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Abstract

This thesis contributes to the research area of route choice estimation with smart card data

in large metro! networks by addressing the issues with finite mixture models.

The motivation for this research comes from the problem that public transport authorities
need to know passengers’ route choice for their key functions. Recently, many cities
adopted smart cards, which produced a wealth of data for researchers. However they

reveal only the entry/exit station, not the chosen route.
Within the scope of this research is to address the following research problems:

Firstly, to propose a model that generates automatically the route choice set for all types
of OD pairs in a metro network by finding a set of shortest routes with the K shortest path
algorithm, and narrowing down this set by applying the generalised cost proportion of

routes as the attribute cut-off.

Secondly, to introduce the concept of superstations by grouping those stations from/to
which passengers have similar route choice patterns; and to aggregate the Observed
Journey Times (OJT) of station-to-station OD pairs, so that the finite mixture model can

be applied on a larger dataset.

Thirdly, to investigate the question of fail-to-board delays in two aspects: considering that
at different origin stations, the fail-to-board delays may be different; as well as updating
the route choice estimates, with the information on the fail-to-board delays along different

routes.

The methodologies are illustrated through the case studies on the London Underground
(LU) network, using Oyster data.

This research could enable a broader implementation of route choice estimation in large

metro networks, especially when researchers can only rely on open data.

1 In different cities different terms are used for the metro mode: “underground” or “tube” in London,
“subway” in the cities of the United States, “metro” in many other cities (e.g. Paris, Shanghai)
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Chapter1

Introduction

1.1 Background

Metro networks can be illustrated as the arteries of the public transport network of a city
and its metropolitan area. Firstly, because they provide a faster and more reliable
connection for a larger volume of passengers than the surface transport (i.e. bus, tram).
Furthermore, the metro map often serves as a guidance to visitors and tourists to orient
themselves in the city (Guo, 2011). Therefore, to maintain the high standard of metro
networks, it is crucial to have adequate information on passengers’ route choice, so that

this information can be used for the key planning and operational tasks.

Conducting manual surveys to observe passengers’ route choice is expensive as it requires
human workforce and can reach only a small sample at certain stations and time periods.
In the past two decades, many public transport operators have adopted Automated Data
Collection Systems, such as Automatic Fare Collection (e.g. smart card), Automatic
Vehicle Location (e.g. train tracking data from the signalling system), Automatic
Passenger Count (e.g. sensors at platforms) and mobile services (e.g. cell phone data,
WiFi, Bluetooth), which provide alarger data sample for the whole network from alonger

time period (Koutsopoulos et al., 2017).

Among these data sources, smart card data have been widely used by researchers to
understand passengers’ route choices in metro networks. More recently, initiatives have
been made to use the data extracted from the connection request of the passengers’
devices to the WiFi access points (Transport for London, 2017) for the same purpose. The
undoubted advantage of WiFi data is that passengers can be traced throughout their entire
journey, therefore route choice can be directly observed; unlike smart card data, which
reveals only the entry and exit station of the passengers and requires an appropriate model
for the route choice. Whilst the collection and analytics of WiFi data is still in
experimentation/pilot stage, there is the need to continue to learn how route choice can
be modelled from more established, widely available automated data sources, such as

public transport smart card data.

The question of modelling passengers’ route choice from smart card data has been
addressed by researchers at different levels of detail. As one extremity, approaching this

question at network level, the additional information on journey time observations can be
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used to calibrate the parameters of discrete choice models. The issue here is, that in large
and complex metro networks, different origin destination (OD) pairs may have different
decision rules; and using the smart card data of the whole network to calibrate one utility
function could not account for these differences across OD pairs. Theoretically, it could
be possible to use OD specific route choice models and to calibrate them accordingly,
however the definition of these OD pair categories is not always straightforward. As the
other extremity, atan individual level, each passenger can be assigned to atrain, knowing
his/her entry/exit time to/from the metro network from smart card data and the
departure/arrival time of trains from train tracking data. The challenge here is, that due to
the large amount of data and to the more detailed representation of the problem, these
models may require exceedingly high computational times. This implies the necessity to
explore those methods, which can estimate route choice between these two extremities at
OD level: estimate the route choice of an OD pair from the smart card data of that same
OD pair.

In order to estimate route choice at OD level, the Observed Journey Time (OJT)
distribution from smart card data can be analysed with appropriate statistical methods,
such as the Kolmogorov-Smirnov test or the finite mixture model. While the former
approach is limited to specific OD problems (Tirachini et al., 2016), the latter can be used
for any type of OD pairs. Therefore the focus in this thesis is on the application of finite
mixture models. The key concept here is that the distribution of OJTs of an OD pair can
be decomposed as a mixture of the journey time distributions of the corresponding routes

and the proportion of each component can be associated with the aggregate route choice.
Applying finite mixture models in complex metro networks, the following issues arise.

The first issue is, that most of finite mixture models require the number of components
asan input; and setting it incorrectly, the model may give unrealistic results. In the context
of route choice, the number of mixture components corresponds to the number of
reasonable routes, which could be understood from the route choice set of the OD pair.
Determining that in a complex metro network is a challenging question as theoretically

there might be many possible routes, but only a few of them are reasonable.

The second issue is, that although a massive amount of data is available for the whole
metro network, this sample for station-to-station OD pairs is very few. This is especially
crucial, when only open data is available for the researcher, which contains only asmaller

sample of all cardholders for a shorter time period of observation. Applying the finite
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mixture model on a small and not well distributed OJT sample may not give reliable

results.

The third issue is related to the fact that a longer OJT does not necessarily mean that the
passenger has taken the longer route, but it can also correspond to fail-to-board event,

which is especially crucial in peak times when trains and platforms are overcrowded.

1.2 Researchscope and objectives

Based on the research background presented in the previous section, the overall aim of
this research is to develop a model, which can give more reliable estimates of route choice
from automated data sources, such as smart card data. This could serve as a powerful tool
for public transport operators to gain a better understanding on passenger flows in metro
networks as it can replace or complement existing manual surveys. Currently, smart card
data is still processed off-line (Koutsopoulos et al., 2017), therefore the proposed model
is still limited to off-line functions, such as timetable planning or behavioural change
communications. However, it is expected that in a few years’ time it will be possible to
have the technology for real-time data processing, and hence the proposed model could
be applied for providing real-time information to passengers on the crowding along the

lines and at the stations.

The work in this thesis brings forward the existing research on the application of finite
mixture models for route choice problems; by addressing the above described issues that
arise, when they are applied in the context of large and complex metro networks. To

address these issues the following objectives are set:

e Dewelop aroute choice set generation model that can find automatically the set of
reasonable routes for different types of OD pairs within a metro network;

e Establish rules to group OD pairs with similar properties, so that the
corresponding OJTs can be aggregated, and hence a larger data sample can be
obtained; and

e Refine the data aggregation and route choice estimation method so that it can also

account for fail-to-board delays at origin and at interchange stations

1.3 Methodological framework and outline of the thesis

The methodological framework of the thesis is presented on Figure 1-1. The rest of this

thesis is structured as follows:



Chapter 2 sets the context for the thesis by introducing the problem of route choice
estimation in metro networks. After describing the classical approaches; it presents a
literature review on recent studies on route choice estimation from smart card data. The
purpose for this is to select the implemented method and to identify the gaps in the field,

which thesis is to address.

Chapter 3 focuses on the selected approach for route choice estimation: the finite mixture
model. After describing the formulation and solution method, its convergence and
validation is discussed. Applying it on the case study OD pairs of the London
Underground (LU) network, and based on the results three major issues are raised

(marked with blue on Figure 1-1):

1) It requires the number of mixture components (i.e. reasonable routes) as an input
2) Few smart card data available for station-to-station OD pairs

3) Longer OJT can mean either longer route or fail-to-board delay
These three issues are addressed in the subsequent chapters of the thesis.

Chapter 4 addresses the first issue. Reviewing route choice set generation methods, the
chosen approach is presented: K shortest path algorithm for pathfinding followed by the

application of the attribute cut-off based on the generalised cost of routes.

Chapter 5 addresses the second issue. Reviewing existing approaches for station
grouping; the concept of superstations is introduced, referring to groups of stations
from/to which passengers have similar route choice patterns. Following this, a method is
presented to adjust the OJTs to superstation centroids and to aggregate them spatially;
this way obtaining a larger data sample. Finally, the previously presented finite mixture
model is applied on this larger dataset of OJTs to evaluate the benefits of the superstation

representation.

Chapter 6 and Chapter 7 addresses the third issue. Chapter 6 focuses on fail-to-board
delays at origin stations. Following a literature review, the quasi-dynamic approach is
selected for inferring fail-to-board delays. A further OJT adjustment method is proposed,
to take into consideration the difference in fail-to-board delays at different origin stations.

Chapter 7 focuses on the fail-to-board delays at interchange stations. A Bayesian
approach is formulated to update the route choice estimates of the finite mixture model

with the additional condition on fail-to-board delays.
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The results of this analysis are three sets of route choice results depending on the
consideration of the OD pairs and of the fail-to-board delay (marked with green on
Figure 1-1):

e Station-to-station OD pairs (Chapter 3)

e Superstation-to-superstation OD pairs (Chapter 5)

e Superstation-to-superstation OD pairs consideration also the fail-to-board delay
(Chapter 6 and Chapter 7)

Chapter 8 concludes the thesis and proposes questions for further research.
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1.4 Contributions

In this thesis two types of contributions can be distinguished. First and foremost, this

thesis presents methodological contributions that makes a step towards the application of

smart card data for estimating route choice in complex metro networks (Section 1.4.1).

Additionally, there are notable technical contributions that are applied in the program

code of the proposed algorithm for network representation and pathfinding (Section

1.4.2).

1.4.1 Methodological contributions

The work of this thesis

makes a step toward setting a general rule that can be applied to generate the
reasonable route choice set for all types of OD pairs of a metro network;
introduces the concept of working with groups of stations for the purpose of
overcoming data availability issues for station-to-station OD pairs; and
brings actual observations of journey time and crowding into passenger flow

estimation models.

1.4.2 Technical contributions

The program code of the proposed algorithm

(AVA

creates the matrix of link times automatically from the input data of on-board
times and headways of metro lines as well as of the access egress interchange
times at metro stations; and

tailors the K shortest path algorithm for metro networks by creating the
function to eliminate additional links in the network model, to avoid the
generation of routes, which differ only in their access egress interchange

movement.






Chapter 2
Route choice estimation in metro networks

2.1 Introduction

Metro networks of large metropolises (e.g. London, Shanghai, New York) are really
complex, with many lines and stations serving the city and its metropolitan area. Metro
services are usually high-frequency, high-capacity services that provide a faster
connection than surface transport (i.e. bus and tram); as normally they run on dedicated
tracks under or above the ground level, physically separated from other vehicle and
pedestrian traffic, and the distance between its stations is longer than for other surface
public transport modes, which allows a higher commercial speed. Therefore it is a
convenient alternative for commuters; as well as for visitors and tourists, who often orient

themselves by the metro map in the city (Guo, 2011).

This key role of metro networks within a metropolis and the associated high standards
they should meet brings daily challenges to operators and transport authorities. One of
the most crucial challenges is the problem of crowding, which occurs daily in the morning
and afternoon peak as well as during special events (Parkes et al., 2016) or disruption
(Freemark, 2013). This challenge determines the long and short term key functions; such
as planning of new lines, vehicle and crew scheduling, behavioural change information
to passengers, ticket pricing, revenue distribution and response to disruption. The final
objective in performing these duties is, that metro networks could provide a reliable
service, obtaining greater customer satisfaction and attracting private car users to choose
more sustainable modes, this way relieving congestion from the roads. The main building
block for these key functions and objectives is the adequate information on passenger

flow on the metro lines and through the station passageways (Koutsopoulos et al., 2017).

Nowadays still many operators conduct manual surveys (e.g. questionnaires with
passenger counts) to gain a better understanding on passenger flow (e.g. the Rolling
Origin and Destination Survey (RODS) in the London Underground (LU), see Section
3.6.3). The advantage of these data sources is, that in addition to passenger flow, they can
also collect information on the socio-demographic background of respondents as well as
on trip purpose. However they are very expensive as they need to use human workforce
for data collection and processing. Furthermore, they can reach only a small sample of

the total population at limited number of stations and time periods.
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In recent years, initiatives have been made to explore further, how passenger flow can be
observed from automatic data collection systems, such as WiFi (Transport for London,
2017) or cell phone location data (Holleczek et al., 2015). Whilst these more advanced
technologies can provide detailed tracking of individuals’ movements in a metro network,
they are still in experimentation/pilot stage. Therefore there is still the need to learn how
passenger flow can be understood from more established, widely available automated

data sources, such as public transport smart card data.

The main issue with smart card data is, that it records only the entry and exit location of
passengers, but it is unknown, how they moved within the metro network. Therefore a
model needs to be developed to estimate route choice and hence passenger flow based on

the available information from smart card data.

The rest of this chapter is structured as follows. Firstly, in Section 2.2, the classical route
choice modelling approach is summarised with the purpose to point out the need for
innovative methods that can introduce automated data in the estimation process.
Following this, in Section 2.3, a literature review is presented on recent methods that
estimate route choice from smart card data. This chapter is concluded by a discussion in
Section 2.4, where these methods are compared, the relevant issues in complex metro

networks are highlighted and the implemented method is selected.

2.2 Discrete choice modelling methods

In general, modellers have relatively adequate information from the available data on the
properties of the metro network and on OD demand. The main modelling challenge is to
estimate passenger flows by assigning this OD demand to the metro network. This task is
also mentioned as the fourth stage in the four-stage modelling (Ortlzar and Willumsen,
2011). Inthe context of metro networks, this stage is called the Transit Assignment Model
(TAM).

A comprehensive explanation on the theory of TAMs can be found in Gentile and Noekel
(2016)(pp. 287-481). In essence, TAMSs include the following sub-models (Figure 2-1):

() generalised cost function of routes;
(i) route choice set generation;
(iii)  route choice estimation and

(iv)  link loading.
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The literature review of the different sub-models are organised according to the structure
of this thesis. The considerations for generalised costs (sub-model (i)) are discussed
together with the route choice set generation model (sub-model (ii)) in Chapter 4. The
sub-model of link loading (iv), in relation to the question of capacity constraints is
presented in Chapter 6. This section focuses onroute choice estimation (sub-model (iii))

with discrete choice modelling methods.

Metro oD
MNetwork Demand
A\ 4
G ﬁ]r d
eneralise
B cost function of
routes
Y
(i)
Route Choice
Set Generation
v
(i)
Route Choice
Estimation
(iv)
Link Loading
NO
quilibrium
condition

satisfied?

YES

Figure 2-1 The sub-models of transit assignment models
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2.2.1 The random utility theory

Traditionally, discrete choice modelling methods are used for route choice estimation.
The word “discrete”, refers to the fact that individuals can choose from a finite set of

alternatives.

The theoretical framework in discrete choice modelling methods is the random utility
theory (Domencich and McFadden, 1975), which postulates that the decision rules that
individuals make are compensatory. This means, that each alternative has various
attributes, and the good performance on one attribute of an alternative compensates the
poor performance on its other attributes. The utility of an alternative is given by adding
up these performances, and it is assumed that individuals choose the alternative with the
highest utility.

However the utility of an alternative cannot be completely measured as human behaviour
is not always deterministic and also the modeller does not possess complete information
on the decision process that individuals make. Unobserved or incorrectly measured
attributes, unobserved alternatives as well as the variation of preferences can bring in
uncertainties in the system which cannot be captured by the modeller. The utility (u,) of
alternative k has two parts: a measurable part (v,), which represents the attributes that
the modeller can measure; and a random part (g, ), which represents the above discussed

uncertainties:

The random utility theory assumes that individuals choose the alternative with the highest
utility. However due the random part introduced into the equation, modellers do not have
the perfect information, which alternative has the highest utility. For this reason, they
cannot approach the question of choice deterministically, stating that all individuals
choose the alternative with the highest measurable utility. They only can approach this
question stochastically, stating that the alternatives with higher measurable utility will be

chosen with higher probability.

2.2.2 The Multinomial Logit (MNL) model

The basic model that uses the random utility theory is the Multinomial Logit (MNL)
model (Domencich and McFadden, 1975). Assuming that the random part (¢, ) follows a
Gumbel distribution, and that it is distributed independently and identically across

alternatives and respondents; it can be mathematically proved that the formula for the
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choice probability contains only the measurable part of the utility, but not the random

part. The probability (p,) that alternative k is chosen is:

_ exp(vy)
Zk/eK exp(vkl)

Pk (2-2)

where k' represents all the alternatives in the choice set K.

2.2.3 Route choice models

Route choice modelling is a more complex task than other choice modelling tasks in
transport (e.g. mode, car ownership), due to two main reasons. One reason is, that
although there are many theoretically possible routes between an OD pair, only a few of
them are reasonable (see Chapter 4). Another reason is the question of overlapping
routes, which should not be considered as completely distinct alternatives, but their

degree of overlapping — which is called correlation — should be modelled.

Prato (2009) gives a comprehensive review on route choice models, where two main
approaches are presented to include correlation in route choice models. One approach is
to introduce a correction term in the measurable part of the utility maintaining the MNL
structure. Such models are the C-Logit (Cascetta et al., 1996) and the Path Size Logit
(Ben-Akiva and Bierlaire, 1999). Another approach is to create a model specification,
which includes correlation between the random parts of the utilities of the different
alternatives. The Nested Logit (Williams, 1977) and its improvements, such as the Cross
Nested Logit (Vovsha, 1997) and the Generalised Nested Logit (Wen and Koppelman,

2001) models are developed for modelling this correlation.

Furthermore, route choice in the context of public transport networks is even more a
complex issue, where the key difficulty lies in the question of interchanges: A public
transport route, in fact, can include two or more separate on-board trips with the
corresponding interchanges in between, which have substantially different characteristics
in the utility perception of passengers. While during the on-board trips the passenger is
standing or sitting inside the vehicle and can utilise that time for a short activity (e.g.
reading a book, checking e-mails), interchanges require walking between platforms often
including stairs or escalators. This is not present in the road based context, where —even
though there are junctions between the road segments — the route can be considered with

homogeneous characteristics.
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2.2.4 Parameter calibration of choice models

Once the utility function of the choice model is formulated, the task is to calibrate its
parameters. The classical method for parameter calibration is the maximum likelihood
method, which requires data on passengers’ route choices. It sets the value of the
questioned parameters, so that the route choice estimated with the choice model should
reproduce the choices understood from the data: For each data observation, the choice
probability of the chosen alternative is calculated in function of the parameters, and then
the log-likelihood is obtained by summing the logarithms of these probabilities. The

objective function is to find those parameters, which maximise the log-likelihood.

2.2.5 Discussions

The key point for parameter calibration is to have the appropriate understanding on the
data source that is used. In the field of choice modelling, it is quite popular to use Stated
Preference surveys. The main issue here is, that it does not give information on actual
observations of passengers; but it comes from hypothetical scenarios. It is also shown,
that passengers do not always respond the same in those scenarios as they would act in
the real-life situations (Fifer et al., 2014).

In order to introduce actual observation on passengers’ choices, Revealed Preference
surveys are used (i.e. RODS data in the LU, cf. Section 3.6.3). Its main limitation —apart
from the high cost of manual surveys —is, that it is collected over a long period, different
years at different stations, usually only in certain times of the year; therefore it could not

reflect route choice of a specific time period, it could only serve as an average value.

Recently, pilot studies have been conducted to explore how route choice can be observed
from extrinsic mobility data, such as WiFi or cell phone location data (cf. Section 2.1),
which could be also used as a source for parameter calibration. However, in this case,
even though these data sources reveal the chosen route of passengers; their journey time
—which is an important attribute in their utility function — cannot be fully understood, as
only the connection time to the access point is recorded, not their exact entry/exit or
boarding/alighting time.

In this research the focus is on exploring how route choice can be inferred from intrinsic
mobility data, such as smart card data. As mentioned earlier (Section 2.1), smart card data

reveals only the entry and exit time of passengers, not their chosen route; therefore an
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appropriate model is required for its estimation. As it follows, modelling approaches are

reviewed that can infer route choice from smart card data (Section 2.3).

2.3 Estimating route choice in metro networks with smart card data

The original purpose of smart cards is to introduce a smarter way of fare collection,
replacing cash or paper tickets and reducing fare evasion. For this reason they are also
called Automatic Fare Collection (AFC) systems. Smart card data is generated as a by-
product of AFC systems. Its great advantage with respect to manual surveys is; that even
though the installation of ticket gates requires a capital cost; once they are in operation,
they can collect data from the whole network for a continuous time period, obtaining a
large sample of data at a low marginal cost (Chu, 2010; Pelletier et al, 2011;

Koutsopoulos et al., 2017).

Since the beginning of the 2000s, many cities all over the world have adopted the AFC
systems, which generated a wealth of smart card data available for further analysis. This
data have been applied for various modelling tasks, among which notable research has
been done regarding OD matrix estimation. This includes scaling up OD matrices in
metro networks (Gordillo, 2006; Chan, 2007); inferring alighting stops in AFC systems,
which record only the boarding stop (i.e. buses and in some metro networks) (Barry et
al, 2002; Zhao et al., 2007; Cui, 2006; Wang et al., 2011; Trépanier et al., 2007;
Munizaga and Palma, 2012); linking trips to obtain multimodal journey OD matrix
(Seaborn et al,, 2009; Munizaga and Palma, 2012; Gordon et al., 2013; Nassir et al,
2015a); as well as the application of OD matrices for bus route choice model calibration
(Janosikova et al, 2014) and for inferring mode choice patterns for zonal OD pairs
(Viggiano etal., 2016).

Furthermore, smart card data have been applied also to measure service reliability (Chan,
2007; Zhao et al., 2013; Leahy et al., 2015; Silva, 2017; Ross, 2017), to identify trip
purpose (Utsunomiya et al., 2006; Morency et al., 2007; Ortega-Tong, 2013; Kusakabe
and Asakura, 2014) as well as to model wait time distribution of passengers (Wahaballa
et al, 2017; Ingvardson et al, 2018) and their behaviour during service disruption
(Freemark, 2013; Ross, 2017).

This section focuses on the application of smart card data for route choice estimation. The
literature is classified into three main categories, according to the detail level of
estimation (see Table 2-1). The least detailed level is the “network level” (see Section

2.3.1), where the route choice model still maintains the structure of random utility models
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and it uses smart card data for parameter calibration. The next detail level is called “OD
level” (see Section 2.3.2), where the model moving away from the structure of random
utility models, estimates route choice of an OD pair from the smart card data of that same
OD pair. Finally, the most detailed level is the individual level (see Section 2.3.3), where

disaggregate smart card data is applied together with train tracking data and each

passenger is assigned to a train.

Table 2-1 Overview of methods that estimate route choice from smart card data

Section | Level of Method Reference Case study
estimation network
2.3.1 Network Calibrating Sun etal. (2015) Singapore
logit model
Xu etal. (2018) Shanghai
parameters
2.3.2 oD Finite Sun and Xu (2012) Beijing
mixture
Fu (2014 London
models ( )
Lee and Sohn (2015) Seoul
Kolmogorov- | Tirachini etal. (2016) | Singapore
Smirnov
statistics
2.3.3 Individual | Passenger-to- | Paul (2010) London
Train
. Hong etal. (2015 Seoul
Assignment 9 ( )
Hdorcher et al. (2017) Hong Kong
Zhu etal. (2017) Hong Kong

2.3.1 Network level

In metro networks, smart card data does not reveal explicitly the chosen route of

individuals, only their entry and exit time. Therefore the parameters of random utility
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models cannot be calibrated with the maximum likelihood method (cf. Section 2.2.4); but
it requires more advanced techniques, such as the Bayesian framework, where the

Observed Journey Times (OJT) from smart card data are used as an input.

Such approach was used in Sun et al. (2015) for the Singapore metro network, where the
parameters of on-board and interchange time were calibrated in a MNL model. They
included also reliability in the model, stating that trains may not be running on time.
Therefore not only the parameters, but also the journey time attributes were left as an
unknown, and it was estimated in an integrated Bayesian approach. They used OJTs from
smart card data to update the priors of the parameters, where the priors came from their

earlier study (Sun etal., 2012).

Xu et al. (2018) in addition to travel time took into consideration also crowding attributes
in the MNL in terms of standing and fail-to-board proportions. To calibrate its parameters,
they used also historical train loading data, operator’s information on train properties
(number of seats, maximum capacity) and timetables as observations apart from smart

card data. They applied the case study for the Shanghai metro network.

Applying one utility function for all the OD pairs of a metro network, one would assume,
that the order magnitude of their attributes (i.e. journey time components) are similar.
However, in reality, this is not always the case. This can be illustrated through the
example of two OD pairs in the LU (see Figure 2-2). The Victoria — Holborn OD pair
represents atrip within Central London. There, the distances and hence the on board times
are very short (5-10 minutes); but the interchange stations (Oxford Circus and Green
Park stations) are very complex, therefore interchange times are relatively long (3-4
minutes). On the contrary, the Stanmore — Bond Street OD pair represents a trip from
Outer London to Central London, where on-board times are longer (30-40 minutes); but
interchange times are not an issue at all, because the interchange happens between
adjacent platforms (at Wembley Park and Finchley Road stations). From this it can be
learned that the relationship between interchange time and utility is not always linear, but
would require a more detailed function specification, so that it could be applicable for all
types of OD pairs in a metro network. This function specification, apart from the
interchange time, would include also other attributes, such as the case of adjacent
platforms or the presence of escalators (Raveau et al., 2014). This implies the necessity
to go towards those methods that can estimate route choice of an OD pair from the smart

card data of that same OD pair (see Section 2.3.2 and Section 2.3.3).
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Figure 2-2 Route choice patterns of different OD pairs in the London Underground,

presented on a geographical map
2.3.2 OD level

For methods that estimate route choice at OD level, the input data is the empirical
distribution of OJTs, known from smart card data. The OJT distribution is, in fact, the
mixture of the OJTs of passengers travelling on different routes. This formulates the
problem to establish the connection between the OJT of a passenger and his/her chosen
route. One possible method to solve this problem is to apply finite mixture models. The
key concept of finite mixture models is, that the empirical OJT distribution is estimated
as a mixture of component distributions. Inthis setting, the connection can be established
between the mixture components and the actual routes of the given OD pair in the

following way:

1) Number of mixture components corresponds to the number of reasonable routes
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2) The statistical distribution of mixture components (e.g. Gaussian, lognormal)
corresponds to the journey time distribution of routes
3) The proportion of the mixture components corresponds to the aggregate route

choice probabilities

Sun and Xu (2012) applied the finite mixture model for an OD pair in the Beijing metro.
There they assumed the number of routes to be known from the map. Furthermore, they
used timetables and manual surveys to calculate the journey time distribution of routes.
In their model formulation only the component proportions remained unknown, which
could be solved analytically.

Fu (2014), applying the finite mixture model in the LU, also assumed the number of routes
to be known from map and RODS data; however in his model both the journey time
distribution and the choice probability of the routes were estimated with the finite mixture
model. Having both the parameters of the mixture components and their proportion
unknown, the problem could not be solved analytically, but the Expectation-
Maximisation algorithm (Dempster et al., 1977) was applied for the numerical estimation

of the results.

In the model specification of Lee and Sohn (2015), in addition to the journey time
distribution and choice probability of routes, also the number of routes were treated as an
unknown. To estimate all parameters in the finite mixture model, a more advanced
solution algorithm, a reversible-jump Markov chain Monte Carlo simulation is applied,

following the concept in Richardson and Green (1997).
These three examples on finite mixture models are compared in Table 2-2.

Tirachini et al. (2016) focused on the specific route choice problem of travelling forward
or backward for getting a seat. There they could simplify the problem by including the
additional constrain of travel time difference, asall alternatives are on the same line. With
this simplification, journey time distribution and choice probabilities of routes could be
obtained even without the need of applying finite mixture models. They used the

Kolmogorov-Smirnov statistics instead.

In reality, alonger OJT may not be necessarily attributed to a longer route; but it can be
caused by various other reasons, such as failure to board, carrying a heavy luggage or
microscopic station features (longer path within the station, further ticket gate, alighting
from the other end of the train). Relying purely on the OJTs, the actual reason for the

longer journey time cannot be fully understood. This implies the necessity to review those
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methods that can estimate route choice at a more detailed, individual level (see Section
2.3.3).

Table 2-2 Comparison of finite mixture models; input and unknown parameters; solution

methods
Reference Number Journey Route Solution
of routes time choice method

Sun and Xu (2012) Input Input Unknown Explicit

Fu (2014) Input Unknown Unknown Expectation-
Maximisation

Lee and Sohn (2015) | Unknown Unknown Unknown Markov Chain
Monte Carlo

2.3.3 Individual level

Estimating route choice at individual level means that from smart card records not only
the OJT distributions of OD pairs are extracted, but also the entry/exit timestamps of
individual passengers. Using this more detailed data together with the additional
information on the departure/arrival time of trains, each individual is assigned to a train.
Therefore this method is called Passenger-to-Train Assignment Model (PTAM).

Earlier PTAMs (Kusakabe et al., 2010; Xu and Zhou, 2012) used timetable information
for the departure and arrival time of trains, assuming that trains run on time, which might
not be valid in many cases. More recent models (Paul, 2010; Hong et al., 2015; Horcher
et al, 2017; Zhu, 2017) — moving away from scheduled times and taking into
consideration delay of trains —worked with actual departure and arrival times known from

the train tracking data, which is generated by the signalling system.

As the first step of the PTAM, a set of feasible itineraries are identified. An itinerary is
considered feasible, if its first train departs after the entry time and its last train arrives
before the exit time of the passenger. Following this, passengers are assigned to these
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feasible itineraries. The assignment process can be either deterministic (Kusakabe et al.,
2010; Xu and Zhou, 2012; Paul, 2010) or probabilistic (Hong et al., 2015; Horcher et al.,
2017; Zhu, 2017).

The key problem in PTAM is that — in case of OD pairs with multiple reasonable routes
or interchanges — there are too many feasible itineraries, which makes the computational
process more complicated. Therefore, first this set needs to be narrowed down, and then

passengers can be assigned to the remaining itineraries.

Kusakabe et al. (2010) — focusing on the urban rail network of Osaka, Japan — proposed
to narrow down the set of feasible itineraries by using the criteria of minimising the total
of wait time at the entry station and the lost time at the exit station as well as of excluding

itineraries with unreasonable interchanges.

Xu and Zhou (2012) — taking the Beijing metro network as an example — introduced the
concept of matching degree, which is calculated based on the time between the arrival of
the passenger to the platform and the departure of the train. They assigned passengers to
itineraries with the highest matching degree. Another novelty in their method is that the
algorithm calculates backwards, starting from the exit station and going towards the entry
station, as they highlighted that passengers are less likely to experience delays at the exit

station. This approach has been followed in many subsequent studies.

Paul (2010) — applying the case study on the LU network —worked with the distribution
of AEI times, which she obtained from smart card and train tracking data. Inthis process,
she made the assumption, that at a given station the ratio of the access, egress and
interchange time distributions is identical with the ratio of the corresponding times from
the AEI survey of TfL. She further considered, that passengers walk with the same speed
throughout all their journey. Using these AEI distributions, she excluded those itineraries,
for which the expected access time is greater than the time between the entry of the
passenger and the departure of the train; as well as those, which the expected transfer time
is greater than the time between the arrival of the first train and the departure of the second

train.

Horcher et al. (2017) — applying a PTAM for the entire Hong Kong metro network —
followed the approach of working with AEI time distributions. The novelty in their
method is, that they used only automated data sources: smart card and train tracking data.
They made the assumption that the egress time distribution is identical for all trips and

hence they inferred the delayed access time and interchange time distributions. Following
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this, they assigned passenger to itineraries in a probabilistic setting according to the

likelihood of the corresponding access, egress or interchange time.

Zhu etal. (2017), looking at OD pairs without route choice or interchange, estimated the
access and egress time distributions of trips including those with one and more feasible
itineraries. Using this, they inferred left behind probabilities (Zhu et al., 2018). This the

work was extended for OD pairs with route choice and interchange (Zhu, 2017).

PTAMs have been used for operational tasks in metro networks, such as system
performance measures, capacity utilisation of trains, crowding assessment at stations
(Zhu, 2017) as well as for crowding cost estimation (Horcher et al., 2017). Making one
step ahead, Koutsopoulos et al. (2017) elucidated the possibility of running real time
PTAMs to give short-term prediction on the loads on arriving trains, the expected spaces
for newly boarding passengers, expected number of passengers at platforms and the

expected number of passengers left behind.

For the accurate estimation of passenger flows, it would be necessary to run the PTAM
on all OD pairs of the entire metro network, as crowding on one link can come from the
demand of all OD pairs. However, this could lead to exceedingly high computational
times, especially in complex metro networks. This was identified in Horcher et al. (2017),
where the PTAM on the Hong Kong metro with 1 day’s smart card data required a run
time of 2 days.

Despite the potential of PTAMs to analyse route choice at a more detailed level, there are
still some microscopic station features (multiple paths between platforms and ticket gates,
multiple station entrances, alighting through different doors of long trains), which cannot

be captured in the model, only appropriate assumptions can be made.

2.4 Discussions

In this chapter the classical approaches for route choice estimation (i.e. discrete choice
modelling methods) were presented. Within this framework it was established that the
aim of this research is to move away from those methods and to explore how actual
observations from intrinsic mobility data, such as smart card can be utilised to infer route

choice and hence passenger flow.

For this purpose the literature was reviewed on methods that can infer route choice from
smart card data; and they were classified according to the detail level of estimation:

network, OD and individual level. Considering the size and complexity of the LU
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network, it was established, that — as different OD pairs may have substantially different
decision rules —there is a necessity to estimate route choice ata more detailed level, rather
than just calibrating the parameters of random utility models (cf. Section 2.3.1). On the
other hand, estimating route choice at the level of individual passengers and trains is out
of the scope of this thesis, as it would require a more complex network model and hence
exceedingly high computational times (cf. Section 2.3.3). Based on this, the core
objective of this thesis is set to explore, at what extent route choice can be understood at
the OD level, using only the information of OJT distribution from smart card data (cf.
Section 2.3.2).

As the case studies in the LU are not limited the problem of travelling forward or
backward on the same line; the Kolmogorov-Smirnov statistics with the additional
constraints of travel time difference (Tirachini etal., 2016) would not be applicable, but
finite mixture models are required. Approaching this question from the prospective of
reliability, it is not appropriate to use the scheduled journey time of routes as an input in
the finite mixture model (Sun and Xu, 2012), but it is preferable to use methods which
estimate both the journey times and the route choice with the finite mixture model itself.
Among those methods the simpler Expectation-Maximisation method applied in Fu
(2014) is already considered to be sufficient for the objectives set in this thesis. Estimating
the number of reasonable routes also from smart card data (Lee and Sohn, 2015) is out of
the scope of this thesis. This question is discussed in Chapter 4, where the focus will be

on route choice set generation models based on network properties.

The formulation and solution method for the implemented finite mixture model is
described in Chapter 3, where also case studies are presented. This gives a solid ground
to understand the issues that are raised when these models are applied to estimate route

choice in complex metro networks, such as the LU.
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Chapter 3
Finite mixture models for route choice estimation and its
application on the London Underground

3.1 Introduction

In Chapter 2 — following acomprehensive literature review — it was established that this
thesis focuses on modelling route choice from smart card data at the detail level of origin
destination (OD) pairs. This means that the route choice of an OD pair is modelled from
the Observed Journey Time (OJT) distribution of that same OD pair. More specifically,
finite mixture models are applied for route choice estimation. Among the recent
applications of finite mixture models Fu (2014) was chosen, where both the journey time
distribution and choice probability of the routes are unknown and estimated by the model.
In that setting only the route choice set (i.e. number of reasonable routes, which
corresponds the number of mixture components) is supposed to be known and used as an
input for the model.

The rest of this chapter is structured as follows: Section 3.2 describes the formulation and
solution method of implemented finite mixture model. Section 3.3 discusses the
parameters that influence the convergence of the model. Section 3.4 presents how the
results of the mixture model are matched with the actual routes on the London
Underground (LU) network; and highlights the difference between the settings applied in
Fu (2014) and in this thesis. The software implementation of the algorithms applied in
the finite mixture model is resumed in Section 3.5.

Following this the finite mixture model is applied on the case OD pairs of the London
Underground (LU). Section 3.6 describes the data sources, and the case studies are

presented in Section 3.7.

The purpose for these case studies is to point out the issues that arise, when the finite
mixture model is applied in complex metro networks (Section 3.8). These issues are

addressed in the following chapters of the thesis.
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3.2 Formulation and solution method of finite mixture models for

route choice estimation

In this section the implemented finite mixture model (Fu, 2014) is formulated and the
solution method is presented. In this chapter notation is used as follows. As the

methodology focuses on one OD pair, the index of OD pairs is omitted for all variables.

Variable identifiers

r Index of a mixture component

q Individual passenger

k Index of an actual LU route

Lk [-th journey leg? on route k

s, k s -th interchange station on route k

Sets

R Route choice set for an OD pair

Q Statistical population of passengers travelling between origin and
destination

Q, A subpopulation of passengers in Q travelling on route r

Variables

Ny Number of routes in route choice set R

N, Number of passengers in statistical population Q

2 In the context of public transport networks a route may consist of two or more separate trips on different
public transport lines with the corresponding interchanges in between. These trips are called “journey legs”
(cf. Section 2.2.3).
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Elementary event that passenger g have chosen route r
Initial dataset of Observed Journey Times (minutes)
Valid dataset Observed Journey Times (minutes)

Journey time observation (OJT) of passenger g (minutes)

Elementary event that the OJT of passenger q is 5"

Random variable of journey time on route r (minutes)

Probability density function of the journey time distribution 4§,

corresponding to component distributions
Random variable of journey time for the OD pair (minutes)

Probability density function of the journey time distribution of the
OD pair (8), corresponding to the mixture distribution

Proportion of component distribution ¢,.(§) in the mixture m(&)
Mean journey time on route r (minutes)

Standard deviation of journey time on route r (minutes)

Number of records in the OJT° dataset

Categorical variable, expressing the route r chosen by passenger g

Subset r of OJT° produced by the K-means clustering algorithm

(minutes)

Mean of sub-dataset OJT, M5 (minutes)

Standard deviation of sub-dataset OJTXMS (minutes)
Proportion of sub-dataset OJT,*™S in dataset OJT°

Mean journey time for mixture component r (minutes)
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Standard deviation of journey time for mixture component r

(minutes)

Proportion for mixture component r

Scheduled Journey Time3 of actual LU route k (minutes)
Access time for the first journey leg of route k (minutes)

Wait time for the first coming train on the [-th journey leg of route

k (minutes)

On-board time on the I-th journey of route k (minutes)
Interchange time atthe s-th interchange station of route k (minutes)
Egress time from the last journey leg of route k (minutes)

Total number of journey legs on route k

Total number of interchange stations on route k

Entry timestamp at origin station (minutes after midnight)
Exit timestamp at destination station (minutes after midnight)

Frequency of trains on the [-th journey leg of route k (trains/hour)

Aggregate choice proportions from the Rolling Origin Destination
Survey (RODS) data for route k

Sample size of RODS data

Vector of variables

Parameters of the statistical distribution for route r

3 Based on timetables and station layouts (see Section 3.6.2).
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9 The collection of parameters @, for all routes (6,, ...,GNR)

u Random vector of all means (uy, ..., iy, ) (Minutes)

o Random vector of all standard deviations (ay, ..., gy, ) (minutes)
w Random vector of all component proportions (w, ..., wy, )
Functions

Pr(+) Probability of an event

(+) Probability function

2(+) Likelihood function

log (") Log-likelihood function

3.2.1 Problem description

Figure 3-1 An OD pair with the set of reasonable routes

Given an OD pair (Figure 3-1), the route choice set between the origin and destination
station is denoted by R, with r denoting a route, and the number of routes in R is equal to
Np. As the focus is on OD pairs with more reasonable routes, N, > 2. In this setting R
and Ny is assumed to be known as an input from the metro map of from surveys (i.e.
Rolling Origin Destination Survey (RODS) for the LU).

The total statistical population of passengers willing to travel between the origin and

destination station is denoted by Q, with g denoting an individual passenger and the



30
number of passengers in Q is equal to N,. For simplicity, it is assumed, that each

passenger g has the same route choice set.

The elementary event that passenger g have chosen route r is denoted by choice,,. As

the chosen route of individual passengers is unknown, it can be only described with

probabilities as Pr(choicey,.).

The dataset used for route choice estimation in this chapter is the distribution of Observed
Journey Times extracted from smart card data (denoted by OJT). Firstly, it is checked,
whether all records can be accepted as valid data by removing the outliers. Those entries
are considered as outliers, which exceed the upper outer fence (ie. three times
interquartile range more than the third quartile) (Frigge et al.,, 1989). This valid dataset is

denoted by OJT°. Within this valid dataset, the OJT of passenger q is denoted by 57"

The elementary event that the OJT of a passenger is & SIT is denoted by A,.

One key point in Fu (2014) is to establish the connection between the events of choice,,
and A, in aBayesian framework, working with conditional probabilities. Pr(choice,,|A,)
denotes the probability, that passenger g has chosen route r on condition that his/her

journey time was 8.7 According to the Bayes theorem, this can be formulated as:

Pr(choiceqr) Pr(Aq|choiceqr)
Pr(a,) '

In this setting, Pr(A,)is the total probability for each passenger g that his/her journey

Pr(choiceqr|Aq) = (3-1)

time is 68" irrespective to his/her chosen route. According to the law of total probability

it can be formulated as:

Pr(Aq) = ZrERPr(choiceqr) Pr(Aq|ch0iceqr) . (3-2)

In the Bayesian context Pr(choice,, ) is called prior probability and it describes the
probability that passenger g has chosen route r, without having any information on
his/her journey time. This can be interpreted also as an average route choice probability.
Pr(Aqlchoiceqr), is the likelihood function and it describes the probability, that the
observed journey time of passenger q is 68” (event A, occurs) given the fact that he/she
has chosen route r (event choice,, occurred). This corresponds to the probability density

function of the journey time distribution for r.



31
The problem here is, that Pr(choiceqr) and Pr(Aq Ichoiceqr) cannot be known explicitly

for each individual passenger g.but a modelling approach is required for their estimation,

which is discussed in Section 3.2.2.

3.2.2 Application of finite mixture models for route choice estimation

Finite mixture models have been applied in many fields of biological, physical and social
science (McLachlan and Peel, 2000). The novelty in Fu (2014) is to apply it in the field
of transport for the previously described route choice problem.

The statistical population of passengers (Q) can be decomposed to N, number of
subpopulations according to the number of routes in R. These subpopulations — denoted
by @, — represent passengers on the same route r. The random variable of journey time
produced by subpopulation Q,., who travels through route r is denoted by 4,. It follows a
statistical distribution, which is denoted by c,.(§), where letter “c” refers to the
component distribution. In total there are N journey time distributions according to the

number of routes in R.

In reality, when the routes are overlapping, the random variable of their journey time
(61,...,6NR) are correlated, however for the simpler formulation of the model it is
assumed that they are independent of each other. In this case, the random variable of the
journey time for the OD pair can be called as 6 and its distribution can be described as
the joint probability distribution for all the route-specific journey times. It is denoted with
m(6) where letter “m” refers to the mixture distribution. It can be calculated as the
weighted sum of the component distributions, c,. (&) (Fruhwirth-Schnatter, 2006):

(8 w1, 0 ) = Y. 069, (3-3)

In this setting w,. denotes the proportion of the component distribution, ¢, in the mixture.
It describes how likely it is that the probability of any individual’s journey time
observation, 63” drawn from the statistical population of passengers (Q) may be within

the probability domain of the component distribution.

The way how Fu (2014) applied the mixture model in the context of route choice is to
define the connection between the elements of the mixture model and the previously
described Bayesian probabilities (cf. Section 3.2.1). More specifically, he pointed out the
similarity between the component distribution of aroute and the corresponding likelihood

function:
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Pr(A,|choice,,) =~ c.(6 = 6.)7) (3-4)

as well as between the component proportion and the prior probabilities of route choice:

Pr(choiceqr) R W, . (3-5)

These formulae does not express equality, but similarity, explaining, that in a context
where both probabilities of Pr(A,|choice,,) and Pr(choice,,) are unknown, the

outputs of the mixture model can be a potential tool to estimate them.

Bringing this analogy forward and substituting formulae (3-4) and (3-5), into equation
(3-1), the route choice probability conditional on journey time Pr(choice,,|A,) can be

expressed as:

w.c, (8= 58”)

m(8 = 60; )’ (3-6)

Pr(choiceqr|Aq) ~

Pr(choice,,|A,) for all  routes could be derived, if the mixture components c,.(8) and

the corresponding weights w, were known. This could be obtained by finding the solution

for the parameterised equivalent of equation (3-2):

m(s; w,9) = Z w,c.(6;0,), (3-7)

In this setting, each mixture component c,(§) can be characterised by the parameters of
the statistical distribution of the corresponding route, which is denoted by @... The
collection of parameters @, for all routes is denoted by 9 = (0, ..., 6, ). Additionally,

w denotes the random vector of all component proportions: @ = (w,, ..., Wy, ).

There are different model specifications for the statistical distribution of the mixture
components, such as the Gaussian or lognormal. It can be easily understood, that the
mixture components — which correspond to the journey time distribution of the actual
routes —usually are not symmetric, but skewed to the left; therefore in theory alognormal
distribution could be a better model specification. Fu (2014) in his work concluded that
both model specifications could give a good match of the real-world routes; however the
lognormal model showed better goodness-of-fit for mixtures with two components, while
it showed other problems for mixtures with three or more components. In this thesis —in
order to make model and the corresponding program code simpler — the Gaussian

distribution was chosen. This decision is justified by the fact that also Lee and Sohn
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(2015) worked with the Gaussian model specification. Furthermore, Wahaballa et al.
(2017) suppose Gaussian distribution for the on-board, access and egress time of
passengers. Working with Gaussian distribution, the random vector of parameters (0,.)

include the mean (u,.) and standard deviation (a,.) of c,. ().

3.2.3 Deriving posterior probabilities from the dataset of journey times

The available, valid dataset of OJTs — denoted as 0JT° = {(¢q,6." : q =1, ...,n%T)} -
contains n number of records, where each record gives information on the journey time
8" of individual passenger g. The route = chosen by individual g is not known from this
dataset, it can be treated only as a categorical variable. It is denoted by 9. The
probability function of 17} is denoted by (r[?! = r). It corresponds to the previously

discussed component proportions (w,) for which the similarity with the prior probability

(Pr(choice,, ) was expressed in formula (3-5).

Based on this, for each g, the posterior route choice probability (7! = r; §) — which

is equivalent to Pr(choice,,|A,) —can be derived given the available dataset (0JT °) and

the appropriate parameters (19) and proportions (w) of the mixture components.

wyc-(6; 0,)

TT(T[Q] =T, 5, w,ﬁ) = m

(3-8)

The problem here consists in the fact that in equations (3-7)and (3-8) both the parameters
(9) and the corresponding proportions () are unknown. Therefore this equation cannot
be solved analytically, but a numerical method is required, which is discussed in Section
3.2.4.

3.2.4 Solving the finite mixture model with the Expectation-Maximisation

algorithm

To solve the above described problem, the Expectation-Maximisation (EM) algorithm
(Dempster etal., 1977) is used. It is a maximum-likelihood function, an iterative process,
which searches a set of optimum values of the parameters («9) and component proportions
(w) with respect to dataset 0JT°, and estimates them by maximising the log-likelihood

of the data sample. In this specific case, the EM algorithm is implemented as it follows:

Let £(w,9;0JT°) denote the likelihood function of (w,), given the data set (OJT°).
The corresponding log-likelihood function with respect to the mixture model can be

specified as:
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oJT

log (@,9;0JT°) = zzzl log<zlrvilwrcr(6gn; er)), (3-9)

The EM algorithm can be formulated in the following steps (McLachlan and Peel, 2000):

(i)

(if)

Initialisation: The initial values of the parameters («9), and component
proportions (w) are denoted with 9!°! and w!! respectively. Similarly to Fu
(2014), the K-means clustering algorithm (Forgy, 1965; MacQueen, 1967) is
applied to produce 9!° and w!® (see Section 3.3.1). These values are used as
an input in the Expectation [E] step: w'E! = w!® and 9E! = ylol

Expectation (E-step): Let 9 = 9'E! and @ = w!®!. Firstly, the posterior route
choice probabilities (%) =r; §) are calculated for each g individual
passenger and r route with equation (3-8). Then, based on equation (3-9), the

expectation of the log-likelihood will be:

noJT N,
E(log?) = Z Z ) n(rld = r; 59T, ®,9)[logd, +logc, (69'1;8,)]  (3-10)
q=1 &=r=1

(iif)

Maximisation (M-step): Look for optimum values of 9 and &, which should
increase the current expectation of the log-likelihood (Equation (3-10)). They
are denoted as 9™! and w™!. To find these optimum values, the partial
derivative of the log-likelihood function (3-8) needs to be taken with respect
to each variable within 9 and w, then those equations need to be set to zero.
Depending on the type of distribution (e.g. Gaussian, lognormal) of c, (&), the
partial derivative functions with respect to 9 can be calculated and solved and
hence 9™ can be found. The optimum value for the component proportion

(w™) can be obtained with the following equation:

noJT

ld = 697 &, 9
TI\T r; , W,
Wy = " ,

Once 9™ and w™I. are found they are used in the next iteration to update the

estimates of the E-step: w'® = 0™ and 91 = M1,
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(iv)  Iteration and stopping: Repeat the E and M step until the increase in the
expectation of the log-likelihood (E(log#)) is not greater than a tolerance
threshold. The results will be the optimum values of 9 and @. The iteration
process may stop at either the global or alocal maximum of the log-likelihood.
This means, that the EM algorithm may find the global or a local optimum

values of 9 and @.

These values obtained with the EM algorithm are the mixture model estimates. In the

particular case of normal distribution, 9 includes the mean (u,) and standard deviation
(o,) of each route r; while @ can be associated with the aggregate route choice

probabilities.

3.3 Convergence of the estimation algorithm

As it was described earlier (cf. Section 3.2.4), the EM algorithm and hence the mixture
model may converge either to a global optimum value of 9 and @ or to a local optimum.
Therefore, it is crucial to know, whether the solutions given by the model truly reflect the
actual values in the metro network, or the algorithm converges to a different solution.

This brings up the following questions:
Question 1: If there are more possible solutions, how to decide which one to choose?
Question 2:  What influences the convergence of the mixture model?

Question 3: Is it possible to set them to ensure it converges to the solution, which

reflects the actual values in the metro network?

The question of identifying the desired local optimum was discussed in McLachlan and
Peel (2000) focusing this question on finding the global optimum among the possible
solutions. Gan and Jiang (1999) investigated further this question and tested the
consistency and asymptotical efficiency of the possible solutions stating, that the global
optimum should hold this property. Finding the global optimum is a challenging question;
however even if that is found, it would not necessarily mean that it also corresponds to
the actual values of journey times and route choice probabilities captured from other data
sources (i.e. timetables, travel surveys, see Section 3.6). Therefore, the model results need
to be further evaluated. (Question 1).

As it is discussed in Fu (2014); it is the initial value and the tolerance threshold that gives
the most significant influence on the results of the mixture model (Question 2). In this

section trials are conducted with different settings of the mixture model for initial values
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(see Section 3.3.1) and tolerance thresholds (see Section 3.3.2) comparing these results

with the actual LU values (Question 3).

3.3.1 Initialisation with the K-means clustering algorithm

For the 9% and w!® values in the EM algorithm (cf Section 3.2.4) an initialisation
technique should be used. These initial values, in fact, could be associated with the
centroids of the data clusters that can be reproduced with an appropriate algorithm. Hong
et al. (2017) presents a comprehensive literature review on different approaches, such as
the K-means (Forgy, 1965; MacQueen, 1967), K-medoids (Kaufman and Rousseeuw,
2009), distribution based (McLachlan and Krishnan, 2007) or density based (Ester et al.,
1996) clustering algorithms as well as a novel method, which performs the clustering by
fast search and find of density peaks (Rodriguez and Laio, 2014). Although there are more
advanced methods in literature, for the purpose of this thesis, the simpler K-means

clustering algorithm is already adequate.

As Gaussian component distributions were assumed (cf. Section 3.2.2), the parameters
for the mixture model (9'°') include the mean (u!”) and standard deviation (a'°') of the

mixture components.

Running the K-means clustering algorithm, each value in the 0JT° dataset is assigned to
one of the Ny clusters according to the number of routes. This subset of OJTs is denoted
as OJTXMS_ The initial value for the mean (u!®') and standard deviation (a'°') for the
mixture model is given as the mean and standard deviation of the OJTXM* clusters
(denoted as uX™* and o XM respectively). The initial value of the component proportion
(w!) produced by the K-means clustering algorithm corresponds to:

0 ]TrKMS

wkMS = 57T (3-12)

To get a better confidence that the initialisation gives acceptable values, the input

parameters of the K-means clustering algorithm were set in the following way:

e The cluster centroids were initialised by K-means ++ algorithm (Arthur and
Vassilvitskii, 2007). This more advanced technique was applied, because working
with randomly chosen cluster centroids, the mixture model gave results, which
were far from the expected values for the LU.

e The point-to-cluster-centroid distances were calculated according to the Euclidean

square distance metrics.
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e The online update phase was used in addition to the batch update phase to

guarantee a solution that is a local optimum (Chamundeswari et al., 2012).

The settings of these parameters could improve the results obtained with the K-means
clustering algorithm; but it still could not ensure that it converges to the same value in
every iteration. This is due to the fact, that even though a more advanced method is used
for initialising the cluster centroids with K-means ++ algorithm, the very first input for
the centroid initialisation was generated randomly. In order to enumerate the possible
results with the K-means clustering algorithm trials were conducted with different

settings of the random number generator of the computer — they are called seeds —to

obtain the estimates of the K-means clustering algorithm. As it follows (Section 3.3.2),

the mixture model is tested with these initial values for different tolerance thresholds.

3.3.2 Setting a tolerance threshold

Using different set of initial values produced by the K-means clustering algorithm (cf.
Section 3.3.1). The mixture model was run with a range of tolerance thresholds (step (iv)
in the EM algorithm, cf. Section 3.2.4) to see, which would give the best fit of the model.
It is noteworthy that the mixture model starts finding solutions near the initial value;
therefore if the tolerance threshold is set larger, it is likely to find a local optimum in the
proximity of the initial values, while if it is set smaller, it is more likely that it converges
to the global optimum. The task here is to find the tolerance threshold that is small enough
to obtain the desired solution, but not too small, so that it increases unnecessarily the
computational time of the algorithm. In the case studies trials were conducted with

tolerance threshold values ranging (exponentially) between 1le-01 and le-10.

At this point the local optimum in the proximity of the results captured from other sources
(Le. timetables, travel surveys) was accepted as a solution of the mixture distribution
problem instead of the global optimum. This is because it is expected that among all the
possible solutions there exists at least one, which reflects the actual values of the metro

network, although this may not be necessarily the global optimum.

3.4 Validation of the model results

Applying the finite mixture model on the 0JT?° distribution (cf. Section 3.2) with the
appropriate settings for initial value and tolerance threshold (cf. Section 3.3) the results
were obtained as the journey time distribution (with parameters pM* and ¢M'*) and

r

proportion (w'X) of the mixture components. At this point it is still unknown, which
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mixture component (labelled with ) corresponds to which actual route (labelled with k).

Therefore in Section 3.4.1, it is discussed how to match them, so that the journey time

and route choice values of actual routes can serve for the validation of model results.

In this thesis the finite mixture model was applied ona much smaller data sample than in
Fu (2014), with slightly different settings for the initial values. Therefore the results of
that model can serve as another source for validation. This is presented in Section 3.4.2.

3.4.1 Matching the mixture results with actual LU routes

Fu (2014) proposed to match the results of the finite mixture model with the actual LU
routes based on the following criteria:

e Match the mean journey time of mixture components with the reference time of
the actual LU routes

e Calculate confidence intervals for the actual LU routes and check whether the
mean of the mixture components falls into that confidence interval

e Check the proportion of the mixture components with RODS data on route choice

He modelled the confidence intervals for the actual routes based only on the difference in
fail-to-board delays, and he assumed that for each route and each journey leg of that route
half of the passengers can board the first, half of them the second train.. Looking at the
characteristics of metro networks, it was understood that this assumption for the fail-to-
board delays is not always realistic as it varies in time (e.g. within the AM peak) and
within the metro network (e.g. city centre vs outskirts) (see Section 7.6.2). Therefore in

this thesis a different approach is used.

As the first attempt, a simpler consideration is made, without yet considering confidence
intervals and fail-to-board delays: The mixture components (r) are associated with the
actual LU routes (k) only based on their journey time, matching the mean journey time
for mixture components (uX'*) with the Scheduled Journey Time (SJT) of the actual LU

routes, which is calculated as:

NL & Ng

/7 =g + Z(tl wait  toby + Z tie +tr (3-13)

Based on (3-13), a route is defined as the sequence of the following journey segments
between the entry and exit ticket gate: access to line 1 — wait for line 1 —on-board line 1

—interchange 1 - ... —interchange N, —wait for line N, —on-board line N, —egress
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from line N, ,, where N, and N, is the total number of lines and interchange stations

respectively.

Once the journey time of the mixture results are matched with the actual LU routes, also
the corresponding component proportions (wX*) can be validated with the aggregate
route choice results from RODS data (Section 3.6.3) (wR°P%).

In reality, for the appropriate matching between the mixture results and the actual routes
a more detailed consideration of confidence intervals would be necessary. Firstly — as it
as mentioned above — fail-to-board delays vary within the AM peak and the metro
network. Secondly, the confidence interval itself depends not only on the variance in fail-
to-board delays, but also on the variance in the other time components (i.e. on-board, wait
for the first coming service, access egress interchange). In this thesis, the problem of fail-
to-board delays is introduced in Chapter 6 and Chapter 7, and a different matching
process accounting for these issues is discussed in Section 7.3. Another possible approach
would be to see the confidence interval of the mixture results instead of the one of the
actual routes. This approach is not discussed in this thesis, but could be subject of further

research.

3.4.2 Comparison with Fu (2014)

The solution algorithm for the finite mixture distribution problem in Fu (2014) and in the
proposed model is essentially the same (EM algorithm, cf. Section 3.2.4). Similarly also
the algorithm used for initialisation is the same in the two models (K-means clustering

algorithm, cf. Section 3.3.1), however the input parameters are slightly different (see
Table 3-1).

The main difference between the two models is that for this thesis only a smaller data
sample was available The reason for this is that Transport for London (TfL) gave access
only to the open data, which was available from their website (see Section 3.6.1): a 5%
sample of the Oyster cardholders from a 1 week period (50-100 records per OD pair);
while for Fu (2014) a larger sample of aggregate data could be provided as bespoke data:
a 100% sample from a 40 week period (20000-30000 records per OD pair). Having smart
card data collected over a longer time period has the obvious advantage of larger data
sample and hence more reliable model estimates. However it is important to note that
with the temporal aggregation, the modeller does not consider that in different time

periods passengers may have different route choice patterns (e.g. term time vs summer



holiday). Therefore working with data from shorter time periods has the value to give
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time period specific route choice estimates.

Applying the proposed model on the same case study OD pairs as Fu (2014) can be
another source for validation. Through this, it is possible to understand, at what extent

finite mixture models can estimate route choice when only a small data sample is

available.

When comparing the results of the model implemented in this thesis and the results of Fu
(2014), it is also important to note, that while his data was collected in 2011-2012; the
data used in this thesis is from 2009. Therefore also the changes in people’s route choice

behaviour or in service provision (e.g. timetable changes, etc.) need to be considered.

Table 3-1 Comparison of Fu (2014) and the implemented model

Model input

Fu (2014)

Implemented model

Solution algorithm

Expectation-Maximisation algorithm

Initialisation algorithm

K-means clustering algorithm

Initialisation of cluster

centroids

Random selection

K-means ++ algorithm

Point-to-cluster-

centroid distance

Sum of absolute

differences

Squared Euclidean

distance

Update phase

Online

Tolerance threshold

Trials with a range of values

Dataset

100% sample, 40 weeks

5% sample, 1 week

3.5 Software implementation

The code for the implementation of the finite mixture model on the case study OD pairs

was written in Matlab. The functions, input parameters and outputs for the initialisation
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(K-means clustering, Section 3.5.1) and solution (Expectation-Maximisation, Section

3.5.2) algorithm are presented as it follows.

3.5.1 Initialisation: K-means clustering

As discussed in Section 3.2.4 the initial values for the EM algorithm are produced by the
K-means clustering algorithm. In Matlab ‘kmeans’# is a built-in function that can be used
to assign the given dataset to one of the K number of clusters. In this specific case, the

input parameters for the function are the following:

e X: The dataset of journey time observations after removing outliers OJT°.

e k: The number of known routes for the OD pair.

e ‘Start’: the option ‘plus’, is chosen, which means that the cluster centroids are
initialised by the K-means ++ algorithm.

e ‘Distance’: the option ‘sqeuclidean’ is chosen, which means that the point-to-
cluster-centroid distances were calculated according to the Euclidean square
distance metrics.

e ‘OnlinePhase’: the option ‘on’ is chosen, which means that the online update

phase is used in addition to the batch update phase.

The ‘kmeans’ function produces the output of a vector with the cluster labels, showing to
which cluster the data entry is assigned. The OJTs assigned to each cluster correspond to

OJTXMS, From that uX™s, g K¥MS and wX™* is calculated as described in Section 3.3.1.

T

In order to conduct trials of the K-means clustering algorithm with different seeds, the

random number generator of the computer was set to constant values with the ‘rng’

Matlab function.

3.5.2 Solution: Expectation-Maximisation

As discussed in Section 3.2.4, the finite mixture model is solved with the EM algorithm.
In Matlab “fitgmdist’® is a built-in function that is used to fit a Gaussian mixture
distribution on a given dataset. In this specific case, the input parameters for the function

are the following:

e X: The dataset of journey time observations after removing outliers OJT°

e k: The number of known routes for the OD pair

4 https://uk.mathworks.com/help/stats/kmeans.html
5 https://uk.mathworks.com/help/stats/fitgmdist.html
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e “Start’: Initial values (9'° and w!® step i), produced by the K-means algorithm
(cf. Section 3.5.1)
e ‘MaxlIterMaximum number of iterations, setto 10000

e ‘TolFun’:Threshold value (step iv), with different settings (cf. Section 3.3.2)

The fitgmdist function gives the following outputs, relevant to this thesis:

e Converged: Logical (0 or 1) to state, whether the EM algorithm could converge
to the local optimum given the set tolerance threshold and maximum iteration
values

e Numlterations: Number of iterations necessary for convergence

e mu: Mean of the Gaussian mixture components

e Sigma: Variance of the Gaussian mixture components

e NegativeLogLikelihood: Negative log-likelihood, showing how good match the

estimates give

3.6 Data sources for the case studies

Principally, the main input for the finite mixture model is the dataset of OJTs understood
from smart card data, which is presented in Section 3.6.1. Additionally, the data sources
that are used for matching the mixture results with the corresponding values of the actual
LU routes (i.e. Scheduled Journey Time of routes) are described in Section 3.6.2. Finally,

the historical data for route choice is presented in Section 3.6.3.

3.6.1 Oyster data

The smart card for the LU network is called Oyster card, and the journey detail records
extracted from that card are called Oyster data. The raw data is collected and processed
by TfL and provided for researchers in different output forms, depending on the research

objectives.

Disaggregate Oyster data contains detailed records on each smart card transaction,
including the encrypted passenger ID, public transport subsystem (i.e. bus, LU, rail)
entry/exit time and station as well as information on the ticket type and fare. Their
advantage is that travel patterns of individual passengers, such as the day-to-day variation
of entry/exit choice can be observed (see Section 2.3 and Section 5.2.2). In case of

London, around 200 million Oyster transactions are recorded in a 4 week period for the



43
whole TfL network®. The storage and processing of such an amount of data is
computationally expensive. Therefore, in some cases, — depending on the research
objective — researchers are only provided with a smaller data sample (e.g. 5% sample of
Oyster cardholders) for shorter time periods (e.g. 4 weeks).

In order to be able to analyse longer time periods with larger data sample at less
computational cost researchers are provided with Oyster data in the form of aggregate
data. There Oyster transactions are aggregated according to certain features (e.g.
Observed Journey Times, OJT), and are filtered according to entry/exit station and time.
The limitation of this dataset is, that due to data aggregation it is not possible to identify
individual travel patterns (e.g. which journey time observations belong to the same

passenger).

TfL released a 5% sample of disaggregate Oyster data from a 1 week period in November
2009 as open data’. In this dataset — to further comply with the privacy policy of the
passengers — also the encrypted passenger 1D column was removed, therefore individual
travel patterns are unidentifiable. Data with the information on encrypted passenger IDs,
with larger sample size or from longer time period needs to be requested as bespoke data.

For this thesis, only the open data was available.

In the period of data collection (2009), Oyster card was used for 73% of the LU journeys®.
Since April 2014, also contactless payment cards (i.e. bank cards) are accepted for fare
payment the same way as the Oyster card. The total proportion of Oyster and contactless
payments card usage is similar at the time of this study being conducted (2018)°.

Oyster card is accepted on all public transport modes within Greater London. For rail
modes (LU, LO, DLR, TfL rail, NR) passengers need to tap card both at the entry and at

the exit station. This way, the Oyster card record includes:

e Day of the week (e.g. Monday)
e Subsystem (e.g. LU, NR)

e Entry/exit station and time

Additionally it gives information on the ticket type used by the passenger (pay-as-you-go

or season ticket) and on the fare calculated.

6 https://www.whatdotheyknow.com/request/oyster_card_usage

7 https://tfl.gov.uk/info-for/open-data-users/

8 https://www.whatdotheyknow.com/request/oyster_card usage

9 https://tfl.gov.uk/corporate/publications -and-reports/oyster-card
https://tfl.gov.uk/corporate/publications -and-reports/contactless-payment
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https://tfl.gov.uk/corporate/publications-and-reports/contactless-payment
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In the model, the period of main interest is the weekdays AM peak (set for the time
between 7:00 and 10:00 by TfL). Therefore as the first step, the Oyster dataset was filtered

accordingly. This dataset contains for each observation (gq) the time stamps at the entry
(T;™7”) and exit ticket gate (T,7*'*). However, the finite mixture model requires solely

the OJTs of passengers as an input, which can be calculated as:
OJT _ it t _
SO = Texic _ entry (3-14)

It is important to note that as the Oyster data reveals T;"”y and qux“ with the precision

of 1 minute, also 5.'" will be treated with that precision.

3.6.2 Scheduled journey time of routes

In addition to the OJT of passengers it is also necessary to gain further understanding on

the journey time of the actual LU routes between the entry and exit ticket gates (t,f”),

which can be calculated using equation (3-13). Among the journey time components

specified there, LU timetables are used for ¢?® and t;f’k““ (see Section 3.6.2.1) and the
egr

access egress interchange (AEI) times (7%, ¢, and t;'fk) are estimated based on station

layouts from The Nationwide Access Register (see Section 3.6.2.2).

3.6.2.1 On-board and wait times

The current (2018) LU timetables are available online from the TfL websitel?. From this,
the on-board time for each journey leg (t?2) can be obtained straightforward. Assuming
high-frequency services (more than 4 trains/hr), the wait time for the first coming service

can be assumed to be half of the frequency:

) 1
twalt — . 60 -
Lk 2 fix (3-15)

where f, is the frequency (trains/hour) on the given journey leg [, k, which can be
captured from timetables as the number of trains in a given time period (e.g. hour). Using

equation (3-15), £} is obtained in minutes.

It is important to acknowledge that working with timetable data would suggest that all
trains run on time, which would not stand especially under extreme crowding conditions

in the peak of the AM peak (8:00-9:00). There delayed boarding time and not constant

10 https://tfl.gov.uk/travel-information/timetables/
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headways could be expected due to train bunching. For the objectives of this thesis, it is
considered to be sufficient to work with the journey time values understood from
timetables. Further research can address capturing data from the live departure board
feeds of the LU, available also from the TfL open data website!!. From that the mean and
variance of t{f,’(’ and t;f’,fit could be estimated, providing a better approximation for the

actual journey time of routes.

3.6.2.2 Access Egress Interchange times

The Nationwide Access Register (a.k.a. Direct Enquires)? provides information on the
layout of all LU stations in terms of the passageways fromvto/between the platforms of
the LU lines. For each passageway, the sequence of (ascending or descending) stairs,
escalators, lifts and level walks are given with their corresponding length or number of
steps. Knowing this, ¢¢, t;9" and t.9 were estimated, supposing an average of 1.33 m/s
walk speed in even passageways (Transport for London, 2010) and 2.77 steps/s for
descending and 2.36 steps/s for ascending (Fujiyama and Tyler, 2010).

3.6.3 Understanding route choice setand validating route choice results

The set of chosen routes and the surveyed route choice proportions can be understood
explicitly from RODS data (collected between 1998 and 2017). This data is used for the

validation of the model results.

The RODS has been carried out by TfL since 1998 collecting data at 30-40 LU stations
each year, where passengers fill out a questionnaire on their current journey. From this,
route choice proportions can be calculated. At the same time also (manual and automatic)
passenger count data is collected at stations, so that the RODS route choice results can be
reconciled to the control totals, producing this way information on the on-board and AEI

flows for each 15 minute period.

The main issue with RODS data is that although it has a large sample of journey records
(i.e. 4.9 million questionnaires); all these records come from different years, and reflect
only the month of the data collection (i.e. November), therefore they are unable to provide
time period specific information. Furthermore, RODS data contains only trips on
weekdays during normal operation of the LU, excluding engineering works and
disruption (Chan, 2007).

11 https://tfl.gov.uk/info-for/open-data-users/
12 http://www.directenquiries .com/londonunderground.aspx
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3.7 Case studies on the London Underground

The previously described finite mixture model is applied on the case study OD pairs of
the LU. These are OD pairs with multiple reasonable routes. According to RODS data
83.7% of the OD pairs in the LU have only one observed route in the AM peak (Guo,
2008). Even though this percentage seems quite high, for the adequate passenger flow
modelling, it is still important to know how passengers make choices on the remaining
16.3% of the OD pairs. Especially, because within Central London there are many lines
and hence route options. Among the OD pairs with multiple routes those two of them

were chosen for the case study (Figure 3-2):

e Case 1: Victoria — Holbom

e Case 2: Liverpool Street— Green Park

These OD pairs have relatively greater demand. Both of these cases represent route choice
within the LU inner zone, where travel times are relatively short and interchange stations
are quite complex. The main difference between these two cases is that, according to
RODS data, while for Case 1 there are two reasonable routes, for Case 2 there are three.
These case study OD pairs were also analysed in Fu (2014), where he compared the
performance of the finite mixture model for two and three component mixture
distributions. For the same purpose also in this chapter both of these cases are reported.
Additionally, for the research problems discussed later in this thesis (Chapter 5, Chapter
6 and Chapter 7) there is also a need to present more cases. This will be explained in the

corresponding case studies.

Table 3-2 presents the case study OD pairs with the observed routes (according to RODS,

cf. Section 3.6.3), as well as the available data for them:

o Travel time of routes (t;’"), cf. Section 3.6.2)

e RODS route choice proportions (w&°P%) and sample size (nR°PS, cf. Section
3.6.3)

e OJT sample size of OD pairs (n%/T, cf. Section 3.6.1)
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Victoria _ — Victoria line
Case 1 Legend — Central line
O Station = Piccadilly line
& Origin/Destination ——  Jubilee line
Figure 3-2 Overview of the case study OD pairs
Table 3-2 Resume of the case study OD pairs and their properties
OD pair Route Time RODS oJT
Case| Origin | Destination Line 1 Interchange 1 Line 2 (minutes) | RC (%) | Sample | Sample
s=1 | = )" wRODPS | n no/7
. B ECTEN(NEIS Oxford Circus  NOpiEIN(SE)) 176 | 80.4%
1| Victoria | Holborn BRSNS Green Park o VRS 204| 196%| 0% |
i | G Central (WB) EOSUCECIEIY Victoria (SB) 213 | 75.9%
2 'g’fr'gﬁo P;er‘i(” “Central (WB) [[EEEG Piccadilly (WB) 240 122%| 917 30
ochii-INU=)I Bond Street Jubilee (EB) 232 11.9%
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Case 1 Victoria— Holborn

Looking at the map and RODS data, two reasonable routes can be identified for the
Victoria — Holborn OD pair (see Figure 3-3):

1) —[@REY (via Oxford Circus)
2) — [RISERIDY (via Green Park)

Oxford e LRu
Circus Holborn
"N
/2‘ V
‘s—,
Green| .t
D.a N
> A=

Park | '\S',

Legend ‘
d) ‘ — Victoria line
—  Central line
— Piccadilly line
& Station

‘ f‘ Origin/Destination

() Interchange

Figure 3-3 The Victoria — Holborm OD pair

From Oyster data (cf. Section 3.6.1) the OJT dataset is given for this OD pair, containing
54 transactions in the observation period (1 week in November 2009). Within this dataset
all entries could be considered as valid data, because the upper outer fence (cf. Section

3.2.1) resulted 40 minutes, while the maximum OJT value is 31 minutes. This valid

dataset is denoted by OJT° (Figure 3-4)

Having identified two reasonable routes, route choice is estimated as a two-component
(Np = 2) finite mixture distribution. Therefore, the K-means clustering algorithm was
applied on the 0JT° dataset with two clusters to produce the initial values for the EM
algorithm. The previously described (cf. Section 3.3.1) settings were used for centroid
initialisation (K-means ++), distances (Euclidean square) and update methods (online

phase). Conducting trials with various seed values for the random number generator (1,
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KMS

KMS
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2, 3, etc.) the K-means clustering algorithm gave two possible solutions for p;:

and wXMs (Table 3-3)

Frequency

15 20 25 30
Oyster Journey Time (minutes)

Figure 3-4 Distribution of Observed Journey Times for Victoria — Holborn

Table 3-3 Results of the K-means clustering algorithm with different seeds
for Victoria — Holborn; -a) Seed=1, b) Seed=2

Label K-means clustering Label K-means clustering
r ﬂKMS O.KMS wKMS r ﬂKMS O.KMS wKMS
[ [min] | [min] [%] [ [min] | [min] [%]
1 17.0 2.8 | 81.5% 1 16.0 19| 57.4%
2 26.0 2.3 | 18.5% 2 22.0 3.3 | 42.6%
a) b)

Using these initial values the EM algorithm was run with different settings for the
tolerance threshold (cf. Section 3.3.2). Figure 3-5 and Figure 3-6 presents the estimated
mean (u}"'*) and proportion (w}'™*) for mixture component labelled with » = 1. There,
it is shown that when the tolerance threshold is 1e-05 or greater, the EM algorithm
converges to a solution close to the initial value for seed 1. But when the tolerance
threshold is 1e-06 or smaller, the EM algorithm converges to a solution around
15.5 minutes for the mean and 32.9% for the component proportion for both seeds.
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Similar properties could be observed for the other mixture component (labelled with r =
2).

%gtimated mean for component 1 with different seeds and tolerances
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Figure 3-5 Estimated mean for mixture component 1, given different initial values and

tolerance thresholds for Victoria — Holborn
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Figure 3-6 Estimated proportion for mixture component 1, given different initial values

and tolerance thresholds for Victoria — Holbomn
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Figure 3-7 presents the log-likelihood (equation (3-9))for each initial value (seed) and
tolerance threshold. It shows a considerable jump in the log-likelihood between the
tolerance threshold of 1e-05 and 1e-06, below which the EM converges to the mean of

15.5 minutes and proportion of 32.9% for component 1.

152Lgag-likelihood for component 1 with different seed and tolerance
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Figure 3-7 Log-likelihood, given different initial values and tolerance thresholds for

Victoria — Holborn

According to RODS data, the route choice proportions for the two routes of the Victoria
— Holborn OD pair are 80.4% and 19.6%. Among the estimates, the one with seed 1 and
tolerance threshold 1e-05 gives the best approximation, therefore these settings were
applied for the finite mixture model (Table 3-4).

Table 3-4 Finite mixture model results; with Seed: 1, Tolerance threshold: 1e-05 for

Victoria — Holborn

Label Mixture model
r Mi/l X GrM 1X (U,I,VI X
0 [min] [min] [%]
1 17.6 29| 79.8%
2 26.1 28| 20.2%
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Table 3-5 Journey time of actual London Underground routes for Victoria — Holborn

Route Journey Time [min]
s=1 eace [ewait | ¢8| oele | oyait | b | % | "
Oxford Circus [OEhlEl 24| 09| 40| 31| 12| 30| 31| 176
Green Park Piccadilly 2.4 09| 20| 41 13| 6.0| 38| 204
Table 3-6 Matching mixture model results with the actual London Underground routes for Victoria — Holborn
[ Mixture results of proposed model, Yellow: Fu (2014), [€ffd): actual LU routes
Mixture Journey Time (min) Route Choice (%) Route Route Matched
label Mixture Timetable Mixture Timetable | label | Line 1 | Interchange 1 | Line 2
T X )" wMX wROPS k [=1 s=1 [=1
Proposed | Fu(2014) Proposed | Fu(2014)
1 17.6 16.6 17.6 79.8% 75.4% 80.4% 1 | Victoria | Oxford Circus | Central
2 26.1 22.2 20.4 20.2% 24.6% 19.6% 2 | Victoria | Green Park Piccadilly
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Mixture Distribution for OD pair Victoria-Holborn

012 -
[ 0JT Empirical Distribution
= E stimated Gaussian Mixture
0.1 Route 1: Vic-Cen (Oxford Circus)
' Route 2: Vic-Pic (Green Park)
> 0.08
7
c
)
)]
£ 0.06
=
©
Q
o
% 0.04
0.02
0

12 14 16 18 20 22 24 26 28 30 32
Observed Journey Time (minutes)

Figure 3-8 Estimated (Gaussian) journey time distribution of the routes for Victoria — Holborn
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Following this, the results of the finite mixture model were matched with the actual LU
routes (cf. Section 3.4.1). The total journey times of the actual LU routes (t,i") were
calculated between Victoria and Holborn stations based on equation (3-13). The results
are presented in Table 3-5. It is expected that the mixture component with the lower mean
(r = 1) may correspond to the route with the shorter journey time (k = 1). Similarly the
component with the higher mean (r = 2) to the route with the longer journey time (k =
2). The results for the finite mixture model and the values for the actual LU routes are
summarised in Table 3-6 together with the results of Fu (2014) for the same OD pair.
Figure 3-8 presents the probability density functions of the mixture distribution fit on the

CCOJT dataset as well as of the mixture components matched with the actual LU routes.

Table 3-7 Mean journey times with different number of mixture components for Victoria

— Holbom
# of mixture
components Mean journey time of mixture component
MIX MIX MIX MIX
Ng My 1z 13 Ha

1 19.3
2 17.6 26.1
3 15.6 20.4 26.5
4 14.8 16.3 20.4 26.5

Table 3-8 Proportions with different number of mixture components for Victoria —

Holborn
# of mixture
components Proportion of mixture component
Ng wMIX wMIX wMIX wMIX
1 2 3 4

1 100.0%
2 79.8% 20.2%
3 48.4% 32.3% 19.3%
4 21.0% 27.1% 32.4% 19.4%

Based on the results with the finite mixture model, the following issues were raised:
Firstly, it is important to note that these results were obtained by setting the number of
mixture components (Ny) to 2, as from the LU map and RODS data it was understood,
that the Victoria — Holborn OD pair has two reasonable routes. To illustrate the

importance of the correct specification of the route choice set, the same finite mixture
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model was run with different settings for the number of mixture components (i.e. 1, 2, 3,
and 4). The corresponding component means (u¥'*) and proportions (w'*) are shown

in Table 3-7 and Table 3-8 respectively.

Looking at the mean and proportion of the mixture component corresponding to the
longest route (uy* and wy'* respectively), it is observable that in all cases — whether

Nj, is chosen to be 2, 3 or 4 —they are around the same value (26 minutes and 20%). This
is definitely not a good representation of the reality, because in actual metro networks it
is expected that the next (i.e. 3" and 4t") shortest route have a much longer journey time

and a very small route choice proportion (less than 5%).

Another crucial point in the application of finite mixture models is that it gave essentially
different results depending on the seeding of the random number generator and on the
tolerance threshold, as the EM algorithm was converging to different local optima. Most
notable among these results is the component proportion, which exhibits a significant
jump from 79.8% to 33.5% between tolerance thresholds 1e-05and 1e-06 for component
1 (cf. Figure 3-6) As the component proportion corresponds to route choice (formula
(3-5)) it is crucial that the modeller could choose the proper seed value and tolerance
thresholds. The reason for this big difference across the estimates could be explained with
the fact that the OJT° dataset, on which the finite mixture model was applied had very

small sample size (n = 54).

Finally, comparing the results of the proposed finite mixture model with the actual LU
routes (cf. Table 3-6), one can see that the mean journey time of component 1 (u}!™)
shows quite a good match to the actual LU route (t,); however for component 2 the
difference is quite notable (26.1 and 20.4 minutes respectively). The higher OJT values
in the data sample, in fact, could not necessarily mean that the passenger has taken a
longer route, but it could be also because he/she has experienced fail-to-board delays in
any of the routes, as that the northbound platform of the line at Victoria station
is extremely crowded in the AM peak.
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Case 2 Liverpool Street— Green Park

Looking at the map and RODS data, three reasonable routes can be identified for the
Liverpool Street — Green Park OD pair (see Figure 3-9):

1) — VSR (via Oxford Circus)
2) — [RISEEIDY (via Holborn)

3) - (via Bond Street)
Oxford Liverpool
Circus Holborn Street _;
Bond I'-\l l’f-\‘n N l';\‘n R

Y

S

Legend ‘
— Victoria line O Station
— Central line Origin/Destination
—— Piccadilly line ' Interchange
— Jubilee line

Figure 3-9 The Liverpool Street— Green Park OD pair

From Oyster data (Section 3.6.1) the OJT dataset is given for this OD pair, containing 30
transactions in the observation period (1 week in November 2009). Within this dataset all
entries could be considered asvalid data, because the upper outer fence (cf. Section 3.2.1)
resulted 38 minutes, while the maximum OJT value is 36 minutes. This valid dataset is
denoted by OJT° (Figure 3-10).

Having identified three reasonable routes on the map and from RODS data, route choice
is estimated as a three-component (N, = 3) finite mixture distribution. Therefore, the K-
means clustering algorithm was applied onthe 0JT° dataset with three clusters to produce
the initial values for the EM algorithm. The previously described (cf. Section 3.3.1)
settings were used for centroid initialisation (K-means ++), distances (Euclidean square)

and update methods (online phase). Conducting trials with various seed values for the
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random number generator (1, 2, 3, etc.) the K-means clustering algorithm gave two

possible solutions for uXMs g KMS and wXMS (Table 3-9).

r

n“fT = 30

Frequency

15 20 25 30 35
Oyster Journey Time (minutes)

Figure 3-10 Distribution of Observed Journey Times for Liverpool Street— GreenPark

Table 3-9 Results of the K-means clustering algorithm
for Liverpool Street — Green Park

Label K-means clustering
r ufMS O'rKMS waS
[ [min] [min] | [%]
1 19.0 14| 56.7%
2 23.0 15| 36.7%
3 35.5 0.7 6.7%

Using these initial values the EM algorithm was run with different settings for the
tolerance threshold (cf. Section 3.3.2). Figure 3-11 and Figure 3-12 presents the
estimated mean (u3"X) and proportion (w}'*) for mixture component labelled with r =
1. There it is shown, that the EM algorithm converges to a solution close to the initial
value; and it starts plateauing from the tolerance threshold of 1e-07 around the value of

18.6 minutes for the mean and 50.7%for the component proportion. Similar properties
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could be observed for the mixture component labelled with r = 2; while the mean and

proportion of the third mixture component remains constant for all tolerance thresholds.

— Component mean 1 with different seeds and tolerances
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Figure 3-11 Estimated mean for mixture component 1, given different tolerance

thresholds for Liverpool Street— Green Park
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Figure 3-12 Estimated proportion for mixture component 1, given different tolerance

thresholds for Liverpool Street — Green Park
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Figure 3-13 presents the log-likelihood (equation (3-9))for each initial value (seed) and
tolerance threshold. It starts plateauing from the tolerance threshold of 1e-07.Due to these
considerations the finite mixture model was applied with the tolerance threshold of le-07
(Table 3-10).

- Log-likelihood with different seeds and tolerances

741+
742+
743+
744+
745+

-74.6

Log-likelihood

-T4.7 1

-748 1

-749 1 -—a

75 . .
10° 102 10 10 108 10710
Tolerance threshold

Figure 3-13 Log-likelihood, given different tolerance thresholds for Liverpool Street—
Green Park

Table 3-10 Mixture model results; with tolerance threshold: 1e-07 for Liverpool Street

— Green Park
Label Mixture model
r ,U,I\,/”X O.TI\/{IX (U,I,V”X
[ [min] [min] [%0]
1 18.6 1.4 | 50.7%
2 23.0 19| 42.6%
3 35.5 0.5 6.7%
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Table 3-11 Journey time of actual London Underground routes for Liverpool Street— Green Park

Route Journey Time [min]

s=1 efe e [ efh [ efe [ | o5h [tk | 6o
oclaic Il Oxford Circus [RV/[HT6]¢EN 26| 09| 100| 29| 10| 20| 19| 213
eclplirzIl Holborn Piccadilly 2.6 09| 70| 34| 15| 6.0| 26| 240
eIl Bond Street Jubilee 26| 09| 110| 32| 10| 10| 35| 232

Table 3-12 Matching mixture model results with the actual London Underground routes for Liverpool Street — Green Park
[{EL:: Mixture results of proposed model, Yellow: Fu (2014), €I} actual LU routes

Mixture Journey Time (min) Route Choice (%) Route Route Matched
label Mixture Timetable Mixture Timetable | label | Line 1 | Interchange 1 | Line 2
r uMix 7 wMX wRODS k =1 s=1 l=1
Proposed | Fu(2014) Proposed | Fu(2014)
1 18.6 18.7 21.3 50.7% 35.9% 75.9% 1| Central | Oxford Circus | Victoria
2 23.0 22.0 23.2 42.6% 47.7% 11.9% 3| Central | Bond Street Jubilee
3 35.5 27.6 24.0 6.7% 16.4% 12.2% 2 | Central | Holborn Piccadilly
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Mixture Distribution for OD pair Liverpool Street-Green Park

[ 0JT Empirical Distribution
Estimated Gaussian Mixture
Route 1: Cen-Vic (Oxford Circus)
Route 2: Cen-Jub (Bond Street)
Route 3: Cen-Pic (Holborn)
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Figure 3-14 Estimated (Gaussian) journey time distribution of the routes for Liverpool Street— Green Park
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Following this the results of the finite mixture model were matched with the actual LU
routes (cf. Section 3.4.1). The total journey times of the actual LU routes (t,f”) between
the origin (Liverpool Street)and destination station (Green Park) were calculated based
on equation (3-13). The results are presented in Table 3-11. The mixture components
were matched with the actual LU routes in order of their journey times and the results are
summarised in Table 3-12 together with the results of Fu (2014) for the same OD pair.
Figure 3-14 presents the probability density functions of the mixture distribution fit on
the CCOJT dataset as well as of the mixture components matched with the actual LU

routes.

Based on the results with the finite mixture model the following issues were raised:
Firstly, it is important to note that these results were obtained by setting the number of
mixture components (Ny) to three as from the LU map and RODS data it was understood
that the Liverpool Street— Green Park OD pair has three reasonable routes. To illustrate
the importance of the correct specification of the route choice set the same finite mixture
model was run with different settings for the number of mixture components (ie. 1, 2,3
and 4). The corresponding component means (u¥*) and proportions (w*) are shown
in Table 3-13 and Table 3-14 respectively.

Table 3-13 Mean journey times with different number of mixture components

for Liverpool Street — Green Park

# of mixture Mean journey time of mixture
components component
N u'™ p | g™
1 21.6 0.0 0.0
2 20.6 35.5 0.0
3 18.6 23.0 35.5

Table 3-14 Proportions with different number of mixture components

for Liverpool Street — Green Park

# of mixture Mean journey time of mixture
components component
N, a)f”X wévux a)é"”x
1 100.0% 0.0% 0.0%
2 93.3% 6.7% 0.0%
3 50.7% 42.6% 6.7%
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The finite mixture model could produce results up to 3 components. When N, was set 4,
the EM algorithm could not converge as it created an ill-conditioned covariance at
iteration 6. Additionally, in other cases of Ny (2 or 3), the mean and the proportion of the
last component (uy'*and wy'™) is around the same value (35.5 minutes and 6.7%
respectively). As discussed earlier (Case 1), this is definitely not a good representation of
the reality.

Comparing the results of the proposed finite mixture model with the actual routes (cf.
Table 3-12) one can see that they do not show a good match. One reason for this could
be due to the higher estimate for mixture component 2. Similarly to Case 1, also here the
higher OJT values in the data sample would not necessarily mean that the passenger has
taken a longer route, but it could be also because he/she has experienced fail-to-board
delays in any of the routes, as the westbound platform of the line at Liverpool

Street station is extremely crowded in the AM peak.

Another reason is, that applying the finite mixture model assuming three components may
not give the best estimates. According to RODS data, in fact, there are three observed
routes for this OD pair; however — looking at the map — the third shortest route
- , via Bond Street) would be a sort of turning away from the destination (Dial,
1971). Furthermore, looking atthe RODS data from other origin stations on the
line (e.g. Bethnal Green), the option of interchanging at Bond Street does not appear
among the reasonable routes. Therefore, it should be further examined whether assuming
2 or 3 routes reflects better the reality.

3.8 Issues with finite mixture models addressed in the thesis

Applying the finite mixture model on the LU network important issues were raised, which
will be addressed in details in this thesis:

e The setting of the number of mixture components influences the model results
(see Section 3.8.1)

e The finite mixture model may converge to different values depending on the
setting of the initial values and tolerance thresholds (see Section 3.8.2)

e Longer OJT values may correspond to various reasons, not necessarily to the

longer route (see Section 3.8.3)
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3.8.1 Number of mixture components

Results showed that choosing the number of mixture components higher than the number
of observed routes, the finite mixture model gives higher estimates of proportion for the
mixture component with the highest mean (cf. Table 3-8), which would not be a true

representation of the actual values.

Fu (2014) relied on pathfinding ‘“by eye” from the LU map and used RODS data for
determining the number of observed routes. Knowing the drawbacks of manual surveys
(cf. Section 3.6.3) it would be advantageous to move away from them and to apply a
route choice set generation algorithm that can automatically find the number of

reasonable routes for a given OD pair.

Determining route choice set in complex metro networks, such as the LU is not a
straightforward task; because there might be many physically possible routes for a given
an OD pair, however only few of them are reasonable. The greatest challenge in this to
find the cut-off value between reasonable and unreasonable routes and set a general rule
for all OD pairs of the metro network. To address this issue, a pathfinding and attribute
cut-off algorithm is proposed in Chapter 4.

3.8.2 Convergence of the finite mixture model

It is a known property of finite mixture models that depending on the initial values and
tolerance thresholds they may converge to different local optima. In other terms, there are
more possible solutions that can solve the mixture distribution problem. Based on the case
study results (Case 1) it was initially illustrated that these solutions are not necessarily
near each other (cf. Figure 3-6). As the finite mixture model is applied for route choice
estimation, the modeller could not be confident which solution he/she could accept for
route choice. Furthermore, in some cases (i.e. Case 2, with N,=4) it can also happen, that
the EM algorithm is unable to converge as it creates an ill-conditioned covariance. This

could be also attributed to the small sample size of OJTs.

Although it is the initial value and the tolerance threshold that influences the most the
convergence and the results of the finite mixture model (cf. Section 3.3), it can be
logically understood that it is also related to the OJT sample size: the bigger the OJT
sample is, the more regular is its distribution is and the better the convergence of the finite
mixture model is. However to formulate this relationship exactly would require more

advanced modelling, which is beyond the scope of this thesis.
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One core objective of this thesis is to provide a framework for obtaining larger sample of
OJTs for more reliable route choice estimates. To obtain this, in Chapter 5 it is proposed

to group those OD pairs, which have similar route choice patterns.

3.8.3 Reasons for the variation of the Observed Journey Times

The results of the finite mixture model were matched to the actual LU routes in a way
that the mean journey time of the former (uM'X) were matched with the uncongested
journey time of the latter (t,f’ ") (cf. Section 3.4.1). In the case studies (e.g. Case 1) results
lllustrated that the journey time of the mixture component with the higher mean does not
show a good match to the uncongested journey time of the corresponding route.
Practically the longer journey time could be due to various reasons, such as fail-to-board
delays at the origin or interchange stations, service delays or passenger carrying a heavy
luggage. For the sake of simplicity, this thesis focuses only on the variable of fail-to-

board delay in the model.

Fu (2014) accounted for fail-to-board delays in the matching process, but he made the
simplified assumption that for each journey leg of each route half of the passengers can
board the first train, half of them the second train. In reality, however, crowding levels on
different routes and journey legs may significantly vary. Therefore in Chapter 6 and
Chapter 7 a more detailed model is introduced for the consideration of fail-to-board
delays. Furthermore in Chapter 7, the question of matching mixture results with actual

LU routes are further discussed.
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Chapter 4
Route choice set generation in complex metro networks

4.1 Introduction

In the general choice modelling context the appropriate consideration of the choice set is
a prerequisite for the correct estimation of choice probabilities. This was further
lllustrated through the application of finite mixture models in complex metro networks.
Case studies on the origin destination (OD) pairs of the London Underground (LU) has
shown that setting the number of mixture components higher than the number of
reasonable routes would give results, which are not a true representation of the actual
values (cf. Section 3.8.1). Therefore it is crucial for the application of finite mixture
models that the number of the mixture components — which corresponds to the number

of reasonable routes of an OD pair — could be determined adequately.

Finding the route choice setin complex metro networks, such asthe LU is a challenging
task as —in theory —there could be several physically possible routes, however only afew

of them are considered in the choice set of passengers.

There are several approaches to obtain information on route choice set. One possible
approach is to conduct a survey on passengers’ route choice, such as the Rolling Origin
Destination Survey (RODS) in the context of the LU (cf. Section 3.6.3). The problem
with this approach is that this survey might not be representative as the data is collected
only from a few sample of the whole population on certain days of the year at certain
stations. Furthermore — strictly speaking — from these surveys only the historical route
choices of passengers can be understood, not the set of considered routes. In reality, route

choice set of passengers remains unobserved (Bergantino et al., 2019).

Another approach is to infer from the available smart card records of Observed Journey
Times (OJT) the number of mixture components as a prior step within he finite mixture
model. To solve this problem Lee and Sohn (2015) proposed a reversible-jump Markov
chain Monte Carlo simulation following the concept in Richardson and Green (1997) (cf.
Section 2.3.2). They inferred the number of mixture components only based on the OJT
dataset without actually considering the actual network properties. In reality, for the
correct inference of the route choice set it is advantageous to use both sources of
information. Therefore in this thesis, instead of following their approach, a simpler finite

mixture is applied (Fu, 2014) together with a route choice set generation algorithm based
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on the metro network properties (i.e. journey times, interchanges) examining also
scenarios, where the OJT records can serve as an additional information. The objective is
to develop an algorithm that can automatically generate the route choice set based on the

available data for most of the OD pairs of the metro network.

The rest of this chapter is structured as follows: Firstly, in Section 4.2 existing literature
is reviewed on route choice set generation methods including pathfinding and attribute
cut-off; then in Section 4.3, the modelling challenges are discussed that arise in complex
metro networks. Following this, in Section 4.4 the representation of metro networks is
discussed. Once the link times and the corresponding weights are known, the times and
generalised costs of the routes can be obtained as explained in Section 4.5. After this, a
pathfinding algorithm is applied to find a set of shortest routes. Section 4.6 describes
these algorithms in details focusing on their implementation for complex metro networks.
Once a certain number of shortest routes were found, the main challenge is to narrow
down this set to the set of reasonable routes by applying the appropriate cut-off criteria,
which will be further explored in Section 4.7. Section 4.8 concludes the chapter by

summarising the findings and the possible extensions of the model.

This chapter builds on Nadudvari et al. (2016) following the concept of pathfinding

algorithms, but proposing more detailed analysis on attribute cut-off methods.

4.2 Literature review on route choice setgeneration

In the general choice modelling context it is desirable that modellers could have adequate
information or assumptions on the choice set for the correct estimation of choice
probabilities (Swait and Ben-Akiva, 1987; Bovy, 2009; Bergantino et al., 2019). In the
specific case of route choice in complex metro networks it is a challenging question,
because for many OD pairs a very large number of physically possible routes are
available, however only afew of them are considered by the passengers. This setis called

the “reasonable route choice set”.

In literature there are approaches that interpret choice set consideration and choice
estimation as a two-stage process (Manski, 1977; Gaundry and Dagenais, 1979; Basar
and Bhat, 2004; Cantillo and Ortlzar, 2005). Firstly a set of attractive alternatives are
selected from the universal choice set, and then the choice probabilities are estimated
among those alternatives. On the other hand, there are also those, who argue that also the
selection of the choice set is also an indicator of preferences, therefore it should be

modelled in one stage with the choice (Horowitz and Louviere, 1995; Cascetta and
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Papola, 2001; Swait, 2001; Martinez et al., 2009; Watling et al., 2018). Among them
Watling et al. (2018) highlighted that in case of congested transport networks, not only

route choice, but also the choice set may depend on the link flows.

Most of the route choice set generation methods can be summarised in two steps: The
first step is a pathfinding algorithm to generate a certain number of routes for an OD pair
(see Section 4.2.1); while the second step is the application of the attribute cut-off to find
the set of reasonable routes among them (see Section 4.2.2). Additionally, there are other
link-based approaches, which does not explicitly generate routes for finding the
reasonable route choice set (see Section 4.2.3). After having presented these approaches,
it is discussed, how the chosen route choice set generation methods could be applied in
this thesis (see Section 4.2.4).

4.2.1 Pathfinding algorithms

The simplest approach for pathfinding is to search through all possible routes in a certain
order and then select the adequate one among them (e.g. Brute-force, Breadth-first and
Depth-first). While these approaches can be well applied in smaller networks; they reach
their limitation for larger networks, such as the LU. This necessitates the application of

efficient pathfinding algorithms.

Looking at literature reviews on pathfinding algorithms (Ramming, 2002; Fiorenzo-
Catalano et al., 2004; Bekhor et al., 2006; Guo, 2008; Prato, 2009), the deterministic
shortest path based methods were already proved to be adequate for the set objectives;

therefore this literature review focuses on those methods.

The first step within the pathfinding algorithm is to find the shortest route for a given OD
pair. The fundamentals for these algorithms started in the 1950s (Ford, 1956; Bellman,
1958; Dijkstra, 1959). The shortcoming of these methods is that they have higher
computational time as they search the routes in all directions. To address this issue, more
advanced algorithms have been developed, such asthe A* (Hart et al., 1968), which starts

searching routes only in promising directions.

Once the shortest route was found, the next step is to make a slight modification to the
transport network and to find the shortest route on that modified network with one of the
previously described shortest path algorithms. The modification to the network means
eliminating one (i.e. K shortest path (Yen, 1971)) or more links (i.e. link elimination
(Azevedo et al., 1993)) or increasing their link cost (link penalty (de la Barra et al., 1993)).
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In the context of metro networks some studies worked with simpler search methods (see
Table 4-1). Sun et al. (2015) applied Brute-force search in Singapore; while Sun et al.
(2017); Xu et al. (2018) applied Depth-first search in Shanghai and Beijing respectively.
Other studies applied efficient pathfinding algorithms. Horcher et al. (2017) chose the K
shortest path algorithm. Zhu and Xu (2016) implemented an improved Deletion
Algorithm based on Depth-first search (Azevedo et al., 1990).

4.2.2 Attribute cut-off

While in the context of road networks it is sufficient to make simpler considerations for
the reasonable route choice set by setting thresholds for their generalised costs; for metro
networks it is a more complex question due to their special properties, such as

interchanges, perception of the metro map and crowding (Raveau et al., 2014).

To account for these, most studies applied some heuristics as attribute the cut-off in
addition to the threshold for the generalised costs of routes (see Table 4-1). Zhu and Xu
(2016) — based on a travel survey in the Shanghai metro — considered a route reasonable,
if its generalised cost is not more than 1.6 times or 10 minutes higher than the shortest
route. Horcher et al. (2017) worked with travel times of routes instead of generalised
costs, and they considered a route reasonable if its travel time is not more than 1.5 times
the shortest route. Furthermore — working on a relatively simple network of the Hong
Kong metro — they searched only up to the second shortest path. Sun et al. (2017) worked
with the natural logarithm of distances and applied the following heuristics to further filter
the routes: (1) they should contain no loop, (2) if origin and destination station is on the
same line, there is only 1 reasonable route for that OD pair, and (3) transfer time cannot

be longer than the one third of the shortest route’s travel time.

Xu et al. (2018) used additional constraints from smart card data and timetables. They
calculated the longest possible journey time for each route of an OD pair, considering the
worst case when the passenger is able to board only the third train at each journey leg.
Among these routes they considered feasible those, whose longest possible journey time
is shorter, than the maximum Observed Journey Time (OJT) value from smart card data.
Additionally, they made the assumption that reasonable routes can have maximum 4

journey legs.
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4.2.3 Link-based approaches

The concept of link-based methods (i.e. obviating the explicit enumeration of the routes)
for route choice set generation started from Dial (1971), who set the criteria for a route to

be considered reasonable, if every link in it:

1) Hasits initial node closer to the origin node than is its final node (no turning back)
2) Has its final node closer to the destination node than its initial node (no turning

away)

Table 4-1 Review on pathfinding algorithms and the attribute cut-off in metro networks

Reference Method Case
study
Pathfinding Attribute cut-off
Guo (2008) Labelling + Optimal strategies London
Sun etal. (2015) | Brute-force Singapore
search
Zhu and Xu Deletion Gen. cost diff. (10 min) Shanghai
(2016) Algorithm Gen. cost prop. (1.6)
Sun etal. (2017) | Depth-first Logarithm of distance Shanghai
search No loop
OD pairs on same line
Transfer time prop. (1/3))
Horcher et al. K shortest path | Travel time prop. (1.5) Hong
(2017) Up to second shortest route Kong
Xu etal. (2018) | Depth-first Longest possible journey Beijing
search time vs OJT
Max 3 interchanges
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Another possible approach is the concept of labelling (Ben-Akiva et al., 1984), which was
also applied on the LU network for route choice set generation by Guo (2008). There, the
labels correspond the weighting factors of time and interchange attributes. He followed
the concept of optimal strategies (Spiess and Florian, 1989) for pathfinding, considering
that a line segment going out of a station is utilised only, if its addition to the optimal
strategy will reduce the total expected cost from that station to the destination. Once the
set of reasonable routes were generated for different labels, they were compared with the
set of used routes from RODS data; and those labels were proposed, which gave the best

match between the two sets.

4.2 .4 Discussions

Route choice set generation algorithms are discussed in this thesis; because the model
that is applied to estimate route choice from smart card data (Fu, 2014) requires the
number of reasonable routes as an input. From this, it logically follows, that the
application of the two-stage approach (i.e. modelling route choice set and route choice as

two distinct sub-models) would be more straightforward.

To comply with this objective, any pathfinding algorithm can be used, not necessarily the
computationally most efficient one. Therefore the Dijkstra’s algorithm was chosen for
finding the shortest route and the K shortest path algorithm to generate a set of shortest
routes as their program code was easily applicable (see Section 4.6). This choice was
confirmed by the fact, that there are also other studies in literature, which apply the same
pathfinding method (Horcher etal., 2017).

In order to give the correct number or reasonable routes it is particularly important that
the applied attribute cut-off method gives reliable results. Therefore it needs to be further
examined (see Section 4.7), whether the existing attribute cut-off approaches can be
applied with confidence also for the LU network, or additional criteria is required.

4.3 Modelling challenges in the London Underground

The proposed route choice set generation algorithm is applied on a subnetwork of the
London Underground 3, which is the oldest and probably the most complex metro
network of the world. This complexity requires several modelling challenges for network

representation.

13 See http://content.tfl.gov.uk/standard-tube-map.pdffor the map of the London Underground
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London (i.e. Greater London, which includes the City of London and the 32 London
boroughs) is a home to 8.8 million inhabitants!4 and is hosting around 20 million
international visitors per year'> as well as many more commuters and visitors from within
the United Kingdom. To accommodate such a great demand an extensive public transport
network has been developed since the mid of the 19" century, which includes the LU,
London Overground (LO), Docklands Light Railway (DLR), Transport for London (TfL)
rail, National Rail (NR) services, London Buses, London Trams and London River
Services. Most of these transport subsystems (except for NR) are under the responsibility
of TfL.

This thesis focuses on the LU, however it can be easily understood that modelling
passenger flow in the LU is not an isolated problem, because at many stations it is
connected with other rail subsystems (LO, DLR, TfL rail, NR, see Figure 4-1). In fact,
the LU itself is a very complex transport system. It has 11 colour coded lines, however
many of them have branches (e.g. BIFYigel, lines), short runs (e.q. VIMOME),

lines) or express services (e.g. VIIeeliey line). Therefore, from the point
of view of the modeller, it would mean much more than 11 lines.

Similarly, also modelling a station is a complex task. There are station complexes where
more LU stations with different names are physically connected (common ticket gates),
therefore passengers entering at one station can take lines from the other one (ie.
Bank/Monument station complex). On the other hand, there are stations, which are
physically not connected (distinct ticket gates), but they have the same name (ie.
Edgware Road, Paddington, Hammersmith stations) (see Figure 4-1). Furthermore,
some of the stations have more entrances, which are quite distant from each other, and

also within a station there are multiple possible passageways between platforms.

Modelling passenger flows in the LU is a very challenging task for the following reasons:
On the one hand, passenger flow of the LU needs to be modelled considering avery large
network (beyond the LU network). On the other hand, due to the complexity of stations
(multiple entrances and passageways) a more detailed understanding is necessary. To
build a model for the entire LU and rail network of Greater London is definitely beyond
the scope of this thesis. Therefore only a smaller problem, a subnetwork of the LU will

be analysed, making the appropriate assumptions.

14 https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/d
atasets/populationestimates forukenglandandwalesscotlandandnorthernireland
15 https://www.visitbritain.org/latest-quarterly-data-area
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4.4 Representation of metro networks

In this chapter —in addition to what was presented in the previous chapters —the following

notation is used:

Variable identifiers
a Index of a link (arc)

i,j Index of origin and destination station
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Sets

G(P,A) Metro network (graph) consisting of nodes (P) and links (A)

P Set of nodes (points) in the metro network
A Set of links (arcs) in the metro network
A°P Set of on-board links

Aweit  Set of wait links

Adtgirt  Set of alight links

Agce Set of access links

Ac9r Set of egress links

Al¢ Set of interchange links

A k,ij  Setof links on route k of OD pair ij
KX Universal route choice set for OD pair ij

K" Set of shortest routes generated for OD pair ij

K;; Set of reasonable routes for OD pair ij

KPS Set of observed routes for OD pair ij

Variables

t, Travel time on link a (minutes)

t{}”'” Minimum journey time for OD pair ij (minutes)

Crij Generalised cost of route k of OD pair ij (minutes)

Ciet) Total access egress interchange (AEI) cost of route k of OD pair ij

(minutes)
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N;’;}‘i Number of all theoretically possible routes for OD pair ij

Ngit Number of shortest routes generated for OD pair ij

Ny ;j Number of reasonable routes for OD pair ij

N2 Number of observed routes for OD pair ij

Nop Number of case study OD pairs

N{”jj” Number of journey legs for the route with minimum number of

journey legs for OD pair ij
N, Number of available directions at origin station

Np; Number of available directions at destination station

oJT/7** Maximum Observed Journey Times (OJT) record for OD pair ij

(minutes)
p Attribute cut-off
pc Attribute cut-off according to generalised cost proportion
PCij Generalised cost proportion of route k of OD pair ij with respect to

the shortest route

pcg}a"")bs Generalised cost proportion of the longest observed route

pcg}l’”f”’wbs Generalised cost proportion of the shortest unobserved route

Parameters
wwaeit  Weight of wait time
wAEl Weight of access egress interchange (AEI) time

wie Weight having an interchange on link a (minutes)

a



77

ob 1if a € A°", otherwise 0

wait 1 if g € AWt otherwise 0

a

JEL 1 a € (A9°¢ U A%9" U A€), otherwise 0

a

Ic 1if a € A, otherwise 0

a

Functions

fC )  General notation for function

4.4.1 Definition of nodes and links

Metro network G(PA)

MNode MNode
|nk/‘ AAAAAAAAAAAAAAA ,“.”-“\Link

Node --Node
mk-—. “..—Link
- " Node Node .
in \. ,,,,,, TR ./

Figure 4-2 An OD pair in a metro network

Given an OD pair, ij in a metro network, G(P,A), where P denotes the set of nodes
(points, vertices) and A the set of links (arcs, edges) (Figure 4-2). Metro networks are
specific as a journey between the origin and destination station consists of different
characteristics of passenger movement (i.e. access from the ticket gate to the platform,
waiting for the metro service, on-board travel, interchange between platforms and egress
from the platform to the ticket gate). To account for this, in this thesis the following node
types defined (Figure 4-3):

e On-board node: one node for each line at a station
e Platform node: one node for each pair of platforms at a station

o Ticket gate node: one node for each station
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Figure 4-3 Definition of nodes and links at a station of a metro network

The reason why ticket gate nodes are defined is that the start and end of the journey of a

passenger can be associated with the entry and exit smart card transaction at the ticket

gate. For simplicity in this network model, all stations are considered with one ticket gate.

The links connecting these nodes and the corresponding subsets of links are:

On-board link (4°?): between on-board nodes of adjacent stations

Wait link (4¥**): from platform node to on-board node of the same platform
Alighting link (A%9™*): from on-board node to platform node of the same platform
Access link (A%): from ticket gate node to platform node of the same station
Egress link (4%9"): from platform node to ticket gate node of the same station

Interchange link (A4°): between platform nodes of the same station

For each link a € Atts travel time is given and denoted with t,. The times on on-board

(t, if a € A°?) and wait (¢, if a € A¥%) links are taken from timetables (cf. Section

3.6.2.1), while the times on access (t, if a € A%), egress (t, if a€ A®9") and
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interchange (t, if a € A®) links are calculated based on station layouts known from the

Nationwide Access Register (cf. Section 3.6.2.2). The times on alighting links are zero.

Table 4-2 Allocation of link types in the matrix of link times

Tick
On-board Platform ;tgt
node node go de
©
|-
S On-board
z e links
O
= .
S B Wait Interchange Egress
=2 links links links
a
s
S
-3 Access
L2 links
S
|_

These values are stored in the matrix of link times (Table 4-2). The reason why alighting
links are defined is to make the allocation within the matrix symmetric. Appendix A
presents the Matlab code to produce the matrix of link times automatically from the input
data described above.

4.4.2 Case study network: the London Underground inner zone network

The route choice set generation algorithm is applied on a part of the LU network within
Central London. Transport for London (TfL) defined fare zones for the LU and rail
network (see Figure 4-4), where the network within Central London is called Zone 1. It
includes the stations inside the Circle line plus some other stations (e.g. Waterloo,
London Bridge and Angel stations).

In the case study of Schmdcker (2006), the term “inner zone” was used. This network, in
addition to including most of the LU stations in Zone 1, it represents also the LU stations
mn other outer zones as “lme specific stations” at the two ends of each LU line (see
Section 5.2.3). Throughout the case studies of this chapter, this network consideration is

followed; and the network is referred as the “LU inner zone network™ (see Figure 4-6).
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Figure 4-4 The London Underground network in Central London
The white background corresponds to Zone 1 in the fare scheme of TfL

source: http://content.tfl. gov.uk/standard-tube- map.pdf

4.4.3 Considerationof common lines

In addition to the principal rules for network representation, it is important to note how
common lines are included in the model. The common line problem (Chriqui, 1975;
Nguyen and Pallottino, 1988; Spiess and Florian, 1989) in metro networks occurs, when
different lines depart from the same or from adjacent platforms. In this case passengers
instead of choosing one line at a boarding platform, they may have a set of attractive lines
(and hence the corresponding routes), and they board the line which arrives first within
this set. This choice problem is called the choice of optimal strategies (Spiess and Florian,

1989) and the set of attractive routes are called hyperpaths (Nguyen and Pallottino, 1988).

In the LU inner zone network there are several line segments, where the common line
problem occurs, due to the fact that some LU lines (i.e. Circle, [Bfyige, FaRmersmmith
BCily} and lines) share their track at a considerable length (Figure 4-4).
Additionally, there are also cases, where at a station different LU lines depart from
adjacent platforms (e.g. and lines at Oxford Circus) (Figure 4-5).


http://content.tfl.gov.uk/standard-tube-map.pdf

OXFORD
CIRCUS

Figure 4-5 Common line problem, LU lines departing from adjacent platforms

source: https://www.whatdotheyknow.com/request/track map london undergound

Schmdcker (2006) stated that the consideration of common lines is important in the
context of the LU inner zone. To account for this he used the link-based approach in the
pathfinding algorithm without the explicit enumeration of each route (cf. Section 4.2.3).
As the key objective of this chapter is to generate the set of reasonable routes as an input
for the finite mixture model (cf. Chapter 3), it is required to follow the route-based
approach for pathfinding (cf. Section 4.2.4). Enumerating all possible routes within the
hyperpaths, would make the problem exceedingly complex (Nguyen and Pallottino,
1988), which is beyond the scope of this thesis. Therefore, at this point, the focus is still
on the pure route choice problem in metro networks without yet considering optimal

strategies.

In order to model the LU inner zone without the consideration of the common line
problem, the following simplifications were made: Among the LU lines that share their
track (ie. Circle, BIuty., FaMMerSMtheaCIty and lines), only the
Circle line was included with a frequency of 20 trains/hour as at most of its length (i.e.
Gloucester Road — Tower Hill segment, where it shares the track with the line;
as well as the Liverpool Street — Baker Street segment, where it shares the track with
the Hammersmith & City and lines) the combined frequency is around
that value. In order to account for the segments, where only the Circle line is available
(i.e. Tower Hill — Aldgate!® and High Street Kensington — Gloucester Road links), an
adjustment of 3.5 minutes was made to the corresponding on board links as passengers
travelling on that route have a an average wait time of 5 minutes instead of 1.5 minutes

(cf. (3-15) for the relationship between service frequency and wait time). In reality, also

16 It is also known, that the trains on the Circle line stopping at Aldgate station wait for a longer time to
keep themselves to the schedule. This is included in the timetable data, which was used for the analysis.
Therefore no further adjustments were required for this.
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along the Baker Street — High Street Kensington segment, the combined frequency is
less than 20 trains/hour (around 12 trains/hour) as there the Circle line shares its track

only with the [HEmersMitheaCIty and with the Edgware Road branch of the

line; however this was not considered in the network model (Figure 4-6).

4.4.4 Network size

Having made the above described considerations, the network model of the LU inner zone
has the following characteristics: Inthe LU, there are 11 colour coded lines; however due
to the fact, that many of these lines have branches, short runs or express services, the
number of the lines for the network model would be more than that (cf. Section 4.3). In
the LU inner zone, the two branches of the line (via Bank and via Charing
Cross stations) would count as two distinct lines. Regarding common lines (cf. Section
4.4.3) instead of the LU lines that partially share their track (ie. Circle, BIFIga,
Hammersmith & City and lines), only the Circle line is considered. With
these considerations, 9 lines are included in the network model. Among the 68 stations,
55 are stations of the LU inner zone and 13 are line specific stations at the two ends of
the LU lines. The reason why this number is odd, because the two line branches
has the same line specific station on the north (Figure 4-6).

Following the definition of nodes and links in Section 4.4.1, the case study network is
represented with 280 nodes in total, among which 106 are on-board node, 106 platform

node and 68 are ticket gate node. These nodes are connected with 722 links.
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4.4.5 Case study origin destination pairs

The route choice set generation algorithm is applied on the OD pairs presented in Table
4-3 and Figure 4-6. For this case study those OD pairs were chosen that have two or more
observed routes according to the Rolling Origin Destination Survey (RODS, cf. Section
3.6.3). For all of these OD pairs, the nature of passenger choice is a pure route choice
problem, without facing the problem of common lines. (cf. Section 4.4.3). Although from
the smart card dataset provided for this research (cf. Section 3.6.1), it seems that there is
no considerable demand for OD 4, OD 6 and OD 7 (see Table 4-7); looking at Fu (2014)
it was understood that there are still passengers travelling between those origins and

destinations; therefore analysing the route choice set for those OD pairs still makes sense.

Table 4-3 The case study OD pairs in the LU inner zone network

OD pair Origin Destination
1 Victoria Holbormn
2 Euston St. James’s Park
3 Victoria Liverpool Street
4 Angel Waterloo
5 Liverpool Street | Green Park
6 Euston South Kensington
7 Victoria Waterloo
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4.5 Journey time and generalised costs of routes

Given the representation of metro network, G (P, A) with the set of nodes (P) and links
(A), route k of OD pair ij can be defined as a sequence of links between origin station i

and destination station j. Let A, k, ij denote the set of links on route k of OD pair ij.

Knowing all the link times (t,) from the available data sources (cf. Section 3.6.2), the

total (scheduled) journey time of route k of OD pair ij is:

SJT _
Liij = Z ta (4-1)

acAk,ij

Given the fact that different types of movements are perceived differently by passengers
(cf. Section 2.2), the generalised cost of routes can be defined to take into consideration

the journey time components (i.e. on-board, wait, AEI) with their corresponding weights

(w):

Ck,ij — Z ta . (l/ng + Wwait . l/)C\l/vait + WAEI 'l/)élEI) + W(ic . Cilc (4-2)
a€cAk,ij

The weight of wait time (w"%) expresses that according to the perception of passengers,
one minute of wait time is equivalent to how many minutes of on-board time. Similar
explanation can be made for the weight of AEI time (w“E!). For these weights, the values
were taken from an earlier study applied on the LU network (Raveau et al., 2014). There,
they calibrated the parameters of a C-Logit model using RODS data for the route choice
observation and obtained the results for w"4 and w4E! (Table 4-4). These values refer
to the perception of passengers on weekdays, morning peak assuming that trips were done

with restrictive purpose.

At this point it is important to note that for the correct estimation of the weights (w"ai
and w4ET) the calibration should be done with the same model specification as (4-2) (i.e.
Multinomial Logit, MNL), not with the C-logit. However, not finding an adequate MNL
model calibration for the LU network, it was chosen to apply the values understood from
an LU specific study. This was also justified by the fact that the numerical values of these
weights (1.93 and 1.30 respectively) seems to be a good description of passengers’

perception.

Another issue is that in order to construct the simplified network model — which does not

consider the common line problem, but still counts for the different frequencies along the
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Circle line — an adjustment had been applied to the corresponding on-board links (cf.
Section 4.4.3), which are in reality the differences in the wait time. To account for this,
in the process of coding the adjustment was made not only to the link times, but also the

corresponding generalised costs (analogously to the code reported in Appendix A).

Table 4-4 Weighs of wait and access egress interchange (AEI) time, based on Raveau et
al. (2014)

Weight Value
Wwait 1.93
wAE! 1.30

In addition to the journey times, there is an additional term expressing that the fact of
having an interchange is equivalent to how many minutes of on-board time (w’°). In the
context of LU, the type and size of interchanges significantly vary: There are simpler
cases of interchanges, where passengers need to move only between adjacent platforms
(e.g. between the to lines at Oxford Circus station, cf. Figure 4-5).
At the same time, there are complex stations, where passengers need to walk up to
6 minutes between far away platforms (e.g. Bank/Monument station complex). To
account for this, Raveau et al. (2014) defined w/¢ in function of the level (i.e. ascending,
even and descending) and assistance (i.e. assisted, semi-assisted and non-assisted) of the

interchange movement; and they obtained the results presented in Table 4-5.
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Table 4-5 Weights of the fact of having an interchange (minutes) in function of the station

characteristics (level and assistance), based on Raveau etal. (2014)

Characteristics wlt
Level Assistance [min]
Assisted 5.71
Ascending Semi- Assisted 6.84
Non-Assisted 7.32
Even N/A 2.39
Assisted 4.87
Descending Semi-Assisted 5.97
Non-Assisted 6.49

4.6 Pathfinding algorithm

It has been previously explained (cf. Section 4.5) that the generalised cost of route k of
OD pair ij (¢ ;) can be calculated as the weighted sum of the link times (¢, cf. equation
(4-2)). However the question still remains, how these routes can be found between the

origin (i) and destination station (j), given the transport network (G (P, A)).

uni uni

The universal route choice set for OD pair ij can be denoted as K;;*. It includes all, N;

uni

number of theoretically possible routes. To find K;*, simple search methods could be

applied (e.g. Brute-force search, cf. Section 4.2.1). However the problem is, that in
complex metro networks, N%’fiﬂ- can be very large, therefore the computational time would
be exceedingly high. For example, for certain OD pairs in the case study network of the
LU inner zone (cf. Section 4.4.5), there can be up to thousands of theoretically possible
routes and to find all of them with simple search methods would be computationally

expensive.
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Therefore, instead of finding all possible routes for an OD pair ij, the aim here is to

generate a sufficiently large set of shortest routes (Kf]’.e"), for which it can be ensured,

that it contains all reasonable routes (K;;):

Ky S K7™ < K¥™ (4-3)

For the number of routes in these route choice sets, the following inequality holds:

Nyij < Ngg; < Ngh (4-4)

Following the concept of formulae (4-3) and (4-4), the set of reasonable routes can be

obtained in two steps

1) Generate asufficiently large set of shortest routes (K;;™")

2) Narrow down this set to the set of reasonable routes (K;;)

This section focuses on the first step: pathfinding; while in Section 4.7, the second step:
the attribute cut-off is discussed. Following the literature review in Section 4.2.1, the
K shortest path algorithm was chosen to be applied for pathfinding (Yen, 1971) together
with the Dijkstra (1959) algorithm for finding the shortest route.

In this section the K shortest path algorithm is described in details (see Section 4.6.1);
and it is further discussed what modifications are necessary when it is implemented for
complex metro networks (see Section 4.6.2). Finally, the algorithm is applied on the case
study OD pairs and the results for the set of shortest routes are presented (see Section
4.6.3). The detailed description of the Dijkstra (1959) algorithm is presented in Appendix
B.

4.6.1 The K shortest path algorithm

The K shortest path algorithm (Yen, 1971) can be described with the following steps (see
Figure 4-7):
1. Find the shortest route (i.e. 1-2-4-6) using the Dijkstra (1959) algorithm.

Set it as the current path.
2. Find the next shortest routes

2.1. Set the first node of the current path (i.e. 1) as the [deviation vertex.

which starts from the |deviation vertex (i.e. 1-2).
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2.2. Find the shortest path from the |deviation vertex| to destination node on this

modified network (i.e. 1-3-5-6) using the Dijkstra (1959)

2.3. Set the next node on the current path (i.e. 2) as the |deviation vertexi

repeat steps 2.2-2.3to find the next shortest routes
until the last node on the current path is reached

2.4. Select the shortest route among the newly found routes

Set it as the current path

3. Repeat step 2 until the set number of shortest routes (N7") are found

2.4 L egend

= Current path
() Deviation vertex
===e | ink to eliminate
=== Shortest path

Figure 4-7 lllustration of the K shortest path algorithm on a small example network
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It is important to note that as the K shortest path algorithm uses the Dijkstra algorithm in

every iteration to find the shortest path between the |deviation vertex] and the destination

node (step 2.2) it requires high computational time. There are faster methods in literature,
however the K shortest path algorithm was proved to be adequate for the purpose of this
thesis (cf. Section 4.2.4).

The K shortest path algorithm was applied in Matlab on the network model of the LU
inner zone (cf. Section 4.4.1) for the case study OD pairs (cf. Section 4.4.5). It is set to
search for and order the routes based on their generalised costs (c,;;, cf. Section 4.5).
The program code is available from the Matlab file exchange websitel’. As it follows, it
is discussed what modifications are made to the original program code in order that it

could be implemented for metro networks (see Section 4.6.2).

4.6.2 Proposed modifications to account for multiple passageways within

stations

Running the K shortest path algorithm (cf. Section 4.6.1) on the LU inner zone network,
the results would contain many route variants, which differ only in their AElI movements
within the stations. For example, such route variant would be, when a passenger at the
origin station accesses the chosen line via the platform of another line. Similarly, another
route variant could be when at the interchange station he/she walks to the chosen line via
the ticket gate (see Figure 4-8 a). In order to avoid finding these route variants, it is
necessary that the algorithm could eliminate some of the AEI links automatically
depending on the OD pair and the route. Therefore the following modifications are
proposed for the K shortest path algorithm:

1) For the current OD pair
Eliminate (x) interchange links at origin and destination stations
Eliminate (x) access and egress links at all other stations (see Figure 4-8 b).

2) At every iteration,

if the |deviation vertex| is set at the platform node of a station,

eliminate (x) interchange links from other platforms (see Figure 4-8 c).

The program code for these modifications are presented in Appendix C.

17 http://uk.mathworks.com/matlabcentral/filee xchange/32513-K _shortest-path-yen-s-algorithm



http://uk.mathworks.com/matlabcentral/fileexchange/32513-k-shortest-path-yen-s-algorithm
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Interchange a) Interchange b) Interchange c) e |n vehicle links
Station A& Station A Station A& AEl links
-------- Wait/alighting links
. xx X. o In-vehicle node
’ B e ; [ | Platform node
Lme 3 : .M Lme 3 A Ticket gate node
s o %] o X Link to eliminate
g (//7 g : (/}7 g (//7 Deviaton vertex
5 & 5 &2 35 Spe

Figure 4-8 Proposed modification to the K shortest path algorithm

4.6.3 Set of shortest routes for the case study OD pairs

Once the proposed modifications were made to the K shortest path algorithm (cf. Section
4.6.2), it was applied on the 7 case study OD pairs of the LU specified in Section 4.4.5.
In order to ensure that that the set of reasonable routes (K;;) can be a subset within the set

of generated routes (Kg.e”) (cf. formulae (4-3) and (4-4)) the number of generated routes
(Ng5;) was chosen sufficiently large (ie. 10); in accordance with Guo (2008), who

showed that in the LU 99% of the OD pairs has up to 4 observed routes. At this point, the
number of generated routes was set independently from the type of the OD pair. As it
follows, it will be examined how the number of reasonable routes depend on the OD
attributes (see Section 4.7.4 and Section 5.3.3).

Figure 4-9 presents the 10 shortest routes generated with the K shortest path algorithm
for the Victoria — Holborn OD pair. Table 4-6, describes these routes with their journey
time (t,f’; cf. equation (4-1)) and generalised costs (¢, ;;, cf. equation (4-2)). To get a
better understanding on the interchange attributes of these routes also their total

interchange time (¢4 ;) and the total AEI cost (%) is reported, which can be obtained

as.
ic _ . 2yiC
tk,ij - Z ta a (4_5)
a€Ak,ij
and
AEI __ AEI AEI ic .,ic
Chij = tyw P+ wy M (4-6)
acAk,ij

respectively.
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Furthermore, for each route k, the proportion of their generalised cost with respect to the
shortest route (c, ;) is calculated as:

_ Ckij
PCrij = 4-7)

1,ij

In the same table the set of observed routes (K;}**, known from RODS data, cf. Section

3.6.3) is highlighted with green. The results for the other OD pairs are presented in
Appendix D.

In addition to these route attributes there are also OD specific properties to serve as an
input for setting the attribute cut-off criteria:

e Number of observed routes according to RODS data (N,‘}f};
e Journey time of the route with minimum journey time (t[?i”
e Generalised cost of the shortest route (c ;;)

* Sample size of Observed Journey Times (OJT) (n;/")

e Maximum Observed Journey Times (OJT) record (OJT;}***

e Number of journey legs of the route with minimum number of journey legs (Nzn_iijn

e Number of available directions at origin (Np,;) and destination (N, ;) station

Number of available directions at a station means the number of directions that stays
within the LU inner zone. For example, at Victoria station, N, =3, because the
line can be taken only northbound as the southbound direction does not stay
within the LU inner zone, but leads to the Victoria South line specific station.
Additionally, the Circle line in both directions stays within the LU inner zone. Therefore

in total there are 3 available directions (cf. Figure 4-6).

These properties are resumed in Table 4-7. The applied method for the attribute cut-off
is discussed in Section 4.7.



93

Tottenham
Court Road

-~
Gloucsgter 7 South

Kensington Victoria

Figure 4-9 The 10 shortest routes for Victoria - Holborn

g
Embankment

Bank

—
]
«Q
0]
=
o

* @O0

Bakerloo
Central

Jubilee
Northern
Piccadilly
Victoria
Waterloo & City
Circle

Station

OD pair

Route k of OD pair



94

Table 4-6 The 10 shortest routes for Victoria - Holborn with their journey time and generalised cost,
observed routes (Rolling Origin Destination Survey, RODS) are highlighted with (gréen

Route Time Generalised cost
ID Line 1 IC1 IC 2 Line 3 Total IC Total AEI Proportion
k,ij ttfjg ticij Chij Chts PCrij
ij=1 [min] [min] [min] [min]
L Victoria 8:?;?1? Central 17.2 34 28.3 184 1.00
2 Vismra Green Park Piccadilly 19.5 3.7 29.7 17.8 1.05
3 VEsEa Kings Cross Piccadilly 24.2 3.4 34.2 17.4 1.21
d Victoria T Bakerioo [V Piccadilly ‘ 23.2 29 38.5 20.8 136
5 Victoria Green Park Central ‘ 20.9 5.0 38.6 25.8 1.37
& Circle SKct)al;t:ington Piccadilly 28.7 32 401 17.3 142
! Circle (F-Q;:)oalgeSter Piccadilly 30.6 21 417 15.9 147
8| il | EMbankment (Ncgl;;hern S ‘ 24.3 4.2 436 24.9 1.54
9 Circle Bank Central 32.4 5.8 44.0 20.2 1.56
10| e | EMbankment (NCo)ghern 'ggb‘;erseter icc dmy‘ 24.9 2.8 44.0 233 156
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Table 4-7 Summary of the OD pairs and their properties

# Observed Min Min #0OJT | Max OJT Min # Origin # | Destination
Index | Origin | Destination Routes time | gen. cost | records record journey legs | directions | # directions
ij i J N Igbl}g tij " Cy,ij n?jﬂ OJT N {nlljn Np,; Ny,
3| Victoria | Holbomn 2| 172 28.3 54 31 2 3 4
Euston St James's
2 Park 2 16.7 27.7 30 27 2 4 2
Victoria Liverpool
3 Street 2 23.2 34.1 43 36 1 3 3
4 |Angel | Waterloo 3| 235 33.9 7 34 2 2 5
Liverpool | Green
5 [ Street Park 3 21.4 32.8 30 36 2 3 6
Euston South
6 Kensington 4 20.1 31.5 5 42 2 4 4
7 | Victoria | Waterloo 5| 156| 240 4 21 2 3 5
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4.7 Attribute cut-off basedon generalised costs of routes

4.7.1 Definition of the attribute cut-off

As the result of the route choice set generation algorithm (cf. Section 4.6) a set of shortest
routes (K;7°") were generated for each OD pair ij, where in each set, there are N/
number of generated routes. Now, the challenge is to find the set of reasonable routes

(K;;) among them (cf. formulae (4-3) and (4-4)).

The aim here is to be able to decide for each route in the set of generated routes (k, ij €

K7°"), whether they are also in the set of reasonable routes (k,ij € K;;™"). For this, the

main data source is the metro network (G(P, A)) with its link times (t,) (cf. Section 4.4);
however it is also discussed, whether the additional information from smart card data

(OJT, cf. Section 3.6.1) could provide a better understanding.

Attribute cut-off (p) is defined; so that a given route k can be considered reasonable (k €

K;;), if the certain route and OD attributes — function of the metro network properties and

other data sources (e.g. smart card) ( f(G(P, A), OJT)) — are under that limit:

k € K;;, if f(G(P,A),0]T) < p (4-8)

4.7.2 Selection of the attribute cut-off method

Through the literature review in Section 4.2.2 and through making trials with those
approaches it was understood that it is favourable to use a cut-off rule, which considers
both journey time and interchange attributes. For that purpose in equation (4-2) the
generalised cost of routes was formulated and the corresponding weights of the attributes
were adapted from LU specific studies (cf. Section 4.5). Following this logical stream it

was chosen to use the generalised costs of routes as attribute cut-offs.

Regarding the use of OJTs for attribute cut-offs it is important to consider its sample size.
As the OJT sample provided for this research is quite small (cf. Section 3.6.1), it would
not be representative, because the maximum OJT understood from the data sample may
not reflect truly the maximum journey time that could be used for the attribute cut-off.
Therefore, in this research attribute cut-offs were set based only on the generalised costs

of routes, without considering the additional information on the OJT distribution.

Zhu and Xu (2016) defined attribute cut-off both in function of proportion and absolute

difference in generalised costs. These considerations are useful, when the OD pairs of the
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network are of a significantly different scale. Regarding the case study OD pairs, as all of

them are within the LU inner zone network (cf. Section 4.4.5), they could be considered
of similar scale in terms of their minimum journey time (t{}””), which is between 16 and

23 minutes (cf. Table 4-7). Therefore in this case, working with proportions or with
absolute differences would not give significantly different results. For the easier
comparison, it was selected to work with proportions of generalised costs (pc ;;, cf.

equation (4-7)).

The work in this section builds on Nadudvari et al. (2016), with the difference that, there

the attribute cut-off was examined separately for each journey time component.

4.7.3 Attribute cut-off based on proportions of generalised costs

Setting the attribute cut-off in terms of proportions of generalised costs (pc) the general

definition (formula (4-8)) can be written as:

The generalised cost proportion of each route (pc, ;;) is calculated with formula (4-7).

To obtain the attribute cut-off (pc) it is necessary to have information on the observed
route choice set of passengers (Ki‘}”s), and make pc, so that the results for the reasonable
route choice set (K;;) could reproduce that set. For K;}”S, the route choice observations
from RODS data (cf. Section 3.6.3) were used. The observed routes were highlighted in

green among the results of the shortest routes (Table 4-6, Table D-1, Table D-2, Table
D-3, Table D-4, Table D-5 and Table D-6).

The generalised cost proportion of the longest route among the observed routes can be

written as:

max,obs

pCi; = max (pck,ij |k, ij € Ki‘}bs) (4-10)

Similarly, the generalised cost proportion of the shortest route among the unobserved

routes is:

pcir;u'n,unobs — min(Pck,ijlk,ij € Kﬁen\Ki(}bs) (4_11)

min,unobs
ij

max,0bs

Having calculated pC;; and pc

as confining values; it is expected that for

most OD pairs ij, pc will be between these limits.
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max,obs min,unobs

peli ™ < pe < pcf] (4-12)
In principle, one could have pcf}™*** = pc]}™*"*** (ie. observed routes with higher

generalised costs than the unobserved routes), however in this model specification this
would not likely occur. The reason for this is that the weights of the generalised cost
equation (4-2) are taken from Raveau et al. (2014), which is calibrated with RODS data;
therefore when the routes are generated based on their generalised costs, they appear in
the order that the observed routes from the same dataset (i.e. RODS data) have lower

generalised costs than the unobserved routes.

In order to fulfil the conditions of equation (4-12), a possible match for most of the ij,

could be to use the method of least squares, where the objective function is:
Nop

min z (pc _ pcir;lax,obs)z n (pc _ pcir;lin,unobs)z (4_13)
ij

This can be solved and simplified as

ZNOD( max,obs + min,unobs)

Ll . (4-14)

pe= 2N,

4.7.4 Classification of OD pairs based on case study results

Figure 4-10 presents the generalised cost proportions (pc, ;) for each generated route
(k € K°™) of all OD pairs ij (cf. Table 4-3). The values in the observed route choice set
(k € K;}bs) are labelled with green filled circles (®), while those in the unobserved route
choice set (k € K7 \K;"*) with red cross (x). Applying equation (4-14), pc = 1.18 was
obtained, which means that a route k is reasonable, if its generalised cost (c; ;;) is less or
equal than 1.18 times than the generalised cost of the shortest route. (c, ;;) (cf. equation

(4-9)). The value of pc is labelled with blue vertical line (1).

The attribute cut-off results (pc) can reproduce the observed route choice set (Ki‘]’-bs :

when both of the following conditions hold. The generalised cost proportion is below the

cut-off value for all observed routes:

pcyij < pc for all k € KPS (4-15)
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and it is above the cut-off value for all unobserved routes:
pCyi; > pe forall k € K" \K5P (4-16)

Based on these conditions, the case study OD pairs can fall into one of the following
categories:
e Aittribute cut-off results reproduce the set of observed routes (both conditions
(4-15) and (4-16) hold)
e Unobserved routes are below the cut-off value (condition (4-16) does not hold)

e Observed routes are above the cut off value (condition (4-15) does not hold)

Attribute cut-off: Generalised cost Dronortign

wc=1.18

2¢ >

39
5
g 4% e Q
O

5(5 ® &

6¢ 3 eo

76— o€ L . A > . x y

1 1.1 1.2 1.3 14 1.5 1.6 1 157 £ 1.8

Generalised cost proportion

®  Observed Routes (RODS)|
Unobserved Routes
Attribute cut-off

Figure 4-10 Attribute cut-off according to generalised cost proportions

4.7.4.1 Attribute cut-off results reproducing the setof observed routes

For OD pairs ij = {1,2,4,7} (cf. Table 4-7) both conditions ((4-15) and (4-16)) hold.

For each of them, all observed routes (Kl-‘}bs) have two journey legs (Figure 4-9, Table

4-6,
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Table D-1, Table D-3and Table D-6). Those routes, which are not observed (K" \K;"*

either have 3 or more journey legs or they make an excessive detour (mentioned as turning
back and turning away in Dial (1971)). Although the journey time and interchange
properties of the routes across the OD pairs differ, the same attribute cut-off value pc =
1.18 could work for them.

4.7.4.2 Unobserved routes below cut-off value

For OD pairs ij = {3,5} (cf. Table 4-7) condition (4-16) does not hold, which means that

there are unobserved routes (K;™"\K"*), with a lower generalised cost proportion

(pcy;) than the attribute cut off value (pc). The reason for this could be found in the
specific properties of these OD pairs

e Presence of direct routes

e Number of available directions at origin and destination station

Presence of direct routes

OD pair ij = 3 (Victoria — Liverpool Street, cf. Table D-2) has a direct route (i.e. Circle
line, cf. Table 4-7). Having a direct route is so attractive to passengers, so that they would
consider indirect routes, only if they are much better in other attributes. In this particular
example, apart from the direct route there is also an indirect route -

via Oxford Circus) in the observed set (Kl-‘j-bs). This route is attractive, because its total

journey time (t,’) is 5.3 minutes shorter. Furthermore, both the and (@ El
lines are very frequent services (with 2 minutes of headway), while the circle line is an
infrequent service (with 10 minutes of headway). Therefore, neither of the alternative
routes dominate each other, which is also expressed in the similarity of their generalised

costs.

Looking at the third — Circle via King’s Cross) and fourth shortest route
(Circle — via Bank), it can be observed, that even though pc, ;; is only 1.14 and
1.17 minutes respectively (cf. Figure 4-10), they are not in the observed set. This is
because these indirect routes do not have any attributes in which they dominate the direct
route: Their total journey time is similar to the direct route and it involves interchanges

through large station complexes (i.e. King’s Cross and Bank stations).

Through the results for OD pair ij = 3 (Victoria - Liverpool Street) the following was
observed: If an OD pair has a direct route, pc is expected to be lower than for those OD

pairs which only have routes with two or more journey legs. Therefore, pc is not only a
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function of route attributes, but also of the property of the OD pair (i.e. presence of direct

routes).

Number of available directions at the origin and destination station

OD pair ij =5 (Liverpool Street — Green Park, cf. Table D-4) has many routes with
two journey legs (i.e. route k = {1, 2,3,4,5,6,10}) and for the shortest unobserved route
(Circle — IMBIEE via King’s Cross) the generalised cost proportion is still not that high

(pcir;tin,unobs — 1.10).

This could be explained with the many available directions (cf. Table 4-7) at the origin
(ie. 3: line westbound, and Circle line in both directions at Liverpool Street
station) as well as at the destination station (i.e. 6: VQGIE, and lines
from both directions at Green Park station). Due to the high number of available lines,
there are many route options with two journey legs, which have similar generalised costs.
The relationship between the number of available directions at the origin and/or

destination station and the number of observed routes was also discussed in Guo (2008).

In this case a lower pc value is expected than in other cases. Therefore pc is not only a
function of route attributes, but also of the property of the OD pair (i.e. number of

directions available at origin and destination station).

4.7.4.3 Observed routes above the cut-off value

For OD pair ij = 6 (Euston — South Kensington, cf. Table D-5) condition (4-15) does
not hold, where even though the third (eJgiaCIraM(®%8 — (KEWIY via Leicester
Square) and fourth shortest route (NeJgIM(®8] — Circle via Embankment), are in

the observed set (Ki‘}bs), they have a ¢, ;; value of 1.21 and 1.23 respectively, which is

higher than the attribute cut-off (oc = 1.18).

4.8 Summary, discussionand proposed extension of the model

The purpose of this chapter was to address the issue that finite mixture models applied
for route choice estimation require as an input the number of mixture components, which
corresponds to the number of reasonable routes of an OD pair. For this, the question of
route choice set generation was discussed. As the first step, a pathfinding method (i.e. K
shortest path) was applied to find a set of shortest routes. In order to implement this
algorithm for metro networks and to avoid that it gives route variants which differ only
in their AEI movements within the stations, certain modifications were proposed to the

algorithm. Following this, the attribute cut-off was set, based on the generalised cost
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proportions of routes to narrow down this set to the set of reasonable routes. The objective
was to find the value, below which the set of routes can reproduce the observed route

choice set for most of the OD pairs.

Results showed that the generalised cost proportion of 1.18 gives the best match for the
seven case study OD pairs of the LU. This means, that a route is considered reasonable,
if its generalised cost is not more than 1.18 times the generalised cost of the shortest route.
This value is much lower than the results in Zhu and Xu (2016), which stated that in the
Shanghai metro passengers consider aroute reasonable up to 1.60 times the shortest route.
This result could actually reproduce the observed route choice set for four out of the seven
OD pairs. Two OD pairs there had unobserved routes with generalised costs below this
cut-off value; and one OD pair had observed routes with generalised cost above the cut-
off.

Based on this, it was understood that applying only a single attribute cut-off value cannot
find the reasonable route choice set for all types of OD pairs, but it should be defined as
a function of OD specific attributes. Among these OD specific attributes, two of them
were highlighted through the case studies. One of these OD specific attributes was the
presence of a direct route (N[”,iij”). Results for the Victoria — Liverpool Street OD pair
showed that if there is a direct route, passengers consider indirect routes only if they are
dominant in other attributes (i.e. journey time, headway). Therefore, routes with
generalised cost proportion of 1.14 or 1.17 were not in the observed set. The other OD
specific attribute was the number of available directions at the origin (N ;) and the
destination (N, ;) station. Results for the Liverpool Street — Green Park OD pair
showed that as there are many direction available at the destination station, there are many
routes with two journey legs. Among them the route with the generalised cost proportion

of 1.10 was not in the observed set.

As these OD specific attributes are proved to be important, the criteria set in formula (4-9)

can be extended to the following:
k. ij € K;j, if peryj < pC(Nzn,iijﬂ’ND.i’ND.J’) (4-17)
Formula (4-17) indicates that the attribute cut-off (pc) is not a constant value valid for all

OD pairs, but it is a function of the above discussed OD specific properties.

In order to obtain the actual function pc( N3, Ny, N, ;) it would be necessary to apply

the method on more OD pairs of the LU network . As the program codes are already ready
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for all modelling steps discussed this chapter, it could be easily extended to apply it
automatically for all OD pairs of the case study network. However, when applying for all
OD pairs, there are other cases, which needs to be further examined. One of these cases
are the routes with only one observed route. Learning those OD pairs can give a better
information how to find the cut-off between the observed and unobserved routes.
Additionally, there are also OD pairs, which have observed routes with three or more

journey legs. It is expected that the attribute cut-off would be different also in those cases.

One possible limitation of the model applied here is that it considers only travel time
components and interchange experience for the generalised costs, however it is
acknowledged that also the perception of the map is an important attribute to consider,

especially for the London Underground where the map is quite distorted (Guo, 2011).

Another limitation of the model is, that it used RODS data for the observed route choice
set; and the weights, used in the generalised cost function also come from a calibration
based on RODS data (Raveau et al., 2014). As it was expressed previously (cf. Section
2.2.5), one aim in this thesis is to move away from methods that uses results from manual
surveys and to rely on automatically collected data sources. Therefore it could be further
examined — if the results of the TfL WiFi survey (Transport for London, 2017) would be

available — whether those could serve as a better source for validation.

An improvement of this route choice set generation model is further presented in Chapter
5, where the influence of additional OD specific attributes on the cut-off values is
discussed. The purpose there is to identify those OD pairs, which have similar route
choice patterns as well as to find the exact number of components for the applied finite

mixture model.
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Chapter5

The superstation representation of metro networks to
overcome data availability issues of station-to-station OD
pairs

5.1 Introduction

As it was elucidated in Section 3.8.2 one of the main limitations of finite mixture models
to be applied for route choice estimation is the problem of data availability: While alarge
sample of smart card data is available for the whole network, for single station-to-station
origin destination (OD) pairs this sample size is very few, therefore modellers often do
not have sufficient data for their analysis. Through the case studies (cf. Section 3.7) it
was further illustrated that when the finite mixture model is applied on a very small
sample of Observed Journey Times (OJT) it either cannot find a solution (ill-conditio ned
covariance) or may converge to multiple possible solutions and the difference between

these solutions is very large.

In case modellers can have access only to the open data sources, the question of data
availability is even more crucial. For example in the context of the London Underground
(LU) the open data contains only a 5% sample of Oyster cardholders for a 1 week period
(cf. Section 3.6.1). Supposing that a larger sample of Oyster data could have been
provided for this research from a longer period as a bespoke data — as it was in Fu (2014)
(100% of data from a 40 week period) —temporal aggregation would have been a possible
approach. While this could show success in overcoming the data availability issues, at the
same time it loses the advantage that smart card data was intended to bring: time period
specific estimates of route choice (cf. Section 2.3). Aggregating several months of data it

is not possible to capture the day-to-day variation of travel patterns.

In this chapter the question of data aggregation is approached from another angle. Instead
of working with data from longer time periods (i.e. temporal aggregation), it is explored
how the data of OD pairs with similar properties can be aggregated (i.e. spatial
aggregation). For this, firstly the origin and destination stations needs to be grouped
according to certain rules. These groups of stations are called “superstations” througho ut
this thesis. Following this, for each superstation the centroids can be selected, so that the
OJTs of each station-to-station OD pair can be adjusted there; and hence they could be
aggregated, this way obtaining a larger sample of Centroid-to-Centroid OJTs (CCOJT)
for the superstation-to-superstation OD pairs.
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Applying the finite mixture model (Chapter 3) on the larger dataset of CCOJTs of
superstation-to-superstation OD pairs, and comparing the results with those for station-
to-station OD pairs (Section 3.7) can give an evaluation at what extent the superstation

representation could overcome the previously mentioned data availability issues.

The rest of this chapter is structured as follows. In Section 5.2, earlier studies on station
grouping are reviewed to understand for what purpose modellers define these larger
network elements. Following this, focusing on station grouping for the purpose of route
choice estimation the definition of superstations is presented together with their properties
in Section 5.3. Once the superstations are created, in Section 5.4 the methodology for
adjusting OJTs of station-to-station OD pairs to superstation centroids is presented.
Section 5.5 presents the application of the mixture model on the CCOJTs of station-to-
station OD pairs. These methods are illustrated through the case studies in Section 5.6.
Finally, in Section 5.7, the benefits and the limitations of the superstation representation

are summarised.

The concept of superstations and the application of finite mixture models for superstation-
to-superstation OD pairs were initially presented in Nadudvari et al. (2015). This chapter
brings forward the original idea, giving amore detailed formulation and examining more

adequate case studies for passenger route choice.

5.2 Existing approaches for grouping stations

In the general transport modelling context zones are defined, when the inclusion of each
basic network element (e.g. household, junction, stop, station) would require a too
detailed, hence computationally expensive network model (Ortizar and Willumsen,
2011; Connors and Watling, 2014). In these cases a zoning scheme is developed to
aggregate these basic network elements into larger entities, such as traffic analysis zones

or statistical/administrative wards.

For public transport networks, these larger entities would correspond to groups of stations
and/or stops!8. It can be easily understood, that different research problems within the
field of public transport modelling may require different rules for station grouping.
Therefore, the literature review in this section is arranged according to the research area,

for which the station grouping methodology was proposed for:

18 In this literature review both the terms of “stations”and “stops” are used, the former refers to metro or
rail stations, while the latter to bus or tram stops.
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e Overcoming data availability issues for OD matrix estimation (see Section 5.2.1)
e Considering choice between nearby stations for OD matrix or mode choice

estimation (see Section 5.2.2)

e Reducing network complexity (see Section 5.2.3)

These three problems are not completely distinct research areas, there is overlap among
them. The purpose for this literature review is to identify, whether any of these methods

can be applied for the research problem addressed in this thesis (see Section 5.2.4).

5.2.1 Overcoming data availability issues for OD matrix estimation

The issue of data availability for station-to-station OD pairs was also mentioned in Cui
(2006) and applied for the London bus network. He interpreted this problem as the
objective to achieve a balance between accuracy and processing practicality. He
introduced the concept of segments and aggregated the smart card transactions along
them. He defined segments in the following way (Figure 5-1):

a) An interchange station (D) is a segment by itself.

b) Stations between two consecutive interchange stations (E and F) are defined as a
segment.

c) Stations between the terminus and first interchange station (A, B and C) are

defined as a segment.
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Line 1 = = =
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A B ¢} D E F G H
Legend
Segment

Figure 5-1 Concept of segments, based on Cui (2006)

Cui (2006) proposed the concept of segments for aggregating smart card transactions for

OD demand matrices. This analogy is not fully applicable in the context of route choice
estimation, for the following reasons:
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a) If there are no attractive connections at an interchange station (D) towards the
destination (Z); the route choice patterns may be similar from the segments before

(A, B and C) and after the interchange station (E and F) as well as from the
segment of the interchange station itself (D) (see Figure 5-2).

o™ ™
(0] Q
= £
o> Line.1 = = —
[ (O 9, O ) O O
A B e D E F G
Legend
_ ) Segment

O Destination station

) Stations with similar route choice patterns to destination

Figure 5-2 Segments with similar route choice patterns towards the destination

b) Given OD pairs (E-Y and F-Y), where the first journey leg of the routes are on
the same line, but in the opposite direction (1D2 and 1G3); the route choice
patterns from the stations of one segment (E and F) are different (see Figure 5-3).

<
2
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") Segment

O Destination station

") Stations with similar route choice patterns to destination

Figure 5-3 Different route choice patterns towards the destination within a segment
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5.2.2 Considering choice among nearby stations for OD demand matrix or

mode choice estimation

Another important and well explored research area for station grouping is to identify the
set of attractive entry/exit stations (boarding/alighting stops) near the true
origin/destination of the passenger. It can be understood, that the entry/exit station to a
public transport (ie. metro, bus) network does not necessarily reflect the true
origin/destination of the passenger as he/she may have accessed this stop by other
transport modes (e.g. walk, bike, car, taxi). This type of station grouping is generally

applied to give a clearer picture onthe OD demand matrix and mode choice of passengers.

Identifying stops in the catchment area of activities

The most straightforward station grouping approach is to associate them with the
catchment area of the points of activities or transport hubs (see Table 5-1). Chu and
Chapleau (2010) — working on the bus network of Gatineau and Ottawa, Canada — called
these points of activities as anchor points. They represent places that a person repeatedly
visits in short term (e.g. home, work, study) or long term (e.g. place of worship, visiting
friends). They were identified from multiday smart card records in the following way: In
case of student cardholders, they looked at boarding records after the end of the teaching
and found the corresponding educational establishment from a georeferenced database.
For other trips (e.g. home and work based trips), they envisioned a kernel density analysis
to associate the range of activity locations with a probability. Following this, trip ends
(ie. first/last boarding/alighting stops) were linked to these anchor points if they are

located within 500 m of the anchor point.

Similarly, Lee et al. (2013) — focusing on the Minneapolis-St. Paul metropolitan area,
USA — grouped those stops, which have 50 m distance between each other as well as
those, which have identical or similar stop name. Furthermore, they also examined the
special cases, when there is a stop only in one direction of the bus line and found the
matching stop in the opposite direction. The purpose for station grouping in this case was

to understand transit demand at an aggregate level and land use patterns.
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Table 5-1 Review of station grouping methods based on physical proximity — catchment

area of activities

Reference Purpose Method Mode Case study
Chu and OD demand Trip end within bus Gatineau,
Chapleau Travel behaviour 500 m of anchor Ottawa,
(2010) points Canada
Lee et al. OD demand Stops bus Minneapolis-
(2013) Land use 50 m to each other St. Paul,

USA
Similar name
Opposite direction

Clustering algorithms

A more advanced approach for station grouping is to apply clustering algorithms (see
Table 5-2).

Kieu etal (2015b) — using the public transport network of Brishane, Australia asa case
study —applied the Density-Based Spatial Clustering of Application with Noise algorithm
(Ester et al., 1996) for grouping the last alighting stops and then the first boarding stops
of public transport trips known from smart card data. This algorithm uses two parameters
to distinguish the least dense cluster of stations from the noise: the maximum density
reach distance and the minimum number of points. This was further improved in Kieu et
al. (2015a) to reduce the time complexity of the algorithm and called it as the Weighted -
Stop Density-Based Spatial Clustering of Application with Noise.

Viggiano et al. (2016) — analysing London’s multimodal public transport network —
grouped the nearby stations and stops with the purpose to gain a better understanding on
public transport mode choice (i.e. rail and bus). They called these group of stations as
zones. They set the number of zones to 1000 and used the K-means clustering algorithm
(Forgy, 1965; MacQueen, 1967) to allocate each stop and station in these clusters. In their

model rail stations were weighted 10 times as much as bus stops.

Similarly, Luo etal. (2017) —doing the case study on the public transport network of The

Hague, Netherlands — applied a K-means based station aggregation method for the
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purpose of obtaining transit OD demand matrices at a zonal level. They tested the K-
means clustering algorithm for a range of cluster numbers (between 2 and 30) and for
each value they calculated the spatial distance and passenger flow related metrics to find

the optimum value (12 for the case study area).

Table 5-2 Review of station grouping methods based on physical proximity — clustering

algorithms
Reference Purpose Method Mode Case study
Kieu et al. Transit passenger Density-Based Bus, Brisbane,
(2015b) market Spatial Clustering rail, Australia
segmentation of Application with | ferry

Noise
Viggiano etal. | Public transport K-means clustering | Bus, London, UK
(2016) mode choice with 1000 clusters | metro,

rail

Luo etal OD demand at K-means based Bus, The Hague,
(2017) zonal level station aggregation, Tram Netherlands

trials with 2-30

clusters

Logit allocation models

Another advanced approach for station grouping is to use logit allocation models, which
means to estimate for each station the probability that it belongs to a certain zone. This
approach is especially useful, when the station groups have to coincide with the existing

zoning system (see Table 5-3).

Kuhlman (2015) — focusing on the public transport network of Amsterdam, Netherlands
—applied a logit allocation model with the objective to construct purpose-specific OD
demand matrices. Using smart card data he identified the trip ends (i.e. first boarding and
last alighting stops of trips) and for each trip end, he estimated the probability with the
Multinomial Logit (MNL) model that it belongs to a predefined traffic analysis zone. In



112
this model specification, the alternatives are the traffic analysis zones nearby the trip ends
and the attributes of the utility functions are the share of the catchment area, stop density

and urbanisation level.

Tamblay et al. (2016) proposed the grouping of stations and stops for the purpose of
developing a public transport planning computational tool for Santiago, Chile. They
estimated the probabilities that the boarding/alighting stop of an observed trip from smart
card data has its true origin/destination in a predefined census zone. They used a
disaggregated logit model with the attributes of the access/egress times between the zone
centroid and the given stop. This method was further developed in Tamblay etal. (2018).

Table 5-3 Review of station grouping methods based on physical proximity — logit

allocation models

Reference Purpose Method Mode Case study
Kuhlman Purpose-specific Probability that a Bus, Amsterdam,
(2015) OD demand trip end belongs to | tram, Netherlands

matrices a traffic analysis metro
zone (MNL)
Tamblay etal. | Public transport Probability that a Bus, Santiago,
(2016) planning tool trip end has its true | metro Chile

origin/destination

in a census zone

Young and Improve catchment | MNL, mixed logit rail Wales,
Blainey (2017) | area representation Scotland, UK
of rail stations

Young and Blainey (2017) focused on railway station choice in Wales and Scotland for
the purpose of improving the representation of catchment areas of railway stations. For
each origin/destination (i.e. postcode), they defined the choice set of the 10 nearest
railway stations, ensuring that the major railway station is also included in that set.

Following this, they estimated the railway station choice both with MNL and with mixed
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logit model, in which — apart from the access journey characteristics — they included also

the attributes of the station facilities, service frequency and train journey.

Other approaches

Addttionally, there are various other approaches in literature for station grouping
according to physical proximity (see Table 5-4). Nassir et al. (2015b) —working on the
public transport network of Brisbane, Australia — modelled the boarding stop choice set
of a passenger in light of his/her route choice set between the true origin and destination.
They used smart card data together with the information on the public transport and
walkway network and determined a set of shortest routes with the K shortest path
algorithm (Yen, 1971). Following this, they narrowed down this set based the criteria on
the maximum acceptable access, egress (2 km) and interchange (1 km) distance and wait
time (1 hour). Additionally, they also set a threshold for the travel time of a route and for
the maximum number of interchanges (3). In this setting, the boarding choice set
corresponds to the first boarding stops of the routes included in the route choice set. This
method was further applied in (Hassan et al., 2016) for understanding passengers public
transport stop choice behaviour and in (Nassir et al., 2016) to define a utility-based travel-

impedance measure for public transport network accessibility.

Guo and Lu (2016) — focusing on the London Underground — applied the concept of
neighbourhood centrality (Opsahl et al., 2010) to define the neighbourhoods that are
centred in the statistical/administrative wards of Greater London. In their study, distances
and path lengths between two stations correspond to the number of intermediate stations.
The purpose of this study was to relate complex network properties to human

geographical features in the city, such as age demographics, mode choice and housing.
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Table 5-4 Review of station grouping methods based on physical proximity — other

approaches
Reference Purpose Method Mode Case study
Nassir et al. Public transport K shortest path, Bus, Brisbane,
(2015b) network narrow down set: rail, Australia
accessibility max walk distance | ferry
and wait time
Guo and Lu Relate network Neighbourhood metro London, UK
(2016) properties to age, centrality;
mode choice and distances as
housing number of stations

Further applications

The concept of working with groups of nearby stations have been also applied in the field
of transport hub location problem (see Table 5-5). To address this issue, Yu etal. (2013)
proposed a two-phase optimisation approach and applied for the Dalian, China. In the
first phase, candidate nodes are selected among all stops based on passenger attraction,
which is the function of the accessibility and connectivity of the stop. Following this, in
the second phase, a location model is applied on the candidate nodes to find the optimal
hub location among them, based on its largest serviced population, minimum overlap and

least construction cost.

Furthermore, station grouping was applied not only for planning new hubs, but also for
detecting the dynamics of urban structure. In this context, Zhong et al. (2014) analysed
the smart card data of Singapore from 3 consecutive years (2010-2012) and constructed
a weighted directed graph for each year. In this graph, nodes corresponded to urban areas,
links to the possibility to travel between these areas and the weight of links to the volumes
of travel. This graph was used to gain a better view on the travel demand, urban centres,

transport hubs, neighbourhoods and borders; as well as on their dynamics over the years.
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Table 5-5 Review of station grouping methods based on physical proximity — further

applications
Reference Purpose Method Mode Case study
Yu etal Transport hub Candidate nodes: bus Dalian, China
(2013) location accessibility and
connectivity,
hub location model
Zhong et al. Detecting the Weighted directed | Bus, Singapore
(2014) dynamics of urban | graph for 3 metro
structure consecutive years

Applicability for the research problem

The main limitation of applying the previously presented station grouping concept for the
research problem of this thesis can be illustrated by the following (see Figure 5-4): As
for entry/exit station choice the requirement is, that the candidate stations are in physical
proximity, in most cases these station are on different lines (C, D, E, J, Kand L). In
contrast, the purpose in this thesis is to group the stations according to similar route choice
patterns, which requires, that they should be on the same line (A, B, C,D, E and F).
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Figure 5-4 Difference between grouping stations according to physical proximity and

similar route choice patterns towards the destination

5.2.3 Reducing network complexity

The question of reducing the number of nodes and hence computational time has been
widely explored in the context road traffic assignment and mentioned as “network
aggregation” (Connors and Watling, 2014) or “network contraction” (Jafari and Boyles,
2016).

In the context of public transport networks, reducing the number of nodes can be achieved
by defining network entities that can represent a group of stations with similar properties.
Schmdcker (2006) developed a transit assignment model for the London Underground
inner zone network. In order to represent the demand coming in the network from the

outer zones, he defined line specific stations at the end of each LU line (cf. Section 4.4.2).

The concept of line specific stations is in connection with the purpose of this thesis;
however the definition of station groups cannot be just limited to the question of inner
and outer zones (see Figure 5-5). This is because for certain OD pairs with their origin in
the outer zones (D-Z), passengers may have more reasonable routes (1H4 and 2M6) to

enter in the LU inner zone via different lines (1 and 6).
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Figure 5-5 Difference between grouping stations as line specific stations (Schmocker,

2006) and according to similar route choice patterns towards the destination

5.2.4 Gap inresearch

Having reviewed the literature on various studies for station grouping, it was established;
that as they were applied for different modelling purposes, their concept cannot be
directly implemented for the objective of this thesis: aggregating data of station-to-station
OD pairs for better route choice estimates. As if follows, a new approach is proposed for
grouping stations according to similar route choice patterns, by setting the definition and

rules; as well as describing the method for finding those stations (see Section 5.3).
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5.3 The conceptof superstations

In this chapter —in addition to what was presented in the previous chapters —the following

notation is used:

Variable identifiers

1,] Index of origin and destination superstation

li i-th station of origin superstation [

Jj j-th station of destination superstation |

Ic Centroid station of origin superstation [

Jc Centroid station of destination superstation |

Variables

ccojt The adjusted value of Observed Journey Times to superstation

centroids (minutes)

N, Number of stations in origin superstation I
N, Number of stations in destination superstation J
ntcosr Sample size of CCOJT);

1j

cCcoJTK}ys  Subset of CCOJT,; produced by the K-means clustering algorithm

(minutes)

5.3.1 Definition of superstations

In order to overcome the previously described data availability issues of station-to-station
OD pairs for route choice estimation in metro networks (cf. Section 5.1), the concept of

superstations is introduced:
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Definition: A group of stations on the same line from/to which passengers are
expected to have the same route choice set and similar route choice

probabilities

Strictly speaking, according to the earlier definition of routes (3-13), the route choice set
is not exactly the same for the candidate stations of the origin and destination superstation
as they differ in their access, wait and egress journey segments, as well as in their the on-
board segments from origin to interchange station and from interchange to destination
station. Therefore, in a broader sense, for the sake of superstation definition, a route can
be interpreted as the sequence of the following segments: line 1 — interchange 1-— ... —
interchange N, — line N, . The adjustments according to the differences in these

journey segments is discussed in Section 5.4.2.

5.3.2 Properties of superstations

In Section 5.2.1, the concept of segments (Cui, 2006) was presented and it was pointed
out, that it cannot be directly applied for route choice estimation. Therefore, superstations

are not identical to segments, due to the following properties:

Property 1: Stations on the same segment can be grouped as a superstation only if all
routes depart/arrive to/from the same direction on that line (cf. Figure
5-3)

Property 2: Multiple segments can be grouped as a superstation, if passengers from/to
the stations of those segments are expected to have the same route choice

set and similar route choice probabilities (cf. Figure 5-2)

In the light of Property 2, it may occur that passengers have the same route choice set
and similar route probabilities from stations before and after an interchange station, but
from the interchange station itself the route choice set is different, because passengers

may find there other attractive lines. To account for this, superstations have an additional
property:
Property 3: Superstations can include non-consecutive stations (cf. Figure 5-5)

Furthermore, as some lines have short runs (see Figure 5-6), they have the following
property:
Property 4: Stationson the same line, but with different service frequency (short runs)

can be included in the superstation, but adjustments need to be made

according to the difference in wait time
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These adjustments are explained in Section 5.4.
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Figure 5-6 Property to create superstations in case of lines with short runs

5.3.3 Finding OD pairs with similar route choice patterns

According to the Definition (cf. Section 5.3.1), superstations are group of stations
from/to which passengers are expected to have the same route choice set. This implies,
that in order to find the stations of the origin and destination superstation, it is necessary
to search for those OD pairs which have the same route choice set. To perform this, a
route choice set generation algorithm needs to be applied on the extended LU inner zone
network (see Figure 5-8) for the OD pairs composed by the candidate stations of the
origin and destination superstation.

The results of the previously proposed method (cf. Chapter 4) showed that — in average
—aroute is considered reasonable if its generalised cost is less or equal than 1.18 times
the generalised cost of the shortest route (pc = 1.18). However, it was also observed that
this cut-off value did not work for all types OD pairs. Therefore it was concluded that pc
is also a function of OD specific attributes, such as:

e Presence of a direct route

e Number of available directions at the origin and destination station

Following this logical stream, it was understood that is not possible to use a single pc
value for all the case study OD pairs of this chapter, but this should be determined in
function of the OD specific attributes. In addition to the previously listed attributes, the

characteristics of these OD pairs requires to consider the following:

e  OD minimum travel time

e Presence of an express line



121
The relationship between the OD minimum travel time and the number of observed routes
was also discussed in Guo (2008), where he categorised the stations according to their
location within Greater London, such as “Central”, ‘North”, “South”, “East”, “West” and
“Outside”.

In each case study (cf. Section 5.6) it is described how these OD specific attributes
influence the cut-off value. The explicit formulation of the route choice set generation

algorithm is not discussed here as it is beyond the scope of this thesis.

5.4 Adjustment of the Observed Journey Times to superstation

centroids

Once the origin and destination superstations are defined (cf. Section 5.3), it is possible
to adjust the OJTs of station-to-station OD pairs to superstation centroids and hence to
aggregate them spatially. This way a larger sample of centroid-to-centroid OJTs can be
obtained for superstation-to-superstation OD pairs, proposing a solution for the
previously mentioned data availability issues (cf. Section 3.8.2). This section presents the
methodology for the selection of superstation centroids (see Section 5.4.1) as well as for

the OJT adjustment (see Section 5.4.2) and aggregation (see Section 5.4.3).

5.4.1 Selection of superstation centroids

In the process of OJT adjustment the first step is to select the centroid for the origin (Ic)
and destination (Jc) superstation. This can be any station of the superstation at the
modeller’s convenience, not necessarily the geometrical centroid (see Appendix E). As
in this chapter the cases bring forward the ones mentioned in Chapter 3, it is convenient
to choose those stations as centroid, which were the origin and destination stations there
(cf. Section 3.7).

5.4.2 Adjustment of the Observed Journey Times to superstation centroids

It is necessary to adjust the OJTs due to the different journey time components of the
different station-to-station OD pairs (cf. equation (3-13)). At the origin superstation the
following times need to be considered:

e On board time from entry station to origin superstation centroid (tg}g)(,c))

o Difference between access time at origin superstation centroid (tf°“) and at entry

station (t/“)
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e Difference between the wait time at origin superstation centroid (¢}¥*¢) and at the

entry station (¢/7%) (in case of short runs, cf. Property 4)

Given the entry time stamp at station i of the origin superstation I (T,;"""), it is possible
to obtain the equivalent entry time stamp at the superstation centroid (T(‘jgt(r,f)) with the

following adjustment of the journey time components (see Figure 5-7):

entry __ mentry i b i
Tanaey =T HEEC+ G/ + thh ey =t — e (5-1)

Substituting Aty (1cy = t(e) — tai for all time components, this will be:

entry __ mentry i
Tanae =T+ tiae) = At{Eue — At (e (5-2)

At the destination superstation the following times need to be considered:

e On board time from exit station to destination superstation centroid (tﬁ}’j)( Jey)

o Difference between egress time at destination superstation centroid (t]“’cgr) and at
the exit station (")

o Difference between the wait time on the last journey leg for the service that brings
to the destination superstation centroid (tj“c’““) and the one that brings to the exit

station (t]‘”j““) (in case of short runs, cf. Property 4)

Given the exit time stamp atstation j of the destination superstation | (T]‘j.x“) it is possible
to obtain the equivalent exit time at the superstation centroid (T(‘j’jg'ﬁ Jey) With the following

adjustment of the journey time components!® (see Figure 5-7):

it _ it it egr b it egr
TGhuo = TF " — 4" =47 +thyo T 4™+ (5-3)

Substituting At(; ey = tie) — tyj for all time components, this will be:

exit _ exit ob wait egr
TGhoo = TF + oo T ALGHGo T BtGhge (5-4)

The Observed Journey Times are calculated as the time difference between the entry and

exit time stamps (cf. equation (3-14)):

i t
0JTuiy g =T =Ty~ (5-5)

19 As discussed earlier, t]‘}"m and t]“c’“” are the wait times for the service that brings to the exit station Jj and

Jc respectively. For the correct illustration these times should be drawn at the last interchange station;
however here for the sake of simplicity, they were drawn to the exit station.
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Following this analogy, the Centroid-to-Centroid adjusted OJTs (CCOJT) corresponding

to each station-to-station OD pair can be calculated as:

_ it entry
CCOJTuy ) = TG — Tande (5-6)

Substituting equations (5-2) and (5-4) into (5-6):

_ t b egr t entry
CCOIT iy = )5 + 8o T Bt hge T AtTH0o — Ti

. (5-7)
= tlhae T At aey T At e
Substituting equation (5-5) into (5-7):
CCOITunqp = OJTapgp + t e — tiaeo + Dtue -8
egr it it
+AtGh oo AL Ge T ALGRH (o

Equation (5-8) is applied in the case studies (see Section 5.6). There the OJTs of the
station-to-station OD pairs (OJT ;) ;) are known from Oyster data (cf. Section 3.6.1).
The necessary adjustments for on-board (tg’,’;)(,c) and tf’]”j)( Jey) and wait (At{,’gi("}c)) times
are calculated using LU timetables (cf. Section 3.6.2.1). The corresponding access
(AtfiSc) and egress (At ,.,) times were estimated based on station layouts known
from the Nationwide Access Register (Direct Enquires) (cf. Section 3.6.2.2).



124

e On - board links
) - = = Wait links
=2 B IR AE| links A
= -~ Route in between . Lo
TOe) O On-board node L
Tjj"“ O Platform node
A Ticket gate node
@ Centroid
® A”\-D\O
ntry Q_\\
(liy(lc) _ _
ontry Station Centroid Station Centroid
| li lc Jj Je >
Space

Figure 5-7 Adjustment of the Oyster entry/exit times at the origin/destination

superstations, representation on a diachronic graph

5.4.3 Aggregation of the adjusted Observed Journey Times

Once the CCOJTs corresponding to each station-to-station OD pair (CCOJT y;)(;;)) are
obtained, these values can be aggregated as they are adjusted to the same origin and
destination superstation centroid. This aggregate dataset is called the CCOJT of the

superstation-to-superstation OD pair (CCOJT;)):

Ny Ny

CCOJT,, = U U CCOIT iy 1) (5-9)

i=1j=1
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where N; and N, is the number of stations in the origin (/) and destination (/) superstation
respectively. As it follows, it is described how the finite mixture model is applied on this

larger dataset with the purpose to evaluate the benefits of the superstation representation.

Section 5.4.1 stated that the centroid of a superstation can be any station, not necessarily
the geometrical centroid. At this point, one may ask the question, whether the shape of
the aggregated CCOJT;; distribution would be different if the origin and/or the destination
superstation centroid (Ic and Jc respectively) is chosen differently. This question is
discussed in Appendix E.

5.5 Evaluation of the benefits of the superstation representation

Once the superstations are defined (cf. Section 5.3) and the CCOJTs for each
superstation-to-superstation OD pair is calculated (cf. Section 5.4), the finite mixture
model (cf. Chapter 3) is applied on this larger dataset. The purpose for this is to evaluate
the benefits of the superstation representation by comparing the results of the finite
mixture model applied on station-to-station and on the superstation-to-superstation

dataset of the OJTs of the same case study OD pair (see Section 5.6).

Similarly to the methodology presented in Section 3.3, the finite mixture model was
tested with different settings for the initial values (i.e. seeds for the random number
generator) and tolerance thresholds to find the one, which gives the closest solution to the
expected results (i.e. timetable, RODS). It was done so, because it is expected that among
the solutions of the finte mixture model exists at least one, which reflects the actual
values of the metro networks; although this may not necessarily be the global optimum.
(cf. Section 3.3.2). Therefore, the tolerance thresholds chosen in this chapter are not
always identical to the ones chosen in Chapter 3. Following that, the results of the finite
mixture model were matched with the actual routes and compared to results of existing
models (Fu, 2014) as described in Section 3.4.

5.6 Case studies on the London Underground

The cases in this section are the extension of the cases in Section 3.7 (cf. Figure 3-2 and
Table 3-2) plus an additional case. Through the case studies presented here (see Figure

5-8 and Table 5-6) the following methodologies are illustrated:

e Origin and/or destinations stations are grouped with other stations, from/to which
passengers are expected to have similar route choice patterns (i.e. creating

superstations, cf. Section 5.3).
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e The OJTs of station-to-station OD pairs are adjusted to superstation centroids, so
that they can be spatially aggregated (i.e. obtaining a larger dataset of CCOJTs,
cf. Section 5.4).

e The finte mixture model (cf. Chapter 3) is applied on the CCOJTs of
superstation-to-superstation OD pairs; and compared with the results of station-
to-station OD pairs (i.e. evaluation of the superstation representation, cf. Section
5.5)

The previously described route choice set generation algorithm (Chapter 4) is applied on
the extended LU inner zone network with the appropriate considerations for the OD
specific attribute cut-offs (cf. Section 5.3.3). This extended LU inner zone network
includes the LU inner zone network (cf. Figure 4-6), as well as some of the lines until

their terminus in the LU outer zones (see Figure 5-8):

line until Elephant & Castle (south end)

line until Epping (east end)

o line between Stanmore and Stratford (full length)
line until Morden (south end)

line until Brixton (south end)

Additionally, while in the LU inner zone only the Circle line was considered among the
common lines (cf. Section 4.4.3), in the extended LU inner zone also the [YiEXige]ele]l{e1g

line was included between Wembley Park and Baker Street.

In Section 3.7 two case study OD pairs (Case 1 and Case 2) were presented. The common
in these two cases is that for all routes of these OD pairs the first journey leg is on the
same line, therefore the origin stations can be grouped as superstations. In this chapter an
additional case (Case 3) is presented, where both the first and the last journey leg is on
the same line, therefore superstations can be created both for the origin and destination

stations.

The actual difference between Case 1 and Case 2 — from the perspective of creating
superstations — is that, while in Case 1 there is only a short segment of the line
before the first interchange station (Green Park) with 5 candidate stations for the origin
superstation (Brixton — Victoria), that segment in Case 2 is very long having 27
candidate stations on the line (Epping — Chancery Lane, including the

Hainault loop).
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In Nadudvari et al. (2015) the concept of superstations was illustrated through a differe nt

case study OD pair, which is not included in this thesis.
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Figure 5-8 Overview of the case studies onthe London Underground extended inner zone

network



Table 5-6 A summary of the case studies on the LU network, superstation network representation
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OD pair Route Time | RODS oJT
Case | Origin | Destination Line 1 Interchange 1 Line 2 Interchange 2 Line 3 | (min) | RC (%) | Sample | Sample

I] I ] s=1 =2 s=2 |l = ti{; wingS Tlf]ODS n]O]]T
Victoria YR Oxford Circus HOEN(S=) 176 | 74.8%

1| south | Holbom RV Green Park Pic (EB) 204 | 22mw| 097 [ ¥

2 Central Green NEUNWUS)E Oxford Circus RVINEI=)) 21.3| 81.2% 083 47
East Park oCTaNU =)l Holborm Pic (WB) 240 | 18.8%

. . >

3 Jubilee Jubilee _ 36.3| 89.0% 1196 286

West Central Wembley Park Finchley Road 33.3] 11.0%
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Case 1: VictoriaSouth - Holborn
Creating superstations

According to the Definition, the origin station, Victoria could be potentially grouped
together with other stations as for all reasonable routes of the Victoria —Holborn station-
to-station OD pair the first journey leg is onthe line (cf. Figure 3-3). Therefore,
the candidate stations of the origin superstation are the stations between Brixton and
Victoria (cf. Figure 5-8). Referring to the Definition, the destination station (Holborn)

cannot be grouped with other stations, as the last journey leg of the reasonable routes are
on different lines (@&l and [Ieee=telll)Y lines).

In order to decide whether these origin stations can be grouped together — based on the
Definition — the route choice set of each station-to-station OD pair was compared by
applying the route choice set generation algorithm with the appropriate considerations for
the OD specific attribute cut-offs (cf. Section 5.3.3) on the extended LU inner zone
network (cf. Figure 5-8) for the OD pairs presented in Table 5-7.

Table 5-7 OD pairs for which route choice set was compared, Case 1

OD pair Origin Destination
1 Brixton Holbom
2 Stockwell Holborn
3 Vauxhall Holbom
4 Pimlico Holborn
5 Victoria Holborn

Results (see Figure 5-9) show that the route choice set is the same from all origin stations,
except from Stockwell station. The reason why the Stockwell — Holborn station-to-
station OD pair has a different route choice set is that passengers boarding at Stockwell
station can also take the line2® towards their destination and change either at
Tottenham Court Road station to the line orat Leicester Square station to the

20 The line of the London Underground has two branches within the inner zone: via Bank and
via Charing Cross. Most of the services that depart from Stockwell go via Bank and there are only few
direct services that go via Charing Cross. In most of the cases passengers need to change at Kennington.
Here it was assumed, that passengers choosing the line at Stockwell arrive at the platform
according to the departure time of the direct service, and therefore a lower value ofwait time was considered.



130
line (cf. Figure 5-8). The generalised cost proportion of these routes are 1.12
and 1.13 respectively. Looking this more precisely, it can be further understood, that as
at Stockwell station the northbound and lines depart from adjacent
platforms, passengers do not necessarily choose routes, but strategies including the option
to board whichever line comes first (Nguyen and Pallottino, 1988; Spiess and Florian,
1989). Due to these differences in the route choice set, Stockwell station cannot be

grouped with the other stations as a superstation (Rule 2).

Attribute cut-gff: Generalised cost proportion

1®
pc=1.15
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1 1.9 1.2 13 14 16 1.6 1.7

Generalised cost proportion

® Reasonable routes: Victoria line

® Additional route options: Northern line
X Other unreasonable routes
— Attribute cut-off

Figure 5-9 Attribute cut-off according to generalised cost proportions, Case 1

Among the other stations, it is clear that from Vauxhall and Pimlico stations passengers
have the same route choice set as from Victoria station, as there are no additional
attractive route options in those cases. Results showed, that passengers have the same
route choice set also from Brixton station: even though they have the option to change to
the line at Stockwell, those routes are not reasonable (generalised cost
proportion is 1.24 and 1.25 respectively, see. Figure 5-9).
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In summary, the following stations could be grouped as the origin superstation: Brixton,

Vauxhall, Pimlico and Victoria. This superstation is named |Victoria South|21 (Figure

5-10). The fact of including Brixton, but not Stockwell station illustrates, that even

though stations are not consecutive, they can be still grouped as superstations (Rule 3).
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Piccadilly line
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. Destination station
< Interchange
Vauxhall

Victoria
South, seen

Figure 5-10 The |Victoria South- Holborn superstation-to-station OD pair

Comparing the generalised cost proportion of the shortest routes (pc,;;) for the four OD

pairs that have their origin at the |Victoria South superstation (cf. Figure 5-9) it can be

understood that they depend on the OD minimum journey time. Looking at the third
shortest route: — [RIEEIIY (via King’s Cross), for the OD pair with the longest
minimum - travel time (Brixton — Holborn) pc,;; is 1.17, while for the OD pair with the
shortest minimum travel time (Victoria — Holborn) it is 1.21. According to the earlier

considerations (cf. Chapter 4), the option to change at King’s Cross station is not a

21 The [character border| in the text denotes superstation
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reasonable route for these OD pairs, as staying on the line after Oxford Circus
station would be a sort of turning away from the destination (Dial, 1971). Therefore the
attribute cut-off pc was set lower: 1.15 instead of 1.18 so that the route -
(via King’s Cross) could be excluded for all OD pairs.

Obtaining Centroid-to-Centroid adjusted Observed Journey Times

Similarly to the Victoria — Holborn station-to-station OD pair, the sample size of OJTs
was small also for the OD pairs from the other stations of the origin superstation (Figure
5-11). Therefore a larger and better distributed data sample needs to be obtained (cf.
Section 5.4).

Brixton - Holborn Vauxhall - Holborn Pimlico - Holborn Victoria - Holborn
& ojT | | ojT 10 T

oFT _ _ _
Ry = 77| iz = © T3y =

‘i, lﬂ 1| I Al M

’ | Moy T

54

Figure 5-11 Distribution of Observed Journey Times (OJT) for station-to-station OD

pairs for |Victoria South- Holborn

For the origin superstation, |Victoria South|, the Victoria station was selected as the

superstation centroid (marked with @ on Figure 5-10 and highlighted with Gféen in
Table 5-8) to make the comparison more straightforward with the case study on the
station-to-station OD pair (cf. Section 5.4.1). The destination is a single station
(Holborn), therefore it is the centroid itself.

Table 5-8 Adjustment of OJTs according to on-board and access time

for |Victoria South- Holborn, superstation centroids are highlighted with green.

Origin On-board time Access time
i | oy | Hnay | thao tace Atfiyac)
[min] [min] [min] [min] [min]
Brixton 0 7 1.9 0.5 1
Vauxhall 4 4 3 1.4 1.0 1
Pimlico 1 5 2 1.7 0.7 1
Victoria 2 7 0 2.4 0.0 0
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Following this, the OJTs of the station-to-station OD pairs (OJT ;) ;) were adjusted to
superstation centroid according to equation (5-8) (cf. Section 5.4.2). This way the
CCOJTs corresponding to each station-to-station OD pair (ccojT;,;,) are obtained.

Table 5-8 shows the necessary adjustments according to the on-board (¢85, ,.,) and access

(atiss,.) time at the origin superstation. As the destination s a single station (Holborn),

: H : b egr
there is no need to do adjustments according to on-board (¢} ;) and egress (At( 17 ]C))

times at the destination. As all services on the line terminate at Brixton, the
frequency and hence the wait time is the same at all origin stations, there is no need to do
adjustments according to wait time (ac¢t/2¢,,). All adjustments values are rounded to the
nearest minute as the OJTs from Oyster data are given with that precision.

The CCOJTs corresponding to each station-to-station OD pair (CCOJT ;) Were
aggregated (cf. Section 5.4.3), resulting in a dataset (CCOJT;;) with larger sample size

(ny " = 147) (Figure 5-12).

CCOJT distribution for OD pair Victoria South-Holborn
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Figure 5-12 Distribution of Centroid-to-Centroid adjusted Observed Journey Times
for |Victoria South- Holborn
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Evaluation of the benefits of the superstation representation

The finite mixture model (cf. Chapter 3) was applied on this larger dataset of CCOJTs.
Within this dataset all entries could be considered as valid data, because the upper outer
fence (cf. Section 3.2.1) resulted 37 minutes, while the maximum CCOJT value is 31
minutes. This valid dataset is denoted by CCOJT®.

As for the superstation-to-station OD pair — similarly to the case study in Section 3.7 —
two reasonable routes were assumed, route choice was estimated as a two-component
(Np = 2) finite mixture distribution. Therefore, the K-means clustering algorithm was
applied on the CCOJT° dataset with two clusters and with the settings described in
Section 3.3.1 to produce the initial values for the EM algorithm. Using these initial
values, the EM algorithm was run with different settings for the tolerance threshold (cf.
Section 3.3.2). The more detailed results of initial values and tolerance thresholds are

reported in Appendix F.

From there it is understood that when the tolerance threshold is 1e-06 or greater, the EM
algorithm converges to a root close to the initial value for seed 1. But when the tolerance
threshold is 1e-07 or smaller, the EM algorithm converges to a root around 18.1 minutes
for the mean and 66.0% for the proportion of component 1 for both seeds (see Figure F-1
and Figure F-2). Similar properties could be observed for the other mixture component
(labelled with r = 2). The log-likelihood exhibits a considerable jump between the
tolerance threshold of 1e-02 and le-03 (Figure F-3).

According to RODS data, the aggregate route choice proportions for the two routes

(wp%P®) of the \Victoria South| — Holborn superstation-to-station OD pair are 74.8% and

25.2% (see Table 5-10). Among the estimates, the one with seed 1 and tolerance threshold
1e-06 gives the best approximation to RODS results, therefore these settings were chosen
for the finite mixture model (Table 5-9). Through this case study it resulted that this
tolerance threshold is smaller than the one in case of station-to-station OD pairs (i.e.
1e-05, cf. Section 3.7).



135

Table 5-9 Finite mixture model results; with Seed = 1, Tolerance threshold = 1e-06
for |Victoria Southl — Holborn,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays

Label Mixture model
r wg | oony | wrg
[ [min] [min] [%]
1 18.2 24| 70.8%
2 23.7 34| 29.2%

Following this, the results of the finite mixture model were matched with the actual LU
routes (cf. Section 3.4.1). As the centroid of the origin superstation coincides with the
origin station of Case 1 in Chapter 3 (Victoria) and the destination station is a single
station (Holborn), the Scheduled Journey Time of the actual LU routes (t,’)) are the
same as the results in Table 3-5. It is expected that the mixture component with the lower
mean (r = 1) corresponds to the route with the shorter journey time (k = 1). Similarly
the component with the higher mean (r = 2) to the route with the longer journey time
(k =2).

Table 5-10 compares the mixture results for the |Victoria South — Holborn superstation-

to-station OD pair with the Victoria — Holborn station-to-station OD pair, together with
the results in Fu (2014) and corresponding values of the actual LU routes. Figure 5-13
presents the probability density functions of the mixture distribution fit on the CCOJT

dataset as well as of the mixture components matched with the actual LU routes.

Based on these results, the following was observed: While for the Victoria — Holborn
station-to-station OD pair the proportion of mixture component 1 (wy!'ffy;;)) exhibited a

significant jump from 79.8% to 33.5% between tolerance thresholds 1e-05and 1e-06 (cf.

Figure 3-6), the same jump for the [Victoria South — Holborn superstation-to-station

OD pair was much less (w;/*) (from 70.8% to 67.9%) and it occurred between tolerance
thresholds 1e-06 and 1le-07 (Figure F-2). This explains, that using a larger and better
distributed dataset of superstation-to-superstation OD pairs gives more stable route choice
results, which stays closer to the initial value (i.e. expected route choice results from
RODS) even for smaller tolerance thresholds.

Furthermore, while the Victoria — Holborn station-to-station OD pair the log-likelihood
had the jump between the tolerance threshold of 1e-05 and 1e-06 (cf. Figure 3-7), the
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same type of jump occurred between the tolerance threshold of 1e-02 and 1e-03 for the

\Victoria South — Holborn superstation-to-station OD pair (Figure F-3). From this it can

be understood, that the estimates for the superstation-to-superstation OD pairs are more

reliable also at a greater threshold.
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Table 5-10 Matching mixture model results with the actual London Underground routes for |Victoria South- Holbormn

(VSR Mixture results, superstation OD pairs, [f&s: Mixture results, station OD pairs, Yellow: Fu (2014), €I} actual LU routes

Mixture Journey Time (min) Route Choice (%) Route Route Matched
Label Mixture Timetable Mixture RODS | Label | Line 1 | Interchange 1 | Line 2
Proposed | Fu(2014) Proposed | Fu(2014)
Superstation Station Superstation Station
r Moty e tory Wy W70 Uj) wiy | k| 1= s=1 L=
1 18.2| 17.6 16.6 17.6 70.8% | 79.8% | 75.4% | 74.8% 1| Vic Oxford Circus | Cen
2 23.7| 26.1 22.2 20.4 29.2% | 20.2% | 24.6% | 25.2% 2 | Vic Green Park Pic
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Mixture Distribution for OD pair Victoria South-Holborn

[ CcCOJT Empirical Distribution
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Figure 5-13 Estimated (Gaussian) journey time distribution of the routes for |Victoria South — Holborn,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays
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Case 2 Central East — Green Park

Creating superstations

According to the Definition, the origin station, Liverpool Street could be potentially

grouped together with other stations, as for all reasonable routes of the Liverpool Street
— Green Park station-to-station OD pair the first journey leg is on the line (cf.

Figure 3-9). Therefore, the candidate stations of the origin superstation are the stations

between Epping and Chancery Lane, including the stations on the Hainault loop (cf.

Figure 5-8). Referring to the Definition, the destination station (Green Park) cannot be

grouped with other stations, asthe last journey leg of the reasonable routes are on differe nt

lines ((®=laliel, [eetelll) and

Table 5-11 OD pairs for which

lines).

route choice set was compared, Case 2

OD pair Origin Destination
1 Epping Green Park
2 Theydon Bois Green Park
3 Debden Green Park
4 Loughton Green Park
5 Buckhurst Hill Green Park
6 Woodford Green Park
7 South Woodford Green Park
8 Snaresbrook Green Park
9 Leytonstone Green Park
10 Leyton Green Park
11 Stratford Green Park
12 Mile End Green Park
13 Bethnal Green Green Park
14 Liverpool Street | Green Park
15 Bank Green Park
16 St Paul’s Green Park
17 Chancery Lane Green Park
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In order to decide whether these origin stations can be grouped together — based on the
Definition — the route choice set of each station-to-station OD pair was compared by
applying the route choice set generation algorithm with the appropriate considerations for
the OD specific attribute cut-offs (cf. Section 5.3.3) on the extended LU inner zone
network (cf. Figure 5-8) for the all the OD pairs, whose origin station is on the Epping
branch?2 of the line (between Epping and Chancery Lane) and whose
destination station is Green Park (Table 5-11).

Results (see Figure 5-14) show that the route choice set from Stratford (OD 11) and
Bank (OD 15) stations are quite different from the patterns of other stations. This is
because from these stations other attractive lines are available apart from the
line. From Stratford station passengers can also take the line to Green Park.
Although this route has slightly longer travel time, than the route M VictorialVE!
Oxford Circus (32.7 and 29.7 minutes respectively), it has the advantage that it is a direct
service. Furthermore, as Stratford station is the terminus of the line, trains are
not crowded at boarding and hence passengers may be able to get a seat. In accordance
with this, the route choice set generation algorithm gave this option as the shortest route
(in terms of generalised costs) for the Stratford — Green Park OD pair. From Bank
station, many lines are available, among which taking the line to London
Bridge, then changing to the line (cf. Figure 5-8) is shown to be a reasonable
route. Due to these differences in the route choice set, Stratford and Bank stations cannot

be grouped together with the other stations as a superstation (Rule 2).

Among the other stations, the route choice set is the same from the stations before
Stratford (OD 1-10). From these stations, apart from the routes via the line, also
the route option to change to the Jubilee line at Stratford is reasonable. It is shown to be

the second shortest route (see Figure 5-14).

Similarly, also the stations after Stratford, excluding Bank (OD 12, 13, 14, 16 and 17)
have the same route choice set among each other: the routes via the line. From
Liverpool Street (OD 14), apart from the line, also the Circle line is available
and the Circle — W8BJgE via King’s Cross route is shown to be the fourth shortest route
(1.10 times the generalised cost of the shortest route, see Figure 5-14). However, as it

was discussed earlier (cf. Section 4.7.4.2), a lower cut-off (6¢) value was suggested for

22 In order to make the network model simpler, the line was represented only with the stations on
the Epping branch. It was assumed that form the stations on the Hainault loop, passengers are expected to
have the same route choice set.
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the Liverpool Street— Green Park OD pair; and hence only the first two shortest routes
(both having their first journey leg on the line) were considered reasonable. This
way, the other stations with their origin on the line (Mile End, Bethnal Green,
St Paul’s and Chancery Lane) could be grouped together with the Liverpool Street

station

Attribute cut-off: Generalised cost proportion
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Figure 5-14 Attribute cut-off according to generalised cost proportions, Case 2

In summary, two superstations could be created by grouping the stations on the east end
of the line (Figure 5-15):

e All the stations between Epping and Leyton, including the Hainault loop: 20

stations in total. This superstation is named [Central East Outer].
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e Stations between Mile End and Chancery Lane, excluding Bank: 4 stations in

total. This superstation is named |Central East).
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Figure 5-15 The |Central Eastl— Green Park superstation-to-station OD pair

Within the [Central East Outer] superstation, there are multiple line services (i.e.

Epping branch, Hainault loop and the short runs on it). This would result that the service
frequencies and hence the wait time are not equal at different origin stations. Based on
Rule 4, these stations can be still grouped as superstations, just the appropriate adjustment
needs to be made according to the difference in wait time.

The fact of excluding Bank station from the superstation, but including the

stations before and after, illustrates, that even though stations are not consecutive, they

can be still grouped as superstations (Rule 3).
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Regarding the attribute cut-off values (pc), the following needs to be considered: For the

OD pairs originating at the |Central East Outer| superstation, for all routes the first

journey leg is on the line and the different route options are to change to the
connecting lines that bring to the destination (Green Park). For these OD pairs the main
attribute that influences pc is the OD minimum journey time: Regarding the OD pairs
originating at the superstation, at some stations (e.g. Liverpool Street)
there are other available lines for the first journey leg. Therefore for these OD pairs the
main attribute that influences pc is the number of available lines at the origin and
destination station. As it was elucidated earlier (cf. Section 3.7), the -

(via Bond Street) route would be a sort of turning away from the destination (Dial,
1971), therefore the attribute cut-offs were set to exclude that route from the set of
reasonable routes. This way pc resulted 1.05 for the OD pairs that originate at the
Central East Outer] superstation and 1.08 for those, which originate at the

superstation (Figure 5-14). This is much lower than the value obtained in Chapter 4
(1.18).

In the remaining part of this case study, the adjustment of Observed Journey Times (OJT)

and the application of the finite mixture model on the Centroid-to-Centroid adjusted OJTs

(CCOJT) is elaborated only for the — Green Park superstation-to-station
OD pair. Following the previous discussion on the exclusion of the -

(via Bond Street) route from the reasonable route choice set, two reasonable routes are
considered for this OD pair and hence route choice is estimated with a two-component

finite mixture model.

Obtaining Centroid-to-Centroid adjusted Observed Journey Times

Similarly to the Liverpool Street— Green Park station-to-station OD pair, the sample
size of OJTs was small also for the OD pairs from the other stations of the origin
superstation (Figure 5-16). Among them, no OJT record was available for the Chancery
Lane — Green Park OD pair, and only 1 observation for the St. Paul’s — Green Park
OD pair. Obviously, in those cases there is less sense to talk about route choice
probabilities. Therefore a larger and better distributed dataset needs to be obtained (cf.
Section 5.4).
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Figure 5-16 Distribution of Observed Journey Times (OJT) for station-to-station OD

pairs for (Central East— Green Park

For the origin superstation, [Central East, Liverpool Street station was selected as the
superstation centroid (marked with @ on Figure 5-15 and highlighted with green in
Table 5-12) to make the comparison more straightforward with the case study on the
station-to-station OD pair (cf. Section 5.4.1). The destination is a single station (Green
Park), therefore it is the centroid itself.

Table 5-12 Adjustment of OJTs according to on-board and access time

for Green Park, superstation centroids are highlighted with green.

Origin On-board time Access time
Ii th-vyan |t toh e tace Atliyac
[min] [min] [min] [min] [min]
Mile End 0 6 0.3 2.3 2
Bethnal Green 3 3 3 0.4 2.2 2
Liverpool Street 3 6 0 2.6 0.0 0
St Pauls 3 9 -3 1.4 1.3 1
Chancery Lane 2 11 -5 1.4 1.2 1

Following this, the OJTs of the station-to-station OD pairs (OJT ;) (;;,) Were adjusted to

superstation centroid according to equation (5-8) (cf. Section 5.4.2). This way the
CCOJTs corresponding to each station-to-station OD pair (ccojT,,;,) are obtained.

Table 5-12 shows the necessary adjustments according to the on-board (¢} .,) and

access (atie,.)) time at the origin superstation. As the destination (Green Park) is a

single station, there is no need to do adjustments according to on-board (tg’}’j)( Jey) and

egress (At(})) ) times at the destination. As all services on the line start before

Mile End station, the frequency and hence the wait time is the same at all origin stations,

there is no need to do adjustments according to wait time (ac;3t,))- All adjustments values
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are rounded to the nearest minute as the OJTs from Oyster data are given with that

precision.

The CCOJTs corresponding to each station-to-station OD pair (CCOJT;;(;5) Were
aggregated (cf. Section 5.4.3), resulting in a dataset (CCOJT;;) with larger sample size

(ny " = 47) (see Figure 5-17).

Evaluation of the benefits of the superstation representation

The finite mixture model presented in Chapter 3 was applied on this larger dataset of
CCOJTs. Within this dataset, one CCOJT value was considered as an outlier
(42 minutes); because it is above the upper outer fence, which resulted 38.25 minutes (cf.
Section 3.2.1). This valid dataset with 46 entries is denoted by CCOJT° (Figure 5-18).
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CCOJT distribution for OD pair Central East-Green Park

Frequency
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Figure 5-17 Distribution of Centroid-to-Centroid adjusted Observed Journey Times

for Green Park

CCOJT distribution for OD pair Central East-Green Park
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Figure 5-18 Valid dataset of Centroid-to-Centroid adjusted Observed Journey Times

for |Central East- Green Park
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Based on the results of the route choice set generation algorithm (Figure 5-14), the
Central East] — Green Park superstation-to-station OD pair was modelled with two

reasonable routes, hence route choice was estimated as a two-component (N, = 2) finite
mixture distribution. Therefore, the K-means clustering algorithm was applied on the
0JT? dataset with two clusters and with the settings described in Section 3.3.1 to produce
the initial values for the EM algorithm. Using these initial values, the EM algorithm was
run with different settings for the tolerance threshold (cf. Section 3.3.2). The more

detailed results of initial values and tolerance thresholds are reported in Appendix F.

From there it is understood, that the EM algorithm converges to asimilar value for a range
of tolerance thresholds both for the mean and for the component proportion. For the
mixture component labelled with = 1, it starts plateauing from the tolerance threshold
of 1le-07 around the value of 20.6 minutes for the mean and 80.3% for the component
proportion (see Figure F-4 and Figure F-5). Similar properties could be observed for the
other mixture component labelled with r = 2. Due to these considerations, the finite
mixture model was applied with the tolerance threshold of 1e-07 (Table 5-13). In this
case, this is identical to the tolerance threshold chosen for the station-to-station OD pair
(cf. Section 3.7).

Table 5-13 Finite mixture model results, tolerance threshold = 1e-07

for |Central East Green Park,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays

Label Mixture model
MIX MIX MIX
r llr,_u Gr,{] Wy 1y
[ [min] [min] [%]
1 20.6 2.3 | 80.3%
29.5 4.7 19.7%

Following this, the results of the finite mixture model were matched with the actual LU
routes (cf. Section 3.4.1). As the centroid of the origin superstation coincides with the

origin station of Case 2 in Chapter 3 (Liverpool Street) and the destination station is a
single station (Green Park), the total journey times of the actual LU routes (t,f{,j) are the

same as the results in Table 3-11. The mixture components were matched with the actual

LU routes in order of their journey times.
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Table 5-14 compares the mixture results for the [Central East — Green Park

superstation-to-station OD pair with the Liverpool Street — Green Park station-to-
station OD pair together with corresponding values of the actual LU routes. Here, the
comparison could not be made with the results of Fu (2014) as in his work route choice
was estimated as a three-component mixture distribution, while in this chapter it was
treated with two components. Figure 5-19 presents the probability density functions of
the mixture distribution fit on the CCOJT dataset as well as of the mixture components

matched with the actual LU routes.

Based on these results, the following was observed: The component proportion results of
the mixture model for the — Green Park superstation-to-station OD pair
(80.3% and 19.7%) gave a good match to the RODS (cf. Section 3.6.3) route choice data
(81.2% and 18.8%). The same for the Liverpool Street — Green Park station-to-station

with two mixture components was 93.3% and 6.7%, which is very far from the actual

results.

However, the mean journey time results for the two components (20.6 and 29.5 minutes)
did not show a good match to the actual LU journey times (21.3 and 24.0 minutes). A
possible explanation for this could be, that the higher OJT observations (i.e. 35-36
minutes) could be also attributed to a fail-to-board event, not necessarily to the longer
route.
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Table 5-14 Matching mixture model results with the actual London Underground routes for |(Central East— Green Park
VSR Mixture results, superstation OD pairs, [l Mixture results, station OD pairs, [Effay: actual LU routes

Mixture Journey Time (min) Route Choice (% Route Route Matched
Label Mixture Timetable Mixture RODS | Label | Line 1 | Interchange 1 Line 2
Proposed Proposed
Superstation Station Superstation Station
T wgy K un tery WMl wrlhan | @RdPE k =1 s=1 =2
1 20.6 20.6 21.3 80.3% 93.3% 81.2% 1 | Central | Oxford Circus Victoria
2 29.5 35.5 24.0 19.7% 6.7% 18.8% 2 | Central | Holborn Piccadilly
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Mixture Distribution for OD pair Central East-Green Park
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Figure 5-19 Estimated (Gaussian) journey time distribution of the routes for Green Park,
OJTs adjusted to superstation centroid, but not according to fail-to-board delays
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Case 3 Jubilee West — Jubilee Central

Creating superstations

Case 3 represents the choice problem of those passengers whose origin is on the west end

of the line (between Stanmore and Kingsbury stations) and their destination is
on the central part of the line (between Bond Street and London Bridge
stations). For them one alternative is to choose a direct service ( line) with many

intermediate stops between Wembley Park and Finchley Road stations. The other
alternatives are to change to an express service (YIHuoealEs line) at Wembley Park
station, then change back to the line either at Finchley Road or at Baker Street
station. Additionally, to some destinations also changing to the line at Baker
Street station can be a convenient alternative (see Figure 5-20). In order to further
understand which of these route options are reasonable, the route choice set generation
algorithm is applied with the appropriate considerations for the OD specific attribute cut-
offs (cf. Section 5.3.3).

According to the Definition, both the origin and destination stations could be potentially
grouped together, as for all reasonable routes of the corresponding OD pairs the first and
the last journey leg is on the line. Therefore, the candidate stations of the origin
superstation are the stations between Stanmore and Kingsbury; and the candidate
stations of the destination superstation are the stations between Bond Streetand London
Bridge.

In order to decide whether these origin and destination stations can be grouped together
—based on the Definition —the route choice set of each station-to-station OD pair (in total
24 OD pairs, see Table 5-15) were compared by applying the route choice set generation
algorithm with the appropriate considerations for the OD specific attribute cut-offs (cf.
Section 5.3.3) on the extended LU inner zone network (cf. Figure 5-8).

Results (Figure 5-21) show that for all OD pairs the shortest route (in terms of generalised
costs) is the direct route ( line). The second shortest route almost for all OD pairs
is the option to change to the line at Wembley Park station, then change
back to the line at Finchley Road station. The generalised cost of this route is
1.14-1.21 times as the generalised cost of the shortest route depending on the OD pair.
This route is still considered reasonable. The option to change to the line
at Wembley Park station, then change back to the line at Baker Street station

has a much higher generalised cost (1.28-1.41 times the generalised cost of the shortest
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route). This is because the interchange at Baker Street station requires walk time between
the and \WEgelelslliely platforms, while at Finchley Road station the platforms

are adjacent.
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WeSt Bakerloo QO station
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Waterloo outhwark

Figure 5-20 Candidate stations for origin and destination superstation, Case 3
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Table 5-15 OD pairs for which route choice set was compared, Case 3

O\D Bond Street Green Park Westminster Waterloo Southwark London Bridge
Stanmore 1 5 9 13 17 21
Canons Park 2 6 10 14 18 22
Queensbury 3 7 11 15 19 23
Kingsbury 4 8 12 16 20 24
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It can be easily understood that the route choice set is the same across the OD pairs, whose
destination station is the same, but their origin station is different (e.g. OD 1-4). This can
be explained with the fact that as the four origin stations (Stanmore, Canons Park,
Queensbury and Kingsbury stations) are before the first interchange station; passengers
having their origin at these stations have similar route choice patterns. Therefore these

four stations can be grouped as the origin superstation (Rule 1), which is named

Jubilee West) (see Figure 5-22).

Attribute cut-off: Generalised cost proportion
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0D pair
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1 1.2 14 16 1.8 2 2.2
Generalised cost proportion

® Reasonable route: Jubilee line, direct service
® Additional route option: Jubilee + Metropolitan + Jubilee
Additional route option: Change to Bakerloo at Baker Street

X Other unreasonable routes
— Attribute cut-off

Figure 5-21 Attribute cut-off according to generalised cost proportions, Case 3

Regarding the destination stations, the question is more complex as there are many lines
and hence route options within the LU inner zone. Results of the route choice set
generation algorithm show that the route choice setto Waterloo station is different from
the route choice set to other stations. This is because from Baker Street also the
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line is available to the \Waterloo station. Due to this, \WWaterloo station is not included in
the destination superstation (Rule 2).

Results show that the route choice set is the same among the OD pairs with destination at
other stations (Bond Street, Green Park, Westminster, Southwark and London

Bridge). Therefore these five stations cold be grouped together as the destination

superstation (Rule 2), which is named |[Jubilee Central (see Figure 5-22). The fact of

grouping these five station, without \Waterloo, illustrates, that even though stations are

not consecutive, they can be still grouped as superstations (Rule 3)

Jubilee
West

Stanmore Legend
Canons Park
Queensbury Jubilee
Kingsbury Metropolitan
Wembley Park @) Station
[} Centroid
@& O/D superstation
O Interchange
Finchley
Road
Baker
Street
Bond
Street
met Jubilee Central
Park

West
minster London
Bridge

Waterloo

Southwark

Figure 5-22 The [Jubilee Westl— [Jubilee Centrall superstation-to-superstation OD pair

For the OD pairs with destination at Green Park station, the third shortest route is the
option to change to the line at Baker Street station then to the line at
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Oxford Circus station. This option have the advantage that at Oxford Circus station the
platforms of the and lines are adjacent, and the egress time from the
line at Green Park station is lower than from the line. However as the
generalised cost of this this option is 1.29-1.35times as the generalised cost of the shortest
route, it was not considered as a reasonable route and hence the Green Park station could

be grouped with the other four stations as a destination superstation.

In Case 3 the main OD specific attribute that influences pc is the presence of a direct
route and an express line. As it was elucidated (cf. Section 4.7.4.2), when there is direct
route for an OD pair, passengers consider other indirect routes reasonable only if they are
much better in other attributes. In this specific case, this attribute is the presence of an
express line: they can save in average 3 minutes of journey time while the interchanges
are still acceptable as they happen between adjacent platforms. For this reason the indirect
route could be considered reasonable, even though its generalised cost is 1.14-1.21 times
the generalised cost of the shortest route. Based on these considerations, the attribute cut-
off (pc) was set as 1.22 (cf. Figure 5-21), which is slightly higher than the value obtained
in Chapter 4 (1.18).

Obtaining Centroid-to-Centroid adjusted Observed Journey Times

For the Dubilee West| and |[Jubilee Central origin and destination superstations,

Stanmore and Bond Street stations were selected as the superstation centroid

respectively (marked with O on Figure 5-22 and highlighted with green in Table 5-16
and Table 5-17, cf. Section 5.4.1).

The sample size of OJTs was small for individual OD station-to-station pairs, especially
for those having their destination at Southwark (Figure 5-23). Therefore a larger and
better distributed dataset needs to be obtained (cf. Section 5.4).

Table 5-16 Adjustment of OJTs according to on-board and access times
at |[Jubilee West) origin superstation, centroids are highlighted with green

Origin On-board time Access time
li th-nay |ty toh ic) tace At{iiyac
[min] [min] [min] [min] [min]
Stanmore 0 0 0.6 0.0 0
Canons Park 2 2 2 0.4 0.2 0
Queensbury 2 4 4 0.6 0.0 0
Kingsbury 3 7 7 0.5 0.1 0
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Table 5-17 Adjustment of OJTs according to on-board and egress times

at |Jubilee Central| destination superstation, centroids are highlighted with green

Destination On-board time Egress time
li th-vup | toon | theo | G AtGhue
[min] [min] [min] [min] [min]
Bond Street 0 0 3.2 0.0 0
Green Park 2 2 -2 3.5 -0.3 0
Westminster 2 4 -4 2.7 0.5 1
Southwark 2 6 -6 3.1 0.1 0
London Bridge 2 8 -8 1.6 1.6 2

Following this, the OJTs of the station-to-station OD pairs (OJT;;)(;;,) were adjusted to
superstation centroid according to equation (5-8) (cf. Section 5.4.2). This way the
CCOJTs corresponding to each station-to-station OD pair (ccojT,;,,,) are obtained.

Table 5-16 presents the necessary adjustments according to the on-board (% ,.,) and

access (atéss,,,) time at the origin superstation (Jubilee West). Table 5-17 presents the

necessary adjustments according to the on-board (t¢/})(;)) and egress (At() ) times at
the destination superstation (Jubilee Central|. As the line has the same frequency

and hence wait time across all the stations of the origin and destination superstation, there
is no need to do adjustments according to wait time (acyya?,)). All adjustments values are

rounded to the nearest minute, as the OJTs from Oyster data are given with that precision.

The CCOJTs corresponding to each station-to-station OD pair (CCOJT ;) ;5,) Were
aggregated (cf. Section 5.4.3), resulting in a dataset (CCOJT;;) with larger sample size

(ny; " = 286) (Figure 5-24).
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Figure 5-23 Distribution of Observed Journey Times (OJT) for station-to-station OD pairs for Jubilee West—|Jubilee Centrall
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CCOJT distribution for OD pair Jubilee West-Jubilee Central
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Figure 5-24 Distribution of Centroid-to-Centroid adjusted OJTs
for Jubilee West-{Jubilee Centrall

Evaluation of the superstation representation

The finite mixture model presented in Chapter 3 was applied on this larger dataset of
CCOJTs. Within this dataset all entries could be considered as valid data, because the
upper outer fence (cf. Section 3.2.1) resulted 71 minutes, while the maximum CCOJT

value is 70 minutes. This valid dataset is denoted by CCOJT°.

Based on the results of the route choice set generation algorithm (Figure 5-21), the

Uubilee West| — [Jubilee Central superstation-to-superstation OD pair was modelled

with two reasonable routes, hence route choice was estimated as a two-component (N, =
2) finite mixture distribution. Therefore, the K-means clustering algorithm was applied
on the OJT° dataset with two clusters and with the settings described in Section 3.3.1 to
produce the initial values for the EM algorithm. Using these initial values, the EM
algorithm was run with different settings for the tolerance threshold (cf. Section 3.3.2).
The more detailed results of initial values and tolerance thresholds are reported in

Appendix F.
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From there it is understood, that although the EM algorithm converges to slightly different
values for the two seeds when the tolerance threshold is set greater; ata smaller tolerance
threshold, they converge to a similar value for both seeds: 41.5 minutes of mean journey
time and 78.3% of proportion for component 1 at the tolerance threshold of 1e-08 (Figure
F-7 and Figure F-8). Similar properties could be observed for the other mixture
component (labelled with r =2). The log-likelihood exhibits a jump between the
tolerance threshold of 1e-02 and 1e-03 (Figure F-9). Due to these considerations, the
finite mixture model was applied with the tolerance threshold of 1e-08 (Table 5-18).

Table 5-18 Finite mixture model results; with Seed = 1, Tolerance threshold = 1e-08
for Jubilee West-Jubilee Centrall

Label Mixture model
MIX MIX MIX
r Hr 1y 257 Wy g
[ [min] [min] [%]
1 41.5 3.6 | 78.5%
2 52.9 7.8 | 21.5%

Following this, the results of the finite mixture model were matched with the actual LU

routes (cf. Section 3.4.1). The total journey times (t’;;) of the actual LU routes between

the superstation centroids: Stanmore and Bond Street were calculated based on equation
(3-13). The results are presented in Table 5-19. The wait time at the origin stations and at
the second interchange station (Finchley Road station) was considered according to
equation (3-15). However at the first interchange station (\WWembley Park), a different
consideration was made: As the interchange happens between adjacent platforms and the
station is above ground, passengers travelling on the line may decide according
to the following strategy: If they see that a service is approaching, they
choose to interchange hoping that they will save time with the express service, otherwise,
they stay on the line as they are not likely to save time. For this reason, it is
assumed that passengers on the route with the express service have shorter wait time than
specified in equation (3-15): 1 minute. Considering the indirect route with shorter wait
time makes it possible to model the two routes with a greater difference in their journey
time (3 minutes). The mixture components were matched with the actual LU routes in

order of their journey times.
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Table 5-20 compares the mixture results for the Jubilee Westl — [Jubilee Centrall

superstation-to-superstation OD pair with the corresponding values of the actual LU
routes. In this case the OJT sample size of the station-to-station OD pairs was so small
(e.g. 35 OJTs for Stanmore — Bond Street) that the EM algorithm could not converge as
it created an ill-conditioned covariance at iteration 1. Therefore it could not serve for
comparison. As Fu (2014) did not examine this OD pair in his work, also that could not
be used for validation. Figure 5-25 presents the probability density functions of the
mixture distribution fit on the CCOJT dataset as well as of the mixture components

matched with the actual LU routes.

Based on these results, the following was observed: Matching the mixture components
with the actual LU routes in order of their journey times it turned out, that the mixture
component with lower mean (41.5 minutes) was matched with the indirect route (

- -~ via Wembley Park and Finchley Road, 33.3 minutes).
However that mixture component has a higher proportion (78.5%), while RODS data (cf.
Section 3.6.3) shows, that only 11% of the passengers have chosen the indirect route.
Another crucial point is that, the mixture component with the higher mean (52.9 minutes)
it is much higher than the travel time of the routes understood from timetables (Section
3.6.2).

One explanation for these counterintuitive results is, that the higher OJT observations (i.e.
50-70 minutes) could be also attributed to a fail-to-board event on the line
at Wembley Park station. Apart from that — due to the longer distance between the origin
and destination — many other events may occur that affect the reliability of travel times,
such as service delays or longer walk times at crowded stations. Furthermore, as the
RODS data have been collected over several years, it may not reflect the same time period

as the journey times understood from timetable.

Looking at the route choice problem from the practical prospective; even though the
results in Table 5-20 show that on average passengers could save 3 minutes of travel
time, by taking the indirect route; in this specific case, travel time can be saved, only if
they can manage to change back at Finchley Road to the train ahead of the one
which they got off?3. As this question would require schedule based approach, it is beyond

the scope of this thesis.

23 This question is more complex as some of the trains start from Wembley Park, Willesden Green
or West Hamps tead.
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Table 5-19 Journey time of actual London Underground routes between superstation centroids for Jubilee West—Jubilee Centrall

Route Journey Time [min]
k|ll=1 s=1 =2 s=2 L=3 |t | e | 0% | % || toh | th% | R ] B |ty | &
1 0.6 15| 31.0 3.2 | 36.3
2 Wembley Park Finchley Road 06 15[ 110] 00| 10| 70| 00| 10| 80| 32| 333

Table 5-20 Matching mixture model results with the actual London Underground routes for [Jubilee Westl-|Jubilee Central|
[JEE: Mixture results, superstation OD pairs, [E]{3a): actual LU routes

Mixture | Journey Time (min) | Route Choice (%) | Route Route Matched
Label Mixture | Timetable | Mixture | RODS | Label | Line 1 | Interchange 1 | Line 2 | Interchange 2 | Line 3
r uMix tor) wMX | RSl k| 1L= s=1 1=2 s=2 I =
1 415 33.3| 785% | 11.0% 2 | Jub Wembley Park | Met Finchley Road | Jub
2 52.9 36.3| 21.5% | 89.0% 1| Jub
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Mixture Distribution for OD pair Jubilee West-Jubilee Central
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Figure 5-25 Estimated (Gaussian) journey time distribution of the routes for [Jubilee West|—Jubilee Centrall,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays
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5.7 Discussionand summary

5.7.1 Creating superstations

The main objective in this chapter was to overcome the issue of data availability raised in
Section 3.8.2: As in many cases only asmall OJT sample is available for station-to-station
OD pairs, the finite mixture model applied on that dataset is unable to give reliable results.
For this, it was proposed to group those stations from/to which passengers are expected
to have similar route choice patterns. This group of stations are called superstations in

this thesis.

Literature review in this section has shown that, although there have been existing studies
where the concept of working with groups of stations was examined, they proposed this
idea for the objective of getting a better understanding on the OD demand matrix of a
public transport network. In order to comply this objective the vast majority of these
studies dealt with grouping stations in the proximity of activity locations or transport
hubs. The nowvelty in this thesis is to introduce the concept of working with groups of
stations for a different objective: to overcome the data availability issues for route choice
estimation. As the objective is different, the methodology of existing studies could not be

applied straightforward, but new rules were set for station grouping.

Creating origin and destination superstations is equivalent to group the OD pairs with
similar route choice patterns. For this, the route choice set generation model (cf. Section
5.3.3) was applied to find the OD pairs with the same route choice set. The novelty of the
route choice set generation algorithm in this chapter with respect to the one in Chapter 4
is that instead of applying asingle cut-off value (i.e. generalised cost proportion of 1.18),
it was discussed how the cut off values vary in function of certain OD specific attributes.
Through the case studies (cf. Section 5.6) it was understood that a lower attribute cut-off
is expected for OD pairs with longer minimum journey time as well as for those which
have more available directions at the origin and/or destination station (Case 2). On the
other hand, a higher attribute cut-off is expected when the choice of passengers is between
adirect route and an express line (Case 3). Based on this, the number of reasonable routes

was also identified, which is equivalent to the number of mixture components.

In these case studies 4-5 stations could be grouped as origin or destination superstations,

which are not necessarily consecutive stations. Case 2 exhibited a specific example of

grouping 20 stations as the origin superstation (i.e. the [Central East Outer| superstation
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on the line, before the first interchange station: Stratford). In Case 3, both for
the origin and destination stations could be grouped as superstations: 4 and 5 stations
respectively. This gave the benefit to aggregate the adjusted OJTs of 4*5=20 station-to-
station OD pairs.

Until now the superstation representation was examined only for certain OD pairs. In
order to extend this concept for network problems it would be necessary to find all OD
pairs, for which the superstation representation is applicable. As the LU network is very
complex, this could not be done just by looking at the map, but an appropriate algorithm

is required (see Section 8.2.2).

5.7.2 Obtaining Centroid-to-Centroid adjusted Observed Journey Times

Once the OD pairs with similar route choice patterns were grouped, their OJTs were
adjusted to superstation centroids and then aggregated. This way a larger and better
distributed sample of CCOJTs were obtained. Depending on the case study OD pair, the
superstation representation could increase the number of available observations in

different manner.

In Case 1, 54 OJT records were available for the Victoria — Holborn station-to-station
OD pair. Grouping the Victoria station with 3 other stations, this sample size could be
increased to 147 CCOJT records (2.72 times) for the |Victoria Southl — Holborn

superstation-to-superstation OD pair. The great benefit in this case that also the Brixton
station could be included in the superstation, from which a larger number of OJT records

(77) were available.

In Case 2, 30 OJT records were available for the Liverpool Street —Green Park station-

to-station OD pair. Here, station grouping could increase this sample size only to 47

CCOJT records (1.57 times) for the — Green Park superstation-to-
superstation OD pair as there were not too many OJT records available from other

stations.

In Case 3, the great advantage was, that both the origin and destination stations could be
grouped as superstations; and hence while only up to 35 OJT records were available for

station-to-station OD pairs, the sample size of CCOJT records could be increased to 286

for the [Jubilee West|—|Jubilee Central| superstation-to-superstation OD pair.
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The obvious advantage of the spatial aggregation of OJT records was to demonstrate that
a larger and better distributed dataset can be achieved also when only the open data is

available for the proposed research.

5.7.3 Application of the finite mixture model and evaluation of the

superstation representation

The data availability issues with the finte mixture model (cf. Section 3.8.2) in case of
very few or not well distributed OJT data sample meant that the EM algorithm could not
converge as it created an ill-conditioned covariance. This occurred for some of the station-
to-station OD pairs of Case 3. Obtaining a larger sample of CCOJTs for the superstation-
to-superstation OD pairs could overcome this issue as the EM algorithm could converge

for all three case study OD pairs.

Another issue with the finite mixture model was, that it may converge to more possible
solutions depending on the initial value (seed of the random number generator) and
tolerance threshold; and often these values are quite far from each other. For example,
when looking at the Victoria — Holborn station-to-station OD pair in Case 1, when the
tolerance threshold was set to 1le-05, the proportion of component 1 (w}'*) resulted

79.8% for seed 1 and 35.0% for seed 2. The same (wY(%,,;)) for the |Victoria South -

Holborn superstation-to-station OD pair resulted 75.8% and 63.8% respectively. This
shows that the larger sample of CCOJTs gave a larger and better distributed dataset, and
applying the finite mixture model on that dataset could give more stable route choice

results.

Comparing the mixture results with the actual LU routes it was understood that with the
superstation representation the estimated mixture component proportions are closer to the
expected (RODS) route choice proportions of the LU routes, than it was for the station-
to-station OD pairs. For example, in Case 2, the mixture model gave the results of 93.3%
and 6.7% for the proportion of the two components for the Liverpool Street — Green
Park station-to-station OD pair, while the same for the — Green Park
superstation-to-station OD pair was 80.3% and 19.7% respectively. Comparing this to the
RODS results (81.2% and 18.8%) showed that with the superstation representation the

route choice estimates were closer to the expected values.

However, in all cases the mean journey times of mixture component 2 are much higher

than the total journey time of the corresponding route (e.g. 52.9 minutes vs 36.3 minutes
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for Case 3). A possible explanation for this could be, that the higher OJT observations

could be also attributed to a fail-to-board event, not necessarily to the longer route.

As fail-to-board delays often occur in the LU network during the AM peak, and as it has
a considerable impact on the finte mixture model results; this question will be further
analysed in Chapter 6 and Chapter 7.
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Chapter 6
Consideration of fail-to-board delays at the origin station

6.1 Introduction

In Chapter 3, following the concept in Fu (2014) the connection was established between
the Observed Journey Time (OJT) of a passenger and his/her chosen route; and hence the
finite mixture model was formulated to estimate route choice from smart card data. The
model was initially applied for station-to-station OD pairs, and then — to overcome the
issue of data availability —extended for superstation-to-superstation OD pairs in Chapter
5.

In those model specifications, capacity constraints have not yet been explicitly
considered. However, it is obvious that capacity constraints do influence both the journey
time (i.e. strict capacity constraints: fail-to-board delays) and route choice preferences
(i.e. soft capacity constraints: discomfort due to congestion). In the context of the London
Underground (LU), this issue is quite relevant as certain stations and lines are extremely
congested in the AM peak (Schmdcker et al., 2008).

This chapter addresses the issue how capacity constraints can be included in the process
of OJT adjustment focusing on strict capacity constraints: fail-to-board delay. In Section
5.4, the methodology for OJT adjustment to superstation centroids was presented. There,
it was not yet taken into consideration that at different origin stations passengers may
experience different fail-to-board delays. Therefore aggregating OJTs that contain
different fail-to-board delays could bring bias into the Centroid-to-Centroid adjusted OJT

(CCOJT) dataset and to the estimated route choice results.

To address this issue the rest of the chapter is structured as follows: Firstly, in Section
6.2 the modelling approaches for capacity constraints are reviewed; then in Section 6.3
the distribution of fail-to-board delays at a platform of a metro station is estimated with
the selected method. The methodology for the adjustment of OJTs according to fail-to-

board delays is presented in Section 6.4.

Following this, the proposed method is applied on the case study OD pairs. Section 6.5
describes the data sources for understanding fail-to-board delays, and the case studies are
presented in Section 6.6. Section 0 concludes the chapter with the evaluation of the

applied methodologies, obtained results and with the issues raised for further research.
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6.2 Literature review on considering capacity constraints in route

choice estimation

As elucidated in Section 2.2, route choice estimation is a sub-model in Transit
Assignment Models (TAM) (Figure 2-1). In case passenger flows are below the capacity
of transit links (i.e. TAMs without capacity constraints), route choice does not depend on
the passenger flow; and hence it can be solved as distinct OD problems. However, when
passenger flow is near or above the capacity of transit links (i.e. TAMs with capacity
constraints), route choice is a function of passenger flows. As also passenger flows are
resulting from the route choice of different OD pairs, it cannot be solved any more as
distinct OD problems, but it should be treated as a network problem (Gentile and Noekel,
2016). This section reviews TAMs starting from the basic approaches, then focusing on
how capacity constraints and the dynamics of the passenger flow are considered in

different modelling approaches.

In the recent decades, the problem of transit assignment has been widely explored,
especially regarding the consideration of capacity constraints (Fu et al., 2012). The two
pillars of this vast amount of literature are the two main modelling approaches: One
approach is the frequency-based (Nguyen and Pallottino, 1988; Spiess and Florian, 1989),
where each line segment is represented as a link in the network model; and the frequency
of the lines can be interpreted as a type of link cost. The other approach is the schedule-
based approach (Tong, 1986; Hickman and Bernstein, 1997; Tong and Wong, 1999;
Nuzzolo et al., 2001), where, each vehicle-run is represented as a link in the network

model according to the schedule (space time graph).

In order to include capacity constraints within the frequency-based approach, Cea and
Fernandez (1993); Wu (1994); Cominetti and Correa (2001); Cepeda etal. (2006) worked
with the concept of effective frequencies; while Kurauchi et al. (2003) introduced the
concept of fail-to-board probabilities. Within the schedule-based approach the
consideration of capacity constraints is more straightforward, because passengers failing
to board can be simply assigned to the next vehicle-run link (Nuzzolo et al., 2012),

however this requires a more detailed representation of the network.

To close this gap between the frequency and schedule-based TAMs, (Schmodcker et al.,
2008) proposed the quasi-dynamic frequency-based transit assignment models, where the
whole modelling period (e.g. AM peak) is divided to smaller time intervals (e.g.

15 minutes) and passengers failing to board in one time period are assigned to the next
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one. Meschini et al. (2007) used the frequency-based approach in the context of dynamic
traffic assignment and applied it on multimodal (road and public transport) networks.
Teklu (2007) developed a stochastic process approach to include strict capacity

constraints with day-to-day dynamics in the model

Apart from the above discussed strict capacity constraints, when passengers fail to board,
they also experience discomfort, even when they are able to board, but they travel on
crowded trains without getting a seat (Schmdcker et al., 2011). This discomfort can be
expressed by the crowding multiplier, which was evaluated for various metro networks
around the world (Whelan and Crockett, 2009; Horcher et al., 2017; Tirachini et al.,
2017). These studies found that overcrowded trains can cause significant increase in the
generalised costs of routes: up to 1.7 times for sitting and up to 2.2 times for standing

passengers.

In this chapter the quasi-dynamic frequency-based approach (Schmocker et al., 2008) is
selected to estimate boarding and fail-to-board flows. Although the schedule-based
approach (Nuzzolo et al., 2001) could give explicit estimates of fail-to-board delays as
they model it at the level of individual trains; the quasi-dynamic frequency-based
approach fits better the previously set objectives of route choice estimation (cf. Section

2.4) and is consistent with the available dataset:

In Section 2.4 it was established that the one of the main objectives of this thesis is to
explore, at what extent route choice canbe modelled with smart card data at the OD level,
in a frequency based context, without the need of going down to the level of individual
passengers and trains. In line with this objective, the finite mixture model (Fu, 2014) was
chosen for route choice estimation, which uses only the OJT distribution of passengers,
but not their individual smart card records. Therefore, following this logical stream would
imply, that if route choice is estimated with the finite mixture model in the frequency-

based context, also fail-to-board delays should be modelled accordingly.

The data on line loads and station flows (cf. Section 6.5.1) is given for each 15 minute
time interval, but the actual flow on each individual train is unknown. Therefore applying
the quasi-dynamic frequency-based approach with the same time interval duration as the

available data, would be its most straightforward application.

6.3 Inferring distribution of fail-to-board delays at platforms

In this chapter —in addition to what was presented in the previous chapters —the following

notation is used:
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Variable identifiers

t Index of (a 15 minute) time interval

Variables

As the problem of fail-to-board delays is formulated for one station platform, the variable

identifiers according to lines and stations are omitted in this chapter.

grun-in On-board flow from the previous station in time interval t (passengers/15
minutes)

giwell Dwell flow in time interval ¢ (passengers/15 minutes)

qf”ghf Alighting flow in time interval t (passengers/15 minutes)

q;” Egress flow in time interval t (passengers/15 minutes)

qice Access flow in time interval t (passengers/15 minutes)

qrait Wait flow in time interval t (passengers/15 minutes)

gloard Boarding flow in time interval ¢ (passengers/15 minutes)

q[ ail Fail-to-board flow in time interval t (passengers/15 minutes)

gpm-out On-board flow to the next station in time interval t (passengers/15
minutes)

TID Time Interval Duration (15 minutes)

K Capacity of trains (passengers/train)

Ptf ail Fail-to-board probability in time interval t

t{ ail Average fail-to-board delay in time interval ¢ (minutes)

sfad Random variable of fail-to-board delay
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T A possible outcome of fail-to-board delay, rounded to integer minutes 7 =
(1,2, ...,TID}

T Total number of (15 minute) t time intervals within the AM peak

Pliiyic) Index of a record within the sorted OJT;,;y sample, according to the

proportion of the distribution of fail-to-board delays 7.

OJT(iyjy ~ Subset of OJT ), according to the proportion of the distribution of fail-

to-board delays t

0 ]T(Tl'l?)“(l]i]l,) OJT iy dataset adjusted with the fail-to-board delay of = minutes

fail T.fail
OJTangy Al OJT ;) Subsets aggregated and sorted

CCO]TI}‘ail 0]T fail

U adjusted to superstation centroid and aggregated

CCOJT**® Valid dataset within CCOJT,]*"

Yf Dummy variable,)pf=1 if t{ @l — ¢ otherwise YF=0

In this section, firstly the representation of a station platform is explained (see Section
6.3.1), which is followed by the application of the quasi-dynamic frequency based
approach (cf. Section 6.2) to calculate boarding and fail-to-board passenger flow at each
platform (see Section 6.3.2). From this, the distribution of fail-to-board delays in a time

period can be inferred (see Section 6.3.3).

6.3.1 Representation of a station platform

In Section 4.4.1, the representation of a metro network with nodes and links was
described (cf. Figure 4-3). That network representation was used for calculating the
generalised costs of routes and for pathfinding in models without capacity constraints.
Within that context a station platform could be represented with two nodes (i.e. on-board
and platform); and all the relevant time components (i.e. on-board and wait) could be
defined as the links connecting these nodes. However, when working with passenger
flows and considering strict capacity constraints (i.e. fail-to-board events), the definition
of additional nodes are required (Schmocker et al.,, 2008) (Figure 6-1):
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e Arrive node: Represents the arrival of the train, here passengers decide to alight

or remain on the train

e Platform node: Represents passengers waiting for trains

e Attempt node: Represents passengers attempting to board the train, the outcome

of this event can be either boarding or fail to board

e Depart node: Represents the departure of the train, here passengers already on

train join with the newly boarded passengers

These nodes are connected with the following links, each of them having their

corresponding link flows:

Run-in link (qtrun-in)

Dwell link  (gdwel)

Alight link i)

t

Egress link  (g;9")
Access link  (g2<c)
Wait link (qreit)

Board link  (gPoard)

Fail link (q{ail)

Represents passengers on-board the train, from the depart
node of the previous station to the arrive node of the current

station

Represents passengers staying on train, from the arrive

node to the depart node

Represents alighting passengers, from the arrive node to

the platform node

Represents passengers egressing the platform, including

also those who interchange to other lines

Represents passengers accessing the platform, including

also those who interchange from other lines

Represents passengers waiting at the platform, from

platform node to attempt node

Represents boarding passengers, from attempt node to

depart node

Represents fail-to-board passengers, from attempt node
back to the platform node
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Run-out (qrun-cuty  Represents passengers on-board the train from the depart
link node of the current station to the arrive node of the next
station
|Trom;?evioE - §t f . tonext _|
station a IOI’I station

run_in dwell run_out
| q t q t q t |
% > Depart %
| s |

egr

| from/to T |
ticket gate v
I_ other platforms +— >

- -

Figure 6-1 Representation of a station platform with one metro line, based on (Schmdcker
et al., 2008)

The reason why here the arrive and depart nodes are distinguished is that for the
calculation of fail-to-board flows it is necessary to know the passengers who stay on-
board (i.e. dwell flow, q&*é') after the others alighted (see Section 6.3.2) and this can be
represented as a link between the arrive and depart node. This would not be possible with
the earlier network representation (Figure 4-3), where a single on-board node was

considered. For similar purposes, instead of having a single platform node, an additional

attempt node was considered to distinguish the boarding (q2°¢"¢) and fail-to-board (q/“")

flows.

6.3.2 Boarding and fail-to-board flows

In the quasi-dynamic frequency-based context, capacity problems occur in time interval

t, when (Figure 6-1):
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eee + qen > =7 6-1)

where the access flow (q#¢¢) and the line capacity (x - f) can be understood from the data
sources described in Section 6.5. It is important to note that as the capacity of trains (k)
is given in the unit of passengers/train and the frequency of trains (f) in trains/hour, it
needs to be divided by 4 so that they could be compared to the flows which are given in

the unit of passengers/15 minutes.

For the dwell flow (g&wé'), the following considerations can be made (cf. Figure 6-1):
As capacity constraints are less likely to affect alighting passengers, it can be assumed
that:

qglight — q;zgr (6-2)

Furthermore, at the arrive node:

qgiwell — qtrun_in _ qglll'yht (6-3)

egr

where the egress flow (q,

) and the on-board flow from the previous station (q7“"-")

can be known from the data sources described in Section 6.5.

At stations, where capacity problems occur at least in one time interval t (see formula
(6-1)), it is necessary to account for boarding and fail-to-board passenger flows. In this
thesis the focus is on the AM peak (7:00-10:00), where in the first time interval (¢t = 1),
no capacity problems occur, therefore the number of passengers waiting to board is

identical to the access flow:

qr/ait — qizcc (6-4)

Following the concept in Schmdcker et al. (2008) (cf. Figure 6-1), boarding and fail-to-

board flows can be calculated as:

.. K*
q?oard = min <qgvalt ) 4f _ qgiwell> (6_5)
and
q{ail — qi\;vait _ q?oard (6-6)

Passengers who fail to board in time interval t are assigned to the waiting passengers of

the next time interval (t + 1):
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qrst = g +q[ ™ (6-7)
Once the flows were calculated for the first time interval, equations (6-2), (6-3), (6-5),
(6-6) and (6-7) are repeated for the next time intervals (t = 2.3,...) until the last time

interval (t =T).

6.3.3 Distribution of fail-to-board delays withina time period

Knowing the boarding and fail-to-board flows in each time interval t, the next step is to
infer fail-to-board delays. Based on the literature review in Section 6.2, it seemed more
straightforward to follow the concept of fail-to-board probabilities (Kurauchi et al., 2003;
Schmocker et al., 2008). In this setting, fail-to-board probability in each time interval t
can be interpreted as:

fail
fail _ qt (6-8)
P: - qwait
t

And from that, fail-to-board delays in each time interval t can be inferred as:

t[ail —TID _ptfail (6-9)

Looking into equation (6-9), the connection between fail-to-board probabilities and

delays can be understood deeper. In case no passengers fail to board in time interval t

fail _ . . fail _ .
t‘” = 0), the average fail-to-board delay is zero (¢, " =0). On the contrary, if all

passengers fail to board in time interval t (ptf atl — 1) the average fail-to-board delay is

fail
t

fail

=TID, ie. 15 minutes). For any p;

equal to the duration of the time interval (t
value between 0 and 1 will give the average fail-to-board delay for time interval t

proportional to the fail-to-board probability.

With equation (6-9), it is assumed, that no passengers delay more than the duration of
time interval (TID). This can be realistic, asthe 15minute duration of a time interval can
be considered large enough to exclude the possibility that a passenger would fail-to-board
even in the next time interval. This is in line with Schmdcker et al. (2008), who explained
the reason for choosing the duration of the time interval 15 minutes to introduce fairly

large time intervals for which flows can be assumed relatively constant.

Looking at all T time intervals within the AM peak, the distribution of fail-to-board
delays can be understood. Let T denote a possible outcome of fail-to-board delay, rounded

to integer minutes t = {1, 2, ..., TID}. Furthermore, let:
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wr = {1, if t/ = T} (6-10)

0, otherwise

The probability that in the AM peak the fail-to-board delay (t/%) takes up a certain 7

value, can be calculated as:

T acc , ,,T
t=19¢ 1%

Pr(s/et = 1) = 25— (6-11)
t=19¢
And the cumulative probability for each 7 value is:
Pr(s7at <) = Y pr(s7e =7) (6-12)
1

These probabilities serve as the basis for OJT adjustment (see Section 6.4).

6.4 Adjustment of OJTs according to fail-to-board delays

The key assumption for OJT adjustment is that the fail-to-board delays within the OJT
records follow the same distribution as the fail-to-board delays understood from RODS

data (cf. equation (6-12)). Making this assumption and looking at one station-to-station
OD pair (It)(Jj), let iy denote the index of a record within the sorted OJT ;5
sample for which is true, that:

Pl :
(()IJL;(Ic) _ Pr(6fall < T) (6-13)

Naiyae
Where n( . denotes the sample size of the 0JT(;,;, dataset. From this ¢f,;) ., can
be calculated, and — being the index of an OJT record — is rounded to the nearest integer.
Based on this, for each = outcome of fail-to-board delay, OJT;(;;, can be defined, which
is a subset within the OJT;,;, dataset, where the upper limit is the ¢, index and
the lower limit corresponds to the index of the upper limit of the previous subset plus 1.
This way for each record q in the OJT ;) ;) subset the adjusted OJT can be calculated as:

T,fail _ i
OJT, oy = OTqangp = T (6-14)

Having obtained the adjusted OJT(T,‘L/;?;]I.) values for each subset, they can be aggregated

as:
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TID

fail T,fail _
OITaygp = UOJ Tayan (6-15)

Once OJT({ ‘)léj , Was calculated for each station-to-station OD pair, these can be adjusted

to superstation centroid and hence aggregated as described in Section 5.4, this way

obtaining CCOJT,/*". Following this, the finite mixture model is applied on the

CCO]TJ ! distribution as described in Section 5.5. These methods are presented through

the case studies in Section 6.6.

6.5 Data sources for understanding crowding on board and at
platforms

In order to understand fail-to-board delays, it is necessary to obtain further information
on the crowding levels on board and at platforms, which is a function of passenger flows

(see Section 6.5.1) and of line capacities (see Section 6.5.2).

6.5.1 Passenger flows

Passenger flow on each line segment (on-board flow) and station passageway (AEI flow)
is available from the TfL open data website?*. It is produced as an output of RODS data

(cf. Section 3.6.3), which was reconciled to passenger counts.

Knowing these deficiencies of manual surveys, the ideal would be to fully rely on
automated data sources in passenger flow modelling: using exclusively smart card data
both for the OD demand and for route choice and solving it as a transit assignment model
for the whole network (Horcher et al., 2017). However, this would require to run the
model on the whole LU and the connecting rail network (cf. Section 4.3), which is beyond

the scope of this thesis.

Another option would be to understand crowding from load-weigh data of platforms and
trains. In the context of the case study network not all LU lines are equipped with train
load weighing systems and none of the platforms have sensors for passenger count.
Therefore, it would not be feasible to apply this type of data in the LU.

Knowing the complexity of the problem and the unavailability of load-weigh data in the

LU, at this stage of research, it is considered justifiable to use RODS data to gain initial

24 https//tfl.gov.uk/info-for/open-data-users/
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information on crowding. As a further research, this model can be extended for a larger

network and can go toward the exclusive use of smart card data.

6.5.2 Line capacities

The capacity of an LU line segment can be calculated as x - f . In this setting, the total
capacity of the trains on each LU line (k) can be understood from the rolling stock
information available from the TfL website?°; and the frequency of each LU line (f) is

known from timetables (Section 3.6.2.1).

6.6 Case studies on the London Underground

This section continues the analysis on the superstation-to-superstation OD pairs presented
in Section 5.6 (cf. Figure 5-8 and Table 5-6) introducing the problem of strict capacity
constraints (fail-to-board delay). Firstly, it examines for all the three cases, whether the
fail-to-board delay occurs at the origin or at the interchange station. As for Case 1 and
Case 2, it occurs at the origin station, the corresponding OJT adjustment is discussed in
this section. For Case 3—as it occurs at the interchange station —the rest of the case study

is discussed in Section 7.7 (see Table 6-1).

Among the first two cases Case 2 is special as there are three stations where fail-to-board
delays occur, at each station with different intensity. Further from the city centre (Mile
End), the fail-to-board delays are less severe astrains are not completely full. One station
before the LU inner zone (Bethnal Green), the situation is the most critical, as the trains
are already full, there are not many alighting passengers, but there are much more who
are willing to board. The Liverpool Street station exhibits another type of problem as it
is a destination for those who travel to the City of London, but at the same time being also
a rail terminus, there are still many passengers who interchange here from other rail
services. Therefore, the challenge in this case is to do the OJT adjustment in a way to

consider the different intensities of fail-to-board delays at different stations.

25 https//tfl.gov.uk/corporate/about-tfl/'what-we-do/london-underground/rolling-stock
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Table 6-1 A summary of the case studies on the LU network, adjustment according to

fail-to-board delays

Case | Superstation OD pair Fail-to-board event
. . . . Max
Origin | Destination Type Line Station Delay
1 J
Victoria . Victoria L
1 South Holborn | Origin (NB) Victoria 6
Central Green i, Central Mile End !
2 East Park Origin (WB) Bethnal Green 15
Liverpool Street 10
Jubilee Jubilee Metropolitan
3 West Central Interchange (EB) Wembley Park 7
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Case 1: VictoriaSouth - Holborn

Fail-to-board delays at station platforms

Looking at the |Victoria South| — Holborn superstation-to-station OD pair (cf. Figure

5-10), it is checked whether capacity problems occur at any stations of the origin
superstation (Brixton, Vauxhall, Pimlico and Victoria stations) as well as at the
interchange stations of each reasonable route (Oxford Circus and Green Park stations).
The line capacities for each LU line of the case study OD pair (i.e. NSO, and
lines) are calculated from the data described in Section 6.5.2 (see Table 6-2)

and compared to the link flows (cf. Section 6.5.1) according to formula (6-1).

Table 6-2 Line capacities for Case 1, source:
https://tfl. gov. uk/travel-information/timetables/

https://tfl. gov. uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock

Line Station Frequency | Train Capacity | Line Capacity
f : <J
4
[trains/hour] [pax/trains] [pax/15 min]

Victoria Victoria 35 864 7560
Central Oxford Circus 26 892 5798
[eo:Te[|\YA Green Park 24 684 4104

Figure 6-2 presents the dwell (g2"¢'") and access (q&¢) link flows in the most congested
time interval of the AM peak (08:30-08:45) for the stations of the |Victoria South| origin

superstation. Among these stations, capacity problems occur only at Victoria station
(qiwell + gacc = 1.11- "Tf). At Vauxhall and Pimlico stations the flow is very near the

line capacity (0.93 and 0.97 times respectively), however it was assumed, that all
passengers are willing to board until they find available space, therefore there is no need

to estimate fail-to-board delays at these stations. At Brixton station, being the line
terminus, clearly no capacity problems occur (g&%e! + q2¢¢ = 0.39 - ':—f). Similarly, no

capacity problems occur for boarding at interchange stations (Oxford Circus and Green
Park), where the flow is much below the capacity (0.50 and 0.45 times respectively).

This can be easily understood, as these stations are top destinations where most


https://tfl.gov.uk/travel-information/timetables/
https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock
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passengers alight therefore is sufficient space for newly boarding passengers. As the
capacity problems occur at the origin station, it is necessary to do OJT adjustments

according to fail-to-board delays (cf. Section 6.4).

Flow and capacity on the Victoria line {08:30-08:45)
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Station platform of the Victoria line (Northbound)

= |_clwell  —ge—c_dwell+g_acc (k*f)/a

Figure 6-2 Passenger flow and line capacity on the northbound line, at the

stations of the |Victoria South| origin supertation, peak of peak (08:30-08:45)

Focusing on the station with capacity problems (i.e. Victoria station, line
northbound), g@*e, q2°%r¢ and q/*" flows are calculated for each time interval ¢ using

equations (6-2)-(6-7). Presenting these flows on Figure 6-3, it was understood, that
capacity problems occur between 8:15 and 9:15. In this figure the border line between the

column of g2°%¢ (grey) and q/*" (orange) corresponds to the line capacity ("Tf: 7560

passengers/15 minutes).

fail
t

fail

. and ¢

From these flows p were calculated in the congested time intervals (8:15-

9:15) according to equations (6-8) and (6-9) and presented the results in Table 6-3. The

value of t{ s rounded to integer minutes, because they serve for the adjustment of
OJTs, which are also given with the same precision. Looking at the time intervals with
capacity problems (8:15-9:15), there is an average of 3 minutes delay at the beginning
(8:15-8:30) and at the end (9:00-9:15) of the period of congestion; and an even higher
average delay of 6 minutes in between (8:30-9:00) (highlighted with yellow). These
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results were also presented on a histogram to describe the distribution of fail-to-board
delays in the AM peak (Figure 6-4).

Flows at Victoria Station (Victoria northbound)
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Figure 6-3 Boarding and fail-to-board flows at Victoria station line
northbound) in the AM peak (7:00-10:00)

Table 6-3 Average fail to board delays at Victoria station line northbound) in
the congested time intervals of the AM peak (8:15-9:15)

Variable Value in time interval t

8:.00-815 | 8:15-8:30 | 8:30-845 | 8:45-9:00 | 9:00-9:15 | 9:15-9:30
giwel 4691 5438 5637 5183 4421 3630
q:c° 2477 2628 2732 2628 2453 2227
qr 2477 2628 3238 3943 4019 3107
q;o? 2477 2122 1923 2377 3139 3107
ql*" 0 506 1315 1566 880 0
p] " 0.00 0.19 0.41 0.40 0.22 0.00
el 0 3 6 6 3 0
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- Fail-to-board delays at Victoria, Victoria line, AM peak
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Figure 6-4 Distribution of fail-to-board delays at Victoria station line
northbound) in the AM peak (7:00-10:00)

Adjustment of OJTs according to fail-to-board delays

Following the methodology in Section 6.4, based on the fail-to-board delay distribution
(Figure 6-4), the @(;;) () indices (equation (6-13)) and hence the OJT(j;y(,; subsets as

well as their adjustment, 0]T(T,’i’)°‘("]ijl.) (equation (6-14)) were calculated for each outcome

of fail-to-board delay value t for the station, where capacity problems occur (Victoria
station, northbound line, see Table 6-4 and Figure 6-5).

Table 6-4 Subsets of the OJT dataset according to fail-to-board delays at Victoria
station line northbound) in the AM peak (7:00-10:00)

T Pr(6 fail < T) Py (ic) 0] T(TIS?;JI)
min max
0 0.59 32 12 20
3 0.79 43| 20| 22
5 1.00 54| 22| 31
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QJT from Oyster data
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Figure 6-5 Adjustment of OJTs according to fail-to board delays at Victoria station
a) Original OJTs from Oyster data and proposed adjustments, b) Adjusted OJTs

As no capacity problems occur at other stations of the origin superstation (Brixton,
Vauxhall and Pimlico) (cf. Figure 6-2), their OJTs remain unchanged. Following this,

these OJTs and the OJTs of other stations were adjusted to the superstation centroid
(Victoria station) and then aggregated spatially (cf. Section 5.4). This way CCO]T,{ ail

was obtained (Figure 6-6).
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2CSCOJT (with FTB) distribution for OD pair Victoria South-Holborn
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Figure 6-6 Distribution of Centroid-to-Centroid adjusted OJTs considering fail-to-board
delays for |Victoria South- Holborn

Evaluation of the OJT adjustment according to fail-to-board delays

The finite mixture model presented in Chapter 3 was applied on CCOJT dataset adjusted
according to fail-to-board delays. A more detailed description of the settings and of the
results are presented in Appendix G. Based on that, the chosen settings for the finite
mixture model are:

e Seed=1

e Tolerance threshold = 1e-06

The results with these settings are presented in Table 6-5. Following this, the results of

the finite mixture model were matched with the actual LU routes (cf. Section 3.4.1).

Table 6-6 compares the mixture results for the |Victoria South — Holborn superstation-

to-station OD pair with the two types of OJT adjustments:

e Only to superstation centroids (Chapter 5)
e To superstation centroid and according to fail-to-board delays (Chapter 6)
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These are further compared with the earlier results presented in Table 5-10. Figure 6-7
presents the probability density functions of the mixture distribution fit on the CCOJT
dataset adjusted according to fail-to-board delays as well as of the mixture components

matched with the actual LU routes.

Table 6-5 Finite mixture model results; with Seed = 1, Tolerance threshold = 1e-06
for |Victoria Southl — Holborn

OJTs adjusted to superstation centroid and according to fail-to-board delays

Label Mixture model
|l o [ e
1 [min] [min] [%]

1 179 20| 74.8%
2 22.9 3.0| 25.2%

Based on these results, the following was observed: The finite mixture model applied on

the CCOJTs of the [Victoria Southl — Holborn superstation-to-station OD pair adjusted

according to fail-to-board delays gave closer results for the mean (/) and for the

component proportion (w;7/) to the actual LU values (ty, cy(;c) @nd wi7/®) than the

results of Chapter 5 (cf. Table 6-6). This is because the exceedingly high OJTs attributed
to the fail-to-board delays at Victoria station were replaced with lower values (cf. Section
6.4).

However, it was understood, that the proportion of mixture component 1 (a){‘f,’}‘ ) exhibited
a bigger jump between tolerance thresholds 1e-06 and 1e-07, when it was applied on the
CCO]TJ “ distribution (from 74.8% to 55.9%, cf. Figure G-2), than the results of
Chapter 5 (from 70.8% to 67.9%, Figure F-2), but it was not as big as the results of
Chapter 3 (from 79.8% to 33.5%, cf. Figure 3-6). Therefore, even though the
adjustments according to fail-to-board delays can give closer results to the actual LU

values for certain settings of the seed and tolerance threshold; it can adversely affect the

convergence of the model.
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Table 6-6 Matching mixture model results with the actual London Underground routes for |Victoria South- Holborn

EIM: Mixture results, adjustment: superstation centroid and fail-to-board delays [F¥jolls: Mixture results, , adjustment: superstation centroid only,
B Mixture results, station OD pairs, Yellow: Fu (2014), €I} actual LU routes

Mixture Journey Time (min) Route Choice (%) Route Route Matched
Label Mixture Timetable Mixture RODS | Label | Line 1 | Interchange 1 | Line 2
Proposed | Fu Proposed | Fu
FTB | SS Station FTB | SS Station
r Hri Hri g by Wy WMX o |wRors | k| 1= s=1 I =
11179 182 | 17.6 | 16.6 17.6 | 74.8% | 70.8% | 79.8% | 75.4% | 74.8% 1| Vic Oxford Circus | Cen
2| 229| 23.7] 26.1| 22.2 20.4 125.2% | 29.2% | 20.2% | 24.6% | 25.2% 2 | Vic Green Park Pic
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Mixture Distribution for OD pair Victoria South-Holborn
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Figure 6-7 Estimated (Gaussian) journey time distribution of the routes for |Victoria Southl — Holborn,

OJTs adjusted to superstation centroid and according to fail-to-board delays
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Case 2 Central East — Green Park

Fail-to-board delays at station platforms

Looking at the [Central East|— Green Park superstation-to-station OD pair (cf. Figure
5-15), it is checked whether capacity problems occur at any stations of the origin
superstation (Mile End, Bethnal Green, Liverpool Street, St Paul’s and Chancery
Lane stations) as well as at the interchange stations of each reasonable route (Oxford
Circus and Holborn stations). The line capacities for each LU line of the case study OD
pair (G, \VNGLE, and lines) are calculated from the data described in
Section 6.5.2 (see Table 6-7). These capacities were compared to the link flows (cf.

Section 6.5.1) according to formula (6-1).

Table 6-7 Line capacities for Case 2, source:

https://tfl. gov. uk/travel-information/timetables/

https//tfl. gov. uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock

Line Station Frequency | Train Capacity | Line Capacity
f : </
4
[trains/hour] [pax/trains] [pax/15 min]

Central Liverpool Street 32 892 7136
Victoria Oxford Circus 30 864 6480
(S[eeFTo/|\YA Holborn 20 684 3420

In accordance with Schmécker et al. (2008), it was understood, that westbound
line is extremely crowded between Mile End and Liverpool Street stations. This was
also confirmed by an initial analysis to run the model with the actual capacity of trains
(7136 passengers/15 minutes); and results showed that in many time intervals it occurs
that trains already arrive at Bethnal Green station full and nobody is able to board. Under
these circumstances of extreme crowding, it is expected that passengers choose to board

the trains above their nominal capacity, experiencing this way greater discomfort.

To quantify the relationship between the actual and nominal capacity is not a
straightforward task due to the lack of the relevant information. Whelan and Crockett
(2009) investigated the relationship between the load factor and crowding multiplier in

London and South East England. According to their results, when the trains are at their


https://tfl.gov.uk/travel-information/timetables/
https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock
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nominal capacity (load factor: 100%), the crowding multiplier for standing passengers is
1.50: while it is 1.67, when the load factor is 120%. These results could be confronted
with the increase in the generalised cost of the route due to the delay, which occurs when
passengers choose not to board the trains at their nominal capacity. Based on these
considerations, it was assumed that in the LU passengers choose the board up to the 10%
more than the nominal capacity of the trains, to avoid further delays. Therefore the actual
capacity of the line was considered 7850 passengers/15 minutes.

Figure 6-14 presents the dwell (g 2*¢") and access (q£<¢) link flows in the most congested
time interval of the AM peak (08:30-08:45) for the stations of the origin
superstation. Among these stations, capacity problems occur at Mile End, Bethnal
Green and Liverpool Street stations, where the flow (g&we! + q#<¢) is 1.07, 1.13 and
1.11 times the actual capacity respectively. As for the interchange stations (Oxford
Circus and Holborn), even though they are crowded, the flow (g&"e! + gf<c) still
remains below the line capacity (0.89 and 0.92 times respectively). As the capacity
problems occur at the origin stations, it is necessary to do OJT adjustments according to
fail-to-board delays (cf. Section 6.4).

Flow and capacity on the Central line (08:30-08:45)
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Figure 6-8 Passenger flow and line capacity on the westbound line, at the
stations of the origin supertation, peak of peak (08:30-08:45)
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Focusing on the stations with capacity problems (i.e. line westbound platform at
Mile End, Bethnal Green and Liverpool Street stations), q@we%, q2°¢¢ and q/*"
flows are calculated for each time interval t using equations (6-2)-(6-7). Presenting these

flows on Figure 6-9 it was understood that capacity problems occur between 8:15 and

9:15. In this figure the border line between the column of g2°e"¢ (grey) and q/*"
(orange) corresponds to the actual line capacity ( 1.1 D~ 7850

4

passengers/15 minutes).

From these flows p/*" and t/®" were calculated in the congested time intervals (8:15-

9:15) according to equations (6-8) and (6-9) and the results are presented in Table 6-8.

The value of t{ s rounded to integer minutes, because they serve for the adjustment of
OJTs, which are also given with the same precision. These results were also presented on
a histogram to describe the distribution of fail-to-board delays in the AM peak (Figure
6-10).
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Flows at Mile End (Central Westbound)
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Flows at Bethnal Green (Central Westbound)
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Flows at Liverpool Street (Central Westbound)
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Figure 6-9 Boarding and fail-to-board flows at Mile End (a), Bethnal Green (b) and
Liverpool Street (c) stations line westbound) in the AM peak (7:00-10:00)
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Table 6-8 Average fail to board delays at Mile End (a), Bethnal Green (b) and
Liverpool Street (c) stations (@&gl line westbound) in the congested time intervals of
the AM peak (8:15-9:15)

a)
Variable Value in time interval t

8:00-8:15 | 8:15-8:30 | 8:30-845 | 8:45-9:00 | 9:00-9:15 | 9:15-9:30
qvet 6084 6646 6493 5609 4537 3565
qecc 1668 1896 1932 1768 1520 1244
quait 1668 1896 2624 3036 2315 1244
qpeve 1668 1204 1357 2241 2315 1244
ql" 0 692 1268 795 0 0
pl 0.00 0.37 0.48 0.26 0.00 0.00
¢/ 0 5 7 4 0 0
b)
Variable Value in time interval t

8:00-8:15 | 8:15-8:30 | 8:30-8:45 | 8:45-9:00 | 9:00-9:15 | 9:15-9:30
qdvet 7111 7850 7850 7494 6241 4969
qicc 569 602 569 535 530 502
qpt 569 602 1171 1706 1880 774
qpeve 569 0 0 356 1609 774
ql" 0 602 1171 1350 272 0
pl 0.00 1.00 1.00 0.79 0.14 0.00
tfet 0 15 15 12 2 0
c)
Variable Value in time interval ¢

8:00-8:15 | 8:15-8:30 | 8:30-8:45 | 8:45-9:00 | 9:00-9:15 | 9:15-9:30
gdvet 6135 6982 7230 6682 5672 4597
qice 1245 1404 1477 1397 1226 1045
gt 1245 1404 2013 2791 2849 1717
qlore 1245 868 620 1168 2178 1717
ql" 0 536 1394 1623 672 0
pl 0.00 0.38 0.69 0.58 0.24 0.00
tfet 0 6 10 9 4 0
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Fail-to-board delays at Mile End, Central line, AM peak
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Figure 6-10 Distribution of fail-to-board delays at Mile End (a), Bethnal Green (b) and
Liverpool Street (c) stations line westbound) in the AM peak (7:00-10:00)
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Adjustment of OJTs according to fail-to-board delays

Following the methodology in Section 6.4, based on the fail-to-board delay distribution
(Figure 6-10), the ¢(;;) (s indices (equation (6-13)) and hence the OJT(%;y(,; Subsets as
well as their adjustment, O]

of fail-to-board delay value 7 for the stations where capacity problems occur (i.e. Mile
End, Bethnal Green and Liverpool Street stations, westbound line see Table

6-9 and Figure 6-11).

Table 6-9 Subsets of the OJT dataset according to fail-to-board delays at Mile End (a),
Bethnal Green (b) and Liverpool Street (c) stations line westbound) in the

AM peak (7:00-10:00)

T‘L’,fail
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nun

(equation (6-14)) were calculated for each outcome

a)
T Pr(sfeit < 1) Pl | 9/ T(Tllig?llfl')
min max
0 0.67 5 23 28
4 0.77 6 30| 30
5 0.89 71 34| 34
7 1.00 8] 39| 39
b)
T Pr(67 < 1) | @liyae | 0J T(Tllj;[(llljl)
min max
0 0.59 5 20 24
2 0.69 6| 29 29
1 0.79 6] 29| 29
15 1.00 8| 30| 43
c)
T Pr(sfet < 1) Phiyae) | 9J T(Tll];((l]ljl)
min max
0 0.57 7] 16| 21
4 0.67 20| 22| 22
5 0.78 23| 23| 23
9 0.88 27| 24| 25
10 1.00 30 27 36
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Figure 6-11 Adjustment of OJTs according to fail-to board delays at Mile End (a), Bethnal Green (b) and Liverpool Street (c) stations line
westbound) in the AM peak (7:00-10:00); above: Original OJTs from Oyster data and proposed adjustments, below: Adjusted OJTs
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T,fail . . fail
Each subset of OJT ;) Were aggregated to obtain the adjusted OJT o p dataset for

station-to-station OD pairs (equation (6-15)). Following this, these OJTs were further
adjusted to superstation centroid (i.e. Liverpool Street station) and then aggregated

spatially as described in Section 5.4. This way the adjusted CCOJT,]*" was obtained for
the [Central Easti— Green Park superstation-to-station OD pair (see Figure 6-12).

CgCOJT (with FTB) distribution for OD pair Central East-Green Park

Bl n{_,r = Min 14.0] |
Max 28.0
Mean 19.7

Fr Median 19.0| |
Mode 20.0

6 Stdev )

[¢)]

Frequency
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Observed Journey Time (minutes)

Figure 6-12 Distribution of Centroid-to-Centroid adjusted OJTs considering fail-to-board

delays for (Central East— Green Park

Evaluation of the OJT adjustment according to fail-to-board delays

The finite mixture model presented in Chapter 3 was applied on CCOJT dataset adjusted
according to fail-to-board delays. A more detailed description of the settings and of the
results are presented in Appendix G. Based on that, the chosen settings for the finite

mixture model are:

e Seed=1
e Tolerance threshold = 1e-07
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The results with these settings are presented in Table 6-10. Following this, the results of

the finite mixture model were matched with the actual LU routes (cf. Section 3.4.1).

Table 6-11 compares the mixture results for the — Green Park

superstation-to-station OD pair with the two types of OJT adjustments:

e Only to superstation centroids (Chapter 5)

e To superstation centroid and according to fail-to-board delays (Chapter 6)

These are further compared with the earlier results presented in Table 5-14. Figure 6-13
presents the probability density functions of the mixture distribution fit on the CCOJT
dataset adjusted according to fail-to-board delays as well as of the mixture components

matched with the actual LU routes.

Table 6-10 Finite mixture model results; with Seed = 1, Tolerance threshold = 1e-07

for [Central East— Green Park

OJTs adjusted to superstation centroid and according to fail-to-board delays

Label Mixture model
|l o [ e
[ [min] [min] [%]

1 18.7 2.3 | 86.2%
2 25.9 13| 13.8%

Based on these results, the following was observed: The finite mixture model applied on
the CCOJTs of the — Green Park superstation-to-station OD pair adjusted
also according to fail-to-board delays gave closer results to the journey time of the actual
LU route for the mean of component 2 (u5/¥); however this journey time value was quite
low (18.7 minutes). Regarding the component proportion, it was understood that the
results of the finite mixture model were closer to the RODS results of the actual LU routes
when the OJTs were adjusted only to superstation centroid, but not according to fail-to-

board delays (Chapter 5).

Furthermore, it was understood that when the OJTs were adjusted only to superstation
centroid (Chapter 5), the K-means clustering algorithm gave the same initial values for
all seeds, and there was a only a slight difference between the results of the finite mixture
model for different tolerance thresholds (cf. Figure F-4 and Figure F-5). However, with

the OJTs adjusted also according to fail-to-board delays (Chapter 6), the finite mixture
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model converged to different roots for different seeds, when the tolerance threshold was
set 1e-04 or greater; and a greater jump was observable between the tolerance threshold
of 1e-03 and 1e-04 for seed 1 and between 1e-04 and 1le-05 for seed 2 (Figure G-4 and
Figure G-5).

Overall, from Case 2 it was understood that when the OJTs were adjusted only to
superstation centroid, but not according to fail-to-board delays (Chapter 5); could give
more reliable estimates, both in terms of closeness of results to the actual LU routes and
in terms of the convergence of the finite mixture model. One possible reason why the
adjustment according to fail-to-board delays (Chapter 6) could not improve the model
estimates is that the assumption of the 10% additional capacity with respect to the nominal
capacity of trains was still underestimating the actual willingness of passengers to board
overcrowded trains to avoid fail-to-board delays. Supposing a higher additional capacity

could have improved the model estimates.

Another possible reason for not obtaining closer results with the adjustment according to
fail-to-board delays is, that the sample size for Case 2 was very small (47 CCOJT
records), which was still insufficient to represent well the actual journey time distribution

of passengers.
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Table 6-11 Matching mixture model results with the actual London Underground routes for |(Central East— Green Park

EIM: Mixture results, adjustment: superstation centroid and fail-to-board delays [UFells: Mixture results, , adjustment: superstation centroid only,

[{EL: Mixture results, station OD pairs, [€f{a): actual LU routes

Mixture Journey Time Route Choice (%) Route Route Matched
Label Mixture Timetable Mixture RODS Label | Line 1 | Interchange 1 Line 2
Proposed Proposed
FTB | SS Station FTB | SS Station
r we Kty ) oty wp Witiygy | wwpt | k=T s=1 L=1
11 18.7| 20.6 20.6 22.3 ] 86.2% | 80.3% 93.3% 81.2% 1| Cen Oxford Circus | Vic
2| 25.9| 29.5 35.5 25.513.8% | 19.7% 6.7% 18.8% 2 | Cen Holborn Pic
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Mixture Distribution for OD pair Central East-Green Park
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Figure 6-13 Estimated (Gaussian) journey time distribution of the routes for Green Park,

OJTs adjusted to superstation centroid and according to fail-to-board delays
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Case 3 Jubilee West — Jubilee Central

Fail-to-board delays at station platforms

Looking at the Jubilee West/—Jubilee Central| superstation-to-superstation OD pair (cf.

Figure 5-22) it is checked whether capacity problems occur at any stations of the origin

superstation (Stanmore, Canons Park, Queensbury and Kingsbury stations) as well as
at the interchange stations of each reasonable route Wembley Park and Finchley Road

stations). The line capacities for each LU line of the case study OD pair (

lines) are calculated from the data described in Section 6.5.2 (see Table
6-12) and compared to the link flows (cf. Section 6.5.1) according to formula (6-1).

Table 6-12 Line capacities for Case 3 source:

https://tfl. gov. uk/travel-information/timetables/

https://tfl. gov. uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock

Line | Station Frequency Train capacity Line Capacity
f : <]
4
[trains/hour] [pax/trains] [pax/15 min]
Stanmore 20 817 4085
Wembley Park 12 1044 3132
Finchley Road 30 817 6128

Figure 6-14 presents the dwell (g&*¢'"") and access (q2<€) link flows in the most congested
time interval of the AM peak (08:00-08:15) for the stations of the [Jubilee West origin

superstation. It can be understood that no capacity problems occur for any of these stations

as they are near the line terminus. Among them that maximum passenger flow is at

Kingsbury station, which is far below the line capacity (q2%e" + q2¢ = 0.34 - ':—f).

and



https://tfl.gov.uk/travel-information/timetables/
https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock
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Among the interchange stations of the reasonable routes, the capacity problems occur

only at Wembley Park station for the line26 (gdwelt + gf<c = 1.08 -';—'f
between 08:15 and 08:30). At Finchley Road station, the flows for the are high,
but still under the line capacity (q&¥e" + q&°¢ = 0.75 "4—f between 08:30 and 08:45).
As the capacity problems occur at the interchange station, the OJT adjustment applied for
the previous cases is not relevant here, as it is not explicitly known, whether an OJT
record belongs to the congested route or not. To address this issue, the methodology of
Chapter 7 is discussed first, and then the corresponding case study is presented in Section
7.7. Here, the case study is described until finding the fail-to-board delays at \WWembley

Park station.

Flow and capacity on the Jubilee line {08:00-08:15)
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i
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.g 2000
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L

0

Stanmore Canons Park Queenshbury Kingshury
Station platform of the Jubilee line (Eastbound)
| _Clwel| =g _dwell+q_acc {(k*f)/a
Figure 6-14 Passenger flow and line capacity on the eastbound line, at the

stations of the Jubilee Westiorigin supertation, peak of peak (08:00-08:15)

At Wembley Park station, (YEli@eellel line eastoound), gd¥e, gboerd and q/*"

flows are calculated for each time interval t using equations (6-2)-(6-7). Presenting these

26 Some of the services stop at Wembley Park station, some of them pass through without
stopping. From RODS data (cf. Section 6.5.1), only the “line load” before Wembley Park station can be
known, butit is not distinguished on what type of NTiantoleny service it is. In this thesis, it was assumed,
that 2/3 of the total “line load” is on services that stop at Wembley Park.
http://content.tfl.gov.uk/amersham-guide-dec18.pdf



http://content.tfl.gov.uk/amersham-guide-dec18.pdf
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flows on Figure 6-15, it was understood that capacity problems occur only between 8:00

fail

and 8:45. There the border line between the column of g2°*"¢ (grey) and g “* (orange)

corresponds to the line capacity (k - f = 3132 passengers/15 minutes).

Flows at Wembley Park (Metropolitan Eastbound)
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Figure 6-15 Boarding and fail-to-board flows at Wembley Park station ((\Yleiige]elell{€:Ng!
line eastbound) in the AM peak (7:00-10:00)

Table 6-13 Average fail to board delays at WWembley Park station (\lEiigejslliely line
eastbound) in the congested time intervals of the AM peak (8:00-8:45)

Variable Value in time interval ¢

8:00-8:15 |8:15-8:30 |8:30-845 |8:45-9.00 | 8:00-8:15
qie! 2245 2631 2705 2426 1941
q:cc 573 655 675 605 491
qr 573 655 829 1007 792
qrov 573 501 427 706 792
q!™" 0 154 402 301 0
/" 0.00 0.24 0.48 0.30 0.00
e 0 4 7 4 0
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From these flows p/*" and t/*" were calculated in the congested time intervals (8:00-

8:45) according to equations (6-8) and (6-9) and presented the results in Table 6-13. The
value of t[ s rounded to integer minutes. Looking at the time intervals with capacity
problems (8:00-8:45), there is an average of 4 minutes delay at the beginning (8:00-8:15)
and at the end (8:30-8:45) of the period of congestion; and an even higher average delay
of 7 minutes in between (8:15-8:30) (highlighted with yellow).
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6.7 Discussions

6.7.1 Applicability of the quasi-dynamic approach

In this chapter the quasi-dynamic approach was applied to infer boarding and fail-to-
board flows as well as fail-to-board delays. The duration of the time intervals was set to
be 15 minutes. This has been proved to be a good tool to estimate fail-to-board delays
without the need of going schedule-based (calculating for individual passengers and
trains). One drawback is that with this method only the average values of fail-to-board
delays could be obtained for each 15 minute time intervals. To obtain a more detailed
picture, whilst remaining in the quasi dynamic context, one could assume a probabilistic
distribution for passenger arrivals and train headways and estimate the distribution of fail-
to-board delays accordingly.

For the capacity of trains (x) the rolling stock information from the TfL website was used,
which would correspond to the nominal capacity of trains. For Case 1 it was assumed
that on the line at Victoria station trains can carry up to their nominal capacity,
and passengers above that fail to board. Onthe other hand, for Case 2 it was assumed that
on the line between Mile End and Liverpool Street trains can carry an
additional 10% of passengers above their nominal capacity as passengers are more likely
to travel under greater discomfort in order to avoid further delays. The critical issue at
this point is that the assumption on the relationship between the actual and nominal
capacity of trains affects the results for the adjusted OJTs.

Here, results showed that for both cases the OJTs were over-adjusted as a lower additional
capacity was assumed. For the Victoria-Holborn station-to-station OD pair (Case 1) it
can be observed that the OJT distribution adjusted according to fail-to-board delays (cf.
Figure 6-5b) is skewed left. In reality for the OJTs distribution of an OD pair one would
expect that it is skewed right. This can be seen clearer looking at the CCOJT distribution

of the — Green Park superstation-to-station OD pair (Case 2), where the

CCOJT values of 14 and 15 minutes are unrealistically small.

A possible refinement of this model could be to analyse more in details passengers’
perception to discomfort (Whelan and Crockett, 2009; Li and Hensher, 2011; Horcher et
al., 2017; Tirachini et al., 2017) depending on the case study OD pair and calculate with

the actual capacity of trains accordingly.
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6.7.2 Benefits of adjustments according to fail-to-board delays

The crucial point in the methodology applied in this chapter is that adjusting the observed

OJT i) (s, dataset with the modelled 7 fail-to-board delays and hence applying the finite

mixture model on the adjusted and aggregated CCO]T,{“” distribution would be an

optimistic view about the likelihood ofpassengers’ boarding, asit would assume that fail-
to-board delays had not occurred. In reality, fail-to-board delays do occur, and it is

expected that they influence route choice.

For this reason, the benefits of the adjustment according to fail-to-board delays is not as
evident as it was when the OJTs were adjusted only to superstation centroid (Chapter 5).
Although the for Case 1, it could give closer results for the mean and for the component
proportion to the actual LU routes; for Case 2, the estimates for the mean resulted lower
and for the component proportion they were further from the RODS results of the actual

routes.

A possible approach to take into consideration the different route choice behaviour in
different time periods would be to apply the finite mixture model on the dataset of each
time period. For example one time period could be the peak of peak (i.e. 8:15-9:15) and
the other would be the normal AM peak (i.e. 7:00-8:15 and 9:15-10:00). Although this
approach may give better estimates, it would conflict with the general aim of this thesis,

which is to aggregate the OJT records to have more reliable estimates.

Thinking one step ahead, a different approach would be to apply the finite mixture model
on the CCOJT of the whole AM peak, and update the estimated route choice probabilities
with the additional information on the time interval, when the passenger accessed the
crowded platform. The principles of this approach is discussed in Chapter 7, however

there it is presented in another context.

6.7.3 Data sources on passenger flows

In this thesis RODS data reconciled to passenger counts was used to understand passenger
flows onthe LU lines and within the LU stations. The deficiency with this approach could
be explained in the following: Relying still on manual surveys would not comply with the
overall objective of this thesis to go towards automatically collected data systems for
route choice estimation (Section 2.1). More specifically — as presented in Section 6.5.1 —

RODS data was collected over several years, different years at different stations, therefore
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the route choice and hence the passenger flow results do not reflect the time period of the

Oyster data collection.

In theory, passenger flows could be understood from the route choice estimates for all
OD pairs of the LU network and the problem could be resolved as a transit assignme nt
model (cf. Figure 2-1). However, this would require to build the model for the entire LU
and rail network of Greater London (cf. Section 4.3), which is beyond the scope of this

thesis.
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Chapter7
Consideration of fail-to-board delays at the interchange
station

7.1 Introduction

In Chapter 6 the question of fail-to-board delays at the origin station was discussed. In
line with the Definition of superstations, the case studies in this thesis focus on origin
destination (OD) pairs with the property that for all reasonable routes the first journey leg
is on the same line (cf. Figure 5-10, Figure 5-15 and Figure 5-22). Therefore, in case
the fail-to-board delay occurred at any station of the origin superstation (Case 1 and
Case 2), their Observed Journey Time (OJT) could be simply adjusted to its uncongested

equivalent and hence the OJTs of different origin stations could be aggregated.

However, in case the fail-to-board delay occurs at the interchange station (Case 3), the
question is more challenging, because it is not possible to know deterministically, whether
an OJT record corresponds to the congested route or not; it can be estimated only in a
probability space (cf. Section 3.2). Therefore, the OJT adjustment proposed in Section
6.4 is not applicable in this case, but a different approach is required.

In this section notation is used as follows.

Variables

t;’;fry—ic Journey time between the entry ticket gate of origin station Ii and the
departure platform of the subsequent journey leg at the congested

interchange station, on route k of OD pair I]

I#,k, 1] Index of the journey leg on which passengers experience fail-to-board

delays on route k of OD pair I]

s#, k,1] Index of the interchange station at which passengers experience fail-to-

board delays on route k of OD pair I]
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Arrival time stamp of passenger g at the interchange station (departure
platform of the subsequent journey leg), given that he/she chooses route k
of OD pair 1]

Expected Journey Time of passenger q using route k between centroids of

superstations I and J, given TS timetables and station layouts
q,li

Random variable of ¢, in the Bayesian framework

Journey time observation of passenger q adjusted to the centroids of
superstations I and J (CCOJT) (minutes)

ccojT

Elementary event that the CCOJT of passenger g is &,

Elementary event that the Expected Journey Time of passenger q is

8.x; . given that he/she chooses route r and his/her entry time is Tq‘f?i"y

The journey time distribution of passenger g on route r

Sub-dataset of CCOJT,; based on naive inference ¢(q)

Total number of passengers in the CCOJT,; dataset who were assigned to

route r based naive inference {(q)

Mean journey time for route r of superstation-to-superstation OD
pair I], with the update according to the additional information on

fail-to-board delays (minutes)

Standard deviation of journey time for route r of superstation-to-
superstation OD pair ], with the update according to the additional
information on fail-to-board delays (minutes)

Aggregate choice probabilities for route r of superstation-to-
superstation OD pair ], with the update according to the additional
information on fail-to-board delays

Reference time of route r
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natve Dummy variable, y™*¥¢ = 1 if, {(q) = r, otherwise Y47 =

Functions
f (8,,)  Probabilty density function of &,

() Assignment function for the naive inference of the route choice of each
passenger q, based on their posterior probabilities (CCOJT and additional

information on fail-to-board delays)

The main objective in this chapter is to update the prior knowledge on route choice (i.e.
results of Chapter 5) with the additional information on fail-to-board delays in a
Bayesian framework following the concept in Fu (2014). Figure 7-1 illustrates a Bayesian
network structure how the information on fail-to-board delay (67%%) can be associated
with the smart card observations and how it influences the journey time and route choice

of passengers.

In this framework the observations (marked with nodes) are the entry time
(Te™7) and the exit time (T ¢*') of passengers?’. From these input their OJT (6%/T) can
be directly obtained (cf. Section 3.6), and hence their Centroid-to-Centroid adjusted OJT
(CCOJT, §¢¢9JT) can be calculated (cf. Section 5.4). This obvious dependency is marked

with solid arc and the inferred variables are marked as blue nodes.

It was illustrated through the case studies in Section 6.6 that the fail-to-board delay (574,
cf. Table 6-3 and Table 6-8) varies within the AM peak. Therefore, it is dependent on
the entry time of the passenger (T ®™"). Furthermore, it can be easily understood, that a
passenger experiences fail-to-board delay only, if he/she chooses the congested route.
Therefore fail-to-board delay is also dependent on the chosen route (r)%8. Additionally,
the expected journey time of a passenger (&8%%F) also depends on the other time

components (i.e. on-board, wait, access egress interchange) he/she experienced along

27 In Section 7.1, the purpose is to give a simplified representation of the Bayesian network structure by
elucidating the dependencies among the variables. Therefore the variable identifiers are not used in this
section. In Section 7.2 this Bayesian network structure is further expanded, therefore all variables presented
with the appropriate identifiers.

28 In Section 7.1 —as it focuses on the dependencies ofthe variables - routes are denoted with r, regardless
whether they refer to mixture component or actual LU route.In Section 7.3 the concept for matching these
two labels is further explained.
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his/her chosen route. Therefore, the expected journey time is further dependent on the

chosen route (r).

The problem here is that the chosen route (r) is unobservable, it can be only learnt in a
probability space (this type of dependency is marked with a blue dashed arc) from the
journey time of passengers. In this chapter, route choice is inferred not only based on the
CCOJT (8§¢€9/T) of passengers (cf. Chapter 5), but also based on their expected journey

time (§5%P),

Figure 7-1 Bayesian network structure to illustrate passengers probabilistic route

choices

The rest of this chapter is structured as follows. In order to have the correct input for the
Bayesian updating process, in Section 7.2 the calculation of the Expected Journey Times
are presented; and in Section 7.3 the principles for matching the mixture components
with the actual routes are clarified. Section 7.4 presents the Bayesian framework itself to
obtain the updated individual route choice probabilities; and Section 7.5 describes the
methodology to infer the aggregate values corresponding to each route. In Section 7.6 the
proposed approach is compared to Fu (2014). Section 7.7 presents the case study on the
London Underground (LU). Finally, Section 7.8 concludes the chapter with the

evaluation of the obtained results and with the lessons learnt from that.
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7.2 Connection between passengers’ entry time and Expected Journey

Time

In this section the dependencies between the entry time of a passenger (T°™") and
his/her expected journey time (§E%F) are further explained and presented on an expanded

Bayesian network structure (Figure 7-2).

tation Time tation Time tation

o layout table layout table 5 B |2y out
Origin Interchange Destination

r - - - - - - - - 1
| |
L —_ — —_ —_ —_ 1 —_ — |
Train
cap.

Figure 7-2 Bayesian network structure to illustrate the connection between passengers

entry time and Expected Journey Time

In this Bayesian network structure the data sources, from which the journey time
components can be understood (i.e. timetable, station layout, Rolling Origin Destination
Survey (RODS) and train capacities, cf. Section 3.6 and Section 6.5) are marked as
green filled nodes. The journey time components themselves (i.e. access, wait, on-board,
interchange and egress) are marked as purple nodes, and the resulting time stamps
(entry, platform arrival, train departure, train arrival and exit) as blue nodes. In this
Bayesian network structure, the subtotals of journey times are the Scheduled Journey
Time (SJT) and the fail-to-board delay (marked as nodes); and the final result is

the Expected Journey Time (marked as a red node).



216

The entry time of passenger g at station Ii of the origin superstation (T;Z”y ) can be

directly understood from smart card data (cf. Section 3.6.1). In the previous chapters

(Chapter 3, Chapter 5 and Chapter 6), smart card records were used only with their

OJTs (8, CF equation (3-14)). In this chapter, in order to gain a better

understanding on the associated fail-to-board delays, also their entry time is required as

an input.

Having the adequate information on train timetables and station layouts (cf. Section 3.6.2)
the journey time between station Ii (entry ticket gate) and the congested interchange
station (departure platform of subsequent journey leg) on route k can be obtained as the

sum of the time components (cf. Figure 7-2):

k1] stl]
entry—ic _ .acc ait ob ic -
T = s ) @ L)+ )ty 7-)
=1 s=1

where [#,k,I] is the index of the journey leg, on which passengers experience fail-to-

board delays and s#, k, 1] is the corresponding interchange station. The journey time,

entry—ic

tk,Ii

is dependent on the route and it is applicable only if fail-to-board delays are

experienced at the interchange station within the AM peak.

Knowing the entry time stamp of passenger q at station /i of the origin superstation

(T;;Li"y ) and the journey time from there to the congested interchange station on route k

(tentry—ic

pif ), the arrival time (at the departure platform of subsequent journey leg, TP!%7%€)

a.k1j

can be calculated as:

plat—ic __ mentry entry—ic
Tq,k,I] - Tq,li + tk.]i (7'2)

Recalling the concept of journey time adjustments for superstations (Section 5.4), it is
possible understand the following: The available dataset from smart card contains the
entry times of passengers at entering different stations; but the interchange station is the

same for all passengers regardless their entry station. In fact, equation (7-2) can be

interpreted as an adjustment of T, with ;7" ™" to the congested interchange

station. Therefore, Tq’f,lf",s"ic does not contain the index Ii and hence the values originally

coming from different entry stations can be aggregated.
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Once the arrival time of passenger g at the congested interchange station on route k

(Tﬂ‘fff”) is obtained, it can be explicitly known, which time interval t this arrival time

falls into, and hence the corresponding fail-to-board delay (tf;;fﬁ]) can be inferred as

described in Section 6.3.

The Scheduled Journey Time (SJT) of each route — without considering fail-to-board
delays — can be understood based on train timetables and station layouts (cf. equation
(3-13)). As the SJT is calculated in the frequency based context (see Section 7.6); it is

same for all passengers on a given route k, and hence t,f]; does not contain the index gq.

Knowing the SJT on each route k between the centroids of superstations I and | (t,f{,?)

and the fail-to-board delay of each passenger g on that route (tj;‘}(”), the superstation-to-
superstation equivalent of the Expected Journey Time can be calculated as:

EXP _ ST fail
tq,k,I] - YkIj + tq,k,I] (7'3)

The Expected Journey Time of routes (tgf,‘f,]) is supposed to be used as an additional
condition to update the previously obtained route choice probabilities (w, ;). At this point
it is important to note that these two variables have different identifiers for the routes, r
and k respectively. Analogously to the previous chapters, while r is used for mixture
components, k indicates the index of actual LU routes. The reason why it is necessary to
have two distinct variable identifiers is that it is explicitly unknown which mixture
component r corresponds to which actual LU route k. In order to proceed with the
updating methodology, and hence to use w,, and tg},, in the same Bayesian

framework; it is necessary to make an a priori assumption on the matching of r and k.

This is discussed in Section 7.3.

7.3 Matching mixture components with actual routes

In Section 3.4.1 it was proposed to match the mixture components (r) with the actual LU
routes (k) in the ascending order of their corresponding journey times. However, looking
at the results in Chapter 5, especially Case 3 (Table 5-20) showed that applying this

approach does not always give the correct match.

In this chapter, apart from the mean journey time of mixture components (u’r‘f,’jx), also
their standard deviation (o,"}¥) is examined. The reason for this can be resumed in the

following: Staying at the example of Case 3, it is expected, that the direct route has
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smaller standard deviation, because passengers have only one journey leg; which means
no interchange time, less total wait time and expectedly, less variance of the on-board
time. On the other hand, on the indirect route, having three journey legs, the variation of
all these values are larger. Furthermore, due to the difference in the fail-to-board delays

ail

of different passengers q at the congested interchange station (tj; « ) the expected

y

journey time (t;%7;,, cf. equation (7-3)) has an even larger standard deviation. Based on
these considerations, it makes sense to match the mixture component having smaller
standard deviation with the direct route and the one having larger standard deviation with
the indirect route.

It is acknowledged that this rule may not hold for all OD pairs. It may occur that, if the
travel time on the second or third journey leg of the indirect route is less variable than the
travel time on the direct route, the overall variance is smaller for the indirect route.
However, assuming that the trains do not exhibit great variance on the Wembley
Park —Finchley Road segment, and knowing that passengers do experience fail-to-board
delays for the same segment of the line; the above consideration could be

acceptable for the case study in this chapter.

To have amore advanced matching method, both the mean (u}//) and standard deviation
(oM7) of the finite mixture results need to be considered; and the corresponding mean

and standard deviation of the actual LU routes needs to be modelled based on the

distribution of their journey time components (ie. t755;, t3, tPh , tiS and £%,
(Wahaballa etal., 2017)) as well as of the and fail-to-board delays on them. This is beyond

the scope of this thesis.

Having made the above described considerations to match the mixture components with
the actual LU routes, all variables referring to routes are identified with index r in the
Bayesian framework (see Section 7.4). There, the random variable of Expected Journey

Time used is denoted as 5%,

7.4 Updating the posterior route choice probabilities

The Bayesian framework for updating the route choice probabilities understood from the
finite mixture model (cf. Chapter 5) can be formulated as follows. As described in

Section 3.2, choice denotes the elementary event that passenger g has chosen route

qrlj

CCOJT
ql]

defined, which denotes the elementary event that

r; and A, ;; the elementary event that the CCOJT of passenger q is § (cf. Section

5.4). Furthermore, in this chapter A,
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the Expected Journey Time of passenger q is 65’3’,], given that he/she chooses route r
and his/her entry time is T, "
Having defined these elementary events in a probability space, the objective is to obtain
Pr(choiceqr_,]|Aq,,],AqT,,]), which is the probability that passenger g has chosen route
r, given that hisher CCOJT is 6, and hisher expected journey time on route r is

8., Following the steps in Fu (2014), this can be expressed as:

Pr(choice g, ;1A 1, Agriy)
Pr(A,, |choice ., A, ) - Pr(choice,, ) (7-4)

YR Pr(AqIU |ch0iceqr,,],Aqr,,]) : Pr(choiceqr',])

In this context, Pr(choicequ,]) is the probability that passenger g has chosen route r
without any knowledge on his journey time. According to formula (3-5), this was
associated with the component proportion understood from the finite mixture model

(wy ;) In the Bayesian framework is the prior.

CCO]T

Furthermore, Pr(A,;|choice,,,;,A,, ;) is the likelihood of observing &, given that

arij’
q has chosen r and the expected journey time on that route was 8, ;,. Following the
concept in Fu (2014), this likelihood can be explained in the following way: Let 8, ;;
denote the journey time distribution of passenger q on route r. Similarly to the
considerations in Section 3.2.2, it is assumed, that also the PDF of 6., ;, f (Sqr,,])
follows a Gaussian distribution. There, the mean corresponds to the expected journey
time of passenger q on route r (8.5,,). Furthermore, it is assumed that the standard
deviation of each passenger g on route r is the same as the standard deviation of route r

estimated with the finite mixture model (o,}%, cf. Section 3.2). This way, the likelihood

CCOJT

that the journey time of g would be &,

can be associated with the probability density

of the PDF f (8,,.,,) having the above described parameters:

§CCOIT | SEXP
Pr(A |choice, ;;, A q“]) f (Squj 8a17 18gri oM (7-5)

Substituting formulae (3-5) and (7-5) into equation (7-4), Pr(choice g,/ |Ag;;, Dgry)

can be expressed as:
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Pr(choiceqr,,] |Aq 175 Aqr,])

CCO]T EXP MIX
rI] f (Sqr - qI] |6qu]'O-rI] (7'6)
CCO]T
ZreR Wy gy f ( - qI] |6g)7(},)1]‘ O-TA%X)

In equation (7-6) the additional condition, which updates the prior knowledge on route

choice (g,"}¥) is the random variable of the expected journey time: &;%,. As it was

presented through equation (7-3), tE4, s a function of the SJT (t,”),) and of the fail-to-

board delay (£/},). In this chapter the focus was on the variation of ¢/ depending on
the entry time of passengers (qu;ll"y ) and on the route (k); and the variation of t;j’,? as

not examined in depth as the frequency-based approach was followed. However, doing a

more detailed analysis on the variation of ¢y, in function of its components (3-13) could

further improve the route choice updates Pr(choiceqw|Aq,,],Aqr,,]) also when fail-to-

board delay is not accounted for.

7.5 Inferring reference time of routes and aggregate route choice
probabilities

As the result of Section 7.4 the posterior probabilities were calculated for each passenger
q on route r , conditional on their CCOJT and Expected Journey Time
(Pr(choiceqr,,]mq,,],Aqu,])). From the practical point of view (i.e. public transport
operators who are interested in passenger flows, cf. Section 2.1), it is necessary to have
further information on the aggregate values of mean, standard deviation and choice

probabilities of each route.

To obtain these values naive inference is used following the concept in Fu (2014). The
logic in naive inference is that if the posterior probability for route r is higher than for
route r’ (Pr(choiceqr = rlAq,Aqr) > (choiceqr = r’|Aq,AqT)), then it is more likely,
that passenger g chooses route r. Going one step ahead, the inference could be drawn that

the actual choice of passenger q is the route with the highest posterior probability. This
way the assignment function can be defined for the naive inference as:

{(q) = argmax,.cp (Pr(chozce =744, ) (7-7)

The output of the assignment function is the route label r for each passenger g. With this
assignment it is possible to obtain N sub-datasets within the CCOJT,, dataset — denoted
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by CCO]TT’fj‘}i”e — where in each sub-dataset those passengers can be found who are

assigned to route r with the naive inference.

ccojrreve = (5.5 ¢(q) =1} (7-8)

. . - . . d
Having obtained this, it is possible to understand the updated values of mean (uff}] ) and

standard deviation (o“P¢

.,y ) On each route r as the mean and standard deviation of the

corresponding sub-dataset CCOJT,3™¢. Furthermore, the total number of passengers in
the CCOJT,, dataset who chooses route r is equal to the size of the CCO]T#,‘}"W sub-

dataset, denoted by ny4;"e:

npaive = |CCOJTve| (7-9)
From this, the aggregate choice probabilities of route r can be calculated as:

«_ e

upd __ )

W1y = —ccojT (7-10)
ny,

In order to understand how the updated estimates can be associated with the actual LU

routes (cf. Section 7.3), the estimated mean journey time (uff?f) is compared to the

reference time of the actual LU routes (7] 29):

nCCOIT
Z 1] tEXP _lpnaive
tREF — q=1 q,r1] .1 (7-11)
r,1j nncIL]ive
r,

where ¥"4/"¢ is a dummy variable, '}j*¢ = 11if, {(q) = r, otherwise /"¢ = 0. As

explained earlier, depending on the difference in fail-to-board delays, ;%" may vary

across each passenger g onroute r (7-3); therefore there is the necessity to calculate their

average, which gives the reference time of route r: tﬁff . In addition to the journey times,

also the updated estimates of aggregate route choice (w;f’l’f) are compared with wf7P*

(cf. Section 3.6.3).

29 As theresults of the finite mixture model had been previously matched with the actual LU routes, in this
section for all variables in identifier 7 1S used
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7.6 Comparisonwith Fu (2014)

In this chapter the method in Fu (2014) was applied to update the prior knowledge on
route choice (w, ;) with the additional condition on the expected journey time of

passengers (8;%;,). The difference between his model and the method applied in this

thesis can be resumed in the following:

 The approach to infer the Expected Journey Time (%) (see Section 7.6.1)

e The assumptions made for the fail-to-board delay (tﬁfﬁj) (see Section 7.6.2)

7.6.1 The approach to infer the Expected Journey Time

In Fu (2014) the input of T;Z”y was applied to infer the train that passenger g could

catch, and hence the arrival time at the exit station was modelled for each route k.

Following this, ¢, was obtained as the difference between T, 7" and the modelled

exit time. It is important to note that it requires to represent each individual train

(schedule-based context).
The method proposed in this thesis uses the input of T;Z."y to infer fail-to-board delays

fail
q.k.1j

approach trains are still represented with their frequency (frequency-based context), as

) and hence tZP is calculated according to equation (7-3). In this

of passenger q (t a.kl]

T;Z."y is not applied to infer a train, but to identify the time interval ¢, in which the

passenger arrives at the congested interchange station. Having the possibility to remain
in the frequency-based context means less computational time (cf. Section 2.3.3).

Obviously, as the smart card data processing and hence the intended application of the
model is still off-line, computational time is not a relevant issue (cf. Section 1.2).
However, in future, once the technology arrives at real-time data processing, it will be
advantageous to have models that can estimate route choice at a lower computational
time, especially if there is the need to apply the model for many OD pairs.

7.6.2 The assumptions made for the fail-to-board delay

Fu (2014) considered fail-to-board delays as a component of the wait time. He made the
assumption that for each journey leg [ of each route k, half of the passengers can board

the first, half of them the second train, and calculated the reference time of routes (t77

accordingly . The problem with this assumption consists in the following: Firstly, the fail-



223
to-board delay is not constant along the metro lines: the stations near the terminus are not
congested at all (e.g. origin stations in Case 3), while stations closer to the LU inner zone
can have extreme congestion (e.g. origin stations in Case 2). Secondly, the fail-to-board

delay is not constant within the AM peak: it occurs only in the peak of peak (8:00-9:15).

In order to take into account the variation of the fail-to-board delay along the metro line
and within the AM peak, in this thesis it was inferred from actual data on passenger flows
and on train capacities, following the method described in Section 6.3, and the reference
time of routes (¢;7") was calculated accordingly This could bring some improvement to
the consideration of fail-to-board delays, however due to the deficiency of RODS data
applied for passenger flows (cf. Section 6.5.1) and to the further assumptions (cf. Section

6.6), it still cannot give a perfect picture on ft.

7.7 Case study on the London Underground

In Section 6.6, the passenger flows were compared to the line capacities at the origin and
interchange stations of the three case studies, and hence the fail-to-board delays were
calculated at the congested stations. Based on that, in it was understood, that for Case 3,
fail-to-board delays occur along the indirect route, at the \WWembley Park interchange
station on the eastbound line (Figure 6-15and Table 6-13). In this section,
this additional information on fail-to-board delays will be used to update the route choice

probabilities understood from the finite mixture model.

Case 3 Jubilee West — Jubilee Central

Expected Journey Time of passengers on each route

The entry time of each passenger q (T, "), as well as their OJT (8.}, ;) I8 known

from Oyster data (cf. Section 3.6.1) for the [ubilee West| — [ubilee Central|

superstation-to-superstation OD pair (Figure 5-22). As it was examined in Section 5.6,

none of the 286 Oyster records were considered outliers.

From each station of the origin superstation (i.e. Stanmore, Canons Park, Queensbury
and Kingsbury stations on the line) the journey time was calculated to the
departure platform of the congested interchange station (i.e. \YlEiigeJellliely line eastbound

at Wembley Park station. This is route k = 2) (tze;litry ~y according to equation (7-1)

(see Table 7-1), where the journey time components were understood from timetables
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and station layouts (cf. Section 3.6.2). Following this, for each passenger g, the arrival

time at the interchange station (Tﬂf‘,ﬁ"ic) was calculated according to equation (7-2).

Table 7-1 Journey time from entry ticket gate to congested station platform
for Jubilee West-|Jubilee Central

Journey time from entry ticket gate
to congested station platform (minutes)
G
From\To Wembley Park

Stanmore 13.1
Canons Park 10.9
Queensbury 9.1
Kingsbury 6.0

Knowing Tﬂ%_ic, it can be explicitly understood, which 15 minute time interval t (cf.

Section 6.3) it falls into; and hence the corresponding average fail-to-board delays on this

fail
q.2,1]

passengers arriving at Wembley Park between 8:15 and 8:30 experience 7 minutes of

route (t’~ ;) can be inferred for each passenger g based on Table 6-13. Results show that
fail-to-board delay in average, while those who arrive in the time intervals 8:00-8:15 and
8:30-8:45 this delay is 4 minutes. Before and 8:00 and after 8:45 no fail-to-board delay
occur.

As it was discussed earlier, the SJT between the superstation centroids (t,”;}) on the direct

route ( line) is 36.3 minutes, while it is 33.3 minutes on the indirect route (

=)\ etropolitanjes via Wembley Park and Finchley Road). Knowing the SJT

(t;%) and the fail-to-board delay of each passenger g on each route k (t{;";fﬁ]), the

Expected Journey Time (t; ;) can be calculated according to equation (7-3).

The CCOJT of each passenger q (§q57'", inferred from &0}, cf. Section 5.4) and

their Expected Journey Time on each route k (tgf,‘j}]) are compared on Figure 7-3. From

there, it can be understood, that when there is no congestion on the indirect route, tgf,‘(f} ;s
lower (33.3 minutes), but when there is congestion, t;35, is higher (37.3 minutes and
40.3 minutes depending on the time interval) than the direct route (36.3 minutes).
Similarly, for 65", it can be observed that they are relatively lower (less than

50 minutes) for those passengers who are supposed to arrive at \Wembley Park before
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8:00 on route 2, and they are exceedingly high (up to 70 minutes) for those passengers

who are supposed to arrive there between 8:00 and 9:15.

CCOJT (Oyster data)
w—— Exp. Time, Route 1: Jub
Exp. Time, Route 2: Jub-Met—Jub‘

70 |
65
2 60
Q
H
£ 55 |
=
S— b4
2 50 |
>
2 45 G
> ' :
S a0t : . :
" .l
35 |
30 1 A 1 1 1 | 8 AL 1 A1 1 1
OO WO WwOoOWwOoWwOo W o W
QN O 9 0% 8%
MMM DM O G € O OO OO OO O ©O O
b b
Arrival time at interchange station

Figure 7-3 Comparison between &; ' and ¢2%F,, for {Jubilee West- Jubilee Centrall

It is important to note that the adjusted &§77°'" observations are almost always

considerably larger than the inferred t;%", values. This can be due to the lack of

fail
q.klj

EXP ST

information on the actual values of the components of ¢ ;,: ¢, and ¢ (cf. equation

(7-3)). The lower value for ¢}, can be due to the underestimation of on-board (¢22 ;) or

wait (t;f’,gf,i]t) time by using timetables as a data source (cf. Section 3.6.2.1) and not taking
into consideration the possible service delays; as well as due the insufficient information

on passengers walk speed through crowded passageways (cf. Section 3.6.2.2) and hence

the underestimated values of access (t{5¢;) egress (t;% ;) interchange (&) times (cf.

fail
q.k1j

information on the relationship between the nominal and actual capacity of trains.

equation (3-13)). The lower value for ¢t can be associated with the insufficient
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Furthermore, it is also unknown, what proportion of passengers are on those services of
the [YAEXige]olelliYy line, which stops at Wembley Park (cf. Section 6.6).

Updating route choice probabilities with the additional condition on Expected

Journey Time

The finite mixture model applied on the CCOJT distribution of the [Jubilee West| —

Jubilee Central superstation-to-superstation OD pair gave the results of 78.5% of

proportion for mixture component 1 (wj’/f) and 21.5% of proportion for mixture
component 2 (w3'}y) (cf. Table 5-20 and Figure 5-25). As explained earlier (cf. equation
(3-5)), these proportions were associated with the priors of route choice in the Bayesian

framework.

In order to apply equation (7-6) correctly to update these priors in a Bayesian framework,
it is crucial to know which mixture component (r) corresponds to which actual route (k).
Results show that mixture component 1 has 41.5 minutes of mean journey time (#11”,11}( )
with 3.6 minutes of standard deviation ( 07" ); and mixture component 2 has
52.9 minutes of mean journey time (u3'¥) and 7.8 minutes of standard deviation (o,7}*)
(cf. Table 5-18). Based on the considerations in Section 7.3 it is assumed that the mixture
component with smaller standard deviation (r = 1) corresponds to the direct route, while

the component with the greater standard deviation (r = 2) corresponds to the indirect

route.

As explained in Section 7.4 the likelihood function is associated with the probability
density function of the journey time distribution of passenger q on route r (f (Sqr), cf.
equation (7-5)). It was assumed, that it follows a Gaussian distribution with the mean of
8.5, and standard deviation of ¢,"/* (i.e. 3.6 minutes for route 1 and 7.8 minutes for

route 2). With these parameters, the probability density was calculated at the value of

_ gceorr

Sqr,lj - Yql]

for each passenger g on each route r.

Having obtained both the priors and the likelihood function, the route choice conditional
on CCOJT and on Expected Journey Time (Pr(choice,.;;|0q,;,Dgry;)) Was calculated
according to equation (7-6) for each passenger q on each route r. These results were
compared to the route choice conditional on CCOJT (Pr(choice,,.;,|A,,;)), which was

calculated according to equation (3-6) from the finite mixture model.
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From Figure 7-4 it can be understood that in general, the update according to the
additional condition on the expected journey time of passengers (function of fail-to-board
delays) made the posterior probabilities Pr(choiceqw|Aq',],Aqr,U) lower for the direct
route (a) and higher for the indirect route (b) than the posterior probabilities conditional
only on their CCOJTs (Pr(choice,, ;;|A,,;)). Among them the greatest difference is for
those passengers whose CCOJT is around 41-45 minutes and their inferred arrival time
at Wembley Park (if they chose route 2) is in the time interval of 8:15-8:30. Based only
on their CCOJT, Pr(choice,,;;|A, ;) is quite low for route 2; however knowing that in
that time interval, 7 minutes of fail-to-board delay is expected on that route, it is more
likely that these longer CCOJTs correspond to the fact of experiencing fail-to-board
delays and hence Pr(choice,, ;|A, ;. A1) became much higher. In other words,
having a CCOJT record and the additional information on the corresponding fail-to-board
delay, the posterior probability that this record belongs to the congested indirect route

becomes higher.

Understanding the characteristics of the actual LU routes in Case 3 it is expected that
very small CCOJT values (31-34 minutes) correspond to the indirect route in uncongested
time intervals (before 8:00 or after 8:45), as without having fail-to-board delay that route
has shorter journey time (cf. Figure 7-3). Furthermore, knowing that the direct route has

a smaller standard deviation (cf. Section 7.3), it is more likely that the CCOJTs around

the expected journey time (tgf‘,s ;y) of the direct route (35-39 minutes) correspond to the

direct route. Finally, the very large CCOJTs (40-70 minutes) are likely to correspond the

indirect route in congested time intervals (between 8:00 and 8:45)

The results of this case study reflected quite well what was expected based on the
characteristics of the actual LU routes. For the very small CCOJT values (31-34 minutes)

it gave around 80-85% for Pr(choice,, |0y, Agr,y) OF route 1. For the CCOJTs
around the expected journey time of route 1 (35-39 minutes), the
Pr(choice, ;1A ;. Ay,.;;) fOr route 1 was above 85%. For CCOJTs between 40 and

48 minutes the Pr(choice,, ;|A, ;. A,,,,;) Varies significantly depending on the arrival

time of the passenger at the interchange station (hence his corresponding fail-to-board
delay). The actual turning point is at the CCOJTs of 44-45minutes, as the

Pr(choiceg, 1A, ;. A,y,;;) is around 0.5 for both routes. For CCOJTs of 49 minutes and

qrij

above, the Pr(choice,, ;;|0q,;,Dgr,y) 18 Very low for route 1.
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Addttionally, it is important to discuss the question of the quickest possible time on each
route as a physical constraint. In this specific example, from Table 5-19, it can be
understood, the total on-board time on the direct route is 31 minutes (assuming that due
to timetable constraints, trains cannot arrive earlier than the scheduled arrival time).
Considering the passenger does not need to wait for the metro service and runs very fast
at the entry and exit station, it is expected to have 32 minutes as the quickest possible
time for route 1. Therefore, looking at the CCOJT record of 31 minutes (Figure 7-4), it
is physically impossible, that this journey could occur on route 1. At this point, the
question of quickest possible journey time was not included in the model, but was

proposed as a further improvement.
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a) +  Condition: CCOJT, Route 1: Jub
O Condition: CCOJT and Exp. Time, Route 1: Jub CCOJT (min)
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Figure 7-4 Comparison between Pr(choice, |A,) and Pr(choice,|A,,A,,) for

Jubilee West|—Jubilee Centrall; a) Route 1, b) Route 2
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Aggregate route choice

After having obtained the updated posterior probabilities for each passenger g on route r
(Pr(choiceqr,,]mq',],Aqr,,])), the corresponding aggregate values for each route r
P, o P and w/7P) are inferred with naive inference as described in Section 7.5.

The results are resumed in Table 7-2.

Table 7-2 Aggregate results updated according to the additional information on fail-to-
board delays for [Jubilee Westl-|Jubilee Central

Label Updated with fail-to-board
L R
I [min] [min] [%]
1 40.3 2.6 67.8%
2 51.5 6.3 32.2%

In Table 7-3, the estimated mean values (y,‘!f}’) were compared to the reference time of
routes (tf7, cf. (7-11)) and the corresponding aggregate route choice probabilities
(w/57) with the values understood from RODS data (w/?"*). Regarding journey times,
it is possible to observe, that the updated values () are lower for both routes than the
results understood form the finite mixture model (u,'/f) and hence it is closer to the
reference time of routes (t77). Interestingly, tf77 (which includes the fail-to-board

delays on the congested route, cf. equation (7-3) and (7-11)) is very similar for the two

routes (36.3 and 36.2 minutes respectively). Concerning route choice, the updated
aggregate route choice probabilities (w/’}”) are lower for route 1 and higher for route 2
than the corresponding results from the finite mixture model (a)ﬁf,’jx ) and hence they are

further from the RODS results (w;?°).
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Table 7-3 Matching the updated results with the actual London Underground routes for [Jubilee West|[Jubilee Centrall

EIME: Updated results, superstation OD pairs, [JIJ8[3: Mixture results, superstation OD pairs, [€]f5a: actual LU routes

Mixture Journey Time (min) Route Choice (%) Route Route matched
label | Updated | Mixture | Reference | Updated | Mixture RODS label | Line 1 IC1 Line 2 IC 2 Line 3
r ulip |y i wlfP | o)X | wfOPS k | 1=1] s=1 |Il=2] s=2 |Il=3
1 40.3 41.5 36.3| 67.8%| 78.5% 89.0% 1| Jub
Wembley Finchley
2 515 52.9 36.2| 322%| 21.5% 11.0% 2| Jub Park Met Road Jub
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7.8 Discussions

As it was pointed out in the case study (cf. Figure 7-3), the Expected Journey Time of

passengers (t;% ;) is quite low with respect to their CCOJT (635?”). Due to this, the

posterior probabilities (Pr(choiceqr_,]|Aq,,],Aqr,,])) were underestimated for route 1 and
overestimated for route 2 (cf. equation (7-6)). A possible improvement could be to
estimate ¢, and t}%%; based on the actual departure/arrival time of trains and to model
tiey trry and 35, taking into consideration that also the walk speed depends on the
crowding along the station passageways (see Section 8.2.5).

Additionally, even though the considerations that were made for matching the results of

the finite mixture model with the actual LU routes (cf. Section 7.3) could work for this

specific case (Case 3, Jubilee Westl —|Jubilee Central)); to make it applicable to all OD

pairs of a metro network, it would require more advanced statistical method.
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Chapter38
Concluding remarks and further work

8.1 Conclusions

The core problem discussed in this thesis is to estimate route choice in complex metro
networks from smart card data at origin destination (OD) level. Using the finite mixture
model in this context and applying it for certain station-to-station OD pairs of the London

Underground (LU) a few issues emerged. To address them, this thesis proposed:

e a route choice set generation model that can find automatically the set of
reasonable routes for any type of OD pair of a metro network;

e the superstation representation of metro networks and the corresponding spatial
aggregation of Observed Journey Times (OJT) understood from smart card data
and

e A methodology to adjust the OJTs as well as the route choice estimates of the
finite mixture model according to the additional information the on fail-to-board

delay at the origin and interchange stations

As it follows, the lessons learnt regarding these models are discussed.

8.1.1 Route choice set generationin complex metro networks

This thesis has made a forward step in developing a model that can automatically find the
set of reasonable routes for any type of OD pair of a complex metro network. This set
was obtained based onthe generalised costs of routes (Raveau et al., 2014). Applying the

proposed model on the LU inner zone (cf. Chapter 4), the following was understood:

e Inaverage aroute can be considered reasonable, if its generalised cost is no more
than 1.18 times the generalised cost of the shortest route.

e There are OD pairs, which have unreasonable routes with a lower generalised cost
proportion (1.09-1.17).

e There are also OD pairs, which have reasonable routes with higher generalised
cost proportion (1.21-1.23).

In essence, results showed that it is not possible to generate the set of reasonable routes
purely based on their generalised cost as they also depend on OD specific attributes.
Therefore, based on the case studies in Chapter 5 it was further understood that a lower

attribute cut-off is expected for OD pairs with longer minimum journey time as well as
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for those which have more available directions at the origin and/or destination station;
and that a higher attribute cut-off is expected when the choice of passengers is between a
direct route and an express line. Although these dependencies were pointed put and
illustrated, the explicit formulation of the model was not yet made, but it is suggested for
further research (see Section 8.2.1).

8.1.2 Introducing the concept of superstations

This thesis introduced the concept of superstations with the purpose to overcome the data
availability issues of station-to-station OD pairs in the context of route choice estimation.
Applying that for the case study OD pairs of the LU:

e Certain number of OD pairs could be grouped
o 4-50D pairs in cases where only the origin stations could be grouped,
o 20 OD pairs in cases where both origin and destination station could be
grouped and
e the sample size of OJTs could be increased
o 1.6-2.7times in case only the origin stations could be grouped,

o 8.2times in case both origin and destination station could be grouped.
The finite mixture model applied on this larger dataset

e brought better convergence for all case study OD pairs and

e gave closer results to the actual LU routes in most cases.

Having tested the superstation representation for certain OD pairs, the question was
raised, whether it is possible to find automatically all groups of OD pairs for which the

superstation representation is applicable. This discussed in Section 8.2.2.

The main objective for station grouping in this thesis was to increase the sample size of
OJTs for route choice estimation with the finite mixture model. The main limitation here
is that the concept of superstations is applicable only for the OD pairs, where the first/last
journey leg for all reasonable routes is on the same line. However, in reality, there are
many OD pairs, where the first/last journey leg is on different lines, and hence the concept
of superstations in not applicable. Therefore, it was understood, that for a more
comprehensive understanding on route choice, it is advisable to set multiple objectives

for station grouping. This is discussed in Section 8.2.3.
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8.1.3 Adjustment according to fail-to-board delays

The model proposed in this thesis accounted for the fail-to-board delay at the origin and

interchange station.

For the fail-to-board delay at the origin station the OJTs were further adjusted in the
process of their aggregation. A crucial point here was that deducting all fail-to-board
delays from the OJT dataset would be an optimistic, but not realistic view about the
likelihood of passengers’ boarding, assuming that fail-to-board delays had not occurred.
As a consequence of this, the finite mixture model applied on that dataset of CCOJTs had
worse convergence (i.e. greater difference between the solutions for different settings of
tolerance thresholds) compared to when it was applied onthe CCOJTs without adjustment
according to fail-to-board delays. In order to address this question, a different approach

is proposed in Section 8.2.4, which follows the concept presented in Chapter 7.

Apart from this, there are also other possible reasons why the adjustment according to

fail-to-board delays did not bring the expected benefit:

e The quasi-dynamic approach could infer only the average fail-to-board delay
values for the 15 minute time intervals, but not their actual distribution.

e The assumption made for the actual capacity of trains may not be realistic

In case the fail-to-board delay occurs at the interchange station, the route choice estimates
of the finite mixture model were updated with this additional information in a Bayesian
framework. It was understood that the updated route choice probabilities did not give a
better match to the actual LU results than without the adjustment due to the following

limitations of the model:

e The Scheduled Journey Time (SJT) of routes was inferred from timetables and
station layouts

e The fail-to-board delay was inferred from the Rolling Origin Destination Survey
(RODS) data

To overcome these limitations, an improved model is proposed in Section 8.2.5.

8.2 Further work

In response to these issues (cf. Section 8.1) it is proposed for further research:

e an improved route choice generation model that uses as an input both route

specific and OD specific attributes;
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e an algorithm that finds all groups of OD pairs, for which the superstation
representation is applicable
e the extension of the concept of superstations for nearby stations;
e consideration of fail-to-board delays at the origin station with the concept of
updating priors of route choice probabilities

e animproved model that can rely more on automated data sources
As it follows, these improvements are presented.

8.2.1 An improved route choice set generation model

An improved route choice set generation algorithm is proposed for further research that
— in addition to the route specific attributes (generalised cost) —accounts also for the OD
specific attributes, such as the presence of a direct route, the number of available
directions at the origin and destination station, OD minimum travel time and the presence
of an express line (cf. Section 5.3.3). In order to properly formulate this function, it is

necessary to calibrate the model with additional types of OD pairs:

1) with one reasonable route (i.e. find the attribute cut-off value between the shortest
and the second shortest route);
2) with reasonable routes that have three or more journey legs and

3) from/to/between LU outer zones

The first type of OD pair needs to be examined, as it is expected that in those cases the
generalised cost proportion of the second shortest route is quite high, therefore it is not
included in the observed choice set of passengers. These are mostly OD pairs with a direct
route and the indirect routes do not have any attractive attributes (cf. Section 4.7.4.2).
Analogously, for the second type of OD pair one would be interested to know what
attractive attributes a route with three or more journey legs has that passengers still
consider that option, when routes with less journey legs are also available (cf. Section 5.6
Case 3). Finally, the third type of OD pair exhibits a case, where the on-board times are
much longer and the interchange times are relatively shorter with respect to the total
journey time. Therefore, it is expected that in these cases different cut-off values will be

between the reasonable and unreasonable routes (cf. Section 2.3.1).

As the program code is already ready, it could be applied automatically for all OD pairs
of the LU. It requires only the input of the RODS data for validation.
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Another question to discuss is that in the process of route choice set generation, the
oversimplified assumption was made, that the generalised cost of a route depends only
on their journey time and interchange properties (cf. (4-2)). However in reality, it may
occur that there are other routes that passengers consider in their choice set with higher
journey time and less favourable interchange properties, because those routes have other
attributes that attract them (e.g. they look shorter on the map or they have new LU fleet).

This issue could be treated by including those attributes in the generalised cost function.

8.2.2 An algorithmto find all superstations in a metro network

Once the previously proposed route choice set generation model (cf. Section 8.2.1) is
calibrated, it could be applied for all OD pairs of the LU to find those which have multip le
reasonable routes. Following this — in line with the Definition of superstations (cf.
Section 5.3.1) —an algorithm can be written that can automatically find those groups of
OD pairs, for which the first/last journey leg is on the same line both among the
reasonable routes and across the OD pairs. This can be done easily as the relevant
information is already stored in the network model of the LU (cf. Section 4.4).

8.2.3 Extension of the concept of superstations for nearby stations

It is proposed to extend the concept of superstations for nearby stations so that — in

addition to the objective of data availability — it can comply with the following objectives:

e Including in the model that a passenger has a set of attractive entry/exit stations
near his/her true origin/destination

e Reducing network complexity

These objectives are especially relevant in the LU network, as in the inner zone many
stations are within walking distance (12 minutes (Transport for London, 2010)). A typical
example for this are the stations around the Bank/Monument station complex in the City
of London. Identifying all groups of stations with these properties, could lead to the
superstation map of the LU (see Figure 8-1). This is equivalent to a simplified network
representation (Figure 8-2), and applying a Transit Assignment Model (TAM) on that
could give a more comprehensive picture on route choice with significantly less
computational time.

The objective of data availability is not fully in line with the objectives for grouping
nearby stations; as while the former requires that the stations should be on the same line

(regardless their distance), the latter requires that they should be in physical proximity
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(regardless whether they are onthe same line). Therefore, the overall aim of the modeller

is to find the optimal scenario of these objectives.

'\_

N v ‘&(\:‘\ ; 3] o 5 St
Eal's Sourt < South Kensmgataﬁ_r

Figure 8-1 The superstation map of the London Underground according to the extended

concept of superstations
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Figure 8-2 Application of the superstation map of the LU for transit assignment

modelling
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Looking at, for example, the Victoria — Holborn OD pair: According to the extended
concept of superstations, the origin station: Victoria can be grouped with the nearby
St James’ Park station and the destination station: Holborn with the Tottenham Court
Road, Leicester Square, Covent Garden, Chancery Lane and Temple stations. This

way the route choice set between the origin and destination superstations will be

1) —@RE (via Oxford Circus)
2) — [RIEEIDY (via Green Park)

3) Circle —[\IAM (via Embankment)
4) Circle

This example illustrates that with the inclusion of nearby stations, there are additional
routes in the choice set of passengers. Practically this means that if the true origin of the
passenger is somewhere near Victoria station and the true destination is somewhere near
Holborn station —in addition to the previously discussed routes (route 1 and 2) —it might
be convenient for him/her to take the Circle line to Embankment and interchange to the
(route 3), or to Temple and walk to the true destination (route 4).

With this concept of superstation representation, route choice could be estimated in the
following way: For some station-to-station OD pairs, the route choice can be known
explicitly, as there is only one reasonable route (e.g. Victoria — Temple, Victoria —
Covent Garden), while for other OD pairs there are more reasonable routes (e.g.
Victoria — Holborn, Victoria — Leicester Square). In the latter case — similarly to the
original concept of superstations — the route choice could be estimated with the finite

mixture models.

Through this specific example it could be further understood that the main objective of
this superstation representation is to give a more comprehensive picture on route choice
by including those passengers who decide to take a direct service (i.e. Circle line) to a
station near their true destination (i.e. Temple). For this OD pair it was not possible to
comply with the objective of data availability, because — unlike the original concept of
superstations — it was not possible to group the Victoria station with the other stations on

the Victoria line as they are not in its physical proximity.

It is important to note that the station grouping presented on Figure 8-1 is one, but not
the only possibility to group the stations. For example — looking into the opposite
direction — Victoria station could be grouped with Sloane Square and Hyde Park

stations instead of St James’s Park station. Therefore this extended concept of
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superstations would necessitate not only to group the nearby stations, but also to find the
optimal configuration among all possibilities. Furthermore, dealing with nearby stations,
would require additional information on the true origin/destination of passengers and the
surface walk time to/from their corresponding entry/exit stations. These tasks would bring

the necessity to apply geospatial analysis.

8.2.4 A different approach for considering fail-to-board delays at the origin
station

It is proposed to extend the concept in Chapter 7 also for the cases, when the fail-to-
board delay occurs at the origin stations. In other words, looking at the outcomes of
Chapter 6 and Chapter 7 it was understood that updating the route choice probabilities
is a more justifiable approach than adjusting the OJT values.

Within the framework of this thesis, for Case 1 and Case 2 the common pattern is that
for all reasonable routes the first journey leg is on the same line. In this context, in the
time intervals when fail-to-board delays occur at the origin station, it occurs on all routes.
Therefore in this specific case the fail-to-board delay (67*%) and hence the expected
journey time (§E%F) is not anymore a function of the chosen route (r), only of the entry

time (T;Z"” ). This way the original Bayesian network structure (cf. Figure 7-1) can be

further simplified (see Figure 8-3).

Figure 8-3 Bayesian network structure to illustrate passengers probabilistic route

choices — in case fail-to-board delay is the same on all routes



241

In these cases, equation (7-1) and (7-2) simplifies to the following

lat— t
Toy O =Toy "+t (8-1)
where Tﬂft“’ denotes the arrival time stamp of passenger g at the departure platform of

the origin station. From this, the time interval (t) of arriving at the congested platform

can be explicitly known, and hence the corresponding fail-to-board delay (tg"j]”, cf.

Section 6.3) and Expected Journey Time (t;%7;, cf. equation (7-3)) can be inferred. Based

on this, the updated route choice probabilities (Pr(choice,.; |84, Dgryy). Cf. Section
7.4) aswell as the reference time of routes (tﬁff ) and the aggregate values of route choice

(w; ") (cf. Section 7.5) can be obtained.

Looking at equation (7-6) it is expected that in the time intervals of the peak of peak (i.e.
8:15-9:00) — when fail-to-board delays occur at the origin station and hence t;%,; is

higher for both routes — the Pr(choiceqr_,]m Aqr,,]) will be closer to each other for

qu]’

CCOoJT

q Observations were

the different routes than it is for the priors; where the higher &

S]T

associated by default with the route that has longer SJT (t,’;

), which meant that the
corresponding route choice probabilities (w, ;;) were also higher (c.f. Figure 5-13 and
Figure 5-19).

8.2.5 Relying on automatically collected data for inferring crowding and the

journey time of routes

It is proposed for further research to improve the adjustment and matching process, so
that it can completely move away from manual surveys and rely more on automatically

collected data sources:

e Estimate passenger flows also from smart card data instead of RODS data
e Infer on-board and wait time of trains from their actual departure and arrival times
instead of timetables

e Infer access egress interchange (AEI) times in function of station crowding

In theory, from smart card data both the OD demand and route choice can be inferred,
hence passenger flow can be determined for all links. However — in the congested case —
this would require to solve this problem as a TAM for the entire network, which would
require much additional modelling work due to the size and complexity of the LU
network.
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The actual departure/arrival time of trains can be understood from the TfL open data
website (cf. Section 3.6.2.1). Staying at the frequency based context it would be possible
to infer from that data source the distribution of on-board and wait times. Furthermore,
also for the AEI times more realistic estimates could be obtained, if they were modelled
not only with their mean values based on the information on station layouts (cf. Section
3.6.2.2); but also with their distribution which is in relation with the crowding

experienced along the station passageways (following the concept in Section 6.3).



243

References

Arthur, D. and Vassilvitskii, S.2007. k-means++: The advantages of careful seeding.
In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms: Society for Industrial and Applied Mathematics, pp.1027-1035.

Azevedo, J.A., Madeira, J.J.E.S., Martins, E.Q.V. and Pires, F.M.A. 1990. A shortest
paths ranking algorithm.

Azevedo, J.A., Santos Costa, M.E.O., Silvestre Madeira, J.J.E.R. and Vieira Martins,
E.Q. 1993. An algorithm for the ranking of shortest paths. European Journal of
Operational Research. 69(1), pp.97-106.

Barry, J., Newhouser, R., Rahbee, A. and Sayeda, S. 2002. Origin and Destination
Estimation in New York City with Automated Fare System Data. Transportation
Research Record: Journal of the Transportation Research Board. 1817, pp.183-
187.

Basar, G. and Bhat, C. 2004. A parameterized consideration set model for airport
choice: an application to the San Francisco Bay Area. Transportation Research
Part B: Methodological. 38(10), pp.889-904.

Bekhor, S., Toledo, T. and Prashker, J. 2006. Implementation issues of route choice
models in path-based algorithms. In: 11th international conference on travel
behaviour research, Kyoto, Japan.

Bellman, R. 1958. On arouting problem. Quarterly of applied mathematics. 16(1),
pp.87-90.

Ben-Akiva, M., Bergman, M., Daly, A.J. and Ramaswamy, R. 1984. Modeling inter-
urban route choice behaviour. In: Proceedings of the 9th International
Symposium on Transportation and Traffic Theory, VNU Press, Utrecht, pp.299-
330.

Ben-Akiva, M. and Bierlaire, M. 1999. Discrete Choice Methods and their Applications
to Short Term Travel Decisions. In: Hall, R.W. ed. Handbook of Transportation
Science. Boston, MA: Springer US, pp.5-33.

Bergantino, A.S., Capurso, M., Dekker, T. and Hess, S. 2019. Allowing for
Heterogeneity in the Consideration of Airport Access Modes: The Case of Bari
Airport. Transportation Research Record: Journal of the Transportation
Research Board. p036119811882512.

Bovy, P.H.L. 2009. On Modelling Route Choice Sets in Transportation Networks: A
Synthesis. Transport Reviews. 29(1), pp.43-68.

Cantillo, V. and Ortizar, J.d.D. 2005. A semi-compensatory discrete choice model with
explicit attribute thresholds of perception. Transportation Research Part B:
Methodological. 39(7), pp.641-657.

Cascetta, E., Nuzzolo, A., Russo, F. and Vitetta, A. 1996. A modified Logit route choice
model overcoming path overlapping problems: specification and some
calibration results for interurban networks. In: Proceedings of the 13th
International Symposium on Transportation and Traffic Theory, Pergamon,
Lyon, France. pp.697-711.

Cascetta, E. and Papola, A. 2001. Random utility models with implicit
availability/perception of choice alternatives for the simulation of travel demand.
Transportation Research Part C: Emerging Technologies. 9(4), pp.249-263.

Cea, J.d. and Fernandez, E. 1993. Transit Assignment for Congested Public Transport
Systems: An Equilibrium Model. Transportation Science. 27(2), pp.133-147.

Cepeda, M., Cominetti, R. and Florian, M. 2006. A frequency-based assignment model
for congested transit networks with strict capacity constraints: characterization
and computation of equilibria. Transportation Research Part B:
Methodological. 40(6), pp.437-459.



244

Chamundeswari, G., Varma, G.P. and Satyanarayana, C.2012. An experimental
analysis of k-means using Matlab. International Journal of Engineering
Research Technology (IJERT) ISSN.

Chan, J. 2007. Rail Transit OD Matrix Estimation and Journey Time Reliability Metrics
Using Automated Fare Data. Master of Science in Transportation thesis,
Massachusetts Institute of Technology.

Chriqui, C., & Robillard, P.1975. Common bus lines. Transportation Science. 9,
pp.115-121.

Chu, K. and Chapleau, R. 2010. Augmenting Transit Trip Characterization and Travel
Behavior Comprehension. Transportation Research Record: Journal of the
Transportation Research Board. 2183, pp.29-40.

Chu, K.K. 2010. Leveraging data from a smart card automatic fare collection system
for public transit planning. thesis, Ecole Polytechnique de Montréal.

Cominetti, R. and Correa, J. 2001. Common-Lines and Passenger Assignment in
Congested Transit Networks. Transportation Science. 35(3), pp.250-267.

Connors, R.D. and Watling, D.P. 2014. Assessing the Demand Vulnerability of
Equilibrium Traffic Networks via Network Aggregation. Networks and Spatial
Economics. 15(2), pp.367-395.

Cui, A. 2006. Bus passenger origin-destination matrix estimation using automated data
collection systems. thesis, Massachusetts Institute of Technology.

de la Barra, T., Perez, B. and Anez, J. 1993. Multidimensional path search and
assignment. In: PTRC Summer Annual Meeting, 21st, 1993, University of
Manchester, United Kingdom.

Dempster, A.P., Laird, N.M. and Rubin, D.B. 1977. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society.
Series B (Methodological). 39(1), pp.1-38.

Dial, R.B. 1971. A probabilistic multipath traffic assignment model which obviates path
enumeration. Transportation Research. 5(2), pp.83-111.

Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. Numerische
mathematik. 1(1), pp.269-271.

Domencich, T. and McFadden, D. 1975. Urban travel demand; a behavioural analysis.

Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. 1996. A density-based algorithm for
discovering clusters in large spatial databases with noise. In: Kdd, pp.226-231.

Fifer, S., Rose, J. and Greaves, S. 2014. Hypothetical bias in Stated Choice
Experiments: Is it a problem? And if so, how do we deal with it? Transportation
Research Part A: Policy and Practice. 61, pp.164-177.

Fiorenzo-Catalano, S., Van Nes, R. and Bovy, P.H. 2004. Choice set generation for
multi-modal travel analysis. European journal of transport and infrastructure
research EJTIR, 4 (2).

Ford, L.R.J. 1956. Network flow theory. RAND CORP SANTA MONICA CA.

Forgy, E.W. 1965. Cluster analysis of multivariate data : efficiency versus
interpretability of classifications. Biometrics. 21, pp.768-769.

Freemark, Y. 2013. Assessing Journey Time Impacts of Disruptions on London's
Piccadilly Line. Master of Science in Transportation thesis, Massachusetts
Institute of Technology.

Frigge, M., Hoaglin, D.C. and Iglewicz, B. 1989. Some Implementations of the
Boxplot. The American Statistician. 43(1), pp.50-54.

Frihwirth-Schnatter, S. 2006. Finite mixture and Markov switching models. Springer
Science & Business Media.

Fu, Q. 2014. Modelling route choice behaviour with incomplete data: an application to
the London Underground. PhD thesis, University of Leeds.



245

Fu, Q.,Liu, R. and Hess, S. 2012. A Review on Transit Assignment Modelling
Approaches to Congested Networks: A New Perspective. Procedia - Social and
Behavioral Sciences. 54, pp.1145-1155.

Fujiyama, T. and Tyler, N. 2010. Predicting the walking speed of pedestrians on stairs.
Transportation Planning and Technology. 33(2), pp.177-202.

Gan, L. and Jiang, J. 1999. A Test for Global Maximum. Journal of the American
Statistical Association. 94(447), pp.847-854.

Gaundry, M.J.l. and Dagenais, M.G. 1979. The dogit model. Transportation Research
Part B: Methodological. 13(2), pp.105-111.

Gentile, G. and Noekel, K. 2016. Modelling public transport passenger flows in the era
of intelligent transport systems.

Gordillo, F. 2006. The Value of Automated Fare Collection Data for Transit Planning:
An Example of Rail Transit OD Matrix Estimation. Master of Science in
Transportation thesis, Massachusetts Institute of Technology.

Gordon, J.B., Koutsopoulos, H.N., Wilson, N.H.M. and Attanucci, J.P. 2013.
Automated Inference of Linked Transit Journeys in London Using Fare-
Transaction and Vehicle Location Data. Transportation Research Record:
Journal of the Transportation Research Board. 2343(-1), pp.17-24.

Guo, W. and Lu, X. 2016. London underground: Neighbourhood centrality and relation
to urban geography. In: 2016 IEEE International Smart Cities Conference
(ISC2), 12-15 Sept. 2016, pp.1-7.

Guo, Z. 2008. Transfers and path choice in urban public transport systems. thesis,
Massachusetts Institute of Technology.

Guo, Z. 2011. Mind the map! The impact of transit maps on path choice in public
transit. Transportation Research Part A: Policy and Practice. 45(7), pp.625-
639.

Hart, P.E., Nilsson, N.J. and Raphael, B. 1968. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science
and Cybernetics. 4(2), pp.100-107.

Hassan, M.N., Rashidi, T.H., Waller, S.T., Nassir, N. and Hickman, M.J.J.0.P.T. 2016.
Modeling Transit Users Stop Choice Behavior: Do Travelers Strategize? Journal
of Public Transportation. 19(3), p6.

Hickman, M.D. and Bernstein, D.H. 1997. Transit Service and Path Choice Models in
Stochastic and Time-Dependent Networks. Transportation Science. 31(2),
pp.129-146.

Holleczek, T., Anh, D.T., Yin, S.,Jin, Y., Antonatos, S., Goh, H.L., Low, S. and Shi-
Nash, A. 2015. Traffic Measurement and Route Recommendation System for
Mass Rapid Transit (MRT). In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Sydney,
NSW, Australia. 2788590: ACM, pp.1859-1868.

Hong, L., Li, W. and Zhu, W. 2017. Assigning Passenger Flows on a Metro Network
Based on Automatic Fare Collection Data and Timetable. Discrete Dynamics in
Nature and Society. 2017, pp.1-10.

Hong, S.-P., Min, Y.-H., Park, M.-J., Kim, K.M. and Oh, S.M. 2015. Precise estimation
of connections of metro passengers from Smart Card data. Transportation.
43(5), pp.749-769.

Horcher, D., Graham, D.J. and Anderson, R.J. 2017. Crowding cost estimation with
large scale smart card and vehicle location data. Transportation Research Part
B: Methodological. 95, pp.105-125.

Horowitz, J.L. and Louviere, J.J. 1995. What is the role of consideration sets in choice
modeling? International Journal of Research in Marketing. 12(1), pp.39-54.



246

Ingvardson, J.B., Nielsen, O.A., Raveau, S. and Nielsen, B.F. 2018. Passenger arrival
and waiting time distributions dependent on train service frequency and station
characteristics: A smart card data analysis. Transportation Research Part C:
Emerging Technologies. 90, pp.292-306.

Jafari, E. and Boyles, S.D. 2016. Improved bush-based methods for network
contraction. Transportation Research Part B: Methodological. 83, pp.298-313.

JanoSikova, L., Slavik, J. and Kohani, M. 2014. Estimation of a route choice model for
urban public transport using smart card data. Transportation Planning and
Technology. 37(7), pp.638-648.

Kaufman, L. and Rousseeuw, P.J. 2009. Finding groups in data: an introduction to
cluster analysis. John Wiley & Sons.

Kieu, L.-M., Bhaskar, A. and Chung, E. 2015a. A modified Density-Based Scanning
Algorithm with Noise for spatial travel pattern analysis from Smart Card AFC
data. Transportation Research Part C: Emerging Technologies. 58, pp.193-207.

Kieu, L.M., Bhaskar, A.and Chung, E. 2015b. Passenger Segmentation Using Smart
Card Data. IEEE Transactions on Intelligent Transportation Systems. 16(3),
pp.1537-1548.

Koutsopoulos, H.N., Noursalehi, P., Zhu, Y. and Wilson, N.H.M. 2017. Automated data
in transit: Recent developments and applications. In: 2017 5th IEEE
International Conference on Models and Technologies for Intelligent
Transportation Systems (MT-ITS), 26-28 June 2017, pp.604-609.

Kuhlman, W. 2015. The construction of purpose-specific OD matrices using public
transport smart card data. thesis, TU Delit.

Kurauchi, F.,Bell, M.G.H. and Schmdcker, J.-D. 2003. Capacity Constrained Transit
Assignment with Common Lines. Journal of Mathematical Modelling and
Algorithms. 2(4), pp.309-327.

Kusakabe, T. and Asakura, Y. 2014. Behavioural data mining of transit smart card data:
A data fusion approach. Transportation Research Part C: Emerging
Technologies. 46, pp.179-191.

Kusakabe, T., Iryo, T. and Asakura, Y. 2010. Estimation method for railway
passengers’ train choice behavior with smart card transaction data.
Transportation. 37(5), pp.731-749.

Leahy, C., Batley, R. and Chen, H. 2015. Toward an automated methodology for the
valuation of reliability. Journal of Intelligent Transportation Systems. 20(4),
pp.334-344.

Lee, M. and Sohn, K. 2015. Inferring the route-use patterns of metro passengers based
only on travel-time data within a Bayesian framework using a reversible-jump
Markov chain Monte Carlo (MCMC) simulation. Transportation Research Part
B: Methodological. 81, pp.1-17.

Lee, S., Hickman, M. and Tong, D. 2013. Development of a temporal and spatial
linkage between transit demand and land-use patterns. Journal of Transport and
Land Use. 6(2), p33.

Li, Z. and Hensher, D.A. 2011. Crowding and public transport: A review of willingness
to pay evidence and its relevance in project appraisal. Transport Policy. 18(6),
pp.880-887.

Luo, D., Cats, O.and van Lint, H. 2017. Constructing Transit Origin—Destination
Matrices with Spatial Clustering. Transportation Research Record: Journal of
the Transportation Research Board. 2652(1), pp.39-49.

MacQueen, J. 1967. Some methods for classification and analysis of multivariate
observations. Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability. 1, p17.



247

Manski, C.F. 1977. The structure of random utility models. Theory and Decision. 8(3),
pp.229-254.

Martinez, F., Aguila, F.and Hurtubia, R. 2009. The constrained multinomial logit: A
semi-compensatory choice model. Transportation Research Part B:
Methodological. 43(3), pp.365-377.

McLachlan, G. and Peel, D. 2000. Finite mixture models: Wiley series in probability
and mathematical statistics. John Wiley & Sons, Inc.

McLachlan, G.J. and Krishnan, T. 2007. The EM algorithm and extensions. John Wiley
& Sons.

Meschini, L., Gentile, G. and Papola, N.2007. A frequency based transit model for
dynamic traffic assignment to multimodal networks. In: 17th International
Symposium on Transportation and Traffic Theory, 23rd-25th July 2007, London,
United Kingdom.

Morency, C., Trépanier, M. and Agard, B. 2007. Measuring transit use variability with
smart-card data. Transport Policy. 14(3), pp.193-203.

Munizaga, M.A. and Palma, C. 2012. Estimation of a disaggregate multimodal public
transport Origin-Destination matrix from passive smartcard data from Santiago,
Chile. Transportation Research Part C: Emerging Technologies. 24, pp.9-18.

Nadudvari, T., Liu, R. and Balijepalli, C. 2016. The reasonable route choice set in large
and complex metro networks; an implementation of the K-shortest path
algorithm for the London Underground. In: Proceedings of the 21st
International Conference of Hong Kong Society for Transportation Studies,
10th-12th December 2016, Hong Kong, China. Hong Kong Society for
Transportation Studies, pp.247-254.

N&dudvari, T., Liu, R. and Hess, S.2015. Modelling passengers’ route choice behaviour
on the London Underground: application of two choice modelling approaches.
In: In: Proceedings of the 47th Annual Conference of Universities' Transport
Study Group, 5th-7th January 2015, London, United Kingdom.

Nassir, N., Hickman, M. and Ma, Z.-L. 2015a. Activity detection and transfer
identification for public transit fare card data. Transportation. 42(4), pp.683-
705.

Nassir, N., Hickman, M., Malekzadeh, A.and Irannezhad, E. 2015b. Modeling Transit
Passenger Choices of Access Stop. Transportation Research Record: Journal of
the Transportation Research Board. 2493(1), pp.70-77.

Nassir, N., Hickman, M., Malekzadeh, A.and Irannezhad, E. 2016. A utility-based
travel impedance measure for public transit network accessibility.
Transportation Research Part A: Policy and Practice. 88, pp.26-39.

Nguyen, S. and Pallottino, S. 1988. Equilibrium traffic assignment for large scale transit
networks. European Journal of Operational Research. 37(2), pp.176-186.

Nuzzolo, A., Crisalli, U. and Rosati, L. 2012. A schedule-based assignment model with
explicit capacity constraints for congested transit networks. Transportation
Research Part C: Emerging Technologies. 20(1), pp.16-33.

Nuzzolo, A., Russo, F. and Crisalli, U. 2001. A Doubly Dynamic Schedule-based
Assignment Model for Transit Networks. Transportation Science. 35(3), pp.268-
285.

Opsahl, T., Agneessens, F.and Skvoretz, J. 2010. Node centrality in weighted
networks: Generalizing degree and shortest paths. Social Networks. 32(3),
pp.245-251.

Ortega-Tong, M.A. 2013. Classification of London's Public Transport Users Using
Smart Card Data. MIT Thesis.

Ortdzar, J.d.D. and Willumsen, L.G. 2011. Modelling transport. Chichester, West
Sussex: John Wiley & Sons.



248

Parkes, S.D., Jopson, A. and Marsden, G. 2016. Understanding travel behaviour change
during mega-events: Lessons from the London 2012 Games. Transportation
Research Part A: Policy and Practice. 92, pp.104-119.

Paul, E.C. 2010. Estimating train passenger load from automated data systems :
application to London Underground. Master of Science in Transportation thesis,
Massachusetts Institute of Technology.

Pelletier, M.-P., Trépanier, M. and Morency, C. 2011. Smart card data use in public
transit: A literature review. Transportation Research Part C: Emerging
Technologies. 19(4), pp.557-568.

Prato, C.G. 2009. Route choice modeling: past, present and future research directions.
Journal of Choice Modelling. 2(1), pp.65-100.

Ramming, M. 2002. Network Knowledge and Route Choice. PhD. MIT, Cambridge,
MA, Unpublished.

Raveau, S., Guo, Z., Muioz, J.C. and Wilson, N.H.M. 2014. A behavioural comparison
of route choice on metro networks: Time, transfers, crowding, topology and
socio-demographics. Transportation Research Part A: Policy and Practice. 66,
pp.185-195.

Richardson, S. and Green, P.J. 1997. On Bayesian Analysis of Mixtures with an
Unknown Number of Components (with discussion). Journal of the Royal
Statistical Society: Series B (Statistical Methodology). 59(4), pp.731-792.

Rodriguez, A.and Laio, A. 2014. Clustering by fast search and find of density peaks.
Science. 344(6191), pp.1492-1496.

Ross, L. 2017. Measuring Travel Time Reliability under Disruption Conditions for the
London Underground. Master of Science thesis, University of Leeds.

Schmocker, J.-D. 2006. Dynamic Capacity Constrained Transit Assignment Thesis
submitted for the degree of Doctor of Philosophy thesis, Imperial College
London.

Schmocker, J.-D., Bell, M.G.H. and Kurauchi, F.2008. A quasi-dynamic capacity
constrained frequency-based transit assignment model. Transportation Research
Part B: Methodological. 42(10), pp.925-945.

Schmdcker, J.-D., Fonzone, A., Shimamoto, H., Kurauchi, F.and Bell, M.G.H. 2011.
Frequency-based transit assignment considering seat capacities. Transportation
Research Part B: Methodological. 45(2), pp.392-408.

Seaborn, C., Attanucci, J. and Wilson, N. 2009. Analyzing Multimodal Public Transport
Journeys in London with Smart Card Fare Payment Data. Transportation
Research Record: Journal of the Transportation Research Board. 2121, pp.55-
62.

Silva, D. 2017. Quantifying Journey Time Variability and Understanding its Impact On
Passenger Decision Making For Bus Travel In London. Master of Science
thesis, University of Leeds.

Spiess, H. and Florian, M. 1989. Optimal strategies: A new assignment model for transit
networks. Transportation Research Part B: Methodological. 23(2), pp.83-102.

Sun, G., Xiong, Y.and Zhu, Y. 2017. How the Passengers Flow in Complex Metro
Networks? In: Proceedings of the 29th International Conference on Scientific
and Statistical Database Management, Chicago, IL, USA. 3085527: ACM, pp.1-
6.

Sun, L., Lee, D.-H., Erath, A. and Huang, X. 2012. Using smart card data to extract
passenger's spatio-temporal density and train's trajectory of MRT system. In:
Proceedings of the ACM SIGKDD International Workshop on Urban
Computing, Beijing, China. 2346519: ACM, pp.142-148.



249

Sun, L., Ly, Y., Jin, J.G., Lee, D.-H. and Axhausen, K.W. 2015. An integrated Bayesian
approach for passenger flow assignment in metro networks. Transportation
Research Part C: Emerging Technologies. 52, pp.116-131.

Sun, Y. and Xu, R. 2012. Rail Transit Travel Time Reliability and Estimation of
Passenger Route Choice Behavior. Transportation Research Record: Journal of
the Transportation Research Board. 2275, pp.58-67.

Swait, J. 2001. A non-compensatory choice model incorporating attribute cutoffs.
Transportation Research Part B: Methodological. 35(10), pp.903-928.

Swait, J. and Ben-Akiva, M. 1987. Incorporating random constraints in discrete models
of choice set generation. Transportation Research Part B: Methodological.
21(2), pp.91-102.

Tamblay, S., Galilea, P., Iglesias, P., Raveau, S.and Mufoz, J.C. 2016. A zonal
inference model based on observed smart-card transactions for Santiago de
Chile. Transportation Research Part A: Policy and Practice. 84, pp.44-54.

Tamblay, S., Mufioz, J.C. and Ortuzar, J.d.D. 2018. Extended Methodology for the
Estimation of a Zonal Origin-Destination Matrix: A Planning Software
Application Based on Smartcard Trip Data. Transportation Research Record:
Journal of the Transportation Research Board.

Teklu, F. 2007. A Stochastic Process Approach for Frequency-based Transit
Assignment with Strict Capacity Constraints. Networks and Spatial Economics.
8(2-3), pp.225-240.

Tirachini, A., Hurtubia, R., Dekker, T. and Daziano, R.A. 2017. Estimation of crowding
discomfort in public transport: Results from Santiago de Chile. Transportation
Research Part A: Policy and Practice. 103, pp.311-326.

Tirachini, A., Sun, L., Erath, A. and Chakirov, A. 2016. Valuation of sitting and
standing in metro trains using revealed preferences. Transport Policy. 47, pp.94-
104.

Tong, C.O.and Wong, S.C. 1999. A stochastic transit assignment model using a
dynamic schedule-based network. Transportation Research Part B:
Methodological. 33(2), pp.107-121.

Tong, C.0.C.0. 1986. A schedule-based transit network model.

Transport for London. 2010. Measuring Public Transport Accessibility Levels, (PTALS),
Summary. Transport for London.

Transport for London. 2017. Review of the TfL WiFi pilot. London, UK: Transport for
London.

Trépanier, M., Tranchant, N. and Chapleau, R. 2007. Individual Trip Destination
Estimation in a Transit Smart Card Automated Fare Collection System. Journal
of Intelligent Transportation Systems. 11(1), pp.1-14.

Utsunomiya, M., Attanucci, J. and Wilson, N. 2006. Potential Uses of Transit Smart
Card Registration and Transaction Data to Improve Transit Planning.
Transportation Research Record: Journal of the Transportation Research
Board. 1971, pp.119-126.

Viggiano, C., Koutsopoulos, H.N., Wilson, N.H.M. and Attanucci, J. 2016. Journey-
based characterization of multi-modal public transportation networks. Public
Transport. 9(1-2), pp.437-461.

Vowsha, P. 1997. Application of Cross-Nested Logit Model to Mode Choice in Tel
Aviv, lIsrael, Metropolitan Area. Transportation Research Record: Journal of
the Transportation Research Board. 1607, pp.6-15.

Wahaballa, A.M., Kurauchi, F., Yamamoto, T. and Schmdcker, J.-D. 2017. Estimation
of Platform Waiting Time Distribution Considering Service Reliability Based on
Smart Card Data and Performance Reports. Transportation Research Record:
Journal of the Transportation Research Board. 2652, pp.30-38.



250

Wang, W., Attanucci, J. and Wilson, N. 2011. Bus passenger origin-destination
estimation and related analyses using automated data collection systems.

Watling, D.P., Rasmussen, T.K., Prato, C.G. and Nielsen, O.A. 2018. Stochastic user
equilibrium with a bounded choice model. Transportation Research Part B:
Methodological. 114, pp.254-280.

Wen, C.-H. and Koppelman, F.S.2001. The generalized nested logit model.
Transportation Research Part B: Methodological. 35(7), pp.627-641.

Whelan, G.A. and Crockett, J. 2009. An Investigation of the Willingness to Pay to
Reduce Rail Overcrowding. In: International Choice Modelling Conference
20009.

Williams, H.C.W.L. 1977. Onthe Formation of Travel Demand Models and Economic
Evaluation Measures of User Benefit. Environment and Planning A: Economy
and Space. 9(3), pp.285-344.

Wu, J.H., Florian, M., & Marcotte, P. 1994. Transit equilibrium assignment: a model
and solution algorithms. Transportation Science. 28, pp.193-203.

Xu, R.-h. and Zhou, F. 2012. Model of Passenger Flow Assignment for Urban Rail
Transit Based on Entry and Exit Time Constraints. Transportation Research
Record: Journal of the Transportation Research Board. 2284(-1), pp.57-61.

Xu, X., Xie, L., Li, H. and Qin, L. 2018. Learning the route choice behavior of subway
passengers from AFC data. Expert Systems with Applications. 95, pp.324-332.

Yen, J.Y. 1971. Finding the K Shortest Loopless Paths in a Network. Management
Science. 17(11), pp.712-716.

Young, M.A. and Blainey, S.P.2017. Development of railway station choice models to
improve the representation of station catchments in rail demand models.
Transportation Planning and Technology. 41(1), pp.80-103.

Yu, B., Zhy, H., Cai, W., Ma, N., Kuang, Q.and Yao, B. 2013. Two-phase optimization
approach to transit hub location — the case of Dalian. Journal of Transport
Geography. 33, pp.62-71.

Zhao, J., Frumin, M., Wilson, N.and Zhao, Z. 2013. Unified estimator for excess
journey time under heterogeneous passenger incidence behavior using smartcard
data. Transportation Research Part C: Emerging Technologies. 34, pp.70-88.

Zhao, J., Rahbee, A. and Wilson, N.H.M. 2007. Estimating a Rail Passenger Trip
Origin-Destination Matrix Using Automatic Data Collection Systems.
Computer-Aided Civil and Infrastructure Engineering. 22(5), pp.376-387.

Zhong, C., Arisona, S.M., Huang, X., Batty, M. and Schmitt, G. 2014. Detecting the
dynamics of urban structure through spatial network analysis. International
Journal of Geographical Information Science. 28(11), pp.2178-2199.

Zhu, W. and Xu, R. 2016. Generating route choice sets with operation information on
metro networks. Journal of Traffic and Transportation Engineering (English
Edition). 3(3), pp.243-252.

Zhu, Y. 2017. Passenger-to-Itinerary Assignment Model Based on Automated Data.
thesis, Northeastern University.

Zhu, Y., Koutsopoulos, H.N. and Wilson, N.H.M. 2017. A probabilistic Passenger-to-
Train Assignment Model based on automated data. Transportation Research
Part B: Methodological. 104, pp.522-542.

Zhu, Y., Koutsopoulos, H.N. and Wilson, N.H.M. 2018. Inferring left behind
passengers in congested metro systems from automated data. Transportation
Research Part C: Emerging Technologies. 94, pp.323-337.



251

Appendix A
Matlab code for creating matrix of link times

Section 4.4.1 presented the definition of nodes and links, as well as the allocation rules
for the values in the matrix of link times. The case study network (i.e. LU inner zone with

9 lines and 68 stations) is represented with 280 nodes and 722 links.

To fill the matrix of link times manually would be time consuming and it could easily
give place to errors. To avoid this, a Matlab code was written to create and fill this matrix

automatically based on the input data for the lines and stations (cf. Section 3.6.2):

function [Network,Conmon]=network 0l matrixtime Thesis(Line Cell ,AET Cell,Common)

Input

(Mumber of LT lines
Line Total=length(Line Celli(:,1)):

Define node types

Node Type=seros(3,1):
Node Type(l)=1;

(In-wehcile Node
Naode_ In Weh=0;
for i=l:Line_Total
Node_In Veh=Node In Veh+lengthiLine Cell{i,Z}(:,1));
end
Naode Type(Z)=Node_ In Veh+l;

(Platform Node
Node Platform=Node In Veh;
Naode _Type(3)=Node In Veh+Node Platform+l;

(Ticket Gate nodes
Node _Ticket Gates=length(iEI Cell(:,1})):

(Total number of nodes
Node_total=Node In Weh+Node Platform+MNode Ticket Gates;

Matrix of link times

Matrix=Inf*ones (Node_ total):
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On-heoard links

hdjustment due to common line problem
Common_Total=height (Conmon) ;

k=0;
for

end

i=l:Line_Total
common_adjust=0;
for common=1l:Common_Total
if Common. Line ID{common)==Line Cell{i,1}(1,1)
Common_Adjust=Conmon. 3egnents{common}. Aegnents;
common_adjust=1;
Common_Adjust_Total=height(Common Adjust):
Common_Adjust.Link 3tart Node=zeros(Common ddjust Total,l):
Common_&djust.Link_End Node=zeros(Common ddjust Total,l):;
end
end

for j=l:ilength(Line Cell{i,2}(:,1)1)-1
k=k+1:
Matrix(k,k+l)= Line Cell{i,2}(i+l1,2):
Matrix (k+l,k)= Line Cell{i,2}(j+1,2):
if common adjust==1
for segment=1:Comnmon_ Adjust Total
if Common ddjust.Link_ 3tart OysterFey(segment)==Line Cell{i,2}(],1)
Matrix (k,k+1)= Matrix (k,kE+1)+Common_Adjust. adjustment (segqment) ;
Matrix (k+1,k)= Matrix (k+l,k)+Common_Adjust.idjustnent(seguent) ;
Common_Adjust.Link_ Start Node (seqment)=k:
Common_ Adjust.Link End Node{segment)=k+l:
end
end
end
end
k=k+1:
if common_adjust==1
Common. Jequents{conmon} . jequents=Comnon_Adjust:
end
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Alighting links

for i=l:HNode_FPlatform
Matrix(i,Node_In Veh+i)=0;
end

Wait links

A 1 S R 1 I 1
k=0;
3Wait times, Now we consider as half of the headway
for i=l:Line Total
for j=1l:length(Line Cell{i,2}(:,1)]
k=k+1:
Matrix (Node In Wehtk,k)=Line Cell{i,l}(1,Z172;
end
end
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Access Egress links

Linez &FEI{Line Total,Z2}=[1]:
for i=l:Line Total
Lines 4ET{i,l}=Line Cellfi,1}{l,1):
Linez AETI{i,Z}=Line Cell{i,2}(:,1l):
end

Linez AFI total=length (Linesz AFT):

for i=l:Node Ticket Gates

Lines_at 3jtations=length(AET Cell{i,Z}):
for j=l:Lines_at 3tations
node_for &K line=0;
for k=1l:Lines AFT total
if Lines_&ET{k,1}==4EI Cell{i,2}(]]

n=0;
for kk=l:lengthiLines AFET[k,Z})
n=n+l:
if AET Cell{i,l}==Linez_ AEI{k,Z} (kk]
fhocess
Matrix (Node In Weh+Node FPlatform+i,Node In Weh+node for &FE line+n)=&ET Cell{i,3}iJj):
3Eqrezs
Matrix (Node In Weh+node for 4F line+n,Node_In Veh+lode Platform+i)=4ET Cell{i,4}ij):
end
end
end

node_for AE line=node_ for A4F line+lengthiLines &FET{k, Z%):
end
end
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Interchange links

if Lines_at 3tations>1
for jl=1:Linez_at Stations
for jeE=1:Lines_at 3tations
node_line 1=0;
for kl=1:Linez AET total
if Lines AFT{kl,1}==AET Cell{i,2}(jl)
node_line Z=0;
for kZ=1:Linez AET total
if Lines AFT{kzZ,1}==AEI Cell{i,2}(jZ)
nl=0;
for kkl=1:length(Lines AET{k1,Z})
nl=nl+l:
if AEI Cell{i,l}==Lines AET[k1,2} (kkl)
nz=0;
for kkzZ=1:length(lLines AET[kZ,2})
nZ=ni+1;

if AFT Cell{i,l}==Lines_ AEI{kZ,Z} (kkZ)
Matrix (Node In Vehtnode line l4nl,Node In Veh+node line 2+nzZ)=3aET Cell{i,5}{jl,jz):
end
end
end
end
end
node_line Z=node_line Z+lengthilines AETI{kz,21):
end
end
node_line l=node_line l+lengthilines AET{kl,Z2}):
end
end
end
end



end

Output

Network{l,1}=Node_Type:
3Matrix of link times
HNetwork{l,3l=Matrix:

256
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Appendix B
The Dijkstra algorithm

The Dijkstra (1959) algorithm, calculates the shortest path by going through the following

steps:

1. Setan intial value of “distance from origin” for all nodes:
0 for initial node,
oo for all other nodes

2. Setthe origin node as

Set all other nodes unvisited
3. Update “distance from origin” for the neighbours of the

3.1. Calculate the “distance from origin” via the

3.2. If the newly calculated “distance from origin” is smaller than the current
value,

assign the newly calculated value for that node

set the as its parent node.
3.3. Once 3.1 and 3.2 is done for all neighbours of the [current_node],

mark the current node as visited.
3.4. If the destination node is marked as visited, stop

3.5. Find the unvisited node with the smallest “distance from origin”

Setit at

Go back to step 3.1

4. The shortest path will be given as the sequence of parent nodes from destination to
origin

This is illustrated on Figure B-1 through a small example network. The Dijkstra

algorithm was applied in Matlab as a sub-function of the K shortest algorithm on the LU

inner zone network (cf. Section 4.6). The program code is available from the Matlab file

exchange website30,

30 https://uk.mathworks.com/matlabcentral/filee xchange/5550 -dijkstra-shortest-path-routing



https://uk.mathworks.com/matlabcentral/fileexchange/5550-dijkstra-shortest-path-routing
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Step 1

Step 2

0
-\ . ~
3
(T]rue z-olse grue ;I'rue
Steps 3.1-3.3

7 2
2/ 0
0 ’ g"““" ?rue
True True
0 1

Figure B-1 The Dijkstra (1959) algorithm
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Appendix C
Matlab code for the proposed modifications to the K shortest
path algorithm

Section 4.6.2 explained the proposed modifications to the K shortest path algorithm to
avoid that the results should give route variants, which differ only in their access egress

interchange (AEI) movements within the stations (see Figure 4-8 a). The Matlab code for

these modifications are presented as follows

C.1 Algorithm to eliminate interchange links at origin and destination

stations and accessand egress links at all other stations

function Matrix OD=routes LT 01 4ETelim Thesis (Network 0D}

Input

Node Type=Network{l,l}:
netCostMatrix=Network{l,62}:
node_0=0D(1,1);

node D=0D(1,2);
MNodes=lengthi{netCostMatrix) ;
Matrix OD=netCostMatrix;
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Find which platfrom nodes are connected with the ticket gate node

Flatform O=seros(l,Node_Type(3)-Node Typeii)):
Flatform D=seros(l,Node_Type(3)-Node Typei()):

n_0=0;
n _D=0;
for i=Node_Type (2):Node_Type(3)-1
(0rigin
if Matrix 0D (node_0,1i)~=Inf
n_O=n 0+1;
Flatform Of(n 0)=1i;
end
(Destination
if Matrix 0D(i,node DIt} ~=Int
n D=n D+1;
Flatform D(n Dj=1i;
end
end

Flatform 0O=FPlatform O(l:n_0O);
Flatform D=FPlatform Di(l:in D):

Eliminate links between those platforms

(0rigin
for i=l:length(Platform_0)

Matrix_ 0OD(Platform 0(i),Node_Type():Node_Type(3)-1)=Int;:
end

(Destination
for i=l:length(Platform D)

Matrix_ 0D (Node_ Type(Z):Node Type(3)-1,Platform Di(i))=Inf;
end

Eliminate access and egress links at all other stations

for i=Node Type(3):HNodes
if and({i~=node_0,i~=node D)
Marrix 0D (i,Node Type(Z):Node Type(3)-1)=Inf;
Marrix_ 0D (Node Type(2):Node Type(3)-1,i)=Inf;
end
end
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C.2 Algorithm to eliminate links at interchange stations which does not
start from the deviation vertex

function Matrix I=routes LU 04 Telim Thesiz(MNode Type,Matrix,P_,index dew wertex)

Input

Matrix_ I=Matrix;
Dev_Wertex=F_[index_dewv_wertex):

Eliminate interchange links not from deviation vertex platform

%Check if it is an intermediate station
if and(index_ dew wertexx4,index dev wertex<length(P_)-3)
%Check if it is an interchange station
if and(Dev_Vertex:=Node Type(Z) ,Dev_Vertex<Node Type(3)])
(Check whether alighting or boarding platform
if P_iindex dew wertex-1)<Node Type (Z)
Flatform connect=zeros(l,Node_Type(3)-Node Type(2)):
n_connect=0;
for i=Node Type(Z):Node Typeii)-1
(Alighting platform
if Matrix I(Dev_Vertex,i)-=Inf
n_connect=n_connect+l;
Flatform connectin connect)=i;
end
end
Flatform connect=Flatform connectil:n_connect);
for i=l:length(Platform connect)
Matrix I(Platform comnect(i),Node Type(Z):Node Type(3)-1l)=Inf;
end
elze
YBoarding platform
Matrix I (Dewv Vertex ,Node Type(Z):Node Type(3)-1)=Inf:
end
end
end
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Appendix D
The results of the K shortest algorithm for the case study OD
pairs

In Section 4.6.3, the results were presented for the Victoria — Holborn OD pair. Here
the results are presented for the other case study OD pairs
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Table D-1 The 10 shortest routes for Euston — St James’s Park (OD 2) with their journey time and generalised cost,

observed routes (Rolling Origin Destination Survey, RODS) are highlighted with -

Route Time Generalised cost
IC1 Line 2 IC2 Line 3 IC3 Line 4 Total IC Total AEIl |Proportion
by iy t?::?:'_i' Cr.iy Cfﬁ dey i
[min] [min] [min] [min]
1RYilE o) s EW \ictoria Circle 16.7 2.0 27.7 14.9 1.00
Northem Embankment|Circle 20.0 1.3 30.9 12.1 1.11
(CX)
3EeliEs | Green Park |Jubilee Westminster [Circle 22.1 55 38.9 23.1 1.40
2\ \/ictoria gﬁzgd = 1E 1 olo Embankment|Circle 23.7 3.6 395 19.8 1.42
Northemn Victoria Victoria  |Circle 20.9 5.2 40.7 24.0 1.47
(CX) Street
('\'Boarrt]ti m Victoria Victoria  |Circle 23.9 52 41.4 227 1.49
Northem 32.2 35 43.4 155 1.56
(Bank)
5 Victoria UL - < e el Circle 24.6 45 437 24.0 1.58
Street (CX)
¥ Victoria Ci);‘;z';d = o | Baker Street [Jubilee  |Westminster |Circle 28.9 47 467 22.0 1.68
(Nco;(';he m =1 CE oo Embankment|Circle 26.3 41 47.2 23.5 1.70




Table D-2 The 10 shortest routes for Victoria — Liverpool Street (OD 3) with their journey time and generalised cost,
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observed routes (Rolling Origin Destination Survey, RODS) are highlighted with -

Route Time Generalised cost
ID Line 1 IC1 Line 2 IC2 Line 3 Total IC Total AEI Proportion
k, if Ly ticty Cif CkAﬁ A€y
=3 [min] [min] [min] [min]
. . Oxford Circus 23.2 3.4 34.1 17.2 1.00
Victoria
. 28.5 0.0 34.2 4.6 1.00
Circle
Victoria Kings Cross Circle 28.0 5.3 38.9 18.0 1.14
Bank 28.5 5.8 39.8 18.9 1.17
Victoria Green Park Jubilee Bond Street Central 26.9 5.0 444 24.6 1.30
Victoria Green Park Piccadilly Holborn Central 29.5 7.1 47.2 26.4 1.39
. Northern
Victoria Kings Cross (Bank) Moorgate Circle 29.0 5.3 47.7 24.9 1.40
Victoria Oxford Circus Bakerloo Baker Street Circle 32.7 35 48.0 19.2 1.41
Northern
Victoria Euston (Bank) Moorgate Circle 29.3 5.6 48.8 26.1 1.43
Northern RECIsacitt
10 Circle Embankment (CX) Court Rd Central 30.4 4.2 49.4 23.7 1.45
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Table D-3 The 10 shortest routes for Angel — Waterloo (OD 4)with their journey time and generalised cost,

observed routes (Rolling Origin Destination Survey, RODS) are highlighted with green

Route Time Generalised cost
ID Line 1 IC1 Line 2 IC2 Line 3 Total IC Total AEI Proportion
byis t?[cf:'j Coii Cfﬁ dey i
[min] [min] [min] [min]

Northern [Hs]alsle]al
((SEUTNI B ridge Jubilee 23.9 3.2 33.9 19.1 1.00
Northemn Waterloo
Bank) & City 235 5.3 35.6 19.8 1.05
North o

orthern - e ’ 253 26 37.1 183 1.09
(Bank)
Northern |8 .
(Bank) Kings Cross oric Oxford Circus Bakerloo 26.9 4.4 40.5 20.7 1.19
Northemn .
(Bank) Euston oric Oxford Circus Bakerloo 27.1 4.6 43.3 235 1.28
Northern Kings Cross Green Park 29.5 5.7 46.1 27.3 1.36
(Bank) oOria
Northern [ Northern
(Bank) Kings Cross M Warren Street (CX) 29.0 6.3 46.9 27.1 1.38
Northern [ Northern
(Bank) Kings Cross SR Euston (©X) 30.2 6.5 48.1 27.4 1.42
Northern orthe
(Bank) Euston Embankment Bakerloo 28.6 4.6 48.8 27.1 1.44
Northern
(Bank) Euston AN Green Park 29.8 6.0 48.9 30.1 1.44
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Table D-4 The 10 shortest routes for Liverpool Street — Green Park (OD 5) with their journey time and generalised cost,

observed routes (Rolling Origin Destination Survey, RODS) are highlighted with green

Route Time Generalised cost
ID Line 1 IC1 IC2 Line 3 Total _IC Total AEI Proportion
1 bty by Cris Cioti By
[min] [min] [min] [min]
Central Oxford Circus Victoria 21.4 2.9 32.8 16.9 1.00
Central Bond Street 24.3 3.2 34.9 18.0 1.06
Central Holbom Piccadilly 24.1 3.4 35.8 18.0 1.09
4 Circle Kings Cross Victoria 26.3 5.3 36.1 16.2 1.10
5 Circle Baker Street 29.3 3.8 40.3 17.4 1.23
6 Circle Kings Cross Piccadilly 30.2 5.0 40.6 16.8 1.24
mBank (NBO;S m Ei;‘j‘;‘;” Subilec 25.7 6.6 437 27.9 1.33
8l iy |Moorsate (NBOarrt]t‘;m Kings Cross [\ 273 5.3 44.0 223 1.34
9l e |MoorOate (NBO;K‘; M ;i;‘;‘;ﬂ Lubilee 26.8 5.3 44.0 243 1.34
10 il Westminster 31.9 2.9 44.7 15.2 1.37
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Table D-5 The 10 shortest routes for Euston — South Kensington (OD 6) with their journey time and generalised cost,

observed routes (Rolling Origin Destination Survey, RODS) are highlighted with green

Route Time Generalised cost
ID Line 1 IC1 Line 2 IC2 Line 3 Total _IC Total AEI Proportion
%, 17 bt by Coois c,ffj By ;s
=5 [min] [min] [min] [min]
Victoria Victoria Circle 20.1 2.0 31.5 16.7 1.00
Victoria Green Park Piccadilly 25.7 3.7 36.2 19.4 1.15
?'g)ghe M ;;‘:;ter Ra—— 26.5 15 38.0 16.3 121
('\gghe Sl = rbankment 27.4 13 38.6 138 1.23
Victoria Kings Cross Piccadilly 32.4 3.4 42.8 19.0 1.36
NI Oxcford Circus (SRS Eiicrzi‘:i"y 27.4 2.9 43.1 22.3 1.37
(NBOa':]i(; 8l (<ings Cross — 326 4.7 432 19.3 1.37
?'g)ghe Sl \\arren Street VB victoria Gircle 24.3 5.2 445 25.7 1.41
(NBoarrt]E M Kings Cross Victoria Victoria Circle 27.3 5.2 45.2 24.4 1.43
View Green Park Westminster Sl 29.5 55 46.6 24.9 1.48
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Table D-6 The 10 shortest routes for Victoria — Waterloo (OD 7) with their journey time and generalised cost,
observed routes (Rolling Origin Destination Survey, RODS) are highlighted with (gréen

Route Time Generalised cost
IC1 Line 2 IC2 Line 3 Total IC Total AEI Proportion
byis t?[cf:'j Coii Cfﬁ dey i
[min] [min] [min] [min]
Victoria Oxford Circus 17.5 1.2 24.0 10.2 1.00
Victoria Green Park Jubilee 16.1 2.6 25.6 16.7 1.07
3| Embankment [ 15.6 1.3 26.0 13.3 1.08
Circle
4 Circle Westminster Jubilee 17.2 29 27.0 16.2 1.13
5| .. Embankment 16.4 2.4 27.7 14.9 1.15
Circle Ba 00
B \Warren Street - 237 3.2 34.4 16.6 1.43
Victoria
. . Oxford Circus Embankment - 21.2 3.2 37.1 204 1.55
Victoria Ba 00
. . Oxford Circus Baker Street . 26.9 1.8 374 15.6 1.56
Victoria Ba 00 Jubilee
W Euston T 26.9 3.3 377 16.8 157
Victoria
Piccadilly
VeaTa Green Park Diccad Circus Eae 20.3 55 39.3 25.5 1.63







271

Appendix E
Influence of the selection of the centroid on the CCOJT
distribution

Following the analogy in Section 5.4.2, here it is discussed how the CCOJT distribution
varies if a different origin or destination superstation centroid is chosen. Let them be
called Ic’ and Jc' respectively. This way, the on-board time between the previously and

the newly chosen centroids is &, for the origin superstation and t?}, ., for the

destination superstation (Figure E-1). Based on these considerations, the equivalent entry

and exit time stamp at the superstation centroid can be written as:

entry __ mentry b
Taeyiien = Taiyey T taeyaen (E-1)

and
it — it b
TGhuen = TGeyue T theyen (E-2)
respectively.

Let CCOJT’ 1;)(;;, be the CCOJT corresponding to each station-to-station OD pair based
on the newly selected centroids. Following the analogy in equation (5-6), this can be

calculated as:

! _ it entry
CCOIT uiyyy = TG wen — Taycien (E-3)

Substituting equation (E-1) and (E-2) into (E-3):

' _ it b entry b
CCOIT aiyiypy = TGS gey T tergen — (T(n')(zc) + té’,c)(,c,))

t E-4)
_ it entry b b
=TGouo ~ Tayae T theygen — theyaen
Substituting equation (5-6) into (E-4):
’ _ b b
CCOJT 4iy(yjy = CCOJT iy gy + ey gen — tleyaen (E-5)

Looking at equation (E-5) it can be understood that it contains the same term of
tg’}’c)( Jen — té)]lé-)(lcl) for all possible entry (Ii) and exit (Jj) stations. In other words, the
CCO]T’(H)UJ-) obtained with the newly selected superstation centroids is just the
previously defined CCOJT ;) ;5 shifted with the corresponding on-board times

ey jery = téieyaen)- Therefore the shape of CCOJT' ;) distribution is not different
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from the shape of CCOJT ;) ;; and hence the route choice estimates with the finite

mixture model would be also identical.

e On - board links
) - = = Wait links .
g ..... AE| Iml.(S < A’%-QBOA
— -~ Route in between Qs?.'m'
T O On-board node
Tjjx“ O Platform node
A Ticket gate node
@ Previous centroid
QO New centroid
F A.Q\O
entry \%
(l(Ic) . _
ontry Station Centroid Station Centroid
i li Ic Jj Jo >
Space

Figure E-1 Adjustment of the Oyster entry/exit times at the origin/destination

superstations with a newly selected centroid, representation on a diachronic graph
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Appendix F
Application of the finite mixture model on the CCOJTs of
superstation-to-superstation OD pairs

The case studies for the application of the finite mixture model on the CCOJTs of
superstation-to-superstation OD pairs were presented in Section 5.6. The detailed results

with different seeds and tolerance thresholds are reported here.

Case 1 Victoria South - Holborn

The settings described in Section 3.3.1 were used for centroid initialisation (K-means
++), distances (Euclidean square) and update methods (online phase). Conducting trials
with different seeds for the random number generator it gave two possible solutions for

ui®, offlS and w7 (Table F-1)

Table F-1 Results of the K-means clustering algorithm with different seeds
for |Victoria Southl — Holborn; a) Seed=1, b) Seed=2,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays

Label K-means clustering Label K-means clustering

r | EE e r | W o | el
[ [min] [min] [%] [ [min] [min] [%]
1 18.0 20| 70.7% 1 16.0 19| 57.4%
2 24.0 25| 29.3% 2 22.0 3.3| 42.6%

b)
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Figure F-1 and Figure F-2 presents the estimated mean (u}'’*) and proportion (w}™¥)

for mixture component labelled with » = 1.

I%gti_mated mean for component 1 with different seeds and tolerances
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Figure F-1 Estimated mean for mixture component 1,

given different initial values and tolerance thresholds for |Victoria Southl — Holborn,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays
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Figure F-2 Estimated proportion for mixture component 1,

given different initial values and tolerance thresholds for |Victoria Southl — Holborn,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays
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Figure F-3 presents the log-likelihood (equation (3-9)) for each initial value (seed) and
tolerance threshold.

392L§>g-likelihood with different seeds and tolerances
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Figure F-3 Log-likelihood,

given different initial values and tolerance thresholds for |Victoria South| — Holborn

OJTs adjusted to superstation centroid, but not according to fail-to-board delays
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Case 2 Central East— GreenPark

The settings described in Section 3.3.1 were used for centroid initialisation (K-means
++), distances (Euclidean square) and update methods (online phase). Conducting trials
with different seeds for the random number generator it gave two possible solutions for

ui s, ofl1S and w7 (Table F-2)

Table F-2 Results of the K-means clustering algorithm

for |Central East- Green Park;

OJTs adjusted to superstation centroid, but not according to fail-to-board delays

Label K-means clustering
KMS KMS KMS
r Uy 1y Or 1y Wy 1y
[ [min] [min] | [%]
1 20.0 23| 82.6%
2 29.5 40| 17.4%

Figure F-4 and Figure F-5 presents the estimated mean (u)'’*) and proportion (w}™*)

for mixture component labelled with » = 1.
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Figure F-4 Estimated mean for mixture component 1,
given different initial values and tolerance thresholds for [(Central East— Green Park,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays
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Component proportion 1 with different seed and tolerance
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Figure F-5 Estimated proportion for mixture component 1,
given different initial values and tolerance thresholds for [Central East— Green Park,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays

Figure F-6 presents the log-likelihood (equation (3-9))for each initial value (seed) and
tolerance threshold.
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Figure F-6 Log-likelihood,
given different initial values and tolerance thresholds for Green Park
OJTs adjusted to superstation centroid, but not according to fail-to-board delays
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Case 3 Jubilee West— Jubilee Central

The settings described in Section 3.3.1 were used for centroid initialisation (K-means
++), distances (Euclidean square) and update methods (online phase). Conducting trials
with different seeds for the random number generator it gave two possible solutions for

ui s, o 1S and w7 (Table F-3)

Table F-3 Results of the K-means clustering algorithm with different seeds
for Jubilee West/—|Jubilee Central;; a) Seed=1, b) Seed=2,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays

Label K-means clustering Label K-means clustering
ro| ke | oy | en O S B/
[ [min] | [min] [%] [ [min] | [min] [%]
1 41.0 3.6| 85.0% 1 41.0 29| 74.1%
2 55.0 57| 15.0% 2 50.5 6.2 | 25.9%
a) b)

Figure F-7 and Figure F-8 presents the estimated mean (u)'"*) and proportion (w}'™*)

for mixture component labelled with r = 1.
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gzomponent mean 1 with different seeds and tolerances
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Figure F-7 Estimated mean for mixture component 1, given different initial values and

tolerance thresholds for [Jubilee Westl-|Jubilee Central,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays
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Figure F-8 Estimated proportion for mixture component 1, given different initial values

and tolerance thresholds for [Jubilee West| —|Jubilee Central,

OJTs adjusted to superstation centroid, but not according to fail-to-board delays
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Figure F-9 presents the log-likelihood (equation (3-9))for each initial value (seed) and
tolerance threshold.
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Figure F-9 Log-likelihood, given different initial values and tolerance thresholds for
Wubilee West—ubilee Centrall

OJTs adjusted to superstation centroid, but not according to fail-to-board delays



281

Appendix G
Application of the finite mixture model on the CCOJTs
adjusted according to fail-to-board delays

The case studies for the application of the finite mixture model on the CCOJT dataset
adjusted according to fail-to-board delays were presented in Section 6.6. The detailed

description of the settings and of the results are reported here.

Case 1 Victoria South - Holborn

Within the dataset of CCOJTs adjusted according to fail-to-board delays (CCO]TJ “”), all
entries could be considered asvalid data, because the upper outer fence (cf. Section 3.2.1)
resulted 33 minutes, while the maximum CCOJT value is 30 minutes. This valid dataset

is denoted by CCOJT ],

As two reasonable routes were assumed for the superstation-to-station OD pair, route
choice was estimated as a two-component (N, = 2) finite mixture distribution. Therefore,
the K-means clustering algorithm was applied on the CCOJT/*%0 dataset with two
clusters and with the settings described in Section 3.3.1 (K-means ++ for centroid
initialisation, Euclidean square for distances and online phase update method) to produce
the initial values for the EM algorithm. Conducting trials with different seeds for the
random number generator it gave two possible solutions for ufy, of/° and w7

(Table G-1).

Table G-1 Results of the K-means clustering algorithm with different seeds
for |Victoria South — Holborn; a) Seed=1, b) Seed=2,

OJTs adjusted to superstation centroid and according to fail-to-board delays

Label K-means clustering Label K-means clustering

| T e | el [ el [ e
1 [min] | [min] [%] 1 [min] | [min] [%]
1 18.0 18| 74.1% 1 17.0 16| 62.6%
2 23.0 22| 25.9% 2 22.0 25| 37.4%

b)
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Using these initial values, the EM algorithm was run with different settings for the

tolerance threshold (cf. Section 3.3.2). Figure G-1 and Figure G-2 presents the estimated

mean (ui) and proportion (wy’/Y) for mixture component labelled with r = 1.

I;gt!mated mean for component 1 with different seeds and tolerances
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Figure G-1 Estimated mean for mixture component 1,

given different initial values and tolerance thresholds, for |Victoria Southl — Holborn,

OJTs adjusted to superstation centroid and according to fail-to-board delays
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Figure G-2 Estimated proportion for mixture component 1,

given different initial values and tolerance thresholds, for |Victoria Southl — Holborn,

OJTs adjusted to superstation centroid and according to fail-to-board delays
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Figure G-3 presents the log-likelihood (equation (3-9)) for each initial value (seed) and
tolerance threshold.

368Lpg-likelihood with different seeds and tolerances
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Figure G-3 Log-likelihood,

given different initial values and tolerance thresholds, for [Victoria South — Holborn

OJTs adjusted to superstation centroid and according to fail-to-board delays

From these results it is understood, that when the tolerance threshold is 1e-06 or greater,
the EM algorithm converges to a root close to the initial value for seed 1. But when the
tolerance threshold is 1e-07 or smaller, the EM algorithm converges to a root around
17.8 minutes for the mean and 55.3% for the component proportion for both seeds (cf.
Figure G-1 and Figure G-2). Similar properties could be observed for the other mixture
component (labelled with » = 2). The log-likelihood shows a considerable jump between
the tolerance threshold of 1e-02 and 1le-03 for both seeds (Figure G-3). Among the
estimates, the one with seed 1 and tolerance threshold 1e-06 gives the best approximation
to RODS results (cf. Table 6-5).
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Case 2 Central East— GreenPark

Within the dataset of CCOJTs adjusted according to fail-to-board delays (CCO]T,{ “”), all
entries could be considered asvalid data, because the upper outer fence (cf. Section 3.2.1)

resulted 35.3 minutes, while the maximum CCOJT value is 28 minutes. This valid dataset

is denoted by CCOJT,J*".

As two reasonable routes were assumed for the superstation-to-station OD pair, route
choice was estimated as a two-component (N, = 2) finite mixture distribution. Therefore,
the K-means clustering algorithm was applied on the CCO]T”f L0 dataset with two
clusters and with the settings described in Section 3.3.1 (K-means ++ for centroid
initialisation, Euclidean square for distances and online phase update method) to produce
the initial values for the EM algorithm. Conducting trials with different seeds for the

random number generator it gave two possible solutions for u 7, o/ and w[Y?
(Table G-2).
Table G-2 Results of the K-means clustering algorithm with different seeds
for Green Park; a) Seed=1, b) Seed=2,
OJTs adjusted to superstation centroid and according to fail-to-board delays
Label K-means clustering Label K-means clustering
ro| k| o | en ro | e’ | oy | oeny”
[ [min] | [min] [%] [ [min] | [min] [%]
1 18.0 18| 74.5% 1 17.5 14| 51.1%
2 24.5 2.1| 25.5% 2 22.0 2.6 | 48.9%
a) b)

Using these initial values, the EM algorithm was run with different settings for the
tolerance threshold (cf. Section 3.3.2). Figure G-4 and Figure G-5 presents the estimated

mean (ui') and proportion (wy/Y) for mixture component labelled with r = 1.
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Figure G-4 Estimated mean for mixture component 1,

Seed=1
Seed=2

given different initial values and tolerance thresholds, for (Central East- Green Park,

OJTs adjusted to superstation centroid and according to fail-to-board delays
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Figure G-5 Estimated proportion for mixture component 1,

Seed=1
Seed=2

given different initial values and tolerance thresholds, for |Central East— Green Park,
OJTs adjusted to superstation centroid and according to fail-to-board delays
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Figure G-6 presents the log-likelihood (equation (3-9)) for each initial value (seed) and
tolerance threshold.

1 18Lpg-likelihood with different seeds and tolerances
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Figure G-6 Log-likelihood,
given different initial values and tolerance thresholds, for Green Park

OJTs adjusted to superstation centroid and according to fail-to-board delays

From these results it is understood, that when the tolerance threshold is 1e-04 or greater,
the EM algorithm converges to different roots for seed 1 and 2; but when it is 1e-05 or
smaller, it converges to the same root for the two seeds: 18.7 minutes for the mean journey
time (cf. Figure G-4) and 86.2% for the proportion of component 1 (cf. Figure G-5). It
starts plateauing from the tolerance threshold value of 1e-07. Similar properties could be
observed for the other mixture component (labelled with r = 2). The log-likelihood
exhibits a considerable jump between the tolerance threshold of 1e-03 and 1le-04 for seed
1 and between le-04 and le-05 for seed 2 (Figure G-6). Due to these considerations, the

estimate with seed 1 and tolerance threshold 1e-07 was chosen (cf. Table 6-10).
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