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Abstract 

This thesis contributes to the research area of route choice estimation with smart card data 

in large metro1 networks by addressing the issues with finite mixture models.  

The motivation for this research comes from the problem that public transport authorit ies 

need to know passengers’ route choice for their key functions. Recently, many cities 

adopted smart cards, which produced a wealth of data for researchers. However they 

reveal only the entry/exit station, not the chosen route. 

Within the scope of this research is to address the following research problems: 

Firstly, to propose a model that generates automatically the route choice set for all types 

of OD pairs in a metro network by finding a set of shortest routes with the K shortest path 

algorithm, and narrowing down this set by applying the generalised cost proportion of 

routes as the attribute cut-off. 

Secondly, to introduce the concept of superstations by grouping those stations from/to 

which passengers have similar route choice patterns; and to aggregate the Observed 

Journey Times (OJT) of station-to-station OD pairs, so that the finite mixture model can 

be applied on a larger dataset. 

Thirdly, to investigate the question of fail-to-board delays in two aspects: considering that 

at different origin stations, the fail-to-board delays may be different; as well as updating 

the route choice estimates, with the information on the fail-to-board delays along different 

routes.  

The methodologies are illustrated through the case studies on the London Underground  

(LU) network, using Oyster data.  

This research could enable a broader implementation of route choice estimation in large 

metro networks, especially when researchers can only rely on open data. 

                                                                 
1  In different cities different terms are used for the metro mode: “underground” or “tube” in London, 

“subway” in the cities of the United States, “metro” in many other cities (e.g. Paris, Shanghai) 
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Chapter 1  

Introduction 

1.1 Background 

Metro networks can be illustrated as the arteries of the public transport network of a city 

and its metropolitan area. Firstly, because they provide a faster and more reliable 

connection for a larger volume of passengers than the surface transport (i.e. bus, tram). 

Furthermore, the metro map often serves as a guidance to visitors and tourists to orient 

themselves in the city (Guo, 2011). Therefore, to maintain the high standard of metro 

networks, it is crucial to have adequate information on passengers’ route choice, so that 

this information can be used for the key planning and operational tasks. 

Conducting manual surveys to observe passengers’ route choice is expensive as it requires 

human workforce and can reach only a small sample at certain stations and time periods. 

In the past two decades, many public transport operators have adopted Automated Data 

Collection Systems, such as Automatic Fare Collection (e.g. smart card), Automatic 

Vehicle Location (e.g. train tracking data from the signalling system), Automatic 

Passenger Count (e.g. sensors at platforms) and mobile services (e.g. cell phone data, 

WiFi, Bluetooth), which provide a larger data sample for the whole network from a longer 

time period (Koutsopoulos et al., 2017). 

Among these data sources, smart card data have been widely used by researchers to 

understand passengers’ route choices in metro networks. More recently, initiatives have 

been made to use the data extracted from the connection request of the passengers’ 

devices to the WiFi access points (Transport for London, 2017) for the same purpose. The 

undoubted advantage of WiFi data is that passengers can be traced throughout their entire 

journey, therefore route choice can be directly observed; unlike smart card data, which 

reveals only the entry and exit station of the passengers and requires an appropriate model 

for the route choice. Whilst the collection and analytics of WiFi data is still in 

experimentation/pilot stage, there is the need to continue to learn how route choice can 

be modelled from more established, widely available automated data sources, such as 

public transport smart card data. 

The question of modelling passengers’ route choice from smart card data has been 

addressed by researchers at different levels of detail. As one extremity, approaching this 

question at network level, the additional information on journey time observations can be 
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used to calibrate the parameters of discrete choice models. The issue here is, that in large 

and complex metro networks, different origin destination (OD) pairs may have different 

decision rules; and using the smart card data of the whole network to calibrate one utility 

function could not account for these differences across OD pairs. Theoretically, it could 

be possible to use OD specific route choice models and to calibrate them accordingly, 

however the definition of these OD pair categories is not always straightforward. As the 

other extremity, at an individual level, each passenger can be assigned to a train, knowing 

his/her entry/exit time to/from the metro network from smart card data and the 

departure/arrival time of trains from train tracking data. The challenge here is, that due to 

the large amount of data and to the more detailed representation of the problem, these 

models may require exceedingly high computational times. This implies the necessity to 

explore those methods, which can estimate route choice between these two extremities at 

OD level: estimate the route choice of an OD pair from the smart card data of that same 

OD pair. 

In order to estimate route choice at OD level, the Observed Journey Time (OJT) 

distribution from smart card data can be analysed with appropriate statistical methods, 

such as the Kolmogorov-Smirnov test or the finite mixture model. While the former 

approach is limited to specific OD problems (Tirachini et al., 2016), the latter can be used 

for any type of OD pairs. Therefore the focus in this thesis is on the application of finite 

mixture models. The key concept here is that the distribution of OJTs of an OD pair can 

be decomposed as a mixture of the journey time distributions of the corresponding routes 

and the proportion of each component can be associated with the aggregate route choice.  

Applying finite mixture models in complex metro networks, the following issues arise.  

The first issue is, that most of finite mixture models require the number of components 

as an input; and setting it incorrectly, the model may give unrealistic results. In the context 

of route choice, the number of mixture components corresponds to the number of 

reasonable routes, which could be understood from the route choice set of the OD pair. 

Determining that in a complex metro network is a challenging question as theoretica lly 

there might be many possible routes, but only a few of them are reasonable. 

The second issue is, that although a massive amount of data is available for the whole  

metro network, this sample for station-to-station OD pairs is very few. This is especially 

crucial, when only open data is available for the researcher, which contains only a smaller 

sample of all cardholders for a shorter time period of observation. Applying the finite 
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mixture model on a small and not well distributed OJT sample may not give reliable 

results. 

The third issue is related to the fact that a longer OJT does not necessarily mean that the 

passenger has taken the longer route, but it can also correspond to fail-to-board event, 

which is especially crucial in peak times when trains and platforms are overcrowded. 

1.2 Research scope and objectives 

Based on the research background presented in the previous section, the overall aim of 

this research is to develop a model, which can give more reliable estimates of route choice 

from automated data sources, such as smart card data. This could serve as a powerful tool 

for public transport operators to gain a better understanding on passenger flows in metro 

networks as it can replace or complement existing manual surveys. Currently, smart card 

data is still processed off-line (Koutsopoulos et al., 2017), therefore the proposed model 

is still limited to off-line functions, such as timetable planning or behavioural change 

communications. However, it is expected that in a few years’ time it will be possible to 

have the technology for real-time data processing, and hence the proposed model could 

be applied for providing real-time information to passengers on the crowding along the 

lines and at the stations. 

The work in this thesis brings forward the existing research on the application of finite 

mixture models for route choice problems; by addressing the above described issues that 

arise, when they are applied in the context of large and complex metro networks. To 

address these issues the following objectives are set: 

 Develop a route choice set generation model that can find automatically the set of 

reasonable routes for different types of OD pairs within a metro network; 

 Establish rules to group OD pairs with similar properties, so that the 

corresponding OJTs can be aggregated, and hence a larger data sample can be 

obtained; and 

 Refine the data aggregation and route choice estimation method so that it can also 

account for fail-to-board delays at origin and at interchange stations 

1.3 Methodological framework and outline of the thesis 

The methodological framework of the thesis is presented on Figure 1-1. The rest of this 

thesis is structured as follows: 
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Chapter 2 sets the context for the thesis by introducing the problem of route choice 

estimation in metro networks. After describing the classical approaches; it presents a 

literature review on recent studies on route choice estimation from smart card data. The 

purpose for this is to select the implemented method and to identify the gaps in the field, 

which thesis is to address. 

Chapter 3 focuses on the selected approach for route choice estimation: the finite mixture 

model. After describing the formulation and solution method, its convergence and 

validation is discussed. Applying it on the case study OD pairs of the London 

Underground (LU) network, and based on the results three major issues are raised 

(marked with blue on Figure 1-1): 

1) It requires the number of mixture components (i.e. reasonable routes) as an input 

2) Few smart card data available for station-to-station OD pairs 

3) Longer OJT can mean either longer route or fail-to-board delay 

These three issues are addressed in the subsequent chapters of the thesis. 

Chapter 4 addresses the first issue. Reviewing route choice set generation methods, the 

chosen approach is presented: K shortest path algorithm for pathfinding followed by the 

application of the attribute cut-off based on the generalised cost of routes. 

Chapter 5 addresses the second issue. Reviewing existing approaches for station 

grouping; the concept of superstations is introduced, referring to groups of stations 

from/to which passengers have similar route choice patterns. Following this, a method is 

presented to adjust the OJTs to superstation centroids and to aggregate them spatially; 

this way obtaining a larger data sample. Finally, the previously presented finite mixture 

model is applied on this larger dataset of OJTs to evaluate the benefits of the superstation 

representation. 

Chapter 6 and Chapter 7 addresses the third issue. Chapter 6 focuses on fail-to-board 

delays at origin stations. Following a literature review, the quasi-dynamic approach is 

selected for inferring fail-to-board delays. A further OJT adjustment method is proposed, 

to take into consideration the difference in fail-to-board delays at different origin stations. 

Chapter 7 focuses on the fail-to-board delays at interchange stations. A Bayesian 

approach is formulated to update the route choice estimates of the finite mixture model 

with the additional condition on fail-to-board delays. 
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The results of this analysis are three sets of route choice results depending on the 

consideration of the OD pairs and of the fail-to-board delay (marked with green on 

Figure 1-1): 

 Station-to-station OD pairs (Chapter 3) 

 Superstation-to-superstation OD pairs (Chapter 5) 

 Superstation-to-superstation OD pairs consideration also the fail-to-board delay 

(Chapter 6 and Chapter 7) 

Chapter 8 concludes the thesis and proposes questions for further research. 

.  
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Figure 1-1 Structure of the thesis  
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1.4 Contributions 

In this thesis two types of contributions can be distinguished. First and foremost, this 

thesis presents methodological contributions that makes a step towards the application of 

smart card data for estimating route choice in complex metro networks (Section 1.4.1). 

Additionally, there are notable technical contributions that are applied in the program 

code of the proposed algorithm for network representation and pathfinding (Section 

1.4.2). 

1.4.1 Methodological contributions 

The work of this thesis 

I. makes a step toward setting a general rule that can be applied to generate the 

reasonable route choice set for all types of OD pairs of a metro network; 

II. introduces the concept of working with groups of stations for the purpose of 

overcoming data availability issues for station-to-station OD pairs; and 

III. brings actual observations of journey time and crowding into passenger flow 

estimation models. 

1.4.2 Technical contributions 

The program code of the proposed algorithm 

IV. creates the matrix of link times automatically from the input data of on-board 

times and headways of metro lines as well as of the access egress interchange 

times at metro stations; and 

V. tailors the K shortest path algorithm for metro networks by creating the 

function to eliminate additional links in the network model, to avoid the 

generation of routes, which differ only in their access egress interchange 

movement. 
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Chapter 2  

Route choice estimation in metro networks 

2.1 Introduction 

Metro networks of large metropolises (e.g. London, Shanghai, New York) are really 

complex, with many lines and stations serving the city and its metropolitan area. Metro 

services are usually high-frequency, high-capacity services that provide a faster 

connection than surface transport (i.e. bus and tram); as normally they run on dedicated 

tracks under or above the ground level, physically separated from other vehicle and 

pedestrian traffic, and the distance between its stations is longer than for other surface 

public transport modes, which allows a higher commercial speed. Therefore it is a 

convenient alternative for commuters; as well as for visitors and tourists, who often orient 

themselves by the metro map in the city (Guo, 2011). 

This key role of metro networks within a metropolis and the associated high standards 

they should meet brings daily challenges to operators and transport authorities. One of 

the most crucial challenges is the problem of crowding, which occurs daily in the morning 

and afternoon peak as well as during special events (Parkes et al., 2016) or disruption 

(Freemark, 2013). This challenge determines the long and short term key functions; such 

as planning of new lines, vehicle and crew scheduling, behavioural change informatio n 

to passengers, ticket pricing, revenue distribution and response to disruption. The final 

objective in performing these duties is, that metro networks could provide a reliable 

service, obtaining greater customer satisfaction and attracting private car users to choose 

more sustainable modes, this way relieving congestion from the roads. The main building 

block for these key functions and objectives is the adequate information on passenger 

flow on the metro lines and through the station passageways (Koutsopoulos et al., 2017). 

Nowadays still many operators conduct manual surveys (e.g. questionnaires with 

passenger counts) to gain a better understanding on passenger flow (e.g. the Rolling 

Origin and Destination Survey (RODS) in the London Underground (LU), see Section 

3.6.3). The advantage of these data sources is, that in addition to passenger flow, they can 

also collect information on the socio-demographic background of respondents as well as 

on trip purpose. However they are very expensive as they need to use human workforce 

for data collection and processing. Furthermore, they can reach only a small sample of 

the total population at limited number of stations and time periods. 
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In recent years, initiatives have been made to explore further, how passenger flow can be 

observed from automatic data collection systems, such as WiFi (Transport for London, 

2017) or cell phone location data (Holleczek et al., 2015). Whilst these more advanced 

technologies can provide detailed tracking of individuals’ movements in a metro network, 

they are still in experimentation/pilot stage. Therefore there is still the need to learn how 

passenger flow can be understood from more established, widely available automated 

data sources, such as public transport smart card data. 

The main issue with smart card data is, that it records only the entry and exit location of 

passengers, but it is unknown, how they moved within the metro network. Therefore a 

model needs to be developed to estimate route choice and hence passenger flow based on 

the available information from smart card data. 

The rest of this chapter is structured as follows. Firstly, in Section 2.2, the classical route 

choice modelling approach is summarised with the purpose to point out the need for 

innovative methods that can introduce automated data in the estimation process.  

Following this, in Section 2.3, a literature review is presented on recent methods that 

estimate route choice from smart card data. This chapter is concluded by a discussion in 

Section 2.4, where these methods are compared, the relevant issues in complex metro 

networks are highlighted and the implemented method is selected. 

2.2 Discrete choice modelling methods 

In general, modellers have relatively adequate information from the available data on the 

properties of the metro network and on OD demand. The main modelling challenge is to 

estimate passenger flows by assigning this OD demand to the metro network. This task is 

also mentioned as the fourth stage in the four-stage modelling (Ortúzar and Willumsen, 

2011). In the context of metro networks, this stage is called the Transit Assignment Model 

(TAM). 

A comprehensive explanation on the theory of TAMs can be found in Gentile and Noekel 

(2016)(pp. 287-481). In essence, TAMs include the following sub-models (Figure 2-1): 

(i) generalised cost function of routes;  

(ii) route choice set generation; 

(iii) route choice estimation and 

(iv) link loading. 
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The literature review of the different sub-models are organised according to the structure 

of this thesis. The considerations for generalised costs (sub-model (i)) are discussed 

together with the route choice set generation model (sub-model (ii)) in Chapter 4. The 

sub-model of link loading (iv), in relation to the question of capacity constraints is 

presented in Chapter 6. This section focuses on route choice estimation (sub-model (iii)) 

with discrete choice modelling methods. 

 

Figure 2-1 The sub-models of transit assignment models  
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2.2.1 The random utility theory 

Traditionally, discrete choice modelling methods are used for route choice estimation. 

The word “discrete”, refers to the fact that individuals can choose from a finite set of 

alternatives. 

The theoretical framework in discrete choice modelling methods is the random utility 

theory (Domencich and McFadden, 1975), which postulates that the decision rules that 

individuals make are compensatory. This means, that each alternative has various 

attributes, and the good performance on one attribute of an alternative compensates the 

poor performance on its other attributes. The utility of an alternative is given by adding 

up these performances, and it is assumed that individuals choose the alternative with the 

highest utility.  

However the utility of an alternative cannot be completely measured as human behaviour 

is not always deterministic and also the modeller does not possess complete information 

on the decision process that individuals make. Unobserved or incorrectly measured 

attributes, unobserved alternatives as well as the variation of preferences can bring in 

uncertainties in the system which cannot be captured by the modeller. The utility (𝑢𝑘) of 

alternative 𝑘 has two parts: a measurable part (𝑣𝑘), which represents the attributes that 

the modeller can measure; and a random part (𝜖𝑘), which represents the above discussed 

uncertainties: 

 𝑢𝑘 = 𝑣𝑘 + 𝜖𝑘  (2-1) 

The random utility theory assumes that individuals choose the alternative with the highest 

utility. However due the random part introduced into the equation, modellers do not have 

the perfect information, which alternative has the highest utility. For this reason, they 

cannot approach the question of choice deterministically, stating that all individua ls 

choose the alternative with the highest measurable utility. They only can approach this 

question stochastically, stating that the alternatives with higher measurable utility will be 

chosen with higher probability. 

2.2.2 The Multinomial Logit (MNL) model  

The basic model that uses the random utility theory is the Multinomial Logit (MNL) 

model (Domencich and McFadden, 1975). Assuming that the random part (𝜖𝑘) follows a 

Gumbel distribution, and that it is distributed independently and identically across 

alternatives and respondents; it can be mathematically proved that the formula for the 
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choice probability contains only the measurable part of the utility, but not the random 

part. The probability (𝑝𝑘) that alternative 𝑘 is chosen is: 

 𝑝𝑘 =
𝑒𝑥𝑝(𝑣𝑘)

∑ 𝑒𝑥𝑝(𝑣𝑘′)𝑘′∈𝐾

 (2-2) 

where 𝑘′ represents all the alternatives in the choice set 𝐾. 

2.2.3 Route choice models 

Route choice modelling is a more complex task than other choice modelling tasks in 

transport (e.g. mode, car ownership), due to two main reasons. One reason is, that 

although there are many theoretically possible routes between an OD pair, only a few of 

them are reasonable (see Chapter 4). Another reason is the question of overlapping 

routes, which should not be considered as completely distinct alternatives, but their 

degree of overlapping – which is called correlation – should be modelled. 

Prato (2009) gives a comprehensive review on route choice models, where two main 

approaches are presented to include correlation in route choice models. One approach is 

to introduce a correction term in the measurable part of the utility maintaining the MNL 

structure. Such models are the C-Logit (Cascetta et al., 1996) and the Path Size Logit 

(Ben-Akiva and Bierlaire, 1999). Another approach is to create a model specificat ion, 

which includes correlation between the random parts of the utilities of the different 

alternatives. The Nested Logit (Williams, 1977) and its improvements, such as the Cross 

Nested Logit (Vovsha, 1997) and the Generalised Nested Logit (Wen and Koppelman, 

2001) models are developed for modelling this correlation. 

Furthermore, route choice in the context of public transport networks is even more a 

complex issue, where the key difficulty lies in the question of interchanges: A public 

transport route, in fact, can include two or more separate on-board trips with the 

corresponding interchanges in between, which have substantially different characterist ics  

in the utility perception of passengers. While during the on-board trips the passenger is 

standing or sitting inside the vehicle and can utilise that time for a short activity (e.g. 

reading a book, checking e-mails), interchanges require walking between platforms often 

including stairs or escalators. This is not present in the road based context, where – even 

though there are junctions between the road segments – the route can be considered with 

homogeneous characteristics. 
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2.2.4 Parameter calibration of choice models 

Once the utility function of the choice model is formulated, the task is to calibrate its 

parameters. The classical method for parameter calibration is the maximum likelihood 

method, which requires data on passengers’ route choices. It sets the value of the 

questioned parameters, so that the route choice estimated with the choice model should 

reproduce the choices understood from the data: For each data observation, the choice 

probability of the chosen alternative is calculated in function of the parameters, and then 

the log-likelihood is obtained by summing the logarithms of these probabilities. The 

objective function is to find those parameters, which maximise the log-likelihood. 

2.2.5 Discussions 

The key point for parameter calibration is to have the appropriate understanding on the 

data source that is used. In the field of choice modelling, it is quite popular to use Stated 

Preference surveys. The main issue here is, that it does not give information on actual 

observations of passengers; but it comes from hypothetical scenarios. It is also shown, 

that passengers do not always respond the same in those scenarios as they would act in 

the real-life situations (Fifer et al., 2014). 

In order to introduce actual observation on passengers’ choices, Revealed Preference 

surveys are used (i.e. RODS data in the LU, cf. Section 3.6.3). Its main limitation – apart 

from the high cost of manual surveys – is, that it is collected over a long period, different 

years at different stations, usually only in certain times of the year; therefore it could not 

reflect route choice of a specific time period, it could only serve as an average value. 

Recently, pilot studies have been conducted to explore how route choice can be observed 

from extrinsic mobility data, such as WiFi or cell phone location data (cf. Section 2.1), 

which could be also used as a source for parameter calibration. However, in this case, 

even though these data sources reveal the chosen route of passengers; their journey time 

– which is an important attribute in their utility function – cannot be fully understood, as 

only the connection time to the access point is recorded, not their exact entry/exit or 

boarding/alighting time.  

In this research the focus is on exploring how route choice can be inferred from intrins ic 

mobility data, such as smart card data. As mentioned earlier (Section 2.1), smart card data 

reveals only the entry and exit time of passengers, not their chosen route; therefore an 
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appropriate model is required for its estimation. As it follows, modelling approaches are 

reviewed that can infer route choice from smart card data (Section 2.3). 

2.3 Estimating route choice in metro networks with smart card data 

The original purpose of smart cards is to introduce a smarter way of fare collection, 

replacing cash or paper tickets and reducing fare evasion. For this reason they are also 

called Automatic Fare Collection (AFC) systems. Smart card data is generated as a by-

product of AFC systems. Its great advantage with respect to manual surveys is; that even 

though the installation of ticket gates requires a capital cost; once they are in operation, 

they can collect data from the whole network for a continuous time period, obtaining a 

large sample of data at a low marginal cost (Chu, 2010; Pelletier et al., 2011; 

Koutsopoulos et al., 2017). 

Since the beginning of the 2000s, many cities all over the world have adopted the AFC 

systems, which generated a wealth of smart card data available for further analysis. This 

data have been applied for various modelling tasks, among which notable research has 

been done regarding OD matrix estimation. This includes scaling up OD matrices in 

metro networks (Gordillo, 2006; Chan, 2007); inferring alighting stops in AFC systems, 

which record only the boarding stop (i.e. buses and in some metro networks) (Barry et 

al., 2002; Zhao et al., 2007; Cui, 2006; Wang et al., 2011; Trépanier et al., 2007; 

Munizaga and Palma, 2012); linking trips to obtain multimodal journey OD matrix 

(Seaborn et al., 2009; Munizaga and Palma, 2012; Gordon et al., 2013; Nassir et al., 

2015a); as well as the application of OD matrices for bus route choice model calibration 

(Jánošíková et al., 2014) and for inferring mode choice patterns for zonal OD pairs 

(Viggiano et al., 2016). 

Furthermore, smart card data have been applied also to measure service reliability (Chan, 

2007; Zhao et al., 2013; Leahy et al., 2015; Silva, 2017; Ross, 2017), to identify trip 

purpose (Utsunomiya et al., 2006; Morency et al., 2007; Ortega-Tong, 2013; Kusakabe 

and Asakura, 2014) as well as to model wait time distribution of passengers (Wahaballa 

et al., 2017; Ingvardson et al., 2018) and their behaviour during service disruption 

(Freemark, 2013; Ross, 2017). 

This section focuses on the application of smart card data for route choice estimation. The 

literature is classified into three main categories, according to the detail level of 

estimation (see Table 2-1). The least detailed level is the “network level” (see Section 

2.3.1), where the route choice model still maintains the structure of random utility models 
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and it uses smart card data for parameter calibration. The next detail level is called “OD 

level” (see Section 2.3.2), where the model moving away from the structure of random 

utility models, estimates route choice of an OD pair from the smart card data of that same 

OD pair. Finally, the most detailed level is the individual level (see Section 2.3.3), where 

disaggregate smart card data is applied together with train tracking data and each 

passenger is assigned to a train. 

Table 2-1 Overview of methods that estimate route choice from smart card data  

Section Level of 

estimation 

Method Reference Case study 

network 

2.3.1 Network Calibrating 

logit model 

parameters 

Sun et al. (2015) Singapore 

Xu et al. (2018) Shanghai 

2.3.2 OD Finite 

mixture 

models 

Sun and Xu (2012) Beijing 

Fu (2014) London 

Lee and Sohn (2015) Seoul 

Kolmogorov-

Smirnov 

statistics 

Tirachini et al. (2016) Singapore 

2.3.3 Individual Passenger-to-

Train 

Assignment  

Paul (2010) London 

Hong et al. (2015) Seoul 

Hörcher et al. (2017) Hong Kong 

Zhu et al. (2017) Hong Kong 

. 

2.3.1 Network level 

In metro networks, smart card data does not reveal explicitly the chosen route of 

individuals, only their entry and exit time. Therefore the parameters of random utility 
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models cannot be calibrated with the maximum likelihood method (cf. Section 2.2.4); but 

it requires more advanced techniques, such as the Bayesian framework, where the 

Observed Journey Times (OJT) from smart card data are used as an input. 

Such approach was used in Sun et al. (2015) for the Singapore metro network, where the 

parameters of on-board and interchange time were calibrated in a MNL model. They 

included also reliability in the model, stating that trains may not be running on time. 

Therefore not only the parameters, but also the journey time attributes were left as an 

unknown, and it was estimated in an integrated Bayesian approach. They used OJTs from 

smart card data to update the priors of the parameters, where the priors came from their 

earlier study (Sun et al., 2012). 

Xu et al. (2018) in addition to travel time took into consideration also crowding attributes 

in the MNL in terms of standing and fail-to-board proportions. To calibrate its parameters, 

they used also historical train loading data, operator’s information on train properties 

(number of seats, maximum capacity) and timetables as observations apart from smart 

card data. They applied the case study for the Shanghai metro network. 

Applying one utility function for all the OD pairs of a metro network, one would assume, 

that the order magnitude of their attributes (i.e. journey time components) are similar. 

However, in reality, this is not always the case.  This can be illustrated through the 

example of two OD pairs in the LU (see Figure 2-2). The Victoria – Holborn OD pair 

represents a trip within Central London. There, the distances and hence the on board times 

are very short (5-10 minutes); but the interchange stations (Oxford Circus and Green 

Park stations) are very complex, therefore interchange times are relatively long (3-4 

minutes). On the contrary, the Stanmore – Bond Street OD pair represents a trip from 

Outer London to Central London, where on-board times are longer (30-40 minutes); but 

interchange times are not an issue at all, because the interchange happens between 

adjacent platforms (at Wembley Park and Finchley Road stations). From this it can be 

learned that the relationship between interchange time and utility is not always linear, but 

would require a more detailed function specification, so that it could be applicable for all 

types of OD pairs in a metro network. This function specification, apart from the 

interchange time, would include also other attributes, such as the case of adjacent 

platforms or the presence of escalators (Raveau et al., 2014). This implies the necessity 

to go towards those methods that can estimate route choice of an OD pair from the smart 

card data of that same OD pair (see Section 2.3.2 and Section 2.3.3). 
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Figure 2-2 Route choice patterns of different OD pairs in the London Underground , 

presented on a geographical map 

2.3.2 OD level 

For methods that estimate route choice at OD level, the input data is the empirica l 

distribution of OJTs, known from smart card data. The OJT distribution is, in fact, the 

mixture of the OJTs of passengers travelling on different routes. This formulates the 

problem to establish the connection between the OJT of a passenger and his/her chosen 

route. One possible method to solve this problem is to apply finite mixture models. The 

key concept of finite mixture models is, that the empirical OJT distribution is estimated 

as a mixture of component distributions. In this setting, the connection can be established 

between the mixture components and the actual routes of the given OD pair in the 

following way: 

1) Number of mixture components corresponds to the number of reasonable routes 
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2) The statistical distribution of mixture components (e.g. Gaussian, lognormal) 

corresponds to the journey time distribution of routes 

3) The proportion of the mixture components corresponds to the aggregate route 

choice probabilities 

Sun and Xu (2012) applied the finite mixture model for an OD pair in the Beijing metro. 

There they assumed the number of routes to be known from the map. Furthermore, they 

used timetables and manual surveys to calculate the journey time distribution of routes. 

In their model formulation only the component proportions remained unknown, which 

could be solved analytically. 

Fu (2014), applying the finite mixture model in the LU, also assumed the number of routes 

to be known from map and RODS data; however in his model both the journey time 

distribution and the choice probability of the routes  were estimated with the finite mixture 

model. Having both the parameters of the mixture components and their proportion 

unknown, the problem could not be solved analytically, but the Expectation-

Maximisation algorithm (Dempster et al., 1977) was applied for the numerical estimation 

of the results.  

In the model specification of Lee and Sohn (2015), in addition to the journey time 

distribution and choice probability of routes, also the number of routes were treated as an 

unknown. To estimate all parameters in the finite mixture model, a more advanced 

solution algorithm, a reversible-jump Markov chain Monte Carlo simulation is applied, 

following the concept in Richardson and Green (1997). 

These three examples on finite mixture models are compared in Table 2-2. 

Tirachini et al. (2016) focused on the specific route choice problem of travelling forward 

or backward for getting a seat. There they could simplify the problem by including the 

additional constrain of travel time difference, as all alternatives are on the same line. With 

this simplification, journey time distribution and choice probabilities of routes could be 

obtained even without the need of applying finite mixture models. They used the 

Kolmogorov-Smirnov statistics instead. 

In reality, a longer OJT may not be necessarily attributed to a longer route; but it can be 

caused by various other reasons, such as failure to board, carrying a heavy luggage or 

microscopic station features (longer path within the station, further ticket gate, alighting 

from the other end of the train). Relying purely on the OJTs, the actual reason for the 

longer journey time cannot be fully understood. This implies the necessity to review those 
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methods that can estimate route choice at a more detailed, individual level (see Section 

2.3.3). 

 

Table 2-2 Comparison of finite mixture models; input and unknown parameters; solution 

methods 

Reference Number 

of routes 

Journey 

time 

Route 

choice 

Solution 

method 

Sun and Xu (2012) Input Input Unknown Explicit 

Fu (2014) Input Unknown Unknown Expectation-

Maximisation 

Lee and Sohn (2015) Unknown Unknown Unknown Markov Chain 

Monte Carlo 

 

2.3.3 Individual level 

Estimating route choice at individual level means that from smart card records not only 

the OJT distributions of OD pairs are extracted, but also the entry/exit timestamps of 

individual passengers. Using this more detailed data together with the additiona l 

information on the departure/arrival time of trains, each individual is assigned to a train.  

Therefore this method is called Passenger-to-Train Assignment Model (PTAM). 

Earlier PTAMs (Kusakabe et al., 2010; Xu and Zhou, 2012) used timetable information 

for the departure and arrival time of trains, assuming that trains run on time, which might 

not be valid in many cases. More recent models (Paul, 2010; Hong et al., 2015; Hörcher 

et al., 2017; Zhu, 2017) – moving away from scheduled times and taking into 

consideration delay of trains – worked with actual departure and arrival times known from 

the train tracking data, which is generated by the signalling system. 

As the first step of the PTAM, a set of feasible itineraries are identified. An itinerary is 

considered feasible, if its first train departs after the entry time and its last train arrives 

before the exit time of the passenger. Following this, passengers are assigned to these 
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feasible itineraries. The assignment process can be either deterministic (Kusakabe et al., 

2010; Xu and Zhou, 2012; Paul, 2010) or probabilistic (Hong et al., 2015; Hörcher et al., 

2017; Zhu, 2017). 

The key problem in PTAM is that – in case of OD pairs with multiple reasonable routes 

or interchanges – there are too many feasible itineraries, which makes the computationa l 

process more complicated. Therefore, first this set needs to be narrowed down, and then 

passengers can be assigned to the remaining itineraries. 

Kusakabe et al. (2010) – focusing on the urban rail network of Osaka, Japan – proposed 

to narrow down the set of feasible itineraries by using the criteria of minimising the total 

of wait time at the entry station and the lost time at the exit station as well as of excluding 

itineraries with unreasonable interchanges. 

Xu and Zhou (2012) – taking the Beijing metro network as an example – introduced the 

concept of matching degree, which is calculated based on the time between the arrival of 

the passenger to the platform and the departure of the train. They assigned passengers to 

itineraries with the highest matching degree. Another novelty in their method is that the 

algorithm calculates backwards, starting from the exit station and going towards the entry 

station, as they highlighted that passengers are less likely to experience delays at the exit 

station. This approach has been followed in many subsequent studies. 

Paul (2010) – applying the case study on the LU network – worked with the distribution 

of AEI times, which she obtained from smart card and train tracking data. In this process, 

she made the assumption, that at a given station the ratio of the access, egress and 

interchange time distributions is identical with the ratio of the corresponding times from 

the AEI survey of TfL. She further considered, that passengers walk with the same speed 

throughout all their journey. Using these AEI distributions, she excluded those itinerar ies, 

for which the expected access time is greater than the time between the entry of the 

passenger and the departure of the train; as well as those, which the expected transfer time 

is greater than the time between the arrival of the first train and the departure of the second 

train. 

Hörcher et al. (2017) – applying a PTAM for the entire Hong Kong metro network – 

followed the approach of working with AEI time distributions. The novelty in their 

method is, that they used only automated data sources: smart card and train tracking data. 

They made the assumption that the egress time distribution is identical for all trips and 

hence they inferred the delayed access time and interchange time distributions. Following 
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this, they assigned passenger to itineraries in a probabilistic setting according to the 

likelihood of the corresponding access, egress or interchange time. 

Zhu et al. (2017), looking at OD pairs without route choice or interchange, estimated the 

access and egress time distributions of trips including those with one and more feasible 

itineraries. Using this, they inferred left behind probabilities (Zhu et al., 2018). This the 

work was extended for OD pairs with route choice and interchange (Zhu, 2017). 

PTAMs have been used for operational tasks in metro networks, such as system 

performance measures, capacity utilisation of trains, crowding assessment at stations 

(Zhu, 2017) as well as for crowding cost estimation (Hörcher et al., 2017). Making one 

step ahead, Koutsopoulos et al. (2017) elucidated the possibility of running real time 

PTAMs to give short-term prediction on the loads on arriving trains, the expected spaces 

for newly boarding passengers, expected number of passengers at platforms and the 

expected number of passengers left behind. 

For the accurate estimation of passenger flows, it would be necessary to run the PTAM 

on all OD pairs of the entire metro network, as crowding on one link can come from the 

demand of all OD pairs. However, this could lead to exceedingly high computationa l 

times, especially in complex metro networks. This was identified in Hörcher et al. (2017), 

where the PTAM on the Hong Kong metro with 1 day’s smart card data required a run 

time of 2 days. 

Despite the potential of PTAMs to analyse route choice at a more detailed level, there are 

still some microscopic station features (multiple paths between platforms and ticket gates, 

multiple station entrances, alighting through different doors of long trains), which cannot 

be captured in the model, only appropriate assumptions can be made. 

2.4 Discussions 

In this chapter the classical approaches for route choice estimation (i.e. discrete choice 

modelling methods) were presented. Within this framework it was established that the 

aim of this research is to move away from those methods and to explore how actual 

observations from intrinsic mobility data, such as smart card can be utilised to infer route 

choice and hence passenger flow.  

For this purpose the literature was reviewed on methods that can infer route choice from 

smart card data; and they were classified according to the detail level of estimation: 

network, OD and individual level. Considering the size and complexity of the LU 
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network, it was established, that – as different OD pairs may have substantially different 

decision rules – there is a necessity to estimate route choice at a more detailed level, rather 

than just calibrating the parameters of random utility models (cf. Section 2.3.1). On the 

other hand, estimating route choice at the level of individual passengers and trains is out 

of the scope of this thesis, as it would require a more complex network model and hence 

exceedingly high computational times (cf. Section 2.3.3). Based on this, the core 

objective of this thesis is set to explore, at what extent route choice can be understood at 

the OD level, using only the information of OJT distribution from smart card data (cf. 

Section 2.3.2). 

As the case studies in the LU are not limited the problem of travelling forward or 

backward on the same line; the Kolmogorov-Smirnov statistics with the additiona l 

constraints of travel time difference (Tirachini et al., 2016) would not be applicable, but 

finite mixture models are required. Approaching this question from the prospective of 

reliability, it is not appropriate to use the scheduled journey time of routes as an input in 

the finite mixture model (Sun and Xu, 2012), but it is preferable to use methods which 

estimate both the journey times and the route choice with the finite mixture model itself. 

Among those methods the simpler Expectation-Maximisation method applied in Fu 

(2014) is already considered to be sufficient for the objectives set in this thesis. Estimating 

the number of reasonable routes also from smart card data (Lee and Sohn, 2015) is out of 

the scope of this thesis. This question is discussed in Chapter 4, where the focus will be 

on route choice set generation models based on network properties. 

The formulation and solution method for the implemented finite mixture model is 

described in Chapter 3, where also case studies are presented. This gives a solid ground 

to understand the issues that are raised when these models are applied to estimate route 

choice in complex metro networks, such as the LU. 
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Chapter 3  

Finite mixture models for route choice estimation and its 

application on the London Underground 

3.1 Introduction  

In Chapter 2 – following a comprehensive literature review – it was established that this 

thesis focuses on modelling route choice from smart card data at the detail level of origin 

destination (OD) pairs. This means that the route choice of an OD pair is modelled from 

the Observed Journey Time (OJT) distribution of that same OD pair. More specifica l ly, 

finite mixture models are applied for route choice estimation. Among the recent 

applications of finite mixture models Fu (2014) was chosen, where both the journey time 

distribution and choice probability of the routes are unknown and estimated by the model. 

In that setting only the route choice set (i.e. number of reasonable routes, which 

corresponds the number of mixture components) is supposed to be known and used as an 

input for the model. 

The rest of this chapter is structured as follows: Section 3.2 describes the formulation and 

solution method of implemented finite mixture model. Section 3.3 discusses the 

parameters that influence the convergence of the model. Section 3.4 presents how the 

results of the mixture model are matched with the actual routes on the London 

Underground (LU) network; and highlights the difference between the settings applied in 

Fu (2014) and in this thesis. The software implementation of the algorithms applied in 

the finite mixture model is resumed in Section 3.5. 

Following this the finite mixture model is applied on the case OD pairs of the London 

Underground (LU). Section 3.6 describes the data sources, and the case studies are 

presented in Section 3.7.  

The purpose for these case studies is to point out the issues that arise, when the finite 

mixture model is applied in complex metro networks (Section 3.8). These issues are 

addressed in the following chapters of the thesis. 
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3.2 Formulation and solution method of finite mixture models for 

route choice estimation 

In this section the implemented finite mixture model (Fu, 2014) is formulated and the 

solution method is presented. In this chapter notation is used as follows. As the 

methodology focuses on one OD pair, the index of OD pairs is omitted for all variables. 

 

Variable identifiers 

𝑟 Index of a mixture component 

𝑞 Individual passenger 

𝑘 Index of an actual LU route 

𝑙, 𝑘 𝑙-th journey leg2 on route 𝑘 

𝑠, 𝑘 𝑠 -th interchange station on route 𝑘 

 

Sets 

𝑅 Route choice set for an OD pair 

𝑄 Statistical population of passengers travelling between origin and 

destination  

𝑄𝑟  A subpopulation of passengers in 𝑄 travelling on route 𝑟 

 

Variables 

𝑁𝑅 Number of routes in route choice set 𝑅 

𝑁𝑄 Number of passengers in statistical population 𝑄 

                                                                 
2 In the context of public transport networks a route may consist of two or more separate trips on different 

public transport lines with the corresponding interchanges in between. These trips are called “journey legs” 

(cf. Section 2.2.3).  
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𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟 Elementary event that passenger 𝑞 have chosen route 𝑟 

𝑂𝐽𝑇 Initial dataset of Observed Journey Times (minutes) 

𝑂𝐽𝑇 0 Valid dataset Observed Journey Times (minutes) 

𝛿𝑞
OJT  Journey time observation (OJT) of passenger 𝑞 (minutes) 

Δ𝑞 Elementary event that the OJT of passenger 𝑞 is 𝛿𝑞
OJT  

𝛿𝑟 Random variable of journey time on route 𝑟 (minutes) 

𝑐𝑟(𝛿) Probability density function of the journey time distribution 𝛿𝑟 , 

corresponding to component distributions 

𝛿 Random variable of journey time for the OD pair (minutes) 

𝑚(𝛿) Probability density function of the journey time distribution of the 

OD pair (𝛿), corresponding to the mixture distribution 

𝜔𝑟  Proportion of component distribution 𝑐𝑟(𝛿) in the mixture 𝑚(𝛿) 

𝜇𝑟  Mean journey time on route 𝑟 (minutes) 

𝜎𝑟  Standard deviation of journey time on route 𝑟 (minutes) 

𝑛𝑂𝐽𝑇  Number of records in the 𝑂𝐽𝑇 0 dataset 

𝑟[𝑞 ] Categorical variable, expressing the route 𝑟 chosen by passenger 𝑞 

𝑂𝐽𝑇𝑟
𝐾𝑀𝑆 Subset 𝑟  of 𝑂𝐽𝑇 0  produced by the K-means clustering algorithm 

(minutes) 

𝜇𝑟
𝐾𝑀𝑆 Mean of sub-dataset 𝑂𝐽𝑇𝑟

𝐾𝑀𝑆 (minutes) 

𝜎𝑟
𝐾𝑀𝑆 Standard deviation of sub-dataset 𝑂𝐽𝑇𝑟

𝐾𝑀𝑆 (minutes) 

𝜔𝑟
𝐾𝑀𝑆 Proportion of sub-dataset 𝑂𝐽𝑇𝑟

𝐾𝑀𝑆 in dataset 𝑂𝐽𝑇 0 

𝜇𝑟
𝑀𝐼𝑋  Mean journey time for mixture component 𝑟 (minutes) 
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𝜎𝑟
𝑀𝐼𝑋 Standard deviation of journey time for mixture component 𝑟 

(minutes) 

𝜔𝑟
𝑀𝐼𝑋  Proportion for mixture component 𝑟 

𝑡𝑘
𝑆𝐽𝑇  Scheduled Journey Time3 of actual LU route 𝑘 (minutes) 

𝑡1,𝑘
𝑎𝑐𝑐  Access time for the first journey leg of route 𝑘 (minutes) 

𝑡𝑙,𝑘
𝑤𝑎𝑖𝑡  Wait time for the first coming train on the 𝑙-th journey leg of route 

𝑘 (minutes) 

𝑡𝑙,𝑘
𝑜𝑏  On-board time on the 𝑙-th journey of route 𝑘 (minutes) 

𝑡𝑠,𝑘
𝑖𝑐  Interchange time at the 𝑠-th interchange station of route 𝑘 (minutes) 

𝑡𝐿,𝑘
𝑒𝑔𝑟  Egress time from the last journey leg of route 𝑘 (minutes) 

𝑁𝐿,𝑘  Total number of journey legs on route 𝑘  

𝑁𝑆,𝑘  Total number of interchange stations on route 𝑘 

𝑇𝑒𝑛𝑡𝑟𝑦  Entry timestamp at origin station (minutes after midnight) 

𝑇𝑒𝑥𝑖𝑡 Exit timestamp at destination station (minutes after midnight) 

𝑓𝑙.𝑘  Frequency of trains on the 𝑙-th journey leg of route 𝑘 (trains/hour) 

𝜔𝑘
𝑅𝑂𝐷𝑆  Aggregate choice proportions from the Rolling Origin Destinat ion 

Survey (RODS) data for route 𝑘 

𝑛𝑅𝑂𝐷𝑆  Sample size of RODS data 

 

Vector of variables 

𝜽𝑟  Parameters of the statistical distribution for route 𝑟 

                                                                 
3 Based on timetables and station layouts (see Section 3.6.2). 
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𝝑 The collection of parameters 𝜽𝑟 for all routes (𝜽1, … , 𝜽𝑁𝑅
) 

𝝁 Random vector of all means (𝜇1, … , 𝜇𝑁𝑅
) (minutes) 

𝝈 Random vector of all standard deviations (𝜎1, … , 𝜎𝑁𝑅
) (minutes) 

𝝎 Random vector of all component proportions (𝜔1, … , 𝜔𝑁𝑅
) 

 

Functions 

Pr(∙) Probability of an event 

𝜋(∙) Probability function  

ℓ(∙) Likelihood function 

log ℓ(∙) Log-likelihood function 

 

3.2.1 Problem description 

 

 

Figure 3-1 An OD pair with the set of reasonable routes 

 

Given an OD pair (Figure 3-1), the route choice set between the origin and destination 

station is denoted by 𝑅, with 𝑟 denoting a route, and the number of routes in 𝑅 is equal to 

𝑁𝑅. As the focus is on OD pairs with more reasonable routes, 𝑁𝑅 ≥ 2. In this setting 𝑅 

and 𝑁𝑅 is assumed to be known as an input from the metro map of from surveys (i.e. 

Rolling Origin Destination Survey (RODS) for the LU). 

The total statistical population of passengers willing to travel between the origin and 

destination station is denoted by 𝑄 , with 𝑞  denoting an individual passenger and the 
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number of passengers in 𝑄  is equal to 𝑁𝑄 . For simplicity, it is assumed, that each 

passenger 𝑞 has the same route choice set. 

The elementary event that passenger 𝑞 have chosen route 𝑟 is denoted by 𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟. As 

the chosen route of individual passengers is unknown, it can be only described with 

probabilities as Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟).  

The dataset used for route choice estimation in this chapter is the distribution of Observed 

Journey Times extracted from smart card data (denoted by 𝑂𝐽𝑇). Firstly, it is checked, 

whether all records can be accepted as valid data by removing the outliers. Those entries 

are considered as outliers, which exceed the upper outer fence (i.e. three times 

interquartile range more than the third quartile) (Frigge et al., 1989). This valid dataset is 

denoted by 𝑂𝐽𝑇 0. Within this valid dataset, the OJT of passenger 𝑞 is denoted by 𝛿𝑞
OJT . 

The elementary event that the OJT of a passenger is 𝛿𝑞
OJT  is denoted by Δ𝑞. 

One key point in Fu (2014) is to establish the connection between the events of 𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟 

and Δ𝑞 in a Bayesian framework, working with conditional probabilities. Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟|Δ𝑞) 

denotes the probability, that passenger 𝑞  has chosen route 𝑟  on condition that his/her 

journey time was 𝛿𝑞
OJT . According to the Bayes theorem, this can be formulated as: 

 Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟|Δ𝑞) =
Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟) Pr(Δ𝑞|𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟)

Pr(Δ𝑞)
 . (3-1) 

In this setting, Pr(Δ𝑞) is the total probability for each passenger 𝑞  that his/her journey 

time is 𝛿𝑞
OJT  irrespective to his/her chosen route. According to the law of total probability 

it can be formulated as: 

 Pr(Δ𝑞) = ∑ Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟) Pr(Δ𝑞|𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟)
𝑟∈𝑅

 . (3-2) 

In the Bayesian context Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟) is called prior probability and it describes the 

probability that passenger 𝑞  has chosen route 𝑟 , without having any information on 

his/her journey time. This can be interpreted also as an average route choice probability. 

Pr(Δ𝑞|𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟) , is the likelihood function and it describes the probability, that the 

observed journey time of passenger 𝑞 is 𝛿𝑞
OJT  (event Δ𝑞 occurs) given the fact that he/she 

has chosen route 𝑟 (event 𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟 occurred). This corresponds to the probability density 

function of the journey time distribution for 𝑟.  
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The problem here is, that Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟) and Pr(Δ𝑞|𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟) cannot be known explic it ly 

for each individual passenger 𝑞. but a modelling approach is required for their estimation, 

which is discussed in Section 3.2.2. 

3.2.2 Application of finite mixture models for route choice estimation 

Finite mixture models have been applied in many fields of biological, physical and social 

science (McLachlan and Peel, 2000). The novelty in Fu (2014) is to apply it in the field 

of transport for the previously described route choice problem. 

The statistical population of passengers (𝑄 ) can be decomposed to 𝑁𝑅  number of 

subpopulations according to the number of routes in 𝑅. These subpopulations – denoted 

by 𝑄𝑟 – represent passengers on the same route 𝑟. The random variable of journey time 

produced by subpopulation 𝑄𝑟, who travels through route 𝑟 is denoted by 𝛿𝑟. It follows a 

statistical distribution, which is denoted by 𝑐𝑟(𝛿) , where letter “c” refers to the 

component distribution. In total there are 𝑁𝑅 journey time distributions according to the 

number of routes in 𝑅.  

In reality, when the routes are overlapping, the random variable of their journey time 

(𝛿1,… , 𝛿𝑁𝑅
) are correlated, however for the simpler formulation of the model it is 

assumed that they are independent of each other. In this case, the random variable of the 

journey time for the OD pair can be called as 𝛿 and its distribution can be described as 

the joint probability distribution for all the route-specific journey times. It is denoted with 

𝑚(𝛿) where letter “m” refers to the mixture distribution. It can be calculated as the 

weighted sum of the component distributions, 𝑐𝑟(𝛿) (Frühwirth-Schnatter, 2006): 

 𝑚(𝛿; 𝜔1, … , 𝜔𝑁𝑅
) = ∑ 𝜔𝑟𝑐𝑟(𝛿)

𝑟∈𝑅

 , (3-3) 

In this setting 𝜔𝑟 denotes the proportion of the component distribution, 𝑐𝑟  in the mixture. 

It describes how likely it is that the probability of any individual’s journey time 

observation, 𝛿𝑞
OJT  drawn from the statistical population of passengers (𝑄) may be within 

the probability domain of the component distribution. 

The way how Fu (2014) applied the mixture model in the context of route choice is to 

define the connection between the elements of the mixture model and the previously 

described Bayesian probabilities (cf. Section 3.2.1). More specifically, he pointed out the 

similarity between the component distribution of a route and the corresponding likelihood 

function: 
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 Pr(Δ𝑞|𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟) ≈ 𝑐𝑟(𝛿 = 𝛿𝑞
OJT)  (3-4) 

as well as between the component proportion and the prior probabilities of route choice: 

 Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟) ≈ 𝜔𝑟  . (3-5) 

These formulae does not express equality, but similarity, explaining, that in a context 

where both probabilities of Pr(Δ𝑞|𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟)  and Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟)  are unknown, the 

outputs of the mixture model can be a potential tool to estimate them. 

Bringing this analogy forward and substituting formulae (3-4) and (3-5), into equation 

(3-1), the route choice probability conditional on journey time Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟|Δ𝑞) can be 

expressed as:  

 Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟|Δ𝑞) ≈
𝜔𝑟𝑐𝑟(𝛿 = 𝛿𝑞

OJT )

𝑚(𝛿 = 𝛿𝑞
OJT ;  𝝎)

 , (3-6) 

Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟|Δ𝑞) for all 𝑟 routes could be derived, if the mixture components 𝑐𝑟(𝛿) and 

the corresponding weights 𝜔𝑟 were known. This could be obtained by finding the solution 

for the parameterised equivalent of equation (3-2): 

 𝑚(𝛿; 𝝎, 𝝑) = ∑ 𝜔𝑟𝑐𝑟(𝛿; 𝜽𝑟)
𝑟∈𝑅

 , (3-7) 

In this setting, each mixture component 𝑐𝑟(𝛿) can be characterised by the parameters of 

the statistical distribution of the corresponding route, which is denoted by 𝜽𝑟 . The 

collection of parameters 𝜽𝑟  for all routes is denoted by 𝝑 = (𝜽1,… , 𝜽𝑁𝑅
). Additionally, 

𝝎 denotes the random vector of all component proportions: 𝝎 = (𝜔1, … , 𝜔𝑁𝑅
). 

There are different model specifications for the statistical distribution of the mixture 

components, such as the Gaussian or lognormal. It can be easily understood, that the 

mixture components – which correspond to the journey time distribution of the actual 

routes – usually are not symmetric, but skewed to the left; therefore in theory a lognormal 

distribution could be a better model specification. Fu (2014) in his work concluded that 

both model specifications could give a good match of the real-world routes; however the 

lognormal model showed better goodness-of-fit for mixtures with two components, while 

it showed other problems for mixtures with three or more components. In this thesis – in 

order to make model and the corresponding program code simpler – the Gaussian 

distribution was chosen. This decision is justified by the fact that also Lee and Sohn 
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(2015) worked with the Gaussian model specification. Furthermore, Wahaballa et al. 

(2017) suppose Gaussian distribution for the on-board, access and egress time of 

passengers. Working with Gaussian distribution, the random vector of parameters (𝜽𝑟) 

include the mean (𝜇𝑟) and standard deviation (𝜎𝑟) of 𝑐𝑟(𝛿). 

3.2.3 Deriving posterior probabilities from the dataset of journey times 

The available, valid dataset of OJTs – denoted as 𝑂𝐽𝑇 0 ≔ {〈𝑞,𝛿𝑞
OJT : 𝑞 = 1, … , 𝑛𝑂𝐽𝑇 〉} – 

contains 𝑛 number of records, where each record gives information on the journey time 

𝛿𝑞
OJT  of individual passenger 𝑞. The route 𝑟 chosen by individual 𝑞 is not known from this 

dataset, it can be treated only as a categorical variable. It is denoted by 𝑟[𝑞 ] . The 

probability function of 𝑟[𝑞 ] is denoted by 𝜋(𝑟[𝑞 ] = 𝑟). It corresponds to the previously 

discussed component proportions (𝜔𝑟) for which the similarity with the prior probability 

(Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟)) was expressed in formula (3-5). 

Based on this, for each 𝑞, the posterior route choice probability 𝜋(𝑟[𝑞 ] = 𝑟;  𝛿) – which 

is equivalent to Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟|Δ𝑞) – can be derived given the available dataset (𝑂𝐽𝑇 0) and 

the appropriate parameters (𝝑) and proportions (𝝎) of the mixture components. 

 𝜋(𝑟[𝑞] = 𝑟;  𝛿, 𝝎, 𝝑) =
𝜔𝑟𝑐𝑟(𝛿; 𝜽𝑟)

𝑚(𝛿; 𝝎, 𝝑)
  (3-8) 

The problem here consists in the fact that in equations (3-7) and (3-8) both the parameters 

(𝝑) and the corresponding proportions (𝝎) are unknown. Therefore this equation cannot 

be solved analytically, but a numerical method is required, which is discussed in Section 

3.2.4. 

3.2.4 Solving the finite mixture model with the Expectation-Maximisation 

algorithm 

To solve the above described problem, the Expectation-Maximisation (EM) algorithm 

(Dempster et al., 1977) is used. It is a maximum-likelihood function, an iterative process, 

which searches a set of optimum values of the parameters (𝝑) and component proportions 

(𝝎) with respect to dataset 𝑂𝐽𝑇 0, and estimates them by maximising the log-likelihood 

of the data sample. In this specific case, the EM algorithm is implemented as it follows: 

Let ℓ(𝝎,𝝑; 𝑂𝐽𝑇 0) denote the likelihood function of (𝝎, 𝝑), given the data set (𝑂𝐽𝑇 0). 

The corresponding log-likelihood function with respect to the mixture model can be 

specified as: 
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 log ℓ (𝝎, 𝝑; 𝑂𝐽𝑇0) = ∑ log(∑ 𝜔𝑟𝑐𝑟(𝛿𝑞
OJT

; 𝜽𝑟)
𝑁𝑅

𝑟=1
)

𝑛𝑂𝐽𝑇

𝑞=1
 , (3-9) 

The EM algorithm can be formulated in the following steps (McLachlan and Peel, 2000): 

(i) Initialisation: The initial values of the parameters ( 𝝑), and component 

proportions (𝝎) are denoted with 𝝑[0] and 𝝎[0] respectively. Similarly to Fu 

(2014), the K-means clustering algorithm (Forgy, 1965; MacQueen, 1967) is 

applied to produce 𝝑[0] and 𝝎[0] (see Section 3.3.1). These values are used as 

an input in the Expectation [E] step: 𝝎[E] = 𝝎[0] and 𝝑[E] = 𝝑[0] 

(ii) Expectation (E-step): Let �̂� = 𝝑[E] and �̂� = 𝝎[E]. Firstly, the posterior route 

choice probabilities 𝜋(𝑟[𝑞 ] = 𝑟;  𝛿)  are calculated for each 𝑞  individua l 

passenger and 𝑟 route with equation (3-8). Then, based on equation (3-9), the 

expectation of the log-likelihood will be: 

 𝐸(logℓ) = ∑ ∑ 𝜋(𝑟[𝑞] = 𝑟; 𝛿𝑞
OJT, �̂�, �̂�)[log�̂�𝑟 + log𝑐𝑟(𝛿𝑞

OJT;�̂�𝑟)]
𝑁𝑅

𝑟=1

𝑛𝑂𝐽𝑇

𝑞=1
 (3-10) 

(iii) Maximisation (M-step): Look for optimum values of �̂� and �̂�, which should 

increase the current expectation of the log-likelihood (Equation (3-10)). They 

are denoted as 𝝑[M]  and 𝝎[M] . To find these optimum values, the partial 

derivative of the log-likelihood function (3-8) needs to be taken with respect 

to each variable within 𝝑 and 𝝎, then those equations need to be set to zero. 

Depending on the type of distribution (e.g. Gaussian, lognormal) of 𝑐𝑟(𝛿), the 

partial derivative functions with respect to 𝝑 can be calculated and solved and 

hence 𝝑[M] can be found. The optimum value for the component proportion 

(𝝎[M]) can be obtained with the following equation:  

 
𝜔𝑟

[M]
=

∑ 𝜋(𝑟[𝑞] = 𝑟; 𝛿𝑞
OJT

, �̂�, 𝝑[M])
𝑛𝑂𝐽𝑇

𝑞=1

𝑛
 , 

(3-11) 

Once 𝝑[M] and 𝝎[M]. are found they are used in the next iteration to update the 

estimates of the E-step: 𝝎[E] = 𝝎[M] and 𝝑[E] = 𝝑[M]. 
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(iv) Iteration and stopping: Repeat the E and M step until the increase in the 

expectation of the log-likelihood (𝐸(log ℓ)) is not greater than a tolerance 

threshold. The results will be the optimum values of �̂� and �̂�. The iteration 

process may stop at either the global or a local maximum of the log-likelihood. 

This means, that the EM algorithm may find the global or a local optimum 

values of �̂� and �̂�. 

These values obtained with the EM algorithm are the mixture model estimates. In the 

particular case of normal distribution, �̂� includes the mean (𝜇𝑟) and standard deviation 

(𝜎𝑟 ) of each route 𝑟 ; while �̂�  can be associated with the aggregate route choice 

probabilities. 

3.3 Convergence of the estimation algorithm 

As it was described earlier (cf. Section 3.2.4), the EM algorithm and hence the mixture 

model may converge either to a global optimum value of �̂� and �̂� or to a local optimum. 

Therefore, it is crucial to know, whether the solutions given by the model truly reflect the 

actual values in the metro network, or the algorithm converges to a different solution. 

This brings up the following questions: 

Question 1: If there are more possible solutions, how to decide which one to choose? 

Question 2:  What influences the convergence of the mixture model? 

Question 3:  Is it possible to set them to ensure it converges to the solution, which 

reflects the actual values in the metro network? 

The question of identifying the desired local optimum was discussed in McLachlan and 

Peel (2000) focusing this question on finding the global optimum among the possible 

solutions. Gan and Jiang (1999) investigated further this question and tested the 

consistency and asymptotical efficiency of the possible solutions stating, that the global 

optimum should hold this property. Finding the global optimum is a challenging question; 

however even if that is found, it would not necessarily mean that it also corresponds to 

the actual values of journey times and route choice probabilities captured from other data 

sources (i.e. timetables, travel surveys, see Section 3.6). Therefore, the model results need 

to be further evaluated. (Question 1). 

As it is discussed in Fu (2014); it is the initial value and the tolerance threshold that gives 

the most significant influence on the results of the mixture model (Question 2). In this 

section trials are conducted with different settings of the mixture model for initial values 
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(see Section 3.3.1) and tolerance thresholds (see Section 3.3.2) comparing these results 

with the actual LU values (Question 3). 

3.3.1 Initialisation with the K-means clustering algorithm 

For the 𝝑[0]  and 𝝎[0]  values in the EM algorithm (cf. Section 3.2.4) an initialisat ion 

technique should be used. These initial values, in fact, could be associated with the 

centroids of the data clusters that can be reproduced with an appropriate algorithm. Hong 

et al. (2017) presents a comprehensive literature review on different approaches, such as 

the K-means (Forgy, 1965; MacQueen, 1967), K-medoids (Kaufman and Rousseeuw, 

2009), distribution based (McLachlan and Krishnan, 2007) or density based (Ester et al., 

1996) clustering algorithms as well as a novel method, which performs the clustering by 

fast search and find of density peaks (Rodriguez and Laio, 2014). Although there are more 

advanced methods in literature, for the purpose of this thesis, the simpler K-means 

clustering algorithm is already adequate. 

As Gaussian component distributions were assumed (cf. Section 3.2.2), the parameters 

for the mixture model (𝝑[0]) include the mean (𝝁[0]) and standard deviation (𝝈[0]) of the 

mixture components. 

Running the K-means clustering algorithm, each value in the 𝑂𝐽𝑇 0 dataset is assigned to 

one of the 𝑁𝑅 clusters according to the number of routes. This subset of OJTs is denoted 

as 𝑂𝐽𝑇𝑟
𝐾𝑀𝑆. The initial value for the mean (𝝁[0]) and standard deviation (𝝈[0]) for the 

mixture model is given as the mean and standard deviation of the 𝑂𝐽𝑇𝑟
𝐾𝑀𝑆  clusters 

(denoted as 𝜇𝑟
𝐾𝑀𝑆 and 𝜎𝑟

𝐾𝑀𝑆 respectively). The initial value of the component proportion 

(𝝎[0]) produced by the K-means clustering algorithm corresponds to: 

 𝜔𝑟
𝐾𝑀𝑆 =

𝑂𝐽𝑇𝑟
𝐾𝑀𝑆

𝑂𝐽𝑇 0
  (3-12) 

To get a better confidence that the initialisation gives acceptable values, the input 

parameters of the K-means clustering algorithm were set in the following way: 

 The cluster centroids were initialised by K-means ++ algorithm (Arthur and 

Vassilvitskii, 2007). This more advanced technique was applied, because working 

with randomly chosen cluster centroids, the mixture model gave results, which 

were far from the expected values for the LU. 

 The point-to-cluster-centroid distances were calculated according to the Euclidean 

square distance metrics. 
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 The online update phase was used in addition to the batch update phase to 

guarantee a solution that is a local optimum (Chamundeswari et al., 2012). 

The settings of these parameters could improve the results obtained with the K-means 

clustering algorithm; but it still could not ensure that it converges to the same value in 

every iteration. This is due to the fact, that even though a more advanced method is used 

for initialising the cluster centroids with K-means ++ algorithm, the very first input for 

the centroid initialisation was generated randomly. In order to enumerate the possible 

results with the K-means clustering algorithm trials were conducted with different 

settings of the random number generator of the computer – they are called seeds – to 

 obtain the estimates of the K-means clustering algorithm. As it follows (Section 3.3.2), 

the mixture model is tested with these initial values for different tolerance thresholds. 

3.3.2 Setting a tolerance threshold 

Using different set of initial values produced by the K-means clustering algorithm (cf. 

Section 3.3.1). The mixture model was run with a range of tolerance thresholds (step (iv) 

in the EM algorithm, cf. Section 3.2.4) to see, which would give the best fit of the model. 

It is noteworthy that the mixture model starts finding solutions near the initial value; 

therefore if the tolerance threshold is set larger, it is likely to find a local optimum in the 

proximity of the initial values, while if it is set smaller, it is more likely that it converges 

to the global optimum. The task here is to find the tolerance threshold that is small enough 

to obtain the desired solution, but not too small, so that it increases unnecessarily the 

computational time of the algorithm. In the case studies trials were conducted with 

tolerance threshold values ranging (exponentially) between 1e-01 and 1e-10. 

At this point the local optimum in the proximity of the results captured from other sources 

(i.e. timetables, travel surveys) was accepted as a solution of the mixture distribution 

problem instead of the global optimum. This is because it is expected that among all the 

possible solutions there exists at least one, which reflects the actual values of the metro 

network, although this may not be necessarily the global optimum. 

3.4 Validation of the model results 

Applying the finite mixture model on the 𝑂𝐽𝑇 0 distribution (cf. Section 3.2) with the 

appropriate settings for initial value and tolerance threshold (cf. Section 3.3) the results 

were obtained as the journey time distribution (with parameters 𝜇𝑟
𝑀𝐼𝑋  and 𝜎𝑟

𝑀𝐼𝑋) and 

proportion (𝜔𝑟
𝑀𝐼𝑋) of the mixture components. At this point it is still unknown, which 
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mixture component (labelled with 𝑟) corresponds to which actual route (labelled with 𝑘). 

Therefore in Section 3.4.1, it is discussed how to match them, so that the journey time 

and route choice values of actual routes can serve for the validation of model results. 

In this thesis the finite mixture model was applied on a much smaller data sample than in 

Fu (2014), with slightly different settings for the initial values. Therefore the results of 

that model can serve as another source for validation. This is presented in Section 3.4.2. 

3.4.1 Matching the mixture results with actual LU routes 

Fu (2014) proposed to match the results of the finite mixture model with the actual LU 

routes based on the following criteria: 

 Match the mean journey time of mixture components with the reference time of 

the actual LU routes 

 Calculate confidence intervals for the actual LU routes and check whether the 

mean of the mixture components falls into that confidence interval 

 Check the proportion of the mixture components with RODS data on route choice  

He modelled the confidence intervals for the actual routes based only on the difference in 

fail-to-board delays, and he assumed that for each route and each journey leg of that route 

half of the passengers can board the first, half of them the second train.. Looking at the 

characteristics of metro networks, it was understood that this assumption for the fail-to-

board delays is not always realistic as it varies in time (e.g. within the AM peak) and 

within the metro network (e.g. city centre vs outskirts) (see Section 7.6.2). Therefore in 

this thesis a different approach is used.  

As the first attempt, a simpler consideration is made, without yet considering confidence 

intervals and fail-to-board delays: The mixture components (𝑟) are associated with the 

actual LU routes (𝑘) only based on their journey time, matching the mean journey time 

for mixture components (𝜇𝑟
𝑀𝐼𝑋) with the Scheduled Journey Time (SJT) of the actual LU 

routes, which is calculated as: 

 𝑡𝑘
𝑆𝐽𝑇

= 𝑡1,𝑘
𝑎𝑐𝑐 + ∑(𝑡𝑙,𝑘

𝑤𝑎𝑖𝑡

𝑁𝐿 ,𝑘

𝑙=1

+ 𝑡𝑙,𝑘
𝑜𝑏) + ∑ 𝑡𝑠,𝑘

𝑖𝑐

𝑁𝑆,𝑘

𝑠=1

+ 𝑡𝐿,𝑘
𝑒𝑔𝑟

 (3-13) 

Based on (3-13), a route is defined as the sequence of the following journey segments 

between the entry and exit ticket gate: access to line 1 – wait for line 1 – on-board line 1 

– interchange 1 – … – interchange 𝑁𝑆,𝑘  – wait for line 𝑁𝐿,𝑘  – on-board line 𝑁𝐿,𝑘  – egress 
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from line 𝑁𝐿,𝑘 , where 𝑁𝐿,𝑘  and 𝑁𝑆,𝑘  is the total number of lines and interchange stations 

respectively. 

Once the journey time of the mixture results are matched with the actual LU routes, also 

the corresponding component proportions (𝜔𝑟
𝑀𝐼𝑋) can be validated with the aggregate 

route choice results from RODS data (Section 3.6.3) (𝜔𝑘
𝑅𝑂𝐷𝑆 ). 

In reality, for the appropriate matching between the mixture results and the actual routes 

a more detailed consideration of confidence intervals would be necessary. Firstly – as it 

as mentioned above – fail-to-board delays vary within the AM peak and the metro 

network. Secondly, the confidence interval itself depends not only on the variance in fail-

to-board delays, but also on the variance in the other time components (i.e. on-board, wait 

for the first coming service, access egress interchange). In this thesis, the problem of fail-

to-board delays is introduced in Chapter 6 and Chapter 7, and a different matching 

process accounting for these issues is discussed in Section 7.3. Another possible approach 

would be to see the confidence interval of the mixture results instead of the one of the 

actual routes. This approach is not discussed in this thesis, but could be subject of further 

research. 

3.4.2 Comparison with Fu (2014) 

The solution algorithm for the finite mixture distribution problem in Fu (2014) and in the 

proposed model is essentially the same (EM algorithm, cf. Section 3.2.4). Similarly also 

the algorithm used for initialisation is the same in the two models (K-means clustering 

algorithm, cf. Section 3.3.1), however the input parameters are slightly different (see  

Table 3-1). 

The main difference between the two models is that for this thesis only a smaller data 

sample was available The reason for this is that Transport for London (TfL) gave access 

only to the open data, which was available from their website (see Section 3.6.1): a 5% 

sample of the Oyster cardholders from a 1 week period (50-100 records per OD pair);  

while for Fu (2014) a larger sample of aggregate data could be provided as bespoke data: 

a 100% sample from a 40 week period (20000-30000 records per OD pair). Having smart 

card data collected over a longer time period has the obvious advantage of larger data 

sample and hence more reliable model estimates. However it is important to note that 

with the temporal aggregation, the modeller does not consider that in different time 

periods passengers may have different route choice patterns (e.g. term time vs summer 
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holiday). Therefore working with data from shorter time periods has the value to give 

time period specific route choice estimates. 

Applying the proposed model on the same case study OD pairs as Fu (2014) can be 

another source for validation. Through this, it is possible to understand, at what extent 

finite mixture models can estimate route choice when only a small data sample is 

available. 

When comparing the results of the model implemented in this thesis and the results of Fu 

(2014), it is also important to note, that while his data was collected in 2011-2012; the 

data used in this thesis is from 2009. Therefore also the changes in people’s route choice 

behaviour or in service provision (e.g. timetable changes, etc.) need to be considered. 

 

Table 3-1 Comparison of Fu (2014) and the implemented model 

Model input Fu (2014) Implemented model 

Solution algorithm Expectation-Maximisation algorithm 

Initialisation algorithm K-means clustering algorithm 

Initialisation of cluster 

centroids 

Random selection K-means ++ algorithm 

Point-to-cluster-

centroid distance 

Sum of absolute 

differences 

Squared Euclidean 

distance 

Update phase Online 

Tolerance threshold Trials with a range of values 

Dataset 100% sample, 40 weeks 5% sample, 1 week 

 

3.5 Software implementation 

The code for the implementation of the finite mixture model on the case study OD pairs 

was written in Matlab. The functions, input parameters and outputs for the initialisa t ion 
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(K-means clustering, Section 3.5.1) and solution (Expectation-Maximisation, Section 

3.5.2) algorithm are presented as it follows.  

3.5.1 Initialisation: K-means clustering 

As discussed in Section 3.2.4 the initial values for the EM algorithm are produced by the 

K-means clustering algorithm. In Matlab ‘kmeans’4 is a built-in function that can be used 

to assign the given dataset to one of the K number of clusters. In this specific case, the 

input parameters for the function are the following: 

 X: The dataset of journey time observations after removing outliers 𝑂𝐽𝑇 0. 

 k: The number of known routes for the OD pair. 

 ‘Start’: the option ‘plus’, is chosen, which means that the cluster centroids are 

initialised by the K-means ++ algorithm. 

 ‘Distance’: the option ‘sqeuclidean’ is chosen, which means that the point-to-

cluster-centroid distances were calculated according to the Euclidean square 

distance metrics. 

 ‘OnlinePhase’: the option ‘on’ is chosen, which means that the online update 

phase is used in addition to the batch update phase. 

The ‘kmeans’ function produces the output of a vector with the cluster labels, showing to 

which cluster the data entry is assigned. The OJTs assigned to each cluster correspond to 

𝑂𝐽𝑇𝑟
𝐾𝑀𝑆. From that 𝜇𝑟

𝐾𝑀𝑆, 𝜎𝑟
𝐾𝑀𝑆 and 𝜔𝑟

𝐾𝑀𝑆 is calculated as described in Section 3.3.1. 

In order to conduct trials of the K-means clustering algorithm with different seeds, the 

random number generator of the computer was set to constant values with the ‘rng’ 

Matlab function. 

3.5.2 Solution: Expectation-Maximisation  

As discussed in Section 3.2.4, the finite mixture model is solved with the EM algorithm. 

In Matlab ‘fitgmdist’ 5  is a built- in function that is used to fit a Gaussian mixture 

distribution on a given dataset. In this specific case, the input parameters for the function 

are the following: 

 X: The dataset of journey time observations after removing outliers 𝑂𝐽𝑇 0 

 k: The number of known routes for the OD pair 

                                                                 
4 https://uk.mathworks.com/help/stats/kmeans.html 
5 https://uk.mathworks.com/help/stats/fitgmdist.html 

https://uk.mathworks.com/help/stats/kmeans.html
https://uk.mathworks.com/help/stats/fitgmdist.html
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 ‘Start’: Initial values (𝝑[0] and 𝝎[0] step i), produced by the K-means algorithm 

(cf. Section 3.5.1) 

 ‘MaxIter’:Maximum number of iterations, set to 10000 

 ‘TolFun’:Threshold value (step iv), with different settings (cf. Section 3.3.2) 

The fitgmdist function gives the following outputs, relevant to this thesis: 

 Converged: Logical (0 or 1) to state, whether the EM algorithm could converge 

to the local optimum given the set tolerance threshold and maximum iteration 

values 

 NumIterations: Number of iterations necessary for convergence 

 mu: Mean of the Gaussian mixture components 

 Sigma: Variance of the Gaussian mixture components 

 NegativeLogLikelihood: Negative log-likelihood, showing how good match the 

estimates give 

3.6 Data sources for the case studies 

Principally, the main input for the finite mixture model is the dataset of OJTs understood 

from smart card data, which is presented in Section 3.6.1. Additionally, the data sources 

that are used for matching the mixture results with the corresponding values of the actual 

LU routes (i.e. Scheduled Journey Time of routes) are described in Section 3.6.2. Finally, 

the historical data for route choice is presented in Section 3.6.3. 

3.6.1 Oyster data 

The smart card for the LU network is called Oyster card, and the journey detail records 

extracted from that card are called Oyster data. The raw data is collected and processed 

by TfL and provided for researchers in different output forms, depending on the research 

objectives. 

Disaggregate Oyster data contains detailed records on each smart card transaction, 

including the encrypted passenger ID, public transport subsystem (i.e. bus, LU, rail) 

entry/exit time and station as well as information on the ticket type and fare. Their 

advantage is that travel patterns of individual passengers, such as the day-to-day variation 

of entry/exit choice can be observed (see Section 2.3 and Section 5.2.2). In case of 

London, around 200 million Oyster transactions are recorded in a 4 week period for the 
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whole TfL network 6 . The storage and processing of such an amount of data is 

computationally expensive. Therefore, in some cases, – depending on the research 

objective – researchers are only provided with a smaller data sample (e.g. 5% sample of 

Oyster cardholders) for shorter time periods (e.g. 4 weeks). 

In order to be able to analyse longer time periods with larger data sample at less 

computational cost researchers are provided with Oyster data in the form of aggregate 

data. There Oyster transactions are aggregated according to certain features (e.g. 

Observed Journey Times, OJT), and are filtered according to entry/exit station and time. 

The limitation of this dataset is, that due to data aggregation it is not possible to identify 

individual travel patterns (e.g. which journey time observations belong to the same 

passenger). 

TfL released a 5% sample of disaggregate Oyster data from a 1 week period in November 

2009 as open data7. In this dataset – to further comply with the privacy policy of the 

passengers – also the encrypted passenger ID column was removed, therefore individua l 

travel patterns are unidentifiable. Data with the information on encrypted passenger IDs, 

with larger sample size or from longer time period needs to be requested as bespoke data. 

For this thesis, only the open data was available. 

In the period of data collection (2009), Oyster card was used for 73% of the LU journeys 8. 

Since April 2014, also contactless payment cards (i.e. bank cards) are accepted for fare 

payment the same way as the Oyster card. The total proportion of Oyster and contactless 

payments card usage is similar at the time of this study being conducted (2018)9.  

Oyster card is accepted on all public transport modes within Greater London. For rail 

modes (LU, LO, DLR, TfL rail, NR) passengers need to tap card both at the entry and at 

the exit station. This way, the Oyster card record includes: 

 Day of the week (e.g. Monday) 

 Subsystem (e.g. LU, NR) 

 Entry/exit station and time 

Additionally it gives information on the ticket type used by the passenger (pay-as-you-go 

or season ticket) and on the fare calculated. 

                                                                 
6 https://www.whatdotheyknow.com/request/oyster_card_usage  
7 https://tfl.gov.uk/info-for/open-data-users/ 
8 https://www.whatdotheyknow.com/request/oyster_card_usage  
9 https://tfl.gov.uk/corporate/publications -and-reports/oyster-card  

https://tfl.gov.uk/corporate/publications -and-reports/contactless-payment 

https://www.whatdotheyknow.com/request/oyster_card_usage
https://tfl.gov.uk/info-for/open-data-users/
https://www.whatdotheyknow.com/request/oyster_card_usage
https://tfl.gov.uk/corporate/publications-and-reports/oyster-card
https://tfl.gov.uk/corporate/publications-and-reports/contactless-payment
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In the model, the period of main interest is the weekdays AM peak (set for the time 

between 7:00 and 10:00 by TfL). Therefore as the first step, the Oyster dataset was filtered 

accordingly. This dataset contains for each observation (𝑞) the time stamps at the entry 

(𝑇𝑞
𝑒𝑛𝑡𝑟𝑦) and exit ticket gate (𝑇𝑞

𝑒𝑥𝑖𝑡). However, the finite mixture model requires solely 

the OJTs of passengers as an input, which can be calculated as: 

 𝛿𝑞
OJT = 𝑇𝑞

𝑒𝑥𝑖𝑡 − 𝑇𝑞
𝑒𝑛𝑡𝑟𝑦 (3-14) 

It is important to note that as the Oyster data reveals 𝑇𝑞
𝑒𝑛𝑡𝑟𝑦 and 𝑇𝑞

𝑒𝑥𝑖𝑡 with the precision 

of 1 minute, also 𝛿𝑞
OJT  will be treated with that precision. 

3.6.2 Scheduled journey time of routes 

In addition to the OJT of passengers it is also necessary to gain further understanding on 

the journey time of the actual LU routes between the entry and exit ticket gates (𝑡𝑘
𝑆𝐽𝑇

), 

which can be calculated using equation (3-13). Among the journey time components 

specified there, LU timetables are used for 𝑡𝑙
𝑜𝑏  and 𝑡𝑙 ,𝑘

𝑤𝑎𝑖𝑡  (see Section 3.6.2.1) and the 

access egress interchange (AEI) times (𝑡1,𝑘
𝑎𝑐𝑐 , 𝑡𝐿,𝑘

𝑒𝑔𝑟
 and 𝑡𝑠,𝑘

𝑖𝑐 ) are estimated based on station 

layouts from The Nationwide Access Register (see Section 3.6.2.2). 

3.6.2.1 On-board and wait times 

The current (2018) LU timetables are available online from the TfL website10. From this, 

the on-board time for each journey leg (𝑡𝑙 ,𝑘
𝑜𝑏 ) can be obtained straightforward. Assuming 

high-frequency services (more than 4 trains/hr), the wait time for the first coming service 

can be assumed to be half of the frequency: 

 𝑡𝑙,𝑘
𝑤𝑎𝑖𝑡 =

1

2 ∙ 𝑓𝑙,𝑘

∙ 60 (3-15) 

where 𝑓𝑙,𝑘  is the frequency (trains/hour) on the given journey leg 𝑙, 𝑘 , which can be 

captured from timetables as the number of trains in a given time period (e.g. hour). Using 

equation (3-15), 𝑡𝑙 ,𝑘
𝑤𝑎𝑖𝑡 is obtained in minutes. 

It is important to acknowledge that working with timetable data would suggest that all 

trains run on time, which would not stand especially under extreme crowding conditions 

in the peak of the AM peak (8:00-9:00). There delayed boarding time and not constant 

                                                                 
10 https://tfl.gov.uk/travel-information/timetables/ 

https://tfl.gov.uk/travel-information/timetables/
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headways could be expected due to train bunching. For the objectives of this thesis, it is 

considered to be sufficient to work with the journey time values understood from 

timetables. Further research can address capturing data from the live departure board 

feeds of the LU, available also from the TfL open data website11. From that the mean and 

variance of 𝑡𝑙,𝑘
𝑜𝑏  and 𝑡𝑙 ,𝑘

𝑤𝑎𝑖𝑡  could be estimated, providing a better approximation for the 

actual journey time of routes. 

3.6.2.2 Access Egress Interchange times 

The Nationwide Access Register (a.k.a. Direct Enquires)12 provides information on the 

layout of all LU stations in terms of the passageways from/to/between the platforms of 

the LU lines. For each passageway, the sequence of (ascending or descending) stairs, 

escalators, lifts and level walks are given with their corresponding length or number of 

steps. Knowing this, 𝑡1,𝑘
𝑎𝑐𝑐 , 𝑡𝐿,𝑘

𝑒𝑔𝑟
 and 𝑡𝑠,𝑘

𝑖𝑐  were estimated, supposing an average of 1.33 m/s 

walk speed in even passageways (Transport for London, 2010) and 2.77 steps/s for 

descending and 2.36 steps/s for ascending (Fujiyama and Tyler, 2010). 

3.6.3 Understanding route choice set and validating route choice results  

The set of chosen routes and the surveyed route choice proportions can be understood 

explicitly from RODS data (collected between 1998 and 2017). This data is used for the 

validation of the model results. 

The RODS has been carried out by TfL since 1998 collecting data at 30-40 LU stations 

each year, where passengers fill out a questionnaire on their current journey. From this, 

route choice proportions can be calculated. At the same time also (manual and automatic) 

passenger count data is collected at stations, so that the RODS route choice results can be 

reconciled to the control totals, producing this way information on the on-board and AEI 

flows for each 15 minute period. 

The main issue with RODS data is that although it has a large sample of journey records 

(i.e. 4.9 million questionnaires); all these records come from different years, and reflect 

only the month of the data collection (i.e. November), therefore they are unable to provide 

time period specific information. Furthermore, RODS data contains only trips on 

weekdays during normal operation of the LU, excluding engineering works and 

disruption (Chan, 2007). 

                                                                 
11 https://tfl.gov.uk/info-for/open-data-users/ 
12 http://www.directenquiries .com/londonunderground.aspx 

https://tfl.gov.uk/info-for/open-data-users/
http://www.directenquiries.com/londonunderground.aspx
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3.7 Case studies on the London Underground  

The previously described finite mixture model is applied on the case study OD pairs of 

the LU. These are OD pairs with multiple reasonable routes. According to RODS data 

83.7% of the OD pairs in the LU have only one observed route in the AM peak (Guo, 

2008). Even though this percentage seems quite high, for the adequate passenger flow 

modelling, it is still important to know how passengers make choices on the remaining 

16.3% of the OD pairs. Especially, because within Central London there are many lines 

and hence route options. Among the OD pairs with multiple routes those two of them 

were chosen for the case study (Figure 3-2): 

 Case 1: Victoria – Holborn 

 Case 2: Liverpool Street – Green Park 

These OD pairs have relatively greater demand. Both of these cases represent route choice 

within the LU inner zone, where travel times are relatively short and interchange stations 

are quite complex. The main difference between these two cases is that, according to 

RODS data, while for Case 1 there are two reasonable routes, for Case 2 there are three. 

These case study OD pairs were also analysed in Fu (2014), where he compared the 

performance of the finite mixture model for two and three component mixture 

distributions. For the same purpose also in this chapter both of these cases are reported.  

Additionally, for the research problems discussed later in this thesis (Chapter 5, Chapter 

6 and Chapter 7) there is also a need to present more cases. This will be explained in the 

corresponding case studies. 

Table 3-2 presents the case study OD pairs with the observed routes (according to RODS, 

cf. Section 3.6.3), as well as the available data for them: 

 Travel time of routes (𝑡𝑘
𝑆𝐽𝑇

), cf. Section 3.6.2) 

 RODS route choice proportions (𝜔𝑘
𝑅𝑂𝐷𝑆 ) and sample size (𝑛𝑅𝑂𝐷𝑆 , cf. Section 

3.6.3) 

 OJT sample size of OD pairs (𝑛𝑂𝐽𝑇 , cf. Section 3.6.1) 
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Figure 3-2 Overview of the case study OD pairs 

 

Table 3-2 Resume of the case study OD pairs and their properties 

Case 

OD pair Route Time 

(minutes) 

RODS OJT 

Origin Destination Line 1 Interchange 1 Line 2 RC (%) Sample Sample 

   𝑙 = 1 𝑠 = 1 𝑙 = 2 𝑡𝑘
𝑆𝐽𝑇

 𝜔𝑘
𝑅𝑂𝐷𝑆  𝑛𝑅𝑂𝐷𝑆  𝑛𝑂𝐽𝑇  

1 Victoria Holborn 
Victoria (NB) Oxford Circus Central (EB) 17.6 80.4% 

561 54 
Victoria (NB) Green Park Piccadilly (EB) 20.4 19.6% 

2 
Liverpool 

Street 

Green 

Park 

Central (WB) Oxford Circus Victoria (SB) 21.3 75.9% 

917 30 Central (WB) Holborn Piccadilly (WB) 24.0 12.2% 

Central (WB) Bond Street Jubilee (EB) 23.2 11.9% 
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Case 1 Victoria – Holborn 

Looking at the map and RODS data, two reasonable routes can be identified for the 

Victoria – Holborn OD pair (see Figure 3-3): 

1) Victoria – Central (via Oxford Circus) 

2) Victoria – Piccadilly (via Green Park) 

 

Figure 3-3 The Victoria – Holborn OD pair 

From Oyster data (cf. Section 3.6.1) the 𝑂𝐽𝑇 dataset is given for this OD pair, containing 

54 transactions in the observation period (1 week in November 2009). Within this dataset 

all entries could be considered as valid data, because the upper outer fence (cf. Section 

3.2.1) resulted 40 minutes, while the maximum OJT value is 31 minutes. This valid 

dataset is denoted by 𝑂𝐽𝑇 0 (Figure 3-4) 

Having identified two reasonable routes, route choice is estimated as a two-component 

(𝑁𝑅 = 2) finite mixture distribution. Therefore, the K-means clustering algorithm was 

applied on the 𝑂𝐽𝑇 0 dataset with two clusters to produce the initial values for the EM 

algorithm. The previously described (cf. Section 3.3.1) settings were used for centroid 

initialisation (K-means ++), distances (Euclidean square) and update methods (online 

phase). Conducting trials with various seed values for the random number generator (1, 
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2, 3, etc.) the K-means clustering algorithm gave two possible solutions for 𝜇𝑟
𝐾𝑀𝑆, 𝜎𝑟

𝐾𝑀𝑆 

and 𝜔𝑟
𝐾𝑀𝑆 (Table 3-3) 

 

Figure 3-4 Distribution of Observed Journey Times for Victoria – Holborn 

 

Table 3-3 Results of the K-means clustering algorithm with different seeds  

for Victoria – Holborn; -a) Seed=1, b) Seed=2 

Label K-means clustering  Label K-means clustering 

𝑟 𝜇𝑟
𝐾𝑀𝑆 𝜎𝑟

𝐾𝑀𝑆 𝜔𝑟
𝐾𝑀𝑆  𝑟 𝜇𝑟

𝐾𝑀𝑆 𝜎𝑟
𝐾𝑀𝑆 𝜔𝑟

𝐾𝑀𝑆 
[] [min] [min] [%]  [] [min] [min] [%] 

1 17.0 2.8 81.5%  1 16.0 1.9 57.4% 

2 26.0 2.3 18.5%  2 22.0 3.3 42.6% 

         
  a)     b)  

 

Using these initial values the EM algorithm was run with different settings for the 

tolerance threshold (cf. Section 3.3.2). Figure 3-5 and Figure 3-6 presents the estimated 

mean (𝜇1
𝑀𝐼𝑋) and proportion (𝜔1

𝑀𝐼𝑋) for mixture component labelled with 𝑟 = 1. There, 

it is shown that when the tolerance threshold is 1e-05 or greater, the EM algorithm 

converges to a solution close to the initial value for seed 1. But when the tolerance 

threshold is 1e-06 or smaller, the EM algorithm converges to a solution around 

15.5 minutes for the mean and 32.9% for the component proportion for both seeds. 
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Similar properties could be observed for the other mixture component (labelled with 𝑟 =

2). 

 

Figure 3-5 Estimated mean for mixture component 1, given different initial values and 

tolerance thresholds for Victoria – Holborn 

 

 

Figure 3-6 Estimated proportion for mixture component 1, given different initial values 

and tolerance thresholds for Victoria – Holborn 
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Figure 3-7 presents the log-likelihood (equation (3-9)) for each initial value (seed) and 

tolerance threshold. It shows a considerable jump in the log-likelihood between the 

tolerance threshold of 1e-05 and 1e-06, below which the EM converges to the mean of 

15.5 minutes and proportion of 32.9% for component 1. 

 

 

Figure 3-7 Log-likelihood, given different initial values and tolerance thresholds for 

Victoria – Holborn 

 

According to RODS data, the route choice proportions for the two routes of the Victoria 

– Holborn OD pair are 80.4% and 19.6%. Among the estimates, the one with seed 1 and 

tolerance threshold 1e-05 gives the best approximation, therefore these settings were 

applied for the finite mixture model (Table 3-4). 

 

Table 3-4  Finite mixture model results; with Seed: 1, Tolerance threshold: 1e-05 for 

Victoria – Holborn 

Label Mixture model 

𝑟 𝜇𝑟
𝑀𝐼𝑋  𝜎𝑟

𝑀𝐼𝑋 𝜔𝑟
𝑀𝐼𝑋  

[] [min] [min] [%] 

1 17.6 2.9 79.8% 

2 26.1 2.8 20.2% 
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Table 3-5 Journey time of actual London Underground routes for Victoria – Holborn 

Route Journey Time [min] 

𝑘 𝑙 = 1 𝑠 = 1 𝑙 = 2 𝑡1,𝑘
𝑎𝑐𝑐  𝑡1,𝑘

𝑤𝑎𝑖𝑡 𝑡1,𝑘
𝑜𝑏  𝑡1,𝑘

𝑖𝑐  𝑡2,𝑘
𝑤𝑎𝑖𝑡  𝑡2,𝑘

𝑜𝑏  𝑡2,𝑘
𝑒𝑔𝑟

 𝑡𝑘
𝑆𝐽𝑇

 

1 Victoria Oxford Circus Central 2.4 0.9 4.0 3.1 1.2 3.0 3.1 17.6 

2 Victoria Green Park Piccadilly 2.4 0.9 2.0 4.1 1.3 6.0 3.8 20.4 

 

Table 3-6 Matching mixture model results with the actual London Underground routes for Victoria – Holborn  

Red: Mixture results of proposed model, Yellow: Fu (2014), Green: actual LU routes 

Mixture 
label 

Journey Time (min) Route Choice (%) Route 
label 

Route Matched 

Mixture Timetable Mixture Timetable Line 1 Interchange 1 Line 2 

𝑟 𝜇𝑟
𝑀𝐼𝑋  𝑡𝑘

𝑆𝐽𝑇
 𝜔𝑟

𝑀𝐼𝑋  𝜔𝑘
𝑅𝑂𝐷𝑆  𝑘 𝑙 = 1 𝑠 = 1 𝑙 = 1 

 Proposed Fu(2014)  Proposed Fu(2014)      

1 17.6 16.6 17.6 79.8% 75.4% 80.4% 1 Victoria Oxford Circus Central 

2 26.1 22.2 20.4 20.2% 24.6% 19.6% 2 Victoria Green Park Piccadilly 
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Figure 3-8 Estimated (Gaussian) journey time distribution of the routes for Victoria – Holborn 
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Following this, the results of the finite mixture model were matched with the actual LU 

routes (cf. Section 3.4.1). The total journey times of the actual LU routes (𝑡𝑘
𝑆𝐽𝑇

) were 

calculated between Victoria and Holborn stations based on equation (3-13). The results 

are presented in Table 3-5. It is expected that the mixture component with the lower mean 

(𝑟 = 1) may correspond to the route with the shorter journey time (𝑘 = 1). Similarly the 

component with the higher mean (𝑟 = 2) to the route with the longer journey time (𝑘 =

2). The results for the finite mixture model and the values for the actual LU routes are 

summarised in Table 3-6 together with the results of Fu (2014) for the same OD pair. 

Figure 3-8 presents the probability density functions of the mixture distribution fit on the 

CCOJT dataset as well as of the mixture components matched with the actual LU routes.  

 

Table 3-7 Mean journey times with different number of mixture components for Victoria 

– Holborn 

# of mixture 
components Mean journey time of mixture component 

𝑁𝑅 𝜇1
𝑀𝐼𝑋  𝜇2

𝑀𝐼𝑋  𝜇3
𝑀𝐼𝑋  𝜇4

𝑀𝐼𝑋  

1 19.3       

2 17.6 26.1     

3 15.6 20.4 26.5   

4 14.8 16.3 20.4 26.5 

 

Table 3-8 Proportions with different number of mixture components for Victoria – 

Holborn 

# of mixture 
components Proportion of mixture component 

𝑁𝑅 𝜔1
𝑀𝐼𝑋  𝜔2

𝑀𝐼𝑋  𝜔3
𝑀𝐼𝑋  𝜔4

𝑀𝐼𝑋  

1 100.0%       

2 79.8% 20.2%     

3 48.4% 32.3% 19.3%   

4 21.0% 27.1% 32.4% 19.4% 

 

Based on the results with the finite mixture model, the following issues were raised: 

Firstly, it is important to note that these results were obtained by setting the number of 

mixture components (𝑁𝑅) to 2, as from the LU map and RODS data it was understood, 

that the Victoria – Holborn OD pair has two reasonable routes. To illustrate the 

importance of the correct specification of the route choice set, the same finite mixture 
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model was run with different settings for the number of mixture components (i.e. 1, 2, 3, 

and 4). The corresponding component means (𝜇𝑟
𝑀𝐼𝑋) and proportions (𝜔𝑟

𝑀𝐼𝑋) are shown 

in Table 3-7 and Table 3-8 respectively. 

Looking at the mean and proportion of the mixture component corresponding to the 

longest route (𝜇𝑁𝑅

𝑀𝐼𝑋  and 𝜔𝑁𝑅

𝑀𝐼𝑋  respectively), it is observable that in all cases – whether 

𝑁𝑅 is chosen to be 2, 3 or 4 – they are around the same value (26 minutes and 20%). This 

is definitely not a good representation of the reality, because in actual metro networks it 

is expected that the next (i.e. 3rd and 4th) shortest route have a much longer journey time 

and a very small route choice proportion (less than 5%). 

Another crucial point in the application of finite mixture models is that it gave essentially 

different results depending on the seeding of the random number generator and on the 

tolerance threshold, as the EM algorithm was converging to different local optima. Most 

notable among these results is the component proportion, which exhibits a significant 

jump from 79.8% to 33.5% between tolerance thresholds 1e-05 and 1e-06 for component 

1 (cf. Figure 3-6) As the component proportion corresponds to route choice (formula 

(3-5)) it is crucial that the modeller could choose the proper seed value and tolerance 

thresholds. The reason for this big difference across the estimates could be explained with 

the fact that the 𝑂𝐽𝑇 0 dataset, on which the finite mixture model was applied had very 

small sample size (𝑛 = 54).  

Finally, comparing the results of the proposed finite mixture model with the actual LU 

routes (cf. Table 3-6), one can see that the mean journey time of component 1 (𝜇1
𝑀𝐼𝑋) 

shows quite a good match to the actual LU route (𝑡1); however for component 2 the 

difference is quite notable (26.1 and 20.4 minutes respectively). The higher OJT values 

in the data sample, in fact, could not necessarily mean that the passenger has taken a 

longer route, but it could be also because he/she has experienced fail-to-board delays in 

any of the routes, as that the northbound platform of the Victoria line at Victoria station 

is extremely crowded in the AM peak.  
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Case 2 Liverpool Street – Green Park 

Looking at the map and RODS data, three reasonable routes can be identified for the 

Liverpool Street – Green Park OD pair (see Figure 3-9): 

1) Central – Victoria (via Oxford Circus) 

2) Central – Piccadilly (via Holborn) 

3) Central – Jubilee (via Bond Street) 

 

 

Figure 3-9 The Liverpool Street – Green Park OD pair 

 

From Oyster data (Section 3.6.1) the 𝑂𝐽𝑇 dataset is given for this OD pair, containing 30 

transactions in the observation period (1 week in November 2009). Within this dataset all 

entries could be considered as valid data, because the upper outer fence (cf. Section 3.2.1) 

resulted 38 minutes, while the maximum OJT value is 36 minutes. This valid dataset is 

denoted by 𝑂𝐽𝑇 0 (Figure 3-10). 

Having identified three reasonable routes on the map and from RODS data, route choice 

is estimated as a three-component (𝑁𝑅 = 3) finite mixture distribution. Therefore, the K-

means clustering algorithm was applied on the 𝑂𝐽𝑇 0 dataset with three clusters to produce 

the initial values for the EM algorithm. The previously described (cf. Section 3.3.1) 

settings were used for centroid initialisation (K-means ++), distances (Euclidean square) 

and update methods (online phase). Conducting trials with various seed values for the 
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random number generator (1, 2, 3, etc.) the K-means clustering algorithm gave two 

possible solutions for 𝜇𝑟
𝐾𝑀𝑆, 𝜎𝑟

𝐾𝑀𝑆 and 𝜔𝑟
𝐾𝑀𝑆 (Table 3-9). 

 

 

Figure 3-10 Distribution of Observed Journey Times for Liverpool Street – Green Park 

 

Table 3-9 Results of the K-means clustering algorithm  

for Liverpool Street – Green Park 

Label K-means clustering 

𝑟 𝜇𝑟
𝐾𝑀𝑆 𝜎𝑟

𝐾𝑀𝑆 𝜔𝑟
𝐾𝑀𝑆 

[] [min] [min] [%] 

1 19.0 1.4 56.7% 

2 23.0 1.5 36.7% 

3 35.5 0.7 6.7% 

 

Using these initial values the EM algorithm was run with different settings for the 

tolerance threshold (cf. Section 3.3.2). Figure 3-11 and Figure 3-12 presents the 

estimated mean (𝜇1
𝑀𝐼𝑋) and proportion (𝜔1

𝑀𝐼𝑋) for mixture component labelled with 𝑟 =

1. There it is shown, that the EM algorithm converges to a solution close to the init ia l 

value; and it starts plateauing from the tolerance threshold of 1e-07 around the value of 

18.6 minutes for the mean and 50.7%for the component proportion. Similar properties 
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could be observed for the mixture component labelled with 𝑟 = 2; while the mean and 

proportion of the third mixture component remains constant for all tolerance thresholds. 

 

 

Figure 3-11 Estimated mean for mixture component 1, given different tolerance 

thresholds for Liverpool Street – Green Park 

 

 

Figure 3-12 Estimated proportion for mixture component 1, given different tolerance 

thresholds for Liverpool Street – Green Park 
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Figure 3-13 presents the log-likelihood (equation (3-9)) for each initial value (seed) and 

tolerance threshold. It starts plateauing from the tolerance threshold of 1e-07. Due to these 

considerations the finite mixture model was applied with the tolerance threshold of 1e-07 

(Table 3-10). 

 

 

Figure 3-13 Log-likelihood, given different tolerance thresholds for Liverpool Street – 

Green Park 

 

Table 3-10 Mixture model results; with tolerance threshold: 1e-07 for Liverpool Street 

– Green Park 

Label Mixture model 

𝑟 𝜇𝑟
𝑀𝐼𝑋  𝜎𝑟

𝑀𝐼𝑋 𝜔𝑟
𝑀𝐼𝑋  

[] [min] [min] [%] 

1 18.6 1.4 50.7% 

2 23.0 1.9 42.6% 

3 35.5 0.5 6.7% 
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Table 3-11 Journey time of actual London Underground routes for Liverpool Street – Green Park 

Route Journey Time [min] 

𝑘 𝑙 = 1 𝑠 = 1 𝑙 = 2 𝑡1,𝑘
𝑎𝑐𝑐  𝑡1,𝑘

𝑤𝑎𝑖𝑡 𝑡1,𝑘
𝑜𝑏  𝑡1,𝑘

𝑖𝑐  𝑡2,𝑘
𝑤𝑎𝑖𝑡 𝑡2,𝑘

𝑜𝑏  𝑡2,𝑘
𝑒𝑔𝑟

 𝑡𝑘
𝑆𝐽𝑇

 

1 Central Oxford Circus Victoria 2.6 0.9 10.0 2.9 1.0 2.0 1.9 21.3 

2 Central Holborn Piccadilly 2.6 0.9 7.0 3.4 1.5 6.0 2.6 24.0 

3 Central Bond Street Jubilee 2.6 0.9 11.0 3.2 1.0 1.0 3.5 23.2 

 

Table 3-12 Matching mixture model results with the actual London Underground routes for Liverpool Street – Green Park 

Red: Mixture results of proposed model, Yellow: Fu (2014), Green: actual LU routes 

Mixture 

label 

Journey Time (min) Route Choice (%) Route 

label 

Route Matched 

Mixture Timetable Mixture Timetable Line 1 Interchange 1 Line 2 

𝑟 𝜇𝑟
𝑀𝐼𝑋  𝑡𝑘

𝑆𝐽𝑇
 𝜔𝑟

𝑀𝐼𝑋  𝜔𝑘
𝑅𝑂𝐷𝑆  𝑘 𝑙 = 1 𝑠 = 1 𝑙 = 1 

 Proposed Fu(2014)  Proposed Fu(2014)      

1 18.6 18.7 21.3 50.7% 35.9% 75.9% 1 Central Oxford Circus Victoria 

2 23.0 22.0 23.2 42.6% 47.7% 11.9% 3 Central Bond Street Jubilee 

3 35.5 27.6 24.0 6.7% 16.4% 12.2% 2 Central Holborn Piccadilly 
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Figure 3-14 Estimated (Gaussian) journey time distribution of the routes for Liverpool Street – Green Park 
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Following this the results of the finite mixture model were matched with the actual LU 

routes (cf. Section 3.4.1). The total journey times of the actual LU routes (𝑡𝑘
𝑆𝐽𝑇

) between 

the origin (Liverpool Street) and destination station (Green Park) were calculated based 

on equation (3-13). The results are presented in Table 3-11. The mixture components 

were matched with the actual LU routes in order of their journey times and the results are 

summarised in Table 3-12 together with the results of Fu (2014) for the same OD pair. 

Figure 3-14 presents the probability density functions of the mixture distribution fit on 

the CCOJT dataset as well as of the mixture components matched with the actual LU 

routes. 

Based on the results with the finite mixture model the following issues were raised: 

Firstly, it is important to note that these results were obtained by setting the number of 

mixture components (𝑁𝑅) to three as from the LU map and RODS data it was understood 

that the Liverpool Street – Green Park OD pair has three reasonable routes. To illustrate 

the importance of the correct specification of the route choice set the same finite mixture 

model was run with different settings for the number of mixture components (i.e. 1, 2, 3 

and 4). The corresponding component means (𝜇𝑟
𝑀𝐼𝑋) and proportions (𝜔𝑟

𝑀𝐼𝑋) are shown 

in Table 3-13 and Table 3-14 respectively. 

 

Table 3-13 Mean journey times with different number of mixture components  

for Liverpool Street – Green Park 

# of mixture 
components 

Mean journey time of mixture 
component 

𝑁𝑅 𝜇1
𝑀𝐼𝑋  𝜇2

𝑀𝐼𝑋  𝜇3
𝑀𝐼𝑋  

1 21.6 0.0 0.0 

2 20.6 35.5 0.0 

3 18.6 23.0 35.5 

 

Table 3-14 Proportions with different number of mixture components 

for Liverpool Street – Green Park 

# of mixture 

components 

Mean journey time of mixture 

component 

𝑁𝑅 𝜔1
𝑀𝐼𝑋  𝜔2

𝑀𝐼𝑋  𝜔3
𝑀𝐼𝑋  

1 100.0% 0.0% 0.0% 

2 93.3% 6.7% 0.0% 

3 50.7% 42.6% 6.7% 
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The finite mixture model could produce results up to 3 components. When 𝑁𝑅 was set 4, 

the EM algorithm could not converge as it created an ill-conditioned covariance at 

iteration 6. Additionally, in other cases of 𝑁𝑅 (2 or 3), the mean and the proportion of the 

last component ( 𝜇𝑁𝑅

𝑀𝐼𝑋 and 𝜔𝑁𝑅

𝑀𝐼𝑋 ) is around the same value (35.5 minutes and 6.7% 

respectively). As discussed earlier (Case 1), this is definitely not a good representation of 

the reality. 

Comparing the results of the proposed finite mixture model with the actual routes (cf. 

Table 3-12) one can see that they do not show a good match. One reason for this could 

be due to the higher estimate for mixture component 2. Similarly to Case 1, also here the 

higher OJT values in the data sample would not necessarily mean that the passenger has 

taken a longer route, but it could be also because he/she has experienced fail-to-board 

delays in any of the routes, as the westbound platform of the Central line at Liverpool 

Street station is extremely crowded in the AM peak. 

Another reason is, that applying the finite mixture model assuming three components may 

not give the best estimates. According to RODS data, in fact, there are three observed 

routes for this OD pair; however – looking at the map – the third shortest route (Central 

– Jubilee, via Bond Street) would be a sort of turning away from the destination (Dial, 

1971). Furthermore, looking at the RODS data from other origin stations on the Central 

line (e.g. Bethnal Green), the option of interchanging at Bond Street does not appear 

among the reasonable routes. Therefore, it should be further examined whether assuming 

2 or 3 routes reflects better the reality. 

3.8 Issues with finite mixture models addressed in the thesis 

Applying the finite mixture model on the LU network important issues were raised, which 

will be addressed in details in this thesis: 

 The setting of the number of mixture components influences the model results 

(see Section 3.8.1) 

 The finite mixture model may converge to different values depending on the  

setting of the initial values and tolerance thresholds (see Section 3.8.2) 

 Longer OJT values may correspond to various reasons, not necessarily to the 

longer route (see Section 3.8.3) 
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3.8.1 Number of mixture components 

Results showed that choosing the number of mixture components higher than the number 

of observed routes, the finite mixture model gives higher estimates of proportion for the 

mixture component with the highest mean (cf. Table 3-8), which would not be a true 

representation of the actual values. 

Fu (2014) relied on pathfinding “by eye” from the LU map and used RODS data for 

determining the number of observed routes. Knowing the drawbacks of manual surveys 

(cf. Section 3.6.3) it would be advantageous to move away from them and to apply a 

route choice set generation algorithm that can automatically find the number of 

reasonable routes for a given OD pair. 

Determining route choice set in complex metro networks, such as the LU is not a 

straightforward task; because there might be many physically possible routes for a given 

an OD pair, however only few of them are reasonable. The greatest challenge in this to 

find the cut-off value between reasonable and unreasonable routes and set a general rule 

for all OD pairs of the metro network. To address this issue, a pathfinding and attribute 

cut-off algorithm is proposed in Chapter 4. 

3.8.2 Convergence of the finite mixture model  

It is a known property of finite mixture models that depending on the initial values and 

tolerance thresholds they may converge to different local optima. In other terms, there are 

more possible solutions that can solve the mixture distribution problem. Based on the case 

study results (Case 1) it was initially illustrated that these solutions are not necessarily 

near each other (cf. Figure 3-6). As the finite mixture model is applied for route choice 

estimation, the modeller could not be confident which solution he/she could accept for 

route choice. Furthermore, in some cases (i.e. Case 2, with 𝑁𝑅=4) it can also happen, that 

the EM algorithm is unable to converge as it creates an ill-conditioned covariance. This 

could be also attributed to the small sample size of OJTs. 

Although it is the initial value and the tolerance threshold that influences the most the 

convergence and the results of the finite mixture model (cf. Section 3.3), it can be 

logically understood that it is also related to the OJT sample size: the bigger the OJT 

sample is, the more regular is its distribution is and the better the convergence of the finite 

mixture model is. However to formulate this relationship exactly would require more 

advanced modelling, which is beyond the scope of this thesis. 
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One core objective of this thesis is to provide a framework for obtaining larger sample of 

OJTs for more reliable route choice estimates. To obtain this, in Chapter 5 it is proposed 

to group those OD pairs, which have similar route choice patterns.  

3.8.3 Reasons for the variation of the Observed Journey Times 

The results of the finite mixture model were matched to the actual LU routes in a way 

that the mean journey time of the former (𝜇𝑟
𝑀𝐼𝑋) were matched with the uncongested 

journey time of the latter (𝑡𝑘
𝑆𝐽𝑇

) (cf. Section 3.4.1). In the case studies (e.g. Case 1) results 

illustrated that the journey time of the mixture component with the higher mean does not 

show a good match to the uncongested journey time of the corresponding route.  

Practically the longer journey time could be due to various reasons, such as fail-to-board 

delays at the origin or interchange stations, service delays or passenger carrying a heavy 

luggage. For the sake of simplicity, this thesis focuses only on the variable of fail-to-

board delay in the model. 

Fu (2014) accounted for fail-to-board delays in the matching process, but he made the 

simplified assumption that for each journey leg of each route half of the passengers can 

board the first train, half of them the second train. In reality, however, crowding levels on 

different routes and journey legs may significantly vary. Therefore in Chapter 6 and 

Chapter 7 a more detailed model is introduced for the consideration of fail-to-board 

delays. Furthermore in Chapter 7, the question of matching mixture results with actual 

LU routes are further discussed. 
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Chapter 4  

Route choice set generation in complex metro networks 

4.1 Introduction 

In the general choice modelling context the appropriate consideration of the choice set is 

a prerequisite for the correct estimation of choice probabilities. This was further 

illustrated through the application of finite mixture models in complex metro networks. 

Case studies on the origin destination (OD) pairs of the London Underground (LU) has 

shown that setting the number of mixture components higher than the number of 

reasonable routes would give results, which are not a true representation of the  actual 

values (cf. Section 3.8.1). Therefore it is crucial for the application of finite mixture 

models that the number of the mixture components – which corresponds to the number 

of reasonable routes of an OD pair – could be determined adequately. 

Finding the route choice set in complex metro networks, such as the LU is a challenging 

task as – in theory – there could be several physically possible routes, however only a few 

of them are considered in the choice set of passengers.  

There are several approaches to obtain information on route choice set. One possible 

approach is to conduct a survey on passengers’ route choice, such as the Rolling Origin 

Destination Survey (RODS) in the context of the LU (cf. Section 3.6.3). The problem 

with this approach is that this survey might not be representative as the data is collected 

only from a few sample of the whole population on certain days of the year at certain 

stations. Furthermore – strictly speaking – from these surveys only the historical route 

choices of passengers can be understood, not the set of considered routes. In reality, route 

choice set of passengers remains unobserved (Bergantino et al., 2019). 

Another approach is to infer from the available smart card records of Observed Journey 

Times (OJT) the number of mixture components as a prior step within he finite mixture 

model. To solve this problem Lee and Sohn (2015) proposed a reversible-jump Markov 

chain Monte Carlo simulation following the concept in Richardson and Green (1997) (cf. 

Section 2.3.2). They inferred the number of mixture components only based on the OJT 

dataset without actually considering the actual network properties. In reality, for the 

correct inference of the route choice set it is advantageous to use both sources of 

information. Therefore in this thesis, instead of following their approach, a simpler finite 

mixture is applied (Fu, 2014) together with a route choice set generation algorithm based 
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on the metro network properties (i.e. journey times, interchanges) examining also 

scenarios, where the OJT records can serve as an additional information. The objective is 

to develop an algorithm that can automatically generate the route choice set based on the 

available data for most of the OD pairs of the metro network. 

The rest of this chapter is structured as follows: Firstly, in Section 4.2 existing literature 

is reviewed on route choice set generation methods including pathfinding and attribute 

cut-off; then in Section 4.3, the modelling challenges are discussed that arise in complex 

metro networks. Following this, in Section 4.4 the representation of metro networks is 

discussed. Once the link times and the corresponding weights are known, the times and 

generalised costs of the routes can be obtained as explained in Section 4.5. After this, a 

pathfinding algorithm is applied to find a set of shortest routes. Section 4.6 describes 

these algorithms in details focusing on their implementation for complex metro networks.  

Once a certain number of shortest routes were found, the main challenge is to narrow 

down this set to the set of reasonable routes by applying the appropriate cut-off criteria, 

which will be further explored in Section 4.7. Section 4.8 concludes the chapter by 

summarising the findings and the possible extensions of the model. 

This chapter builds on Nádudvari et al. (2016) following the concept of pathfind ing 

algorithms, but proposing more detailed analysis on attribute cut-off methods. 

4.2 Literature review on route choice set generation 

In the general choice modelling context it is desirable that modellers could have adequate 

information or assumptions on the choice set for the correct estimation of choice 

probabilities (Swait and Ben-Akiva, 1987; Bovy, 2009; Bergantino et al., 2019). In the 

specific case of route choice in complex metro networks it is a challenging question, 

because for many OD pairs a very large number of physically possible routes are 

available, however only a few of them are considered by the passengers. This set is called 

the “reasonable route choice set”. 

In literature there are approaches that interpret choice set consideration and choice 

estimation as a two-stage process (Manski, 1977; Gaundry and Dagenais, 1979; Başar 

and Bhat, 2004; Cantillo and Ortúzar, 2005). Firstly a set of attractive alternatives are 

selected from the universal choice set, and then the choice probabilities are estimated 

among those alternatives. On the other hand, there are also those, who argue that also the 

selection of the choice set is also an indicator of preferences, therefore it should be 

modelled in one stage with the choice (Horowitz and Louviere, 1995; Cascetta and 



 69 

 
 

Papola, 2001; Swait, 2001; Martínez et al., 2009; Watling et al., 2018). Among them 

Watling et al. (2018) highlighted that in case of congested transport networks, not only 

route choice, but also the choice set may depend on the link flows. 

Most of the route choice set generation methods can be summarised in two steps: The 

first step is a pathfinding algorithm to generate a certain number of routes for an OD pair 

(see Section 4.2.1); while the second step is the application of the attribute cut-off to find 

the set of reasonable routes among them (see Section 4.2.2). Additionally, there are other 

link-based approaches, which does not explicitly generate routes for finding the 

reasonable route choice set (see Section 4.2.3). After having presented these approaches, 

it is discussed, how the chosen route choice set generation methods could be applied in 

this thesis (see Section 4.2.4). 

4.2.1 Pathfinding algorithms 

The simplest approach for pathfinding is to search through all possible routes in a certain 

order and then select the adequate one among them (e.g. Brute-force, Breadth-first and 

Depth-first). While these approaches can be well applied in smaller networks; they reach 

their limitation for larger networks, such as the LU. This necessitates the application of 

efficient pathfinding algorithms. 

Looking at literature reviews on pathfinding algorithms (Ramming, 2002; Fiorenzo-

Catalano et al., 2004; Bekhor et al., 2006; Guo, 2008; Prato, 2009), the determinis t ic 

shortest path based methods were already proved to be adequate for the set objectives ; 

therefore this literature review focuses on those methods. 

The first step within the pathfinding algorithm is to find the shortest route for a given OD 

pair. The fundamentals for these algorithms started in the 1950s (Ford, 1956; Bellman, 

1958; Dijkstra, 1959). The shortcoming of these methods is that they have higher 

computational time as they search the routes in all directions. To address this issue, more 

advanced algorithms have been developed, such as the A* (Hart et al., 1968), which starts 

searching routes only in promising directions. 

Once the shortest route was found, the next step is to make a slight modification to the 

transport network and to find the shortest route on that modified network with one of the 

previously described shortest path algorithms. The modification to the network means 

eliminating one (i.e. K shortest path (Yen, 1971)) or more links (i.e. link elimina tion 

(Azevedo et al., 1993)) or increasing their link cost (link penalty (de la Barra et al., 1993)). 
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In the context of metro networks some studies worked with simpler search methods (see 

Table 4-1). Sun et al. (2015) applied Brute-force search in Singapore; while Sun et al. 

(2017); Xu et al. (2018) applied Depth-first search in Shanghai and Beijing respectively. 

Other studies applied efficient pathfinding algorithms. Hörcher et al. (2017) chose the K 

shortest path algorithm. Zhu and Xu (2016) implemented an improved Deletion 

Algorithm based on Depth-first search (Azevedo et al., 1990). 

4.2.2 Attribute cut-off 

While in the context of road networks it is sufficient to make simpler considerations for 

the reasonable route choice set by setting thresholds for their generalised costs; for metro 

networks it is a more complex question due to their special properties, such as 

interchanges, perception of the metro map and crowding (Raveau et al., 2014). 

To account for these, most studies applied some heuristics as attribute the cut-off in 

addition to the threshold for the generalised costs of routes (see Table 4-1). Zhu and Xu 

(2016) – based on a travel survey in the Shanghai metro – considered a route reasonable, 

if its generalised cost is not more than 1.6 times or 10 minutes higher than the shortest 

route. Hörcher et al. (2017) worked with travel times of routes instead of generalised 

costs, and they considered a route reasonable if its travel time is not more than 1.5 times 

the shortest route. Furthermore – working on a relatively simple network of the Hong 

Kong metro – they searched only up to the second shortest path. Sun et al. (2017) worked 

with the natural logarithm of distances and applied the following heuristics to further filter 

the routes: (1) they should contain no loop, (2) if origin and destination station is on the 

same line, there is only 1 reasonable route for that OD pair, and (3) transfer time cannot 

be longer than the one third of the shortest route’s travel time. 

Xu et al. (2018) used additional constraints from smart card data and timetab les. They 

calculated the longest possible journey time for each route of an OD pair, considering the 

worst case when the passenger is able to board only the third train at each journey leg. 

Among these routes they considered feasible those, whose longest possible journey time 

is shorter, than the maximum Observed Journey Time (OJT) value from smart card data. 

Additionally, they made the assumption that reasonable routes can have maximum 4 

journey legs. 



 71 

 
 

4.2.3 Link-based approaches 

The concept of link-based methods (i.e. obviating the explicit enumeration of the routes) 

for route choice set generation started from Dial (1971), who set the criteria for a route to 

be considered reasonable, if every link in it:  

1) Has its initial node closer to the origin node than is its final node (no turning back) 

2) Has its final node closer to the destination node than its initial node (no turning 

away) 

 

Table 4-1 Review on pathfinding algorithms and the attribute cut-off in metro networks  

Reference Method Case 

study  
Pathfinding Attribute cut-off 

Guo (2008) Labelling + Optimal strategies London 

Sun et al. (2015) Brute-force 

search 

 Singapore 

Zhu and Xu 

(2016) 

Deletion 

Algorithm  

Gen. cost diff. (10 min) 

Gen. cost prop. (1.6) 

Shanghai 

Sun et al. (2017) Depth-first 

search 

Logarithm of distance 

No loop 

OD pairs on same line 

Transfer time prop. (1/3)) 

Shanghai 

Hörcher et al. 

(2017) 

K shortest path Travel time prop. (1.5) 

Up to second shortest route 

Hong 

Kong 

Xu et al. (2018) Depth-first 

search 

Longest possible journey 

time vs OJT 

Max 3 interchanges 

Beijing 
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Another possible approach is the concept of labelling (Ben-Akiva et al., 1984), which was 

also applied on the LU network for route choice set generation by Guo (2008). There, the 

labels correspond the weighting factors of time and interchange attributes. He followed 

the concept of optimal strategies (Spiess and Florian, 1989) for pathfinding, considering 

that a line segment going out of a station is utilised only, if its addition to the optimal 

strategy will reduce the total expected cost from that station to the destination. Once the 

set of reasonable routes were generated for different labels, they were compared with the 

set of used routes from RODS data; and those labels were proposed, which gave the best 

match between the two sets. 

4.2.4 Discussions 

Route choice set generation algorithms are discussed in this thesis; because the model 

that is applied to estimate route choice from smart card data (Fu, 2014) requires the 

number of reasonable routes as an input. From this, it logically follows, that the 

application of the two-stage approach (i.e. modelling route choice set and route choice as 

two distinct sub-models) would be more straightforward. 

To comply with this objective, any pathfinding algorithm can be used, not necessarily the 

computationally most efficient one. Therefore the Dijkstra’s algorithm was chosen for 

finding the shortest route and the K shortest path algorithm to generate a set of shortest 

routes as their program code was easily applicable (see Section 4.6). This choice was 

confirmed by the fact, that there are also other studies in literature, which apply the same 

pathfinding method (Hörcher et al., 2017).  

In order to give the correct number or reasonable routes it is particularly important that 

the applied attribute cut-off method gives reliable results. Therefore it needs to be further 

examined (see Section 4.7), whether the existing attribute cut-off approaches can be 

applied with confidence also for the LU network, or additional criteria is required.  

4.3 Modelling challenges in the London Underground 

The proposed route choice set generation algorithm is applied on a subnetwork of the 

London Underground 13 , which is the oldest and probably the most complex metro 

network of the world. This complexity requires several modelling challenges for network 

representation. 

                                                                 
13 See http://content.tfl.gov.uk/standard-tube-map.pdf for the map of the London Underground  

http://content.tfl.gov.uk/standard-tube-map.pdf
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London (i.e. Greater London, which includes the City of London and the 32 London 

boroughs) is a home to 8.8 million inhabitants 14  and is hosting around 20 million 

international visitors per year15 as well as many more commuters and visitors from within 

the United Kingdom. To accommodate such a great demand an extensive public transport 

network has been developed since the mid of the 19th century, which includes the LU, 

London Overground (LO), Docklands Light Railway (DLR), Transport for London (TfL)  

rail, National Rail (NR) services, London Buses, London Trams and London River 

Services. Most of these transport subsystems (except for NR) are under the responsibility 

of TfL. 

This thesis focuses on the LU, however it can be easily understood that modell ing 

passenger flow in the LU is not an isolated problem, because at many stations it is 

connected with other rail subsystems (LO, DLR, TfL rail, NR, see Figure 4-1). In fact, 

the LU itself is a very complex transport system. It has 11 colour coded lines, however 

many of them have branches (e.g. District, Northern lines), short runs (e.g. Victoria, 

Bakerloo lines) or express services (e.g. Metropolitan line). Therefore, from the point 

of view of the modeller, it would mean much more than 11 lines. 

Similarly, also modelling a station is a complex task. There are station complexes where 

more LU stations with different names are physically connected (common ticket gates) , 

therefore passengers entering at one station can take lines from the other one (i.e. 

Bank/Monument station complex). On the other hand, there are stations, which are 

physically not connected (distinct ticket gates), but they have the same name (i.e. 

Edgware Road, Paddington, Hammersmith stations) (see Figure 4-1). Furthermore, 

some of the stations have more entrances, which are quite distant from each other, and 

also within a station there are multiple possible passageways between platforms. 

Modelling passenger flows in the LU is a very challenging task for the following reasons: 

On the one hand, passenger flow of the LU needs to be modelled considering a very large 

network (beyond the LU network). On the other hand, due to the complexity of stations 

(multiple entrances and passageways) a more detailed understanding is necessary. To 

build a model for the entire LU and rail network of Greater London is definitely beyond 

the scope of this thesis. Therefore only a smaller problem, a subnetwork of the LU will 

be analysed, making the appropriate assumptions. 

                                                                 
14 https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/d

atasets/populationestimatesforukenglandandwalesscotlandandnorthernireland  
15 https://www.visitbritain.org/latest-quarterly-data-area 

https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland
https://www.visitbritain.org/latest-quarterly-data-area
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Figure 4-1 Examples for stations with special properties:  

Connected LU stations (blue),  

LU stations with the same name, but not connected (purple),  

LU and rail stations with common ticket gate (green),  

LU and rail stations with separate ticket gate (orange) 

 

4.4 Representation of metro networks 

In this chapter – in addition to what was presented in the previous chapters – the following 

notation is used: 

 

Variable identifiers 

𝑎 Index of a link (arc) 

𝑖, 𝑗 Index of origin and destination station 
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Sets 

𝐺(𝑃, 𝐴) Metro network (graph) consisting of nodes (𝑃) and links (𝐴) 

𝑃 Set of nodes (points) in the metro network 

𝐴 Set of links (arcs) in the metro network 

𝐴𝑜𝑏  Set of on-board links 

𝐴𝑤𝑎𝑖𝑡  Set of wait links 

𝐴𝑎𝑙𝑔𝑖ℎ𝑡  Set of alight links 

𝐴𝑎𝑐𝑐  Set of access links 

𝐴𝑒𝑔𝑟  Set of egress links 

𝐴𝑖𝑐  Set of interchange links 

𝐴, 𝑘, 𝑖𝑗  Set of links on route 𝑘 of OD pair 𝑖𝑗 

𝐾𝑖𝑗
𝑢𝑛𝑖  Universal route choice set for OD pair 𝑖𝑗  

𝐾𝑖𝑗
𝑔𝑒𝑛  Set of shortest routes generated for OD pair 𝑖𝑗  

𝐾𝑖𝑗 Set of reasonable routes for OD pair 𝑖𝑗 

𝐾𝑖𝑗
𝑜𝑏𝑠  Set of observed routes for OD pair 𝑖𝑗 

 

Variables 

𝑡𝑎  Travel time on link 𝑎 (minutes) 

𝑡𝑖𝑗
𝑚𝑖𝑛  Minimum journey time for OD pair 𝑖𝑗 (minutes) 

𝑐𝑘,𝑖𝑗  Generalised cost of route 𝑘 of OD pair 𝑖𝑗 (minutes) 

𝑐𝑘,𝑖𝑗
𝐴𝐸𝐼  Total access egress interchange (AEI) cost of route 𝑘 of OD pair 𝑖𝑗 

(minutes) 
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𝑁𝐾,𝑖𝑗
𝑢𝑛𝑖  Number of all theoretically possible routes for OD pair 𝑖𝑗 

𝑁𝐾,𝑖𝑗
𝑔𝑒𝑛  Number of shortest routes generated for OD pair 𝑖𝑗 

𝑁𝐾,𝑖𝑗  Number of reasonable routes for OD pair 𝑖𝑗 

𝑁𝐾,𝑖𝑗
𝑜𝑏𝑠  Number of observed routes for OD pair 𝑖𝑗 

𝑁𝑂𝐷 Number of case study OD pairs 

𝑁𝐿,𝑖𝑗
𝑚𝑖𝑛  Number of journey legs for the route with minimum number of 

journey legs for OD pair 𝑖𝑗 

𝑁𝐷,𝑖   Number of available directions  at origin station 

𝑁𝐷,𝑗 Number of available directions at destination station 

𝑂𝐽𝑇𝑖𝑗
𝑚𝑎𝑥  Maximum Observed Journey Times (OJT) record for OD pair 𝑖𝑗 

(minutes) 

𝜌 Attribute cut-off 

𝜌𝑐 Attribute cut-off according to generalised cost proportion 

𝜌𝑐𝑘,𝑖𝑗 Generalised cost proportion of route 𝑘 of OD pair 𝑖𝑗 with respect to 

the shortest route 

𝜌𝑐𝑖𝑗
𝑚𝑎𝑥 ,𝑜𝑏𝑠  Generalised cost proportion of the longest observed route 

𝜌𝑐𝑖𝑗
𝑚𝑖𝑛,𝑢𝑛𝑜𝑏𝑠  Generalised cost proportion of the shortest unobserved route 

 

Parameters 

𝑤𝑤𝑎𝑖𝑡  Weight of wait time 

𝑤𝐴𝐸𝐼  Weight of access egress interchange (AEI) time 

𝑤𝑎
𝑖𝑐  Weight having an interchange on link 𝑎 (minutes) 
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𝜓𝑎
𝑜𝑏  1 if 𝑎 ∈ 𝐴𝑜𝑏 , otherwise 0 

𝜓𝑎
𝑤𝑎𝑖𝑡  1 if 𝑎 ∈ 𝐴𝑤𝑎𝑖𝑡 , otherwise 0 

𝜓𝑎
𝐴𝐸𝐼  1 if 𝑎 ∈ (𝐴𝑎𝑐𝑐 ∪ 𝐴𝑒𝑔𝑟 ∪ 𝐴𝑖𝑐), otherwise 0 

𝜓𝑎
𝐼𝐶  1 if 𝑎 ∈ 𝐴𝑖𝑐 , otherwise 0 

 

Functions 

𝑓( ) General notation for function 

 

4.4.1 Definition of nodes and links 

 

Figure 4-2 An OD pair in a metro network 

Given an OD pair, 𝑖𝑗  in a metro network, 𝐺(𝑃, 𝐴) , where 𝑃 denotes the set of nodes 

(points, vertices) and 𝐴 the set of links (arcs, edges) (Figure 4-2). Metro networks are 

specific as a journey between the origin and destination station consists of different 

characteristics of passenger movement (i.e. access from the ticket gate to the platfo rm, 

waiting for the metro service, on-board travel, interchange between platforms and egress 

from the platform to the ticket gate). To account for this, in this thesis the following node 

types defined (Figure 4-3): 

 On-board node: one node for each line at a station 

 Platform node: one node for each pair of platforms at a station 

 Ticket gate node: one node for each station 
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Figure 4-3 Definition of nodes and links at a station of a metro network 

 

The reason why ticket gate nodes are defined is that the start and end of the journey of a 

passenger can be associated with the entry and exit smart card transaction at the ticket 

gate. For simplicity in this network model, all stations are considered with one ticket gate.  

The links connecting these nodes and the corresponding subsets of links are: 

 On-board link (𝐴𝑜𝑏): between on-board nodes of adjacent stations 

 Wait link (𝐴𝑤𝑎𝑖𝑡 ): from platform node to on-board node of the same platform 

 Alighting link (𝐴𝑎𝑙𝑔𝑖ℎ𝑡 ): from on-board node to platform node of the same platform 

 Access link (𝐴𝑎𝑐𝑐): from ticket gate node to platform node of the same station 

 Egress link (𝐴𝑒𝑔𝑟 ): from platform node to ticket gate node of the same station 

 Interchange link (𝐴𝑖𝑐 ): between platform nodes of the same station 

For each link 𝑎 ∈  𝐴 its travel time is given and denoted with 𝑡𝑎. The times on on-board 

(𝑡𝑎  𝑖𝑓 𝑎 ∈  𝐴𝑜𝑏 ) and wait (𝑡𝑎  𝑖𝑓 𝑎 ∈  𝐴𝑤𝑎𝑖𝑡) links are taken from timetables (cf. Section 

3.6.2.1), while the times on access ( 𝑡𝑎  𝑖𝑓 𝑎 ∈  𝐴𝑎𝑐𝑐 ), egress (𝑡𝑎  𝑖𝑓 𝑎 ∈  𝐴𝑒𝑔𝑟 ) and 
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interchange (𝑡𝑎  𝑖𝑓 𝑎 ∈  𝐴𝑖𝑐) links are calculated based on station layouts known from the 

Nationwide Access Register (cf. Section 3.6.2.2). The times on alighting links are zero.  

 

Table 4-2 Allocation of link types in the matrix of link times 
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These values are stored in the matrix of link times (Table 4-2). The reason why alighting 

links are defined is to make the allocation within the matrix symmetric. Appendix A 

presents the Matlab code to produce the matrix of link times automatically from the input 

data described above. 

4.4.2 Case study network: the London Underground inner zone network 

The route choice set generation algorithm is applied on a part of the LU network within 

Central London. Transport for London (TfL) defined fare zones for the LU and rail 

network (see Figure 4-4), where the network within Central London is called Zone 1. It 

includes the stations inside the Circle line plus some other stations (e.g. Waterloo, 

London Bridge and Angel stations).  

In the case study of Schmöcker (2006), the term “inner zone” was used. This network, in 

addition to including most of the LU stations in Zone 1, it represents also the LU stations 

in other outer zones as “line specific stations” at the two ends of each LU line (see 

Section 5.2.3). Throughout the case studies of this chapter, this network consideration is 

followed; and the network is referred as the “LU inner zone network” (see Figure 4-6). 



 80 

 
 

 

 

Figure 4-4 The London Underground network in Central London 

The white background corresponds to Zone 1 in the fare scheme of TfL 

source: http://content.tfl.gov.uk/standard-tube-map.pdf 

4.4.3 Consideration of common lines 

In addition to the principal rules for network representation, it is important to note how 

common lines are included in the model. The common line problem (Chriqui, 1975; 

Nguyen and Pallottino, 1988; Spiess and Florian, 1989) in metro networks occurs, when 

different lines depart from the same or from adjacent platforms. In this case passengers 

instead of choosing one line at a boarding platform, they may have a set of attractive lines 

(and hence the corresponding routes), and they board the line which arrives first within 

this set. This choice problem is called the choice of optimal strategies (Spiess and Florian, 

1989) and the set of attractive routes are called hyperpaths (Nguyen and Pallottino, 1988). 

In the LU inner zone network there are several line segments, where the common line 

problem occurs, due to the fact that some LU lines (i.e. Circle, District, Hammersmith 

& City and Metropolitan lines) share their track at a considerable length (Figure 4-4). 

Additionally, there are also cases, where at a station different LU lines depart from 

adjacent platforms (e.g. Victoria and Bakerloo lines at Oxford Circus) (Figure 4-5).  

 

http://content.tfl.gov.uk/standard-tube-map.pdf
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Figure 4-5 Common line problem, LU lines departing from adjacent platforms 

source: https://www.whatdotheyknow.com/request/track_map_london_undergound 

 

Schmöcker (2006) stated that the consideration of common lines is important in the 

context of the LU inner zone. To account for this he used the link-based approach in the 

pathfinding algorithm without the explicit enumeration of each route (cf. Section 4.2.3). 

As the key objective of this chapter is to generate the set of reasonable routes as an input 

for the finite mixture model (cf. Chapter 3), it is required to follow the route-based 

approach for pathfinding (cf. Section 4.2.4). Enumerating all possible routes within the 

hyperpaths, would make the problem exceedingly complex (Nguyen and Pallottino, 

1988), which is beyond the scope of this thesis. Therefore, at this point, the focus is still 

on the pure route choice problem in metro networks without yet considering optimal 

strategies.  

In order to model the LU inner zone without the consideration of the common line 

problem, the following simplifications were made: Among the LU lines that share their 

track (i.e. Circle, District, Hammersmith & City and Metropolitan lines), only the 

Circle line was included with a frequency of 20 trains/hour as at most of its length (i.e. 

Gloucester Road – Tower Hill segment, where it shares the track with the District line; 

as well as the Liverpool Street – Baker Street segment, where it shares the track with 

the Hammersmith & City and Metropolitan lines) the combined frequency is around 

that value. In order to account for the segments, where only the Circle line is available 

(i.e. Tower Hill – Aldgate16 and High Street Kensington – Gloucester Road links), an 

adjustment of 3.5 minutes was made to the corresponding on board links as passengers 

travelling on that route have a an average wait time of 5 minutes instead of 1.5 minutes 

(cf. (3-15) for the relationship between service frequency and wait time). In reality, also 

                                                                 
16 It is also known, that the trains on the Circle line stopping at Aldgate station wait for a longer time to 

keep themselves to the schedule. This is included in the timetable data, which was used for the analysis. 

Therefore no further adjustments were required for this. 

https://www.whatdotheyknow.com/request/track_map_london_undergound
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along the Baker Street – High Street Kensington segment, the combined frequency is 

less than 20 trains/hour (around 12 trains/hour) as there the Circle line shares its track 

only with the Hammersmith & City and with the Edgware Road branch of the District 

line; however this was not considered in the network model (Figure 4-6). 

4.4.4 Network size 

Having made the above described considerations, the network model of the LU inner zone 

has the following characteristics: In the LU, there are 11 colour coded lines; however due 

to the fact, that many of these lines have branches, short runs or express services, the 

number of the lines for the network model would be more than that (cf. Section 4.3). In 

the LU inner zone, the two branches of the Northern line (via Bank and via Charing 

Cross stations) would count as two distinct lines. Regarding common lines (cf. Section 

4.4.3) instead of the LU lines that partially share their track (i.e. Circle, District, 

Hammersmith & City and Metropolitan lines), only the Circle line is considered. With 

these considerations, 9 lines are included in the network model. Among the 68 stations, 

55 are stations of the LU inner zone and 13 are line specific stations at the two ends of 

the LU lines. The reason why this number is odd, because the two Northern line branches 

has the same line specific station on the north (Figure 4-6). 

Following the definition of nodes and links in Section 4.4.1, the case study network is 

represented with 280 nodes in total, among which 106 are on-board node, 106 platform 

node and 68 are ticket gate node. These nodes are connected with 722 links. 
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4.4.5 Case study origin destination pairs  

The route choice set generation algorithm is applied on the OD pairs presented in Table  

4-3 and Figure 4-6. For this case study those OD pairs were chosen that have two or more 

observed routes according to the Rolling Origin Destination Survey (RODS, cf. Section 

3.6.3). For all of these OD pairs, the nature of passenger choice is a pure route choice 

problem, without facing the problem of common lines. (cf. Section 4.4.3). Although from 

the smart card dataset provided for this research (cf. Section 3.6.1), it seems that there is 

no considerable demand for OD 4, OD 6 and OD 7 (see Table 4-7); looking at Fu (2014) 

it was understood that there are still passengers travelling between those origins and 

destinations; therefore analysing the route choice set for those OD pairs still makes sense.  

 

Table 4-3 The case study OD pairs in the LU inner zone network 

OD pair Origin Destination 

1 Victoria Holborn 

2 Euston St. James’s Park 

3 Victoria Liverpool Street 

4 Angel Waterloo 

5 Liverpool Street Green Park 

6 Euston South Kensington 

7 Victoria Waterloo 
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Figure 4-6 Case Study (London Underground inner zone) network and OD pairs 
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4.5 Journey time and generalised costs of routes 

Given the representation of metro network, 𝐺(𝑃, 𝐴) with the set of nodes (P) and links 

(A), route 𝑘 of OD pair 𝑖𝑗 can be defined as a sequence of links between origin station 𝑖 

and destination station 𝑗. Let 𝐴, 𝑘, 𝑖𝑗 denote the set of links on route 𝑘 of OD pair 𝑖𝑗. 

Knowing all the link times (𝑡𝑎) from the available data sources (cf. Section 3.6.2), the 

total (scheduled) journey time of route 𝑘 of OD pair 𝑖𝑗 is: 

 𝑡𝑘,𝑖𝑗
𝑆𝐽𝑇 = ∑ 𝑡𝑎

𝑎∈𝐴,𝑘 ,𝑖𝑗

 (4-1) 

Given the fact that different types of movements are perceived differently by passengers  

(cf. Section 2.2), the generalised cost of routes can be defined to take into consideration 

the journey time components (i.e. on-board, wait, AEI) with their corresponding weights 

(𝑤): 

 
𝑐𝑘,𝑖𝑗 = ∑ 𝑡𝑎 ∙ (𝜓𝑎

𝑜𝑏 + 𝑤𝑤𝑎𝑖𝑡 ∙ 𝜓𝑎
𝑤𝑎𝑖𝑡 + 𝑤𝐴𝐸𝐼 ∙ 𝜓𝑎

𝐴𝐸𝐼 ) + 𝑤𝑎
𝑖𝑐 ∙ 𝜓𝑎

𝑖𝑐

𝑎∈𝐴,𝑘,𝑖𝑗

 
(4-2) 

The weight of wait time (𝑤𝑤𝑎𝑖𝑡) expresses that according to the perception of passengers, 

one minute of wait time is equivalent to how many minutes of on-board time. Similar 

explanation can be made for the weight of AEI time (𝑤𝐴𝐸𝐼 ). For these weights, the values 

were taken from an earlier study applied on the LU network (Raveau et al., 2014). There, 

they calibrated the parameters of a C-Logit model using RODS data for the route choice 

observation and obtained the results for 𝑤𝑤𝑎𝑖𝑡 and 𝑤𝐴𝐸𝐼  (Table 4-4). These values refer 

to the perception of passengers on weekdays, morning peak assuming that trips were done 

with restrictive purpose. 

At this point it is important to note that for the correct estimation of the weights (𝑤𝑤𝑎𝑖𝑡  

and 𝑤𝐴𝐸𝐼) the calibration should be done with the same model specification as (4-2) (i.e. 

Multinomial Logit, MNL), not with the C-logit. However, not finding an adequate MNL 

model calibration for the LU network, it was chosen to apply the values understood from 

an LU specific study. This was also justified by the fact that the numerical values of these 

weights (1.93 and 1.30 respectively) seems to be a good description of passengers’ 

perception. 

Another issue is that in order to construct the simplified network model – which does not 

consider the common line problem, but still counts for the different frequencies along the 
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Circle line – an adjustment had been applied to the corresponding on-board links (cf. 

Section 4.4.3), which are in reality the differences in the wait time. To account for this, 

in the process of coding the adjustment was made not only to the link times, but also the 

corresponding generalised costs (analogously to the code reported in Appendix A). 

 

Table 4-4 Weighs of wait and access egress interchange (AEI) time, based on Raveau et 

al. (2014) 

Weight Value 

𝑤𝑤𝑎𝑖𝑡  1.93 

𝑤𝐴𝐸𝐼  1.30 

 

In addition to the journey times, there is an additional term expressing that the fact of 

having an interchange is equivalent to how many minutes of on-board time  (𝑤𝑎
𝐼𝐶). In the 

context of LU, the type and size of interchanges significantly vary: There are simpler 

cases of interchanges, where passengers need to move only between adjacent platforms 

(e.g. between the Victoria to Bakerloo lines at Oxford Circus station, cf. Figure 4-5). 

At the same time, there are complex stations, where passengers need to walk up to 

6 minutes between far away platforms (e.g. Bank/Monument station complex). To 

account for this, Raveau et al. (2014) defined 𝑤𝑎
𝐼𝐶  in function of the level (i.e. ascending, 

even and descending) and assistance (i.e. assisted, semi-assisted and non-assisted) of the 

interchange movement; and they obtained the results presented in Table 4-5. 
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Table 4-5 Weights of the fact of having an interchange (minutes) in function of the station 

characteristics (level and assistance), based on Raveau et al. (2014) 

Characteristics 𝑤𝑎
𝐼𝐶  

Level Assistance [min] 

Ascending 

Assisted 5.71 

Semi-Assisted 6.84 

Non-Assisted 7.32 

Even N/A 2.39 

Descending 

Assisted 4.87 

Semi-Assisted 5.97 

Non-Assisted 6.49 

 

4.6 Pathfinding algorithm 

It has been previously explained (cf. Section 4.5) that the generalised cost of route 𝑘 of 

OD pair 𝑖𝑗 (𝑐𝑘 ,𝑖𝑗) can be calculated as the weighted sum of the link times (𝑡𝑎, cf. equation 

(4-2)). However the question still remains, how these routes can be found between the 

origin (𝑖) and destination station (𝑗), given the transport network (𝐺(𝑃, 𝐴)). 

The universal route choice set for OD pair 𝑖𝑗 can be denoted as 𝐾𝑖𝑗
𝑢𝑛𝑖 . It includes all, 𝑁𝐾,𝑖𝑗

𝑢𝑛𝑖  

number of theoretically possible routes. To find 𝐾𝑖𝑗
𝑢𝑛𝑖 , simple search methods could be 

applied (e.g. Brute-force search, cf. Section 4.2.1). However the problem is, that in 

complex metro networks, 𝑁𝐾,𝑖𝑗
𝑢𝑛𝑖  can be very large, therefore the computational time would 

be exceedingly high. For example, for certain OD pairs in the case study network of the 

LU inner zone (cf. Section 4.4.5), there can be up to thousands of theoretically possible 

routes and to find all of them with simple search methods would be computationa lly 

expensive. 
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Therefore, instead of finding all possible routes for an OD pair 𝑖𝑗, the aim here is to 

generate a sufficiently large set of shortest routes (𝐾𝑖𝑗
𝑔𝑒𝑛

), for which it can be ensured, 

that it contains all reasonable routes (𝐾𝑖𝑗): 

 𝐾𝑖𝑗 ⊆ 𝐾𝑖𝑗
𝑔𝑒𝑛 ⊆ 𝐾𝑖𝑗

𝑢𝑛𝑖  (4-3) 

For the number of routes in these route choice sets, the following inequality holds: 

 𝑁𝐾,𝑖𝑗 ≤ 𝑁𝐾,𝑖𝑗
𝑔𝑒𝑛 ≤ 𝑁𝐾,𝑖𝑗

𝑢𝑛𝑖  (4-4) 

Following the concept of formulae (4-3) and (4-4), the set of reasonable routes can be 

obtained in two steps  

1) Generate a sufficiently large set of shortest routes (𝐾𝑖𝑗
𝑔𝑒𝑛

) 

2) Narrow down this set to the set of reasonable routes (𝐾𝑖𝑗) 

This section focuses on the first step: pathfinding; while in Section 4.7, the second step: 

the attribute cut-off is discussed. Following the literature review in Section 4.2.1, the 

K shortest path algorithm was chosen to be applied for pathfinding (Yen, 1971) together 

with the Dijkstra (1959) algorithm for finding the shortest route.  

In this section the K shortest path algorithm is described in details (see Section 4.6.1); 

and it is further discussed what modifications are necessary when it is implemented for 

complex metro networks (see Section 4.6.2). Finally, the algorithm is applied on the case 

study OD pairs and the results for the set of shortest routes are presented (see Section 

4.6.3). The detailed description of the Dijkstra (1959) algorithm is presented in Appendix 

B. 

4.6.1 The K shortest path algorithm 

The K shortest path algorithm (Yen, 1971) can be described with the following steps (see 

Figure 4-7): 

1. Find the shortest route (i.e. 1-2-4-6) using the Dijkstra (1959) algorithm. 

Set it as the current path. 

2. Find the next shortest routes  

2.1. Set the first node of the current path (i.e. 1) as the deviation vertex. 

Eliminate the link on the current path (i.e. 1-2-4-6)  

which starts from the deviation vertex (i.e. 1-2). 
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2.2. Find the shortest path from the deviation vertex to destination node on this 

modified network (i.e. 1-3-5-6) using the Dijkstra (1959) 

2.3. Set the next node on the current path (i.e. 2) as the deviation vertex  

repeat steps 2.2-2.3 to find the next shortest routes  

until the last node on the current path is reached 

2.4. Select the shortest route among the newly found routes 

Set it as the current path 

3. Repeat step 2 until the set number of shortest routes (𝑁𝐾,𝑖𝑗
𝑔𝑒𝑛

) are found 

 

 

Figure 4-7 Illustration of the K shortest path algorithm on a small example network 
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It is important to note that as the K shortest path algorithm uses the Dijkstra algorithm in 

every iteration to find the shortest path between the deviation vertex and the destination 

node (step 2.2) it requires high computational time. There are faster methods in literature, 

however the K shortest path algorithm was proved to be adequate for the purpose of this 

thesis (cf. Section 4.2.4). 

The K shortest path algorithm was applied in Matlab on the network model of the LU 

inner zone (cf. Section 4.4.1) for the case study OD pairs (cf. Section 4.4.5). It is set to 

search for and order the routes based on their generalised costs (𝑐𝑘,𝑖𝑗 , cf. Section 4.5 ). 

The program code is available from the Matlab file exchange website17. As it follows, it 

is discussed what modifications are made to the original program code in order that it 

could be implemented for metro networks (see Section 4.6.2). 

4.6.2 Proposed modifications to account for multiple passageways within 

stations 

Running the K shortest path algorithm (cf. Section 4.6.1) on the LU inner zone network, 

the results would contain many route variants, which differ only in their AEI movements 

within the stations. For example, such route variant would be, when a passenger at the 

origin station accesses the chosen line via the platform of another line. Similarly, another 

route variant could be when at the interchange station he/she walks to the chosen line via 

the ticket gate (see Figure 4-8 a). In order to avoid finding these route variants, it is 

necessary that the algorithm could eliminate some of the AEI links automatica l ly 

depending on the OD pair and the route. Therefore the following modifications are 

proposed for the K shortest path algorithm: 

1) For the current OD pair 

Eliminate (x) interchange links at origin and destination stations  

Eliminate (x) access and egress links at all other stations (see Figure 4-8 b). 

2) At every iteration,  

if the deviation vertex is set at the platform node of a station,  

eliminate (x) interchange links from other platforms (see Figure 4-8 c). 

The program code for these modifications are presented in Appendix C. 

 

                                                                 
17 http://uk.mathworks.com/matlabcentral/fileexchange/32513-K shortest-path-yen-s-algorithm 

http://uk.mathworks.com/matlabcentral/fileexchange/32513-k-shortest-path-yen-s-algorithm
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Figure 4-8 Proposed modification to the K shortest path algorithm 

 

4.6.3 Set of shortest routes for the case study OD pairs 

Once the proposed modifications were made to the K shortest path algorithm (cf. Section 

4.6.2), it was applied on the 7 case study OD pairs of the LU specified in Section 4.4.5. 

In order to ensure that that the set of reasonable routes (𝐾𝑖𝑗) can be a subset within the set 

of generated routes (𝐾𝑖𝑗
𝑔𝑒𝑛

) (cf. formulae (4-3) and (4-4)) the number of generated routes 

(𝑁𝐾,𝑖𝑗
𝑔𝑒𝑛

) was chosen sufficiently large (i.e. 10); in accordance with Guo (2008), who 

showed that in the LU 99% of the OD pairs has up to 4 observed routes. At this point, the 

number of generated routes was set independently from the type of the OD pair. As it 

follows, it will be examined how the number of reasonable routes depend on the OD 

attributes (see Section 4.7.4 and Section 5.3.3). 

Figure 4-9 presents the 10 shortest routes generated with the K shortest path algorithm 

for the Victoria – Holborn OD pair. Table 4-6, describes these routes with their journey 

time (𝑡𝑘,𝑖𝑗
𝑆𝐽𝑇

, cf. equation (4-1)) and generalised costs (𝑐𝑘,𝑖𝑗, cf. equation (4-2)). To get a 

better understanding on the interchange attributes of these routes also their total 

interchange time (𝑡𝑘 ,𝑖𝑗
𝑖𝑐 ) and the total AEI cost (𝑐𝑘 ,𝑖𝑗

𝐴𝐸𝐼 ) is reported, which can be obtained 

as: 

 
𝑡𝑘,𝑖𝑗

𝑖𝑐 = ∑ 𝑡𝑎 ∙ 𝜓𝑎
𝑖𝑐

𝑎∈𝐴,𝑘,𝑖𝑗

 
(4-5) 

and 

 
𝑐𝑘,𝑖𝑗

𝐴𝐸𝐼 = ∑ 𝑡𝑎 ∙ 𝑤𝐴𝐸𝐼 ∙ 𝜓𝑎
𝐴𝐸𝐼

𝑎∈𝐴,𝑘,𝑖𝑗

+ 𝑤𝑎
𝑖𝑐 ∙ 𝜓𝑎

𝑖𝑐  
(4-6) 

respectively. 
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Furthermore, for each route 𝑘, the proportion of their generalised cost with respect to the 

shortest route (𝑐1,𝑖𝑗 ) is calculated as: 

  𝜌𝑐𝑘,𝑖𝑗 =
𝑐𝑘,𝑖𝑗

𝑐1,𝑖𝑗

 (4-7) 

In the same table the set of observed routes (𝐾𝑖𝑗
𝑜𝑏𝑠 , known from RODS data, cf. Section 

3.6.3) is highlighted with green. The results for the other OD pairs are presented in 

Appendix D.  

In addition to these route attributes there are also OD specific properties to serve as an 

input for setting the attribute cut-off criteria: 

 Number of observed routes according to RODS data (𝑁𝐾,𝑖𝑗
𝑜𝑏𝑠 ) 

 Journey time of the route with minimum journey time (𝑡𝑖𝑗
𝑚𝑖𝑛 ) 

 Generalised cost of the shortest route (𝑐𝑘,𝑖𝑗) 

 Sample size of Observed Journey Times (OJT) (𝑛𝑖𝑗
𝑂𝐽𝑇

) 

 Maximum Observed Journey Times (OJT) record (𝑂𝐽𝑇𝑖𝑗
𝑚𝑎𝑥) 

 Number of journey legs of the route with minimum number of journey legs (𝑁𝐿,𝑖𝑗
𝑚𝑖𝑛 ) 

 Number of available directions at origin (𝑁𝐷,𝑖) and destination (𝑁𝐷,𝑗) station 

Number of available directions at a station means the number of directions that stays 

within the LU inner zone. For example, at Victoria station, 𝑁𝐷,𝑖 = 3 , because the 

Victoria line can be taken only northbound as the southbound direction does not stay 

within the LU inner zone, but leads to the Victoria South line specific station. 

Additionally, the Circle line in both directions stays within the LU inner zone. Therefore 

in total there are 3 available directions (cf. Figure 4-6). 

These properties are resumed in Table 4-7. The applied method for the attribute cut-off 

is discussed in Section 4.7. 
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Figure 4-9 The 10 shortest routes for Victoria - Holborn 
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Table 4-6 The 10 shortest routes for Victoria - Holborn with their journey time and generalised cost,  

observed routes (Rolling Origin Destination Survey, RODS) are highlighted with green 

Route Time Generalised cost 

ID Line 1 IC 1 Line 2 IC 2 Line 3 Total IC Total AEI Proportion 

𝑘, 𝑖𝑗      𝑡𝑘,𝑖𝑗
𝑆𝐽𝑇

 𝑡𝑘 ,𝑖𝑗
𝑖𝑐  𝑐𝑘,𝑖𝑗  𝑐𝑘,𝑖𝑗

𝐴𝐸𝐼  𝜌𝑐𝑘,𝑖𝑗  

𝑖𝑗 = 1      [min] [min] [min] [min]  

1 
Victoria 

Oxford 

Circus Central 
  

  
17.2 3.4 28.3 18.4 1.00 

2 
Victoria 

Green Park 
Piccadilly 

  
  

19.5 3.7 29.7 17.8 1.05 

3 
Victoria 

Kings Cross 
Piccadilly 

  
  

24.2 3.4 34.2 17.4 1.21 

4 
Victoria 

Oxford 

Circus Bakerloo 

Piccadilly 

Circus Piccadilly 
23.2 2.9 38.5 20.8 1.36 

5 
Victoria 

Green Park 
Jubilee 

Bond 

Street Central 
20.9 5.0 38.6 25.8 1.37 

6 
Circle 

South 

Kensington Piccadilly 
  

  
28.7 3.2 40.1 17.3 1.42 

7 
Circle 

Gloucester 

Road Piccadilly 
  

  
30.6 2.1 41.7 15.9 1.47 

8 
Circle 

Embankment 
Northern 

(CX) 

Tottenham 

Court Rd Central 
24.3 4.2 43.6 24.9 1.54 

9 
Circle 

Bank 
Central 

  
  

32.4 5.8 44.0 20.2 1.56 

10 
Circle 

Embankment 
Northern 

(CX) 

Leicester 

Square Piccadilly 
24.9 2.8 44.0 23.3 1.56 
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Table 4-7 Summary of the OD pairs and their properties 

Index Origin Destination 

# Observed 

Routes 

Min 

time 

Min 

gen. cost 

# OJT 

records 

Max OJT 

record 

Min # 

journey legs 

Origin # 

directions 

Destination 

# directions 

𝑖𝑗 𝑖 𝑗 𝑁𝐾,𝑖𝑗
𝑜𝑏𝑠  𝑡𝑖𝑗

𝑚𝑖𝑛  𝑐1,𝑖𝑗 𝑛𝑖𝑗
𝑂𝐽𝑇

 𝑂𝐽𝑇𝑖𝑗
𝑚𝑎𝑥  𝑁𝐿,𝑖𝑗

𝑚𝑖𝑛  𝑁𝐷,𝑖 𝑁𝐷,𝑗 

           

1 Victoria Holborn 2 17.2 28.3 54 31 2 3 4 

2 
Euston 

St James's 

Park 2 16.7 27.7 30 27 2 4 2 

3 
Victoria 

Liverpool 

Street 2 23.2 34.1 43 36 1 3 3 

4 
Angel Waterloo 

3 23.5 33.9 7 34 2 2 5 

5 

Liverpool 

Street 

Green 

Park 3 21.4 32.8 30 36 2 3 6 

6 
Euston 

South 

Kensington 4 20.1 31.5 5 42 2 4 4 

7 
Victoria Waterloo 

5 15.6 24.0 4 21 2 3 5 
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4.7 Attribute cut-off based on generalised costs of routes 

4.7.1 Definition of the attribute cut-off 

As the result of the route choice set generation algorithm (cf. Section 4.6) a set of shortest 

routes (𝐾𝑖𝑗
𝑔𝑒𝑛

) were generated for each OD pair 𝑖𝑗, where in each set, there are 𝑁𝐾,𝑖𝑗
𝑔𝑒𝑛

 

number of generated routes. Now, the challenge is to find the set of reasonable routes 

(𝐾𝑖𝑗) among them (cf. formulae (4-3) and (4-4)).  

The aim here is to be able to decide for each route in the set of generated routes (𝑘, 𝑖𝑗 ∈

𝐾𝑖𝑗
𝑔𝑒𝑛

), whether they are also in the set of reasonable routes (𝑘, 𝑖𝑗 ∈ 𝐾𝑖𝑗
𝑔𝑒𝑛

). For this, the 

main data source is the metro network (𝐺(𝑃, 𝐴)) with its link times (𝑡𝑎) (cf. Section 4.4); 

however it is also discussed, whether the additional information from smart card data 

(𝑂𝐽𝑇, cf. Section 3.6.1) could provide a better understanding.  

Attribute cut-off (𝜌) is defined; so that a given route 𝑘 can be considered reasonable (𝑘 ∈

𝐾𝑖𝑗), if the certain route and OD attributes – function of the metro network properties and 

other data sources (e.g. smart card) ( 𝑓(𝐺(𝑃, 𝐴), 𝑂𝐽𝑇)) – are under that limit: 

 𝑘 ∈ 𝐾𝑖𝑗, 𝑖𝑓 𝑓(𝐺(𝑃, 𝐴), 𝑂𝐽𝑇) ≤ 𝜌 (4-8) 

4.7.2 Selection of the attribute cut-off method 

Through the literature review in Section 4.2.2 and through making trials with those 

approaches it was understood that it is favourable to use a cut-off rule, which considers 

both journey time and interchange attributes. For that purpose in equation (4-2) the 

generalised cost of routes was formulated and the corresponding weights of the attributes 

were adapted from LU specific studies (cf. Section 4.5). Following this logical stream it 

was chosen to use the generalised costs of routes as attribute cut-offs. 

Regarding the use of OJTs for attribute cut-offs it is important to consider its sample size. 

As the OJT sample provided for this research is quite small (cf. Section 3.6.1), it would 

not be representative, because the maximum OJT understood from the data sample may 

not reflect truly the maximum journey time that could be used for the attribute cut-off. 

Therefore, in this research attribute cut-offs were set based only on the generalised costs 

of routes, without considering the additional information on the OJT distribution.  

Zhu and Xu (2016) defined attribute cut-off both in function of proportion and absolute 

difference in generalised costs. These considerations are useful, when the OD pairs of the 
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network are of a significantly different scale. Regarding the case study OD pairs, as all of 

them are within the LU inner zone network (cf. Section 4.4.5), they could be considered 

of similar scale in terms of their minimum journey time (𝑡𝑖𝑗
𝑚𝑖𝑛 ), which is between 16 and 

23 minutes (cf. Table 4-7). Therefore in this case, working with proportions or with 

absolute differences would not give significantly different results. For the easier 

comparison, it was selected to work with proportions of generalised costs (𝜌𝑐𝑘,𝑖𝑗, cf. 

equation (4-7)). 

The work in this section builds on Nádudvari et al. (2016), with the difference that, there 

the attribute cut-off was examined separately for each journey time component. 

4.7.3 Attribute cut-off based on proportions of generalised costs 

Setting the attribute cut-off in terms of proportions of generalised costs (𝜌𝑐) the general 

definition (formula (4-8)) can be written as: 

 𝑘, 𝑖𝑗 ∈ 𝐾𝑖𝑗, 𝑖𝑓 𝜌𝑐𝑘,𝑖𝑗 ≤ 𝜌𝑐 (4-9) 

The generalised cost proportion of each route (𝜌𝑐𝑘,𝑖𝑗) is calculated with formula (4-7).  

To obtain the attribute cut-off (𝜌𝑐) it is necessary to have information on the observed 

route choice set of passengers (𝐾𝑖𝑗
𝑜𝑏𝑠 ), and make 𝜌𝑐, so that the results for the reasonable 

route choice set (𝐾𝑖𝑗) could reproduce that set. For 𝐾𝑖𝑗
𝑜𝑏𝑠 , the route choice observations 

from RODS data (cf. Section 3.6.3) were used. The observed routes were highlighted in 

green among the results of the shortest routes (Table 4-6, Table D-1, Table D-2, Table  

D-3, Table D-4, Table D-5 and Table D-6). 

The generalised cost proportion of the longest route among the observed routes can be 

written as: 

 𝜌𝑐𝑖𝑗
𝑚𝑎𝑥,𝑜𝑏𝑠 = 𝑚𝑎𝑥(𝜌𝑐𝑘,𝑖𝑗 |𝑘, 𝑖𝑗 ∈ 𝐾𝑖𝑗

𝑜𝑏𝑠 ) (4-10) 

Similarly, the generalised cost proportion of the shortest route among the unobserved 

routes is: 

 𝜌𝑐𝑖𝑗
𝑚𝑖𝑛,𝑢𝑛𝑜𝑏𝑠 = 𝑚𝑖𝑛(𝜌𝑐𝑘 ,𝑖𝑗|𝑘, 𝑖𝑗 ∈ 𝐾𝑖𝑗

𝑔𝑒𝑛 \𝐾𝑖𝑗
𝑜𝑏𝑠) (4-11) 

Having calculated 𝜌𝑐𝑖𝑗
𝑚𝑎𝑥 ,𝑜𝑏𝑠

 and 𝜌𝑐𝑖𝑗
𝑚𝑖𝑛,𝑢𝑛𝑜𝑏𝑠

 as confining values; it is expected that for 

most OD pairs 𝑖𝑗, 𝜌𝑐 will be between these limits.  
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 𝜌𝑐𝑖𝑗
𝑚𝑎𝑥 ,𝑜𝑏𝑠 ≤ 𝜌𝑐 ≤ 𝜌𝑐𝑖𝑗

𝑚𝑖𝑛,𝑢𝑛𝑜𝑏𝑠
 (4-12) 

In principle, one could have 𝜌𝑐𝑖𝑗
𝑚𝑎𝑥 ,𝑜𝑏𝑠 ≥ 𝜌𝑐𝑖𝑗

𝑚𝑖𝑛,𝑢𝑛𝑜𝑏𝑠
 (i.e. observed routes with higher 

generalised costs than the unobserved routes), however in this model specification this 

would not likely occur. The reason for this is that the weights of the generalised cost 

equation (4-2) are taken from Raveau et al. (2014), which is calibrated with RODS data; 

therefore when the routes are generated based on their generalised costs, they appear in 

the order that the observed routes from the same dataset (i.e. RODS data) have lower 

generalised costs than the unobserved routes. 

In order to fulfil the conditions of equation (4-12) , a possible match for most of the 𝑖𝑗, 

could be to use the method of least squares, where the objective function is: 

 𝑚𝑖𝑛 (∑ (𝜌𝑐 − 𝜌𝑐𝑖𝑗
𝑚𝑎𝑥 ,𝑜𝑏𝑠 )

2
+ (𝜌𝑐 − 𝜌𝑐𝑖𝑗

𝑚𝑖𝑛,𝑢𝑛𝑜𝑏𝑠 )
2

𝑁𝑂𝐷

𝑖𝑗

) (4-13) 

This can be solved and simplified as 

 𝜌𝑐 =
∑ (𝜌𝑐𝑖𝑗

𝑚𝑎𝑥,𝑜𝑏𝑠 + 𝜌𝑐𝑖𝑗
𝑚𝑖𝑛,𝑢𝑛𝑜𝑏𝑠 )𝑁𝑂 𝐷

𝑖𝑗

2 ∙ 𝑁𝑂𝐷

 (4-14) 

4.7.4 Classification of OD pairs based on case study results 

Figure 4-10 presents the generalised cost proportions (𝜌𝑐𝑘,𝑖𝑗) for each generated route 

(𝑘 ∈ 𝐾𝑖𝑗
𝑔𝑒𝑛

) of all OD pairs 𝑖𝑗 (cf. Table 4-3). The values in the observed route choice set 

(𝑘 ∈ 𝐾𝑖𝑗
𝑜𝑏𝑠 ) are labelled with green filled circles ( ), while those in the unobserved route 

choice set (𝑘 ∈ 𝐾𝑖𝑗
𝑔𝑒𝑛

\𝐾𝑖𝑗
𝑜𝑏𝑠 ) with red cross (x). Applying equation (4-14), 𝜌𝑐 = 1.18 was 

obtained, which means that a route 𝑘 is reasonable, if its generalised cost (𝑐𝑘,𝑖𝑗) is less or 

equal than 1.18 times than the generalised cost of the shortest route. (𝑐1,𝑖𝑗) (cf. equation 

(4-9)). The value of 𝜌𝑐 is labelled with blue vertical line (I). 

The attribute cut-off results (𝜌𝑐) can reproduce the observed route choice set (𝐾𝑖𝑗
𝑜𝑏𝑠 ), 

when both of the following conditions hold. The generalised cost proportion is below the 

cut-off value for all observed routes: 

  𝜌𝑐𝑘,𝑖𝑗 ≤ 𝜌𝑐  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝐾𝑖𝑗
𝑜𝑏𝑠  (4-15) 
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and it is above the cut-off value for all unobserved routes: 

  𝜌𝑐𝑘,𝑖𝑗 > 𝜌𝑐 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝐾𝑖𝑗
𝑔𝑒𝑛

\𝐾𝑖𝑗
𝑜𝑏𝑠 (4-16) 

Based on these conditions, the case study OD pairs can fall into one of the following 

categories: 

 Attribute cut-off results reproduce the set of observed routes (both conditions 

(4-15) and (4-16) hold) 

 Unobserved routes are below the cut-off value (condition (4-16) does not hold) 

 Observed routes are above the cut off value (condition (4-15) does not hold) 

 

 

Figure 4-10 Attribute cut-off according to generalised cost proportions 

 

4.7.4.1 Attribute cut-off results reproducing the set of observed routes 

For OD pairs 𝑖𝑗 = {1, 2, 4, 7} (cf. Table 4-7) both conditions ((4-15) and (4-16)) hold. 

For each of them, all observed routes (𝐾𝑖𝑗
𝑜𝑏𝑠 ) have two journey legs (Figure 4-9, Table  

4-6,  
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Table D-1, Table D-3 and Table D-6). Those routes, which are not observed (𝐾𝑖𝑗
𝑔𝑒𝑛 \𝐾𝑖𝑗

𝑜𝑏𝑠 ) 

either have 3 or more journey legs or they make an excessive detour (mentioned as turning 

back and turning away in Dial (1971)). Although the journey time and interchange 

properties of the routes across the OD pairs differ, the same attribute cut-off value 𝜌𝑐 =

1.18 could work for them. 

4.7.4.2 Unobserved routes below cut-off value 

For OD pairs 𝑖𝑗 = {3, 5} (cf. Table 4-7) condition (4-16) does not hold, which means that 

there are unobserved routes (𝐾𝑖𝑗
𝑔𝑒𝑛

\𝐾𝑖𝑗
𝑜𝑏𝑠 ), with a lower generalised cost proportion 

(𝜌𝑐𝑘,𝑖𝑗) than the attribute cut off value (𝜌𝑐). The reason for this could be found in the 

specific properties of these OD pairs 

 Presence of direct routes 

 Number of available directions at origin and destination station 

Presence of direct routes 

OD pair 𝑖𝑗 = 3 (Victoria – Liverpool Street, cf. Table D-2) has a direct route (i.e. Circle  

line, cf. Table 4-7). Having a direct route is so attractive to passengers, so that they would 

consider indirect routes, only if they are much better in other attributes. In this particular 

example, apart from the direct route there is also an indirect route (Victoria – Central 

via Oxford Circus) in the observed set (𝐾𝑖𝑗
𝑜𝑏𝑠 ). This route is attractive, because its total 

journey time (𝑡𝑘,𝑖𝑗
𝑆𝐽𝑇

) is 5.3 minutes shorter. Furthermore, both the Victoria and Central 

lines are very frequent services (with 2 minutes of headway), while the circle line is an 

infrequent service (with 10 minutes of headway). Therefore, neither of the alternative 

routes dominate each other, which is also expressed in the similarity of their generalised 

costs. 

Looking at the third (Victoria – Circle via King’s Cross) and fourth shortest route 

(Circle – Central via Bank), it can be observed, that even though 𝜌𝑐𝑘,𝑖𝑗 is only 1.14 and 

1.17 minutes respectively (cf. Figure 4-10), they are not in the observed set. This is 

because these indirect routes do not have any attributes in which they dominate the direct 

route: Their total journey time is similar to the direct route and it involves interchanges 

through large station complexes (i.e. King’s Cross and Bank stations). 

Through the results for OD pair 𝑖𝑗 = 3 (Victoria - Liverpool Street) the following was 

observed: If an OD pair has a direct route, 𝜌𝑐 is expected to be lower than for those OD 

pairs which only have routes with two or more journey legs. Therefore, 𝜌𝑐 is not only a 
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function of route attributes, but also of the property of the OD pair (i.e. presence of direct 

routes). 

Number of available directions at the origin and destination station 

OD pair 𝑖𝑗 = 5 (Liverpool Street – Green Park, cf. Table D-4) has many routes with 

two journey legs (i.e. route 𝑘 = {1, 2,3, 4, 5, 6, 10}) and for the shortest unobserved route 

(Circle – Victoria via King’s Cross) the generalised cost proportion is still not that high 

(𝜌𝑐𝑖𝑗
𝑚𝑖𝑛 ,𝑢𝑛𝑜𝑏𝑠 = 1.10).  

This could be explained with the many available directions (cf. Table 4-7) at the origin 

(i.e. 3: Central line westbound, and Circle line in both directions at Liverpool Street 

station) as well as at the destination station (i.e. 6: Victoria, Jubilee and Piccadilly lines 

from both directions at Green Park station). Due to the high number of available lines, 

there are many route options with two journey legs, which have similar generalised costs.  

The relationship between the number of available directions at the origin and/or 

destination station and the number of observed routes was also discussed in Guo (2008). 

In this case a lower 𝜌𝑐 value is expected than in other cases. Therefore 𝜌𝑐 is not only a 

function of route attributes, but also of the property of the OD pair (i.e. number of 

directions available at origin and destination station). 

4.7.4.3 Observed routes above the cut-off value 

For OD pair 𝑖𝑗 = 6 (Euston – South Kensington, cf. Table D-5) condition (4-15) does 

not hold, where even though the third (Northern (CX) – Piccadilly via Leicester 

Square) and fourth shortest route (Northern (CX) – Circle via Embankment), are in 

the observed set (𝐾𝑖𝑗
𝑜𝑏𝑠 ), they have a 𝛿𝑐𝑘,𝑖𝑗  value of 1.21 and 1.23 respectively, which is 

higher than the attribute cut-off (𝜌𝑐 = 1.18). 

4.8 Summary, discussion and proposed extension of the model 

The purpose of this chapter was to address the issue that finite mixture models applied 

for route choice estimation require as an input the number of mixture components, which 

corresponds to the number of reasonable routes of an OD pair. For this, the question of 

route choice set generation was discussed. As the first step, a pathfinding method (i.e. K 

shortest path) was applied to find a set of shortest routes. In order to implement this 

algorithm for metro networks and to avoid that it gives route variants which differ only 

in their AEI movements within the stations, certain modifications were proposed to the 

algorithm. Following this, the attribute cut-off was set, based on the generalised cost 
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proportions of routes to narrow down this set to the set of reasonable routes. The objective 

was to find the value, below which the set of routes can reproduce the observed route 

choice set for most of the OD pairs. 

Results showed that the generalised cost proportion of 1.18 gives the best match for the 

seven case study OD pairs of the LU. This means, that a route is considered reasonable, 

if its generalised cost is not more than 1.18 times the generalised cost of the shortest route. 

This value is much lower than the results in Zhu and Xu (2016), which stated that in the 

Shanghai metro passengers consider a route reasonable up to 1.60 times the shortest route.  

This result could actually reproduce the observed route choice set for four out of the seven 

OD pairs. Two OD pairs there had unobserved routes with generalised costs below this 

cut-off value; and one OD pair had observed routes with generalised cost above the cut-

off.  

Based on this, it was understood that applying only a single attribute cut-off value cannot 

find the reasonable route choice set for all types of OD pairs, but it should be defined as 

a function of OD specific attributes. Among these OD specific attributes, two of them 

were highlighted through the case studies. One of these OD specific attributes was the 

presence of a direct route (𝑁𝐿,𝑖𝑗
𝑚𝑖𝑛 ). Results for the Victoria – Liverpool Street OD pair 

showed that if there is a direct route, passengers consider indirect routes only if they are 

dominant in other attributes (i.e. journey time, headway). Therefore, routes with 

generalised cost proportion of 1.14 or 1.17 were not in the observed set. The other OD 

specific attribute was the number of available directions at the origin (𝑁𝐷,𝑖 ) and the 

destination (𝑁𝐷,𝑗 ) station. Results for the Liverpool Street – Green Park OD pair 

showed that as there are many direction available at the destination station, there are many 

routes with two journey legs. Among them the route with the generalised cost proportion 

of 1.10 was not in the observed set. 

As these OD specific attributes are proved to be important, the criteria set in formula (4-9) 

can be extended to the following: 

 𝑘, 𝑖𝑗 ∈ 𝐾𝑖𝑗, 𝑖𝑓 𝜌𝑐𝑘,𝑖𝑗 ≤ 𝜌𝑐(𝑁𝐿,𝑖𝑗
𝑚𝑖𝑛 , 𝑁𝐷,𝑖 , 𝑁𝐷,𝑗 ) (4-17) 

Formula (4-17) indicates that the attribute cut-off (𝜌𝑐) is not a constant value valid for all 

OD pairs, but it is a function of the above discussed OD specific properties. 

In order to obtain the actual function 𝜌𝑐(𝑁𝐿,𝑖𝑗
𝑚𝑖𝑛 , 𝑁𝐷,𝑖 , 𝑁𝐷,𝑗 ) it would be necessary to apply 

the method on more OD pairs of the LU network . As the program codes are already ready 
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for all modelling steps discussed this chapter, it could be easily extended to apply it 

automatically for all OD pairs of the case study network. However, when applying for all 

OD pairs, there are other cases, which needs to be further examined. One of these cases 

are the routes with only one observed route. Learning those OD pairs can give a better 

information how to find the cut-off between the observed and unobserved routes. 

Additionally, there are also OD pairs, which have observed routes with three or more 

journey legs. It is expected that the attribute cut-off would be different also in those cases. 

One possible limitation of the model applied here is that it considers only travel time 

components and interchange experience for the generalised costs, however it is 

acknowledged that also the perception of the map is an important attribute to consider, 

especially for the London Underground where the map is quite distorted (Guo, 2011).  

Another limitation of the model is, that it used RODS data for the observed route choice 

set; and the weights, used in the generalised cost function also come from a calibration 

based on RODS data (Raveau et al., 2014). As it was expressed previously (cf. Section 

2.2.5), one aim in this thesis is to move away from methods that uses results from manual 

surveys and to rely on automatically collected data sources. Therefore it could be further 

examined – if the results of the TfL WiFi survey (Transport for London, 2017) would be 

available – whether those could serve as a better source for validation.  

An improvement of this route choice set generation model is further presented in Chapter 

5, where the influence of additional OD specific attributes on the cut-off values is 

discussed. The purpose there is to identify those OD pairs, which have similar route 

choice patterns as well as to find the exact number of components for the applied finite 

mixture model. 
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Chapter 5  

The superstation representation of metro networks to 

overcome data availability issues of station-to-station OD 

pairs 

5.1 Introduction 

As it was elucidated in Section 3.8.2 one of the main limitations of finite mixture models 

to be applied for route choice estimation is the problem of data availability: While a large 

sample of smart card data is available for the whole network, for single station-to-station 

origin destination (OD) pairs this sample size is very few, therefore modellers often do 

not have sufficient data for their analysis. Through the case studies (cf. Section 3.7) it 

was further illustrated that when the finite mixture model is applied on a very small 

sample of Observed Journey Times (OJT) it either cannot find a solution (ill-conditioned 

covariance) or may converge to multiple possible solutions and the difference between 

these solutions is very large. 

In case modellers can have access only to the open data sources, the question of data 

availability is even more crucial. For example in the context of the London Underground 

(LU) the open data contains only a 5% sample of Oyster cardholders for a 1 week period 

(cf. Section 3.6.1). Supposing that a larger sample of Oyster data could have been 

provided for this research from a longer period as a bespoke data – as it was in Fu (2014) 

(100% of data from a 40 week period) – temporal aggregation would have been a possible 

approach. While this could show success in overcoming the data availability issues, at the 

same time it loses the advantage that smart card data was intended to bring: time period 

specific estimates of route choice (cf. Section 2.3). Aggregating several months of data it 

is not possible to capture the day-to-day variation of travel patterns. 

In this chapter the question of data aggregation is approached from another angle. Instead 

of working with data from longer time periods (i.e. temporal aggregation), it is explored 

how the data of OD pairs with similar properties can be aggregated (i.e. spatial 

aggregation). For this, firstly the origin and destination stations needs to be grouped 

according to certain rules. These groups of stations are called “superstations” throughout 

this thesis. Following this, for each superstation the centroids can be selected, so that the 

OJTs of each station-to-station OD pair can be adjusted there; and hence they could be 

aggregated, this way obtaining a larger sample of Centroid-to-Centroid OJTs (CCOJT) 

for the superstation-to-superstation OD pairs.  
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Applying the finite mixture model (Chapter 3) on the larger dataset of CCOJTs of 

superstation-to-superstation OD pairs, and comparing the results with those for station-

to-station OD pairs (Section 3.7) can give an evaluation at what extent the superstation 

representation could overcome the previously mentioned data availability issues. 

 The rest of this chapter is structured as follows. In Section 5.2, earlier studies on station 

grouping are reviewed to understand for what purpose modellers define these larger 

network elements. Following this, focusing on station grouping for the purpose of route 

choice estimation the definition of superstations is presented together with their properties 

in Section 5.3. Once the superstations are created, in Section 5.4 the methodology for 

adjusting OJTs of station-to-station OD pairs to superstation centroids is presented. 

Section 5.5 presents the application of the mixture model on the CCOJTs of station-to-

station OD pairs. These methods are illustrated through the case studies in Section 5.6. 

Finally, in Section 5.7, the benefits and the limitations of the superstation representation 

are summarised. 

The concept of superstations and the application of finite mixture models for superstation-

to-superstation OD pairs were initially presented in Nádudvari et al. (2015). This chapter 

brings forward the original idea, giving a more detailed formulation and examining more 

adequate case studies for passenger route choice. 

5.2 Existing approaches for grouping stations 

In the general transport modelling context zones are defined, when the inclusion of each 

basic network element (e.g. household, junction, stop, station) would require a too 

detailed, hence computationally expensive network model (Ortúzar and Willumsen, 

2011; Connors and Watling, 2014). In these cases a zoning scheme is developed to 

aggregate these basic network elements into larger entities, such as traffic analysis zones 

or statistical/administrative wards. 

For public transport networks, these larger entities would correspond to groups of stations 

and/or stops18. It can be easily understood, that different research problems within the 

field of public transport modelling may require different rules for station grouping. 

Therefore, the literature review in this section is arranged according to the research area, 

for which the station grouping methodology was proposed for: 

                                                                 
18 In this literature review both the terms of “stations” and “stops” are used, the former refers to metro or 

rail stations, while the latter to bus or tram stops. 



 107 

 
 

 Overcoming data availability issues for OD matrix estimation (see Section 5.2.1) 

 Considering choice between nearby stations for OD matrix or mode choice 

estimation (see Section 5.2.2) 

 Reducing network complexity (see Section 5.2.3) 

These three problems are not completely distinct research areas, there is overlap among 

them. The purpose for this literature review is to identify, whether any of these methods 

can be applied for the research problem addressed in this thesis (see Section 5.2.4). 

5.2.1 Overcoming data availability issues for OD matrix estimation 

The issue of data availability for station-to-station OD pairs was also mentioned in Cui 

(2006) and applied for the London bus network. He interpreted this problem as the 

objective to achieve a balance between accuracy and processing practicality. He 

introduced the concept of segments and aggregated the smart card transactions along 

them. He defined segments in the following way (Figure 5-1): 

a) An interchange station (D) is a segment by itself. 

b) Stations between two consecutive interchange stations (E and F) are defined as a 

segment. 

c) Stations between the terminus and first interchange station (A, B and C) are 

defined as a segment. 

 

 

Figure 5-1 Concept of segments, based on Cui (2006) 

 

Cui (2006) proposed the concept of segments for aggregating smart card transactions for 

OD demand matrices. This analogy is not fully applicable in the context of route choice 

estimation, for the following reasons: 
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a) If there are no attractive connections at an interchange station (D) towards the 

destination (Z); the route choice patterns may be similar from the segments before  

(A, B and C) and after the interchange station (E and F) as well as from the 

segment of the interchange station itself (D) (see Figure 5-2). 

 

 

Figure 5-2 Segments with similar route choice patterns towards the destination 

 

b) Given OD pairs (E-Y and F-Y), where the first journey leg of the routes are on 

the same line, but in the opposite direction (1D2 and 1G3); the route choice 

patterns from the stations of one segment (E and F) are different (see Figure 5-3). 

 

 

Figure 5-3 Different route choice patterns towards the destination within a segment 



 109 

 
 

5.2.2 Considering choice among nearby stations for OD demand matrix or 

mode choice estimation 

Another important and well explored research area for station grouping is to identify the 

set of attractive entry/exit stations (boarding/alighting stops) near the true 

origin/destination of the passenger. It can be understood, that the entry/exit station to a 

public transport (i.e. metro, bus) network does not necessarily reflect the true 

origin/destination of the passenger as he/she may have accessed this stop by other 

transport modes (e.g. walk, bike, car, taxi). This type of station grouping is generally 

applied to give a clearer picture on the OD demand matrix and mode choice of passengers. 

Identifying stops in the catchment area of activities 

The most straightforward station grouping approach is to associate them with the 

catchment area of the points of activities or transport hubs (see Table 5-1). Chu and 

Chapleau (2010) – working on the bus network of Gatineau and Ottawa, Canada – called 

these points of activities as anchor points. They represent places that a person repeatedly 

visits in short term (e.g. home, work, study) or long term (e.g. place of worship, visit ing 

friends). They were identified from multiday smart card records in the following way: In 

case of student cardholders, they looked at boarding records after the end of the teaching 

and found the corresponding educational establishment from a georeferenced database. 

For other trips (e.g. home and work based trips), they envisioned a kernel density analysis 

to associate the range of activity locations with a probability. Following this, trip ends 

(i.e. first/last boarding/alighting stops) were linked to these anchor points if they are 

located within 500 m of the anchor point. 

Similarly, Lee et al. (2013) – focusing on the Minneapolis-St. Paul metropolitan area, 

USA – grouped those stops, which have 50 m distance between each other as well as 

those, which have identical or similar stop name. Furthermore, they also examined the 

special cases, when there is a stop only in one direction of the bus line and found the 

matching stop in the opposite direction. The purpose for station grouping in this case was 

to understand transit demand at an aggregate level and land use patterns. 
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Table 5-1 Review of station grouping methods based on physical proximity – catchment 

area of activities 

Reference Purpose Method Mode Case study 

Chu and 

Chapleau 

(2010) 

OD demand 

Travel behaviour 

Trip end within 

500 m of anchor 

points 

bus Gatineau, 

Ottawa, 

Canada 

Lee et al. 

(2013) 

OD demand 

Land use 

Stops  

50 m to each other 

Similar name 

Opposite direction  

bus Minneapolis-

St. Paul, 

USA 

 

Clustering algorithms 

A more advanced approach for station grouping is to apply clustering algorithms (see 

Table 5-2). 

Kieu et al. (2015b) – using the public transport network of Brisbane, Australia as a case 

study – applied the Density-Based Spatial Clustering of Application with Noise algorithm 

(Ester et al., 1996) for grouping the last alighting stops and then the first boarding stops 

of public transport trips known from smart card data. This algorithm uses two parameters 

to distinguish the least dense cluster of stations from the noise: the maximum density 

reach distance and the minimum number of points. This was further improved in Kieu et 

al. (2015a) to reduce the time complexity of the algorithm and called it as the Weighted -

Stop Density-Based Spatial Clustering of Application with Noise. 

Viggiano et al. (2016) – analysing London’s multimodal public transport network – 

grouped the nearby stations and stops with the purpose to gain a better understanding on 

public transport mode choice (i.e. rail and bus). They called these group of stations as 

zones. They set the number of zones to 1000 and used the K-means clustering algorithm 

(Forgy, 1965; MacQueen, 1967) to allocate each stop and station in these clusters. In their 

model rail stations were weighted 10 times as much as bus stops. 

Similarly, Luo et al. (2017) – doing the case study on the public transport network of The 

Hague, Netherlands – applied a K-means based station aggregation method for the 



 111 

 
 

purpose of obtaining transit OD demand matrices at a zonal level. They tested the K-

means clustering algorithm for a range of cluster numbers (between 2 and 30) and for 

each value they calculated the spatial distance and passenger flow related metrics to find 

the optimum value (12 for the case study area). 

 

Table 5-2 Review of station grouping methods based on physical proximity – clustering 

algorithms 

Reference Purpose Method Mode Case study 

Kieu et al. 

(2015b) 

Transit passenger 

market 

segmentation 

Density-Based 

Spatial Clustering 

of Application with 

Noise 

Bus, 

rail, 

ferry 

Brisbane, 

Australia 

Viggiano et al. 

(2016) 

Public transport 

mode choice 

K-means clustering 

with 1000 clusters 

Bus, 

metro, 

rail 

London, UK 

Luo et al. 

(2017) 

OD demand at 

zonal level 

K-means based 

station aggregation, 

trials with 2-30 

clusters 

Bus, 

Tram 

The Hague, 

Netherlands 

 

Logit allocation models 

Another advanced approach for station grouping is to use logit allocation models, which 

means to estimate for each station the probability that it belongs to a certain zone. This 

approach is especially useful, when the station groups have to coincide with the existing 

zoning system (see Table 5-3). 

Kuhlman (2015) – focusing on the public transport network of Amsterdam, Netherlands 

– applied a logit allocation model with the objective to construct purpose-specific OD 

demand matrices. Using smart card data he identified the trip ends (i.e. first boarding and 

last alighting stops of trips) and for each trip end, he estimated the probability with the 

Multinomial Logit (MNL) model that it belongs to a predefined traffic analysis zone. In 
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this model specification, the alternatives are the traffic analysis zones nearby the trip ends 

and the attributes of the utility functions are the share of the catchment area, stop density 

and urbanisation level. 

Tamblay et al. (2016) proposed the grouping of stations and stops for the purpose of 

developing a public transport planning computational tool for Santiago, Chile. They 

estimated the probabilities that the boarding/alighting stop of an observed trip from smart 

card data has its true origin/destination in a predefined census zone. They used a 

disaggregated logit model with the attributes of the access/egress times between the zone 

centroid and the given stop. This method was further developed in Tamblay et al. (2018). 

 

Table 5-3 Review of station grouping methods based on physical proximity – logit 

allocation models 

Reference Purpose Method Mode Case study 

Kuhlman 

(2015) 

Purpose-specific 

OD demand 

matrices 

Probability that a 

trip end belongs to 

a traffic analysis 

zone (MNL) 

Bus, 

tram, 

metro 

Amsterdam, 

Netherlands 

Tamblay et al. 

(2016) 

Public transport 

planning tool 

Probability that a 

trip end has its true 

origin/destination 

in a census zone 

Bus, 

metro 

Santiago, 

Chile 

Young and 

Blainey (2017) 

Improve catchment 

area representation 

of rail stations 

MNL, mixed logit rail Wales, 

Scotland, UK 

 

Young and Blainey (2017) focused on railway station choice in Wales and Scotland for 

the purpose of improving the representation of catchment areas of railway stations. For 

each origin/destination (i.e. postcode), they defined the choice set of the 10 nearest 

railway stations, ensuring that the major railway station is also included in that set. 

Following this, they estimated the railway station choice both with MNL and with mixed 
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logit model, in which – apart from the access journey characteristics – they included also 

the attributes of the station facilities, service frequency and train journey. 

Other approaches 

Additionally, there are various other approaches in literature for station grouping 

according to physical proximity (see Table 5-4). Nassir et al. (2015b) – working on the 

public transport network of Brisbane, Australia – modelled the boarding stop choice set 

of a passenger in light of his/her route choice set between the true origin and destination. 

They used smart card data together with the information on the public transport and 

walkway network and determined a set of shortest routes with the K shortest path 

algorithm (Yen, 1971). Following this, they narrowed down this set based the criteria on 

the maximum acceptable access, egress (2 km) and interchange (1 km) distance and wait 

time (1 hour). Additionally, they also set a threshold for the travel time of a route and for 

the maximum number of interchanges (3). In this setting, the boarding choice set 

corresponds to the first boarding stops of the routes included in the route choice set. This 

method was further applied in (Hassan et al., 2016) for understanding passengers public 

transport stop choice behaviour and in (Nassir et al., 2016) to define a utility-based travel-

impedance measure for public transport network accessibility. 

Guo and Lu (2016) – focusing on the London Underground – applied the concept of 

neighbourhood centrality (Opsahl et al., 2010) to define the neighbourhoods that are 

centred in the statistical/administrative wards of Greater London. In their study, distances 

and path lengths between two stations correspond to the number of intermediate stations. 

The purpose of this study was to relate complex network properties to human 

geographical features in the city, such as age demographics, mode choice and housing. 
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Table 5-4 Review of station grouping methods based on physical proximity – other 

approaches 

Reference Purpose Method Mode Case study 

Nassir et al. 

(2015b) 

Public transport 

network 

accessibility 

K shortest path, 

narrow down set: 

max walk distance 

and wait time 

Bus, 

rail, 

ferry 

Brisbane, 

Australia 

Guo and Lu 

(2016) 

Relate network 

properties to age, 

mode choice and 

housing 

Neighbourhood 

centrality; 

distances as 

number of stations 

metro London, UK 

 

Further applications 

The concept of working with groups of nearby stations have been also applied in the field 

of transport hub location problem (see Table 5-5). To address this issue, Yu et al. (2013) 

proposed a two-phase optimisation approach and applied for the Dalian, China. In the 

first phase, candidate nodes are selected among all stops based on passenger attraction, 

which is the function of the accessibility and connectivity of the stop. Following this, in 

the second phase, a location model is applied on the candidate nodes to find the optimal 

hub location among them, based on its largest serviced population, minimum overlap and 

least construction cost. 

Furthermore, station grouping was applied not only for planning new hubs, but also for 

detecting the dynamics of urban structure. In this context, Zhong et al. (2014) analysed 

the smart card data of Singapore from 3 consecutive years (2010-2012) and constructed 

a weighted directed graph for each year. In this graph, nodes corresponded to urban areas, 

links to the possibility to travel between these areas and the weight of links to the volumes 

of travel. This graph was used to gain a better view on the travel demand, urban centres, 

transport hubs, neighbourhoods and borders; as well as on their dynamics over the years.  
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Table 5-5 Review of station grouping methods based on physical proximity – further 

applications 

Reference Purpose Method Mode Case study 

Yu et al. 

(2013) 

Transport hub 

location 

Candidate nodes: 

accessibility and 

connectivity,  

hub location model 

bus Dalian, China 

Zhong et al. 

(2014) 

Detecting the 

dynamics of urban 

structure 

Weighted directed 

graph for 3 

consecutive years 

Bus, 

metro 

Singapore 

 

Applicability for the research problem 

The main limitation of applying the previously presented station grouping concept for the 

research problem of this thesis can be illustrated by the following (see Figure 5-4): As 

for entry/exit station choice the requirement is, that the candidate stations are in physical 

proximity, in most cases these station are on different lines (C, D, E, J, K and L). In 

contrast, the purpose in this thesis is to group the stations according to similar route choice 

patterns, which requires, that they should be on the same line (A, B, C, D, E and F).  
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Figure 5-4 Difference between grouping stations according to physical proximity and 

similar route choice patterns towards the destination 

 

5.2.3 Reducing network complexity 

The question of reducing the number of nodes and hence computational time has been 

widely explored in the context road traffic assignment and mentioned as “network 

aggregation” (Connors and Watling, 2014) or “network contraction” (Jafari and Boyles, 

2016). 

In the context of public transport networks, reducing the number of nodes can be achieved 

by defining network entities that can represent a group of stations with similar properties. 

Schmöcker (2006) developed a transit assignment model for the London Underground 

inner zone network. In order to represent the demand coming in the network from the 

outer zones, he defined line specific stations at the end of each LU line (cf. Section 4.4.2). 

The concept of line specific stations is in connection with the purpose of this thesis; 

however the definition of station groups cannot be just limited to the question of inner 

and outer zones (see Figure 5-5). This is because for certain OD pairs with their origin in 

the outer zones (D-Z), passengers may have more reasonable routes (1H4 and 2M6) to 

enter in the LU inner zone via different lines (1 and 6). 
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Figure 5-5 Difference between grouping stations as line specific stations (Schmöcker, 

2006) and according to similar route choice patterns towards the destination 

 

5.2.4 Gap in research 

Having reviewed the literature on various studies for station grouping, it was established; 

that as they were applied for different modelling purposes, their concept cannot be 

directly implemented for the objective of this thesis: aggregating data of station-to-station 

OD pairs for better route choice estimates. As if follows, a new approach is proposed for 

grouping stations according to similar route choice patterns, by setting the definition and 

rules; as well as describing the method for finding those stations (see Section 5.3). 
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5.3 The concept of superstations 

In this chapter – in addition to what was presented in the previous chapters – the following 

notation is used: 

 

Variable identifiers 

𝐼, 𝐽 Index of origin and destination superstation 

𝐼𝑖 𝑖-th station of origin superstation 𝐼 

𝐽𝑗 𝑗-th station of destination superstation 𝐽 

𝐼𝑐 Centroid station of origin superstation 𝐼 

𝐽𝑐 Centroid station of destination superstation 𝐽 

 

Variables 

𝐶𝐶𝑂𝐽𝑇 The adjusted value of Observed Journey Times to superstation 

centroids (minutes) 

𝑁𝐼 Number of stations in origin superstation 𝐼 

𝑁𝐽 Number of stations in destination superstation 𝐽 

𝑛𝐼𝐽
𝐶𝐶𝑂𝐽𝑇

 Sample size of 𝐶𝐶𝑂𝐽𝑇𝐼𝐽 

𝐶𝐶𝑂𝐽𝑇𝑟,𝐼𝐽
𝐾𝑀𝑆 Subset of 𝐶𝐶𝑂𝐽𝑇𝐼𝐽  produced by the K-means clustering algorithm 

(minutes) 

 

5.3.1 Definition of superstations 

In order to overcome the previously described data availability issues of station-to-station 

OD pairs for route choice estimation in metro networks (cf. Section 5.1), the concept of 

superstations is introduced:  
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Definition: A group of stations on the same line from/to which passengers are 

expected to have the same route choice set and similar route choice 

probabilities 

Strictly speaking, according to the earlier definition of routes (3-13), the route choice set 

is not exactly the same for the candidate stations of the origin and destination superstation 

as they differ in their access, wait and egress journey segments, as well as in their the on-

board segments from origin to interchange station and from interchange to destination 

station. Therefore, in a broader sense, for the sake of superstation definition, a route can 

be interpreted as the sequence of the following segments: line 1 – interchange 1 – … – 

interchange 𝑁𝑆,𝑘  – line 𝑁𝐿,𝑘 . The adjustments according to the differences in these 

journey segments is discussed in Section 5.4.2. 

5.3.2 Properties of superstations 

In Section 5.2.1, the concept of segments (Cui, 2006) was presented and it was pointed 

out, that it cannot be directly applied for route choice estimation. Therefore, superstations 

are not identical to segments, due to the following properties:  

Property 1: Stations on the same segment can be grouped as a superstation only if all 

routes depart/arrive to/from the same direction on that line (cf. Figure  

5-3) 

Property 2: Multiple segments can be grouped as a superstation, if passengers from/to 

the stations of those segments are expected to have the same route choice 

set and similar route choice probabilities (cf. Figure 5-2) 

In the light of Property 2, it may occur that passengers have the same route choice set 

and similar route probabilities from stations before and after an interchange station, but 

from the interchange station itself the route choice set is different, because passengers 

may find there other attractive lines. To account for this, superstations have an additiona l 

property: 

Property 3: Superstations can include non-consecutive stations (cf. Figure 5-5) 

Furthermore, as some lines have short runs (see Figure 5-6), they have the following 

property: 

Property 4: Stations on the same line, but with different service frequency (short runs) 

can be included in the superstation, but adjustments need to be made 

according to the difference in wait time 
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These adjustments are explained in Section 5.4. 

 

Figure 5-6 Property to create superstations in case of lines with short runs 

 

5.3.3 Finding OD pairs with similar route choice patterns 

According to the Definition (cf. Section 5.3.1), superstations are group of stations 

from/to which passengers are expected to have the same route choice set. This implies, 

that in order to find the stations of the origin and destination superstation, it is necessary 

to search for those OD pairs which have the same route choice set. To perform this, a 

route choice set generation algorithm needs to be applied on the extended LU inner zone 

network (see Figure 5-8) for the OD pairs composed by the candidate stations of the 

origin and destination superstation. 

The results of the previously proposed method (cf. Chapter 4) showed that – in average 

– a route is considered reasonable if its generalised cost is less or equal than 1.18 times 

the generalised cost of the shortest route (𝜌𝑐 = 1.18). However, it was also observed that 

this cut-off value did not work for all types OD pairs. Therefore it was concluded that 𝜌𝑐 

is also a function of OD specific attributes, such as: 

 Presence of a direct route  

 Number of available directions at the origin and destination station 

Following this logical stream, it was understood that is not possible to use a single 𝜌𝑐 

value for all the case study OD pairs of this chapter, but this should be determined in 

function of the OD specific attributes. In addition to the previously listed attributes, the 

characteristics of these OD pairs requires to consider the following: 

 OD minimum travel time 

 Presence of an express line 
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The relationship between the OD minimum travel time and the number of observed routes 

was also discussed in Guo (2008), where he categorised the stations according to their 

location within Greater London, such as “Central”, “North”, “South”, “East”, “West” and 

“Outside”. 

In each case study (cf. Section 5.6) it is described how these OD specific attributes 

influence the cut-off value. The explicit formulation of the route choice set generation 

algorithm is not discussed here as it is beyond the scope of this thesis. 

5.4 Adjustment of the Observed Journey Times to superstation 

centroids 

Once the origin and destination superstations are defined (cf. Section 5.3), it is possible 

to adjust the OJTs of station-to-station OD pairs to superstation centroids and hence to 

aggregate them spatially. This way a larger sample of centroid-to-centroid OJTs can be 

obtained for superstation-to-superstation OD pairs, proposing a solution for the 

previously mentioned data availability issues (cf. Section 3.8.2). This section presents the 

methodology for the selection of superstation centroids (see Section 5.4.1) as well as for 

the OJT adjustment (see Section 5.4.2) and aggregation (see Section 5.4.3). 

5.4.1 Selection of superstation centroids 

In the process of OJT adjustment the first step is to select the centroid for the origin (𝐼𝑐) 

and destination (𝐽𝑐 ) superstation. This can be any station of the superstation at the 

modeller’s convenience, not necessarily the geometrical centroid (see Appendix E). As 

in this chapter the cases bring forward the ones mentioned in Chapter 3, it is convenient 

to choose those stations as centroid, which were the origin and destination stations there 

(cf. Section 3.7). 

5.4.2 Adjustment of the Observed Journey Times to superstation centroids 

It is necessary to adjust the OJTs due to the different journey time components of the 

different station-to-station OD pairs (cf. equation (3-13)). At the origin superstation the 

following times need to be considered: 

 On board time from entry station to origin superstation centroid (𝑡(𝐼𝑖)(𝐼𝑐)
𝑜𝑏 ) 

 Difference between access time at origin superstation centroid (𝑡𝐼𝑐
𝑎𝑐𝑐) and at entry 

station (𝑡𝐼𝑖
𝑎𝑐𝑐) 
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 Difference between the wait time at origin superstation centroid (𝑡𝐼𝑐
𝑤𝑎𝑖𝑡) and at the 

entry station (𝑡𝐼𝑖
𝑤𝑎𝑖𝑡) (in case of short runs, cf. Property 4) 

Given the entry time stamp at station 𝑖 of the origin superstation 𝐼 (𝑇𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

), it is possible 

to obtain the equivalent entry time stamp at the superstation centroid (𝑇(𝐼𝑖)(𝐼𝑐)
𝑒𝑛𝑡𝑟𝑦

) with the 

following adjustment of the journey time components (see Figure 5-7): 

 𝑇(𝐼𝑖)(𝐼𝑐)
𝑒𝑛𝑡𝑟𝑦 = 𝑇𝐼𝑖

𝑒𝑛𝑡𝑟𝑦 + 𝑡𝐼𝑖
𝑎𝑐𝑐 + 𝑡𝐼𝑖

𝑤𝑎𝑖𝑡 + 𝑡(𝐼𝑖)(𝐼𝑐)
𝑜𝑏 − 𝑡𝐼𝑐

𝑤𝑎𝑖𝑡 − 𝑡𝐼𝑐
𝑎𝑐𝑐  (5-1) 

Substituting ∆𝑡(𝐼𝑖)(𝐼𝑐) = 𝑡(𝐼𝑐) − 𝑡(𝐼𝑖) for all time components, this will be: 

 𝑇(𝐼𝑖)(𝐼𝑐)
𝑒𝑛𝑡𝑟𝑦

= 𝑇𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

+ 𝑡(𝐼𝑖)(𝐼𝑐)
𝑜𝑏 − ∆𝑡(𝐼𝑖)(𝐼𝑐)

𝑎𝑐𝑐 − ∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑤𝑎𝑖𝑡  (5-2) 

At the destination superstation the following times need to be considered: 

 On board time from exit station to destination superstation centroid (𝑡(𝐽𝑗)(𝐽𝑐)
𝑜𝑏 ) 

 Difference between egress time at destination superstation centroid (𝑡𝐽𝑐
𝑒𝑔𝑟

) and at 

the exit station (𝑡𝐽𝑗
𝑒𝑔𝑟

) 

 Difference between the wait time on the last journey leg for the service that brings 

to the destination superstation centroid (𝑡𝐽𝑐
𝑤𝑎𝑖𝑡) and the one that brings to the exit 

station (𝑡𝐽𝑗
𝑤𝑎𝑖𝑡) (in case of short runs, cf. Property 4) 

Given the exit time stamp at station 𝑗 of the destination superstation 𝐽 (𝑇𝐽𝑗
𝑒𝑥𝑖𝑡) it is possible 

to obtain the equivalent exit time at the superstation centroid (𝑇(𝐽𝑗)(𝐽𝑐)
𝑒𝑥𝑖𝑡 ) with the following 

adjustment of the journey time components19 (see Figure 5-7): 

 𝑇(𝐽𝑗)(𝐽𝑐)
𝑒𝑥𝑖𝑡 = 𝑇𝐽𝑗

𝑒𝑥𝑖𝑡 − 𝑡𝐽𝑗
𝑤𝑎𝑖𝑡 − 𝑡𝐽𝑗

𝑒𝑔𝑟 + 𝑡(𝐽𝑗)(𝐽𝑐)
𝑜𝑏 + 𝑡𝐽𝑐

𝑤𝑎𝑖𝑡 + 𝑡𝐽𝑐
𝑒𝑔𝑟

 (5-3) 

Substituting ∆𝑡(𝐽𝑗)(𝐽𝑐) = 𝑡(𝐽𝑐) − 𝑡(𝐽𝑗) for all time components, this will be: 

 𝑇(𝐽𝑗)(𝐽𝑐)
𝑒𝑥𝑖𝑡 = 𝑇𝐽𝑗

𝑒𝑥𝑖𝑡 + 𝑡(𝐽𝑗)(𝐽𝑐)
𝑜𝑏 + ∆𝑡(𝐽𝑗)(𝐽𝑐)

𝑤𝑎𝑖𝑡 + ∆𝑡(𝐽𝑗)(𝐽𝑐)
𝑒𝑔𝑟

 (5-4) 

The Observed Journey Times are calculated as the time difference between the entry and 

exit time stamps (cf. equation (3-14)): 

 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) = 𝑇𝐽𝑗
𝑒𝑥𝑖𝑡 − 𝑇𝐼𝑖

𝑒𝑛𝑡𝑟𝑦
 (5-5) 

                                                                 
19 As discussed earlier, 𝑡𝐽𝑗

𝑤𝑎𝑖𝑡  and 𝑡𝐽𝑐
𝑤𝑎𝑖𝑡 are the wait times for the service that brings to the exit station 𝐽𝑗 and 

𝐽𝑐  respectively. For the correct illustration these times should be drawn at the last interchange station; 

however here for the sake of simplicity, they were drawn to the exit station.  
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Following this analogy, the Centroid-to-Centroid adjusted OJTs (CCOJT) corresponding 

to each station-to-station OD pair can be calculated as: 

 𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) = 𝑇(𝐽𝑗)(𝐽𝑐)
𝑒𝑥𝑖𝑡 − 𝑇(𝐼𝑖)(𝐼𝑐)

𝑒𝑛𝑡𝑟𝑦
 (5-6) 

Substituting equations (5-2) and (5-4) into (5-6): 

 
𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) = 𝑇𝐽𝑗

𝑒𝑥𝑖𝑡 + 𝑡(𝐽𝑗)(𝐽𝑐)
𝑜𝑏 + ∆𝑡(𝐽𝑗)(𝐽𝑐)

𝑒𝑔𝑟 + ∆𝑡(𝐽𝑗)(𝐽𝑐)
𝑤𝑎𝑖𝑡 − 𝑇𝐼𝑖

𝑒𝑛𝑡𝑟𝑦

− 𝑡(𝐼𝑖)(𝐼𝑐)
𝑜𝑏 + ∆𝑡(𝐼𝑖)(𝐼𝑐)

𝑎𝑐𝑐 + ∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑤𝑎𝑖𝑡  

(5-7) 

Substituting equation (5-5) into (5-7): 

 
𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) = 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) + 𝑡(𝐽𝑗) (𝐽𝑐)

𝑜𝑏 − 𝑡(𝐼𝑖)(𝐼𝑐)
𝑜𝑏  + ∆𝑡(𝐼𝑖)(𝐼𝑐)

𝑎𝑐𝑐

+ ∆𝑡(𝐽𝑗)(𝐽𝑐)
𝑒𝑔𝑟 + ∆𝑡(𝐼𝑖)(𝐼𝑐)

𝑤𝑎𝑖𝑡 + ∆𝑡(𝐽𝑗)(𝐽𝑐)
𝑤𝑎𝑖𝑡  

(5-8) 

Equation (5-8) is applied in the case studies (see Section 5.6). There the OJTs of the 

station-to-station OD pairs (𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)) are known from Oyster data (cf. Section 3.6.1). 

The necessary adjustments for on-board (𝑡(𝐼𝑖)(𝐼𝑐)
𝑜𝑏  and 𝑡(𝐽𝑗)(𝐽𝑐)

𝑜𝑏 ) and wait (∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑤𝑎𝑖𝑡

) times 

are calculated using LU timetables (cf. Section 3.6.2.1). The corresponding access 

(∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑎𝑐𝑐 ) and egress (∆𝑡(𝐽𝑗)(𝐽𝑐)

𝑒𝑔𝑟
) times were estimated based on station layouts known 

from the Nationwide Access Register (Direct Enquires) (cf. Section 3.6.2.2). 
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Figure 5-7 Adjustment of the Oyster entry/exit times at the origin/destina t ion 

superstations, representation on a diachronic graph 

 

5.4.3 Aggregation of the adjusted Observed Journey Times 

Once the CCOJTs corresponding to each station-to-station OD pair (𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)) are 

obtained, these values can be aggregated as they are adjusted to the same origin and 

destination superstation centroid. This aggregate dataset is called the CCOJT of the 

superstation-to-superstation OD pair (𝐶𝐶𝑂𝐽𝑇𝐼𝐽): 

 𝐶𝐶𝑂𝐽𝑇𝐼𝐽 = ⋃ ⋃ 𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)

𝑁𝐽

𝑗 =1

𝑁𝐼

𝑖=1

 (5-9) 
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where 𝑁𝐼 and 𝑁𝐽 is the number of stations in the origin (𝐼) and destination (𝐽) superstation 

respectively. As it follows, it is described how the finite mixture model is applied on this 

larger dataset with the purpose to evaluate the benefits of the superstation representation. 

Section 5.4.1 stated that the centroid of a superstation can be any station, not necessarily 

the geometrical centroid. At this point, one may ask the question, whether the shape of 

the aggregated 𝐶𝐶𝑂𝐽𝑇𝐼𝐽  distribution would be different if the origin and/or the destinat ion 

superstation centroid ( 𝐼𝑐  and 𝐽𝑐  respectively) is chosen differently. This question is 

discussed in Appendix E. 

5.5 Evaluation of the benefits of the superstation representation 

Once the superstations are defined (cf. Section 5.3) and the CCOJTs for each 

superstation-to-superstation OD pair is calculated (cf. Section 5.4), the finite mixture 

model (cf. Chapter 3) is applied on this larger dataset. The purpose for this is to evaluate 

the benefits of the superstation representation by comparing the results of the finite 

mixture model applied on station-to-station and on the superstation-to-supersta t ion 

dataset of the OJTs of the same case study OD pair (see Section 5.6).  

Similarly to the methodology presented in Section 3.3, the finite mixture model was 

tested with different settings for the initial values (i.e. seeds for the random number 

generator) and tolerance thresholds to find the one, which gives the closest solution to the 

expected results (i.e. timetable, RODS). It was done so, because it is expected that among 

the solutions of the finite mixture model exists at least one, which reflects the actual 

values of the metro networks; although this may not necessarily be the global optimum. 

(cf. Section 3.3.2). Therefore, the tolerance thresholds chosen in this chapter are not 

always identical to the ones chosen in Chapter 3. Following that, the results of the finite 

mixture model were matched with the actual routes and compared to results of existing 

models (Fu, 2014) as described in Section 3.4. 

5.6 Case studies on the London Underground 

The cases in this section are the extension of the cases in Section 3.7 (cf. Figure 3-2 and 

Table 3-2) plus an additional case. Through the case studies presented here (see Figure  

5-8 and Table 5-6) the following methodologies are illustrated: 

 Origin and/or destinations stations are grouped with other stations, from/to which 

passengers are expected to have similar route choice patterns (i.e. creating 

superstations, cf. Section 5.3). 
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 The OJTs of station-to-station OD pairs are adjusted to superstation centroids, so 

that they can be spatially aggregated (i.e. obtaining a larger dataset of CCOJTs, 

cf. Section 5.4). 

 The finite mixture model (cf. Chapter 3) is applied on the CCOJTs of 

superstation-to-superstation OD pairs; and compared with the results of station-

to-station OD pairs (i.e. evaluation of the superstation representation, cf. Section 

5.5) 

The previously described route choice set generation algorithm (Chapter 4) is applied on 

the extended LU inner zone network with the appropriate considerations for the OD 

specific attribute cut-offs (cf. Section 5.3.3). This extended LU inner zone network 

includes the LU inner zone network (cf. Figure 4-6), as well as some of the lines until 

their terminus in the LU outer zones (see Figure 5-8):  

 Bakerloo line until Elephant & Castle (south end) 

 Central line until Epping (east end) 

 Jubilee line between Stanmore and Stratford (full length) 

 Northern line until Morden (south end) 

 Victoria line until Brixton (south end) 

Additionally, while in the LU inner zone only the Circle line was considered among the 

common lines (cf. Section 4.4.3), in the extended LU inner zone also the Metropolitan 

line was included between Wembley Park and Baker Street.  

In Section 3.7 two case study OD pairs (Case 1 and Case 2) were presented. The common 

in these two cases is that for all routes of these OD pairs the first journey leg is on the 

same line, therefore the origin stations can be grouped as superstations. In this chapter an 

additional case (Case 3) is presented, where both the first and the last journey leg is on 

the same line, therefore superstations can be created both for the origin and destination 

stations. 

The actual difference between Case 1 and Case 2 – from the perspective of creating 

superstations – is that, while in Case 1 there is only a short segment of the Victoria line 

before the first interchange station (Green Park) with 5 candidate stations for the origin 

superstation (Brixton – Victoria), that segment in Case 2 is very long having 27 

candidate stations on the Central line (Epping – Chancery Lane, including the 

Hainault loop).  
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In Nádudvari et al. (2015) the concept of superstations was illustrated through a different 

case study OD pair, which is not included in this thesis. 

 

Figure 5-8 Overview of the case studies on the London Underground extended inner zone 

network 
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Table 5-6 A summary of the case studies on the LU network, superstation network representation 

Case 

OD pair Route Time 

(min) 

RODS OJT 

Origin Destination Line 1 Interchange 1 Line 2 Interchange 2 Line 3 RC (%) Sample Sample 

𝐼𝐽 𝐼 𝐽 𝑙 = 1 𝑠 = 1 𝑙 = 2 𝑠 = 2 𝑙 = 3 𝑡𝑘,𝐼𝐽
𝑆𝐽𝑇

 𝜔𝑘,𝐼𝐽
𝑅𝑂𝐷𝑆  𝑛𝐼𝐽

𝑅𝑂𝐷𝑆  𝑛𝐼𝐽
𝑂𝐽𝑇

 

1 
Victoria 

South 
Holborn 

Vic (NB) Oxford Circus Cen (EB)     17.6 74.8% 
1097 147 

Vic (NB) Green Park Pic (EB)     20.4 25.2% 

2 
Central 

East 

Green 

Park 

Cen (WB) Oxford Circus Vic (SB)     21.3 81.2% 
983 47 

Cen (WB) Holborn Pic (WB)     24.0 18.8% 

3 
Jubilee 

West 

Jubilee 

Central 

Jub (EB)         36.3 89.0% 
1196 286 

Jub (EB) Wembley Park Met (EB) Finchley Road Jub (EB) 33.3 11.0% 
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Case 1: Victoria South - Holborn 

Creating superstations 

According to the Definition, the origin station, Victoria could be potentially grouped 

together with other stations as for all reasonable routes of the Victoria – Holborn station-

to-station OD pair the first journey leg is on the Victoria line (cf. Figure 3-3). Therefore, 

the candidate stations of the origin superstation are the stations between Brixton and 

Victoria (cf. Figure 5-8). Referring to the Definition, the destination station (Holborn) 

cannot be grouped with other stations, as the last journey leg of the reasonable routes are 

on different lines (Central and Piccadilly lines). 

In order to decide whether these origin stations can be grouped together – based on the 

Definition – the route choice set of each station-to-station OD pair was compared by 

applying the route choice set generation algorithm with the appropriate considerations for 

the OD specific attribute cut-offs (cf. Section 5.3.3) on the extended LU inner zone 

network (cf. Figure 5-8) for the OD pairs presented in Table 5-7. 

 

Table 5-7 OD pairs for which route choice set was compared, Case 1 

OD pair Origin Destination 

1 Brixton Holborn 

2 Stockwell Holborn 

3 Vauxhall Holborn 

4 Pimlico Holborn 

5 Victoria Holborn 

 

Results (see Figure 5-9) show that the route choice set is the same from all origin stations, 

except from Stockwell station. The reason why the Stockwell – Holborn station-to-

station OD pair has a different route choice set is that passengers boarding at Stockwell 

station can also take the Northern line20 towards their destination and change either at 

Tottenham Court Road station to the Central line or at Leicester Square station to the 

                                                                 
20 The Northern line of the London Underground has two branches within the inner zone: via Bank and 

via Charing Cross . Most of the services that depart from Stockwell go via Bank and there are only few 

direct services that go via Charing Cross . In most of the cases passengers need to change at Kennington. 

Here it was assumed, that passengers choos ing the Northern line at Stockwell arrive at the platform 

according to the departure time of the direct service, and therefore a lower value of wait time was considered.  
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Piccadilly line (cf. Figure 5-8). The generalised cost proportion of these routes are 1.12 

and 1.13 respectively. Looking this more precisely, it can be further understood, that as 

at Stockwell station the northbound Victoria and Northern lines depart from adjacent 

platforms, passengers do not necessarily choose routes, but strategies including the option 

to board whichever line comes first (Nguyen and Pallottino, 1988; Spiess and Florian, 

1989). Due to these differences in the route choice set, Stockwell station cannot be 

grouped with the other stations as a superstation (Rule 2). 

 

 

Figure 5-9 Attribute cut-off according to generalised cost proportions, Case 1 

 

Among the other stations, it is clear that from Vauxhall and Pimlico stations passengers 

have the same route choice set as from Victoria station, as there are no additiona l 

attractive route options in those cases. Results showed, that passengers have the same 

route choice set also from Brixton station: even though they have the option to change to 

the Northern line at Stockwell, those routes are not reasonable (generalised cost 

proportion is 1.24 and 1.25 respectively, see. Figure 5-9). 
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In summary, the following stations could be grouped as the origin superstation: Brixton, 

Vauxhall, Pimlico and Victoria. This superstation is named Victoria South21 (Figure  

5-10). The fact of including Brixton, but not Stockwell station illustrates, that even 

though stations are not consecutive, they can be still grouped as superstations (Rule 3). 

 

 

Figure 5-10 The Victoria South– Holborn superstation-to-station OD pair 

 

Comparing the generalised cost proportion of the shortest routes (𝜌𝑐𝑘,𝑖𝑗 ) for the four OD 

pairs that have their origin at the Victoria South superstation (cf. Figure 5-9) it can be 

understood that they depend on the OD minimum journey time. Looking at the third 

shortest route: Victoria – Piccadilly (via King’s Cross), for the OD pair with the longest 

minimum travel time (Brixton – Holborn) 𝜌𝑐3,𝑖𝑗 is 1.17, while for the OD pair with the 

shortest minimum travel time (Victoria – Holborn) it is 1.21. According to the earlier 

considerations (cf. Chapter 4), the option to change at King’s Cross station is not a 

                                                                 
21 The character border  in the text denotes superstation  
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reasonable route for these OD pairs, as staying on the Victoria line after Oxford Circus  

station would be a sort of turning away from the destination (Dial, 1971).  Therefore the 

attribute cut-off 𝜌𝑐  was set lower: 1.15 instead of 1.18 so that the route Victoria – 

Piccadilly (via King’s Cross) could be excluded for all OD pairs. 

Obtaining Centroid-to-Centroid adjusted Observed Journey Times 

Similarly to the Victoria – Holborn station-to-station OD pair, the sample size of OJTs 

was small also for the OD pairs from the other stations of the origin superstation (Figure  

5-11). Therefore a larger and better distributed data sample needs to be obtained (cf. 

Section 5.4). 

 

 

Figure 5-11 Distribution of Observed Journey Times (OJT) for station-to-station OD 

pairs for Victoria South– Holborn 

 

For the origin superstation, Victoria South, the Victoria station was selected as the 

superstation centroid (marked with  on Figure 5-10 and highlighted with green in 

Table 5-8) to make the comparison more straightforward with the case study on the 

station-to-station OD pair (cf. Section 5.4.1). The destination is a single station 

(Holborn), therefore it is the centroid itself. 

 

Table 5-8 Adjustment of OJTs according to on-board and access time  

for Victoria South– Holborn, superstation centroids are highlighted with green. 

Origin On-board time Access time 

𝐼𝑖 𝑡(𝐼𝑖−1)(𝐼𝑖)
𝑜𝑏  𝑡(𝐼1)(𝐼𝑖)

𝑜𝑏  𝑡(𝐼𝑖)(Ic)
𝑜𝑏  𝑡𝐼𝑖

𝑎𝑐𝑐  ∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑎𝑐𝑐  

 [min] [min] [min] [min] [min] 

Brixton  0 7 1.9 0.5 1 

Vauxhall 4 4 3 1.4 1.0 1 

Pimlico 1 5 2 1.7 0.7 1 

Victoria 2 7 0 2.4 0.0 0 

Brixton - Holborn Vauxhall - Holborn Pimlico - Holborn Victoria - Holborn
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Following this, the OJTs of the station-to-station OD pairs (𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)) were adjusted to 

superstation centroid according to equation (5-8) (cf. Section 5.4.2). This way the 

CCOJTs corresponding to each station-to-station OD pair (𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)) are obtained. 

Table 5-8 shows the necessary adjustments according to the on-board (𝑡(𝐼𝑖)(𝐼𝑐)
𝑜𝑏 ) and access 

(∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑎𝑐𝑐 ) time at the origin superstation. As the destination is a single station (Holborn), 

there is no need to do adjustments according to on-board (𝑡(𝐽𝑗)(𝐽𝑐)
𝑜𝑏 ) and egress (∆𝑡(𝐽𝑗)(𝐽𝑐)

𝑒𝑔𝑟
) 

times at the destination. As all services on the Victoria line terminate at Brixton, the 

frequency and hence the wait time is the same at all origin stations, there is no need to do 

adjustments according to wait time (∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑤𝑎𝑖𝑡 ). All adjustments values are rounded to the 

nearest minute as the OJTs from Oyster data are given with that precision. 

The CCOJTs corresponding to each station-to-station OD pair ( 𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) ) were 

aggregated (cf. Section 5.4.3), resulting in a dataset (𝐶𝐶𝑂𝐽𝑇𝐼𝐽) with larger sample size 

(𝑛𝐼𝐽
𝐶𝐶𝑂𝐽𝑇 = 147) (Figure 5-12). 

 

 

Figure 5-12 Distribution of Centroid-to-Centroid adjusted Observed Journey Times  

for Victoria South– Holborn 

Min 12.0

Max 31.0

Mean 19.8

Median 19.0

Mode 19.0

Stdev 3.7

𝑛𝐼𝐽
𝐶𝐶𝑂𝐽𝑇

= 147 
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Evaluation of the benefits of the superstation representation 

The finite mixture model (cf. Chapter 3) was applied on this larger dataset of CCOJTs. 

Within this dataset all entries could be considered as valid data, because the upper outer 

fence (cf. Section 3.2.1) resulted 37 minutes, while the maximum CCOJT value is 31 

minutes. This valid dataset is denoted by 𝐶𝐶𝑂𝐽𝑇0. 

As for the superstation-to-station OD pair – similarly to the case study in Section 3.7 – 

two reasonable routes were assumed, route choice was estimated as a two-component 

(𝑁𝑅 = 2) finite mixture distribution. Therefore, the K-means clustering algorithm was 

applied on the 𝐶𝐶𝑂𝐽𝑇0  dataset with two clusters and with the settings described in 

Section 3.3.1 to produce the initial values for the EM algorithm. Using these init ia l 

values, the EM algorithm was run with different settings for the tolerance threshold (cf. 

Section 3.3.2). The more detailed results of initial values and tolerance thresholds are 

reported in Appendix F. 

From there it is understood that when the tolerance threshold is 1e-06 or greater, the EM 

algorithm converges to a root close to the initial value for seed 1. But when the tolerance 

threshold is 1e-07 or smaller, the EM algorithm converges to a root around 18.1 minutes 

for the mean and 66.0% for the proportion of component 1 for both seeds (see Figure F-1 

and Figure F-2). Similar properties could be observed for the other mixture component 

(labelled with 𝑟 = 2 ). The log-likelihood exhibits a considerable jump between the 

tolerance threshold of 1e-02 and 1e-03 (Figure F-3). 

According to RODS data, the aggregate route choice proportions for the two routes  

(𝜔𝑘,𝐼𝐽
𝑅𝑂𝐷𝑆 ) of the Victoria South – Holborn superstation-to-station OD pair are 74.8% and 

25.2% (see Table 5-10). Among the estimates, the one with seed 1 and tolerance threshold 

1e-06 gives the best approximation to RODS results, therefore these settings were chosen 

for the finite mixture model (Table 5-9). Through this case study it resulted that this 

tolerance threshold is smaller than the one in case of station-to-station OD pairs (i.e. 

1e-05, cf. Section 3.7). 
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Table 5-9 Finite mixture model results; with Seed = 1, Tolerance threshold = 1e-06  

for Victoria South – Holborn,  

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 

Label Mixture model 

𝑟 𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜎𝑟,𝐼𝐽

𝑀𝐼𝑋 𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋  

[] [min] [min] [%] 

1 18.2 2.4 70.8% 

2 23.7 3.4 29.2% 

 

Following this, the results of the finite mixture model were matched with the actual LU 

routes (cf. Section 3.4.1). As the centroid of the origin superstation coincides with the 

origin station of Case 1 in Chapter 3 (Victoria) and the destination station is a single 

station (Holborn), the Scheduled Journey Time of the actual LU routes (𝑡𝑘,𝐼𝐽
𝑆𝐽𝑇

) are the 

same as the results in Table 3-5. It is expected that the mixture component with the lower 

mean (𝑟 = 1) corresponds to the route with the shorter journey time (𝑘 = 1). Similar ly 

the component with the higher mean (𝑟 = 2) to the route with the longer journey time 

(𝑘 = 2).  

Table 5-10 compares the mixture results for the Victoria South – Holborn superstation-

to-station OD pair with the Victoria – Holborn station-to-station OD pair, together with 

the results in Fu (2014) and corresponding values of  the actual LU routes. Figure 5-13 

presents the probability density functions of the mixture distribution fit on the CCOJT 

dataset as well as of the mixture components matched with the actual LU routes. 

Based on these results, the following was observed: While for the Victoria – Holborn 

station-to-station OD pair the proportion of mixture component 1 (𝜔𝑟,(𝐼𝑖)(𝐽𝑗)
𝑀𝐼𝑋 ) exhibited a 

significant jump from 79.8% to 33.5% between tolerance thresholds 1e-05 and 1e-06 (cf. 

Figure 3-6), the same jump for the Victoria South – Holborn superstation-to-stat ion 

OD pair was much less (𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋) (from 70.8% to 67.9%) and it occurred between tolerance 

thresholds 1e-06 and 1e-07 (Figure F-2). This explains, that using a larger and better 

distributed dataset of superstation-to-superstation OD pairs gives more stable route choice 

results, which stays closer to the initial value (i.e. expected route choice results from 

RODS) even for smaller tolerance thresholds. 

Furthermore, while the Victoria – Holborn station-to-station OD pair the log-likelihood 

had the jump between the tolerance threshold of 1e-05 and 1e-06 (cf. Figure 3-7), the 
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same type of jump occurred between the tolerance threshold of 1e-02 and 1e-03 for the 

Victoria South – Holborn superstation-to-station OD pair (Figure F-3). From this it can 

be understood, that the estimates for the superstation-to-superstation OD pairs are more 

reliable also at a greater threshold. 
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Table 5-10 Matching mixture model results with the actual London Underground routes for Victoria South– Holborn 

Purple: Mixture results, superstation OD pairs, Red: Mixture results, station OD pairs, Yellow: Fu (2014), Green: actual LU routes 

Mixture 

Label 

Journey Time (min) Route Choice (%) Route 

Label 

Route Matched 

Mixture Timetable Mixture RODS Line 1 Interchange 1 Line 2 

 Proposed Fu(2014)  Proposed Fu(2014)      

 Superstation Station  Superstation Station      

𝑟 𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜇𝑟,(𝐼𝑖)(𝐽𝑗)

𝑀𝐼𝑋  𝑡𝑘 ,𝐼𝐽
𝑆𝐽𝑇

 𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜔𝑟,(𝐼𝑖)(𝐽𝑗)

𝑀𝐼𝑋  𝜔𝑘,𝐼𝐽
𝑅𝑂𝐷𝑆  𝑘 𝑙 = 1 𝑠 = 1 𝑙 = 1 

1 18.2 17.6 16.6 17.6 70.8% 79.8% 75.4% 74.8% 1 Vic Oxford Circus Cen 

2 23.7 26.1 22.2 20.4 29.2% 20.2% 24.6% 25.2% 2 Vic Green Park Pic 

 

 



 138 

 
 

 

Figure 5-13 Estimated (Gaussian) journey time distribution of the routes for Victoria South – Holborn, 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 
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Case 2 Central East – Green Park 

Creating superstations 

According to the Definition, the origin station, Liverpool Street could be potentially 

grouped together with other stations, as for all reasonable routes of the Liverpool Street 

– Green Park station-to-station OD pair the first journey leg is on the Central line (cf. 

Figure 3-9). Therefore, the candidate stations of the origin superstation are the stations 

between Epping and Chancery Lane, including the stations on the Hainault loop (cf. 

Figure 5-8). Referring to the Definition, the destination station (Green Park) cannot be 

grouped with other stations, as the last journey leg of the reasonable routes are on different 

lines (Central, Piccadilly and Jubilee lines). 

 

Table 5-11 OD pairs for which route choice set was compared, Case 2 

OD pair Origin Destination 

1 Epping Green Park 

2 Theydon Bois Green Park 

3 Debden Green Park 

4 Loughton Green Park 

5 Buckhurst Hill Green Park 

6 Woodford Green Park 

7 South Woodford Green Park 

8 Snaresbrook Green Park 

9 Leytonstone Green Park 

10 Leyton Green Park 

11 Stratford Green Park 

12 Mile End Green Park 

13 Bethnal Green Green Park 

14 Liverpool Street Green Park 

15 Bank Green Park 

16 St Paul’s Green Park 

17 Chancery Lane Green Park 
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In order to decide whether these origin stations can be grouped together – based on the 

Definition – the route choice set of each station-to-station OD pair was compared by 

applying the route choice set generation algorithm with the appropriate considerations for 

the OD specific attribute cut-offs (cf. Section 5.3.3) on the extended LU inner zone 

network (cf. Figure 5-8) for the all the OD pairs, whose origin station is on the Epping 

branch 22  of the Central line (between Epping and Chancery Lane) and whose 

destination station is Green Park (Table 5-11). 

Results (see Figure 5-14) show that the route choice set from Stratford (OD 11) and 

Bank (OD 15) stations are quite different from the patterns of other stations. This is 

because from these stations other attractive lines are available apart from the Central 

line. From Stratford station passengers can also take the Jubilee line to Green Park . 

Although this route has slightly longer travel time, than the route Central – Victoria via 

Oxford Circus (32.7 and 29.7 minutes respectively), it has the advantage that it is a direct 

service. Furthermore, as Stratford station is the terminus of the Jubilee line, trains are 

not crowded at boarding and hence passengers may be able to get a seat. In accordance 

with this, the route choice set generation algorithm gave this option as the shortest route 

(in terms of generalised costs) for the Stratford – Green Park OD pair. From Bank 

station, many lines are available, among which taking the Northern line to London 

Bridge, then changing to the Jubilee line (cf. Figure 5-8) is shown to be a reasonable 

route. Due to these differences in the route choice set, Stratford and Bank stations cannot 

be grouped together with the other stations as a superstation (Rule 2). 

Among the other stations, the route choice set is the same from the stations before 

Stratford (OD 1-10). From these stations, apart from the routes via the Central line, also 

the route option to change to the Jubilee line at Stratford is reasonable. It is shown to be 

the second shortest route (see Figure 5-14).  

Similarly, also the stations after Stratford, excluding Bank (OD 12, 13, 14, 16 and 17) 

have the same route choice set among each other: the routes via the Central line. From 

Liverpool Street (OD 14), apart from the Central line, also the Circle line is available 

and the Circle – Victoria via King’s Cross route is shown to be the fourth shortest route 

(1.10 times the generalised cost of the shortest route, see Figure 5-14). However, as it 

was discussed earlier (cf. Section 4.7.4.2), a lower cut-off (𝛿𝑐) value was suggested for 

                                                                 
22 In order to make the network model simpler, the Central line was represented only with the stations on 

the Epping branch. It was assumed that form the stations on the Hainault loop, passengers are expected to 

have the same route choice set. 
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the Liverpool Street – Green Park OD pair; and hence only the first two shortest routes 

(both having their first journey leg on the Central line) were considered reasonable. This 

way, the other stations with their origin on the Central line (Mile End, Bethnal Green, 

St Paul’s and Chancery Lane) could be grouped together with the Liverpool Street 

station 

 

 

Figure 5-14 Attribute cut-off according to generalised cost proportions, Case 2 

 

In summary, two superstations could be created by grouping the stations on the east end 

of the Central line (Figure 5-15):  

 All the stations between Epping and Leyton, including the Hainault loop: 20 

stations in total. This superstation is named Central East Outer. 
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 Stations between Mile End and Chancery Lane, excluding Bank: 4 stations in 

total. This superstation is named Central East. 

 

s

 

Figure 5-15 The Central East – Green Park superstation-to-station OD pair 

 

Within the Central East Outer superstation, there are multiple Central line services (i.e. 

Epping branch, Hainault loop and the short runs on it). This would result that the service 

frequencies and hence the wait time are not equal at different origin stations. Based on 

Rule 4, these stations can be still grouped as superstations, just the appropriate adjustment 

needs to be made according to the difference in wait time. 

The fact of excluding Bank station from the Central East superstation, but including the 

stations before and after, illustrates, that even though stations are not consecutive, they 

can be still grouped as superstations (Rule 3). 
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Regarding the attribute cut-off values (𝜌𝑐), the following needs to be considered: For the 

OD pairs originating at the Central East Outer superstation, for all routes the first 

journey leg is on the Central line and the different route options are to change to the 

connecting lines that bring to the destination (Green Park). For these OD pairs the main 

attribute that influences 𝜌𝑐 is the OD minimum journey time: Regarding the OD pairs 

originating at the Central East superstation, at some stations (e.g. Liverpool Street) 

there are other available lines for the first journey leg. Therefore for these OD pairs the 

main attribute that influences 𝜌𝑐  is the number of available lines at the origin and 

destination station. As it was elucidated earlier (cf. Section 3.7), the Central – Jubilee  

(via Bond Street) route would be a sort of turning away  from the destination (Dial, 

1971), therefore the attribute cut-offs were set to exclude that route from the set of 

reasonable routes. This way 𝜌𝑐  resulted 1.05 for the OD pairs that originate at the 

Central East Outer superstation and 1.08 for those, which originate at the Central East  

superstation (Figure 5-14). This is much lower than the value obtained in Chapter 4 

(1.18). 

In the remaining part of this case study, the adjustment of Observed Journey Times (OJT) 

and the application of the finite mixture model on the Centroid-to-Centroid adjusted OJTs 

(CCOJT) is elaborated only for the Central East – Green Park superstation-to-stat ion 

OD pair. Following the previous discussion on the exclusion of the Central – Jubilee  

(via Bond Street) route  from the reasonable route choice set, two reasonable routes are 

considered for this OD pair and hence route choice is estimated with a two-component 

finite mixture model. 

Obtaining Centroid-to-Centroid adjusted Observed Journey Times 

Similarly to the Liverpool Street – Green Park station-to-station OD pair, the sample 

size of OJTs was small also for the OD pairs from the other stations of the origin 

superstation (Figure 5-16). Among them, no OJT record was available for the Chancery 

Lane – Green Park OD pair, and only 1 observation for the St. Paul’s – Green Park  

OD pair. Obviously, in those cases there is less sense to talk about route choice 

probabilities. Therefore a larger and better distributed dataset needs to be obtained (cf. 

Section 5.4). 
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Figure 5-16 Distribution of Observed Journey Times (OJT) for station-to-station OD 

pairs for Central East– Green Park 

 

For the origin superstation, Central East, Liverpool Street station was selected as the 

superstation centroid (marked with  on Figure 5-15 and highlighted with green in 

Table 5-12) to make the comparison more straightforward with the case study on the 

station-to-station OD pair (cf. Section 5.4.1). The destination is a single station (Green 

Park), therefore it is the centroid itself. 

 

Table 5-12 Adjustment of OJTs according to on-board and access time  

for Central East– Green Park, superstation centroids are highlighted with green. 

Origin On-board time Access time 

𝐼𝑖 𝑡(𝐼𝑖−1)(𝐼𝑖)
𝑜𝑏  𝑡(𝐼1)(𝐼𝑖)

𝑜𝑏  𝑡(𝐼𝑖)(Ic)
𝑜𝑏  𝑡𝐼𝑖

𝑎𝑐𝑐  ∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑎𝑐𝑐  

 [min] [min] [min] [min] [min] 

Mile End   0 6 0.3 2.3 2 

Bethnal Green 3 3 3 0.4 2.2 2 

Liverpool Street 3 6 0 2.6 0.0 0 

St Pauls 3 9 -3 1.4 1.3 1 

Chancery Lane 2 11 -5 1.4 1.2 1 

 

Following this, the OJTs of the station-to-station OD pairs (𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)) were adjusted to 

superstation centroid according to equation (5-8) (cf. Section 5.4.2). This way the 

CCOJTs corresponding to each station-to-station OD pair (𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)) are obtained. 

Table 5-12 shows the necessary adjustments according to the on-board (𝑡(𝐼𝑖)(𝐼𝑐)
𝑜𝑏 ) and 

access (∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑎𝑐𝑐 ) time at the origin superstation. As the destination (Green Park) is a 

single station, there is no need to do adjustments according to on-board (𝑡(𝐽𝑗)(𝐽𝑐)
𝑜𝑏 ) and 

egress (∆𝑡(𝐽𝑗)(𝐽𝑐)
𝑒𝑔𝑟

) times at the destination. As all services on the Central line start before 

Mile End station, the frequency and hence the wait time is the same at all origin stations, 

there is no need to do adjustments according to wait time (∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑤𝑎𝑖𝑡 ). All adjustments values 

Mile End - Green Park Bethnal Green - Green Park Liverpool Street - Green Park St Paul's - Green Park
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are rounded to the nearest minute as the OJTs from Oyster data are given with that 

precision. 

The CCOJTs corresponding to each station-to-station OD pair ( 𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) ) were 

aggregated (cf. Section 5.4.3), resulting in a dataset (𝐶𝐶𝑂𝐽𝑇𝐼𝐽) with larger sample size 

(𝑛𝐼𝐽
𝐶𝐶𝑂𝐽𝑇 = 47) (see Figure 5-17). 

 

Evaluation of the benefits of the superstation representation 

The finite mixture model presented in Chapter 3 was applied on this larger dataset of 

CCOJTs. Within this dataset, one CCOJT value was considered as an outlier 

(42 minutes); because it is above the upper outer fence, which resulted 38.25 minutes (cf. 

Section 3.2.1). This valid dataset with 46 entries is denoted by 𝐶𝐶𝑂𝐽𝑇 0 (Figure 5-18). 
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Figure 5-17 Distribution of Centroid-to-Centroid adjusted Observed Journey Times  

for Central East– Green Park 

 

 

Figure 5-18 Valid dataset of Centroid-to-Centroid adjusted Observed Journey Times  

for Central East– Green Park 

Min 16.0

Max 36.0

Mean 22.4

Median 21.5

Mode 20.0

Stdev 4.7
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Based on the results of the route choice set generation algorithm (Figure 5-14), the 

Central East – Green Park superstation-to-station OD pair was modelled with two 

reasonable routes, hence route choice was estimated as a two-component (𝑁𝑅 = 2) finite 

mixture distribution. Therefore, the K-means clustering algorithm was applied on the 

𝑂𝐽𝑇 0 dataset with two clusters and with the settings described in Section 3.3.1 to produce 

the initial values for the EM algorithm. Using these initial values, the EM algorithm was 

run with different settings for the tolerance threshold (cf. Section 3.3.2). The more 

detailed results of initial values and tolerance thresholds are reported in Appendix F. 

From there it is understood, that the EM algorithm converges to a similar value for a range 

of tolerance thresholds both for the mean and for the component proportion. For the 

mixture component labelled with 𝑟 = 1, it starts plateauing from the tolerance threshold 

of 1e-07 around the value of 20.6 minutes for the mean and 80.3% for the component 

proportion (see Figure F-4 and Figure F-5). Similar properties could be observed for the 

other mixture component labelled with 𝑟 = 2. Due to these considerations, the finite 

mixture model was applied with the tolerance threshold of 1e-07 (Table 5-13). In this 

case, this is identical to the tolerance threshold chosen for the station-to-station OD pair 

(cf. Section 3.7). 

Table 5-13 Finite mixture model results, tolerance threshold = 1e-07  

for Central East– Green Park,  

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 

Label Mixture model 

𝑟 𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜎𝑟,𝐼𝐽

𝑀𝐼𝑋 𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋  

[] [min] [min] [%] 

1 20.6 2.3 80.3% 

2 29.5 4.7 19.7% 

 

Following this, the results of the finite mixture model were matched with the actual LU 

routes (cf. Section 3.4.1). As the centroid of the origin superstation coincides with the 

origin station of Case 2 in Chapter 3 (Liverpool Street) and the destination station is a 

single station (Green Park), the total journey times of the actual LU routes (𝑡𝑘 ,𝐼𝐽
𝑆𝐽𝑇

) are the 

same as the results in Table 3-11. The mixture components were matched with the actual 

LU routes in order of their journey times. 



 148 

 
 

Table 5-14 compares the mixture results for the Central East – Green Park  

superstation-to-station OD pair with the Liverpool Street – Green Park station-to-

station OD pair together with corresponding values of the actual LU routes. Here, the 

comparison could not be made with the results of Fu (2014) as in his work route choice 

was estimated as a three-component mixture distribution, while in this chapter it was 

treated with two components. Figure 5-19 presents the probability density functions of 

the mixture distribution fit on the CCOJT dataset as well as of the mixture components 

matched with the actual LU routes. 

Based on these results, the following was observed: The component proportion results of 

the mixture model for the Central East – Green Park superstation-to-station OD pair 

(80.3% and 19.7%) gave a good match to the RODS (cf. Section 3.6.3) route choice data 

(81.2% and 18.8%). The same for the Liverpool Street – Green Park station-to-station 

with two mixture components was 93.3% and 6.7%, which is very far from the actual 

results. 

However, the mean journey time results for the two components (20.6 and 29.5 minutes) 

did not show a good match to the actual LU journey times (21.3  and 24.0 minutes). A 

possible explanation for this could be, that the higher OJT observations (i.e. 35-36 

minutes) could be also attributed to a fail-to-board event, not necessarily to the longer 

route. 
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Table 5-14 Matching mixture model results with the actual London Underground routes for Central East– Green Park 

Purple: Mixture results, superstation OD pairs, Red: Mixture results, station OD pairs, Green: actual LU routes 

Mixture 

Label 

Journey Time (min) Route Choice (%) Route 

Label 

Route Matched 

Mixture Timetable Mixture RODS Line 1 Interchange 1 Line 2 

 Proposed  Proposed      

 Superstation Station  Superstation Station      

𝑟 𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜇𝑟,(𝐼𝑖)(𝐽𝑗)

𝑀𝐼𝑋  𝑡𝑘,𝐼𝐽
𝑆𝐽𝑇

 𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜔𝑟,(𝐼𝑖)(𝐽𝑗)

𝑀𝐼𝑋  𝜔𝑘,𝐼𝐽
𝑅𝑂𝐷𝑆  𝑘 𝑙 = 1 𝑠 = 1 𝑙 = 2 

1 20.6 20.6 21.3 80.3% 93.3% 81.2% 1 Central Oxford Circus Victoria 

2 29.5 35.5 24.0 19.7% 6.7% 18.8% 2 Central Holborn Piccadilly 
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Figure 5-19 Estimated (Gaussian) journey time distribution of the routes for Central East– Green Park, 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 
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Case 3 Jubilee West – Jubilee Central 

Creating superstations 

Case 3 represents the choice problem of those passengers whose origin is on the west end 

of the Jubilee line (between Stanmore and Kingsbury stations) and their destination is 

on the central part of the Jubilee line (between Bond Street and London Bridge  

stations). For them one alternative is to choose a direct service (Jubilee line) with many 

intermediate stops between Wembley Park and Finchley Road stations. The other 

alternatives are to change to an express service (Metropolitan line) at Wembley Park  

station, then change back to the Jubilee line either at Finchley Road or at Baker Street 

station. Additionally, to some destinations also changing to the Bakerloo line at Baker 

Street station can be a convenient alternative (see Figure 5-20). In order to further 

understand which of these route options are reasonable, the route choice set generation 

algorithm is applied with the appropriate considerations for the OD specific attribute cut-

offs (cf. Section 5.3.3). 

According to the Definition, both the origin and destination stations could be potentially 

grouped together, as for all reasonable routes of the corresponding OD pairs the first and 

the last journey leg is on the Jubilee line. Therefore, the candidate stations of the origin 

superstation are the stations between Stanmore and Kingsbury; and the candidate 

stations of the destination superstation are the stations between Bond Street and London 

Bridge.  

In order to decide whether these origin and destination stations can be grouped together 

– based on the Definition – the route choice set of each station-to-station OD pair (in total 

24 OD pairs, see Table 5-15) were compared by applying the route choice set generation 

algorithm with the appropriate considerations for the OD specific attribute cut-offs (cf. 

Section 5.3.3) on the extended LU inner zone network (cf. Figure 5-8). 

Results (Figure 5-21) show that for all OD pairs the shortest route (in terms of generalised 

costs) is the direct route (Jubilee line). The second shortest route almost for all OD pairs 

is the option to change to the Metropolitan line at Wembley Park station, then change 

back to the Jubilee line at Finchley Road station. The generalised cost of this route is 

1.14-1.21 times as the generalised cost of the shortest route depending on the OD pair. 

This route is still considered reasonable. The option to change to the Metropolitan line 

at Wembley Park station, then change back to the Jubilee line at Baker Street station 

has a much higher generalised cost (1.28-1.41 times the generalised cost of the shortest 
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route). This is because the interchange at Baker Street station requires walk time between 

the Jubilee and Metropolitan platforms, while at Finchley Road station the platforms 

are adjacent. 

 

 

Figure 5-20 Candidate stations for origin and destination superstation, Case 3 
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Table 5-15 OD pairs for which route choice set was compared, Case 3 

O\D Bond Street Green Park Westminster Waterloo Southwark London Bridge 

Stanmore 1 5 9 13 17 21 

Canons Park 2 6 10 14 18 22 

Queensbury 3 7 11 15 19 23 

Kingsbury 4 8 12 16 20 24 
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It can be easily understood that the route choice set is the same across the OD pairs, whose 

destination station is the same, but their origin station is different (e.g. OD 1-4). This can 

be explained with the fact that as the four origin stations (Stanmore, Canons Park , 

Queensbury and Kingsbury stations) are before the first interchange station; passengers 

having their origin at these stations have similar route choice patterns. Therefore these 

four stations can be grouped as the origin superstation (Rule 1), which is named 

Jubilee West (see Figure 5-22). 

 

Figure 5-21 Attribute cut-off according to generalised cost proportions, Case 3 

Regarding the destination stations, the question is more complex as there are many lines 

and hence route options within the LU inner zone. Results of the route choice set 

generation algorithm show that the route choice set to Waterloo station is different from 

the route choice set to other stations. This is because from Baker Street also the Bakerloo 



 155 

 
 

line is available to the Waterloo station. Due to this, Waterloo station is not included in 

the destination superstation (Rule 2). 

Results show that the route choice set is the same among the OD pairs with destination at 

other stations (Bond Street, Green Park, Westminster, Southwark and London 

Bridge). Therefore these five stations cold be grouped together as the destination 

superstation (Rule 2), which is named Jubilee Central (see Figure 5-22).  The fact of 

grouping these five station, without Waterloo, illustrates, that even though stations are 

not consecutive, they can be still grouped as superstations (Rule 3) 

 

 

Figure 5-22 The Jubilee West –  Jubilee Central superstation-to-superstation OD pair 

 

For the OD pairs with destination at Green Park station, the third shortest route is the 

option to change to the Bakerloo line at Baker Street station then to the Victoria line at 
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Oxford Circus station. This option have the advantage that at Oxford Circus station the 

platforms of the Bakerloo and Victoria lines are adjacent, and the egress time from the 

Victoria line at Green Park station is lower than from the Jubilee line. However as the 

generalised cost of this this option is 1.29-1.35 times as the generalised cost of the shortest 

route, it was not considered as a reasonable route and hence the Green Park station could 

be grouped with the other four stations as a destination superstation. 

In Case 3 the main OD specific attribute that influences 𝜌𝑐 is the presence of a direct 

route and an express line. As it was elucidated (cf. Section 4.7.4.2), when there is direct 

route for an OD pair, passengers consider other indirect routes reasonable only if they are 

much better in other attributes. In this specific case, this attribute is the presence of an 

express line: they can save in average 3 minutes of journey time while the interchanges 

are still acceptable as they happen between adjacent platforms. For this reason the indirect 

route could be considered reasonable, even though its generalised cost is 1.14-1.21 times 

the generalised cost of the shortest route. Based on these considerations, the attribute cut-

off (𝜌𝑐) was set as 1.22 (cf. Figure 5-21), which is slightly higher than the value obtained 

in Chapter 4 (1.18). 

Obtaining Centroid-to-Centroid adjusted Observed Journey Times 

For the Jubilee West and Jubilee Central origin and destination superstations, 

Stanmore and Bond Street stations were selected as the superstation centroid 

respectively (marked with  on Figure 5-22 and highlighted with green in Table 5-16 

and Table 5-17, cf. Section 5.4.1).  

The sample size of OJTs was small for individual OD station-to-station pairs, especially 

for those having their destination at Southwark (Figure 5-23). Therefore a larger and 

better distributed dataset needs to be obtained (cf. Section 5.4). 

 

Table 5-16 Adjustment of OJTs according to on-board and access times  

at Jubilee West origin superstation, centroids are highlighted with green 

Origin On-board time Access time 

𝐼𝑖 𝑡(𝐼𝑖−1)(𝐼𝑖)
𝑜𝑏  𝑡(𝐼1)(𝐼𝑖)

𝑜𝑏  𝑡(𝐼𝑖)(Ic)
𝑜𝑏  𝑡𝐼𝑖

𝑎𝑐𝑐  ∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑎𝑐𝑐  

 [min] [min] [min] [min] [min] 

Stanmore   0 0 0.6 0.0 0 
Canons Park 2 2 -2 0.4 0.2 0 
Queensbury 2 4 -4 0.6 0.0 0 
Kingsbury 3 7 -7 0.5 0.1 0 
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Table 5-17 Adjustment of OJTs according to on-board and egress times  

at Jubilee Central destination superstation, centroids are highlighted with green 

Destination On-board time Egress time 

𝐼𝑖 𝑡(𝐽𝑗−1)(𝐽𝑗)
𝑜𝑏  𝑡(𝐽1)(𝐽𝑗)

𝑜𝑏  𝑡(𝐽𝑗)(Jc)
𝑜𝑏  𝑡𝐽𝑗

𝑒𝑔𝑟
 ∆𝑡(𝐽𝑗)(𝐽𝑐)

𝑒𝑔𝑟
 

 [min] [min] [min] [min] [min] 

Bond Street   0 0 3.2 0.0 0 

Green Park 2 2 -2 3.5 -0.3 0 

Westminster 2 4 -4 2.7 0.5 1 

Southwark 2 6 -6 3.1 0.1 0 

London Bridge 2 8 -8 1.6 1.6 2 

 

Following this, the OJTs of the station-to-station OD pairs (𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)) were adjusted to 

superstation centroid according to equation (5-8) (cf. Section 5.4.2). This way the 

CCOJTs corresponding to each station-to-station OD pair (𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)) are obtained. 

Table 5-16 presents the necessary adjustments according to the on-board (𝑡(𝐼𝑖)(𝐼𝑐)
𝑜𝑏 ) and 

access (∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑎𝑐𝑐 ) time at the origin superstation (Jubilee West). Table 5-17 presents the 

necessary adjustments according to the on-board (𝑡(𝐽𝑗)(𝐽𝑐)
𝑜𝑏 ) and egress (∆𝑡(𝐽𝑗)(𝐽𝑐)

𝑒𝑔𝑟
) times at 

the destination superstation (Jubilee Central. As the Jubilee line has the same frequency 

and hence wait time across all the stations of the origin and destination superstation, there 

is no need to do adjustments according to wait time (∆𝑡(𝐼𝑖)(𝐼𝑐)
𝑤𝑎𝑖𝑡 ). All adjustments values are 

rounded to the nearest minute, as the OJTs from Oyster data are given with that precision.  

The CCOJTs corresponding to each station-to-station OD pair ( 𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) ) were 

aggregated (cf. Section 5.4.3), resulting in a dataset (𝐶𝐶𝑂𝐽𝑇𝐼𝐽) with larger sample size 

(𝑛𝐼𝐽
𝐶𝐶𝑂𝐽𝑇 = 286) (Figure 5-24). 
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Figure 5-23 Distribution of Observed Journey Times (OJT) for station-to-station OD pairs for Jubilee West– Jubilee Central 

 

Queensbury - Bond Street Queensbury - Green Park Queensbury - Westminster Queensbury - Southwark Queensbury - London Bridge

Kingsbury - Bond Street Kingsbury - Green Park Kingsbury - Westminster Kingsbury - Southwark Kingsbury - London Bridge

Stanmore - Bond Street Stanmore - Green Park Stanmore - Westminster Stanmore - Southwark Stanmore - London Bridge

Canons Park - Bond Street Canons Park - Green Park Canons Park - Westminster Canons Park - Southwark Canons Park - London Bridge
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Figure 5-24 Distribution of Centroid-to-Centroid adjusted OJTs  

for Jubilee West– Jubilee Central 

Evaluation of the superstation representation 

The finite mixture model presented in Chapter 3 was applied on this larger dataset of 

CCOJTs. Within this dataset all entries could be considered as valid data, because the 

upper outer fence (cf. Section 3.2.1) resulted 71 minutes, while the maximum CCOJT 

value is 70 minutes. This valid dataset is denoted by 𝐶𝐶𝑂𝐽𝑇 0. 

Based on the results of the route choice set generation algorithm (Figure 5-21), the 

Jubilee West – Jubilee Central superstation-to-superstation OD pair was modelled 

with two reasonable routes, hence route choice was estimated as a two-component (𝑁𝑅 =

2) finite mixture distribution. Therefore, the K-means clustering algorithm was applied 

on the 𝑂𝐽𝑇 0 dataset with two clusters and with the settings described in Section 3.3.1 to 

produce the initial values for the EM algorithm. Using these initial values, the EM 

algorithm was run with different settings for the tolerance threshold (cf. Section 3.3.2). 

The more detailed results of initial values and tolerance thresholds are reported in 

Appendix F. 

Min 31

Max 70

Mean 43.9

Median 42

Mode 38

Stdev 6.7
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From there it is understood, that although the EM algorithm converges to slightly different 

values for the two seeds when the tolerance threshold is set greater; at a smaller tolerance 

threshold, they converge to a similar value for both seeds: 41.5 minutes of mean journey 

time and 78.3% of proportion for component 1 at the tolerance threshold of 1e-08 (Figure  

F-7 and Figure F-8). Similar properties could be observed for the other mixture 

component (labelled with 𝑟 = 2 ). The log-likelihood exhibits a jump between the 

tolerance threshold of 1e-02 and 1e-03 (Figure F-9). Due to these considerations, the 

finite mixture model was applied with the tolerance threshold of 1e-08 (Table 5-18). 

 

Table 5-18 Finite mixture model results; with Seed = 1, Tolerance threshold = 1e-08  

for Jubilee West– Jubilee Central 

Label Mixture model 

𝑟 𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜎𝑟,𝐼𝐽

𝑀𝐼𝑋 𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋  

[] [min] [min] [%] 

1 41.5 3.6 78.5% 

2 52.9 7.8 21.5% 

 

Following this, the results of the finite mixture model were matched with the actual LU 

routes (cf. Section 3.4.1). The total journey times (𝑡𝑘,𝐼𝐽
𝑆𝐽𝑇

) of the actual LU routes between 

the superstation centroids: Stanmore and Bond Street were calculated based on equation 

(3-13). The results are presented in Table 5-19. The wait time at the origin stations and at 

the second interchange station (Finchley Road station) was considered according to 

equation (3-15). However at the first interchange station (Wembley Park), a different 

consideration was made: As the interchange happens between adjacent platforms and the 

station is above ground, passengers travelling on the Jubilee line may decide according 

to the following strategy: If they see that a Metropolitan service is approaching, they 

choose to interchange hoping that they will save time with the express service, otherwise, 

they stay on the Jubilee line as they are not likely to save time. For this reason, it is 

assumed that passengers on the route with the express service have shorter wait time than 

specified in equation (3-15): 1 minute. Considering the indirect route with shorter wait 

time makes it possible to model the two routes with a greater difference in their journey 

time (3 minutes). The mixture components were matched with the actual LU routes in 

order of their journey times. 
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Table 5-20 compares the mixture results for the Jubilee West – Jubilee Central  

superstation-to-superstation OD pair with the corresponding values of the actual LU 

routes. In this case the OJT sample size of the station-to-station OD pairs was so small 

(e.g. 35 OJTs for Stanmore – Bond Street) that the EM algorithm could not converge as 

it created an ill-conditioned covariance at iteration 1. Therefore it could not serve for 

comparison. As Fu (2014) did not examine this OD pair in his work, also that could not 

be used for validation. Figure 5-25 presents the probability density functions of the 

mixture distribution fit on the CCOJT dataset as well as of the mixture components 

matched with the actual LU routes. 

Based on these results, the following was observed: Matching the mixture components 

with the actual LU routes in order of their journey times it turned out, that the mixture 

component with lower mean (41.5 minutes) was matched with the indirect route (Jubilee  

– Metropolitan – Jubilee via Wembley Park and Finchley Road, 33.3 minutes). 

However that mixture component has a higher proportion (78.5%), while RODS data (cf. 

Section 3.6.3) shows, that only 11% of the passengers have chosen the indirect route. 

Another crucial point is that, the mixture component with the higher mean (52.9 minutes) 

it is much higher than the travel time of the routes understood from timetables (Section 

3.6.2).  

One explanation for these counterintuitive results is, that the higher OJT observations (i.e. 

50-70 minutes) could be also attributed to a fail-to-board event on the Metropolitan line 

at Wembley Park station. Apart from that – due to the longer distance between the origin 

and destination – many other events may occur that affect the reliability of travel times, 

such as service delays or longer walk times at crowded stations. Furthermore, as the 

RODS data have been collected over several years, it may not reflect the same time period 

as the journey times understood from timetable. 

Looking at the route choice problem from the practical prospective; even though the 

results in Table 5-20 show that on average passengers could save 3 minutes of travel 

time, by taking the indirect route; in this specific case, travel time can be saved, only if 

they can manage to change back at Finchley Road to the Jubilee train ahead of the one 

which they got off23. As this question would require schedule based approach, it is beyond 

the scope of this thesis. 

                                                                 
23 This question is more complex as some of the Jubilee trains start from Wembley Park, Willesden Green 

or West Hampstead. 
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Table 5-19 Journey time of actual London Underground routes between superstation centroids for Jubilee West– Jubilee Central 

Route Journey Time [min] 

𝑘 𝑙 = 1 𝑠 = 1 𝑙 = 2 𝑠 = 2 𝑙 = 3 𝑡1,𝑘
𝑎𝑐𝑐  𝑡1,𝑘

𝑤𝑎𝑖𝑡 𝑡1,𝑘
𝑜𝑏  𝑡1,𝑘

𝑖𝑐  𝑡2,𝑘
𝑤𝑎𝑖𝑡  𝑡2,𝑘

𝑜𝑏  𝑡1,𝑘
𝑖𝑐  𝑡2,𝑘

𝑤𝑎𝑖𝑡  𝑡2,𝑘
𝑜𝑏  𝑡2,𝑘

𝑒𝑔𝑟
 𝑡𝑘

𝑆𝐽𝑇
 

1 Jub         0.6 1.5 31.0             3.2 36.3 

2 Jub Wembley Park Met Finchley Road Jub 0.6 1.5 11.0 0.0 1.0 7.0 0.0 1.0 8.0 3.2 33.3 

 

Table 5-20 Matching mixture model results with the actual London Underground routes for Jubilee West– Jubilee Central 

Purple: Mixture results, superstation OD pairs, Green: actual LU routes 

Mixture 
Label 

Journey Time (min) Route Choice (%) Route 
Label 

Route Matched 

Mixture Timetable Mixture RODS Line 1 Interchange 1 Line 2 Interchange 2 Line 3 

𝑟 𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋  𝑡𝑘,𝐼𝐽

𝑆𝐽𝑇
 𝜔𝑟,𝐼𝐽

𝑀𝐼𝑋  𝜔𝑘,𝐼𝐽
𝑅𝑂𝐷𝑆  𝑘 𝑙 = 1 𝑠 = 1 𝑙 = 2 𝑠 = 2 𝑙 = 3 

1 41.5 33.3 78.5% 11.0% 2 Jub Wembley Park Met Finchley Road Jub 

2 52.9 36.3 21.5% 89.0% 1 Jub         
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Figure 5-25 Estimated (Gaussian) journey time distribution of the routes for Jubilee West – Jubilee Central, 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 
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5.7 Discussion and summary 

5.7.1 Creating superstations 

The main objective in this chapter was to overcome the issue of data availability raised in 

Section 3.8.2: As in many cases only a small OJT sample is available for station-to-station 

OD pairs, the finite mixture model applied on that dataset is unable to give reliable results. 

For this, it was proposed to group those stations from/to which passengers are expected 

to have similar route choice patterns. This group of stations are called superstations in 

this thesis. 

Literature review in this section has shown that, although there have been existing studies 

where the concept of working with groups of stations was examined, they proposed this 

idea for the objective of getting a better understanding on the OD demand matrix of a 

public transport network. In order to comply this objective the vast majority of these 

studies dealt with grouping stations in the proximity of activity locations or transport 

hubs. The novelty in this thesis is to introduce the concept of working with groups of 

stations for a different objective: to overcome the data availability issues for route choice 

estimation. As the objective is different, the methodology of existing studies could not be 

applied straightforward, but new rules were set for station grouping.  

Creating origin and destination superstations is equivalent to group the OD pairs with 

similar route choice patterns. For this, the route choice set generation model (cf. Section 

5.3.3) was applied to find the OD pairs with the same route choice set. The novelty of the 

route choice set generation algorithm in this chapter with respect to the one in Chapter 4 

is that instead of applying a single cut-off value (i.e. generalised cost proportion of  1.18), 

it was discussed how the cut off values vary in function of certain OD specific attributes. 

Through the case studies (cf. Section 5.6) it was understood that a lower attribute cut-off 

is expected for OD pairs with longer minimum journey time as well as for those which 

have more available directions at the origin and/or destination station (Case 2). On the 

other hand, a higher attribute cut-off is expected when the choice of passengers is between 

a direct route and an express line (Case 3). Based on this, the number of reasonable routes 

was also identified, which is equivalent to the number of mixture components.  

In these case studies 4-5 stations could be grouped as origin or destination superstations, 

which are not necessarily consecutive stations. Case 2 exhibited a specific example of 

grouping 20 stations as the origin superstation (i.e. the Central East Outer superstation 
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on the Central line, before the first interchange station: Stratford). In Case 3, both for 

the origin and destination stations could be grouped as superstations: 4 and 5 stations 

respectively. This gave the benefit to aggregate the adjusted OJTs of 4*5=20 station-to-

station OD pairs. 

Until now the superstation representation was examined only for certain OD pairs. In 

order to extend this concept for network problems it would be necessary to find all OD 

pairs, for which the superstation representation is applicable. As the LU network is very 

complex, this could not be done just by looking at the map, but an appropriate algorithm 

is required (see Section 8.2.2).  

5.7.2 Obtaining Centroid-to-Centroid adjusted Observed Journey Times 

Once the OD pairs with similar route choice patterns were grouped, their OJTs were 

adjusted to superstation centroids and then aggregated. This way a larger and better 

distributed sample of CCOJTs were obtained. Depending on the case study OD pair, the 

superstation representation could increase the number of available observations in 

different manner. 

In Case 1, 54 OJT records were available for the Victoria – Holborn station-to-station 

OD pair. Grouping the Victoria station with 3 other stations, this sample size could be 

increased to 147 CCOJT records (2.72 times) for the Victoria South – Holborn 

superstation-to-superstation OD pair. The great benefit in this case that also the Brixton 

station could be included in the superstation, from which a larger number of OJT records 

(77) were available. 

In Case 2, 30 OJT records were available for the Liverpool Street – Green Park station-

to-station OD pair. Here, station grouping could increase this sample size only to 47 

CCOJT records (1.57 times) for the Central East – Green Park superstation- to-

superstation OD pair as there were not too many OJT records available from other 

stations. 

In Case 3, the great advantage was, that both the origin and destination stations could be 

grouped as superstations; and hence while only up to 35 OJT records were available for 

station-to-station OD pairs, the sample size of CCOJT records could be increased to 286 

for the Jubilee West – Jubilee Central superstation-to-superstation OD pair. 
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The obvious advantage of the spatial aggregation of OJT records was to demonstrate that 

a larger and better distributed dataset can be achieved also when only the open data is 

available for the proposed research. 

5.7.3 Application of the finite mixture model and evaluation of the 

superstation representation 

The data availability issues with the finite mixture model (cf. Section 3.8.2) in case of 

very few or not well distributed OJT data sample meant that the EM algorithm could not 

converge as it created an ill-conditioned covariance. This occurred for some of the station-

to-station OD pairs of Case 3. Obtaining a larger sample of CCOJTs for the superstation-

to-superstation OD pairs could overcome this issue as the EM algorithm could converge  

for all three case study OD pairs. 

Another issue with the finite mixture model was, that it may converge to more possible 

solutions depending on the initial value (seed of the random number generator) and 

tolerance threshold; and often these values are quite far from each other. For example, 

when looking at the Victoria – Holborn station-to-station OD pair in Case 1, when the 

tolerance threshold was set to 1e-05, the proportion of component 1 (𝜔1
𝑀𝐼𝑋 ) resulted 

79.8% for seed 1 and 35.0% for seed 2. The same (𝜔1,(𝐼𝑖)(𝐽𝑗)
𝑀𝐼𝑋 ) for the Victoria South – 

Holborn superstation-to-station OD pair resulted 75.8% and 63.8% respectively. This 

shows that the larger sample of CCOJTs gave a larger and better distributed dataset, and 

applying the finite mixture model on that dataset could give more stable route choice 

results.  

Comparing the mixture results with the actual LU routes it was understood that with the 

superstation representation the estimated mixture component proportions are closer to the 

expected (RODS) route choice proportions of the LU routes, than it was for the station-

to-station OD pairs. For example, in Case 2, the mixture model gave the results of 93.3% 

and 6.7% for the proportion of the two components for the Liverpool Street – Green 

Park station-to-station OD pair, while the same for the Central East – Green Park  

superstation-to-station OD pair was 80.3% and 19.7% respectively. Comparing this to the 

RODS results (81.2% and 18.8%) showed that with the superstation representation the 

route choice estimates were closer to the expected values. 

However, in all cases the mean journey times of mixture component 2 are much higher 

than the total journey time of the corresponding route (e.g. 52.9 minutes vs 36.3 minutes 
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for Case 3). A possible explanation for this could be, that the higher OJT observations 

could be also attributed to a fail-to-board event, not necessarily to the longer route.  

As fail-to-board delays often occur in the LU network during the AM peak, and as it has 

a considerable impact on the finite mixture model results; this question will be further 

analysed in Chapter 6 and Chapter 7. 
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Chapter 6  

Consideration of fail-to-board delays at the origin station 

6.1 Introduction 

In Chapter 3, following the concept in Fu (2014) the connection was established between 

the Observed Journey Time (OJT) of a passenger and his/her chosen route; and hence the 

finite mixture model was formulated to estimate route choice from smart card data. The 

model was initially applied for station-to-station OD pairs, and then – to overcome the 

issue of data availability – extended for superstation-to-superstation OD pairs in Chapter 

5. 

In those model specifications, capacity constraints have not yet been explicit ly 

considered. However, it is obvious that capacity constraints do influence both the journey 

time (i.e. strict capacity constraints: fail-to-board delays) and route choice preferences 

(i.e. soft capacity constraints: discomfort due to congestion). In the context of the London 

Underground (LU), this issue is quite relevant as certain stations and lines are extremely 

congested in the AM peak (Schmöcker et al., 2008).  

This chapter addresses the issue how capacity constraints can be included in the process 

of OJT adjustment focusing on strict capacity constraints: fail-to-board delay. In Section 

5.4, the methodology for OJT adjustment to superstation centroids was presented. There, 

it was not yet taken into consideration that at different origin stations passengers may 

experience different fail-to-board delays. Therefore aggregating OJTs that contain 

different fail-to-board delays could bring bias into the Centroid-to-Centroid adjusted OJT 

(CCOJT) dataset and to the estimated route choice results. 

To address this issue the rest of the chapter is structured as follows: Firstly, in Section 

6.2 the modelling approaches for capacity constraints are reviewed; then in Section 6.3 

the distribution of fail-to-board delays at a platform of a metro station is estimated with 

the selected method. The methodology for the adjustment of OJTs according to fail-to-

board delays is presented in Section 6.4. 

Following this, the proposed method is applied on the case study OD pairs. Section 6.5 

describes the data sources for understanding fail-to-board delays, and the case studies are 

presented in Section 6.6. Section 0 concludes the chapter with the evaluation of the 

applied methodologies, obtained results and with the issues raised for further research. 
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6.2 Literature review on considering capacity constraints in route 

choice estimation 

As elucidated in Section 2.2, route choice estimation is a sub-model in Transit 

Assignment Models (TAM) (Figure 2-1). In case passenger flows are below the capacity 

of transit links (i.e. TAMs without capacity constraints), route choice does not depend on 

the passenger flow; and hence it can be solved as distinct OD problems. However, when 

passenger flow is near or above the capacity of transit links (i.e. TAMs with capacity 

constraints), route choice is a function of passenger flows. As also passenger flows are 

resulting from the route choice of different OD pairs, it cannot be solved any more as 

distinct OD problems, but it should be treated as a network problem (Gentile and Noekel, 

2016). This section reviews TAMs starting from the basic approaches, then focusing on 

how capacity constraints and the dynamics of the passenger flow are considered in 

different modelling approaches. 

In the recent decades, the problem of transit assignment has been widely explored, 

especially regarding the consideration of capacity constraints (Fu et al., 2012). The two 

pillars of this vast amount of literature are the two main modelling approaches: One 

approach is the frequency-based (Nguyen and Pallottino, 1988; Spiess and Florian, 1989), 

where each line segment is represented as a link in the network model; and the frequency 

of the lines can be interpreted as a type of link cost. The other approach is the schedule-

based approach (Tong, 1986; Hickman and Bernstein, 1997; Tong and Wong, 1999; 

Nuzzolo et al., 2001), where, each vehicle-run is represented as a link in the network 

model according to the schedule (space time graph). 

In order to include capacity constraints within the frequency-based approach, Cea and 

Fernández (1993); Wu (1994); Cominetti and Correa (2001); Cepeda et al. (2006) worked 

with the concept of effective frequencies; while Kurauchi et al. (2003) introduced the 

concept of fail-to-board probabilities. Within the schedule-based approach the 

consideration of capacity constraints is more straightforward, because passengers failing 

to board can be simply assigned to the next vehicle-run link (Nuzzolo et al., 2012), 

however this requires a more detailed representation of the network. 

To close this gap between the frequency and schedule-based TAMs, (Schmöcker et al., 

2008) proposed the quasi-dynamic frequency-based transit assignment models, where the 

whole modelling period (e.g. AM peak) is divided to smaller time intervals (e.g. 

15 minutes) and passengers failing to board in one time period are assigned to the next 
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one. Meschini et al. (2007) used the frequency-based approach in the context of dynamic 

traffic assignment and applied it on multimodal (road and public transport) networks. 

Teklu (2007) developed a stochastic process approach to include strict capacity 

constraints with day-to-day dynamics in the model  

Apart from the above discussed strict capacity constraints, when passengers fail to board, 

they also experience discomfort, even when they are able to board, but they travel on 

crowded trains without getting a seat (Schmöcker et al., 2011). This discomfort can be 

expressed by the crowding multiplier, which was evaluated for various metro networks 

around the world (Whelan and Crockett, 2009; Hörcher et al., 2017; Tirachini et al., 

2017). These studies found that overcrowded trains can cause significant increase in the 

generalised costs of routes: up to 1.7 times for sitting and up to 2.2 times for standing 

passengers. 

In this chapter the quasi-dynamic frequency-based approach (Schmöcker et al., 2008) is 

selected to estimate boarding and fail-to-board flows. Although the schedule-based 

approach (Nuzzolo et al., 2001) could give explicit estimates of fail-to-board delays as 

they model it at the level of individual trains; the quasi-dynamic frequency-based 

approach fits better the previously set objectives of route choice estimation (cf. Section 

2.4) and is consistent with the available dataset: 

In Section 2.4 it was established that the one of the main objectives of this thesis is to 

explore, at what extent route choice can be modelled with smart card data at the OD level, 

in a frequency based context, without the need of going down to the level of individua l 

passengers and trains. In line with this objective, the finite mixture model (Fu, 2014) was 

chosen for route choice estimation, which uses only the OJT distribution of passengers, 

but not their individual smart card records. Therefore, following this logical stream would 

imply, that if route choice is estimated with the finite mixture model in the frequency-

based context, also fail-to-board delays should be modelled accordingly. 

The data on line loads and station flows (cf. Section 6.5.1) is given for each 15 minute 

time interval, but the actual flow on each individual train is unknown. Therefore applying 

the quasi-dynamic frequency-based approach with the same time interval duration as the 

available data, would be its most straightforward application. 

6.3 Inferring distribution of fail-to-board delays at platforms 

In this chapter – in addition to what was presented in the previous chapters – the following 

notation is used: 



 172 

 
 

 

Variable identifiers 

𝑡 Index of (a 15 minute) time interval 

 

Variables 

As the problem of fail-to-board delays is formulated for one station platform, the variable 

identifiers according to lines and stations are omitted in this chapter. 

𝑞𝑡
𝑟𝑢𝑛_𝑖𝑛 On-board flow from the previous station in time interval 𝑡 (passengers/15 

minutes) 

𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 Dwell flow in time interval 𝑡 (passengers/15 minutes) 

𝑞𝑡
𝑎𝑙𝑖𝑔ℎ𝑡

 Alighting flow in time interval 𝑡 (passengers/15 minutes) 

𝑞𝑡
𝑒𝑔𝑟  Egress flow in time interval 𝑡 (passengers/15 minutes) 

𝑞𝑡
𝑎𝑐𝑐 Access flow in time interval 𝑡 (passengers/15 minutes) 

𝑞𝑡
𝑤𝑎𝑖𝑡 Wait flow in time interval 𝑡 (passengers/15 minutes) 

𝑞𝑡
𝑏𝑜𝑎𝑟𝑑  Boarding flow in time interval 𝑡 (passengers/15 minutes) 

𝑞𝑡
𝑓𝑎𝑖𝑙 Fail-to-board flow in time interval 𝑡 (passengers/15 minutes) 

𝑞𝑡
𝑟𝑢𝑛_𝑜𝑢𝑡  On-board flow to the next station in time interval 𝑡  (passengers/15 

minutes) 

𝑇𝐼𝐷 Time Interval Duration (15 minutes) 

𝜅 Capacity of trains (passengers/train) 

𝑝𝑡
𝑓𝑎𝑖𝑙

 Fail-to-board probability in time interval 𝑡 

𝑡𝑡
𝑓𝑎𝑖𝑙  Average fail-to-board delay in time interval 𝑡 (minutes) 

𝛿𝑓𝑎𝑖𝑙 Random variable of fail-to-board delay 
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𝜏 A possible outcome of fail-to-board delay, rounded to integer minutes 𝜏 =

{1, 2, … ,𝑇𝐼𝐷} 

𝑇 Total number of (15 minute) 𝑡 time intervals within the AM peak 

𝜑(𝐼𝑖)(𝐼𝑐)
𝜏  Index of a record within the sorted 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) sample, according to the 

proportion of the distribution of fail-to-board delays 𝜏. 

𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
𝜏  Subset of 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) according to the proportion of the distribution of fail-

to-board delays 𝜏  

𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
𝜏,𝑓𝑎𝑖𝑙  𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)

𝜏  dataset adjusted with the fail-to-board delay of 𝜏 minutes 

𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
 𝑓𝑎𝑖𝑙  All 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)

𝜏,𝑓𝑎𝑖𝑙
 subsets aggregated and sorted 

𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙

 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
 𝑓𝑎𝑖𝑙

 adjusted to superstation centroid and aggregated  

𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙,0  Valid dataset within 𝐶𝐶𝑂𝐽𝑇𝐼𝐽

 𝑓𝑎𝑖𝑙
 

𝜓𝑡
𝜏  Dummy variable,𝜓𝑡

𝜏=1 if 𝑡𝑡
𝑓𝑎𝑖𝑙 = 𝜏, otherwise 𝜓𝑡

𝜏=0 

In this section, firstly the representation of a station platform is explained (see Section 

6.3.1), which is followed by the application of the quasi-dynamic frequency based 

approach (cf. Section 6.2) to calculate boarding and fail-to-board passenger flow at each 

platform (see Section 6.3.2). From this, the distribution of fail-to-board delays in a time 

period can be inferred (see Section 6.3.3). 

6.3.1 Representation of a station platform 

In Section 4.4.1, the representation of a metro network with nodes and links was 

described (cf. Figure 4-3). That network representation was used for calculating the 

generalised costs of routes and for pathfinding in models without capacity constraints. 

Within that context a station platform could be represented with two nodes (i.e. on-board 

and platform); and all the relevant time components (i.e. on-board and wait) could be 

defined as the links connecting these nodes. However, when working with passenger 

flows and considering strict capacity constraints (i.e. fail-to-board events), the definit ion 

of additional nodes are required (Schmöcker et al., 2008) (Figure 6-1): 
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 Arrive node: Represents the arrival of the train, here passengers decide to alight 

or remain on the train  

 Platform node: Represents passengers waiting for trains 

 Attempt node: Represents passengers attempting to board the train, the outcome 

of this event can be either boarding or fail to board 

 Depart node: Represents the departure of the train, here passengers already on 

train join with the newly boarded passengers 

These nodes are connected with the following links, each of them having their 

corresponding link flows: 

Run-in link (𝑞𝑡
𝑟𝑢𝑛_𝑖𝑛) Represents passengers on-board the train, from the depart 

node of the previous station to the arrive node of the current 

station 

Dwell link (𝑞𝑡
𝑑𝑤𝑒𝑙𝑙) Represents passengers staying on train, from the arrive 

node to the depart node 

Alight link (𝑞𝑡
𝑎𝑙𝑖𝑔ℎ𝑡

) Represents alighting passengers, from the arrive node to 

the platform node 

Egress link (𝑞𝑡
𝑒𝑔𝑟

) Represents passengers egressing the platform, includ ing 

also those who interchange to other lines 

Access link (𝑞𝑡
𝑎𝑐𝑐) Represents passengers accessing the platform, includ ing 

also those who interchange from other lines 

Wait link (𝑞𝑡
𝑤𝑎𝑖𝑡) Represents passengers waiting at the platform, from 

platform node to attempt node 

Board link (𝑞𝑡
𝑏𝑜𝑎𝑟𝑑) Represents boarding passengers, from attempt node to 

depart node 

Fail link (𝑞𝑡
𝑓𝑎𝑖𝑙

) Represents fail-to-board passengers, from attempt node 

back to the platform node 
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Run-out 

link 

(𝑞𝑡
𝑟𝑢𝑛_𝑜𝑢𝑡) Represents passengers on-board the train from the depart 

node of the current station to the arrive node of the next 

station 

 

 

Figure 6-1 Representation of a station platform with one metro line, based on (Schmöcker 

et al., 2008) 

 

The reason why here the arrive and depart nodes are distinguished is that for the 

calculation of fail-to-board flows it is necessary to know the passengers who stay on-

board (i.e. dwell flow, 𝑞𝑡
𝑑𝑤𝑒𝑙𝑙) after the others alighted (see Section 6.3.2) and this can be 

represented as a link between the arrive and depart node. This would not be possible with 

the earlier network representation (Figure 4-3), where a single on-board node was 

considered. For similar purposes, instead of having a single platform node, an additiona l 

attempt node was considered to distinguish the boarding (𝑞𝑡
𝑏𝑜𝑎𝑟𝑑) and fail-to-board (𝑞𝑡

𝑓𝑎𝑖𝑙
) 

flows.  

 

6.3.2 Boarding and fail-to-board flows  

In the quasi-dynamic frequency-based context, capacity problems occur in time interva l 

𝑡, when (Figure 6-1): 
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 𝑞𝑡
𝑎𝑐𝑐 + 𝑞𝑡

𝑑𝑤𝑒𝑙𝑙 >
𝜅 ∙ 𝑓

4
 (6-1) 

where the access flow (𝑞𝑡
𝑎𝑐𝑐) and the line capacity (𝜅 ∙ 𝑓) can be understood from the data 

sources described in Section 6.5. It is important to note that as the capacity of trains (𝜅) 

is given in the unit of passengers/train and the frequency of trains (𝑓) in trains/hour, it 

needs to be divided by 4 so that they could be compared to the flows which are given in 

the unit of passengers/15 minutes. 

For the dwell flow (𝑞𝑡
𝑑𝑤𝑒𝑙𝑙), the following considerations can be made (cf. Figure 6-1): 

As capacity constraints are less likely to affect alighting passengers, it can be assumed 

that: 

 𝑞𝑡
𝑎𝑙𝑖𝑔ℎ𝑡 = 𝑞𝑡

𝑒𝑔𝑟
 (6-2) 

Furthermore, at the arrive node: 

 𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 = 𝑞𝑡

𝑟𝑢𝑛_𝑖𝑛 − 𝑞𝑡
𝑎𝑙𝑖𝑔ℎ𝑡

 (6-3) 

where the egress flow (𝑞𝑡
𝑒𝑔𝑟

) and the on-board flow from the previous station (𝑞𝑡
𝑟𝑢𝑛_𝑖𝑛) 

can be known from the data sources described in Section 6.5. 

At stations, where capacity problems occur at least in one time interval 𝑡 (see formula 

(6-1)), it is necessary to account for boarding and fail-to-board passenger flows. In this 

thesis the focus is on the AM peak (7:00-10:00), where in the first time interval (𝑡 = 1), 

no capacity problems occur, therefore the number of passengers waiting to board is 

identical to the access flow: 

 𝑞1
𝑤𝑎𝑖𝑡 = 𝑞1

𝑎𝑐𝑐 (6-4) 

Following the concept in Schmöcker et al. (2008) (cf. Figure 6-1), boarding and fail-to-

board flows can be calculated as: 

 𝑞𝑡
𝑏𝑜𝑎𝑟𝑑 = 𝑚𝑖𝑛 (𝑞𝑡

𝑤𝑎𝑖𝑡  ,
𝜅 ∙ 𝑓

4
− 𝑞𝑡

𝑑𝑤𝑒𝑙𝑙) (6-5) 

and 

 𝑞𝑡
𝑓𝑎𝑖𝑙 = 𝑞𝑡

𝑤𝑎𝑖𝑡 − 𝑞𝑡
𝑏𝑜𝑎𝑟𝑑 (6-6) 

Passengers who fail to board in time interval 𝑡 are assigned to the waiting passengers of 

the next time interval (𝑡 + 1): 
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 𝑞𝑡+1
𝑤𝑎𝑖𝑡 = 𝑞𝑡+1

𝑎𝑐𝑐 + 𝑞𝑡
𝑓𝑎𝑖𝑙

 (6-7) 

Once the flows were calculated for the first time interval, equations (6-2), (6-3), (6-5), 

(6-6) and (6-7) are repeated for the next time intervals (𝑡 = 2.3, …) until the last time 

interval (𝑡 = 𝑇). 

6.3.3 Distribution of fail -to-board delays within a time period 

Knowing the boarding and fail-to-board flows in each time interval 𝑡, the next step is to 

infer fail-to-board delays. Based on the literature review in Section 6.2, it seemed more 

straightforward to follow the concept of fail-to-board probabilities (Kurauchi et al., 2003; 

Schmöcker et al., 2008). In this setting, fail-to-board probability in each time interval 𝑡 

can be interpreted as: 

 𝑝𝑡
𝑓𝑎𝑖𝑙 =

𝑞𝑡
𝑓𝑎𝑖𝑙

𝑞𝑡
𝑤𝑎𝑖𝑡

 (6-8) 

And from that, fail-to-board delays in each time interval 𝑡 can be inferred as: 

 𝑡𝑡
𝑓𝑎𝑖𝑙

= 𝑇𝐼𝐷 ∙ 𝑝𝑡
𝑓𝑎𝑖𝑙

 (6-9) 

Looking into equation (6-9), the connection between fail-to-board probabilities and 

delays can be understood deeper. In case no passengers fail to board in time interval 𝑡 

(𝑝𝑡
𝑓𝑎𝑖𝑙 = 0), the average fail-to-board delay is zero (𝑡𝑡

𝑓𝑎𝑖𝑙 = 0). On the contrary, if all 

passengers fail to board in time interval 𝑡 (𝑝𝑡
𝑓𝑎𝑖𝑙 = 1) the average fail-to-board delay is 

equal to the duration of the time interval (𝑡𝑡
𝑓𝑎𝑖𝑙

= 𝑇𝐼𝐷, i.e. 15 minutes). For any 𝑝𝑡
𝑓𝑎𝑖𝑙

 

value between 0 and 1 will give the average fail-to-board delay for time interval 𝑡 

proportional to the fail-to-board probability. 

With equation (6-9), it is assumed, that no passengers delay more than the duration of 

time interval (𝑇𝐼𝐷). This can be realistic, as the 15 minute duration of a time interval can 

be considered large enough to exclude the possibility that a passenger would fail-to-board 

even in the next time interval. This is in line with Schmöcker et al. (2008), who explained 

the reason for choosing the duration of the time interval 15 minutes to introduce fairly 

large time intervals for which flows can be assumed relatively constant.  

Looking at all 𝑇  time intervals within the AM peak, the distribution of fail-to-board 

delays can be understood. Let 𝜏 denote a possible outcome of fail-to-board delay, rounded 

to integer minutes 𝜏 = {1, 2, … , 𝑇𝐼𝐷}. Furthermore, let: 
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 𝜓𝑡
𝜏 = {1, 𝑖𝑓 𝑡𝑡

𝑓𝑎𝑖𝑙 = 𝜏 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (6-10) 

The probability that in the AM peak the fail-to-board delay (𝑡𝑓𝑎𝑖𝑙 ) takes up a certain 𝜏 

value, can be calculated as: 

 𝑃𝑟(𝛿𝑓𝑎𝑖𝑙 = 𝜏) =
∑ 𝑞𝑡

𝑎𝑐𝑐𝑇
𝑡=1 ∙ 𝜓𝑡

𝜏

∑ 𝑞𝑡
𝑎𝑐𝑐𝑇

𝑡=1

 (6-11) 

And the cumulative probability for each 𝜏 value is: 

 𝑃𝑟(𝛿𝑓𝑎𝑖𝑙 ≤ 𝜏) = ∑ 𝑃𝑟(𝛿𝑓𝑎𝑖𝑙 = 𝜏)

𝜏

1

 (6-12) 

These probabilities serve as the basis for OJT adjustment (see Section 6.4). 

6.4 Adjustment of OJTs according to fail-to-board delays 

The key assumption for OJT adjustment is that the fail-to-board delays within the OJT 

records follow the same distribution as the fail-to-board delays understood from RODS 

data (cf. equation (6-12)). Making this assumption and looking at one station-to-station 

OD pair (𝐼𝑖)(𝐽𝑗), let 𝜑(𝐼𝑖)(𝐼𝑐)
𝜏  denote the index of a record within the sorted 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) 

sample for which is true, that: 

 
𝜑(𝐼𝑖)(𝐼𝑐)

𝜏

𝑛
(𝐼𝑖)(𝐼𝑐)

𝑂𝐽𝑇 = 𝑃𝑟(𝛿𝑓𝑎𝑖𝑙 ≤ 𝜏) (6-13) 

Where 𝑛(𝐼𝑖)(𝐼𝑐)
𝑂𝐽𝑇

 denotes the sample size of the 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) dataset. From this 𝜑(𝐼𝑖)(𝐼𝑐)
𝜏  can 

be calculated, and – being the index of an OJT record – is rounded to the nearest integer.  

Based on this, for each 𝜏 outcome of fail-to-board delay, 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
𝜏  can be defined, which 

is a subset within the 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) dataset, where the upper limit is the 𝜑(𝐼𝑖)(𝐼𝑐)
𝜏  index and 

the lower limit corresponds to the index of the upper limit of the previous subset plus 1. 

This way for each record 𝑞 in the 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
𝜏  subset the adjusted OJT can be calculated as: 

 𝑂𝐽𝑇𝑞,(𝐼𝑖)(𝐽𝑗)
𝜏,𝑓𝑎𝑖𝑙 = 𝑂𝐽𝑇𝑞,(𝐼𝑖)(𝐽𝑗)

𝜏 − 𝜏 (6-14) 

Having obtained the adjusted 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
𝜏,𝑓𝑎𝑖𝑙

 values for each subset, they can be aggregated 

as: 



 179 

 
 

 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
 𝑓𝑎𝑖𝑙 = ⋃ 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)

𝜏,𝑓𝑎𝑖𝑙

𝑇𝐼𝐷

𝜏=1

 (6-15) 

Once 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
 𝑓𝑎𝑖𝑙

 was calculated for each station-to-station OD pair, these can be adjusted 

to superstation centroid and hence aggregated as described in Section 5.4, this way 

obtaining 𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙

. Following this, the finite mixture model is applied on the 

𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙

 distribution as described in Section 5.5. These methods are presented through 

the case studies in Section 6.6. 

6.5 Data sources for understanding crowding on board and at 

platforms 

In order to understand fail-to-board delays, it is necessary to obtain further information 

on the crowding levels on board and at platforms, which is a function of passenger flows 

(see Section 6.5.1) and of line capacities (see Section 6.5.2). 

6.5.1 Passenger flows 

Passenger flow on each line segment (on-board flow) and station passageway (AEI flow) 

is available from the TfL open data website24. It is produced as an output of RODS data 

(cf. Section 3.6.3), which was reconciled to passenger counts. 

Knowing these deficiencies of manual surveys, the ideal would be to fully rely on 

automated data sources in passenger flow modelling: using exclusively smart card data 

both for the OD demand and for route choice and solving it as a transit assignment model 

for the whole network (Hörcher et al., 2017). However, this would require to run the 

model on the whole LU and the connecting rail network (cf. Section 4.3), which is beyond 

the scope of this thesis. 

Another option would be to understand crowding from load-weigh data of platforms and 

trains. In the context of the case study network not all LU lines are equipped with train 

load weighing systems and none of the platforms have sensors for passenger count. 

Therefore, it would not be feasible to apply this type of data in the LU. 

Knowing the complexity of the problem and the unavailability of load-weigh data in the 

LU, at this stage of research, it is considered justifiable to use RODS data to gain init ia l 

                                                                 
24 https://tfl.gov.uk/info-for/open-data-users/ 

https://tfl.gov.uk/info-for/open-data-users/
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information on crowding. As a further research, this model can be extended for a larger 

network and can go toward the exclusive use of smart card data. 

6.5.2 Line capacities 

The capacity of an LU line segment can be calculated as 𝜅 ∙ 𝑓 . In this setting, the total 

capacity of the trains on each LU line (𝜅) can be understood from the rolling stock 

information available from the TfL website25; and the frequency of each LU line (𝑓) is 

known from timetables (Section 3.6.2.1). 

6.6 Case studies on the London Underground 

This section continues the analysis on the superstation-to-superstation OD pairs presented 

in Section 5.6 (cf. Figure 5-8 and Table 5-6) introducing the problem of strict capacity 

constraints (fail-to-board delay). Firstly, it examines for all the three cases, whether the 

fail-to-board delay occurs at the origin or at the interchange station. As for Case 1 and 

Case 2, it occurs at the origin station, the corresponding OJT adjustment is discussed in 

this section. For Case 3 – as it occurs at the interchange station – the rest of the case study 

is discussed in Section 7.7 (see Table 6-1). 

Among the first two cases Case 2 is special as there are three stations where fail-to-board 

delays occur, at each station with different intensity. Further from the city centre (Mile 

End), the fail-to-board delays are less severe as trains are not completely full. One station 

before the LU inner zone (Bethnal Green), the situation is the most critical, as the trains 

are already full, there are not many alighting passengers, but there are much more who 

are willing to board. The Liverpool Street station exhibits another type of problem as it 

is a destination for those who travel to the City of London, but at the same time being also 

a rail terminus, there are still many passengers who interchange here from other rail 

services. Therefore, the challenge in this case is to do the OJT adjustment in a way to 

consider the different intensities of fail-to-board delays at different stations.  

  

                                                                 
25 https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock 

https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock
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Table 6-1 A summary of the case studies on the LU network, adjustment according to 

fail-to-board delays 

Case Superstation OD pair Fail-to-board event 

 Origin Destination Type Line Station 
Max 

Delay 

 𝐼 𝐽     

1 
Victoria 

South 
Holborn Origin 

Victoria  

(NB) 
Victoria 6 

2 
Central 

East 

Green 

Park 
Origin 

Central  

(WB) 

Mile End 7 

Bethnal Green 15 

Liverpool Street 10 

3 
Jubilee 

West 

Jubilee 

Central 
Interchange 

Metropolitan 

(EB) 
Wembley Park 7 
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Case 1: Victoria South - Holborn 

Fail-to-board delays at station platforms 

Looking at the Victoria South – Holborn superstation-to-station OD pair (cf. Figure  

5-10), it is checked whether capacity problems occur at any stations of the origin 

superstation (Brixton, Vauxhall, Pimlico and Victoria stations) as well as at the 

interchange stations of each reasonable route (Oxford Circus and Green Park stations). 

The line capacities for each LU line of the case study OD pair (i.e. Victoria, Central and 

Piccadilly lines) are calculated from the data described in Section 6.5.2 (see Table 6-2) 

and compared to the link flows (cf. Section 6.5.1) according to formula (6-1). 

 

Table 6-2 Line capacities for Case 1, source:  

https://tfl.gov.uk/travel-information/timetables/ 

https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock 

Line Station Frequency Train Capacity Line Capacity 

  𝑓 𝜅 
𝜅 ∙ 𝑓

4
 

  [trains/hour] [pax/trains] [pax/15 min] 

Victoria Victoria 35 864 7560 

Central Oxford Circus 26 892 5798 

Piccadilly Green Park 24 684 4104 

 

Figure 6-2 presents the dwell (𝑞𝑡
𝑑𝑤𝑒𝑙𝑙) and access (𝑞𝑡

𝑎𝑐𝑐) link flows in the most congested 

time interval of the AM peak (08:30-08:45) for the stations of the Victoria South origin 

superstation. Among these stations, capacity problems occur only at Victoria station 

(𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 + 𝑞𝑡

𝑎𝑐𝑐 = 1.11 ∙
𝜅∙𝑓

4
). At Vauxhall and Pimlico stations the flow is very near the 

line capacity (0.93 and 0.97 times respectively), however it was assumed, that all 

passengers are willing to board until they find available space, therefore there is no need 

to estimate fail-to-board delays at these stations. At Brixton station, being the line 

terminus, clearly no capacity problems occur (𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 + 𝑞𝑡

𝑎𝑐𝑐 = 0.39 ∙
𝜅∙𝑓

4
). Similarly, no 

capacity problems occur for boarding at interchange stations (Oxford Circus and Green 

Park), where the flow is much below the capacity (0.50 and 0.45 times respectively). 

This can be easily understood, as these stations are top destinations where most 

https://tfl.gov.uk/travel-information/timetables/
https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock
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passengers alight therefore is sufficient space for newly boarding passengers. As the 

capacity problems occur at the origin station, it is necessary to do OJT adjustments 

according to fail-to-board delays (cf. Section 6.4).  

 

 

Figure 6-2 Passenger flow and line capacity on the northbound Victoria line, at the 

stations of the Victoria South origin supertation, peak of peak (08:30-08:45) 

 

Focusing on the station with capacity problems (i.e. Victoria station, Victoria line 

northbound), 𝑞𝑡
𝑑𝑤𝑒𝑙𝑙, 𝑞𝑡

𝑏𝑜𝑎𝑟𝑑 and 𝑞𝑡
𝑓𝑎𝑖𝑙

 flows are calculated for each time interval 𝑡 using 

equations (6-2)-(6-7). Presenting these flows on Figure 6-3, it was understood, that 

capacity problems occur between 8:15 and 9:15. In this figure the border line between the 

column of 𝑞𝑡
𝑏𝑜𝑎𝑟𝑑 (grey) and 𝑞𝑡

𝑓𝑎𝑖𝑙
 (orange) corresponds to the line capacity (

𝜅∙𝑓

4
= 7560 

passengers/15 minutes). 

From these flows 𝑝𝑡
𝑓𝑎𝑖𝑙

 and 𝑡𝑡
𝑓𝑎𝑖𝑙

 were calculated in the congested time intervals (8:15-

9:15) according to equations (6-8) and (6-9) and presented the results in Table 6-3. The 

value of 𝑡𝑡
𝑓𝑎𝑖𝑙

 is rounded to integer minutes, because they serve for the adjustment of 

OJTs, which are also given with the same precision. Looking at the time intervals with 

capacity problems (8:15-9:15), there is an average of 3 minutes delay at the beginning 

(8:15-8:30) and at the end (9:00-9:15) of the period of congestion; and an even higher 

average delay of 6 minutes in between (8:30-9:00) (highlighted with yellow). These 
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results were also presented on a histogram to describe the distribution of fail-to-board 

delays in the AM peak (Figure 6-4). 

 

 

Figure 6-3 Boarding and fail-to-board flows at Victoria station (Victoria line 

northbound) in the AM peak (7:00-10:00) 

 

Table 6-3 Average fail to board delays at Victoria station (Victoria line northbound)  in 

the congested time intervals of the AM peak (8:15-9:15) 

Variable 
Value in time interval 𝒕 

 
8:00-815 8:15-8:30 8:30-8:45 8:45-9:00 9:00-9:15 9:15-9:30 

𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 4691 5438 5637 5183 4421 3630 

𝑞𝑡
𝑎𝑐𝑐 2477 2628 2732 2628 2453 2227 

𝑞𝑡
𝑤𝑎𝑖𝑡 2477 2628 3238 3943 4019 3107 

𝑞𝑡
𝑏𝑜𝑎𝑟𝑑 2477 2122 1923 2377 3139 3107 

𝑞𝑡
𝑓𝑎𝑖𝑙

 0 506 1315 1566 880 0 

𝑝𝑡
𝑓𝑎𝑖𝑙

 0.00 0.19 0.41 0.40 0.22 0.00 

𝑡𝑡
𝑓𝑎𝑖𝑙

 0 3 6 6 3 0 
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Figure 6-4 Distribution of fail-to-board delays at Victoria station (Victoria line 

northbound)  in the AM peak (7:00-10:00) 

 

Adjustment of OJTs according to fail-to-board delays 

Following the methodology in Section 6.4, based on the fail-to-board delay distribution 

(Figure 6-4), the 𝜑(𝐼𝑖)(𝐼𝑐)
𝜏  indices (equation (6-13)) and hence the 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)

𝜏  subsets as 

well as their adjustment, 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
𝜏,𝑓𝑎𝑖𝑙

 (equation (6-14)) were calculated for each outcome 

of fail-to-board delay value 𝜏 for the station, where capacity problems occur (Victoria 

station, northbound Victoria line, see Table 6-4 and Figure 6-5). 

 

Table 6-4 Subsets of the OJT dataset according to fail-to-board delays at Victoria 

station (Victoria line northbound) in the AM peak (7:00-10:00) 

𝜏 𝑃𝑟(𝛿𝑓𝑎𝑖𝑙 ≤ 𝜏) 𝜑(𝐼𝑖)(𝐼𝑐)
𝜏  𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)

𝜏,𝑓𝑎𝑖𝑙
 

   min max 

0 0.59 32 12 20 

3 0.79 43 20 22 

6 1.00 54 22 31 
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Figure 6-5 Adjustment of OJTs according to fail-to board delays at Victoria station 

a) Original OJTs from Oyster data and proposed adjustments, b) Adjusted OJTs  

 

As no capacity problems occur at other stations of the origin superstation (Brixton, 

Vauxhall and Pimlico) (cf. Figure 6-2), their OJTs remain unchanged. Following this, 

these OJTs and the OJTs of other stations were adjusted to the superstation centroid 

(Victoria station) and then aggregated spatially (cf. Section 5.4). This way 𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙

 

was obtained (Figure 6-6). 

b) 

a) 
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Figure 6-6 Distribution of Centroid-to-Centroid adjusted OJTs considering fail-to-board 

delays for Victoria South– Holborn 

 

Evaluation of the OJT adjustment according to fail-to-board delays 

The finite mixture model presented in Chapter 3 was applied on CCOJT dataset adjusted 

according to fail-to-board delays. A more detailed description of the settings and of the 

results are presented in Appendix G. Based on that, the chosen settings for the finite 

mixture model are:  

 Seed = 1 

 Tolerance threshold = 1e-06 

The results with these settings are presented in Table 6-5. Following this, the results of 

the finite mixture model were matched with the actual LU routes (cf. Section 3.4.1). 

Table 6-6 compares the mixture results for the Victoria South – Holborn superstation-

to-station OD pair with the two types of OJT adjustments: 

 Only to superstation centroids (Chapter 5) 

 To superstation centroid and according to fail-to-board delays (Chapter 6) 

Min 12.0

Max 30.0

Mean 19.2

Median 19.0

Mode 19.0

Stdev 3.2

𝑛𝐼𝐽
𝐶𝐶𝑂𝐽𝑇

= 147 
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These are further compared with the earlier results presented in Table 5-10. Figure 6-7 

presents the probability density functions of the mixture distribution fit on the CCOJT 

dataset adjusted according to fail-to-board delays as well as of the mixture components 

matched with the actual LU routes. 

 

Table 6-5 Finite mixture model results; with Seed = 1, Tolerance threshold = 1e-06  

for Victoria South – Holborn 

OJTs adjusted to superstation centroid and according to fail-to-board delays 

Label Mixture model 

𝑟 𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜎𝑟,𝐼𝐽

𝑀𝐼𝑋 𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋  

[] [min] [min] [%] 

1 17.9 2.0 74.8% 

2 22.9 3.0 25.2% 

 

Based on these results, the following was observed: The finite mixture model applied on 

the CCOJTs of the Victoria South – Holborn superstation-to-station OD pair adjusted 

according to fail-to-board delays gave closer results for the mean (𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋) and for the 

component proportion (𝜔𝑟 ,𝐼𝐽
𝑀𝐼𝑋) to the actual LU values (𝑡𝑘,(𝐼𝑐)(𝐽𝑐) and 𝜔𝑘,𝐼𝐽

𝑅𝑂𝐷𝑆 ) than the 

results of Chapter 5 (cf. Table 6-6). This is because the exceedingly high OJTs attributed 

to the fail-to-board delays at Victoria station were replaced with lower values (cf. Section 

6.4). 

However, it was understood, that the proportion of mixture component 1 (𝜔1,𝐼𝐽
𝑀𝐼𝑋) exhibited 

a bigger jump between tolerance thresholds 1e-06 and 1e-07, when it was applied on the 

𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙

 distribution (from 74.8% to 55.9%, cf. Figure G-2), than the results of 

Chapter 5 (from 70.8% to 67.9%, Figure F-2), but it was not as big as the results of 

Chapter 3 (from 79.8% to 33.5%, cf. Figure 3-6). Therefore, even though the 

adjustments according to fail-to-board delays can give closer results to the actual LU 

values for certain settings of the seed and tolerance threshold; it can adversely affect the 

convergence of the model.  
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Table 6-6 Matching mixture model results with the actual London Underground routes for Victoria South– Holborn 

Blue: Mixture results, adjustment: superstation centroid and fail-to-board delays  Purple: Mixture results, , adjustment: superstation centroid only,   

Red: Mixture results, station OD pairs, Yellow: Fu (2014), Green: actual LU routes 

Mixture 
Label 

Journey Time (min) Route Choice (%) Route 
Label 

Route Matched 

Mixture Timetable Mixture RODS Line 1 Interchange 1 Line 2 

 Proposed Fu  Proposed Fu      

 FTB SS Station  FTB SS Station      

𝑟 𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜇𝑟,(𝐼𝑖)(𝐽𝑗)

𝑀𝐼𝑋  𝑡𝑘,𝐼𝐽
𝑆𝐽𝑇

 𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜔𝑟,(𝐼𝑖)(𝐽𝑗)

𝑀𝐼𝑋  𝜔𝑘,𝐼𝐽
𝑅𝑂𝐷𝑆  𝑘 𝑙 = 1 𝑠 = 1 𝑙 = 1 

1 17.9 18.2 17.6 16.6 17.6 74.8% 70.8% 79.8% 75.4% 74.8% 1 Vic Oxford Circus Cen 

2 22.9 23.7 26.1 22.2 20.4 25.2% 29.2% 20.2% 24.6% 25.2% 2 Vic Green Park Pic 
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Figure 6-7 Estimated (Gaussian) journey time distribution of the routes for Victoria South – Holborn, 

OJTs adjusted to superstation centroid and according to fail-to-board delays 
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Case 2 Central East – Green Park 

Fail-to-board delays at station platforms 

Looking at the Central East – Green Park superstation-to-station OD pair (cf. Figure  

5-15), it is checked whether capacity problems occur at any stations of the origin 

superstation (Mile End, Bethnal Green, Liverpool Street, St Paul’s and Chancery 

Lane stations) as well as at the interchange stations of each reasonable route (Oxford 

Circus and Holborn stations). The line capacities for each LU line of the case study OD 

pair (Central, Victoria, and Piccadilly lines) are calculated from the data described in 

Section 6.5.2 (see Table 6-7). These capacities were compared to the link flows (cf. 

Section 6.5.1) according to formula (6-1). 

 

Table 6-7 Line capacities for Case 2, source:  

https://tfl.gov.uk/travel-information/timetables/ 

https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock 

Line Station Frequency Train Capacity Line Capacity 

  𝑓 𝜅 
𝜅 ∙ 𝑓

4
 

  [trains/hour] [pax/trains] [pax/15 min] 

Central Liverpool Street 32 892 7136 

Victoria Oxford Circus 30 864 6480 

Piccadilly Holborn 20 684 3420 

 

In accordance with Schmöcker et al. (2008), it was understood, that westbound Central 

line is extremely crowded between Mile End and Liverpool Street stations. This was 

also confirmed by an initial analysis to run the model with the actual capacity of trains 

(7136 passengers/15 minutes); and results showed that in many time intervals it occurs 

that trains already arrive at Bethnal Green station full and nobody is able to board. Under 

these circumstances of extreme crowding, it is expected that passengers choose to board 

the trains above their nominal capacity, experiencing this way greater discomfort.  

To quantify the relationship between the actual and nominal capacity is not a 

straightforward task due to the lack of the relevant information. Whelan and Crockett 

(2009) investigated the relationship between the load factor and crowding multiplier in 

London and South East England. According to their results, when the trains are at their 

https://tfl.gov.uk/travel-information/timetables/
https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock
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nominal capacity (load factor: 100%), the crowding multiplier for standing passengers is 

1.50: while it is 1.67, when the load factor is 120%. These results could be confronted 

with the increase in the generalised cost of the route due to the delay, which occurs when 

passengers choose not to board the trains at their nominal capacity. Based on these 

considerations, it was assumed that in the LU passengers choose the board up to the 10% 

more than the nominal capacity of the trains, to avoid further delays. Therefore the actual 

capacity of the Central line was considered 7850 passengers/15 minutes. 

Figure 6-14 presents the dwell (𝑞𝑡
𝑑𝑤𝑒𝑙𝑙) and access (𝑞𝑡

𝑎𝑐𝑐) link flows in the most congested 

time interval of the AM peak (08:30-08:45) for the stations of the Central East origin 

superstation. Among these stations, capacity problems occur at Mile End, Bethnal 

Green and Liverpool Street stations, where the flow (𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 + 𝑞𝑡

𝑎𝑐𝑐) is 1.07, 1.13 and 

1.11 times the actual capacity respectively. As for the interchange stations (Oxford 

Circus and Holborn), even though they are crowded, the flow (𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 + 𝑞𝑡

𝑎𝑐𝑐 ) still 

remains below the line capacity (0.89 and 0.92 times respectively). As the capacity 

problems occur at the origin stations, it is necessary to do OJT adjustments according to 

fail-to-board delays (cf. Section 6.4).  

 

 

Figure 6-8 Passenger flow and line capacity on the westbound Central line, at the 

stations of the Central East origin supertation, peak of peak (08:30-08:45) 
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Focusing on the stations with capacity problems (i.e. Central line westbound platform at 

Mile End, Bethnal Green and Liverpool Street stations), 𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 , 𝑞𝑡

𝑏𝑜𝑎𝑟𝑑  and 𝑞𝑡
𝑓𝑎𝑖𝑙

 

flows are calculated for each time interval 𝑡 using equations (6-2)-(6-7) . Presenting these 

flows on Figure 6-9 it was understood that capacity problems occur between 8:15 and 

9:15. In this figure the border line between the column of 𝑞𝑡
𝑏𝑜𝑎𝑟𝑑  (grey) and 𝑞𝑡

𝑓𝑎𝑖𝑙
 

(orange) corresponds to the actual line capacity ( 1.1 ∙
(𝜅∙𝑓)

4
 = 7850 

passengers/15 minutes). 

From these flows 𝑝𝑡
𝑓𝑎𝑖𝑙

 and 𝑡𝑡
𝑓𝑎𝑖𝑙

 were calculated in the congested time intervals (8:15-

9:15) according to equations (6-8) and (6-9) and the results are presented in Table 6-8. 

The value of 𝑡𝑡
𝑓𝑎𝑖𝑙

 is rounded to integer minutes, because they serve for the adjustment of 

OJTs, which are also given with the same precision. These results were also presented on 

a histogram to describe the distribution of fail-to-board delays in the AM peak (Figure  

6-10). 
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Figure 6-9 Boarding and fail-to-board flows at Mile End (a), Bethnal Green (b) and 

Liverpool Street (c) stations (Central line westbound) in the AM peak (7:00-10:00) 

a) 

b) 

c) 
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Table 6-8 Average fail to board delays at Mile End (a), Bethnal Green (b) and 

Liverpool Street (c) stations (Central line westbound) in the congested time intervals of 

the AM peak (8:15-9:15) 

a)       

Variable Value in time interval 𝒕 

 8:00-8:15 8:15-8:30 8:30-8:45 8:45-9:00 9:00-9:15 9:15-9:30 

𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 6084 6646 6493 5609 4537 3565 

𝑞𝑡
𝑎𝑐𝑐 1668 1896 1932 1768 1520 1244 

𝑞𝑡
𝑤𝑎𝑖𝑡 1668 1896 2624 3036 2315 1244 

𝑞𝑡
𝑏𝑜𝑎𝑟𝑑 1668 1204 1357 2241 2315 1244 

𝑞𝑡
𝑓𝑎𝑖𝑙

 0 692 1268 795 0 0 

𝑝𝑡
𝑓𝑎𝑖𝑙

 0.00 0.37 0.48 0.26 0.00 0.00 

𝑡𝑡
𝑓𝑎𝑖𝑙

 0 5 7 4 0 0 

       

b) 
      

Variable Value in time interval 𝒕 

 8:00-8:15 8:15-8:30 8:30-8:45 8:45-9:00 9:00-9:15 9:15-9:30 

𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 7111 7850 7850 7494 6241 4969 

𝑞𝑡
𝑎𝑐𝑐 569 602 569 535 530 502 

𝑞𝑡
𝑤𝑎𝑖𝑡 569 602 1171 1706 1880 774 

𝑞𝑡
𝑏𝑜𝑎𝑟𝑑 569 0 0 356 1609 774 

𝑞𝑡
𝑓𝑎𝑖𝑙

 0 602 1171 1350 272 0 

𝑝𝑡
𝑓𝑎𝑖𝑙

 0.00 1.00 1.00 0.79 0.14 0.00 

𝑡𝑡
𝑓𝑎𝑖𝑙

 0 15 15 12 2 0 

       
c) 

      

Variable Value in time interval 𝒕 

 8:00-8:15 8:15-8:30 8:30-8:45 8:45-9:00 9:00-9:15 9:15-9:30 

𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 6135 6982 7230 6682 5672 4597 

𝑞𝑡
𝑎𝑐𝑐 1245 1404 1477 1397 1226 1045 

𝑞𝑡
𝑤𝑎𝑖𝑡 1245 1404 2013 2791 2849 1717 

𝑞𝑡
𝑏𝑜𝑎𝑟𝑑 1245 868 620 1168 2178 1717 

𝑞𝑡
𝑓𝑎𝑖𝑙

 0 536 1394 1623 672 0 

𝑝𝑡
𝑓𝑎𝑖𝑙

 0.00 0.38 0.69 0.58 0.24 0.00 

𝑡𝑡
𝑓𝑎𝑖𝑙

 0 6 10 9 4 0 
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Figure 6-10 Distribution of fail-to-board delays at Mile End (a), Bethnal Green (b) and 

Liverpool Street (c) stations (Central line westbound) in the AM peak (7:00-10:00) 

a) 

b) 

c) 
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Adjustment of OJTs according to fail-to-board delays 

Following the methodology in Section 6.4, based on the fail-to-board delay distribution 

(Figure 6-10), the 𝜑(𝐼𝑖)(𝐼𝑐)
𝜏  indices (equation (6-13)) and hence the 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)

𝜏  subsets as 

well as their adjustment, 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
𝜏,𝑓𝑎𝑖𝑙

 (equation (6-14)) were calculated for each outcome 

of fail-to-board delay value 𝜏 for the stations where capacity problems occur (i.e. Mile 

End, Bethnal Green and Liverpool Street stations, westbound Central line see Table  

6-9 and Figure 6-11).  

 

Table 6-9 Subsets of the OJT dataset according to fail-to-board delays at Mile End (a), 

Bethnal Green (b) and Liverpool Street (c) stations (Central line westbound) in the 

AM peak (7:00-10:00) 

a) 
   

𝜏 𝑃𝑟(𝛿𝑓𝑎𝑖𝑙 ≤ 𝜏) 𝜑(𝐼𝑖)(𝐼𝑐)
𝜏  𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)

𝜏,𝑓𝑎𝑖𝑙
 

   min max 

0 0.67 5 23 28 

4 0.77 6 30 30 

5 0.89 7 34 34 

7 1.00 8 39 39 

     
b) 

    

𝜏 𝑃𝑟(𝛿𝑓𝑎𝑖𝑙 ≤ 𝜏) 𝜑(𝐼𝑖)(𝐼𝑐)
𝜏  𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)

𝜏,𝑓𝑎𝑖𝑙
 

   min max 

0 0.59 5 20 24 

2 0.69 6 29 29 

12 0.79 6 29 29 

15 1.00 8 30 43 

     
c) 

    

𝜏 𝑃𝑟(𝛿𝑓𝑎𝑖𝑙 ≤ 𝜏) 𝜑(𝐼𝑖)(𝐼𝑐)
𝜏  𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)

𝜏,𝑓𝑎𝑖𝑙
 

   min max 

0 0.57 17 16 21 

4 0.67 20 22 22 

6 0.78 23 23 23 

9 0.88 27 24 25 

10 1.00 30 27 36 
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Figure 6-11 Adjustment of OJTs according to fail-to board delays at Mile End (a), Bethnal Green (b) and Liverpool Street (c) stations (Central line 

westbound) in the AM peak (7:00-10:00); above:  Original OJTs from Oyster data and proposed adjustments, below: Adjusted OJTs 
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Each subset of 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
𝜏,𝑓𝑎𝑖𝑙

 were aggregated to obtain the adjusted 𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)
 𝑓𝑎𝑖𝑙

 dataset for 

station-to-station OD pairs (equation (6-15)). Following this, these OJTs were further 

adjusted to superstation centroid (i.e. Liverpool Street station) and then aggregated 

spatially as described in Section 5.4. This way the adjusted 𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙

 was obtained for 

the Central East – Green Park superstation-to-station OD pair (see Figure 6-12). 

 

 

Figure 6-12 Distribution of Centroid-to-Centroid adjusted OJTs considering fail-to-board 

delays for Central East– Green Park 

 

Evaluation of the OJT adjustment according to fail-to-board delays 

The finite mixture model presented in Chapter 3 was applied on CCOJT dataset adjusted 

according to fail-to-board delays. A more detailed description of the settings and of the 

results are presented in Appendix G. Based on that, the chosen settings for the finite 

mixture model are:  

 Seed = 1 

 Tolerance threshold = 1e-07 

Min 14.0

Max 28.0

Mean 19.7

Median 19.0

Mode 20.0

Stdev 3.3



 200 

 
 

The results with these settings are presented in Table 6-10. Following this, the results of 

the finite mixture model were matched with the actual LU routes (cf. Section 3.4.1). 

Table 6-11 compares the mixture results for the Central East – Green Park  

superstation-to-station OD pair with the two types of OJT adjustments: 

 Only to superstation centroids (Chapter 5) 

 To superstation centroid and according to fail-to-board delays (Chapter 6) 

These are further compared with the earlier results presented in Table 5-14. Figure 6-13 

presents the probability density functions of the mixture distribution fit on the CCOJT 

dataset adjusted according to fail-to-board delays as well as of the mixture components 

matched with the actual LU routes. 

 

Table 6-10 Finite mixture model results; with Seed = 1, Tolerance threshold = 1e-07  

for Central East– Green Park 

OJTs adjusted to superstation centroid and according to fail-to-board delays 

Label Mixture model 

𝑟 𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜎𝑟,𝐼𝐽

𝑀𝐼𝑋 𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋  

[] [min] [min] [%] 

1 18.7 2.3 86.2% 

2 25.9 1.3 13.8% 

 

Based on these results, the following was observed: The finite mixture model applied on 

the CCOJTs of the Central East – Green Park superstation-to-station OD pair adjusted 

also according to fail-to-board delays gave closer results to the journey time of the actual 

LU route for the mean of component 2 (𝜇2,𝐼𝐽
𝑀𝐼𝑋); however this journey time value was quite 

low (18.7 minutes). Regarding the component proportion, it was understood that the 

results of the finite mixture model were closer to the RODS results of the actual LU routes 

when the OJTs were adjusted only to superstation centroid, but not according to fail-to-

board delays (Chapter 5). 

Furthermore, it was understood that when the OJTs were adjusted only to superstation 

centroid (Chapter 5), the K-means clustering algorithm gave the same initial values for 

all seeds, and there was a only a slight difference between the results of the finite mixture 

model for different tolerance thresholds (cf. Figure F-4 and Figure F-5). However, with 

the OJTs adjusted also according to fail-to-board delays (Chapter 6), the finite mixture 
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model converged to different roots for different seeds, when the tolerance threshold was 

set 1e-04 or greater; and a greater jump was observable between the tolerance threshold 

of 1e-03 and 1e-04 for seed 1 and between 1e-04 and 1e-05 for seed 2 (Figure G-4 and 

Figure G-5). 

Overall, from Case 2 it was understood that when the OJTs were adjusted only to 

superstation centroid, but not according to fail-to-board delays (Chapter 5); could give 

more reliable estimates, both in terms of closeness of results to the actual LU routes and 

in terms of the convergence of the finite mixture model. One possible reason why the 

adjustment according to fail-to-board delays (Chapter 6) could not improve the model 

estimates is that the assumption of the 10% additional capacity with respect to the nomina l 

capacity of trains was still underestimating the actual willingness of passengers to board 

overcrowded trains to avoid fail-to-board delays. Supposing a higher additional capacity 

could have improved the model estimates. 

Another possible reason for not obtaining closer results with the adjustment according to 

fail-to-board delays is, that the sample size for Case 2 was very small (47 CCOJT 

records), which was still insufficient to represent well the actual journey time distribution 

of passengers.  
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Table 6-11 Matching mixture model results with the actual London Underground routes for Central East– Green Park 

Blue: Mixture results, adjustment: superstation centroid and fail-to-board delays  Purple: Mixture results, , adjustment: superstation centroid only,   

Red: Mixture results, station OD pairs, Green: actual LU routes 

Mixture 
Label 

Journey Time Route Choice (%) Route 
Label 

Route Matched 

Mixture Timetable Mixture RODS Line 1 Interchange 1 Line 2 

 Proposed  Proposed      

 FTB SS Station  FTB SS Station      

𝑟 𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜇𝑟,(𝐼𝑖)(𝐽𝑗)

𝑀𝐼𝑋  𝑡𝑘,𝐼𝐽
𝑆𝐽𝑇

 𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜔𝑟,(𝐼𝑖)(𝐽𝑗)

𝑀𝐼𝑋  𝜔𝑘,𝐼𝐽
𝑅𝑂𝐷𝑆  𝑘 𝑙 = 1 𝑠 = 1 𝑙 = 1 

1 18.7 20.6 20.6 22.3 86.2% 80.3% 93.3% 81.2% 1 Cen Oxford Circus Vic 

2 25.9 29.5 35.5 25.5 13.8% 19.7% 6.7% 18.8% 2 Cen Holborn Pic 
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Figure 6-13 Estimated (Gaussian) journey time distribution of the routes for Central East– Green Park, 

OJTs adjusted to superstation centroid and according to fail-to-board delays 
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Case 3 Jubilee West – Jubilee Central 

Fail-to-board delays at station platforms 

Looking at the Jubilee West – Jubilee Central superstation-to-superstation OD pair (cf. 

Figure 5-22) it is checked whether capacity problems occur at any stations of the origin 

superstation (Stanmore, Canons Park, Queensbury and Kingsbury stations) as well as 

at the interchange stations of each reasonable route Wembley Park and Finchley Road 

stations). The line capacities for each LU line of the case study OD pair (Jubilee and 

Metropolitan lines) are calculated from the data described in Section 6.5.2 (see Table  

6-12) and compared to the link flows (cf. Section 6.5.1) according to formula (6-1). 

 

Table 6-12 Line capacities for Case 3 source:  

https://tfl.gov.uk/travel-information/timetables/ 

https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock 

Line Station Frequency Train capacity Line Capacity 

  
𝑓 𝜅 

𝜅 ∙ 𝑓

4
 

  [trains/hour] [pax/trains] [pax/15 min] 

Jub Stanmore 20 817 4085 

Met Wembley Park 12 1044 3132 

Jub Finchley Road 30 817 6128 

 

Figure 6-14 presents the dwell (𝑞𝑡
𝑑𝑤𝑒𝑙𝑙) and access (𝑞𝑡

𝑎𝑐𝑐) link flows in the most congested 

time interval of the AM peak (08:00-08:15) for the stations of the Jubilee West origin 

superstation. It can be understood that no capacity problems occur for any of these stations 

as they are near the line terminus. Among them that maximum passenger flow is at 

Kingsbury station, which is far below the line capacity (𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 + 𝑞𝑡

𝑎𝑐𝑐 = 0.34 ∙
𝜅∙𝑓

4
). 

  

https://tfl.gov.uk/travel-information/timetables/
https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/rolling-stock
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Among the interchange stations of the reasonable routes, the capacity problems occur 

only at Wembley Park station for the Metropolitan line26 (𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 + 𝑞𝑡

𝑎𝑐𝑐 = 1.08 ∙
𝜅 ∙𝑓

4
 

between 08:15 and 08:30). At Finchley Road station, the flows for the Jubilee are high, 

but still under the line capacity (𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 + 𝑞𝑡

𝑎𝑐𝑐 = 0.75 ∙
𝜅∙𝑓

4
, between 08:30 and 08:45). 

As the capacity problems occur at the interchange station, the OJT adjustment applied for 

the previous cases is not relevant here, as it is not explicitly known, whether an OJT 

record belongs to the congested route or not. To address this issue, the methodology of 

Chapter 7 is discussed first, and then the corresponding case study is presented in Section 

7.7. Here, the case study is described until finding the fail-to-board delays at Wembley 

Park station. 

 

 

Figure 6-14 Passenger flow and line capacity on the eastbound Jubilee line, at the 

stations of the Jubilee West origin supertation, peak of peak (08:00-08:15) 

 

At Wembley Park station, (Metropolitan line eastbound), 𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 , 𝑞𝑡

𝑏𝑜𝑎𝑟𝑑  and 𝑞𝑡
𝑓𝑎𝑖𝑙

 

flows are calculated for each time interval 𝑡 using equations (6-2)-(6-7) . Presenting these 

                                                                 
26 Some of the Metropolitan services stop at Wembley Park station, some of them pass through without 

stopping. From RODS data (cf. Section 6.5.1), only the “line load” before Wembley Park station can be 

known, but it is not distinguished on what type of Metropolitan service it is. In this thesis, it was assumed, 

that 2/3 of the total “line load” is on services that stop at Wembley Park. 

http://content.tfl.gov.uk/amersham-guide-dec18.pdf  

http://content.tfl.gov.uk/amersham-guide-dec18.pdf
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flows on Figure 6-15, it was understood that capacity problems occur only between 8:00 

and 8:45. There the border line between the column of 𝑞𝑡
𝑏𝑜𝑎𝑟𝑑 (grey) and 𝑞𝑡

𝑓𝑎𝑖𝑙
 (orange) 

corresponds to the line capacity (𝜅 ∙ 𝑓 = 3132 passengers/15 minutes). 

 

 

Figure 6-15 Boarding and fail-to-board flows at Wembley Park station (Metropolitan 

line eastbound) in the AM peak (7:00-10:00) 

 

Table 6-13 Average fail to board delays at Wembley Park station (Metropolitan line 

eastbound)  in the congested time intervals of the AM peak (8:00-8:45) 

Variable Value in time interval 𝒕 

 8:00-8:15 8:15-8:30 8:30-8:45 8:45-9:00 8:00-8:15 

𝑞𝑡
𝑑𝑤𝑒𝑙𝑙 2245 2631 2705 2426 1941 

𝑞𝑡
𝑎𝑐𝑐 573 655 675 605 491 

𝑞𝑡
𝑤𝑎𝑖𝑡 573 655 829 1007 792 

𝑞𝑡
𝑏𝑜𝑎𝑟𝑑 573 501 427 706 792 

𝑞𝑡
𝑓𝑎𝑖𝑙

 0 154 402 301 0 

𝑝𝑡
𝑓𝑎𝑖𝑙

 0.00 0.24 0.48 0.30 0.00 

𝑡𝑡
𝑓𝑎𝑖𝑙

 0 4 7 4 0 
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From these flows 𝑝𝑡
𝑓𝑎𝑖𝑙

 and 𝑡𝑡
𝑓𝑎𝑖𝑙

 were calculated in the congested time intervals (8:00-

8:45) according to equations (6-8) and (6-9) and presented the results in Table 6-13. The 

value of 𝑡𝑡
𝑓𝑎𝑖𝑙

 is rounded to integer minutes. Looking at the time intervals with capacity 

problems (8:00-8:45), there is an average of 4 minutes delay at the beginning (8:00-8:15) 

and at the end (8:30-8:45) of the period of congestion; and an even higher average delay 

of 7 minutes in between (8:15-8:30) (highlighted with yellow).  
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6.7 Discussions 

6.7.1 Applicability of the quasi-dynamic approach 

In this chapter the quasi-dynamic approach was applied to infer boarding and fail-to-

board flows as well as fail-to-board delays. The duration of the time intervals was set to 

be 15 minutes. This has been proved to be a good tool to estimate fail-to-board delays 

without the need of going schedule-based (calculating for individual passengers and 

trains). One drawback is that with this method only the average values of fail-to-board 

delays could be obtained for each 15 minute time intervals. To obtain a more detailed 

picture, whilst remaining in the quasi dynamic context, one could assume a probabilis t ic 

distribution for passenger arrivals and train headways and estimate the distribution of fail-

to-board delays accordingly. 

For the capacity of trains (𝜅) the rolling stock information from the TfL website was used, 

which would correspond to the nominal capacity of trains. For Case 1 it was assumed 

that on the Victoria line at Victoria station trains can carry up to their nominal capacity, 

and passengers above that fail to board. On the other hand, for Case 2 it was assumed that 

on the Central line between Mile End and Liverpool Street trains can carry an 

additional 10% of passengers above their nominal capacity as passengers are more likely 

to travel under greater discomfort in order to avoid further delays. The critical issue at 

this point is that the assumption on the relationship between the actual and nomina l 

capacity of trains affects the results for the adjusted OJTs.  

Here, results showed that for both cases the OJTs were over-adjusted as a lower additiona l 

capacity was assumed. For the Victoria-Holborn station-to-station OD pair (Case 1) it 

can be observed that the OJT distribution adjusted according to fail-to-board delays (cf. 

Figure 6-5 b) is skewed left. In reality for the OJTs distribution of an OD pair one would 

expect that it is skewed right. This can be seen clearer looking at the CCOJT distribution 

of the Central East – Green Park superstation-to-station OD pair (Case 2), where the 

CCOJT values of 14 and 15 minutes are unrealistically small. 

A possible refinement of this model could be to analyse more in details passengers’ 

perception to discomfort (Whelan and Crockett, 2009; Li and Hensher, 2011; Hörcher et 

al., 2017; Tirachini et al., 2017) depending on the case study OD pair and calculate with 

the actual capacity of trains accordingly. 
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6.7.2 Benefits of adjustments according to fail-to-board delays 

The crucial point in the methodology applied in this chapter is that adjusting the observed 

𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) dataset with the modelled 𝜏 fail-to-board delays and hence applying the finite 

mixture model on the adjusted and aggregated 𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙

 distribution would be an 

optimistic view about the likelihood of passengers’ boarding, as it would assume that fail-

to-board delays had not occurred. In reality, fail-to-board delays do occur, and it is 

expected that they influence route choice.  

For this reason, the benefits of the adjustment according to fail-to-board delays is not as 

evident as it was when the OJTs were adjusted only to superstation centroid (Chapter 5).  

Although the for Case 1, it could give closer results for the mean and for the component 

proportion to the actual LU routes; for Case 2, the estimates for the mean resulted lower 

and for the component proportion they were further from the RODS results of the actual 

routes. 

A possible approach to take into consideration the different route choice behaviour in 

different time periods would be to apply the finite mixture model on the dataset of each 

time period. For example one time period could be the peak of peak (i.e. 8:15-9:15) and 

the other would be the normal AM peak (i.e. 7:00-8:15 and 9:15-10:00). Although this 

approach may give better estimates, it would conflict with the general aim of this thesis, 

which is to aggregate the OJT records to have more reliable estimates. 

Thinking one step ahead, a different approach would be to apply the finite mixture model 

on the CCOJT of the whole AM peak, and update the estimated route choice probabilit ies 

with the additional information on the time interval, when the passenger accessed the 

crowded platform. The principles of this approach is discussed in Chapter 7, however 

there it is presented in another context. 

6.7.3 Data sources on passenger flows 

In this thesis RODS data reconciled to passenger counts was used to understand passenger 

flows on the LU lines and within the LU stations. The deficiency with this approach could 

be explained in the following: Relying still on manual surveys would not comply with the 

overall objective of this thesis to go towards automatically collected data systems for 

route choice estimation (Section 2.1). More specifically – as presented in Section 6.5.1 – 

RODS data was collected over several years, different years at different stations, therefore 
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the route choice and hence the passenger flow results do not reflect the time period of the 

Oyster data collection. 

In theory, passenger flows could be understood from the route choice estimates for all 

OD pairs of the LU network and the problem could be resolved as a transit assignment 

model (cf. Figure 2-1). However, this would require to build the model for the entire LU 

and rail network of Greater London (cf. Section 4.3), which is beyond the scope of this 

thesis.
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Chapter 7  

Consideration of fail-to-board delays at the interchange 

station 

7.1 Introduction 

In Chapter 6 the question of fail-to-board delays at the origin station was discussed. In 

line with the Definition of superstations, the case studies in this thesis focus on origin 

destination (OD) pairs with the property that for all reasonable routes the first journey leg 

is on the same line (cf. Figure 5-10, Figure 5-15 and Figure 5-22). Therefore, in case 

the fail-to-board delay occurred at any station of the origin superstation (Case 1 and 

Case 2), their Observed Journey Time (OJT) could be simply adjusted to its uncongested 

equivalent and hence the OJTs of different origin stations could be aggregated. 

However, in case the fail-to-board delay occurs at the interchange station (Case 3), the 

question is more challenging, because it is not possible to know deterministically, whether 

an OJT record corresponds to the congested route or not; it can be estimated only in a 

probability space (cf. Section 3.2). Therefore, the OJT adjustment proposed in Section 

6.4 is not applicable in this case, but a different approach is required. 

In this section notation is used as follows. 

 

Variables 

𝑡𝑘,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦−𝑖𝑐

 Journey time between the entry ticket gate of origin station 𝐼𝑖  and the 

departure platform of the subsequent journey leg at the congested 

interchange station, on route 𝑘 of OD pair 𝐼𝐽 

𝑙#, 𝑘, 𝐼𝐽 Index of the journey leg on which passengers experience fail-to-board 

delays on route 𝑘 of OD pair 𝐼𝐽 

𝑠#, 𝑘, 𝐼𝐽 Index of the interchange station at which passengers experience fail-to-

board delays on route 𝑘 of OD pair 𝐼𝐽 
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𝑇𝑞,𝑘,𝐼𝐽
𝑝𝑙𝑎𝑡−𝑖𝑐

 Arrival time stamp of passenger 𝑞  at the interchange station (departure 

platform of the subsequent journey leg), given that he/she chooses route 𝑘 

of OD pair 𝐼𝐽 

𝑡𝑞,𝑘,𝐼𝐽
EXP  Expected Journey Time of passenger 𝑞 using route 𝑘 between centroids of 

superstations 𝐼 and 𝐽, given 𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

, timetables and station layouts 

𝛿𝑞,𝑟,𝐼𝐽
EXP  Random variable of 𝑡𝑞,𝑘,𝐼𝐽

EXP  in the Bayesian framework 

𝛿𝑞,𝐼𝐽
CCOJT  Journey time observation of passenger 𝑞  adjusted to the centroids of 

superstations 𝐼 and 𝐽 (CCOJT) (minutes) 

Δ𝑞,𝐼𝐽 Elementary event that the CCOJT of passenger 𝑞 is 𝛿𝑞,𝐼𝐽
CCOJT

 

Δ𝑞𝑟,𝐼𝐽  Elementary event that the Expected Journey Time of passenger 𝑞  is  

𝛿𝑞,𝑟,𝐼𝐽
EXP , given that he/she chooses route 𝑟 and his/her entry time is 𝑇𝑞,𝐼𝑖

𝑒𝑛𝑡𝑟𝑦
 

δ𝑞𝑟 ,𝐼𝐽  The journey time distribution of passenger 𝑞 on route 𝑟 

𝐶𝐶𝑂𝐽𝑇𝑟,𝐼𝐽
𝑛𝑎𝑖𝑣𝑒  Sub-dataset of 𝐶𝐶𝑂𝐽𝑇𝐼𝐽 based on naïve inference 𝜁(𝑞) 

𝑛𝑟 ,𝐼𝐽
𝑛𝑎𝑖𝑣𝑒  Total number of passengers in the 𝐶𝐶𝑂𝐽𝑇𝐼𝐽 dataset who were assigned to 

route 𝑟 based naïve inference 𝜁(𝑞) 

𝜇𝑟,𝐼𝐽
𝑈𝑃𝐷  Mean journey time for route 𝑟  of superstation-to-superstation OD 

pair 𝐼𝐽, with the update according to the additional information on 

fail-to-board delays (minutes) 

𝜎𝑟 ,𝐼𝐽
𝑈𝑃𝐷  Standard deviation of journey time for route 𝑟  of superstation- to-

superstation OD pair 𝐼𝐽, with the update according to the additiona l 

information on fail-to-board delays (minutes) 

𝜔𝑟 ,𝐼𝐽
𝑈𝑃𝐷  Aggregate choice probabilities for route 𝑟  of superstation- to-

superstation OD pair 𝐼𝐽, with the update according to the additiona l 

information on fail-to-board delays 

𝑡𝑟,𝐼𝐽
𝑅𝐸𝐹  Reference time of route 𝑟 
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𝜓𝑟
𝑛𝑎𝑖𝑣𝑒  Dummy variable, 𝜓𝑟

𝑛𝑎𝑖𝑣𝑒 = 1 if, 𝜁(𝑞) = 𝑟, otherwise 𝜓𝑟
𝑛𝑎𝑖𝑣𝑒 = 0 

 

Functions 

𝑓 (δ𝑞𝑟) Probability density function of δ𝑞𝑟  

𝜁(𝑞) Assignment function for the naïve inference of the route choice of each 

passenger 𝑞, based on their posterior probabilities (CCOJT and additiona l 

information on fail-to-board delays) 

 

The main objective in this chapter is to update the prior knowledge on route choice (i.e. 

results of Chapter 5) with the additional information on fail-to-board delays in a 

Bayesian framework following the concept in Fu (2014). Figure 7-1 illustrates a Bayesian 

network structure how the information on fail-to-board delay (𝛿𝑓𝑎𝑖𝑙) can be associated 

with the smart card observations and how it influences the journey time and route choice 

of passengers. 

In this framework the observations (marked with orange nodes) are the entry time 

(𝑇𝑒𝑛𝑡𝑟𝑦) and the exit time (𝑇 𝑒𝑥𝑖𝑡) of passengers27. From these input their OJT (𝛿𝑂𝐽𝑇) can 

be directly obtained (cf. Section 3.6), and hence their Centroid-to-Centroid adjusted OJT 

(CCOJT, 𝛿𝐶𝐶𝑂𝐽𝑇) can be calculated (cf. Section 5.4). This obvious dependency is marked 

with orange solid arc and the inferred variables are marked as blue nodes. 

It was illustrated through the case studies in Section 6.6 that the fail-to-board delay (𝛿𝑓𝑎𝑖𝑙, 

cf. Table 6-3 and Table 6-8) varies within the AM peak. Therefore, it is dependent on 

the entry time of the passenger (𝑇𝑒𝑛𝑡𝑟𝑦). Furthermore, it can be easily understood, that a 

passenger experiences fail-to-board delay only, if he/she chooses the congested route. 

Therefore fail-to-board delay is also dependent on the chosen route (𝑟)28. Additionally, 

the expected journey time of a passenger ( 𝛿𝐸𝑋𝑃 ) also depends on the other time 

components (i.e. on-board, wait, access egress interchange) he/she experienced along 

                                                                 
27 In Section 7.1, the purpose is to give a simplified representation of the Bayesian network structure by 

elucidating the dependencies among the variables. Therefore the variable identifiers are not used in this 

section. In Section 7.2 this Bayesian network structure is further expanded, therefore all variables presented 

with the appropriate identifiers. 
28 In Section 7.1 – as it focuses on the dependencies of the variables -  routes are denoted with 𝑟, regardless 

whether they refer to mixture component or actual LU route. In Section 7.3 the concept for matching these 

two labels is further explained. 
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his/her chosen route. Therefore, the expected journey time is further dependent on the 

chosen route (𝑟). 

The problem here is that the chosen route (𝑟) is unobservable, it can be only learnt in a 

probability space (this type of dependency is marked with a blue dashed arc) from the 

journey time of passengers. In this chapter, route choice is inferred not only based on the 

CCOJT (𝛿𝐶𝐶𝑂𝐽𝑇) of passengers (cf. Chapter 5), but also based on their expected journey 

time (𝛿𝐸𝑋𝑃). 

 

 

Figure 7-1 Bayesian network structure to illustrate passengers probabilistic route 

choices 

 

The rest of this chapter is structured as follows. In order to have the correct input for the 

Bayesian updating process, in Section 7.2 the calculation of the Expected Journey Times 

are presented; and in Section 7.3 the principles for matching the mixture components 

with the actual routes are clarified. Section 7.4 presents the Bayesian framework itself to 

obtain the updated individual route choice probabilities; and Section 7.5 describes the 

methodology to infer the aggregate values corresponding to each route. In Section 7.6 the 

proposed approach is compared to Fu (2014). Section 7.7 presents the case study on the 

London Underground (LU). Finally, Section 7.8 concludes the chapter with the 

evaluation of the obtained results and with the lessons learnt from that. 
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7.2 Connection between passengers’ entry time and Expected Journey 

Time 

In this section the dependencies between the entry time of a passenger (𝑇 𝑒𝑛𝑡𝑟𝑦 ) and 

his/her expected journey time (𝛿𝐸𝑋𝑃) are further explained and presented on an expanded 

Bayesian network structure (Figure 7-2). 

 

 

Figure 7-2 Bayesian network structure to illustrate the connection between passengers 

entry time and Expected Journey Time 

 

In this Bayesian network structure the data sources, from which the journey time 

components can be understood (i.e. timetable, station layout, Rolling Origin Destinat ion 

Survey (RODS) and train capacities, cf. Section 3.6 and Section 6.5) are marked as 

green filled nodes. The journey time components themselves (i.e. access, wait, on-board, 

interchange and egress) are marked as purple nodes, and the resulting time stamps 

(entry, platform arrival, train departure, train arrival and exit) as blue nodes. In this 

Bayesian network structure, the subtotals of journey times are the Scheduled Journey 

Time (SJT) and the fail-to-board delay (marked as orange nodes); and the final result is 

the Expected Journey Time (marked as a red node). 
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The entry time of passenger 𝑞  at station 𝐼𝑖  of the origin superstation (𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

) can be 

directly understood from smart card data (cf. Section 3.6.1). In the previous chapters 

(Chapter 3, Chapter 5 and Chapter 6), smart card records were used only with their 

OJTs ( 𝛿𝑞,(𝐼𝑖)(𝐽𝑗)
OJT

, cf. equation (3-14)). In this chapter, in order to gain a better 

understanding on the associated fail-to-board delays, also their entry time is required as 

an input. 

Having the adequate information on train timetables and station layouts (cf. Section 3.6.2) 

the journey time between station 𝐼𝑖  (entry ticket gate) and the congested interchange 

station (departure platform of subsequent journey leg) on route 𝑘 can be obtained as the 

sum of the time components (cf. Figure 7-2): 

 𝑡𝑘,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦−𝑖𝑐 = 𝑡1,𝑘,𝐼𝑖

𝑎𝑐𝑐 + ∑ (𝑡𝑙,𝑘,𝐼𝐽
𝑤𝑎𝑖𝑡

𝑙#,𝑘,𝐼𝐽

𝑙=1

+ 𝑡𝑙,𝑘,𝐼𝐽
𝑜𝑏 ) + ∑ 𝑡𝑠,𝑘,𝐼𝐽

𝑖𝑐

𝑠#,𝑘 ,𝐼𝐽

𝑠=1

 (7-1) 

where 𝑙#, 𝑘, 𝐼𝐽 is the index of the journey leg, on which passengers experience fail-to-

board delays and 𝑠#, 𝑘, 𝐼𝐽 is the corresponding interchange station. The journey time, 

𝑡𝑘,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦−𝑖𝑐

 is dependent on the route and it is applicable only if fail-to-board delays are 

experienced at the interchange station within the AM peak. 

Knowing the entry time stamp of passenger 𝑞  at station 𝐼𝑖  of the origin superstation 

(𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

) and the journey time from there to the congested interchange station on route 𝑘 

(𝑡𝑘 ,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦−𝑖𝑐

), the arrival time (at the departure platform of subsequent journey leg, 𝑇𝑞,𝑘,𝐼𝐽
𝑝𝑙𝑎𝑡−𝑖𝑐

) 

can be calculated as: 

 𝑇𝑞,𝑘,𝐼𝐽
𝑝𝑙𝑎𝑡−𝑖𝑐 = 𝑇𝑞,𝐼𝑖

𝑒𝑛𝑡𝑟𝑦 + 𝑡𝑘,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦−𝑖𝑐

 (7-2) 

Recalling the concept of journey time adjustments for superstations (Section 5.4), it is 

possible understand the following: The available dataset from smart card contains the 

entry times of passengers at entering different stations; but the interchange station is the 

same for all passengers regardless their entry station. In fact, equation (7-2) can be 

interpreted as an adjustment of 𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

 with 𝑡𝑘,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦−𝑖𝑐

 to the congested interchange 

station. Therefore, 𝑇𝑞,𝑘,𝐼𝐽
𝑝𝑙𝑎𝑡−𝑖𝑐

 does not contain the index 𝐼𝑖 and hence the values origina lly 

coming from different entry stations can be aggregated.  
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Once the arrival time of passenger 𝑞  at the congested interchange station on route 𝑘 

(𝑇𝑞,𝑘,𝐼𝐽
𝑝𝑙𝑎𝑡−𝑖𝑐

) is obtained, it can be explicitly known, which time interval 𝑡 this arrival time 

falls into, and hence the corresponding fail-to-board delay (𝑡𝑞,𝑘,𝐼𝐽
𝑓𝑎𝑖𝑙

) can be inferred as 

described in Section 6.3. 

The Scheduled Journey Time (SJT) of each route – without considering fail-to-board 

delays – can be understood based on train timetables and station layouts (cf. equation 

(3-13)). As the SJT is calculated in the frequency based context (see Section 7.6); it is 

same for all passengers on a given route 𝑘, and hence 𝑡𝑘,𝐼𝐽
𝑆𝐽𝑇

 does not contain the index 𝑞.  

Knowing the SJT on each route 𝑘 between the centroids of superstations 𝐼 and 𝐽 (𝑡𝑘 ,𝐼𝐽
𝑆𝐽𝑇

) 

and the fail-to-board delay of each passenger 𝑞 on that route (𝑡𝑞,𝑘
𝑓𝑎𝑖𝑙

), the superstation- to-

superstation equivalent of the Expected Journey Time can be calculated as: 

 𝑡𝑞,𝑘,𝐼𝐽
EXP = 𝑡𝑘,𝐼𝐽

𝑆𝐽𝑇
+ 𝑡𝑞,𝑘,𝐼𝐽

𝑓𝑎𝑖𝑙
 (7-3) 

The Expected Journey Time of routes (𝑡𝑞,𝑘,𝐼𝐽
EXP ) is supposed to be used as an additiona l 

condition to update the previously obtained route choice probabilities (𝜔𝑟,𝐼𝐽 ). At this point 

it is important to note that these two variables have different identifiers for the routes, 𝑟 

and 𝑘 respectively. Analogously to the previous chapters, while 𝑟  is used for mixture 

components, 𝑘 indicates the index of actual LU routes. The reason why it is necessary to 

have two distinct variable identifiers is that it is explicitly unknown which mixture 

component 𝑟  corresponds to which actual LU route 𝑘. In order to proceed with the 

updating methodology, and hence to use 𝜔𝑟,𝐼𝐽  and 𝑡𝑞,𝑘 ,𝐼𝐽
EXP  in the same Bayesian 

framework; it is necessary to make an a priori assumption on the matching of 𝑟 and 𝑘. 

This is discussed in Section 7.3. 

7.3 Matching mixture components with actual routes 

In Section 3.4.1 it was proposed to match the mixture components (𝑟) with the actual LU 

routes (𝑘) in the ascending order of their corresponding journey times. However, looking 

at the results in Chapter 5, especially Case 3 (Table 5-20) showed that applying this 

approach does not always give the correct match. 

In this chapter, apart from the mean journey time of mixture components (𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋), also 

their standard deviation (𝜎𝑟 ,𝐼𝐽
𝑀𝐼𝑋) is examined. The reason for this can be resumed in the 

following: Staying at the example of Case 3, it is expected, that the direct route has 
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smaller standard deviation, because passengers have only one journey leg; which means 

no interchange time, less total wait time and expectedly, less variance of the on-board 

time. On the other hand, on the indirect route, having three journey legs, the variation of 

all these values are larger. Furthermore, due to the difference in the fail-to-board delays 

of different passengers 𝑞  at the congested interchange station ( 𝑡𝑞,𝑘
𝑓𝑎𝑖𝑙

), the expected 

journey time (𝑡𝑞,𝑘,𝐼𝐽
EXP , cf. equation (7-3)) has an even larger standard deviation. Based on 

these considerations, it makes sense to match the mixture component having smaller 

standard deviation with the direct route and the one having larger standard deviation with 

the indirect route. 

It is acknowledged that this rule may not hold for all OD pairs. It may occur that, if the 

travel time on the second or third journey leg of the indirect route is less variable than the 

travel time on the direct route, the overall variance is smaller for the indirect route. 

However, assuming that the Jubilee trains do not exhibit great variance on the Wembley 

Park – Finchley Road segment, and knowing that passengers do experience fail-to-board 

delays for the same segment of the Metropolitan line; the above consideration could be 

acceptable for the case study in this chapter. 

To have a more advanced matching method, both the mean (𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋) and standard deviation 

(𝜎𝑟 ,𝐼𝐽
𝑀𝐼𝑋) of the finite mixture results need to be considered; and the corresponding mean 

and standard deviation of the actual LU routes needs to be modelled based on the 

distribution of their journey time components (i.e. 𝑡1,𝑘,𝐼𝑖
𝑎𝑐𝑐 , 𝑡𝑙,𝑘

𝑤𝑎𝑖𝑡 , 𝑡𝑙,𝑘
𝑜𝑏 , 𝑡𝑠,𝑘

𝑖𝑐  and 𝑡𝐿,𝑘
𝑒𝑔𝑟

, 

(Wahaballa et al., 2017)) as well as of the and fail-to-board delays on them. This is beyond 

the scope of this thesis. 

Having made the above described considerations to match the mixture components with 

the actual LU routes, all variables referring to routes are identified with index 𝑟 in the 

Bayesian framework (see Section 7.4). There, the random variable of Expected Journey 

Time used is denoted as 𝛿𝑞,𝑟,𝐼𝐽
EXP . 

7.4 Updating the posterior route choice probabilities 

The Bayesian framework for updating the route choice probabilities understood from the 

finite mixture model (cf. Chapter 5) can be formulated as follows. As described in 

Section 3.2, 𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽  denotes the elementary event that passenger 𝑞 has chosen route 

𝑟; and Δ𝑞,𝐼𝐽 the elementary event that the CCOJT of passenger 𝑞 is 𝛿𝑞,𝐼𝐽
CCOJT

 (cf. Section 

5.4). Furthermore, in this chapter ∆𝑞𝑟,𝐼𝐽  defined, which denotes the elementary event that 
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the Expected Journey Time of passenger 𝑞 is 𝛿𝑞,𝑟,𝐼𝐽
EXP , given that he/she chooses route 𝑟 

and his/her entry time is 𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

. 

Having defined these elementary events in a probability space, the objective is to obtain 

𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 ), which is the probability that passenger 𝑞 has chosen route 

𝑟, given that his/her CCOJT is 𝛿𝑞,𝐼𝐽
CCOJT

 and his/her expected journey time on route 𝑟 is 

𝛿𝑞,𝑟,𝐼𝐽
EXP . Following the steps in Fu (2014), this can be expressed as: 

 

𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 )

=
Pr(∆𝑞,𝐼𝐽 |𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽) ∙ Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽)

∑ Pr(∆𝑞,𝐼𝐽 |𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽) ∙ Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 )𝑟𝜖𝑅

  
(7-4) 

In this context, Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽)  is the probability that passenger 𝑞  has chosen route 𝑟 

without any knowledge on his journey time. According to formula (3-5), this was 

associated with the component proportion understood from the finite mixture model 

(𝜔𝑟 ,𝐼𝐽). In the Bayesian framework is the prior. 

Furthermore, Pr(∆𝑞,𝐼𝐽 |𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽) is the likelihood of observing 𝛿𝑞,𝐼𝐽
CCOJT

 given that 

𝑞 has chosen 𝑟 and the expected journey time on that route was 𝛿𝑞,𝑟,𝐼𝐽
EXP . Following the 

concept in Fu (2014), this likelihood can be explained in the following way: Let δ𝑞𝑟,𝐼𝐽  

denote the journey time distribution of passenger 𝑞  on route 𝑟 . Similarly to the 

considerations in Section 3.2.2, it is assumed, that also the PDF of δ𝑞𝑟,𝐼𝐽 , 𝑓 (δ𝑞𝑟,𝐼𝐽 ) 

follows a Gaussian distribution. There, the mean corresponds to the expected journey 

time of passenger 𝑞  on route 𝑟  (𝛿𝑞,𝑟,𝐼𝐽
EXP ). Furthermore, it is assumed that the standard 

deviation of each passenger 𝑞 on route 𝑟 is the same as the standard deviation of route 𝑟 

estimated with the finite mixture model (𝜎𝑟,𝐼𝐽
𝑀𝐼𝑋, cf. Section 3.2). This way, the likelihood 

that the journey time of 𝑞 would be 𝛿𝑞,𝐼𝐽
CCOJT

 can be associated with the probability density 

of the PDF 𝑓 (δ𝑞𝑟,𝐼𝐽) having the above described parameters: 

 Pr(∆𝑞|𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽, ∆𝑞𝑟,𝐼𝐽 ) ≈  𝑓 (δ𝑞𝑟,𝐼𝐽 = 𝛿𝑞,𝐼𝐽
CCOJT |𝛿𝑞,𝑟,𝐼𝐽

EXP , 𝜎𝑟,𝐼𝐽
𝑀𝐼𝑋) (7-5) 

Substituting formulae (3-5) and (7-5) into equation (7-4), 𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 ) 

can be expressed as: 
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𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 )

=
𝜔𝑟,𝐼𝐽 ∙ 𝑓 (δ𝑞𝑟 = 𝛿𝑞,𝐼𝐽

CCOJT
|𝛿𝑞,𝑟,𝐼𝐽

EXP , 𝜎𝑟,𝐼𝐽
𝑀𝐼𝑋)

∑ 𝜔𝑟,𝐼𝐽 ∙ 𝑓 (δ𝑞𝑟 = 𝛿𝑞,𝐼𝐽
CCOJT |𝛿𝑞,𝑟,𝐼𝐽

EXP , 𝜎𝑟,𝐼𝐽
𝑀𝐼𝑋)𝑟𝜖𝑅

 
(7-6) 

In equation (7-6) the additional condition, which updates the prior knowledge on route 

choice (𝜎𝑟,𝐼𝐽
𝑀𝐼𝑋) is the random variable of the expected journey time: 𝛿𝑞,𝑟,𝐼𝐽

EXP . As it was 

presented through equation (7-3), 𝑡𝑞,𝑘,𝐼𝐽
EXP  is a function of the SJT (𝑡𝑘,𝐼𝐽

𝑆𝐽𝑇
) and of the fail-to-

board delay (𝑡𝑞 ,𝑘,𝐼𝐽
𝑓𝑎𝑖𝑙

). In this chapter the focus was on the variation of 𝑡𝑞,𝑘 ,𝐼𝐽
𝑓𝑎𝑖𝑙

 depending on 

the entry time of passengers (𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

) and on the route (𝑘); and the variation of 𝑡𝑘,𝐼𝐽
𝑆𝐽𝑇

 was 

not examined in depth as the frequency-based approach was followed. However, doing a 

more detailed analysis on the variation of 𝑡𝑘,𝐼𝐽
𝑆𝐽𝑇

 in function of its components (3-13) could 

further improve the route choice updates 𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽) also when fail-to-

board delay is not accounted for.  

7.5 Inferring reference time of routes and aggregate route choice 

probabilities 

As the result of Section 7.4 the posterior probabilities were calculated for each passenger 

𝑞  on route 𝑟 , conditional on their CCOJT and Expected Journey Time 

(𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽|∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 )). From the practical point of view (i.e. public transport 

operators who are interested in passenger flows, cf. Section 2.1), it is necessary to have 

further information on the aggregate values of mean, standard deviation and choice 

probabilities of each route. 

To obtain these values naïve inference is used following the concept in Fu (2014). The 

logic in naïve inference is that if the posterior probability for route 𝑟 is higher than for 

route 𝑟′ (𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟 = 𝑟|∆𝑞 ,∆𝑞𝑟) ≥ (𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟 = 𝑟′|∆𝑞 ,∆𝑞𝑟)), then it is more likely, 

that passenger 𝑞 chooses route 𝑟. Going one step ahead, the inference could be drawn that 

the actual choice of passenger 𝑞 is the route with the highest posterior probability. This 

way the assignment function can be defined for the naïve inference as: 

 𝜁(𝑞) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑟∈𝑅 (𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟 = 𝑟|∆𝑞 ,∆𝑞𝑟)) (7-7) 

The output of the assignment function is the route label 𝑟 for each passenger 𝑞. With this 

assignment it is possible to obtain 𝑁𝑅 sub-datasets within the 𝐶𝐶𝑂𝐽𝑇𝐼𝐽  dataset – denoted 
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by 𝐶𝐶𝑂𝐽𝑇𝑟,𝐼𝐽
𝑛𝑎𝑖𝑣𝑒  – where in each sub-dataset those passengers can be found who are 

assigned to route 𝑟 with the naïve inference. 

 𝐶𝐶𝑂𝐽𝑇𝑟,𝐼𝐽
𝑛𝑎𝑖𝑣𝑒 = {𝛿𝑞,𝐼𝐽

CCOJT
: 𝜁(𝑞) = 𝑟} (7-8) 

Having obtained this, it is possible to understand the updated values of mean (𝜇𝑟,𝐼𝐽
𝑢𝑝𝑑

) and 

standard deviation (𝜎𝑟,𝐼𝐽
𝑢𝑝𝑑

) on each route 𝑟  as the mean and standard deviation of the 

corresponding sub-dataset 𝐶𝐶𝑂𝐽𝑇𝑟,𝐼𝐽
𝑛𝑎𝑖𝑣𝑒. Furthermore, the total number of passengers in 

the 𝐶𝐶𝑂𝐽𝑇𝐼𝐽  dataset who chooses route 𝑟  is equal to the size of the 𝐶𝐶𝑂𝐽𝑇𝑟,𝐼𝐽
𝑛𝑎𝑖𝑣𝑒  sub-

dataset, denoted by 𝑛𝑟,𝐼𝐽
𝑛𝑎𝑖𝑣𝑒 : 

 𝑛𝑟,𝐼𝐽
𝑛𝑎𝑖𝑣𝑒 = |𝐶𝐶𝑂𝐽𝑇𝑟,𝐼𝐽

𝑛𝑎𝑖𝑣𝑒| (7-9) 

From this, the aggregate choice probabilities of route 𝑟 can be calculated as: 

 𝜔𝑟,𝐼𝐽
𝑢𝑝𝑑

=
𝑛𝑟,𝐼𝐽

𝑛𝑎𝑖𝑣𝑒

𝑛𝐼𝐽
𝐶𝐶𝑂𝐽𝑇  (7-10) 

In order to understand how the updated estimates can be associated with the actual LU 

routes (cf. Section 7.3), the estimated mean journey time (𝜇𝑟,𝐼𝐽
𝑢𝑝𝑑

) is compared to the 

reference time of the actual LU routes (𝑡𝑟,𝐼𝐽
𝑅𝐸𝐹 29):  

 𝑡𝑟,𝐼𝐽
𝑅𝐸𝐹 =

∑ 𝑡𝑞,𝑟,𝐼𝐽
EXP ∙ 𝜓𝑟 ,𝐼𝐽

𝑛𝑎𝑖𝑣𝑒
𝑛𝐼𝐽

𝐶𝐶𝑂𝐽𝑇

𝑞=1

𝑛𝑟,𝐼𝐽
𝑛𝑎𝑖𝑣𝑒

 (7-11) 

where 𝜓𝑟 ,𝐼𝐽
𝑛𝑎𝑖𝑣𝑒  is a dummy variable, 𝜓𝑟 ,𝐼𝐽

𝑛𝑎𝑖𝑣𝑒 = 1 if, 𝜁(𝑞) = 𝑟, otherwise 𝜓𝑟 ,𝐼𝐽
𝑛𝑎𝑖𝑣𝑒 = 0. As 

explained earlier, depending on the difference in fail-to-board delays, 𝑡𝑞,𝑟,𝐼𝐽
EXP  may vary 

across each passenger 𝑞 on route 𝑟 (7-3); therefore there is the necessity to calculate their 

average, which gives the reference time of route 𝑟: 𝑡𝑟,𝐼𝐽
𝑅𝐸𝐹 . In addition to the journey times, 

also the updated estimates of aggregate route choice (𝜔𝑟,𝐼𝐽
𝑢𝑝𝑑

) are compared with 𝜔𝑟,𝐼𝐽
𝑅𝑂𝐷𝑆  

(cf. Section 3.6.3). 

                                                                 
29 As the results of the finite mixture model had been previously  matched with the actual LU routes, in this 

section for all variables in identifier 𝑟 is used 
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7.6 Comparison with Fu (2014) 

In this chapter the method in Fu (2014) was applied to update the prior knowledge on 

route choice ( 𝜔𝑟,𝐼𝐽 ) with the additional condition on the expected journey time of 

passengers (𝛿𝑞,𝑟,𝐼𝐽
EXP ). The difference between his model and the method applied in this 

thesis can be resumed in the following: 

 The approach to infer the Expected Journey Time (𝑡𝑞,𝑘,𝐼𝐽
EXP ) (see Section 7.6.1) 

 The assumptions made for the fail-to-board delay (𝑡𝑞,𝑘,𝐼𝐽
𝑓𝑎𝑖𝑙

) (see Section 7.6.2) 

7.6.1 The approach to infer the Expected Journey Time 

In Fu (2014) the input of 𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

 was applied to infer the train that passenger 𝑞 could 

catch, and hence the arrival time at the exit station was modelled for each route 𝑘. 

Following this, 𝑡𝑞,𝑘 ,𝐼𝐽
EXP  was obtained as the difference between 𝑇𝑞,𝐼𝑖

𝑒𝑛𝑡𝑟𝑦
 and the modelled 

exit time. It is important to note that it requires to represent each individual train 

(schedule-based context).  

The method proposed in this thesis uses the input of 𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

 to infer fail-to-board delays 

of passenger 𝑞 (𝑡𝑞,𝑘 ,𝐼𝐽
𝑓𝑎𝑖𝑙

) and hence 𝑡𝑞 ,𝑘,𝐼𝐽
EXP  is calculated according to equation (7-3). In this 

approach trains are still represented with their frequency (frequency-based context), as 

𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

 is not applied to infer a train, but to identify the time interval 𝑡, in which the 

passenger arrives at the congested interchange station. Having the possibility to remain 

in the frequency-based context means less computational time (cf. Section 2.3.3). 

Obviously, as the smart card data processing and hence the intended application of the 

model is still off-line, computational time is not a relevant issue (cf. Section 1.2). 

However, in future, once the technology arrives at real-time data processing, it will be 

advantageous to have models that can estimate route choice at a lower computationa l 

time, especially if there is the need to apply the model for many OD pairs. 

7.6.2 The assumptions made for the fail-to-board delay 

Fu (2014) considered fail-to-board delays as a component of the wait time. He made the 

assumption that for each journey leg 𝑙 of each route 𝑘, half of the passengers can board 

the first, half of them the second train, and calculated the reference time of routes (𝑡𝑟,𝐼𝐽
𝑅𝐸𝐹 ) 

accordingly . The problem with this assumption consists in the following: Firstly, the fail-
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to-board delay is not constant along the metro lines: the stations near the terminus are not 

congested at all (e.g. origin stations in Case 3), while stations closer to the LU inner zone 

can have extreme congestion (e.g. origin stations in Case 2). Secondly, the fail-to-board 

delay is not constant within the AM peak: it occurs only in the peak of peak (8:00-9:15). 

In order to take into account the variation of the fail-to-board delay along the metro line 

and within the AM peak, in this thesis it was inferred from actual data on passenger flows 

and on train capacities, following the method described in Section 6.3, and  the reference 

time of routes (𝑡𝑟,𝐼𝐽
𝑅𝐸𝐹 ) was calculated accordingly  This could bring some improvement to 

the consideration of fail-to-board delays, however due to the deficiency of RODS data 

applied for passenger flows (cf. Section 6.5.1) and to the further assumptions (cf. Section 

6.6), it still cannot give a perfect picture on it. 

7.7 Case study on the London Underground 

In Section 6.6, the passenger flows were compared to the line capacities at the origin and 

interchange stations of the three case studies, and hence the fail-to-board delays were 

calculated at the congested stations. Based on that, in it was understood, that for Case 3, 

fail-to-board delays occur along the indirect route, at the Wembley Park interchange 

station on the eastbound Metropolitan line (Figure 6-15 and Table 6-13). In this section, 

this additional information on fail-to-board delays will be used to update the route choice 

probabilities understood from the finite mixture model. 

Case 3 Jubilee West – Jubilee Central 

Expected Journey Time of passengers on each route 

The entry time of each passenger 𝑞 (𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

), as well as their OJT (𝛿𝑞,(𝐼𝑖)(𝑗𝑗)
OJT

) is known 

from Oyster data (cf. Section 3.6.1) for the Jubilee West – Jubilee Central  

superstation-to-superstation OD pair (Figure 5-22). As it was examined in Section 5.6, 

none of the 286 Oyster records were considered outliers. 

From each station of the origin superstation (i.e. Stanmore, Canons Park, Queensbury 

and Kingsbury stations on the Jubilee line) the journey time was calculated to the 

departure platform of the congested interchange station (i.e. Metropolitan line eastbound 

at Wembley Park station. This is route 𝑘 = 2) (𝑡2,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦−𝑖𝑐

) according to equation (7-1) 

(see Table 7-1), where the journey time components were understood from timetab les 
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and station layouts (cf. Section 3.6.2). Following this, for each passenger 𝑞, the arrival 

time at the interchange station (𝑇𝑞,2,𝐼𝐽
𝑝𝑙𝑎𝑡−𝑖𝑐

) was calculated according to equation (7-2). 

 

Table 7-1 Journey time from entry ticket gate to congested station platform  

for Jubilee West– Jubilee Central 

Journey time from entry ticket gate  
to congested station platform (minutes) 

𝑡2,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦−𝑖𝑐

 

From\To Wembley Park 

Stanmore 13.1 

Canons Park 10.9 

Queensbury 9.1 

Kingsbury 6.0 

 

Knowing 𝑇𝑞,2,𝐼𝐽
𝑝𝑙𝑎𝑡−𝑖𝑐

, it can be explicitly understood, which 15 minute time interval 𝑡 (cf. 

Section 6.3) it falls into; and hence the corresponding average fail-to-board delays on this 

route (𝑡𝑞,2,𝐼𝐽
𝑓𝑎𝑖𝑙

) can be inferred for each passenger 𝑞 based on Table 6-13. Results show that 

passengers arriving at Wembley Park between 8:15 and 8:30 experience 7 minutes of 

fail-to-board delay in average, while those who arrive in the time intervals 8:00-8:15 and 

8:30-8:45 this delay is 4 minutes. Before and 8:00 and after 8:45 no fail-to-board delay 

occur. 

As it was discussed earlier, the SJT between the superstation centroids (𝑡𝑘 ,𝐼𝐽
𝑆𝐽𝑇

) on the direct 

route (Jubilee line) is 36.3 minutes, while it is 33.3 minutes on the indirect route (Jubilee  

– Metropolitan – Jubilee via Wembley Park and Finchley Road). Knowing the SJT 

(𝑡𝑘 ,𝐼𝐽
𝑆𝐽𝑇

) and the fail-to-board delay of each passenger 𝑞  on each route 𝑘 (𝑡𝑞,𝑘,𝐼𝐽
𝑓𝑎𝑖𝑙

), the 

Expected Journey Time (𝑡𝑞,𝑘,𝐼𝐽
EXP ) can be calculated according to equation (7-3).  

The CCOJT of each passenger 𝑞 (𝛿𝑞,𝐼𝐽
CCOJT , inferred from 𝛿𝑞,(𝐼𝑖)(𝑗𝑗)

OJT  cf. Section 5.4) and 

their Expected Journey Time on each route 𝑘 (𝑡𝑞,𝑘,𝐼𝐽
EXP ) are compared on Figure 7-3. From 

there, it can be understood, that when there is no congestion on the indirect route, 𝑡𝑞,𝑘,𝐼𝐽
EXP is 

lower (33.3 minutes), but when there is congestion, 𝑡𝑞,𝑘 ,𝐼𝐽
EXP  is higher (37.3 minutes and 

40.3 minutes depending on the time interval) than the direct route (36.3 minutes). 

Similarly, for 𝛿𝑞,𝐼𝐽
CCOJT , it can be observed that they are relatively lower (less than 

50 minutes) for those passengers who are supposed to arrive at Wembley Park before 
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8:00 on route 2, and they are exceedingly high (up to 70 minutes) for those passengers 

who are supposed to arrive there between 8:00 and 9:15. 

 

 

Figure 7-3 Comparison between 𝜹𝒒,𝑰𝑱
CCOJT

and 𝒕𝒒,𝒌,𝑰𝑱
EXP  for Jubilee West– Jubilee Central 

 

It is important to note that the adjusted 𝛿𝑞,𝐼𝐽
CCOJT  observations are almost always 

considerably larger than the inferred 𝑡𝑞,𝑘,𝐼𝐽
EXP  values. This can be due to the lack of 

information on the actual values of the components of 𝑡𝑞,𝑘,𝐼𝐽
EXP : 𝑡𝑘,𝐼𝐽

𝑆𝐽𝑇
 and 𝑡𝑞 ,𝑘,𝐼𝐽

𝑓𝑎𝑖𝑙
 (cf. equation 

(7-3)). The lower value for 𝑡𝑘,𝐼𝐽
𝑆𝐽𝑇

, can be due to the underestimation of on-board (𝑡𝑙 ,𝑘,𝐼𝐽
𝑜𝑏 ) or 

wait (𝑡𝑙,𝑘,𝐼𝐽
𝑤𝑎𝑖𝑡) time by using timetables as a data source (cf. Section 3.6.2.1) and not taking 

into consideration the possible service delays; as well as due the insufficient information 

on passengers walk speed through crowded passageways (cf. Section 3.6.2.2) and hence 

the underestimated values of access (𝑡1,𝑘,𝐼𝐽
𝑎𝑐𝑐 ) egress (𝑡𝐿,𝑘,𝐼𝐽

𝑒𝑔𝑟
) interchange (𝑡𝑠,𝑘,𝐼𝐽

𝑖𝑐 ) times (cf. 

equation (3-13)). The lower value for 𝑡𝑞,𝑘,𝐼𝐽
𝑓𝑎𝑖𝑙

 can be associated with the insuffic ient 

information on the relationship between the nominal and actual capacity of trains. 
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Furthermore, it is also unknown, what proportion of passengers are on those services of 

the Metropolitan line, which stops at Wembley Park (cf. Section 6.6). 

Updating route choice probabilities with the additional condition on Expected 

Journey Time 

The finite mixture model applied on the CCOJT distribution of the Jubilee West – 

Jubilee Central superstation-to-superstation OD pair gave the results of 78.5% of 

proportion for mixture component 1 (𝜔1,𝐼𝐽
𝑀𝐼𝑋 ) and 21.5% of proportion for mixture 

component 2 (𝜔2 ,𝐼𝐽
𝑀𝐼𝑋) (cf. Table 5-20 and Figure 5-25). As explained earlier (cf. equation 

(3-5)), these proportions were associated with the priors of route choice in the Bayesian 

framework. 

In order to apply equation (7-6) correctly to update these priors in a Bayesian framework, 

it is crucial to know which mixture component (𝑟) corresponds to which actual route (𝑘). 

Results show that mixture component 1 has 41.5 minutes of mean journey time (𝜇1,𝐼𝐽
𝑀𝐼𝑋) 

with 3.6 minutes of standard deviation ( 𝜎1,𝐼𝐽
𝑀𝐼𝑋 ); and mixture component 2 has 

52.9 minutes of mean journey time (𝜇2,𝐼𝐽
𝑀𝐼𝑋) and 7.8 minutes of standard deviation (𝜎2,𝐼𝐽

𝑀𝐼𝑋) 

(cf. Table 5-18). Based on the considerations in Section 7.3 it is assumed that the mixture 

component with smaller standard deviation (𝑟 = 1) corresponds to the direct route, while 

the component with the greater standard deviation (𝑟 = 2) corresponds to the indirect 

route. 

As explained in Section 7.4 the likelihood function is associated with the probability 

density function of the journey time distribution of passenger 𝑞 on route 𝑟 (𝑓 (δ𝑞𝑟), cf. 

equation (7-5)). It was assumed, that it follows a Gaussian distribution with the mean of 

𝛿𝑞,𝑟,𝐼𝐽
EXP  and standard deviation of 𝜎𝑟 ,𝐼𝐽

𝑀𝐼𝑋 (i.e. 3.6 minutes for route 1 and 7.8 minutes for 

route 2). With these parameters, the probability density was calculated at the value of 

δ𝑞𝑟 ,𝐼𝐽 = 𝛿𝑞,𝐼𝐽
CCOJT

 for each passenger 𝑞 on each route 𝑟. 

Having obtained both the priors and the likelihood function, the route choice conditiona l 

on CCOJT and on Expected Journey Time (𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 )) was calculated 

according to equation (7-6) for each passenger 𝑞 on each route 𝑟. These results were 

compared to the route choice conditional on CCOJT (Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |Δ𝑞,𝐼𝐽 )), which was 

calculated according to equation (3-6) from the finite mixture model. 
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From Figure 7-4 it can be understood that in general, the update according to the 

additional condition on the expected journey time of passengers (function of fail-to-board 

delays) made the posterior probabilities 𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 ) lower for the direct 

route (a) and higher for the indirect route (b) than the posterior probabilities conditiona l 

only on their CCOJTs (Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |Δ𝑞,𝐼𝐽)). Among them the greatest difference is for 

those passengers whose CCOJT is around 41-45 minutes and their inferred arrival time 

at Wembley Park (if they chose route 2) is in the time interval of 8:15-8:30. Based only 

on their CCOJT, Pr(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |Δ𝑞,𝐼𝐽) is quite low for route 2; however knowing that in 

that time interval, 7 minutes of fail-to-board delay is expected on that route, it is more 

likely that these longer CCOJTs correspond to the fact of experiencing fail-to-board 

delays and hence 𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 )  became much higher. In other words, 

having a CCOJT record and the additional information on the corresponding fail-to-board 

delay, the posterior probability that this record belongs to the congested indirect route 

becomes higher. 

Understanding the characteristics of the actual LU routes in Case 3 it is expected that 

very small CCOJT values (31-34 minutes) correspond to the indirect route in uncongested 

time intervals (before 8:00 or after 8:45), as without having fail-to-board delay that route 

has shorter journey time (cf. Figure 7-3). Furthermore, knowing that the direct route has 

a smaller standard deviation (cf. Section 7.3), it is more likely that the CCOJTs around 

the expected journey time (𝑡𝑞,𝑘,𝐼𝐽
EXP ) of the direct route (35-39 minutes) correspond to the 

direct route. Finally, the very large CCOJTs (40-70 minutes) are likely to correspond the 

indirect route in congested time intervals (between 8:00 and 8:45) 

The results of this case study reflected quite well what was expected based on the 

characteristics of the actual LU routes. For the very small CCOJT values (31-34 minutes) 

it gave around 80-85% for 𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽)  of route 1. For the CCOJTs 

around the expected journey time of route 1 (35-39 minutes), the 

𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 ) for route 1 was above 85%. For CCOJTs between 40 and 

48 minutes the 𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝑗 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 ) varies significantly depending on the arrival 

time of the passenger at the interchange station (hence his corresponding fail-to-board 

delay). The actual turning point is at the CCOJTs of 44-45 minutes, as the 

𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 ) is around 0.5 for both routes. For CCOJTs of 49 minutes and 

above, the 𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽) is very low for route 1. 
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Additionally, it is important to discuss the question of the quickest possible time on each 

route as a physical constraint. In this specific example, from Table 5-19, it can be 

understood, the total on-board time on the direct route is 31 minutes (assuming that due 

to timetable constraints, trains cannot arrive earlier than the scheduled arrival time). 

Considering the passenger does not need to wait for the metro service and runs very fast 

at the entry and exit station, it is expected to have 32 minutes as the quickest possible 

time for route 1. Therefore, looking at the CCOJT record of 31 minutes (Figure 7-4), it 

is physically impossible, that this journey could occur on route 1. At this point, the 

question of quickest possible journey time was not included in the model, but was 

proposed as a further improvement. 
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Figure 7-4 Comparison between 𝐏𝐫(𝒄𝒉𝒐𝒊𝒄𝒆𝒒𝒓|𝚫𝒒)  and 𝑷𝒓(𝒄𝒉𝒐𝒊𝒄𝒆𝒒𝒓|∆𝒒 ,∆𝒒𝒓)  for 

Jubilee West – Jubilee Central; a) Route 1, b) Route 2 

a) 

b) 
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Aggregate route choice 

After having obtained the updated posterior probabilities for each passenger 𝑞 on route 𝑟 

( 𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽|∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 ) ), the corresponding aggregate values for each route 𝑟 

(𝜇𝑟,𝐼𝐽
𝑈𝑃𝐷 , 𝜎𝑟,𝐼𝐽

𝑈𝑃𝐷 and 𝜔𝑟,𝐼𝐽
𝑈𝑃𝐷 ) are inferred with naïve inference as described in Section 7.5. 

The results are resumed in Table 7-2. 

 

Table 7-2 Aggregate results updated according to the additional information on fail-to-

board delays for Jubilee West– Jubilee Central 

Label Updated with fail-to-board 

𝑟 𝜇𝑟,𝐼𝐽
𝑈𝑃𝐷  𝜎𝑟 ,𝐼𝐽

𝑈𝑃𝐷 𝜔𝑟,𝐼𝐽
𝑈𝑃𝐷  

[] [min] [min] [%] 

1 40.3 2.6 67.8% 

2 51.5 6.3 32.2% 

 

In Table 7-3, the estimated mean values (𝜇𝑟,𝐼𝐽
𝑈𝑃𝐷 ) were compared to the reference time of 

routes (𝑡𝑟,𝐼𝐽
𝑅𝐸𝐹 , cf. (7-11)) and the corresponding aggregate route choice probabilit ies 

(𝜔𝑟,𝐼𝐽
𝑈𝑃𝐷 ) with the values understood from RODS data (𝜔𝑟,𝐼𝐽

𝑅𝑂𝐷𝑆 ). Regarding journey times, 

it is possible to observe, that the updated values (𝜇𝑟,𝐼𝐽
𝑈𝑃𝐷 ) are lower for both routes than the 

results understood form the finite mixture model (𝜇𝑟,𝐼𝐽
𝑀𝐼𝑋) and hence it is closer to the 

reference time of routes ( 𝑡𝑟,𝐼𝐽
𝑅𝐸𝐹 ). Interestingly, 𝑡𝑟,𝐼𝐽

𝑅𝐸𝐹 (which includes the fail-to-board 

delays on the congested route, cf. equation (7-3) and (7-11)) is very similar for the two 

routes (36.3 and 36.2 minutes respectively). Concerning route choice, the updated 

aggregate route choice probabilities (𝜔𝑟 ,𝐼𝐽
𝑈𝑃𝐷 ) are lower for route 1 and higher for route 2 

than the corresponding results from the finite mixture model (𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋) and hence they are 

further from the RODS results (𝜔𝑟,𝐼𝐽
𝑅𝑂𝐷𝑆 ). 
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Table 7-3 Matching the updated results with the actual London Underground routes for Jubilee West– Jubilee Central 

Blue: Updated results, superstation OD pairs, Purple: Mixture results, superstation OD pairs, Green: actual LU routes 

Mixture 
label 

Journey Time (min) Route Choice (%) Route 
label 

Route matched 

Updated Mixture Reference Updated Mixture RODS Line 1 IC 1 Line 2 IC 2 Line 3 

𝑟 𝜇𝑟,𝐼𝐽
𝑈𝑃𝐷  𝜇𝑟,𝐼𝐽

𝑀𝐼𝑋  𝑡𝑟,𝐼𝐽
𝑅𝐸𝐹  𝜔𝑟,𝐼𝐽

𝑈𝑃𝐷  𝜔𝑟,𝐼𝐽
𝑀𝐼𝑋  𝜔𝑟,𝐼𝐽

𝑅𝑂𝐷𝑆  𝑘 𝑙 = 1 𝑠 = 1 𝑙 = 2 𝑠 = 2 𝑙 = 3 

1 40.3 41.5 36.3 67.8% 78.5% 89.0% 1 Jub         

2 51.5 52.9 36.2 32.2% 21.5% 11.0% 2 Jub 
Wembley 
Park Met 

Finchley 
Road Jub 
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7.8 Discussions 

As it was pointed out in the case study (cf. Figure 7-3), the Expected Journey Time of 

passengers (𝑡𝑞,𝑘,𝐼𝐽
EXP ) is quite low with respect to their CCOJT (𝛿𝑞,𝐼𝐽

CCOJT
). Due to this, the 

posterior probabilities (𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 )) were underestimated for route 1 and 

overestimated for route 2 (cf. equation (7-6)). A possible improvement could be to 

estimate 𝑡𝑙 ,𝑘,𝐼𝐽
𝑜𝑏  and 𝑡𝑙,𝑘,𝐼𝐽

𝑤𝑎𝑖𝑡  based on the actual departure/arrival time of trains and to model 

𝑡1,𝑘,𝐼𝐽
𝑎𝑐𝑐 , 𝑡𝐿,𝑘,𝐼𝐽

𝑒𝑔𝑟
 and 𝑡𝑠,𝑘 ,𝐼𝐽

𝑖𝑐  taking into consideration that also the walk speed depends on the 

crowding along the station passageways (see Section 8.2.5). 

Additionally, even though the considerations that were made for matching the results of 

the finite mixture model with the actual LU routes (cf. Section 7.3) could work for this 

specific case (Case 3, Jubilee West – Jubilee Central); to make it applicable to all OD 

pairs of a metro network, it would require more advanced statistical method. 
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Chapter 8  

Concluding remarks and further work 

8.1 Conclusions 

The core problem discussed in this thesis is to estimate route choice in complex metro 

networks from smart card data at origin destination (OD) level. Using the finite mixture 

model in this context and applying it for certain station-to-station OD pairs of the London 

Underground (LU) a few issues emerged. To address them, this thesis proposed: 

 a route choice set generation model that can find automatically the set of 

reasonable routes for any type of OD pair of a metro network; 

 the superstation representation of metro networks and the corresponding spatial 

aggregation of Observed Journey Times (OJT) understood from smart card data 

and 

 A methodology to adjust the OJTs as well as the route choice estimates of the 

finite mixture model according to the additional information the on fail-to-board 

delay at the origin and interchange stations 

As it follows, the lessons learnt regarding these models are discussed. 

8.1.1 Route choice set generation in complex metro networks 

This thesis has made a forward step in developing a model that can automatically find the 

set of reasonable routes for any type of OD pair of a complex metro network. This set  

was obtained based on the generalised costs of routes (Raveau et al., 2014). Applying the 

proposed model on the LU inner zone (cf. Chapter 4), the following was understood: 

 In average a route can be considered reasonable, if its generalised cost is no more 

than 1.18 times the generalised cost of the shortest route.  

 There are OD pairs, which have unreasonable routes with a lower generalised cost 

proportion (1.09-1.17). 

 There are also OD pairs, which have reasonable routes with higher generalised 

cost proportion (1.21-1.23). 

In essence, results showed that it is not possible to generate the set of reasonable routes 

purely based on their generalised cost as they also depend on OD specific attributes. 

Therefore, based on the case studies in Chapter 5 it was further understood that a lower 

attribute cut-off is expected for OD pairs with longer minimum journey time as well as 
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for those which have more available directions at the origin and/or destination station; 

and that a higher attribute cut-off is expected when the choice of passengers is between a 

direct route and an express line. Although these dependencies were pointed put and 

illustrated, the explicit formulation of the model was not yet made, but it is suggested for 

further research (see Section 8.2.1). 

8.1.2 Introducing the concept of superstations 

This thesis introduced the concept of superstations with the purpose to overcome the data 

availability issues of station-to-station OD pairs in the context of route choice estimation.  

Applying that for the case study OD pairs of the LU: 

 Certain number of OD pairs could be grouped 

o 4-5 OD pairs in cases where only the origin stations could be grouped, 

o 20 OD pairs in cases where both origin and destination station could be 

grouped and 

 the sample size of OJTs could be increased 

o 1.6-2.7 times in case only the origin stations could be grouped, 

o 8.2 times in case both origin and destination station could be grouped. 

The finite mixture model applied on this larger dataset 

 brought better convergence for all case study OD pairs and 

 gave closer results to the actual LU routes in most cases. 

Having tested the superstation representation for certain OD pairs, the question was 

raised, whether it is possible to find automatically all groups of OD pairs for which the 

superstation representation is applicable. This discussed in Section 8.2.2. 

The main objective for station grouping in this thesis was to increase the sample size of 

OJTs for route choice estimation with the finite mixture model. The main limitation here 

is that the concept of superstations is applicable only for the OD pairs, where the first/last 

journey leg for all reasonable routes is on the same line. However, in reality, there are 

many OD pairs, where the first/last journey leg is on different lines, and hence the concept 

of superstations in not applicable. Therefore, it was understood, that for a more 

comprehensive understanding on route choice, it is advisable to set multiple objectives 

for station grouping. This is discussed in Section 8.2.3. 
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8.1.3 Adjustment according to fail -to-board delays 

The model proposed in this thesis accounted for the fail-to-board delay at the origin and 

interchange station.  

For the fail-to-board delay at the origin station the OJTs were further adjusted in the 

process of their aggregation. A crucial point here was that deducting all fail-to-board 

delays from the OJT dataset would be an optimistic, but not realistic view about the 

likelihood of passengers’ boarding, assuming that fail-to-board delays had not occurred. 

As a consequence of this, the finite mixture model applied on that dataset of CCOJTs had 

worse convergence (i.e. greater difference between the solutions for different settings of 

tolerance thresholds) compared to when it was applied on the CCOJTs without adjustment 

according to fail-to-board delays. In order to address this question, a different approach 

is proposed in Section 8.2.4, which follows the concept presented in Chapter 7. 

Apart from this, there are also other possible reasons why the adjustment according to 

fail-to-board delays did not bring the expected benefit:  

 The quasi-dynamic approach could infer only the average fail-to-board delay 

values for the 15 minute time intervals, but not their actual distribution.  

 The assumption made for the actual capacity of trains may not be realistic 

In case the fail-to-board delay occurs at the interchange station, the route choice estimates 

of the finite mixture model were updated with this additional information in a Bayesian 

framework. It was understood that the updated route choice probabilities did not give a 

better match to the actual LU results than without the adjustment due to the following 

limitations of the model: 

 The Scheduled Journey Time (SJT) of routes was inferred from timetables and 

station layouts 

 The fail-to-board delay was inferred from the Rolling Origin Destination Survey 

(RODS) data 

To overcome these limitations, an improved model is proposed in Section 8.2.5. 

8.2 Further work 

In response to these issues (cf. Section 8.1) it is proposed for further research: 

 an improved route choice generation model that uses as an input both route 

specific and OD specific attributes; 
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 an algorithm that finds all groups of OD pairs, for which the superstation 

representation is applicable 

 the extension of the concept of superstations for nearby stations; 

 consideration of fail-to-board delays at the origin station with the concept of 

updating priors of route choice probabilities 

 an improved model that can rely more on automated data sources 

As it follows, these improvements are presented. 

8.2.1 An improved route choice set generation model  

An improved route choice set generation algorithm is proposed for further research that 

– in addition to the route specific attributes (generalised cost) – accounts also for the OD 

specific attributes, such as the presence of a direct route, the number of available 

directions at the origin and destination station, OD minimum travel time and the presence 

of an express line (cf. Section 5.3.3). In order to properly formulate this function, it is 

necessary to calibrate the model with additional types of OD pairs: 

1) with one reasonable route (i.e. find the attribute cut-off value between the shortest 

and the second shortest route); 

2) with reasonable routes that have three or more journey legs and 

3) from/to/between LU outer zones 

The first type of OD pair needs to be examined, as it is expected that in those cases the 

generalised cost proportion of the second shortest route is quite high, therefore it is not 

included in the observed choice set of passengers. These are mostly OD pairs with a direct 

route and the indirect routes do not have any attractive attributes (cf. Section 4.7.4.2). 

Analogously, for the second type of OD pair one would be interested to know what 

attractive attributes a route with three or more journey legs has that passengers still 

consider that option, when routes with less journey legs are also available (cf. Section 5.6 

Case 3). Finally, the third type of OD pair exhibits a case, where the on-board times are 

much longer and the interchange times are relatively shorter with respect to the total 

journey time. Therefore, it is expected that in these cases different cut-off values will be 

between the reasonable and unreasonable routes (cf. Section 2.3.1). 

As the program code is already ready, it could be applied automatically for all OD pairs 

of the LU. It requires only the input of the RODS data for validation. 



 237 

 
 

Another question to discuss is that in the process of route choice set generation, the 

oversimplified assumption was made, that the generalised cost of a route depends only 

on their journey time and interchange properties (cf. (4-2)). However in reality, it may 

occur that there are other routes that passengers consider in their choice set with higher 

journey time and less favourable interchange properties, because those routes have other 

attributes that attract them (e.g. they look shorter on the map or they have new LU fleet). 

This issue could be treated by including those attributes in the generalised cost function. 

8.2.2 An algorithm to find all superstations in a metro network 

Once the previously proposed route choice set generation model (cf. Section 8.2.1) is 

calibrated, it could be applied for all OD pairs of the LU to find those which have mult ip le 

reasonable routes. Following this – in line with the Definition of superstations (cf. 

Section 5.3.1) – an algorithm can be written that can automatically find those groups of 

OD pairs, for which the first/last journey leg is on the same line both among the 

reasonable routes and across the OD pairs. This can be done easily as the relevant 

information is already stored in the network model of the LU (cf. Section 4.4).  

8.2.3 Extension of the concept of superstations for nearby stations 

It is proposed to extend the concept of superstations for nearby stations so that – in 

addition to the objective of data availability – it can comply with the following objectives: 

 Including in the model that a passenger has a set of attractive entry/exit stations 

near his/her true origin/destination 

 Reducing network complexity 

These objectives are especially relevant in the LU network, as in the inner zone many 

stations are within walking distance (12 minutes (Transport for London, 2010)). A typical 

example for this are the stations around the Bank/Monument station complex in the City 

of London. Identifying all groups of stations with these properties, could lead to the 

superstation map of the LU (see Figure 8-1). This is equivalent to a simplified network 

representation (Figure 8-2), and applying a Transit Assignment Model (TAM) on that 

could give a more comprehensive picture on route choice with significantly less 

computational time. 

The objective of data availability is not fully in line with the objectives for grouping 

nearby stations; as while the former requires that the stations should be on the same line 

(regardless their distance), the latter requires that they should be in physical proximity 
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(regardless whether they are on the same line). Therefore, the overall aim of the modeller 

is to find the optimal scenario of these objectives.  

 

 

Figure 8-1 The superstation map of the London Underground according to the extended 

concept of superstations 

 

 

Figure 8-2 Application of the superstation map of the LU for transit assignment 

modelling 
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Looking at, for example, the Victoria – Holborn OD pair: According to the extended 

concept of superstations, the origin station: Victoria can be grouped with the nearby 

St James’ Park station and the destination station: Holborn with the Tottenham Court 

Road, Leicester Square, Covent Garden, Chancery Lane and Temple stations. This 

way the route choice set between the origin and destination superstations will be 

1) Victoria – Central (via Oxford Circus) 

2) Victoria – Piccadilly (via Green Park) 

3) Circle – Northern (via Embankment) 

4) Circle 

This example illustrates that with the inclusion of nearby stations, there are additiona l 

routes in the choice set of passengers. Practically this means that if the true origin of the 

passenger is somewhere near Victoria station and the true destination is somewhere near 

Holborn station – in addition to the previously discussed routes (route 1 and 2) – it might 

be convenient for him/her to take the Circle line to Embankment and interchange to the 

Northern line (route 3), or to Temple and walk to the true destination (route 4). 

With this concept of superstation representation, route choice could be estimated in the 

following way: For some station-to-station OD pairs, the route choice can be known 

explicitly, as there is only one reasonable route (e.g. Victoria – Temple, Victoria – 

Covent Garden), while for other OD pairs there are more reasonable routes (e.g. 

Victoria – Holborn, Victoria – Leicester Square). In the latter case – similarly to the 

original concept of superstations – the route choice could be estimated with the finite 

mixture models. 

Through this specific example it could be further understood that the main objective of 

this superstation representation is to give a more comprehensive picture on route choice 

by including those passengers who decide to take a direct service (i.e. Circle line) to a 

station near their true destination (i.e. Temple). For this OD pair it was not possible to 

comply with the objective of data availability, because – unlike the original concept of 

superstations – it was not possible to group the Victoria station with the other stations on 

the Victoria line as they are not in its physical proximity. 

It is important to note that the station grouping presented on Figure 8-1 is one, but not 

the only possibility to group the stations. For example – looking into the opposite 

direction – Victoria station could be grouped with Sloane Square and Hyde Park 

stations instead of St James’s Park station. Therefore this extended concept of 
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superstations would necessitate not only to group the nearby stations, but also to find the 

optimal configuration among all possibilities. Furthermore, dealing with nearby stations, 

would require additional information on the true origin/destination of passengers and the 

surface walk time to/from their corresponding entry/exit stations. These tasks would bring 

the necessity to apply geospatial analysis. 

8.2.4 A different approach for considering fail -to-board delays at the origin 

station 

It is proposed to extend the concept in Chapter 7 also for the cases, when the fail-to-

board delay occurs at the origin stations. In other words, looking at the outcomes of 

Chapter 6 and Chapter 7 it was understood that updating the route choice probabilit ies 

is a more justifiable approach than adjusting the OJT values. 

Within the framework of this thesis, for Case 1 and Case 2 the common pattern is that 

for all reasonable routes the first journey leg is on the same line. In this context, in the 

time intervals when fail-to-board delays occur at the origin station, it occurs on all routes. 

Therefore in this specific case the fail-to-board delay (𝛿𝑓𝑎𝑖𝑙) and hence the expected 

journey time (𝛿𝐸𝑋𝑃) is not anymore a function of the chosen route (𝑟), only of the entry 

time (𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

). This way the original Bayesian network structure (cf. Figure 7-1) can be 

further simplified (see Figure 8-3). 

 

 

Figure 8-3 Bayesian network structure to illustrate passengers probabilistic route 

choices – in case fail-to-board delay is the same on all routes 
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In these cases, equation (7-1) and (7-2) simplifies to the following  

 𝑇𝑞,𝐼𝐽
𝑝𝑙𝑎𝑡−𝑜

= 𝑇𝑞,𝐼𝑖
𝑒𝑛𝑡𝑟𝑦

+ 𝑡1,𝐼𝑖
𝑎𝑐𝑐 (8-1) 

where 𝑇𝑞,𝐼𝐽
𝑝𝑙𝑎𝑡−𝑜

 denotes the arrival time stamp of passenger 𝑞 at the departure platform of 

the origin station. From this, the time interval (𝑡) of arriving at the congested platform 

can be explicitly known, and hence the corresponding fail-to-board delay (𝑡𝑞,𝐼𝐽
𝑓𝑎𝑖𝑙

, cf. 

Section 6.3) and Expected Journey Time (𝑡𝑞 ,𝑘,𝐼𝐽
EXP , cf. equation (7-3)) can be inferred. Based 

on this, the updated route choice probabilities (𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽 , ∆𝑞𝑟,𝐼𝐽 ), cf. Section 

7.4) as well as the reference time of routes (𝑡𝑟,𝐼𝐽
𝑅𝐸𝐹 ) and the aggregate values of route choice 

(𝜔𝑟 ,𝐼𝐽
𝑢𝑝𝑑

) (cf. Section 7.5) can be obtained. 

Looking at equation (7-6) it is expected that in the time intervals of the peak of peak (i.e. 

8:15-9:00) – when fail-to-board delays occur at the origin station and hence 𝑡𝑞,𝑘 ,𝐼𝐽
EXP  is 

higher for both routes – the 𝑃𝑟(𝑐ℎ𝑜𝑖𝑐𝑒𝑞𝑟,𝐼𝐽 |∆𝑞,𝐼𝐽, ∆𝑞𝑟,𝐼𝐽 ) will be closer to each other for 

the different routes than it is for the priors; where the higher 𝛿𝑞,𝐼𝐽
CCOJT

 observations were 

associated by default with the route that has longer SJT (𝑡𝑘 ,𝐼𝐽
𝑆𝐽𝑇

), which meant that the 

corresponding route choice probabilities (𝜔𝑟,𝐼𝐽) were also higher (c.f. Figure 5-13 and 

Figure 5-19). 

8.2.5 Relying on automatically collected data for inferring crowding and the 

journey time of routes 

It is proposed for further research to improve the adjustment and matching process, so 

that it can completely move away from manual surveys and rely more on automatica l ly 

collected data sources: 

 Estimate passenger flows also from smart card data instead of RODS data 

 Infer on-board and wait time of trains from their actual departure and arrival times 

instead of timetables 

 Infer access egress interchange (AEI) times in function of station crowding 

In theory, from smart card data both the OD demand and route choice can be inferred, 

hence passenger flow can be determined for all links. However – in the congested case – 

this would require to solve this problem as a TAM for the entire network, which would 

require much additional modelling work due to the size and complexity of the LU 

network.  
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The actual departure/arrival time of trains can be understood from the TfL open data 

website (cf. Section 3.6.2.1). Staying at the frequency based context it would be possible 

to infer from that data source the distribution of on-board and wait times. Furthermore, 

also for the AEI times more realistic estimates could be obtained, if they were modelled 

not only with their mean values based on the information on station layouts (cf. Section 

3.6.2.2); but also with their distribution which is in relation with the crowding 

experienced along the station passageways (following the concept in  Section 6.3). 



 243 

 
 

References 

Arthur, D. and Vassilvitskii, S. 2007. k-means++: The advantages of careful seeding. 
In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete 

algorithms: Society for Industrial and Applied Mathematics, pp.1027-1035. 
Azevedo, J.A., Madeira, J.J.E.S., Martins, E.Q.V. and Pires, F.M.A. 1990. A shortest 

paths ranking algorithm. 
Azevedo, J.A., Santos Costa, M.E.O., Silvestre Madeira, J.J.E.R. and Vieira Martins, 

E.Q. 1993. An algorithm for the ranking of shortest paths. European Journal of 

Operational Research. 69(1), pp.97-106. 
Barry, J., Newhouser, R., Rahbee, A. and Sayeda, S. 2002. Origin and Destination 

Estimation in New York City with Automated Fare System Data. Transportation 
Research Record: Journal of the Transportation Research Board. 1817, pp.183-
187. 

Başar, G. and Bhat, C. 2004. A parameterized consideration set model for airport 
choice: an application to the San Francisco Bay Area. Transportation Research 

Part B: Methodological. 38(10), pp.889-904. 
Bekhor, S., Toledo, T. and Prashker, J. 2006. Implementation issues of route choice 

models in path-based algorithms. In: 11th international conference on travel 

behaviour research, Kyoto, Japan. 
Bellman, R. 1958. On a routing problem. Quarterly of applied mathematics. 16(1), 

pp.87-90. 
Ben-Akiva, M., Bergman, M., Daly, A.J. and Ramaswamy, R. 1984. Modeling inter-

urban route choice behaviour. In: Proceedings of the 9th International 

Symposium on Transportation and Traffic Theory, VNU Press, Utrecht , pp.299-
330. 

Ben-Akiva, M. and Bierlaire, M. 1999. Discrete Choice Methods and their Applications 
to Short Term Travel Decisions. In: Hall, R.W. ed. Handbook of Transportation 
Science.  Boston, MA: Springer US, pp.5-33. 

Bergantino, A.S., Capurso, M., Dekker, T. and Hess, S. 2019. Allowing for 
Heterogeneity in the Consideration of Airport Access Modes: The Case of Bari 

Airport. Transportation Research Record: Journal of the Transportation 
Research Board. p036119811882512. 

Bovy, P.H.L. 2009. On Modelling Route Choice Sets in Transportation Networks: A 

Synthesis. Transport Reviews. 29(1), pp.43-68. 
Cantillo, V. and Ortúzar, J.d.D. 2005. A semi-compensatory discrete choice model with 

explicit attribute thresholds of perception. Transportation Research Part B: 
Methodological. 39(7), pp.641-657. 

Cascetta, E., Nuzzolo, A., Russo, F. and Vitetta, A. 1996. A modified Logit route choice 

model overcoming path overlapping problems: specification and some 
calibration results for interurban networks. In: Proceedings of the 13th 

International Symposium on Transportation and Traffic Theory, Pergamon, 
Lyon, France. pp.697–711. 

Cascetta, E. and Papola, A. 2001. Random utility models with implicit 

availability/perception of choice alternatives for the simulation of travel demand. 
Transportation Research Part C: Emerging Technologies. 9(4), pp.249-263. 

Cea, J.d. and Fernández, E. 1993. Transit Assignment for Congested Public Transport 
Systems: An Equilibrium Model. Transportation Science. 27(2), pp.133-147. 

Cepeda, M., Cominetti, R. and Florian, M. 2006. A frequency-based assignment model 

for congested transit networks with strict capacity constraints: characterization 
and computation of equilibria. Transportation Research Part B: 

Methodological. 40(6), pp.437-459. 



 244 

 
 

Chamundeswari, G., Varma, G.P. and Satyanarayana, C. 2012. An experimental 
analysis of k-means using Matlab. International Journal of Engineering 
Research Technology (IJERT) ISSN. 

Chan, J. 2007. Rail Transit OD Matrix Estimation and Journey Time Reliability Metrics 
Using Automated Fare Data. Master of Science in Transportation thesis, 

Massachusetts Institute of Technology. 
Chriqui, C., & Robillard, P. 1975. Common bus lines. Transportation Science. 9, 

pp.115-121. 

Chu, K. and Chapleau, R. 2010. Augmenting Transit Trip Characterization and Travel 
Behavior Comprehension. Transportation Research Record: Journal of the 

Transportation Research Board. 2183, pp.29-40. 
Chu, K.K. 2010. Leveraging data from a smart card automatic fare collection system 

for public transit planning. thesis, École Polytechnique de Montréal. 

Cominetti, R. and Correa, J. 2001. Common-Lines and Passenger Assignment in 
Congested Transit Networks. Transportation Science. 35(3), pp.250-267. 

Connors, R.D. and Watling, D.P. 2014. Assessing the Demand Vulnerability of 
Equilibrium Traffic Networks via Network Aggregation. Networks and Spatial 
Economics. 15(2), pp.367-395. 

Cui, A. 2006. Bus passenger origin-destination matrix estimation using automated data 
collection systems. thesis, Massachusetts Institute of Technology. 

de la Barra, T., Perez, B. and Anez, J. 1993. Multidimensional path search and 
assignment. In: PTRC Summer Annual Meeting, 21st, 1993, University of 
Manchester, United Kingdom. 

Dempster, A.P., Laird, N.M. and Rubin, D.B. 1977. Maximum Likelihood from 
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. 

Series B (Methodological). 39(1), pp.1-38. 
Dial, R.B. 1971. A probabilistic multipath traffic assignment model which obviates path 

enumeration. Transportation Research. 5(2), pp.83-111. 

Dijkstra, E.W. 1959. A note on two problems in connexion with graphs. Numerische 
mathematik. 1(1), pp.269-271. 

Domencich, T. and McFadden, D. 1975. Urban travel demand; a behavioural analysis. 
Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. 1996. A density-based algorithm for 

discovering clusters in large spatial databases with noise. In: Kdd, pp.226-231. 

Fifer, S., Rose, J. and Greaves, S. 2014. Hypothetical bias in Stated Choice 
Experiments: Is it a problem? And if so, how do we deal with it? Transportation 

Research Part A: Policy and Practice. 61, pp.164-177. 
Fiorenzo-Catalano, S., Van Nes, R. and Bovy, P.H. 2004. Choice set generation for 

multi-modal travel analysis. European journal of transport and infrastructure 

research EJTIR, 4 (2). 
Ford, L.R.J. 1956. Network flow theory.  RAND CORP SANTA MONICA CA. 

Forgy, E.W. 1965. Cluster analysis of multivariate data : efficiency versus 
interpretability of classifications. Biometrics. 21, pp.768-769. 

Freemark, Y. 2013. Assessing Journey Time Impacts of Disruptions on London's 

Piccadilly Line. Master of Science in Transportation thesis, Massachusetts 
Institute of Technology. 

Frigge, M., Hoaglin, D.C. and Iglewicz, B. 1989. Some Implementations of the 
Boxplot. The American Statistician. 43(1), pp.50-54. 

Frühwirth-Schnatter, S. 2006. Finite mixture and Markov switching models.  Springer 

Science & Business Media. 
Fu, Q. 2014. Modelling route choice behaviour with incomplete data: an application to 

the London Underground. PhD thesis, University of Leeds. 



 245 

 
 

Fu, Q., Liu, R. and Hess, S. 2012. A Review on Transit Assignment Modelling 
Approaches to Congested Networks: A New Perspective. Procedia - Social and 
Behavioral Sciences. 54, pp.1145-1155. 

Fujiyama, T. and Tyler, N. 2010. Predicting the walking speed of pedestrians on stairs. 
Transportation Planning and Technology. 33(2), pp.177-202. 

Gan, L. and Jiang, J. 1999. A Test for Global Maximum. Journal of the American 
Statistical Association. 94(447), pp.847-854. 

Gaundry, M.J.I. and Dagenais, M.G. 1979. The dogit model. Transportation Research 

Part B: Methodological. 13(2), pp.105-111. 
Gentile, G. and Noekel, K. 2016. Modelling public transport passenger flows in the era 

of intelligent transport systems. 
Gordillo, F. 2006. The Value of Automated Fare Collection Data for Transit Planning: 

An Example of Rail Transit OD Matrix Estimation. Master of Science in 

Transportation thesis, Massachusetts Institute of Technology. 
Gordon, J.B., Koutsopoulos, H.N., Wilson, N.H.M. and Attanucci, J.P. 2013. 

Automated Inference of Linked Transit Journeys in London Using Fare-
Transaction and Vehicle Location Data. Transportation Research Record: 
Journal of the Transportation Research Board. 2343(-1), pp.17-24. 

Guo, W. and Lu, X. 2016. London underground: Neighbourhood centrality and relation 
to urban geography. In: 2016 IEEE International Smart Cities Conference 

(ISC2), 12-15 Sept. 2016, pp.1-7. 
Guo, Z. 2008. Transfers and path choice in urban public transport systems. thesis, 

Massachusetts Institute of Technology. 

Guo, Z. 2011. Mind the map! The impact of transit maps on path choice in public 
transit. Transportation Research Part A: Policy and Practice. 45(7), pp.625-

639. 
Hart, P.E., Nilsson, N.J. and Raphael, B. 1968. A Formal Basis for the Heuristic 

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science 

and Cybernetics. 4(2), pp.100-107. 
Hassan, M.N., Rashidi, T.H., Waller, S.T., Nassir, N. and Hickman, M.J.J.o.P.T. 2016. 

Modeling Transit Users Stop Choice Behavior: Do Travelers Strategize? Journal 
of Public Transportation. 19(3), p6. 

Hickman, M.D. and Bernstein, D.H. 1997. Transit Service and Path Choice Models in 

Stochastic and Time-Dependent Networks. Transportation Science. 31(2), 
pp.129-146. 

Holleczek, T., Anh, D.T., Yin, S., Jin, Y., Antonatos, S., Goh, H.L., Low, S. and Shi-
Nash, A. 2015. Traffic Measurement and Route Recommendation System for 
Mass Rapid Transit (MRT). In: Proceedings of the 21th ACM SIGKDD 

International Conference on Knowledge Discovery and Data Mining, Sydney, 
NSW, Australia. 2788590: ACM, pp.1859-1868. 

Hong, L., Li, W. and Zhu, W. 2017. Assigning Passenger Flows on a Metro Network 
Based on Automatic Fare Collection Data and Timetable. Discrete Dynamics in 
Nature and Society. 2017, pp.1-10. 

Hong, S.-P., Min, Y.-H., Park, M.-J., Kim, K.M. and Oh, S.M. 2015. Precise estimation 
of connections of metro passengers from Smart Card data. Transportation. 

43(5), pp.749-769. 
Hörcher, D., Graham, D.J. and Anderson, R.J. 2017. Crowding cost estimation with 

large scale smart card and vehicle location data. Transportation Research Part 

B: Methodological. 95, pp.105-125. 
Horowitz, J.L. and Louviere, J.J. 1995. What is the role of consideration sets in choice 

modeling? International Journal of Research in Marketing. 12(1), pp.39-54. 



 246 

 
 

Ingvardson, J.B., Nielsen, O.A., Raveau, S. and Nielsen, B.F. 2018. Passenger arrival 
and waiting time distributions dependent on train service frequency and station 
characteristics: A smart card data analysis. Transportation Research Part C: 

Emerging Technologies. 90, pp.292-306. 
Jafari, E. and Boyles, S.D. 2016. Improved bush-based methods for network 

contraction. Transportation Research Part B: Methodological. 83, pp.298-313. 
Jánošíková, Ľ., Slavík, J. and Koháni, M. 2014. Estimation of a route choice model for 

urban public transport using smart card data. Transportation Planning and 

Technology. 37(7), pp.638-648. 
Kaufman, L. and Rousseeuw, P.J. 2009. Finding groups in data: an introduction to 

cluster analysis.  John Wiley & Sons. 
Kieu, L.-M., Bhaskar, A. and Chung, E. 2015a. A modified Density-Based Scanning 

Algorithm with Noise for spatial travel pattern analysis from Smart Card AFC 

data. Transportation Research Part C: Emerging Technologies. 58, pp.193-207. 
Kieu, L.M., Bhaskar, A. and Chung, E. 2015b. Passenger Segmentation Using Smart 

Card Data. IEEE Transactions on Intelligent Transportation Systems. 16(3), 
pp.1537-1548. 

Koutsopoulos, H.N., Noursalehi, P., Zhu, Y. and Wilson, N.H.M. 2017. Automated data 

in transit: Recent developments and applications. In: 2017 5th IEEE 
International Conference on Models and Technologies for Intelligent 

Transportation Systems (MT-ITS), 26-28 June 2017, pp.604-609. 
Kuhlman, W. 2015. The construction of purpose-specific OD matrices using public 

transport smart card data. thesis, TU Delft. 

Kurauchi, F., Bell, M.G.H. and Schmöcker, J.-D. 2003. Capacity Constrained Transit 
Assignment with Common Lines. Journal of Mathematical Modelling and 

Algorithms. 2(4), pp.309-327. 
Kusakabe, T. and Asakura, Y. 2014. Behavioural data mining of transit smart card data: 

A data fusion approach. Transportation Research Part C: Emerging 

Technologies. 46, pp.179-191. 
Kusakabe, T., Iryo, T. and Asakura, Y. 2010. Estimation method for railway 

passengers’ train choice behavior with smart card transaction data. 
Transportation. 37(5), pp.731-749. 

Leahy, C., Batley, R. and Chen, H. 2015. Toward an automated methodology for the 

valuation of reliability. Journal of Intelligent Transportation Systems. 20(4), 
pp.334-344. 

Lee, M. and Sohn, K. 2015. Inferring the route-use patterns of metro passengers based 
only on travel-time data within a Bayesian framework using a reversible-jump 
Markov chain Monte Carlo (MCMC) simulation. Transportation Research Part 

B: Methodological. 81, pp.1-17. 
Lee, S., Hickman, M. and Tong, D. 2013. Development of a temporal and spatial 

linkage between transit demand and land-use patterns. Journal of Transport and 
Land Use. 6(2), p33. 

Li, Z. and Hensher, D.A. 2011. Crowding and public transport: A review of willingness 

to pay evidence and its relevance in project appraisal. Transport Policy. 18(6), 
pp.880-887. 

Luo, D., Cats, O. and van Lint, H. 2017. Constructing Transit Origin–Destination 
Matrices with Spatial Clustering. Transportation Research Record: Journal of 
the Transportation Research Board. 2652(1), pp.39-49. 

MacQueen, J. 1967. Some methods for classification and analysis of multivariate 
observations. Proceedings of the Fifth Berkeley Symposium on Mathematical 

Statistics and Probability. 1, p17. 



 247 

 
 

Manski, C.F. 1977. The structure of random utility models. Theory and Decision. 8(3), 
pp.229-254. 

Martínez, F., Aguila, F. and Hurtubia, R. 2009. The constrained multinomial logit: A 

semi-compensatory choice model. Transportation Research Part B: 
Methodological. 43(3), pp.365-377. 

McLachlan, G. and Peel, D. 2000. Finite mixture models: Wiley series in probability 
and mathematical statistics. John Wiley & Sons, Inc.  

McLachlan, G.J. and Krishnan, T. 2007. The EM algorithm and extensions.  John Wiley 

& Sons. 
Meschini, L., Gentile, G. and Papola, N. 2007. A frequency based transit model for 

dynamic traffic assignment to multimodal networks. In: 17th International 
Symposium on Transportation and Traffic Theory, 23rd-25th July 2007, London, 
United Kingdom. 

Morency, C., Trépanier, M. and Agard, B. 2007. Measuring transit use variability with 
smart-card data. Transport Policy. 14(3), pp.193-203. 

Munizaga, M.A. and Palma, C. 2012. Estimation of a disaggregate multimodal public 
transport Origin–Destination matrix from passive smartcard data from Santiago, 
Chile. Transportation Research Part C: Emerging Technologies. 24, pp.9-18. 

Nádudvari, T., Liu, R. and Balijepalli, C. 2016. The reasonable route choice set in large 
and complex metro networks; an implementation of the K-shortest path 

algorithm for the London Underground. In: Proceedings of the 21st 
International Conference of Hong Kong Society for Transportation Studies, 
10th-12th December 2016, Hong Kong, China. Hong Kong Society for 

Transportation Studies, pp.247-254. 
Nádudvari, T., Liu, R. and Hess, S. 2015. Modelling passengers’ route choice behaviour 

on the London Underground: application of two choice modelling approaches. 
In: In: Proceedings of the 47th Annual Conference of Universities' Transport 
Study Group, 5th-7th January 2015, London, United Kingdom. 

Nassir, N., Hickman, M. and Ma, Z.-L. 2015a. Activity detection and transfer 
identification for public transit fare card data. Transportation. 42(4), pp.683-

705. 
Nassir, N., Hickman, M., Malekzadeh, A. and Irannezhad, E. 2015b. Modeling Transit 

Passenger Choices of Access Stop. Transportation Research Record: Journal of 

the Transportation Research Board. 2493(1), pp.70-77. 
Nassir, N., Hickman, M., Malekzadeh, A. and Irannezhad, E. 2016. A utility-based 

travel impedance measure for public transit network accessibility. 
Transportation Research Part A: Policy and Practice. 88, pp.26-39. 

Nguyen, S. and Pallottino, S. 1988. Equilibrium traffic assignment for large scale transit 

networks. European Journal of Operational Research. 37(2), pp.176-186. 
Nuzzolo, A., Crisalli, U. and Rosati, L. 2012. A schedule-based assignment model with 

explicit capacity constraints for congested transit networks. Transportation 
Research Part C: Emerging Technologies. 20(1), pp.16-33. 

Nuzzolo, A., Russo, F. and Crisalli, U. 2001. A Doubly Dynamic Schedule-based 

Assignment Model for Transit Networks. Transportation Science. 35(3), pp.268-
285. 

Opsahl, T., Agneessens, F. and Skvoretz, J. 2010. Node centrality in weighted 
networks: Generalizing degree and shortest paths. Social Networks. 32(3), 
pp.245-251. 

Ortega-Tong, M.A. 2013. Classification of London's Public Transport Users Using 
Smart Card Data. MIT Thesis. 

Ortúzar, J.d.D. and Willumsen, L.G. 2011. Modelling transport. Chichester, West 
Sussex: John Wiley & Sons. 



 248 

 
 

Parkes, S.D., Jopson, A. and Marsden, G. 2016. Understanding travel behaviour change 
during mega-events: Lessons from the London 2012 Games. Transportation 
Research Part A: Policy and Practice. 92, pp.104-119. 

Paul, E.C. 2010. Estimating train passenger load from automated data systems : 
application to London Underground. Master of Science in Transportation thesis, 

Massachusetts Institute of Technology. 
Pelletier, M.-P., Trépanier, M. and Morency, C. 2011. Smart card data use in public 

transit: A literature review. Transportation Research Part C: Emerging 

Technologies. 19(4), pp.557-568. 
Prato, C.G. 2009. Route choice modeling: past, present and future research directions. 

Journal of Choice Modelling. 2(1), pp.65-100. 
Ramming, M. 2002. Network Knowledge and Route Choice. PhD. MIT, Cambridge, 

MA, Unpublished.  

Raveau, S., Guo, Z., Muñoz, J.C. and Wilson, N.H.M. 2014. A behavioural comparison 
of route choice on metro networks: Time, transfers, crowding, topology and 

socio-demographics. Transportation Research Part A: Policy and Practice. 66, 
pp.185-195. 

Richardson, S. and Green, P.J. 1997. On Bayesian Analysis of Mixtures with an 

Unknown Number of Components (with discussion). Journal of the Royal 
Statistical Society: Series B (Statistical Methodology). 59(4), pp.731-792. 

Rodriguez, A. and Laio, A. 2014. Clustering by fast search and find of density peaks. 
Science. 344(6191), pp.1492-1496. 

Ross, L. 2017. Measuring Travel Time Reliability under Disruption Conditions for the 

London Underground. Master of Science thesis, University of Leeds. 
Schmöcker, J.-D. 2006. Dynamic Capacity Constrained Transit Assignment Thesis 

submitted for the degree of Doctor of Philosophy thesis, Imperial College 
London. 

Schmöcker, J.-D., Bell, M.G.H. and Kurauchi, F. 2008. A quasi-dynamic capacity 

constrained frequency-based transit assignment model. Transportation Research 
Part B: Methodological. 42(10), pp.925-945. 

Schmöcker, J.-D., Fonzone, A., Shimamoto, H., Kurauchi, F. and Bell, M.G.H. 2011. 
Frequency-based transit assignment considering seat capacities. Transportation 
Research Part B: Methodological. 45(2), pp.392-408. 

Seaborn, C., Attanucci, J. and Wilson, N. 2009. Analyzing Multimodal Public Transport 
Journeys in London with Smart Card Fare Payment Data. Transportation 

Research Record: Journal of the Transportation Research Board. 2121, pp.55-
62. 

Silva, D. 2017. Quantifying Journey Time Variability and Understanding its Impact On 

Passenger Decision Making For Bus Travel In London. Master of Science 
thesis, University of Leeds. 

Spiess, H. and Florian, M. 1989. Optimal strategies: A new assignment model for transit 
networks. Transportation Research Part B: Methodological. 23(2), pp.83-102. 

Sun, G., Xiong, Y. and Zhu, Y. 2017. How the Passengers Flow in Complex Metro 

Networks? In: Proceedings of the 29th International Conference on Scientific 
and Statistical Database Management, Chicago, IL, USA. 3085527: ACM, pp.1-

6. 
Sun, L., Lee, D.-H., Erath, A. and Huang, X. 2012. Using smart card data to extract 

passenger's spatio-temporal density and train's trajectory of MRT system. In: 

Proceedings of the ACM SIGKDD International Workshop on Urban 
Computing, Beijing, China. 2346519: ACM, pp.142-148. 



 249 

 
 

Sun, L., Lu, Y., Jin, J.G., Lee, D.-H. and Axhausen, K.W. 2015. An integrated Bayesian 
approach for passenger flow assignment in metro networks. Transportation 
Research Part C: Emerging Technologies. 52, pp.116-131. 

Sun, Y. and Xu, R. 2012. Rail Transit Travel Time Reliability and Estimation of 
Passenger Route Choice Behavior. Transportation Research Record: Journal of 

the Transportation Research Board. 2275, pp.58-67. 
Swait, J. 2001. A non-compensatory choice model incorporating attribute cutoffs. 

Transportation Research Part B: Methodological. 35(10), pp.903-928. 

Swait, J. and Ben-Akiva, M. 1987. Incorporating random constraints in discrete models 
of choice set generation. Transportation Research Part B: Methodological. 

21(2), pp.91-102. 
Tamblay, S., Galilea, P., Iglesias, P., Raveau, S. and Muñoz, J.C. 2016. A zonal 

inference model based on observed smart-card transactions for Santiago de 

Chile. Transportation Research Part A: Policy and Practice. 84, pp.44-54. 
Tamblay, S., Muñoz, J.C. and Ortúzar, J.d.D. 2018. Extended Methodology for the 

Estimation of a Zonal Origin-Destination Matrix: A Planning Software 
Application Based on Smartcard Trip Data. Transportation Research Record: 
Journal of the Transportation Research Board. 

Teklu, F. 2007. A Stochastic Process Approach for Frequency-based Transit 
Assignment with Strict Capacity Constraints. Networks and Spatial Economics. 

8(2-3), pp.225-240. 
Tirachini, A., Hurtubia, R., Dekker, T. and Daziano, R.A. 2017. Estimation of crowding 

discomfort in public transport: Results from Santiago de Chile. Transportation 

Research Part A: Policy and Practice. 103, pp.311-326. 
Tirachini, A., Sun, L., Erath, A. and Chakirov, A. 2016. Valuation of sitting and 

standing in metro trains using revealed preferences. Transport Policy. 47, pp.94-
104. 

Tong, C.O. and Wong, S.C. 1999. A stochastic transit assignment model using a 

dynamic schedule-based network. Transportation Research Part B: 
Methodological. 33(2), pp.107-121. 

Tong, C.O.C.O. 1986. A schedule-based transit network model. 
Transport for London. 2010. Measuring Public Transport Accessibility Levels, (PTALs), 

Summary.  Transport for London. 

Transport for London. 2017. Review of the TfL WiFi pilot. London, UK: Transport for 
London. 

Trépanier, M., Tranchant, N. and Chapleau, R. 2007. Individual Trip Destination 
Estimation in a Transit Smart Card Automated Fare Collection System. Journal 
of Intelligent Transportation Systems. 11(1), pp.1-14. 

Utsunomiya, M., Attanucci, J. and Wilson, N. 2006. Potential Uses of Transit Smart 
Card Registration and Transaction Data to Improve Transit Planning. 

Transportation Research Record: Journal of the Transportation Research 
Board. 1971, pp.119-126. 

Viggiano, C., Koutsopoulos, H.N., Wilson, N.H.M. and Attanucci, J. 2016. Journey-

based characterization of multi-modal public transportation networks. Public 
Transport. 9(1-2), pp.437-461. 

Vovsha, P. 1997. Application of Cross-Nested Logit Model to Mode Choice in Tel 
Aviv, Israel, Metropolitan Area. Transportation Research Record: Journal of 
the Transportation Research Board. 1607, pp.6-15. 

Wahaballa, A.M., Kurauchi, F., Yamamoto, T. and Schmöcker, J.-D. 2017. Estimation 
of Platform Waiting Time Distribution Considering Service Reliability Based on 

Smart Card Data and Performance Reports. Transportation Research Record: 
Journal of the Transportation Research Board. 2652, pp.30-38. 



 250 

 
 

Wang, W., Attanucci, J. and Wilson, N. 2011. Bus passenger origin-destination 
estimation and related analyses using automated data collection systems. 

Watling, D.P., Rasmussen, T.K., Prato, C.G. and Nielsen, O.A. 2018. Stochastic user 

equilibrium with a bounded choice model. Transportation Research Part B: 
Methodological. 114, pp.254-280. 

Wen, C.-H. and Koppelman, F.S. 2001. The generalized nested logit model. 
Transportation Research Part B: Methodological. 35(7), pp.627-641. 

Whelan, G.A. and Crockett, J. 2009. An Investigation of the Willingness to Pay to 

Reduce Rail Overcrowding. In: International Choice Modelling Conference 
2009. 

Williams, H.C.W.L. 1977. On the Formation of Travel Demand Models and Economic 
Evaluation Measures of User Benefit. Environment and Planning A: Economy 
and Space. 9(3), pp.285-344. 

Wu, J.H., Florian, M., & Marcotte, P. 1994. Transit equilibrium assignment: a model 
and solution algorithms. Transportation Science. 28, pp.193-203. 

Xu, R.-h. and Zhou, F. 2012. Model of Passenger Flow Assignment for Urban Rail 
Transit Based on Entry and Exit Time Constraints. Transportation Research 
Record: Journal of the Transportation Research Board. 2284(-1), pp.57-61. 

Xu, X., Xie, L., Li, H. and Qin, L. 2018. Learning the route choice behavior of subway 
passengers from AFC data. Expert Systems with Applications. 95, pp.324-332. 

Yen, J.Y. 1971. Finding the K Shortest Loopless Paths in a Network. Management 
Science. 17(11), pp.712-716. 

Young, M.A. and Blainey, S.P. 2017. Development of railway station choice models to 

improve the representation of station catchments in rail demand models. 
Transportation Planning and Technology. 41(1), pp.80-103. 

Yu, B., Zhu, H., Cai, W., Ma, N., Kuang, Q. and Yao, B. 2013. Two-phase optimization 
approach to transit hub location – the case of Dalian. Journal of Transport 
Geography. 33, pp.62-71. 

Zhao, J., Frumin, M., Wilson, N. and Zhao, Z. 2013. Unified estimator for excess 
journey time under heterogeneous passenger incidence behavior using smartcard 

data. Transportation Research Part C: Emerging Technologies. 34, pp.70-88. 
Zhao, J., Rahbee, A. and Wilson, N.H.M. 2007. Estimating a Rail Passenger Trip 

Origin-Destination Matrix Using Automatic Data Collection Systems. 

Computer-Aided Civil and Infrastructure Engineering. 22(5), pp.376-387. 
Zhong, C., Arisona, S.M., Huang, X., Batty, M. and Schmitt, G. 2014. Detecting the 

dynamics of urban structure through spatial network analysis. International 
Journal of Geographical Information Science. 28(11), pp.2178-2199. 

Zhu, W. and Xu, R. 2016. Generating route choice sets with operation information on 

metro networks. Journal of Traffic and Transportation Engineering (English 
Edition). 3(3), pp.243-252. 

Zhu, Y. 2017. Passenger-to-Itinerary Assignment Model Based on Automated Data. 
thesis, Northeastern University. 

Zhu, Y., Koutsopoulos, H.N. and Wilson, N.H.M. 2017. A probabilistic Passenger-to-

Train Assignment Model based on automated data. Transportation Research 
Part B: Methodological. 104, pp.522-542. 

Zhu, Y., Koutsopoulos, H.N. and Wilson, N.H.M. 2018. Inferring left behind 
passengers in congested metro systems from automated data. Transportation 
Research Part C: Emerging Technologies. 94, pp.323-337. 

 



 251 

 
 

Appendix A  

Matlab code for creating matrix of link times 

Section 4.4.1 presented the definition of nodes and links, as well as the allocation rules 

for the values in the matrix of link times. The case study network (i.e. LU inner zone with 

9 lines and 68 stations) is represented with 280 nodes and 722 links.  

To fill the matrix of link times manually would be time consuming and it could easily 

give place to errors. To avoid this, a Matlab code was written to create and fill this matrix 

automatically based on the input data for the lines and stations (cf. Section 3.6.2): 
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Appendix B  

The Dijkstra algorithm 

The Dijkstra (1959) algorithm, calculates the shortest path by going through the following 

steps: 

1. Set an initial value of “distance from origin” for all nodes: 

0 for initial node,   

∞ for all other nodes 

2. Set the origin node as current node 

Set all other nodes unvisited 

3. Update “distance from origin” for the neighbours of the current node 

3.1. Calculate the “distance from origin” via the current node 

3.2. If the newly calculated “distance from origin” is smaller than the current 

value, 

assign the newly calculated value for that node  

set the current node as its parent node. 

3.3. Once 3.1 and 3.2 is done for all neighbours of the current node,  

mark the current node as visited. 

3.4. If the destination node is marked as visited, stop 

3.5. Find the unvisited node with the smallest “distance from origin” 

Set it at current node 

Go back to step 3.1 

4. The shortest path will be given as the sequence of parent nodes from destination to 

origin 

This is illustrated on Figure B-1 through a small example network. The Dijkstra 

algorithm was applied in Matlab as a sub-function of the K shortest algorithm on the LU 

inner zone network (cf. Section 4.6). The program code is available from the Matlab file 

exchange website30. 

  

                                                                 
30 https://uk.mathworks.com/matlabcentral/fileexchange/5550-dijkstra-shortest-path-routing 

https://uk.mathworks.com/matlabcentral/fileexchange/5550-dijkstra-shortest-path-routing
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Step 1  

 

Step 2 

 

Steps 3.1-3.3 

 

Steps 3.5 

 

Steps 3.1-3.3 

 

Steps 3.4+4 

 

Figure B-1 The Dijkstra (1959) algorithm  
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Appendix C  

Matlab code for the proposed modifications to the K shortest 

path algorithm 

Section 4.6.2 explained the proposed modifications to the K shortest path algorithm to 

avoid that the results should give route variants, which differ only in their access egress 

interchange (AEI) movements within the stations (see Figure 4-8 a). The Matlab code for 

these modifications are presented as follows 

C.1 Algorithm to eliminate interchange links at origin and destination 

stations and access and egress links at all other stations 
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C.2 Algorithm to eliminate links at interchange stations which does not 

start from the deviation vertex 
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Appendix D  

The results of the K shortest algorithm for the case study OD 

pairs 

In Section 4.6.3, the results were presented for the Victoria – Holborn OD pair. Here 

the results are presented for the other case study OD pairs  
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Table D-1 The 10 shortest routes for Euston – St James’s Park (OD 2) with their journey time and generalised cost,  

observed routes (Rolling Origin Destination Survey, RODS) are highlighted with green 

  

ID Line 1 IC 1 Line 2 IC 2 Line 3 IC 3 Line 4 Total IC Total AEI Proportion

[min] [min] [min] [min]

1 Victoria Victoria Circle 16.7 2.0 27.7 14.9 1.00

2
Northern 

(CX)
Embankment Circle 20.0 1.3 30.9 12.1 1.11

3 Victoria Green Park Jubilee Westminster Circle 22.1 5.5 38.9 23.1 1.40

4 Victoria
Oxford 

Circus
Bakerloo Embankment Circle 23.7 3.6 39.5 19.8 1.42

5
Northern 

(CX)

Warren 

Street
Victoria Victoria Circle 20.9 5.2 40.7 24.0 1.47

6
Northern 

(Bank)
Kings Cross Victoria Victoria Circle 23.9 5.2 41.4 22.7 1.49

7
Northern 

(Bank)
Bank Circle 32.2 3.5 43.4 15.5 1.56

8 Victoria
Warren 

Street

Northern 

(CX)
Embankment Circle 24.6 4.5 43.7 24.0 1.58

9 Victoria
Oxford 

Circus
Bakerloo Baker Street Jubilee Westminster Circle 28.9 4.7 46.7 22.0 1.68

10
Northern 

(CX)
Waterloo Bakerloo Embankment Circle 26.3 4.1 47.2 23.5 1.70

Time Generalised costRoute
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Table D-2 The 10 shortest routes for Victoria – Liverpool Street (OD 3) with their journey time and generalised cost,  

observed routes (Rolling Origin Destination Survey, RODS) are highlighted with green 

 

ID Line 1 IC 1 Line 2 IC 2 Line 3 Total IC Total AEI Proportion

[min] [min] [min] [min]

1
Victoria

Oxford Circus
Central

23.2 3.4 34.1 17.2 1.00

2
Circle

28.5 0.0 34.2 4.6 1.00

3
Victoria

Kings Cross
Circle

28.0 5.3 38.9 18.0 1.14

4
Circle

Bank
Central

28.5 5.8 39.8 18.9 1.17

5
Victoria

Green Park
Jubilee

Bond Street
Central

26.9 5.0 44.4 24.6 1.30

6
Victoria

Green Park
Piccadilly

Holborn
Central

29.5 7.1 47.2 26.4 1.39

7
Victoria

Kings Cross
Northern 

(Bank)
Moorgate

Circle
29.0 5.3 47.7 24.9 1.40

8
Victoria

Oxford Circus
Bakerloo

Baker Street
Circle

32.7 3.5 48.0 19.2 1.41

9
Victoria

Euston
Northern 

(Bank)
Moorgate

Circle
29.3 5.6 48.8 26.1 1.43

10
Circle

Embankment
Northern 

(CX)

Tottenham 

Court Rd Central
30.4 4.2 49.4 23.7 1.45

Time Generalised costRoute
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Table D-3 The 10 shortest routes for Angel – Waterloo (OD 4)with their journey time and generalised cost,  

observed routes (Rolling Origin Destination Survey, RODS) are highlighted with green 

 

ID Line 1 IC 1 Line 2 IC 2 Line 3 Total IC Total AEI Proportion

[min] [min] [min] [min]

1
Northern 

(Bank)

London 

Bridge Jubilee
23.9 3.2 33.9 19.1 1.00

2
Northern 

(Bank)
Bank

Waterloo 

& City
23.5 5.3 35.6 19.8 1.05

3
Northern 

(Bank)
Euston

Northern 

(CX)
25.3 2.6 37.1 18.3 1.09

4
Northern 

(Bank)
Kings Cross

Victoria
Oxford Circus

Bakerloo
26.9 4.4 40.5 20.7 1.19

5
Northern 

(Bank)
Euston

Victoria
Oxford Circus

Bakerloo
27.1 4.6 43.3 23.5 1.28

6
Northern 

(Bank)
Kings Cross

Victoria
Green Park

Jubilee
29.5 5.7 46.1 27.3 1.36

7
Northern 

(Bank)
Kings Cross

Victoria
Warren Street

Northern 

(CX)
29.0 6.3 46.9 27.1 1.38

8
Northern 

(Bank)
Kings Cross

Victoria
Euston

Northern 

(CX)
30.2 6.5 48.1 27.4 1.42

9
Northern 

(Bank)
Euston

Northern 

(CX)
Embankment

Bakerloo
28.6 4.6 48.8 27.1 1.44

10
Northern 

(Bank)
Euston

Victoria
Green Park

Jubilee
29.8 6.0 48.9 30.1 1.44

Time Generalised costRoute
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Table D-4 The 10 shortest routes for Liverpool Street – Green Park (OD 5) with their journey time and generalised cost,  

observed routes (Rolling Origin Destination Survey, RODS) are highlighted with green 

  

ID Line 1 IC 1 Line 2 IC 2 Line 3 Total IC Total AEI Proportion

[min] [min] [min] [min]

1
Central

Oxford Circus
Victoria

21.4 2.9 32.8 16.9 1.00

2
Central

Bond Street
Jubilee

24.3 3.2 34.9 18.0 1.06

3
Central

Holborn
Piccadilly

24.1 3.4 35.8 18.0 1.09

4
Circle

Kings Cross
Victoria

26.3 5.3 36.1 16.2 1.10

5
Circle

Baker Street
Jubilee

29.3 3.8 40.3 17.4 1.23

6
Circle

Kings Cross
Piccadilly

30.2 5.0 40.6 16.8 1.24

7
Central

Bank
Northern 

(Bank)

London 

Bridge Jubilee
25.7 6.6 43.7 27.9 1.33

8
Circle

Moorgate
Northern 

(Bank)
Kings Cross

Victoria
27.3 5.3 44.0 22.3 1.34

9
Circle

Moorgate
Northern 

(Bank)

London 

Bridge Jubilee
26.8 5.3 44.0 24.3 1.34

10
Circle

Westminster
Jubilee

31.9 2.9 44.7 15.2 1.37

Time Generalised costRoute
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Table D-5 The 10 shortest routes for Euston – South Kensington (OD 6) with their journey time and generalised cost,  

observed routes (Rolling Origin Destination Survey, RODS) are highlighted with green 

 

ID Line 1 IC 1 Line 2 IC 2 Line 3 Total IC Total AEI Proportion

[min] [min] [min] [min]

1
Victoria

Victoria
Circle

20.1 2.0 31.5 16.7 1.00

2
Victoria

Green Park
Piccadilly

25.7 3.7 36.2 19.4 1.15

3
Northern 

(CX)

Leicester 

Square Piccadilly
26.5 1.5 38.0 16.3 1.21

4
Northern 

(CX)
Embankment

Circle
27.4 1.3 38.6 13.8 1.23

5
Victoria

Kings Cross
Piccadilly

32.4 3.4 42.8 19.0 1.36

6
Victoria

Oxford Circus
Bakerloo

Piccadilly 

Circus Piccadilly
27.4 2.9 43.1 22.3 1.37

7
Northern 

(Bank)
Kings Cross

Piccadilly
32.6 4.7 43.2 19.3 1.37

8
Northern 

(CX)
Warren Street

Victoria
Victoria

Circle
24.3 5.2 44.5 25.7 1.41

9
Northern 

(Bank)
Kings Cross

Victoria
Victoria

Circle
27.3 5.2 45.2 24.4 1.43

10
Victoria

Green Park
Jubilee

Westminster
Circle

29.5 5.5 46.6 24.9 1.48

Time Generalised costRoute
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Table D-6 The 10 shortest routes for Victoria – Waterloo (OD 7) with their journey time and generalised cost,  

observed routes (Rolling Origin Destination Survey, RODS) are highlighted with green 

 

ID Line 1 IC 1 Line 2 IC 2 Line 3 Total IC Total AEI Proportion

[min] [min] [min] [min]

1
Victoria

Oxford Circus
Bakerloo

17.5 1.2 24.0 10.2 1.00

2
Victoria

Green Park
Jubilee

16.1 2.6 25.6 16.7 1.07

3
Circle

Embankment
Northern 

(CX)
15.6 1.3 26.0 13.3 1.08

4
Circle

Westminster
Jubilee

17.2 2.9 27.0 16.2 1.13

5
Circle

Embankment
Bakerloo

16.4 2.4 27.7 14.9 1.15

6
Victoria

Warren Street
Northern 

(CX)
23.7 3.2 34.4 16.6 1.43

7
Victoria

Oxford Circus
Bakerloo

Embankment
Northern 

(CX)
21.2 3.2 37.1 20.4 1.55

8
Victoria

Oxford Circus
Bakerloo

Baker Street
Jubilee

26.9 1.8 37.4 15.6 1.56

9
Victoria

Euston
Northern 

(CX)
26.9 3.3 37.7 16.8 1.57

10
Victoria

Green Park
Piccadilly

Piccadilly 

Circus Bakerloo
20.3 5.5 39.3 25.5 1.63

Time Generalised costRoute
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Appendix E  

Influence of the selection of the centroid on the CCOJT 

distribution 

Following the analogy in Section 5.4.2, here it is discussed how the CCOJT distribution 

varies if a different origin or destination superstation centroid is chosen. Let them be 

called  𝐼𝑐′ and 𝐽𝑐′ respectively. This way, the on-board time between the previously and 

the newly chosen centroids is 𝑡(𝐼𝑐 )(𝐼𝑐′)
𝑜𝑏  for the origin superstation and 𝑡(𝐽𝑐)(𝐽𝑐′)

𝑜𝑏  for the 

destination superstation (Figure E-1). Based on these considerations, the equivalent entry 

and exit time stamp at the superstation centroid can be written as:  

 𝑇(𝐼𝑐)(𝐼𝑐′)
𝑒𝑛𝑡𝑟𝑦 = 𝑇(𝐼𝑖)(𝐼𝑐)

𝑒𝑛𝑡𝑟𝑦 + 𝑡(𝐼𝑐)(𝐼𝑐′)
𝑜𝑏  (E-1) 

and 

 𝑇(𝐽𝑗)(𝐽𝑐′)
𝑒𝑥𝑖𝑡 = 𝑇(𝐽𝑐)(𝐽𝑐)

𝑒𝑥𝑖𝑡 + 𝑡(𝐽𝑐)(𝐽𝑐′)
𝑜𝑏  (E-2) 

respectively. 

Let 𝐶𝐶𝑂𝐽𝑇′(𝐼𝑖)(𝐽𝑗) be the CCOJT corresponding to each station-to-station OD pair based 

on the newly selected centroids. Following the analogy in equation (5-6), this can be 

calculated as: 

 𝐶𝐶𝑂𝐽𝑇′(𝐼𝑖)(𝐽𝑗) = 𝑇(𝐽𝑗)(𝐽𝑐′)
𝑒𝑥𝑖𝑡 − 𝑇(𝐼𝑖)(𝐼𝑐′)

𝑒𝑛𝑡𝑟𝑦
 (E-3) 

Substituting equation (E-1) and (E-2) into (E-3): 

 
𝐶𝐶𝑂𝐽𝑇′(𝐼𝑖)(𝐽𝑗) = 𝑇(𝐽𝑐)(𝐽𝑐)

𝑒𝑥𝑖𝑡 + 𝑡(𝐽𝑐 )(𝐽𝑐′)
𝑜𝑏 − (𝑇(𝐼𝑖)(𝐼𝑐)

𝑒𝑛𝑡𝑟𝑦
+ 𝑡(𝐼𝑐)(𝐼𝑐′)

𝑜𝑏 )

= 𝑇(𝐽𝑐)(𝐽𝑐)
𝑒𝑥𝑖𝑡 − 𝑇(𝐼𝑖)(𝐼𝑐)

𝑒𝑛𝑡𝑟𝑦
+ 𝑡(𝐽𝑐)(𝐽𝑐′)

𝑜𝑏 − 𝑡(𝐼𝑐 )(𝐼𝑐′)
𝑜𝑏  

(E-4) 

Substituting equation (5-6) into (E-4): 

 𝐶𝐶𝑂𝐽𝑇′(𝐼𝑖)(𝐽𝑗) = 𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗) + 𝑡(𝐽𝑐 )(𝐽𝑐′)
𝑜𝑏 − 𝑡(𝐼𝑐)(𝐼𝑐′)

𝑜𝑏  (E-5) 

Looking at equation (E-5) it can be understood that it contains the same term of  

𝑡(𝐽𝑐)(𝐽𝑐′)
𝑜𝑏 − 𝑡(𝐼𝑐 )(𝐼𝑐′)

𝑜𝑏  for all possible entry (𝐼𝑖) and exit (𝐽𝑗) stations. In other words, the 

𝐶𝐶𝑂𝐽𝑇′(𝐼𝑖)(𝐽𝑗)  obtained with the newly selected superstation centroids is just the 

previously defined 𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)  shifted with the corresponding on-board times 

(𝑡(𝐽𝑐 )(𝐽𝑐′)
𝑜𝑏 − 𝑡(𝐼𝑐)(𝐼𝑐′)

𝑜𝑏 ). Therefore the shape of 𝐶𝐶𝑂𝐽𝑇′(𝐼𝑖)(𝐽𝑗)  distribution is not different 
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from the shape of 𝐶𝐶𝑂𝐽𝑇(𝐼𝑖)(𝐽𝑗)  and hence the route choice estimates with the finite 

mixture model would be also identical. 

 

 

Figure E-1 Adjustment of the Oyster entry/exit times at the origin/destination 

superstations with a newly selected centroid, representation on a diachronic graph 
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Appendix F  

Application of the finite mixture model on the CCOJTs of 

superstation-to-superstation OD pairs 

The case studies for the application of the finite mixture model on the CCOJTs of 

superstation-to-superstation OD pairs were presented in Section 5.6. The detailed results 

with different seeds and tolerance thresholds are reported here. 

Case 1 Victoria South - Holborn 

The settings described in Section 3.3.1 were used for centroid initialisation (K-means 

++), distances (Euclidean square) and update methods (online phase). Conducting trials 

with different seeds for the random number generator it gave two possible solutions for  

𝜇𝑟,𝐼𝐽
𝐾𝑀𝑆, 𝜎𝑟,𝐼𝐽

𝐾𝑀𝑆 and 𝜔𝑟,𝐼𝐽
𝐾𝑀𝑆 (Table F-1) 

 

Table F-1 Results of the K-means clustering algorithm with different seeds  

for Victoria South – Holborn; a) Seed=1, b) Seed=2, 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 

Label K-means clustering  Label K-means clustering 

𝑟 𝜇𝑟,𝐼𝐽
𝐾𝑀𝑆 𝜎𝑟,𝐼𝐽

𝐾𝑀𝑆 𝜔𝑟,𝐼𝐽
𝐾𝑀𝑆  𝑟 𝜇𝑟,𝐼𝐽

𝐾𝑀𝑆 𝜎𝑟,𝐼𝐽
𝐾𝑀𝑆 𝜔𝑟,𝐼𝐽

𝐾𝑀𝑆 

[] [min] [min] [%]  [] [min] [min] [%] 

1 18.0 2.0 70.7%  1 16.0 1.9 57.4% 

2 24.0 2.5 29.3%  2 22.0 3.3 42.6% 

         
  a)     b)  
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Figure F-1 and Figure F-2 presents the estimated mean (𝜇1
𝑀𝐼𝑋) and proportion (𝜔1

𝑀𝐼𝑋) 

for mixture component labelled with 𝑟 = 1. 

 

Figure F-1 Estimated mean for mixture component 1,  

given different initial values and tolerance thresholds for Victoria South – Holborn, 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 

 

 

Figure F-2 Estimated proportion for mixture component 1,  

given different initial values and tolerance thresholds for Victoria South – Holborn, 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 
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Figure F-3 presents the log-likelihood (equation (3-9)) for each initial value (seed) and 

tolerance threshold. 

 

 

Figure F-3 Log-likelihood,  

given different initial values and tolerance thresholds for Victoria South – Holborn 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 
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Case 2 Central East – Green Park 

The settings described in Section 3.3.1 were used for centroid initialisation (K-means 

++), distances (Euclidean square) and update methods (online phase). Conducting trials 

with different seeds for the random number generator it gave two possible solutions for 

𝜇𝑟,𝐼𝐽
𝐾𝑀𝑆, 𝜎𝑟,𝐼𝐽

𝐾𝑀𝑆 and 𝜔𝑟,𝐼𝐽
𝐾𝑀𝑆 (Table F-2)  

 

Table F-2 Results of the K-means clustering algorithm  

for Central East– Green Park; 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 

Label K-means clustering 

𝑟 𝜇𝑟,𝐼𝐽
𝐾𝑀𝑆 𝜎𝑟,𝐼𝐽

𝐾𝑀𝑆 𝜔𝑟,𝐼𝐽
𝐾𝑀𝑆 

[] [min] [min] [%] 

1 20.0 2.3 82.6% 

2 29.5 4.0 17.4% 

 

Figure F-4 and Figure F-5 presents the estimated mean (𝜇1
𝑀𝐼𝑋) and proportion (𝜔1

𝑀𝐼𝑋) 

for mixture component labelled with 𝑟 = 1. 

 

Figure F-4 Estimated mean for mixture component 1,  

given different initial values and tolerance thresholds for Central East– Green Park, 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 
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Figure F-5 Estimated proportion for mixture component 1,  

given different initial values and tolerance thresholds for Central East– Green Park, 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 

 

Figure F-6 presents the log-likelihood (equation (3-9)) for each initial value (seed) and 

tolerance threshold. 

 

Figure F-6 Log-likelihood,  

given different initial values and tolerance thresholds for Central East– Green Park 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 
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Case 3 Jubilee West – Jubilee Central 

The settings described in Section 3.3.1 were used for centroid initialisation (K-means 

++), distances (Euclidean square) and update methods (online phase). Conducting trials 

with different seeds for the random number generator it gave two possible solutions for 

𝜇𝑟,𝐼𝐽
𝐾𝑀𝑆, 𝜎𝑟,𝐼𝐽

𝐾𝑀𝑆 and 𝜔𝑟,𝐼𝐽
𝐾𝑀𝑆 (Table F-3)  

 

Table F-3 Results of the K-means clustering algorithm with different seeds  

for Jubilee West – Jubilee Central; a) Seed=1, b) Seed=2, 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 

Label K-means clustering  Label K-means clustering 

𝑟 𝜇𝑟,𝐼𝐽
𝐾𝑀𝑆 𝜎𝑟,𝐼𝐽

𝐾𝑀𝑆 𝜔𝑟,𝐼𝐽
𝐾𝑀𝑆  𝑟 𝜇𝑟,𝐼𝐽

𝐾𝑀𝑆 𝜎𝑟,𝐼𝐽
𝐾𝑀𝑆 𝜔𝑟,𝐼𝐽

𝐾𝑀𝑆 

[] [min] [min] [%]  [] [min] [min] [%] 

1 41.0 3.6 85.0%  1 41.0 2.9 74.1% 

2 55.0 5.7 15.0%  2 50.5 6.2 25.9% 

         
  a)     b)  

 

Figure F-7 and Figure F-8 presents the estimated mean (𝜇1
𝑀𝐼𝑋) and proportion (𝜔1

𝑀𝐼𝑋) 

for mixture component labelled with 𝑟 = 1. 
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Figure F-7 Estimated mean for mixture component 1, given different initial values and 

tolerance thresholds for Jubilee West– Jubilee Central, 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 

 

 

Figure F-8 Estimated proportion for mixture component 1, given different initial values 

and tolerance thresholds for Jubilee West – Jubilee Central, 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays 
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Figure F-9 presents the log-likelihood (equation (3-9)) for each initial value (seed) and 

tolerance threshold. 

 

 

Figure F-9 Log-likelihood, given different initial values and tolerance thresholds for 

Jubilee West – Jubilee Central 

OJTs adjusted to superstation centroid, but not according to fail-to-board delays
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Appendix G  

Application of the finite mixture model on the CCOJTs 

adjusted according to fail-to-board delays 

The case studies for the application of the finite mixture model on the CCOJT dataset 

adjusted according to fail-to-board delays were presented in Section 6.6. The detailed 

description of the settings and of the results are reported here. 

Case 1 Victoria South - Holborn 

Within the dataset of CCOJTs adjusted according to fail-to-board delays (𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙

), all 

entries could be considered as valid data, because the upper outer fence (cf. Section 3.2.1) 

resulted 33 minutes, while the maximum CCOJT value is 30 minutes. This valid dataset 

is denoted by 𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙,0

. 

As two reasonable routes were assumed for the superstation-to-station OD pair, route 

choice was estimated as a two-component (𝑁𝑅 = 2) finite mixture distribution. Therefore, 

the K-means clustering algorithm was applied on the 𝐶𝐶𝑂𝐽𝑇𝑓𝑎𝑖𝑙,0  dataset with two 

clusters and with the settings described in Section 3.3.1 (K-means ++ for centroid 

initialisation, Euclidean square for distances and online phase update method) to produce 

the initial values for the EM algorithm. Conducting trials with different seeds for the 

random number generator it gave two possible solutions for 𝜇𝑟,𝐼𝐽
𝐾𝑀𝑆 , 𝜎𝑟,𝐼𝐽

𝐾𝑀𝑆  and 𝜔𝑟,𝐼𝐽
𝐾𝑀𝑆 

(Table G-1). 

 

Table G-1 Results of the K-means clustering algorithm with different seeds  

for Victoria South – Holborn; a) Seed=1, b) Seed=2, 

OJTs adjusted to superstation centroid and according to fail-to-board delays 

Label K-means clustering  Label K-means clustering 

𝑟 𝜇𝑟,𝐼𝐽
𝐾𝑀𝑆 𝜎𝑟,𝐼𝐽

𝐾𝑀𝑆 𝜔𝑟,𝐼𝐽
𝐾𝑀𝑆  𝑟 𝜇𝑟,𝐼𝐽

𝐾𝑀𝑆 𝜎𝑟,𝐼𝐽
𝐾𝑀𝑆 𝜔𝑟,𝐼𝐽

𝐾𝑀𝑆 

[] [min] [min] [%]  [] [min] [min] [%] 

1 18.0 1.8 74.1%  1 17.0 1.6 62.6% 

2 23.0 2.2 25.9%  2 22.0 2.5 37.4% 

         
  a)     b)  
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Using these initial values, the EM algorithm was run with different settings for the 

tolerance threshold (cf. Section 3.3.2). Figure G-1 and Figure G-2 presents the estimated 

mean (𝜇1,𝐼𝐽
𝑀𝐼𝑋) and proportion (𝜔1,𝐼𝐽

𝑀𝐼𝑋) for mixture component labelled with 𝑟 = 1.  

 

  

Figure G-1 Estimated mean for mixture component 1,  

given different initial values and tolerance thresholds, for Victoria South – Holborn, 

OJTs adjusted to superstation centroid and according to fail-to-board delays 

 

 

Figure G-2 Estimated proportion for mixture component 1,  

given different initial values and tolerance thresholds, for Victoria South – Holborn, 

OJTs adjusted to superstation centroid and according to fail-to-board delays 
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Figure G-3 presents the log-likelihood (equation (3-9)) for each initial value (seed) and 

tolerance threshold. 

 

Figure G-3 Log-likelihood,  

given different initial values and tolerance thresholds, for Victoria South – Holborn 

OJTs adjusted to superstation centroid and according to fail-to-board delays 

 

From these results it is understood, that when the tolerance threshold is 1e-06 or greater, 

the EM algorithm converges to a root close to the initial value for seed 1. But when the 

tolerance threshold is 1e-07 or smaller, the EM algorithm converges to a root around 

17.8 minutes for the mean and 55.3% for the component proportion for both seeds (cf. 

Figure G-1 and Figure G-2). Similar properties could be observed for the other mixture 

component (labelled with 𝑟 = 2). The log-likelihood shows a considerable jump between 

the tolerance threshold of 1e-02 and 1e-03 for both seeds (Figure G-3). Among the 

estimates, the one with seed 1 and tolerance threshold 1e-06 gives the best approximation 

to RODS results (cf. Table 6-5). 
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Case 2 Central East – Green Park 

Within the dataset of CCOJTs adjusted according to fail-to-board delays (𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙

), all 

entries could be considered as valid data, because the upper outer fence (cf. Section 3.2.1) 

resulted 35.3 minutes, while the maximum CCOJT value is 28 minutes. This valid dataset 

is denoted by 𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙,0

. 

As two reasonable routes were assumed for the superstation-to-station OD pair, route 

choice was estimated as a two-component (𝑁𝑅 = 2) finite mixture distribution. Therefore, 

the K-means clustering algorithm was applied on the 𝐶𝐶𝑂𝐽𝑇𝐼𝐽
 𝑓𝑎𝑖𝑙,0

 dataset with two 

clusters and with the settings described in Section 3.3.1 (K-means ++ for centroid 

initialisation, Euclidean square for distances and online phase update method) to produce 

the initial values for the EM algorithm. Conducting trials with different seeds for the 

random number generator it gave two possible solutions for 𝜇𝑟,𝐼𝐽
𝐾𝑀𝑆 , 𝜎𝑟,𝐼𝐽

𝐾𝑀𝑆  and 𝜔𝑟,𝐼𝐽
𝐾𝑀𝑆 

(Table G-2). 

 

Table G-2 Results of the K-means clustering algorithm with different seeds  

for Central East– Green Park; a) Seed=1, b) Seed=2, 

OJTs adjusted to superstation centroid and according to fail-to-board delays 

Label K-means clustering  Label K-means clustering 

𝑟 𝜇𝑟,𝐼𝐽
𝐾𝑀𝑆 𝜎𝑟,𝐼𝐽

𝐾𝑀𝑆 𝜔𝑟,𝐼𝐽
𝐾𝑀𝑆  𝑟 𝜇𝑟,𝐼𝐽

𝐾𝑀𝑆 𝜎𝑟,𝐼𝐽
𝐾𝑀𝑆 𝜔𝑟,𝐼𝐽

𝐾𝑀𝑆 

[] [min] [min] [%]  [] [min] [min] [%] 

1 18.0 1.8 74.5%  1 17.5 1.4 51.1% 

2 24.5 2.1 25.5%  2 22.0 2.6 48.9% 

         
  a)     b)  

 

Using these initial values, the EM algorithm was run with different settings for the 

tolerance threshold (cf. Section 3.3.2). Figure G-4 and Figure G-5 presents the estimated 

mean (𝜇1,𝐼𝐽
𝑀𝐼𝑋) and proportion (𝜔1,𝐼𝐽

𝑀𝐼𝑋) for mixture component labelled with 𝑟 = 1.  
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Figure G-4 Estimated mean for mixture component 1,  

given different initial values and tolerance thresholds, for Central East– Green Park, 

OJTs adjusted to superstation centroid and according to fail-to-board delays 

 

 

Figure G-5 Estimated proportion for mixture component 1,  

given different initial values and tolerance thresholds, for Central East– Green Park, 

OJTs adjusted to superstation centroid and according to fail-to-board delays 
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Figure G-6 presents the log-likelihood (equation (3-9)) for each initial value (seed) and 

tolerance threshold. 

 

Figure G-6 Log-likelihood,  

given different initial values and tolerance thresholds, for Central East– Green Park 

OJTs adjusted to superstation centroid and according to fail-to-board delays 

 

From these results it is understood, that when the tolerance threshold is 1e-04 or greater, 

the EM algorithm converges to different roots for seed 1 and 2; but when it is 1e-05 or 

smaller, it converges to the same root for the two seeds: 18.7 minutes for the mean journey 

time (cf. Figure G-4) and 86.2% for the proportion of component 1 (cf. Figure G-5). It 

starts plateauing from the tolerance threshold value of 1e-07. Similar properties could be 

observed for the other mixture component (labelled with 𝑟 = 2). The log-likelihood 

exhibits a considerable jump between the tolerance threshold of 1e-03 and 1e-04 for seed 

1 and between 1e-04 and 1e-05 for seed 2 (Figure G-6). Due to these considerations, the 

estimate with seed 1 and tolerance threshold 1e-07 was chosen (cf. Table 6-10). 
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