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Abstract

One of the most significant challenges for signal processing in data-based struc-

tural health monitoring (SHM) is a lack of comprehensive data; in particular,

recording labels to describe what each of the measured signals represent.

For example, consider an offshore wind-turbine, monitored by an SHM

strategy. It is infeasible to artificially damage such a high-value asset to collect

signals that might relate to the damaged structure in situ; additionally, signals

that correspond to abnormal wave-loading, or unusually low-temperatures,

could take several years to be recorded. Regular inspections of the turbine

in operation, to describe (and label) what measured data represent, would

also prove impracticable — conventionally, it is only possible to check various

components (such as the turbine blades) following manual inspection; this

involves travelling to a remote, offshore location, which is a high-cost procedure.

Therefore, the collection of labelled data is generally limited by some expense

incurred when investigating the signals; this might include direct costs, or loss

of income due to down-time. Conventionally, incomplete label information

forces a dependence on unsupervised machine learning, limiting SHM strategies

to damage (i.e. novelty) detection. However, while comprehensive and fully

labelled data can be rare, it is often possible to provide labels for a limited

subset of data, given a label budget. In this scenario, partially-supervised

machine learning should become relevant. The associated algorithms offer an

alternative approach to monitor measured data, as they can utilise both labelled

and unlabelled signals, within a unifying training scheme.

In consequence, this work introduces (and adapts) partially-supervised

algorithms for SHM; specifically, semi-supervised and active learning methods.

Through applications to experimental data, semi-supervised learning is shown

to utilise information in the unlabelled signals, alongside a limited set of labelled

data, to further update a predictive-model. On the other hand, active learning

improves the predictive performance by querying specific signals to investigate,

which are assumed the most informative. Both discriminative and generative

methods are investigated, leading towards a novel, probabilistic framework, to

classify, investigate, and label signals for online SHM. The findings indicate

that, through partially-supervised learning, the cost associated with labelling



data can be managed, as the information in a selected subset of labelled signals

can be combined with larger sets of unlabelled data — increasing the potential

scope and predictive performance for data-driven SHM.
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1

DATA-DRIVEN SHM

Overview: As digital storage improves, and sensing devices proliferate, engi-

neering systems have the potential to provide a variety of insightful data. This

information has been utilised in various applications of structural dynamics,

including: system identification [1, 2], model validation [3], control [4], and

structural health monitoring (SHM) [5]. While datasets may be large, descrip-

tions of what the measurements represent is regularly limited [6–9]. Considering

SHM, this work explores novel methods for statistical pattern recognition, with

limited information to describe the measured signals.

1-1. Structural Health Monitoring

‘Structural health monitoring (SHM) refers to the process of implementing a

damage detection strategy for aerospace, civil or mechanical engineering [sys-

tems]’ [5]. Generally, a system is monitored over time though signal processing

of measured data; these measurements are usually dynamic response [5], but

alternative measures from temperature, image [10] or sound data have the

potential to be used. Damage-sensitive features are extracted from the data,

and the analysis of the features can be used to determine the current opera-

tional state of the system [11]. Ideally, feature-analysis should accommodate

for benign variations in the operational conditions, including inevitable ageing

or changes in the environment [12]. SHM strategies should be applied (and

updated) online, in real time, during the operation of the monitored system [13].

1
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(a) (b)

Figure 1.1: Applications of SHM: (a) The RAPTOR telescope system, investigated at the Los

Alamos National Laboratory [16]. (b) A wind turbine, off the coast of Aberdeen, Scotland;

image credit: TVP Film and Multimedia Ltd.

The development of SHM strategies for structural and mechanical systems

should be considered an important aspect of engineering design, as automated

diagnostics have the potential to detect and classify damage before more con-

ventional (manual) inspection or testing1. Automated monitoring is particularly

relevant to systems with limited access, as manual inspection can become

problematic; this could refer to specific components that are difficult or im-

possible to inspect (e.g. the cutting tool within a turning machine [14]), or

structures operating in remote locations (e.g. offshore wind turbines [15] or

robotic telescopes [16], illustrated in Figure 1.1). Additionally, SHM is relevant

to industries associated with high costs for maintenance or downtime, as well

as those with a high risk to human safety. Key sectors include: aerospace,

civil infrastructure, manufacturing, the automotive industry, and the power

sector. In summary, the motivations for implementing SHM (alongside more

traditional inspection and testing) are simple; automated monitoring has the

potential to [17]:

• increase the safety of structures;

• increase the economic output by minimising downtime;

• reduce the cost of maintenence.

1Typically, conventional techniques involve Non-Destructive Testing (NDT), which assess

the system offline and intermittently [5].
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1-2. SHM in Practice

The typical SHM problem can be defined as hierarchy of levels, first suggested

by Rytter [18]. This framework is generalised below [19]:

I Detection: an indication that damage might be present.

II Location: a prediction of the location of damage.

III Classification: a prediction of the type of damage.

IV Assessment : a prediction of the extent of damage.

V Prediction: a method for prognosis.

Generally, in practical applications, each level requires that the previous lev-

els have been addressed. However, following recent trends in the literature

[8, 20–22], the techniques suggested in this work look to combine the first

three levels from the hierarchy in to one model; specifically, detection (I) and

location/classification (II/III).

1-2.1. Methodologies

In simple terms, SHM follows two methodologies [5, 23].

The model-based approach: a physics-based model of the structure is built

and then used to simulate data. This model is validated and updated using

measured data. Some comparison between the model and measured data is

then used to monitor the system.

The data-driven approach: the model of the system is not based on physical

laws; instead, machine learning tools are applied to learn patterns within

measured data. These patterns are then associated with different conditions of

the system.

Both techniques have their advantages. When utilising a physics-based

model, a variety of operational and environmental conditions have the potential

to be simulated; however, the model must be regularly validated, in order to

ensure reasonable predictions [3, 24]. Additionally, as computational models

become more complex, incorporating uncertainty becomes increasingly difficult.

On the other hand, when following the data-driven approach, complex behaviour

can be learnt from the data without having to define a model from first physical

principals. Additionally, uncertainty can be naturally incorporated within
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probabilistic approaches to pattern-recognition [25]. Unfortunately, machine

learning algorithms (generally) require large datasets to be recorded during

system operation for reliable predictions. Specifically, for unsupervised methods

in machine learning, large quantities of measured signals are required, while

supervised techniques also require the measurements to be comprehensively

labelled, to describe what each of the signals represent2. Furthermore, generic

machine learning tools offer little insight into the underlying physics, i.e. they

are black box models [25].

Analysis in SHM, and engineering in general, should require a combination of

the model and data-driven approach, as valuable information can be derived from

both methodologies. (As a result, existing research concerns the combination of

both methodologies — a form of grey-box modelling [26] — as well as frameworks

for combining measured and simulated data [3, 27].) The focus of this work,

however, concerns the statistical modelling of measured signals; therefore, it is

concerned with the data-driven aspects of SHM.

1-3. SHM as Pattern Recognition

‘Machine learning is a set of methods that can learn and detect patterns in data,

and then use these uncovered patterns to predict future data, or perform other

kinds of decision making’ [25] — ideally under uncertainty. Intuitively, machine

learning theory can naturally address the problems stated in Rytter’s hierarchy

[5, 11]: patterns learnt from measured data can inform the current operating

condition and diagnose faults, while considering the uncertainty of predictions

[9]. In other words, machine learning algorithms should be able to discriminate

between groups of measured signals that relate to the different operational

and health conditions. For example: is the system operating under normal

conditions, extreme temperatures, or, most critically, is the system damaged?

This work will refer to the data-driven SHM strategy illustrated in Fig-

ure 1.2. Specifically, SHM is viewed as a multi-class classification problem, which

categorises measured data into groups, corresponding to the condition of the

monitored system. The ith input, denoted by xi, is defined by a D-dimensional

vector of variables, which represents an observation of the system, s.t. xi ∈ RD.

2Supervised and unsupervised methods are introduced in detail in Section 1-4.
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Figure 1.2: A framework for pattern recognition within SHM.

The variables can be direct measurements, or, more typically, features derived

from the measured data by pre-processing and feature extraction. The data

labels yi, are used to specify the condition of the system, directly or indirectly.

If indirectly, diagnostic labels can be inferred through some post-processing of

the pattern recognition outputs yi.

1-3.1. A Probabilistic Approach

Considering a probabilistic perspective, the expression P (A) denotes the proba-

bility that event A is true. A probability requires that 0 ≤ P (A) ≤ 1, such that

P (A) = 1 implies that event A definitely will happen, while P (A) = 0 implies

event A definitely won’t happen [25].

In the context of SHM, the inputs xi are (generally) assumed to be rep-

resented by some (continuous) random vector X, which can take any value

within a given feature-space X. The random vector is therefore associated with

an appropriate probability density function (p.d.f.), denoted by lower-case p

notation. The p.d.f. is such that the probability of X falling within the interval

a < X ≤ b is,

P (a < X ≤ b) =

∫ b

a

p (xi) dxi s.t. p (xi) ≥ 0,

∫
X

p (xi) dxi = 1 (1.1)

specifically, in this work, the observations are assumed to be sampled from

some D-dimensional feature-space X, s.t. xi ∈ X ∈ RD.

For an increasingly narrow interval, the probability given some continuous

random variable can be approximated as follows [25],

P (xi ≤ X ≤ xi + dxi) ≈ p (xi) dxi (1.2)

For discrete classification in SHM, the labels yi are represented by a discrete

random variable Y , which can take any value from the finite set yi ∈ Y =
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{1, ..., K}; K is the number of classes which define the (observed) operational,

environmental, and health conditions, while Y denotes the label-space. An

appropriate probability mass function (p.m.f.) leads to,

P (Y = yi) s.t. 0 ≤ P (Y = yi) ≤ 1,
∑
yi∈Y

P (Y = yi) = 1 (1.3)

From herein, probabilities such as P (Y = yi) are given as P (yi) for brevity;

additionally, p() notation refers to both p.d.fs and p.m.fs — the context should

make this distinction clear.

A probabilistic perspective can naturally address the ambiguous case, in

which measured signals cannot be categorised with certainty (given the data)

[25]. Uncertainty is inevitable for all measured data in science and engineering

applications, and in consequence, it should be modelled appropriately. Provided

specific assumptions hold, probabilistic methods allow for predictions with

well-defined uncertainty under Kolmogorov’s axioms [28]; this is a significant

advantage in risk-based applications, such as SHM [8, 9, 20, 29, 30]. For

example, consider a certain prediction, which states an oil-rig is safe to use; this

differs significantly to an uncertain prediction, leading to the same statement.

Fundamental probability theory

An overview of basic probability theory is provided; for further details, refer to

text-books [25, 28, 31, 32]. Random variables have been (informally) introduced,

so the basic operations/rules are provided.

The probability of a union of two events (i.e. the probability of A or B),

P (A ∪B) = P (A) + P (B)− P (A ∩B) (1.4)

= P (A) + P (B) (if A and B are mutually exclusive)

The joint probability is the probability of A and B, which leads to the

product rule,

P (A,B) = P (A ∩B) = P (A |B)P (B) (1.5)

where P (A |B) is the conditional probability of event A given that B has

occurred; i.e. event A conditioned on B (1.8). A and B are interchangeable on

the R.H.S.
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Given a joint distribution, variables can be marginalised out by summing

(or integrating) over all possible values for that variable,

P (A) =
∑
b

P (A,B) =
∑
b

P (A |B = b)P (B = b) (discrete) (1.6)

or p(A) =

∫ ∞
−∞

p(A |B) p(B) dB (continuous)

(The same method applies when marginalising out A.)

For both discrete and continuous variables, the product rule can be applied

multiple times to yield the chain rule,

p(X1:D) = p(X1)p(X2 |X1)p(X3 |X1, X2) . . . p(XD |X1:D−1) (1.7)

X1:D , {X1, X2 . . . , XD}

Also from the product rule (1.5), the conditional probability density is,

p(A |B) =
p(A,B)

p(B)
(1.8)

Leading to Bayes’ rule,

p(A |B) =
p(B |A) p(A)

p(B)
(1.9)

Where p(A) is the prior -distribution, p(B |A) is the likelihood, p(B) is the

marginal-likelihood, and p(A |B) is the posterior -distribution.

Finally, marginal (1.10) and conditional independence (1.11), denoted with

⊥, imply that,

A⊥B ←→ p(A,B) = p(A) p(B) (1.10)

A⊥B |C ←→ p(A,B |C) = p(A |C) p(B |C) (1.11)

1-4. A Motivating Example: Conventional Learning

in Data-driven SHM

As discussed, when categorising the measurements xi from a system or structure,

algorithms (or ‘machines’) can be applied to learn which diagnostic labels yi

are associated with certain patterns within the measured signals. Therefore, a
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dataset must be available (in some form) in order to train the algorithm. The

process of learning from a subset of training data can be defined in various

ways; in the context of SHM, a visual example is provided, to motivate and

demonstrate the research presented in this work.

1-4.1. Acoustic Emission Data

An acoustic emission (AE) dataset — collected by Rippengill et. al at Cardiff

University [33] — is used to demonstrate statistical pattern recognition for

SHM. Measurements were recorded during experiments in which the box-girder

of a bridge was exposed to cyclic loading, from 0.1 to 85 kN [5]. Briefly, AE

burst signals were extracted from the background noise of the measured data by

setting a threshold based on the mean and six standard deviations; an example

of a burst signal is shown in Figure 1.3a. A total of 91 AE burst signals were

identified from the measured data (details of the test procedure can be found

in [5, 33, 34]).

The object of this dataset is to distinguish between different AE sources,

particularly those relating to crack growth, as this information should help to

inform damage detection, classification and prognosis. There are various ways to

implement machine learning in order to analyse the observed data; for example,

time series analysis could learn a function (regression [25, 35]) in the time

domain, to monitor the burst signals directly [34]. In this example, however,

features are extracted from the burst signals, such that the feature-variables

are sensitive to damage (as in [33]).

1-4.2. Feature Extraction and Dimension Reduction

Feature extraction involves the identification of features from the measured

signals, which allow for one to distinguish between the damaged and undamaged

states of the monitored system [36]. Ideally, the feature-set xi should be a

low-dimensional representation of the measured signals, which are sensitive to

the condition of the system [5]. For the AE data, traditional AE features [5]

are defined for each signal (illustrated in Figure 1.3a) as these variables should

be sensitive to damage (i.e. crack-related events):

• rise time,
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(a)

(b)

Figure 1.3: Acoustic emission data: (a) a burst signal with annotated features [5]; (b) 91

burst signals projected onto a two-dimensional feature space through PCA.
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• peak amplitude,

• duration, and

• ring down count.

Therefore, each AE burst is represented by four-features; i.e. the observations

are four-dimensional vectors. To visualise the data, and to aid discussion,

dimension reduction is now applied, to represent the measurements in two

dimensions, s.t.,

{xi}mi=1 , xi ∈ R2 (1.12)

for m observations. Specifically, dimension reduction tools are a method

for data compression, while retaining as much information as possible from

the full feature-space. In this example, linear Principal Component Analysis

(PCA) [25, 35] is applied; this is perhaps the most widely-used method for

dimension reduction [37]. (PCA is used for visualisation throughout this work.)

PCA is an orthogonal projection onto a lower-dimensional space, such that

variation is maximised, dimension by dimension,

xi = W>x̂i (1.13)

where x̂i denotes the observations in the original (full-dimensional) feature-space,

and xi denotes the observations in the principal subspace; W is an orthonormal

projection matrix, defined by L linear basis-vectors. The optimal projection for

maximum variation in L-dimensions is (provably [37]) obtained by setting the

columns of W equal to the L eigenvectors with largest eigenvalues from the

empirical covariance matrix, Σ̄ = 1
m−1

∑m
i=1 (xi − µ̄) (xi − µ̄)>, where µ̄ is the

sample mean, µ̄ = 1
M

∑
i xi.

In this case, the data are projected from D = 4 to D = 2, so the first two

eigenvectors (with largest eigenvalues) are used, i.e. L = 2. The corresponding

feature-space X (the principal subspace) is plotted in Figure 1.3b. Machine

learning tools are now applied to learn patterns in the data given this projection.

Conventionally in SHM, patterns are learnt through unsupervised or supervised

methods [5].
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1-4.3. Unsupervised Learning: Outlier Analysis for Damage

Detection

At this stage, descriptive labels for each of the AE signals are unavailable, as

the physical process behind each signal has not been investigated; therefore,

the dataset Du is unlabelled,

Du = {x̃i}mi=1 , xi ∈ R2 (1.14)

x̃i is used (throughout) to denote unlabelled observations. Here, unsupervised

learning algorithms are suitable [38]; a variety of data-analysis and machine

learning tools fall into this category. Some examples of methods include:

dimensionality reduction, outlier analysis, and clustering [25]. These techniques

aim to find patterns within a dataset from the information within the measured

data alone; therefore, the learning process must not be informed by information

from a label space Y, as this information is not available [39].

The first level of Rytter’s hierarchy, damage detection, is typically addressed

though outlier analysis and novelty-detection algorithms [5, 40, 41]; therefore,

novelty detection (or one-class classification [42]), is applied to demonstrate

unsupervised SHM. (Examples of clustering and dimensionality-reduction are

provided later in this work).

During novelty detection, the problem is to identify, from the measured

data, if a machine or structure has deviated from the normal condition; that is,

if the measured signals are novel [40]. In an engineering context, outliers can

be suitably defined for novelty detection as:

‘Data that deviate so much from other observations, as to arouse

suspicions that they were generated by some different mechanism’

[43].

Therefore, outlying data should indicate a significant change in the underlying

physics of that system, rather than benign fluctuations in measurement noise.

Although this description is conceptually simple, detecting informative outliers

from noisy engineering data is a non-trivial task.
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The Mahalanobis distance

Statistical outlier analysis can be achieved by defining a parametric p.d.f, to

characterise the random vector X. The parameters of the assumed p.d.f are

estimated from the available (normal-condition) data, and a discordancy test

can be used as a measure of novelty [40, 44].

Typically, the normal-condition data are assumed to be multivariate Gaussian-

distributed,

p(xi) = N (xi |µ,Σ)

=
1

(2π)D/2
1

| Σ |1/2
exp

{
− 1

2
(xi − µ)>Σ−1(xi − µ)

}
(1.15)

where the parameters are the mean vector µ and covariance matrix Σ (i.e.

location and scatter). The parameters can be estimated in various ways, the

most simple approach uses the sample mean, µ̄ , 1
m

∑
i xi, and empirical

covariance, Σ̄ , 1
m−1

∑m
i=1 (xi − µ̄) (xi − µ̄)>: corresponding to the maximum

likelihood (ML) estimator — denoted with a bar script throughout. (More

involved estimates are discussed in the proceeding chapters.)

To illustrate the method, a subset of the AE signals are assumed to represent

the normal data, sampled from X. As such, this is exclusive outlier-analysis:

while the labels remain unknown, the subset of normal-data are given. (Hence

the alternative name for exclusive-analysis — one-class classifiers [42]). Specifi-

cally, the normal data Du are the AE bursts due to frictional processes caused

by the clamping arrangement of the test rig [34], shown by the green ×• markers

in Figure 1.4. Any observations that are generated by an alternative mechanism

(i.e. crack related events [34], • markers) can be considered as outliers; these

data are visibly novel compared to the normal-data in the feature-space in

Figure 1.4a.

The corresponding ML estimate of the p.d.f for the normal-condition data

is also illustrated in Figure 1.4a; i.e. the sample mean and covariance (µ̄, Σ̄),

given the training subset (× markers). As the outlying data appear significantly

different to the training data, a discordancy measure can be defined to quantify

novelty. In this case, an appropriate metric is the Mahalanobis-squared-distance

(MSD) [5, 40]. The MSD can be interpreted as a covariance-weighted squared-

Euclidean-distance from the mean µ̄ of the normal data — if the covariance is
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(a) (b)

Figure 1.4: Exclusive (MSD) outlier analysis with the AE data; training and test sets are

shown by × and • markers respectively: (a) Observations in the feature space; the ML

estimate of p(xi | Du) is shown by the sample mean (+) and covariance (dotted lines represent

2 and 3 sigma). (b) MSD discordancy measure for each of the burst signals.
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equal to the identity they become synonymous [35],

MSD(x∗i ) = (x∗i − µ̄)>Σ̄
−1

(x∗i − µ̄) (1.16)

where x∗i is the potentially outlying observation. In effect, the MSD quantifies

the likelihood of new observations, given the data known to represent the

normal-condition, Du; that is, p(x∗i | Du) [35].

The corresponding MSD for each observation in the AE data is shown in

Figure 1.4b. Considering that ML estimates of the parameters are used, the

model risks overtraining ; this implies that the model can overfit to the training

data, leading to poor generalisation when applied to new data — the issues

of overtraining are discussed in further detail in Section 4-2.1. Consequently,

in this case, it is critical to ensure good generalisation through validation, or

an alternative form of regularisation [35]. Typically in unsupervised SHM,

a distinct set of normal-condition test-data (that were not used to estimate

the parameters) are used as a validation-set, to ensure generalisation [40];

these data are shown by the green • markers in Figure 1.4. As expected,

the normal condition data have low discordancy measures, suggesting these

data are sampled from the same underlying distribution. On the other hand,

crack-related signals show higher measures of discordancy, suggesting these are

outliers, generated by some alternative and novel mechanism.

The performance of a novelty detector can be quantified using Type-I and

Type-II errors given a distinct test-set (• markers) [40]. Specifically, Type-I

errors — referred to as false positives (FP) — include observations that are

classified as outliers when they are in fact inlying. On the other hand, Type-II

errors — also called false negatives (FN) — include observations that are

outlying, but fail to be rejected by the novelty detector. Conveniently, for the

example in Figure 1.4b, there is zero-error for both Type-I and Type-II errors.

1-4.4. Supervised Learning: Probabilistic Damage-Classification

Moving up Rytter’s hierarchy, damage location (II) and classification (III) are

more problematic, as the corresponding algorithms require more information

[9, 38]. (Critically, this information can be unavailable in SHM.) It is desirable,

however, to classify measurements into multiple groups, which correspond to
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the various system conditions, rather than simply undamaged or damaged.

Generally speaking, supervised learning is applied when information is

available for multi-class damage-classification. These algorithms require fully-

labelled training-data Dl, such that each observation xi is associated with a

label yi ∈ {1, ..., K}, for n collected data points,

Dl = {(xi, yi)}ni=1 (1.17)

A supervised classifier approximates the mapping between the feature-space

and the label-space, f : X → Y. The classifier f is then used to predict the

label associated with future measurements, and inform diagnostic decisions in

the context of SHM.

Probabilistic mixture models

Considering the AE data, a probabilistic example is provided. Following

investigation of the signals, the 91 observations can be (approximately) split

into three classes [34]:

• class 1 - frictional processes away from the crack (clamping in the experi-

mental setup)

• class 2 - crack-related events (crack extension and crack-face rubbing)

• class 3 - crack-related events at a distance from the sensor (reflections)

The fully labelled data are illustrated in Figure 1.5a.

Continuing with a parametric and statistical approach, the random variable

X is represented by a parametric p.d.f. However, the AE data are now multi-

class, therefore, it is appropriate to model X with a mixture-model; in this

case, a Gaussian Mixture Model (GMM) [20, 29, 30]. Through a GMM, the

underlying distribution of the measured data xi ∈ X, for each class k, is

described by a Gaussian distribution,

p (xi | yi = k) = N (xi |µk,Σk) (1.18)

k is used to index the class group, such that k ∈ {1, ..., K}; therefore, µk is the

mean and Σk is the covariance of the data xi with label yi = k.
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The discrete random variable Y , which describes the labels yi ∈ {1, ..., K},
is assumed to be categorically distributed [31],

P (yi) = Cat(yi |λ) (1.19)

λ is vector of mixing proportions, which is a histogram over the label values,

s.t. λ = {λ1, ..., λK} and P (yi = k) = λk.

As in the outlier example, the ML estimator can be used to approximate

the parameter-set {µ,Σ,λ}; however, to improve generalisation — and avoid

validation procedures — a Bayesian approach can be adopted [25, 31, 32]. This

involves considering the parameters to be random variables themselves, and

incorporating prior belief in the distribution over their potential values, via

Bayes’ Rule (1.9). The Bayesian estimate leads to a posterior -distribution

over the possible parameter values, rather than point estimates; in this exam-

ple, the most probable value is selected for each parameter, corresponding to

the maximum-a-posteriori (MAP) estimate3. (A detailed explanation of the

Bayesian approach to statistical modelling is provided in Chapter 4.)

The resulting GMM of the AE data is visualised in the feature-space in

Figure 1.5b: there are three observed classes (K = 3), therefore, there are three

(Gaussian) base-distributions in the mixture-model. A random sample of 50%

of the total data is used to train the algorithm (× markers, the set Dl).
Having approximated the parameter-set, Bayes’ rule (1.9) can be applied

again, using (1.18) and (1.19), to define a generative classifier, which predicts

the distribution over the class labels given an unseen signal x∗i [25],

p(y∗i = k |x∗i , θ) =
p (x∗i | y∗i = k, θ) p (y∗i = k |θ)

p(x∗i |θ)
(1.20a)

θ , {Σ,µ,λ} (1.20b)

p(x∗i |θ) ,
K∑
k=1

p (x∗i | y∗i = k, θ) p (y∗i = k |θ) (1.20c)

(Details behind this intuition are provided in Chapters 2, 4.) The predicted

label is the most likely value of Y given the observation x∗i , i.e. the MAP

3Using MAP estimates, rather than the full posterior-distribution, implies that the models

are not fully-Bayesian
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(a) (b)

Figure 1.5: Multi-class classification of the AE data: (a) Observations in the feature space,

× markers show the training set and • markers show the test-set. (b) Model predictions; the

maximum a posteriori (MAP) estimate of the mean (+), covariance (dotted lines represent 2

and 3 sigma), and label predictions.
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Figure 1.6: Confusion matrix for the predicted labels given the AE test data.

estimate from the posterior-distribution of the classifier (4.3),

ŷ∗i = argmaxk {p(y∗i = k |x∗i )} (1.21)

Label predictions for the AE test data are shown in Figure 1.5b. Specifically,

the test-data x∗i (• markers) are the remaining 50% of the total data, that were

not used to learn/train the parameters.

The performance of the classifier in Figure 1.5b can be assessed in various

ways, all of which involve comparing the predicted labels ŷ∗i to the known (but

hidden) ground truth labels. The most simple (and interpretable) metric is the

classification accuracy; intuitively, this is the percentage of correctly classified

signals, given the test-set4. For example, for the model in Figure 4.2b, the

classification accuracy given the test data is 95.65%. To further investigate

the predictive performance, a confusion matrix can be considered, plotted in

Figure 1.6; the fractions of correctly classified data (for each class in Y) are

shown along the matrix diagonal, and the fractions of misclassified data are in

the corresponding off-diagonal elements. Figure 1.6 illustrates that classes 1

and 3 have been correctly classified, while class 2 is confused with class 1 (not

class 3, however): this is unsurprising, considering classes 1 and 2 are relatively

mixed in the feature-space X, shown in Figure 1.5b.

4Conversely, the classification error is the percentage of misclassified signals.
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1-5. Motivation: Outstanding Challenges in

Data-driven SHM

Referring back to Rytter’s hierarchy, SHM should look to classify damage,

following detection [18]. As such, it is desirable to categorise measured signals

during operation, within a framework that considers multiple classes, relating

to operational, environmental, and damage conditions [5, 20]. Training an

appropriate multi-class classifier typically requires comprehensive and labelled

measurements — as demonstrated with the AE data. This implies that measured

data are available, corresponding to each of the expected conditions/classes,

while the system has been regularly inspected, to provide descriptive labels.

A large body of the SHM literature presents the successful application of

conventional supervised methods, e.g [9, 20, 29, 30], as these frameworks assume

that sufficient sets of labelled data are available during training (either a priori

or during operation). In certain applications, however, labelled data are initially

unavailable (or limited), while further inspections of the system prove to be

expensive [7]. For example, it is economically impractical to damage high-value

systems a priori, in order to collect training-data that might relate to damage

conditions. Environmental and Operational Variables (EOVs [12]) are also

difficult to account for in the training data; these include signals that relate to

temperature effects, variable loading, or variable boundary conditions. Finally,

while measurements may be easy to collate in practice, comprehensive labelling

is rare, as each label requires an inspection, often manually, and at a high-cost

[13, 14]

Considering an offshore wind-turbine, it is infeasible to artificially damage

this high-value asset to collect signals that might relate to the damaged structure

in situ. Furthermore, the collection of EOV data a priori is problematic; for

example, these signals might correspond to abnormal wave-loading or unusually

low-temperatures — it could take several years before these measurements

become available. In terms of labelled data, regular inspections of the turbine

in operation can be impracticable: conventionally it is only possible to check

various components (such as the turbine blades) following manual inspection;

this involves travelling to a remote offshore location — a high-cost procedure.

Therefore, in the author’s opinion, one of the most significant challenges
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for data-based SHM is a lack of comprehensive data — more specifically, a

lack of labels [6, 7, 14]. In certain applications, this missing information can

force a dependence on unsupervised techniques during training, limiting SHM

to damage detection. If an alternative approach to multi-class classification

can provide accurate predictions given a limited budget of labelled data —

while learning, adapting and updating online — such signal-processing methods

should bring significant advances to SHM.

1-5.1. Contribution

This work suggests the use of partially-supervised machine learning tools, to

work towards multi-class classification, given limited labelled data. Specifically,

the suggested methods work towards the following5.

1. The strategy should be adaptive, incorporating any new classes (novel

data-groups) as they are discovered, during system operation.

2. Therefore, the algorithm should be capable of learning and updating

online; that is, it should be computationally-efficient, to update/adapt

during system operation.

3. Model predictions should enable accurate diagnostics (ideally under

uncertainty) while using a limited number of labelled data.

5An outline of the thesis is provided at the end of Chapter 2.



2

TOWARDS PROBABILISTIC

AND

PARTIALLY-SUPERVISED

SHM

Overview: The concepts of partially-supervised learning are introduced though

visual examples, with reference to the technical sections of this work.

2-1. Probabilistic Classifiers

Before the introduction of partially-supervised learning, two perspectives of

probabilistic classification are provided, as they are referenced throughout and

used to (approximately) sub-categorise the associated methods.

2-1.1. Generative Approach

The first method for building a probabilistic classifier, introduced via the AE

data, involves creating a joint-distributed model, of the form,

p(yi,xi) = p(xi | yi) p(yi) (2.1)

21
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This is then conditioned (1.8) on the observed features xi, to provide the

posterior-distribution over the class labels, i.e. Bayes’ rule (1.9)1,

p(yi |xi) =
p (xi | yi) p (yi)

p(xi)
(2.2)

This is a generative classifier, since it is possible to sample (generate) observed

features for each class [25]: first, the class label yi can be sampled from the prior-

distribution p(yi), and then a feature-set xi can be sampled from the likelihood,

given the label, p (xi | yi). Generative methods for partially-supervised SHM

are presented in Chapters 4, 5, 6.

Advantages: Prior-knowledge of the structure of the data in X can be naturally

incorporated into generative models, via the likelihood p(xi | yi) [32]. For

example, if measured signals are expected to present uni-model clusters in the

feature-space, as with the AE data, the Gaussian-distribution (1.15) might be

suitable to (at least) approximate the likelihood of the measurements given

each class.

Disadvantages: The generative approach does not directly target the classi-

fication model p(yi |xi), since it is more focussed on density estimation, i.e.

modelling p(xi | yi) [32]. If the underlying distribution of the data in the feature-

space is complex (e.g. multi-modal, disjoint class-clusters), finding a suitable

likelihood for p(xi | yi) can be problematic [32].

2-1.2. Discriminative Approach

An alternative approach models the conditional probability p(yi |xi) directly.

This is a discriminative classifier, as it can discriminate between labels for

a given observation, but it cannot generate examples [25] (there is no way

to sample xi). Discriminative methods can be interpreted as modelling the

decision-boundary between classes directly (visualised in Figure 2.1), rather

than the underlying distribution of the data — as with the GMM in Figure 1.5b

[32].

1Equivalent to the classifier (4.3) for the AE data.
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Figure 2.1: Discriminative classification of the AE data: decision-boundaries are shown by

the solid black line, × markers show the training (and validation) set, and • markers show

the test-set.

Advantages: Directly modelling p(yi |xi), rather than the class-conditionals,

can be simpler — particularly if the decision-boundary between classes has

a simple form, while the distribution of data is complex [32]. Intuitively, a

compelling argument states that the classification problem should be modelled

directly and simply, without attempting to solve a more complex (and general)

problem as an intermediate step [45] — i.e. modelling p(xi | yi) [46]. This

concept is visualised in Figure 2.1: here, the AE data-groups can be classified

with simple, linear decision-boundaries2.

Disadvantages: Discriminative methods are black-box classifiers (in the ma-

chine learning sense [25, 32]); as such, prior domain-knowledge of X is difficult

to include in the model. Furthermore, unlike the generative case (where the

parameters of the class-conditionals are learnt independently) if a novel class

is discovered, the whole model must be retrained [25]. This is significant for

applications of machine learning where online training is required (which can

2This is a Decision Tree for classification, tree-based methods are introduced in Chapter 3.
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be typical SHM). In this setting, streaming data imply that the multi-class

problem may change, such that algorithm retraining is undesirable.

2-2. Partially-supervised Learning

While fully labelled data are infeasible in certain applications of SHM, it is

often possible to include labels for a limited set (or budget) of measurements.

Generally, the label budget is limited by some expense incurred when investi-

gating the signals; this might include direct costs, associated with inspection,

or loss of income due to down-time [14].

When working with limited labelled data (alongside unlabelled data), it

is illogical to apply supervised learning, while ignoring the information in a

(potentially large) set of unlabelled measurements. Similarly, it is unjustified to

ignore the labelled data, which contains information relating to the underlying

physics, to apply unsupervised algorithms. In this scenario, partially-supervised

learning [39] becomes relevant to SHM; these algorithms offer an alternative

approach to multi-class classification, as they utilise both labelled Dl (1.17) and

unlabelled signals Du (1.14), such that the training-set is,

D = Dl ∪ Du
= {(xi, yi)}ni=1 ∪ {x̃i}

m
i=1 (2.3)

In other words, partially-supervised learners look to combine and exploit the

information in labelled and unlabelled signals, within a unifying training scheme

[39]. Two of the main approaches to the partially-supervised problem are

semi-supervised [47] and active learning [48] — generally, this work concerns

classifier-based variants of these algorithms.

2-2.1. Semi-supervised Learning

Semi-supervised learning utilises both the labelled and unlabelled data to inform

the classification mapping, f : X 7→ Y. Typically, a semi-supervised learner will

use information in Du to further update/constrain the classifier learnt from Dl.
Unlabelled data can be incorporated in various ways. The most simple

and intuitive approach, self-labelling [47, 49], trains a classifier using Dl, and
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Figure 2.2: The maximum-margin decision-boundary for a two-class problem; +/− markers

show positive/negative examples, while • markers show unlabelled instances. The dashed-line

shows the decision-boundary given the labelled data only; the solid-line shows the boundary

given both labelled and unlabelled instances. Image credit: [50].

then predicts the labels for the unlabelled signals x̃i. The classifier is then

retrained using the labelled and unlabelled data. In the new training-set, some

labels in D are the ground truth, from the supervised data, and the others

are pseudo-labels, predicted by the classifier. Self-labelling is simple and can

be applied to any supervised algorithm; however, the effectiveness is highly

dependent on the method of implementation, and the supervised algorithm

within it [47].

Discriminative methods

A more defined perspective considers low-density-separation [47]; this assump-

tion implies that the decision-boundary of a classifier lies in low density regions

of the feature-space; as such, the distances between the decision-boundary and

its closest points in X are maximised. The use of a maximum-margin algorithm,

such as the Support Vector Machine (SVM) [35], is most common in this setting;

for example, the Transductive SVM (TSVM) [50] uses both the labelled data

and the unlabelled data to maximise the margin of the classifier — through

iterative self-labelling steps. Figure 2.2 visualises how unlabelled data can be

used to maximise the margin about a linear decision boundary.

More recent developments in the literature include graph-based learners

[51, 52]; these are discriminative methods [53], which involve building a graph

where the nodes represent observed data (labelled and unlabelled), and the
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edges represent the similarities between observations [54]. Here, the graph

is used to represent the data on a manifold: a low-dimensional (nonlinear)

embedding of the data, within the high-dimensional feature-space. As such,

the manifold assumption is relevant here: ‘the (high-dimensional) data lie

(roughly) on a low-dimensional manifold’ [47]. Conveniently, the manifold

assumption addresses the curse-of-dimensionality [32], which leads to an in-

creasingly sparse feature-space in high dimensions; in this setting, statistical

learning and density estimation (via generative methods) become problematic.

Generally, graph-based methods inform semi-supervised learning through the

smoothness assumption (for supervised learning) applied to the manifold: if

two observations are close in a high-density region, they are likely to share the

same label [47]. In view of this, the graph structure can be used to propagate

labels from the labelled signals to the unlabelled instances.

Generative methods

Generative mixture models provide an alternative framework to incorporate unla-

belled data [55, 56]. Specifically, generative-methods apply the cluster assumption:

‘if points are in the same cluster, they are likely to be of the same class3’ [47]. As

discussed, when following this approach to density estimation [32], a mixture of

base-distributions are used to estimate the underlying distribution of the data,

defined by p(xi, yi). Generative models can naturally account for labelled and

unlabelled data, as the Expectation Maximisation (EM) algorithm (used to learn

mixture models in the unsupervised case [25], explained in Chapter 5) can be

modified, realtively simply, to incorporate labelled data [56, 57]. Furthermore,

as knowledge of X can be incorporated by modelling it, a priori information

can be included in many engineering applications, where knowledge of the data-

stucture is available. However, if the assumptions of the generative model prove

to be unreasonable (e.g unsuitable base-distributions), the structure imposed

by the model can decrease the predictive accuracy. Figure 2.3 demonstrates

how the GMM learnt with the AE data can be improved by considering the

available unlabelled examples — this information is incorporated via the EM

3Note, this does not necessarily imply that each class is represented by a single, compact

cluster in the feature-space; instead, it implies that observations from different classes are

unlikely to appear in the same cluster [47].
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(a) (b)

Figure 2.3: Semi-supervised GMM for the AE data: (a) supervised learning, given the labelled

data only, • markers. (b) semi-supervised learning, given the labelled and unlabelled data,

•/◦ markers.

algorithm, introduced in Chapter 5.

2-2.2. Active Learning

The key hypothesis behind active learning states that an algorithm can provide

improved performance, using fewer training labels, if it is allowed to select the

data from which it learns [48]. Conventionally, training-data are selected by

a random-sample, i.e. passive learning. As with semi-supervised techniques,

the leaner utilises Dl and Du — however, active techniques query/annotate

the unlabelled data in Du to extend the labelled dataset Dl. Specifically, an

active classifier looks to define an accurate mapping, f : X 7→ Y, while keeping

queries to a minimum [58]; the general (and simplified) steps are illustrated in

Figure 2.4.

The key step for active algorithms is how to select the most informative
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Figure 2.4: The general active learning heuristic.

signals to investigate [39, 59]. Generally, two frameworks can be used to direct

queries [58–60], which are summarised below.

Classification-based

Several query regimes are based on supervised classification algorithms [59,

61], both discriminative and generative. Typical examples include query by

committee and uncertainty sampling [48, 62].

Query by committee (QBC) approaches build an ensemble/committee of

classifiers using a small, initial (random) sample of labelled data, leading to

multiple predictions for unlabelled instances. Observations with the most

conflicted label predictions are viewed as informative, thus, they are queried

[59]. QBC methods can be conceptualised as a search through hypothesis space

[48]. (The hypothesis space is used to describe the set of possible boundaries

that a classifier can take, while the version space is a subset of these hypotheses,

consistent with the labelled data seen so far [25] — as in Figure 2.5.) As

more labels are observed by the learner, the set of plausible hypotheses will

shrink, restricting the current version space [25]. Following QBC methods,

observations who’s labels explicitly shrink the version can be selected [60, 61] —

in other words, data that lie in/near the shaded region of Figure 2.5. In order

to implement a QBC query framework, it must be possible to: construct a

committee of models that represent different regions of the version space; have

some measure of disagreement among committee members, to direct queries

[48].

Alternatively, uncertainty-sampling frameworks build a single classifier

(either discriminative [61] or generative [48]) where signals corresponding

to the least confident label predictions are queried. Uncertainty sampling

is (perhaps) most interpretable applied to probabilistic algorithms, as the
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Figure 2.5: Left: version space for a binary linear classifier (shaded).

Right: some of the plausible hypotheses/classifiers (f) in the current version space. Image

credit: [58].

posterior-probability over the class-labels p(yi |xi) can be used to quantify

uncertainty/confidence. For example, consider a binary (two-class) problem:

intuitively, uncertain samples could be instances whose posterior probability is

nearest to 0.5 for both classes. This view can be extended to multiple (> 2)

classes using the Shannon entropy [63] as a measure of uncertainty; for example

— uncertain signals (based on high entropy) given the GMM of the AE data are

illustrated in Figure 2.6. Conveniently, uncertainty sampling can be applied

to semi-supervised mixture-models with little modification, combining both

partially-supervised methodologies. Applications of this approach are presented

in Chapters 4, 6.

Cluster-based

Alternatively, active-learning can exploit the (unsupervised) cluster structure in

data to direct queries [60, 64, 65]. A typical example of cluster-based sampling,

introduced by Dasgupta and Hsu [58], starts with a hierarchical-clustering of

the unlabelled data, which divides the feature-space into many partitions. An

informative set of training data is built by directing queries to areas of the

feature-space that appear mixed in terms of labels (as sampling proceeds),

while clusters that appear homogeneous are queried less. Conveniently, queried

labels can be propagated to any remaining unlabelled instances in Du, using the

cluster structure and a majority vote. As a result, (like generative models) this

method can also become semi-supervised [60]. Figure 2.7 visualises hierarchical

sampling and label propagation for clustered data. Following selection of the

training-data, any conventional supervised classifier can be applied to learn the

classification mapping f : X 7→ Y.
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Figure 2.6: Uncertainty sampling (based on entropy) for the AE data: • markers show the

training set, and ◦ markers show the unlabelled data — red circles indicate queries by the

active learner.

Methods for cluster-based sampling are different to classifier-based frame-

works, as the training-data are queried before learning any classifier. Therefore,

the unsupervised clustering of the data must be defined independently (to direct

queries), while the classification mapping is learnt afterwards. (Alternatively,

the cluster-structure and a majority vote can be used for classification [65].)

Cluster-based active learning is applied in Chapter 3, concerning hierarchical-

sampling for active learning [60].

2-2.3. The Dangers of Partially-supervised Learning

While the intuition behind active and semi-supervised methods appears logical,

care must be taken, as the performance of partially-supervised algorithms can

prove to be worse than conventional (passive) learning [53, 55].

During active learning, if queries are too focussed on specific definitions

of ‘informative’, the training-data can become poorly representative of the

underlying distribution; this phenomenon is referred to as sampling bias [48, 66].
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(a) (b) (c)

Figure 2.7: Unsupervised clusters at different resolutions, +/−markers show positive/negative

examples, while ◦ markers show unlabelled instances. (red) solid-outlines show clusters that

appear mixed; as such, the associated data groups would be queried by the learner: (a) initial

clusters, (b) clusters at an increased resolution, (c) label propagation (majority vote).

As such, queries should not focus too much on specific regions of the feature-

space; for example, the version space around the decision boundary. To avoid

the issues of sampling bias, variation can be achieved by combining different

definitions of informative [66]. The issues of sampling bias are discussed (an

visualised) in detail in the experimental Chapters 3, 4.

On the other hand, during semi-supervised learning, incorporating unla-

belled signals has the potential to decrease the predictive performance, if the

structure imposed by classifier proves inappropriate [47]. This can be par-

ticularly problematic for generative methods [55] — a caveat investigated in

Chapters 5, 6.

2-3. Thesis Layout

A brief outline of each chapter is provided below. The work progresses while

adapting algorithms for partially supervised SHM, considering each of the issues

outlined in the Contributions, Section 1-5.1.
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Ch. 3 Hierarchical Sampling for Active Learning : The application

of cluster-based active learning to SHM data. Experiments

demonstrate the advantages of partially-supervised learning,

based on a nonparametric and discriminative method, which is

trained offline.

Ch. 4 Probabilistic Active Learning for Online SHM : Introduces gen-

erative mixture models for probabilistic active-learning, via

uncertainty-sampling. The suggested parametric algorithm (a

GMM) can learn, update and adapt online, to classify streaming

SHM data. A novel tool for unsupervised feature extraction

from vibration data is also introduced.

Ch. 5 Towards Probabilistic and Semi-supervised Damage Classifica-

tion: Extension of the GMM to utilise unlabelled signals through

Expectation Maximisation; this is shown to improve the quality

of the mixture model (while training off-line), and improve the

diagnostic performance of the classifier.

Ch. 6 Towards a Combined Semi-supervised and Active Learning

Learner : Combines active and semi-supervised learning methods

for the GMM, introduced in Chapters 4 and 5, for an algorithm

that can adapt and update online with streaming SHM data.

Ch. 7 Conclusions : Concluding remarks and future work.



3

HIERARCHICAL SAMPLING

FOR ACTIVE LEARNING

Overview: Dasgupta’s and Hsu’s cluster-based active-learner (the DH algo-

rithm) is applied to experimental SHM data from ground vibration tests of

a Gnat aircraft. Results demonstrate the potential advantages of active and

semi-supervised learning in SHM applications — in this case, based on a non-

parametric and discriminative method. In this setting, the algorithm is trained

offline, using unlabelled data that were collected a priori.

Firstly, the cluster-based approach is explained in detail, while considering

the issues of sampling bias. The DH algorithm is then introduced for hierarchical

sampling, and the algorithm is applied to SHM data. The advantages and

limitations of this approach are discussed in the concluding remarks of the

chapter.

3-1. Cluster-based Methods and Sampling Bias

At the risk of repetition, various cluster-based methods follow a similar frame-

work, formalised by Dasgupta and Hsu [58]. In an ideal scenario, separable

clusters will exist that are pure in terms of labels. Following definition by unsu-

pervised learning, a few informative points x̃i ∈ Du can be queried from each

cluster to define a labelled set Dl, and any remaining unlabelled points in Du
can than be assumed to have their most confident (majority) label [59, 60, 65],

33
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(a) (b)

Figure 3.1: Ideal clusters (separable and pure): (a) clustering of query points +/− and

unlabelled instances ◦; (b) query points Dl (dark grey) and propagated labels Du (light grey).

as in Figure 3.1. (Throughout this chapter, this approach is referred to as

label propagation.) A supervised classifier can then be trained on the complete

dataset D, including queried and propagated labels, i.e. D = Dl ∪ Du. The

label propagation steps are typical of semi-supervised learning [39], such that

unlabelled instances in Du are used to constrain the classifier by assuming

their labels. Intuitively, the ability to naturally incorporate unlabelled data

brings further benefits to cluster-based active learning, normally associated

with semi-supervised algorithms [47].

The active/guided sampling element of cluster-based techniques is defined

by the sampling procedure; various methods have been proposed. Dasgupta

and Hsu suggest a algorithm that favours instances from clusters that appear

most mixed as querying progresses [60]. Alternatively, the density clustering

algorithm, by Wang et al. [59], favours queries in regions populated by (rela-

tively) dense groups of data. In this chapter, queries are directed to areas of

the feature space that appear to be most mixed in terms of labels, as these

clusters are assumed the most informative to both the cluster structure and

final classification.

In reality, the ideal case shown in Figure 3.1 is rare. The relationship

between labels and clusters could be insignificant, or there might be viable
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(a) (b) (c)

Figure 3.2: (a),(b) Identification of viable clusterings at different resolutions; (c) label

propagation by majority vote.

(near pure) clusters but at many different resolutions [60] — as in Figure 3.2.

For this reason, the performance of cluster-based methods depends critically

on the quality of the clustering results [59, 66]; thus, the data clusters must be

adaptive — actively changing as more information becomes available. Provided

that there is some relationship between clustered groups of data and diagnostic

labels, at whatever resolution, cluster-based active learning should exploit these

patterns [58, 59].

3-1.1. Sampling Bias

As discussed in the introductory chapters, selecting specific observations can

focus too much on certain regions of the feature-space (e.g. areas close to

the decision boundary, or far away from cluster centres). This can neglect

alternative regions that might be more representative of the underlying data

distribution [61]. In consequence, while active learning has been shown to bring

significant empirical advantages in the literature [48, 60, 65, 66], the author

wishes to reiterate that there are times when selecting training data by a given

measure (uncertainty or otherwise) can be worse than random sampling.

Specifically, the assumption of most classifiers, and data-based models in
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Figure 3.3: One-dimensional classification problem to demonstrate sampling bias. Image

credit: [60].

general, is that the training data are representative of the underlying data

distribution; this implies that samples are drawn independent-and-identically-

distributed (i.i.d) from the underlying probability density [48]. While the

underlying dataset might remain i.i.d, during active learning, the samples that

define the training data are guided. Therefore, the data used to train the

algorithm are inherently not i.i.d. As a result, care must be taken to ensure

that the model does not become misrepresentative. For this reason, it is critical

that any application of active learning to engineering data should consider: the

type (complexity) of data that is being analysed, the quantity of data that is

available, and the query budget.

To visualise sampling bias, consider the one-dimensional example in Fig-

ure 3.3, presented by in [60]. The data lie in four groups, and the classifier

fω used to separate them is defined by some threshold value, ω ∈ R. The

proportion of the dataset in each group is given by a percentage. Grey blocks

have a {1} label, and white blocks have a {0} label. Most of the data lie in

the two most external groups; therefore, a small, initial random sample has a

high likelihood of coming from these. In this case, the initial classifier, denoted

fω in (3.1), would lie somewhere between the two external groups shown in

Figure 3.3.

fω(x) =

0 x < ω

1 x > ω
(3.1)

As active learning proceeds, selecting uncertain observations, the classifier

would most likely converge to ω, in the centre of Figure 3.3. However, the

classifier ω has 5% error, while ω∗ has only 2.5% error [60]. This occurs as
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the most probable initial sample is poorly representative of the underlying

distribution in the data [58]. It includes no observations in the second group

from the left (5% grey block), and as a result, this group is overlooked; therefore,

the learner is mistakenly confident that these data have a {0} label [60]. In

other words, this group hides behind the decision boundary ω due to a poorly

placed initial classifier f . This example presents just one-dimension, in higher

dimensions the problem can get worse, as there are more spaces for groups of

data to hide [60].

To mitigate sample-bias with classifier-based methods, sampling can sys-

tematically include representative observations (i.e. those far away from the

version space) as well as uncertain observations [66]. Several methods have been

suggested; typical algorithms, such as the pre-clustering algorithm by Nguyen

and Smeulders [65], or the QUIRE algorithm by Huang et al. [66], combine an

unsupervised clustering with the classification algorithm. This leads to a hybrid

framework, where a balance of uncertain observations (close to the decision

boundary) and representative observations (near cluster centroids) are selected.

Alternatively, cluster-based frameworks [58, 60, 65] look to automatically

mitigate sampling bias by querying across the entire cluster structure, even after

a poorly representative initial sample. As discussed, the general cluster-based

framework completely removes the classifier from the active learning steps;

thus, the methods should prevent the learner from being constrained by an

ill-informed hypothesis. In consequence, considering the issues of sampling bias,

as well as the benefits associated with label prorogation, this chapter applies

the DH algorithm as a cluster-based variation of active learning.

3-2. A Cluster-based Framework for Guided Sampling

The DH algorithm is an active learning tool proposed by Dasgupta and Hsu

[60]. The method utilises a cluster-adaptive framework for guided sampling

and label propagation, which is clearly defined in the original papers [58, 60].

Each stage of the algorithm is also explained here, with some slight differences

in implementation — specifically, in Section 3-2.6.
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3-2.1. Clustering

The DH learner starts with a hierarchical clustering of the input data (initially

all the observations are unlabelled, i.e. Du = D). In the experiments here,

agglomerative clustering is used; this clustering algorithm works by sequentially

joining groups of signals in the feature-space. Initially, it compares K groups,

each containing one observation; i.e. K = m, as there are m observations in the

unlabelled set Du = {x̃i}mi=1. At each step, the dissimilarity matrix d is assessed

using (3.2) and (3.3) and the two most similar groups are merged, until there is

a single cluster containing all the data, s.t. K = 1 [25].

Specifically, the dissimilarity between single data points is calculated using

the Euclidean distance,

d(xi, x′i) =

√√√√ D∑
j=1

(x ji − x
′j
i )2 (3.2)

(where superscript j is used to index the jth feature from the vector xi), and the

dissimilarity between groups of data is assessed with Ward’s average linkage,

dr,s =

√
2mrms

mr +ms

× d(x̄r, x̄s) (3.3)

where ms and mr are the number of data in groups r and s respectively, while

x̄r and x̄s are the cluster centroids. Pseudocode for the agglomerative clustering

algorithm is provided in Algorithm 1 [25].

The merging process can be represented with the use of a binary tree

T, called a dendrogram, illustrated in Figure 3.4. The initial groups (single

observations) are represented by the leaves of the tree, at the bottom of the

graph. Each time two groups are merged they are joined in the tree at a node u.

The tree T can be defined as a set of nodes, T = {ui}m+m−1
i=1 (including leaves);

the height of branches represents the dissimilarity between two respective groups

[25]. The root of the tree, at the top of the dendrogram, represents one group

containing all the data.

If the tree is cut at any given height, a clustering is induced for a given

number of groups K. For example, if the tree in Figure 3.4 was cut at height 2.5,

this induces a clustering where K = 2, with groups: {{4, 6}, {2, 5}}, {1, 3}.
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Algorithm 1: Agglomerative clustering

Input : Unlabelled data Du = {x̃i}mi=1

Output : Clustering structure T

1 Compute dissimilarity matrix d between all observations in Du;
2 Initialise clusters as single observations: T = {ui, . . . , um},
3 s.t. for i← 1 : m do ui ← {i} ;

4 Initialise set of clusters available for merging: S ← {1, ...,m};
5 while clusters are available to merge in S do

6 Pick the two most similar clusters to merge:

(j, k)← argminj,k∈S(dj,k);

7 Create new cluster ul ← uj ∪ uk;
8 Mark j and k as unavailable: S ← S \ {j, k};
9 if ul 6= {1, ...,m} then

10 Mark l as available, S ← S ∪ {l};
11 Upate cluster structure, T← T ∪ ul;
12 end

13 for i ∈ S do

14 Update dissimilarity matrix d(i, l);

15 end

16 end

3-2.2. An Overview of Guided Sampling and Label Propagation

To illustrate guided sampling and label propagation, one can return to the

sampling bias example presented in [60], and shown in Figure 3.5. In this

case, the dendrogram represents the top few nodes of a hierarchical clustering;

therefore, each leaf defines a group of data, rather than singleton observations:

proportions of the total data in each leaf are provided.

Following hierarchical clustering, the DH algorithm will work with a par-

ticular partition of the dataset at any given time, defined by a pruning P of

the tree T. A pruning of the tree is a subset of nodes that are disjoint and

together cover all the data, i.e. P ⊂ T. Initially, the pruning is set as the root

node from agglomerative clustering, a single group containing all the data,
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Figure 3.4: Dendrogram of hierarchical clustering, down to single observations m = 6.

i.e. P = {1}. A small number of random points are drawn from this cluster

and queried; these initial labels provide the first indication of the underlying

distribution of the data, for all levels of the hierarchy. In this example, samples

should reveal that the top node is very mixed, while nodes {2} and {3} are

relatively homogeneous. Once this transpires, partition {1} will be replaced

with a pruning of P = {2, 3} [60]. The next set of observations will then be

selected according to a querying strategy that favours the less pure node [60].

After further rounds of sampling, P would most likely be refined to {2, 4, 9}.
At this stage, the benefits of cluster-based sampling become most obvious:

considering the observations seen so far, it can be concluded that cluster {9}
is relatively pure, so fewer queries will be made from this group [60]; instead,

future samples will be directed towards groups {2} and {4}.
Guided sampling continues in this way, working down the dendrogram.

Querying can be stopped at any stage — usually when the label budget runs

out; when this is done, any remaining unlabelled data in Du associated with

each cluster in the final P are assigned their majority label, according to the

queried data seen so far Dl. In this way, the learner looks to label the entire

dataset, D, while keeping the number of erroneous (propagated) labels to a

minimum [60].
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Figure 3.5: The top few levels of a hierarchical clustering. Clustered groups are shaded

according to their majority label: (1) grey, (0) white. Image credit: [60]. The histogram

visualised the weight of data in each leaf (i.e. node).

3-2.3. Pruning & Node Properties

For any node u in the tree T, Tu denotes the subtree rooted at node u, as

well as all the data contained in that node [60]. Therefore, a pruning of the

tree P = {v1, ..., vp}, is s.t. Tvi are disjoint and together cover all the data [60].

Partial prunings are also considered when working with sub-trees; in this case,

the associated leaves do not cover all the data.

The weight wu of a node u ∈ T is the proportion of total data contained in

the subtree of that node, where mu is the number of data in Tu.

wu =
mu

m
(3.4)

The weight of a pruning w(P) is the fraction of the total data contained in the

pruning P [60]:

w(P) =
∑
v∈P

wv (3.5)

For a complete pruning, w(P) = 1, and for a partial pruning, 0 < w(P) < 1.
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Following data queries

Having defined T from Du, the learner now starts to query data from nodes in

the current pruning P to build the queried/labelled set Dl = {xi, yi}ni=1.

For the K possible labels, i.e. y = k ∈ {1, . . . , K}, the label proportions

observed in each node u can be estimated,

pk,u =
nk,u
nu

(3.6)

where nk,u is the number of times yi = k from the queried data in u, while nu is

the total number of queries taken from node u. This is, effectively, a maximum

likelihood estimate of the conditional probability distribution p(yi |xi), at each

node, which represents a given area of the feature-space. Therefore, considering

the definitions in Section 2-1, this is a discriminative approach, such that the

conditional probability is estimated directly,

p(yi = k |xi) ≈ p(yi = k |xi ∈ u) ≈ pk,u (3.7)

Let the labelling of P be L, such that the label assigned to node u is L(u),

where L(u) ∈ {1, 2, ..., K}. Intuitively, each cluster u is assigned its majority

label, so L(u) = argmaxk(pk,u). The approximate error induced when assigning

all the data in cluster Tu with a label in L(u) is given in (3.8) [60].

εL(u),u = 1−max
k

(pk,u) (3.8)

For a partial or complete pruning, the error introduced when assigning each

cluster with its majority label is defined as [60]:

ε(L,P) =
1

w(P)

∑
v∈P

wvεL(v),v (3.9)

Due to limited sampling, labels are only available in the queried nodes, and

these queries are not necessarily indicative of the majority label. At a given

time, nk,u(t) labels have been observed, and there has been nu(t) queries; so

based on the labels seen so far, the current estimate for the label proportions is

pk,u(t). The corresponding errors at this time are given by εl,u(t) = 1− pk,u(t)
[60].
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The quality of these estimates can be assessed using generalisation bounds.

At any given time, the label proportion estimates can be assigned confidence

intervals, denoted by superscripts {pLBk,u , pUBk,u } [60]. The true value of pk,u is

expected to lie within these bounds. Specifically, the confidence interval is

defined using a variation of Wald’s interval [60, 67],

{pLBk,u , pUBk,u } = {max[pk,u(t)− δk,u(t), 0], min[pk,u(t) + δk,u(t), 1]} (3.10)

for,

δk,u(t) ≈
1

nu(t)
+

√
pk,u(t)(1− pk,u(t))

nu(t)
(3.11)

3-2.4. Admissible Clusters

When pruning the tree it is useful to work down the dendrogram as far as

possible [60]; in this way, clusters can be analysed at a higher resolution,

so queries can be directed to specific areas of the feature space, and label

propagation can be applied to more complex clusterings. To justify descending

into lower levels of the hierarchy, however, the learner should first be confident

about majority label estimates L(u) for all nodes in the potential pruning.

Considering this, the admissibility Ak,u(t) is defined to establish when and

where the learner can be confident about a majority label estimate [60]:

Ak,u(t) = True ⇔ (1− pLBk,u(t)) < β ·min
k′ 6=k

(1− pUBk′,u(t)) (3.12)

In words, for each cluster, a label is admissible if its (largest) expected error

is at least β times less than the (smallest) expected error of any other label.

For these experiments the hyper-parameter β is set to a value of 1.5, so (3.12)

becomes,

Ak,u(t) = True ⇔ pLBk,u(t) > (1.5pUBk′,u(t)− 1) ∀ k′ 6= k (3.13)

The set of admissible cluster-label (u, l) pairs is defined by A(t); at any

given time there may be several labels associated with each node. The set A(t)

is used throughout sampling to identify any new set of nodes that could make

up a refined pruning — with increased homogeneity in each cluster.
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Adjusted empirical error

The error estimates εL(u),u(t) can be inaccurate when a node has been inade-

quately sampled, as the learner has weak confidence about the label proportion

estimates pL(u),u(t),

εL(u),u(t) = 1− pL(u),u(t) (3.14)

With this in mind, the admissibility can be used to adjust the empirical error

and define a more conservative error-estimate in areas of sparse sampling [60],

ε̃L(u),u(t) =

1− pL(u),u(t) if (L(u), u) ∈ A(t)

1 if (L(u), u) /∈ A(t)
(3.15)

In words, label proportion estimates are only valid when their cluster-label

pairings are admissible. The adjusted empirical error is now,

ε̃(L,P, t) =
1

w(P)

∑
v∈P

wv ε̃L(v),v(t) (3.16)

3-2.5. The Select Procedure

The select procedure describes how the learner actively directs sampling in

the current working partition (P) of the tree. As suggested by Dasgupta and

Hsu [60], the select procedure will favour nodes v that appear most mixed.

Once a mixed node is chosen, a random sample is taken from the cluster that

it represents, and the label is queried. Specifically, the select procedure is,

Select v ∈ P with probability P(v) ∝ wv(1− pLBL(v),v(t)) (3.17)

In words, the likelihood of a node being queired is proportional to the (weighted)

error associated with that node. This definition is used in the experiments;

however, the procedure is flexible and can be modified according to the applica-

tion.

3-2.6. Pruning Refinements

When refining the current pruning, P = {vi}pi=1, it is convenient to think of the

process one node at a time. Therefore, for each node v ∈ P, the best pruning

and labelling of the associated subtree Tv is (Pv,Lv). The following rule is

used to define (Pv,Lv), where Pv = {v′i}
p′

i=1:
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• (u, L(u)) ∈ A(t) is defined for v′ ∈ Pv and ancestors of Pv in Tv.

For this implementation, while searching through Tv for the best pruning Pv

(from the root node down), any new set of nodes must meet the above criteria.

Additionally, any two child nodes chu = {uch1 , uch2} can only replace their

parent node u if a reduction in the adjusted empirical error is observed,

ε̃(L, chu, t) < ε̃L(u),u(t) where ε̃(L, chu, t) =
1

w(u)

2∑
i=1

wchi ε̃L(chi),chi(t) (3.18)

3-2.7. Label Propagation

An additional rule is added to this implementation, to prevent inconsistent

performance at low query budgets (n� m). It states that label propagation to

the unlabelled instances Du only occurs if the number of clusters in the final

admissible pruning is ≥ number of unique labels observed so far:

Propagate label L(v) in Tv ⇔ |P| ≥ K(t) (3.19)

This is intuitive; for example, it is useless assuming labels for three admissible

clusters across the whole data, when a total of seven classes have been observed.

3-2.8. The Algorithm

The pseudocode in Algorithm 2 summarises this implementation of the DH

learner; code is also available at https://github.com/labull?tab=repositories.

Classification Following definition of the training-set by guided sampling,

any supervised classifier can be trained using D,P and L. The classification

algorithm is independent of the semi-supervised steps; therefore, it does not

affect the active elements of the learner. Furthermore, as the ‘no free lunch’

theorem suggests [68], the performance of any algorithm is data-dependant. As a

result, the choice of classifier is trivial when focussing on the partially-supervised

characteristics (provided the same model is used throughout tests).

In fact, as suggested by Wang et al. [59], a classification algorithm is not

necessary for cluster-based methods: future data can be classified according the

final pruning P of the feature space and a majority vote — using the values

https://github.com/labull?tab=repositories


46 A Cluster-based Framework for Guided Sampling

Algorithm 2: Cluster-adaptive active learning

Input : Agglomerative clustering T, unlabelled data Du
Output : Pruning and labelling {P,L},

semi-supervised dataset D = Dl ∪ Du

1 P← {root}; . Initialise current pruning as the root node

2 L← {0}; . Initialise arbitrary root label

3 Dl ← {}; . Initialise labelled data as empty set

4 #--- Guided Sampling ---#

5 for t = 1 : B do . Algorithm run budget B

6 for 1 : b do . Guided sampling, batch size b

7 v ← select(P); . Select v from P according to (3.17)

8 randomly sample x̃i from Tv; . Adding to Dl
9 query ỹi and label x̃i, update Dl and Du; . Labelled by engineer

10 update (nu(t), pk,u(t)); . For all nodes that contain x̃i

11 end

12 for all nodes u ∈ T do . Compute admissibilities and errors

13 update (A, ε̃L(u),u);

14 end

15 #--- Pruning Refinements ---#

16 for each v ∈ P do . Refine the pruning, node by node

17 (Pv,Lv) ← best pruning/labelling of Tv; . Re. Section 3-2.6

18 P← Pv ∪ (P \ v); . Update node v to refine P

19 L(v)← Lv(v
′) for all v′ ∈ Tv; . Update node labels L(v)

20 end

21 end

22 #--- Label Propagation ---#

23 for each cluster v ∈ P do . In the final pruning

24 if |P| ≥ K(t) then . Additional rule (3.19) - compared to [60]

25 propagate L(v) to unlabelled data in Tv; . Label signals x̃i

26 end

27 end
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of pk,u as estimates of p(yi = k |xi). Nonetheless, a classification algorithm is

applied in the experiments here, for direct comparison to conventional techniques.

In consequence, the K-Nearest-Neighbour (KNN) algorithm is used as a basic

nonparametric classifier, to predict the labels of test-data and provide a simple

performance metric. The KNN classifier identifies the K nearest points in

the training-set D to the test input x∗i [25]; in this case, 15 neighbours are

considered (s.t. K = 15), and the Euclidean-distance (3.2) is used. Given the

K neighbouring points to the test input, the number of instances in each class

is counted, and used to provide an empirical (maximum likelihood) estimate of

the class conditional p(y∗i |x∗i ); more specifically,

p(y∗i = k |x∗i ,D, K) =
1

K

∑
i′∈IK

δyi′ ,k (3.20)

where IK are the set of indices for the KNNs to x∗i in D, and δy′i,k is the

Kronecker delta function — equal to unity when k is equal to the observed

class label yi′ in the set of KNNs. The predicted class label is then, ŷ∗i =

argmaxk {p(y∗i = k |x∗i ,D)}. This predicted label can be compared to the

ground-truth from the test-set, to calculate the classification error e.

3-3. Experiments

3-3.1. Gnat Aircraft Data

The Gnat data are an experimental dataset, concerning the wing of a Gnat

aircraft [69]. During ground vibration tests, the wing was excited using an

electrodynamic shaker and band-limited white-noise. A network of sensors

recorded the acceleration response at different points on the wing, shown in

Figure 3.6b. The shaker was attached directly below P4 in Figure 3.6b, on

the bottom surface of the wing [69]. During the experiments, artificial damage

was introduced by sequentially removing one of nine inspection panels; the

panels are shown in Figure 3.6a. (It is acknowledged that the removal of each

panel represents a fairly large and significant fault.) The data represent a

nine-class damage classification (location) problem; one class is associated with

the removal of each panel. The network of sensors are split into groups A, B
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Figure 3.6: Wing schematics: (a) panel locations, (b) sensor layout.

and C; each group has one centrally-placed reference transducer (AR, BR, CR)

and three response transducers (A/B/C1-3), labelled in Figure 3.6b.

It is expected that damage will manifest itself as alterations in the funda-

mental structural parameters; typically, a reduction in stiffness [5]. Changes in

stiffness will alter the dynamic characteristics of the system; therefore, frequency

domain observations can be used (as features) to (indirectly) monitor any physi-

cal changes that might relate to damage. In an attempt to represent SHM data

in practice, only the response (output) data are used, to define observations

in the frequency domain. As such, transmissibilities are used to monitor any

changes that might relate to damage; specifically, this is a complex-valued

function of frequency, which is the ratio of the response (transmitted) spectrum,

to that of the reference spectrum. As such, there are nine transmissibilities —

three for each group, represented by dotted lines in Figure 3.6b. The trans-

missibility is approximated via the discrete Fourier transform of the output

acceleration time-series using a Welch estimator [70]. In all cases 1024 spectral

lines were recorded, from 1024 to 2048Hz [69].

The are 1782 observations for each transmissibility — 198 for each damage

condition. To reduce the dimensionality of the dataset, each transmissibility
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is reduced to a single novelty index through a Mahalanobis-squared-distance

(MSD) novelty detector [5, 69] — for details, refer to Section 1-4.3. To build

the novelty detectors, regions of spectral lines from each transmissibility are

selected with the aid of a Genetic Algorithm (GA). Briefly, the GA iterates

though a population of MSD novelty detectors, learnt with different sets of

spectral lines. The fitness of each set is assessed using the inverse classification

error on a validation-set for a simple multilayer perception [35]. The ‘fittest’ sets

are passed on to the next generation by combining their solutions. Mutation

is also included by the occasional random switch of a feature. For a detailed

discussion of the feature selection procedure, the reader is referred to [71].

It it should be mentioned that a validation set must be used to assess the

fitness when applying a genetic algorithm for dimension reduction, and the

availability of these sets can negate the need for active learning. However, if

these data groups are small, they could be used as the initial sample for the

DH learner. The investigation of further data could then be dictated by active

learning; this is not particularly problematic when the partially-supervised

method is learnt offline. Alternatively, effective and wholly unsupervised

methods for feature extraction (with high-dimensional engineering data) would

be ideal for partially-supervised learning, particularly in the online setting; a

technique is proposed in the next chapter, Section 4-4.3.

In summary, the data represent a nine-class classification problem, concern-

ing damage location. As such, the label space is Y = {1, . . . , 9} s.t. yi ∈ Y.

The measured signals were converted to the frequency domain, to define nine

transmissibilities; each transmissibility is then represented by a single novelty

index, compressing the observation data to nine dimensions, thus xi ∈ R9.

The dataset was designed to be wholly supervised; however, in these tests

the labels are hidden, to demonstrate active learning. The data are projected

through a linear transform via PCA (see Section 1-4.2), onto three dimensions

for visualisation, as shown in Figure 3.7. Note, the experiments are not applied

to this projection of the data, however, Figure 3.7 is still used to reference the

separability of the data in the feature-space X, as PCA highlights this variance.
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Figure 3.7: Visualisation of the Gnat data, first three principal components.

3-3.2. Test procedure

DH active learning will be compared to two passive learning benchmark methods:

random sample training and standard supervised learning. For each experiment,

the observation data and hidden labels are split into a test set Dtest (33%) and

a potential training set D̃ (66%) using random indices.

1. Standard supervised learning: conventional passive learning in engineering

applications. All the available training data are used to train the classifier,

D = Dl = D̃. As a result, this method is the most expensive (in terms of

labels); therefore, the achieved accuracy should be considered the target

performance.

2. Random sample training: another form of passive learning [61, 62], which

takes a random sample of n data from the potential training set, then

queries the labels: D = Dl ⊂ D̃. The classifier is trained using this

labelled subset alone.
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3. DH active learning: D̃ is presented as a pool of unlabelled instances.

Following Algorithm 2, guided sampling actively selects n of the most

informative data, according to the select procedure; such that the la-

belled set is Dl = {xi, yi}ni=1. When the budget runs out, the labels are

propagated to the remaining unlabelled data Du in D̃, throughout the

admissible cluster structure. A classifier is trained using this dataset,

where D = Dl ∪ Du.

For standard supervised learning D̃ and Dtest are resampled 100 times, and

the classifier is trained/validated 10 times; the predictive performance of the

model is then evaluated using the test-set (i.e. 1000 runs in total). For methods

2 and 3 the same procedure applies while increasing the sample budget n for

the labelled data, such that n = {15, 18, 21, ..., 594}:

3-3.3. Results & Discussion

The first admissible pruning and labelling of T (leading to label propagation)

was generally found after 54 queries. According to the rules set out in Section 3-

2.6, this occurs when the number of clusters in the refined pruning P is greater

than or equal to the number of labels seen so far, K(t). Intuitively, this should

(usually) occur when |P| ≥ 9 — this threshold is shown by the highlighted

point in Figure 3.8a. Interestingly, after this point, the number of clusters in

the final pruning grows almost linearly with n; suggesting the additional rule

(3.19) works well to define when label propagation is suitable/stable.

The classification error e is plotted against an increasing query budget n —

shown in Figure 3.8b. Each curve has a shaded region representing one standard

deviation about the mean. Results show that using the DH learner provides a

significant increase in classification performance, particularly for lower query

budgets. As to be expected, there is a notable increase in the classification

performance as label propagation becomes admissible, n ' 54. At this stage,

just 3.0% of the hidden labels are used, and the average error on the test-set

is 6.26%. This is compared to the supervised learning error, 1.35%, which

requires all the hidden labels. In other words, at n = 54, the DH active learner

achieves 95.0% of the performance of the supervised learning benchmark, while

using just 3.0% of the labels; this is a significant achievement for engineering
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Figure 3.8: (a) Average number of clusters in the final pruning |P| for an increasing query

budget n; � indicates the point at which label propagation becomes admissible, (n, |P|) =

(54, 9.52). (b) Classification error e for an increasing query budget n. Plots are provided for

the DH learner and both benchmark methods.
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applications. At the same query budget, random sample training reaches 62.7%

of the performance of supervised learning; this reduction in relative performance

(32.3%) further highlights the advantages brought about by cluster-adaptive

partially-supervised learning.

Following 102 queries, the DH learner achieves 98.9% of the wholly supervised

benchmark performance, while using only 5.7% of the hidden labels. Here

random sample training achieves 92.4% of supervised learning performance, for

the same label budget n.
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Figure 3.9: Classification error e for an increasing query budget n. Plots are provided for

classifiers trained using guided sampling (the DH learner without label propagation) vs.

random sample training.

To highlight any advantages from the learner actively directing queries

(guided sampling), the classification error (without label propagation) is com-

pared to random sample training in Figure 3.9. Ideally, a classifier trained using

a subset selected via guided sampling would outperform one trained by a plain

random sample. However, Figure 3.9 fails to illustrate a significant advantage.
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As a result, it is safe to deduce that improvements provided by the DH learner,

in these specific experiments, are a result of cluster-adaptive label propagation.

In order to increase the influence of guided sampling, the select procedure

(Equation 3.17) could be adapted for applications to engineering data. However,

it is acknowledged in the original paper [60] that guided sampling will only

provide a significant benefit when the hierarchical clustering has some large and

fairly pure clusters near the top of the tree. (These will quickly be identified,

and very few queries will subsequently be made in those regions [60].) It is

clear from Figure 3.7 these data do not present the ideal case; although, some

relatively pure, separate groups are still shown in the data projections (classes

5 and 7).

To investigate this further, the averaged confusion matrix for supervised

learning experiments is provided in Figure 3.10. This is shown in an attempt

to highlight classes that are mixed, as these are assumed the most confused.

With successful guided sampling, querying should be higher in the confused,

mixed groups, while reduced in homogeneous, separable groups. Specifically,

classes 9, 6, 3 should receive a high number of queries, while classes 8, 7, 5, 4

are queried less.

Averaged sample counts across each class are provided in Figure 3.11. There

is not a great deal of specificity for guided sampling, however, the select

procedure does successfully direct queries to some extent: in particular, classes

5 and 7 are sampled significantly less than other groups; this makes sense, as

they are among the least confused in Figure 3.10, additionally, they define clear,

separable clusters in Figure 3.7. Class 2 also has a low query fraction, which is

justified considering its ranking in the confusion matrix.

For the remaining classes, guided sampling is more ambiguous. This is

understandable, considering how mixed these classes are — see Figure 3.7.

Class 8, however, is observed to be relatively separate in the data projections,

and it is the least confused; despite this, it is frequently queried by the learner.

It is likely that the clustering results are poorly representative of the underlying

distribution of the data in class 8, for high levels of the hierarchy. As a result,

guided sampling is less influential for this class. The same principle leads to

higher queries in classes 1 and 4 than might seem necessary, although, this is

less surprising, as these clusters are visibly mixed in the data projections. To
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1 2 3 4 5 6 7 8 9
Predicted label

1

2

3

4

5

6

7

8

9

T
ru

e
la

b
el

0.993 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006

0.000 0.995 0.000 0.000 0.000 0.000 0.000 0.000 0.005

0.022 0.014 0.937 0.011 0.000 0.007 0.001 0.000 0.006

0.000 0.005 0.000 0.994 0.000 0.002 0.000 0.000 0.000

0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.009 0.005 0.980 0.000 0.000 0.006

0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

0.004 0.000 0.001 0.000 0.000 0.009 0.000 0.006 0.980

Figure 3.10: Averaged confusion matrix.
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Figure 3.11: Average faction of (n) queries per class.

improve guided sampling for these groups, the initial clustering could be defined

in an alternative manner. Experiments with alternative linkage functions and

distance metrics (other than Ward’s average linkage and Euclidean distance)

might pose a solution; however, the issue is very application specific. In the-best

case scenario, the input data will define more separable and pure clusters.

3-4. Concluding Remarks

To introduce partially-supervised methods to data-based engineering, a cluster-

based algorithm has been applied to data from aircraft experiments. Dasgupta’s

and Hsu’s (DH) algorithm is applied [60], which starts with a hierarchical cluster-

ing of the unlabelled data, dividing the feature-space into many partitions. An

informative training set is built by directing queries to areas of the feature-space

that appear mixed in terms of labels, while clusters that appear homogeneous

are queried less. When appropriate, queried labels can be propagated to any

remaining unlabelled instances, using the cluster structure and a majority vote

— a process typically associated with semi-supervised learning. Any standard

supervised classifier can then be learnt from the resulting labelled dataset.
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Experiments successfully demonstrate that cluster-adaptive active learn-

ing has the potential to significantly reduce labelling costs, by utilising both

labelled and unlabelled data in a partially-supervised framework. The DH

algorithm provides a significant increase in performance over passive training

with a random sample of the same budget n; furthermore, the classification

performance is significantly improved when compared to the supervised learning

benchmark, which requires all the data to be labelled. Notably, following label

propagation (n ' 54), the DH active learner achieves 95.5% of supervised

learning performance, while using just 3.0% of the labels.

In the experiments here, active learning is successful as a result of cluster-

adaptive label propagation — a process enabled by the hierarchical framework

of the algorithm. Although guided sampling is directing queries to some extent,

this procedure alone is not influential enough to directly affect the classification

performance. Alternative select procedures might increase the influence of

guided sampling, although in real terms, the success of this mechanism is very

data specific. If relatively pure, separable clusters existed in high levels of the

hierarchy, guided sampling should be more influential.

Moving Forward

The algorithm is well suited to engineering applications: it utilises unlabelled

data, and, importantly, the damage classes do not need to be defined a priori.

As a result, new labels can be included as they are discovered. The algorithm

is limited in some respects, however, as a large set of measured signals must

be available a priori, to build the tree structure. In consequence, the DH

learner is less suitable in more challenging applications of online SHM, where

measurements are also unavailable a priori. In this online case (Section 1-5.1),

the partially-supervised algorithm itself must train, update and adapt during

system operation, which can be problematic for discriminative (e.g tree-based)

methods, as discussed in Section 2-1.

To address this, future work should consider modifications to accept a stream

of online measurements, such that the model of the underlying data structure

is updated online, during system operation. Additionally, it would be desirable

to use probabilistic methods to provide well-defined uncertainties, which can

be associated with the propagated labels; as such, probabilistic models should
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allow the select procedure and label propagation to be controlled in a statistical

manner.



4

PROBABILISTIC ACTIVE

LEARNING FOR ONLINE

SHM

Overview: A novel, probabilistic framework for the classification, investigation

and labelling of data is suggested as an online strategy for Structural Health

Monitoring (SHM). The proposed parametric algorithm (a Gaussian Mixture

Model) can learn, update and adapt online, to classify streaming SHM data.

The model of the data allows for the definition of a multi-class classifier, to aid

both damage detection and identification, while using a limited number of the

most informative labelled data. The algorithm is applied to three datasets in

the online setting; the Z24 bridge data, a machining (acoustic emission) dataset,

and measurements from ground vibration aircraft tests. In the experiments,

active learning is shown to improve the online classification performance for

damage detection and classification. A novel tool for unsupervised feature

extraction from vibration data is also introduced.

4-1. Generative Mixture Models

Considering the conclusions of Chapter 3, in the context of SHM it is desirable

to work towards a classifier that can update and adapt online, such that any new

groups of data are incorporated into the model as they are discovered. Further-

59
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more, as discussed in Section 1-5.1, working towards probabilistic predictions

is desirable in risk-based applications, while keeping the number of labelled

data to a minimum. In consequence, it should be clear that the application of

generative methods (introduced in Sections 2-1, 1-3.1) can offer a natural way

to address these issues:

• the model of the data is relatively simple to retrain upon discovering new

groups of data (the class can simply be added to the existing mixture

model);

• additionally, any unlabelled data can be incorporated into well-defined

probabilistic models, relatively simply. (The extension to include unla-

belled data is presented in Chapter 6.)

Furthermore, when working with engineering datasets, assuming a para-

metric mixture model (for density estimation) can also be useful, given prior

knowledge of the structure of the data for that application. For example,

SHM signals recorded from a mechanical system or structure should remain

relatively consistent for a given operating, environmental, or health condition —

synonymous with the consistent underlying physics1 [5].

4-2. A Probabilistic Model for Guided Sampling

A probabilistic approach is suggested as the foundation for an active framework

with engineering data. This approach is built around a supervised probabilistic

mixture model, which is learnt from a small initial (random) sample of labelled

measured data. As with existing models in the literature [25, 31, 57], the

measured data, xi, are assumed to be sampled from a parametric mixture model;

specifically, a Gaussian Mixture Model (GMM) [25, 32]. Therefore, referring

back to the theory introduced in Section 1-4.4, the underlying distribution of the

measured data xi ∈ X, for each class k, is described by a Gaussian distribution,

p (xi | yi = k) = N (xi |µk,Σk) (4.1)

where k is used to index the class group, s.t. k ∈ {1, ..., K}; therefore, µk
is the mean and Σk is the covariance of the data xi with label k (i.e. there

1In turn, this justifies the cluster-assumption for semi-supervised mixture models, Section 2-

2.1.
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are K Gaussian base-distributions). If the Gaussian distribution proves too

restrictive in describing the data for each component (e.g. the class clusters

are multi-modal), an alternative base-distribution should be selected. The

examples in this work, however, are appropriately described by a GMM for

active learning.

Again, the discrete random variable, yi ∈ {1, ..., K}, which describes the

labels is assumed to be categorically distributed [31],

P (yi) = Cat(yi |λ) (4.2)

λ is vector of mixing proportions, which is a histogram over the label values, s.t.

λ = {λ1, ..., λK} and P (yi = k) = λk. Bayes’ rule is applied using (5.1) and

(5.2) to define the generative classifier, used to predict the class associated with

an unseen signal, x∗i [25],

p(y∗i = k |x∗i , θ) =
p (x∗i | y∗i = k, θ) p (y∗i = k |θ)

p(x∗i |θ)
(4.3a)

θ , {Σ,µ,λ} (4.3b)

p(x∗i |θ) ,
K∑
k=1

p (x∗i | y∗i = k, θ) p (y∗i = k |θ) (4.3c)

4-2.1. A Bayesian Approach

The most straight-forward estimate of the model parameters θ, is the maximum

likelihood (ML) estimate given the available data Dl. In this case, θ corresponds

to the sample mean and covariance, and the sample mixing parameters. While

a maximum likelihood approach is intuitive, it can be poorly representative of

the underlying distribution of the data when the sample size n, is small [25].

For example, consider a class of data which relates to one of the permitted

operating conditions of a system; these data might represent the normal opera-

tion of a bridge during cold temperatures. Although an engineer might expect

this behavior to occur frequently during winter, it may have been observed

infrequently in the current dataset Dl. In this case, the maximum likelihood

estimate would predict an unreasonably low probability (i.e. mixing proportion)

for that class, as the parameters have been defined such that only the available
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data are the most likely. In other words, the model has overfit the training

data; this can lead to poor generalisation when predicting new data.

To prevent over-training and generalisation issues, various methods can be

applied to regularise or validate a maximum likelihood model [35]. Alternatively,

a Bayesian approach can address the issue of overtraining; this can be interpreted

as a form of self-regularisation. In this case, the parameters of the model, θ,

are also considered to be random variables, and prior knowledge is incorporated

to provide a more robust estimate of the model.

Bayesian parameter estimates

Considering the distribution of the measured data over the feature-space X, a

prior is placed over the mean and covariance parameters for each class, µk,Σk. A

natural choice of prior, which is conjugate to the Gaussian distribution (leading

to analytically tractable solutions [31, 32]) is the Normal-inverse-Wishart (NIW)

distribution [25],

p(µk,Σk) = NIW(µk,Σk |m0, κ0, ν0,S0) (4.4)

The hyperparameters of the mixture model (m0, κ0, ν0,S0) can be interpreted

as follows: m0 is the prior mean for the location of each class µk, and κ0

determines the strength of the prior [25]; S0 is (proportional to) the prior

mean of the covariance, Σk, and ν0 determines the strength of that prior [25].

These hyperparemeters are defined such that the prior belief states that each

class is represented by a zero-mean and unit-variance Gaussian distribution.

(Specifically, p(µk,Σk) = NIW(0, 1, D, I), where I is the identity matrix [D×D],

and 0 is a D-dimensional vector of zeros.) In other words, the prior assumes that

the input data are normalised in the feature-space, and as such, the measured

data are normalised within the online heuristic, to support this belief.

Considering the distribution over the label-space Y, a Dirichlet prior (Dir)

is placed over the mixing proportions [31], λ,

p(λ) = Dir(λ |α) ∝
K∏
k=1

λk
αk−1 (4.5)

α , {α1, . . . , αk} (4.6)
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Figure 4.1: Graphical model for the GMM p(xi, yi,θ) over the labelled data Dl. As the

dataset is supervised, both xi and yi are observed variables. (Shaded and white nodes are

the observed and latent variables respectively; arrows represent conditional dependencies;

dots represent constants (i.e. hyperparameters).)

Again, this is a natural choice of prior, as the Dirichlet distribution is conjugate

to the categorical distribution [31]. The second prior introduces the hyperpa-

rameters, α = {α1, ..., αK}, which can be used to incorporate any prior belief

of the probability (or weighting) of each class. In this application, each class

is assumed to be equally weighted, s.t. αk = n/K, ∀k. This prior is used as it

represents a general case; if (application specific) prior-knowledge of the class

weights is available, it should certainly be included. The generative statistical

model, p(xi, yi,θ), has now been defined. The graphical model corresponding

to the problem (including dependences) is shown in Figure 4.1, including any

hyperparameters.

The set of labelled data, Dl, is used to establish the initial number of

classes, K. These data can then be used to calculate the Bayesian estimates

of the model parameters. Note, in the context of SHM, the initial measured

signals are regularly assumed to represent a single class, i.e. K = 1. These

measurements should, hopefully, relate to the normal-operating-condition only.

As conjugate prior distributions have been assumed, the posterior distribution

over the parameter estimates can be found analytically; these are calculated for

each class, k ∈ Y. Firstly, the posterior distribution of (µk,Σk) is NIW, with
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updated parameters (denoted by subscript n) [25, 31],

p(µk,Σk | Dl) = NIW(µk,Σk |mn, κn, νn,Sn) (4.7a)

mn =
κ0

κ0 + nk
m0 +

nk
k0 + nk

x̄k (4.7b)

nk ,
n∑
i=1

δk,yi (4.7c)

x̄k ,

∑n
i=1 δk,yi xi
nk

(4.7d)

κn = k0 + nk (4.7e)

νn = ν0 + nk (4.7f)

Sn = S0 + Sk + κ0m0m
>
0 − κnmnm

>
n (4.7g)

Sk ,
n∑
i=1

δk,yi xix
>
i (4.7h)

again, δk,yi is the Kronecker delta function, equal to 1 when k is equal to the

observed class yi, for the corresponding observation xi. The bar notation x̄k

is the empirical mean (ML estimate) of the data in group k; the number of

observations in that group is nk; finally, Sk is the uncentered sum-of-squares

matrix for the data in class k (5.5h). The Bayesian estimates of µk (5.5b) and

Σk (5.5g) are interpretable: the posterior mean mn is a complex combination of

the prior and the maximum-likelihood estimate; the posterior scatter matrix Sn

is the prior scatter matrix, plus the empirical scatter matrix, plus an additional

term associated with uncertainty in the mean [25].

Similarly, the posterior for the parameters of the categorical distribution

over Y is Dirichlet [31],

p(λ|Dl) ∝ Dir(λ | {α1 + n1, . . . , αK + nK})

=
K∏
y=1

λy
ny+αy−1 (4.8)

Intuitively, the posterior is obtained by adding the pseudo-counts from the prior

αk to the empirical counts, nk =
∑n

i=1 δk,yi .

In order to make class predictions for the unlabelled data, x̃i ∈ Du, the

posterior predictive distributions associated with the labels, Y , and the obser-

vations, X, can be found analytically. This is done by marginalising out the
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parameters from the model [25, 31]. For unlabelled measurements, x̃i ∈ X, the

posterior predictive distribution is a Student-t distribution [25],

p(x̃i | yi = k,Dl) =

∫ ∫
p(x̃i |µk,Σk)p(µk,Σk | yi = k,Dl) dµkdΣk (4.9)

= T
(

x̃i |mn,
κn + 1

κn(νn −D + 1)
Sn, νn −D + 1

)
(4.10)

= T
(

x̃i |m′,S′, ν ′
)

(4.11)

=
Γ(ν ′/2 +D/2)

Γ(ν ′/2)

S′ −1/2

ν ′ D/2πD/2
× . . .

. . .

[
1 +

1

ν ′
(x̃i −m′)>S′ −1(x̃i −m′)

]−( ν′+D
2

)
(4.12)

Γ(a) ,
∫ ∞
0

ua−1e−udu (4.13)

The first two terms m′,S′ in (4.11) define the mean and scale parameters

respectively, and the third term ν ′ is the number of degrees of freedom. The

Student-t distribution is suitable, as it has heavier tails than the Gaussian

distribution, to account for the fact that the parameters are estimated from a

finite set. However, as more data become available, and the degrees of freedom

increase (nk → ∞, thus ν ′ → ∞), the Student-t tends towards the Gaussian

distribution [25].

Likewise, the posterior predictive distribution associated with the labels, Y ,

is,

p(ỹi = k | Dl) =

∫
p(ỹi |λ)p(λ | Dl) dλ (4.14)

=
nk + αk
n+ α0

(4.15)

where α0 =
∑K

k=1 αk [25].

As in the previous examples, by utilising Bayes’ rule and the posterior

predictive distributions in (4.11) and (4.14), a generative classifier can be

defined [25]. This is used to predict the label distribution, p(ỹi | x̃i,Dl), for the
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unlabelled data, x̃i ∈ Du,

p(ỹi = k | x̃i,Dl) =
p(x̃i | ỹi = k,Dl) p(ỹi = k | Dl)

p(x̃i | Dl)
(4.16)

When predicting the label of future data, the maximum a posteriori estimate

of the class labels is used to assess classification performance. This is the value

in Y with the highest probability given the observation x̃i [25], denoted by ŷi,

ŷi = argmax
k∈Y

{
p(ỹi = k | x̃i,Dl)

}
(4.17)

As in (4.3), the marginal likelihood in (4.16), which normalises the predictive

distribution over Y , is determined by the following integral; this is a discrete

sum for a discrete random variable,

p(x̃i | Dl) =

∫
p(x̃i | ỹi = k,Dl) p(ỹi = k | Dl) dy (4.18a)

≡
K∑
k=1

P (x̃i | ỹi = k,Dl) P (ỹi = k | Dl) (4.18b)

In summary, a generative classifier has been defined via a supervised Gaussian

mixture model, with Bayesian estimates of the model parameters. As such,

each class of data is represented by a Student-t distribution in the feature-

space, which tends to a Gaussian distribution as more data (in that class)

become available. The model is illustrated in the feature-space in the next

section; additionally, code for the classifier is available at https://github.

com/labull?tab=repositories.

A visual example: acoustic emission data

In order to visualise the mixture model — beyond the graphical representation

in Figure 4.1 — the parameters are learnt for the acoustic emission (AE) dataset,

introduced in Section 1-4.1. In summary, these data represent a two-dimensional,

three-class classification problem, s.t. xi ∈ R2 and yi ∈ Y = {1, 2, 3}. Each

observation, xi, represents the first two principal components of the features

extracted from AE burst signals, collected during experiments concerning the

box girder of a bridge [33]. The signals are generated by various AE sources,

specifically [34]:

https://github.com/labull?tab=repositories
https://github.com/labull?tab=repositories
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(a) (b)

Figure 4.2: Multi-class classification of the AE data. (a) Observations in the feature-space, X,

illustrating the labelled set Dl (colour markers) and the unlabelled data Du (black markers).

(b) The generative mixture model p(xi, yi,θ); maximum a posteriori (MAP) estimate of the

mean (+) and covariance (dotted lines represent two and three sigma).

• class 1 - frictional processes other than crack-related events (clamping in

the experimental setup),

• class 2 - crack-related events (crack extension and crack-face rubbing),

• class 3 - crack-related events, at a distance from the sensor (i.e. AE

reflection signals with a relatively long rise-time).

A small subset of labelled data (i.e. Dl) is illustrated in Figure 4.2a, along with

a larger set of unlabelled data, Du. The mixture model is then learnt using the

labelled dataset, and label predictions are made for the unlabelled data. The

maximum a posteriori (MAP) estimate of the parameters of the mixture model

are shown in Figure 4.2b.

Various probabilistic measures can now be used to estimate which of the

measurements in Du are the most informative when labelled. These observations
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can be queried, and the cause can be investigated by the engineer to provide

descriptive labels. Following the investigation and labelling of any queried data,

Dl now includes the new observations. Therefore, the model is retrained and

then further data can be queried; this process iterates until a label budget

is reached, or applied sequentially to streaming data (online). This sampling

and training framework is typical of classifier-based active learning [48, 66, 72].

Details of the application-specific heuristic are provided in the following sections.

4-2.2. Data query measures: uncertainty sampling

In the active learning literature, reviewed in Section 2-2.2, there are numerous

approaches to define which of the unlabelled data are the most informative

[48, 60, 65, 66]. Generally speaking, if labelled, these data provide the largest

increase in the classification performance. However, as previously discussed,

considering sampling bias, if queries are too focussed on a specific definition of

‘informative’, the training-set built by the algorithm can be poorly representative

of the underlying distribution of the data. To combat sampling bias, the query

framework should not focus too much on specific regions of the feature-space;

here, this is avoided by combining different definitions of ‘informative’ [66].

Usually, these measures correspond to representative or uncertain observations,

according to the current estimate/model of the underlying data distribution

[65, 66]. In this work, two probabilistic measures are utilised to direct queries;

the typical data queried by these measures are illustrated with the AE data in

Figure 4.3.

Firstly, the entropy of the posterior-predictive-distribution over the labels,

p(ỹi = k | x̃i,Dl), can be interpreted as a measure of uncertainty [63]; specifically,

the entropy of the outcome k ∈ Y , is defined as the average Shannon information

content [63],

H(ỹi) = −
K∑
k=1

P (ỹi = k | x̃i,Dl) logP (ỹi = k | x̃i,Dl) (4.19)

As a result, selecting data from Du with a large entropy can be considered

uncertainty sampling; that is, extending the training set by selecting data from

the unlabelled pool xi ∈ Du with the most ‘mixed’ or ‘conflicted’ label predic-

tions. This criterion will almost always query observations at the boundaries
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(a) (b)

Figure 4.3: Queries over the mixture model for the AE data. The labelled set Dl is shown by

the colour markers, and the unlabelled data, Du, are shown by black markers. The queried

data from Du are circled; in (a) these data have the largest entropy ; in (b) the data have the

lowest likelihood given the current model.

between two or more classes; to demonstrate this, queries directed by a large

entropy are illustrated in Figure 4.3a. Note, conversely, prioritising low entropy

can select measurements near the centre of the data-groups associated with

each cluster, i.e. the representative examples.

Alternatively, observations in Du with the lowest likelihood given the current

model estimate can be queried, p(x̃i | Dl). This refers to the marginal likelihood

(4.18) from the Bayes classifier, defined in (4.16), i.e.

p(x̃i | Dl) =
K∑
k=1

p(x̃ | ỹi = k,Dl) p(ỹi = k | Dl) (4.20)

This can be interpreted as the likelihood of a new observation, having marginalised

out the effects of the parameters, θ, in (4.14) and (4.9), and the labels, yi, in

(4.18). Again, querying data with a low-likelihood can be seen as uncertainty

sampling; however, in this case, the corresponding label distribution is not
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necessarily ‘mixed’. Therefore, the queried data can appear in the cluster

extremities that are not at the boundary between two or more classes. In other

words, these outlying measurements are not necessarily uncertain in terms of

the labels. Considering these properties, low-likelihood data become suitable for

querying drifting data streams, typical to online SHM, where the novel data

are unlikely to appear between the boundaries of existing classes. Instead, new

classes of data are likely to appear as extreme values under the current mixture

model, as illustrated in Figure 4.3b.

The author wishes to reiterate: selecting training data by a given measure

(uncertainty or otherwise) can be worse than random sampling. Specifically, the

assumption of most classifiers, is that the training data are representative of the

underlying data distribution; this implies that the samples are drawn i.i.d from

the underlying probability density [48]. While the underlying data might remain

i.i.d, the samples that define the training set are guided ; therefore, the data used

to learn the algorithm are inherently not i.i.d for an active learner. Therefore,

care must be taken to ensure that the model does not become misrepresentative:

it is critical that any application of active learning to engineering data should

consider the type (complexity) of data that is being analysed, the quantity of

data that is available, and the query budget. As shown in the experiments in

Section 4-4, the benefits of active learning can vary from dataset to dataset.

4-3. An Online SHM Framework

To apply active learning to streaming data for online SHM, a framework for

querying data and retraining the model must be formalised. There are various

ways to approach this problem in the machine learning literature; for example,

query by committee methods [48, 73] (Section 2-2.2) learn multiple classifiers

which can be applied to drifting data streams. Disagreement amongst the

classifiers is used to direct queries to aid uncertainty sampling [73]. In this work,

however, the framework is built around a single model. The suggested algorithm

is online, despite completely retraining the model (brute-force updates) for each

new set of data. Specifically, brute-force learning is possible, as the model is

quick to compute, since the parameters are defined through conjugate updates.

Furthermore, if desired, the algorithm can be modified to perform cheaper
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‘online’ updates of the parameters, mitigating the need to completely ‘retrain’

[74].

4-3.1. Guided Sampling

In the experiments, the data arrive in batches of size B, and the learner is

permitted a limited number of queries per batch, qb. The number of queries per

batch defines the overall sample budget; this can be predefined according to

the application and the costs associated with labelling. The initial distribution

of data p(xi, yi = 1 | Dl) is learnt from the first batch, which is assumed to

be wholly labelled as class 1; that is, the normal operating condition. This

assumption is reasonable in the context of SHM, as the system should be

operating correctly for a large portion of the initial measured data. As a

result, this model initialises as a one-class classifier [42]. If a new class of data

is discovered following queries, the model updates accordingly; as such, the

number of classes K does not need to be defined a priori.

The suggested active learner assumes the most informative data are defined

through uncertainty sampling, using entropy (4.19) and marginal likelihood

measures (4.20). Although this risks sampling bias, as only uncertain samples

are targeted, these measurements are assumed to provide the largest increase

in classification performance for the experiments in this work (as is common

practice in the active learning literature [48]). To address sampling bias to

some extent, both high-entropy and low-likelihood are considered as measures

of uncertainty. As discussed, this implies that queries occur in the cluster

extremities, as well as the boundaries between existing classes. Therefore,

sampling a variety of uncertain data in this way should provided an informative

training-set, Dl, from the unlabelled streaming data, Du.
As each new batch of measured data arrives, the model makes a prediction

for the unlabelled data Du, based on the labelled data seen so far in Dl. Note,

the dataset Du includes the new batch, as well as unlabelled data from previous

batches. The learner then queries qb measurements from Du, s.t. qb/2 records

are queried according to high-entropy, and qb/2 are queried with the lowest

likelihood. This query regime effectively introduces two hyperparameters:

one which determines how many of the data will be labelled, and one which
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start:
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no
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Figure 4.4: Flow chart to illustrate the online active learning process.

determines what fraction of high-entropy and low-likelihood data should be

queried. In this work, an equal number of each measure is queried for simplicity.

The sample budget, qb, is the independent variable in the experiments; therefore,

the proportion of each query measure is kept consistent. The investigation

of various sampling regimes is being considered for future work. The online

heuristic is illustrated in Figure 4.4.

Test procedure

In order to assess the diagnostic performance of the learner, the full dataset is

split in half, using every other sample. This provides a distinct ‘moving’ test

set, Dtest = {x∗i , y∗i }. The model can then be used to predict the labels for

the test data, ŷi (4.17), and these can be compared to the actual labels, y∗i , to

determine an online performance metric. The macro f1 score is used, which is

a weighted balance of precision (P ) and recall (R). Precision and recall can be

defined in terms of numbers of true positives (TP ), false positives (FP ) and
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false negatives (FN) for each class, k ∈ Y [25],

Pk =
TPk

TPk + FPk
(4.21a)

Rk =
TPk

TPk + FNk

(4.21b)

The macro f1 score is then defined by [25],

f1,k =
2PkRk

Pk +Rk

(4.22a)

f1 macro =
1

K

∑
k∈Y

f1,k (4.22b)

The macro-averaged f1 metric is used, as this weights the score for each class

equally, irrespective of the proportion of the data in each class. This is suitable

in the context of online SHM, as newly-discovered groups of data are assumed

to be equally important to the classification, despite infrequent observations;

i.e. the new data might relate to damage.

4-4. Experiments

The new heuristic is applied here to three datasets to demonstrate the advantages

of active learning for online SHM. To highlight the effects of uncertainty

sampling, the method is compared to the same classifier learnt using data

sampled at random from each batch, i.e. standard passive learning. As such,

for the passive learning benchmark, qb data are sampled randomly from Du at

each iteration (rather than selecting uncertain data with entropy and likelihood

measures).

It is important to note — if the active learner queries any past data (this

is particularly likely with entropy) this may have limitations in practice, as

labelling engineering data in hindsight may not be possible, particularly when

manual inspection is involved. Intuitively, the structure (or damage) will have

changed since that data record. However, in the experiments here, labelling

past data is considered to be feasible, as labelling in hindsight can be possible

using engineering judgement and other sources of measured data. For example,

consider that it is possible to assume that previous outlying data are the result
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of cold temperature effects, following inspection of temperature plots (as is done

with the Z24 data in the next section). The practical limitation of labelling

of past data is highlighted, however, as it is an important consideration when

applying the framework.

4-4.1. Z24 bridge data

The Z24 bridge was a concrete highway bridge in Switzerland, connecting

Koppigen and Utzenstorf. In the late 1990s, before its demolition, it was

used for experimental SHM purposes under the SIMCES project [75]. Over a

twelve-month time period, a series of sensors were used to capture dynamic

response measurements, in order to extract the first four natural frequencies

of the structure. Environmental measurements were also recorded, including

air temperature, deck temperature, humidity and wind speed [76]. This is a

relatively large dataset, with 3932 observations in total. During the benchmark

project, different types of damage were artificially introduced towards the

end of the monitoring year, starting from observation 3476 [41]. The natural

frequencies, as well as deck temperature, are shown in Figure 4.5. Visible

fluctuations in the natural frequencies can be observed in Figure 4.5a, for

1200 ≤ n ≤ 1500, while there is little variation following the introduction

of damage at observation 3476. The early fluctuations appear to relate to

periods of very low temperature in the bridge deck, which can be observed in

the temperature plot, Figure 4.5b. It is believed that the asphalt layer in the

deck experienced very low temperatures during this time, leading to increased

structural stiffness.

To define a classification problem for the active learning experiments, the

four natural frequencies are selected as the observation data, s.t. xi ∈ R4. Firstly,

the damage data are assumed to represent their own class, from observation

3476. Outlying observations within the remaining dataset were then determined

using the robust Minimum Covariance Determinant (MCD) algorithm [41, 77].

These outlying data are illustrated in Figure 4.5a; as discussed, they appear

to relate to cold temperatures effects. A three-class classification problem can

now be defined, s.t. yi ∈ {1, 2, 3}:

• class 1: normal condition data;
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(a)

(b)

Figure 4.5: Z24 bridge data: (a) time history of natural frequencies, (b) time history of

average deck temperature.

• class 2: outlying data due to environmental effects;

• class 3: damage.

In this application, it is clearly undesirable for an engineer to investigate

the structure following each data acquisition from the bridge. Therefore, if

active learning can provide an improved classification performance, compared

to passive learning (random sampling) with the same sample budget, this

demonstrates the relevance of active methods.
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Results

Plots are provided for an increasing label budget per iteration. As discussed,

the dataset is split in half, to define the training set and test set; i.e. each set

contains 1966 observations for the Z24 data. Both sets increase at the same rate,

and the f1 score is assessed using the test set. The queries per batch are kept

constant with qb = 2, while the batch size is increased, s.t. B ∈ {8, 16, 24, 48}.
These values correspond to query ratios of 1:4, 1:8, 1:12 and 1:24, for labelled

to unlabelled data respectively. Active learning (uncertainty sampling) and the

passive learning benchmark (random sampling) are applied 50 times for each

query-budget ratio. The results are provided in Figure 4.6; error bars illustrate

the one-sigma (σ) deviation.

Active learning for guided sampling successfully directs queries for an in-

creased classification performance with these data. For all query budgets, there

is a clear increase in the f1 score when uncertainty sampling is used to build

the training-set, Dl. At times, sampling bias appears to negatively effect the f1

score metric; specifically, in the early stages of monitoring, when 1:12 data are

queried in Figure 4.6c. In general, however, the increase in the classification

performance appears to outweigh the risk for this application.

As expected, there are drops in the classification performance as new classes

are discovered by the learner; however, these are less exaggerated when an active

framework is used. (The drops in performance occur as the macro-averaged f1

score weights each class equally.)

Another advantage for active learning is consistent model predictions; this

occurs because data selection follows a deterministic process. In other words,

the active learner will always select the same observations, if identical data

are presented in the same order. As a result, the f1 scores are consistent,

because the variability associated with the ‘informativeness’ of a random sample

is eliminated. For lower query budgets (Figures 4.6c and 4.6d) while active

learning increases the performance, it appears the classifier does not have

enough information to build a reliable model of the data; thus, the f1 scores

are particularly low for both active and passive learning. To combat this issue,

the query regime must be adapted (to sample the novel classes sooner), or the

model should be updated to deal with this lack of information; these ideas are
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(a) (b)

(c) (d)

Figure 4.6: Online classification performance (f1 score) for the Z24 data, for query budgets

(as ratios): (a) 1:4; (b) 1:8; (c) 1:12, (d) 1:24.
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discussed in the conclusions.

4-4.2. Machining data

The machining data are an acoustic emission dataset, collected by Wickrama-

rachchi et. al., during experiments concerning a turning operation, used to

manufacture metallic components [14]. During normal operation, the cutting

tool deteriorates, leading to tool wear, see Figure 4.7. Tool wear is undesirable,

as it produces a poor surface finish for the machined component, which can

lead to the onset of crack propagation, reducing the time in service for the

manufactured product [78]. Consequently, it is critical to monitor wear of the

tool; however, the current procedure requires the machining operation to be

stopped, to allow for manual inspection. As a result, these inspections are

infeasible in practice, due to cost and time implications [14], thus, the high-value

cutting tools may be discarded prematurely when used in industry. For the

experimental dataset used in this work, inspection of the tool is carried out

using a 3D microscope, the resulting images are illustrated in Figure 4.7.

(a) (b)

Figure 4.7: Tool wear following inspection: (a) minor tool wear, (b) catastrophic failure of

the tool.

Significant cost savings can be achieved if a model is capable of tool wear

predictions while using a minimal number of tool inspections. In order to build a

model to predict the current state of wear, acoustic emission (AE) measurements

were taken during a typical machining operation, until catastrophic failure of

the tool — see Figure 4.7b. Measurements were made by placing an AE sensor
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on the machine turret; these data were recorded in the time domain, and then

converted into the frequency domain. Following various signal processing steps,

the measured data have 129 dimensions, with 1729 observations. For further

details, see [14] — in this work, the measured data were collected using a

similar experimental procedure; however, these tests concern the collection of

data for a different machining operation. The data are compressed through

a random projection; this method for dimension reduction is frequently used

in the compressive sensing literature [79], and it is applied to online SHM

in [8]. Using this approach, a random matrix is generated and normalised

(replacing the W matrix in PCA (1.13)) and used to project the data on to 20

dimensions in an online manner, as each new batch of data arrives. 20 features

were chosen, as this produced a relatively challenging feature-space for the

classification problem. Therefore, the measured data are defined s.t. xi ∈ R20.

As the annotation of these measurements is expensive, the tool was inspected at

10 regular intervals during the experiments. This corresponds to nine different

classes (ranges) of tool wear, and one class after tool failure, s.t. yi ∈ {1, ..., 10}.
Table 5.2 summarises the dataset as a classification problem; this view of the

data does not take advantage of the fact that damage can only increase.

By using AE measurements, such as the dataset presented in this work, it is

desirable to accurately monitor tool wear online, while keeping the number of

tool investigations (to annotate the measured data) to a minimum. Considering

this aim, the active learner is applied to the machining data sequentially, as

if it were online. As with all the experiments, the class labels, yi, are hidden

from the algorithm, and only measurements queried by the learner are provided

with labels. Therefore, this framework implies that the engineer only needs to

investigate the system when the learner queries.

Results

In these tests, the batch size is increased s.t. B ∈ {8, 16, 24}, corresponding to

query ratios of 1:4, 1:8, and 1:12, for labelled to unlabelled data respectively.

Again, the sample budget per batch is qb = 2, and active/passive learning

methods are applied 50 times. Plots are provided in Figure 4.8. Active learning

brings consistent improvements to the classification performance (i.e. the

predictive model in (1.20)) with the machining data, although, these advantages
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Table 4.1: Machining AE data classes

Class label (yi) Observations (i) Description

1 1 - 173 wear 1

2 174 - 346 wear 2

3 347 - 519 wear 3

4 520 - 692 wear 4

5 693 - 865 wear 5

6 866 - 1038 wear 6

7 1039 - 1211 wear 7

8 1212 - 1383 wear 8

9 1384 - 1555 wear 9

10 1556 - 1729 tool failure

are less significant: note the reduced axis range for the f1 score. It is believed

this occurs because the data are relatively separable in the feature-space,

thus, the use of active learning is less effective. Intuitively, a multi-class

classification problem that is less mixed in the feature-space should benefit less

from active learning. Nevertheless, uncertainty sampling provides an increase

in the classification performance at low query budgets; particularly when 1 in

12 data are labelled, see Figure 4.8c. Figure 4.8a shows that active learning

can still be utilised at high query budgets for these data, as the variability of

the prediction is reduced, such that the performance of the active learner is

comparable to the upper bound (1σ) of the expected performance for random

sampling, see Figures 4.8a and 4.8b. Furthermore, for all query budgets, the

active learner appears to be more resilient to significant drops in the classification

performance, particularly when new classes are introduced. This effect is most

likely due to low-likelihood queries successfully targeting data relating to new

classes, thus identifying them (and incorporating them into the model) sooner

than random sampling. The variation in the classification performance for

active learning is the result of the random projections for each repeat (before
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averaging), and not the active learning heuristic, which still builds the training-

set deterministically. Likewise, the variation in the passive learning performance

is also influenced by the random-projection, as well as the random sampling.

4-4.3. Gnat Aircraft Data: Outlier Ensemble Features

The Gnat dataset was introduced in Section 3-3.1, concerning damage loca-

tion using signals recorded during aircraft ground vibration tests. A network

of sensors measured time-series (acceleration) data from the wing, and the

measurements are then converted into the frequency domain, such that nine

transmissibilities are used to monitor the condition of the system. In the previ-

ous experiments, dimension reduction was achieved offline by reducing each

transmissibility into a single novelty index, where feature selection is guided by

a genetic algorithm [71]. In the experiments here, however, dimension reduction

is unsupervised, as labels are initially unavailable; furthermore, it should be

implemented online, such that the method could be applied to streaming data.

As a result, generally, the genetic algorithm features are unsuitable, so a novel

method for unsupervised dimension reduction is introduced.

Data summary

In the online setting, these data represent a 10-class problem; one class is

associated with the normal condition (including repairs) and one class for each

state of damage (nine in total). There are 2500 observations in the dataset;

700 one-shot measurements for the normal condition and 200 for each damage

condition [71]. The data are ordered such that they represent the true sequence

of experiments [69]; therefore, each set of damaged tests is followed by a normal

condition test. This is done to simulate an online SHM environment, where

damage is followed by ‘maintenance’ procedures (panel replacement), bringing

the structure back to the normal operating condition. Table 4.2 summarises

the ordered dataset.

As in the original papers [69, 71], these data are compressed to nine-

dimensions using nine Mahalanobis-squared-distance (MSD) novelty detectors

[5], one learnt from each transmissibility. To achieve this in an unsupervised

setting, feature-bagging with outlier ensembles [80] is used to provide robust
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(a) (b)

(c)

Figure 4.8: Online classification performance (f1 score) for the machining AE data, for query

budgets (as ratios): (a) 1:4; (b) 1:8; (c) 1:12.
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Table 4.2: Gnat data classes

Class label (yi) Observations (i) Description

1 1 - 100 normal

2 101 - 200 damage 1 (panel 1)

3 201 - 300 damage 2 (panel 2)

4 301 - 400 damage 3 (panel 2)

1 401 - 500 normal

2 501 - 600 damage 1 (panel 1)

3 601 - 700 damage 2 (panel 2)

4 701 - 800 damage 3 (panel 2)

1 801 - 900 normal

5 901 - 1000 damage 4 (panel 4)

6 1001 - 1100 damage 5 (panel 5)

7 1101 - 1200 damage 6 (panel 6)

1 1201 - 1300 normal

5 1301 - 1400 damage 4 (panel 4)

6 1401 - 1500 damage 5 (panel 5)

7 1501 - 1600 damage 6 (panel 6)

1 1601 - 1700 normal

8 1701 - 1800 damage 7 (panel 7)

9 1801 - 1900 damage 8 (panel 8)

10 1901 - 2000 damage 9 (panel 9)

1 2001 - 2100 normal

8 2101 - 2200 damage 7 (panel 7)

9 2201 - 2300 damage 8 (panel 8)

10 2301 - 2400 damage 9 (panel 9)

1 2401 - 2500 normal
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discordancy measures, while avoiding (supervised) feature selection in the

frequency domain.

Outlier ensembles: feature bagging

Ensemble analysis is regularly applied in the machine learning literature to

reduce the dependence of model prediction on a specific realisation of the data

[81, 82]. In general terms, an ensemble refers to a weighted combination of M

diverse base predictors, f̂m′ [25], defining an ensemble output f̂E,

f̂E(xi) =
M∑

m′=1

wm′ f̂m′(xi), (4.23)

The base predictor fm′ , refers to a machine learning model; typically, a su-

pervised classifier is used [25, 81]. For outlier ensembles, however, the base

predictor is an unsupervised novelty detector. Ensemble analysis can greatly

increase the robustness of pattern recognition models [81], as the combined

predictions are more immune to benign variations in the data that relate to

noise, rather than novelty.

Importantly, successful ensemble analysis requires a diverse set of base-

predictors [35, 83]; roughly speaking, there are two main approaches to in-

troduce variability [81, 83]. Firstly, the base predictor can be varied across

members in the ensemble (i.e. changing hyperparameters, or the algorithm

itself); alternatively, for the same model, variability can be introduced through

bootstrap samples from the dataset — i.e. sampling with replacement.

Conveniently, bootstrap sampling methods can be used to address applica-

tions of outlier analysis to high-dimensional data [84]. Specifically, the useful

behaviour of measurements in high-dimensional space is often described by a sub-

set of dimensions, which are difficult to discover in practical settings [69, 71, 81].

The use of bootstrap-sampled features (feature bagging), introduced by Lazare-

vic and Kumar [80], has been shown to provide a novel, successful framework

for outlier analysis in high-dimensional feature spaces [85, 86]. The resulting en-

semble can provide a robust measure of novelty, as the combined outputs reduce

the effect of any noisy/misrepresentative features. As a result, feature bagging

can provide a more general, robust approach to feature selection, reducing the

uncertainty associated with this inherently difficult process [81].
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Applications to the Gnat data An ensemble of M diverse MSD novelty detec-

tors (1.16) is defined using random (bootstrap sampled) subsets of features x′i
from each transmissibility. As such, the ensemble refers to a combination of M

diverse base-predictors, which define an ensemble output MSDE,

MSDE(xi) =
1

M

M∑
m′=1

MSDm′(x′i) (4.24)

i.e. each m′ th member is an MSD novelty detector (1.16), trained using a

different subset of features, with ML empirical parameters (µ̄m′ and Σ̄m′

from (1.16)). The novelty indices from each member in the ensemble are

combined through averaging to provide a single robust novelty index, MSDE,

from high-dimensional data [81, 82]. In this way, an outlier ensemble is built

for each transmissibilty, compressing the dataset to nine dimensions in an

unsupervised manner (such that only the normal condition data are used).

Interestingly, the features found via unsupervised outlier ensembles provide a

similar predictive performance (when used to train a classifier) compared to

the supervised features, found offline, via the genetic algorithm — outlined in

Section 3-3.1 [84].

As a result, online features for the Gnat data now represent a 10-class

classification problem in nine dimensions; one class defines the normal operating

condition and nine for the damaged states, s.t. yi ∈ {1, ..., 10} and xi ∈ R9.

Active learning results

For the Gnat data, the batch size is varied over B ∈ {8, 10, 16, 20, 24} (while

qb = 2) to show a range of active learning effects. This corresponds to query

ratios of 1:4, 1:5, 1:8, 1:10 and 1:12, for labelled to unlabelled data. As before,

the results in Figure 4.9 show improvements when uncertainty sampling is used;

particularly for high query budgets, shown in Figures 4.9a, 4.9b and 4.9c. With

the Gnat data, however, improvements appear to become less significant as

the query budget decreases. This implies that active learning fails to provide

significant improvements as the learner is allowed to query less. To investigate

this further, the framework is run for a 1:12 query budget; the results are

shown in Figure 4.10, and demonstrate a clear example of sampling bias. In

this case, the performance of active learning is worse than standard passive
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learning (random sampling); as discussed, this phenomenon is well established

as a critical issue when applying active learning [48, 60, 65].

It is hypothesised that the performance of active learning deteriorates at

low query budgets because the Gnat data represent a particularly difficult

classification problem, with 10 classes in a mixed feature-space. While the

complexity of the classification means that active learning can bring significant

advantages at high query budgets (Figures 4.9a, 4.9b and 4.9c), once the number

of queries falls below a critical point (∼ 1:10), the data become misrepresentative

of the underlying distribution; in consequence, there is not enough information

in the model to successfully direct queries in a way that benefits the classification.

These results are important, as they imply that while active learning is useful

for complex online classification, if the sample budget is too low, it can have a

detrimental effect on the performance. As a result, is it critical that a method

is defined to establish when (and how much) querying is required; this idea is

being considered for future work.

4-5. Limitations

While the proposed active learning model works well for these data, the fact

that this is a parametric-statistical model should be considered; in other words,

assumptions are made about the distribution of the measured data. If the classes

of data form disjoint (multimodal) clusters in the feature-space, this active

framework might still bring advantages compared to random sample training for

the same classifier; however, it is unlikely that the performance of either method

would compare to that of nonparametric classifiers. (Nonparametric refers to

the method used to describe the data distribution.) Some examples of such

algorithms include: Gaussian process classification, relevance vector machines,

or support vector machines [25]. Importantly, it is desirable to build an active

learner around probabilistic measures in engineering (as in this work) as these

models provide uncertainties with the associated predictions; however, a more

general framework might be achieved by using a nonparametric approach, which

does not make assumptions regarding the distribution of the data in X — such

as the framework suggested in [8].

Critically, a method must be defined to determine when and how much data
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(a) (b)

(c) (d)

Figure 4.9: Online classification performance (f1 score) for the Gnat data, for query budgets

(as ratios): (a) 1:4; (b) 1:5; (c) 1:8, (d) 1:10. Dotted vertical lines indicate the introduction

of new class data – according to Table 4.2.
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Figure 4.10: Online classification performance (f1 score) for the Gnat data, for a query budget

of 1:12. The results show significant sampling bias, which is detrimental to the classification

performance. Dotted vertical lines indicate the introduction of new class data – according to

Table 4.2.

to query in the online setting for active learning in SHM. In this work, a fixed

number of measurements were queried with each batch of data; however, the

algorithm might perform better if data are sampled only when necessary. In

this way, the algorithm could choose when and which data to query, based on

properties of the probabilistic model. Additionally, the automation of when to

query should protect against too few data being sampled, which has been shown

to lead to sampling bias with the Gnat data. Finally, the sampling regime

could determine which type of data to query (i.e. high entropy, low-likelihood,

or another measure), providing further automation to the SHM strategy.

4-6. Concluding Remarks

This chapter has defined a probabilistic approach to guide data queries in a

novel strategy for online structural health monitoring. The model is initialised

as a one-class classifier (novelty detection) and adapts online as new classes are
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discovered — becoming a probabilistic multi-class classifier. In the experiments,

the framework is applied to three datasets: the Z24 bridge data, a machining

(acoustic emission) dataset, and a vibration-based dataset from a Gnat aircraft.

The active learning algorithm is applied to the measurements as if they were

online, recorded live from the systems in operation.

Generally, the results show a clear increase in the online diagnostic perfor-

mance of the probabilistic classifier, when active learning is used to build the

training-set through uncertainty sampling; this is compared to standard passive

learning, where the same number of observations are investigated at random.

Furthermore, the variability of the classification performance is significantly

reduced when active learning is utilised. It is important to note that there are

issues concerning sampling bias at low query budgets, particularly for the Gnat

data. However, the definition of a probabilistic method to determine when to

query (i.e. the optimal query budget) should be investigated for future work.

Finally, in order to further utilise the information in the unlabelled data Du,
the generative mixture model should be extended, to become semi-supervised.



5

TOWARDS PROBABILISTIC

AND SEMI-SUPERVISED

DAMAGE CLASSIFICATION

Overview: This chapter looks to investigate semi-supervised learning for the

Gaussian mixture model introduced in Chapter 4, such that the model is

informed by both labelled and unlabelled signals. The generative statistical

model is introduced in the offline setting, and it is shown to improve the

classification performance, compared to supervised learning, with simulated and

experimental SHM data, while requiring no further inspections of the system.

These results indicate that, through semi-supervised mixture-models in SHM,

the cost associated with labelling data could be managed, as the information in

a small set of labelled signals can be combined with larger sets of unlabelled

data.

The theory behind semi-supervised updates for the Gaussian Mixture Models

is introduced for damage-classification, via. the Expectation Maximisation (EM)

algorithm. The semi-supervised learner is applied to simulated and experimental

data, followed by a discussion on extending semi-supervised updates to the

online framework in Chapter 4.

90
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5-1. Applications to SHM

To reiterate, semi-supervised methods can bring significant advantages to SHM.

In contrast to the previous chapter, where the unlabelled data Du are only

utilised to extend the labelled set, leading to the model p(xi, yi,θ | Dl), a

semi-supervised learner also uses the unlabelled data to inform the model, s.t.

p(xi, yi,θ | D) where D = Du ∪ Dl.
For example, returning to the hypothetical offshore wind-turbine; it is only

possible to provide labels describing the condition of various components (such

as the turbine blades) following manual inspection; this involves travelling

to a remote offshore location, which is a high-cost procedure. By utilising

semi-supervised tools, the cost associated with labelling data can be managed,

as the information in a small set of labelled data can be combined with larger

sets of unlabelled data (D = Du ∪ Dl), recorded from the monitored system.

5-1.1. Related work

Semi-supervised methods have been applied to SHM in previous work. In the

context of bridge monitoring, Chen et al. introduce a graph-based approach

for label propagation [54, 87] — see Section 2-2.1 for the principals behind

graph-based learners. Specifically, the objective-function of a multi-resolution

classifier [88, 89] is modified, such that the weighting parameters are optimised

over the labelled and the unlabelled data; additionally the graph-based classifier

[54] within the heuristic is semi-supervised. The Shannon entropy [63] is used

to approximate an uncertainty associated with the confidence vector over the

predicted labels for the unlabelled data; this information is included in the cost

function, which learns the weights of the multi-resolution classifier, as well as

the filter-coefficients within each graph-based classifier [54].

Further work concerns the application of K-means [22] and fuzzy-C-means

[21] for semi-supervised SHM. (Fuzzy-C-means [51] is an adaptation of K-means

clustering [25, 35], such that each signal can belong to more than one cluster,

according to membership weights.) Firstly, Huang et al. [21] use fuzzy-C-

means within an online SHM strategy; the proposed method becomes partially-

supervised during a label-matching step, where the unsupervised clusters are

compared to known classes from the supervised data. Bouzenad et al. [22]
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define a similar online heuristic using K-means; in this case, new clusters are

created when a distance-based threshold is broken within the unsupervised

algorithm. These heuristics can be considered as clustering with constraints

[47]; an alternative view of semi-supervised learning, where partial-supervision

is introduced through constraints on an unsupervised algorithm.

5-1.2. Contribution

This chapter suggests an alternative perspective, through generative-mixture-

models for probabilistic and semi-supervised damage classification — with a

view to extending the active learner proposed in Chapter 4. Provided certain

assumptions hold, under Kolmogorov’s axioms [28], generative methods allow

for predictions with well-defined uncertainty — a significant advantage in risk-

based applications. Additionally, in an engineering context, prior knowledge

of the structure of the measured data is often available (e.g. drifting data

streams or uni-modal clusters in the feature-space). As discussed, this a priori

knowledge is easy to include within a generative framework, through the model

definition.

5-2. Mixture Models for Semi-Supervised SHM

Generative models can naturally account for labelled and unlabelled data, as

the Expectation Maximisation (EM) algorithm (used to learn mixture models

in the unsupervised case [25, 90]) can be modified to incorporate labelled data

[56, 57]. In agreement with the online framework proposed in Chapter 4, a

Gaussian Mixture Model (GMM) is used to model the underlying distribution

of the data.

The first step in the semi-supervised GMM follows conventional supervised-

learning, identical to the active learner in Section 4-2. Here, Bayesian estimates

of θ are defined by treating each parameter as a random variable, and placing

prior distributions over the possible outcomes. For reference, the graphical

model is provided again in Figure 5.1, and equations for the supervised GMM

are reprinted.
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xiΣk

µk yi λk
α

S0

ν0

κ0

m0

i ∈ 1 : nk ∈ 1 : K k ∈ 1 : K

Figure 5.1: Graphical model for the supervised GMM p(xi, yi,θ) over the labelled data Dl.

The feature-space likelihood, for xi ∈ X,

p (xi | yi = k) = N (xi |µk,Σk) (5.1)

Label-space likelihood, for yi ∈ Y,

P (yi) = Cat(yi |λ) (5.2)

Priors over the parameter estimates Σ, µ, and λ,

p(µk,Σk) = NIW (µk,Σk |m0, κ0, ν0,S0) (5.3)

p(λ) = Dir(λ |α) (5.4)

With hyperparameters p(µk,Σk) = NIW(0, 1, D, I), and p(λ) = Dir(λ |α),

where αk = n/K, ∀k. That is, the priors encode the belief that the measured

data are expected to be unit-variance and zero-mean (i.e. the feature-space is

normalised), while each class in the mixture model is equally likely.
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Posterior distributions over the parameters µ and Σ, given the labelled data

Dl,

p(µk,Σk | Dl) = NIW (µk,Σk |mn, κn, νn,Sn) (5.5a)

mn =
κ0

κ0 + nk
m0 +

nk
k0 + nk

x̄k (5.5b)

nk ,
n∑
i=1

δk,yi (5.5c)

x̄k ,

∑n
i=1 δk,yi xi
nk

(5.5d)

κn = k0 + nk (5.5e)

νn = ν0 + nk (5.5f)

Sn = S0 + Sk + κ0m0m
>
0 − κnmnm

>
n (5.5g)

Sk ,
n∑
i=1

δk,yi xix
>
i (5.5h)

The posterior distribution over λ given the labelled data,

p (λ | Dl) ∝ Dir(λ | {α1 + n1, . . . , αK + nK}) (5.6)

Posterior predictive distributions (marginalising out the parameters), given the

labelled data, Dl,

p (x∗i | y∗i = k,Dl) = T
(

x∗i |mn,
κn + 1

κn (νn −D + 1)
Sn, νn −D + 1

)
(5.7)

P (y∗i = k | Dl) ∝
αk + nk∑K
k=1 αk + n

(5.8)

It is useful to define the maximum a posteriori (MAP) estimate of the

parameters, denoted θ̂, corresponding to the mode of the posterior distributions

defined in (5.5) and (5.6) [25]; i.e. p(µk,Σk | Dl)p (λ | Dl),

θ̂ | Dl =
{
µ̂, Σ̂, λ̂

}
= argmaxθ {p(θ | Dl)} ∴ (5.9a)

µ̂k = mn (5.9b)

Σ̂k =
Sn

νn +D + 2
(5.9c)

λ̂k =
αk + nk − 1∑K
k=1 αk + n−K

(5.9d)
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At this stage, the parameters that define the likelihoods over X (5.1) and Y

(5.2) have been learnt given information in the labelled data only.

5-2.1. Semi-Supervised updates: Expectation Maximisation

The distribution over the parameters θ is now updated using the unlabelled

data Du. For the unlabelled observations, the label yi can be considered a latent

variable, which is denoted ỹi (as throughout); in this situation, the maximum a

posteriori (MAP) estimates (5.9) are more challenging to compute [25]. The

EM algorithm [90] is one method that solves this issue. The appropriate

implementation of semi-supervised EM [53, 57] is similar to the unsupervised

case, however, the log-likelihood of the model (and therefore the E/M-steps)

are modified, such that the log-likelihood is maximised over both the labelled

and the unlabelled data.

Specifically, the learning problem is defined to approach the MAP estimate

of the parameters θ given the labelled and unlabelled subsets, which is,

θ̂ | D = argmaxθ

{
p(D |θ)p(θ)

p(D)

}
= argmaxθ

{
p(Du |θ)p(Dl |θ)p(θ)

p(Du,Dl)

}
(5.10)

D , Du ∪ Dl (5.11)

As such, it is assumed that Du and Dl are conditionally independent. In this

case, the assumption proves appropriate, as the training data are random

samples from the underlying distribution: implicitly, random-sampling selects

representative data that are independent and identically distributed (i.i.d) [32].

For numerical stability, the MAP estimate is implemented as a maximisation of

the expected joint log-likelihood of (5.10) across the complete dataset [47],

L(θ | D) = L(θ | Du,Dl)

∝
m∑
i=1

log
K∑
k=1

p (x̃i | ỹi = k,θ) p(ỹi = k |θ) . . .

+
n∑
i=1

log [p (xi | yi = k,θ) p(yi = k |θ)] + log p(θ) (5.12)
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xiΣk
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x̃i ỹi λk
α

S0

ν0

κ0

m0

i ∈ 1 : n

i ∈ 1 : mk ∈ 1 : K k ∈ 1 : K

Figure 5.2: Graphical model of the GMM over both the labelled data Dl and the unlabelled

data Du. For the unsupervised set, x̃i is the only observed variable, while ỹi is a latent

variable.

(The constant terms have been dropped for convenience.) As there exists a label

yi for each xi ∈ Dl, yi is an observed variable for the term in (5.12) associated

with the labelled data. However, in Du the labels are unknown; therefore, the

latent variable ỹi is marginalised out from the likelihood — this appears as

a sum over k in (5.12). The model dependencies, including the observed and

latent variables for each set, are illustrated in Figure 5.2.

In the EM algorithm, during each E-step, the unlabelled observations are

classified using the current estimate of the model parameters and the classifier

defined by (4.3). The M-step corresponds to finding the θ̂ 1, given the predicted

labels for unlabelled cases as well as the labelled data.

E-step Initially, during the E-step, the responsibility matrix r is computed for

the unlabelled data; this is the posterior distribution from the classifier defined

in (4.3), thus, it is an n×K matrix,

rik = p(ỹi = k | x̃i,θ) =
p (x̃i | ỹi = k,θ) p (ỹi = k |θ)

p(x̃i |θ)
, ∀ x̃i ∈ Du ∀k ∈ Y

(5.13)

The effective counts per class in Du is the weighted number of points assigned

to class k — this is the sum of the kth column in the responsibility matrix,

rk =
∑m

i=1 rik [25]. For the Dl, however, the ground truth of p(yi = k | xi) is

1Note, the initial estimate of θ̂ is estimated from the labelled data only, and equations

(5.5), (5.6), (5.9).
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given by the training labels yi; therefore, the posterior distribution is known

for the labelled points, which are discrete delta functions in the known class

label [32],

p(yi = k |xi) = δk,yi , ∀ (xi, yi) ∈ Dl (5.14)

again, δk,yi is the Kronecker delta, which equals 1 when k is the observed label

yi. In summary, the total (effective) counts per class over the complete (labelled

and unlabelled) dataset are,

Nk = nk + rk (5.15a)

N = |Dl|+ |Du| = n+m (5.15b)

M-step In each M-step, the equations used to update θ̂ involve modifications

to the supervised case, as defined in equations (5.5), (5.6), (5.9). Firstly, the

vector of mixing proportions λ̂, for each element is,

λ̂k =
αk +Nk − 1∑K
k=1 αk +N −K

(5.16)

The mean and covariance estimates are found by modifying (5.5), to give the

parameters,

mn =
κ0

κ0 +Nk

m0 +
Nk

k0 +Nk

x̄k (5.17a)

x̄k ,

∑n
i=1 δk,yi xi +

∑m
i=1 rikx̃i

Nk

(5.17b)

κn = k0 +Nk (5.17c)

νn = ν0 +Nk (5.17d)

Sn = S0 + Sk + κ0m0m
>
0 − κnmnm

>
n (5.17e)

Sk ,
n∑
i=1

δk,yi xix
>
i +

m∑
i=1

rik x̃ix̃
>
i (5.17f)

leading to the same equations for MAP estimation,

µ̂k = mn (5.18a)

Σ̂k =
Sn

νn +D + 2
(5.18b)

The semi-supervised updates turn out to be interpretable. The MAP estimates

are similar to the supervised case in (5.5); however, information inDu contributes

to the counts (N and Nk), as well as the mean x̄k and scatter Sk estimates.
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EM learning The EM algorithm iterates between steps, leading to a hill-

climbing search, which finds a local maximum in the parameter space. EM

is sensitive to the initial estimate of θ̂; to deal with this, the algorithm is

normally initialised (randomly) many times. In this application, however, the

starting point can be informed by the labelled data; as such, the initial guess

is the MAP estimate given the labelled data, calculated with (5.5) and (5.6).

This additional information mitigates the need to re-initialise the algorithm.

Learning proceeds to iterate between E-steps ((5.13) and (5.14)) and M-steps

((5.17) and (5.18)), until the log-likelihood of the model (5.12), converges [90].

Semi-supervised EM is summarised in Algorithm 3.

Algorithm 3: Semi-supervised EM for a Gaussian Mixture Model

Input : Labelled data Dl, unlabelled data Du
Output : Semi-supervised MAP estimates of θ̂ =

{
µ̂, Σ̂

}
1 Initilise θ̂ using the labelled data, θ̂ = argmaxθ {p(θ | Dl)}. Supervised

GMM equations (5.5), (5.6) and (5.9);

2 while the joint log-likelihood L(θ | D) (5.12) improves do

3 E-step: use the current model p(xi, yi, θ̂) to estimate

class-membership for the unlabelled data Du (5.13);

4 M-step: update the MAP estimate of θ̂ given the component

membership for all observations θ̂ := argmaxθ {p(θ | Dl ∪ Du)}.
Semi-supervised GMM equations (5.16), (5.17) and (5.18);

5 end

Following semi-supervised EM, the updated MAP estimates θ̂ define the

predictive classifier (4.3); this is used to predict the distribution over the

class-labels for new observations p(y∗i |x∗i ).

5-3. Experiments

Probabilistic and semi-supervised damage classification is applied to a simulated

example and the offline Gnat data. The simulated data demonstrate and

visualise the model, while the experimental data present a more realistic and
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m1 m2 m3 m4 m5 m6 m7 m8k1 k2 k3 k4 k5 k6 k7 k8
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f1(t) z̈8(t)

Figure 5.3: The simulated 8-DOF system

Table 5.1: 8DOF system parameters

m1 : 0.5993 kg

{m2, ...,m8} : 0.4194 kg

k1 : 10−6 kN/m

{k2, ..., k3} : 56.7 kN/m

{c1, ..., c8} : 0.03× cc Ns/m

practical application.

5-3.1. Simulated Dataset

The simulated data represent measurements from an eight-degree-of-freedom (8-

DOF) system. The system is defined to represent an experimental rig designed

at the Los Alamos National Laboratory (LANL) [5]. A schematic of the 8-DOF

system is shown in Figure 5.32. The input forcing on mass i at time t is fi(t),

and zi(t) is the system response (output) of mass i at time t.

The system parameters are summarised in Table 5.1. The values for critical

damping cc are defined using the decoupled equations of motion. The system

is set with approximately 3% of critical damping. The spring constant k1 is

set to near zero, as this corresponds to a rigid-body mode of the experimental

rig. The forcing, f1(t), is a white-noise excitation applied to mass 1, while the

response, z̈(t), is simulated for all masses. Additive Gaussian noise is applied to

the outputs, such that the signal-to-noise ratio (relative to variance) is 40dB.

It is expected that damage will manifest itself as alterations in the funda-

2Note: there is repeated notation for the physical parameters m and k, however, the

context and use of indices (1− 8) should make this clear.
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mental structural parameters; in this case, a reduction in stiffness [5]. Changes

in stiffness will alter the dynamic characteristics of the system; therefore, fre-

quency domain observations can be used to (indirectly) monitor any physical

changes that might relate to damage. In an attempt to represent SHM data,

only the system outputs z̈(t) are used to define observations in the frequency

domain. As such, the transmissibility between masses one and eight T8,1(ω) is

used as a frequency domain observation; i.e. the ratio of the spectrum of the

output at mass eight, z̈8(t), to the spectrum of the output at mass one, z̈1(t)
3.

The transmissibility is approximated via the discrete Fourier transform of the

output time series. A Hanning window is applied to each signal, sampled at

400.45Hz for 8 seconds. The transmissibilities are truncated, such that there

are 1040 bins in the frequency domain, ranging from 0 - 130 Hz.

In terms of the SHM strategy, each transmissibility is an observation of the

system; a transmissibility is generated every 8s from the time-series data, and

these data are used for monitoring. For demonstration, it is useful to compress

the transmissibility data (1040-dimensions) onto two dimensions using Principal

Component Analysis (PCA) (see Section 1-4.2), to visualise the model4. As a

result of PCA, observations xi are two-dimensional, such that xi ∈ R2.

Linear damage is simulated as reductions in the spring constant k5; the

normal condition is when k5 is at 100%, and a damage class is associated

with each reduction in stiffness: there are five damage classes. Generally, a

continuous parameter problem should not be framed as classification; however,

discrete-steps are considered suitable to define a multi-class problem for this

example. The data define a six-class problem, with 500 observations in each

group; the data are summarised in Table 5.2, and the feature-space is shown in

Figure 5.4.

Model visualisation: supervised learning vs. semi-supervised

The dataset is split (at random) into a training-set (2/3 of the total data, D)

and a test-set (1/3 of the total data, Dtest = {x∗i , y∗i }). Of the training-data D,

3If many transmissibilities were used, the damage identification task would be trivial,

since, for a chain-like system, the transmissibility is itself a high-accuracy (deterministic)

localisation criterion [5].
4The algorithm is applied to more realistic engineering data in the next experiment.
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Table 5.2: Simulated data

Class label (yi) Observation index (i) % k5

1 1 - 500 100%

2 501 - 1000 97%

3 1001 - 1500 93%

4 1501 - 2000 88%

5 2001 - 2500 82%

6 2501 - 3000 70%

10% are labelled (the subset Dl), while 90% remain unlabelled (the subset Du).

The training subsets are shown in the feature-space in Figure 5.4.

Figure 5.4 plots the GMM for the supervised and semi-supervised case. In

both plots, the prior is included to visualise its influence on the base distributions

of the mixture model. Specifically, with few data available for training, the prior

should have a large influence on the posterior distributions in order to regularise

the model; this is intuitive, as the parameters defined in (5.5b) and (5.5g) are

a convex combination of the prior and the maximum-likelihood (empirical)

estimate.

Figure 5.4a shows the GMM given the labelled data only, i.e. p(xi, yi | θ̂)

where θ̂ = argmaxθ {p(θ | Dl)}. Here, the training data are a small subset,

and, as a result, the prior has a large influence on base-distribution estimates.

The influence of the prior is strong, as there is not enough information to

appropriately model data, while avoiding overtraining. On the other hand,

Figure 5.4b shows the mixture model can better represent the data distribution

when unlabelled instances are used to inform the MAP estimates, such that

θ̂ = argmaxθ {p(θ | Dl,Du)}. Here, the base-distributions better represent

each class, and the influence of the prior is reduced, while the model remains

self-regularised and robust.

It should be clear that the model is representative, as the density is well

approximated by a GMM. If the data have multi-model class components,

or the classes cannot (at least approximately) be represented by a Gaussian

distribution, semi-supervised learning via a Gaussian mixture model will break

down. In this case, an alternative base-distribution must be selected.
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(a) (b)

Figure 5.4: The GMM: (a) supervised learning, i.e. θ̂ = argmaxθ {p(θ | Dl)} (b) semi-

supervised learning, i.e. θ̂ = argmaxθ {p(θ | Dl,Du)}. Ellipses represent the MAP of the

covariance (two-sigma), + markers represent the MAP of the mean, and the blue ellipse

represents the prior.

Classification test-procedure

The performance of the model (for classification) is assessed for an increasing

number of labelled to unlabelled data. The proportion of labelled data in

the training-set is increased in 5% increments, from 20% – 100%. For each

proportion of labelled to unlabelled data, the GMM is initially learnt given

the labelled data only. Equation (4.3) is then used to classify the test-data,

such that the predicted labels are the MAP of the posterior-distributions,

ŷ∗i = argmaxk {p(y∗i = k |x∗i ,Dl)}. At this stage, the classification performance

provides a benchmark for standard supervised (passive) learning.

The model is then updated via semi-supervised EM, given the labelled and

unlabelled data. Label predictions are now the MAP estimates conditioned

on the whole dataset, ŷ∗i = argmaxk {p(y∗i = k |x∗i ,Dl,Du)}. The classification
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performance is re-assessed for the semi-supervised model.

As in Chapter 4, macro-averaged f1 score (4.22) is used to assess the

classification performance. For interpretability in the context of SHM, the

(balanced) misclassification error e (from type-I errors for each class) is also

used as a performance metric,

ek =
FPk

FPk + TPk

e =
1

K

∑
k∈Y

ek (5.19)

Results

Figures 5.5 and 5.6 show the classification performance (f1 score and error)

for supervised and semi-supervised learning, while increasing the proportion of

labelled data to unlabelled data; the curves represent the average over 50 repeats.

Semi-supervised learning consistently improves the classification performance,

particularly for low proportions of labelled observations. Notably, at 2.49%

labelled data, there is a 0.0380 improvement in the f1 score, corresponding to a

3.87% reduction in the classification error — this is a significant improvement

for SHM applications.

For very low proportions of labelled data (< 0.995%), semi-supervised

learning can decrease the classification performance — shown by a negative

gain in f1 score (or error reduction) in Figures 5.5 and 5.6. It hypothesised that

the performance drops for large quantities of unlabelled data (m� n), because

the natural weighting in the log-likelihood leads to the labelled instances being

effectively ignored [47, 57]. To accommodate for much larger sets of unlabelled

data (m� n), a re-weighted version of the joint-likelihood has been suggested

[47, 56]; the investigation of this approach is suggested for future work.

Intuitively, as the proportion of labelled data reaches 100% (m� n), im-

provements through semi-supervised learning reduce, as there is less information

gain from smaller sets of unlabelled signals. Considering the chosen method for

density estimation, and the structure of the simulated data, these results are to

be expected: as discussed, the underlying density is well-approximated by the

chosen mixture model (a GMM in this case, Figure 5.4b). The validity of this
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Figure 5.5: Classification performance assessed by the f1 score for the supervised GMM vs.

the semi-supervised GMM. Left: classification performance for an increasing proportion of

labelled data. Right: the gain in f1 score through semi-supervised updates, the red highlights

zero-gain.
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Figure 5.6: Classification error (e) for the supervised GMM vs. the semi-supervised GMM.

Left: classification error for an increasing proportion of labelled data. Right: error reduction

through semi-supervised updates, the red line highlights zero-error-reduction.

assumption is critical when using generative mixture models for semi-supervised

learning.

5-3.2. Gnat Aircraft Data

The offline features for the Gnat data, introduced in Section 3-3.1, are used

in this application, as the algorithm is trained in the offline setting. As

such, the data represent a nine-class classification problem, concerning damage

location; therefore, the label space is yi ∈ {1, . . . , 9}. The measured signals are

converted to the frequency domain, to define nine transmissibilities; the are

1782 observations for each transmissibility — 198 for each damage condition.

Each transmissibility is then represented by a single novelty index, compressing

the observation data to nine dimensions, thus xi ∈ R9.
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Results

The same classification test-procedure (applied to the simulated data) is now

applied to the Gnat data; results are shown in Figures 5.7 and 5.8. Again,

semi-supervised updates through EM consistently improve the f1 score and

reduce the classification error, while, in this application, the data represent more

practical SHM data. As with the simulated example, for very low proportions

of labelled data < 1.26% (m� n), semi-supervised model updates decrease the

predictive performance, as the effect of the unlabelled data appear to outweigh

the labelled instances in the likelihood cost function. The general improvements

through the semi-supervised GMM indicate that the experimental data can be

(at least approximately) represented with a mixture of Gaussians; the maximum

increase in the f1 score is 0.0405, corresponding to a 3.83% reduction in the

classification error for 2.94% labelled data.

For both tests, it is believed that semi-supervised improvements should

increase if the data are approximated by some more flexible likelihood, i.e.

p(xi |θ). A nonparametric representation, or a discriminative approach, would

be a natural way to achieve this.

5-4. Concluding Remarks

An alternative method for semi-supervised learning has been introduced to

Structural Health Monitoring (SHM). The probabilistic approach utilises Ex-

pectation Maximisation (EM) over a generative mixture model, to improve

the performance of damage classification under well-defined uncertainty — a

significant advantage in risk-based applications. In the proposed method, a

Gaussian Mixture Model (GMM) is used to describe the underlying distribution

of data from a simulated example and measured data from aircraft experiments

(ground tests). The classification accuracy (based on the GMM) is shown

to improve significantly when the likelihood is maximised over the labelled

and unlabelled data (semi-supervised learning), rather than the labelled data

alone (supervised learning). More specifically, semi-supervised updates lead

to 3.87% and 3.83% reductions in the classification error for the simulated

and experimental datasets respectively. These improvements correspond to
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Figure 5.7: Classification performance assessed by the f1 score for the supervised GMM vs.

the semi-supervised GMM. Left: classification performance for an increasing proportion of

labelled data. Right: the gain in f1 score through semi-supervised updates, the red line

highlights zero-gain.
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Figure 5.8: Classification error (e) for the supervised GMM vs. the semi-supervised GMM.

Left: classification error for an increasing proportion of labelled data. Right: error reduction

through semi-supervised updates, the red highlights zero-error-reduction.

labelling just 2.49% of the measurements for the simulated data, and 2.94% of

the measurements for the experimental data — low proportions of labelled data

bring significant advantages to SHM, as investigating the structure to label the

measured signals can be a high-cost procedure.

While the proposed method is successful, care must be taken to ensure

that the assumed (parametric) mixture model (a GMM in this case) appro-

priately models the underlying distribution of data. If the imposed structure

is inappropriate, the inclusion of unlabelled data will decrease the model

quality. Considering this limitation, future work should apply the proposed

semi-supervised methodology to nonparametric mixture models, in order to de-

scribe (more complex) underlying distributions of SHM data. Most importantly,

the proposed semi-supervised methodology should be incorporated within an

online framework, such as the active learning framework proposed in Chapter 4.



6

TOWARDS A COMBINED

SEMI-SUPERVISED AND

ACTIVE LEARNER

Overview: The active and semi-supervised methodologies, introduced in Chap-

ters 4, 5, are combined here to define a partially-supervised, probabilistic

algorithm. The suggested framework adapts and updates online when applied

to streaming SHM data, while using limited labels. An improved method

for guided sampling within the active GMM is also introduced. Experiments

demonstrate the algorithm applied to the Gnat, machining, and Z24 data.

The framework is shown to increase the predictive performance of the online,

multi-class classifier — provided that the assumptions of the mixture model

are not violated.

6-1. Combined Online Framework

The online and probabilistic SHM framework (introduced in Chapter 4) is

extended here to include the signals that remain unlabelled following queries.

To achieve this, the adaptive GMM now includes semi-supervised updates via

EM — i.e. the theory introduced in Chapter 5. The result of combining these

methods into an online framework is summarised in Figure 6.1. The process

operates online, using signals as if they were recorded live from the system in

109
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operation. As in Chapter 4, the algorithm is active, such that uncertain data

are queried to define Dl. In this case, however, the model utilises the remaining

unlabelled signals in Du, which have not been investigated.

For streaming SHM data, the measurements are assumed to arrive in batches

of B measured signals. Therefore, the number of queries per batch qn defines the

overall sample budget for the active learner, i.e. qn× the total number of batches.

The mixture model initialises as a one class classifier, such that the first batch

of signals are assumed to represent the normal-condition only, p(xi, yi = 1 | Dl).
If a new class of data is discovered, the model updates accordingly; therefore,

as in Chapter 4, the number of classes K does not need to be defined a priori.

To summarise Figure 6.1: As a new batch of unlabelled data arrives, the

parameters of the model are estimated via standard supervised learning, given

the labelled data (queried so far) and equations (5.5) and (5.6), i.e. p(θ | Dl). The

supervised model then predicts the label for the unlabelled signals p(ỹi | x̃i,Dl)
— using (5.7), (5.8) and (4.3) — and qb (uncertain) measurements from Du are

queried. As usual, uncertain data are assumed to be the most informative,

further discussed in Section 6-1.1. The queried signals are investigated by the

engineer, to provide labels yi, and the data are added to the labelled set Dl.
Figure 6.1 shows the additional semi-supervised step highlighted in green.

Rather than predicting labels for the test-set immediately, the parameters are

updated via semi-supervised EM, to find the MAP estimate of the model given

the labelled and unlabelled data p(θ | Dl,Du). The online active learner now

incorporates information in the stream of unlabelled signals, as well as the

queried data; therefore, the predictive distributions are now semi-supervised,

p(y∗i |x∗i ,Dl,Du).
The online density estimation is set-up in the same way as the offline case

in Chapter 4, therefore, the graphical model (Figure 5.2) and corresponding

equations remain the same. Importantly, the unlabelled set considered during

EM must include signals from the new batch, as well as previous batches;

otherwise, the hyperparameters of the prior-distributions (defined in Section 5-

2) do not make sense and the model breaks down. These data must considered,

because a significant proportion of the signals are likely to belong to the new

class: if these observations are ignored within the EM, the prior will associate

an unreasonably large mixing proportion with the new component.
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start:

initial training-set, Dl
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p(xi, yi | Dl)
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Figure 6.1: Flow chart for a online partially-supervised learner that is both semi-supervised

and active. The green box highlights the additional (semi-supervised) step, compared to the

online heuristic in Figure 4.4.
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For the data used in these tests, initial experiments suggest that the (nega-

tive) effects of sampling bias increase if data are queried after the EM updates.

As a result, in the proposed method, queries occur before the model becomes

semi-supervised — this order is shown in Figure 6.1. It is hypothesised that

sampling bias gets worse (if data are selected after EM), as queries should

consider uncertainties given the labelled data only, i.e. p(ỹi | x̃i,Dl). Therefore,

the unlabelled data (at this stage) appear to be unhelpful, as guided sampling

looks to improve the information content of the supervised set Dl.

6-1.1. Improved Uncertainty Sampling

Following the concluding remarks from Chapter 4, an alternative query method

is proposed to try and reduce the influence of sampling bias; this attempts

to introduce further variation in the training-set, while remaining focussed on

uncertain examples. Similar to the query regime in Chapter 4, signals with

high Shannon entropy,

H(ỹi) = −
K∑
k=1

P (ỹi = k | x̃i,Dl) logP (ỹi = k | x̃i,Dl) (6.1)

and low likelihood,

p(x̃i | Dl) =
K∑
k=1

p(x̃ | ỹi = k,Dl) p(ỹi = k | Dl) (6.2)

associated with label predictions are considered the most informative. In

this implementation, qn signals are sampled from the new batch of unlabelled

measurements with probability proportional to the (normalised) uncertainty

measures — as opposed to the signals with the most extreme values of high-

entropy (6.1) and low likelihood (6.2), as in Chapter 4. Formally, qn/2 signals

corresponding to each uncertainty measure are sampled, with probabilities such
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that

Select x̃i ∈ Du with probability P(x̃i) ∝ H̄(ỹi) (6.3)

H̄(ỹi) ,
H(ỹi)∑m
i H(ỹi)

(6.4)

Select x̃i ∈ Du with probability P(x̃i) ∝
1

p̄(x̃i | Dl)
(6.5)

p̄(x̃i | Dl) ,
p(x̃i | Dl)∑m
i p(x̃i | Dl)

(6.6)

As a result, similar to queries within the DH learner (Chapter 3), sampling

has a finite probability of selecting any observation in Du — uncertain or

otherwise. Therefore, while sampling should favour uncertain signals, any

observation could be queried — this should help protect against sampling bias.

6-2. Experiments and Discussion

In each application, the dataset is split in half (using every other observation) to

define a distinct test-set Dtest and a training-set D, which arrive in batches (at

the same rate) to represent streaming data. The test-data are used to assess the

predictive performance online via the f1 score (4.22) following model updates.

The algorithm is limited to various query budgets, quoted as percentages (and

ratios) of the total training-data. For each budget, four variations of the online

framework are applied for comparison:

• Random sampling (RS) — the passive learning benchmark. Follows the

framework presented in Figure 4.4 where qn signals are selected from each

batch at random.

• Semi-supervised learning (RSEM) — following random sampling, the

parameters of the model are updated to consider the remaining unlabelled

signals via EM, before predicting labels for the test-set.

• Active learning (AL) — Follows the framework presented in Figure 4.4,

where qn signals are selected using the uncertainty measures defined in

Section 6-1.1 (high entropy and low likelihood). The unlabelled signals

are not considered.
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• Combined semi-supervised and active learning (ALEM) — extends the

active learner (AL) to consider the remaining unlabelled signals via. EM,

before predicting labels for the test-set.

All variations of the online algorithm are applied 50 times for each query budget.

The plots represent the mean of the online predictive-performance (f1 score)

given the test-set.

Gnat Data

Firstly, the combined framework is applied to the genetic algorithm features

from the Gnat data — the feature-set was extracted in [71] and introduced

in Section 3-3.1. This projection is chosen as it is shown to benefit from

semi-supervised updates in Chapter 5; as a result, the combined tests should

highlight the effects of uncertainty sampling.

The data are ordered such that each damage-state proceeds the next

{1, . . . , 9}, to imitate streaming SHM signals. It is acknowledged, however, that

discrete, sequential data-groups do not represent streaming data in practice. In

summary, this is a nine-class dataset, in a nine-dimensional feature-space, s.t.

xi ∈ R9 and yi ∈ {1, 2, . . . , 9}. To improve the separability of the data-groups,

the data is projected (within the online framework) into the full principal-

component space using (1.13).

The results are presented in Figure 6.2. With these data, the general f1

scores are as follows: random sampling (RS) (i.e. passive learning) leads to the

lowest online classification performance; this is improved by active learning

(AL); however, semi-supervised updates (RSEM) (generally) provide a larger

increase in performance; finally, the two-partially supervised methods combined

(ALEM) lead to the best classifications. Theoretically, these results make sense:

Section 5-3.2 shows that the model of these data improves when considering

the unlabelled signals within a GMM; furthermore, uncertainty sampling (in

this case) appears to further increase the predictive performance, agreeing with

the experiments in Chapter 4. Most interestingly, compared to active learning,

semi-supervised updates (via EM) lead to more significant increases in the f1

score.

Considering these results, it appears logical to apply semi-supervised learn-
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(a) (b)

(c) (d)

Figure 6.2: Online classification performance (f1 score) for the Gnat data, for query budgets

(as percentages and ratios of D): (a) 25% (1:4); (b) 12.5% (1:8); (c) 8.33% (1:12), (d) 7%

(1:14).
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ing alone, as major increases in the performance follow EM updates, rather

than uncertainty sampling. Furthermore, as a semi-supervised learner does not

require guided sampling, the risks of sampling bias can be mitigated. Unsur-

prisingly, however, this effect is application-specific, and different behaviour is

demonstrated in the following applications.

Machining Data

The machining data were introduced in Section 4-4.2; this is an acoustic emission

dataset, recorded from a turning machine in operation during tool-wear tests [14].

The features are the same online variables extracted in Section 4-4.2 (via random

projection); however, as with the Gnat data, the variables are also projected

into the full principal-component space (1.13) to maximise variance. (The

feature-space is xi ∈ R15 and the label-space, yi = {1, . . . , 10}.) The dataset

was shown to benefit from active learning in Chapter 4; therefore, tests here

should highlight the advantages of EM updates within the online framework.

The results are presented in Figure 6.3. Similar trends can be observed;

however, in this case, the most significant increase in the f1 score appears to

follow uncertainty sampling, rather than EM updates. Passive learning via

random sampling (RS), and semi-supervised learning (without active learning,

RSEM) leads to the lowest f1 scores, particularly for lower query budgets

(Figures 6.3c, 6.3d). As expected, active learning (AL) and semi-supervised

active learning (ALEM) generally outperform the other two methods. EM

updates often improve the predictive performance, most significantly at higher

query budgets, Figures 6.3a, 6.3b.

With the machining data, however, semi-supervised updates can lead to

inferior predictions, most notably when a new class is discovered (corresponding

to drops in the f1 score). It is believed that semi-supervised updates fail at this

time, as EM will associate an inappropriate amount of unlabelled signals from

previous batches with a new class when it is discovered. In fact, considering the

model setup, this is not unreasonable — the priors (5.3) have been specified

such that all classes are equally weighted across the whole dataset — this was

done represent a general case. To prevent EM failing upon discovering a new

class, the prior (5.3) could be adjusted, to associate less data with the new

component; however, the influence of the new component must not be removed
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(a) (b)

(c) (d)

Figure 6.3: Online classification performance (f1 score) for the machining data, for query

budgets (as percentages and ratios of D): (a) 25% (1:4); (b) 12.5% (1:8); (c) 8.33% (1:12),

(d) 7% (1:14).
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from the model when predicting new signals (which are likely to belong to the

new group). This could be addressed by considering different priors for the

novel and previous subsets of unlabelled data (as new signals are more likely to

be associated with the newly discovered class).

Considering the Gnat and machining data applications, it seems that,

generally, incorporating unlabelled signals within the online framework will

improve the predictive performance of the GMM — with some potential tuning

of the hyperparameters. Unfortunately, these examples do not represent a

general case for all the data presented in this work: in the online setting,

assuming a semi-supervised GMM appears too restrictive in certain feature-

spaces, while active learning can still improve the performance (demonstrated

with the Z24 data below).

Z24 Data

The Z24 data were introduced in Section 4-4.1. In summary, the data are

labelled to represent a three-class classification problem: the first four natural

frequencies of the bridge define the feature-space, s.t. xi ∈ R4. The label-space

is s.t. yi ∈ {1, 2, 3},

• class 1: normal condition data,

• class 2: outlying data due to environmental effects,

• class 3: damage.

In the online setting, the data are shown to benefit from uncertainty sampling

in Chapter 4; therefore, experiments here should highlight the effects of EM

updates.

The results are presented in Figure 6.4. In agreement with Chapter 4,

straight active learning (AL) improves the online f1 score for all query budgets;

however, the introduction of semi-supervised learning (RSEM and ALEM)

reduces the classification performance throughout — a particularly bad example

is presented here. In fact, incorporating unlabelled signals within the online

GMM generally leads to a predictive performance that is inferior to passive

learning via random sampling (RS). In this case, while the joint-likelihood given

the labelled and unlabelled data (5.1) is increasing (a definition for EM updates

[90]), the likelihood appears to be negatively correlated with the predictive
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performance. This effect indicates that the density estimation (a GMM in this

case) becomes inappropriate to model the underlying distribution of the data

when considering the unlabelled instances.

In consequence, in agreement with Chapter 5, the results highlight that

careful implementation is required for semi-supervised learning with mixture

models, particularly with streaming data. While semi-supervised learning avoids

sampling bias, it seems that the assumptions of the model become increasingly

restrictive.

6-3. Concluding Remarks

In this chapter, experiments indicate that combining both active and semi-

supervised learning can improve the predictive performance of a multi-class

classifier for online SHM. The combined, partially-supervised algorithm is shown

to increase the online f1 score for the Gnat and machining data, while using a

limited budget of labelled signals; however, the parametric assumptions (relating

to the underlying distribution of the data) appear to become increasingly re-

strictive when unlabelled signals are used to constrain the classifier. Specifically,

as demonstrated with the Z24 data, when the joint-log-likelihood of the model

is maximised — given both the labelled and unlabelled signals — the online

predictive performance can become worse than conventional (passive) learning.

This reduced performance indicates that the joint-log-likelihood is negatively

correlated with the f1 score; therefore, the GMM becomes unrepresentative of

the underlying distribution when the information in the unlabelled signals is

considered.

In consequence, if the approximate form of the data distribution is unknown,

a more general likelihood (i.e. base-distribution) must be used to describe the

mixture model, as parametric likelihoods become increasingly restrictive when

combining semi-supervised and active methodologies. The influence of the

likelihood function is hardly surprising: if the data (labelled and unlabelled)

do not represent a mixture of Gaussians in the feature-space, they cannot be

modelled with a GMM. It is important to note, however, that the assumptions

appear to become more restrictive when yi is included as a latent variable for

the unlabelled data. In consequence, the primary focus of future work should
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(a) (b)

(c) (d)

Figure 6.4: Online classification performance (f1 score) for the Z24 data, for query budgets

(as percentages and ratios of D): (a) 25% (1:4); (b) 12.5% (1:8); (c) 8.33% (1:12), (d) 6.25%

(1:16).
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concern non-parametric methods for semi-supervised classification in online

SHM. This might involve the use of discriminative classifiers, or non-parametric,

generative mixture-models — these ideas are discussed in Chapter 7.



7

CONCLUSIONS

Overview: In the context of signal processing for Structural Health Monitoring

(SHM), this work adapts methods for probabilistic and partially-supervised

pattern recognition; specifically, semi-supervised and active learning. Typ-

ically in SHM, signals can be recorded from a system in operation; however,

information to describe what measurements represent can be unavailable, partic-

ularly a priori. When following a data-based approach, this lack of information

prevents the application of conventional supervised-learning algorithms, forc-

ing a dependence on outlier analysis or damage detection in many practical

applications.

In consequence, this research presents probabilistic machine learning tools to

address multi-class classification in SHM, when information to label the measured

signals is limited. Specifically, this research works towards the following:

1. An SHM strategy should be adaptive, incorporating any new classes

(novel data-groups) as they are discovered, during system operation.

2. Therefore, the algorithm should be capable of learning and updating

online; that is, it should be computationally-efficient, to update/adapt

during system operation.

3. Model predictions should enable accurate diagnostics (ideally under

uncertainty) while using a limited number of labelled data.

122



Conclusions 123

7-1. Summary

Chapter 3 : Hierarchical Sampling for Active Learning

To introduce the potential advantages of both semi-supervised and active learning

for SHM, the DH algorithm [60] is applied to data from ground vibration tests

concerning a Gnat aircraft [69]. The DH learner is a discriminative algorithm,

which groups the measured signals into clusters of similar observations within

the feature-space. Through active learning, a limited (but informative) set of

signals are labelled, by querying observations in clusters that present uncertain

classifications. When appropriate, semi-supervised learning is enforced, which

associates the queried labels to any remaining unlabelled signals using the

cluster-structure.

The experiments demonstrate that partially-supervised learning has the

potential to significantly reduce the costs associated with labelling signals in

SHM. There is a significant increase in the classification performance compared

to conventional (passive) learning using the same budget of labelled data.

Furthermore, the damage-classes to not need to be defined a priori, such that

new groups of data can be add to the framework as they are discovered.

The algorithm is successful, however, it is limited in several respects for

SHM. While labels for the measurements are not required a priori, a large set of

observations is needed to build an informative cluster structure — this guides

the partially-supervised aspects of the algorithm. As a result, the DH learner is

less suitable for online applications with streaming data, where measured signals

are also unavailable a priori ; instead, the signals arrive incrementally during

system operation. Additionally, as the DH learner follows a discriminative

approach, updating/adapting the predictive model becomes problematic in the

online setting.

Chapter 4 : Probabilistic Active Learning for Online SHM

Considering issues for online implementation, generative mixture models are

adopted to work towards a partially-supervised, online framework. Conveniently,

generative mixture models do not need to be (completely) retrained when a

new class is discovered — a new component is simply added to the mixture.
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Furthermore, unlabelled data can be naturally included within a probabilistic

model under well-defined uncertainty (provided certain assumptions hold) — a

significant advantage in risk-based applications.

Firstly, a mixture of Gaussians (GMM) used to define a probabilistic active

learner for SHM — this framework is then extended to become semi-supervised

in Chapter 6. The model initialises as a one component mixture, and adapts

as new classes are discovered, leading to a generative, multi-class classifier.

The training-set is extended by selecting signals from the data-stream that

are uncertain in terms of (low) likelihood and (high) entropy (associated with

the label predictions) — these data are assumed the most informative when

updating the GMM. The framework is applied to three datasets — the Gnat

data, the Z24 bridge data, and an acoustic emission dataset from machining

experiments. In all cases, the data are presented as if they were recorded live

from the systems in operation.

Results demonstrate that active learning can lead to significant increases

in the online diagnostic-performance of a probabilistic multi-class classifier:

the use of uncertainty sampling (based on entropy and likelihood1 appears

to select more informative training data than conventional passive learning

(i.e. random sampling), and the variability in the classification performance is

reduced. However, the experiments also demonstrate sampling bias2; that is,

if queries become too focussed on specific regions of the feature-space (in this

case, uncertain regions), the performance of active learning can become worse

than passive learning; a clear example is shown for the Gnat aircraft data for

(very) low query budgets. To address sampling bias, less restrictive methods for

uncertainty sampling should be defined, to introduce variation in the training

set — such as the method proposed in Chapter 6.

1In fact, the use of information metrics appears to offer various interesting options for

future work in engineering, including experimental design, model updating, and system

identification.
2This breaks the assumption of i.i.d training data, discussed in Section 7-2.
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Chapter 5 : Towards Probabilistic and Semi-Supervised Damage

Classification

Before extending the online GMM to become semi-supervised, the inclusion

of unlabelled signals is introduced for the offline case. Specifically, following

standard supervised learning, the information in the unlabelled measurements

is incorporated via Expectation Maximisation (EM); this maximises the (MAP)

joint-likelihood of the model given both the labelled and unlabelled data. In

other words, semi-supervised EM extends the conventional unsupervised EM

algorithm to consider the available labelled data.

The results indicate that, through semi-supervised mixture models, the

cost associated with labelling data can be managed in SHM, as information in

a small set of labelled data can be successfully combined with larger sets of

unlabelled signals. The predictive-performance is shown to significantly increase

when the underlying model of the data considers the information available in the

unlabelled signals, rather than the labelled subset alone (standard supervised

learning).

While the algorithm succeeds, care must be taken to ensure that the para-

metric mixture model (a GMM in this case) is appropriate. If the underlying

distribution of the data cannot be approximated by a GMM, the structure

imposed can lead to inferior predictions when the unlabelled data are consid-

ered — this issue becomes more apparent in the experiments of Chapter 6.

Furthermore, like the DH learner, here the algorithm is only demonstrated in

the offline setting; however, EM updates should combine naturally with the

online, active-learning framework proposed in Chapter 4.

Chapter 6 : Towards a Combined Semi-Supervised and Active

Learner

In the final experiments, active and semi-supervised methodologies are combined

to define a partially-supervised generative mixture model, for online SHM.

Again, the algorithm is applied to data that represent streaming signals, recorded

from systems in operation. The active learner queries the most informative

signals from the streaming data (uncertainty sampling), while semi-supervised

updates (via EM) are added to include information in the remaining unlabelled
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instances. To reduce the effects of sampling bias, measurements are sampled

with a likelihood that is proportional to the uncertainty measures (low likelihood

or high entropy) — rather than selecting the most uncertain examples of each

case. In this way, all observations in the unlabelled set have a finite probability

of being queried; therefore, variation within the training set is introduced.

For the simulated and machining datasets, experiments indicate that the

(online) diagnostic performance improves with the combined classifier: generally,

both active and semi-supervised steps improve the model predictions within the

online framework. However, as suggested in Chapter 5, the assumptions of the

parametric mixture model (GMM) appear to become increasingly restrictive

when unlabelled signals are considered in the online case — an example of this

is shown for applications to the Z24 bridge data. Therefore, if it is not possible

to define an appropriate parametric mixture model given a priori domain

knowledge, a more general likelihood function must be used, to approximate

the underlying distribution of data, particularly for the online case; this issue is

the primary focus for future work.

7-2. Limitations & Future Work

Through partially-supervised machine learning, this research successfully works

towards multi-class classification in SHM, where the measured data are initially

unavailable, and information to annotate the signals is limited. Referring

again to the contributions in Section 1-5.1, the combined partially-supervised

algorithm (presented in Chapter 6) addresses the following:

1. The algorithm is adaptive, such that novel data-groups can be included

in the mixture model as they are discovered, and the number of classes

do not need to be defined a priori.

2. Due to conjugate updates, the algorithm is capable of learning and

updating online.

3. Provided the assumptions of the mixture model are appropriate, the

classifier is capable of labelling predictions under well-defined uncertainty,

while using a limited number of labelled data through active and

semi-supervised methods.
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Importantly, however, the assumptions of the mixture model must be

considered; specifically:

• The components in the mixture model (i.e. each class of data) can be

appropriately modelled by the selected base-distribution.

• The data used to train the algorithm are independent and identically

distributed (i.i.d).

The first assumption appears to (mostly) affect semi-supervised learning.

As partially-supervised mixture models have been introduced via the GMM,

the data presented in this work are (intentionally) selected as they can be

approximated by a mixture of Gaussians. Importantly, the ‘true’ distribution

for these datasets is in fact unknown, and they are certainly non-Gaussian.

Nonetheless, mixture models offer useful methods for density-estimation given

prior knowledge of the expected feature-space. It should be considered, however,

that including information from the unlabelled signals appears to lead to the

model breaking down more rapidly than the supervised case.

The second assumption directly affects active learning. For an active learner

(uncertainty sampling or otherwise), while the underlying data might be i.i.d, the

queries are not, as the samples are directed by the algorithm given information

from previous samples. Intuitively, a model is likely to become unrepresentative

if it is trained given uncertain data only — these data are not a good reflection

of the general underlying distribution. Despite issues, active learning has

been shown to bring empirical improvements to classification performance,

supported by this work; but, clearly, measures must be put in place to prevent

more extreme cases of sampling bias — in this case, the model will become

unrepresentative, even if the model selection is (somehow) perfect.

7-2.1. Future work

Model complexity

Considering the limitations introduced by parametric base-distributions, there

are several options for future work. All of these involve increasing the complexity

of the model (or decision boundary) within the generative framework, or moving

to discriminative classifiers.
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An obvious option is to increase the complexity of the base-distributions

within the mixture model. This could be achieved by approximating each class

with its own GMM, such that each group is represented by a multi-modal

mixture of Gaussians (with a finite number of components). Alternatively, the

base-distributions can be described with an infinite mixture of Guassians, i.e.

a Dirichlet Process [91, 92]; in this way, each class is estimated by a GMM

in which the number of components do not need to be defined a priori (the

number of components, K, becomes an additional latent variable). The result is

a parameter free method for density estimation, that can represent increasingly

complex and multi-model distributions for each class. Such methods lead

to intractable integrals for the marginal-likelihood; therefore, approximate

inference [93, 94] must be implemented to estimate the posterior-distributions.

By implementing the Dirichlet Process as an unsupervised algorithm (such

as the work in [8]), rather than a supervised mixture model, labelled data could

be incorporated through modifications of the approximate inference. In this way,

a parameter-free, partially-supervised mixture model could be implemented

as restraints on a clustering algorithm; this approach allows for increasingly

complex feature-spaces to be approximated, as only important clusters need to

be labelled, and the label-set does not (necessarily) define the exact number of

components.

A more significant change considers discriminative classifiers. Importantly,

this does not eliminate probabilistic (or Bayesian) models; for example, Tipping’s

Relevance Vector Machine [95] could be adapted for partially-supervised learning

in SHM; the RVM is a Bayesian treatment of the Support Vector Machine

(SVM), which can address complex feature-spaces by modelling the decision-

boundary directly. Additionally, algorithms for Gaussian process classification

[96, 97] present further probabilistic, discriminative options. Also, the caveat

that discriminative methods must be completely retrained is less relevant when

approximate inference is required for (more complicated) generative classifiers.

Sampling Bias

The issues of non-i.i.d data, caused by sampling bias, could be further reduced

through additional definitions of informative (as well as those suggested in

this work), to extend the training data. Variation in the query regime should
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help select observations that are informative while remaining representative.

Alternatively, the query regime could adopt a framework that is based on

change-point detection algorithms [98], as well as measures of uncertainty. Like

uncertainty sampling, change-point detection can be based on probabilistic

models, however, the associated methods can be used to establish when to

query, rather than which observations. In this way, the active learner should be

less susceptible to sampling bias, and the framework might naturally define an

appropriate query budget for a given application.
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