bimolecular rate coefficients for the reaction between DME 

and the hydroxyl radical as a function of temperature shows a strong positive temperature 

dependence above approximately 450 K. The modified Arrhenius fit to the data in Figure 

3-14 can be described by kOH+DME(298 – 656 K) = (1.22 ± 1.83) × 10–15 ቀ
T

298
ቁ

(6.88±1.08)
× 

e
(19.07±3.82)

RT  cm3 molecule–1 s–1. The uncertainties reported are statistical at the 2σ level, and 

the maximum uncertainty of the 95% confidence limits across the temperature range valid 

for this parameterisation is 7%. The two hollow data points in Figure 3-14 were omitted 

from the fit to the data, where unusually slow rate coefficients were measured. It is 

possible this was a result of decomposition of the fuel in the reaction cell at high 

temperatures, resulting in lower DME concentrations than calculated, and therefore a 
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slower observed removal rate of OH radicals. This was seen by Arif et al. [175] studying 

the same reaction, at approximately the same temperature, and their suggestion was also 

decomposition of their fuel.  

 

 

Figure 3-14: Measured bimolecular rate coefficient ( ) for the OH + DME reaction 
as a function of temperature. The black line represents the best fit of a modified 
Arrhenius parameterisation where kOH+DME(298 – 656 K) = (1.22 ± 1.83) × 10–15 
(T/298)6.88±1.08 e(19.07±3.82)/RT cm3 molecule–1 s–1. Hollow data at high temperature are 
omitted from the fit, the grey boundaries are the 95% confidence limits, and error 
bars represent statistical uncertainties at the 2σ level.  

 

Figure 3-15 compares the temperature dependence of the OH + DME rate 

coefficient measured in this work with previous studies, and all previous works are 

summarised in Table 3-11. Relative rate studies by Wallington et al. [174] and Nelson et 

al. [137] found room temperature rate coefficients (highlighted in Figure 3-16) kOH+DME 

=  (2.32 ± 0.23) and (3.19 ± 0.70) × 10–12 cm3 molecule–1 s–1 respectively, both in, or very 

close to, agreement with the rate coefficient measured in this work. Wallington et al. used 

methyl nitrite photolysis, and made measurements relative to the reaction between OH 

and n-butane. Updating the reference rate coefficient used (kOH+n-butane = 2.53 × 10–12 cm3 

molecule–1 s–1) to the latest recommended by Atkinson [168] (kOH+n-butane = 2.32 × 10–12 
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cm3 molecule–1 s–1), gives a new value of kOH+DME = (2.13 ± 0.23) × 10–12 cm3 molecule–1 

s–1 placing their measurement further from agreement with this work’s. Nelson et al. used 

the same photolytic precursor, as well as H2O2 (λ = 254 nm), and employed OH + 

cyclohexane as the reference reaction. The uncertainty quoted and included in Figure 3-15 

includes the extra 25% suggested by the authors. An update to the reference rate 

coefficient used (kOH+cyclohexane = 7.49 × 10–12 cm3 molecule–1 s–1) to the latest 

recommended by Atkinson [168] (kOH+cyclohexane = 6.97 × 10–12 cm3 molecule–1 s–1), gives 

a new value of kOH+DME = (2.97 ± 1.44) × 10–12 cm3 molecule–1 s–1, still in agreement with 

this work.  Nelson et al. also made an absolute measurement of kOH+DME ((2.35 ± 0.24) × 

10–12 cm3 molecule–1 s–1) using pulse radiolysis of Ar/H2O mixtures coupled to UV 

spectroscopy. 

 

 

Figure 3-15: Comparison of kOH+DME measured in this work ( ) with previous 
literature measurements. Symbols represent Perry et al. (1977) ( ), Tully and 
Droege (1987) ( ), Wallington et al. (1988) ( ), Wallington et al. (1989) ( ), Nelson 
et al. (1990) absolute ( ), Nelson et al. (1990) relative ( ), Mellouki and Teton (1995) 
( ), Arif et al. (1997) ( ), DeMore and Bayes (1999) ( ), Tranter and Walker (2001) 
( ), Bonard et al. (2002) ( ), Bansch and Olzmann (2013) ( ), Carr et al. (2013) ( ). 
The inset shows the full range at high temperature including Cook et al. 2009 ( ). 
Uncertainties in this work represent statistical errors at the 2σ level, and literature 
uncertainties are as reported/suggested by the authors. 
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Figure 3-16: Comparison of kOH+DME rate coefficients measured in the literature 
(legend) with this work ( ), ~298 K. Uncertainties in this work represent statistical 
errors at the 2σ level, and literature uncertainties are as suggested by the authors.  

 

Narrow temperature ranges up to approximately 440 K were explored in studies 

by Perry et al. [134], Tully and Droege [165], Wallington et al. [136], Mellouki et 

al. [113] and DeMore and Bayes [187]. The flash photolysis – resonance fluorescence 

technique used by Wallington et al. involved photolysis of H2O to generated OH radicals, 

where the wavelength used was >165 nm. The room temperature measurement reported 

in their study was kOH+DME = (2.49 ± 0.22) × 10–12 cm3 molecule–1 s–1, in good agreement 

with this work’s, and the positive temperature dependent behaviour appears to align well 

with that reported here. These studies by Perry et al., Tully and Droege, Mellouki  et al. 

and DeMore and Bayes all exhibited higher rate coefficients across their studied 

temperature ranges in comparison to our study, barring the room temperature kOH+DME 

reported by Mellouki et al. which shows agreement within uncertainties. Perry et al. used 

flash photolysis – resonance fluorescence with photolysis of H2O (λ > 105 nm) to study 

the reaction across the temperature range 299 – 427 K. Wavelengths this short could 

certainly subject dimethyl ether to some degree of photolysis, particularly at high 

temperatures, (DME σ = 5 × 10–17 cm2 molecule–1 at 105 nm [188], 9.8 × 10–18 cm2 

molecule–1 at 165 nm [169], both at room temperature. Typically absorption cross 
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sections increase with temperature), which may have been the source of unwanted radical-

radical reactions interfering with the removal of OH. However, Perry et al. reported no 

variation in rate coefficients when the photolysis laser energy was varied by a factor of 

two. Similarly, the photolysis of N2O to O(1D) in the presence of water was employed as 

the photolytic OH generation method by Tully and Droege, where the laser wavelength 

needed was 193 nm. In the flash photolysis – laser-induced fluorescence experiment used, 

this likely also contributed to reactant photolysis and potential extraneous reactions, 

resulting in a faster rate coefficient. At higher temperatures, the authors saw non-

exponential decays, where the initial decay portions were weakly dependent on laser 

energy. These decays were not reported, but the dependence on laser energy may suggest 

some photolysis took place.  

Despite the potential for issues with the studies described above, the work by 

Mellouki et al. [113] also observed a faster rate coefficient than reported here above room 

temperature, however the technique used was identical to this work; pulsed laser 

photolysis – laser-induced fluorescence, with 248 nm photolysis of the hydrogen peroxide 

photolytic precursor. As such, there is no obvious reason for a discrepancy between the 

two studies. Finally, DeMore and Bayes [187] studied reaction R 3-20 from 263 K to 

364 K, using a relative rate technique where n-butane, n-pentane and cyclohexane were 

all employed as reference compounds, and ethane was the ultimate reference used for 

those. Photolysis of H2O at 254 nm provided the source of OH radicals at temperatures 

comparable to this chapter, so no significant photolysis of DME is expected to have 

occurred. Adjustment of the reference rate coefficient used (at 298 K kOH+ethane = 2.54 × 

10–13 cm3 molecule–1 s–1) to the latest recommended by Atkinson [168] (at 298 K kOH+ethane 

= 2.48 × 10–13 cm3 molecule–1 s–1), yields a new value of kOH+DME = (2.79 ± 0.14) × 10–12 

cm3 molecule–1 s–1 placing their measurement just in agreement with this work’s. The 

updated values make only a minor adjustment across the entire temperature range.  

Between 400 and 500 K, the limited number of rate coefficients measured in this 

work are noticeably slower than the data available in the literature. It is possible that a 

significant recycling of OH could yield single exponential decays (rather than 

biexponential), where the returned pseudo-first order rate coefficient is significantly 

slower, and the difference between the true rate and the measured rate would give the OH 

yield (see section 5.4 in Chapter 5 for a detailed description of this method). However, it 

is not immediately clear why such an extreme recycling rate would occur at such 

temperatures and low oxygen concentrations, so this is unlikely.  
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Table 3-11: Comparison of the rate coefficient obtained for kOH+DME with previous 
measurements. 

Reference Technique k(298 K)a
 T / K k(T)b 

Mellouki et al. 
(1995) 

LFP-LIF 2.82 ± 0.07e 230 – 372 6.38×10–12 × e–1.95/RT 

Arif et al. 
(1997) 

LP-LIF 2.95 ± 0.21e 295 – 650 1.05×10–17 × T2 × e2.73/RT 

Nelson et al. 
(1990)  

Pulse radiolysis – 
UV spec. 

2.35 ± 0.24 298 – 

Nelson et al. 
(1990) 

Relative rate 3.19 ± 0.70 

(2.97 ± 1.44) 

298 – 

Wallington et al. 
(1989) 

Relative rate 2.32 ± 0.23e 

(2.13 ± 0.23) 

295 – 

Wallington et al. 
(1988) 

UV photolysis-
microwave OH 

resonance 

2.49 ± 0.22c 296 – 440 6.7×10–12 × e–2.49/RT 

Perry et al. 
(1977) 

Flash photolysis-
resonance 

fluorescence 

2.95 ± 0.12d 299 – 424 1.29×10–11 × e–0.77/RT 

Tully and 
Droege (1987) 

LFP-LIF 2.95 ± 0.06e 295 – 442 1.04×10–11 × e–3.09/RT 

Tranter and 
Walker (2001) 

Relative rate na 753 (9.56 ± 1.32) × 10–12 

DeMore and 
Bayes (1999) 

Relative rate 2.86 ± 0.14 

(2.79 ± 0.13) 

263 – 364 1.51 × 10–11 × e–4.12/RT 

Bonard et al. 
(2002) 

PLP-LIF 2.67 ± 0.07 295 – 618 4.59 × 10–19 T2.46 × 
e3.96/RT 

Cook et al. 
(2009) 

Shock tube na 923 – 
1523 

na 

Carr et al. 
(2013) 

LFP-LIF 3.00 ± 0.06f 195 – 800 1.23 × 10–12 (T/298)2.05 × 
e–2.14/RT 

Bansch and 
Olzmann (2013) 

LFP-LIF 2.68 ± 0.22 292 – 651 4.50 × 10–16 T1.48 × 
e0.55/RT 

This work LFP-LIF 2.66 ± 0.09 298 –656 (1.22±2.83) × 10–15 
(T/298)(6.88±0.50) × 

e(19.07±3.82)/ RT 

aUnits are 10–12 cm3 molecule–1 s–1. bUnits of A are cm3 molecule–1 s–1 and Ea are kJ 
mol–1. cMeasured at 296 K. dMeasured at 299 K. eMeasured at 295 K. fMeasured at 
293 K. Measurements in italics are based on updated reference reaction rates from 
reference [168]. 
 

Most pertinent for comparison to our measurements are the studies with fitted 

Arrhenius parameterisations included in Figure 3-15, where the full temperature ranges 
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explored were similar to that of this work. Fits to the narrower previous temperature 

explorations discussed above were not included, for clarity’s sake in the figure. The 

following studies all used laser flash photolysis – laser-induced fluorescence to explore a 

wide range of temperatures. In these studies, Bansch and Olzmann [185] employed 

photolysis of HNO2 at 248 nm to generate OH radicals at 292 – 651 K. Arif et al. [175] 

photolysed N2O at 193 nm in the presence of H2O from 295 – 650 K. Bonard et al. [176] 

used photolysis of H2O2 across the temperature range 295 – 618 K, where the photolysis 

wavelength was 266 nm. Carr et al. [186] previously studied OH + DME at the University 

of Leeds from 195 to 850 K, and made use of three photolytic precursors: t-BuOOH (λ = 

248 nm), acetone/O2 (λ = 248 nm), and N2O/H2O (λ = 193 nm). All studies described here 

are in qualitative agreement with the positive temperature dependence of kOH+DME 

reported in this work, but generally exhibited a faster rate coefficient below ~500 K. 

Bonard et al. and Bansch and Olzmann, however, were both in agreement with our 

measurement at room temperature, whereas Carr et al. and Arif et al. both measured 

approximately 10% faster rate coefficients. Between this temperature and approximately 

500 K, the two rate coefficients reported here underestimated all four extensive literature 

studies, but above this temperature, agreement is found again when considering the error 

bars. Higher than 650 K, this work’s modified Arrhenius parameterisation appears to 

begin exhibiting a much more pronounced positive temperature dependence than the 

previous studies, however, it is not unreasonable to envisage how our fit could follow the 

same trend observed by Bonard et al. and Carr et al., and an extrapolation would be 

subject to large uncertainties. There is likely to be some error in the measurement of 

temperature, particularly with the experiments conducted by Carr et al., where a very 

similar setup was used to that in this work. Since their study, we have demonstrated that 

correction factors are required to compensate thermocouple readings for flow within the 

reaction cell (see Chapter 2). However, the flow rates used are not known, and their 

experiments were carried out in He, so a temperature correction may not be significant.   

Tranter and Walker [132] used a relative rate method, with H2 + OH as the 

reference reaction to study kOH+DME at 753 K, measuring (9.56 ± 1.32) × 10–12 cm3 

molecule–1 s–1. There is no updated recommended rate coefficient for the H2 + OH 

reaction at the relevant temperature. Considering the error bars, an extrapolation of this 

work (Figure 3-15) would be approximately 15% faster at this temperature. One shock 

tube study has been carried out by Cook et al. [126], where t-BuOOH was used as the 

source of OH radicals, and the reaction was monitored at 307 nm from 947 – 1423 K. The 
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data from this study are shown in the inset to Figure 3-15. The error bars represent 40% 

of the values, which was estimated by the authors to be a reasonable consideration of the 

overall uncertainty in the measurements. As a result, all studies could conceivably pass 

through the data reported by Cook et al. at these temperatures, and no real confidence 

could be placed in an extrapolation of the measurements made in this work to such high 

temperatures. 

 

3.9 Comparison of Ethers 

Comparisons between the five ethers studied in this chapter can be drawn, where 

Figure 3-17 displays the behaviour of all OH + ether rate coefficients as a function of 

temperature. A straightforward comparison for the different molecules, are the rate 

coefficients at room temperature. As expected, with increasing chain length, the three 

straight-chained symmetrical ethers exhibit an increasing OH + ether rate coefficient as 

more sites are available for hydrogen abstraction. Thus, the slowest rate coefficient is that 

of OH + DME; OH + DEE is approximately five times faster, and DBE is three times as 

fast again (kOH+ether = (2.66 ± 0.09), (12.6 ± 1.1) and (39.2 ± 1.3) × 10–12 cm3 molecule–1 

s–1 respectively). Evidently, the increase in rate coefficient magnitude is not proportional 

to the changing number of potential abstraction sites, where they double from DME to 

DEE, and again to DBE. An extension of the activation effect the ether –O– group exhibits 

over at least three –CH2– groups likely gives rise to this behaviour [189].  

 MTBE and TMOF show different behaviour, with more marginal increases on the 

OH + DME rate coefficient being apparent. Despite possessing the same number of 

carbon abstraction sites as diethyl ether (4), MTBE’s t-butyl groups’ hydrogens are not 

activated through close proximity to the oxygen. Only the single methyl site adjacent to 

the oxygen will benefit from the donated electron density. As a result, the rate coefficient 

for OH + MTBE at 298 K is very similar to that of the dimethyl ether system (2.81 ± 

0.32) × 10–12 cm3 molecule–1 s–1. Trimethyl orthoformate has the same number of 

abstraction sites available, but exhibits a faster reaction rate coefficient ((4.65 ± 0.50) × 

10–12 cm3 molecule–1 s–1) as a result of the increased number of oxygen atoms. Three 

methyl groups are adjacent to O atoms, and the lone hydrogen attached to the central 

carbon is activated through proximity to all three O atoms.  

 A comparison of the temperature dependence of the straight chain ethers shows 

the progression of a positive dependence, to flat, to negative, from DME to DEE to DBE 
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respectively. Mellouki et al. [189]  noted that the temperature dependence of mono ethers 

becomes negative as the reactivity increases. The positive temperature dependence of the 

more complex MTBE and TMOF molecules is possibly as a result of the sites not 

favoured at room temperature (the (CH3)3 and (CH3O)3 groups respectively) becoming 

more reactive as the temperature is increased.   

 

 

Figure 3-17: Temperature dependent behaviour of the reactions between the 
hydroxyl radical and DME ( ), DEE ( ), DBE ( ), MTBE ( ), and TMOF ( ).  

 

Figure 3-18 presents a comparison of the data presented in this chapter with 

temperature dependent predictions of kOH+ether using the structure-activity relationship 

(SAR) parameters reported by Kwok and Atkinson [190]  to predict the reactivity of gas-

phase organic compounds. For DME and MTBE the SAR calculated rate coefficients 

reproduce the qualitative behaviour of the temperature dependences well, and for DEE 

there is a slight negative and positive temperature dependence which were not seen in this 

work’s measurements. The prediction for DBE under-predicts the rate coefficient 

measured here close to room temperature, and then over-predicts kOH+DBE above 550 K as 

a result of the positive temperature dependence arising from the calculations, which 

should be valid from 250 – 1000 K. Porter et al. [153] attributed the deviations of OH + 
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ether reactions from a simple SAR to the long-range activating effects that ether groups 

exhibit. The largest discrepancy between the SAR parameterisation and the experimental 

measurements is for the reaction between OH and TMOF, where the inset to Figure 3-18 

shows a large over-estimation of kOH+TMOF at room temperature, and the opposite 

temperature dependence to that observed here. The presence of three oxygen atoms causes 

this poor agreement, where Kwok and Atkinson noted poly-ethers have particularly bad 

agreement, and poor agreement for di-ethers has also been observed previously by Porter 

et al. [153] through the study of dimethoxy methane. As a tri-ether, the issue is 

exacerbated with TMOF.   

 

 

Figure 3-18: Comparison of OH + ether temperature dependences measured in this 
work with SAR predictions by Kwok and Atkinson [190]. Inset shows the full range 
of kOH+ether to incorporate the SAR prediction for OH + TMOF.  
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3.10 Conclusions 

The first temperature-dependent study of the rate coefficient for OH + TMOF has 

been carried out between 298 and 744 K. A similar study between 298 and 727 K was 

conducted for OH + MTBE, and OH + DEE, where the study of DEE provided new 

measurements of the rate coefficient between approximately 450 to 750 K. Similarly, new 

rate coefficients were provided for the reaction between OH and DBE at temperatures 

from ~370 to 732 K. A study of the simplest ether, DME, and its reaction with OH, was 

also carried out from 298 – 673 K, and validated through comparison with previous 

studies, where reasonable overall agreement was found. For DEE, reasonable agreement 

with the literature was observed, although no temperature dependence was measured over 

the temperature range studied, whereas previous studies carried out over lower 

temperature ranges reported a negative temperature dependence. Measurements carried 

out at an early stage of this thesis, for the DME and DEE reactions, were subject to a less 

well-optimised experimental setup, where lower quality signal and a less leak-tight 

experiment all likely contributed to lower quality data. These experiments were not 

deemed important enough to revisit at the time, rather, chemistry that is more complex 

was explored (in later chapters). Future work revisiting these reactions, in particular the 

novel temperature range explored for DEE, may be of interest.  

In general, the rate coefficients measured for OH + MTBE displayed reasonable 

agreement with previous studies, although they were slightly faster at higher 

temperatures, for which a rationale was provided. Across the whole temperature range for 

which the reaction between OH and DBE was studied, the rate coefficients reported here 

were faster than those previously measured, and this was attributed to possible difficulties 

with bulb composition accuracies as a result of the ether’s low vapour pressure. Finally, 

the study of OH + TMOF displayed good agreement with the limited data available for 

comparison. 

Signs of increasing rate coefficient at lower temperatures were also observed for 

TMOF, and possibly the onset of this for MTBE, where these effects have already been 

measured for DME and DEE, indicating pre-reaction complex formation. OH + DBE 

displayed this behaviour very clearly below ~350 K.  
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Chapter 4 A Generic Method for Determining R + O2 Rate Parameters 

via Measurements of OH Regeneration using the CH3OCH2 + O2 

Reaction 

4.1 Abstract 

This chapter reports a new method for determining rate parameters from chemical 

activation using an OH precursor and the fuel, circumventing the need for a photolytic R 

radical precursor. Using analysis of the biexponential decays generated by OH 

regeneration that follows initiation via OH + RH, rate coefficients and OH yields are 

determined for the R + O2 reaction, where the CH3OCH2 + O2 reaction in the DME low 

temperature oxidation mechanism is the example studied here.  

The rate coefficient kCH3OCH2+O2 is reported at 291 – 483 K, in 4.1 – 32.6 Torr of 

nitrogen. At room temperature, kCH3OCH2+O2 = (0.94 ± 0.04) × 10–11 cm3 molecule–1 s–1, 

where the errors represent the statistical uncertainty at the 2σ level. The rate coefficients 

and OH yields obtained are validated through comparison with other methods, and 

previous measurements. Numerical integration simulations have also been used to 

demonstrate the sensitivity of the new method to experimental conditions, and the 

limitations of the method are discussed.  

 

4.2 Introduction 

Fuel derived radicals, R, produced by abstraction of a hydrogen by a radical species, 

X (X = OH, O, H, HO2 etc), are an integral species in low temperature combustion 

chemistry (reaction R 4-1). In a typical low temperature oxidation mechanism, the 

reaction of R with molecular oxygen leads to formation of the RO2 radical (reaction R 

4-2), which can undergo internal rearrangement to form the QOOH radical (reaction R 

4-3) where the radical centre is now located on a carbon atom. Decomposition of this 

QOOH radical (reaction R 4-4) in a chain-propagating reaction, is in competition with a 

second oxygen addition, to form a QOOH-peroxy species (reaction R 4-5). Under the 

appropriate conditions, this O2QOOH species can undergo internal rearrangement, 

followed by decomposition to ultimately produce two OH radicals (reaction R 4-6). This 

chain-branching step is believed to be key to the autoignition of fuels [90, 191, 192]. 
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Understanding the details of this mechanism is important in determining the 

autoignition properties of a fuel. The recent development of HCCI and related engines, 

whose operation depends on autoignition, provides added impetus for unravelling the 

chemical details of these mechanisms for both fossil fuels and biofuels [193, 194]. 

As the next step towards autoigniton after reaction R 4-1 studied in Chapter 3, 

reaction R 4-2 is similarly important, and has been studied for the R radicals generated in 

the DME system in this chapter. Without measurements of this rate coefficient, and the 

OH yields arising from the reaction, any measurements of chain-branching OH recycling 

would be very difficult to analyse.  

Studies on R + O2 reactions have been conducted previously, such as CH3 + O2 

by Pilling and Smith [195] using flash photolysis and absorption spectroscopy, and 

several R + O2 reactions via photoionisation mass spectrometry (PIMS) [196-198], and a 

correlation between kR+O2 and the ionisation potential of the R radical has been 

demonstrated [199], showing that rate coefficients for reaction R 4-2 decrease with 

ionisation potential.  

Here, a method for measuring both R + O2 rate coefficients and OH yields using an 

OH precursor is presented. This is universal for all fuels, provided they possess the ability 

to well-skip sufficiently at low pressures (previous studies show this technique should be 

applicable for systems such as OH + ketones [200], aldehydes [133, 200-205], 

dialdehydes [206, 207], and esters [208]).  

 

4.2.1 The Dimethyl Ether System 

The methoxy methyl radical (CH3OCH2), is the R radical formed in the low 

temperature oxidation system for DME (CH3OCH3) (reaction R 4-7), a potential biofuel, 

and a comprehensive understanding of its reactivity is therefore crucial for the elucidation 

of DME’s combustion behaviour. Its reaction with O2 (reaction R 4-8) ultimately leads to 

 X + RH → HX + R R 4-1 

 R + O2  RO2 R 4-2 

  RO2 ↔ QOOH R 4-3 

 QOOH → OH + carbonyl R 4-4 

 QOOH + O2 → O2QOOH R 4-5 

 O2QOOH →  HO2QʹOOH → OH + OQ'OOH → chain branching R 4-6 
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chain-branching, by reformation of OH through various routes. The integral role R + O2 

chemistry plays in DME low temperature oxidation is evidenced by the various fates of 

its product (Figure 4-1). Oxygen addition in reaction R 4-8 leads to an energetically 

excited RO2* peroxy radical, which can undergo pressure-dependent stabilisation to the 

relatively stable RO2 radical (reaction R 4-9). Alternatively, the RO2* radical has two 

other competing pathways. These are re-dissociation to reactants (competitive at high 

temperatures), or formation of QOOH* (via an internal hydrogen abstraction) followed 

rapidly by decomposition to OH and formaldehyde (reaction R 4-10), the process referred 

to as well-skipping. Stabilisation of QOOH* is not considered, as the QOOH energy well 

is significantly higher than that of RO2, thus the equilibrium of reaction R 4-10’s initial 

step is shifted towards the RO2* species.   

 

 

 

Figure 4-1: Potential energy surface showing the competition between RO2* 
stabilisation into RO2/QOOH wells at high pressures (orange thick/thin line), and 
formation of OH at low pressures (blue line) for dimethyl ether.  

 

Previously, in order to measure the rate coefficient for reaction R 4-8 

(kCH3OCH2+O2), a brominated molecule of DME was used [209]. Using this method to 

 CH3OCH3 + OH → CH3OCH2 + H2O R 4-7 

 CH3OCH2 + O2 ↔ CH3OCH2O2
* R 4-8 

  CH3OCH2O2
*  

M
→  CH3OCH2O2 R 4-9 

 CH3OCH2O2* ↔ CH2OCH2OOH* → 2CH2O + OH R 4-10  
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measure the R + O2 rate coefficient and OH yields from chemical activation is not 

possible for other potentially important fuels, such as diethyl ether, where the brominated 

version of the dominant DEE-derived R radical is not readily available. Eskola et al. [89, 

209] studied the kinetics of reaction R 4-8 using this method, and LFP–LIF, obtaining 

kCH3OCH2+O2 and OH yields in nitrogen and helium, by an absolute and relative method. 

Generation of the R radical by Cl + DME was also used, but subsequent reactions of 

(COCl)2 photolysis products can interfere with measurements. A similar problem exists 

when using t-butyl hydroperoxide to generate OH radicals, a precursor Eskola et al. used. 

More importantly, the absolute determinations of the OH yield using Cl + DME or OH + 

DME previously conducted in this laboratory offer no information on the R + O2 rate 

coefficient.    

Other studies on CH3OCH2 + O2 rate parameters have been carried out by 

Sehested et al. [210] (Fourier transform infrared smog chamber, FTIR), Maricq et al. 

[211] (transient infrared and UV), Masaki et al. [212] (laser photolysis – mass 

spectrometry), and Rosado-Reyes et al. [213] (transient infrared), yielding a combination 

of branching ratios, product yields, and rate coefficients. The data measured in this section 

are validated by comparison with the previous method employed in the work of Eskola et 

al. [89].  

 

4.3 Experimental 

The experimental setup used in this chapter is largely the same as the throughout 

the rest of this work, with the major difference being the experimental conditions required. 

The same conventional slow flow laser flash photolysis setup was combined with laser-

induced fluorescence to monitor OH. The reactants were DME (Argo International Ltd, 

99.8%); CH3OCH2Br (Sigma-Aldrich, technical grade 90%); DBE (Sigma-Aldrich, 

99.3%); MTBE (Sigma-Aldrich, 99%); and TMOF (Sigma-Aldrich, 99.8%), OH 

precursor (generally hydrogen peroxide, H2O2 (Sigma-Aldrich, 50% (w/w) in H2O)). Urea 

hydrogen peroxide (CO(NH2)2·H2O2) was also used for comparison (Sigma-Aldrich, 

97%), buffer gas (N2, BOC, oxygen-free), and O2 (BOC, 99.5%).  

On average, experiments were carried out at lower pressures than the majority of 

the work in this thesis, between 4 and 33 Torr of nitrogen. At even lower pressures, 

diffusion became so pronounced as to interfere with experiments, and at higher pressures 

chemical activation OH yields were too insignificant to be measured with any true 
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certainty. In order to achieve low pressures, in combination with more efficient vacuum 

pumping of the reaction cell, lower flows were often used. For the extensive investigation 

using DME, the flows were typically 100 – 1000 sccm, and temperatures reported above 

room temperature have an associated uncertainty of approximately ±10 K, due to the 

calibrations presented in Chapter 2. Only preliminary checks were conducted using the 

MTBE, TMOF, and DBE compounds.  

Contact of hydrogen peroxide with the metal pipes and consequent decomposition 

results in some oxygen always being delivered to the system, which was estimated to be 

approximately (0.6 – 2.9) × 1014 molecule cm−3 (the method for estimating O2 

concentration is discussed in section 4.4), and varies depending on pressure, flow and 

precursor. Photolysis of the hydrogen peroxide at 248 nm was used to generate the 

hydroxyl radicals, as described previously, and was the source of OH for the majority of 

experiments in this work. Urea hydrogen peroxide (CO(NH2)2·H2O2) (reaction R 4-11) 

was also used as a known OH precursor [214, 215] for comparison. Reactions were 

studied under pseudo-first order conditions where [ether] >> [OH], and extensive details 

of the analyses of kinetic traces in this chapter are presented in section 4.4.  

 

  (CO(NH2)2·H2O2) 
vap
ሱሮ  H2O2 + hν (λ=248 nm) → 2OH R 4-11 

 

CH3OCH2Br (reaction R 4-12) was employed as a photolytic precursor to measure 

CH3OCH2 + O2 rate coefficients using the same method as Eskola et al. [89] for the DME 

system. Photolysis of this compound generates the DME R radical directly, and the rate 

of formation of OH can be used to measure kCH3OCH2+O2.  

 

  CH3OCH2Br + hν (λ=248 nm) → CH3OCH2 + Br R 4-12 

 CH3OCH2Br + hν (λ=248 nm) → other products R 4-13 

 

This method was used as further validation of the experimental setup used to 

measure rate coefficients of the reaction between O2 and R radicals in this chapter. 

Equation E 4-1 was used to analyse kinetic traces, an example of which is presented in 

Figure 4-2, and a plot the OH growth pseudo-first order rate coefficient as a function of 

oxygen concentration (Figure 4-3) yields the bimolecular rate coefficient. 
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 [OH] = [OH]0 ቆ
k'grow

k'grow – k'decay
 × ൫e–k'decay×t – e–k'grow×t൯ + e–k'decay×tቇ   E 4-1 

 

 

Figure 4-2: Example trace obtained using the CH3OCH2Br precursor. 
[CH3OCH2Br] ≈ 1.1 × 1014 molecule cm–3. Parameters were kʹgrow = (13230 ± 660) 
s–1, kʹdecay = (310 ± 40) s–1, where uncertainties are statistical at the 2σ level.  

 

Figure 4-3: Example bimolecular using the bromo precursor method at 294 K, in 7 
Torr N2, and kCH3OCH2+O2 = (7.43 ± 0.98) × 10–12 cm3 molecule–1 s–1. Uncertainty on 
the bimolecular rate coefficient is statistical at the 2σ level. Here k′ is equivalent to 
the k′grow parameter in equation E 4-1.   
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4.4 Treatment of Chemical Activation Data 

Decays showing chemical activation in the presence of low oxygen ([O2] ≈ (0.2 – 

26) × 1014 molecule cm–3) require complex analysis. Regeneration of OH results in 

biexponential kinetic decays, where the initial fast decay is the reaction between OH and 

the ether, and the tail portion of the decay contains information about the OH formation. 

An equation derived from Scheme 4-1 was used to analyse these traces. DME is used as 

the example system for the purpose of explaining the complex data analyses. For the DEE 

experiments presented in Chapter 5, the same will apply for the equivalent radicals (i.e. 

R, RO2 etc., see Scheme 4-1). 

 

 

Scheme 4-1: Reaction scheme for analysis of OH regeneration traces. This scheme 
represents the route following initial H abstraction from DME.  Parameters used in 
the biexponential equation are in blue. Bracketed red species show the generic 
equivalent.  

 

Here, the only routes considered for the fate of the R radical are reaction with O2 

followed by stabilisation to RO2 (reaction R 4-9), reaction with O2 followed by formation 

of OH (chemical activation) (reaction R 4-10), and another minor loss process for the R 

radical, potentially self-reaction. The total rate for R + O2 is the sum of reaction R 4-9 

and reaction R 4-10, and can be generalised as reaction R 4-14. 

 

 R + O2 → products R 4-14 
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The following equations (equation E 4-2 – E 3-6) were used to fit the traces: 

 

 

 
OH = OH0 × ቈቆ

–(kd+ka') – 𝜆2

𝜆1 – 𝜆2
ቇ  × ൫eλ1×t – eλ2×t൯ + eλ2×t E 4-2 

 

λ1 = 
ቀ–M1 + ඥM12 – 4M2ቁ

2
 E 4-3 

 

λ1 = 
ቀ–M1 – ඥM12 – 4M2ቁ

2
 E 4-4 

 M1 = kd + ka' + kb' + kc' E 4-5 

 M2 = (kd + ka') × (kb' + kc') – (ka'kb') E 4-6 

  

here, ka′ = pseudo-first order rate coefficient for reaction R 4-7, kd = rate coefficient for 

OH loss in the absence of ether (fixed to the value measured when only OH precursor is 

present), and the terms λ1 and λ2 are expanded fully in equations E 4-3 – E 4-6. The terms 

kb′ (pseudo-first order rate coefficient for OH regeneration from R + O2) and kc′ (pseudo-

first order rate coefficient for R radical reacting with O2 and not producing OH) are both 

present in λ1 and λ2. Reactions were studied under pseudo-first order conditions where 

[ether] >> [OH].  

For robust parameter retrieval, global fitting was used to analyse several kinetic 

traces as a function of [ether] at once (ka′ = kOH+ether[ether] for each trace), and share the 

bimolecular rate coefficient for OH + ether (kOH+ether) and R + O2 (kCH3OCH2+O2 or 

kC2H5OC2H4+O2 in Chapter 5) between decays. Similarly, the kb′ and kc′ parameters have 

been related to their bimolecular rate coefficient counterparts to globally share these 

parameters across all traces. Additionally, O2x (O2x refers to unavoidable O2 arising from 

hydrogen peroxide decomposition) has been accounted for, and kx was introduced as a 

small loss of the R radical to achieve good fits at the very lowest [O2] traces, where O2 

addition was in competition with other possible processes (loss of R, R + R, R 

decomposition). For single trace analysis using equation E 4-2, kx is not present, or even 

obtainable, but this does not affect the measured value for kR+O2, as the straight line in 

Figure 4-6 would simply be translated down if kx was accounted for (kx is constant across 

a range of [O2]). The intercepts, and therefore [O2x] will be slightly affected by the 

exclusion of kx for single trace analysis, but these are compared to those from global 

analysis in Figure 4-4. Ultimately, multiple traces are required to yield information about 

kx. All parameters are listed below in Table 4-1.  
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Table 4-1: Description of parameters used in the global analysis treatment of data. 
Details on whether these parameters are fixed (input), and shared (across multiple 
traces where pressure and temperature is constant) or local are included. The full 
Origin C code is included in Appendix B.  

Parameter Definition Relationship Share Fix 

ka′  Pseudo-first order rate 

coefficient for OH + ether 

= kOH+ether[ether] No No 

 kOH+ether OH + ether bimolecular rate 

coefficient 

 Yes No 

 [ether] ether concentration  No Yes 

kb′  Pseudo-first order rate 

coefficient for OH formation 

= kb([O2]+[O2x]) No No 

 kb R + O2 → OH bimolecular rate 

coefficient 

 Yes No 

 [O2] Oxygen concentration added  No Yes 

 [O2x] Oxygen concentration always 

present in system 

 Yes No 

kc′  Pseudo-first order rate 

coefficient for R + O2 not 

yielding  OH 

= kc([O2]+[O2x]) 

+ kx 

No No 

 kc R + O2 → RO2 bimolecular rate 

coefficient 

 Yes No 

 kx First order rate coefficient for 

loss of R radical 

 Yes No 

OH 

yield 

 Yield of OH formed from R + 

O2 

= kb/kR+O2 Yes No 

 kR+O2 R + O2 bimolecular rate 

coefficient 
= 

(kb'+kc'-kx)

([O2]+[O2x])
 Yes No 

OH0  Initial signal intensity  No No 

kd  First order rate coefficient for 

loss of OH 

 Yes Yes 
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Figure 4-4: Comparison of O2x obtained from single trace analysis and global 
analysis of H2O2/H2O experiments for the DME system.  

 

Data analysis using equation E 4-2 allows the total rate coefficient for reaction R 

4-14 (kR+O2) to be measured using a pseudo-first order bimolecular treatment of the total 

removal of the RO2 radical (kb′ + kc′) as a function of [O2]. After the initial abstraction 

(reaction R 4-7) occurs, the CH3OCH2 radical concentration can be no higher than [OH]0 

≈ 1012 molecule cm–3, thus the addition of [O2] ≈ (0.2 – 26) × 1014 molecule cm–3 allows 

kR+O2 to be measured under pseudo-first order conditions, where R + O2 is the rate 

determining step. Figure 4-5 shows an example biexponential decay, and a bimolecular 

plot determining kCH3OCH2+O2 is presented in Figure 4-6.  
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Figure 4-5: Biexponential decay for determination of kb′ and kc′. The parameters 
recovered were kb′ = (870 ± 190) s–1, kc′ = (820 ± 200) s–1, kd = 400 s–1 (fixed based on 
[DME] = 0 decay), and ka′ = (4170 ± 340) s–1, at [O2] = 1.8 × 1014 molecule cm–3, 
[DME] = 6.8 × 1014 molecule cm–3, and experimental conditions were the same as for 
the bimolecular plot. The green line compares a single exponential decay fit where 
ka′ = (2490 ± 150) s–1. Uncertainties are statistical at the 2σ level. 

 

Figure 4-6: Bimolecular plot for the determination of the CH3OCH2 + O2 rate 
coefficient, at (483 ± 5) K, 10.8 Torr N2, [DME] = (0.67 – 1.01) × 1015 molecule cm–3. 
kCH3OCH2+O2 = (4.09 ± 0.73) × 10–12 cm3 molecule–1 s–1. The shaded area represents the 
bounds of the 95% confidence limits. All errors represent 2σ statistical 
uncertainties. 
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 The intercept for a bimolecular plot of this nature can be related to the amount of 

oxygen in the system by default (O2x) (H2O2 decomposes in the MFC to deliver some 

O2). Equation E 4-7 shows that [O2x] = intercept/k(R+O2).  

 

 (kb'+kc') = k(R+O2)[O2] + (k(R+O2) [O2x]) E 4-7 

 

Furthermore, from the biexponential analysis (using equation E 4-2), the OH yield 

can be obtained through a relationship between kb′ and kc′ (equation E 4-8), that is, the 

ratio between R + O2 leading to OH, and the total removal of R by O2 (see Scheme 4-1). 

Loss of R is also accounted for.  

 

 
OH yield % = 

kb′

kb′ + kc′ kx
 × 100 E 4-8 

 

For this biexponential analysis method to work as precisely as possible, the 

separation of the two time constants for the equation (λ1 and λ2 (containing the 

information on OH + ether and removal of R respectively)) should be pronounced, with 

λ1 > λ2. Experimentally, a clear separation can be achieved by keeping [ether] as high as 

possible (and thus ka′ fast), and [O2] low, in order to keep the total rate of removal of the 

RO2 radical (kb′ + kc′) slow in comparison to ka′. As λ1 and λ2 become closer together, or 

λ2 becomes larger than λ1, the OH decay becomes a less clear biexponential trace, and 

tends towards a single exponential decay. Additionally, under high oxygen conditions, it 

is possible that R + O2 is no longer the rate-determining step. Under non-ideal conditions, 

analysing the data biexponentially yields poorer-defined parameters, with larger 

uncertainties. This is especially problematic under conditions where [O2x] is high 

initially, and therefore a reduced range of [O2] is available for determination of 

kCH3OCH2+O2 using a bimolecular plot. Kinetic parameters obtained using the H2O2/urea 

precursor are presented, where the background O2 was much higher compared with the 

H2O2/H2O precursor (Figure 4-7).  

Oxygen has been detected as a major decomposition product of urea hydrogen 

peroxide previously [214]. The concentration of O2 delivered to the system by 

decomposition of the H2O2/H2O precursor in this work is reasonably consistently ~0.03% 

of the total gas density delivered to the cell from the hydrogen peroxide bubbler (Figure 

4-8). 
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Figure 4-7: Comparison of O2x present in H2O2/H2O experiments and H2O2/urea 
experiments for the DME system. Lines represent second order polynomial fits, 
purely to aid visualisation of the overall trends – the fits themselves are meaningless.  

 

Figure 4-8: O2x from DME experiments as a percentage of total gas density delivered 
from the H2O2/H2O, given as a function of pressure and temperature.  
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regeneration (once the rate of OH regeneration becomes fast compared to OH loss via 

reaction with ether, the decays will again become exponential). OH yields were always 

measured reliably regardless of the photolytic precursor used (Figure 4-10). 

 

 

Figure 4-9: Comparison of kCH3OCH2+O2 measured in H2O2/H2O experiments and 
H2O2/urea experiments. M = N2. 

 

Figure 4-10: Comparison of OH yields measured in H2O2/H2O experiments and 
H2O2/urea experiments for the DME system. 
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The bimolecular plots (Figure 4-6) are weighted fits to the data, to account for the 

uncertainty in values of (kb′ + kc′). All values reported in this work are from global 

analysis, including kCH3OCH2+O2; Figure 4-6 is purely for illustrative purposes. For values 

of kCH3OCH2+O2 measured using the H2O2/urea precursor presented in Figure 4-9, 

kCH3OCH2+O2 was obtained using the single trace analysis method in Figure 4-6, and then 

fixed in the global determination of other parameters.  

 

4.5 Analysis Simulations in Kintecus 

A simple chemical model generated in the numerical integrator package 

Kintecus [216] was used to demonstrate the poor ability to retrieve kR+O2 from data under 

less-than-ideal conditions, using the DME system as an example. Here, the only 

parameters simulated were kOH+DME = 2.93 × 10–12 cm3 molecule–1 s–1 (based on room 

temperature kOH+DME Arrhenius parameterisation by Carr et al. [186]), kCH3OCH2+O2 = 1 × 

10–11 cm3 molecule–1 s–1 and OH yield = 70%. Kintecus was used to generate traces over 

a range of [O2] = (0 and 1013 – 1016) molecule cm–3, for [DME] = 5 × 1013 molecule cm–3 

and [DME] = 5 × 1014 molecule cm–3, in order to simulate a set of data under ideal (high 

[DME]), and non-ideal (low [DME]) conditions. Figure 4-11 shows the bimolecular 

determinations of kCH3OCH2+O2 from both sets of simulated experiments, where the rate 

coefficient returned at high [DME] was closer to the true value used for the simulated 

data, and the uncertainty in the low [DME] determination is much greater.  

Figure 4-12 and Figure 4-13 show the individual fits to each trace analysed in 

Figure 4-11, where all fits appear good, and the low [DME] traces only demonstrate one 

good biexponential decay (at [O2] = 1013 molecule cm–3). Even at high [DME] conditions, 

the trace becomes single exponential at the highest concentration of O2. In order to extract 

the parameters properly from these single exponential traces, a shorter timescale is 

required, to reveal the two time constants of the decay (Figure 4-14). It is noted however, 

that at timescales these short, there is a minimal change in [OH], and as such, noise (±(0 

– 1)% generated randomly in Figure 4-15, or experimentally) will greatly perturb the 

ability to analyse the decay.  
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Figure 4-11: Weighted linear least squares fitting to bimolecular determinations of 
R + O2 from data generated in Kintecus. Note the y-axis is log scale. True kCH3OCH2+O2 
= 1 × 10–11 cm3 molecule–1 s–1.   

 

 

Figure 4-12: Biexponential fits to low [DME] OH decays generated in Kintecus. [O2] 
increasing from black through light blue.  
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Figure 4-13: Biexponential fits to high [DME] OH decays generated in Kintecus. 
[O2] increasing from black through light blue.  

 

 

Figure 4-14: Short timescale OH decay generated in Kintecus for low [DME] (5 × 
1013 molecule cm–3), high [O2] (1016 molecule cm–3) conditions, on a very short 
timescale to properly retrieve parameters: ka′ = (147 ± 1) s–1, kb′ = (70005 ± 19) s–1, 
kc′ = (29995 ± 9) s–1.  
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Figure 4-15: Short timescale OH decay generated in Kintecus for low [DME] (5 × 
1013 molecule cm–3), high [O2] (1016 molecule cm–3) conditions, on a very short 
timescale, with ±(0 – 1)% random noise generated. Parameters are not properly 
retrieved: ka′ = (900 ± 2600) s–1, kb′ = (576000 ± 1335000) s–1, kc′ = (27500 ± 36300) 
s–1. 
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Figure 4-16: Effect on modelled OH decays when the CH3OCH2O2 + OH reaction is 
included in the simulations. Parameters returned from the original model ka′ = (3560 
± 10) s–1, kb′ = (2490 ± 10) s–1, kc′ = (2010 ± 10) s–1, when RO2 + OH is included ka′ = 
(3580 ± 10) s–1, kb′ = (2570 ± 20) s–1, kc′ = (2220 ± 10) s–1. Uncertainties are statistical 
at the 2σ level.  

 

Further Kintecus simulations were used to demonstrate the deviation in returned 
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Figure 4-17: Deviation of returned parameters from true values as the ratio of λ2 to 
λ1 increases (% deviations here are sometimes negative, but the modulus of the 
values are presented). Traces generated using Kintecus (three examples shown, note 
the varying timescales), with ± (0 – 10)% random noise generated. 

 

 

Figure 4-18: λ2:λ1 ratio effect on deviation of returned parameters from true values, 
based on retrieval from traces simulated in Kintecus, with no noise generated.   
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More accurate parameter recovery may be as a result of the perfect data produced 

in Kintecus, compared to experimental data which is subject to signal noise, other 

processes occurring (removal of R radical by other reactions, kx), and [O2x] present in the 

system, which limits the effective range of oxygen concentrations explorable over a 

bimolecular plot. OH loss in experimental data may also complicate parameter retrieval 

further, particularly at the lowest pressures, where diffusion plays more of a role. The 

same principle is demonstrated experimentally by consideration of the percentage 

uncertainty of (kb′ + kc′) increasing as a function of [O2] (Figure 4-19 and Figure 4-20) in 

H2O2/urea precursor measurements.   

 

  

Figure 4-19: Increasing percentage uncertainty of (kb′ + kc′) from experimental data 
at room temperature and 18 Torr N2 H2O2/urea experiment.  
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Figure 4-20: Increasing percentage uncertainty of (kb′ + kc′) from experimental data 
at room temperature and 25 Torr N2 H2O2/urea experiment. 
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Figure 4-21: CH3OCH2 + O2 rate coefficient measured as a function of temperature. 
The fit to the data yields A = (1.70 ± 0.39) × 10–12 cm3 molecule–1 s–1 and Ea = (–4.09 
± 0.66) kJ mol–1. The total pressure range explored was 4.1 – 32.6 Torr of N2. 

 

 The lack of significant dependence on pressure at the lowest two temperatures 

suggests the reaction is at the high pressure limit. Within uncertainties, measurements of 
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al. [211] primarily covered higher pressures, but the lowest two pressure measurements 

are included in Figure 4-22. The two room temperature measurements made using 

transient infrared detection of formaldehyde and UV detection of OH, have reasonably 

large uncertainties, but fall within the range of measurements made in this work (~6–10–12 

cm3 molecule–1 s–1).  
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Figure 4-22: Comparison of R + O2 rate coefficients measured in this work (filled 
symbols) with Eskola et al. [89] (open triangles) and Maricq et al. [211] (upturned 
triangles) as a function of pressure and temperature. For this work and Maricq et 
al., M = N2, for data from Eskola et al., M = He. Error bars for this work are 
statistical at the 2σ level. Uncertainties on measurements by Eskola et al. were 
estimated to be 10% to take account of systematic errors (based on this work’s 
approximate 2σ uncertainties using the same CH3OCH2Br precursor method).  

 

At 450 K, where Eskola et al. [89] made measurements in the fall-off region using 

He as the bath gas, we also report a positive pressure dependence (442 K data, and 483 K) 

in N2. Compared to the literature measurements at 450 K, we measure approximately 5% 

faster at 442 K, but are in agreement within error at the highest total pressure.  

Both this study and previous studies observe a negative temperature dependence 

for kCH3OCH2+O2, and positive pressure dependence at higher temperatures over the 

pressure range tested. The average room temperature kCH3OCH2+O2 = (0.94 ± 0.04) × 10–11 

cm3 molecule–1 s–1, is in agreement with previous measurements, and significantly faster 

than other R + O2 reactions, such as acetyl + O2 (~(0.5 – 0.6) × 10–11 cm3 molecule–1 s–1) 

[200, 205] and propionyl + O2 (0.54 × 10–11 cm3 molecule–1 s–1) [200]. Previously, the 

ionisation potential of the R radical has been correlated with the rate coefficient for R + 

O2, where an approximate ionisation potential for CH3OCH2 of 7 eV [218, 219] would 

predict ~3 × 10–11 cm3 molecule–1 s–1 for kCH3OCH2+O2 [199]. This estimation is three times 

higher than kCH3OCH2+O2 observed here, but is qualitatively in agreement with DME’s 

system exhibiting a much faster rate coefficient than other R + O2 reactions.  
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Figure 4-23: The same as Figure 4-22 above, but with an extended total pressure 
axis.  
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Table 4-2: Rate coefficients for the CH3OCH2 + O2 reaction measured in this work 
using H2O2/H2O, H2O2/urea and CH3OCH2Br precursors. Uncertainties are 2σ 
and purely statistical.  

T Precursor [N2] kCH3OCH2+O2  T Precursor [N2] kCH3OCH2+O2  

290 H2O2/H2O 1.33  9.44 ± 0.51 298 Urea/H2O2 6.26  1.10 ± 0.26 

291 H2O2/H2O 2.05  9.24 ± 0.71 298 Urea/H2O2 4.53  1.09 ± 0.33 

290 H2O2/H2O 3.45  9.13 ± 0.62 298 Urea/H2O2 7.35  0.83 ± 0.36 

292 H2O2/H2O 4.44  10.04 ± 
1.43 

376 Urea/H2O2 0.95  0.66 ± 0.15 

291 H2O2/H2O 6.06  9.94 ± 1.62 376 Urea/H2O2 1.76  0.47 ± 0.24 

367 H2O2/H2O 1.29  6.12 ± 0.32 376 Urea/H2O2 3.66  0.39 ± 0.21 

364 H2O2/H2O 2.89  6.58 ± 0.35 460 Urea/H2O2 0.60  0.56 ± 0.23 

364 H2O2/H2O 8.32  6.08 ± 0.96 460 Urea/H2O2 1.36  0.42 ± 0.64 

447 H2O2/H2O 1.15 4.20 ± 0.20 460 Urea/H2O2 5.04  0.47 ± 0.95 

439 H2O2/H2O 4.13  5.25 ± 0.26 495 Urea/H2O2 1.09  0.35 ± 0.13 

439 H2O2/H2O 6.92  5.89 ± 0.59 495 Urea/H2O2 3.28  0.43 ± 0.06 

486 H2O2/H2O 1.13  3.55 ± 0.17 495 Urea/H2O2 6.07  0.51 ± 0.12 

481 H2O2/H2O 2.16  3.90 ± 0.41 495 Urea/H2O2 9.81  0.60 ± 0.20 

482 H2O2/H2O 3.86  4.56 ± 0.53 294 CH3OCH2Br 1.04  6.00 ± 0.37 

482 H2O2/H2O 6.53  6.28 ± 1.10 294 CH3OCH2Br 2.25  7.43 ± 0.98 

298 Urea/H2O2 1.16  1.43 ± 0.24 294 CH3OCH2Br 4.51  7.55 ± 0.58 

298 Urea/H2O2 2.27  1.31 ± 0.48 294 CH3OCH2Br 7.39  6.96 ± 1.94 

Temperature units are Kelvin. Nitrogen density units are 1017 molecule cm–3. Rate 
coefficient units are 10–12 cm3 molecule–1 s–1. 

 

4.7 Experimental OH Yields for the CH3OCH2 + O2 Reaction 

OH yields from well-skipping in the DME system were obtained over 4.1 – 32.6 

Torr of N2, and 291 – 483 K (thermal production of OH from stabilised RO2 radicals 

begins above approximately 500 K). All OH yields measured are presented in Table 4-3. 

Treating these data with a Stern-Volmer analysis (Figure 4-24) demonstrates an increase 

in yield with increasing temperatures, and the suppression of yields at higher pressures. 

This is consistent with what would be expected of OH yields from reaction R 4-10, a 

process deactivated by the pressure-dependent stabilisation of the RO2* radical (reaction 

R 4-9). At room temperature (black filled circles, Figure 4-24), yields were particularly 
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low at higher pressures, which is reflected in the greater uncertainties due to the less 

pronounced biexponential decays.  

 

Table 4-3: Details of all OH yields measured for the DME system. Uncertainties 
are 2σ and purely statistical. 

T / K [N2]a Yield / % Precursor T / K [N2]a Yield / % Precursor 

290 1.33 52 ± 1 H2O2/ H2O 298 1.16 55 ± 1 Urea/H2O2 

291 2.05 47 ± 2 H2O2/ H2O 298 2.27 40 ± 1 Urea/H2O2 

290 3.45 28 ± 1 H2O2/ H2O 298 4.53 26 ± 1 Urea/H2O2 

292 4.44 26 ± 2 H2O2/ H2O 298 6.26 19 ± 2 Urea/H2O2 

291 6.06 21 ± 2 H2O2/ H2O 298 7.35 11 ± 1 Urea/H2O2 

367 1.29 65 ± 1 H2O2/ H2O 376 0.95 70 ± 1 Urea/H2O2 

364 2.89 44 ± 1 H2O2/ H2O 376 1.76 55 ± 2 Urea/H2O2 

364 8.32 21 ± 1 H2O2/ H2O 376 3.66 40 ± 4 Urea/H2O2 

447 1.15 72 ± 1 H2O2/ H2O 460 0.60 80 ± 2 Urea/H2O2 

439 4.13 42 ± 1 H2O2/ H2O 460 1.36 71 ± 2 Urea/H2O2 

439 6.92 34 ± 2 H2O2/ H2O 460 5.04 58 ± 14 Urea/H2O2 

486 1.13 76 ± 2 H2O2/ H2O 495 1.09 80 ± 1 Urea/H2O2 

481 2.16 65 ± 3 H2O2/ H2O 495 3.28 57 ± 1 Urea/H2O2 

482 3.86 47 ± 3 H2O2/ H2O 495 6.07 43 ± 2 Urea/H2O2 

482 6.53 32 ± 3 H2O2/ H2O 495 9.81 29 ± 3 Urea/H2O2 

aUnits are 1017 molecule cm–3. 

 

Comparison with OH yields obtained by Eskola et al. [89] in nitrogen shows good 

agreement with the relative measurements conducted using CH3OCH2Br photolysis at 

room temperatures when considering quenching coefficient uncertainties (see Table 4-4). 

The quenching coefficient is determined from the slope of the Stern-Volmer plots, where 

the gradient kM/kC is determined from the Stern-Volmer relationship in equation E 4-9. A 

plot of reciprocal yield against [M] is used, and the intercept is either fixed at 1, or floated 

to be determined by the data. Here kM represents the quenching rate for N2, and kC the 

rate for OH yields in the absence of bath gas. At ~442 K, the quenching coefficient 

uncertainty ranges measured in the current work and by Eskola et al. at 450 K are in 
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agreement. Room temperature yields from Maricq et al. [211] were included, and are not 

close to agreement with this work.  

 

 1/α = kM/kC[M] + 1 E 4-9

 

Reciprocal yields were fit using weighted linear analyses, and intercepts are fixed 

at unity, imposing a 100% OH yield at [N2] = 0 molecule cm–3. Also presented are 

Stern-Volmer plots with OH yield intercepts floated (Figure 4-25), where the intercepts 

were still unity within uncertainties. A comparison of the yields from H2O2/H2O and 

H2O2/urea precursors was also presented in Figure 4-10 in section 4.4. 

A pressure range as extensive as that explored by Eskola et al. [89] is not possible 

using the current method, as the very low yields measured by Eskola et al. (<10%), are 

difficult to extract from a biexponential decay. This does not affect the quality of the 

Stern-Volmer plot however, as the lowest pressures obtainable allow [M] to be explored 

over close to an order of magnitude, and the inset to Figure 4-24 shows the quenching 

coefficients extrapolate well to pressures beyond the limitations in this work. At higher 

temperatures (and therefore yields), this technique will successfully retrieve yields over 

a wider pressure range. 
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Comparison with other previous studies of OH yields in the DME system (Table 4-4) put 

our measurements close to agreement with data obtained by Rosado-Reyes et al. [213] at 

room temperature, but not at higher temperatures. The studies by Sehested et al. [210] 

and Maricq et al. [211] agree poorly with this work’s quenching coefficients. The 

discrepancy with these three studies may be a result of difficult products to detect in their 

experimental methods, particularly formaldehyde, and the indirect nature of the previous 

studies.  

 

 

Figure 4-24: Stern-Volmer plot of OH yields in nitrogen, comparing this work (filled 
circles, solid lines) to Eskola et al. [89] (open triangles, dashed lines) and Maricq et 
al. [211] (open stars, dash-dotted line). Inset shows full pressure range of Eskola et 
al. data. The intercepts are fixed to unity. There were no uncertainties reported for 
the Maricq et al. data, where they referred to another study for their best estimate.  
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Table 4-4: Comparison of quenching coefficients for CH3OCH2 + O2 obtained in 
the current work with previous measurements. M = N2 for all measurements.  

Reference Precursor Techniquea T / K P / Torr kM/kC
b 

Sehested et al. 
[210] 

Cl + DME FTIR 296 0.38 – 940 3.13 ± 0.51 

Maricq et al. 
[211] 

Cl + DME TIR 295 4.9 – 80.3 4.3 

   350 5.0 – 50.0 2.9 

Rosado-Reyes et 
al. [213] 

Cl + DME TIR 295 10 – 200 7.15 

  450 10 – 200 0.87 

Eskola et al. [89] CH3OCH2Br LIF/RM 295 5.3 – 95.3 6.05 ± 0.54 

  LIF/RM 450 unknown 2.51 ± 0.48 

 Cl + DME LIF/AM 295 5 – 25.01 4.71 ± 0.14 

  LIF/AM 450 5 – 99.98 2.36 ± 0.12 

This work OH + DME LIF 291 4.1 – 18.8 6.66 ± 1.06 

  LIF 365 4.9 – 31.3 4.34 ± 0.47 

  LIF 442 5.3 – 31.5 3.32 ± 0.66 

  LIF 483 5.7 – 32.6 2.86 ± 0.35 

aInitialisms: FTIR, Fourier transform infrared spectroscopy; TIR, transient infrared; 
RM, relative method; AM, absolute method. bUnits are 10–18 cm3 molecule–1. 
Uncertainties are statistical at the 2σ level. 

 

The current work does have some limitations, primarily higher pressures cannot 

be explored using this technique, as a result of the ~10% lower limit on the ability to 

detect yields (which decrease at higher pressures). Alongside pressure limitations, there 

is a constraint concerning temperature, where this method will not work above the 

temperature at which the fuel of interest begins to propagate by a thermal route (reaction 

R 4-4) via QOOH decomposition. For DME this is approximately 230 °C. To make 

measurements of well-skipping OH formation above this temperature would require 

much more complicated analysis, as multiple OH regeneration processes can take place 

concurrently. If only QOOH decomposition was occurring, then measurements of R + O2 

rate coefficients would still be accurate using the method presented in this work, however 

yields would be perturbed. If a second oxygen addition (O2 + QOOH) was taking place, 

then both yields and rate coefficients would not be accurately measurable using the 
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current analysis method. DME is the simplest ether, but more complex fuels (such as 

DEE), would have more than one possible initial abstraction site, and therefore isomers 

of the R radical. The method presented does not differentiate between different R radical 

isomers, and as such would present yields and rate coefficients as averaged values.  

 

 

Figure 4-25: Stern-Volmer plot of OH yields in nitrogen. Comparing this work 
(filled symbols) to Eskola et al. [89] (open triangles) and Maricq et al. [211] (open 
stars). The intercepts are floated. There are no uncertainties reported for the Maricq 
et al. data, where they referred to another study for their best estimate. 
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4.8 Additional Experimental Parameters 

For experimental data, global fitting was used to analyse traces grouped together 

at the same temperature and pressure, but obtained over a range of [O2]. A wide variation 

in DME concentration was not normally used across a group of traces, and as such, 

obtaining kOH+DME from a narrow range of [DME] results in a poorly defined bimolecular 

rate coefficient for OH + DME, however, Figure 4-26 demonstrates measurements in this 

work are still mostly in agreement with kOH+DME measured by Carr et al. [186] previously 

in this laboratory, when uncertainties are considered. 15% is approximately the greatest 

deviation of this work from the Arrhenius parameterisation given by Carr et al. 

Regardless, the ability to ascertain kOH+DME has no direct effect on the outcome of 

kCH3OCH2+O2 and OH yield determinations.  

 

 

Figure 4-26: Comparison of kOH+DME measured in this work from global analysis 
(black), with Carr et al. [186] (red) where errors are 95% confidence limits. 
Uncertainties in this work are 2σ + 10% of measured kOH+DME. Arrhenius fit for 
Carr et al. data is the reported fit for their whole data set (195 – 800 K). 
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determined by the kx parameter are likely not decomposition of the CH3OCH2 radical, as 

this would be expected to increase with temperature.  

 

 

Figure 4-27: Rates obtained for kx from global analysis of H2O2/H2O experiments in 
the DME system.  
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Figure 4-28: Global weighted/unweighted analysis comparison with single trace 
weighted/unweighted analysis for the DME system. Uncertainties on data are 2σ 
statistical, and the x-axis is arbitrary to allow visualisation of weighted average 
values. Average values are (9.75 ± 0.63) and (9.38 ± 0.42) × 10–12, where uncertainties 
are the 95% confidence limits. Data are for 291 K H2O2/H2O precursor experiments. 
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DEE/O2 and DME/O2 suggests that the transition state barrier to OH may be much closer 

in energy to the R + O2 entrance channel (or indeed above this value). Modelling 

conducted in Chapter 6 section 6.8 using MESMER demonstrated the inhibition of OH 

yields by raising this transition state. Additionally, chemical activation in MTBE may be 

absent due to the seven-membered ring transition state between RO2 and QOOH radicals 

being less entropically favourable compared to the six-membered ring formed in the DME 

system. Ogura et al. [220] calculated that the A factor for a seven-membered ring is only 

12% of the six-membered ring equivalent. The larger size of DBE and MTBE may also 

increase the likelihood of collisional stabilisation into the potential energy surface wells, 

inhibiting chemical activation, however chemical activation and significant well-skipping 

was observed for the comparably-sized DEE molecule, which makes this less probable 

for MTBE. DBE is significantly larger than DEE. Additionally, the higher transition state 

barrier for QOOH ↔ OH in the MTBE system, as opposed to that for DME, could be 

harder to surmount as a result of the negative effects of entropy, and ring strain, required 

for formation of the 4,4-dimethyl-1,3-dioxolane species (see Figure 6-32 in Chapter 6). 

Finally, steric hindrance may play a role in the rearrangement of RO2 to QOOH for DBE, 

where long side chains are present. 

 

4.10 Conclusions 

A method for determining R + O2 rate coefficients at low temperature and pressure 

has been presented, with details of the analysis of biexponential OH decays arising from 

chemical activation. OH yields obtained using this technique are in agreement with those 

made by Eskola et al. [89] (room temperature quenching coefficients kM/kC = (6.66 ± 

1.06) × 10–18 and (6.05 ± 0.54) × 10–18 cm3 molecule–1 respectively), and k(CH3OCH2 + 

O2) was measured to within 5%, or in agreement considering uncertainties, at all pressures 

considered. Eskola et al. observed no pressure dependence for measurements in helium 

at room temperature. This is consistent with measurements in the current work which 

were carried out in N2 bath gas, and appeared to be at the high pressure limit. R + O2 

measurements at higher temperatures (442 – 483 K) reproduced the positive pressure 

dependence seen by Eskola et al.  

Simple chemical kinetic modelling was conducted to simulate chemical activation 

data, and rationalise the difficulty in extracting parameters from biexponential OH decays 

that do not exhibit well-separated time constants. Lower concentrations of oxygen, and 
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high concentrations of DME were shown to achieve ideal conditions for biexponential 

analysis, and yield a more robust R + O2 rate coefficient.  

The limitations of this experimental method for determining R + O2 rate 

parameters are threefold; the molecule must well-skip; parameters are particularly 

difficult to extract once OH yields are reduced to ~10%, typically at low temperatures 

and high pressures; and at higher temperatures, other mechanisms for the regeneration of 

OH are possible, where more complex analysis would be required to identify the rate 

parameters from chemical activation accurately. Given the ability to deliver the correct 

concentrations of reactants, and a fuel which exhibits well-skipping, this method enables 

measurements of R + O2 rate coefficients for molecules which don’t have a readily-

available brominated precursor.   
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Chapter 5 Kinetic Study of C2H5OC2H4 + O2 Rate Parameters 

5.1 Abstract 

This chapter presents the first rate coefficients and OH yields measured for the 

C2H5OC2H4 + O2 reaction relevant to the low temperature oxidation of DEE. The rate 

coefficient kC2H5OC2H4+O2 is reported at 298 – 464 K, in 5.2 – 28.4 Torr of nitrogen. At 

room temperature, kC2H5OC2H4+O2 = (3.10 ± 0.55) × 10–11 cm3 molecule–1 s–1
, where the 

uncertainty is statistical at the 2σ level. Measurements showed the rate coefficient to be 

independent of pressure, although theoretical predictions showed the presence of a 

positive dependence at very low pressures. The temperature dependence of the R + O2 

rate coefficient can be parameterised by kC2H5OC2H4+O2(298–464 K) = (4.1 ± 2.2) × 10–12 

× e(–5.0±1.9)/RT cm3 molecule–1 s–1, where the uncertainties are statistical and calculated at 

the 2σ level. 

Two methods were used to determine the OH yields experimentally, and were in 

excellent agreement with one another. Under comparable conditions, the experimental 

OH yields were lower than those observed for the CH3OCH2 + O2 reaction in Chapter 4, 

which can be attributed to the increased likelihood of the larger C2H5OC2H4O2 molecule 

undergoing collisional deactivation.  

Ab initio calculations at the CCSD(T)/Jun-cc-pVTZ//M06-2X/Jun-cc-pVTZ level 

were carried out on the low temperature oxidation surface of DEE, and the experimentally 

observed rate parameters were compared to the theoretical calculations using master 

equation methods, where a significant lowering (by ~7 kcal mol–1) of the transition state 

barrier to the formation of OH was required in order to achieve good agreement between 

the experimental data and the master equation model. Relative to the R + O2 entrance 

channel, the ab initio energies calculated for the RO2 and QOOH species were –34.8 and 

–25.6 kcal mol–1 respectively. Energies for the transition state barriers corresponding to 

RO2 ↔ QOOH, and QOOH → OH, were calculated to be –15.1 and –3.7 kcal mol–1 

respectively. The transition state barrier for decomposition of the R radical was found to 

be 23.7 kcal mol–1. The rate parameters for the DEE R + O2 reaction are also compared 

to those measured for the DME system.  
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5.2 Introduction 

Diethyl ether is a potential biofuel alternative to conventional fossil fuels, bearing 

a similar chemical structure to dimethyl ether and oxymethylene ether, both of which 

have already been the subject of academic [87, 89, 185, 186, 221, 222] and industrial 

research [26, 29], demonstrating potential to reduce emissions, increase octane numbers 

and improve fuel efficiency [26, 73]. Optimal use of biofuels in novel engines, such as 

the HCCI engine, will require the autoignition mechanisms of the fuels used to be well 

understood [223], however there is not yet a complete understanding of the chain-

branching mechanism that is crucial to the autoignition process. The reaction between the 

ethoxy ethyl R radical (C2H5OC2H4) formed during the reaction between DEE and OH 

(reaction R 5-1), and molecular O2 (reactions R 5-2, R 5-3, and R 5-4), is a reaction 

integral to our understanding of the behaviour of the DEE-derived R radical, which is in 

turn key to DEE’s low temperature combustion behaviour.  

The R + O2 reaction and subsequent mechanism is analogous to that of DME 

discussed in Chapter 4, with the added complexity of the two initial abstraction sites 

present within its structure, and therefore increased reaction pathways for O2 addition and 

internal rearrangements. The R radical formed in reaction R 5-1 can either be the α- or β-

radical, to which the addition of oxygen results in the formation of an energetically 

excited RO2* peroxy radical, on either the α (reaction R 5-2) or β site (reaction R 5-3). 

As established in Chapter 3, abstraction from the α site is expected to dominate the 

mechanism. In this work, a non-site specific approach has been used to observe the R + 

O2 reaction kinetic parameters, and as such, addition of oxygen to the α or β site cannot 

be distinguished between. For this reason, the overall addition of O2 to the generic DEE 

R radical C2H5OC2H4 given in reaction R 5-4 will be used to refer to the total of the 

reaction involving both sites. All subsequent reaction species will also be written in 

generic terms that do not refer to specific sites.  

 

 

 C2H5OC2H5 + OH → C2H5OC2H4 + H2O R 5-1 

 CH3CH2OCHCH3 + O2 ↔ CH3CH2OCH(O2)CH3
* R 5-2 

 CH3CH2OCH2CH2 + O2 ↔ CH3CH2OCH2CH2O2
* R 5-3 

 C2H5OC2H4 + O2 → C2H5OC2H4O2
* R 5-4 
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 The energetically excited peroxy radical formed in reaction R 5-4 can undergo 

pressure-dependent stabilisation to the RO2 species (reaction R 5-5), a radical which is 

relatively stable. Competitive reactions exist, whereby RO2 can undergo re-dissociation 

back to reactants (particularly at high temperatures), or form an excited *QOOH radical. 

Subsequent rapid decomposition of this radical to OH and acetaldehyde (reaction R 5-6) 

is the well-skipping source of OH yields measured in this work.  

 

 

An internal hydrogen abstraction enables the formation of QOOH from RO2, and 

four different pathways are available for this mechanism (Figure 5-1), where varying ring 

sizes are formed depending on the initial DEE abstraction site, and the site of hydrogen 

abstraction in the rearrangement. The most probable pathway here is that of the α–α 

rearrangement; the majority of R radicals that form RO2 species will be α R radicals, six-

membered rings are favoured, and SAR predictions by Aschmann and Atkinson [224] 

suggest isomerisations (by alkoxy radicals) are enhanced by a factor of 13 when the 

abstraction occurs adjacent to the ether O atom group. Destabilisation of the *QOOH 

species is not considered, due to the higher energy of the stabilised form’s energy in 

comparison with the RO2 well depth shifting the equilibrium towards the RO2* species 

in the first step of reaction R 5-6.  

 

 

Figure 5-1: Possible ring formations in the rearrangement of RO2 to QOOH for the 
DEE system.  

 

  C2H5OC2H4O2
*  

M
→  C2H5OC2H4O2 R 5-5 

 C2H5OC2H4O2
* ↔ C2H4OC2H4OOH* → 2CH3CHO + OH R 5-6 
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The mechanism presented in Scheme 5-1 illustrates the reaction mechanisms for 

the dominant pathways of the measurements in this section.  

 

 

Scheme 5-1: Simplified reaction scheme for the DEE chemical activation 
mechanism, where the most dominant pathway (H abstraction occurring at the α 
site, and RO2 to QOOH rearrangement occurring via a six-membered ring) is 
shown.  

 

 No previous experimental studies on the R + O2 reaction rate coefficient for the 

diethyl ether system exist, and usage of the brominated molecule method employed for 

dimethyl ether studies would only allow the study of the minor R radical formed from β 

position hydrogen abstraction in the OH + DEE reaction. Using the new method proposed 

in Chapter 4, reaction R 5-4 can now be studied using diethyl ether and an OH precursor.   

 Despite no measurements of DEE’s R + O2 rate parameters, there have been some 

theoretical studies on the oxidation surface for diethyl ether following hydrogen 

abstraction of the parent fuel. Di Tommaso et al. [115], Sakai et al. [225], Sandhiya et 

al. [226], Wang and Wang [227], Hu et al. [228], have calculated some, or all, of the 

species this chapter focuses on, using varying methods and basis sets. More details are 

provided in the discussion in section 5.8.1. 

 

5.3 Experimental 

The experimental setup used in this chapter is largely the same as that used 

throughout the rest of this work, and virtually identical to that in Chapter 4. The usual 

conventional slow flow laser flash photolysis setup was combined with laser-induced 

fluorescence to monitor OH. The reactants were DEE (Sigma-Aldrich, ≥99%), OH 

precursor (hydrogen peroxide, H2O2, Sigma-Aldrich, 50% (w/w) in H2O), buffer gas (N2, 

BOC, oxygen-free), and O2 (BOC, 99.5%). On average, experiments were carried out at 

lower pressures than the majority of the work in this thesis, between 5 and 28 Torr of 

nitrogen. Higher pressures were not explored, as the suppression of yields led to difficulty 
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in extracting rate parameters under these conditions. Temperatures reported above room 

temperature have an associated uncertainty of approximately ±10 K, due to the 

calibrations presented in Chapter 2. 

Contact of hydrogen peroxide with the metal pipes and consequent decomposition 

results in some oxygen always being delivered to the system, which was estimated to be 

approximately (0.4 – 5.1) × 1014 molecule cm−3 (the method for estimating this oxygen 

concentration was discussed in Chapter 4), and varies depending on pressure, flow and 

precursor. Photolysis of the hydrogen peroxide at 248 nm was used to generate the 

hydroxyl radicals, as described previously, and was the source of OH for all experiments 

in this work. Reactions were studied under pseudo-first order conditions where [ether] >> 

[OH]. Extensive details of the analyses of kinetic traces were presented in Chapter 4, but 

some further details specific to the diethyl ether experiments can be found in section 5.4.  

 

5.4 Alternative Data Analyses 

Treatment of data for the diethyl ether chemical activation experiments was carried 

out using the same principles as those outlined in Chapter 4. Additionally, some 

experiments were conducted in a slightly different manner. The following description 

outlines an experimental scenario used for some DEE experiments to obtain OH yields 

from chemical activation, with no information on R + O2 rate coefficients. An example 

of a biexponential decay and a bimolecular plot obtained by the same technique used for 

DME measurements are shown in Figure 5-2 and Figure 5-3 respectively. 
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Figure 5-2: An example biexponential decay, where parameters kbʹ = (1070 ± 150) 
s–1, kcʹ = (690 ± 100) s–1, kd = 400 s–1 fixed, and kaʹ = (5390 ± 350) s–1, at [O2] = 5.9 × 
1013 molecule cm–3. All uncertainties are 2σ and statistical. Experimental conditions 
were 464 K, 7 Torr N2, and [DEE] ≈ 4.8 × 1014 molecule cm–3. 

 

 

Figure 5-3: Bimolecular plot for the determination of the C2H5OC2H4 + O2 rate 
coefficient, at 464 K, 7 Torr N2, [DEE] ≈ 4.8 × 1014 molecule cm–3. kC2H5OC2H4+O2 = 
(1.58 ± 0.36) × 10–11 cm3 molecule–1 s–1. Shaded area represents the bounds of the 
95% confidence limits. All uncertainties are 2σ and statistical.  
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Where all the experiments concerning DME used small amounts of oxygen to 

produce biexponential decays, under a high enough oxygen concentration (approximately 

1015 molecule cm–3), the biexponential decay reverts back to a single exponential decay, 

where the very fast OH recycling from the chemical activation process results in a slower 

decay than that of a kinetic trace in the absence of O2 (other than O2x). The difference 

between the bimolecular rate coefficient measured in the absence and presence of oxygen 

gives the OH yield from chemical activation (Figure 5-4 and equation E 5-1). OH yields 

have been measured in this way previously at the University of Leeds [229, 230]. 

 

 
OH yield = 

kbim(no O2) – kbim(O2)

kbim(no O2)
 × 100 E 5-1 

 

To analyse the single exponential decays obtained by this no/high oxygen regime, 

the same global treatment of the biexponential equation described in Chapter 4 can be 

used. However, the traces contain no information about kC2H5OC2H4+O2, only OH yields, 

and as such only kC2H5OC2H4+O2 obtained from the low oxygen experiments, with a 

bimolecular analysis of R + O2, are reported in this work. Instead, single trace analysis of 

the decays in the presence and absence of O2 was used, with weighted linear least squares 

analysis of the bimolecular plots, as in the Figure 5-4 example. For the bimolecular plots 

in the absence of added O2, the small amount of O2 always present in the system often 

resulted in biexponential decays. The analysis of these decays meant the ka′ parameter 

was used for the no-O2 decays, and the bimolecular plots have no [DEE] = 0 intercepts, 

as this is included as kd in the biexponential decay equation. The bimolecular plot in the 

presence of O2, where decays are single exponential, will include a [DEE] = 0 intercept.  
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Figure 5-4: Bimolecular plot in the absence (black circles) and presence (red 
triangles, [O2] = 2 × 1015 molecule cm–3) of oxygen. Determination at 457 K, 7 Torr 
N2, kOH+DEE(no O2) = (1.06 ± 0.09) × 10–11 cm3 molecule–1 s–1, kOH+DEE(O2) = (4.27 ± 
0.22) × 10–12 cm3 molecule–1 s–1, OH yield = (60 ± 10)%. Error bars are purely 
statistical at the 2σ level, as are the uncertainties on returned parameters. Shaded 
areas represent the bounds of the 95% confidence limits. The intercepts are (–110 ± 
270) s–1 (black), and (480 ± 40) s–1 (red). 

 

5.5 Temperature Dependent Measurements of the C2H5OC2H4 + O2 

Reaction............... 

Measurements of the R + O2 rate coefficient (kC2H5OC2H4+O2) in N2 for DEE have 

been made in this work, and are the first observation of this bimolecular rate coefficient. 

The data are presented in Figure 5-5, where the values obtained for kC2H5OC2H4+O2 are 

shown as a function of temperature. All rate coefficients measured are also presented in 

Table 5-2. The bimolecular rate coefficient for C2H5OC2H4 + O2 in this work exhibits a 

negative temperature dependence, consistent with the behaviour anticipated for a 

barrierless addition reaction, and not dissimilar to that seen for the formation of RO2 

radicals in the analogous DME system (Chapter 4).  
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Figure 5-5: The C2H5OC2H4 + O2 rate coefficient measured as a function of 
temperature. Errors are 2σ and statistical. Grey shaded area represents the 95% 
confidence bands. A = (4.1 ± 2.2) × 10–12 cm3 molecule–1 s–1. Ea = (–4.97 ± 1.86) kJ 
mol–1. Uncertainties are statistical at the 2σ level. Approximate total pressure ranges 
are shown.  

 

 The magnitudes of the C2H5OC2H4 + O2 rate coefficients measured for diethyl 

ether are larger than often estimated for R + O2 reactions, where typically rate coefficients 

between (1 – 10) × 10–12 cm3 molecule–1 s–1 would be anticipated. Experimentally, a wide 

range (over two orders of magnitude) of rate coefficients have been reported for the 

addition of O2 to R radicals. Some examples are listed in Table 5-1. A relationship 

between molecular structure and rate coefficient is unknown, although previously a 

relationship between the ionisation potential of the R radical and kR+O2 was proposed, 

discussed in Chapter 4. The ionisation energy of the DEE-derived R radical is expected 

to be lower than that for DME’s analogous R radical, which would suggest the prediction 

of a faster R + O2 coefficient for the DEE system in comparison to DME.  
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Table 5-1: Examples of R + O2 rate coefficients measured previously. 

Reaction and reference R radical structure kR+O2 

Ethyl + O2 [231]  1.50 × 10–13 

Vinoxy + O2 [232] 
 

2.6 × 10–13 

Neopentyl + O2 [233] 

 

1.6 × 10–12 

Methyl + O2 [231]  2.2 × 10–12 

Isobutyl + O2 [233] 

 

2.9 × 10–12 

Propionyl + O2 [200] 
 

5.4 × 10–12 

Acetyl + O2 [200, 205] 

 

(5–6) × 10–12 

Methylvinyl + O2 [234] 
 

7.2 × 10–12 

Cyclohexyl + O2 [233] 

 

1.4 × 10–11 

Cyclopentyl + O2 [233] 

 

1.7 × 10–11 

Ethynyl + O2 [235]  3.3 × 10–11 

Rate coefficients are in units of cm3 molecule–1 s–1. 

 

Perhaps unsurprisingly, the C2H5OC2H4 + O2 rate coefficient measured is not 

orders of magnitude different to that reported for CH3OCH2 + O2 in the previous chapter, 

but it is approximately three times larger; the average room temperature kC2H5OC2H4+O2 = 

(3.10 ± 0.55) × 10–11 cm3 molecule–1 s–1. Furthermore, the Arrhenius parameterisation 

demonstrates that the data suggests a barrierless addition reaction, as expected, with an 

Arrhenius fit-derived barrier of (–5.0 ± 1.9) kJ mol–1, statistically indistinguishable from 

the barrier determined for the CH3OCH2 + O2 reaction in Chapter 4. The bimolecular rate 
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coefficient for reaction R 5-4 was also measured as a function of pressure using the 

method outlined above, presented in Figure 5-5, and is compared to master equation 

calculations later in this chapter. No significant pressure dependence is clear from these 

measurements, although the relatively narrow range of pressures accessible via this 

method should be noted. A model developed by Yasunaga et al. [236] for the validation 

of DEE shock tube experiments from 900 – 1900 K used a temperature independent rate 

coefficient of kC2H5OC2H4+O2 = 0.64 × 10–11 cm3 molecule–1 s–1. It is difficult to compare 

the study with this work, given the large difference in temperature, however the rate 

coefficient presented here should provide more robust information to base model 

estimations upon. The model developed by Yasunaga et al. is not sensitive to the R + O2 

rate coefficient when varied by a factor of two.  

Further developments to the Yasunaga et al. [236] DEE model were made by both 

Tran et al. [237] and Serinyel et al. [238], for the validation of high pressure flame speeds, 

and jet stirred reactor experiments respectively. Tran et al. observed no large sensitivity 

to the main DEE oxidation reaction pathways, where the mechanism was instead 

dominated by H-abstraction and radical decomposition. This is unsurprising given the 

experiments were more relevant to the nature of high temperature combustion outlined in 

Chapter 1. Their estimated kC2H5OC2H4+O2 values used were 0.8 × 10–11 cm3 molecule–1 s–1 

at 298 K, and 1.5 × 10–11 cm3 molecule–1 s–1 at 460 K, which are in good agreement at the 

highest temperatures of this study, but do not reflect the negative temperature dependence 

reported here (until approximately 600 K, where their rate coefficient begins to decrease; 

an unusual temperature dependence that is not explained). The further modifications to 

the model by Serinyel et al. enabled a comparison to experiments conducted using a jet-

stirred reactor between 450 – 1250 K, where strong low temperature chemistry was 

indicated at 10 atm. The R + O2 rate coefficient proposed was adapted from work by 

Goldsmith et al. [239], and resulted in an overestimation by approximately 65% at ~460 K 

(kC2H5OC2H4+O2 = 2.3 × 10–11 cm3 molecule–1 s–1) compared with the value obtained in this 

work. The measurements presented here will be more important at the lower temperatures 

relevant to the study by Serinyel et al., and would help constrain the temperature 

dependence used for extrapolation to higher temperatures. 
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Table 5-2: Rate coefficients, kC2H5OC2H4+O2, measured in this work. Uncertainties 
are 2σ and purely statistical.  

T / K 10–17 [N2]a 1011 kC2H5OC2H4+O2
b T / K 10–17 [N2]a 1011 kC2H5OC2H4+O2

b 

298 1.65 2.84 ± 0.62 393 1.72 1.97 ± 0.25 

298 2.23 3.07 ± 0.96 402 6.62 2.14 ± 0.40 

298 3.31 3.19 ± 0.94 407 2.66 1.59 ± 0.17 

298 4.86 4.70 ± 1.62 407 3.29 1.78 ± 0.15 

355 4.30 2.89 ± 1.12 437 1.55 1.90 ± 0.16 

360 2.56 1.45 ± 0.42 441 3.01 1.50 ± 0.11 

364 1.89 2.50 ± 0.40 447 2.44 1.67 ± 0.18 

385 2.26 2.02 ± 0.42 448 6.13 1.53 ± 0.17 

387 2.33 1.54 ± 0.46 464 1.45 1.38 ± 0.17 

388 3.75 2.01 ± 0.41    
aunits are molecule cm–3. bunits are cm3 molecule–1 s–1. 

 

5.6 Experimental OH Yields for the CH3CH2OCHCH3 + O2 Reaction 

OH yields from well-skipping in the DEE system were obtained over 5.2 – 28.4 

Torr of N2, and 298 – 496 K (thermal production of OH from stabilised RO2 radicals 

begins above approximately 500 K). Treating these data with a Stern-Volmer analysis 

(Figure 5-6) demonstrates an increase in yield with increasing temperatures, and the 

suppression of yields at higher pressures. This is consistent with what would be expected 

of OH yields from reaction R 5-4, a process deactivated by the pressure-dependent 

stabilisation of the RO2* radical (reaction R 5-5). At room temperature (black filled 

circles, Figure 5-6), yields were particularly low above 5 Torr (approximately 15% and 

below), which is reflected in the greater uncertainties due to the less pronounced 

biexponential decays when using the method reliant on these decays. There were no 

discernible differences between measurements made using the two methods for obtaining 

OH yields, other than the larger uncertainties on the high/no O2 method as a result of the 

non-global approach to analysis. The previous study on the DME system by Eskola et al. 

[89] at the University of Leeds did not always achieve as good agreement when using 

various methods (see Table 4-4 quenching coefficients in Chapter 4). All yields, with 

details of uncertainties and the method used are presented in Table 5-3, and Figure 5-7 

differentiates between the yields obtained using both techniques to illustrate this 

agreement. Quenching coefficients, kM/kC, determined from the slope of the Stern-Volmer 

plots are included in Table 5-4. 
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Figure 5-6: Stern-Volmer analysis of OH yields, over a temperature range 298 – 
494 K. Fits pinned to intercept of 1 (i.e. 100% yield at 0 Torr pressure). A shared 
intercept of 0.95 is found when not pinned. Dashed lines are extrapolated past data 
points. Note a few temperatures are omitted (listed in Table 5-3, as they had no other 
pressure values to fit a line through). Error bars are statistical at the 2σ level. 

 

Figure 5-7: Comparison of yields obtained from two methods. Filled symbols 
indicate yields obtained by the addition of low O2 concentrations to obtain a 
bimolecular for the R + O2 rate coefficient, where the OH yield was extracted by 
global analysis. Open symbols indicate the yield was extracted from analysis of the 
bimolecular rate coefficient in the absence and presence of added O2. Uncertainties 
are statistical at the 2σ level. 
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Reciprocal yields were fit using weighted linear analyses, and intercepts are fixed 

at unity, imposing a 100% OH yield at [N2] = 0 molecule cm–3, which still allowed a good 

fit to the data. The only possible exception to this observation is the 298 K set of data, 

where there exists only two well-defined measurements, and three OH yields with 

particularly large uncertainties.   

 

Table 5-3: OH yields measured for the DEE system. Uncertainties are 2σ 
and purely statistical. 

T / K [N2]a  Yieldb Method T / K [N2]a  Yieldb Method 

298 1.65  30 ± 3 Low O2  298 2.23  16 ± 14 High/no O2 

298 2.23  17 ± 2 Low O2  352 1.95  42 ± 7 High/no O2 

298 3.31  9 ± 1 Low O2  362 3.80  26 ± 18 High/no O2 

298 4.86  9 ± 2 Low O2  363 7.26  1 ± 18 High/no O2 

355 4.30  17 ± 4 Low O2  384 2.24  39 ± 7 High/no O2 

360 2.56  29 ± 3 Low O2  385 3.80  28 ± 8 High/no O2 

364 1.89  38 ± 2 Low O2  402 1.69  53 ± 23 High/no O2 

385 2.26  34 ± 3 Low O2  405 3.35  32 ± 23 High/no O2 

387 2.33  46 ± 8 Low O2  405 6.62  21 ± 15 High/no O2 

388 3.75  25 ± 2 Low O2  427 1.99  54 ± 9 High/no O2 

393 1.72  43 ± 2 Low O2  430 1.55  56 ± 25 High/no O2  

402 6.62  18 ± 2 Low O2  435 3.06  41 ± 26 High/no O2 

407 2.66  41 ± 2 Low O2  437 6.20  27 ± 11 High/no O2 

407 3.29  34 ± 1 Low O2  457 1.47  60 ± 10 High/no O2 

437 1.55  49 ± 2 Low O2  462 1.46  69 ± 34 High/no O2  

441 3.01  44 ± 1 Low O2  462 2.95  51 ± 22 High/no O2 

447 2.44  51 ± 2 Low O2  465 5.76  29 ± 6 High/no O2  

448 6.13  28 ± 1 Low O2  488 5.44  46 ± 6 High/no O2 

464 1.45  61 ± 3 Low O2  496 1.38  76 ± 23 High/no O2 

    496 2.79  54 ± 12 High/no O2 

aUnits are 1017 molecule cm–3. bYields are in %. 

 

A Stern-Volmer plot with OH yield intercepts allowed to float is shown in Figure 

5-8, which differs from the analogous plot for the DME system, where the intercepts are 
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not close to unity. From 298 – 494 K, the corresponding intercepts at [N2] = 0 are –2.0, 

0.49, 0.40, 1.04, and 1.13. Translated into OH yields, this suggests yields of –50%, 205%, 

249%, 96%, and 88%. For comparison, floated intercepts for the DME system suggested 

yields between 97% and 107%. Clearly, the yields at zero pressure are mostly not realistic, 

and this is largely due to a lack of sufficient data points to properly characterise the fits, 

without pinning to an intercept of 1. A greater range of differing temperatures was 

explored for the DEE system compared to the DME experiments, so as to provide more 

information to the master equation calculations in this chapter. As such, there are fewer 

‘groups’ of data to construct extensive Stern-Volmer plots. This is not an issue for the 

master equation analysis (see Figure 5-16), but does not translate well to illustrative 

figures.  

 

 

Figure 5-8: The same Stern-Volmer plot as in Figure 5-6, but with intercepts floated. 
Intercepts are –2.0, 0.49, 0.40, 1.04, and 1.13 with increasing temperature from 298 
– 494 K. Error bars are statistical at the 2σ level. 
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Table 5-4: Quenching coefficients for C2H5OC2H4 + O2 obtained in the current 
work for the fits in Figure 5-6. M = N2 for all measurements.  

T / K P / Torr kM/kC / 10–18 cm3 molecule–1 

298 ± 2 5.2 – 15.3 17.44 ± 6.87 

362 ± 2 7.1 – 14.2 8.91 ± 1.28 

405 ± 2 7.0 – 27.8 5.87 ± 0.48 

463 ± 1 7.0 – 27.7 4.30 ± 0.45 

494 ± 4 7.1 – 27.5 2.29 ± 0.76 

Uncertainties on quenching coefficients are statistical at the 2σ level. 

 

5.7 Additional Experimental Parameters 

Much like the DME experiments, a wide variation in DEE concentration was not 

normally used across a group of traces, and so kOH+DEE from a narrow range of [DEE] 

should yield a poorly defined bimolecular rate coefficient for OH + DEE, however, Figure 

5-9 demonstrates measurements in this work are approximately in agreement with 

kOH+DEE measured in Chapter 3, when uncertainties on the direct OH + DEE 

measurements are considered. Above approximately 400 K it is possible that kOH+DEE 

measured in this chapter (black circles) begin to measure a slower rate coefficient than 

the Arrhenius parameterisation previously obtained (red squares).  

kx as a function of pressure is displayed in Figure 5-10 obtained using the global 

analysis method. As in the DME system, these values showed no dependence on 

temperature, which is not included in this figure. The rates are not dissimilar to DME, 

where they are relatively slow (<750 s–1) and virtually statistically insignificant. There is 

some evidence that the rate may increase at low pressure. This may possibly indicate the 

kx parameter is accounting for some diffusion at very low pressures, where OH loss may 

deviate from the typical rates of ~200 s–1 and exhibit non-exponential decay behaviour.  
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Figure 5-9: Comparison of kOH+DEE measured in this work from global analysis 
(black), with direct measurements of kOH+DEE in Chapter 3 (red). Uncertainties are 
2σ and statistical, and the red shaded area represents the 95% confidence limits of 
the direct measurements.  

 

 

Figure 5-10: Rates of kx obtained for the DEE system as a function of pressure. 
Uncertainties are statistical at the 2σ level. 
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Figure 5-11: Values obtained for O2x in the DEE experiments as a function of 
temperature using the H2O2/H2O precursor and global analyses. Uncertainties are 
statistical at the 2σ level. 

 

The oxygen concentration delivered to the system by decomposition of the H2O2 

precursor is presented as a function of temperature in Figure 5-11, with pressures 

specified. The amount of oxygen in the system is comparable to those for the DME 

experiments (see Chapter 4) as expected; O2x should depend on the precursor, not the 

ether. No dependence on temperature is clear, but there is some evidence here of 

increasing oxygen at higher pressures, but it is not an extreme increase (approximately a 

factor of 2 – 3 from 5 to 28 Torr).  

 

5.8 Theoretical Comparison 

The rate coefficient and OH yield data obtained for reaction R 5-4 were fitted using 

Energy Grained Master Equation (EGME) calculations in the MESMER (Master 

Equation Solver for Multi Energy-well Reactions) package, based on ab initio 

calculations for the stationary points of the low temperature DEE oxidation potential 

energy surface. A hindered rotor model was used.  
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5.8.1 Ab Initio Calculations 

The potential energy surface calculated is shown in Figure 5-12, where the black 

line represents the calculated surface with no master equation fitting. Optimised 

geometries of the species were calculated using the  density functional theory (DFT) 

functional M06-2X and the Jun-cc-pVTZ basis set, along with zero point energies (ZPEs), 

force constant matrices, rotational constants, and vibrational frequencies. The stationary 

point energies of the M06-2X/Jun-cc-pVTZ optimised geometries were calculated using 

high performance coupled cluster calculations with single, double, and triple excitations, 

using the CCSD(T) method and the Jun-cc-pVTZ basis set. The Jun-cc-pVXZ basis sets 

remove the diffuse functions from H and He atoms, and the highest angular momentum 

diffuse functions from other atoms. However, Gaussian 09 always introduces s and p 

diffuse functions. 

During the calculation of the density of states, a harmonic oscillator 

approximation was generally used for vibrational frequencies, but a hindered rotor 

description for vibrational frequencies of bonds was also used in place of this for some 

species (see Figure 5-13). Internal rotation around bonds in the stationary points were 

described using the hindered rotor approach, where a relaxed scan of the dihedral angle, 

in 15o steps, was used to determine the potential. These were calculated using M06-

2X/Jun-cc-pVTZ. The Gaussian 09 [240] suite of programs was used to calculate 

geometries, frequencies, rotational constants and relative stationary point energies for the 

DEE α R radical, RO2, QOOH and R decomposition product species and transition states. 

Complete basis set extrapolations would ideally have been carried out, but were not, as 

they were computationally prohibitive. The CCSD(T) method, and the calendar basis sets 

[241] (Jun, Jul etc.) were chosen as a result of the computational limits, and their 

suitability for this system has been demonstrated previously by Sandhiya et al. [226]. Dr. 

Diogo J. Medeiros conducted the initial ab initio calculations at the M06-2X/Jun-cc-

pVTZ level for all species other than those involved in decomposition of the R radical. 
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Figure 5-12: Calculated PES (black) for the DEE R + O2 model with adjusted 
MESMER values (red).  

 

Only the dominant α site abstraction pathway was considered in the calculations, 

where 95% of abstractions are expected to occur [161]. Calculations for the alternative 

pathway from the β abstraction site in future studies could help to determine branching 

ratios, and the contribution of both sites to OH yields and the kinetics of the R + O2 

reactions. Transition state pathways for the rearrangement of CH3CH2OCH(O2)CH3 to 

CH3CHOCH(OOH)CH3 (TS1), decomposition of CH3CHOCH(OOH)CH3 (TS2), and 

decomposition of CH3CH2OCHCH3 (TS6) were all considered. It is possible there are 

more decomposition pathways for the QOOH radical, similar to the DME system [89], 

but only one was considered due to restrictions, where calculations were computationally 

expensive and time-consuming. At the temperatures where measurements of the 

C2H5OC2H4 + O2 rate coefficient were made (approximately lower than 470 K), the 

pathway for decomposition of the R radical via TS6 is not expected to contribute 

significantly. The ab initio calculations are summarised in Table 5-5, and the details of 

rotational constants and vibrational frequencies are presented in Appendix C. 
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Figure 5-13: Internal hindered rotations calculated for species R (A), RO2 (B), 
TS1 (C), QOOH (D), and TS2 (E). 

 

Previous ab initio calculations carried out on relevant species are summarised in 

Table 5-5, where the earliest calculation by Di Tommaso et al. [115] is the only study to 

compute the single point energies of all the same species as this work, but the B3LYP/6-

311++G(d,p) methodology is of a much lower level than presented here, and so the RO2, 

QOOH, TS2, and TS6 species differ by several kcal mol–1. Sakai et al. [225] however 

used the CBS-QB3 methodology to obtain a value for TS2 (–13.6 kcal mol–1) more 

comparable to that of Di Tommaso than this work. This suggests the MESMER prediction 

of a lower barrier for the decomposition of QOOH to products (discussed in section 5.8.2) 

is not unrealistic, and a different transition state to the one found in this chapter may 

properly identify the route to efficient OH yields observed in the chemical activation 

experiments.  

Reasonable agreement (within ~3 kcal mol–1) is found between the calculations in 

this work and Sakai et al. [225], Sandhiya et al. [226], and Wang and Wang [227], for the 

well-depths of the RO2 and QOOH species. More focused on the atmospheric oxidation 

of DEE, these studies did not give consideration to the decomposition of the R and QOOH 

radicals. A study by Hu et al. [228] was targeted towards compression ignition modelling, 

and only concerned itself with the decomposition of the R radical, where they refined 

MP2/6-311(d,p) calculations at G3 single point energies, based on single point energy 

calculations at MP2, MP4, and QCI levels, using different basis sets. Their calculated 
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barrier height for TS6 (24.0 kcal mol–1) is in excellent agreement with the value reported 

in this thesis (23.7 kcal mol–1).  

 

Table 5-5: Comparison of calculated energies for the DEE surface.  

Methodology Ref RO2 TS1 QOOH TS2 TS6 

CCSD(T)/Jun-cc-pVTZ 
//M062-X/Jun-cc-pVTZ 

This work –34.8 –15.1 –25.6 –3.7 23.7 

B3LYP/6-311+G(d,p) Di Tommaso et 
al. 

–31.8 –14.6 –17.0 –10.8 19.2 

CBS-QB3 Sakai et al. –37.5 –20.1 –28.7 –13.6 na 

UCCSD(T)/Aug-cc-
pVDZ//UM06-2X/6-
311++G(d,p) 

Sandhiya et al. –37.4 –14.7 –26.9 na na 

UCBS-QB3//M06-2X 
/6-311++G(2df,2p) 

Wang and Wang –37.7 –19.7 –28.8 na na 

G3//MP2/6-311(d,p) Hu et al. na na na na 24.0 

All energies are in units of kcal mol–1 and are ZPE corrected. Relative to the energy of 
the α R radical (and O2 for all but TS6). References are Di Tommaso et al. [115], Sakai 
et al. [225], Sandhiya et al. [226], Wang and Wang [227], and Hu et al. [228]. 

 

5.8.2 MESMER Analysis  

Using the ZPEs, vibrational frequencies, force constant matrices and rotational 

constants obtained from the ab initio calculations on the diethyl ether oxidation surface 

described above (Figure 5-12), master equation solving was carried out using the 

MESMER software package, which solves the EGME. The MESMER model consists of 

a bimolecular source term (reaction R 5-4), energy wells for isomers, transition states to 

isomers, and product energy wells that act as infinite sinks for the system (Figure 5-14).  
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Figure 5-14: Representation of the Energy Grained Master Equation model for a 
generic association reaction, with two wells (C1 and C2), and an irreversible product 
channel. Taken from Glowacki et al. [242]. 

 

Energies of the species were partitioned into 100 cm–1 grains, and collisional 

energy transfer was modelled using the exponential down term, 〈ΔE〉down, the average 

energy transferred downwards during collision with the bath gas. Collision with the bath 

gas can also transfer energy upwards to the species. Each grain of the system is populated 

or depopulated through collisional energy transfer into another grain. Population by the 

bimolecular reaction between O2 and CH3CH2OCHCH3, and depopulation by 

dissociation and/or re-dissociation to products and reagents respectively, both also take 

place. The probability of energy transfer between two grains is determined by the 

exponential down model and decreases exponentially with separation of the two grains. 

The parameter for energy transfer is given below (equation E 5-2),   

 

 
 〈ΔE〉down =  〈ΔE〉down,ref ൬

T

Tref
൰

n

 E 5-2 

 

here, n was fixed to 0.25 for the N2 bath gas [243], and Tref refers to 293 K.  

Densities of states were calculated assuming rigid rotors for external rotations, 

and treating vibrations as harmonic oscillators. Hindered rotor models were also used for 

some vibrational modes. In each energy grain, microcanonical rate coefficients for the 
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unimolecular reactions are calculated via microcanonical transition state/RRKM theory 

(equation E 5-3): 

 

 
k(E) = 

W (E)

hρ(E)
 E 5-3 

 

where W(E) is the sum of rovibrational states at the optimised geometry, and ρ(E) is the 

density of rovibrational states. For the barrierless association reaction R 5-4, the inverse 

Laplace transform (ILT) approach was used. Here, the microcanonical dissociation k(E)s 

are determined using experimental measurements of the reaction rate coefficient. 

Phenomenological rate coefficients were calculated by MESMER using the Bartis and 

Widom approach to select the chemically significant eigenvalues present in the master 

equation [244].  

 The EGME can be described by equation E 5-4: 

 

 dp 

dt
 = Mp E 5-4 

 

where p is the population density vector, and M is the transition matrix, which describes 

the population evolution as a function of time, brought about by collisional energy 

transfer and reactions. Solving equation E 5-4 gives equation E 5-5: 

 

 p = UeΛtU–1p(0) E 5-5 

 

here, U is a matrix of eigenvectors from the diagonalization of M, Λ represents the vector 

of the corresponding eigenvalues, and p(0) represents the starting conditions of each 

energy grain. For the RO2 to QOOH hydrogen shift (TS1), the asymmetric Eckart 

tunnelling correction model [245] was used.  

In total, 58 experimentally determined data points for rate coefficients and OH 

yields have been used to fit the MESMER model by optimising parameters on the DEE 

PES. The Marquardt algorithm was used to fit the rate data to the calculated surface, 

providing a practical assessment of the agreement between the ab initio calculations and 
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experiments, and to predict the high pressure limit for reaction R 5-4. 39 of the data points 

were OH yields, and 19 were measurements of the R + O2 rate coefficient. Two models 

were fit to the data; the first relied on vibrational constants to calculate the density of 

states for species; the second incorporated the hindered rotor calculations outlined above, 

to describe internal rotations of dihedral bond angles (Figure 5-13). The fit to the model 

was obtained by reducing the value of the statistical measure of goodness of fit, χ2, where 

this relates the experimental values of a parameter to the parameter calculated by 

MESMER in equation E 5-6: 

 

 χ2(A∞, 〈ΔE〉down, ETS1, ETS2) = 
൫ki,ob(pi,Ti) – ki,mod(pi,Ti)൯

2

σi
2

58

i=1

 E 5-6 

 

where A∞ was the Arrhenius pre-exponential factor for reaction R 5-4, 〈ΔE〉down was the 

exponential down energy transfer parameter, ETS1 and ETS2 were the single point energies 

for the respective transition states, ki,ob(pi,Ti) was the experimentally observed value for a 

set of conditions, ki,mod(pi,Ti) was the modelled value at the same conditions, and σi was 

the uncertainty in the experimentally determined value. The Levenberg-Marquardt 

algorithm was used to reduce χ2. 

 In the above fitting routine, n∞, the temperature exponent term for reaction R 5-4 

was fixed at a value of –1.2, and attempts to float the parameter showed it was insensitive 

to variation by a factor of two. The single point energy for TS1 was linked to the single 

point energy for TS2, based on the difference between the two ab initio energy 

calculations. TS2’s energy was adjusted, and will primarily have been characterised by 

the OH yields measured in this work, with TS1’s energy floating relative to TS2.  The 

activation energy of reaction R 5-4 was set to 0, consistent with a barrierless association 

reaction. 

A similar fit was found for both the model with, and without, hindered rotor 

description of bonds, where a χ2 value of 86 and 100 was found respectively. An ideal fit 

would provide a χ2 value equivalent to the total number of data points, so in this case, χ2 

= 58 would indicate a perfect fit. The value for the minimised χ2 reported by MESMER 

scales linearly with the uncertainties on experimentally determined data provided (i.e. 

doubling all experimental uncertainties will give an identical MESMER fit, with 

uncertainties on fitted parameters twice as large). As such, all uncertainties provided to 
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MESMER for yields and rate coefficients were statistical at the 2σ level, hence, the 

uncertainty on returned MESMER parameters are propagated 2σ uncertainties.  

Correlation plots are shown in Figure 5-15 and Figure 5-16 for the reaction R 5-4, 

C2H5OC2H4 + O2, rate coefficient and OH yields respectively, where the modelled data 

are plotted against the experimental determinations, with x error bars representing the 2σ 

uncertainties in the measured values. Weighted linear fits to the data in the correlation 

plots show very similar fits for both MESMER models, where near perfect 1:1 

correlations are present, with the intercepts pinned at 0. 

 

 

Figure 5-15: Correlation plot for the modelled reaction R 5-4 rate coefficients 
against experimentally observed rate coefficients. Black data are for the MESMER 
model using hindered rotors, and red for the vibration-only model. Fits to the data 
are pinned to the origin, and the slopes are 0.98 and 0.99 for the black and red lines 
respectively. Uncertainties are statistical at the 2σ level. 
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Figure 5-16: Correlation plot for the modelled OH yields against experimentally 
observed OH yields. Black data are for the MESMER model using hindered rotors, 
and red for the vibration-only model. Lighter coloured yields were obtained from 
the high O2/no O2 bimolecular determination, and inherently have larger error bars. 
Fits to the data are pinned to the origin, and both lines have a slope of 0.99. 
Uncertainties are statistical at the 2σ level. 

 

Results for the floated parameters in the two models outlined above are listed in 

Table 5-6. There is a small difference of 1.2 × 10–12 cm3 molecule–1 s–1 in the reaction R 

5-4 pre-exponential factor for the two models when considering uncertainties. The largest 

discrepancy is between the single point energies found for TS2, the transition state for 

QOOH decomposition to OH. This should be a well-defined parameter as a result of the 

large number of OH yields generated using two methods provided to the model, where 

this barrier (which has the highest energy of the transition states post O2 addition to the 

R radical), controls the amount of QOOH* able to decompose via well-skipping to OH 

radicals. The small relative uncertainty of 0.3 kcal mol–1 in both models reflects the 

sensitivity of the model and data to TS2. The difference of 3 kcal mol–1 between the 

vibration-only model and the hindered rotor model is a significant discrepancy, and may 

suggest the greater density of states available to the RO2 and QOOH species energy wells 

in the hindered rotor model reduces the amount of chemical activation possible. In 

comparison to the energy wells, the calculations for TS1 provide hindered rotations for 

only two bonds (compared to six in RO2), thus increasing the density of states in TS1 to 
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a lesser degree than the adjacent energy wells. This issue will not be present in the 

vibration-only model, and thus TS2 and TS1 are not required to be as low to account for 

the shift in equilibrium to the reactant sides of the transition states.  

 

Table 5-6: Adjusted parameters found by the reduction of χ2 when fitting the 
MESMER models to the experimentally observed rate coefficients and OH yields.  

Parameter MESMER model Ab initio 

 Hindered rotors Vibration only 

ETS1 (–21.7 ± 0.3) (–18.1 ± 0.3) –15.1 

ETS2 (–10.3 ± 0.3) (–6.7 ± 0.3) –3.7 

A∞ (3.34 ± 0.22) × 10–11 (2.87 ± 0.13) × 10–11 na 

〈ΔE〉down (599 ± 184) (590 ± 186) na 

χ2 86 100 na 

Units of E = kcal mol–1 and relative to R + O2, A units = cm3 molecule–1 s–1, 〈ΔE〉down 
units = cm–1.  

 

 Given the calculated ab initio energy barrier for TS2 at the CCSD(T)/Jun-cc-

pVTZ level was –3.69 kcal mol–1 relative to the R + O2 entrance channel, a required 

change of ~3 – 7 kcal mol–1 with the MESMER fitting routine is a significant adjustment, 

and suggests the energies for TS2 are not being calculated accurately. There is the 

possibility that the experimental data are systematically wrong, however, the observations 

are qualitatively consistent with the reaction studied, and the agreement between the two 

OH yield generation methods is excellent. In the previous study by Eskola et al. [89] at 

the University of Leeds, their use of MESMER to fit experimental data for the CH3OCH2 

+ O2 surface ab intio calculations also led to large adjustments in transition state barriers. 

For the analogous DME system, TS1 was lowered by ~5 kcal mol–1, and TS2 was lowered 

by ~10 kcal mol–1. This highlights the importance of using laboratory measurements to 

adjust ab initio calculations, and suggests that the transition states in particular are not 

currently described well by theoretical calculations. As a result of allowing the transition 

state energies to float, the Stern-Volmer plot in Figure 5-17 is recreated well by the 

MESMER modelled predictions for the OH yields. Interestingly, MESMER does not 

predict an intercept of 1, and therefore suggests 100% OH yields are not possible. 

MESMER intercepts in Figure 5-17 correspond to a range of (64 – 85)% yields of OH in 

increasing temperature. Physically this would suggest that some RO2/QOOH molecules 

will never dissociate to generate OH.  
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Figure 5-17: Stern-Volmer treatment of OH yields, with dotted lines representing 
the MESMER predictions. Instrumentally weighted fits were used, and intercepts 
for experimental data were set to unity. Intercepts on the MESMER fits = 1.56, 1.45, 
1.35, 1.23, 1.18, from low to high temperature. Uncertainties are statistical at the 2σ 
level. 

 

Finally, a value close to 600 cm–1 for 〈ΔE〉down in both models (Table 5-6) is 

unusually high, considering a typical system in nitrogen bath gas would be expected to 

have a collisional transfer energy of 175 – 275 cm–1 [246]. The large uncertainties on both 

values however, may place this parameter as low as ~400 cm–1, and a comparison of the 

same model (simulating, rather than fitting to data) ran with fixed 〈ΔE〉down values of 300 

cm–1 and 100 cm–1 in Figure 5-18, shows very little effect on the simulated reaction R 5-4 

rate coefficient temperature dependence at the high pressure limit. On the contrary, yields 

are greatly affected by the change in average energy transferred during collisional 

deactivation, as would be expected (Figure 5-19).  

With 〈ΔE〉down fixed at 100 cm–1, the model achieves a significantly less good fit, 

with a χ2 ≈ 170, an A∞ over twice as large as that reported in Table 5-6, and the model 

still required an adjustment of TS2 down by over 4 kcal mol–1 from the ab initio value. 

Attempting to fit the data to the model with the initial TS2 ab initio value (–3.7 kcal 

mol–1) fixed, yields a χ2 > 6000, and thus is not able to fit the data satisfactorily.  
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Figure 5-18: kC2H5OC2H4+O2 dependence on temperature with the high pressure limit 
calculated by MESMER (black). Red and green lines are MESMER fits where 
〈ΔE〉down was fixed at 300 cm–1 and 100 cm–1 respectively.  Uncertainties are 
statistical at the 2σ level. 

 

 

Figure 5-19: Stern-Volmer plot for MESMER predicted yields at varying 〈ΔE〉down 
values. Only two temperatures are displayed, for clarity.  
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 The prediction of the high pressure limit for reaction R 5-4 in the hindered rotor 

MESMER model does qualitatively predict the negative temperature dependence of the 

bimolecular rate coefficient, and predicts a slight pressure dependence across the range 

of total gas density explorable in this work in Figure 5-20. The measurements of the R + 

O2 rate coefficient presented here as a function of pressure, do not have small enough 

uncertainties (particularly at low temperatures), enough pressures explored, or a large 

enough pressure range explored, to confidently identify any pressure dependence. 

However, the comparison to the MESMER model in Figure 5-18, where experimental 

measurements are approximately 20% slower than the MESMER predicted rate 

coefficients at higher temperatures, does suggest the experimental observations may not 

have always been at the high pressure limit for the reaction.    

 

 

Figure 5-20: kC2H5OC2H4+O2 as a function of total pressure, with lines for MESMER 
fits. Uncertainties are statistical at the 2σ level. 
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frequency-only model with the hindered rotor description model. At the current ab initio 

level used in this work, CCSD(T)/Jun-cc-pVTZ//M06-2X/Jun-cc-pVTZ, there will be a 

different MESMER model fitting result to that found if calculations with the complete 

basis set extrapolation were possible, as this would affect the fixed well-depths used for 

the RO2 and QOOH species, and the relative difference enforced between TS1 and TS2. 

The energies for RO2 and QOOH were not defined by the experimental data for the system 

when floated. Experiments measuring the interception of the QOOH radical by O2 would 

go some way to defining the equilibrium, and therefore the difference in energy between 

the two radicals.  

 

5.9 Comparative Discussion of C2H5OC2H4 + O2 and CH3OCH2 + O2 

Both dimethyl and diethyl ether produced negative temperature dependences for 

the R + O2 reaction rate coefficient (Figure 5-21), the major difference being the 

magnitude of the rate coefficients. From room temperature to approximately 450 K, the 

C2H5OC2H4 + O2 rate coefficient remains approximately three times faster than that for 

CH3OCH2 + O2 (3 to 1.5 × 10–11 cm3 molecule–1 s–1, and 1 to 0.5 × 10–11 cm3 molecule–1 

s–1). The α site expected to be the major pathway for the DEE R radical is activated by 

proximity to the –O– group, and also the adjacent methyl group, so a faster rate is 

expected than the equivalent rate for the DME R radical, where only the adjacent –O– is 

able to contribute. The possibility of addition to the β site in the DEE system may also 

increase the rate coefficient.   

Figure 5-22 presents the quenching coefficients obtained for the DEE and DME 

systems, where the higher quenching coefficients for DEE represent lower yields. This 

can be explained by the larger size of the C2H5OC2H4 molecule, where it is more likely 

to undergo collisional deactivation, be thermalised into a local energy minima, and not 

well-skip directly to the OH product. At the highest temperatures, this effect becomes less 

pronounced and the quenching coefficients of the two systems begin to converge.  
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Figure 5-21: Comparison of measured R + O2 rate coefficients for DEE (red) and 
DME (black), as a function of temperature. Uncertainties are statistical at the 2σ 
level. 

 

 

Figure 5-22: Comparison of the quenching coefficients obtained for the DEE and 
DME systems as a function of temperature.  
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5.10 Conclusions 

Measurements of the rate parameters for the diethyl ether R + O2 system have 

been presented for the first time across a range of temperatures, 298 – 464 K, and 

pressures, 5.2 – 28.4 Torr of N2. Comparisons to the equivalent observations for the DME 

system were made, where rate parameters for the C2H5OC2H4 + O2 reaction exhibit a 

bimolecular rate coefficient approximately three times larger than CH3OCH2 + O2, and 

the quenching coefficient measured in N2 for OH yields from DEE was greater than for 

DME. This difference was attributed to the greater probability of collisional quenching 

for the larger molecule.  

Experimentally determined OH yields and R + O2 rate parameters were compared 

to ab initio calculations of the DEE low temperature oxidation surface, where stationary 

point energies of R + O2, RO2, QOOH, product, and transition state species were 

determined at the CCSD(T)/Jun-cc-pVTZ//M06-2X/Jun-cc-pVTZ level. Master equation 

solving using the MESMER code showed that a reduction in the theoretical values of the 

RO2 ↔ QOOH and QOOH → OH transition state barriers of ~7 kcal mol–1 was required 

to achieve good agreement with the observed rate parameters, suggesting the ab initio 

calculations do not describe the transition states accurately.  

Future work should focus on a greater range of C2H5OC2H4 + O2 rate parameters, 

where the optimal experimental conditions determined in Chapter 4 could be used to 

provide a more comprehensive characterisation of the pressure dependence (at lower 

pressures) of the R + O2 rate coefficient. Theoretical calculations could also extend to a 

more complete description of the low temperature combustion surface. If any initial 

hydrogen abstraction occurring at the β site of the DEE molecule proceeds to contribute 

to the R + O2 reaction and OH yields, the MESMER package may be able to provide 

information on the branching ratios.  
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Chapter 6 Other Sources of OH Regeneration 

6.1 Abstract 

This chapter presents some initial results obtained concerning OH regeneration in 

the low temperature combustion regime of ethers beyond the R + O2 chemical activation 

source discussed in previous chapters. These results are speculative, and not fully 

understood in a quantitative manner, however they are important observations, likely 

related to the decomposition of QOOH radicals, and potentially the interception of QOOH 

radicals by O2, a key step in the autoignition of fuels.  

 Observations of rapid OH growth and decays for experiments using DME, DEE, 

and DBE, in the presence of O2 and absence of OH precursor, have been measured above 

~480 K, 500 K, and 700 K respectively. Abstraction reactions between the fuel and O(3P) 

atoms have been proposed as the most likely mechanism for the growths after a series of 

experimental tests were conducted. Biexponential decays of OH for the same fuels were 

also measured, although the extent to which O atom chemistry contributes to these 

recycling traces is not known. MTBE and TMOF did not exhibit the same chemistry, and 

biexponential decays observed above 478 K and 568 K for these ethers in the presence of 

O2 have been analysed, providing OH yields invariant with O2. A mechanism for the 

MTBE yields has been proposed, with an HO2 formation channel causing the relatively 

low (35 ± 5)% OH yields.  

 A complex fitting scheme was developed, incorporating the O(3P) + fuel 

reactions, and early attempts to analyse a large number of growth/decay traces using the 

scheme indicates there are other regeneration processes occurring on a longer time scale. 

The further regeneration mechanisms (involving QOOH) that these results imply are 

taking place, are complemented by some experiments conducted using an alternate 

experimental setup to that used to obtain the majority of data in this thesis, where no 

indication of O atom chemistry was seen. Under high O2 concentrations, and an O atom-

free reaction cell experiment, cool flame behaviour was observed using DEE, where 

photolysis-independent OH concentrations increased as a function of [O2]. The 

perturbation of these flames by LIF was carried out, however the OH yields and recycling 

parameters obtained via biexponential analyses of the OH decays are not fully understood.  
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6.2 Background and Previous Work 

Following the initial abstraction reaction involving a fuel and a small species 

(e.g. OH) (Chapter 3), and the addition of oxygen to the R radical formed (Chapter 4 and 

Chapter 5), several reactions leading to, and causing, chain-branching, are believed to be 

the key to the autoignition of fuels in low temperature combustion mechanisms. A 

schematic PES illustrating these reactions is presented in Figure 6-1, with the chain-

branching pathway highlighted in green and red.  

 

 

Figure 6-1: Generic low temperature combustion potential energy surface, showing 
propagation (blue and green) and chain-branching OH formation (green to red).  

 

Rearrangement of the RO2 species to QOOH, via an internal hydrogen abstraction, 

can occur initially, and the equilibrium usually lies heavily towards RO2 (reaction R 6-1). 

QOOH can thermally decompose to yield one OH, thus propagating the system of 

radicals, in reaction R 6-2. Alternatively, given high enough oxygen concentrations, the 

QOOH species can be intercepted by O2, to form the QOOH-peroxy radical in reaction R 

6-3. The higher energy of the QOOH well-depth makes this O2 interception particularly 

difficult experimentally, where sufficiently high O2 concentrations would result in 

quenching of fluorescence signal in a typical LIF experiment. From here, chain 

propagation can take place via reaction R 6-4, where the peroxy species falls apart to 

generate the first OH radical, and a ketophydroperoxide species, OQʹOOH (following 



195 
 

isomerisation). The second OH radical (and thus the branching species) arises from 

further decomposition of the OQʹOOH species in reaction R 6-5. 

 

 RO2 ↔ QOOH R 6-1 

 QOOH → OH + products R 6-2 

 QOOH + O2 → O2QOOH R 6-3 

 O2QOOH → OH + OQʹOOH R 6-4 

 OQʹOOH → OH + products R 6-5 

 

In the DME system, significant research has been carried out on the chain-

branching mechanism [87, 88, 94-96, 247-249], but the details are still not fully 

understood. Research by Jenkin et al. [250] proposed that the observed formation of 

HCHO reported by Japar et al. [180] can arise by the decomposition of the QOOH radical, 

where an internal hydrogen abstraction occurs (reaction R 6-6). Decomposition of the 

QOOH radical leads to the formation of formaldehyde (reaction R 6-7). The final OH 

product, formed by decomposition of the QOOH radical, requires high temperatures in 

order to provide the reaction enough energy to breach the energy barriers [89].  

 

 CH3OCH2O2 → CH2OCH2O2H R 6-6 

 CH2OCH2O2H → 2HCHO + OH R 6-7 

 

Decomposition of the O2QOOH radical (formed in reaction R 6-8) produces the 

hydroperoxymethyl formate (HPMF) species and an OH radical (reaction R 6-9). The 

resultant production of two radicals (OH and OCH2OCHO) (reaction R 6-10) from the 

decomposition of HPMF gives rise to autoignition of DME. The OCH2OCHO radical also 

produces an HCO2 radical and formaldehyde (CH2O) by decomposition (reaction R 

6-11) [95]. 

 

 CH2OCH2O2H + O2 → O2H2OCH2O2H R 6-8 

 O2CH2OCH2O2H → HO2CH2OCHO + OH R 6-9 

 HO2CH2OCHO → OCH2OCHO + OH R 6-10 

 OCH2OCHO → CH2O + HCO2 R 6-11 
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Curran et al. [94] originally proposed the temperature range 550 – 600 K for chain-

branching via HPMF decomposition (reaction R 6-10), and >600 K as the temperature at 

which decomposition of the hydroperoxy methyl methoxy (reaction R 6-7) radical begins 

to dominate the mechanism, giving rise to only one hydroxyl radical. Zhao et al. [96] built 

on the work carried out by Curran, to build an extensive reaction scheme for modelling 

DME combustion, and found chain branching should occur below 700 K via reaction R 

6-10 given enough O2 is present.  

Andersen and Carter hypothesised the potential chain-branching products, 

suggesting those formed in reaction R 6-10 [247, 248], but predicting an additional route 

to OH formation (reaction R 6-12) as the most probable.  

 

 HO2CH2OCHO → HCOOH + CHO + OH R 6-12 

 

Figure 6-2 shows the potential surface proposed by Andersen and Carter [249] as 

the “most efficient”, containing two relatively low energy barriers, and the direct 

production of two OH radicals as part of the chain-branching route.  

 

 

Figure 6-2: Potential energy surface suggested for dimethyl ether combustion, with 
possible chain branching route, figure from Andersen and Carter [249]. 
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The final steps towards chain-branching are particularly difficult to monitor 

experimentally, but some progress has been made, where Moshammer and co-workers 

have now detected HPMF using mass spectrometry [87, 88]. Other studies have focused 

on the low temperature oxidation mechanism of DME, through ab initio 

calculations [220, 227, 251].  

In theory, any ether molecule may follow this general mechanism, but the extent 

to which the molecule will regenerate OH via QOOH decomposition, or chain branch, 

will depend heavily on the heights of the barriers, relative well-depths of the RO2/QOOH 

species, structures of transition states, and possibly the structures of the OH co-products. 

In the case of diethyl- and di-n-butyl- ether, their larger structures will lead to more 

possibilities for abstraction, rearrangement, and addition, and therefore increasingly 

complex mechanisms.  

The most developed mechanism for the reaction of DEE with OH comes from 

several publications by Di Tommaso et al. [115, 252-254], where the mechanism is 

similar to that of DME, with the added complexity of two unique abstraction sites present. 

The α site is expected to dominate, as a result of the C–H bond weakened through 

proximity to the O atom. Hence, the α R radical is the major species formed during the 

initial abstraction reaction, and Di Tommaso and co-workers present a mechanism for the 

low temperature combustion mechanism of this radical. The rearrangement of RO2 to 

QOOH in the case of DEE will proceed preferentially via a six-membered ring transition 

state between both α carbon sites adjacent to the oxygen. The QOOH can undergo 

decomposition to propagate the reaction with formation of an OH radical (see Figure 6-3), 

favouring the formation of two acetaldehyde molecules, but with an alternative route 

resulting in a four-membered ring species.  
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Figure 6-3: Possible OH regeneration routes in the DEE low temperature 
combustion mechanism proposed by Di Tommaso et al. [115] for the α R radical.  

 

The O2QOOH species proceeds via an eight-membered ring (although it is not 

clear why a ring this large should form, stabilisation by an O–H interaction is proposed 

as the reason), followed by a six-membered ring, to form the ketohydroperoxide species. 

This is analogous to HPMF in the DME system, and can decompose via six routes. Three 

routes are shown in Figure 6-3, where the products circled form in a barrierless reaction 

that would be kinetically favourable, and therefore more likely on the timescales of 

combustion. The other route to OH formation, and the most competitive reaction that does 

not generate an OH radical, are both displayed (30.3 kcal mol–1 and 26.7 kcal mol–1 

barriers respectively).  

Hu et al. proposed that the minor channel, arising from β abstraction of the DEE 

molecule, will proceed through a seven-membered ring transition state for the RO2 → 

QOOH rearrangement, where the –OO•  group abstracts the internal hydrogen on the α 

site of the opposing carbon chain. At 4 atm pressure and 600 K, they predict 

approximately 92% of the initial fuel abstraction will occur at the α site. Almost 7% are 

β abstractions, and the remainder are negligible contributions of fuel decomposition. Hu 
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et al. show the route to the QOOH-peroxy species, and imply this molecule decomposes 

to smaller species. A suggested route to chain-branching OH radical formation is shown 

in Figure 6-4, based on that of the α radical.  

 

 

Figure 6-4: Possible OH regeneration routes for the DEE β R radical proposed by 
Hu et al. [228], with O2QOOH decomposition products also suggested. 

 

Ab initio studies have sought to increase knowledge of DEE’s low temperature 

autoignition mechanism [220, 225-228, 252-255], but without laboratory measurements 

of the important reactions and species, verifying the validity of computation calculations 

is challenging.    

To our knowledge, no ab initio studies exist on the low temperature chain-

branching mechanism of DBE, however Thion et al. [172] have studied its oxidation in a 

jet-stirred reactor (JSR), and Cai et al. [170] used flames and a laminar flow reactor to 

develop a kinetic model and validate the model against ignition delay times. Cai et al. 

suggested the only chain-branching route possible was that beginning with the γ R radical 

(Figure 6-5), and that despite the α R radical dominating the process (followed by γ, β, 

then δ), no OH is formed via this route. Thion et al. proposed this route was the dominant 

process in chain-branching, and suggested other smaller species (such as the propyl 

radical formed during the ketohydroperoxide decomposition step), also contributed to the 

complex chemistry where multiple OH regeneration routes exist. The QOOH-peroxy 

radical formed from the α radical containing the –OO and –OOH groups on either side of 

the ether –O– was suggested by Cai et al. to be six times more likely than the alternative 

O2QOOH species (with both oxygenated groups on the same carbon side chain). Cai et 
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al. also proposed that despite no chain-branching routes arising from the β and δ R 

radicals, both are able to propagate OH via decomposition of the QOOH radicals. Five-

membered ring species make these pathways possible, whereas the analogous routes for 

the α and γ mechanisms would require unfavourable four-membered ring species 

formations. These proposed routes are summarised in Figure 6-5, where the mechanisms 

begin with the relevant RO2 radicals. The number of potential routes here, and additional 

reactions such as decomposition of R radicals, and the smaller radical branching 

pathways, highlight the complexity of a large molecule like DBE in comparison to DME 

and DEE.  

 

 

Figure 6-5: Suggested di-n-butyl ether OH regeneration mechanisms under low 
temperature combustion conditions.  

 

 Cool flames arise as a result of the branching mechanisms described, and manifest 

themselves physically by a sudden temperature rise of approximately 100 K [86, 256]. 

The increasing reaction rate is quenched before the reaction completes, when only 5 – 

10% of the fuel has been consumed. A negative temperature dependence region is the 

cause of the arrested reaction rate, and is brought about by the reversal of the R + O2 

addition reaction (studied in Chapter 4 and Chapter 5) at higher temperatures 

(approaching 700 K). Under these conditions, the abstraction of a hydrogen from the R 

radical by O2 becomes more important, and results in HO2 formation – a much less 
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reactive radical than OH. Formation of R radicals via H abstraction by HO2 will be slow 

in competition with the HO2 + HO2 reaction. Here, H2O2 and O2 are formed, and the 

hydrogen peroxide will not decompose to form a significant number of OH radicals. Now, 

branching agents are destroyed more rapidly than they are formed (in the absence of RO2 

formation), hence the reaction is quenched until the R + O2 addition reaction equilibrium 

is shifted to the products once more. Experimentally, C. Morley [257] demonstrated that 

photolytic perturbation of cool flames was possible, using a pre-heated gas flow reactor 

with heptane/air mixtures at ~800 K, in 1 atm N2. Extra OH radicals were generated by 

photolysis of H2O2 (naturally present), to ‘perturb’ the cool flame, and the decay of the 

OH radicals was detected by laser-induced fluorescence, probing as a function of time. 

Decays exhibited triexponential behaviour that was attributed to the generalised model of 

autoignition (assigning rates for termination, propagation, and branching). These 

experiments demonstrated that it should be possible to extract rate coefficients for 

complex mechanisms under low temperature autoignition conditions.  

 

6.3 Experimental 

The majority of experiments in this chapter were carried out using the typical 

experimental setup described in Chapter 2. Di-n-butyl and diethyl ether were sometimes 

delivered using a bubbler method as described in Chapter 3 using Antoine parameters 

from Yaws and Yang [151]. The typical H2O2/H2O precursor was used, if needed, and 

the laser wavelengths used were 248 nm (photolysis), and 308 nm (probe). For some 

experimental checks, an ozone box (Thermo Scientific 49C Ozone Analyzer) was used, 

to detect absorption at 254 nm. Reagents used in this chapter were OH precursor 

(hydrogen peroxide, H2O2, Sigma-Aldrich, 50% (w/w) in H2O), buffer gas (N2, BOC, 

oxygen-free), O2 (BOC, 99.5%), H2 (BOC, high purity), DME (Argo International Ltd, 

99.8%), DEE (Sigma-Aldrich, ≥99%), DBE (Sigma-Aldrich, 99.3%), MTBE (Sigma-

Aldrich, 99%), TMOF (Sigma-Aldrich, 99.8%), and CH4 (BOC, >99.9%). 

 For the experiments in section 6.7, a different experimental setup was utilised 

(Figure 6-6). This has been described in detail previously [258, 259], but briefly, the 

primary difference between this and the setup used most, are the ability to achieve higher 

pressures as a result of the FAGE technique. FAGE, meaning fluorescence assay by gas 

expansion, involves the expansion of a high pressure reaction cell, through a small 

pinhole, into a low pressure detection region (approximately ≤1 Torr). In this way, high 
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pressure experiments (up to 2 atm) can be undertaken, with fluorescence monitoring 

taking place in the detection region free of significant quenching.  

 Here, a stainless steel tube (22 mm internal diameter), 0.5 metre long, allowed 

preheating of the gas that flowed along the tube. Calibrated MFCs were used to deliver 

the reactants, precursor, and buffer gas at a flow rate of approximately 10000 sccm, and 

the temperature was monitored by calibrated K-type thermocouples near the pinhole. 

Gases (N2 and O2) were delivered from cylinders, and liquids (H2O2 and DEE) from 

thermostatted bubblers, with N2 backing flow. The photolysis pulsed was generated by 

an excimer laser operating on KrF (Lambda Physik, Compex 200, 10 Hz) to generate 248 

nm light. At the end of this tube, the pinhole (approximately <0.15 mm diameter) caused 

expansion of the gas into the detection cell. Flow rates of approximately 1200 sccm in 

this cell gave pressures of 0.3 – 5 Torr. Excess gas from the reaction cell was passed out 

through exhaust channels.  

 

 

Figure 6-6: Schematic diagram of the FAGE instrument used in section 6.7, 
reproduced from Stone et al. [258], showing the full instrument in the upper panel.  
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 OH radicals in the expanded jet region were detected by off-resonance LIF at 

308 nm collected using a filter (305 ± 5 nm, Barr Associates) and a PMT (Perkin-Elmer 

C1943P), and the probe laser was 282 nm light generated by frequency doubling the 

output of a dye laser (Continuum, Rhodamine 6G dye), pumped by a Nd:YAG laser 

(Quantel, Q-smart 850). A delay generator (BNC DG535) was used to vary the delay 

between the photolysis and probe laser to generate a time-resolved OH decay, which were 

averaged 5 – 30 times, and analysed using the same single exponential and biexponential 

equations employed throughout this thesis.  

Experiments using this alternate setup allowed higher pressures and greater O2 

concentrations to be explored in comparison to the typical setup used throughout this 

thesis. A further advantage was the lack of any interfering chemistry observed, which is 

discussed further in section 6.7. 

 Biexponential decays in this chapter were analysed using the basic biexponential 

analytical scheme described in Chapter 3 (Scheme 6-3). It should be noted that kb, the 

recycling parameter, can be as a result of several processes, such as QOOH 

decomposition, O2QOOH decomposition, and ketohydroperoxide decomposition. Any 

single exponential decays were analysed in the typical manner used throughout this thesis. 

Other analyses employed a more complex analytical scheme, and are described in detail 

in section 6.6.  

 

 

Scheme 6-1: Simplified reaction scheme for biexponential analysis equation 
parameters. 

 

6.4 Observation of Chain-branching? 

Biexponential kinetic decay traces were often obtained in the presence of oxygen 

(see Figure 6-7) when not in the chemical activation range of conditions (i.e. high pressure 

(≥50 Torr), temperature (≥~480 K), and oxygen (>~1015 molecule cm–3)). Evidence of 

OH recycling seen in this trace was observed for the DME, DEE, and DBE systems. For 

these ethers, biexponential behaviour was observed in the presence of O2 at temperatures 
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as low as 510 K, 450 K, and 483K respectively, however the effect is heavily dependent 

on several conditions, including [O2], [ether], and possibly pressure and flow.  

 

 

Figure 6-7: Biexponential decay of OH in reaction between DME and OH. Trace 
obtained at 552 K and 108 Torr N2, where [DME] = 5.1 × 1014 molecule cm–3 and 
[O2] = 2.5 × 1017 molecule cm–3. Red line is a biexponential fit: kaʹ = (2730 ± 150) s–1, 
kb = (750 ± 110) s–1, kc = (30 ± 40) s–1, kd = 340 s–1. Errors are statistical, calculated 
at the 2σ level. 

 

A range of oxygen concentrations was explored to attempt to draw conclusions 

about its effects on the recycling seen, and increasing the amount of oxygen present was 

often shown to increase the amount of recycling measured from biexponential decays, for 

experiments with DME and DEE. The dependence of the recycling parameter, kb, upon 

oxygen concentration often yielded a plot with a similar shape to those in Figure 6-8. The 

plot shows a form which has two clear plateaus at low and high oxygen concentration, 

and it is possible that these “limits” represent rates for reactions such as QOOH 

decomposition, or chain-branching reactions. However, not all dependences looked like 

this, and sometimes kb increased more linearly with oxygen concentration. Currently there 

is no consistent and well-understood trend.  
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Figure 6-8. Example of kb dependence on oxygen concentration for DME at ~600 K. 
Error bars are statistical, calculated at the 1σ level. 

 

Over a narrower and more specific range of temperatures and oxygen 

concentrations to those above, OH decays were obtained which conformed neither to a 

biexponential or a single exponential fit. These shapes exhibited a portion of constant OH 

signal, or sometimes even an increase, after the initial fast decay usually observed. An 

OH decay of this nature suggested OH was temporarily being produced on a scale greater 

than propagation and removal. Figure 6-9 is an example of this type of OH kinetic trace, 

which was seen for all three ethers.  

Beyond shoulders, more extreme manifestations of what was believed to be 

‘partial’ chain-branching mechanisms were observed for the ethers, where large growths 

of OH signal were measured under largely reproducible experimental conditions. It 

generally followed that the strength (i.e. height) of growths from strongest to weakest was 

DBE > DEE > DME. An example of this behaviour, shown here for the DBE system, is 

presented in Figure 6-10, where a range of oxygen concentrations are presented. At the 

peak levels of OH growth, the signal height is approximately 100% larger than [OH]0 

generated by the photolysis laser. 
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Figure 6-9. DME experiment exhibiting a temporary growth ‘shoulder’. 
Experimental conditions were T = 590 K, in 61 Torr N2, [DME] = 4.7 × 1014 molecule 
cm–3, and [O2] = 8.2 × 1016 molecule cm–3. 

 

 

Figure 6-10: Example of large OH signal growth observed in the presence of oxygen 
for the DBE system. Lowest [O2] = 0 molecule cm–3; [O2] range = (0.3 – 23) × 1016 
molecule cm–3. Experimental conditions were T = 762 K, in ~52 Torr N2.  
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The boundaries of where shoulders and growths were observed are mapped out in 

Table 6-1, although it is important to note that the causes of the significant OH production 

(explained later in this chapter) were present but hidden at other temperatures, such as 

temperatures where biexponential decays were observed,  and not solely where they were 

visible ‘by eye’ as shoulders or growths. Further, the boundaries mapped out in Table 6-1 

give an indication of where the OH production source is occurring, but does not expressly 

rule out other conditions where experiments may not have been conducted (e.g. above 

230 Torr for the diethyl ether system, and many other pressures for DBE where 

experiments were not conducted).  

 

Table 6-1: Approximate conditions mapped out for the observation of OH 
‘branching’ for DME, DEE, and DBE.  

Ether P range / Torr T range / K 

DME Below 150 480 – 545 

DEE To at least 230 500 – 650 

DBE ~50 Above 700 K 

  

Initial assumptions, that chain-branching was occurring in the reaction cell, were 

questioned as a result of two main features of the growth traces – the short timescale of 

the OH growth signal, and the rapid consumption of the ‘branching’ OH radicals.  

  It is not clear why chain-branching would begin to turn off on such a short 

timescale, indeed, branching by definition suggests it should increase until the fuel is 

consumed, which would not occur this rapidly. Similarly, HO2 formation channels should 

only become competitive at long timescales. One potential explanation could be the 

‘final’ products formed in a low temperature oxidation surface (for example 

formaldehyde in the case of DME) consuming the OH radicals formed by chain-

branching at a more competitive rate. However, if this were the case, it is likely that these 

species would form their own R and RO2 radicals, and undergo chain-branching 

themselves. For this to occur, it would also suggest that the products of the system are 

being formed after approximately 150 µs in the example presented in Figure 6-10, which 

is not expected. This is directly related to the other issue referred to above – the short 

timescale of the OH growth signal. Not only does the maximum OH signal occur at  

~150 µs, but the rise in OH occurs instantaneously at t = 0 in the high [O2] extreme growth 

traces. Simple numerical simulations using the Kintecus software package, based on 
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estimated rate coefficients for the reactions leading to chain branching, and approximate 

reactant concentrations and conditions used in experiments, indicated an induction period 

would be observable, and OH signal increases would not occur at t = 0.  

 Figure 6-11 presents experimental evidence that supported the uncertainty in the 

chain-branching observation. Signal in the absence of the hydrogen peroxide precursor 

confirmed the likelihood that there was alternate chemistry taking place in the reaction 

cell.  The signal in this example, using DEE, was significant (approximately half that with 

the precursor present), and disappeared when oxygen was also omitted from the 

experiment.  

 

 

Figure 6-11: Example of signal in the absence of hydrogen peroxide, where the fuel 
was diethyl ether. Experimental conditions were T = 558 K, in 38 Torr N2, [O2] = 1.5 
× 1017 molecule cm–3 when present, and [DEE] = 2.3 × 1015 molecule cm–3.  

 

Ultimately, further experiments such as these, in the absence of an OH precursor, 

will be the only reliable way to characterise the full extent, and boundary conditions 

reported in Table 6-1, of the extraneous chemistry causing OH shoulders and growths. 

Following the observation of precursor-free OH signal, investigations into the possible 

source of the hydroxyl radicals were carried out, and will be presented throughout the 

remainder of this chapter. The majority of experimental tests conducted involved DBE 
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and/or DEE, but there is no obvious reason they would not also apply to DME, although 

the extent of the effect is assumed to be lesser for DME.   

 

6.5 Potential Source of OH 

Probable causes of OH growth were considered, and two were ruled out through 

experimental tests. The first was decomposition of the fuel in the reaction cell, where high 

temperatures could be causing the fuels to decompose directly to R radicals, which 

proceed to form RO2 radicals and ultimately chain-branch. This mechanism would require 

no precursor for hydrogen abstraction of the fuels, and a build-up of radicals could 

potentially occur in the cell. However, the significant OH signal at t = 0 in Figure 6-10 

would suggest that photolysis is still resulting in the majority of the OH signal, even if 

some decomposition is occurring. If fuel decomposition was the cause of OH growth, it 

would likely occur more gradually, and OH fluorescence signal would accumulate over 

time.  

Based on this observation of strong prompt OH formation in the absence of H2O2, 

the second potential source of OH considered was photolysis of the fuels, although it is 

not immediately clear how photolysing the straight chain ethers under consideration 

would lead to instant OH formation. Regardless, this theory was ruled out based on 

experiments where the repetition rate of the lasers was reduced from the typical 10 Hz 

rate, to 5 Hz, 2 Hz, and 1 Hz (Figure 6-12).  
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Figure 6-12: Repetition rate experiments on DBE under ‘branching’ conditions in 
the presence of O2, at 750 K, and 50 Torr N2. H2O2 was present in these experiments. 
From 10 to 1 Hz, growth rates were (16410 ± 1620) s–1, (17370 ± 1320) s–1, (16810 ± 
2190) s–1, (16470 ± 1930) s–1, and decay rates were (2250 ± 80) s–1, (2150 ± 60) s–1, 
(2150 ± 100) s–1, and (2150 ± 90) s–1.  Uncertainties are statistical at the 2σ level. 

 

Figure 6-12 demonstrates the invariance of the rates of OH generation and removal 

in a ‘branching’ trace generated using DBE, when fit with a simple growth and decay 

exponential equation. Were the ethers being photolysed by the excimer laser, a build-up 

of radicals would be expected, and a change in repetition rate would affect the 

concentration of radicals and thus the kinetics of the OH traces. For this experiment, and 

Figure 6-13, where the excimer laser fluence was varied, all growth and decay rates agree 

well within uncertainty ranges.  
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Figure 6-13 Laser power effect on H2O2-free DBE experiment, approximate 
fluencies given in legend. Experimental conditions were T = 753 K, in 53 Torr N2, 
[DBE] = 8.6 × 1014 molecule cm–3, and [O2] = 1.5 × 1017 molecule cm–3. Note the fits 
are not perfect in the tail. From high fluence to low, growths were (16540 ± 910) s–1, 
(16630 ± 1390) s–1, and (17090 ± 2860) s–1. Decays were (2330 ± 60) s–1, (2270 ± 80) 
s–1, and (2210 ± 170) s–1. Uncertainties were statistical at the 2σ level.   

 

 Further evidence for the lack of fuel photolysis is presented in Figure 6-14, where 

the effect of laser fluence on the OH decay under single exponential conditions was 

verified. Here, unlike the two previous experiments, no oxygen was present, resulting in 

no OH growth. The returned parameters of the pseudo-first order rate coefficient for the 

reaction between DBE and the hydroxyl radical are in agreement within uncertainties, 

suggesting none, or no significant fraction, of the fuel is photolysed. Photolysis of the 

fuel would result in a lower DBE concentration, and as such the high laser energy 

experiments would result in a slower pseudo-first order rate coefficient. This test was 

performed virtually at the high temperature limit of the reaction cell, 750 K; any 

absorption cross section is expected to increase with temperature, and therefore any 

photolysis would be more extreme. At room temperature, the absorption cross sections 

for DME [260] and DEE [261] have been reported as <4.0 and 9.4 × 10–19 cm2 molecule–1 

respectively at 248 nm. Regardless, the single exponential kʹ parameter was not affected 

by the change in photolysis power. 
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Figure 6-14: Single exponential decays of OH + DBE unaffected by laser power. 
Experimental conditions were T = 761 K, in 51 Torr N2, and [DBE] = 8.6 × 1014 
molecule cm–3. No O2 was present, to ensure single exponential decays. From high 
to low fluence, kʹ = (20470 ± 900) s–1, (20950 ± 950) s–1, (22350 ± 1120) s–1, and (21820 
± 1020) s–1. Uncertainties are statistical at the 2σ level. 

 

Finally, the reaction between oxygen atoms and the fuel, RH, was considered as 

a possible source of OH generation in the reactor. The heavy dependence of signal growth 

on oxygen shown in Figure 6-10 suggests this mechanism could be possible, under the 

assumption that O2 is directly or indirectly a precursor to the formation of O atoms. O + 

fuel reactions would undergo hydrogen abstraction to directly form OH radicals. It is 

unclear where O atoms would arise from in the reaction cell, and what follows are further 

tests to attempt to identify this source.  

 

6.5.1 Potential Source of O Atoms 

Ozone present in the reaction cell was originally thought to be a possible 

photolytic precursor for O atoms, but several tests ruled out this possibility. An ozone 

box was attached to the outlet of the reaction cell during some ‘branching’ diethyl ether 

experiments, and the concentrations detected were monitored by absorption at 254 nm. 

Tests showed some absorption at this wavelength (~50 ppb levels), however any species 
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that absorbs at 254 nm could cause this detection, and so the presence of any ozone was 

not specifically confirmed. RO2 species may potentially absorb at this wavelength, but 

the radicals’ lifetimes were expected to be too short for them to reach the ozone detector.  

Further tests were carried out in the same reaction cell, where a cool flame was 

established using H2, O2 and N2 (approximately 750 – 850 K, ~50 Torr, ~(0.5 – 1.5) × 

1017 molecule cm–3 O2, and ~(0.1 – 2.0) × 1016 molecule cm–3 H2). Here, no excimer laser 

was required for significant OH fluorescence signal to be generated, and balancing of the 

hydrogen and oxygen delivered to the reaction cell to optimal conditions led to increases 

in the OH signal so significant that the PMT was overloaded. As the OH signal rose, the 

temperature of the reaction cell could be seen to rise similarly, by temperatures up to 

100 K in the most extreme cases. In these cool flame experiments, there must be some 

radicals present in the cell to initiate the chain-branching mechanism. 

Under the same conditions that a cool flame was observed, the ozone box was 

used to monitor the species exiting the reaction cell, in the absence of hydrogen. There 

was no detection of species absorbing at 254 nm under these conditions. This ruled out 

any mechanism for O3 formation by some reaction between two O2 molecules on the 

surface of the cell walls. It still did not rule out some formation mechanism for ozone by 

a surface reaction between the fuel and O2. This was presumed to be the most probable 

mechanism based on the experiments thus far, and Figure 6-15 and Figure 6-16 go some 

way to corroborating this theory.  

Figure 6-15 displays the dependence of OH growth, in a precursor-free 

experiment, on the concentration of diethyl ether. Prompt OH signal, and maximum of 

the signal growth, can both be seen to reduce as the concentration of ether is reduced. 

Similarly, in Figure 6-16 the reduction in [O2] causes the OH signal generated in the 

absence of H2O2 to tend towards zero, where the signal is minimal at approximately 5 × 

1016 molecule cm–3 O2. Both dependences presented here suggest the mechanism 

generating OH in the reaction cell is heavily dependent on both fuel and oxygen. It should 

be noted that no effects below 1016 molecule cm–3 O2 were observed, which is 

significantly above the O2 concentrations used for the experiments in Chapter 4 and 

Chapter 5, and as such, they were not affected by the extraneous chemistry presented in 

this chapter. Additionally, the high temperatures required for the onset of H2O2-free signal 

were not explored in Chapter 4 and Chapter 5. 
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Figure 6-15: Example of growth dependence on fuel concentration for the DEE 
system, H2O2-free. Experimental conditions were T = 557 K in 40 Torr N2, and [O2] 
= 1.5 × 1017 molecule cm–3. 

 

 

Figure 6-16: Example of growth dependence on O2 concentration for the DEE 
system, H2O2-free. Experimental conditions were T = 556 K, in 39 Torr N2, and 
[DEE] = 5.2 × 1015 molecule cm–3. 
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Further, the type of fuel appears to be of importance to this mechanism. Methane 

was examined for the same behaviour, but no signal in the presence of oxygen and 

absence of hydrogen peroxide was observed. Multiple isomers of butanol have been 

shown by a co-worker to display the same behaviour as the ether fuels here [262], in the 

same experimental setup, and also a different setup. Oxygenated fuels may therefore be 

integral to the chemistry that occurs between the fuel and oxygen to generate OH.  

A test was carried out (Figure 6-17) to determine the presence of O(1D) atoms in 

the system. In an experiment with O2, N2, and DEE, were O3 photolysis occurring, at low 

pressures of N2 significant amounts of O(1D) should be generated. In the presence of 

DEE, a fast growth in OH (from the O(1D) + DEE →  OH + C2H5OC2H4 reaction; kbim 

on the order of 10–10 cm3 molecule–1 s–1) would be observed on short timescales. Rate 

coefficients for O(1D) + hydrocarbons reactions, such as n-butane, n-pentane, and n-

heptane have been observed as fast as ~5 × 10–10 cm3 molecule–1 s–1 previously [263, 

264]. A simulation of an expected OH growth is included in Figure 6-17, with a growth 

rate based on the O(1D) + DEE rate coefficient above, and a decay rate based on the OH 

+ DEE reaction measured in this work. The absence of this in Figure 6-17 suggests 

photolysis of O3 may not be present.  

 Finally, tests were carried out where the excimer laser was turned off during an 

OH growth experiment, and all signal disappeared. This suggests the process was 

dependent on photolysis, and attempts to fit the data based on the O + fuel reaction 

occurring were made. The source of O atoms was still unclear, but O(3P) atoms were 

deemed to be the most likely cause of OH growths. 
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Figure 6-17: Test for O(1D) using diethyl ether, [DEE] = 2.9, 5.4 × 1014 molecule 
cm–3, [O2] = 5.3, 9.9 × 1016 molecule cm–3, H2O2-free, T = 475 K, experiments 
conducted in N2. The blue line represents a simulated OH growth from the O(1D) + 
DEE reaction, based on bimolecular rate coefficient of kbim = 10–10 cm3 molecule–1 
s–1.   

 

6.6 Analysis of Data 

Preliminary attempts to analyse the data generated from these experiments have 

been carried out. A reaction scheme (Scheme 6-2) was proposed for the generation of 

instant OH following the addition of O(3P) to the fuel, RH, and the generation of OH by 

the expected propagation route via addition of O2 to the R radical species. The details and 

derivation of this fit equation are provided in Appendix D. 

 

 

Scheme 6-2: Proposed reaction scheme for growth behaviour, used to derive multi-
exponential fit to the data.  
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Global analysis using this scheme was carried out on multiple traces, including 

those with large OH growths, smaller shoulders, and simpler biexponential decays, for a 

given set of traces at specific a pressure and temperature. The best method for utilising 

this fit is still not fully understood, and is highly dependent on the system and chemistry 

taking place, but for the purposes of these preliminary fits, shared parameters were kO+ether, 

kOH+ether, and kc. kO+ether and kOH+ether are the bimolecular rate coefficients for the relevant 

pseudo-first order rate coefficients, ko and ka respectively. For the fit to calculate these 

parameters, the ether concentration for each trace was defined. Ill-defined parameters 

were generally returned for kc when treated as local to each trace, thus kc was shared. This 

is a good example of a parameter which may be shared or local, based on whether it 

should have a dependence on O2 for the ether combustion system of the relevant 

experiment.  

 Reasonably good fits to data with extreme OH growths in the DBE system are 

presented in Figure 6-18, where the signal varies as a function of oxygen. It is primarily 

the lowest oxygen concentration traces (biexponential decays, no growth), where the fit 

deviates the most.   
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Figure 6-18: Global fit using the O(3P) analytical equation for DBE experiments, 
where T = 715 K, in 50 Torr N2. The loss parameter for OH, kd, was fixed at 100 s–1. 
[DBE] range = (6.6 – 7.5) × 1014 molecule cm–3, [O2] range = (0.12 – 24) × 1016  
molecule cm–3, H2O2 was the OH precursor. 

  

 Shared parameters returned from the global analysis of the traces in Figure 6-18 

are kOH+DBE = (1.2 ± 0.1) × 10–11 cm3 molecule–1 s–1, kO+ether = (5.8 ± 0.1) × 10–12 cm3 

molecule–1 s–1, and kc = (110 ± 115) s–1. Uncertainties are statistical at the 2σ level. The 

value obtained for kOH+DBE is ~30% lower than the uncorrected bubbler value measured 

in Chapter 3, but given the complexity of the data, this shows reasonable agreement. An 
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example where kOH+ether is fixed at a known value is explored for the DEE system later in 

Figure 6-20. The bimolecular rate coefficient measured for the O + DBE reaction returned 

here can be compared with a previous study by Buchta et al. [265] who used discharge 

flow to study the reaction of O atoms with DBE and DEE, between 298 and 873 K. 

Arrhenius parameters reported by Buchta et al. give kO+DBE = 4.6 × 10–12 cm3 molecule–1 

s–1 at 715 K, which is 22% lower than the value in this work. However, the upper 

uncertainty limit of their rate coefficient could yield kO+DBE = 8.1 × 10–12 cm3 molecule–1 

s–1, and so given the nature of the complex data in this chapter, there is reasonably good 

agreement for the measurement of O + DBE. This supports the possibility that hydrogen 

atom abstraction by O atoms is occurring under these conditions. Similarly, Liu et al. 

[266] undertook a flash photolysis study of the same reactions between 240 – 400 K, 

where extrapolated Arrhenius parameters to 715 K would report  kO+DBE = 4.0 × 10–12 cm3 

molecule–1 s–1, and for the upper limit kO+DBE = 5.3 × 10–12 cm3 molecule–1 s–1. The upper 

limits calculated here are based on statistical uncertainties provided by the authors for 

these previous measurements. 

The dependences of the kb recycling parameter and O(3P):OH ratio are presented 

as a function of [O2] in Figure 6-19. A significant amount of O atoms in comparison to 

OH is suggested here, where the ratio peaks at approximately 10:1. A possible explanation 

for a decrease in the O(3P):OH ratio at the highest O2 concentrations is the consumption 

of O(3P) atoms by reaction with O2. However, it is difficult to compare absolute amounts 

of O(3P), as it is related to the amount of OH assigned by the fitting equation. This amount 

of OH will be quenched at high O2 concentrations, and the quenching coefficient needed 

to determine absolute OH concentrations is not known for these experiments. Values 

determined for kb at the lowest O2 concentrations are unreliable, however there is a clear 

increase in recycling at mid to high concentrations. This is consistent with a process such 

as the QOOH + O2 reaction where a dependence on O2 would be expected, although the 

slow first order rate coefficients obtained would suggest there is not a great amount of 

propagation or chain-branching occurring.  
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Figure 6-19: kb and O(3P):OH as a function of oxygen concentration for the DBE 
dataset in Figure 6-18. Error bars refer to statistical 2σ uncertainties. Experimental 
conditions were the same as those in Figure 6-18. 

 

A dataset for the DEE system, exhibiting traces with shoulders, rather than large 

growths, is presented in Figure 6-20. This set was fit with the same equation used above, 

but kOH+DEE and kO+DEE were fixed to 2.1 × 10–12 cm3 molecule–1 s–1 and 1.3 × 10–11 cm3 

molecule–1 s–1 respectively, in order to aid in constraining the fits to the traces, with the 

extraction of accurate kb values to characterise OH reycling the ultimate goal. The latter 

value is based on this work’s measurement for the bimolecular rate coefficient between 

OH and DEE (Chapter 3), and the abstraction by O(3P) rate coefficient was based on the 

measurement by Buchta et al. [265] at 600 K, the only known study of O + DEE at these 

temperatures. The shared parameter kc was returned as (830 ± 180) s–1.   

 For the majority of kinetic decays, the biexponential traces, and those showing 

shoulders at early times, are captured remarkably well by the fit. Decay number 8 is 

noticeably poor, but this is likely due to its short timescale, resulting in no tail to provide 

information on OH at long timescales – it is a shorter timescale version of the prior trace. 
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Figure 6-20: Global fits to DEE experiments, in ~59 Torr N2, T = 600 K. [O2] range 
= (0.4 – 36) × 1016 molecule cm–3, [DEE] range = (7.0 – 7.2) × 1014 molecule cm–3. 
kd was fixed at 100 s–1, H2O2 was the OH precursor. 

 

In general the long timescale tails are not captured well by the analysis at high 

[O2], for example in traces 9 and 10. Significant OH signal remains above the fit, 

suggesting there may be significant recycling of OH in the system that is not described in 

Scheme 6-2. Reactions such as O2QOOH → OH are potential sources of OH propagation 

which would not be fit well by the scheme. Figure 6-21 presents the dependence on 

oxygen of the kb recycling parameter, and the ratio of O(3P) to OH. Here, the magnitude 

of the reycling parameters are greater than those for DBE in Figure 6-19 at comparable 

[O2], and the concentration of O(3P) atoms doesn’t reliably reach as high relative 

concentrations. These two differences may indicate that in kinetic decays such as these, 

where there are no OH growths, the analytical scheme has difficulty assigning and 
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aportioning the true source of OH – hydrogen abstraction by O atoms, or true OH 

recycling.  

 

 

Figure 6-21: kb and O(3P):OH as a function of oxygen concentration for the DEE 
dataset in Figure 6-20. Error bars refer to statistical 2σ uncertainties. Experimental 
conditions were the same as those in Figure 6-20, and the blue numbers indicate the 
corresponding graph.  

 

Evidently, despite reasonably good reproduction of the complex kinetic traces by 

the reaction scheme, the fits are not perfect, and it is difficult to place too much confidence 

in the parameters extracted. It appears there is another process of OH regeneration 

occuring at longer timescales, but the accuracy of O(3P) + fuel rate coefficients extracted 

from extreme growth traces appears promising. Knowledge of the initial O(3P):OH ratio 

would aid the analytical equation in assigning where OH recycling is originating from, 

but this requires good knowledge of the initial source of O atoms.  

Similarly, good knowledge of the low temperature oxidation system for the 

relevant fuel would allow the constraint of parameters’, such as kb, dependences on [O2], 

by enforcing a specific shape (e.g. the S-shapes in Figure 6-8).  

Based on the evidence provided by the experiments carried out, it is believed that 
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some decomposition of the fuel, where R radicals result in a build-up of some precursor 

to O(3P) and OH. Radicals such as RO2, QOOH, or possibly other species such as ROOH 

molecules, could potentially photolyse to both O atoms and OH. Differing amounts of 

species, depending on the fuel or [O2], would likely result in different ratios of O:OH 

being generated by the photolysis laser (red data in Figure 6-19 and Figure 6-21).   

Experiments that show evidence for the presence of a slight cool flame support 

the theory of RH decomposition, and an example is presented in Figure 6-22. Here, a 

slight but clear dependence on oxygen concentration is observed for the pre-photolysis 

laser fluorescence detection. This suggests some O2-dependent formation of OH, such as 

QOOH decomposition.  

 

 

Figure 6-22: Baseline OH fluorescence dependence on [O2], at 500 K, using DEE and 
H2O2. The yellow line displays a repeat experiment of the 6 × 1016 molecule cm–3 O2 
experiment, to confirm the gradual increase in OH signal was not merely a slow rise 
in signal quality over time.  

 

An example of a pre-photolysis OH signal with no O2-dependence in Figure 6-23 

at significantly higher temperatures, suggets DBE may not decompose and form a cool 

flame in the same way. It is possible that the ROOH species is formed, or even RO2 

radicals, but the decomposition of QOOH to OH for di-n-butyl ether may not take place. 

Less, or no, contribution of low temperature oxidation to the OH growth traces for the 

-80 -70 -60 -50 -40 -30 -20 -10 0 10
-0.0040

-0.0020

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100
 0 O2

 1 ´ 1016 molecule cm–3 O2

 3 ´ 1016 molecule cm–3 O2

 6 ´ 1016 molecule cm–3 O2

 9 ´ 1016 molecule cm–3 O2

 1 ´ 1017 molecule cm–3 O2

 6 ´ 1016 molecule cm–3 O2

[O
H

] 
/ a

rb
itr

ar
y 

un
its

Time / ms



224 
 

DBE system may explain the apparent ability for the fits to the data in Figure 6-18 to 

capture the tails better, and the smaller magnitude of the kb parameters when comparing 

DBE in Figure 6-19 to DEE in Figure 6-21. Here, any baseline signal dependence on [O2] 

was relatively small, but the next section will demonstrate proof of similar behaviour in 

more extreme examples.  

 

 

Figure 6-23: Baseline OH fluorescence independence on [O2], at 760 K, using DBE 
and H2O2.  

 

6.7 O Atom-free Experiments 

In order to measure accurate kb values with no interference from O + ether reactions, 
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One possible reason for this is the nature of the two different instruments used. Here, the 

flow is laminar, and so the sampling region in the centre of the detection cell likely only 

contains species from the centre of the high pressure flow tube. If the formation O(3P) 

occurs on the walls, as is believed, then this gas will not be probed by the laser. The 

experiment used for the bulk of the measurements in this chapter will have a more 

turbulent flow, entering the reaction cell and mixing more thoroughly.  
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Despite the apparent absence of O atoms in the system, and indeed no large OH 

growths were observed from ~490 K – 600 K for diethyl ether, a very strong dependence 

on [O2] was observed for the OH baseline signal when no OH precursor was used. Figure 

6-24 presents a set of experiments over a large range of oxygen concentrations, which the 

high pressure system permits. This is clear evidence of cool flame behaviour in the diethyl 

ether system.  

 

 

Figure 6-24: Diethyl ether cool flame experiments, at 600 K and ~1650 Torr N2 (and 
O2). [DEE] ≈ 9.5 × 1015 molecule cm–3. No OH precursor was used.  
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signal, and confirms there is no decrease in signal at high [O2], merely a plateau. The 

quenching-corrected and un-corrected data are presented in Figure 6-26. 

 

Figure 6-25: Quenching coefficient plot. Intercept fixed to unity, and the determined 
quenching coefficient = (1.43 ± 0.05) × 10–19 cm–3 molecule. S0 is the initial OH 
fluorescence signal height at t = 0. Experimental conditions were 600 K, in ~1650 
Torr N2 (and O2). 

 

Figure 6-26: Mean pre-photolysis baseline OH signal as a function of oxygen 
concentration, before (black circles) and after (red triangles) correction for signal 
quenching. Experimental conditions were the same as those for Figure 6-24. 
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Decays shown in Figure 6-24 appear biexponential in nature, and appeared to fit 

the biexponential equation scheme well. It is however, not clear exactly which reaction is 

being monitored by extracting these parameters. The recycling parameter from the typical 

biexponential fit used throughout this thesis, kb, and the yield parameter, are presented as 

a function of [O2], in Figure 6-27. From the changing magnitude of these values, there 

appears to be a transition at approximately 2 × 1017 molecule cm–3 oxygen, where yield 

and kb both begin to decrease. However, it is not currently possible to say what the source 

of OH regeneration is before this point, and after. It may be a transition from QOOH 

decomposition, to O2QOOH decomposition, although it is unclear why increasing [O2] 

from (0 – 2) × 1017 molecule cm–3 would cause an increase in kb, given that the 

decomposition of QOOH should be independent of [O2]. It could potentially be the R + 

O2 reaction giving rise to a dependence on [O2], but it is expected to be a much faster 

reaction than this, and only dependent on oxygen at very low [O2] (approximately 1015 

molecule cm–3).  

Nevertheless, the preliminary experiments conducted in this section indicate that 

‘clean’ experiments, devoid of any O atoms, should be possible, and with greater study 

into the mechanisms occurring under these conditions, extraction of true kb values and 

rate coefficients should be possible. This may provide valuable information on the 

reaction between QOOH and O2, which is integral to the chain-branching mechanism for 

the low temperature autoignition of fuels. 
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Figure 6-27: OH yield (above), and OH recycling rate (below), as a function of 
oxygen. Experimental conditions were the same as those for Figure 6-24; T = 600 K, 
in ~1650 Torr N2 (and O2).  
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6.8 OH Regeneration in the Methyl tert-Butyl Ether and Trimethyl 

Orthoformate Systems 

Investigations into the low temperature oxidation systems of MTBE and TMOF did 

not exhibit any of the significant OH growth behaviours described in this chapter for 

DME, DEE and DBE. However, OH regeneration for MTBE and TMOF was observed 

in the non-well-skipping regime, where the total pressures and temperatures were too high 

to be consistent with chemical activation. Indeed, no evidence of well-skipping was found 

for these ethers (see Chapter 4). OH regeneration manifested itself in the form of 

biexponential decays, examples of which are presented in Appendix A (Figure A 10). 

From these kinetic traces, the recycling parameter, kb, was extracted (based on Scheme 

6-3), OH yields were calculated, and their dependence on O2 was explored. Here, kb 

represents the regeneration of OH by some method, most probably decomposition of the 

QOOH radical.  

 

 

Scheme 6-3: Scheme used for analysis of biexponential traces in the MTBE and 
TMOF systems. 

 

OH recycling began at 568 K and 478 K for MTBE and TMOF respectively, and 

the relevant range of parameters explored for significant OH yields was 618 – 700 K and 

478 – 767 K respectively. With OH recycling in the presence of oxygen for the MTBE 

system only occurring at higher temperatures, the formation mechanism was attributed to 

a route over a potential energy barrier high enough to inhibit OH formation in a system 

at lower thermal energy. Figure 6-28 shows a general schematic potential energy pathway 

expected for ether oxidation, where the internal rearrangement of the RO2 radical to the 

QOOH radical, and subsequent decomposition to OH and products is the most likely 

mechanism for OH recycling. 
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Figure 6-28: Generic potential energy surface for R radical low temperature 
combustion propagation for DME (blue solid line) and MTBE (green dashed line), 
including possible chemical activation route (gold line). Ring structures for the main 
MTBE abstraction route and DME are shown for the RO2 → QOOH transition 
state, and approximate relative potential energies are shown for the R + O2 and RO2 
species, based on those for DME.  

 

Figure 6-28 also includes the formally direct route to OH production by 

chemically activated decomposition of the RO2 adduct (discussed in Chapter 4). The 

energies of the RO2, QOOH, OH + products and the associated transition states are based 

on the values for DME [89]. For MTBE, the actual PES will be more complex as there 

are two different R radicals corresponding to initial abstraction from the CH3 or t-C4H9 

groups. The kb parameter (Scheme 6-3) for the biexponential fitting equation represents 

OH formed via this surface, and the kc parameter represents the R radical not returning 

OH, which could be due to radical-radical reactions of the more stable RO2 radical, 

formation of HO2, or at higher temperatures, decomposition of the R radical. In 

comparison to the DME/O2 system, the MTBE/O2 system shows two significant 

differences. First, the yield of OH was significantly lower for MTBE/O2 than DME/O2 

and second, there was no evidence for interception of the QOOH when high 

concentrations of oxygen were used. The details of these observations are briefly outlined 

and then linked to differences in the potential energy surfaces for DME/O2 and MTBE/O2. 
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Figure 6-29: Figure 9. MTBE recycling rate coefficient, kb, against temperature. 
Error bars are purely statistical at the 2σ level. Grey shaded area represents the 
bounds of the 95% confidence limits. The data can be described by kb(618701 K) = 
(6.05 ± 3.8) × 1011 × e–(103±37)/RT s–1, where the uncertainties are statistical at the 2σ 
level. H2O2 was the OH precursor. 

 

Figure 6-29 shows the positive temperature dependence of the recycling rate 

coefficient, kb. Over the temperature range where the experiments could be conducted, 

the OH recycling rate coefficient exhibits an Arrhenius-like temperature dependence that 

is consistent with a process proceeding over a barrier. The data can be parameterised as 

kb(618701 K) = 6.05 × 1011 × exp ቂ
–103

RT
ቃ s–1, where the maximum value of the 95% 

confidence limit uncertainty across the temperature studied was 64%. This 

parameterisation yields an activation energy of (103 ± 66) kJ mol–1, which is comparable 

to the barrier height for TS2 expected based on DME [89]. Values for kb presented in 

Figure 6-29 were obtained as a weighted average of all O2 concentration experiments 

([O2] ≈ 1015 – 1018 molecule cm–3) for a given temperature, as no significant and 

reproducible dependence upon oxygen was seen (see Figure 6-30).  
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Figure 6-30: Example of MTBE OH recycling rate independence on oxygen 
concentration. Measurements made at 650 K, 60 Torr N2, 1000 sccm flow (black 
circles) and 2000 sccm flow (red triangles). [MTBE] = 2 × 1016 molecule cm–3 (black 
circles), and [MTBE] = 1.2 × 1016 molecule cm–3 (red triangles). Error bars are 
purely statistical at the 2σ level. 

 

The relationship between kb and kc for a given set of experimental conditions 

allows calculation of the percentage yield of OH using equation E 6-1:  

 

 
OH yield = 

kb

kb + kc
 × 100 E 6-1 

 

Here, the OH formation parameter, kb, is expressed as a percentage of the total 

removal of the R radical (kb + kc). An average yield of (36 ± 5)% (standard deviation was 

used to calculate the uncertainty in average yield for both molecules) was measured for 

MTBE across all temperatures, over the same range of [O2] that was present in the kb data 

presented above. Yields below approximately 620 K are not considered for MTBE, due 

to the low magnitude (<1000 s–1) of the temperature-dependent kb parameters measured 

(Figure 6-29). At this order of magnitude, kb is more likely to be perturbed by other slow 

chemistry, such as radical-radical reactions. The yields are presented in Table 6-2. 
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Figure 6-31: OH yields against temperature for MTBE/O2 (black circles) and 
TMOF/O2 (red squares). Error bars are purely statistical at the 2σ level. 

 

At high concentrations of oxygen ([O2] > 1016 molecule cm–3) in DME and DEE 

systems, the evidence presented in the previous sections of this chapter suggests there 

may be the interception of QOOH (to form O2QOOH) before decomposition to OH and 

co-products taking place. However, at comparable concentrations of oxygen, there is no 

evidence for any change in mechanism in the MTBE/O2 system; comparable 

concentrations of O2 do not appear to intercept the MTBE-derived QOOH radicals.  

 

Table 6-2: Obtained OH yields for MTBE and TMOF systems. Uncertainties are 
statistical at the 2σ level. 

T / K P / Torr MTBE OH yield / % T / K P / Torr TMOF OH yield / % 

618 134  35 ± 11  478 111 15 ± 12 

628 58 37 ± 44  598 64 6 ± 7 

638 134 41 ± 21  705 70 14 ± 13 

649 57 – 79 24 ± 22  767 119 11 ± 13 

649 60 – 70 30 ± 20 748 135 15 ± 13  

653 134 39 ± 11     

670 134  39 ± 7     

700 134 34 ± 7     
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The above observations on the behaviours for the DME/O2 and MTBE/O2 systems 

can be related to differences in the PES for these two systems. The OH yields observed 

from MTBE/O2 were relatively low (Figure 6-31) compared to similar ether biofuels, 

where yields closer to 100% would be expected for a molecule such as DME [89], and 

Figure 6-27 shows an example of yields of above 60% for DEE. Low yields suggest OH 

propagation is a minor channel of the low temperature oxidation system, and that another, 

non-OH producing reaction, dominates after the initial hydrogen abstraction from the 

ether. Decomposition of QOOH to HO2, H2CO and iso-butene [267-269] is the reaction 

reported as the major channel for the MTBE QOOH decomposition (Figure 6-32). The 

analogous decomposition for the QOOH radical for DME (Figure 6-32) would be to the 

less favourable HO2 + ethylene oxide channel (HO2 + H2CO + 3CH2 is highly 

endothermic) and therefore this route does not dominate the DME system, resulting in 

higher OH yields. 

 

 

Figure 6-32: Comparison of R radical route to OH propagation, or HO2 formation, 
for MTBE and DME. 

 

The observation of a small, but still significant, OH yield contradicts some 

mechanistic studies on MTBE oxidation; for example, Brocard et al. [267] have no route 

to OH formation from the QOOH radicals formed following abstraction at the α C–H of 

MTBE and only iso-butene, methanol and formaldehyde are reported as products from a 

JSR study at 726 K by Glaude et al. [269] However, Ciajolo et al. [268] in another JSR 
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study, do report the production of yields of 4,4-dimethyl-1,3-dioxolane with identification 

by GC/MS. Direct comparison of yields with this work is not possible as it is not possible 

to account for the consumption of the dioxolane in the longer residence times of the JSR. 

However, the observations of this work and the earlier study of Ciajolo et al. suggest the 

need for further development of MTBE models to account for OH production from 

QOOH species. 

Based on the dominant initial abstraction in OH + MTBE being from the α 

hydrogen, the R radical in DME and MTBE both contain the C–O–CH2 radical group and 

hence the well depth of the RO2 for both DME and MTBE should be very similar (Figure 

6-28). In MTBE, the RO2 → QOOH internal abstraction requires breaking a stronger 

primary C–H bond (not activated through close proximity to the ether oxygen as in DME), 

but for both MTBE and DME, a similar OO–H bond is formed. Therefore the transition 

state for the internal abstraction (TS1, Figure 6-28) and the QOOH radical will both be 

higher in energy. This would explain the lack of QOOH interception by O2 observed for 

MTBE.  

The higher the energy of the QOOH radical with respect to the RO2 species, the 

harder it becomes to intercept QOOH with O2. By using the MESMER code [242], a 

model based around the analogous potential energy surface for DEE (comparable to 

DME, but closer in molecular complexity to MTBE) can be adjusted to demonstrate 

similar results to those seen in this work. Calculations were based on conditions of 500 K 

and 25 Torr N2. OH yields arising from chemical activation for DEE can be inhibited by 

raising the barrier out to the OH product (TS2, Figure 6-28) by approximately 12 kJ mol–1. 

Similarly, the likelihood of chain-branching via the formation of O2QOOH can be 

lowered by reducing the well-depth of the QOOH species. Raising the height of QOOH 

relative to RO2 by ~20 kJ mol–1 can increase the RO2:QOOH concentration ratio by 

approximately a factor of ten, where ten times more O2 would be required to form 

O2QOOH. While this MESMER modelling is only semi-quantitative, it shows the 

changes in the PES required to bring agreement with our experiment observations, see 

Figure 6-28. The only parameters adjusted here were the energies of TS2, QOOH, and 

TS1.  

Trimethyl orthoformate had a significantly lower average OH yield of (10 ± 3)% 

(Figure 6-31), and there is no clear route to HO2 formation from TMOF’s mechanism. As 

such, the mechanism behind the low TMOF yields is not understood. Additionally, there 

was no oxygen dependence seen with the rate of OH recycling for TMOF, and the kb 
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parameter returned was temperature-independent and of a very low order of magnitude 

(<400 s–1), which may be perturbed by secondary chemistry in the system, such as radical-

radical reactions. It was also noted that at ~690 K, OH fluorescence was present in the 

absence of H2O2, suggesting that TMOF was acting as a precursor to hydroperoxides at 

high temperature (Figure 6-33). It is not clear what mechanism gives rise to this signal, 

but the lack of growth suggests it is a different mechanism to that already discussed for 

DME, DEE, and DBE.  

 

 

Figure 6-33: Example of OH fluorescence signal in the absence of H2O2 precursor 
and oxygen for TMOF experiments. H2O2 and O2 present (red squares), no H2O2 
(black circles), and no H2O2 or O2 (blue triangles). Decays were measured at 62 Torr 
N2, 693 K, [TMOF] = 4.9 × 1015 molecule cm–3. [O2] = 1.5 × 1016 molecule cm–3 when 
present.  

 

6.9 Conclusions 

The observation of large OH signal growths in the presence of O2 for DME, DEE, 

and DBE has been attributed to the formation of O(3P) atoms in the reaction cell, where 

abstraction of hydrogen atoms from the parent fuel species results in near-instant OH 

formation. Analysis of these traces indicate further processes, such as decomposition of 

QOOH, and interception of QOOH by O2 to initiate branching, may be occurring at longer 

timescales. The elucidation of these recycling parameters is hindered by the O + fuel 
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chemistry that dominates kinetic traces, and as such, the nature of the O formation 

mechanism, and methods to mitigate this, should form the basis of important research 

required in the future.  

Interfering processes from the O atoms observed here, have been seen for other 

fuels (butanol), and in different, but similar reaction cells used at the University of Leeds 

by Dr S. Sime [262]. Potentially, the chemistry observed in this chapter may interfere 

with other studies, particularly as the focus of autoignition chemistry research shifts more 

from early reactions (i.e. H atom abstraction), to the kinetics of later reactions, such as O2 

+ QOOH. Under conditions involving high oxygen concentrations, intermediate 

temperatures, and the source determined here as chemistry occurring on the walls of the 

reactor, this behaviour will greatly inhibit future work. To this end, this chapter also 

demonstrated that O atom-free experiments are possible using an experimental setup 

where the flow should result in LIF sampling from gases that have not come into contact 

with the reactor walls. Combined with the FAGE technique, these experiments allowed 

the study of DEE in the presence of very high oxygen concentrations (~1019 molecule 

cm–3) and demonstrated the presence of a cool flame. It is possible that coupling a PTR-

MS detection instrument to the system under the conditions yielding biexponential decays 

and cool flames, would help identify compounds that are only expected to be present as 

a result of the chain-branching mechanism, such as ketohydroperoxides.  

The first observation of biexponential decays have been reported for MTBE and 

TMOF above 568 K and 478 K respectively, in the presence of O2. Evidence of OH 

recycling in both systems allowed OH yields to be measured. A low average OH yield of 

(10 ± 3)% was measured for the TMOF system, but yields were higher for MTBE 

(36 ± 5)%. OH yields far below 100% for MTBE were attributed to an alternative QOOH 

decomposition route, where the dominating channel was formation of HO2. In contrast, 

the mechanism giving rise to such low yields for trimethyl orthoformate was not 

understood, and requires further investigation. The observation of OH signal in the 

presence of only TMOF with N2, suggests the biexponential decays observed are subject 

to a large degree of uncertainty. The low yields, and decreased reactivity of MTBE, is 

perhaps of no surprise, given its primary use a fuel additive for gasoline, where its high 

octane number (~110 [40]) will aid in knock reduction. Typically, for a diesel-like fuel 

such as DME or DEE, a high cetane rating is required, indicating its propensity to undergo 

autoignition. Essentially, this is the opposite of MTBE’s properties.  
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For both the MTBE and TMOF systems, future experimental studies will look at 

low temperature kinetics and direct measurements of the yields of HO2 using a modified 

version of our high pressure OH detection system to allow for the detection of HO2 via 

the FAGE technique. Furthermore, this system would allow the addition of up to ∼1019 

molecules cm–3 of oxygen to increase the likelihood of QOOH interception, in the same 

manner as the experiments using DEE in section 6.7. 

  



239 
 

Chapter 7 Summary and Future Work 

Making use of potentially carbon-neutral biofuels in novel combustion engines will 

require a detailed understanding of the reactions that occur under low temperature 

conditions in order to optimise their application. This thesis has investigated the ether 

family of biofuels, and presented experimental observations concerning three stages of 

their low temperature combustion mechanisms. The first, presented in Chapter 3, is the 

initiation by the OH radical (reaction R 7-1) to produce the R radical. Chapter 4 and 

Chapter 5 provide measurements of the second stage, concerning the reaction between 

the R radical and O2 (reaction R 7-2), producing the RO2 radical or proceeding via the 

formally direct channel to OH. Finally, Chapter 6 considered the propagation and chain-

branching reactions involving the QOOH radical (formed through rearrangement of the 

RO2 species) in reaction R 7-3.  

 

 RH + OH → R + H2O R 7-1 

 R + O2 → products R 7-2 

 2OH 
O2
← QOOH → OH R 7-3 

 

Laser flash photolysis – laser-induced fluorescence was used to study the reaction 

between OH and various ethers (reaction R 7-1) from room temperature to approximately 

740 K. The first temperature dependent study of OH + TMOF was carried out, extending 

the previous room temperature measurement reported by Platz et al. [152] up to 744 K. 

The temperature dependence was parameterised by kOH+TMOF(298–744 K) = (8.0 ± 12.2) 

× 10–13 [(T/298)(2.6±1.2) + (T/298)(–8.1±4.6)] × e(2.7±3.9)/RT cm3 molecule–1 s–1. 

Similar investigations into the reaction kinetics of OH + DEE and OH + DBE 

extended the current knowledge of their respective rate coefficients. In the case of OH + 

DEE, this was done by bridging the gap between measurements made by Tully and 

Droege [165] at 442 K, and the value reported by Tranter and Walker [132] at 753 K. The 

rate coefficients measured in this work displayed good agreement with the work of Tully 

and Droege, although no temperature dependence was observed. In particular, the 

temperature-independent value we recommend, of kOH+DEE(298–727 K) = (1.28 ± 0.21) × 

10–11 cm3 molecule–1 s–1 is in disagreement with the high temperature value reported by 

Tranter and Walker (kOH+DEE = (2.04 ± 0.38) × 10–11 cm3 molecule–1 s–1).  
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For the reaction between OH and DBE, the rate coefficients reported by Mellouki et 

al. [113] up to 372 K were extended to 732 K in this thesis, although the rate coefficients 

measured here were approximately 25% faster than those in the literature. This was 

attributed to uncertainties in DBE/N2 bulb compositions as a result of its low vapour 

pressure. Despite this, the parameterisation of the temperature dependence, kOH+DBE(298–

732 K) = (3.05 ± 7.13) × 10–12 (T/298)(1.31±1.62) × e(6.35±5.83)/RT cm3 molecule–1 s–1, was 

qualitatively reliable, where the negative temperature dependence below ~350 K seen in 

the literature was observed in this work. Consequently, the plateau to a temperature-

independent rate coefficient above this temperature was deemed reliable, and had not 

previously been observed. Nevertheless, future work should focus on further testing of 

the DBE/N2 bulb compositions, to verify the source of the discrepancy between this work 

and the literature. The reaction of OH with the established fuel additive, MTBE, and 

alternative fuel, DME, were also investigated from 298 – 727 K and 298 – 673 K 

respectively, with comparison to previous measurements. Overall, agreement with the 

majority of previous studies at room temperature was found, and rate coefficients of 

kOH+MTBE = (2.81 ± 0.32) × 10–12 cm3 molecule–1 s–1, and kOH+DME = (2.66 ± 0.09) × 10–12 

cm3 molecule–1 s–1 were reported at room temperature.  

 Comparisons between the five ethers were drawn, where differences in the 

magnitude of their reaction rate coefficients were typically attributed to the activating 

effect of neighbouring functional groups on the abstraction sites, and the number of sites 

available. SAR predictions of the rate coefficients by Kwok and Atkinson [190] were 

generally in good agreement, although the temperature dependence of OH + DBE was 

predicted poorly, and the nature of TMOF as a polyether meant it was not described 

accurately by the SAR. Negative temperature dependences close to room temperature, 

and below, were seen for OH + TMOF and for OH + DBE very clearly. This behaviour 

has been observed before, and is attributed to complex formation between the OH radical 

and the fuel molecule. The appearance of this at a higher temperature for OH + DBE in 

comparison to literature observations of the same behaviour for DME and DEE is likely 

as a result of its increased size, where complex formation becomes more probable. 

Measurements below room temperature would be of mechanistic interest for all ethers, 

particularly TMOF and MTBE where this phenomenon has not yet been measured 

previously. Deuteration of the ether molecules would also be useful, allowing site-

specific measurements of the abstraction rate coefficients. A study of a similar nature has 
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previously been conducted, concerning ethanol, at the University of Leeds by Carr et 

al. [270].  

 What can be thought of as the second step in low temperature oxidation, reaction 

R 7-2, was studied in Chapter 4 and Chapter 5, with the former focused on the 

presentation of the technique used. This method relied on the presence of biexponential 

decays at low pressures and oxygen concentrations, brought about by the recycling of OH 

through the formally direct channel to OH. The DME system was used to study the 

reaction between the CH3OCH2 + O2 reaction, and good agreement for the bimolecular 

rate coefficient and OH yields was found when compared with work by Eskola et al. [89]. 

Numerical integration analysis of experimental conditions demonstrated the sensitivity of 

the technique to reactant concentrations, but ultimately, provided a fuel has the ability to 

undergo chemical activation for the R + O2 reaction, this method will be applicable to 

many molecules, allowing the determination of the rate coefficient at low pressures and 

relatively low temperatures. Previous studies indicate this technique should be applicable 

to reactions such as OH + ketones [200], aldehydes [133, 200-205], dialdehydes [206, 

207], and esters [208]. Previously, a precursor molecule for the desired R radical would 

have been necessary.  

The ability to measure R + O2 rate coefficients for many diesel-like biofuels will 

be important for characterising the temperature dependence and magnitude of the rate 

coefficients, and for constraining their extrapolation up to higher temperatures important 

for combustion modelling and the negative temperature regime. Should this chemical 

activation process interfere with other laboratory measurements, then the ability to 

quantify the reaction will also be an advantage. The potential for this technique to be 

applied to other molecules was demonstrated in Chapter 5, where the DEE/O2 system was 

explored.  

 Measurements of the C2H5OC2H4 + O2 rate coefficient were reported for 298 – 

464 K, in 5.2 – 28.4 Torr of N2. OH yields were also measured, where a larger quenching 

coefficient than that of the CH3OCH2 + O2 reaction indicated increased collisional 

deactivation due to the increased molecule size. These rate parameters were compared to 

ab initio calculations of the DEE oxidation PES carried out at the CCSD(T)/Jun-cc-

pVTZ//M06-2X/Jun-cc-pVTZ level using RRKM/master equation methods in 

MESMER [242]. The computational calculations performed using Gaussian 09 [240] 

were in reasonable agreement with previous calculations by Di Tommaso et al. [115], 

Sakai et al. [225], Sandhiya et al. [226], Wang and Wang [227], and Hu et al. [228], 



242 
 

although the transition state barrier energies from QOOH to OH reported by Di Tommaso 

et al. and Sakai et al. were approximately 7 – 10 kcal mol–1 lower than the value 

determined in this work (–3.7 kcal mol–1 relative to the R + O2 entrance channel). An 

adjustment in this barrier down by approximately 7 kcal mol–1 was required to achieve 

good agreement between the theoretical model and experimental yields and rate 

coefficients. The PES developed only considers the R radical formed from initial H 

abstraction from DEE at the α site, and RO2 ↔ QOOH rearrangement from the opposing 

α site. As such, future work exploring calculations of the other pathways possible may 

help to identify branching ratios of OH yields. Application of the rate coefficients for R 

+ O2 in the DEE system to combustion models would also be of interest, where the effect 

on ignition delay times is of relevance to a fuel’s use in HCCI and other novel engines. 

 The potential for other ethers (such as isomers of dipropyl ether) to well-skip will 

also be of interest. No evidence for chemical activation using di-n-butyl ether was 

observed, potentially due to its large size, however further investigation should be carried 

out to verify this.  

Experiments divulged in Chapter 6 described a series of tests to investigate large 

OH growths initially proposed to be chain-branching in the DME, DEE, and DBE systems 

under conditions of high [O2] and moderate to high temperature. Ultimately, it was 

determined that the O(3P) + fuel reaction was very likely responsible for producing OH 

on short timescales, and that the O atoms arose from fuel/O2 surface chemistry producing 

a photolytic precursor for O. A definitive test for the presence of O atoms could be carried 

out using a technique such as LIF [271]. Future work should focus on identifying the 

source of O atoms, and attempting to mitigate their formation under these conditions. 

Preliminary attempts to analyse the data were made by deriving an analytical equation to 

account for the extraneous reaction, and the typical OH regeneration routes expected in 

low temperature combustion mechanisms. Generally, good fits were achieved, although 

there was difficulty in sufficiently capturing the OH decay at longer timescales. 

Measurements of O(3P) + ether reactions would be useful in attempting to constrain the 

fits. It is likely that O + fuel reactions interfered with more simple biexponential decays 

(i.e. not exhibiting growth), and attempts to ascertain how to properly analyse these data 

are ongoing.  

Using a different experimental setup, that still relied on the LFP–LIF technique, 

experiments were conducted on the DEE/O2 system in the absence of any evidence for 

O(3P) atoms. Biexponential decays were still obtained, and cool flames were observed, 
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providing strong evidence of chemistry occurring through the mechanisms in reaction R 

7-3. There is much more work to be done here, where we are potentially observing OH 

yields and recycling rate parameters that exhibit O2-dependent transitions from an OH 

propagation process via QOOH thermal decomposition, to the addition of O2 to the 

QOOH radical (leading to chain-branching). Building on the work conducted by C. 

Morley [257], this experimental setup would allow the detection of HO2, as well as OH, 

and greater control over the pressure of the system. A proton transfer reaction-mass 

spectrometry instrument can also be attached to the detection cell, to monitor additional 

species formed under low temperature combustion conditions. The same experimental 

setup could be used in future work to measure yields of HO2, which was proposed as the 

major product of the MTBE/O2 system, explaining the relatively low OH yields observed 

(35 ± 5)% for the first time using biexponential decays. This finding was consistent with 

MTBE’s use as an anti-knock agent.  

This thesis has made measurements of kinetic parameters concerning the three 

stages of the low temperature combustion mechanism described here. The third stage, 

surrounding chain-branching, is really at the heart of the main knowledge gap 

surrounding autoignition in the literature, but it is difficult to accurately identify and 

measure these branching processes experimentally, without good characterisation of the 

earlier processes. Chapter 6 demonstrated this issue, and further modelling and 

experimental work of the earlier steps can help to constrain models. Once this is achieved, 

data potentially exhibiting the branching processes may begin to make more sense, and 

the elucidation of rates associated with branching should be possible. Thus, the rate 

parameters presented here concerning OH + ether and R + O2 reactions, comprise a small 

but important contribution to the gradual accumulation of knowledge concerning low 

temperature biofuel combustion. 

  



244 
 

References 

1. Hartmann, D.L., Klein Tank, A.M., Rusticucci, M., Alexander, L.V., 

Brönnimann, S., Charabi, Y.A.R., Dentener, F.J., Dlugokencky, E.J., Easterling, 

D.R., Kaplan, A., Soden, B.J., Thorne, P.W., Wild, M. and Zhai, P.M. 

Observations: Atmosphere and Surface. Cambridge, United Kingdom and New 

York, NY, USA, 2013. 

2. British Antarctic Survey. Ice Cores and Climate Change. [Online]. 2015. 

[Accessed 18/10/2019]. Available from: bas.ac.uk 

3. Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, 

P., Gao, X., Gutowski, W.J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., 

Weaver, A.J. and Wehner, M. Long-term Climate Change: Projections, 

Commitments and Irreversibility. Cambridge, United Kingdom and New York, 

NY, USA, 2013. 

4. Myhre, G., Shindell, D., F.-M., B., Collins, W., Fuglestvedt, J., Huang, J., Koch, 

D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, 

G., Takemura, T. and Zhang, H. Anthropogenic and Natural Radiative Forcing. 

Cambridge, United Kingdom and New York, NY, USA, 2013. 

5. Jacob, D.J. Introduction to Atmospheric Chemistry. Princeton, New Jersey, USA: 

Princeton University Press, 1999. 

6. Tyndall, J. Note on the Transmission of Radiant Heat through Gaseous Bodies. 

Proceedings of the Royal Society of London. 1859, 10, pp.37-39. 

7. Enting, I.G. The Interannual Variation in the Seasonal Cycle of Carbon Dioxide 

Concentration at Mauna Loa. Journal of Geophysical Research: Atmospheres. 

1987, 92(D5), pp.5497-5504. 

8. MacFarling Meure, C., Etheridge, D., Trudinger, C., Steele, P., Langenfelds, R., 

van Ommen, T., Smith, A. and Elkins, J. Law Dome CO2, CH4 and N2O Ice Core 

Records Extended to 2000 Years BP. Geophysical Research Letters. 2006, 33(14), 

pp.n/a-n/a. 

9. Kinley, R. Climate Change After Paris: From Turning Point to Transformation. 

Climate Policy. 2017, 17(1), pp.9-15. 

10. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups 

I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on 

Climate Change. Geneva, Switzerland, 2014. 



245 
 

11. Mann, M.E. and Jones, P.D. Global Surface Temperatures Over The Past Two 

Millennia. Geophysical Research Letters. 2003, 30(15). 

12. Consoli, C. Bioenergy and Carbon Capture and Storage.  Global CCS Institute, 

2019. 

13. Department for Business Energy & Industrial Strategy. 2018 UK Greenhouse Gas 

Emissions, Provisional Figures. 2018. 

14. Damyanov, A., Hofmann, P., Geringer, B., Schwaiger, N., Pichler, T. and 

Siebenhofer, M. Biogenous ethers: production and operation in a diesel engine. 

Automotive and Engine Technology. 2018, 3(1), pp.69-82. 

15. Le Feuvre, P. Transport Biofuels: Tracking Clean Energy Progress. [Online]. 

2019. [Accessed 18/10/2019]. Available from: 

https://www.iea.org/tcep/transport/biofuels/ 

16. REN21. Renewables 2019 Global Status Report. Paris, France, 2019. 

17. Department for Transport. Renewable Fuel Statistics 2019 First Provisional 

Report. 2019. 

18. Renewable Energy World Editors. United Airlines Begins Regular Biofuel Use 

for Flights. Renewable Energy World. [Online]. 2016. [Accessed 18/10/2019]. 

Available from: http://www.renewableenergyworld.com/articles/2016/03/united-

airlines-begins-regular-biofuel-use-for-flights.html 

19. Field, C.B., Campbell, J.E. and Lobell, D.B. Biomass energy: the scale of the 

potential resource. Trends in Ecology & Evolution. 2008, 23(2), pp.65-72. 

20. Bergthorson, J.M. and Thomson, M.J. A Review of the Combustion and 

Emissions Properties of Advanced Transportation Biofuels and their Impact on 

Existing and Future Engines. Renewable and Sustainable Energy Reviews. 2015, 

42(0), pp.1393-1417. 

21. Department for Business Energy & Industrial Strategy. UK becomes first major 

economy to pass net zero emissions law. [Online]. 2019. [Accessed 21/10/2019]. 

Available from: https://www.gov.uk/ 

22. Office of Energy Efficiency & Renewable Energy. Hydrogen Storage. [Online]. 

2019. [Accessed 18/10/2019]. Available from: 

https://www.energy.gov/eere/fuelcells/hydrogen-storage 

23. Bower, G. Tesla Model 3 2170 Energy Density Compared to Bolt, Model S 

P100D. [Online]. 2019. [Accessed 18/10/2019]. Available from: 

https://insideevs.com/news/ 



246 
 

24. Qi, D.H., Chen, H., Geng, L.M. and Bian, Y.Z. Effect of diethyl ether and ethanol 

additives on the combustion and emission characteristics of biodiesel-diesel 

blended fuel engine. Renewable Energy. 2011, 36(4), pp.1252-1258. 

25. Ribeiro, N.M., Pinto, A.C., Quintella, C.M., da Rocha, G.O., Teixeira, L.S.G., 

Guarieiro, L.L.N., Rangel, M.D., Veloso, M.C.C., Rezende, M.J.C., da Cruz, R.S., 

de Oliveira, A.M., Torres, E.A. and de Andrade, J.B. The role of additives for 

diesel and diesel blended (Ethanol or biodiesel) fuels: A review. Energy & Fuels. 

2007, 21(4), pp.2433-2445. 

26. Ford. Ford Leads Project To Develop Near Zero Particulate Emission Diesel 

Cars That Could Run On Converted CO2. [Online]. 2015. [Accessed 18/10/2019]. 

Available from: https://media.ford.com/ 

27. Volvo. Volvo Bio-DME Unique field test in commercial operations, 2010-2012. 

[Leaflet]. 2010. 

28. McMullen, C. Key Takeaways from Volvo Group's New Sustainability Report. 

[Online]. 2016. [Accessed 18/10/2019]. Available from: 

http://www.waste360.com/waste-reduction/key-takeaways-volvo-group-s-new-

sustainability-report 

29. Volvo. The Volvo Group Annual and Sustainability Report. Goteborg, Sweden, 

2015. 

30. Battin-Leclerc, F. Detailed chemical kinetic models for the low-temperature 

combustion of hydrocarbons with application to gasoline and diesel fuel 

surrogates. Progress in Energy and Combustion Science. 2008, 34(4), pp.440-

498. 

31. The European Fuel Oxygenates Association. What Are Bio-Ethers? [Online]. 

2018. [Accessed 23/10/2019]. Available from: https://www.petrochemistry.eu/ 

32. US Department of Energy. Fuel Properties Comparison. [Online]. 2019. 

[Accessed 18/10/2019]. Available from: https://afdc.energy.gov/fuels/properties 

33. John, B. and Hansen, S. Fuels and Fuel Processing Options for Fuel Cells. In: 2nd 

International Fuel Cell Conference, Lucerne, CH. 2004. 

34. Semelsberger, T.A., Borup, R.L. and Greene, H.L. Dimethyl ether (DME) as an 

alternative fuel. Journal of Power Sources. 2006, 156(2), pp.497-511. 

35. The Engineering ToolBox. Combustion. [Online]. 2019. [Accessed 18/10/2019]. 

Available from: https://www.engineeringtoolbox.com/ 



247 
 

36. Wang, M.Q. and Huang, H.S. A full fuel-cycle analysis of energy and emissions 

impacts of transportation fuels produced from natural gas.  Argonne National 

Lab., IL (US), 2000. 

37. Chetty, R. and Scott, K. Dimethoxymethane and trimethoxymethane as alternative 

fuels for fuel cells. Journal of Power Sources. 2007, 173(1), pp.166-171. 

38. Arcoumanis, C., Bae, C., Crookes, R. and Kinoshita, E. The potential of di-methyl 

ether (DME) as an alternative fuel for compression-ignition engines: A review. 

Fuel. 2008, 87(7), pp.1014-1030. 

39. Heuser, B., Jakob, M., Kremer, F., Pischinger, S., Kerschgens, B. and Pitsch, H. 

Tailor-Made Fuels from Biomass: Influence of Molecular Structures on the 

Exhaust Gas Emissions of Compression Ignition Engines. In: 22nd SAE Brasil 

International Congress and Display, Sao Paulo. SAE International, 2013. 

40. IEA Advanced Motor Fuels. Fuel Ethers for Gasoline. [Online]. 2019. [Accessed 

21/10/2019]. Available from: https://www.iea-amf.org/ 

41. Institute for Occupational Safety and Health of the German Social Accident 

Insurance. Dibutyl Ether. [Online]. 2019. [Accessed 18/10/2019]. Available from: 

http://gestis-en.itrust.de/ 

42. IEA Advanced Motor Fuels. Diesel and Gasoline. [Online]. 2019. [Accessed 

18/10/2019]. Available from: https://www.iea-amf.org/ 

43. International DME Association. About DME. [Online]. 2016. [Accessed 

18/10/2019]. Available from: https://www.aboutdme.org/ 

44. GuangZhou Institute of Energy Conversion. GIEC Builds 1000 ton/year 

Demonstration System and Achieves Great Progress on Key Technology of DME 

Synthesis from Biomass Gasification. [Online]. 2011. [Accessed 18/10/2019]. 

Available from: http://english.giec.cas.cn/ 

45. Zhang, W. Automotive fuels from biomass via gasification. Fuel Processing 

Technology. 2010, 91(8), pp.866-876. 

46. Lv, Y., Wang, T., Wu, C., Ma, L. and Zhou, Y. Scale Study of Direct Synthesis 

of Dimethyl Ether from Biomass Synthesis Gas. Biotechnology Advances. 2009, 

27(5), pp.551-554. 

47. International DME Association. BASF and Linde Announce Commercialization 

Plans for CO2-to-DME Production Process. [Online]. 2019. [Accessed 

18/10/2019]. Available from: https://www.aboutdme.org/ 



248 
 

48. Oberon Fuels. Oberon Fuels Secures $2.9 Million Grant from State of California 

for First-Ever Production of Renewable Dimethyl Ether (rDME) in United States. 

[Online]. 2019. [Accessed 18/10/2019]. Available from: http://oberonfuels.com 

49. Zhang, L. and Huang, Z. Life cycle study of coal-based dimethyl ether as vehicle 

fuel for urban bus in China. Energy. 2007, 32(10), pp.1896-1904. 

50. Kaiser, E.W., Wallington, T.J., Hurley, M.D., Platz, J., Curran, H.J., Pitz, W.J. 

and Westbrook, C.K. Experimental and Modeling Study of Premixed 

Atmospheric-Pressure Dimethyl Ether−Air Flames. The Journal of Physical 

Chemistry A. 2000, 104(35), pp.8194-8206. 

51. Park, S.H. and Lee, C.S. Combustion performance and emission reduction 

characteristics of automotive DME engine system. Progress in Energy and 

Combustion Science. 2013, 39(1), pp.147-168. 

52. Gao, J. and Nakamura, Y. Low-Temperature Ignition of Dimethyl Ether: 

Transition From Cool Flame to Hot Flame Promoted by Decomposition of HPMF 

(HO2CH2OCHO). Combustion and Flame. 2016, 165, pp.68-82. 

53. Naito, M., Radcliffe, C., Wada, Y., Hoshino, T., Liu, X., Arai, M. and Tamura, 

M. A Comparative Study On The Autoxidation Of Dimethyl Ether (DME) 

Comparison With Diethyl Ether (DEE) and Diisopropyl Ether (DIPE). Journal of 

Loss Prevention in the Process Industries. 2005, 18(4–6), pp.469-473. 

54. Rakopoulos, D.C., Rakopoulos, C.D., Giakoumis, E.G. and Dimaratos, A.M. 

Characteristics of performance and emissions in high-speed direct injection diesel 

engine fueled with diethyl ether/diesel fuel blends. Energy. 2012, 43(1), pp.214-

224. 

55. Bailey, B., Eberhardt, J., Goguen, S. and Erwin, J. Diethyl Ether (DEE) as a 

Renewable Diesel Fuel. SAE transactions. 1997, 106, pp.1578-1584. 

56. Mack, J.H., Buchholz, B.A., Flowers, D.L. and Dibble, R.W. The Effect of the Di-

Tertiary Butyl Peroxide (DTBP) additive on HCCI Combustion of Fuel Blends of 

Ethanol and Diethyl Ether. 2005. Available from: 

http://www.escholarship.org/uc/item/2j80r0t5 

57. Mack, J.H., Flowers, D.L., Buchholz, B.A. and Dibble, R.W. Investigation Of 

HCCI Combustion Of Diethyl Ether And Ethanol Mixtures Using Carbon 14 

Tracing And Numerical Simulations. Proceedings of the Combustion Institute. 

2005, 30(2), pp.2693-2700. 



249 
 

58. Miller Jothi, N.K., Nagarajan, G. and Renganarayanan, S. Experimental Studies 

On Homogeneous Charge CI Engine Fueled With LPG Using DEE as an Ignition 

Enhancer. Renewable Energy. 2007, 32(9), pp.1581-1593. 

59. Cheng, A.S. and Dibble, R.W. Emissions Performance of Oxygenate-in-Diesel 

Blends and Fischer-Tropsch Diesel in a Compression Ignition Engine. In.: SAE 

International, 1999. 

60. Tree, D.R. and Cooley, W.B. A Comparison and Model of NOx Formation for 

Diesel Fuel and Diethyl Ether. In.: SAE International, 2001. 

61. Anand, R. and Mahalakshmi, N.V. Simultaneous reduction of NOx and smoke 

from a direct-injection diesel engine with exhaust gas recirculation and diethyl 

ether. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of 

Automobile Engineering. 2007, 221(1), pp.109-116. 

62. Mohanan, P., Kapilan, N. and Reddy, R.P. Effect of Diethyl Ether on the 

Performance and Emission of a 4 - S Di Diesel Engine. In.: SAE International, 

2003. 

63. Subramanian, K.A. and Ramesh, A. Operation of a Compression Ignition Engine 

on Diesel-Diethyl Ether Blends. Proceedings of the ASME 2002 Internal 

Combustion Engine Division Fall Technical Conference. 2002, (46628), pp.353-

360. 

64. Kim, J.K., Choi, J.H., Park, D.R. and Song, I.K. Etherification of n-Butanol to Di-

n-Butyl Ether Over Keggin-, Wells-Dawson-, and Preyssler-Type Heteropolyacid 

Catalysts. Journal of Nanoscience and Nanotechnology. 2013, 13(12), pp.8121-

8126. 

65. Beeckmann, J., Aye, M., Gehmlich, R. and Peters, N. Experimental investigation 

of the spray characteristics of di-n-butyl ether (DNBE) as an oxygenated 

compound in diesel fuel.  SAE Technical Paper, 2010. 

66. Gao, Z., Zhu, L., Zou, X., Liu, C., Tian, B. and Huang, Z. Soot reduction effects 

of dibutyl ether (DBE) addition to a biodiesel surrogate in laminar coflow 

diffusion flames. Proceedings of the Combustion Institute. 2019, 37(1), pp.1265-

1272. 

67. Zubel, M., Pischinger, S. and Heuser, B. Assessment of the Full Thermodynamic 

Potential of C8-Oxygenates for Clean Diesel Combustion. SAE International 

Journal of Fuels and Lubricants. 2017, 10(3), pp.913-923. 



250 
 

68. Guan, L., Tang, C., Yang, K., Mo, J. and Huang, Z. Experimental and Kinetic 

Study on Ignition Delay Times of Di-n-butyl Ether at High Temperatures. Energy 

& Fuels. 2014, 28(8), pp.5489-5496. 

69. Miyamoto, N., Ogawa, H. and Nabi, M.N. Approaches to extremely low 

emissions and efficient diesel combustion with oxygenated fuels. International 

Journal of Engine Research. 2000, 1(1), pp.71-85. 

70. Ziyang, Z., Hidajat, K. and Ray, A.K. Determination of adsorption and kinetic 

parameters for methyl tert-butyl ether synthesis from tert-butyl alcohol and 

methanol. Journal of Catalysis. 2001, 200(2), pp.209-221. 

71. Subramaniam, C. and Bhatia, S. Liquid phase synthesis of methyl tert‐butyl ether 

catalyzed by ion exchange resin. The Canadian Journal of Chemical Engineering. 

1987, 65(4), pp.613-620. 

72. Adams, J.M., Clement, D.E. and Graham, S.H. Synthesis of Methyl-t-Butyl Ether 

from Methanol and Isobutene Using a Clay Catalyst. Clays and Clay Minerals. 

1982, 30(2), pp.129-134. 

73. Boot, M.D., Tian, M., Hensen, E.J.M. and Mani Sarathy, S. Impact of Fuel 

Molecular Structure on Auto-Ignition Behavior – Design Rules for Future High 

Performance Gasolines. Progress in Energy and Combustion Science. 2017, 60, 

pp.1-25. 

74. Kisenyi, J., Savage, C. and Simmonds, A.C. The impact of oxygenates on exhaust 

emissions of six European cars.  SAE Technical Paper, 1994. 

75. Chou, D.C. and Long, J. Comparison of the Exhaust Emissions from California 

Phase 1 (without oxygenates) and Phase 2 (with oxygenates) Fuel: A Case Study 

of 11 Passenger Vehicles.  SAE Technical Paper, 1996. 

76. DePetris, C., Giglio, V., Police, G. and Prati, M.V. The influence of gasoline 

formulation on combustion and emissions in spark-ignition engines.  SAE 

Technical Paper, 1993. 

77. Lange, W., Müller, A., McArragher, J. and Schäfer, V. The effect of gasoline 

composition on exhaust emissions from modern BMW vehicles.  SAE Technical 

Paper, 1994. 

78. Reuter, R., Benson, J., Burns, V., Gorse, R., Hochhauser, A., Koehl, W., Painter, 

L., Rippon, B. and Rutherford, J. Effects of oxygenated fuels and RVP on 

automotive emissions: Auto. SAE transactions. 1992, 101(4), pp.463-484. 

79. Zervas, E., Montagne, X., Lahaye, J.J.E.s. and technology. Emission of alcohols 

and carbonyl compounds from a spark ignition engine. Influence of fuel and 



251 
 

air/fuel equivalence ratio. Environmental Science and Technology. 2002, 36(11), 

pp.2414-2421. 

80. Song, C.-L., Zhang, W.-M., Pei, Y.-Q., Fan, G.-L. and Xu, G.-P. Comparative 

effects of MTBE and ethanol additions into gasoline on exhaust emissions. 

Atmospheric Environment. 2006, 40(11), pp.1957-1970. 

81. Erickson, J.G. Alkyl Orthoformates. The Journal of Organic Chemistry. 1955, 

20(11), pp.1573-1576. 

82. John, J.H.R., Rebello, P.R., Kavonic, C.M. and Stiff, A.J. Fuels. 1989. 

83. Prakash, G.K.S., Smart, M.C., Olah, G.A., Narayanan, S.R., Chun, W., 

Surampudi, S. and Halpert, G. Performance of Dimethoxymethane and 

Trimethoxymethane in Liquid-Feed Direct Oxidation Fuel Cells. Journal of 

Power Sources. 2007, 173(1), pp.102-109. 

84. Wang, J.T., Lin, W.F., Weber, M., Wasmus, S. and Savinell, R.F. 

Trimethoxymethane as an Alternative Fuel for a Direct Oxidation PBI Polymer 

Electrolyte Fuel Cell. Electrochimica Acta. 1998, 43(24), pp.3821-3828. 

85. Narayanan, S.R., Vamos, E., Surampudi, S., Frank, H., Halpert, G., Surya 

Prakash, G.K., Smart, M.C., Knieler, R., Olah, G.A., Kosek, J. and Cropley, C. 

Direct Electro‐oxidation of Dimethoxymethane, Trimethoxymethane, and 

Trioxane and Their Application in Fuel Cells. Journal of The Electrochemical 

Society. 1997, 144(12), pp.4195-4201. 

86. Pilling, M.J. and Seakins, P.W. Reaction Kinetics.  Oxford University Press, 1996. 

87. Moshammer, K., Jasper, A.W., Popolan-Vaida, D.M., Lucassen, A., Diévart, P., 

Selim, H., Eskola, A.J., Taatjes, C.A., Leone, S.R., Sarathy, S.M., Ju, Y., Dagaut, 

P., Kohse-Höinghaus, K. and Hansen, N. Detection and Identification of the Keto-

Hydroperoxide (HOOCH2OCHO) and Other Intermediates during Low-

Temperature Oxidation of Dimethyl Ether. The Journal of Physical Chemistry A. 

2015, 119(28), pp.7361-7374. 

88. Moshammer, K., Jasper, A.W., Popolan-Vaida, D.M., Wang, Z., Bhavani 

Shankar, V.S., Ruwe, L., Taatjes, C.A., Dagaut, P. and Hansen, N. Quantification 

of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Elusive Intermediates 

during Low-Temperature Oxidation of Dimethyl Ether. The Journal of Physical 

Chemistry A. 2016, 120(40), pp.7890-7901. 

89. Eskola, A.J., Carr, S.A., Shannon, R.J., Wang, B., Blitz, M.A., Pilling, M.J., 

Seakins, P.W. and Robertson, S.H. Analysis of the Kinetics and Yields of OH 

Radical Production from the CH3OCH2 + O2 Reaction in the Temperature Range 



252 
 

195–650 K: An Experimental and Computational study. The Journal of Physical 

Chemistry A. 2014, 118(34), pp.6773-6788. 

90. Zádor, J., Taatjes, C.A. and Fernandes, R.X. Kinetics of elementary reactions in 

low-temperature autoignition chemistry. Progress in Energy and Combustion 

Science. 2011, 37(4), pp.371-421. 

91. Potter, D.G. Characterisation of a FAGE Instrument and the Importance of DME 

Combustion Chain-Branching and Chemical Activation Modelling in HCCI 

Engines. Unpublished, 2015. 

92. Fernandes, R.X., Zádor, J., Jusinski, L.E., Miller, J.A. and Taatjes, C.A. Formally 

direct pathways and low-temperature chain branching in hydrocarbon 

autoignition: the cyclohexyl + O2 reaction at high pressure. Physical Chemistry 

Chemical Physics. 2009, 11(9), pp.1320-1327. 

93. Taatjes, C.A. Uncovering the Fundamental Chemistry of Alkyl + O2 Reactions 

via Measurements of Product Formation. The Journal of Physical Chemistry A. 

2006, 110(13), pp.4299-4312. 

94. Curran, H.J., Fischer, S.L. and Dryer, F.L. The reaction kinetics of dimethyl ether. 

II: Low-temperature oxidation in flow reactors. International Journal of Chemical 

Kinetics. 2000, 32(12), pp.741-759. 

95. Curran, H.J., Pitz, W.J., Westbrook, C.K., Dagaut, P., Boettner, J.C. and 

Cathonnet, M. A wide range modeling study of dimethyl ether oxidation. 

International Journal of Chemical Kinetics. 1998, 30(3), pp.229-241. 

96. Zhao, Z., Chaos, M., Kazakov, A. and Dryer, F.L. Thermal decomposition 

reaction and a comprehensive kinetic model of dimethyl ether. International 

Journal of Chemical Kinetics. 2008, 40(1), pp.1-18. 

97. Tomlin, A.S., Agbro, E., Nevrlý, V., Dlabka, J. and Vašinek, M. Evaluation of 

Combustion Mechanisms Using Global Uncertainty and Sensitivity Analyses: A 

Case Study for Low-Temperature Dimethyl Ether Oxidation. International 

Journal of Chemical Kinetics. 2014, 46(11), pp.662-682. 

98. Jääskeläinen, H. Low Temperature Combustion. [Online]. 2010. [Accessed 

18/10/2019]. Available from: https://www.dieselnet.com/tech/engine_ltc.php 

99. Shudo, T. Influence of gas composition on the combustion and efficiency of a 

homogeneous charge compression ignition engine system fuelled with methanol 

reformed gases. International Journal of Engine Research. 2008, 9(5), pp.399-

408. 



253 
 

100. Shudo, T. and Yamada, H. Hydrogen as an Ignition-Controlling Agent for HCCI 

Combustion Engine by Suppressing the Low-Temperature Oxidation. 

International Journal of Hydrogen Energy. 2007, 32(14), pp.3066-3072. 

101. Manley, D.K., McIlroy, A. and Taatjes, C.A. Research Needs for Future Internal 

Combustion Engines. Physics Today. 2008, pp.47-52. 

102. Blocquet, M., Schoemaecker, C., Amedro, D., Herbinet, O., Battin-Leclerc, F. and 

Fittschen, C. Quantification of OH and HO2 radicals during the low-temperature 

oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique. 

Proceedings of the National Academy of Sciences of the United States of America. 

2013, 110(50), pp.20014-20017. 

103. Wilson, W.E., Jr. A Critical Review of the Gas-Phase Reaction Kinetics of the 

Hydroxyl Radical. Journal of Physical and Chemical Reference Data. 1972, 1(2), 

pp.535-574. 

104. Cox, R.A. and Cole, J.A. Chemical Aspects of the Autoignition of Hydrocarbon-

Air Mixtures. Combustion and Flame. 1985, 60(2), pp.109-123. 

105. Fish, A. Chain Propagation in the Oxidation of Alkyl Radicals. In: Oxidation of 

Organic Compounds.   American Chemical Society, 1968, pp.69-85. 

106. Knox, J.H. Photochemistry and Reaction Kinetics. Cambridge: Cambridge 

University Press, 1967. 

107. Pollard, R.T. Hydrocarbons. Comprehensive Chemical Kinetics: Gas-Phase 

Combustion. 1977, 17. 

108. Walker, R.W. and Morley, C. Basic Chemistry of Combustion. Comprehensive 

Chemical Kinetics: Low-Temperature Combustion and Autoignition. 1997, 35. 

109. Burke, U., Somers, K.P., O'Toole, P., Zinner, C.M., Marquet, N., Bourque, G., 

Petersen, E.L., Metcalfe, W.K., Serinyel, Z. and Curran, H.J. An ignition delay 

and kinetic modeling study of methane, dimethyl ether, and their mixtures at high 

pressures. Combustion and Flame. 2015, 162(2), pp.315-330. 

110. Mittal, G., Chaos, M., Sung, C.-J. and Dryer, F.L. Dimethyl Ether Autoignition 

In A Rapid Compression Machine: Experiments And Chemical Kinetic Modeling. 

Fuel Processing Technology. 2008, 89(12), pp.1244-1254. 

111. Yahyaoui, M., Djebaili-Chaumeix, N., Dagaut, P., Paillard, C.E. and Gall, S. 

Experimental and modelling study of gasoline surrogate mixtures oxidation in jet 

stirred reactor and shock tube. Proceedings of the Combustion Institute. 2007, 31, 

pp.385-391. 



254 
 

112. Dagaut, P., Boettner, J.-C. and Cathonnet, M. Chemical kinetic study of 

dimethylether oxidation in a jet stirred reactor from 1 to 10 ATM: Experiments 

and kinetic modeling. Symposium (International) on Combustion. 1996, 26(1), 

pp.627-632. 

113. Mellouki, A., Teton, S. and Le Bras, G. Kinetics Of OH Radical Reactions With 

A Series Of Ethers. International Journal of Chemical Kinetics. 1995, 27(8), 

pp.791-805. 

114. Wang, Z., Zhang, X., Xing, L., Zhang, L., Herrmann, F., Moshammer, K., Qi, F. 

and Kohse-Höinghaus, K. Experimental and kinetic modeling study of the low- 

and intermediate-temperature oxidation of dimethyl ether. Combustion and 

Flame. 2015, 162(4), pp.1113-1125. 

115. Di Tommaso, S., Rotureau, P., Crescenzi, O. and Adamo, C. Oxidation 

mechanism of diethyl ether: a complex process for a simple molecule. Physical 

Chemistry Chemical Physics. 2011, 13(32), pp.14636-14645. 

116. Du, B. and Zhang, W. Theoretical study of the reaction mechanism and kinetics 

of the OH + trimethyl orthoformate ((CH3O)3CH) + O2 reaction. Computational 

and Theoretical Chemistry. 2019, 1159, pp.38-45. 

117. Andrews, D.L. Lasers in Chemistry. Heidelberg: Springer-Verlag, 1986. 

118. Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, 

R.G., Jenkin, M.E., Rossi, M.J. and Troe, J. Evaluated kinetic and photochemical 

data for atmospheric chemistry: Volume I - gas phase reactions of OX, HOX, NOX 

and SOX species. Atmospheric Chemistry and Physics. 2004, 4(6), pp.1461-1738. 

119. Nicovich, J.M. and Wine, P.H. Temperature-dependent absorption cross sections 

for hydrogen peroxide vapor. Journal of Geophysical Research: Atmospheres. 

1988, 93(D3), pp.2417-2421. 

120. Pędziwiatr, P., Mikołajczyk, F., Zawadzki, D., Mikołajczyk, K. and Bedka, A. 

Decomposition of Hydrogen Peroxide - Kinetics and Review of Chosen Catalysts. 

Acta Innovations. 2018, 26, pp.45-52. 

121. Mackenzie, R.C., Ritchie, M. and Kendall, J.P. The Thermal Decomposition of 

Hydrogen Peroxide Vapour. Proceedings of the Royal Society of London. Series 

A. Mathematical and Physical Sciences. 1944, 185(1001), pp.207-224. 

122. Willms, T., Kryk, H., Oertel, J., Hempel, C., Knitt, F. and Hampel, U. On the 

thermal decomposition of tert.-butyl hydroperoxide, its sensitivity to metals and 

its kinetics, studied by thermoanalytic methods. Thermochimica Acta. 2019, 672, 

pp.25-42. 



255 
 

123. Atkins, P. and De Paula, J. Elements of Physical Chemistry. Fifth ed.  Oxford 

University Press, USA, 2013. 

124. Dunlop, J.R. and Tully, F.P. A kinetic study of hydroxyl radical reactions with 

methane and perdeuterated methane. The Journal of Physical Chemistry. 1993, 

97(43), pp.11148-11150. 

125. Laidler, K.J. Chemical Kinetics. Second ed. London, UK: McGraw-Hill, 1965. 

126. Cook, R.D., Davidson, D.F. and Hanson, R.K. High-Temperature Shock Tube 

Measurements of Dimethyl Ether Decomposition and the Reaction of Dimethyl 

Ether with OH. The Journal of Physical Chemistry A. 2009, 113(37), pp.9974-

9980. 

127. Yasunaga, K., Simmie, J.M., Curran, H.J., Koike, T., Takahashi, O., Kuraguchi, 

Y. and Hidaka, Y. Detailed Chemical Kinetic Mechanisms of Ethyl Methyl, 

Methyl tert-Butyl and Ethyl tert-Butyl Ethers: The Importance of Uni-Molecular 

Elimination Reactions. Combustion and Flame. 2011, 158(6), pp.1032-1036. 

128. Davidson, D.F. and Hanson, R.K. Recent advances in shock tube/laser diagnostic 

methods for improved chemical kinetics measurements. Shock Waves. 2009, 

19(4), pp.271-283. 

129. Bennett, P.J. and Kerr, J.A. Kinetics of the reactions of hydroxyl radicals with 

aliphatic ethers studied under simulated atmospheric conditions. Journal of 

Atmospheric Chemistry. 1989, 8(1), pp.87-94. 

130. Harry, C., Arey, J. and Atkinson, R. Rate constants for the reactions of OH 

radicals and Cl atoms with Di-n-Propyl ether and Di-n-Butyl ether and their 

deuterated analogs. International Journal of Chemical Kinetics. 1999, 31(6), 

pp.425-431. 

131. Smith, D.F., Kleindienst, T.E., Hudgens, E.E., McIver, C.D. and Bufalini, J.J. The 

Photooxidation of Methyl Tertiary Butyl Ether. International Journal of Chemical 

Kinetics. 1991, 23(10), pp.907-924. 

132. Tranter, R.S. and Walker, R.W. Rate Constants for the Reactions of H Atoms and 

OH Radicals with Ethers at 753 K. Physical Chemistry Chemical Physics. 2001, 

3(21), pp.4722-4732. 

133. Kovács, G., Zádor, J., Farkas, E., Nádasdi, R., Szilágyi, I., Dóbé, S., Bérces, T., 

Márta, F. and Lendvay, G. Kinetics and mechanism of the reactions of CH3CO 

and CH3C(O)CH2 radicals with O2. Low-pressure discharge flow experiments and 

quantum chemical computations. Physical Chemistry Chemical Physics. 2007, 

9(31), pp.4142-4154. 



256 
 

134. Perry, R.A., Atkinson, R. and Pitts, J.N. Rate constants for the reaction of OH 

radicals with dimethyl ether and vinyl methyl ether over the temperature range 

299–427 °K. The Journal of Chemical Physics. 1977, 67(2), pp.611-614. 

135. Wallington, T.J., Dagaut, P., Liu, R. and Kurylo, M.J. Gas-Phase Reactions of 

Hydroxyl Radicals with the Fuel Additives Methyl tert-Butyl Ether and tert-Butyl 

Alcohol over the Temperature Range 240-440 K. Environmental Science and 

Technology. 1988, 22(7), pp.842-844. 

136. Wallington, T.J., Liu, R., Dagaut, P. and Kurylo, M.J. The gas phase reactions of 

hydroxyl radicals with a series of aliphatic ethers over the temperature range 240–

440 K. International Journal of Chemical Kinetics. 1988, 20(1), pp.41-49. 

137. Nelson, L., Rattigan, O., Neavyn, R., Sidebottom, H., Treacy, J. and Nielsen, O.J. 

Absolute And Relative Rate Constants For The Reactions Of Hydroxyl Radicals 

And Chlorine Atoms With A Series Of Aliphatic Alcohols And Ethers At 298 K. 

International Journal of Chemical Kinetics. 1990, 22(11), pp.1111-1126. 

138. Hansel, A., Jordan, A., Holzinger, R., Prazeller, P., Vogel, W. and Lindinger, W. 

Proton-Transfer Reaction Mass-Spectrometry - Online Trace Gas-Analysis at the 

ppb Level. International Journal of Mass Spectrometry. 1995, 149, pp.609-619. 

139. Lindinger, W. and Hansel, A. Analysis of Trace Gases at ppb Levels by Proton 

Transfer Reaction Mass Spectrometry (PTR-MS). Plasma Sources Science & 

Technology. 1997, 6(2), pp.111-117. 

140. Lindinger, W., Hansel, A. and Jordan, A. Proton-Transfer-Reaction Mass 

Spectrometry (PTR-MS): On-Line Monitoring of Volatile Organic Compounds at 

pptv Levels. Chemical Society Reviews. 1998, 27(5), pp.347-354. 

141. IONICON. PTR-MS. [Online]. 2017. [Accessed 23/10/2019]. Available from: 

http://www.ionicon.com/information/technology/ptr-ms 

142. KORE. Proton Transfer Reactor Time-of-Flight Mass Spectrometry (PTR-TOF-

MS). [Online]. 2013. [Accessed 23/10/2019]. Available from: 

http://www.kore.co.uk/ptrtof.htm 

143. Baeza-Romero, M.T., Blitz, M.A., Goddard, A. and Seakins, P.W. Time-of-flight 

mass spectrometry for time-resolved measurements: Some developments and 

applications. International Journal of Chemical Kinetics. 2012, 44(8), pp.532-

545. 

144. Howes, N.U.M., Mir, Z.S., Blitz, M.A., Hardman, S., Lewis, T.R., Stone, D. and 

Seakins, P.W. Kinetic studies of C1 and C2 Criegee intermediates with SO2 using 

laser flash photolysis coupled with photoionization mass spectrometry and time 



257 
 

resolved UV absorption spectroscopy. Physical Chemistry Chemical Physics. 

2018, 20(34), pp.22218-22227. 

145. Medeiros, D.J., Blitz, M.A., James, L., Speak, T.H. and Seakins, P.W. Kinetics of 

the Reaction of OH with Isoprene over a Wide Range of Temperature and Pressure 

Including Direct Observation of Equilibrium with the OH Adducts. The Journal 

of Physical Chemistry A. 2018, 122(37), pp.7239-7255. 

146. Potter, C.D. A study of the mechanism of thermal decomposition of 

tetraborane(10) by mass spectrometry. PhD thesis, University of Leeds, 1984. 

147. Walker, R.W. and Morley, C. Chapter 1 Basic Chemistry of Combustion. In: 

Pilling, M.J. ed. Comprehensive Chemical Kinetics.  Amsterdam: Elsevier, 1997, 

pp.1-124. 

148. Daubert, T.E. and Danner, R.P. Physical and Thermodynamic Properties of Pure 

Chemicals Data Compilation. Washington, D.C.: Taylor and Francis. 1989.  

149. NTP. National Toxicology Program Chemical Repository Database. Research 

Triangle Park, North Carolina: Institute of Environmental Health Sciences, 

National Institutes of Health. 1992.  

150. Antoine, C. Vapor Pressure: a new relationship between pressure and temperature. 

Comptes Rendus des Séances de l’Académie des Sciences. 1888, 107. 

151. Yaws, C.L. and Yang, H.C. To Estimate Vapor Pressure Easily. Antoine 

Coefficients Relate Vapour Pressure to Temperature for Almost 700 Major 

Organic Compounds. Hydrocarbon Processing. 1989, 68(10), pp.65-68. 

152. Platz, J., Sehested, J., Nielsen, O.J. and Wallington, T.J. Atmospheric Chemistry 

of Trimethoxymethane, (CH3O)3CH; Laboratory Studies. The Journal of Physical 

Chemistry A. 1999, 103(15), pp.2632-2640. 

153. Porter, E., Wenger, J., Treacy, J., Sidebottom, H., Mellouki, A., Téton, S. and 

LeBras, G. Kinetic Studies on the Reactions of Hydroxyl Radicals with Diethers 

and Hydroxyethers. Journal of Atmospheric Chemistry. 1997, 101(32), pp.5770-

5775. 

154. Wallington, T.J., Hurley, M.D., Ball, J.C., Straccia, A.M., Platz, J., Christensen, 

L.K., Sehested, J. and Nielsen, O.J. Atmospheric Chemistry of 

Dimethoxymethane (CH3OCH2OCH3):  Kinetics and Mechanism of its Reaction 

with OH Radicals and Fate of the Alkoxy Radicals CH3OCHO(•)OCH3 and 

CH3OCH2OCH2O(•). The Journal of Physical Chemistry A. 1997, 101(29), 

pp.5302-5308. 



258 
 

155. Potter, D.G., Wiseman, S., Blitz, M.A. and Seakins, P.W. Laser Photolysis Kinetic 

Study of OH Radical Reactions with Methyl tert-Butyl Ether and Trimethyl 

Orthoformate under Conditions Relevant to Low Temperature Combustion: 

Measurements of Rate Coefficients and OH Recycling. The Journal of Physical 

Chemistry A. 2018, 122(50), pp.9701-9711. 

156. Potter, D.G., Blitz, M.A. and Seakins, P.W. A generic method for determining 

R + O2 rate parameters via OH regeneration. Chemical Physics Letters. 2019, 730, 

pp.213-219. 

157. Shannon, R.J., Caravan, R.L., Blitz, M.A. and Heard, D.E. A Combined 

Experimental and Theoretical Study of Reactions Between the Hydroxyl Radical 

and Oxygenated Hydrocarbons Relevant to Astrochemical Environments. 

Physical Chemistry Chemical Physics. 2014, 16(8), pp.3466-3478. 

158. Shannon, R.J., Taylor, S., Goddard, A., Blitz, M.A. and Heard, D.E. Observation 

of a large negative temperature dependence for rate coefficients of reactions of 

OH with oxygenated volatile organic compounds studied at 86–112 K. Physical 

Chemistry Chemical Physics. 2010, 12(41), pp.13511-13514. 

159. Waddington, D.J. The Gaseous Oxidation of Diethyl Ether. Proceedings of the 

Royal Society of London. Series A. Mathematical and Physical Sciences. 1959, 

252(1269), pp.260-272. 

160. Orlando, J.J. The atmospheric oxidation of diethyl ether: chemistry of the C2H5-

O-CH(O)CH3 radical between 218 and 335 K. Physical Chemistry Chemical 

Physics. 2007, 9(31), pp.4189-4199. 

161. Eberhard, J., Müller, C., Stocker, D.W. and Kerr, J.A. The photo-oxidation of 

diethyl ether in smog chamber experiments simulating tropospheric conditions: 

Product studies and proposed mechanism. International Journal of Chemical 

Kinetics. 1993, 25(8), pp.639-649. 

162. Lloyd, A.C., Darnall, K.R., Winer, A.M. and Pitts, J.N. Relative Rate Constants 

for the Reactions of OH Radicals with Isopropyl Alcohol, Diethyl and Di-n-propyl 

Ether at 305 ± 2 K. Chemical Physics Letters. 1976, 42(2), pp.205-209. 

163. Bennett, P.J. and Kerr, J.A. Kinetics of the reactions of hydroxyl radicals with 

aliphatic ethers studied under simulated atmospheric conditions: Temperature 

dependences of the rate coefficients. Journal of Atmospheric Chemistry. 1990, 

10(1), pp.27-38. 

164. Semadeni, M., Stocker, D.W. and Kerr, J.A. Further studies of the temperature 

dependence of the rate coefficients for the reactions of OH with a series of ethers 



259 
 

under simulated atmospheric conditions. Journal of Atmospheric Chemistry. 

1993, 16(1), pp.79-93. 

165. Tully, F.P. and Droege, A.T. Kinetics of the reactions of the hydroxyl radical with 

dimethyl ether and diethyl ether. International Journal of Chemical Kinetics. 

1987, 19(3), pp.251-259. 

166. Notario, A., Mellouki, A. and Le Bras, G. Rate constants for the gas-phase 

reactions of Cl atoms with a series of ethers. International Journal of Chemical 

Kinetics. 2000, 32(2), pp.105-110. 

167. Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, 

R.G., Jenkin, M.E., Rossi, M.J. and Troe, J. IUPAC Task Group on Atmospheric 

Chemical Kinetic Data Evaluation Atmospheric Chemistry and Physics. 2004, 

2(4), pp.1461-1738. 

168. Atkinson, R. Kinetics of the gas-phase reactions of OH radicals with alkanes and 

cycloalkanes. Atmospheric Chemistry and Physics. 2003, 3. 

169. Orkin, V.L., Villenave, E., Huie, R.E. and Kurylo, M.J. Atmospheric Lifetimes 

and Global Warming Potentials of Hydrofluoroethers:  Reactivity toward OH, UV 

Spectra, and IR Absorption Cross Sections. The Journal of Physical Chemistry A. 

1999, 103(48), pp.9770-9779. 

170. Cai, L.M., Sudholt, A., Lee, D.J., Egolfopoulos, F.N., Pitsch, H., Westbrook, C.K. 

and Sarathy, S.M. Chemical kinetic study of a novel lignocellulosic biofuel: Di-

n-butyl ether oxidation in a laminar flow reactor and flames. Combustion and 

Flame. 2014, 161(3), pp.798-809. 

171. Wullenkord, J., Tran, L.S., Bottchers, J., Graf, I. and Kohse-Hoinghaus, K. A 

laminar flame study on di-n-butyl ether as a potential biofuel candidate. 

Combustion and Flame. 2018, 190, pp.36-49. 

172. Thion, S., Togbé, C., Serinyel, Z., Dayma, G. and Dagaut, P. A chemical kinetic 

study of the oxidation of dibutyl-ether in a jet-stirred reactor. Combustion and 

Flame. 2017, 185, pp.4-15. 

173. Kramp, F. and Paulson, S.E. On the Uncertainties in the Rate Coefficients for OH 

Reactions with Hydrocarbons, and the Rate Coefficients of the 1,3,5-

Trimethylbenzene and m-Xylene Reactions with OH Radicals in the Gas Phase. 

The Journal of Physical Chemistry A. 1998, 102(16), pp.2685-2690. 

174. Wallington, T.J., Andino, J.M., Skewes, L.M., Siegl, W.O. and Japar, S.M. 

Kinetics of the Reaction of OH Radicals with a Series of Ethers under Simulated 



260 
 

Atmospheric Conditions at 295 K. International Journal of Chemical Kinetics. 

1989, 21(11), pp.993-1001. 

175. Arif, M., Dellinger, B. and Taylor, P.H. Rate Coefficients of Hydroxyl Radical 

Reaction with Dimethyl Ether and Methyl tert-Butyl Ether over an Extended 

Temperature Range. The Journal of Physical Chemistry A. 1997, 101(13), 

pp.2436-2441. 

176. Bonard, A., Daële, V., Delfau, J.-L. and Vovelle, C. Kinetics of OH Radical 

Reactions with Methane in the Temperature Range 295−660 K and with Dimethyl 

Ether and Methyl-tert-butyl Ether in the Temperature Range 295−618 K. The 

Journal of Physical Chemistry A. 2002, 106(17), pp.4384-4389. 

177. Cox, R.A. and Goldstone, A. Atmospheric Reactivity of Oxygenated Motor Fuel 

Additives. In: Physico-Chemical Behaviour of Atmospheric Pollutants: 

Proceedings of the Second European Symposium, 1982. 

178. Picquet, B., Heroux, S., Chebbi, A., Doussin, J.F., Durand‐Jolibois, R., Monod, 

A., Loirat, H. and Carlier, P. Kinetics of the Reactions of OH Radicals with Some 

Oxygenated Volatile Organic Compounds under Simulated Atmospheric 

Conditions. International Journal of Chemical Kinetics. 1998, 30(11), pp.839-

847. 

179. Teton, S., Mellouki, A., Bras, G.L. and Sidebottom, H. Rate Constants for 

Reactions of OH Radicals with a Series of Asymmetrical Ethers and tert‐Butyl 

Alcohol. International Journal of Chemical Kinetics. 1996, 28(4), pp.291-297. 

180. Japar, S.M., Wallington, T.J., Richert, J.F.O. and Ball, J.C. The Atmospheric 

Chemistry of Oxygenated Fuel Additives: t-Butyl Alcohol, Dimethyl Ether, and 

Methyl t-Butyl Ether. International Journal of Chemical Kinetics. 1990, 22(12), 

pp.1257-1269. 

181. Tuazon, E.C., Carter, W.P.L., Aschmann, S.M. and Atkinson, R. Products of the 

Gas‐Phase Reaction of Methyl tert‐Butyl Ether with the OH Radical in the 

Presence of NOx. International Journal of Chemical Kinetics. 1991, 23(11), 

pp.1003-1015. 

182. Iuga, C., Osnaya-Soto, L., Ortiz, E. and Vivier-Bunge, A. Atmospheric Oxidation 

of Methyl and Ethyl tert-Butyl Ethers Initiated by Hydroxyl Radicals. A Quantum 

Chemistry Study. Fuel. 2015, 159, pp.269-279. 

183. Zavala-Oseguera, C., Alvarez-Idaboy, J.R., Merino, G. and Galano, A. OH 

Radical Gas Phase Reactions with Aliphatic Ethers: A Variational Transition State 



261 
 

Theory Study. The Journal of Physical Chemistry A. 2009, 113(50), pp.13913-

13920. 

184. Atadinc, F., Selcuki, C., Sari, L. and Aviyente, V. Theoretical Study of Hydrogen 

Abstraction from Dimethyl Ether and Methyl tert-Butyl Ether by Hydroxyl 

Radical. Physical Chemistry Chemical Physics. 2002, 4(10), pp.1797-1806. 

185. Bänsch, C., Kiecherer, J., Szöri, M. and Olzmann, M. Reaction of Dimethyl Ether 

with Hydroxyl Radicals: Kinetic Isotope Effect and Prereactive Complex 

Formation. The Journal of Physical Chemistry A. 2013, 117(35), pp.8343-8351. 

186. Carr, S.A., Still, T.J., Blitz, M.A., Eskola, A.J., Pilling, M.J., Seakins, P.W., 

Shannon, R.J., Wang, B. and Robertson, S.H. Experimental and theoretical study 

of the kinetics and mechanism of the reaction of OH radicals with dimethyl ether. 

The Journal of Physical Chemistry A. 2013, 117(44), pp.11142-11154. 

187. DeMore, W.B. and Bayes, K.D. Rate Constants for the Reactions of Hydroxyl 

Radical with Several Alkanes, Cycloalkanes, and Dimethyl Ether. The Journal of 

Physical Chemistry A. 1999, 103(15), pp.2649-2654. 

188. Koizumi, H., Hironaka, K., Shinsaka, K., Arai, S., Nakazawa, H., Kimura, A., 

Hatano, Y., Ito, Y., Zhang, Y., Yagishita, A., Ito, K. and Tanaka, K. VUV‐optical 

oscillator strength distributions of C2H6O and C3H8O isomers. The Journal of 

Chemical Physics. 1986, 85(8), pp.4276-4279. 

189. Mellouki, A., Le Bras, G. and Sidebottom, H. Kinetics and Mechanisms of the 

Oxidation of Oxygenated Organic Compounds in the Gas Phase. Chemical 

Reviews. 2003, 103(12), pp.5077-5096. 

190. Kwok, E.S.C. and Atkinson, R. Estimation of hydroxyl radical reaction rate 

constants for gas-phase organic compounds using a structure-reactivity 

relationship: An update. Atmospheric Environment. 1995, 29(14), pp.1685-1695. 

191. Robertson, S.H., Seakins, P.W. and Pilling, M.J. Low-Temperature Combustion 

and Auto-Ignition. In: Pilling, M.J. ed. Comprehensive Chemical Kinetics.  

Amsterdam: Elsevier, 1997. 

192. Westbrook, C.K. Chemical Kinetics of Hydrocarbon Ignition in Practical 

Combustion Systems. Proceedings of the Combustion Institute. 2000, 28(2), 

pp.1563-1577. 

193. He, T.J., Wang, Z., You, X.Q., Liu, H.Y., Wang, Y.D., Li, X.Y. and He, X. A 

Chemical Kinetic Mechanism for the Low- and Intermediate-Temperature 

Combustion of Polyoxymethylene Dimethyl Ether 3 (PODE3). Fuel. 2018, 212, 

pp.223-235. 



262 
 

194. Welz, O., Zador, J., Savee, J.D., Ng, M.Y., Meloni, G., Fernandes, R.X., Sheps, 

L., Simmons, B.A., Lee, T.S., Osborn, D.L. and Taatjes, C.A. Low-Temperature 

Combustion Chemistry of Biofuels: Pathways in the Initial Low-Temperature 

(550 K-750 K) Oxidation Chemistry of Isopentanol. Physical Chemistry Chemical 

Physics. 2012, 14(9), pp.3112-3127. 

195. Pilling, M.J. and Smith, M.J. A Laser Flash Photolysis Study of the Reaction CH 

+ O2 → CH3O2 at 298 K. The Journal of Physical Chemistry. 1985, 89(22), 

pp.4713-4720. 

196. Slagle, I.R., Bencsura, Á., Xing, S.-B. and Gutman, D. Kinetics and 

Thermochemistry of the Oxidation of Unsaturated Radicals: C4H5+O2. 

Symposium (International) on Combustion. 1992, 24(1), pp.653-660. 

197. Slagle, I.R., Park, J.-Y. and Gutman, D. Experimental Investigation of the 

Kinetics and Mechanism of the Reaction of n-Propyl Radicals with Molecular 

Oxygen from 297 to 635 K. Symposium (International) on Combustion. 1985, 

20(1), pp.733-741. 

198. Wagner, A.F., Slagle, I.R., Sarzynski, D. and Gutman, D. Experimental and 

Theoretical Studies of the Ethyl + Oxygen Reaction Kinetics. The Journal of 

Physical Chemistry. 1990, 94(5), pp.1853-1868. 

199. Slagle, I.R., Bernhardt, J.R. and Gutman, D. Kinetics of the Reactions of SiH3 

with O2 and N2O. Chemical Physics Letters. 1988, 149(2), pp.180-184. 

200. Romero, M.T.B., Blitz, M.A., Heard, D.E., Pilling, M.J., Price, B. and Seakins, 

P.W. OH Formation from the C2H5CO+O2 Reaction: An Experimental Marker for 

the Propionyl Radical. Chemical Physics Letters. 2005, 408(4), pp.232-236. 

201. Blitz, M.A., Heard, D.E. and Pilling, M.J. OH Formation from CH3CO+O2: A 

Convenient Experimental Marker for the Acetyl Radical. Chemical Physics 

Letters. 2002, 365(5), pp.374-379. 

202. Howes, N.U.M., Lockhart, J.P.A., Blitz, M.A., Carr, S.A., Baeza-Romero, M.T., 

Heard, D.E., Shannon, R.J., Seakins, P.W. and Varga, T. Observation of a New 

Channel, the Production of CH3, in the Abstraction Reaction of OH Radicals with 

Acetaldehyde. Physical Chemistry Chemical Physics. 2016, 18(38), pp.26423-

26433. 

203. Michael, J.V., Keil, D.G. and Klemm, R.B. Rate Constants for the Reaction of 

Hydroxyl Radicals with Acetaldehyde from 244–528 K. The Journal of Chemical 

Physics. 1985, 83(4), pp.1630-1636. 



263 
 

204. Carr, S.A., Baeza-Romero, M.T., Blitz, M.A., Pilling, M.J., Heard, D.E. and 

Seakins, P.W. OH Yields from the CH3CO+O2 Reaction Using an Internal 

Standard. Chemical Physics Letters. 2007, 445(4-6), pp.108-112. 

205. Carr, S.A., Glowacki, D.R., Liang, C.-H., Baeza-Romero, M.T., Blitz, M.A., 

Pilling, M.J. and Seakins, P.W. Experimental and Modeling Studies of the 

Pressure and Temperature Dependences of the Kinetics and the OH Yields in the 

Acetyl + O2 Reaction. The Journal of Physical Chemistry A. 2011, 115(6), 

pp.1069-1085. 

206. Romero, M.T.B., Glowacki, D.R., Blitz, M.A., Heard, D.E., Pilling, M.J., 

Rickard, A.R. and Seakins, P.W. A Combined Experimental and Theoretical 

Study of the Reaction Between Methylglyoxal and OH/OD radical: OH 

Regeneration. Physical Chemistry Chemical Physics. 2007, 9(31), pp.4114-4128. 

207. Lockhart, J., Blitz, M., Heard, D., Seakins, P. and Shannon, R. Kinetic Study of 

the OH + Glyoxal Reaction: Experimental Evidence and Quantification of Direct 

OH Recycling. The Journal of Physical Chemistry A. 2013, 117(43), pp.11027-

11037. 

208. Hansen, J.C., Li, Y., Rosado-Reyes, C.M., Francisco, J.S., Szente, J.J. and Maricq, 

M.M. Theoretical and Experimental Investigation of the UV Cross Section and 

Kinetics of the Methyl Formate Peroxy Radical. The Journal of Physical 

Chemistry A. 2003, 107(27), pp.5306-5316. 

209. Eskola, A.J., Carr, S.A., Blitz, M.A., Pilling, M.J. and Seakins, P.W. Kinetics and 

Yields of OH Radical from the CH3OCH2+O2 Reaction Using a New Photolytic 

Source. Chemical Physics Letters. 2010, 487(1), pp.45-50. 

210. Sehested, J., Møgelberg, T., Wallington, T.J., Kaiser, E.W. and Nielsen, O.J. 

Dimethyl Ether Oxidation:  Kinetics and Mechanism of the CH3OCH2 + O2 

Reaction at 296 K and 0.38−940 Torr Total Pressure. The Journal of Physical 

Chemistry. 1996, 100(43), pp.17218-17225. 

211. Maricq, M.M., Szente, J.J. and Hybl, J.D. Kinetic Studies of the Oxidation of 

Dimethyl Ether and Its Chain Reaction with Cl2. The Journal of Physical 

Chemistry A. 1997, 101(28), pp.5155-5167. 

212. Masaki, A., Tsunashima, S. and Washida, N. Rate Constants for Reactions of 

Substituted Methyl Radicals (CH2OCH3, CH2NH2, CH2I, and CH2CN) with O2. 

The Journal of Physical Chemistry. 1995, 99(35), pp.13126-13131. 



264 
 

213. Rosado-Reyes, C.M., Francisco, J.S., Szente, J.J., Maricq, M.M. and Frøsig 

Østergaard, L. Dimethyl Ether Oxidation at Elevated Temperatures (295−600 K). 

The Journal of Physical Chemistry A. 2005, 109(48), pp.10940-10953. 

214. Hong, Z., Farooq, A., Barbour, E.A., Davidson, D.F. and Hanson, R.K. Hydrogen 

Peroxide Decomposition Rate: A Shock Tube Study Using Tunable Laser 

Absorption of H2O near 2.5 μm. The Journal of Physical Chemistry A. 2009, 

113(46), pp.12919-12925. 

215. Ludwig, W., Brandt, B., Friedrichs, G. and Temps, F. Kinetics of the reaction 

C2H5 + HO2 by time-resolved mass spectrometry. The Journal of Physical 

Chemistry A. 2006, 110(9), pp.3330-3337. 

216. Kintecus. www.kintecus.com, 2017. 

217. Archibald, A.T., Petit, A.S., Percival, C.J., Harvey, J.N. and Shallcross, D.E. On 

the importance of the reaction between OH and RO2 radicals. Atmospheric 

Science Letters. 2009, 10(2), pp.102-108. 

218. Griller, D. and Lossing, F.P. Thermochemistry of -Aminoalkyl Radicals. 

Journal of the American Chemical Society. 1981, 103(6), pp.1586-1587. 

219. Lossing, F.P. Heats of Formation of Some Isomeric [CnH2n+1O]+ ions. 

Substitutional Effects on Ion Stability. Journal of the American Chemical Society. 

1977, 99(23), pp.7526-7530. 

220. Ogura, T., Miyoshi, A. and Koshi, M. Rate Coefficients of H-Atom Abstraction 

from Ethers and Isomerization of Alkoxyalkylperoxy Radicals. Physical 

Chemistry Chemical Physics. 2007, 9(37), pp.5133-5142. 

221. Hu, E.J., Ku, J.F., Yin, G.Y., Li, C.C., Lu, X. and Huang, Z.H. Laminar Flame 

Characteristics and Kinetic Modeling Study of Ethyl Tertiary Butyl Ether 

Compared with Methyl Tertiary Butyl Ether, Ethanol, iso-Octane, and Gasoline. 

Energy & Fuels. 2018, 32(3), pp.3935-3949. 

222. Zhang, X., Oyedun, A., Kumar, A., Oestreich, D., Arnold, U. and Sauer, J. An 

Optimized Process Design for Oxymethylene Ether Production from Woody-

Biomass-Derived Syngas. Biomass and Bioenergy. 2016, 90, pp.7-14. 

223. Tsolakis, A., Megaritis, A. and Yap, D. Application of Exhaust Gas Fuel 

Reforming in Diesel and Homogeneous Charge Compression Ignition (HCCI) 

Engines Fuelled with Biofuels. Energy. 2008, 33(3), pp.462-470. 

224. Aschmann, S.M. and Atkinson, R. Products of the gas-phase reactions of the OH 

radical with n-butyl methyl ether and 2-isopropoxyethanol: Reactions of ROC(Ȯ) 

< radicals. 1999, 31(7), pp.501-513. 



265 
 

225. Sakai, Y., Ando, H., Chakravarty, H.K., Pitsch, H. and Fernandes, R. A 

computational study on the kinetics of unimolecular reactions of 

ethoxyethylperoxy radicals employing CTST and VTST. In: Proceedings of the 

Combustion Institute, San Francisco. 2015, pp.161-169. 

226. Sandhiya, L., Ponnusamy, S. and Senthilkumar, K. Atmospheric oxidation 

mechanism of OH-initiated reactions of diethyl ether – the fate of the 1-ethoxy 

ethoxy radical. RSC Advances. 2016, 6(84), pp.81354-81363. 

227. Wang, S. and Wang, L. The atmospheric oxidation of dimethyl, diethyl, and 

diisopropyl ethers. The role of the intramolecular hydrogen shift in peroxy 

radicals. Physical Chemistry Chemical Physics. 2016, 18(11), pp.7707-7714. 

228. Hu, E., Chen, Y., Zhang, Z., Chen, J.-Y. and Huang, Z. Ab initio calculation and 

kinetic modeling study of diethyl ether ignition with application toward a skeletal 

mechanism for CI engine modeling. Fuel. 2017, 209, pp.509-520. 

229. Lockhart, J. The Role of Chemical Activation in the Formation and Loss of 

Atmospheric Carbonyl Species. PhD thesis, University of Leeds, 2014. 

230. Lockhart, J., Blitz, M.A., Heard, D.E., Seakins, P.W. and Shannon, R.J. 

Mechanism of the Reaction of OH with Alkynes in the Presence of Oxygen. The 

Journal of Physical Chemistry A. 2013, 117(26), pp.5407-5418. 

231. Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, 

R.G., Jenkin, M.E., Rossi, M.J. and Troe, J. IUPAC Task Group on Atmospheric 

Chemical Kinetic Data Evaluation Atmospheric Chemistry and Physics. 2006, 6, 

p.3625. 

232. Delbos, E., Fittschen, C., Hippler, H., Krasteva, N., Olzmann, M. and Viskolcz, 

B. Rate Coefficients and Equilibrium Constant for the CH2CHO + O2 Reaction 

System. The Journal of Physical Chemistry A. 2006, 110(9), pp.3238-3245. 

233. Wu, D. and Bayes, K.D. Rate constants for the reactions of isobutyl, neopentyl, 

cyclopentyl, and cyclohexyl radicals with molecular oxygen. International 

Journal of Chemical Kinetics. 1986, 18(5), pp.547-554. 

234. Slagle, I.R., Bernhardt, J.R. and Gutman, D. Kinetics of the reactions of 

unsaturated free radicals (methylvinyl and i-C4H3) with molecular oxygen. 

Symposium (International) on Combustion. 1989, 22(1), pp.953-962. 

235. Laufer, A.H. and Fahr, A. Reactions and Kinetics of Unsaturated C2 Hydrocarbon 

Radicals. Chemical Reviews. 2004, 104(6), pp.2813-2832. 

236. Yasunaga, K., Gillespie, F., Simmie, J.M., Curran, H.J., Kuraguchi, Y., 

Hoshikawa, H., Yamane, M. and Hidaka, Y. A Multiple Shock Tube and 



266 
 

Chemical Kinetic Modeling Study of Diethyl Ether Pyrolysis and Oxidation. The 

Journal of Physical Chemistry A. 2010, 114(34), pp.9098-9109. 

237. Tran, L.-S., Pieper, J., Carstensen, H.-H., Zhao, H., Graf, I., Ju, Y., Qi, F. and 

Kohse-Höinghaus, K. Experimental and kinetic modeling study of diethyl ether 

flames. Proceedings of the Combustion Institute. 2017, 36(1), pp.1165-1173. 

238. Serinyel, Z., Lailliau, M., Thion, S., Dayma, G. and Dagaut, P. An experimental 

chemical kinetic study of the oxidation of diethyl ether in a jet-stirred reactor and 

comprehensive modeling. Combustion and Flame. 2018, 193, pp.453-462. 

239. Goldsmith, C.F., Green, W.H. and Klippenstein, S.J. Role of O2 + QOOH in Low-

Temperature Ignition of Propane. 1. Temperature and Pressure Dependent Rate 

Coefficients. The Journal of Physical Chemistry A. 2012, 116(13), pp.3325-3346. 

240. Gaussian 09. Wallingford, CT, 2016. 

241. Papajak, E., Zheng, J., Xu, X., Leverentz, H.R. and Truhlar, D.G. Perspectives on 

Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions. Journal of 

Chemical Theory and Computation. 2011, 7(10), pp.3027-3034. 

242. Glowacki, D.R., Liang, C.H., Morley, C., Pilling, M.J. and Robertson, S.H. 

MESMER: An Open-Source Master Equation Solver for Multi-Energy Well 

Reactions. The Journal of Physical Chemistry A. 2012, 116(38), pp.9545-9560. 

243. Blitz, M.A., Green, N.J.B., Shannon, R.J., Pilling, M.J., Seakins, P.W., Western, 

C.M. and Robertson, S.H. Reanalysis of Rate Data for the Reaction CH3 + CH3 

→ C2H6 Using Revised Cross Sections and a Linearized Second-Order Master 

Equation. The Journal of Physical Chemistry A. 2015, 119(28), pp.7668-7682. 

244. Bartis, J.T. and Widom, B.J. Stochastic models of the interconversion of three or 

more chemical species. The Journal of Chemical Physics. 1974, 60(9), pp.3474-

3482. 

245. Garrett, B.C. and Truhlar, D.G. Semiclassical tunneling calculations. The Journal 

of Physical Chemistry. 1979, 83(22), pp.2921-2926. 

246. Robertson, S.H., Glowacki, D.R., Liang, C.-H., Morley, C., Shannon, R., Blitz, 

M., Seakins, P.W. and Pilling, M.J. MESMER (Master Equation Solver for Multi-

Energy Well Reactions), 2008-2013, an object oriented C++ program 

implementing master equation methods for gas phase reactions with arbitrary 

multiple wells. http://sourceforge.net/projects/mesmer. 

247. Andersen, A. and Carter, E.A. A hybrid density functional theory study of the 

low-temperature dimethyl ether combustion pathways. I: Chain-propagation. 

Israel Journal of Chemistry. 2002, 42(2-3), pp.245-260. 



267 
 

248. Andersen, A. and Carter, E.A. Hybrid Density Functional Theory Predictions of 

Low-Temperature Dimethyl Ether Combustion Pathways. II. Chain-Branching 

Energetics and Possible Role of the Criegee Intermediate. The Journal of Physical 

Chemistry A. 2003, 107(44), pp.9463-9478. 

249. Andersen, A. and Carter, E.A. First-principles-derived kinetics of the reactions 

involved in low-temperature dimethyl ether oxidation. Molecular Physics. 2008, 

106(2-4), pp.367-396. 

250. Jenkin, M.E., Hayman, G.D., Wallington, T.J., Hurley, M.D., Ball, J.C., Nielsen, 

O.J. and Ellermann, T. Kinetic and Mechanistic Study of the Self-Reaction of 

Methoxymethylperoxy Radicals at Room Temperature. The Journal of Physical 

Chemistry. 1993, 97(45), pp.11712-11723. 

251. Xing, L.-l., Zhang, X.-y., Wang, Z.-d., Li, S. and Zhang, L.-d. New Insight into 

Competition between Decomposition Pathways of Hydroperoxymethyl Formate 

in Low Temperature DME Oxidation. Chinese Journal of Chemical Physics. 

2015, 28(5), pp.563-572. 

252. Di Tommaso, S., Rotureau, P. and Adamo, C. Oxidation Mechanism of Aliphatic 

Ethers: Theoretical Insights on the Main Reaction Channels. The Journal of 

Physical Chemistry A. 2012, 116(36), pp.9010-9019. 

253. Di Tommaso, S., Rotureau, P., Benaissa, W., Gruez, P. and Adamo, C. Theoretical 

and Experimental Study on the Inhibition of Diethyl Ether Oxidation. Energy & 

Fuels. 2014, 28(4), pp.2821-2829. 

254. Di Tommaso, S., Rotureau, P., Sirjean, B., Fournet, R., Benaissa, W., Gruez, P. 

and Adamo, C. A mechanistic and experimental study on the diethyl ether 

oxidation. Process Safety Progress. 2014, 33(1), pp.64-69. 

255. Sakai, Y., Herzler, J., Werler, M., Schulz, C. and Fikri, M. A quantum chemical 

and kinetics modeling study on the autoignition mechanism of diethyl ether. 

Proceedings of the Combustion Institute. 2017, 36(1), pp.195-202. 

256. Pilling, M.J. and Smith, I.W. Modern Gas Kinetics.  Blackwell Scientific 

Publications, 1987. 

257. Morley, C. Photolytic perturbation method to investigate the kinetics of 

hydrocarbon oxidation near 800 K. Symposium (International) on Combustion. 

1989, 22(1), pp.911-918. 

258. Stone, D., Blitz, M., Ingham, T., Onel, L., Medeiros, D.J. and Seakins, P.W. An 

instrument to measure fast gas phase radical kinetics at high temperatures and 

pressures. Review of Scientific Instruments. 2016, 87(5), p.054102. 



268 
 

259. Speak, T.H., Blitz, M.A., Stone, D. and Seakins, P.W. A New Instrument of Time 

Resolved Measurement of HO2 Radicals (in press), doi.org/10.5194/amt-2019-

164. Atmospheric Measurement Techniques. 2019. 

260. Feng, R., Cooper, G. and Brion, C.E. UV, VUV and soft X-ray photoabsorption 

of dimethyl ether by dipole (e,e) spectroscopies. Chemical Physics. 2000, 260(3), 

pp.391-400. 

261. Feng, R. and Brion, C.E. Quantitative photoabsorption of diethyl ether in the 

valence and carbon 1s inner shell regions (5–360 eV). Chemical Physics. 2002, 

284(3), pp.615-623. 

262. Sime, S.L. Kinetic studies of bio-butanol oxidation under low temperature 

combustion conditions. PhD thesis, 2019. 

263. Dillon, T.J., Horowitz, A. and Crowley, J.N. The atmospheric chemistry of 

sulphuryl fluoride, SO2F2. Atmospheric Chemistry and Physics. 2008, 8(6), 

pp.1547-1557. 

264. Dunlea, E.J. and Ravishankara, A.R. Kinetic studies of the reactions of O(1D) with 

several atmospheric molecules. Physical Chemistry Chemical Physics. 2004, 6(9), 

pp.2152-2161. 

265. Buchta, C., Frerichs, H., Stucken, D., Tappe, M. and Wagner, H.G. Investigation 

of the Reactions of Diethylether, n-Dipropylether and n-Dibutylether with O(3P) 

in the Gas Phase. Zeitschrift für Physikalische Chemie. 1991, 174(2), p.129. 

266. Liu, R., Dagaut, P., Huie, R.E. and Kurylo, M.J. A Flash Photolysis Resonance 

Fluorescence Investigation of the Reactions of Oxygen O(3P) Atoms with 

Aliphatic Ethers and Diethers in the Gas Phase. International Journal of Chemical 

Kinetics. 1990, 22(7), pp.711-717. 

267. Brocard, J.C., Baronnet, F. and O'Neal, H.E. Chemical Kinetics of the Oxidation 

of Methyl tert-Butyl Ether (MTBE). Combustion and Flame. 1983, 52, pp.25-35. 

268. Ciajolo, A. Low-Temperature Oxidation of MTBE in a High-Pressure Jet-Stirred 

Flow Reactor. Combustion Science and Technology. 1997, 123(1-6), pp.49-61. 

269. Glaude, P.A., Battin-Leclerc, F., Judenherc, B., Warth, V., Fournet, R., Côme, 

G.M., Scacchi, G., Dagaut, P. and Cathonnet, M. Experimental and modeling 

study of the gas-phase oxidation of methyl and ethyl tertiary butyl ethers. 

Combustion and Flame. 2000, 121(1), pp.345-355. 

270. Carr, S.A., Blitz, M.A. and Seakins, P.W. Site-Specific Rate Coefficients for 

Reaction of OH with Ethanol from 298 to 900 K. The Journal of Physical 

Chemistry A. 2011, 115(15), pp.3335-3345. 



269 
 

271. Dyer, M.J., Pfefferle, L.D. and Crosley, D.R. Laser-induced fluorescence 

measurement of oxygen atoms above a catalytic combustor surface. Applied 

Optics. 1990, 29(1), pp.111-118. 



270 
 

Appendices 

Appendix A: Example decays and bimolecular plots for OH + ether reactions 

 

Figure A 1: An example single exponential decay, measured at room temperature, 
68 Torr N2, [TMOF] = 7.3 × 1014 molecule cm–3. Exponential fit yielded k′ = (4000 ± 
40) s–1, where the uncertainty on is statistical at the 2σ level.  

 

 

Figure A 2: Example single exponential decay for OH + DEE, [DEE] = 7.7 × 1014 
molecule cm–3. The exponential fit yielded k′ = (9320 ± 340) s–1. Uncertainty on 
returned parameter is 2σ and purely statistical. Experimental conditions were 298 K 
and 47 Torr N2. 
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Figure A 3: Example bimolecular plot for OH + DEE at 298 K and 47 Torr N2, 
kOH+DEE = (1.14 ± 0.11) × 10–11 cm3 molecule–1 s–1. Grey shaded area represents the 
bounds of the 95% confidence limits. Uncertainties on the rate coefficient are 
statistical at the 2σ level. 

 

 

Figure A 4: Biexponential decay obtained with DEE using the t-BuOOH precursor. 
Experimental conditions were [DEE] = 1.6 × 1015 molecule cm–3, 415 K, and 30 Torr 
N2. Parameters returned were kaʹ = (19200 ± 780) s–1, kb = (1170 ± 160) s–1, kc = (1200 
± 210) s–1, and kd was fixed at 1150 s–1. Single exponential fit returned kʹ = (16780 ± 
1060) s–1. Uncertainties are statistical at the 2σ level. 
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Figure A 5: Example single exponential decay for OH + DBE, [DBE] = 9.3 × 1013 
molecule cm–3. The exponential fit yielded k′ = (3910 ± 50) s–1. Uncertainty on 
returned parameter is 2σ and purely statistical. Experimental conditions were 298 K 
and 29 Torr N2. 

 

 

Figure A 6: Bimolecular plots for the OH + DBE reaction. Experimental conditions 
were 298 K and 29 Torr N2 (black), and 572 K and 28 Torr N2 (red). The rate 
coefficients were kOH+DBE = (3.99 ± 0.09) × 10–11 cm3 molecule–1 s–1 and (2.70 ± 0.27) 
× 10–11 cm3 molecule–1 s–1 respectively. Note the high temperature measurement was 
biexponential, so no intercept is included in the plot. Uncertainties are statistical at 
the 2σ level. The intercepts are (290 ± 10) s–1 (black), and (10 ± 30) s–1 (red).  
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Figure A 7: Example biexponential decay for OH + DBE, at 572 K and 28 Torr N2. 
Returned parameters were kaʹ = (750 ± 30) s–1, kb = (20 ± 10) s–1, kc = (80 ± 70) s–1, kd 
was fixed at 120 s–1. Single exponential kʹ = (830 ± 30). [DBE] = 3.0 × 1013 molecule 
cm–3. Inset shows regular residuals of data.  

 

 

Figure A 8: An example single exponential decay for the OH + MTBE reaction, 
where [MTBE] = 4.7 × 1014 molecule cm–3. An exponential fit yielded k′ = (1470 ± 
20) s–1. Experimental conditions were 298 K and 29 Torr N2. 
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Figure A 9: Example bimolecular plots for OH + MTBE. Error bars are statistical 
at the 1σ level. Experimental conditions were 298K and 29 Torr N2 (black); 495 K 
and 63 Torr N2 (red); and 727 K and 46 Torr N2 (green). kOH+MTBE =  (2.81 ± 0.18) × 
10–12 cm3 molecule–1 s–1,  (7.27 ± 0.95) × 10–12 cm3 molecule–1 s–1, and  (1.32 ± 0.12) × 
10–11 cm3 molecule–1 s–1 respectively. Shaded areas represent the 95% confidence 
limits. Note there is no intercept on the highest temperature, which was 
biexponential. Uncertainties on returned parameters are statistical at the 2σ level. 
Intercepts are (180 ± 10) s–1 (black), (80 ± 20) s–1 (red), and (–110 ± 130) s–1 (green).   

 

Figure A 10: Example OH + MTBE biexponential decay with a good fit to the 
biexponential equation (red line), and a poor fit to the single exponential equation 
(blue line), measured at 680 K, 45 Torr N2. The inset shows the residuals for the 
biexponential fit. Parameters from the biexponential fit: ka′ = (8710 ± 250) s–1, kb = 
(1270 ± 140) s–1, kc = (2330 ± 200) s–1, and kd was fixed at 200 s–1. [MTBE] = 6.09 ± 
1014 cm3 molecule–1 s–1. Uncertainties are statistical at the 2σ level. The OH 
precursor used was H2O2. 
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Figure A 11: Example OH + DME bimolecular plots at 298 K and 59 Torr N2 (black), 
kOH+DME = (2.71 ± 0.09) × 10–12 cm3 molecule–1 s–1. At 543 K and 57 Torr N2 (red), 
kOH+DME = (5.36 ± 0.72) × 10–12 cm3 molecule–1 s–1. At 634 K and 57 Torr N2 (green), 
kOH+DME = (8.11 ± 0.72) × 10–12 cm3 molecule–1 s–1. The highest two temperatures are 
biexponential, hence no DME-free data are included. Returned parameter 
uncertainties are statistical at the 2σ level. Shaded areas represent the bounds of the 
95% confidence limits. Intercepts are (260 ± 20) s–1 (black), (–260 ± 330) s–1 (red), 
and (–130 ± 150) s–1 (green).   

 

Figure A 12: Example OH + DME biexponential decay at 590 K and 57 Torr N2, 
[DME] = 4.94 × 1014 cm3 molecule–1 s–1. Parameters returned are kaʹ = (3320 ± 160) 
s–1, kb = (670 ± 60) s–1, kc = (320 ± 30) s–1, kd fixed at 140 s–1. Single exponential fit 
yielded kʹ = (1340 ± 130) s–1. Uncertainties on parameters are statistical at the 2σ 
level.  
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Appendix B: OriginPro fitting equation for the interpretation of R + O2 chemical 

activation data 

// Fit Parameter(s): 

double OH, double kd, double ka, double kro2, double yield, double b, double kx, 

double ether, double O2, double O2x, 

// Independent Variable(s): 

double x, 

// Dependent Variable(s): 

double& y) 

{ 

 // Beginning of editable part 

 double S,M1,M2,L1,L2,kapseud,kbpseud,kcpseud; 

  

 kapseud=ka*ether; 

 kbpseud=(yield*kro2)*(O2+O2x); 

 kcpseud=((kro2-(yield*kro2))*(O2+O2x))+kx; 

  

 S=-(kd+kapseud); 

 M1=kd+kapseud+kbpseud+kcpseud; 

 M2=(kd+kapseud)*(kbpseud+kcpseud)-kapseud*kbpseud; 

 L1=(-M1+sqrt(M1^2-4*M2))/2; 

 L2=(-M1-sqrt(M1^2-4*M2))/2; 

  

 y=OH*(((S-L2)/(L1-L2))*(exp(L1*x/1e3)-exp(L2*x/1e3))+exp(L2*x/1e3))+b 

 // End of editable part 

} 
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Appendix C: Ab initio calculation details for the DEE system 

Species Energy 
/ kcal 
mol–1 

Rotational 
constants 
/ cm–1 

Vibrational frequencies / cm–1 

R 0.0 0.688 
0.076 
0.071 

91.03 114.50 180.40 196.90 259.67 432.36 454.96 
575.68 816.63 879.24 973.29 1025.56 1109.95 

1129.10 1186.80 1191.54 1280.77 1313.35 1379.91 
1403.53 1422.87 1464.13 1469.56 1491.96 1499.46 
1505.66 1530.26 3009.34 3031.15 3066.68 3069.79 

3078.13 3129.30 3142.63 3146.79 3148.91 

O2 0.0 1.489 1762.06 

RO2 –34.8 0.129 
0.061 
0.044 

77.11 101.94 118.93 188.03 193.47 243.11 310.29 
382.79 433.19 563.41 570.95 824.74 833.72 881.79 
979.04 1079.78 1111.26 1146.90 1183.23 1194.46 
1231.37 1293.17 1314.36 1366.88 1384.22 1408.08 
1423.65 1459.79 1484.11 1486.63 1493.56 1506.09 
1531.16 3042.18 3062.61 3072.87 3089.57 3090.29 

3139.66 3144.64 3157.93 3161.26 

TS1 –15.1 0.135 
0.068 
0.049 

127.35 178.60 209.43 215.17 291.86 321.89 420.27 
471.26 502.73 571.83 632.92 859.33 881.31 899.16 
976.24 1078.52 1110.04 1141.30 1155.15 1172.80 
1196.78 1227.88 1288.32 1358.06 1380.62 1397.99 
1421.43 1449.57 1484.36 1489.67 1492.16 1495.41 
1655.50 3053.24 3068.29 3076.66 3080.67 3124.67 

3155.29 3161.52 3164.93 

QOOH –25.6 0.125 
0.063 
0.044 

83.23 109.24 159.46 190.76 202.42 214.20 297.27 
376.65 408.25 436.90 560.88 610.65 648.14 877.61 
905.07 992.01 1030.07 1054.72 1130.90 1136.76 

1176.19 1202.95 1261.29 1372.97 1373.59 1402.60 
1424.04 1434.09 1456.71 1471.12 1487.46 1492.65 
1497.07 3005.90 3074.03 3086.67 3087.36 3140.85 

3157.04 3165.09 3169.39 3754.22 

TS2 –3.7 0.110 
0.064 
0.043 

11.36 104.20 120.84 171.69 198.11 215.81 220.01 
284.69 347.50 435.80 530.98 585.01 702.48 765.03 
882.74 961.99 1003.60 1017.21 1044.48 1137.89 

1173.59 1197.76 1318.12 1367.68 1393.90 1403.40 
1414.29 1463.60 1473.11 1489.41 1490.35 1559.80 
3000.59 3017.84 3069.75 3104.54 3149.84 3157.53 

3166.32 3195.79 3864.15 

OH –53.9 18.804 3750.73 

TS6 23.7 0.440 
0.074 
0.071 

50.45 89.39 97.90 165.46 189.98 314.34 499.43 
679.20 697.82 836.27 879.65 913.85 1022.95 

1044.34 1099.77 1124.27 1225.20 1335.35 1389.05 
1402.84 1459.33 1472.44 1484.45 1486.23 1494.15 
1517.28 3010.94 3035.25 3049.14 3095.84 3102.41 

3137.84 3145.94 3149.23 3244.63 
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Appendix D: Derivation of O(3P) mechanism analytical equation 

 

Scheme A 1: Proposed reaction scheme for growth behaviour, used for fit derivation. 

 

d[OH]

dt
 = ko[O] + kb[R] – (ka+kd)[OH]   

d[R]

dt
 = ko[O] + ka[OH] – (kb+kc)[R]  

A = –(ka + kd) B = –(kb +kc) C = ko D = kb E = ka 

d[OH]

dt
 = C[O] + D[R] + A[OH]       eqn. 1 

d[R]

dt
 = C[O] + E[OH] + B[R]  

Multiply by opposite term in front of [R], to cancel out R term. (i.e. B and D) 

B 
d[OH]

dt
 = BC[O] + BD[R] + BA[R] 

D 
d[R]

dt
 = DC[O] + DE[OH] + DB[R] 

B 
d[OH]

dt
 – D 

d[R]

dt
 = BC[O] + BA[OH] – DC[O] – DE[OH] 

B 
d[OH]

dt
 = (BC – DC)[O] + (BA – DE)[OH] + D 

d[R]

dt
    eqn. 2 

Second derivative of first OH rate eqn. 1: 

d2[OH]

dt
 = 

Cd[O]

dt
 + 

Dd[R]

dt
 + 

Ad[OH]

dt
  eqn. 3 

Rearrange eqn. 2 for D 
d[R]

dt
 and substitute into eqn. 3: 

d2[OH]

dt
 = 

Cd[O]

dt
 + 

Bd[OH]

dt
 + 

Ad[OH]

dt
  – (BC – DC)[O] – (BA – DE)[OH]   

d2[OH]

dt
 = 

Cd[O]

dt
 + 

(B+A)d[OH]

dt
 – (BC – DC)[O] – (BA – DE)[OH]   

d2[OH]

dt
 – 

(B+A)d[OH]

dt
 + (BA – DE)[OH] = 

Cd[O]

dt
 – (BC – DC)[O]  

F = –(B + A) G = (BA – DE) J = –(BC – DC) 

d2[OH]

dt
 + F

d[OH]

dt
 + G[OH] = 

Cd[O]

dt
 + J[O] 

[O] = [O]0 e–ko×t, where ko is the total of O + fuel and O + O2 

d[O]

dt
 = [O]0 × –ko × e–ko×t 
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d2[OH]

dt
 + F

d[OH]

dt
 + G[OH] = C[O]0×–koe–ko×t + J[O]0e–ko×t 

N = C[O]0 × –ko  O = J[O]0 

d2[OH]

dt
 + F

d[OH]

dt
 + G[OH] = Ne–ko×t + O0e–ko×t 

H = N+O 

= (N+O)e–ko×t  = He–ko×t 

yʹʹ(x) + fyʹ(x) + jy = He–ko×t solved: 

y(x) = [OH]t = c1et×r1 + c2et×r2 + Pe–ko×t      eqn. 4 

r1 = 
– F – ඥF2 – 4J

2
  r2 = 

– F + ඥF2 – 4J

2
  P = 

H

(–F × ko) + J + k0
2 

Need to know what c1, c2 etc. equal. 

Find expression for c2 at t = 0: 

At t = 0, e0×r1 etc. = 1, so: 

[OH]0 = c1 + c2 + P 

C2 = [OH]0 – c1 – P  sub this into eqn. 4: 

[OH]t = c1et×r1 + ([OH]0 – c1 – P)et×r2 + Pe–ko×t     eqn. 5 

Differentiate eqn.5: 

d[OH]

dt
 = r1c1et×r1 + r2([OH]0 – c1 – P)et×r2 + (–koP)e–ko×t 

At t = 0  
d[OH]

dt
 = r1c1 + r2([OH]0 – c1 – P) + (–koP) 

When at t = 0, [R]0 = 0, so eqn. 1 becomes 
d[OH]

dt
 = C[O]0 + A[OH]0 

So, 
d[OH]

dt
 = C[O]0 + A[OH]0 = r1c1 + r2([OH]0 – c1 – P) + (–koP)  

W = –koP 

Rearrange this for c1: 

c1 = C[O]0
 + A[OH]0 

– W + r2P – r2[OH]0

(r1 – r2)ൗ  

Now have fit expression (eqn. 4), with c2 in terms of c1, and c1 in terms of rates. 

 

 


